Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1192 -0
- config.json +49 -0
- config_sentence_transformers.json +10 -0
- configuration.py +145 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:583058
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
10 |
+
widget:
|
11 |
+
- source_sentence: 'Pre-Emphasis (PE)
|
12 |
+
|
13 |
+
A pre-emphasis filter is applied to the framed offset-free input signal:
|
14 |
+
|
15 |
+
|
16 |
+
)1
|
17 |
+
|
18 |
+
('
|
19 |
+
sentences:
|
20 |
+
- 'Windowing (W)
|
21 |
+
|
22 |
+
A Hamming window of length N is applied to the output of the pre-emphasis block:
|
23 |
+
|
24 |
+
|
25 |
+
(
|
26 |
+
|
27 |
+
)
|
28 |
+
|
29 |
+
N
|
30 |
+
|
31 |
+
n
|
32 |
+
|
33 |
+
n
|
34 |
+
|
35 |
+
s
|
36 |
+
|
37 |
+
N
|
38 |
+
|
39 |
+
n
|
40 |
+
|
41 |
+
n
|
42 |
+
|
43 |
+
s
|
44 |
+
|
45 |
+
pe
|
46 |
+
|
47 |
+
w
|
48 |
+
|
49 |
+
≤
|
50 |
+
|
51 |
+
≤
|
52 |
+
|
53 |
+
×
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
−
|
80 |
+
|
81 |
+
−
|
82 |
+
|
83 |
+
×
|
84 |
+
|
85 |
+
−
|
86 |
+
|
87 |
+
='
|
88 |
+
- 'Group or broadcast call, called mobile stations (GSM only)
|
89 |
+
|
90 |
+
Within each set of voice group call or voice broadcast call attributes stored
|
91 |
+
in the GCR as defined in 3GPP TS 43.068
|
92 |
+
|
93 |
+
and 3GPP TS 43.069, respectively, a priority level is included if eMLPP is applied.
|
94 |
+
The priority level will be provided
|
95 |
+
|
96 |
+
by the GCR to the MSC together with the call attributes.
|
97 |
+
|
98 |
+
The priority level shall be indicated together with the related notification messages
|
99 |
+
and treated in the mobile station as
|
100 |
+
|
101 |
+
defined in 3GPP TS 43.0'
|
102 |
+
- 'Description of the access technology indicator mechanism
|
103 |
+
|
104 |
+
This clause describes the mechanisms that can be employed to indicate access technology
|
105 |
+
specific dependencies in a
|
106 |
+
|
107 |
+
multi-access technology environment.
|
108 |
+
|
109 |
+
There are cases where toolkit applications need to know which access technology
|
110 |
+
the terminal is currently in so that it
|
111 |
+
|
112 |
+
can issue access technology dependent commands as well as determine that the response
|
113 |
+
to a particular command is
|
114 |
+
|
115 |
+
technology dependent. Setting up the event, ACCESS TECHNOL'
|
116 |
+
- source_sentence: 'Distribution of DL delay between NG-RAN and UE
|
117 |
+
|
118 |
+
a) This measurement provides the distribution of DL packet delay between NG-RAN
|
119 |
+
and UE, which is the delay
|
120 |
+
|
121 |
+
incurred in NG-RAN (including the delay at gNB-CU-UP, on F1-U and on gNB-DU) and
|
122 |
+
the delay over Uu
|
123 |
+
|
124 |
+
interface. This measurement is split into subcounters per 5QI and subcounters
|
125 |
+
per S-NSSAI.
|
126 |
+
|
127 |
+
b) DER (n=1).
|
128 |
+
|
129 |
+
|
130 |
+
ETSI
|
131 |
+
|
132 |
+
ETSI TS 128 552 V16.18.0 (2024-08)'
|
133 |
+
sentences:
|
134 |
+
- 'Distribution of UL delay between NG-RAN and UE
|
135 |
+
|
136 |
+
a) This measurement provides the distribution of UL packet delay between NG-RAN
|
137 |
+
and UE, which is the delay
|
138 |
+
|
139 |
+
incurred in NG-RAN (including the delay at gNB-CU-UP, on F1-U and on gNB-DU) and
|
140 |
+
the delay over Uu
|
141 |
+
|
142 |
+
interface. This measurement is split into subcounters per 5QI and subcounters
|
143 |
+
per S-NSSAI.
|
144 |
+
|
145 |
+
b) DER (n=1).
|
146 |
+
|
147 |
+
c) The measurement is obtained by the following method:
|
148 |
+
|
149 |
+
|
150 |
+
The gNB performs the GTP PDU packet delay measurement for QoS monitoring per the
|
151 |
+
GTP '
|
152 |
+
- 'Subscriber data
|
153 |
+
|
154 |
+
Subscription to MExE services shall be logically separate to subscription of network
|
155 |
+
services. A subscriber may have a
|
156 |
+
|
157 |
+
MExE subscription to multiple MExE service providers. It may also be possible
|
158 |
+
for the subscriber to interrogate such
|
159 |
+
|
160 |
+
subscription registration (with a suitable means of authorisation), depending
|
161 |
+
on PLMN support.'
|
162 |
+
- 'MSC for LMU Control
|
163 |
+
|
164 |
+
When a control message has to be routed to an LMU from an SMLC, the SMLC addresses
|
165 |
+
the serving MSC for the
|
166 |
+
|
167 |
+
LMU using an E.164 address.
|
168 |
+
|
169 |
+
|
170 |
+
ETSI
|
171 |
+
|
172 |
+
ETSI TS 129 002 V10.6.0 (2012-04)'
|
173 |
+
- source_sentence: 'Enter SMS Block Mode Protocol +CESP
|
174 |
+
|
175 |
+
Table 3.2.4-1: +CESP Action Command Syntax
|
176 |
+
|
177 |
+
Command
|
178 |
+
|
179 |
+
Possible response(s)
|
180 |
+
|
181 |
+
+CESP
|
182 |
+
|
183 |
+
|
184 |
+
+CESP=?
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
Description
|
189 |
+
|
190 |
+
Execution command sets the TA in SMS block protocol mode. The TA shall return
|
191 |
+
OK (or 0) to confirm acceptance of
|
192 |
+
|
193 |
+
the command prior to entering the block mode (see clause 2.1.1). The final result
|
194 |
+
code OK (or 0) shall be returned when
|
195 |
+
|
196 |
+
the block mode is exited.
|
197 |
+
|
198 |
+
NOTE:
|
199 |
+
|
200 |
+
Commands following +CESP in the AT command line must not be processed by the TA.
|
201 |
+
|
202 |
+
Implementation
|
203 |
+
|
204 |
+
Ma'
|
205 |
+
sentences:
|
206 |
+
- 'SGSN
|
207 |
+
|
208 |
+
To support NBIFOM, the SGSN needs to be capable to:
|
209 |
+
|
210 |
+
|
211 |
+
ETSI
|
212 |
+
|
213 |
+
ETSI TS 123 161 V14.0.0 (2017-05)'
|
214 |
+
- 'Message Service Failure Result Code +CMS ERROR
|
215 |
+
|
216 |
+
Final result code +CMS ERROR: <err> indicates an error related to mobile equipment
|
217 |
+
or network. The operation is
|
218 |
+
|
219 |
+
similar to ERROR final result code. None of the following commands in the same
|
220 |
+
command line is executed. Neither
|
221 |
+
|
222 |
+
ERROR nor OK final result code shall be returned. ERROR is returned normally when
|
223 |
+
error is related to syntax or invalid
|
224 |
+
|
225 |
+
parameters.
|
226 |
+
|
227 |
+
Defined Values
|
228 |
+
|
229 |
+
<err> values used by common messaging commands:'
|
230 |
+
- 'C
|
231 |
+
|
232 |
+
C
|
233 |
+
|
234 |
+
-
|
235 |
+
|
236 |
+
-
|
237 |
+
|
238 |
+
P
|
239 |
+
|
240 |
+
Service Priority Level'
|
241 |
+
- source_sentence: 'Definition
|
242 |
+
|
243 |
+
Cell synchronization accuracy is defined as the maximum deviation in frame start
|
244 |
+
times between any pair of cells on the
|
245 |
+
|
246 |
+
same frequency that have overlapping coverage areas.'
|
247 |
+
sentences:
|
248 |
+
- 'Minimum requirements
|
249 |
+
|
250 |
+
The cell synchronization accuracy shall be better than or equal to 3μs.'
|
251 |
+
- "Subsequent Inter-MSC Handover to third MSC\nWhen a Mobile Station is being handed\
|
252 |
+
\ over to a third MSC, the procedure (described in GSM 03.09)\ndoes require one\
|
253 |
+
\ specific interworking case in MSC-A (figure 20) between E-Interface from MSC-B\
|
254 |
+
\ and E-\nInterface from MSC-B' other than the combination of the ones described\
|
255 |
+
\ in the chapter 4.5.1 and 4.5.2.\n%66\x10$\x03\x03\x03\x03\x03\x0306&\x10%\x03\
|
256 |
+
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x0306&\x10$\x03\
|
257 |
+
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x0306&\x10%\n_\x03\x03\x03\x03\x03\x03\
|
258 |
+
\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\
|
259 |
+
\x03\x03\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\
|
260 |
+
\x03\x03\x03\x03_\n_+$1'29(5\x03\x03\x03\x03_\x03\x03\x03\x03\x03\x03\x03\x03\x03\
|
261 |
+
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03_\x03\x03\x03\x03"
|
262 |
+
- 'DL Total PRB Usage
|
263 |
+
|
264 |
+
a) This measurement provides the total usage (in percentage) of physical resource
|
265 |
+
blocks (PRBs) on the downlink
|
266 |
+
|
267 |
+
for any purpose.
|
268 |
+
|
269 |
+
b) SI
|
270 |
+
|
271 |
+
c) This measurement is obtained as:
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
∗
|
282 |
+
|
283 |
+
='
|
284 |
+
- source_sentence: Carrier aggregation measurement accuracy
|
285 |
+
sentences:
|
286 |
+
- 'PUCCH / PUSCH / SRS time mask
|
287 |
+
|
288 |
+
The PUCCH/PUSCH/SRS time mask defines the observation period between sounding
|
289 |
+
reference symbol (SRS) and an
|
290 |
+
|
291 |
+
adjacent PUSCH/PUCCH symbol and subsequent sub-frame.
|
292 |
+
|
293 |
+
There are no additional requirements on UE transmit power beyond that which is
|
294 |
+
required in subclause 6.2.2 and
|
295 |
+
|
296 |
+
subclause 6.6.2.3
|
297 |
+
|
298 |
+
|
299 |
+
ETSI
|
300 |
+
|
301 |
+
ETSI TS 136 101 V9.16.0 (2013-07)'
|
302 |
+
- 'Reference Signal Time Difference (RSTD) Measurement Accuracy
|
303 |
+
|
304 |
+
Requirements for Carrier Aggregation
|
305 |
+
|
306 |
+
A.8
|
307 |
+
|
308 |
+
UE Measurements Procedures
|
309 |
+
|
310 |
+
A.9
|
311 |
+
|
312 |
+
Measurement Performance Requirements
|
313 |
+
|
314 |
+
NOTE:
|
315 |
+
|
316 |
+
Only requirements and test cases in this table defined for inter-band carrier
|
317 |
+
aggregation shall apply.
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
ETSI
|
322 |
+
|
323 |
+
ETSI TS 136 307 V10.17.0 (2016-01)'
|
324 |
+
- 'Operator control
|
325 |
+
|
326 |
+
Three general architectures are candidates to offer energy savings functionalities:
|
327 |
+
|
328 |
+
Distributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].
|
329 |
+
|
330 |
+
Energy savings in cells can be initiated in several different ways. Some of the
|
331 |
+
mechanisms are:
|
332 |
+
|
333 |
+
For NM-centralized architecture
|
334 |
+
|
335 |
+
-
|
336 |
+
|
337 |
+
IRPManager instructs the cells to move to energySaving state (e.g. according to
|
338 |
+
a schedule determined by
|
339 |
+
|
340 |
+
network statistics) , configures trigger points (e.g. load threshold crossing)
|
341 |
+
when it want'
|
342 |
+
pipeline_tag: sentence-similarity
|
343 |
+
library_name: sentence-transformers
|
344 |
+
---
|
345 |
+
|
346 |
+
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
347 |
+
|
348 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
349 |
+
|
350 |
+
## Model Details
|
351 |
+
|
352 |
+
### Model Description
|
353 |
+
- **Model Type:** Sentence Transformer
|
354 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
|
355 |
+
- **Maximum Sequence Length:** 8192 tokens
|
356 |
+
- **Output Dimensionality:** 768 dimensions
|
357 |
+
- **Similarity Function:** Cosine Similarity
|
358 |
+
<!-- - **Training Dataset:** Unknown -->
|
359 |
+
<!-- - **Language:** Unknown -->
|
360 |
+
<!-- - **License:** Unknown -->
|
361 |
+
|
362 |
+
### Model Sources
|
363 |
+
|
364 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
365 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
366 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
367 |
+
|
368 |
+
### Full Model Architecture
|
369 |
+
|
370 |
+
```
|
371 |
+
SentenceTransformer(
|
372 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
|
373 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
374 |
+
(2): Normalize()
|
375 |
+
)
|
376 |
+
```
|
377 |
+
|
378 |
+
## Usage
|
379 |
+
|
380 |
+
### Direct Usage (Sentence Transformers)
|
381 |
+
|
382 |
+
First install the Sentence Transformers library:
|
383 |
+
|
384 |
+
```bash
|
385 |
+
pip install -U sentence-transformers
|
386 |
+
```
|
387 |
+
|
388 |
+
Then you can load this model and run inference.
|
389 |
+
```python
|
390 |
+
from sentence_transformers import SentenceTransformer
|
391 |
+
|
392 |
+
# Download from the 🤗 Hub
|
393 |
+
model = SentenceTransformer("lucian-li/my_new_model")
|
394 |
+
# Run inference
|
395 |
+
sentences = [
|
396 |
+
'Carrier aggregation measurement accuracy',
|
397 |
+
'Reference Signal Time Difference (RSTD) Measurement Accuracy\nRequirements for Carrier Aggregation\nA.8\nUE Measurements Procedures\nA.9\nMeasurement Performance Requirements\nNOTE:\nOnly requirements and test cases in this table defined for inter-band carrier aggregation shall apply.\n\n\nETSI\nETSI TS 136 307 V10.17.0 (2016-01)',
|
398 |
+
'Operator control\nThree general architectures are candidates to offer energy savings functionalities:\nDistributed, NM-Centralized, EM-Centralized as defined in TS 32.500 [6].\nEnergy savings in cells can be initiated in several different ways. Some of the mechanisms are:\nFor NM-centralized architecture\n-\nIRPManager instructs the cells to move to energySaving state (e.g. according to a schedule determined by\nnetwork statistics) , configures trigger points (e.g. load threshold crossing) when it want',
|
399 |
+
]
|
400 |
+
embeddings = model.encode(sentences)
|
401 |
+
print(embeddings.shape)
|
402 |
+
# [3, 768]
|
403 |
+
|
404 |
+
# Get the similarity scores for the embeddings
|
405 |
+
similarities = model.similarity(embeddings, embeddings)
|
406 |
+
print(similarities.shape)
|
407 |
+
# [3, 3]
|
408 |
+
```
|
409 |
+
|
410 |
+
<!--
|
411 |
+
### Direct Usage (Transformers)
|
412 |
+
|
413 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
414 |
+
|
415 |
+
</details>
|
416 |
+
-->
|
417 |
+
|
418 |
+
<!--
|
419 |
+
### Downstream Usage (Sentence Transformers)
|
420 |
+
|
421 |
+
You can finetune this model on your own dataset.
|
422 |
+
|
423 |
+
<details><summary>Click to expand</summary>
|
424 |
+
|
425 |
+
</details>
|
426 |
+
-->
|
427 |
+
|
428 |
+
<!--
|
429 |
+
### Out-of-Scope Use
|
430 |
+
|
431 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
432 |
+
-->
|
433 |
+
|
434 |
+
<!--
|
435 |
+
## Bias, Risks and Limitations
|
436 |
+
|
437 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
438 |
+
-->
|
439 |
+
|
440 |
+
<!--
|
441 |
+
### Recommendations
|
442 |
+
|
443 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
444 |
+
-->
|
445 |
+
|
446 |
+
## Training Details
|
447 |
+
|
448 |
+
### Training Dataset
|
449 |
+
|
450 |
+
#### Unnamed Dataset
|
451 |
+
|
452 |
+
* Size: 583,058 training samples
|
453 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
454 |
+
* Approximate statistics based on the first 1000 samples:
|
455 |
+
| | anchor | positive |
|
456 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
457 |
+
| type | string | string |
|
458 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 85.73 tokens</li><li>max: 229 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 85.86 tokens</li><li>max: 229 tokens</li></ul> |
|
459 |
+
* Samples:
|
460 |
+
| anchor | positive |
|
461 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
462 |
+
| <code>Triggering Optimization Function (TG_F)<br>This functional bloc supports the following functions: [SO2], [SO3].</code> | <code>Optimization Fallback Function (O_FB_F)<br>This functional bloc supports the following functions: [SO7], [SO9], [SO10].</code> |
|
463 |
+
| <code>Optimization Fallback Function (O_FB_F)<br>This functional bloc supports the following functions: [SO7], [SO9], [SO10].</code> | <code>Self-Optimization Progress Update Function (SO_PGS_UF)<br>This function updates the self-optimization progress and important events to the operator: [SO11]</code> |
|
464 |
+
| <code>Self-Optimization Progress Update Function (SO_PGS_UF)<br>This function updates the self-optimization progress and important events to the operator: [SO11]</code> | <code>NRM IRP Update Function (NRM_UF)<br>This function updates the E-UTRAN and EPC NRM IRP with the optimization modification if needed.</code> |
|
465 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
466 |
+
```json
|
467 |
+
{
|
468 |
+
"scale": 20.0,
|
469 |
+
"similarity_fct": "cos_sim"
|
470 |
+
}
|
471 |
+
```
|
472 |
+
|
473 |
+
### Training Hyperparameters
|
474 |
+
#### Non-Default Hyperparameters
|
475 |
+
|
476 |
+
- `per_device_train_batch_size`: 11
|
477 |
+
- `num_train_epochs`: 1
|
478 |
+
- `warmup_ratio`: 0.1
|
479 |
+
|
480 |
+
#### All Hyperparameters
|
481 |
+
<details><summary>Click to expand</summary>
|
482 |
+
|
483 |
+
- `overwrite_output_dir`: False
|
484 |
+
- `do_predict`: False
|
485 |
+
- `eval_strategy`: no
|
486 |
+
- `prediction_loss_only`: True
|
487 |
+
- `per_device_train_batch_size`: 11
|
488 |
+
- `per_device_eval_batch_size`: 8
|
489 |
+
- `per_gpu_train_batch_size`: None
|
490 |
+
- `per_gpu_eval_batch_size`: None
|
491 |
+
- `gradient_accumulation_steps`: 1
|
492 |
+
- `eval_accumulation_steps`: None
|
493 |
+
- `torch_empty_cache_steps`: None
|
494 |
+
- `learning_rate`: 5e-05
|
495 |
+
- `weight_decay`: 0.0
|
496 |
+
- `adam_beta1`: 0.9
|
497 |
+
- `adam_beta2`: 0.999
|
498 |
+
- `adam_epsilon`: 1e-08
|
499 |
+
- `max_grad_norm`: 1.0
|
500 |
+
- `num_train_epochs`: 1
|
501 |
+
- `max_steps`: -1
|
502 |
+
- `lr_scheduler_type`: linear
|
503 |
+
- `lr_scheduler_kwargs`: {}
|
504 |
+
- `warmup_ratio`: 0.1
|
505 |
+
- `warmup_steps`: 0
|
506 |
+
- `log_level`: passive
|
507 |
+
- `log_level_replica`: warning
|
508 |
+
- `log_on_each_node`: True
|
509 |
+
- `logging_nan_inf_filter`: True
|
510 |
+
- `save_safetensors`: True
|
511 |
+
- `save_on_each_node`: False
|
512 |
+
- `save_only_model`: False
|
513 |
+
- `restore_callback_states_from_checkpoint`: False
|
514 |
+
- `no_cuda`: False
|
515 |
+
- `use_cpu`: False
|
516 |
+
- `use_mps_device`: False
|
517 |
+
- `seed`: 42
|
518 |
+
- `data_seed`: None
|
519 |
+
- `jit_mode_eval`: False
|
520 |
+
- `use_ipex`: False
|
521 |
+
- `bf16`: False
|
522 |
+
- `fp16`: False
|
523 |
+
- `fp16_opt_level`: O1
|
524 |
+
- `half_precision_backend`: auto
|
525 |
+
- `bf16_full_eval`: False
|
526 |
+
- `fp16_full_eval`: False
|
527 |
+
- `tf32`: None
|
528 |
+
- `local_rank`: 0
|
529 |
+
- `ddp_backend`: None
|
530 |
+
- `tpu_num_cores`: None
|
531 |
+
- `tpu_metrics_debug`: False
|
532 |
+
- `debug`: []
|
533 |
+
- `dataloader_drop_last`: False
|
534 |
+
- `dataloader_num_workers`: 0
|
535 |
+
- `dataloader_prefetch_factor`: None
|
536 |
+
- `past_index`: -1
|
537 |
+
- `disable_tqdm`: False
|
538 |
+
- `remove_unused_columns`: True
|
539 |
+
- `label_names`: None
|
540 |
+
- `load_best_model_at_end`: False
|
541 |
+
- `ignore_data_skip`: False
|
542 |
+
- `fsdp`: []
|
543 |
+
- `fsdp_min_num_params`: 0
|
544 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
545 |
+
- `tp_size`: 0
|
546 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
547 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
548 |
+
- `deepspeed`: None
|
549 |
+
- `label_smoothing_factor`: 0.0
|
550 |
+
- `optim`: adamw_torch
|
551 |
+
- `optim_args`: None
|
552 |
+
- `adafactor`: False
|
553 |
+
- `group_by_length`: False
|
554 |
+
- `length_column_name`: length
|
555 |
+
- `ddp_find_unused_parameters`: None
|
556 |
+
- `ddp_bucket_cap_mb`: None
|
557 |
+
- `ddp_broadcast_buffers`: False
|
558 |
+
- `dataloader_pin_memory`: True
|
559 |
+
- `dataloader_persistent_workers`: False
|
560 |
+
- `skip_memory_metrics`: True
|
561 |
+
- `use_legacy_prediction_loop`: False
|
562 |
+
- `push_to_hub`: False
|
563 |
+
- `resume_from_checkpoint`: None
|
564 |
+
- `hub_model_id`: None
|
565 |
+
- `hub_strategy`: every_save
|
566 |
+
- `hub_private_repo`: None
|
567 |
+
- `hub_always_push`: False
|
568 |
+
- `gradient_checkpointing`: False
|
569 |
+
- `gradient_checkpointing_kwargs`: None
|
570 |
+
- `include_inputs_for_metrics`: False
|
571 |
+
- `include_for_metrics`: []
|
572 |
+
- `eval_do_concat_batches`: True
|
573 |
+
- `fp16_backend`: auto
|
574 |
+
- `push_to_hub_model_id`: None
|
575 |
+
- `push_to_hub_organization`: None
|
576 |
+
- `mp_parameters`:
|
577 |
+
- `auto_find_batch_size`: False
|
578 |
+
- `full_determinism`: False
|
579 |
+
- `torchdynamo`: None
|
580 |
+
- `ray_scope`: last
|
581 |
+
- `ddp_timeout`: 1800
|
582 |
+
- `torch_compile`: False
|
583 |
+
- `torch_compile_backend`: None
|
584 |
+
- `torch_compile_mode`: None
|
585 |
+
- `include_tokens_per_second`: False
|
586 |
+
- `include_num_input_tokens_seen`: False
|
587 |
+
- `neftune_noise_alpha`: None
|
588 |
+
- `optim_target_modules`: None
|
589 |
+
- `batch_eval_metrics`: False
|
590 |
+
- `eval_on_start`: False
|
591 |
+
- `use_liger_kernel`: False
|
592 |
+
- `eval_use_gather_object`: False
|
593 |
+
- `average_tokens_across_devices`: False
|
594 |
+
- `prompts`: None
|
595 |
+
- `batch_sampler`: batch_sampler
|
596 |
+
- `multi_dataset_batch_sampler`: proportional
|
597 |
+
|
598 |
+
</details>
|
599 |
+
|
600 |
+
### Training Logs
|
601 |
+
<details><summary>Click to expand</summary>
|
602 |
+
|
603 |
+
| Epoch | Step | Training Loss |
|
604 |
+
|:------:|:-----:|:-------------:|
|
605 |
+
| 0.0019 | 100 | 0.8198 |
|
606 |
+
| 0.0038 | 200 | 0.7651 |
|
607 |
+
| 0.0057 | 300 | 0.6659 |
|
608 |
+
| 0.0075 | 400 | 0.6404 |
|
609 |
+
| 0.0094 | 500 | 0.5638 |
|
610 |
+
| 0.0113 | 600 | 0.5184 |
|
611 |
+
| 0.0132 | 700 | 0.448 |
|
612 |
+
| 0.0151 | 800 | 0.4464 |
|
613 |
+
| 0.0170 | 900 | 0.3461 |
|
614 |
+
| 0.0189 | 1000 | 0.3731 |
|
615 |
+
| 0.0208 | 1100 | 0.343 |
|
616 |
+
| 0.0226 | 1200 | 0.3557 |
|
617 |
+
| 0.0245 | 1300 | 0.3623 |
|
618 |
+
| 0.0264 | 1400 | 0.2941 |
|
619 |
+
| 0.0283 | 1500 | 0.3153 |
|
620 |
+
| 0.0302 | 1600 | 0.2724 |
|
621 |
+
| 0.0321 | 1700 | 0.2702 |
|
622 |
+
| 0.0340 | 1800 | 0.2934 |
|
623 |
+
| 0.0358 | 1900 | 0.2255 |
|
624 |
+
| 0.0377 | 2000 | 0.2519 |
|
625 |
+
| 0.0396 | 2100 | 0.2424 |
|
626 |
+
| 0.0415 | 2200 | 0.1883 |
|
627 |
+
| 0.0434 | 2300 | 0.2428 |
|
628 |
+
| 0.0453 | 2400 | 0.2212 |
|
629 |
+
| 0.0472 | 2500 | 0.1862 |
|
630 |
+
| 0.0491 | 2600 | 0.2451 |
|
631 |
+
| 0.0509 | 2700 | 0.2336 |
|
632 |
+
| 0.0528 | 2800 | 0.225 |
|
633 |
+
| 0.0547 | 2900 | 0.2154 |
|
634 |
+
| 0.0566 | 3000 | 0.1907 |
|
635 |
+
| 0.0585 | 3100 | 0.2514 |
|
636 |
+
| 0.0604 | 3200 | 0.2082 |
|
637 |
+
| 0.0623 | 3300 | 0.2076 |
|
638 |
+
| 0.0641 | 3400 | 0.1818 |
|
639 |
+
| 0.0660 | 3500 | 0.1688 |
|
640 |
+
| 0.0679 | 3600 | 0.2261 |
|
641 |
+
| 0.0698 | 3700 | 0.2108 |
|
642 |
+
| 0.0717 | 3800 | 0.1732 |
|
643 |
+
| 0.0736 | 3900 | 0.1764 |
|
644 |
+
| 0.0755 | 4000 | 0.1481 |
|
645 |
+
| 0.0773 | 4100 | 0.1687 |
|
646 |
+
| 0.0792 | 4200 | 0.1897 |
|
647 |
+
| 0.0811 | 4300 | 0.1685 |
|
648 |
+
| 0.0830 | 4400 | 0.1915 |
|
649 |
+
| 0.0849 | 4500 | 0.2013 |
|
650 |
+
| 0.0868 | 4600 | 0.1701 |
|
651 |
+
| 0.0887 | 4700 | 0.2006 |
|
652 |
+
| 0.0906 | 4800 | 0.2006 |
|
653 |
+
| 0.0924 | 4900 | 0.1617 |
|
654 |
+
| 0.0943 | 5000 | 0.1406 |
|
655 |
+
| 0.0962 | 5100 | 0.1456 |
|
656 |
+
| 0.0981 | 5200 | 0.1703 |
|
657 |
+
| 0.1000 | 5300 | 0.1464 |
|
658 |
+
| 0.1019 | 5400 | 0.1803 |
|
659 |
+
| 0.1038 | 5500 | 0.1346 |
|
660 |
+
| 0.1056 | 5600 | 0.134 |
|
661 |
+
| 0.1075 | 5700 | 0.1567 |
|
662 |
+
| 0.1094 | 5800 | 0.163 |
|
663 |
+
| 0.1113 | 5900 | 0.1544 |
|
664 |
+
| 0.1132 | 6000 | 0.1648 |
|
665 |
+
| 0.1151 | 6100 | 0.1505 |
|
666 |
+
| 0.1170 | 6200 | 0.1231 |
|
667 |
+
| 0.1189 | 6300 | 0.1591 |
|
668 |
+
| 0.1207 | 6400 | 0.1533 |
|
669 |
+
| 0.1226 | 6500 | 0.1376 |
|
670 |
+
| 0.1245 | 6600 | 0.1473 |
|
671 |
+
| 0.1264 | 6700 | 0.1405 |
|
672 |
+
| 0.1283 | 6800 | 0.141 |
|
673 |
+
| 0.1302 | 6900 | 0.1105 |
|
674 |
+
| 0.1321 | 7000 | 0.1712 |
|
675 |
+
| 0.1339 | 7100 | 0.1534 |
|
676 |
+
| 0.1358 | 7200 | 0.1578 |
|
677 |
+
| 0.1377 | 7300 | 0.1101 |
|
678 |
+
| 0.1396 | 7400 | 0.128 |
|
679 |
+
| 0.1415 | 7500 | 0.1679 |
|
680 |
+
| 0.1434 | 7600 | 0.1592 |
|
681 |
+
| 0.1453 | 7700 | 0.1383 |
|
682 |
+
| 0.1472 | 7800 | 0.1274 |
|
683 |
+
| 0.1490 | 7900 | 0.1616 |
|
684 |
+
| 0.1509 | 8000 | 0.1617 |
|
685 |
+
| 0.1528 | 8100 | 0.1361 |
|
686 |
+
| 0.1547 | 8200 | 0.1268 |
|
687 |
+
| 0.1566 | 8300 | 0.1286 |
|
688 |
+
| 0.1585 | 8400 | 0.1253 |
|
689 |
+
| 0.1604 | 8500 | 0.1157 |
|
690 |
+
| 0.1622 | 8600 | 0.1499 |
|
691 |
+
| 0.1641 | 8700 | 0.1398 |
|
692 |
+
| 0.1660 | 8800 | 0.1188 |
|
693 |
+
| 0.1679 | 8900 | 0.1103 |
|
694 |
+
| 0.1698 | 9000 | 0.1217 |
|
695 |
+
| 0.1717 | 9100 | 0.1144 |
|
696 |
+
| 0.1736 | 9200 | 0.1203 |
|
697 |
+
| 0.1755 | 9300 | 0.1074 |
|
698 |
+
| 0.1773 | 9400 | 0.1145 |
|
699 |
+
| 0.1792 | 9500 | 0.1035 |
|
700 |
+
| 0.1811 | 9600 | 0.1406 |
|
701 |
+
| 0.1830 | 9700 | 0.1465 |
|
702 |
+
| 0.1849 | 9800 | 0.1169 |
|
703 |
+
| 0.1868 | 9900 | 0.1115 |
|
704 |
+
| 0.1887 | 10000 | 0.1207 |
|
705 |
+
| 0.1905 | 10100 | 0.1191 |
|
706 |
+
| 0.1924 | 10200 | 0.1099 |
|
707 |
+
| 0.1943 | 10300 | 0.1309 |
|
708 |
+
| 0.1962 | 10400 | 0.1092 |
|
709 |
+
| 0.1981 | 10500 | 0.1075 |
|
710 |
+
| 0.2000 | 10600 | 0.1174 |
|
711 |
+
| 0.2019 | 10700 | 0.1103 |
|
712 |
+
| 0.2038 | 10800 | 0.1077 |
|
713 |
+
| 0.2056 | 10900 | 0.0844 |
|
714 |
+
| 0.2075 | 11000 | 0.1093 |
|
715 |
+
| 0.2094 | 11100 | 0.1428 |
|
716 |
+
| 0.2113 | 11200 | 0.0928 |
|
717 |
+
| 0.2132 | 11300 | 0.1039 |
|
718 |
+
| 0.2151 | 11400 | 0.1436 |
|
719 |
+
| 0.2170 | 11500 | 0.1197 |
|
720 |
+
| 0.2188 | 11600 | 0.1249 |
|
721 |
+
| 0.2207 | 11700 | 0.0856 |
|
722 |
+
| 0.2226 | 11800 | 0.1126 |
|
723 |
+
| 0.2245 | 11900 | 0.1028 |
|
724 |
+
| 0.2264 | 12000 | 0.0988 |
|
725 |
+
| 0.2283 | 12100 | 0.1031 |
|
726 |
+
| 0.2302 | 12200 | 0.101 |
|
727 |
+
| 0.2320 | 12300 | 0.1188 |
|
728 |
+
| 0.2339 | 12400 | 0.0908 |
|
729 |
+
| 0.2358 | 12500 | 0.069 |
|
730 |
+
| 0.2377 | 12600 | 0.1099 |
|
731 |
+
| 0.2396 | 12700 | 0.1227 |
|
732 |
+
| 0.2415 | 12800 | 0.0794 |
|
733 |
+
| 0.2434 | 12900 | 0.0969 |
|
734 |
+
| 0.2453 | 13000 | 0.0864 |
|
735 |
+
| 0.2471 | 13100 | 0.1193 |
|
736 |
+
| 0.2490 | 13200 | 0.0824 |
|
737 |
+
| 0.2509 | 13300 | 0.12 |
|
738 |
+
| 0.2528 | 13400 | 0.0928 |
|
739 |
+
| 0.2547 | 13500 | 0.1126 |
|
740 |
+
| 0.2566 | 13600 | 0.0912 |
|
741 |
+
| 0.2585 | 13700 | 0.1126 |
|
742 |
+
| 0.2603 | 13800 | 0.078 |
|
743 |
+
| 0.2622 | 13900 | 0.0715 |
|
744 |
+
| 0.2641 | 14000 | 0.1095 |
|
745 |
+
| 0.2660 | 14100 | 0.089 |
|
746 |
+
| 0.2679 | 14200 | 0.0926 |
|
747 |
+
| 0.2698 | 14300 | 0.086 |
|
748 |
+
| 0.2717 | 14400 | 0.1115 |
|
749 |
+
| 0.2736 | 14500 | 0.0996 |
|
750 |
+
| 0.2754 | 14600 | 0.1014 |
|
751 |
+
| 0.2773 | 14700 | 0.1033 |
|
752 |
+
| 0.2792 | 14800 | 0.0732 |
|
753 |
+
| 0.2811 | 14900 | 0.0994 |
|
754 |
+
| 0.2830 | 15000 | 0.0872 |
|
755 |
+
| 0.2849 | 15100 | 0.0923 |
|
756 |
+
| 0.2868 | 15200 | 0.111 |
|
757 |
+
| 0.2886 | 15300 | 0.0891 |
|
758 |
+
| 0.2905 | 15400 | 0.0868 |
|
759 |
+
| 0.2924 | 15500 | 0.0773 |
|
760 |
+
| 0.2943 | 15600 | 0.0918 |
|
761 |
+
| 0.2962 | 15700 | 0.0726 |
|
762 |
+
| 0.2981 | 15800 | 0.0951 |
|
763 |
+
| 0.3000 | 15900 | 0.0835 |
|
764 |
+
| 0.3019 | 16000 | 0.083 |
|
765 |
+
| 0.3037 | 16100 | 0.095 |
|
766 |
+
| 0.3056 | 16200 | 0.0722 |
|
767 |
+
| 0.3075 | 16300 | 0.1061 |
|
768 |
+
| 0.3094 | 16400 | 0.0902 |
|
769 |
+
| 0.3113 | 16500 | 0.0978 |
|
770 |
+
| 0.3132 | 16600 | 0.0983 |
|
771 |
+
| 0.3151 | 16700 | 0.0808 |
|
772 |
+
| 0.3169 | 16800 | 0.0758 |
|
773 |
+
| 0.3188 | 16900 | 0.071 |
|
774 |
+
| 0.3207 | 17000 | 0.0918 |
|
775 |
+
| 0.3226 | 17100 | 0.1011 |
|
776 |
+
| 0.3245 | 17200 | 0.079 |
|
777 |
+
| 0.3264 | 17300 | 0.0992 |
|
778 |
+
| 0.3283 | 17400 | 0.1089 |
|
779 |
+
| 0.3302 | 17500 | 0.0904 |
|
780 |
+
| 0.3320 | 17600 | 0.0956 |
|
781 |
+
| 0.3339 | 17700 | 0.0747 |
|
782 |
+
| 0.3358 | 17800 | 0.0961 |
|
783 |
+
| 0.3377 | 17900 | 0.0923 |
|
784 |
+
| 0.3396 | 18000 | 0.1114 |
|
785 |
+
| 0.3415 | 18100 | 0.0689 |
|
786 |
+
| 0.3434 | 18200 | 0.1308 |
|
787 |
+
| 0.3452 | 18300 | 0.0923 |
|
788 |
+
| 0.3471 | 18400 | 0.0756 |
|
789 |
+
| 0.3490 | 18500 | 0.0842 |
|
790 |
+
| 0.3509 | 18600 | 0.0859 |
|
791 |
+
| 0.3528 | 18700 | 0.0903 |
|
792 |
+
| 0.3547 | 18800 | 0.084 |
|
793 |
+
| 0.3566 | 18900 | 0.0923 |
|
794 |
+
| 0.3584 | 19000 | 0.0848 |
|
795 |
+
| 0.3603 | 19100 | 0.0812 |
|
796 |
+
| 0.3622 | 19200 | 0.0872 |
|
797 |
+
| 0.3641 | 19300 | 0.083 |
|
798 |
+
| 0.3660 | 19400 | 0.0826 |
|
799 |
+
| 0.3679 | 19500 | 0.101 |
|
800 |
+
| 0.3698 | 19600 | 0.0804 |
|
801 |
+
| 0.3717 | 19700 | 0.0676 |
|
802 |
+
| 0.3735 | 19800 | 0.0836 |
|
803 |
+
| 0.3754 | 19900 | 0.0711 |
|
804 |
+
| 0.3773 | 20000 | 0.0825 |
|
805 |
+
| 0.3792 | 20100 | 0.0835 |
|
806 |
+
| 0.3811 | 20200 | 0.0816 |
|
807 |
+
| 0.3830 | 20300 | 0.0812 |
|
808 |
+
| 0.3849 | 20400 | 0.0689 |
|
809 |
+
| 0.3867 | 20500 | 0.0627 |
|
810 |
+
| 0.3886 | 20600 | 0.0965 |
|
811 |
+
| 0.3905 | 20700 | 0.0632 |
|
812 |
+
| 0.3924 | 20800 | 0.0945 |
|
813 |
+
| 0.3943 | 20900 | 0.0923 |
|
814 |
+
| 0.3962 | 21000 | 0.0833 |
|
815 |
+
| 0.3981 | 21100 | 0.0537 |
|
816 |
+
| 0.4000 | 21200 | 0.0822 |
|
817 |
+
| 0.4018 | 21300 | 0.0684 |
|
818 |
+
| 0.4037 | 21400 | 0.0807 |
|
819 |
+
| 0.4056 | 21500 | 0.0945 |
|
820 |
+
| 0.4075 | 21600 | 0.0981 |
|
821 |
+
| 0.4094 | 21700 | 0.0748 |
|
822 |
+
| 0.4113 | 21800 | 0.0943 |
|
823 |
+
| 0.4132 | 21900 | 0.0709 |
|
824 |
+
| 0.4150 | 22000 | 0.0551 |
|
825 |
+
| 0.4169 | 22100 | 0.0679 |
|
826 |
+
| 0.4188 | 22200 | 0.0666 |
|
827 |
+
| 0.4207 | 22300 | 0.0976 |
|
828 |
+
| 0.4226 | 22400 | 0.0666 |
|
829 |
+
| 0.4245 | 22500 | 0.0651 |
|
830 |
+
| 0.4264 | 22600 | 0.0803 |
|
831 |
+
| 0.4283 | 22700 | 0.068 |
|
832 |
+
| 0.4301 | 22800 | 0.0541 |
|
833 |
+
| 0.4320 | 22900 | 0.0487 |
|
834 |
+
| 0.4339 | 23000 | 0.091 |
|
835 |
+
| 0.4358 | 23100 | 0.074 |
|
836 |
+
| 0.4377 | 23200 | 0.0733 |
|
837 |
+
| 0.4396 | 23300 | 0.0845 |
|
838 |
+
| 0.4415 | 23400 | 0.0823 |
|
839 |
+
| 0.4433 | 23500 | 0.0561 |
|
840 |
+
| 0.4452 | 23600 | 0.0508 |
|
841 |
+
| 0.4471 | 23700 | 0.074 |
|
842 |
+
| 0.4490 | 23800 | 0.0683 |
|
843 |
+
| 0.4509 | 23900 | 0.0797 |
|
844 |
+
| 0.4528 | 24000 | 0.0561 |
|
845 |
+
| 0.4547 | 24100 | 0.0744 |
|
846 |
+
| 0.4566 | 24200 | 0.0638 |
|
847 |
+
| 0.4584 | 24300 | 0.0633 |
|
848 |
+
| 0.4603 | 24400 | 0.062 |
|
849 |
+
| 0.4622 | 24500 | 0.0887 |
|
850 |
+
| 0.4641 | 24600 | 0.0908 |
|
851 |
+
| 0.4660 | 24700 | 0.0654 |
|
852 |
+
| 0.4679 | 24800 | 0.0522 |
|
853 |
+
| 0.4698 | 24900 | 0.0851 |
|
854 |
+
| 0.4716 | 25000 | 0.0763 |
|
855 |
+
| 0.4735 | 25100 | 0.0623 |
|
856 |
+
| 0.4754 | 25200 | 0.0712 |
|
857 |
+
| 0.4773 | 25300 | 0.0866 |
|
858 |
+
| 0.4792 | 25400 | 0.0812 |
|
859 |
+
| 0.4811 | 25500 | 0.0706 |
|
860 |
+
| 0.4830 | 25600 | 0.0734 |
|
861 |
+
| 0.4849 | 25700 | 0.068 |
|
862 |
+
| 0.4867 | 25800 | 0.111 |
|
863 |
+
| 0.4886 | 25900 | 0.0627 |
|
864 |
+
| 0.4905 | 26000 | 0.0459 |
|
865 |
+
| 0.4924 | 26100 | 0.0794 |
|
866 |
+
| 0.4943 | 26200 | 0.0547 |
|
867 |
+
| 0.4962 | 26300 | 0.0779 |
|
868 |
+
| 0.4981 | 26400 | 0.0609 |
|
869 |
+
| 0.4999 | 26500 | 0.0785 |
|
870 |
+
| 0.5018 | 26600 | 0.0722 |
|
871 |
+
| 0.5037 | 26700 | 0.0585 |
|
872 |
+
| 0.5056 | 26800 | 0.0572 |
|
873 |
+
| 0.5075 | 26900 | 0.0636 |
|
874 |
+
| 0.5094 | 27000 | 0.0642 |
|
875 |
+
| 0.5113 | 27100 | 0.0606 |
|
876 |
+
| 0.5131 | 27200 | 0.0725 |
|
877 |
+
| 0.5150 | 27300 | 0.0664 |
|
878 |
+
| 0.5169 | 27400 | 0.0933 |
|
879 |
+
| 0.5188 | 27500 | 0.0486 |
|
880 |
+
| 0.5207 | 27600 | 0.0514 |
|
881 |
+
| 0.5226 | 27700 | 0.0779 |
|
882 |
+
| 0.5245 | 27800 | 0.0614 |
|
883 |
+
| 0.5264 | 27900 | 0.0646 |
|
884 |
+
| 0.5282 | 28000 | 0.0606 |
|
885 |
+
| 0.5301 | 28100 | 0.0453 |
|
886 |
+
| 0.5320 | 28200 | 0.0749 |
|
887 |
+
| 0.5339 | 28300 | 0.0695 |
|
888 |
+
| 0.5358 | 28400 | 0.0897 |
|
889 |
+
| 0.5377 | 28500 | 0.0612 |
|
890 |
+
| 0.5396 | 28600 | 0.0542 |
|
891 |
+
| 0.5414 | 28700 | 0.0504 |
|
892 |
+
| 0.5433 | 28800 | 0.0539 |
|
893 |
+
| 0.5452 | 28900 | 0.0584 |
|
894 |
+
| 0.5471 | 29000 | 0.0552 |
|
895 |
+
| 0.5490 | 29100 | 0.076 |
|
896 |
+
| 0.5509 | 29200 | 0.0861 |
|
897 |
+
| 0.5528 | 29300 | 0.067 |
|
898 |
+
| 0.5547 | 29400 | 0.0887 |
|
899 |
+
| 0.5565 | 29500 | 0.059 |
|
900 |
+
| 0.5584 | 29600 | 0.0484 |
|
901 |
+
| 0.5603 | 29700 | 0.0703 |
|
902 |
+
| 0.5622 | 29800 | 0.0802 |
|
903 |
+
| 0.5641 | 29900 | 0.0805 |
|
904 |
+
| 0.5660 | 30000 | 0.0737 |
|
905 |
+
| 0.5679 | 30100 | 0.0518 |
|
906 |
+
| 0.5697 | 30200 | 0.0517 |
|
907 |
+
| 0.5716 | 30300 | 0.0806 |
|
908 |
+
| 0.5735 | 30400 | 0.0586 |
|
909 |
+
| 0.5754 | 30500 | 0.0491 |
|
910 |
+
| 0.5773 | 30600 | 0.0591 |
|
911 |
+
| 0.5792 | 30700 | 0.066 |
|
912 |
+
| 0.5811 | 30800 | 0.0419 |
|
913 |
+
| 0.5830 | 30900 | 0.0517 |
|
914 |
+
| 0.5848 | 31000 | 0.0539 |
|
915 |
+
| 0.5867 | 31100 | 0.0845 |
|
916 |
+
| 0.5886 | 31200 | 0.044 |
|
917 |
+
| 0.5905 | 31300 | 0.0597 |
|
918 |
+
| 0.5924 | 31400 | 0.0556 |
|
919 |
+
| 0.5943 | 31500 | 0.0724 |
|
920 |
+
| 0.5962 | 31600 | 0.0465 |
|
921 |
+
| 0.5980 | 31700 | 0.0585 |
|
922 |
+
| 0.5999 | 31800 | 0.0978 |
|
923 |
+
| 0.6018 | 31900 | 0.0657 |
|
924 |
+
| 0.6037 | 32000 | 0.0438 |
|
925 |
+
| 0.6056 | 32100 | 0.0429 |
|
926 |
+
| 0.6075 | 32200 | 0.0629 |
|
927 |
+
| 0.6094 | 32300 | 0.0591 |
|
928 |
+
| 0.6113 | 32400 | 0.0543 |
|
929 |
+
| 0.6131 | 32500 | 0.0502 |
|
930 |
+
| 0.6150 | 32600 | 0.0733 |
|
931 |
+
| 0.6169 | 32700 | 0.0426 |
|
932 |
+
| 0.6188 | 32800 | 0.0626 |
|
933 |
+
| 0.6207 | 32900 | 0.0406 |
|
934 |
+
| 0.6226 | 33000 | 0.0524 |
|
935 |
+
| 0.6245 | 33100 | 0.0619 |
|
936 |
+
| 0.6263 | 33200 | 0.0633 |
|
937 |
+
| 0.6282 | 33300 | 0.0582 |
|
938 |
+
| 0.6301 | 33400 | 0.0852 |
|
939 |
+
| 0.6320 | 33500 | 0.0482 |
|
940 |
+
| 0.6339 | 33600 | 0.0509 |
|
941 |
+
| 0.6358 | 33700 | 0.0626 |
|
942 |
+
| 0.6377 | 33800 | 0.0609 |
|
943 |
+
| 0.6396 | 33900 | 0.0508 |
|
944 |
+
| 0.6414 | 34000 | 0.0486 |
|
945 |
+
| 0.6433 | 34100 | 0.0508 |
|
946 |
+
| 0.6452 | 34200 | 0.0581 |
|
947 |
+
| 0.6471 | 34300 | 0.0409 |
|
948 |
+
| 0.6490 | 34400 | 0.0703 |
|
949 |
+
| 0.6509 | 34500 | 0.0606 |
|
950 |
+
| 0.6528 | 34600 | 0.0517 |
|
951 |
+
| 0.6546 | 34700 | 0.0493 |
|
952 |
+
| 0.6565 | 34800 | 0.0271 |
|
953 |
+
| 0.6584 | 34900 | 0.0337 |
|
954 |
+
| 0.6603 | 35000 | 0.0369 |
|
955 |
+
| 0.6622 | 35100 | 0.0474 |
|
956 |
+
| 0.6641 | 35200 | 0.0562 |
|
957 |
+
| 0.6660 | 35300 | 0.0663 |
|
958 |
+
| 0.6678 | 35400 | 0.0419 |
|
959 |
+
| 0.6697 | 35500 | 0.0766 |
|
960 |
+
| 0.6716 | 35600 | 0.0439 |
|
961 |
+
| 0.6735 | 35700 | 0.0538 |
|
962 |
+
| 0.6754 | 35800 | 0.0512 |
|
963 |
+
| 0.6773 | 35900 | 0.0388 |
|
964 |
+
| 0.6792 | 36000 | 0.0528 |
|
965 |
+
| 0.6811 | 36100 | 0.0489 |
|
966 |
+
| 0.6829 | 36200 | 0.0454 |
|
967 |
+
| 0.6848 | 36300 | 0.0449 |
|
968 |
+
| 0.6867 | 36400 | 0.055 |
|
969 |
+
| 0.6886 | 36500 | 0.0344 |
|
970 |
+
| 0.6905 | 36600 | 0.0485 |
|
971 |
+
| 0.6924 | 36700 | 0.0496 |
|
972 |
+
| 0.6943 | 36800 | 0.0705 |
|
973 |
+
| 0.6961 | 36900 | 0.0617 |
|
974 |
+
| 0.6980 | 37000 | 0.054 |
|
975 |
+
| 0.6999 | 37100 | 0.0613 |
|
976 |
+
| 0.7018 | 37200 | 0.0549 |
|
977 |
+
| 0.7037 | 37300 | 0.0378 |
|
978 |
+
| 0.7056 | 37400 | 0.0508 |
|
979 |
+
| 0.7075 | 37500 | 0.0613 |
|
980 |
+
| 0.7094 | 37600 | 0.0602 |
|
981 |
+
| 0.7112 | 37700 | 0.0592 |
|
982 |
+
| 0.7131 | 37800 | 0.0441 |
|
983 |
+
| 0.7150 | 37900 | 0.0445 |
|
984 |
+
| 0.7169 | 38000 | 0.0464 |
|
985 |
+
| 0.7188 | 38100 | 0.0537 |
|
986 |
+
| 0.7207 | 38200 | 0.0521 |
|
987 |
+
| 0.7226 | 38300 | 0.0447 |
|
988 |
+
| 0.7244 | 38400 | 0.044 |
|
989 |
+
| 0.7263 | 38500 | 0.0506 |
|
990 |
+
| 0.7282 | 38600 | 0.043 |
|
991 |
+
| 0.7301 | 38700 | 0.0441 |
|
992 |
+
| 0.7320 | 38800 | 0.0444 |
|
993 |
+
| 0.7339 | 38900 | 0.0416 |
|
994 |
+
| 0.7358 | 39000 | 0.0556 |
|
995 |
+
| 0.7377 | 39100 | 0.0829 |
|
996 |
+
| 0.7395 | 39200 | 0.043 |
|
997 |
+
| 0.7414 | 39300 | 0.0366 |
|
998 |
+
| 0.7433 | 39400 | 0.0457 |
|
999 |
+
| 0.7452 | 39500 | 0.0622 |
|
1000 |
+
| 0.7471 | 39600 | 0.0353 |
|
1001 |
+
| 0.7490 | 39700 | 0.0597 |
|
1002 |
+
| 0.7509 | 39800 | 0.0468 |
|
1003 |
+
| 0.7527 | 39900 | 0.0418 |
|
1004 |
+
| 0.7546 | 40000 | 0.0606 |
|
1005 |
+
| 0.7565 | 40100 | 0.0613 |
|
1006 |
+
| 0.7584 | 40200 | 0.0654 |
|
1007 |
+
| 0.7603 | 40300 | 0.046 |
|
1008 |
+
| 0.7622 | 40400 | 0.034 |
|
1009 |
+
| 0.7641 | 40500 | 0.0378 |
|
1010 |
+
| 0.7660 | 40600 | 0.0461 |
|
1011 |
+
| 0.7678 | 40700 | 0.0404 |
|
1012 |
+
| 0.7697 | 40800 | 0.0583 |
|
1013 |
+
| 0.7716 | 40900 | 0.0636 |
|
1014 |
+
| 0.7735 | 41000 | 0.0537 |
|
1015 |
+
| 0.7754 | 41100 | 0.0336 |
|
1016 |
+
| 0.7773 | 41200 | 0.0315 |
|
1017 |
+
| 0.7792 | 41300 | 0.0536 |
|
1018 |
+
| 0.7810 | 41400 | 0.0532 |
|
1019 |
+
| 0.7829 | 41500 | 0.0553 |
|
1020 |
+
| 0.7848 | 41600 | 0.0458 |
|
1021 |
+
| 0.7867 | 41700 | 0.0372 |
|
1022 |
+
| 0.7886 | 41800 | 0.0346 |
|
1023 |
+
| 0.7905 | 41900 | 0.0419 |
|
1024 |
+
| 0.7924 | 42000 | 0.0461 |
|
1025 |
+
| 0.7942 | 42100 | 0.0517 |
|
1026 |
+
| 0.7961 | 42200 | 0.0574 |
|
1027 |
+
| 0.7980 | 42300 | 0.0411 |
|
1028 |
+
| 0.7999 | 42400 | 0.0389 |
|
1029 |
+
| 0.8018 | 42500 | 0.0578 |
|
1030 |
+
| 0.8037 | 42600 | 0.0637 |
|
1031 |
+
| 0.8056 | 42700 | 0.0434 |
|
1032 |
+
| 0.8075 | 42800 | 0.0776 |
|
1033 |
+
| 0.8093 | 42900 | 0.0644 |
|
1034 |
+
| 0.8112 | 43000 | 0.0537 |
|
1035 |
+
| 0.8131 | 43100 | 0.0519 |
|
1036 |
+
| 0.8150 | 43200 | 0.0241 |
|
1037 |
+
| 0.8169 | 43300 | 0.0295 |
|
1038 |
+
| 0.8188 | 43400 | 0.0618 |
|
1039 |
+
| 0.8207 | 43500 | 0.0275 |
|
1040 |
+
| 0.8225 | 43600 | 0.0605 |
|
1041 |
+
| 0.8244 | 43700 | 0.0414 |
|
1042 |
+
| 0.8263 | 43800 | 0.0446 |
|
1043 |
+
| 0.8282 | 43900 | 0.0449 |
|
1044 |
+
| 0.8301 | 44000 | 0.0558 |
|
1045 |
+
| 0.8320 | 44100 | 0.0336 |
|
1046 |
+
| 0.8339 | 44200 | 0.0555 |
|
1047 |
+
| 0.8358 | 44300 | 0.0399 |
|
1048 |
+
| 0.8376 | 44400 | 0.0319 |
|
1049 |
+
| 0.8395 | 44500 | 0.0331 |
|
1050 |
+
| 0.8414 | 44600 | 0.0415 |
|
1051 |
+
| 0.8433 | 44700 | 0.0424 |
|
1052 |
+
| 0.8452 | 44800 | 0.0287 |
|
1053 |
+
| 0.8471 | 44900 | 0.044 |
|
1054 |
+
| 0.8490 | 45000 | 0.0375 |
|
1055 |
+
| 0.8508 | 45100 | 0.032 |
|
1056 |
+
| 0.8527 | 45200 | 0.0406 |
|
1057 |
+
| 0.8546 | 45300 | 0.0429 |
|
1058 |
+
| 0.8565 | 45400 | 0.0727 |
|
1059 |
+
| 0.8584 | 45500 | 0.05 |
|
1060 |
+
| 0.8603 | 45600 | 0.0436 |
|
1061 |
+
| 0.8622 | 45700 | 0.0401 |
|
1062 |
+
| 0.8641 | 45800 | 0.0312 |
|
1063 |
+
| 0.8659 | 45900 | 0.036 |
|
1064 |
+
| 0.8678 | 46000 | 0.0558 |
|
1065 |
+
| 0.8697 | 46100 | 0.0436 |
|
1066 |
+
| 0.8716 | 46200 | 0.0517 |
|
1067 |
+
| 0.8735 | 46300 | 0.0361 |
|
1068 |
+
| 0.8754 | 46400 | 0.038 |
|
1069 |
+
| 0.8773 | 46500 | 0.0418 |
|
1070 |
+
| 0.8791 | 46600 | 0.0407 |
|
1071 |
+
| 0.8810 | 46700 | 0.0336 |
|
1072 |
+
| 0.8829 | 46800 | 0.0559 |
|
1073 |
+
| 0.8848 | 46900 | 0.0488 |
|
1074 |
+
| 0.8867 | 47000 | 0.0463 |
|
1075 |
+
| 0.8886 | 47100 | 0.0504 |
|
1076 |
+
| 0.8905 | 47200 | 0.0414 |
|
1077 |
+
| 0.8924 | 47300 | 0.0428 |
|
1078 |
+
| 0.8942 | 47400 | 0.0389 |
|
1079 |
+
| 0.8961 | 47500 | 0.0422 |
|
1080 |
+
| 0.8980 | 47600 | 0.0533 |
|
1081 |
+
| 0.8999 | 47700 | 0.0386 |
|
1082 |
+
| 0.9018 | 47800 | 0.0672 |
|
1083 |
+
| 0.9037 | 47900 | 0.0505 |
|
1084 |
+
| 0.9056 | 48000 | 0.0632 |
|
1085 |
+
| 0.9074 | 48100 | 0.0263 |
|
1086 |
+
| 0.9093 | 48200 | 0.0448 |
|
1087 |
+
| 0.9112 | 48300 | 0.0413 |
|
1088 |
+
| 0.9131 | 48400 | 0.0532 |
|
1089 |
+
| 0.9150 | 48500 | 0.0503 |
|
1090 |
+
| 0.9169 | 48600 | 0.0472 |
|
1091 |
+
| 0.9188 | 48700 | 0.0255 |
|
1092 |
+
| 0.9207 | 48800 | 0.035 |
|
1093 |
+
| 0.9225 | 48900 | 0.0353 |
|
1094 |
+
| 0.9244 | 49000 | 0.0407 |
|
1095 |
+
| 0.9263 | 49100 | 0.0154 |
|
1096 |
+
| 0.9282 | 49200 | 0.0535 |
|
1097 |
+
| 0.9301 | 49300 | 0.0435 |
|
1098 |
+
| 0.9320 | 49400 | 0.0461 |
|
1099 |
+
| 0.9339 | 49500 | 0.0288 |
|
1100 |
+
| 0.9357 | 49600 | 0.0366 |
|
1101 |
+
| 0.9376 | 49700 | 0.0411 |
|
1102 |
+
| 0.9395 | 49800 | 0.0605 |
|
1103 |
+
| 0.9414 | 49900 | 0.0551 |
|
1104 |
+
| 0.9433 | 50000 | 0.0297 |
|
1105 |
+
| 0.9452 | 50100 | 0.0388 |
|
1106 |
+
| 0.9471 | 50200 | 0.0402 |
|
1107 |
+
| 0.9489 | 50300 | 0.0321 |
|
1108 |
+
| 0.9508 | 50400 | 0.0538 |
|
1109 |
+
| 0.9527 | 50500 | 0.036 |
|
1110 |
+
| 0.9546 | 50600 | 0.0318 |
|
1111 |
+
| 0.9565 | 50700 | 0.0398 |
|
1112 |
+
| 0.9584 | 50800 | 0.0405 |
|
1113 |
+
| 0.9603 | 50900 | 0.0408 |
|
1114 |
+
| 0.9622 | 51000 | 0.0485 |
|
1115 |
+
| 0.9640 | 51100 | 0.047 |
|
1116 |
+
| 0.9659 | 51200 | 0.0452 |
|
1117 |
+
| 0.9678 | 51300 | 0.0469 |
|
1118 |
+
| 0.9697 | 51400 | 0.0473 |
|
1119 |
+
| 0.9716 | 51500 | 0.039 |
|
1120 |
+
| 0.9735 | 51600 | 0.0579 |
|
1121 |
+
| 0.9754 | 51700 | 0.0332 |
|
1122 |
+
| 0.9772 | 51800 | 0.0322 |
|
1123 |
+
| 0.9791 | 51900 | 0.0324 |
|
1124 |
+
| 0.9810 | 52000 | 0.035 |
|
1125 |
+
| 0.9829 | 52100 | 0.0517 |
|
1126 |
+
| 0.9848 | 52200 | 0.0275 |
|
1127 |
+
| 0.9867 | 52300 | 0.0466 |
|
1128 |
+
| 0.9886 | 52400 | 0.0452 |
|
1129 |
+
| 0.9905 | 52500 | 0.0446 |
|
1130 |
+
| 0.9923 | 52600 | 0.0357 |
|
1131 |
+
| 0.9942 | 52700 | 0.0368 |
|
1132 |
+
| 0.9961 | 52800 | 0.0365 |
|
1133 |
+
| 0.9980 | 52900 | 0.0303 |
|
1134 |
+
| 0.9999 | 53000 | 0.0288 |
|
1135 |
+
|
1136 |
+
</details>
|
1137 |
+
|
1138 |
+
### Framework Versions
|
1139 |
+
- Python: 3.11.12
|
1140 |
+
- Sentence Transformers: 3.4.1
|
1141 |
+
- Transformers: 4.51.1
|
1142 |
+
- PyTorch: 2.6.0+cu124
|
1143 |
+
- Accelerate: 1.5.2
|
1144 |
+
- Datasets: 3.5.0
|
1145 |
+
- Tokenizers: 0.21.1
|
1146 |
+
|
1147 |
+
## Citation
|
1148 |
+
|
1149 |
+
### BibTeX
|
1150 |
+
|
1151 |
+
#### Sentence Transformers
|
1152 |
+
```bibtex
|
1153 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1154 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1155 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1156 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1157 |
+
month = "11",
|
1158 |
+
year = "2019",
|
1159 |
+
publisher = "Association for Computational Linguistics",
|
1160 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1161 |
+
}
|
1162 |
+
```
|
1163 |
+
|
1164 |
+
#### MultipleNegativesRankingLoss
|
1165 |
+
```bibtex
|
1166 |
+
@misc{henderson2017efficient,
|
1167 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1168 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1169 |
+
year={2017},
|
1170 |
+
eprint={1705.00652},
|
1171 |
+
archivePrefix={arXiv},
|
1172 |
+
primaryClass={cs.CL}
|
1173 |
+
}
|
1174 |
+
```
|
1175 |
+
|
1176 |
+
<!--
|
1177 |
+
## Glossary
|
1178 |
+
|
1179 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1180 |
+
-->
|
1181 |
+
|
1182 |
+
<!--
|
1183 |
+
## Model Card Authors
|
1184 |
+
|
1185 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1186 |
+
-->
|
1187 |
+
|
1188 |
+
<!--
|
1189 |
+
## Model Card Contact
|
1190 |
+
|
1191 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1192 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"NewModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration.NewConfig",
|
8 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
9 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
10 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
11 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
12 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
13 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
14 |
+
},
|
15 |
+
"classifier_dropout": 0.0,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.1,
|
18 |
+
"hidden_size": 768,
|
19 |
+
"id2label": {
|
20 |
+
"0": "LABEL_0"
|
21 |
+
},
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 3072,
|
24 |
+
"label2id": {
|
25 |
+
"LABEL_0": 0
|
26 |
+
},
|
27 |
+
"layer_norm_eps": 1e-12,
|
28 |
+
"layer_norm_type": "layer_norm",
|
29 |
+
"logn_attention_clip1": false,
|
30 |
+
"logn_attention_scale": false,
|
31 |
+
"max_position_embeddings": 8192,
|
32 |
+
"model_type": "new",
|
33 |
+
"num_attention_heads": 12,
|
34 |
+
"num_hidden_layers": 12,
|
35 |
+
"pack_qkv": true,
|
36 |
+
"pad_token_id": 1,
|
37 |
+
"position_embedding_type": "rope",
|
38 |
+
"rope_scaling": {
|
39 |
+
"factor": 8.0,
|
40 |
+
"type": "ntk"
|
41 |
+
},
|
42 |
+
"rope_theta": 20000,
|
43 |
+
"torch_dtype": "float32",
|
44 |
+
"transformers_version": "4.51.1",
|
45 |
+
"type_vocab_size": 1,
|
46 |
+
"unpad_inputs": false,
|
47 |
+
"use_memory_efficient_attention": false,
|
48 |
+
"vocab_size": 250048
|
49 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.51.1",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" NEW model configuration"""
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class NewConfig(PretrainedConfig):
|
24 |
+
r"""
|
25 |
+
This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
|
26 |
+
instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
|
27 |
+
configuration with the defaults will yield a similar configuration to that of the NEW
|
28 |
+
[izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
36 |
+
Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
38 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
39 |
+
Dimensionality of the encoder layers and the pooler layer.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
43 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
45 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
46 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
48 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
49 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
52 |
+
The dropout ratio for the attention probabilities.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
56 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
57 |
+
The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
position_embedding_type (`str`, *optional*, defaults to `"rope"`):
|
63 |
+
Type of position embedding. Choose one of `"absolute"`, `"rope"`.
|
64 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
65 |
+
The base period of the RoPE embeddings.
|
66 |
+
rope_scaling (`Dict`, *optional*):
|
67 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
68 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
69 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
70 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
71 |
+
these scaling strategies behave:
|
72 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
73 |
+
experimental feature, subject to breaking API changes in future versions.
|
74 |
+
classifier_dropout (`float`, *optional*):
|
75 |
+
The dropout ratio for the classification head.
|
76 |
+
|
77 |
+
Examples:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import NewConfig, NewModel
|
81 |
+
|
82 |
+
>>> # Initializing a NEW izhx/new-base-en style configuration
|
83 |
+
>>> configuration = NewConfig()
|
84 |
+
|
85 |
+
>>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
|
86 |
+
>>> model = NewModel(configuration)
|
87 |
+
|
88 |
+
>>> # Accessing the model configuration
|
89 |
+
>>> configuration = model.config
|
90 |
+
```"""
|
91 |
+
|
92 |
+
model_type = "new"
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=30528,
|
97 |
+
hidden_size=768,
|
98 |
+
num_hidden_layers=12,
|
99 |
+
num_attention_heads=12,
|
100 |
+
intermediate_size=3072,
|
101 |
+
hidden_act="gelu",
|
102 |
+
hidden_dropout_prob=0.1,
|
103 |
+
attention_probs_dropout_prob=0.0,
|
104 |
+
max_position_embeddings=2048,
|
105 |
+
type_vocab_size=1,
|
106 |
+
initializer_range=0.02,
|
107 |
+
layer_norm_type='layer_norm',
|
108 |
+
layer_norm_eps=1e-12,
|
109 |
+
# pad_token_id=0,
|
110 |
+
position_embedding_type="rope",
|
111 |
+
rope_theta=10000.0,
|
112 |
+
rope_scaling=None,
|
113 |
+
classifier_dropout=None,
|
114 |
+
pack_qkv=True,
|
115 |
+
unpad_inputs=False,
|
116 |
+
use_memory_efficient_attention=False,
|
117 |
+
logn_attention_scale=False,
|
118 |
+
logn_attention_clip1=False,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_type = layer_norm_type
|
135 |
+
self.layer_norm_eps = layer_norm_eps
|
136 |
+
self.position_embedding_type = position_embedding_type
|
137 |
+
self.rope_theta = rope_theta
|
138 |
+
self.rope_scaling = rope_scaling
|
139 |
+
self.classifier_dropout = classifier_dropout
|
140 |
+
|
141 |
+
self.pack_qkv = pack_qkv
|
142 |
+
self.unpad_inputs = unpad_inputs
|
143 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
144 |
+
self.logn_attention_scale = logn_attention_scale
|
145 |
+
self.logn_attention_clip1 = logn_attention_clip1
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdf748855813d79ca3904e4b67cbf5b1692effc5b0b9f98e21505d1b372d410e
|
3 |
+
size 1221487872
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
|
3 |
+
size 17082988
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"max_length": 8192,
|
51 |
+
"model_max_length": 8192,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|