content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# 2020 Tommaso Ciussani and Giacomo Giuliari """ This file contains the type definitions and conversions between coordinate schemes. All length values in m """ import numpy as np from typing import Tuple from typing_extensions import TypedDict from icarus_simulator.sat_core.planetary_const import EARTH_RADIUS CartCoords = Tuple[float, float, float] def geo2cart(geo_coord: GeodeticPosition) -> CartCoords: """ Converts a {lat, long, elevation} point to cartesian (x, y, z). Args: geo_coord: SatPosition. Coordinates of the point in geodesic format. Returns: Tuple[float, float, float]: Tuple of cartesian coordinates. """ theta = np.deg2rad(geo_coord["lon"]) phi = np.deg2rad(90 - geo_coord["lat"]) r = geo_coord["elev"] + EARTH_RADIUS x = r * np.sin(phi) * np.cos(theta) y = r * np.sin(phi) * np.sin(theta) z = r * np.cos(phi) cart = (x, y, z) rad = np.sqrt(np.sum(np.square(cart))) assert rad >= EARTH_RADIUS - 1000 # Allow for approximation error return cart
[ 2, 220, 12131, 309, 2002, 292, 78, 37685, 1046, 3216, 290, 8118, 330, 17902, 8118, 32176, 2743, 628, 198, 37811, 198, 1212, 2393, 4909, 262, 2099, 17336, 290, 32626, 1022, 20435, 16546, 13, 198, 3237, 4129, 3815, 287, 285, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 19720, 1330, 309, 29291, 198, 6738, 19720, 62, 2302, 5736, 1330, 17134, 276, 35, 713, 198, 198, 6738, 14158, 20272, 62, 14323, 8927, 13, 49720, 62, 7295, 13, 11578, 8527, 62, 9979, 1330, 31834, 4221, 62, 49, 2885, 40, 2937, 628, 628, 198, 43476, 7222, 3669, 796, 309, 29291, 58, 22468, 11, 12178, 11, 12178, 60, 628, 198, 4299, 40087, 17, 26674, 7, 469, 78, 62, 37652, 25, 2269, 375, 5139, 26545, 8, 4613, 13690, 7222, 3669, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 257, 1391, 15460, 11, 890, 11, 22910, 92, 966, 284, 6383, 35610, 357, 87, 11, 331, 11, 1976, 737, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 37652, 25, 7031, 26545, 13, 22819, 17540, 286, 262, 966, 287, 4903, 4147, 291, 5794, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 309, 29291, 58, 22468, 11, 12178, 11, 12178, 5974, 309, 29291, 286, 6383, 35610, 22715, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 262, 8326, 796, 45941, 13, 13500, 17, 6335, 7, 469, 78, 62, 37652, 14692, 14995, 8973, 8, 198, 220, 220, 220, 872, 72, 796, 45941, 13, 13500, 17, 6335, 7, 3829, 532, 40087, 62, 37652, 14692, 15460, 8973, 8, 198, 220, 220, 220, 374, 796, 40087, 62, 37652, 14692, 68, 2768, 8973, 1343, 31834, 4221, 62, 49, 2885, 40, 2937, 198, 220, 220, 220, 2124, 796, 374, 1635, 45941, 13, 31369, 7, 34846, 8, 1635, 45941, 13, 6966, 7, 1169, 8326, 8, 198, 220, 220, 220, 331, 796, 374, 1635, 45941, 13, 31369, 7, 34846, 8, 1635, 45941, 13, 31369, 7, 1169, 8326, 8, 198, 220, 220, 220, 1976, 796, 374, 1635, 45941, 13, 6966, 7, 34846, 8, 198, 220, 220, 220, 6383, 796, 357, 87, 11, 331, 11, 1976, 8, 198, 220, 220, 220, 2511, 796, 45941, 13, 31166, 17034, 7, 37659, 13, 16345, 7, 37659, 13, 23415, 7, 26674, 22305, 628, 220, 220, 220, 6818, 2511, 18189, 31834, 4221, 62, 49, 2885, 40, 2937, 532, 8576, 220, 1303, 22507, 329, 40874, 4049, 198, 220, 220, 220, 1441, 6383, 198 ]
2.568293
410
# help
[ 2, 1037 ]
3
2
# -*- coding: utf-8 -*- import entity.cards.LETLT_060.LETLT_060 import entity.cards.LETLT_060.LETLT_060
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 9312, 13, 27761, 13, 2538, 14990, 51, 62, 41322, 13, 2538, 14990, 51, 62, 41322, 198, 11748, 9312, 13, 27761, 13, 2538, 14990, 51, 62, 41322, 13, 2538, 14990, 51, 62, 41322, 198 ]
2.166667
48
# Generated by Django 2.1.5 on 2019-02-16 03:24 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 20, 319, 13130, 12, 2999, 12, 1433, 7643, 25, 1731, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
# Copyright (c) 2018 Ansible, Inc. # All Rights Reserved. from ansiblelint import AnsibleLintRule
[ 2, 15069, 357, 66, 8, 2864, 28038, 856, 11, 3457, 13, 198, 2, 1439, 6923, 33876, 13, 198, 198, 6738, 9093, 856, 75, 600, 1330, 28038, 856, 43, 600, 31929, 628 ]
3.225806
31
import PyPDF2 import textract #from nltk.tokenize import word_tokenize #from nltk.corpus import stopwords
[ 11748, 9485, 20456, 17, 220, 198, 11748, 2420, 974, 198, 2, 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 1573, 62, 30001, 1096, 198, 2, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 2245, 10879 ]
2.944444
36
import torch from torch import nn from .utils import conv3x3, DepthwiseSeparableConv from .base import BackboneBaseModule
[ 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 6738, 764, 26791, 1330, 3063, 18, 87, 18, 11, 36350, 3083, 19117, 283, 540, 3103, 85, 198, 6738, 764, 8692, 1330, 5157, 15992, 14881, 26796, 628, 628 ]
3.472222
36
from django.contrib import admin from django.urls import path from coreRelback import views app_name = 'coreRelback' urlpatterns = [ path('', views.index, name='index'), path('admin/', admin.site.urls), path('creators/', views.creators, name='creators'), # Routes - Clients path('client/', views.clientRead.as_view(), name='client'), path('client/create/', views.clientCreate.as_view(), name='clientCreate'), path('client/update/', views.clientUpdate.as_view(), name='clientUpdate'), path('client/delete/', views.clientDelete.as_view(), name='clientDelete'), # Routes - Hosts path('host/', views.hostRead.as_view(), name='host'), path('host/create/', views.hostCreate.as_view(), name='hostCreate'), path('host/update/', views.hostUpdate.as_view(), name='hostUpdate'), path('host/delete/', views.hostDelete.as_view(), name='hostDelete'), # Routes - Databases path('database/', views.databaseRead.as_view(), name='database'), path('database/create/', views.databaseCreate.as_view(), name='databaseCreate'), path('database/update/', views.databaseUpdate.as_view(), name='databaseUpdate'), path('database/delete/', views.databaseDelete.as_view(), name='databaseDelete'), path('database/hostsList/', views.hostsList, name='hostsList'), # Routes - Policies path('policy/', views.policyRead.as_view(), name='policy'), path('policy/detail/', views.policyRead.policyDetail, name='policyDetail'), path('policy/create/', views.policyCreate.as_view(), name='policyCreate'), path('policy/update/', views.policyUpdate.as_view(), name='policyUpdate'), path('policy/delete/', views.policyDelete.as_view(), name='policyDelete'), path('policy/hostsList/', views.hostsList, name='hostsList'), path('policy/databasesList/', views.databasesList, name='databasesList'), # Routes - Reports path('reports/', views.reportRead, name='reportRead'), path('reports/readLogDetail/<int:idPolicy>/<int:dbKey>/<int:sessionKey>/', views.reportReadLogDetail, name='reportReadLogDetail'), path('reports/refreshSchedule', views.reportRefreshSchedule, name='refreshSchedule'), ]
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 4755, 6892, 1891, 1330, 5009, 198, 198, 1324, 62, 3672, 796, 705, 7295, 6892, 1891, 6, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 5009, 13, 9630, 11, 1438, 11639, 9630, 33809, 198, 220, 220, 220, 3108, 10786, 28482, 14, 3256, 13169, 13, 15654, 13, 6371, 82, 828, 198, 220, 220, 220, 3108, 10786, 20123, 669, 14, 3256, 5009, 13, 20123, 669, 11, 1438, 11639, 20123, 669, 33809, 628, 220, 220, 220, 1303, 39602, 274, 532, 1012, 2334, 198, 220, 220, 220, 3108, 10786, 16366, 14, 3256, 5009, 13, 16366, 5569, 13, 292, 62, 1177, 22784, 1438, 11639, 16366, 33809, 198, 220, 220, 220, 3108, 10786, 16366, 14, 17953, 14, 3256, 5009, 13, 16366, 16447, 13, 292, 62, 1177, 22784, 1438, 11639, 16366, 16447, 33809, 198, 220, 220, 220, 3108, 10786, 16366, 14, 19119, 14, 3256, 5009, 13, 16366, 10260, 13, 292, 62, 1177, 22784, 1438, 11639, 16366, 10260, 33809, 198, 220, 220, 220, 3108, 10786, 16366, 14, 33678, 14, 3256, 5009, 13, 16366, 38727, 13, 292, 62, 1177, 22784, 1438, 11639, 16366, 38727, 33809, 628, 220, 220, 220, 1303, 39602, 274, 532, 14504, 82, 198, 220, 220, 220, 3108, 10786, 4774, 14, 3256, 5009, 13, 4774, 5569, 13, 292, 62, 1177, 22784, 1438, 11639, 4774, 33809, 198, 220, 220, 220, 3108, 10786, 4774, 14, 17953, 14, 3256, 5009, 13, 4774, 16447, 13, 292, 62, 1177, 22784, 1438, 11639, 4774, 16447, 33809, 198, 220, 220, 220, 3108, 10786, 4774, 14, 19119, 14, 3256, 5009, 13, 4774, 10260, 13, 292, 62, 1177, 22784, 1438, 11639, 4774, 10260, 33809, 198, 220, 220, 220, 3108, 10786, 4774, 14, 33678, 14, 3256, 5009, 13, 4774, 38727, 13, 292, 62, 1177, 22784, 1438, 11639, 4774, 38727, 33809, 628, 220, 220, 220, 1303, 39602, 274, 532, 16092, 18826, 198, 220, 220, 220, 3108, 10786, 48806, 14, 3256, 5009, 13, 48806, 5569, 13, 292, 62, 1177, 22784, 1438, 11639, 48806, 33809, 198, 220, 220, 220, 3108, 10786, 48806, 14, 17953, 14, 3256, 5009, 13, 48806, 16447, 13, 292, 62, 1177, 22784, 1438, 11639, 48806, 16447, 33809, 198, 220, 220, 220, 3108, 10786, 48806, 14, 19119, 14, 3256, 5009, 13, 48806, 10260, 13, 292, 62, 1177, 22784, 1438, 11639, 48806, 10260, 33809, 198, 220, 220, 220, 3108, 10786, 48806, 14, 33678, 14, 3256, 5009, 13, 48806, 38727, 13, 292, 62, 1177, 22784, 1438, 11639, 48806, 38727, 33809, 198, 220, 220, 220, 3108, 10786, 48806, 14, 4774, 82, 8053, 14, 3256, 5009, 13, 4774, 82, 8053, 11, 1438, 11639, 4774, 82, 8053, 33809, 628, 220, 220, 220, 1303, 39602, 274, 532, 42283, 198, 220, 220, 220, 3108, 10786, 30586, 14, 3256, 5009, 13, 30586, 5569, 13, 292, 62, 1177, 22784, 1438, 11639, 30586, 33809, 198, 220, 220, 220, 3108, 10786, 30586, 14, 49170, 14, 3256, 5009, 13, 30586, 5569, 13, 30586, 11242, 603, 11, 1438, 11639, 30586, 11242, 603, 33809, 198, 220, 220, 220, 3108, 10786, 30586, 14, 17953, 14, 3256, 5009, 13, 30586, 16447, 13, 292, 62, 1177, 22784, 1438, 11639, 30586, 16447, 33809, 198, 220, 220, 220, 3108, 10786, 30586, 14, 19119, 14, 3256, 5009, 13, 30586, 10260, 13, 292, 62, 1177, 22784, 1438, 11639, 30586, 10260, 33809, 198, 220, 220, 220, 3108, 10786, 30586, 14, 33678, 14, 3256, 5009, 13, 30586, 38727, 13, 292, 62, 1177, 22784, 1438, 11639, 30586, 38727, 33809, 198, 220, 220, 220, 3108, 10786, 30586, 14, 4774, 82, 8053, 14, 3256, 5009, 13, 4774, 82, 8053, 11, 1438, 11639, 4774, 82, 8053, 33809, 198, 220, 220, 220, 3108, 10786, 30586, 14, 19608, 18826, 8053, 14, 3256, 5009, 13, 19608, 18826, 8053, 11, 1438, 11639, 19608, 18826, 8053, 33809, 628, 220, 220, 220, 1303, 39602, 274, 532, 17905, 198, 220, 220, 220, 3108, 10786, 48922, 14, 3256, 5009, 13, 13116, 5569, 11, 1438, 11639, 13116, 5569, 33809, 198, 220, 220, 220, 3108, 10786, 48922, 14, 961, 11187, 11242, 603, 14, 27, 600, 25, 312, 36727, 29, 14, 27, 600, 25, 9945, 9218, 29, 14, 27, 600, 25, 29891, 9218, 29, 14, 3256, 5009, 13, 13116, 5569, 11187, 11242, 603, 11, 1438, 11639, 13116, 5569, 11187, 11242, 603, 33809, 198, 220, 220, 220, 3108, 10786, 48922, 14, 5420, 3447, 27054, 5950, 3256, 5009, 13, 13116, 8134, 3447, 27054, 5950, 11, 1438, 11639, 5420, 3447, 27054, 5950, 33809, 198, 198, 60, 198 ]
2.965894
733
from typing import Set, Optional, TYPE_CHECKING from ...knowledge_plugins.key_definitions import LiveDefinitions from .. import register_analysis from .reaching_definitions import ReachingDefinitionsAnalysis if TYPE_CHECKING: from angr.knowledge_plugins.key_definitions.definition import Definition from angr.storage.memory_object import SimMemoryObject from angr.storage.memory_mixins import MultiValuedMemory from angr.storage.memory_mixins.paged_memory.pages import MVListPage register_analysis(ReachingDefinitionsAnalysis, 'ReachingDefinitions')
[ 6738, 19720, 1330, 5345, 11, 32233, 11, 41876, 62, 50084, 2751, 198, 198, 6738, 2644, 45066, 62, 37390, 13, 2539, 62, 4299, 50101, 1330, 7547, 7469, 50101, 198, 6738, 11485, 1330, 7881, 62, 20930, 198, 6738, 764, 30771, 62, 4299, 50101, 1330, 797, 8103, 7469, 50101, 32750, 628, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 281, 2164, 13, 45066, 62, 37390, 13, 2539, 62, 4299, 50101, 13, 46758, 1330, 30396, 198, 220, 220, 220, 422, 281, 2164, 13, 35350, 13, 31673, 62, 15252, 1330, 3184, 30871, 10267, 198, 220, 220, 220, 422, 281, 2164, 13, 35350, 13, 31673, 62, 19816, 1040, 1330, 15237, 7762, 1739, 30871, 198, 220, 220, 220, 422, 281, 2164, 13, 35350, 13, 31673, 62, 19816, 1040, 13, 79, 1886, 62, 31673, 13, 31126, 1330, 32947, 8053, 9876, 628, 198, 198, 30238, 62, 20930, 7, 3041, 8103, 7469, 50101, 32750, 11, 705, 3041, 8103, 7469, 50101, 11537, 198 ]
3.666667
156
import numpy as np import matplotlib.pyplot as plt
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83 ]
3.125
16
import logging import time from .profile import Profile from .question import Questions log = logging.getLogger(__name__) class Copy(object): """Copy photos, essays and other attributes from one profile to another.""" copy_methods = ['photos', 'essays', 'looking_for', 'details', 'questions'] def __init__(self, source_profile_or_user, dest_user): """ :param source_profile_or_user: A :class:`~okcupyd.user.User` or :class:`~okcupyd.profile.Profile` object from which to copy attributes. :meth:`~.Copy.questions` will not will not preserve the importance of copied questions if a :class:`~okcupyd.profile.Profile` instance is provided. :param dest_user: A :class:`~okcupyd.user.User` to which data will be copied """ if isinstance(source_profile_or_user, Profile): self.source_profile = source_profile_or_user self.source_user = None else: self.source_user = source_profile_or_user self.source_profile = self.source_user.profile self.dest_user = dest_user def questions(self): """Copy questions to the destination user. When this class was initialized with a :class:`~okcupyd.profile.Profile`, this will delete any existing questions answers on the destination account. """ if self.source_user: return self._copy_questions_from_user() else: return self._copy_questions_from_profile() def photos(self): """Copy photos to the destination user.""" # Reverse because pictures appear in inverse chronological order. for photo_info in self.dest_user.profile.photo_infos: self.dest_user.photo.delete(photo_info) return [self.dest_user.photo.upload_and_confirm(info) for info in reversed(self.source_profile.photo_infos)] def essays(self): """Copy essays from the source profile to the destination profile.""" for essay_name in self.dest_user.profile.essays.essay_names: setattr(self.dest_user.profile.essays, essay_name, getattr(self.source_profile.essays, essay_name)) def looking_for(self): """Copy looking for attributes from the source profile to the destination profile. """ looking_for = self.source_profile.looking_for return self.dest_user.profile.looking_for.update( gentation=looking_for.gentation, single=looking_for.single, near_me=looking_for.near_me, kinds=looking_for.kinds, ages=looking_for.ages ) def details(self): """Copy details from the source profile to the destination profile.""" return self.dest_user.profile.details.convert_and_update( self.source_profile.details.as_dict ) def all(self): """Invoke all of :meth:`~.Copy.questions`, :meth:`~.Copy.details`, :meth:`~.Copy.essays`, :meth:`~.Copy.photos`, :meth:`~.Copy.looking_for` """ for method_name in self.copy_methods: getattr(self, method_name)()
[ 11748, 18931, 198, 11748, 640, 198, 198, 6738, 764, 13317, 1330, 13118, 198, 6738, 764, 25652, 1330, 20396, 628, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 17393, 7, 15252, 2599, 198, 220, 220, 220, 37227, 29881, 5205, 11, 27126, 290, 584, 12608, 422, 530, 7034, 284, 1194, 526, 15931, 628, 220, 220, 220, 4866, 62, 24396, 82, 796, 37250, 24729, 3256, 705, 408, 592, 3256, 705, 11534, 62, 1640, 3256, 705, 36604, 3256, 705, 6138, 507, 20520, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2723, 62, 13317, 62, 273, 62, 7220, 11, 2244, 62, 7220, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2723, 62, 13317, 62, 273, 62, 7220, 25, 317, 1058, 4871, 25, 63, 93, 482, 25244, 5173, 13, 7220, 13, 12982, 63, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 93, 482, 25244, 5173, 13, 13317, 13, 37046, 63, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 543, 284, 4866, 12608, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 63, 93, 13, 29881, 13, 6138, 507, 63, 481, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 407, 12201, 262, 6817, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18984, 2683, 611, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 93, 482, 25244, 5173, 13, 13317, 13, 37046, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4554, 318, 2810, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2244, 62, 7220, 25, 317, 1058, 4871, 25, 63, 93, 482, 25244, 5173, 13, 7220, 13, 12982, 63, 284, 543, 1366, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18984, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 10459, 62, 13317, 62, 273, 62, 7220, 11, 13118, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 62, 13317, 796, 2723, 62, 13317, 62, 273, 62, 7220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 62, 7220, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 62, 7220, 796, 2723, 62, 13317, 62, 273, 62, 7220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 62, 13317, 796, 2116, 13, 10459, 62, 7220, 13, 13317, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16520, 62, 7220, 796, 2244, 62, 7220, 628, 220, 220, 220, 825, 2683, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29881, 2683, 284, 262, 10965, 2836, 13, 1649, 428, 1398, 373, 198, 220, 220, 220, 220, 220, 220, 220, 23224, 351, 257, 1058, 4871, 25, 63, 93, 482, 25244, 5173, 13, 13317, 13, 37046, 47671, 428, 481, 198, 220, 220, 220, 220, 220, 220, 220, 12233, 597, 4683, 2683, 7429, 319, 262, 10965, 1848, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10459, 62, 7220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 30073, 62, 6138, 507, 62, 6738, 62, 7220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 30073, 62, 6138, 507, 62, 6738, 62, 13317, 3419, 628, 220, 220, 220, 825, 5205, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29881, 5205, 284, 262, 10965, 2836, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 31849, 780, 5986, 1656, 287, 34062, 45946, 1502, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4590, 62, 10951, 287, 2116, 13, 16520, 62, 7220, 13, 13317, 13, 23074, 62, 10745, 418, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16520, 62, 7220, 13, 23074, 13, 33678, 7, 23074, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 944, 13, 16520, 62, 7220, 13, 23074, 13, 25850, 62, 392, 62, 10414, 2533, 7, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7508, 287, 17687, 7, 944, 13, 10459, 62, 13317, 13, 23074, 62, 10745, 418, 15437, 628, 220, 220, 220, 825, 27126, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29881, 27126, 422, 262, 2723, 7034, 284, 262, 10965, 7034, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 14268, 62, 3672, 287, 2116, 13, 16520, 62, 7220, 13, 13317, 13, 408, 592, 13, 408, 323, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 13, 16520, 62, 7220, 13, 13317, 13, 408, 592, 11, 14268, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 944, 13, 10459, 62, 13317, 13, 408, 592, 11, 14268, 62, 3672, 4008, 628, 220, 220, 220, 825, 2045, 62, 1640, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29881, 2045, 329, 12608, 422, 262, 2723, 7034, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 10965, 7034, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2045, 62, 1640, 796, 2116, 13, 10459, 62, 13317, 13, 11534, 62, 1640, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 16520, 62, 7220, 13, 13317, 13, 11534, 62, 1640, 13, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25049, 341, 28, 11534, 62, 1640, 13, 6783, 341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2060, 28, 11534, 62, 1640, 13, 29762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1474, 62, 1326, 28, 11534, 62, 1640, 13, 40093, 62, 1326, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6982, 28, 11534, 62, 1640, 13, 11031, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9337, 28, 11534, 62, 1640, 13, 1095, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 3307, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29881, 3307, 422, 262, 2723, 7034, 284, 262, 10965, 7034, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 16520, 62, 7220, 13, 13317, 13, 36604, 13, 1102, 1851, 62, 392, 62, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 62, 13317, 13, 36604, 13, 292, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 477, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19904, 2088, 477, 286, 1058, 76, 2788, 25, 63, 93, 13, 29881, 13, 6138, 507, 47671, 1058, 76, 2788, 25, 63, 93, 13, 29881, 13, 36604, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 63, 93, 13, 29881, 13, 408, 592, 47671, 1058, 76, 2788, 25, 63, 93, 13, 29881, 13, 24729, 47671, 1058, 76, 2788, 25, 63, 93, 13, 29881, 13, 11534, 62, 1640, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2446, 62, 3672, 287, 2116, 13, 30073, 62, 24396, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 944, 11, 2446, 62, 3672, 8, 3419, 198 ]
2.190446
1,570
print(convert(10,2)) print(convert_inv(10,2))
[ 198, 198, 4798, 7, 1102, 1851, 7, 940, 11, 17, 4008, 628, 198, 4798, 7, 1102, 1851, 62, 16340, 7, 940, 11, 17, 4008, 198 ]
2
25
"""Configuration for tests.""" import {{ cookiecutter.project_slug }} def pytest_report_header(): """Additional report header.""" return f"version: { {{- cookiecutter.project_slug -}}.__version__}"
[ 37811, 38149, 329, 5254, 526, 15931, 198, 11748, 22935, 19751, 8968, 353, 13, 16302, 62, 6649, 1018, 34949, 628, 198, 4299, 12972, 9288, 62, 13116, 62, 25677, 33529, 198, 220, 220, 220, 37227, 17699, 989, 13639, 526, 15931, 198, 220, 220, 220, 1441, 277, 1, 9641, 25, 1391, 22935, 12, 19751, 8968, 353, 13, 16302, 62, 6649, 1018, 532, 11709, 13, 834, 9641, 834, 36786, 198 ]
3.151515
66
GUEST_URL_PREFIX = '/guest'
[ 38022, 6465, 62, 21886, 62, 47, 31688, 10426, 796, 31051, 5162, 395, 6, 628, 198 ]
2
15
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2021 Peter Lau <[email protected]> # # Distributed under terms of the MIT license. import time import asyncio # method 1 # asyncio.run(main()) # print(main()) # asyncio.run(main2()) asyncio.run(main3())
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 43907, 25, 69, 12685, 28, 40477, 12, 23, 198, 2, 198, 2, 15069, 10673, 33448, 5613, 40014, 1279, 16668, 79, 2357, 75, 559, 31, 448, 5460, 13, 785, 29, 198, 2, 198, 2, 4307, 6169, 739, 2846, 286, 262, 17168, 5964, 13, 198, 198, 11748, 640, 198, 11748, 30351, 952, 198, 198, 2, 2446, 352, 198, 2, 30351, 952, 13, 5143, 7, 12417, 28955, 198, 2, 3601, 7, 12417, 28955, 198, 198, 2, 30351, 952, 13, 5143, 7, 12417, 17, 28955, 198, 198, 292, 13361, 952, 13, 5143, 7, 12417, 18, 28955, 198 ]
2.487395
119
#!/usr/bin/python # -*- coding: utf-8 -*- # Author: Jānis Zuters from __future__ import unicode_literals, division import sys import argparse from io import open argparse.open = open from prpe_ne import collect_ne_pairs if __name__ == '__main__': parser = create_parser() args = parser.parse_args() collect_ne_pairs(args.input1.name,args.input2.name,args.output1.name,args.output2.name)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 6434, 25, 449, 10235, 21361, 1168, 5843, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 11, 7297, 198, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 198, 6738, 33245, 1330, 1280, 198, 853, 29572, 13, 9654, 796, 1280, 198, 198, 6738, 778, 431, 62, 710, 1330, 2824, 62, 710, 62, 79, 3468, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 30751, 796, 2251, 62, 48610, 3419, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 2824, 62, 710, 62, 79, 3468, 7, 22046, 13, 15414, 16, 13, 3672, 11, 22046, 13, 15414, 17, 13, 3672, 11, 22046, 13, 22915, 16, 13, 3672, 11, 22046, 13, 22915, 17, 13, 3672, 8, 198 ]
2.653595
153
def gn_place_uri(geonamesid,fcode,country,admin1,admin2,admin3,admin4): "Return URI of place from a geonames id" if fcode=="PCLI": return "geonames/place/Country/"+country elif fcode=="ADM1": return "geonames/place/State1stDiv/"+country+"_"+admin1 elif fcode=="ADM2": return "geonames/place/CountyProvince2ndDiv/"+country+"_"+admin1+"_"+admin2 elif fcode=="ADM3": return "geonames/place/Community3rdDiv/"+country+"_"+admin1+"_"+admin2+"_"+admin3 elif fcode=="ADM4": return "geonames/place/SubCommunity4thDiv/"+country+"_"+admin1+"_"+admin2+"_"+admin3+"_"+admin4 return "geonames/place/"+geonamesid def gn_place_spacetimevolume_uri(class_uri): "Return URI of SpaceTimeVolume for a class with Spacetimevolume" return class_uri+"/SpaceTimeVolume" def gn_place_identifier_uri(geonamesid): "Return URI of place from a geonames id" return "geonames/place/"+geonamesid+"/identifier" def gn_name_uri(geonamesid,name): "Return URI of name for a place with geonames id" return "geonames/place/"+geonamesid+"/Name/"+name def gn_nametype(type): "Return Nametype of name" return "http://dig.isi.edu/gazetteer/data/SKOS/NameTypes/"+type def gn_select_not_populated_or_administrative(fclass): "Return Nametype of name" return fclass!="P" and fclass!="A" def gn_nametype_conditional(type,condition): "Return Nametype of name if condition is 1, used for alternamtenames which have flags for historic, colloquial,..." if condition == 1: return "http://dig.isi.edu/gazetteer/data/SKOS/NameTypes/"+type return '' def gn_countrycodeconcept_uri(country): "Return country code concept_uri of country taken from SKOS vocabulary http://eulersharp.sourceforge.net/2003/03swap/countries" return "http://eulersharp.sourceforge.net/2003/03swap/countries#"+country def gn_languagecodeconcept_uri(language): "Return language code concept_uri of language taken from SKOS vocabulary http://eulersharp.sourceforge.net/2003/03swap/languages" if len(language) == 2: return "http://eulersharp.sourceforge.net/2003/03swap/languages#"+language return '' def gn_pointgeometry_uri(place_uri): "Return URI of PointGeometry for a place" return place_uri+"/PointGeometry" def gn_country_uri(country): "Return URI for Place of class country" return "geonames/place/Country/"+country def gn_geojson(lat,long): "Return geojson point representation" return """{"type": "Point","coordinates": ["""+lat+","+long+"]}" def gn_State1stDiv_uri(country,admin1): "Return URI for Place of class State1stDiv" if admin1 == None or admin1 =='00': return '' return "geonames/place/State1stDiv/"+country+"_"+admin1 def gn_CountyProvince2ndDiv_uri(country,admin1,admin2): "Return URI for Place of class CountyProvince2ndDiv" if admin2 == '' or admin2 =='00': return '' return "geonames/place/CountyProvince2ndDiv/"+country+"_"+admin1+"_"+admin2 def gn_Community3rdDiv_uri(country,admin1,admin2,admin3): "Return URI for Place of class CountyProvince2ndDiv" if admin3 == '' or admin3 =='00': return '' return "geonames/place/CountyProvince2ndDiv/"+country+"_"+admin1+"_"+admin2+"_"+admin3 def gn_SubCommunity4thDiv_uri(country,admin1,admin2,admin3,admin4): "Return URI for Place of class CountyProvince2ndDiv" if admin4 == '' or admin4 =='00': return '' return "geonames/place/SubCommunity4thDiv/"+country+"_"+admin1+"_"+admin2+"_"+admin3+"_"+admin4 def fcode_to_class(fclass,fcode): "Compute the name of the class in the ontology from a geonames fcode" c = fclass_dictionary[fclass] if fclass=="P": return dgeo+c c = fcode_dictionary[fcode] if c == None: return '' return dgeo+c # dgeo = "http://dig.isi.edu/ontology/dgeo/" fcode_dictionary = {} fcode_dictionary['PCLI'] = "Country" fcode_dictionary['ADM1'] = "State1stDiv" fcode_dictionary['ADM2'] = "CountyProvince2ndDiv" fcode_dictionary['ADM3'] = "Community3rdDiv" fcode_dictionary['ADM4'] = "SubCommunity4thDiv" fclass_dictionary = {} fclass_dictionary['P'] = "PopulatedPlace" fclass_dictionary['A'] = "AdministrativeArea"
[ 198, 4299, 19967, 62, 5372, 62, 9900, 7, 6281, 1047, 312, 11, 69, 8189, 11, 19315, 11, 28482, 16, 11, 28482, 17, 11, 28482, 18, 11, 28482, 19, 2599, 198, 220, 220, 220, 366, 13615, 43975, 286, 1295, 422, 257, 4903, 261, 1047, 4686, 1, 198, 220, 220, 220, 611, 277, 8189, 855, 1, 47, 5097, 40, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 33921, 30487, 10, 19315, 198, 220, 220, 220, 1288, 361, 277, 8189, 855, 1, 2885, 44, 16, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 9012, 16, 301, 24095, 30487, 10, 19315, 10, 1, 62, 1, 10, 28482, 16, 198, 220, 220, 220, 1288, 361, 277, 8189, 855, 1, 2885, 44, 17, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 12332, 88, 15946, 924, 17, 358, 24095, 30487, 10, 19315, 10, 1, 62, 1, 10, 28482, 16, 10, 1, 62, 1, 10, 28482, 17, 198, 220, 220, 220, 1288, 361, 277, 8189, 855, 1, 2885, 44, 18, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 20012, 18, 4372, 24095, 30487, 10, 19315, 10, 1, 62, 1, 10, 28482, 16, 10, 1, 62, 1, 10, 28482, 17, 10, 1, 62, 1, 10, 28482, 18, 198, 220, 220, 220, 1288, 361, 277, 8189, 855, 1, 2885, 44, 19, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 7004, 20012, 19, 400, 24095, 30487, 10, 19315, 10, 1, 62, 1, 10, 28482, 16, 10, 1, 62, 1, 10, 28482, 17, 10, 1, 62, 1, 10, 28482, 18, 10, 1, 62, 1, 10, 28482, 19, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 30487, 10, 6281, 1047, 312, 198, 198, 4299, 19967, 62, 5372, 62, 2777, 330, 8079, 29048, 62, 9900, 7, 4871, 62, 9900, 2599, 198, 197, 1, 13615, 43975, 286, 4687, 7575, 31715, 329, 257, 1398, 351, 39230, 8079, 29048, 1, 198, 220, 197, 7783, 1398, 62, 9900, 10, 1, 14, 14106, 7575, 31715, 1, 198, 198, 4299, 19967, 62, 5372, 62, 738, 7483, 62, 9900, 7, 6281, 1047, 312, 2599, 198, 220, 220, 220, 366, 13615, 43975, 286, 1295, 422, 257, 4903, 261, 1047, 4686, 1, 198, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 30487, 10, 6281, 1047, 312, 10, 1, 14, 738, 7483, 1, 198, 198, 4299, 19967, 62, 3672, 62, 9900, 7, 6281, 1047, 312, 11, 3672, 2599, 198, 220, 220, 220, 366, 13615, 43975, 286, 1438, 329, 257, 1295, 351, 4903, 261, 1047, 4686, 1, 198, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 30487, 10, 6281, 1047, 312, 10, 1, 14, 5376, 30487, 10, 3672, 220, 198, 198, 4299, 19967, 62, 7402, 2963, 431, 7, 4906, 2599, 198, 220, 220, 220, 366, 13615, 17871, 2963, 431, 286, 1438, 1, 198, 220, 220, 220, 1441, 366, 4023, 1378, 12894, 13, 23267, 13, 15532, 14, 70, 1031, 5857, 263, 14, 7890, 14, 18831, 2640, 14, 5376, 31431, 30487, 10, 4906, 198, 198, 4299, 19967, 62, 19738, 62, 1662, 62, 12924, 4817, 62, 273, 62, 39081, 13260, 7, 69, 4871, 2599, 198, 220, 220, 220, 366, 13615, 17871, 2963, 431, 286, 1438, 1, 198, 220, 220, 220, 1441, 277, 4871, 0, 2625, 47, 1, 290, 277, 4871, 0, 2625, 32, 1, 628, 198, 4299, 19967, 62, 7402, 2963, 431, 62, 17561, 1859, 7, 4906, 11, 31448, 2599, 198, 220, 220, 220, 366, 13615, 17871, 2963, 431, 286, 1438, 611, 4006, 318, 352, 11, 973, 329, 3983, 321, 1452, 1047, 543, 423, 9701, 329, 9566, 11, 2927, 22696, 498, 11, 9313, 198, 220, 220, 220, 611, 4006, 6624, 352, 25, 198, 220, 220, 220, 220, 197, 7783, 366, 4023, 1378, 12894, 13, 23267, 13, 15532, 14, 70, 1031, 5857, 263, 14, 7890, 14, 18831, 2640, 14, 5376, 31431, 30487, 10, 4906, 198, 220, 220, 220, 1441, 10148, 198, 198, 4299, 19967, 62, 19315, 19815, 721, 261, 984, 62, 9900, 7, 19315, 2599, 198, 220, 220, 220, 366, 13615, 1499, 2438, 3721, 62, 9900, 286, 1499, 2077, 422, 14277, 2640, 25818, 2638, 1378, 68, 377, 364, 71, 5117, 13, 10459, 30293, 13, 3262, 14, 16088, 14, 3070, 2032, 499, 14, 9127, 1678, 1, 198, 220, 220, 220, 1441, 366, 4023, 1378, 68, 377, 364, 71, 5117, 13, 10459, 30293, 13, 3262, 14, 16088, 14, 3070, 2032, 499, 14, 9127, 1678, 2, 1, 10, 19315, 198, 198, 4299, 19967, 62, 16129, 19815, 721, 261, 984, 62, 9900, 7, 16129, 2599, 198, 220, 220, 220, 366, 13615, 3303, 2438, 3721, 62, 9900, 286, 3303, 2077, 422, 14277, 2640, 25818, 2638, 1378, 68, 377, 364, 71, 5117, 13, 10459, 30293, 13, 3262, 14, 16088, 14, 3070, 2032, 499, 14, 75, 33213, 1, 198, 220, 220, 220, 611, 18896, 7, 16129, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 197, 7783, 366, 4023, 1378, 68, 377, 364, 71, 5117, 13, 10459, 30293, 13, 3262, 14, 16088, 14, 3070, 2032, 499, 14, 75, 33213, 2, 1, 10, 16129, 198, 220, 220, 220, 1441, 10148, 198, 198, 4299, 19967, 62, 4122, 469, 15748, 62, 9900, 7, 5372, 62, 9900, 2599, 198, 220, 220, 220, 366, 13615, 43975, 286, 6252, 10082, 15748, 329, 257, 1295, 1, 198, 220, 220, 220, 1441, 1295, 62, 9900, 10, 1, 14, 12727, 10082, 15748, 1, 198, 198, 4299, 19967, 62, 19315, 62, 9900, 7, 19315, 2599, 198, 220, 220, 220, 366, 13615, 43975, 329, 8474, 286, 1398, 1499, 1, 198, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 33921, 30487, 10, 19315, 198, 198, 4299, 19967, 62, 469, 13210, 1559, 7, 15460, 11, 6511, 2599, 198, 220, 220, 220, 366, 13615, 4903, 13210, 1559, 966, 10552, 1, 198, 220, 220, 220, 1441, 37227, 4895, 4906, 1298, 366, 12727, 2430, 37652, 17540, 1298, 14631, 15931, 10, 15460, 10, 2430, 10, 6511, 10, 8973, 36786, 198, 198, 4299, 19967, 62, 9012, 16, 301, 24095, 62, 9900, 7, 19315, 11, 28482, 16, 2599, 198, 220, 220, 220, 366, 13615, 43975, 329, 8474, 286, 1398, 1812, 16, 301, 24095, 1, 198, 220, 220, 220, 611, 13169, 16, 6624, 6045, 393, 13169, 16, 6624, 6, 405, 10354, 198, 197, 197, 7783, 10148, 198, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 9012, 16, 301, 24095, 30487, 10, 19315, 10, 1, 62, 1, 10, 28482, 16, 198, 198, 4299, 19967, 62, 12332, 88, 15946, 924, 17, 358, 24095, 62, 9900, 7, 19315, 11, 28482, 16, 11, 28482, 17, 2599, 198, 220, 220, 220, 366, 13615, 43975, 329, 8474, 286, 1398, 3418, 15946, 924, 17, 358, 24095, 1, 198, 220, 220, 220, 611, 13169, 17, 6624, 10148, 393, 13169, 17, 6624, 6, 405, 10354, 198, 197, 197, 7783, 10148, 198, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 12332, 88, 15946, 924, 17, 358, 24095, 30487, 10, 19315, 10, 1, 62, 1, 10, 28482, 16, 10, 1, 62, 1, 10, 28482, 17, 628, 198, 4299, 19967, 62, 20012, 18, 4372, 24095, 62, 9900, 7, 19315, 11, 28482, 16, 11, 28482, 17, 11, 28482, 18, 2599, 198, 220, 220, 220, 366, 13615, 43975, 329, 8474, 286, 1398, 3418, 15946, 924, 17, 358, 24095, 1, 198, 220, 220, 220, 611, 13169, 18, 6624, 10148, 393, 13169, 18, 6624, 6, 405, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 12332, 88, 15946, 924, 17, 358, 24095, 30487, 10, 19315, 10, 1, 62, 1, 10, 28482, 16, 10, 1, 62, 1, 10, 28482, 17, 10, 1, 62, 1, 10, 28482, 18, 198, 198, 4299, 19967, 62, 7004, 20012, 19, 400, 24095, 62, 9900, 7, 19315, 11, 28482, 16, 11, 28482, 17, 11, 28482, 18, 11, 28482, 19, 2599, 198, 220, 220, 220, 366, 13615, 43975, 329, 8474, 286, 1398, 3418, 15946, 924, 17, 358, 24095, 1, 198, 220, 220, 220, 611, 13169, 19, 6624, 10148, 393, 13169, 19, 6624, 6, 405, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 1441, 366, 6281, 1047, 14, 5372, 14, 7004, 20012, 19, 400, 24095, 30487, 10, 19315, 10, 1, 62, 1, 10, 28482, 16, 10, 1, 62, 1, 10, 28482, 17, 10, 1, 62, 1, 10, 28482, 18, 10, 1, 62, 1, 10, 28482, 19, 198, 198, 4299, 277, 8189, 62, 1462, 62, 4871, 7, 69, 4871, 11, 69, 8189, 2599, 198, 197, 1, 7293, 1133, 262, 1438, 286, 262, 1398, 287, 262, 39585, 1435, 422, 257, 4903, 261, 1047, 277, 8189, 1, 198, 197, 66, 796, 277, 4871, 62, 67, 14188, 58, 69, 4871, 60, 198, 197, 361, 277, 4871, 855, 1, 47, 1298, 198, 197, 197, 7783, 288, 469, 78, 10, 66, 198, 197, 66, 796, 277, 8189, 62, 67, 14188, 58, 69, 8189, 60, 198, 197, 361, 269, 6624, 6045, 25, 198, 197, 197, 7783, 10148, 198, 197, 7783, 288, 469, 78, 10, 66, 628, 198, 2, 220, 198, 67, 469, 78, 796, 366, 4023, 1378, 12894, 13, 23267, 13, 15532, 14, 756, 1435, 14, 67, 469, 78, 30487, 198, 69, 8189, 62, 67, 14188, 796, 23884, 198, 69, 8189, 62, 67, 14188, 17816, 47, 5097, 40, 20520, 796, 366, 33921, 1, 198, 69, 8189, 62, 67, 14188, 17816, 2885, 44, 16, 20520, 796, 366, 9012, 16, 301, 24095, 1, 198, 69, 8189, 62, 67, 14188, 17816, 2885, 44, 17, 20520, 796, 366, 12332, 88, 15946, 924, 17, 358, 24095, 1, 198, 69, 8189, 62, 67, 14188, 17816, 2885, 44, 18, 20520, 796, 366, 20012, 18, 4372, 24095, 1, 198, 69, 8189, 62, 67, 14188, 17816, 2885, 44, 19, 20520, 796, 366, 7004, 20012, 19, 400, 24095, 1, 198, 198, 69, 4871, 62, 67, 14188, 796, 23884, 198, 69, 4871, 62, 67, 14188, 17816, 47, 20520, 796, 366, 16979, 4817, 27271, 1, 198, 69, 4871, 62, 67, 14188, 17816, 32, 20520, 796, 366, 41862, 13260, 30547, 1 ]
2.516827
1,664
import os import pytest from random import randint import socket import uuid from volttrontesting.utils.platformwrapper import PlatformWrapper from volttrontesting.utils.utils import get_hostname_and_random_port, get_rand_vip, get_rand_ip_and_port from volttron.platform import is_rabbitmq_available PRINT_LOG_ON_SHUTDOWN = False HAS_RMQ = is_rabbitmq_available() rmq_skipif = pytest.mark.skipif(not HAS_RMQ, reason='RabbitMQ is not setup') @pytest.fixture(scope="module", params=[dict(messagebus='zmq', ssl_auth=False), rmq_skipif(dict(messagebus='rmq', ssl_auth=True)) ]) # IPC testing is removed since it is not used from VOLTTRON 6.0 @pytest.fixture(scope="function") @pytest.fixture(scope="module") # Generic fixtures. Ideally we want to use the below instead of # Use this fixture when you want a single instance of volttron platform for # test @pytest.fixture(scope="module", params=( dict(messagebus='zmq', ssl_auth=False), rmq_skipif(dict(messagebus='rmq', ssl_auth=True)), )) def volttron_instance(request, **kwargs): """Fixture that returns a single instance of volttron platform for testing @param request: pytest request object @return: volttron platform instance """ address = kwargs.pop("vip_address", get_rand_vip()) wrapper = build_wrapper(address, messagebus=request.param['messagebus'], ssl_auth=request.param['ssl_auth'], **kwargs) yield wrapper cleanup_wrapper(wrapper) # Use this fixture to get more than 1 volttron instance for test. # Usage example: # def test_function_that_uses_n_instances(request, get_volttron_instances): # instances = get_volttron_instances(3) # # TODO allow rmq to be added to the multi platform request. @pytest.fixture(scope="module", params=[ dict(messagebus='zmq', ssl_auth=False) ]) def get_volttron_instances(request): """ Fixture to get more than 1 volttron instance for test Use this fixture to get more than 1 volttron instance for test. This returns a function object that should be called with number of instances as parameter to get a list of volttron instnaces. The fixture also takes care of shutting down all the instances at the end Example Usage: def test_function_that_uses_n_instances(get_volttron_instances): instance1, instance2, instance3 = get_volttron_instances(3) @param request: pytest request object @return: function that can used to get any number of volttron instances for testing. """ all_instances = [] request.addfinalizer(cleanup) return get_n_volttron_instances # Use this fixture when you want a single instance of volttron platform for zmq message bus # test @pytest.fixture(scope="module") def volttron_instance_zmq(request): """Fixture that returns a single instance of volttron platform for testing @param request: pytest request object @return: volttron platform instance """ address = get_rand_vip() wrapper = build_wrapper(address) yield wrapper cleanup_wrapper(wrapper) # Use this fixture when you want a single instance of volttron platform for rmq message bus # test @pytest.fixture(scope="module") def volttron_instance_rmq(request): """Fixture that returns a single instance of volttron platform for testing @param request: pytest request object @return: volttron platform instance """ wrapper = None address = get_rand_vip() wrapper = build_wrapper(address, messagebus='rmq', ssl_auth=True) yield wrapper cleanup_wrapper(wrapper) @pytest.fixture(scope="module", params=[ dict(messagebus='zmq', ssl_auth=False), rmq_skipif(dict(messagebus='rmq', ssl_auth=True)) ]) @pytest.fixture(scope="module", params=[ dict(sink='zmq_web', source='zmq'), rmq_skipif(dict(sink='rmq_web', source='zmq')), rmq_skipif(dict(sink='rmq_web', source='rmq')), rmq_skipif(dict(sink='zmq_web', source='rmq')) ]) def volttron_multi_messagebus(request): """ This fixture allows multiple two message bus types to be configured to work together This case will create a source (where data comes from) and a sink (where data goes to) to allow connections from source to sink to be tested for the different cases. In particular, the case of VolttronCentralPlatform, Forwarder and DataMover agents should use this case. :param request: :return: """ print("volttron_multi_messagebus source: {} sink: {}".format(request.param['source'], request.param['sink'])) sink_address = get_rand_vip() if request.param['sink'] == 'rmq_web': hostname, port = get_hostname_and_random_port() web_address = 'https://{hostname}:{port}'.format(hostname=hostname, port=port) messagebus = 'rmq' ssl_auth = True else: web_address = "http://{}".format(get_rand_ip_and_port()) messagebus = 'zmq' ssl_auth = False sink = build_wrapper(sink_address, ssl_auth=ssl_auth, messagebus=messagebus, bind_web_address=web_address, volttron_central_address=web_address) source_address = get_rand_vip() messagebus = 'zmq' ssl_auth = False if request.param['source'] == 'rmq': messagebus = 'rmq' ssl_auth = True if sink.messagebus == 'rmq': # sink_ca_file = sink.certsobj.cert_file(sink.certsobj.root_ca_name) source = build_wrapper(source_address, ssl_auth=ssl_auth, messagebus=messagebus, volttron_central_address=sink.bind_web_address, remote_platform_ca=sink.certsobj.cert_file(sink.certsobj.root_ca_name)) if source.messagebus == 'rmq': # The _ca is how the auth subsystem saves the remote cert from discovery. We # are effectively doing that here instead of making the discovery call. source.certsobj.save_remote_cert(sink.certsobj.root_ca_name + "_ca", sink.certsobj.ca_cert( public_bytes=True)) else: source = build_wrapper(source_address, ssl_auth=ssl_auth, messagebus=messagebus, volttron_central_address=sink.bind_web_address) yield source, sink cleanup_wrapper(source) cleanup_wrapper(sink)
[ 11748, 28686, 198, 11748, 12972, 9288, 198, 6738, 4738, 1330, 43720, 600, 198, 11748, 17802, 198, 11748, 334, 27112, 198, 198, 6738, 2322, 926, 4298, 37761, 13, 26791, 13, 24254, 48553, 1330, 19193, 36918, 2848, 198, 6738, 2322, 926, 4298, 37761, 13, 26791, 13, 26791, 1330, 651, 62, 4774, 3672, 62, 392, 62, 25120, 62, 634, 11, 651, 62, 25192, 62, 85, 541, 11, 651, 62, 25192, 62, 541, 62, 392, 62, 634, 198, 6738, 2322, 926, 1313, 13, 24254, 1330, 318, 62, 81, 14229, 76, 80, 62, 15182, 198, 198, 4805, 12394, 62, 25294, 62, 1340, 62, 9693, 3843, 41925, 796, 10352, 198, 39, 1921, 62, 29138, 48, 796, 318, 62, 81, 14229, 76, 80, 62, 15182, 3419, 198, 26224, 80, 62, 48267, 361, 796, 12972, 9288, 13, 4102, 13, 48267, 361, 7, 1662, 33930, 62, 29138, 48, 11, 1738, 11639, 49, 14229, 49215, 318, 407, 9058, 11537, 628, 628, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 41888, 11600, 7, 20500, 10885, 11639, 89, 76, 80, 3256, 264, 6649, 62, 18439, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 80, 62, 48267, 361, 7, 11600, 7, 20500, 10885, 11639, 26224, 80, 3256, 264, 6649, 62, 18439, 28, 17821, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 628, 198, 2, 314, 5662, 4856, 318, 4615, 1201, 340, 318, 407, 973, 422, 38570, 51, 5446, 1340, 718, 13, 15, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 8818, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 2, 42044, 34609, 13, 40067, 356, 765, 284, 779, 262, 2174, 2427, 286, 198, 2, 5765, 428, 29220, 618, 345, 765, 257, 2060, 4554, 286, 2322, 926, 1313, 3859, 329, 198, 2, 1332, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 20500, 10885, 11639, 89, 76, 80, 3256, 264, 6649, 62, 18439, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 80, 62, 48267, 361, 7, 11600, 7, 20500, 10885, 11639, 26224, 80, 3256, 264, 6649, 62, 18439, 28, 17821, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 4299, 2322, 926, 1313, 62, 39098, 7, 25927, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 37, 9602, 326, 5860, 257, 2060, 4554, 286, 2322, 926, 1313, 3859, 329, 4856, 628, 220, 220, 220, 2488, 17143, 2581, 25, 12972, 9288, 2581, 2134, 198, 220, 220, 220, 2488, 7783, 25, 2322, 926, 1313, 3859, 4554, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2209, 796, 479, 86, 22046, 13, 12924, 7203, 85, 541, 62, 21975, 1600, 651, 62, 25192, 62, 85, 541, 28955, 198, 220, 220, 220, 29908, 796, 1382, 62, 48553, 7, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 10885, 28, 25927, 13, 17143, 17816, 20500, 10885, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 18439, 28, 25927, 13, 17143, 17816, 45163, 62, 18439, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 220, 220, 220, 7800, 29908, 628, 220, 220, 220, 27425, 62, 48553, 7, 48553, 8, 628, 198, 2, 5765, 428, 29220, 284, 651, 517, 621, 352, 2322, 926, 1313, 4554, 329, 1332, 13, 198, 2, 29566, 1672, 25, 198, 2, 825, 1332, 62, 8818, 62, 5562, 62, 2664, 62, 77, 62, 8625, 1817, 7, 25927, 11, 651, 62, 10396, 926, 1313, 62, 8625, 1817, 2599, 198, 2, 220, 220, 220, 220, 10245, 796, 651, 62, 10396, 926, 1313, 62, 8625, 1817, 7, 18, 8, 198, 2, 198, 2, 16926, 46, 1249, 42721, 80, 284, 307, 2087, 284, 262, 5021, 3859, 2581, 13, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 20500, 10885, 11639, 89, 76, 80, 3256, 264, 6649, 62, 18439, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 198, 4299, 651, 62, 10396, 926, 1313, 62, 8625, 1817, 7, 25927, 2599, 198, 220, 220, 220, 37227, 376, 9602, 284, 651, 517, 621, 352, 2322, 926, 1313, 4554, 329, 1332, 198, 220, 220, 220, 5765, 428, 29220, 284, 651, 517, 621, 352, 2322, 926, 1313, 4554, 329, 1332, 13, 770, 198, 220, 220, 220, 5860, 257, 2163, 2134, 326, 815, 307, 1444, 351, 1271, 286, 10245, 198, 220, 220, 220, 355, 11507, 284, 651, 257, 1351, 286, 2322, 926, 1313, 916, 77, 2114, 13, 383, 29220, 635, 198, 220, 220, 220, 2753, 1337, 286, 25136, 866, 477, 262, 10245, 379, 262, 886, 628, 220, 220, 220, 17934, 29566, 25, 628, 220, 220, 220, 825, 1332, 62, 8818, 62, 5562, 62, 2664, 62, 77, 62, 8625, 1817, 7, 1136, 62, 10396, 926, 1313, 62, 8625, 1817, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 16, 11, 4554, 17, 11, 4554, 18, 796, 651, 62, 10396, 926, 1313, 62, 8625, 1817, 7, 18, 8, 628, 220, 220, 220, 2488, 17143, 2581, 25, 12972, 9288, 2581, 2134, 198, 220, 220, 220, 2488, 7783, 25, 2163, 326, 460, 973, 284, 651, 597, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 2322, 926, 1313, 10245, 329, 4856, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 477, 62, 8625, 1817, 796, 17635, 628, 220, 220, 220, 2581, 13, 2860, 20311, 7509, 7, 27773, 929, 8, 628, 220, 220, 220, 1441, 651, 62, 77, 62, 10396, 926, 1313, 62, 8625, 1817, 628, 198, 2, 5765, 428, 29220, 618, 345, 765, 257, 2060, 4554, 286, 2322, 926, 1313, 3859, 329, 1976, 76, 80, 3275, 1323, 198, 2, 1332, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 198, 4299, 2322, 926, 1313, 62, 39098, 62, 89, 76, 80, 7, 25927, 2599, 198, 220, 220, 220, 37227, 37, 9602, 326, 5860, 257, 2060, 4554, 286, 2322, 926, 1313, 3859, 329, 4856, 628, 220, 220, 220, 2488, 17143, 2581, 25, 12972, 9288, 2581, 2134, 198, 220, 220, 220, 2488, 7783, 25, 2322, 926, 1313, 3859, 4554, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2209, 796, 651, 62, 25192, 62, 85, 541, 3419, 628, 220, 220, 220, 29908, 796, 1382, 62, 48553, 7, 21975, 8, 628, 220, 220, 220, 7800, 29908, 628, 220, 220, 220, 27425, 62, 48553, 7, 48553, 8, 628, 198, 2, 5765, 428, 29220, 618, 345, 765, 257, 2060, 4554, 286, 2322, 926, 1313, 3859, 329, 42721, 80, 3275, 1323, 198, 2, 1332, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 198, 4299, 2322, 926, 1313, 62, 39098, 62, 26224, 80, 7, 25927, 2599, 198, 220, 220, 220, 37227, 37, 9602, 326, 5860, 257, 2060, 4554, 286, 2322, 926, 1313, 3859, 329, 4856, 628, 220, 220, 220, 2488, 17143, 2581, 25, 12972, 9288, 2581, 2134, 198, 220, 220, 220, 2488, 7783, 25, 2322, 926, 1313, 3859, 4554, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29908, 796, 6045, 198, 220, 220, 220, 2209, 796, 651, 62, 25192, 62, 85, 541, 3419, 628, 220, 220, 220, 29908, 796, 1382, 62, 48553, 7, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 10885, 11639, 26224, 80, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 18439, 28, 17821, 8, 628, 220, 220, 220, 7800, 29908, 628, 220, 220, 220, 27425, 62, 48553, 7, 48553, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 20500, 10885, 11639, 89, 76, 80, 3256, 264, 6649, 62, 18439, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 80, 62, 48267, 361, 7, 11600, 7, 20500, 10885, 11639, 26224, 80, 3256, 264, 6649, 62, 18439, 28, 17821, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 82, 676, 11639, 89, 76, 80, 62, 12384, 3256, 2723, 11639, 89, 76, 80, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 80, 62, 48267, 361, 7, 11600, 7, 82, 676, 11639, 26224, 80, 62, 12384, 3256, 2723, 11639, 89, 76, 80, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 80, 62, 48267, 361, 7, 11600, 7, 82, 676, 11639, 26224, 80, 62, 12384, 3256, 2723, 11639, 26224, 80, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 80, 62, 48267, 361, 7, 11600, 7, 82, 676, 11639, 89, 76, 80, 62, 12384, 3256, 2723, 11639, 26224, 80, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 198, 4299, 2322, 926, 1313, 62, 41684, 62, 20500, 10885, 7, 25927, 2599, 198, 220, 220, 220, 37227, 770, 29220, 3578, 3294, 734, 3275, 1323, 3858, 284, 307, 17839, 284, 670, 1978, 628, 220, 220, 220, 770, 1339, 481, 2251, 257, 2723, 357, 3003, 1366, 2058, 422, 8, 290, 257, 14595, 357, 3003, 1366, 2925, 284, 8, 284, 198, 220, 220, 220, 1249, 8787, 422, 2723, 284, 14595, 284, 307, 6789, 329, 262, 1180, 2663, 13, 220, 554, 1948, 11, 198, 220, 220, 220, 262, 1339, 286, 4709, 926, 1313, 30645, 37148, 11, 19530, 263, 290, 6060, 44, 2502, 6554, 815, 779, 428, 198, 220, 220, 220, 1339, 13, 628, 220, 220, 220, 1058, 17143, 2581, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7203, 10396, 926, 1313, 62, 41684, 62, 20500, 10885, 2723, 25, 23884, 14595, 25, 23884, 1911, 18982, 7, 25927, 13, 17143, 17816, 10459, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 17143, 17816, 82, 676, 20520, 4008, 198, 220, 220, 220, 14595, 62, 21975, 796, 651, 62, 25192, 62, 85, 541, 3419, 628, 220, 220, 220, 611, 2581, 13, 17143, 17816, 82, 676, 20520, 6624, 705, 26224, 80, 62, 12384, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 3672, 11, 2493, 796, 651, 62, 4774, 3672, 62, 392, 62, 25120, 62, 634, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3992, 62, 21975, 796, 705, 5450, 1378, 90, 4774, 3672, 92, 29164, 634, 92, 4458, 18982, 7, 4774, 3672, 28, 4774, 3672, 11, 2493, 28, 634, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 10885, 796, 705, 26224, 80, 6, 198, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 18439, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3992, 62, 21975, 796, 366, 4023, 1378, 90, 92, 1911, 18982, 7, 1136, 62, 25192, 62, 541, 62, 392, 62, 634, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 10885, 796, 705, 89, 76, 80, 6, 198, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 18439, 796, 10352, 628, 220, 220, 220, 14595, 796, 1382, 62, 48553, 7, 82, 676, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 18439, 28, 45163, 62, 18439, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 10885, 28, 20500, 10885, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11007, 62, 12384, 62, 21975, 28, 12384, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2322, 926, 1313, 62, 31463, 62, 21975, 28, 12384, 62, 21975, 8, 628, 220, 220, 220, 2723, 62, 21975, 796, 651, 62, 25192, 62, 85, 541, 3419, 198, 220, 220, 220, 3275, 10885, 796, 705, 89, 76, 80, 6, 198, 220, 220, 220, 264, 6649, 62, 18439, 796, 10352, 628, 220, 220, 220, 611, 2581, 13, 17143, 17816, 10459, 20520, 6624, 705, 26224, 80, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 10885, 796, 705, 26224, 80, 6, 198, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 18439, 796, 6407, 628, 220, 220, 220, 611, 14595, 13, 20500, 10885, 6624, 705, 26224, 80, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14595, 62, 6888, 62, 7753, 796, 14595, 13, 22583, 568, 50007, 13, 22583, 62, 7753, 7, 82, 676, 13, 22583, 568, 50007, 13, 15763, 62, 6888, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 1382, 62, 48553, 7, 10459, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 18439, 28, 45163, 62, 18439, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 10885, 28, 20500, 10885, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2322, 926, 1313, 62, 31463, 62, 21975, 28, 82, 676, 13, 21653, 62, 12384, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 24254, 62, 6888, 28, 82, 676, 13, 22583, 568, 50007, 13, 22583, 62, 7753, 7, 82, 676, 13, 22583, 568, 50007, 13, 15763, 62, 6888, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 13, 20500, 10885, 6624, 705, 26224, 80, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 4808, 6888, 318, 703, 262, 6284, 39335, 16031, 262, 6569, 5051, 422, 9412, 13, 220, 775, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 389, 6840, 1804, 326, 994, 2427, 286, 1642, 262, 9412, 869, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 22583, 568, 50007, 13, 21928, 62, 47960, 62, 22583, 7, 82, 676, 13, 22583, 568, 50007, 13, 15763, 62, 6888, 62, 3672, 1343, 45434, 6888, 1600, 14595, 13, 22583, 568, 50007, 13, 6888, 62, 22583, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1171, 62, 33661, 28, 17821, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 1382, 62, 48553, 7, 10459, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 18439, 28, 45163, 62, 18439, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 10885, 28, 20500, 10885, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2322, 926, 1313, 62, 31463, 62, 21975, 28, 82, 676, 13, 21653, 62, 12384, 62, 21975, 8, 628, 220, 220, 220, 7800, 2723, 11, 14595, 628, 220, 220, 220, 27425, 62, 48553, 7, 10459, 8, 198, 220, 220, 220, 27425, 62, 48553, 7, 82, 676, 8, 198 ]
2.292555
3,049
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-07-12 21:01 from __future__ import unicode_literals import django.contrib.postgres.fields from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 17, 319, 2177, 12, 2998, 12, 1065, 2310, 25, 486, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 42625, 14208, 13, 3642, 822, 13, 7353, 34239, 13, 25747, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.811594
69
import unittest from lisa.core import genome_tools import numpy as np if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 300, 9160, 13, 7295, 1330, 19270, 62, 31391, 198, 11748, 299, 32152, 355, 45941, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.767442
43
# MIT License # # Copyright (c) 2019 Tuomas Halvari, Juha Harviainen, Juha Mylläri, Antti Röyskö, Juuso Silvennoinen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import matplotlib.pyplot as plt from dpemu.nodes import Array, Series from dpemu.filters.image import Rotation from dpemu.dataset_utils import load_mnist def main(): """An example that rotates MNIST digits and displays one. Usage: python run_rotate_MNIST_example <angle> where <angle> is the angle of rotation (e.g. 90 to rotate by pi / 2) """ x, _, _, _ = load_mnist() xs = x[:20] # small subset of x angle = float(sys.argv[1]) print(f"x subset shape: {xs.shape}") img_node = Array(reshape=(28, 28)) root_node = Series(img_node) img_node.addfilter(Rotation("angle")) result = root_node.generate_error(xs, {'angle': angle}) plt.matshow(result[0].reshape((28, 28))) plt.show() if __name__ == "__main__": main()
[ 2, 17168, 13789, 198, 2, 198, 2, 15069, 357, 66, 8, 13130, 16749, 16911, 11023, 25641, 11, 12585, 3099, 2113, 8903, 391, 268, 11, 12585, 3099, 2011, 297, 11033, 380, 11, 3738, 20259, 371, 9101, 893, 74, 9101, 11, 12585, 385, 78, 4243, 574, 3919, 42326, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 198, 11748, 25064, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 288, 79, 368, 84, 13, 77, 4147, 1330, 15690, 11, 7171, 198, 6738, 288, 79, 368, 84, 13, 10379, 1010, 13, 9060, 1330, 371, 14221, 198, 6738, 288, 79, 368, 84, 13, 19608, 292, 316, 62, 26791, 1330, 3440, 62, 10295, 396, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 2025, 1672, 326, 5724, 689, 29060, 8808, 19561, 290, 11298, 530, 13, 198, 220, 220, 220, 29566, 25, 21015, 1057, 62, 10599, 378, 62, 39764, 8808, 62, 20688, 1279, 9248, 29, 198, 220, 220, 220, 810, 1279, 9248, 29, 318, 262, 9848, 286, 13179, 198, 220, 220, 220, 357, 68, 13, 70, 13, 4101, 284, 23064, 416, 31028, 1220, 362, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 11, 4808, 11, 4808, 11, 4808, 796, 3440, 62, 10295, 396, 3419, 198, 220, 220, 220, 2124, 82, 796, 2124, 58, 25, 1238, 60, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1402, 24637, 286, 2124, 198, 220, 220, 220, 9848, 796, 12178, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 3601, 7, 69, 1, 87, 24637, 5485, 25, 1391, 34223, 13, 43358, 92, 4943, 198, 220, 220, 220, 33705, 62, 17440, 796, 15690, 7, 3447, 1758, 16193, 2078, 11, 2579, 4008, 198, 220, 220, 220, 6808, 62, 17440, 796, 7171, 7, 9600, 62, 17440, 8, 198, 220, 220, 220, 33705, 62, 17440, 13, 2860, 24455, 7, 49, 14221, 7203, 9248, 48774, 198, 220, 220, 220, 1255, 796, 6808, 62, 17440, 13, 8612, 378, 62, 18224, 7, 34223, 11, 1391, 6, 9248, 10354, 9848, 30072, 628, 220, 220, 220, 458, 83, 13, 76, 1381, 4919, 7, 20274, 58, 15, 4083, 3447, 1758, 19510, 2078, 11, 2579, 22305, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.016743
657
import json
[ 11748, 33918, 628 ]
4.333333
3
import datetime import json import logging import logging.config import os import sys import traceback from os.path import join as pjoin from subprocess import Popen, PIPE import unittest2 as unittest
[ 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 18931, 13, 11250, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 12854, 1891, 198, 6738, 28686, 13, 6978, 1330, 4654, 355, 279, 22179, 198, 6738, 850, 14681, 1330, 8099, 268, 11, 350, 4061, 36, 198, 198, 11748, 555, 715, 395, 17, 355, 555, 715, 395, 628 ]
3.561404
57
import os import unittest from maggma.stores import MemoryStore from maggma.runner import Runner from maggma.builders import Builder from emmet.workflows.property_workflows import PropertyWorkflowBuilder,\ get_elastic_wf_builder from pymatgen.util.testing import PymatgenTest from atomate.vasp.workflows.presets.core import wf_elastic_constant from fireworks import LaunchPad, Workflow from monty.tempfile import ScratchDir from monty.serialization import dumpfn, loadfn __author__ = "Joseph Montoya" __email__ = "[email protected]" module_dir = os.path.join(os.path.dirname(os.path.abspath(__file__))) if __name__ == "__main__": unittest.main()
[ 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 2153, 70, 2611, 13, 43409, 1330, 14059, 22658, 198, 6738, 2153, 70, 2611, 13, 16737, 1330, 21529, 198, 6738, 2153, 70, 2611, 13, 50034, 1330, 35869, 198, 6738, 795, 4164, 13, 1818, 44041, 13, 26745, 62, 1818, 44041, 1330, 14161, 12468, 11125, 32875, 11, 59, 198, 220, 220, 220, 651, 62, 417, 3477, 62, 86, 69, 62, 38272, 198, 6738, 279, 4948, 265, 5235, 13, 22602, 13, 33407, 1330, 350, 4948, 265, 5235, 14402, 198, 6738, 22037, 378, 13, 85, 5126, 13, 1818, 44041, 13, 18302, 1039, 13, 7295, 1330, 266, 69, 62, 417, 3477, 62, 9979, 415, 198, 6738, 26056, 1330, 21225, 26114, 11, 5521, 11125, 198, 6738, 40689, 88, 13, 29510, 7753, 1330, 1446, 36722, 35277, 198, 6738, 40689, 88, 13, 46911, 1634, 1330, 10285, 22184, 11, 3440, 22184, 198, 198, 834, 9800, 834, 796, 366, 29458, 5575, 23790, 1, 198, 834, 12888, 834, 796, 366, 8691, 726, 73, 71, 31, 75, 2436, 13, 9567, 1, 198, 198, 21412, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 22305, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.955157
223
n = 28433 * pow(2,7830457,10**10) + 1 print str(n)[-10:]
[ 77, 796, 40654, 2091, 1635, 7182, 7, 17, 11, 3695, 1270, 33032, 11, 940, 1174, 940, 8, 1343, 352, 198, 4798, 965, 7, 77, 38381, 12, 940, 47715, 198 ]
1.965517
29
from fastapi import HTTPException from sqlalchemy.orm import Session from core.models.table import TagDB, TagInRepoDB, RepoDB from core.models.schema import TagCreate from core.models.schema import TagInRepoCreate def _create_tag(db: Session, tag_name: str, user_id: int): """ Creates a new tag in the database Args: db (Session): sqlAlchemy connection object tag (TagCreate): Schema for creating a tag in database Raises: HTTPException: 422, Tag name cannot be empty Returns: sql_object : Tag data """ if tag_name.strip() == "": raise HTTPException( status_code=422, detail="Tag name cannot be empty") db_tag = TagDB(name=tag_name, auth_id=user_id) db.add(db_tag) db.commit() db.refresh(db_tag) return db_tag def _get_tag_by_name(tag_name: str, auth_id: int, db: Session): """ Returns tag data by passing the tag name Args: tag_name (str): Tag Name auth_id (int): User Id db (Session): sqlAlchemy connection object Returns: sql_object : Tag data """ return db.query(TagDB).filter(TagDB.name == tag_name, TagDB.auth_id == auth_id).first() def _get_tag_by_id(tag_id: int, db: Session): """ Returns tag data by passing the tag id Args: tag_id (int): Tag id db (Session): sqlAlchemy connection object Returns: sql_object : Tag data """ return db.query(TagDB).filter(TagDB.id == tag_id).first() def _get_all_tags(db: Session, auth_id: int): """ Returns data for all tags Args: db (Session): sqlAlchemy connection object auth_id (int): User id Returns: sql_object : All tags data """ return db.query(TagDB).filter(auth_id == auth_id).all() def _add_tag_in_repo(tag_in_repo: TagInRepoCreate, db: Session): """ Adds a tag's link to a repository Args: tag_in_repo (TagInRepoCreate): Schema for creating a relationship between a tag and a repository db (Session): sqlAlchemy connection object Returns: sql_object: Tag associated with the repository """ db_tag_in_repo = _get_tag_in_repo(repo_id=tag_in_repo.repo_id, tag_id=tag_in_repo.tag_id, db=db) if db_tag_in_repo: raise HTTPException( status_code=400, detail="Tag is already associated") db_tag_in_repo = TagInRepoDB(repo_id=tag_in_repo.repo_id, tag_id=tag_in_repo.tag_id) db.add(db_tag_in_repo) db.commit() db.refresh(db_tag_in_repo) return db_tag_in_repo def _get_tag_in_repo(repo_id: int, tag_id: int, db: Session): """ Returns a tag's link data to a repository Args: repo_id (int): Repository ID tag_id (int): Tag ID db (Session): sqlAlchemy connection object Returns: sql_object: Tag associated with the repository Raises: HTTPException: 404, Tag not found HTTPException: 404, Repository not found Returns: sql_object: Tag associated with the repository """ tag_in_repo_db = db.query(TagInRepoDB).filter( TagInRepoDB.repo_id == repo_id, TagInRepoDB.tag_id == tag_id).first() user_has_the_tag = db.query(TagDB).filter( TagDB.id == tag_id).first() user_has_the_repo = db.query(RepoDB).filter( RepoDB.id == repo_id).first() if not user_has_the_tag: raise HTTPException( status_code=404, detail="Tag not found") elif not user_has_the_repo: raise HTTPException( status_code=404, detail="Repository not found" ) else: return tag_in_repo_db def _get_all_tags_in_repo(repo_id: int, db: Session): """ Returns data for all tag's link data to a repository Args: repo_id (int): Repository ID db (Session): sqlAlchemy connection object Returns: sql_object: All tag relationships associated with the repository """ tags_in_repo = db.query(TagInRepoDB).filter( TagInRepoDB.repo_id == repo_id).all() tags = [] for tag in tags_in_repo: tag_data = _get_tag_by_id( tag_id=tag.tag_id, db=db) tag_info = { "id": tag_data.id, "name": tag_data.name } tags.append(tag_info) return tags def _remove_tag_in_repo(tag_in_repo_id: int, db: Session): """ Removes a tag's link to a repository Args: tag_in_repo_id (int): Relationship id between a tag and a repository db (Session): sqlAlchemy connection object """ db_tag_in_repo = db.query(TagInRepoDB).filter( TagInRepoDB.id == tag_in_repo_id).first() db.delete(db_tag_in_repo) db.commit()
[ 6738, 3049, 15042, 1330, 14626, 16922, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 23575, 198, 6738, 4755, 13, 27530, 13, 11487, 1330, 17467, 11012, 11, 17467, 818, 6207, 78, 11012, 11, 1432, 78, 11012, 198, 6738, 4755, 13, 27530, 13, 15952, 2611, 1330, 17467, 16447, 198, 6738, 4755, 13, 27530, 13, 15952, 2611, 1330, 17467, 818, 6207, 78, 16447, 628, 198, 4299, 4808, 17953, 62, 12985, 7, 9945, 25, 23575, 11, 7621, 62, 3672, 25, 965, 11, 2836, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 37227, 7921, 274, 257, 649, 7621, 287, 262, 6831, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 357, 36044, 2599, 44161, 2348, 26599, 4637, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 357, 24835, 16447, 2599, 10011, 2611, 329, 4441, 257, 7621, 287, 6831, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14626, 16922, 25, 46588, 11, 17467, 1438, 2314, 307, 6565, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 15252, 1058, 17467, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 7621, 62, 3672, 13, 36311, 3419, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 14626, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 8189, 28, 44361, 11, 3703, 2625, 24835, 1438, 2314, 307, 6565, 4943, 628, 220, 220, 220, 20613, 62, 12985, 796, 17467, 11012, 7, 3672, 28, 12985, 62, 3672, 11, 6284, 62, 312, 28, 7220, 62, 312, 8, 198, 220, 220, 220, 20613, 13, 2860, 7, 9945, 62, 12985, 8, 198, 220, 220, 220, 20613, 13, 41509, 3419, 198, 220, 220, 220, 20613, 13, 5420, 3447, 7, 9945, 62, 12985, 8, 198, 220, 220, 220, 1441, 20613, 62, 12985, 628, 198, 4299, 4808, 1136, 62, 12985, 62, 1525, 62, 3672, 7, 12985, 62, 3672, 25, 965, 11, 6284, 62, 312, 25, 493, 11, 20613, 25, 23575, 2599, 198, 220, 220, 220, 37227, 16409, 7621, 1366, 416, 6427, 262, 7621, 1438, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 3672, 357, 2536, 2599, 17467, 6530, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 312, 357, 600, 2599, 11787, 5121, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 357, 36044, 2599, 44161, 2348, 26599, 4637, 2134, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 15252, 1058, 17467, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 20613, 13, 22766, 7, 24835, 11012, 737, 24455, 7, 24835, 11012, 13, 3672, 6624, 7621, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17467, 11012, 13, 18439, 62, 312, 6624, 6284, 62, 312, 737, 11085, 3419, 628, 198, 4299, 4808, 1136, 62, 12985, 62, 1525, 62, 312, 7, 12985, 62, 312, 25, 493, 11, 20613, 25, 23575, 2599, 198, 220, 220, 220, 37227, 16409, 7621, 1366, 416, 6427, 262, 7621, 4686, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 312, 357, 600, 2599, 17467, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 357, 36044, 2599, 44161, 2348, 26599, 4637, 2134, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 15252, 1058, 17467, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 20613, 13, 22766, 7, 24835, 11012, 737, 24455, 7, 24835, 11012, 13, 312, 6624, 7621, 62, 312, 737, 11085, 3419, 628, 198, 4299, 4808, 1136, 62, 439, 62, 31499, 7, 9945, 25, 23575, 11, 6284, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 37227, 16409, 1366, 329, 477, 15940, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 357, 36044, 2599, 44161, 2348, 26599, 4637, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 312, 357, 600, 2599, 11787, 4686, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 15252, 1058, 1439, 15940, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 20613, 13, 22766, 7, 24835, 11012, 737, 24455, 7, 18439, 62, 312, 6624, 6284, 62, 312, 737, 439, 3419, 628, 198, 4299, 4808, 2860, 62, 12985, 62, 259, 62, 260, 7501, 7, 12985, 62, 259, 62, 260, 7501, 25, 17467, 818, 6207, 78, 16447, 11, 20613, 25, 23575, 2599, 198, 220, 220, 220, 37227, 34333, 257, 7621, 338, 2792, 284, 257, 16099, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 259, 62, 260, 7501, 357, 24835, 818, 6207, 78, 16447, 2599, 10011, 2611, 329, 4441, 257, 2776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1022, 257, 7621, 290, 257, 16099, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 357, 36044, 2599, 44161, 2348, 26599, 4637, 2134, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 15252, 25, 17467, 3917, 351, 262, 16099, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20613, 62, 12985, 62, 259, 62, 260, 7501, 796, 4808, 1136, 62, 12985, 62, 259, 62, 260, 7501, 7, 260, 7501, 62, 312, 28, 12985, 62, 259, 62, 260, 7501, 13, 260, 7501, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 312, 28, 12985, 62, 259, 62, 260, 7501, 13, 12985, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 28, 9945, 8, 198, 220, 220, 220, 611, 20613, 62, 12985, 62, 259, 62, 260, 7501, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 14626, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 8189, 28, 7029, 11, 3703, 2625, 24835, 318, 1541, 3917, 4943, 628, 220, 220, 220, 20613, 62, 12985, 62, 259, 62, 260, 7501, 796, 17467, 818, 6207, 78, 11012, 7, 260, 7501, 62, 312, 28, 12985, 62, 259, 62, 260, 7501, 13, 260, 7501, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 312, 28, 12985, 62, 259, 62, 260, 7501, 13, 12985, 62, 312, 8, 198, 220, 220, 220, 20613, 13, 2860, 7, 9945, 62, 12985, 62, 259, 62, 260, 7501, 8, 198, 220, 220, 220, 20613, 13, 41509, 3419, 198, 220, 220, 220, 20613, 13, 5420, 3447, 7, 9945, 62, 12985, 62, 259, 62, 260, 7501, 8, 198, 220, 220, 220, 1441, 20613, 62, 12985, 62, 259, 62, 260, 7501, 628, 198, 4299, 4808, 1136, 62, 12985, 62, 259, 62, 260, 7501, 7, 260, 7501, 62, 312, 25, 493, 11, 7621, 62, 312, 25, 493, 11, 20613, 25, 23575, 2599, 198, 220, 220, 220, 37227, 16409, 257, 7621, 338, 2792, 1366, 284, 257, 16099, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29924, 62, 312, 357, 600, 2599, 1432, 13264, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 312, 357, 600, 2599, 17467, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 357, 36044, 2599, 44161, 2348, 26599, 4637, 2134, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 15252, 25, 17467, 3917, 351, 262, 16099, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14626, 16922, 25, 32320, 11, 17467, 407, 1043, 198, 220, 220, 220, 220, 220, 220, 220, 14626, 16922, 25, 32320, 11, 1432, 13264, 407, 1043, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 15252, 25, 17467, 3917, 351, 262, 16099, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7621, 62, 259, 62, 260, 7501, 62, 9945, 796, 20613, 13, 22766, 7, 24835, 818, 6207, 78, 11012, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17467, 818, 6207, 78, 11012, 13, 260, 7501, 62, 312, 6624, 29924, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17467, 818, 6207, 78, 11012, 13, 12985, 62, 312, 6624, 7621, 62, 312, 737, 11085, 3419, 628, 220, 220, 220, 2836, 62, 10134, 62, 1169, 62, 12985, 796, 20613, 13, 22766, 7, 24835, 11012, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17467, 11012, 13, 312, 6624, 7621, 62, 312, 737, 11085, 3419, 198, 220, 220, 220, 2836, 62, 10134, 62, 1169, 62, 260, 7501, 796, 20613, 13, 22766, 7, 6207, 78, 11012, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1432, 78, 11012, 13, 312, 6624, 29924, 62, 312, 737, 11085, 3419, 628, 220, 220, 220, 611, 407, 2836, 62, 10134, 62, 1169, 62, 12985, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 14626, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 8189, 28, 26429, 11, 3703, 2625, 24835, 407, 1043, 4943, 198, 220, 220, 220, 1288, 361, 407, 2836, 62, 10134, 62, 1169, 62, 260, 7501, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 14626, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 8189, 28, 26429, 11, 3703, 2625, 6207, 13264, 407, 1043, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7621, 62, 259, 62, 260, 7501, 62, 9945, 628, 198, 4299, 4808, 1136, 62, 439, 62, 31499, 62, 259, 62, 260, 7501, 7, 260, 7501, 62, 312, 25, 493, 11, 20613, 25, 23575, 2599, 198, 220, 220, 220, 37227, 16409, 1366, 329, 477, 7621, 338, 2792, 1366, 284, 257, 16099, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29924, 62, 312, 357, 600, 2599, 1432, 13264, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 357, 36044, 2599, 44161, 2348, 26599, 4637, 2134, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 15252, 25, 1439, 7621, 6958, 3917, 351, 262, 16099, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15940, 62, 259, 62, 260, 7501, 796, 20613, 13, 22766, 7, 24835, 818, 6207, 78, 11012, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17467, 818, 6207, 78, 11012, 13, 260, 7501, 62, 312, 6624, 29924, 62, 312, 737, 439, 3419, 198, 220, 220, 220, 15940, 796, 17635, 198, 220, 220, 220, 329, 7621, 287, 15940, 62, 259, 62, 260, 7501, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 7890, 796, 4808, 1136, 62, 12985, 62, 1525, 62, 312, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 312, 28, 12985, 13, 12985, 62, 312, 11, 20613, 28, 9945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 10951, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 7621, 62, 7890, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 7621, 62, 7890, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 15940, 13, 33295, 7, 12985, 62, 10951, 8, 198, 220, 220, 220, 1441, 15940, 628, 198, 4299, 4808, 28956, 62, 12985, 62, 259, 62, 260, 7501, 7, 12985, 62, 259, 62, 260, 7501, 62, 312, 25, 493, 11, 20613, 25, 23575, 2599, 198, 220, 220, 220, 37227, 3982, 5241, 257, 7621, 338, 2792, 284, 257, 16099, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 259, 62, 260, 7501, 62, 312, 357, 600, 2599, 39771, 4686, 1022, 257, 7621, 290, 257, 16099, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 357, 36044, 2599, 44161, 2348, 26599, 4637, 2134, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20613, 62, 12985, 62, 259, 62, 260, 7501, 796, 20613, 13, 22766, 7, 24835, 818, 6207, 78, 11012, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17467, 818, 6207, 78, 11012, 13, 312, 6624, 7621, 62, 259, 62, 260, 7501, 62, 312, 737, 11085, 3419, 198, 220, 220, 220, 20613, 13, 33678, 7, 9945, 62, 12985, 62, 259, 62, 260, 7501, 8, 198, 220, 220, 220, 20613, 13, 41509, 3419, 198 ]
2.221815
2,182
from overtime.algorithms.centrality.betweenness import * from overtime.algorithms.centrality.closeness import * from overtime.algorithms.centrality.pagerank import * from overtime.algorithms.centrality.degree import *
[ 6738, 17820, 13, 282, 7727, 907, 13, 31463, 414, 13, 23395, 1108, 1330, 1635, 198, 6738, 17820, 13, 282, 7727, 907, 13, 31463, 414, 13, 565, 5233, 408, 1330, 1635, 198, 6738, 17820, 13, 282, 7727, 907, 13, 31463, 414, 13, 79, 3536, 962, 1330, 1635, 198, 6738, 17820, 13, 282, 7727, 907, 13, 31463, 414, 13, 16863, 1330, 1635, 198 ]
3.57377
61
#!/usr/bin/python # This sample code is for use with Dropbox desktop client # versions 1.2 and below. It is likely to be deprecated in all # other future releases. Use it at your own risk. # Read more at http://www.dropbox.com/developers/desktop_apps import base64 import os.path import platform if platform.system() == 'Windows': HOST_DB_PATH = os.path.expandvars(r'%APPDATA%\Dropbox\host.db') else: HOST_DB_PATH = os.path.expanduser(r'~/.dropbox/host.db') if __name__ == '__main__': print read_dropbox_location()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 220, 198, 2, 770, 6291, 2438, 318, 329, 779, 351, 38930, 11364, 5456, 198, 2, 6300, 352, 13, 17, 290, 2174, 13, 632, 318, 1884, 284, 307, 39224, 287, 477, 198, 2, 584, 2003, 10050, 13, 5765, 340, 379, 534, 898, 2526, 13, 198, 2, 4149, 517, 379, 2638, 1378, 2503, 13, 14781, 3524, 13, 785, 14, 16244, 364, 14, 41375, 62, 18211, 198, 220, 198, 11748, 2779, 2414, 198, 11748, 28686, 13, 6978, 198, 11748, 3859, 198, 220, 220, 198, 361, 3859, 13, 10057, 3419, 6624, 705, 11209, 10354, 198, 220, 220, 220, 367, 10892, 62, 11012, 62, 34219, 796, 28686, 13, 6978, 13, 11201, 392, 85, 945, 7, 81, 6, 4, 2969, 5760, 13563, 4, 59, 26932, 3524, 59, 4774, 13, 9945, 11537, 198, 17772, 25, 198, 220, 220, 220, 367, 10892, 62, 11012, 62, 34219, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7, 81, 6, 93, 11757, 14781, 3524, 14, 4774, 13, 9945, 11537, 198, 220, 220, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 1100, 62, 14781, 3524, 62, 24886, 3419 ]
2.791667
192
import io import os import posixpath import re from urllib import urlencode from seafileapi.utils import querystr, utf8lize,raise_does_not_exist ZERO_OBJ_ID = '0000000000000000000000000000000000000000' class _SeafDirentBase(object): """Base class for :class:`SeafFile` and :class:`SeafDir`. It provides implementation of their common operations. """ isdir = None def __init__(self, repo_id, path, object_id, size=0, client=None): """ :param:`path` the full path of this entry within its repo, like "/documents/example.md" :param:`size` The size of a file. It should be zero for a dir. """ self.client = client self.repo_id = repo_id self.path = path self.id = object_id self.size = size @property # @property # def path(self): # return self.path # # @property # def repo_id(self): # return self.repo_id def rename(self, newname): """Change file/folder name to newname """ suffix = 'dir' if self.isdir else 'file' url = '/api2/repos/%s/%s/' % (self.repo.id, suffix) + querystr(p=self.path, reloaddir='true') postdata = {'operation': 'rename', 'newname': newname} resp = self.client.post(url, data=postdata) succeeded = resp.status_code == 200 if succeeded: if self.isdir: new_dirent = self.repo.get_dir(os.path.join(os.path.dirname(self.path), newname)) else: new_dirent = self.repo.get_file(os.path.join(os.path.dirname(self.path), newname)) for key in self.__dict__.keys(): self.__dict__[key] = new_dirent.__dict__[key] return succeeded def copyTo(self, dst_dir, dst_repo_id=None): """Copy file/folder to other directory (also to a different repo) """ if dst_repo_id is None: dst_repo_id = self.repo.id dirent_type = 'dir' if self.isdir else 'file' resp = self._copy_move_task('copy', dirent_type, dst_dir, dst_repo_id) return resp.status_code == 200 def moveTo(self, dst_dir, dst_repo_id=None): """Move file/folder to other directory (also to a different repo) """ if dst_repo_id is None: dst_repo_id = self.repo.id dirent_type = 'dir' if self.isdir else 'file' resp = self._copy_move_task('move', dirent_type, dst_dir, dst_repo_id) succeeded = resp.status_code == 200 if succeeded: new_repo = self.client.repos.get_repo(dst_repo_id) dst_path = os.path.join(dst_dir, os.path.basename(self.path)) if self.isdir: new_dirent = new_repo.get_dir(dst_path) else: new_dirent = new_repo.get_file(dst_path) for key in self.__dict__.keys(): self.__dict__[key] = new_dirent.__dict__[key] return succeeded
[ 11748, 33245, 198, 11748, 28686, 198, 11748, 1426, 844, 6978, 198, 11748, 302, 198, 6738, 2956, 297, 571, 1330, 2956, 11925, 8189, 198, 6738, 25127, 576, 15042, 13, 26791, 1330, 12405, 2536, 11, 3384, 69, 23, 75, 1096, 11, 40225, 62, 22437, 62, 1662, 62, 38476, 198, 198, 57, 34812, 62, 9864, 41, 62, 2389, 796, 705, 25645, 25645, 8269, 6, 198, 198, 4871, 4808, 4653, 1878, 35, 557, 429, 14881, 7, 15252, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 1058, 4871, 25, 63, 4653, 1878, 8979, 63, 290, 1058, 4871, 25, 63, 4653, 1878, 35277, 44646, 628, 220, 220, 220, 632, 3769, 7822, 286, 511, 2219, 4560, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 318, 15908, 796, 6045, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 29924, 62, 312, 11, 3108, 11, 2134, 62, 312, 11, 2546, 28, 15, 11, 5456, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25, 63, 6978, 63, 262, 1336, 3108, 286, 428, 5726, 1626, 663, 29924, 11, 588, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 15390, 2886, 14, 20688, 13, 9132, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25, 63, 7857, 63, 383, 2546, 286, 257, 2393, 13, 632, 815, 307, 6632, 329, 257, 26672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16366, 796, 5456, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 7501, 62, 312, 796, 29924, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 796, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 796, 2134, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7857, 796, 2546, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 1303, 2488, 26745, 198, 220, 220, 220, 1303, 825, 3108, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 2116, 13, 6978, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 26745, 198, 220, 220, 220, 1303, 825, 29924, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 2116, 13, 260, 7501, 62, 312, 628, 628, 220, 220, 220, 825, 36265, 7, 944, 11, 649, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19400, 2393, 14, 43551, 1438, 284, 649, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 35488, 796, 705, 15908, 6, 611, 2116, 13, 9409, 343, 2073, 705, 7753, 6, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 31051, 15042, 17, 14, 260, 1930, 14, 4, 82, 14, 4, 82, 14, 6, 4064, 357, 944, 13, 260, 7501, 13, 312, 11, 35488, 8, 1343, 12405, 2536, 7, 79, 28, 944, 13, 6978, 11, 18126, 15908, 11639, 7942, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1281, 7890, 796, 1391, 6, 27184, 10354, 705, 918, 480, 3256, 705, 3605, 3672, 10354, 649, 3672, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13, 16366, 13, 7353, 7, 6371, 11, 1366, 28, 7353, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14131, 796, 1217, 13, 13376, 62, 8189, 6624, 939, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14131, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9409, 343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 557, 429, 796, 2116, 13, 260, 7501, 13, 1136, 62, 15908, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 944, 13, 6978, 828, 649, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 557, 429, 796, 2116, 13, 260, 7501, 13, 1136, 62, 7753, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 944, 13, 6978, 828, 649, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 834, 11600, 834, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11600, 834, 58, 2539, 60, 796, 649, 62, 67, 557, 429, 13, 834, 11600, 834, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 14131, 628, 220, 220, 220, 825, 4866, 2514, 7, 944, 11, 29636, 62, 15908, 11, 29636, 62, 260, 7501, 62, 312, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29881, 2393, 14, 43551, 284, 584, 8619, 357, 14508, 284, 257, 1180, 29924, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29636, 62, 260, 7501, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29636, 62, 260, 7501, 62, 312, 796, 2116, 13, 260, 7501, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 19958, 429, 62, 4906, 796, 705, 15908, 6, 611, 2116, 13, 9409, 343, 2073, 705, 7753, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13557, 30073, 62, 21084, 62, 35943, 10786, 30073, 3256, 19958, 429, 62, 4906, 11, 29636, 62, 15908, 11, 29636, 62, 260, 7501, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1217, 13, 13376, 62, 8189, 6624, 939, 628, 220, 220, 220, 825, 1445, 2514, 7, 944, 11, 29636, 62, 15908, 11, 29636, 62, 260, 7501, 62, 312, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 21774, 2393, 14, 43551, 284, 584, 8619, 357, 14508, 284, 257, 1180, 29924, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29636, 62, 260, 7501, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29636, 62, 260, 7501, 62, 312, 796, 2116, 13, 260, 7501, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 19958, 429, 62, 4906, 796, 705, 15908, 6, 611, 2116, 13, 9409, 343, 2073, 705, 7753, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13557, 30073, 62, 21084, 62, 35943, 10786, 21084, 3256, 19958, 429, 62, 4906, 11, 29636, 62, 15908, 11, 29636, 62, 260, 7501, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14131, 796, 1217, 13, 13376, 62, 8189, 6624, 939, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14131, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 260, 7501, 796, 2116, 13, 16366, 13, 260, 1930, 13, 1136, 62, 260, 7501, 7, 67, 301, 62, 260, 7501, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29636, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 67, 301, 62, 15908, 11, 28686, 13, 6978, 13, 12093, 12453, 7, 944, 13, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9409, 343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 557, 429, 796, 649, 62, 260, 7501, 13, 1136, 62, 15908, 7, 67, 301, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 557, 429, 796, 649, 62, 260, 7501, 13, 1136, 62, 7753, 7, 67, 301, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 834, 11600, 834, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11600, 834, 58, 2539, 60, 796, 649, 62, 67, 557, 429, 13, 834, 11600, 834, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 14131, 628, 628 ]
2.113395
1,411
import pandas as p#导入目前所需要的库并给与简称 data_train = '../homework/train.csv' #查看基本数据 data_train = p.read_csv(data_train)#导入训练模型 print(data_train.info())#查看数据类型 print(data_train.describe())#粗略查看基本数据 ###导入并且查看原始数据 import matplotlib.pyplot as pt import numpy as n pt.rcParams['font.sans-serif']=['Simhei'] #解决中文为方块的问题 pt.rcParams['axes.unicode_minus'] = False #解决图像是负号显示为方块的问题 fig = pt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 pt.subplot2grid((2,3),(0,0)) # 在一张大图里分一些小图并设定位置 data_train.Survived.value_counts().plot(kind='bar') #以生存总数为标准 设置图标种类为柱状图 pt.title("生存 (1 Survived)") pt.ylabel("生存人数") pt.subplot2grid((2,3),(0,1)) data_train.Pclass.value_counts().plot(kind="bar") pt.ylabel("总人数") pt.title("仓位") pt.subplot2grid((2,3),(0,2)) pt.scatter(data_train.Survived, data_train.Age) pt.ylabel("年龄") pt.grid(b=True, which='major', axis='y') pt.title("年龄 (1 Survived)") pt.subplot2grid((2,3),(1,0), colspan=2) data_train.Age[data_train.Pclass == 1].plot(kind='kde') data_train.Age[data_train.Pclass == 2].plot(kind='kde') data_train.Age[data_train.Pclass == 3].plot(kind='kde') pt.xlabel("年龄") pt.ylabel("密度") pt.title("各等级的乘客年龄分布") pt.legend(('头等舱', '2等舱','3等舱'),loc='best') # 设置图例 pt.subplot2grid((2,3),(1,2)) data_train.Embarked.value_counts().plot(kind='bar') pt.title("各登船口岸上船人数") pt.ylabel("人数") pt.show() #粗略的以数据可视化的形式更直观的查看原始数据 fig = pt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts()#将未生存总数0存入value并与仓位对应 print(Survived_0) Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts() df=p.DataFrame({'生存':Survived_1, '未生存':Survived_0}) df.plot(kind='bar', stacked=False) pt.title("仓位与生存率是否相关") pt.xlabel("仓位") pt.ylabel("总人数") pt.show() #设立假设 仓位 也就是阶级 与生存率有关与否 fig = pt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts() Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts() df=p.DataFrame({'男性':Survived_m, '女性':Survived_f}) df.plot(kind='bar', stacked=False) pt.title("性别与生存率是否相关") pt.xlabel("性别") pt.ylabel("总人数") pt.show() #设立假设 性别与生存率是否相关 fig = pt.figure() fig.set(alpha=0.2) # 设定图表颜色alpha参数 Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts() Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts() df=p.DataFrame({'生存':Survived_1, '未幸存':Survived_0}) df.plot(kind='bar', stacked=False) pt.title("假设登船港口与生存率是否有关") pt.xlabel("港口") pt.ylabel("总人数") pt.show() #假设登船港口与生存率是否有关 g = data_train.groupby(['SibSp','Survived']) df = p.DataFrame(g.count()['PassengerId']) print(df) g = data_train.groupby(['Parch','Survived']) df = p.DataFrame(g.count()['PassengerId']) print(df) #判断是否有兄弟姐妹在船上以及是否有父母子女在船上与生存率是否有关 ###设立假设 进行数据分析 ### 处理空值年龄 from sklearn.ensemble import RandomForestRegressor #从sklearn库中导入随机森林 ### 使用 RandomForest 填补缺失的年龄属性 data_train, rfr = set_missing_ages(data_train)#将预测值存入训练样本中以供使用 data_train = set_Cabin_type(data_train)#将Yes及No存入训练样本中以供使用 data_train.info()#再次查看整理过的数据 ### 处理空值港口 data_train = set_Embarked_type(data_train) data_train.Embarked = data_train.Embarked.fillna(0) data_train.Embarked = list(map(int,data_train.Embarked)) print(data_train.Embarked.mean()) data_train = set_Embarked_type(data_train) ### 使用随机森林处理票价为0的值 data_train, rfr = set_missing_fare(data_train) print(data_train.Fare.describe()) ###数据处理 ### 使用算法开始建模 这里使用逻辑回归 data_train.Pclass = data_train.Pclass.astype('object') cate =p.get_dummies(data_train[['Cabin','Sex','Embarked','Pclass']]) data_new = data_train[['Survived','Age','SibSp','Parch','Fare']].join(cate) #数据的转储以及整理 from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(data_new.iloc[:,1:], data_new.Survived, test_size = 0.2, random_state=34) lr = LogisticRegression() lr.fit(x_train,y_train)#用数据X,y来训练模型 pred = lr.predict(x_test) from sklearn.metrics import classification_report, accuracy_score print(classification_report(y_test,pred))#预测准确率 print(accuracy_score(y_test,pred))#分类准确率分数 #尝试使用不同算法 这里使用决策树 from sklearn.tree import * dt = DecisionTreeClassifier(random_state=99,splitter='best', presort=True) dt.fit(x_train,y_train) pred = dt.predict(x_test) from sklearn.metrics import classification_report, accuracy_score print(classification_report(y_test,pred)) print(accuracy_score(y_test,pred)) ####模型构建 data_test = p.read_csv('../homework/test.csv')#导入测试样本 data_test = set_missing_ages(data_test, rfr) data_test = set_Cabin_type(data_test) data_test.Pclass = data_test.Pclass.astype('object') cate_test =p.get_dummies(data_test[['Cabin','Sex','Embarked','Pclass']]) data_test_new = data_test[['PassengerId','Age','SibSp','Parch','Fare']].join(cate_test) final = dt.predict(data_test_new.fillna(0)) final_1=data_test[['PassengerId','Age']] final_1['Survived'] = final final = final_1[['PassengerId','Survived']] final.to_csv('C:/Users/yang/Desktop/code/python/homework/6.csv') print(final.describe()) print(data_test_new) ### 使用训练好的模型进行预测
[ 201, 198, 11748, 19798, 292, 355, 279, 2, 43380, 120, 17739, 98, 33566, 106, 30298, 235, 33699, 222, 165, 250, 222, 17358, 223, 21410, 41753, 241, 33176, 114, 163, 119, 247, 10310, 236, 163, 106, 222, 163, 100, 108, 201, 198, 7890, 62, 27432, 796, 705, 40720, 26452, 6433, 14, 27432, 13, 40664, 6, 1303, 162, 253, 98, 40367, 233, 161, 253, 118, 17312, 105, 46763, 108, 162, 235, 106, 201, 198, 7890, 62, 27432, 796, 279, 13, 961, 62, 40664, 7, 7890, 62, 27432, 8, 2, 43380, 120, 17739, 98, 164, 106, 255, 163, 119, 225, 162, 101, 94, 161, 252, 233, 201, 198, 4798, 7, 7890, 62, 27432, 13, 10951, 28955, 2, 162, 253, 98, 40367, 233, 46763, 108, 162, 235, 106, 163, 109, 119, 161, 252, 233, 201, 198, 4798, 7, 7890, 62, 27432, 13, 20147, 4892, 28955, 2, 163, 110, 245, 45911, 98, 162, 253, 98, 40367, 233, 161, 253, 118, 17312, 105, 46763, 108, 162, 235, 106, 201, 198, 201, 198, 201, 198, 21017, 43380, 120, 17739, 98, 33176, 114, 10310, 242, 162, 253, 98, 40367, 233, 43889, 253, 34650, 233, 46763, 108, 162, 235, 106, 201, 198, 201, 198, 201, 198, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 42975, 201, 198, 11748, 299, 32152, 355, 299, 201, 198, 457, 13, 6015, 10044, 4105, 17816, 10331, 13, 82, 504, 12, 2655, 361, 20520, 28, 17816, 8890, 27392, 20520, 1303, 164, 100, 96, 37863, 111, 40792, 23877, 229, 10310, 118, 43095, 161, 251, 245, 21410, 29785, 106, 165, 95, 246, 201, 198, 457, 13, 6015, 10044, 4105, 17816, 897, 274, 13, 46903, 1098, 62, 40191, 20520, 796, 10352, 1303, 164, 100, 96, 37863, 111, 32368, 122, 161, 225, 237, 42468, 164, 112, 253, 20998, 115, 23626, 122, 163, 97, 118, 10310, 118, 43095, 161, 251, 245, 21410, 29785, 106, 165, 95, 246, 201, 198, 5647, 796, 42975, 13, 26875, 3419, 201, 198, 5647, 13, 2617, 7, 26591, 28, 15, 13, 17, 8, 220, 1303, 5525, 106, 122, 22522, 248, 32368, 122, 26193, 101, 165, 95, 250, 164, 231, 110, 26591, 20998, 224, 46763, 108, 201, 198, 201, 198, 457, 13, 7266, 29487, 17, 25928, 19510, 17, 11, 18, 828, 7, 15, 11, 15, 4008, 220, 1303, 10263, 250, 101, 31660, 28156, 254, 32014, 32368, 122, 34932, 234, 26344, 228, 31660, 12859, 249, 22887, 237, 32368, 122, 33176, 114, 164, 106, 122, 22522, 248, 19526, 235, 163, 121, 106, 201, 198, 7890, 62, 27432, 13, 34652, 1572, 13, 8367, 62, 9127, 82, 22446, 29487, 7, 11031, 11639, 5657, 11537, 1303, 20015, 98, 37955, 27764, 246, 45250, 119, 46763, 108, 10310, 118, 43718, 229, 49035, 228, 5525, 106, 122, 163, 121, 106, 32368, 122, 43718, 229, 163, 100, 235, 163, 109, 119, 10310, 118, 162, 253, 109, 163, 232, 114, 32368, 122, 201, 198, 457, 13, 7839, 7203, 37955, 27764, 246, 357, 16, 10954, 1572, 8, 4943, 220, 201, 198, 457, 13, 2645, 9608, 7203, 37955, 27764, 246, 21689, 46763, 108, 4943, 220, 220, 201, 198, 220, 201, 198, 457, 13, 7266, 29487, 17, 25928, 19510, 17, 11, 18, 828, 7, 15, 11, 16, 4008, 201, 198, 7890, 62, 27432, 13, 47, 4871, 13, 8367, 62, 9127, 82, 22446, 29487, 7, 11031, 2625, 5657, 4943, 201, 198, 457, 13, 2645, 9608, 7203, 45250, 119, 21689, 46763, 108, 4943, 201, 198, 457, 13, 7839, 7203, 20015, 241, 19526, 235, 4943, 201, 198, 220, 201, 198, 457, 13, 7266, 29487, 17, 25928, 19510, 17, 11, 18, 828, 7, 15, 11, 17, 4008, 201, 198, 457, 13, 1416, 1436, 7, 7890, 62, 27432, 13, 34652, 1572, 11, 1366, 62, 27432, 13, 23396, 8, 201, 198, 457, 13, 2645, 9608, 7203, 33176, 112, 11737, 226, 4943, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 457, 13, 25928, 7, 65, 28, 17821, 11, 543, 11639, 22478, 3256, 16488, 11639, 88, 11537, 220, 201, 198, 457, 13, 7839, 7203, 33176, 112, 11737, 226, 357, 16, 10954, 1572, 8, 4943, 201, 198, 201, 198, 220, 201, 198, 457, 13, 7266, 29487, 17, 25928, 19510, 17, 11, 18, 828, 7, 16, 11, 15, 828, 951, 12626, 28, 17, 8, 201, 198, 7890, 62, 27432, 13, 23396, 58, 7890, 62, 27432, 13, 47, 4871, 6624, 352, 4083, 29487, 7, 11031, 11639, 74, 2934, 11537, 220, 220, 220, 201, 198, 7890, 62, 27432, 13, 23396, 58, 7890, 62, 27432, 13, 47, 4871, 6624, 362, 4083, 29487, 7, 11031, 11639, 74, 2934, 11537, 201, 198, 7890, 62, 27432, 13, 23396, 58, 7890, 62, 27432, 13, 47, 4871, 6624, 513, 4083, 29487, 7, 11031, 11639, 74, 2934, 11537, 201, 198, 457, 13, 87, 18242, 7203, 33176, 112, 11737, 226, 4943, 201, 198, 457, 13, 2645, 9608, 7203, 43380, 228, 41753, 99, 4943, 220, 201, 198, 457, 13, 7839, 7203, 28938, 226, 163, 255, 231, 163, 118, 100, 21410, 20046, 246, 22522, 95, 33176, 112, 11737, 226, 26344, 228, 30585, 225, 4943, 201, 198, 201, 198, 457, 13, 1455, 437, 7, 10786, 13783, 112, 163, 255, 231, 48958, 109, 3256, 705, 17, 163, 255, 231, 48958, 109, 41707, 18, 163, 255, 231, 48958, 109, 33809, 17946, 11639, 13466, 11537, 1303, 5525, 106, 122, 163, 121, 106, 32368, 122, 160, 122, 233, 201, 198, 457, 13, 7266, 29487, 17, 25928, 19510, 17, 11, 18, 828, 7, 16, 11, 17, 4008, 201, 198, 7890, 62, 27432, 13, 31567, 668, 276, 13, 8367, 62, 9127, 82, 22446, 29487, 7, 11031, 11639, 5657, 11537, 201, 198, 457, 13, 7839, 7203, 28938, 226, 163, 247, 119, 48958, 117, 20998, 96, 161, 110, 116, 41468, 48958, 117, 21689, 46763, 108, 4943, 201, 198, 457, 13, 2645, 9608, 7203, 21689, 46763, 108, 4943, 220, 220, 201, 198, 457, 13, 12860, 3419, 201, 198, 2, 163, 110, 245, 45911, 98, 21410, 20015, 98, 46763, 108, 162, 235, 106, 20998, 107, 164, 100, 228, 44293, 244, 21410, 37605, 95, 28156, 237, 162, 249, 112, 33566, 112, 164, 100, 224, 21410, 162, 253, 98, 40367, 233, 43889, 253, 34650, 233, 46763, 108, 162, 235, 106, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 5647, 796, 42975, 13, 26875, 3419, 201, 198, 5647, 13, 2617, 7, 26591, 28, 15, 13, 17, 8, 220, 1303, 5525, 106, 122, 22522, 248, 32368, 122, 26193, 101, 165, 95, 250, 164, 231, 110, 26591, 20998, 224, 46763, 108, 201, 198, 201, 198, 34652, 1572, 62, 15, 796, 1366, 62, 27432, 13, 47, 4871, 58, 7890, 62, 27432, 13, 34652, 1572, 6624, 657, 4083, 8367, 62, 9127, 82, 3419, 2, 49546, 17312, 103, 37955, 27764, 246, 45250, 119, 46763, 108, 15, 27764, 246, 17739, 98, 8367, 33176, 114, 10310, 236, 20015, 241, 19526, 235, 43380, 117, 41753, 242, 201, 198, 4798, 7, 34652, 1572, 62, 15, 8, 201, 198, 34652, 1572, 62, 16, 796, 1366, 62, 27432, 13, 47, 4871, 58, 7890, 62, 27432, 13, 34652, 1572, 6624, 352, 4083, 8367, 62, 9127, 82, 3419, 201, 198, 7568, 28, 79, 13, 6601, 19778, 15090, 6, 37955, 27764, 246, 10354, 34652, 1572, 62, 16, 11, 705, 17312, 103, 37955, 27764, 246, 10354, 34652, 1572, 62, 15, 30072, 201, 198, 7568, 13, 29487, 7, 11031, 11639, 5657, 3256, 24167, 28, 25101, 8, 201, 198, 457, 13, 7839, 7203, 20015, 241, 19526, 235, 10310, 236, 37955, 27764, 246, 163, 236, 229, 42468, 28938, 99, 33566, 116, 17739, 111, 4943, 201, 198, 457, 13, 87, 18242, 7203, 20015, 241, 19526, 235, 4943, 220, 201, 198, 457, 13, 2645, 9608, 7203, 45250, 119, 21689, 46763, 108, 4943, 220, 201, 198, 457, 13, 12860, 3419, 201, 198, 2, 164, 106, 122, 44165, 233, 161, 223, 229, 164, 106, 122, 220, 20015, 241, 19526, 235, 220, 20046, 253, 22887, 109, 42468, 165, 246, 114, 163, 118, 100, 220, 10310, 236, 37955, 27764, 246, 163, 236, 229, 17312, 231, 17739, 111, 10310, 236, 28938, 99, 201, 198, 201, 198, 5647, 796, 42975, 13, 26875, 3419, 201, 198, 5647, 13, 2617, 7, 26591, 28, 15, 13, 17, 8, 220, 1303, 5525, 106, 122, 22522, 248, 32368, 122, 26193, 101, 165, 95, 250, 164, 231, 110, 26591, 20998, 224, 46763, 108, 201, 198, 34652, 1572, 62, 76, 796, 1366, 62, 27432, 13, 34652, 1572, 58, 7890, 62, 27432, 13, 23398, 6624, 705, 22606, 6, 4083, 8367, 62, 9127, 82, 3419, 201, 198, 34652, 1572, 62, 69, 796, 1366, 62, 27432, 13, 34652, 1572, 58, 7890, 62, 27432, 13, 23398, 6624, 705, 24724, 6, 4083, 8367, 62, 9127, 82, 3419, 201, 198, 7568, 28, 79, 13, 6601, 19778, 15090, 6, 18796, 115, 45250, 100, 10354, 34652, 1572, 62, 76, 11, 705, 42637, 45250, 100, 10354, 34652, 1572, 62, 69, 30072, 201, 198, 7568, 13, 29487, 7, 11031, 11639, 5657, 3256, 24167, 28, 25101, 8, 201, 198, 457, 13, 7839, 7203, 45250, 100, 26344, 104, 10310, 236, 37955, 27764, 246, 163, 236, 229, 42468, 28938, 99, 33566, 116, 17739, 111, 4943, 201, 198, 457, 13, 87, 18242, 7203, 45250, 100, 26344, 104, 4943, 220, 201, 198, 457, 13, 2645, 9608, 7203, 45250, 119, 21689, 46763, 108, 4943, 201, 198, 457, 13, 12860, 3419, 201, 198, 2, 164, 106, 122, 44165, 233, 161, 223, 229, 164, 106, 122, 10545, 222, 100, 26344, 104, 10310, 236, 37955, 27764, 246, 163, 236, 229, 42468, 28938, 99, 33566, 116, 17739, 111, 201, 198, 201, 198, 5647, 796, 42975, 13, 26875, 3419, 201, 198, 5647, 13, 2617, 7, 26591, 28, 15, 13, 17, 8, 220, 1303, 5525, 106, 122, 22522, 248, 32368, 122, 26193, 101, 165, 95, 250, 164, 231, 110, 26591, 20998, 224, 46763, 108, 220, 201, 198, 34652, 1572, 62, 15, 796, 1366, 62, 27432, 13, 31567, 668, 276, 58, 7890, 62, 27432, 13, 34652, 1572, 6624, 657, 4083, 8367, 62, 9127, 82, 3419, 201, 198, 34652, 1572, 62, 16, 796, 1366, 62, 27432, 13, 31567, 668, 276, 58, 7890, 62, 27432, 13, 34652, 1572, 6624, 352, 4083, 8367, 62, 9127, 82, 3419, 201, 198, 7568, 28, 79, 13, 6601, 19778, 15090, 6, 37955, 27764, 246, 10354, 34652, 1572, 62, 16, 11, 705, 17312, 103, 33176, 116, 27764, 246, 10354, 34652, 1572, 62, 15, 30072, 201, 198, 7568, 13, 29487, 7, 11031, 11639, 5657, 3256, 24167, 28, 25101, 8, 201, 198, 457, 13, 7839, 7203, 161, 223, 229, 164, 106, 122, 163, 247, 119, 48958, 117, 162, 116, 107, 20998, 96, 10310, 236, 37955, 27764, 246, 163, 236, 229, 42468, 28938, 99, 17312, 231, 17739, 111, 4943, 201, 198, 457, 13, 87, 18242, 7203, 162, 116, 107, 20998, 96, 4943, 220, 201, 198, 457, 13, 2645, 9608, 7203, 45250, 119, 21689, 46763, 108, 4943, 220, 220, 201, 198, 457, 13, 12860, 3419, 201, 198, 2, 161, 223, 229, 164, 106, 122, 163, 247, 119, 48958, 117, 162, 116, 107, 20998, 96, 10310, 236, 37955, 27764, 246, 163, 236, 229, 42468, 28938, 99, 17312, 231, 17739, 111, 201, 198, 201, 198, 70, 796, 1366, 62, 27432, 13, 8094, 1525, 7, 17816, 50, 571, 4561, 41707, 34652, 1572, 6, 12962, 201, 198, 7568, 796, 279, 13, 6601, 19778, 7, 70, 13, 9127, 3419, 17816, 14478, 6540, 7390, 6, 12962, 201, 198, 4798, 7, 7568, 8, 201, 198, 220, 201, 198, 70, 796, 1366, 62, 27432, 13, 8094, 1525, 7, 17816, 47, 998, 41707, 34652, 1572, 6, 12962, 201, 198, 7568, 796, 279, 13, 6601, 19778, 7, 70, 13, 9127, 3419, 17816, 14478, 6540, 7390, 6, 12962, 201, 198, 4798, 7, 7568, 8, 201, 198, 2, 26344, 97, 23877, 255, 42468, 28938, 99, 17312, 231, 17739, 226, 28156, 253, 34650, 238, 36685, 117, 28839, 101, 48958, 117, 41468, 20015, 98, 20998, 232, 42468, 28938, 99, 17312, 231, 163, 230, 35050, 107, 235, 36310, 42637, 28839, 101, 48958, 117, 41468, 10310, 236, 37955, 27764, 246, 163, 236, 229, 42468, 28938, 99, 17312, 231, 17739, 111, 201, 198, 201, 198, 21017, 164, 106, 122, 44165, 233, 161, 223, 229, 164, 106, 122, 5525, 123, 249, 26193, 234, 46763, 108, 162, 235, 106, 26344, 228, 162, 252, 238, 201, 198, 201, 198, 201, 198, 21017, 36469, 226, 49426, 228, 163, 102, 118, 161, 222, 120, 33176, 112, 11737, 226, 201, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 8081, 44292, 1303, 20015, 236, 8135, 35720, 41753, 241, 40792, 43380, 120, 17739, 98, 49694, 237, 17312, 118, 162, 96, 106, 162, 252, 245, 201, 198, 220, 201, 198, 21017, 220, 45635, 18796, 101, 14534, 34605, 10263, 94, 104, 26193, 98, 163, 120, 118, 13783, 109, 21410, 33176, 112, 11737, 226, 161, 109, 252, 45250, 100, 201, 198, 201, 198, 220, 201, 198, 7890, 62, 27432, 11, 374, 8310, 796, 900, 62, 45688, 62, 1095, 7, 7890, 62, 27432, 8, 2, 49546, 165, 95, 226, 38184, 233, 161, 222, 120, 27764, 246, 17739, 98, 164, 106, 255, 163, 119, 225, 43718, 115, 17312, 105, 40792, 20015, 98, 160, 122, 249, 45635, 18796, 101, 201, 198, 7890, 62, 27432, 796, 900, 62, 34, 6014, 62, 4906, 7, 7890, 62, 27432, 8, 2, 49546, 5297, 20998, 232, 2949, 27764, 246, 17739, 98, 164, 106, 255, 163, 119, 225, 43718, 115, 17312, 105, 40792, 20015, 98, 160, 122, 249, 45635, 18796, 101, 201, 198, 201, 198, 7890, 62, 27432, 13, 10951, 3419, 2, 37863, 235, 162, 105, 94, 162, 253, 98, 40367, 233, 46763, 112, 49426, 228, 32573, 229, 21410, 46763, 108, 162, 235, 106, 201, 198, 201, 198, 21017, 36469, 226, 49426, 228, 163, 102, 118, 161, 222, 120, 162, 116, 107, 20998, 96, 201, 198, 201, 198, 7890, 62, 27432, 796, 900, 62, 31567, 668, 276, 62, 4906, 7, 7890, 62, 27432, 8, 201, 198, 201, 198, 7890, 62, 27432, 13, 31567, 668, 276, 796, 1366, 62, 27432, 13, 31567, 668, 276, 13, 20797, 2616, 7, 15, 8, 201, 198, 201, 198, 7890, 62, 27432, 13, 31567, 668, 276, 796, 1351, 7, 8899, 7, 600, 11, 7890, 62, 27432, 13, 31567, 668, 276, 4008, 201, 198, 201, 198, 4798, 7, 7890, 62, 27432, 13, 31567, 668, 276, 13, 32604, 28955, 201, 198, 7890, 62, 27432, 796, 900, 62, 31567, 668, 276, 62, 4906, 7, 7890, 62, 27432, 8, 201, 198, 201, 198, 21017, 220, 45635, 18796, 101, 49694, 237, 17312, 118, 162, 96, 106, 162, 252, 245, 13783, 226, 49426, 228, 163, 98, 101, 20015, 115, 10310, 118, 15, 21410, 161, 222, 120, 201, 198, 201, 198, 7890, 62, 27432, 11, 374, 8310, 796, 900, 62, 45688, 62, 9496, 7, 7890, 62, 27432, 8, 201, 198, 4798, 7, 7890, 62, 27432, 13, 37, 533, 13, 20147, 4892, 28955, 201, 198, 201, 198, 201, 198, 21017, 46763, 108, 162, 235, 106, 13783, 226, 49426, 228, 201, 198, 201, 198, 201, 198, 21017, 220, 45635, 18796, 101, 163, 106, 245, 37345, 243, 28156, 222, 34650, 233, 161, 119, 118, 162, 101, 94, 5525, 123, 247, 34932, 234, 45635, 18796, 101, 34460, 119, 164, 122, 239, 32368, 252, 37605, 240, 201, 198, 7890, 62, 27432, 13, 47, 4871, 796, 1366, 62, 27432, 13, 47, 4871, 13, 459, 2981, 10786, 15252, 11537, 201, 198, 66, 378, 796, 79, 13, 1136, 62, 67, 39578, 7, 7890, 62, 27432, 58, 17816, 34, 6014, 41707, 23398, 41707, 31567, 668, 276, 41707, 47, 4871, 6, 11907, 8, 201, 198, 7890, 62, 3605, 796, 1366, 62, 27432, 58, 17816, 34652, 1572, 41707, 23396, 41707, 50, 571, 4561, 41707, 47, 998, 41707, 37, 533, 20520, 4083, 22179, 7, 66, 378, 8, 1303, 46763, 108, 162, 235, 106, 21410, 164, 121, 105, 43636, 101, 20015, 98, 20998, 232, 46763, 112, 49426, 228, 201, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 201, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 201, 198, 87, 62, 27432, 11, 2124, 62, 9288, 11, 331, 62, 27432, 11, 331, 62, 9288, 796, 4512, 62, 9288, 62, 35312, 7, 7890, 62, 3605, 13, 346, 420, 58, 45299, 16, 25, 4357, 1366, 62, 3605, 13, 34652, 1572, 11, 1332, 62, 7857, 796, 657, 13, 17, 11, 4738, 62, 5219, 28, 2682, 8, 201, 198, 14050, 796, 5972, 2569, 8081, 2234, 3419, 201, 198, 14050, 13, 11147, 7, 87, 62, 27432, 11, 88, 62, 27432, 8, 2, 18796, 101, 46763, 108, 162, 235, 106, 55, 171, 120, 234, 88, 30266, 98, 164, 106, 255, 163, 119, 225, 162, 101, 94, 161, 252, 233, 201, 198, 28764, 796, 300, 81, 13, 79, 17407, 7, 87, 62, 9288, 8, 201, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 17923, 62, 13116, 11, 9922, 62, 26675, 201, 198, 4798, 7, 4871, 2649, 62, 13116, 7, 88, 62, 9288, 11, 28764, 4008, 2, 165, 95, 226, 38184, 233, 49035, 228, 163, 94, 106, 163, 236, 229, 201, 198, 4798, 7, 4134, 23843, 62, 26675, 7, 88, 62, 9288, 11, 28764, 4008, 2, 26344, 228, 163, 109, 119, 49035, 228, 163, 94, 106, 163, 236, 229, 26344, 228, 46763, 108, 201, 198, 201, 198, 2, 22887, 251, 46237, 243, 45635, 18796, 101, 38834, 28938, 234, 163, 106, 245, 37345, 243, 5525, 123, 247, 34932, 234, 45635, 18796, 101, 37863, 111, 163, 255, 244, 43718, 239, 201, 198, 6738, 1341, 35720, 13, 21048, 1330, 1635, 201, 198, 28664, 796, 26423, 27660, 9487, 7483, 7, 25120, 62, 5219, 28, 2079, 11, 22018, 1967, 11639, 13466, 3256, 906, 419, 28, 17821, 8, 201, 198, 28664, 13, 11147, 7, 87, 62, 27432, 11, 88, 62, 27432, 8, 201, 198, 28764, 796, 288, 83, 13, 79, 17407, 7, 87, 62, 9288, 8, 201, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 17923, 62, 13116, 11, 9922, 62, 26675, 201, 198, 4798, 7, 4871, 2649, 62, 13116, 7, 88, 62, 9288, 11, 28764, 4008, 201, 198, 4798, 7, 4134, 23843, 62, 26675, 7, 88, 62, 9288, 11, 28764, 4008, 201, 198, 201, 198, 4242, 162, 101, 94, 161, 252, 233, 162, 252, 226, 161, 119, 118, 201, 198, 201, 198, 201, 198, 7890, 62, 9288, 796, 279, 13, 961, 62, 40664, 10786, 40720, 26452, 6433, 14, 9288, 13, 40664, 11537, 2, 43380, 120, 17739, 98, 38184, 233, 46237, 243, 43718, 115, 17312, 105, 201, 198, 201, 198, 7890, 62, 9288, 796, 900, 62, 45688, 62, 1095, 7, 7890, 62, 9288, 11, 374, 8310, 8, 201, 198, 7890, 62, 9288, 796, 900, 62, 34, 6014, 62, 4906, 7, 7890, 62, 9288, 8, 201, 198, 7890, 62, 9288, 13, 47, 4871, 796, 1366, 62, 9288, 13, 47, 4871, 13, 459, 2981, 10786, 15252, 11537, 201, 198, 66, 378, 62, 9288, 796, 79, 13, 1136, 62, 67, 39578, 7, 7890, 62, 9288, 58, 17816, 34, 6014, 41707, 23398, 41707, 31567, 668, 276, 41707, 47, 4871, 6, 11907, 8, 201, 198, 7890, 62, 9288, 62, 3605, 796, 1366, 62, 9288, 58, 17816, 14478, 6540, 7390, 41707, 23396, 41707, 50, 571, 4561, 41707, 47, 998, 41707, 37, 533, 20520, 4083, 22179, 7, 66, 378, 62, 9288, 8, 201, 198, 201, 198, 201, 198, 20311, 796, 288, 83, 13, 79, 17407, 7, 7890, 62, 9288, 62, 3605, 13, 20797, 2616, 7, 15, 4008, 201, 198, 20311, 62, 16, 28, 7890, 62, 9288, 58, 17816, 14478, 6540, 7390, 41707, 23396, 6, 11907, 201, 198, 20311, 62, 16, 17816, 34652, 1572, 20520, 796, 2457, 201, 198, 20311, 796, 2457, 62, 16, 58, 17816, 14478, 6540, 7390, 41707, 34652, 1572, 6, 11907, 201, 198, 20311, 13, 1462, 62, 40664, 10786, 34, 14079, 14490, 14, 17859, 14, 36881, 14, 8189, 14, 29412, 14, 26452, 6433, 14, 21, 13, 40664, 11537, 201, 198, 201, 198, 4798, 7, 20311, 13, 20147, 4892, 28955, 201, 198, 4798, 7, 7890, 62, 9288, 62, 3605, 8, 201, 198, 201, 198, 21017, 220, 45635, 18796, 101, 164, 106, 255, 163, 119, 225, 25001, 121, 21410, 162, 101, 94, 161, 252, 233, 32573, 249, 26193, 234, 165, 95, 226, 38184, 233, 201, 198, 201, 198, 201, 198, 201, 198 ]
1.609608
3,289
from django.urls import include, path from chemreg.jsonapi.routers import SimpleRouter from chemreg.substance import views # Create a router and register our viewsets with it. router = SimpleRouter() router.register(views.QCLevelsTypeViewSet, "qcLevels") router.register(views.RelationshipTypeViewSet) router.register(views.SynonymViewSet) router.register(views.SynonymTypeViewSet) router.register(views.SourceViewSet) router.register(views.SubstanceViewSet) router.register(views.SubstanceTypeViewSet) router.register(views.SynonymQualityViewSet, prefix="synonymQualities") router.register(views.SubstanceRelationshipViewSet) urlpatterns = [ path("", include(router.urls)), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 2291, 11, 3108, 198, 198, 6738, 4607, 2301, 13, 17752, 15042, 13, 472, 1010, 1330, 17427, 49, 39605, 198, 6738, 4607, 2301, 13, 7266, 301, 590, 1330, 5009, 198, 198, 2, 13610, 257, 20264, 290, 7881, 674, 5009, 1039, 351, 340, 13, 198, 472, 353, 796, 17427, 49, 39605, 3419, 198, 472, 353, 13, 30238, 7, 33571, 13, 48, 34, 4971, 82, 6030, 7680, 7248, 11, 366, 80, 66, 4971, 82, 4943, 198, 472, 353, 13, 30238, 7, 33571, 13, 47117, 1056, 6030, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 33571, 13, 29934, 5177, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 33571, 13, 29934, 5177, 6030, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 33571, 13, 7416, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 33571, 13, 7004, 301, 590, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 33571, 13, 7004, 301, 590, 6030, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 33571, 13, 29934, 5177, 35013, 7680, 7248, 11, 21231, 2625, 28869, 5177, 46181, 871, 4943, 198, 472, 353, 13, 30238, 7, 33571, 13, 7004, 301, 590, 47117, 1056, 7680, 7248, 8, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 7203, 1600, 2291, 7, 472, 353, 13, 6371, 82, 36911, 198, 60, 198 ]
3.071749
223
import pytest_cases as pytest @pytest.fixture @pytest.parametrize_with_cases("x,y", cases=CaseY, debug=True)
[ 11748, 12972, 9288, 62, 33964, 355, 12972, 9288, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 198, 31, 9078, 9288, 13, 17143, 316, 380, 2736, 62, 4480, 62, 33964, 7203, 87, 11, 88, 1600, 2663, 28, 20448, 56, 11, 14257, 28, 17821, 8, 628 ]
2.521739
46
import os import random import datetime import aiofiles from enum import Enum from dateutil.parser import parse import aiohttp try: import ujson as json except: import json
[ 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 4818, 8079, 198, 11748, 257, 952, 16624, 198, 6738, 33829, 1330, 2039, 388, 198, 198, 6738, 3128, 22602, 13, 48610, 1330, 21136, 198, 198, 11748, 257, 952, 4023, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 334, 17752, 355, 33918, 198, 16341, 25, 198, 220, 220, 220, 1330, 33918, 628, 628, 198 ]
3.098361
61
import unittest from app.utils import KMP
[ 11748, 555, 715, 395, 198, 6738, 598, 13, 26791, 1330, 509, 7378, 628 ]
3.307692
13
import cv2 import numpy as np from matplotlib import pyplot as plt import argparse from itertools import permutations from lxml import etree as ET ap=argparse.ArgumentParser() ap.add_argument('-i', '--image', type=str) args=vars(ap.parse_args()) image = cv2.imread(args['image']) source = image.copy() target = image.copy() phone=source[101:286,209:394] music=source[101:286,479:664] maps=source[101:286,749:934] messages=source[101:286,1019:1204] playing=source[419:604,209:394] podcasts=source[419:604,479:664] audiobook=source[419:604,749:934] audiotest=source[419:604,1019:1204] icons_coordinate = { 0:[101,286,209,394], 1:[101,286,479,664], 2:[101,286,749,934], 3:[101,286,1019,1204], 4:[419,604,209,394], 5:[419,604,479,664], 6:[419,604,749,934], 7:[419,604,1019,1204] } icons = [phone, music, maps, messages, playing, podcasts, audiobook, audiotest] icon_name = ["phone", "music", "maps", "messages", "playing", "podcasts", "audiobook", "audiotest"] index = [0, 1, 2, 3, 4, 5, 6, 7] index_set = [] for p in permutations(index): index_set.append(p) #print(index_set) #print(len(index_set)) #for i in range(len(index_set)): # print(index_set[i][0]) for i in range(len(index_set)): target[101:286,209:394]=icons[index_set[i][0]] target[101:286,479:664]=icons[index_set[i][1]] target[101:286,749:934]=icons[index_set[i][2]] target[101:286,1019:1204]=icons[index_set[i][3]] target[419:604,209:394]=icons[index_set[i][4]] target[419:604,479:664]=icons[index_set[i][5]] target[419:604,749:934]=icons[index_set[i][6]] target[419:604,1019:1204]=icons[index_set[i][7]] filename='./images/'+str(i)+'.jpg' cv2.imwrite(filename, target) write_xml_file(i)
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 1822, 29572, 198, 6738, 340, 861, 10141, 1330, 9943, 32855, 198, 6738, 300, 19875, 1330, 2123, 631, 355, 12152, 198, 198, 499, 28, 853, 29572, 13, 28100, 1713, 46677, 3419, 198, 499, 13, 2860, 62, 49140, 10786, 12, 72, 3256, 705, 438, 9060, 3256, 2099, 28, 2536, 8, 198, 22046, 28, 85, 945, 7, 499, 13, 29572, 62, 22046, 28955, 198, 198, 9060, 796, 269, 85, 17, 13, 320, 961, 7, 22046, 17816, 9060, 6, 12962, 198, 10459, 796, 2939, 13, 30073, 3419, 198, 16793, 796, 2939, 13, 30073, 3419, 198, 4862, 28, 10459, 58, 8784, 25, 27033, 11, 22567, 25, 34626, 60, 198, 28965, 28, 10459, 58, 8784, 25, 27033, 11, 31714, 25, 21, 2414, 60, 198, 31803, 28, 10459, 58, 8784, 25, 27033, 11, 22, 2920, 25, 24, 2682, 60, 198, 37348, 1095, 28, 10459, 58, 8784, 25, 27033, 11, 8784, 24, 25, 1065, 3023, 60, 198, 17916, 28, 10459, 58, 45068, 25, 31916, 11, 22567, 25, 34626, 60, 198, 46032, 82, 28, 10459, 58, 45068, 25, 31916, 11, 31714, 25, 21, 2414, 60, 198, 31330, 49776, 28, 10459, 58, 45068, 25, 31916, 11, 22, 2920, 25, 24, 2682, 60, 198, 3885, 5151, 395, 28, 10459, 58, 45068, 25, 31916, 11, 8784, 24, 25, 1065, 3023, 60, 198, 198, 34280, 62, 37652, 4559, 796, 1391, 198, 15, 33250, 8784, 11, 27033, 11, 22567, 11, 34626, 4357, 198, 16, 33250, 8784, 11, 27033, 11, 31714, 11, 21, 2414, 4357, 198, 17, 33250, 8784, 11, 27033, 11, 22, 2920, 11, 24, 2682, 4357, 198, 18, 33250, 8784, 11, 27033, 11, 8784, 24, 11, 1065, 3023, 4357, 198, 19, 33250, 45068, 11, 31916, 11, 22567, 11, 34626, 4357, 198, 20, 33250, 45068, 11, 31916, 11, 31714, 11, 21, 2414, 4357, 198, 21, 33250, 45068, 11, 31916, 11, 22, 2920, 11, 24, 2682, 4357, 198, 22, 33250, 45068, 11, 31916, 11, 8784, 24, 11, 1065, 3023, 60, 198, 92, 198, 198, 34280, 796, 685, 4862, 11, 2647, 11, 8739, 11, 6218, 11, 2712, 11, 31969, 11, 40504, 49776, 11, 2709, 5151, 395, 60, 198, 198, 4749, 62, 3672, 796, 14631, 4862, 1600, 366, 28965, 1600, 366, 31803, 1600, 366, 37348, 1095, 1600, 366, 17916, 1600, 366, 46032, 82, 1600, 366, 31330, 49776, 1600, 366, 3885, 5151, 395, 8973, 198, 198, 9630, 796, 685, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 60, 198, 198, 9630, 62, 2617, 796, 17635, 198, 198, 1640, 279, 287, 9943, 32855, 7, 9630, 2599, 198, 220, 220, 220, 6376, 62, 2617, 13, 33295, 7, 79, 8, 220, 198, 198, 2, 4798, 7, 9630, 62, 2617, 8, 198, 2, 4798, 7, 11925, 7, 9630, 62, 2617, 4008, 198, 198, 2, 1640, 1312, 287, 2837, 7, 11925, 7, 9630, 62, 2617, 8, 2599, 198, 2, 220, 220, 220, 3601, 7, 9630, 62, 2617, 58, 72, 7131, 15, 12962, 198, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 9630, 62, 2617, 8, 2599, 198, 220, 220, 220, 2496, 58, 8784, 25, 27033, 11, 22567, 25, 34626, 22241, 34280, 58, 9630, 62, 2617, 58, 72, 7131, 15, 11907, 198, 220, 220, 220, 2496, 58, 8784, 25, 27033, 11, 31714, 25, 21, 2414, 22241, 34280, 58, 9630, 62, 2617, 58, 72, 7131, 16, 11907, 198, 220, 220, 220, 2496, 58, 8784, 25, 27033, 11, 22, 2920, 25, 24, 2682, 22241, 34280, 58, 9630, 62, 2617, 58, 72, 7131, 17, 11907, 198, 220, 220, 220, 2496, 58, 8784, 25, 27033, 11, 8784, 24, 25, 1065, 3023, 22241, 34280, 58, 9630, 62, 2617, 58, 72, 7131, 18, 11907, 198, 220, 220, 220, 2496, 58, 45068, 25, 31916, 11, 22567, 25, 34626, 22241, 34280, 58, 9630, 62, 2617, 58, 72, 7131, 19, 11907, 198, 220, 220, 220, 2496, 58, 45068, 25, 31916, 11, 31714, 25, 21, 2414, 22241, 34280, 58, 9630, 62, 2617, 58, 72, 7131, 20, 11907, 198, 220, 220, 220, 2496, 58, 45068, 25, 31916, 11, 22, 2920, 25, 24, 2682, 22241, 34280, 58, 9630, 62, 2617, 58, 72, 7131, 21, 11907, 198, 220, 220, 220, 2496, 58, 45068, 25, 31916, 11, 8784, 24, 25, 1065, 3023, 22241, 34280, 58, 9630, 62, 2617, 58, 72, 7131, 22, 11907, 628, 220, 220, 220, 29472, 28, 4458, 14, 17566, 14, 6, 10, 2536, 7, 72, 47762, 4458, 9479, 6, 198, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7, 34345, 11, 2496, 8, 198, 220, 220, 220, 3551, 62, 19875, 62, 7753, 7, 72, 8, 628, 198 ]
2.247706
763
import re import glob import os import sys import skimage import numpy as np import theano.tensor as T from sklearn.cross_validation import StratifiedShuffleSplit import string import lasagne as nn # TODO clean this mess up # TODO: very ugly stuff here, can probably be done a lot better
[ 11748, 302, 201, 198, 11748, 15095, 201, 198, 11748, 28686, 201, 198, 11748, 25064, 201, 198, 201, 198, 11748, 1341, 9060, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 262, 5733, 13, 83, 22854, 355, 309, 201, 198, 6738, 1341, 35720, 13, 19692, 62, 12102, 341, 1330, 29186, 1431, 2484, 18137, 41205, 201, 198, 201, 198, 11748, 4731, 201, 198, 11748, 39990, 21080, 355, 299, 77, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 2, 16926, 46, 3424, 428, 2085, 510, 201, 198, 201, 198, 201, 198, 2, 16926, 46, 25, 845, 13400, 3404, 994, 11, 460, 2192, 307, 1760, 257, 1256, 1365, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.710744
121
# Dash app initialization import dash # User management initialization import os from flask_login import LoginManager, UserMixin from users_mgt import db, User as base from config import config app = dash.Dash( __name__, meta_tags=[ { 'charset': 'utf-8', }, { 'name': 'viewport', 'content': 'width=device-width, initial-scale=1, shrink-to-fit=no' } ] ) server = app.server app.config.suppress_callback_exceptions = True app.css.config.serve_locally = True app.scripts.config.serve_locally = True # config server.config.update( SECRET_KEY=os.urandom(12), SQLALCHEMY_DATABASE_URI=config.get('database', 'con'), SQLALCHEMY_TRACK_MODIFICATIONS=False ) db.init_app(server) # Setup the LoginManager for the server login_manager = LoginManager() login_manager.init_app(server) login_manager.login_view = '/login' # Create User class with UserMixin # callback to reload the user object @login_manager.user_loader
[ 2, 16189, 598, 37588, 198, 11748, 14470, 198, 2, 11787, 4542, 37588, 198, 11748, 28686, 198, 6738, 42903, 62, 38235, 1330, 23093, 13511, 11, 11787, 35608, 259, 198, 6738, 2985, 62, 11296, 83, 1330, 20613, 11, 11787, 355, 2779, 198, 6738, 4566, 1330, 4566, 628, 198, 1324, 796, 14470, 13, 43041, 7, 198, 220, 220, 220, 11593, 3672, 834, 11, 198, 220, 220, 220, 13634, 62, 31499, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 354, 945, 316, 10354, 705, 40477, 12, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 1177, 634, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11299, 10354, 705, 10394, 28, 25202, 12, 10394, 11, 4238, 12, 9888, 28, 16, 11, 22085, 12, 1462, 12, 11147, 28, 3919, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 2361, 198, 8, 198, 15388, 796, 598, 13, 15388, 198, 1324, 13, 11250, 13, 18608, 601, 62, 47423, 62, 1069, 11755, 796, 6407, 198, 1324, 13, 25471, 13, 11250, 13, 2655, 303, 62, 17946, 453, 796, 6407, 198, 1324, 13, 46521, 13, 11250, 13, 2655, 303, 62, 17946, 453, 796, 6407, 628, 198, 2, 4566, 198, 15388, 13, 11250, 13, 19119, 7, 198, 220, 220, 220, 10729, 26087, 62, 20373, 28, 418, 13, 333, 3749, 7, 1065, 828, 198, 220, 220, 220, 16363, 1847, 3398, 3620, 56, 62, 35, 1404, 6242, 11159, 62, 47269, 28, 11250, 13, 1136, 10786, 48806, 3256, 705, 1102, 33809, 198, 220, 220, 220, 16363, 1847, 3398, 3620, 56, 62, 5446, 8120, 62, 33365, 30643, 18421, 28, 25101, 198, 8, 198, 198, 9945, 13, 15003, 62, 1324, 7, 15388, 8, 198, 198, 2, 31122, 262, 23093, 13511, 329, 262, 4382, 198, 38235, 62, 37153, 796, 23093, 13511, 3419, 198, 38235, 62, 37153, 13, 15003, 62, 1324, 7, 15388, 8, 198, 38235, 62, 37153, 13, 38235, 62, 1177, 796, 31051, 38235, 6, 628, 198, 2, 13610, 11787, 1398, 351, 11787, 35608, 259, 628, 198, 2, 23838, 284, 18126, 262, 2836, 2134, 198, 31, 38235, 62, 37153, 13, 7220, 62, 29356, 198 ]
2.588689
389
from functools import wraps from typing import Callable from heuristic.classes import Solution def remove_empty_routes(operator: Callable[..., Solution]): """ Wrapper function that removes empty routes from the returned solution instance. These routes may come into existence because all customers have been removed by e.g. a destroy operator. """ @wraps(operator) return decorator
[ 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 19720, 1330, 4889, 540, 198, 198, 6738, 339, 27915, 13, 37724, 1330, 28186, 628, 198, 4299, 4781, 62, 28920, 62, 81, 448, 274, 7, 46616, 25, 4889, 540, 58, 986, 11, 28186, 60, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27323, 2848, 2163, 326, 20694, 6565, 11926, 422, 262, 4504, 4610, 198, 220, 220, 220, 4554, 13, 2312, 11926, 743, 1282, 656, 6224, 780, 477, 4297, 423, 198, 220, 220, 220, 587, 4615, 416, 304, 13, 70, 13, 257, 4117, 10088, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 29988, 862, 7, 46616, 8, 628, 220, 220, 220, 1441, 11705, 1352, 198 ]
3.568966
116
''' Compare File Contents and remove duplicate files get sha256 hash for each file found use dictionary to check for duplicates delete duplicates Dave Cuthbert (C) 2021-02-12 MIT License ''' import os from collections import defaultdict import hashlib import sys if "__main__" == __name__: find_duplicates() #EOF
[ 7061, 6, 198, 41488, 9220, 26714, 290, 4781, 23418, 3696, 628, 220, 220, 220, 651, 427, 64, 11645, 12234, 329, 1123, 2393, 1043, 198, 220, 220, 220, 779, 22155, 284, 2198, 329, 14184, 16856, 198, 220, 220, 220, 12233, 14184, 16856, 198, 198, 27984, 327, 1071, 4835, 198, 7, 34, 8, 33448, 12, 2999, 12, 1065, 198, 36393, 13789, 198, 7061, 6, 198, 198, 11748, 28686, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 12234, 8019, 198, 11748, 25064, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 361, 366, 834, 12417, 834, 1, 6624, 11593, 3672, 834, 25, 198, 220, 220, 220, 1064, 62, 646, 489, 16856, 3419, 198, 220, 220, 220, 220, 198, 2, 4720, 37, 198 ]
2.625899
139
import sys import os import numpy as np import torch import subprocess from pathlib import Path import requests import zipfile import shutil if __name__ == "__main__": url = "https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/distiluse-base-multilingual-cased.zip" path = download_model(url, "distiluse-base-multilingual-cased") convert_to_c_array(path + '/0_DistilBERT', prefix='distilbert.') convert_to_c_array(path + '/2_Dense', suffix=True)
[ 11748, 25064, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 850, 14681, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 7007, 198, 11748, 19974, 7753, 198, 11748, 4423, 346, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 19016, 796, 366, 5450, 1378, 11377, 13, 2724, 79, 13, 259, 18982, 1134, 13, 28047, 12, 67, 1670, 38863, 13, 2934, 14, 260, 320, 364, 14, 34086, 594, 12, 35636, 364, 14, 85, 15, 13, 17, 14, 17080, 346, 1904, 12, 8692, 12, 16680, 34900, 12, 66, 839, 13, 13344, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3108, 796, 4321, 62, 19849, 7, 6371, 11, 366, 17080, 346, 1904, 12, 8692, 12, 16680, 34900, 12, 66, 839, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 10385, 62, 1462, 62, 66, 62, 18747, 7, 6978, 1343, 31051, 15, 62, 20344, 346, 13246, 51, 3256, 21231, 11639, 17080, 346, 4835, 2637, 8, 198, 220, 220, 220, 10385, 62, 1462, 62, 66, 62, 18747, 7, 6978, 1343, 31051, 17, 62, 35, 1072, 3256, 35488, 28, 17821, 8, 198 ]
2.619792
192
# coding: utf-8 from __future__ import unicode_literals import datetime from django.contrib.auth.models import Group, User from django.test import TestCase from .models import Album, AlbumAccessPolicy, Photo, PhotoAccessPolicy
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 4818, 8079, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 4912, 11, 11787, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 198, 6738, 764, 27530, 1330, 23999, 11, 23999, 15457, 36727, 11, 5555, 11, 5555, 15457, 36727, 628 ]
3.462687
67
#!/usr/bin/python import socket from termcolor import colored print(colored("Select Option"),"blue") print(colored("1. Single Port\n2. Multi Port"),"blue") option = int(input()) if option == 1: print(colored("Enter Host IP Address:","green")) host = input() print(colored("Enter port number to scan:","green")) port = int(input()) if option == 2: print(colored("[*] Enter Host IP Address:","green")) host = input() print(colored("[*] Enter number of ports to scan:","green")) num = int(input()) if option == 1: PScanner(host,port,option) if option == 2: PScanner(host,num,option)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 11748, 17802, 198, 6738, 3381, 8043, 1330, 16396, 628, 198, 4798, 7, 25717, 7203, 17563, 16018, 4943, 553, 17585, 4943, 198, 4798, 7, 25717, 7203, 16, 13, 14206, 4347, 59, 77, 17, 13, 15237, 4347, 4943, 553, 17585, 4943, 198, 18076, 796, 493, 7, 15414, 28955, 198, 198, 361, 3038, 6624, 352, 25, 198, 220, 220, 220, 3601, 7, 25717, 7203, 17469, 14504, 6101, 17917, 25, 2430, 14809, 48774, 198, 220, 220, 220, 2583, 796, 5128, 3419, 198, 220, 220, 220, 3601, 7, 25717, 7203, 17469, 2493, 1271, 284, 9367, 25, 2430, 14809, 48774, 198, 220, 220, 220, 2493, 796, 493, 7, 15414, 28955, 198, 198, 361, 3038, 6624, 362, 25, 198, 220, 220, 220, 3601, 7, 25717, 7203, 58, 9, 60, 6062, 14504, 6101, 17917, 25, 2430, 14809, 48774, 198, 220, 220, 220, 2583, 796, 5128, 3419, 198, 220, 220, 220, 3601, 7, 25717, 7203, 58, 9, 60, 6062, 1271, 286, 14090, 284, 9367, 25, 2430, 14809, 48774, 198, 220, 220, 220, 997, 796, 493, 7, 15414, 28955, 198, 198, 361, 3038, 6624, 352, 25, 198, 220, 220, 220, 350, 33351, 1008, 7, 4774, 11, 634, 11, 18076, 8, 198, 198, 361, 3038, 6624, 362, 25, 198, 220, 220, 220, 350, 33351, 1008, 7, 4774, 11, 22510, 11, 18076, 8 ]
2.845455
220
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
from .WBits import WBits from .event import Event
[ 6738, 764, 45607, 896, 1330, 36245, 896, 201, 198, 6738, 764, 15596, 1330, 8558, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220 ]
2.5
24
from __future__ import print_function from .field_parser import parse_internal_field, parse_boundary_field, parse_field_all from .mesh_parser import FoamMesh from .utils import *
[ 6738, 11593, 37443, 834, 220, 1330, 3601, 62, 8818, 201, 198, 201, 198, 6738, 764, 3245, 62, 48610, 1330, 21136, 62, 32538, 62, 3245, 11, 21136, 62, 7784, 560, 62, 3245, 11, 21136, 62, 3245, 62, 439, 201, 198, 6738, 764, 76, 5069, 62, 48610, 1330, 19434, 321, 37031, 201, 198, 6738, 764, 26791, 1330, 1635, 201, 198, 201, 198 ]
3.133333
60
import threading import time import psutil import rostopic import rospy from glog import logging from node_evaluator.msg import Bandwidth as BandwidthMsg @EvaluatorFactory.register('cpu') @EvaluatorFactory.register('mem') @EvaluatorFactory.register('net') @EvaluatorFactory.register('topic_bw') @EvaluatorFactory.register('bw_from_msg') @EvaluatorFactory.register('sys_bw')
[ 11748, 4704, 278, 198, 11748, 640, 198, 11748, 26692, 22602, 198, 11748, 686, 11338, 291, 198, 11748, 686, 2777, 88, 198, 6738, 1278, 519, 1330, 18931, 198, 6738, 10139, 62, 18206, 84, 1352, 13, 19662, 1330, 10243, 10394, 355, 10243, 10394, 50108, 628, 628, 198, 198, 31, 36, 2100, 84, 1352, 22810, 13, 30238, 10786, 36166, 11537, 628, 198, 31, 36, 2100, 84, 1352, 22810, 13, 30238, 10786, 11883, 11537, 628, 198, 31, 36, 2100, 84, 1352, 22810, 13, 30238, 10786, 3262, 11537, 628, 198, 198, 31, 36, 2100, 84, 1352, 22810, 13, 30238, 10786, 26652, 62, 65, 86, 11537, 628, 198, 31, 36, 2100, 84, 1352, 22810, 13, 30238, 10786, 65, 86, 62, 6738, 62, 19662, 11537, 628, 198, 31, 36, 2100, 84, 1352, 22810, 13, 30238, 10786, 17597, 62, 65, 86, 11537, 198 ]
2.888889
135
#/usr/bin/env python import io from setuptools import setup with io.open('README.rst', encoding='utf8') as readme: long_description = readme.read() setup( name='rubicon', version='0.0.0', description='A collection of tools to bridge between Python and other language environments.', long_description=long_description, author='Russell Keith-Magee', author_email='[email protected]', url='http://pybee.org/rubicon', packages=[], license='New BSD', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Topic :: Software Development', 'Topic :: Software Development :: User Interfaces', 'Topic :: Software Development :: Widget Sets', ], )
[ 2, 14, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 33245, 198, 6738, 900, 37623, 10141, 1330, 9058, 628, 198, 4480, 33245, 13, 9654, 10786, 15675, 11682, 13, 81, 301, 3256, 21004, 11639, 40477, 23, 11537, 355, 1100, 1326, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 1100, 1326, 13, 961, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 25089, 4749, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 13, 15, 3256, 198, 220, 220, 220, 6764, 11639, 32, 4947, 286, 4899, 284, 7696, 1022, 11361, 290, 584, 3303, 12493, 2637, 11, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 1772, 11639, 46325, 14926, 12, 44, 496, 68, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 14932, 7255, 31, 365, 342, 12, 25561, 68, 13, 785, 3256, 198, 220, 220, 220, 19016, 11639, 4023, 1378, 9078, 20963, 13, 2398, 14, 25089, 4749, 3256, 198, 220, 220, 220, 10392, 41888, 4357, 198, 220, 220, 220, 5964, 11639, 3791, 347, 10305, 3256, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 513, 532, 12995, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 34152, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 347, 10305, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 10442, 7712, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 10442, 7712, 7904, 11787, 4225, 32186, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 10442, 7712, 7904, 370, 17484, 21394, 3256, 198, 220, 220, 220, 16589, 198, 8, 198 ]
2.791096
292
# -*- coding: utf-8 -*- # Generated by Django 1.11.29 on 2021-05-24 18:30 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 1959, 319, 33448, 12, 2713, 12, 1731, 1248, 25, 1270, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.753623
69
""" Capitalize! :author: Dela Anthonio :hackerrank: https://hackerrank.com/delaanthonio :problem: https://www.hackerrank.com/contests/pythonist3/challenges/capitalize """ print(solve('hi jake hj '))
[ 37811, 198, 39315, 1096, 0, 198, 198, 25, 9800, 25, 4216, 64, 8451, 261, 952, 198, 25, 31153, 8056, 962, 25, 3740, 1378, 31153, 8056, 962, 13, 785, 14, 67, 10304, 29313, 261, 952, 198, 25, 45573, 25, 3740, 1378, 2503, 13, 31153, 8056, 962, 13, 785, 14, 3642, 3558, 14, 29412, 396, 18, 14, 36747, 34120, 14, 27544, 1096, 198, 37811, 198, 198, 4798, 7, 82, 6442, 10786, 5303, 474, 539, 220, 220, 289, 73, 705, 4008 ]
2.589744
78
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Initialization for Solstice Tools """ from __future__ import print_function, division, absolute_import __author__ = "Tomas Poveda" __license__ = "MIT" __maintainer__ = "Tomas Poveda" __email__ = "[email protected]" print('=' * 100) print('| Solstice Pipeline | > Loading Solstice Tools') try: import solstice.loader solstice.loader.init(import_libs=True) print('| Solstice Pipeline | Solstice Tools loaded successfully!') print('=' * 100) except Exception as e: print('ERROR: Impossible to load Solstice Tools, contact TD!') print(str(e))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 24243, 1634, 329, 4294, 43788, 20003, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 7297, 11, 4112, 62, 11748, 198, 198, 834, 9800, 834, 796, 366, 13787, 292, 350, 2668, 64, 1, 198, 834, 43085, 834, 796, 366, 36393, 1, 198, 834, 76, 2913, 10613, 834, 796, 366, 13787, 292, 350, 2668, 64, 1, 198, 834, 12888, 834, 796, 366, 34788, 2668, 265, 67, 31, 14816, 13, 785, 1, 198, 198, 4798, 10786, 11639, 1635, 1802, 8, 198, 4798, 10786, 91, 4294, 43788, 37709, 930, 1875, 12320, 4294, 43788, 20003, 11537, 628, 198, 28311, 25, 198, 220, 220, 220, 1330, 1540, 43788, 13, 29356, 198, 220, 220, 220, 1540, 43788, 13, 29356, 13, 15003, 7, 11748, 62, 8019, 82, 28, 17821, 8, 198, 220, 220, 220, 3601, 10786, 91, 4294, 43788, 37709, 930, 4294, 43788, 20003, 9639, 7675, 0, 11537, 198, 220, 220, 220, 3601, 10786, 11639, 1635, 1802, 8, 198, 16341, 35528, 355, 304, 25, 198, 220, 220, 220, 3601, 10786, 24908, 25, 38791, 284, 3440, 4294, 43788, 20003, 11, 2800, 13320, 0, 11537, 198, 220, 220, 220, 3601, 7, 2536, 7, 68, 4008, 198 ]
2.861751
217
from project_restaurant.beverage.beverage import Beverage
[ 6738, 1628, 62, 2118, 2899, 415, 13, 65, 964, 496, 13, 65, 964, 496, 1330, 22185, 496, 628 ]
3.277778
18
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import re import threading import lldbagilityutils from PyFDP.FDP import FDP from VMSN import VMSN logger = lldbagilityutils.create_indented_logger(__name__, "/tmp/stubvm.log") NULL = 0x0 # https://github.com/apple/darwin-xnu/blob/xnu-4903.221.2/osfmk/i386/eflags.h EFL_TF = 0x00000100 # https://github.com/apple/darwin-xnu/blob/xnu-4903.221.2/osfmk/mach/i386/vm_param.h I386_PGBYTES = 4096 VM_MIN_KERNEL_ADDRESS = 0xFFFFFF8000000000 VM_MAX_KERNEL_ADDRESS = 0xFFFFFFFFFFFFEFFF # https://github.com/apple/darwin-xnu/blob/xnu-4903.221.2/EXTERNAL_HEADERS/mach-o/loader.h MH_MAGIC_64 = 0xFEEDFACF # https://github.com/apple/darwin-xnu/blob/xnu-4903.221.2/osfmk/mach/exception_types.h EXC_SOFTWARE = 0x5 EXC_BREAKPOINT = 0x6 EXC_SOFT_SIGNAL = 0x10003 # https://github.com/apple/darwin-xnu/blob/xnu-4903.221.2/osfmk/mach/i386/exception.h EXC_I386_BPTFLT = 0x3 # https://github.com/apple/darwin-xnu/blob/xnu-4903.221.2/bsd/sys/signal.h SIGINT = 0x2 # https://github.com/apple/darwin-xnu/blob/xnu-4903.221.2/osfmk/i386/proc_reg.h MSR_IA32_GS_BASE = 0xC0000101 MSR_IA32_KERNEL_GS_BASE = 0xC0000102 # https://github.com/apple/darwin-xnu/blob/xnu-4903.221.2/osfmk/mach/machine.h CPU_TYPE_X86 = 0x7 CPU_ARCH_ABI64 = 0x01000000 CPU_TYPE_X86_64 = CPU_TYPE_X86 | CPU_ARCH_ABI64 CPU_SUBTYPE_X86_ARCH1 = 0x4 @lldbagilityutils.indented(logger) @lldbagilityutils.indented(logger)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 302, 198, 11748, 4704, 278, 198, 198, 11748, 32660, 9945, 363, 879, 26791, 198, 6738, 9485, 37, 6322, 13, 37, 6322, 1330, 376, 6322, 198, 6738, 569, 30295, 1330, 569, 30295, 198, 198, 6404, 1362, 796, 32660, 9945, 363, 879, 26791, 13, 17953, 62, 521, 4714, 62, 6404, 1362, 7, 834, 3672, 834, 11, 12813, 22065, 14, 301, 549, 14761, 13, 6404, 4943, 628, 198, 33991, 796, 657, 87, 15, 198, 198, 2, 3740, 1378, 12567, 13, 785, 14, 18040, 14, 27455, 5404, 12, 87, 28803, 14, 2436, 672, 14, 87, 28803, 12, 2920, 3070, 13, 26115, 13, 17, 14, 418, 69, 28015, 14, 72, 21734, 14, 891, 75, 3775, 13, 71, 198, 36, 3697, 62, 10234, 796, 657, 87, 2388, 39103, 198, 198, 2, 3740, 1378, 12567, 13, 785, 14, 18040, 14, 27455, 5404, 12, 87, 28803, 14, 2436, 672, 14, 87, 28803, 12, 2920, 3070, 13, 26115, 13, 17, 14, 418, 69, 28015, 14, 76, 620, 14, 72, 21734, 14, 14761, 62, 17143, 13, 71, 198, 40, 21734, 62, 47, 4579, 56, 51, 1546, 796, 42479, 198, 15996, 62, 23678, 62, 42, 28778, 3698, 62, 2885, 7707, 7597, 796, 657, 87, 29312, 5777, 23, 10535, 830, 198, 15996, 62, 22921, 62, 42, 28778, 3698, 62, 2885, 7707, 7597, 796, 657, 87, 29312, 29312, 29312, 37267, 37, 198, 198, 2, 3740, 1378, 12567, 13, 785, 14, 18040, 14, 27455, 5404, 12, 87, 28803, 14, 2436, 672, 14, 87, 28803, 12, 2920, 3070, 13, 26115, 13, 17, 14, 6369, 31800, 1847, 62, 37682, 4877, 14, 76, 620, 12, 78, 14, 29356, 13, 71, 198, 36208, 62, 45820, 2149, 62, 2414, 796, 657, 87, 15112, 1961, 37, 2246, 37, 198, 198, 2, 3740, 1378, 12567, 13, 785, 14, 18040, 14, 27455, 5404, 12, 87, 28803, 14, 2436, 672, 14, 87, 28803, 12, 2920, 3070, 13, 26115, 13, 17, 14, 418, 69, 28015, 14, 76, 620, 14, 1069, 4516, 62, 19199, 13, 71, 198, 6369, 34, 62, 15821, 37485, 796, 657, 87, 20, 198, 6369, 34, 62, 40438, 10206, 16402, 12394, 796, 657, 87, 21, 198, 6369, 34, 62, 15821, 9792, 62, 46224, 1847, 796, 657, 87, 12825, 18, 198, 2, 3740, 1378, 12567, 13, 785, 14, 18040, 14, 27455, 5404, 12, 87, 28803, 14, 2436, 672, 14, 87, 28803, 12, 2920, 3070, 13, 26115, 13, 17, 14, 418, 69, 28015, 14, 76, 620, 14, 72, 21734, 14, 1069, 4516, 13, 71, 198, 6369, 34, 62, 40, 21734, 62, 33, 11571, 3697, 51, 796, 657, 87, 18, 198, 2, 3740, 1378, 12567, 13, 785, 14, 18040, 14, 27455, 5404, 12, 87, 28803, 14, 2436, 672, 14, 87, 28803, 12, 2920, 3070, 13, 26115, 13, 17, 14, 1443, 67, 14, 17597, 14, 12683, 282, 13, 71, 198, 50, 3528, 12394, 796, 657, 87, 17, 198, 198, 2, 3740, 1378, 12567, 13, 785, 14, 18040, 14, 27455, 5404, 12, 87, 28803, 14, 2436, 672, 14, 87, 28803, 12, 2920, 3070, 13, 26115, 13, 17, 14, 418, 69, 28015, 14, 72, 21734, 14, 36942, 62, 2301, 13, 71, 198, 5653, 49, 62, 3539, 2624, 62, 14313, 62, 33, 11159, 796, 657, 87, 34, 2388, 8784, 198, 5653, 49, 62, 3539, 2624, 62, 42, 28778, 3698, 62, 14313, 62, 33, 11159, 796, 657, 87, 34, 2388, 15377, 198, 198, 2, 3740, 1378, 12567, 13, 785, 14, 18040, 14, 27455, 5404, 12, 87, 28803, 14, 2436, 672, 14, 87, 28803, 12, 2920, 3070, 13, 26115, 13, 17, 14, 418, 69, 28015, 14, 76, 620, 14, 30243, 13, 71, 198, 36037, 62, 25216, 62, 55, 4521, 796, 657, 87, 22, 198, 36037, 62, 31315, 62, 32, 3483, 2414, 796, 657, 87, 486, 10535, 198, 36037, 62, 25216, 62, 55, 4521, 62, 2414, 796, 9135, 62, 25216, 62, 55, 4521, 930, 9135, 62, 31315, 62, 32, 3483, 2414, 198, 36037, 62, 50, 10526, 25216, 62, 55, 4521, 62, 31315, 16, 796, 657, 87, 19, 628, 628, 198, 31, 297, 9945, 363, 879, 26791, 13, 521, 4714, 7, 6404, 1362, 8, 628, 198, 198, 31, 297, 9945, 363, 879, 26791, 13, 521, 4714, 7, 6404, 1362, 8, 628, 198 ]
2.026989
704
import spotipy from spotipy.oauth2 import SpotifyClientCredentials spotify = spotipy.Spotify(auth_manager=SpotifyClientCredentials()) url = "http://httpbin.org/post" payload = dict(key1='value1', key2='value2') res = requests.post(url, data=payload) print(res.text)
[ 11748, 4136, 541, 88, 198, 6738, 4136, 541, 88, 13, 12162, 1071, 17, 1330, 26778, 11792, 34, 445, 14817, 198, 198, 20485, 1958, 796, 4136, 541, 88, 13, 32565, 1958, 7, 18439, 62, 37153, 28, 32565, 1958, 11792, 34, 445, 14817, 28955, 198, 6371, 796, 366, 4023, 1378, 4023, 8800, 13, 2398, 14, 7353, 1, 198, 15577, 2220, 796, 8633, 7, 2539, 16, 11639, 8367, 16, 3256, 1994, 17, 11639, 8367, 17, 11537, 198, 411, 796, 7007, 13, 7353, 7, 6371, 11, 1366, 28, 15577, 2220, 8, 198, 198, 4798, 7, 411, 13, 5239, 8 ]
2.810526
95
import json import requests from elasticsearch.connection import create_ssl_context from elasticsearch import Elasticsearch from getpass import getpass class ElasticSearch: """Wrapper of Elasticsearch module. This module is designed for using elastic search more friendly. """ def _set_condition_func(self): """Generate functions dynamically for setting conditions. This function will generate 6 funcions, including: must(conditions): All of the conditions must be satisfied. must_reg(conditions) All of the conditions must be satisfied in regular expression matching. must_not(conditions) All of the conditions must not be satisfied. must_not_reg(conditions) All of the conditions must not be satisfied in regular expression matching. should(conditions) One of the conditions must be satisfied. should_reg(conditions) One of the conditions must be satisfied in regular expression matching. All these funcions have one parameter in `list of dict` type. Each element in `list` is a `dict` which have only one key-value pair. """ for operation in ['must', 'must_not', 'should']: for method in ['match_phrase', 'regexp']: func(operation, method) if __name__ == '__main__': es_host = 'https://140.113.194.82:9200' es_username = input('username:') es_password = getpass('password:') es = ElasticSearch(es_host, (es_username, es_password)) es.index('logstash-router.zeek*') # es.column() # es.time('now-30s', 'now') # es.time('2020-05-14T03:10:00+0800') es.time('2021-04-17T15:19:19+0800', '2021-04-17T15:22:40+0800') # es.should_reg([{'id_orig_h': '192.168.1.*'}]) data = es.search(size=10, clean=True) print(len(data)) [print(datum) for datum in data] data = es.search() print(len(data)) # print(data)
[ 11748, 33918, 198, 11748, 7007, 198, 198, 6738, 27468, 12947, 13, 38659, 1330, 2251, 62, 45163, 62, 22866, 198, 6738, 27468, 12947, 1330, 48567, 12947, 198, 6738, 651, 6603, 1330, 651, 6603, 628, 198, 4871, 48567, 18243, 25, 198, 220, 220, 220, 37227, 36918, 2848, 286, 48567, 12947, 8265, 13, 198, 220, 220, 220, 770, 8265, 318, 3562, 329, 1262, 27468, 2989, 517, 8030, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 2617, 62, 31448, 62, 20786, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 378, 5499, 32366, 329, 4634, 3403, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 481, 7716, 718, 25439, 507, 11, 1390, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1276, 7, 17561, 1756, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1439, 286, 262, 3403, 1276, 307, 11378, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1276, 62, 2301, 7, 17561, 1756, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1439, 286, 262, 3403, 1276, 307, 11378, 287, 3218, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5408, 12336, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1276, 62, 1662, 7, 17561, 1756, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1439, 286, 262, 3403, 1276, 407, 307, 11378, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1276, 62, 1662, 62, 2301, 7, 17561, 1756, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1439, 286, 262, 3403, 1276, 407, 307, 11378, 287, 3218, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5408, 12336, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 815, 7, 17561, 1756, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1881, 286, 262, 3403, 1276, 307, 11378, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 815, 62, 2301, 7, 17561, 1756, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1881, 286, 262, 3403, 1276, 307, 11378, 287, 3218, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5408, 12336, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1439, 777, 25439, 507, 423, 530, 11507, 287, 4600, 4868, 286, 8633, 63, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5501, 5002, 287, 4600, 4868, 63, 318, 257, 4600, 11600, 63, 543, 423, 691, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 12, 8367, 5166, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 329, 4905, 287, 37250, 27238, 3256, 705, 27238, 62, 1662, 3256, 705, 21754, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2446, 287, 37250, 15699, 62, 34675, 3256, 705, 260, 25636, 79, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 7, 27184, 11, 2446, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1658, 62, 4774, 796, 705, 5450, 1378, 15187, 13, 16616, 13, 22913, 13, 6469, 25, 24, 2167, 6, 198, 220, 220, 220, 1658, 62, 29460, 796, 5128, 10786, 29460, 25, 11537, 198, 220, 220, 220, 1658, 62, 28712, 796, 651, 6603, 10786, 28712, 25, 11537, 198, 220, 220, 220, 1658, 796, 48567, 18243, 7, 274, 62, 4774, 11, 357, 274, 62, 29460, 11, 1658, 62, 28712, 4008, 198, 220, 220, 220, 1658, 13, 9630, 10786, 6404, 301, 1077, 12, 472, 353, 13, 2736, 988, 9, 11537, 198, 220, 220, 220, 1303, 1658, 13, 28665, 3419, 628, 220, 220, 220, 1303, 1658, 13, 2435, 10786, 2197, 12, 1270, 82, 3256, 705, 2197, 11537, 198, 220, 220, 220, 1303, 1658, 13, 2435, 10786, 42334, 12, 2713, 12, 1415, 51, 3070, 25, 940, 25, 405, 10, 2919, 405, 11537, 198, 220, 220, 220, 1658, 13, 2435, 10786, 1238, 2481, 12, 3023, 12, 1558, 51, 1314, 25, 1129, 25, 1129, 10, 2919, 405, 3256, 705, 1238, 2481, 12, 3023, 12, 1558, 51, 1314, 25, 1828, 25, 1821, 10, 2919, 405, 11537, 628, 220, 220, 220, 1303, 1658, 13, 21754, 62, 2301, 26933, 90, 6, 312, 62, 11612, 62, 71, 10354, 705, 17477, 13, 14656, 13, 16, 15885, 6, 92, 12962, 628, 220, 220, 220, 1366, 796, 1658, 13, 12947, 7, 7857, 28, 940, 11, 3424, 28, 17821, 8, 198, 220, 220, 220, 3601, 7, 11925, 7, 7890, 4008, 198, 220, 220, 220, 685, 4798, 7, 19608, 388, 8, 329, 4818, 388, 287, 1366, 60, 198, 220, 220, 220, 1366, 796, 1658, 13, 12947, 3419, 198, 220, 220, 220, 3601, 7, 11925, 7, 7890, 4008, 198, 220, 220, 220, 1303, 3601, 7, 7890, 8 ]
2.370913
887
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "refugeedata.app.settings") try: from refugeedata.app import local_settings except ImportError: pass else: os.environ.update(local_settings.SETTINGS_DICT) from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 28686, 13, 268, 2268, 13, 2617, 12286, 7203, 35028, 1565, 11230, 62, 28480, 51, 20754, 62, 33365, 24212, 1600, 366, 5420, 2217, 276, 1045, 13, 1324, 13, 33692, 4943, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 5473, 276, 1045, 13, 1324, 1330, 1957, 62, 33692, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 13, 19119, 7, 12001, 62, 33692, 13, 28480, 51, 20754, 62, 35, 18379, 8, 628, 220, 220, 220, 422, 42625, 14208, 13, 7295, 13, 27604, 1330, 12260, 62, 6738, 62, 21812, 62, 1370, 628, 220, 220, 220, 12260, 62, 6738, 62, 21812, 62, 1370, 7, 17597, 13, 853, 85, 8, 198 ]
2.497041
169
""" aiodec ====== Decorators for coroutines """ import time import logging from functools import wraps from string import Template import inspect from inspect import Signature from typing import Callable, Optional, Mapping, Any __version__ = '2018.10.1' logger = logging.getLogger(__name__) Callback = Callable[[Signature, Mapping[str, Any]], None]
[ 37811, 198, 1872, 375, 721, 198, 50155, 198, 198, 10707, 273, 2024, 329, 1162, 448, 1127, 198, 198, 37811, 198, 198, 11748, 640, 198, 11748, 18931, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 4731, 1330, 37350, 198, 11748, 10104, 198, 6738, 10104, 1330, 34894, 198, 6738, 19720, 1330, 4889, 540, 11, 32233, 11, 337, 5912, 11, 4377, 198, 198, 834, 9641, 834, 796, 705, 7908, 13, 940, 13, 16, 6, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 47258, 796, 4889, 540, 30109, 11712, 1300, 11, 337, 5912, 58, 2536, 11, 4377, 60, 4357, 6045, 60, 628, 198 ]
3.296296
108
# Copyright 2020-2022 Robert Bosch Car Multimedia GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- # ************************************************************************************************************** # # CConfig.py # # CM-CI1/ECA3-Queckenstedt # # Purpose: # - Compute and store all repository specific information, like the repository name, # paths to repository subfolder, paths to interpreter and so on ... # # - All paths to subfolder depends on the repository root path that has to be provided to constructor of CConfig # # Additional hints: # - Variable names like SPHINXBUILD, SOURCEDIR and BUILDDIR are taken over from original output of Sphinx # (when documentation project files like make.bat are generated by Sphinx; for better understanding # no new names here). # # - Output in PDF format requires LaTeX compiler and self.__bGenPDFSupported set to True (True is default) # # - Don't be confused: We have 'doc/_build' containing the documentation builder output # and we have 'build' containing the build of the setup tools. These are different things. # # -------------------------------------------------------------------------------------------------------------- # # 11.10.2021 / XC-CI1/ECA3-Queckenstedt # Fixed path within site-packages (Linux) # # 06.10.2021 / XC-CI1/ECA3-Queckenstedt # Added Linux support # # 01.10.2021 / XC-CI1/ECA3-Queckenstedt # Added environment check # # 01.10.2021 / XC-CI1/ECA3-Queckenstedt # Added wrapper for error messages # # Initial version 08/2021 # # -------------------------------------------------------------------------------------------------------------- import os, sys, platform, shlex, subprocess import colorama as col import pypandoc col.init(autoreset=True) COLBR = col.Style.BRIGHT + col.Fore.RED COLBG = col.Style.BRIGHT + col.Fore.GREEN # -------------------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------------------- # eof def __InitConfig(self): # eof def PrintConfig(self): # eof def Get(self, sName=None): # eof class CConfig(): # --------------------------------------------------------------------------------------------------------------
[ 2, 220, 15069, 12131, 12, 1238, 1828, 5199, 14548, 354, 1879, 7854, 20626, 402, 2022, 39, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 41906, 17174, 17174, 46068, 1174, 198, 2, 198, 2, 327, 16934, 13, 9078, 198, 2, 198, 2, 16477, 12, 25690, 16, 14, 36600, 18, 12, 15681, 694, 268, 30679, 83, 198, 2, 198, 2, 32039, 25, 198, 2, 532, 3082, 1133, 290, 3650, 477, 16099, 2176, 1321, 11, 588, 262, 16099, 1438, 11, 198, 2, 220, 220, 13532, 284, 16099, 850, 43551, 11, 13532, 284, 28846, 290, 523, 319, 2644, 198, 2, 198, 2, 532, 1439, 13532, 284, 850, 43551, 8338, 319, 262, 16099, 6808, 3108, 326, 468, 284, 307, 2810, 284, 23772, 286, 327, 16934, 198, 2, 220, 198, 2, 15891, 20269, 25, 198, 2, 532, 35748, 3891, 588, 6226, 39, 1268, 55, 19499, 26761, 11, 30065, 7397, 1961, 4663, 290, 20571, 4146, 16458, 4663, 389, 2077, 625, 422, 2656, 5072, 286, 45368, 28413, 198, 2, 220, 220, 357, 12518, 10314, 1628, 3696, 588, 787, 13, 8664, 389, 7560, 416, 45368, 28413, 26, 329, 1365, 4547, 198, 2, 220, 220, 645, 649, 3891, 994, 737, 198, 2, 198, 2, 532, 25235, 287, 12960, 5794, 4433, 4689, 49568, 17050, 290, 2116, 13, 834, 65, 13746, 20456, 48181, 900, 284, 6407, 357, 17821, 318, 4277, 8, 198, 2, 198, 2, 532, 2094, 470, 307, 10416, 25, 775, 423, 705, 15390, 47835, 11249, 6, 7268, 262, 10314, 27098, 5072, 198, 2, 220, 220, 290, 356, 423, 705, 11249, 6, 7268, 262, 1382, 286, 262, 9058, 4899, 13, 2312, 389, 1180, 1243, 13, 198, 2, 198, 2, 16529, 3880, 26171, 198, 2, 198, 2, 1367, 13, 940, 13, 1238, 2481, 1220, 1395, 34, 12, 25690, 16, 14, 36600, 18, 12, 15681, 694, 268, 30679, 83, 198, 2, 10832, 3108, 1626, 2524, 12, 43789, 357, 19314, 8, 198, 2, 220, 198, 2, 9130, 13, 940, 13, 1238, 2481, 1220, 1395, 34, 12, 25690, 16, 14, 36600, 18, 12, 15681, 694, 268, 30679, 83, 198, 2, 10687, 7020, 1104, 198, 2, 220, 198, 2, 5534, 13, 940, 13, 1238, 2481, 1220, 1395, 34, 12, 25690, 16, 14, 36600, 18, 12, 15681, 694, 268, 30679, 83, 198, 2, 10687, 2858, 2198, 198, 2, 220, 198, 2, 5534, 13, 940, 13, 1238, 2481, 1220, 1395, 34, 12, 25690, 16, 14, 36600, 18, 12, 15681, 694, 268, 30679, 83, 198, 2, 10687, 29908, 329, 4049, 6218, 198, 2, 220, 198, 2, 20768, 2196, 8487, 14, 1238, 2481, 198, 2, 198, 2, 16529, 3880, 26171, 198, 198, 11748, 28686, 11, 25064, 11, 3859, 11, 427, 2588, 11, 850, 14681, 198, 11748, 3124, 1689, 355, 951, 198, 11748, 279, 4464, 392, 420, 198, 198, 4033, 13, 15003, 7, 2306, 382, 2617, 28, 17821, 8, 198, 25154, 11473, 796, 951, 13, 21466, 13, 11473, 9947, 1343, 951, 13, 16351, 13, 22083, 198, 25154, 40469, 796, 951, 13, 21466, 13, 11473, 9947, 1343, 951, 13, 16351, 13, 43016, 198, 198, 2, 16529, 3880, 26171, 198, 198, 2, 16529, 3880, 26171, 628, 628, 220, 220, 220, 1303, 304, 1659, 825, 11593, 31768, 16934, 7, 944, 2599, 628, 220, 220, 220, 1303, 304, 1659, 825, 12578, 16934, 7, 944, 2599, 628, 220, 220, 220, 1303, 304, 1659, 825, 3497, 7, 944, 11, 264, 5376, 28, 14202, 2599, 198, 198, 2, 304, 1659, 1398, 327, 16934, 33529, 198, 198, 2, 16529, 3880, 26171, 198 ]
3.930939
724
"""Test the Request class""" # Copyright (c) 2017 # Authors: Guillaume Lemaitre <[email protected]> # License: BSD 3 clause import shutil import os from os.path import dirname, join, sep, expanduser import pytest from pytest import raises from specio import core from specio.core import Request DATA_PATH = module_path = dirname(__file__) @pytest.mark.parametrize( 'type_error,msg,params', [(IOError, "Cannot understand given URI", ['invalid', 'uri'] * 10), (IOError, "Cannot understand given URI", 4), (IOError, "No such file", '/does/not/exist'), (IOError, "No such file", '/does/not/exist.zip/spam.png')])
[ 37811, 14402, 262, 19390, 1398, 37811, 198, 198, 2, 15069, 357, 66, 8, 2177, 198, 2, 46665, 25, 1962, 5049, 2454, 20607, 4548, 260, 1279, 5162, 5049, 2454, 13, 293, 2611, 270, 260, 31, 259, 7496, 13, 8310, 29, 198, 2, 13789, 25, 347, 10305, 513, 13444, 198, 198, 11748, 4423, 346, 198, 11748, 28686, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 4654, 11, 41767, 11, 4292, 7220, 198, 198, 11748, 12972, 9288, 198, 6738, 12972, 9288, 1330, 12073, 198, 198, 6738, 1020, 952, 1330, 4755, 198, 6738, 1020, 952, 13, 7295, 1330, 19390, 198, 198, 26947, 62, 34219, 796, 8265, 62, 6978, 796, 26672, 3672, 7, 834, 7753, 834, 8, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 4906, 62, 18224, 11, 19662, 11, 37266, 3256, 198, 220, 220, 220, 47527, 9399, 12331, 11, 366, 34, 34574, 1833, 1813, 43975, 1600, 37250, 259, 12102, 3256, 705, 9900, 20520, 1635, 838, 828, 198, 220, 220, 220, 220, 357, 9399, 12331, 11, 366, 34, 34574, 1833, 1813, 43975, 1600, 604, 828, 198, 220, 220, 220, 220, 357, 9399, 12331, 11, 366, 2949, 884, 2393, 1600, 31051, 22437, 14, 1662, 14, 38476, 33809, 198, 220, 220, 220, 220, 357, 9399, 12331, 11, 366, 2949, 884, 2393, 1600, 31051, 22437, 14, 1662, 14, 38476, 13, 13344, 14, 2777, 321, 13, 11134, 11537, 12962, 628, 198 ]
2.778723
235
# -*- coding: utf-8 -*- import os, shutil from pelican.generators import ArticlesGenerator from pelican.tests.support import get_settings, unittest from pelican.writers import Writer from ctags_generator import generate_ctags CUR_DIR = os.path.dirname(__file__) TEST_CONTENT_DIR = os.path.join(CUR_DIR, 'test_content')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 28686, 11, 4423, 346, 198, 198, 6738, 16176, 7490, 13, 8612, 2024, 1330, 22698, 8645, 1352, 198, 6738, 16176, 7490, 13, 41989, 13, 11284, 1330, 651, 62, 33692, 11, 555, 715, 395, 198, 6738, 16176, 7490, 13, 34422, 1330, 26606, 198, 198, 6738, 269, 31499, 62, 8612, 1352, 1330, 7716, 62, 310, 3775, 628, 198, 34, 4261, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 51, 6465, 62, 37815, 3525, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 34, 4261, 62, 34720, 11, 705, 9288, 62, 11299, 11537, 628 ]
2.892857
112
"""Module containing convenient functions for plotting""" __author__ = 'wittawat' import fsic.ex.exglobal as exglo import fsic.glo as glo import matplotlib.pyplot as plt import numpy as np def plot_2d_data(pdata): """ pdata: an instance of PairedData Return a figure handle """ X, Y = pdata.xy() n, d = X.shape if d != 2: raise ValueError('d must be 2 to plot.') # plot fig = plt.figure() plt.plot(X, Y, 'ob') plt.title(pdata.label) return fig def plot_prob_reject(ex, fname, h1_true, func_xvalues, xlabel, func_title=None): """ plot the empirical probability that the statistic is above the threshold. This can be interpreted as type-1 error (when H0 is true) or test power (when H1 is true). The plot is against the specified x-axis. - ex: experiment number - fname: file name of the aggregated result - h1_true: True if H1 is true - func_xvalues: function taking aggregated results dictionary and return the values to be used for the x-axis values. - xlabel: label of the x-axis. - func_title: a function: results dictionary -> title of the plot Return loaded results """ #from IPython.core.debugger import Tracer #Tracer()() results = glo.ex_load_result(ex, fname) #value_accessor = lambda job_results: job_results['test_result']['h0_rejected'] vf_pval = np.vectorize(rej_accessor) # results['job_results'] is a dictionary: # {'test_result': (dict from running perform_test(te) '...':..., } rejs = vf_pval(results['job_results']) repeats, _, n_methods = results['job_results'].shape mean_rejs = np.mean(rejs, axis=0) #print mean_rejs #std_pvals = np.std(rejs, axis=0) #std_pvals = np.sqrt(mean_rejs*(1.0-mean_rejs)) xvalues = func_xvalues(results) #ns = np.array(results[xkey]) #te_proportion = 1.0 - results['tr_proportion'] #test_sizes = ns*te_proportion line_styles = exglo.func_plot_fmt_map() method_labels = exglo.get_func2label_map() func_names = [f.__name__ for f in results['method_job_funcs'] ] for i in range(n_methods): te_proportion = 1.0 - results['tr_proportion'] fmt = line_styles[func_names[i]] #plt.errorbar(ns*te_proportion, mean_rejs[:, i], std_pvals[:, i]) method_label = method_labels[func_names[i]] plt.plot(xvalues, mean_rejs[:, i], fmt, label=method_label) ''' else: # h0 is true z = stats.norm.isf( (1-confidence)/2.0) for i in range(n_methods): phat = mean_rejs[:, i] conf_iv = z*(phat*(1-phat)/repeats)**0.5 #plt.errorbar(test_sizes, phat, conf_iv, fmt=line_styles[i], label=method_labels[i]) plt.plot(test_sizes, mean_rejs[:, i], line_styles[i], label=method_labels[i]) ''' ylabel = 'Test power' if h1_true else 'Type-I error' plt.ylabel(ylabel) plt.xlabel(xlabel) plt.xticks( np.hstack((xvalues) )) alpha = results['alpha'] plt.legend(loc='best') title = '%s. %d trials. $\\alpha$ = %.2g.'%( results['prob_label'], repeats, alpha) if func_title is None else func_title(results) plt.title(title) #plt.grid() return results
[ 37811, 26796, 7268, 11282, 5499, 329, 29353, 37811, 198, 198, 834, 9800, 834, 796, 705, 86, 715, 707, 265, 6, 198, 198, 11748, 277, 21383, 13, 1069, 13, 1069, 20541, 355, 409, 4743, 78, 198, 11748, 277, 21383, 13, 4743, 78, 355, 1278, 78, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 198, 4299, 7110, 62, 17, 67, 62, 7890, 7, 79, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 279, 7890, 25, 281, 4554, 286, 350, 9820, 6601, 198, 220, 220, 220, 8229, 257, 3785, 5412, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 11, 575, 796, 279, 7890, 13, 5431, 3419, 198, 220, 220, 220, 299, 11, 288, 796, 1395, 13, 43358, 220, 198, 220, 220, 220, 611, 288, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 67, 1276, 307, 362, 284, 7110, 2637, 8, 220, 198, 220, 220, 220, 1303, 7110, 198, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 55, 11, 575, 11, 705, 672, 11537, 198, 220, 220, 220, 458, 83, 13, 7839, 7, 79, 7890, 13, 18242, 8, 198, 220, 220, 220, 1441, 2336, 628, 198, 4299, 7110, 62, 1676, 65, 62, 260, 752, 7, 1069, 11, 277, 3672, 11, 289, 16, 62, 7942, 11, 25439, 62, 87, 27160, 11, 2124, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25439, 62, 7839, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7110, 262, 21594, 12867, 326, 262, 24696, 318, 2029, 262, 11387, 13, 198, 220, 220, 220, 770, 460, 307, 16173, 355, 2099, 12, 16, 4049, 357, 12518, 367, 15, 318, 2081, 8, 393, 1332, 1176, 220, 198, 220, 220, 220, 357, 12518, 367, 16, 318, 2081, 737, 383, 7110, 318, 1028, 262, 7368, 2124, 12, 22704, 13, 628, 220, 220, 220, 532, 409, 25, 6306, 1271, 220, 198, 220, 220, 220, 532, 277, 3672, 25, 2393, 1438, 286, 262, 13262, 515, 1255, 198, 220, 220, 220, 532, 289, 16, 62, 7942, 25, 6407, 611, 367, 16, 318, 2081, 220, 198, 220, 220, 220, 532, 25439, 62, 87, 27160, 25, 2163, 2263, 13262, 515, 2482, 22155, 290, 1441, 262, 3815, 220, 198, 220, 220, 220, 220, 220, 220, 220, 284, 307, 973, 329, 262, 2124, 12, 22704, 3815, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 532, 2124, 18242, 25, 6167, 286, 262, 2124, 12, 22704, 13, 220, 198, 220, 220, 220, 532, 25439, 62, 7839, 25, 257, 2163, 25, 2482, 22155, 4613, 3670, 286, 262, 7110, 628, 220, 220, 220, 8229, 9639, 2482, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6738, 6101, 7535, 13, 7295, 13, 24442, 1362, 1330, 833, 11736, 220, 198, 220, 220, 220, 1303, 2898, 11736, 3419, 3419, 628, 220, 220, 220, 2482, 796, 1278, 78, 13, 1069, 62, 2220, 62, 20274, 7, 1069, 11, 277, 3672, 8, 628, 220, 220, 220, 1303, 8367, 62, 15526, 273, 796, 37456, 1693, 62, 43420, 25, 1693, 62, 43420, 17816, 9288, 62, 20274, 6, 7131, 6, 71, 15, 62, 260, 35408, 20520, 198, 220, 220, 220, 410, 69, 62, 79, 2100, 796, 45941, 13, 31364, 1096, 7, 260, 73, 62, 15526, 273, 8, 198, 220, 220, 220, 1303, 2482, 17816, 21858, 62, 43420, 20520, 318, 257, 22155, 25, 220, 198, 220, 220, 220, 1303, 1391, 6, 9288, 62, 20274, 10354, 357, 11600, 422, 2491, 1620, 62, 9288, 7, 660, 8, 705, 986, 10354, 986, 11, 1782, 198, 220, 220, 220, 302, 8457, 796, 410, 69, 62, 79, 2100, 7, 43420, 17816, 21858, 62, 43420, 6, 12962, 198, 220, 220, 220, 29819, 11, 4808, 11, 299, 62, 24396, 82, 796, 2482, 17816, 21858, 62, 43420, 6, 4083, 43358, 198, 220, 220, 220, 1612, 62, 260, 8457, 796, 45941, 13, 32604, 7, 260, 8457, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 1303, 4798, 1612, 62, 260, 8457, 198, 220, 220, 220, 1303, 19282, 62, 79, 12786, 796, 45941, 13, 19282, 7, 260, 8457, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 1303, 19282, 62, 79, 12786, 796, 45941, 13, 31166, 17034, 7, 32604, 62, 260, 8457, 9, 7, 16, 13, 15, 12, 32604, 62, 260, 8457, 4008, 628, 220, 220, 220, 2124, 27160, 796, 25439, 62, 87, 27160, 7, 43420, 8, 628, 220, 220, 220, 1303, 5907, 796, 45941, 13, 18747, 7, 43420, 58, 87, 2539, 12962, 198, 220, 220, 220, 1303, 660, 62, 1676, 16864, 796, 352, 13, 15, 532, 2482, 17816, 2213, 62, 1676, 16864, 20520, 198, 220, 220, 220, 1303, 9288, 62, 82, 4340, 796, 36545, 9, 660, 62, 1676, 16864, 198, 220, 220, 220, 1627, 62, 47720, 796, 409, 4743, 78, 13, 20786, 62, 29487, 62, 69, 16762, 62, 8899, 3419, 198, 220, 220, 220, 2446, 62, 23912, 1424, 796, 409, 4743, 78, 13, 1136, 62, 20786, 17, 18242, 62, 8899, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 25439, 62, 14933, 796, 685, 69, 13, 834, 3672, 834, 329, 277, 287, 2482, 17816, 24396, 62, 21858, 62, 12543, 6359, 20520, 2361, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 62, 24396, 82, 2599, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 573, 62, 1676, 16864, 796, 352, 13, 15, 532, 2482, 17816, 2213, 62, 1676, 16864, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 796, 1627, 62, 47720, 58, 20786, 62, 14933, 58, 72, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 489, 83, 13, 18224, 5657, 7, 5907, 9, 660, 62, 1676, 16864, 11, 1612, 62, 260, 8457, 58, 45299, 1312, 4357, 14367, 62, 79, 12786, 58, 45299, 1312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 62, 18242, 796, 2446, 62, 23912, 1424, 58, 20786, 62, 14933, 58, 72, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 27160, 11, 1612, 62, 260, 8457, 58, 45299, 1312, 4357, 46996, 11, 6167, 28, 24396, 62, 18242, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 289, 15, 318, 2081, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 796, 9756, 13, 27237, 13, 4468, 7, 357, 16, 12, 39745, 20679, 17, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 62, 24396, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 872, 265, 796, 1612, 62, 260, 8457, 58, 45299, 1312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1013, 62, 452, 796, 1976, 9, 7, 746, 265, 9, 7, 16, 12, 746, 265, 20679, 45956, 1381, 8, 1174, 15, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 489, 83, 13, 18224, 5657, 7, 9288, 62, 82, 4340, 11, 872, 265, 11, 1013, 62, 452, 11, 46996, 28, 1370, 62, 47720, 58, 72, 4357, 6167, 28, 24396, 62, 23912, 1424, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 9288, 62, 82, 4340, 11, 1612, 62, 260, 8457, 58, 45299, 1312, 4357, 1627, 62, 47720, 58, 72, 4357, 6167, 28, 24396, 62, 23912, 1424, 58, 72, 12962, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 331, 18242, 796, 705, 14402, 1176, 6, 611, 289, 16, 62, 7942, 2073, 705, 6030, 12, 40, 4049, 6, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7, 2645, 9608, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 87, 18242, 8, 198, 220, 220, 220, 458, 83, 13, 742, 3378, 7, 45941, 13, 71, 25558, 19510, 87, 27160, 8, 15306, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17130, 796, 2482, 17816, 26591, 20520, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 3670, 796, 705, 4, 82, 13, 4064, 67, 9867, 13, 720, 6852, 26591, 3, 796, 4064, 13, 17, 70, 2637, 4, 7, 2482, 17816, 1676, 65, 62, 18242, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29819, 11, 17130, 8, 611, 25439, 62, 7839, 318, 6045, 2073, 25439, 62, 7839, 7, 43420, 8, 198, 220, 220, 220, 458, 83, 13, 7839, 7, 7839, 8, 198, 220, 220, 220, 1303, 489, 83, 13, 25928, 3419, 198, 220, 220, 220, 1441, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198 ]
2.26749
1,458
from PythonHackathon.PythonHackathon_Mos.GroupStatistics import *
[ 6738, 11361, 32833, 12938, 13, 37906, 32833, 12938, 62, 32668, 13, 13247, 48346, 1330, 1635, 198 ]
4.125
16
import json import logging import boto import boto.s3.connection import datetime import dateutil from nose.tools import eq_ as eq from six.moves import range from .multisite import * from .tests import * from .zone_es import * log = logging.getLogger(__name__)
[ 11748, 33918, 198, 11748, 18931, 198, 198, 11748, 275, 2069, 198, 11748, 275, 2069, 13, 82, 18, 13, 38659, 198, 198, 11748, 4818, 8079, 198, 11748, 3128, 22602, 198, 198, 6738, 9686, 13, 31391, 1330, 37430, 62, 355, 37430, 198, 6738, 2237, 13, 76, 5241, 1330, 2837, 198, 198, 6738, 764, 16680, 16107, 1330, 1635, 198, 6738, 764, 41989, 1330, 1635, 198, 6738, 764, 11340, 62, 274, 1330, 1635, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.178571
84
# SPDX-License-Identifier: Apache-2.0 # -*- coding: utf-8 -*- """ Render related functions """ import bpy import threading import xrs.collection import xrs.material def add_render_camera(): """ Adds one render camera that can have base settings in one place """ bpy.ops.object.camera_add() renderCam = bpy.data.cameras['Camera'] renderCam.clip_start = 0.0254 def disable_direct_indirect_for_bake(): """ Turn off direct and indirect lighting in bake settings """ bpy.context.scene.render.bake.use_pass_direct = False bpy.context.scene.render.bake.use_pass_indirect = False def render_and_save(): """ Render the image from the active camera and save it """ bpy.ops.render.render(write_still=True) result = None def render_and_save(): """ Render the image from the active camera and save it """ bpy.ops.render.render(write_still=True) def set_cpu(): """ Use the CPU for rendering """ bpy.context.scene.cycles.device = 'CPU' def set_cycles(samples = 128): """ Set the render engine to use cycles """ bpy.context.scene.render.engine = "CYCLES" bpy.context.scene.cycles.samples = samples def set_eevee(): """ Set the render engine to use cycles """ bpy.context.scene.render.engine = "BLENDER_EEVEE" def set_gpu(): """ Use the GPU for rendering """ bpy.context.scene.cycles.device = 'GPU' def set_resolution(x=4096,y=4096): """ Set the resolution of the image to render """ bpy.context.scene.render.resolution_percentage = 100 bpy.context.scene.render.resolution_x = x bpy.context.scene.render.resolution_y = y if x <= 512: bpy.context.scene.render.tile_x = x elif x <= 1024: bpy.context.scene.render.tile_x = x / 2 elif x <= 2048: bpy.context.scene.render.tile_x = x / 4 else: bpy.context.scene.render.tile_x = x / 8 if y <= 512: bpy.context.scene.render.tile_y = y elif y <= 1024: bpy.context.scene.render.tile_y = y / 2 elif y <= 2048: bpy.context.scene.render.tile_y = y / 4 else: bpy.context.scene.render.tile_y = y / 8 def set_filepath_with_format(path, format): """ Set the path of the file to be saved on render in the given format """ bpy.context.scene.render.filepath = path bpy.context.scene.render.image_settings.file_format = format def set_bake_render(resolution = 4096): """ Set for the optimal baking settings by default """ set_cycles() bpy.context.scene.display_settings.display_device = 'sRGB' set_resolution(resolution, resolution) def shadow_render(planeName): """ Sets up AO shadow for renders """ longest_dim = xrs.collection.get_largest_dimension("master") bpy.ops.mesh.primitive_plane_add(size=longest_dim*2, location=(0,0,-0.0001)) bpy.data.objects['Plane'].name = planeName bpy.data.meshes['Plane'].name = planeName planeObj = bpy.data.objects[planeName] xrs.material.make_material() planeMat = bpy.data.materials[planeName] planeMat.blend_method = "BLEND" xrs.material.new_image_texture(planeMat.name, "ao_plane", size=1024) bpy.data.worlds['World'].light_settings.use_ambient_occlusion = True distAO = bpy.data.worlds['World'].light_settings.distance shortDim = xrs.collection.get_shortest_dimension("master") distAO = 0.23*shortDim if distAO > 6: distAO = 6 bpy.data.scenes['Scene'].cycles.samples = 1024 bpy.context.scene.cycles.bake_type = 'AO' planeObj.select_set(True) planeMat.node_tree.nodes['ao_plane'].select = True bpy.ops.object.bake(type="AO", save_mode='INTERNAL') aoPlane = planeMat.node_tree.nodes['ao_plane'] transparentBSDF = planeMat.node_tree.nodes.new("ShaderNodeBsdfTransparent") matOutput = planeMat.node_tree.nodes['Material Output'] xrs.material.link_output_to_slot_named(planeMat, aoPlane.outputs[0], transparentBSDF, "Color") xrs.material.link_output_to_slot_named(planeMat, transparentBSDF.outputs[0], matOutput, "Surface")
[ 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 46722, 3519, 5499, 198, 37811, 198, 11748, 275, 9078, 198, 11748, 4704, 278, 198, 11748, 2124, 3808, 13, 43681, 198, 11748, 2124, 3808, 13, 33665, 198, 198, 4299, 751, 62, 13287, 62, 25695, 33529, 198, 220, 37227, 34333, 530, 8543, 4676, 326, 460, 423, 2779, 6460, 287, 530, 1295, 37227, 198, 220, 275, 9078, 13, 2840, 13, 15252, 13, 25695, 62, 2860, 3419, 198, 220, 8543, 21701, 796, 275, 9078, 13, 7890, 13, 66, 2382, 292, 17816, 35632, 20520, 198, 220, 8543, 21701, 13, 15036, 62, 9688, 796, 657, 13, 15, 24970, 198, 198, 4299, 15560, 62, 12942, 62, 521, 1060, 62, 1640, 62, 65, 539, 33529, 198, 220, 37227, 6756, 572, 1277, 290, 12913, 12019, 287, 28450, 6460, 37227, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 65, 539, 13, 1904, 62, 6603, 62, 12942, 796, 10352, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 65, 539, 13, 1904, 62, 6603, 62, 521, 1060, 796, 10352, 198, 198, 4299, 8543, 62, 392, 62, 21928, 33529, 198, 220, 37227, 46722, 262, 2939, 422, 262, 4075, 4676, 290, 3613, 340, 37227, 198, 220, 275, 9078, 13, 2840, 13, 13287, 13, 13287, 7, 13564, 62, 24219, 28, 17821, 8, 198, 198, 20274, 796, 6045, 198, 198, 4299, 8543, 62, 392, 62, 21928, 33529, 198, 220, 37227, 46722, 262, 2939, 422, 262, 4075, 4676, 290, 3613, 340, 37227, 198, 220, 275, 9078, 13, 2840, 13, 13287, 13, 13287, 7, 13564, 62, 24219, 28, 17821, 8, 198, 198, 4299, 900, 62, 36166, 33529, 198, 220, 37227, 5765, 262, 9135, 329, 14837, 37227, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 25202, 796, 705, 36037, 6, 198, 198, 4299, 900, 62, 32503, 7, 82, 12629, 796, 13108, 2599, 198, 220, 37227, 5345, 262, 8543, 3113, 284, 779, 16006, 37227, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 18392, 796, 366, 34, 56, 5097, 1546, 1, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 82, 12629, 796, 8405, 198, 198, 4299, 900, 62, 1453, 303, 68, 33529, 198, 220, 37227, 5345, 262, 8543, 3113, 284, 779, 16006, 37227, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 18392, 796, 366, 9148, 10619, 1137, 62, 6500, 6089, 36, 1, 198, 198, 4299, 900, 62, 46999, 33529, 198, 220, 37227, 5765, 262, 11362, 329, 14837, 37227, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 25202, 796, 705, 33346, 6, 198, 198, 4299, 900, 62, 29268, 7, 87, 28, 1821, 4846, 11, 88, 28, 1821, 4846, 2599, 198, 220, 37227, 5345, 262, 6323, 286, 262, 2939, 284, 8543, 37227, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 29268, 62, 25067, 496, 796, 1802, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 29268, 62, 87, 796, 2124, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 29268, 62, 88, 796, 331, 198, 220, 611, 2124, 19841, 22243, 25, 198, 220, 220, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 87, 796, 2124, 198, 220, 1288, 361, 2124, 19841, 28119, 25, 198, 220, 220, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 87, 796, 2124, 1220, 362, 198, 220, 1288, 361, 2124, 19841, 36117, 25, 198, 220, 220, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 87, 796, 2124, 1220, 604, 198, 220, 2073, 25, 198, 220, 220, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 87, 796, 2124, 1220, 807, 628, 220, 611, 331, 19841, 22243, 25, 198, 220, 220, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 88, 796, 331, 198, 220, 1288, 361, 331, 19841, 28119, 25, 198, 220, 220, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 88, 796, 331, 1220, 362, 198, 220, 1288, 361, 331, 19841, 36117, 25, 198, 220, 220, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 88, 796, 331, 1220, 604, 198, 220, 2073, 25, 198, 220, 220, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 88, 796, 331, 1220, 807, 198, 198, 4299, 900, 62, 7753, 6978, 62, 4480, 62, 18982, 7, 6978, 11, 5794, 2599, 198, 220, 37227, 5345, 262, 3108, 286, 262, 2393, 284, 307, 7448, 319, 8543, 287, 262, 1813, 5794, 37227, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 7753, 6978, 796, 3108, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 9060, 62, 33692, 13, 7753, 62, 18982, 796, 5794, 198, 198, 4299, 900, 62, 65, 539, 62, 13287, 7, 29268, 796, 42479, 2599, 198, 220, 37227, 5345, 329, 262, 16586, 16871, 6460, 416, 4277, 37227, 198, 220, 900, 62, 32503, 3419, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 13812, 62, 33692, 13, 13812, 62, 25202, 796, 705, 82, 36982, 6, 198, 220, 900, 62, 29268, 7, 29268, 11, 6323, 8, 198, 198, 4299, 9082, 62, 13287, 7, 14382, 5376, 2599, 198, 220, 37227, 21394, 510, 317, 46, 9082, 329, 30111, 37227, 198, 220, 14069, 62, 27740, 796, 2124, 3808, 13, 43681, 13, 1136, 62, 28209, 62, 46156, 7203, 9866, 4943, 198, 220, 275, 9078, 13, 2840, 13, 76, 5069, 13, 19795, 1800, 62, 14382, 62, 2860, 7, 7857, 28, 6511, 395, 62, 27740, 9, 17, 11, 4067, 16193, 15, 11, 15, 12095, 15, 13, 18005, 4008, 198, 220, 275, 9078, 13, 7890, 13, 48205, 17816, 3646, 1531, 6, 4083, 3672, 796, 6614, 5376, 198, 220, 275, 9078, 13, 7890, 13, 6880, 956, 17816, 3646, 1531, 6, 4083, 3672, 796, 6614, 5376, 198, 220, 6614, 49201, 796, 275, 9078, 13, 7890, 13, 48205, 58, 14382, 5376, 60, 198, 220, 2124, 3808, 13, 33665, 13, 15883, 62, 33665, 3419, 198, 220, 6614, 19044, 796, 275, 9078, 13, 7890, 13, 33665, 82, 58, 14382, 5376, 60, 198, 220, 6614, 19044, 13, 2436, 437, 62, 24396, 796, 366, 9148, 10619, 1, 198, 220, 2124, 3808, 13, 33665, 13, 3605, 62, 9060, 62, 41293, 7, 14382, 19044, 13, 3672, 11, 366, 5488, 62, 14382, 1600, 2546, 28, 35500, 8, 198, 220, 275, 9078, 13, 7890, 13, 6894, 82, 17816, 10603, 6, 4083, 2971, 62, 33692, 13, 1904, 62, 4131, 1153, 62, 420, 4717, 796, 6407, 198, 220, 1233, 32, 46, 796, 275, 9078, 13, 7890, 13, 6894, 82, 17816, 10603, 6, 4083, 2971, 62, 33692, 13, 30246, 198, 220, 1790, 29271, 796, 2124, 3808, 13, 43681, 13, 1136, 62, 19509, 395, 62, 46156, 7203, 9866, 4943, 198, 220, 1233, 32, 46, 796, 657, 13, 1954, 9, 19509, 29271, 198, 220, 611, 1233, 32, 46, 1875, 718, 25, 198, 220, 220, 220, 1233, 32, 46, 796, 718, 198, 220, 275, 9078, 13, 7890, 13, 28123, 17816, 36542, 6, 4083, 32503, 13, 82, 12629, 796, 28119, 198, 220, 275, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 65, 539, 62, 4906, 796, 705, 32, 46, 6, 198, 220, 6614, 49201, 13, 19738, 62, 2617, 7, 17821, 8, 198, 220, 6614, 19044, 13, 17440, 62, 21048, 13, 77, 4147, 17816, 5488, 62, 14382, 6, 4083, 19738, 796, 6407, 198, 220, 275, 9078, 13, 2840, 13, 15252, 13, 65, 539, 7, 4906, 2625, 32, 46, 1600, 3613, 62, 14171, 11639, 1268, 31800, 1847, 11537, 198, 220, 257, 78, 3646, 1531, 796, 220, 6614, 19044, 13, 17440, 62, 21048, 13, 77, 4147, 17816, 5488, 62, 14382, 20520, 198, 220, 13245, 4462, 8068, 796, 6614, 19044, 13, 17440, 62, 21048, 13, 77, 4147, 13, 3605, 7203, 2484, 5067, 19667, 37000, 7568, 8291, 8000, 4943, 198, 220, 2603, 26410, 796, 220, 6614, 19044, 13, 17440, 62, 21048, 13, 77, 4147, 17816, 17518, 25235, 20520, 198, 220, 2124, 3808, 13, 33665, 13, 8726, 62, 22915, 62, 1462, 62, 43384, 62, 13190, 7, 14382, 19044, 11, 257, 78, 3646, 1531, 13, 22915, 82, 58, 15, 4357, 13245, 4462, 8068, 11, 366, 10258, 4943, 198, 220, 2124, 3808, 13, 33665, 13, 8726, 62, 22915, 62, 1462, 62, 43384, 62, 13190, 7, 14382, 19044, 11, 13245, 4462, 8068, 13, 22915, 82, 58, 15, 4357, 2603, 26410, 11, 366, 14214, 2550, 4943, 198 ]
2.775937
1,388
#!/usr/bin/python2.7 import datetime
[ 2, 48443, 14629, 14, 8800, 14, 29412, 17, 13, 22, 198, 198, 11748, 4818, 8079, 628, 198 ]
2.352941
17
from datetime import datetime import discord from discord.ext import commands import psutil import pytz from cogs.utils.message_manager import MessageManager from cogs.utils import constants
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 11748, 36446, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 11748, 26692, 22602, 198, 11748, 12972, 22877, 198, 198, 6738, 269, 18463, 13, 26791, 13, 20500, 62, 37153, 1330, 16000, 13511, 198, 6738, 269, 18463, 13, 26791, 1330, 38491, 628 ]
4.041667
48
#!/usr/bin/env python from networks.cifar.cifar_model import CifarModel class LeNet(CifarModel): """ TODO: Write Comment """ def __init__(self, args): """ TODO: Write Comment """ self.name = 'LeNet' CifarModel.__init__(self, args) def network(self, img_input): """ TODO: Write Comment """ from tensorflow.keras import initializers, layers, regularizers weight_decay = 0.0001 x = layers.Conv2D(6, (5, 5), padding='valid', kernel_initializer=initializers.he_normal(), kernel_regularizer=regularizers.l2(weight_decay))(img_input) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x) x = layers.Conv2D(16, (5, 5), padding='valid', kernel_initializer=initializers.he_normal(), kernel_regularizer=regularizers.l2(weight_decay))(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x) x = layers.Flatten()(x) x = layers.Dense(120, kernel_initializer=initializers.he_normal(), kernel_regularizer=regularizers.l2(weight_decay) )(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Dense(84, kernel_initializer=initializers.he_normal(), kernel_regularizer=regularizers.l2(weight_decay) )(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu', name='Penultimate')(x) x = layers.Dense(self.num_classes, name='Output', activation = 'softmax', kernel_initializer=initializers.he_normal(), kernel_regularizer=regularizers.l2(weight_decay) )(x) return x def scheduler(self, epoch): """ TODO: Write Comment """ if epoch < 100: return 0.01 if epoch < 150: return 0.005 return 0.001
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 7686, 13, 66, 361, 283, 13, 66, 361, 283, 62, 19849, 1330, 327, 361, 283, 17633, 628, 198, 4871, 1004, 7934, 7, 34, 361, 283, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16926, 46, 25, 19430, 18957, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 26498, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 19430, 18957, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 705, 3123, 7934, 6, 628, 220, 220, 220, 220, 220, 220, 220, 327, 361, 283, 17633, 13, 834, 15003, 834, 7, 944, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 3127, 7, 944, 11, 33705, 62, 15414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 19430, 18957, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 422, 11192, 273, 11125, 13, 6122, 292, 1330, 4238, 11341, 11, 11685, 11, 3218, 11341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 12501, 323, 796, 657, 13, 18005, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 3103, 85, 17, 35, 7, 21, 11, 357, 20, 11, 642, 828, 24511, 11639, 12102, 3256, 9720, 62, 36733, 7509, 28, 36733, 11341, 13, 258, 62, 11265, 22784, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 6551, 62, 12501, 323, 4008, 7, 9600, 62, 15414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 11518, 27201, 278, 17, 35, 19510, 17, 11, 362, 828, 35002, 16193, 17, 11, 362, 4008, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 3103, 85, 17, 35, 7, 1433, 11, 357, 20, 11, 642, 828, 24511, 11639, 12102, 3256, 9720, 62, 36733, 7509, 28, 36733, 11341, 13, 258, 62, 11265, 22784, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 6551, 62, 12501, 323, 4008, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 11518, 27201, 278, 17, 35, 19510, 17, 11, 362, 828, 35002, 16193, 17, 11, 362, 4008, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 7414, 41769, 3419, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 35, 1072, 7, 10232, 11, 9720, 62, 36733, 7509, 28, 36733, 11341, 13, 258, 62, 11265, 22784, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 6551, 62, 12501, 323, 8, 1267, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 35, 1072, 7, 5705, 11, 9720, 62, 36733, 7509, 28, 36733, 11341, 13, 258, 62, 11265, 22784, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 6551, 62, 12501, 323, 8, 1267, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 3256, 220, 1438, 11639, 25553, 44818, 6, 5769, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 11685, 13, 35, 1072, 7, 944, 13, 22510, 62, 37724, 11, 1438, 11639, 26410, 3256, 14916, 796, 705, 4215, 9806, 3256, 9720, 62, 36733, 7509, 28, 36733, 11341, 13, 258, 62, 11265, 22784, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 6551, 62, 12501, 323, 8, 1267, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 628, 220, 220, 220, 825, 6038, 18173, 7, 944, 11, 36835, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 19430, 18957, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 36835, 1279, 1802, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 486, 198, 220, 220, 220, 220, 220, 220, 220, 611, 36835, 1279, 6640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 22544, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 8298, 198 ]
2.172043
930
#!/usr/bin/python # -*- coding: utf-8 -*- from optparse import OptionParser import locale from gsmmodem.modem import GsmModem import logging parser = OptionParser() parser.add_option("-a", "--address", action="store", dest="ip", type="string", help="Cureent ip address") PORT = '/dev/modem0' BAUDRATE = 115200 PIN = "0000" # SIM card PIN (if any) if __name__ == '__main__': encode = locale.getdefaultlocale() (options, args) = parser.parse_args() if options.ip is None: parser.print_help() exit() logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.DEBUG) modem = GsmModem(PORT, BAUDRATE) modem.smsTextMode = True modem.connect(PIN) modem.sendSms(+79227814419, options.ip) try: modem.rxThread.join(10) # Specify a (huge) timeout so that it essentially blocks indefinitely, but still receives CTRL+C interrupt signal finally: modem.close();
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 11748, 36693, 198, 6738, 308, 82, 3020, 375, 368, 13, 4666, 368, 1330, 402, 5796, 5841, 368, 198, 11748, 18931, 198, 198, 48610, 796, 16018, 46677, 3419, 198, 48610, 13, 2860, 62, 18076, 7203, 12, 64, 1600, 366, 438, 21975, 1600, 2223, 2625, 8095, 1600, 2244, 2625, 541, 1600, 2099, 2625, 8841, 1600, 1037, 2625, 34, 495, 298, 20966, 2209, 4943, 198, 198, 15490, 796, 31051, 7959, 14, 4666, 368, 15, 6, 198, 4339, 52, 7707, 6158, 796, 12279, 2167, 198, 44032, 796, 366, 2388, 1, 1303, 23749, 2657, 34279, 357, 361, 597, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 37773, 796, 36693, 13, 1136, 12286, 17946, 1000, 3419, 198, 220, 220, 220, 357, 25811, 11, 26498, 8, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 611, 3689, 13, 541, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 4798, 62, 16794, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 628, 220, 220, 220, 18931, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 38053, 796, 402, 5796, 5841, 368, 7, 15490, 11, 23715, 52, 7707, 6158, 8, 198, 220, 220, 220, 38053, 13, 82, 907, 8206, 19076, 796, 6407, 198, 220, 220, 220, 38053, 13, 8443, 7, 44032, 8, 628, 220, 220, 220, 38053, 13, 21280, 50, 907, 7, 10, 3720, 1828, 3695, 18444, 1129, 11, 3689, 13, 541, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 38053, 13, 40914, 16818, 13, 22179, 7, 940, 8, 220, 1303, 18291, 1958, 257, 357, 40878, 8, 26827, 523, 326, 340, 6986, 7021, 24391, 11, 475, 991, 11583, 45249, 10, 34, 11313, 6737, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 38053, 13, 19836, 9783 ]
2.627451
357
# Some examples are given below. import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all')
[ 2, 2773, 6096, 389, 1813, 2174, 13, 198, 198, 11748, 28686, 198, 198, 11748, 1332, 10745, 430, 13, 26791, 13, 504, 856, 62, 16737, 198, 198, 9288, 10745, 430, 62, 4774, 82, 796, 1332, 10745, 430, 13, 26791, 13, 504, 856, 62, 16737, 13, 2025, 82, 856, 49493, 7, 198, 220, 220, 220, 28686, 13, 268, 2268, 17816, 11770, 2538, 34, 24212, 62, 1268, 53, 3525, 15513, 62, 25664, 20520, 737, 1136, 62, 4774, 82, 10786, 439, 11537, 628, 628, 628, 198 ]
2.609756
82
import psycopg2 from .config import Config config = Config()
[ 11748, 17331, 22163, 70, 17, 198, 6738, 764, 11250, 1330, 17056, 198, 198, 11250, 796, 17056, 3419, 628, 198 ]
3.368421
19
# -*- coding: utf-8 -*- from pygments.style import Style from pygments.token import Token from pygments.styles.default import DefaultStyle
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 12972, 11726, 13, 7635, 1330, 17738, 198, 6738, 12972, 11726, 13, 30001, 1330, 29130, 198, 6738, 12972, 11726, 13, 47720, 13, 12286, 1330, 15161, 21466, 628, 198 ]
3.302326
43
# Copyright (C) 2018 Henrique Pereira Coutada Miranda # All rights reserved. # # This file is part of yambopy # import unittest import os from qepy.pw import PwIn from yambopy.data.structures import Si if __name__ == '__main__': unittest.main()
[ 2, 15069, 357, 34, 8, 2864, 6752, 33865, 17229, 8704, 40253, 4763, 29575, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 331, 4131, 11081, 198, 2, 198, 11748, 555, 715, 395, 198, 11748, 28686, 198, 6738, 10662, 538, 88, 13, 79, 86, 1330, 350, 86, 818, 198, 6738, 331, 4131, 11081, 13, 7890, 13, 7249, 942, 1330, 15638, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.840909
88
from itertools import groupby import attr import typing @attr.s @attr.s @attr.s class ExpositionClient: """ Very simple implementation of client that will get all available metrics from a namespace and expose a string formatted accoring to Prometheus expositions format. """ def _get_data(self) -> typing.List[MetricSet]: """ Get and parse data from Redis. :return: """ results = self.redis.hgetall(self.namespace) sorted_results = sorted( [ RedisKeyValuePair(key.decode(), val.decode()) for key, val in results.items() ] ) metrics = list() for metric_name, metric_items in groupby( sorted_results, key=lambda x: x.key.split(":")[0] ): metric = MetricSet(name=metric_name) for item in list(metric_items): metric.add_item(item) metrics.append(metric) return metrics def expose(self): """ Returns Prometheus formatted data. :return: """ metrics = self._get_data() out = "" for metric in metrics: out += f"# HELP {metric.name} {metric.description}\n" out += f"# TYPE {metric.name} {metric.type}\n" for value in metric.values: if value.type and value.labels: out += ( f"{metric.name}_{value.type}{{{value.labels}}} {value.value}\n" ) elif value.type and not value.labels: out += f"{metric.name}_{value.type} {value.value}\n" elif not value.type and value.labels: out += f"{metric.name}{{{value.labels}}} {value.value}\n" else: out += f"{metric.name} {value.value}\n" out += f"\n" return out
[ 6738, 340, 861, 10141, 1330, 1448, 1525, 198, 11748, 708, 81, 198, 11748, 19720, 628, 198, 31, 35226, 13, 82, 628, 198, 31, 35226, 13, 82, 628, 198, 31, 35226, 13, 82, 628, 198, 4871, 1475, 9150, 11792, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9576, 2829, 7822, 286, 5456, 326, 481, 651, 477, 1695, 20731, 422, 257, 198, 220, 220, 220, 25745, 290, 15651, 257, 4731, 39559, 697, 3255, 284, 42696, 1033, 418, 1756, 5794, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 1136, 62, 7890, 7, 944, 8, 4613, 19720, 13, 8053, 58, 9171, 1173, 7248, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 290, 21136, 1366, 422, 2297, 271, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13, 445, 271, 13, 71, 1136, 439, 7, 944, 13, 14933, 10223, 8, 628, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 43420, 796, 23243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2297, 271, 9218, 11395, 47, 958, 7, 2539, 13, 12501, 1098, 22784, 1188, 13, 12501, 1098, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2482, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 20731, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 18663, 62, 3672, 11, 18663, 62, 23814, 287, 1448, 1525, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 43420, 11, 1994, 28, 50033, 2124, 25, 2124, 13, 2539, 13, 35312, 7, 2404, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 796, 3395, 1173, 7248, 7, 3672, 28, 4164, 1173, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 1351, 7, 4164, 1173, 62, 23814, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 13, 2860, 62, 9186, 7, 9186, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20731, 13, 33295, 7, 4164, 1173, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 20731, 628, 220, 220, 220, 825, 15651, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 42696, 39559, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20731, 796, 2116, 13557, 1136, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 329, 18663, 287, 20731, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 15853, 277, 1, 2, 49944, 1391, 4164, 1173, 13, 3672, 92, 1391, 4164, 1173, 13, 11213, 32239, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 15853, 277, 1, 2, 41876, 1391, 4164, 1173, 13, 3672, 92, 1391, 4164, 1173, 13, 4906, 32239, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1988, 287, 18663, 13, 27160, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 13, 4906, 290, 1988, 13, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 15853, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 4164, 1173, 13, 3672, 92, 23330, 8367, 13, 4906, 18477, 27007, 8367, 13, 23912, 1424, 42535, 1391, 8367, 13, 8367, 32239, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1988, 13, 4906, 290, 407, 1988, 13, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 15853, 277, 1, 90, 4164, 1173, 13, 3672, 92, 23330, 8367, 13, 4906, 92, 1391, 8367, 13, 8367, 32239, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 1988, 13, 4906, 290, 1988, 13, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 15853, 277, 1, 90, 4164, 1173, 13, 3672, 18477, 27007, 8367, 13, 23912, 1424, 42535, 1391, 8367, 13, 8367, 32239, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 15853, 277, 1, 90, 4164, 1173, 13, 3672, 92, 1391, 8367, 13, 8367, 32239, 77, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 15853, 277, 1, 59, 77, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 503, 198 ]
1.988706
974
# # Author: Nikhil Taneja ([email protected]) # fb_post.py (c) 2021 # Desc: description # Created: Fri Jan 08 2021 04:19:09 GMT+0530 (India Standard Time) # Modified: Fri Jan 08 2021 18:19:22 GMT+0530 (India Standard Time) # import logging import re from urllib.parse import parse_qs, unquote, urlparse import requests from bs4 import BeautifulSoup from .model import PostModel from .utils import find_account_number, validate_hashtag logger = logging.getLogger('faucet')
[ 2, 198, 2, 6434, 25, 11271, 71, 346, 309, 1531, 6592, 357, 83, 1531, 6592, 13, 77, 13848, 346, 3070, 31, 14816, 13, 785, 8, 198, 2, 277, 65, 62, 7353, 13, 9078, 357, 66, 8, 33448, 198, 2, 39373, 25, 6764, 198, 2, 15622, 25, 220, 19480, 2365, 8487, 33448, 8702, 25, 1129, 25, 2931, 16987, 10, 2713, 1270, 357, 21569, 8997, 3862, 8, 198, 2, 40499, 25, 19480, 2365, 8487, 33448, 1248, 25, 1129, 25, 1828, 16987, 10, 2713, 1270, 357, 21569, 8997, 3862, 8, 198, 2, 198, 198, 11748, 18931, 198, 11748, 302, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 21136, 62, 48382, 11, 555, 22708, 11, 19016, 29572, 198, 198, 11748, 7007, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 198, 6738, 764, 19849, 1330, 2947, 17633, 198, 6738, 764, 26791, 1330, 1064, 62, 23317, 62, 17618, 11, 26571, 62, 17831, 12985, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 69, 14272, 316, 11537, 628 ]
2.951515
165
import glob import json import math import multiprocessing import os import re import time import h5py import imageio import numpy as np import pandas as pd from numpyencoder import NumpyEncoder from skimage.measure import label, regionprops from skimage.transform import resize from sklearn.cluster import KMeans from tqdm import tqdm from analyzer.data.utils.data_raw import readvol, folder2Vol from analyzer.utils.eval_model import Evaluationmodel class Dataloader(): ''' Dataloader class for handling the em dataset and the related labels. :param cfg: configuration manager. :param volume: the EM volume. :param labels: labels that are defined by human or segmentation and will be clustered soon. :param gt: groundtruth data (cluster) :param feature: Defines the feature that the VAE should go for. :param chunk_size: (tuple) defines the chunks in which the data is loaded. Can help to overcome Memory errors. :param ff: (string) defines the file format that you want to work with. (default: png) ''' def __len__(self): ''' Required by torch to return the length of the dataset. :returns: integer ''' with h5py.File(self.mito_volume_file_name, 'r') as f: return len(f["id"]) def __getitem__(self, idx): ''' Required by torch to return one item of the dataset. :param idx: index of the object :returns: object from the volume ''' with h5py.File(self.mito_volume_file_name, 'r') as f: return f["chunk"][idx], idx def get_fns(self): '''returns the em, label and gt filenames of every image.''' emfns = sorted(glob.glob(self.volpath + '*.' + self.ff)) labelfns = sorted(glob.glob(self.labelpath + '*.' + self.ff)) gtfns = sorted(glob.glob(self.gtpath + '*.' + self.ff)) return (emfns, labelfns, gtfns) def load_chunk(self, vol='all', mode='3d'): ''' Load chunk of em and groundtruth data for further processing. :param vol: (string) choose between -> 'all', 'em', 'label' in order to specify with volume you want to load. ''' emfns = sorted(glob.glob(self.volpath + '*.' + self.ff)) labelfns = sorted(glob.glob(self.labelpath + '*.' + self.ff)) if mode == '2d': if (vol == 'em') or (vol == 'all'): emdata = readvol(emfns[0]) emdata = np.squeeze(emdata) print('em data loaded: ', emdata.shape) if (vol == 'label') or (vol == 'all'): labels = readvol(labelfns[0]) labels = np.squeeze(labels) print('label data loaded: ', labels.shape) if mode == '3d': if (vol == 'em') or (vol == 'all'): if self.volume is None: emdata = folder2Vol(self.volpath, self.chunk_size, file_format=self.ff) print('em data loaded: ', emdata.shape) if (vol == 'label') or (vol == 'all'): if self.labels is None: labels = folder2Vol(self.labelpath, self.chunk_size, file_format=self.ff) print('label data loaded: ', labels.shape) if (vol == 'gt') or (vol == 'all'): if self.gt is None: gt = folder2Vol(self.gtpath, self.chunk_size, file_format=self.ff) print('gt data loaded: ', gt.shape) return (emdata, labels, gt) def list_segments(self, vol, labels, min_size=2000, os=0, mode='3d'): ''' This function creats a list of arrays that contain the unique segments. :param vol: (np.array) volume that contains the pure em data. (2d || 3d) :param label: (np.array) volume that contains the groundtruth. (2d || 3d) :param min_size: (int) this sets the minimum size of mitochondria region in order to be safed to the list. Used only in 2d. :param os: (int) defines the offset that should be used for cutting the bounding box. Be careful with offset as it can lead to additional regions in the chunks. :param mode: (string) 2d || 3d --> 2d gives you 2d arrays of each slice (same mitochondria are treated differently as they loose their touch after slicing) --> 3d gives you the whole mitochondria in a 3d volume. :returns: (dict) of (np.array) objects that contain the segments with labels as keys. ''' bbox_dict = {} mask = np.zeros(shape=vol.shape, dtype=np.uint16) mask[labels > 0] = 1 vol[mask == 0] = 0 if mode == '2d': bbox_list = [] for idx in range(vol.shape[0]): image = vol[idx, :, :] gt_img = labels[idx, :, :] label2d, num_label = label(gt_img, return_num=True) regions = regionprops(label2d, cache=False) for props in regions: boundbox = props.bbox if props.bbox_area > min_size: if ((boundbox[0] - os) < 0) or ((boundbox[2] + os) > image.shape[0]) or ( (boundbox[1] - os) < 0) or ((boundbox[3] + os) > image.shape[1]): tmparr = image[boundbox[0]:boundbox[2], boundbox[1]:boundbox[3]] else: tmparr = image[(boundbox[0] - os):(boundbox[2] + os), (boundbox[1] - os):(boundbox[3] + os)] bbox_list.append(tmparr) bbox_dict = {i: bbox_list[i] for i in range(len(bbox_list))} elif mode == '3d': chunk_dict = {} label3d, num_label = label(labels, return_num=True) regions = regionprops(label3d, cache=False) for props in regions: boundbox = props.bbox if ((boundbox[1] - os) < 0) or ((boundbox[4] + os) > vol.shape[1]) or ((boundbox[2] - os) < 0) or ( (boundbox[5] + os) > vol.shape[2]): tmparr = vol[boundbox[0]:boundbox[3], boundbox[1]:boundbox[4], boundbox[2]:boundbox[5]] else: tmparr = vol[boundbox[0]:boundbox[3], (boundbox[1] - os):(boundbox[4] + os), (boundbox[2] - os):(boundbox[5] + os)] bbox_dict[props.label] = tmparr else: raise ValueError('No valid dimensionality mode in function list_segments.') return (bbox_dict) def prep_data_info(self, volopt='label', save=False): ''' This function aims as an inbetween function iterating over the whole dataset in efficient and memory proof fashion in order to preserve information that is needed for further steps. :param volopt: (string) this sets the volume you want to use for the operation. default: gt :param kernel_n: (int) number of CPU kernels you want to use for multiprocessing. :returns added: (dict) that contains the labels with respective information as (list): [pixelsize, [slice_index(s)]] ''' if volopt == 'label': fns = sorted(glob.glob(self.labelpath + '*.' + self.ff)) elif volopt == 'em': fns = sorted(glob.glob(self.volpath + '*.' + self.ff)) else: raise ValueError('Please enter the volume on which \'prep_data_info\' should run on.') if self.exclude_borders: fns = fns[1:-1] with multiprocessing.Pool(processes=self.cpus) as pool: result = pool.starmap(self.calc_props, enumerate(fns)) added = {} for dicts in result: for key, value in dicts.items(): if key in added: added[key][0] += value[0] added[key][1].append(value[1]) if self.exclude_borders: if not added[key][2]: added[key].append(value[2]) else: added.setdefault(key, []) added[key].append(value[0]) added[key].append([value[1]]) if self.exclude_borders: added[key].append(value[2]) result_array = [] for result in added.keys(): if self.exclude_borders and added[result][2]: continue result_array.append({ 'id': result, 'size': added[result][0], 'slices': added[result][1] }) if save: with open(os.path.join(self.cfg.SYSTEM.ROOT_DIR, self.cfg.DATASET.DATAINFO), 'w') as f: json.dump(result_array, f, cls=NumpyEncoder) f.close() return (result_array) def calc_props(self, idx, fns): ''' Helper function for 'prep_data_info' :param idx: (int) this is the slice index that correspondes to the image slice. E.g. idx 100 belongs to image 100. :param fns: (string) list of filenames. :returns result: (dict) with each segment. key: idx of segment -- value: [number of pixels in segment, idx of slice]. ''' result = {} if os.path.exists(fns): tmp = imageio.imread(fns) for region in regionprops(tmp): result.setdefault(region.label, []) result[region.label].append(region.area) result[region.label].append(idx) result[region.label].append(False) if self.exclude_borders: minr, minc, maxr, maxc = region.bbox if minr == 0 or minc == 0: result[region.label][-1] = True if maxr == tmp.shape[0] or maxc == tmp.shape[0]: result[region.label][-1] = True return result def precluster(self, mchn='simple', n_groups=5): ''' Function preclusters the mitochondria into buckets of similar size in order to avoid sparsity and loss of information while extracting latent representation of the mitochondria. ''' if os.path.exists(os.path.join(self.cfg.SYSTEM.ROOT_DIR, self.cfg.DATASET.DATAINFO)) \ and os.stat(os.path.join(self.cfg.SYSTEM.ROOT_DIR, self.cfg.DATASET.DATAINFO)).st_size != 0: with open(os.path.join(self.cfg.SYSTEM.ROOT_DIR, self.cfg.DATASET.DATAINFO), 'r') as f: data_info = json.loads(f.read()) else: data_info = self.prep_data_info(save=True) tmp = np.stack(([mito['id'] for mito in data_info], [mito['size'] for mito in data_info]), axis=-1) if mchn == 'simple': sorted = tmp[tmp[:, 1].argsort()[::-1]] splitted = np.array_split(sorted, n_groups, axis=0) id_lists = [tmp[:, 0].tolist() for tmp in splitted] elif mchn == 'cluster': model = KMeans(n_clusters=n_groups) res_grps = model.fit_predict(np.array(tmp[:, 1]).reshape(-1, 1)) id_lists = [[]] * n_groups for idx in range(len(res_grps)): id_lists[res_grps[idx]].append(tmp[:, 0][idx]) else: raise ValueError( 'Please enter the a valid mechanismn you want to group that mitochondria. \'simple\' or \'cluster\'.') return id_lists def extract_scale_mitos(self): ''' Function to extract the objects as volumes and scale them. Then its saves the scaled volumes to an h5 file. ''' if os.path.exists(os.path.join(self.cfg.SYSTEM.ROOT_DIR, self.cfg.DATASET.DATAINFO)) \ and os.stat(os.path.join(self.cfg.SYSTEM.ROOT_DIR, self.cfg.DATASET.DATAINFO)).st_size != 0: with open(os.path.join(self.cfg.SYSTEM.ROOT_DIR, self.cfg.DATASET.DATAINFO), 'r') as f: regions = json.loads(f.read()) else: regions = self.prep_data_info(save=False) print("{} objects found in the ground truth".format(len(regions))) regions = pd.DataFrame(regions) regions = regions[(self.upper_limit > regions['size']) & (self.lower_limit < regions['size']) & ( len(regions['slices']) > 1)].values.tolist() filtered_length = len(regions) print("{} within limits {} and {}".format(filtered_length, self.lower_limit, self.upper_limit)) if self.region_limit is not None: regions = regions[:self.region_limit] print("{} will be extracted due to set region_limit".format(self.region_limit)) with h5py.File(self.mito_volume_file_name, "w") as f: f.create_dataset("shape_volume", (len(regions), 1, *self.target_size)) f.create_dataset("texture_volume", (len(regions), 1, *self.target_size)) f.create_dataset("id", (len(regions),)) if self.cpus < 2 and self.chunks_per_cpu < 2: print("single cpu mode") for i in tqdm(range(0, len(regions))): if i < 11000: continue print(i) result = self.get_mito_volume(regions[i]) f["id"][i] = result[0] f["shape_volume"][i] = result[1] f["texture_volume"][i] = result[2] with multiprocessing.Pool(processes=self.cpus) as pool: for i in tqdm(range(0, len(regions), int(self.cpus * self.chunks_per_cpu))): try: results = pool.map(self.get_mito_volume, regions[i:i + int(self.cpus * self.chunks_per_cpu)]) for j, result in enumerate(results): f["id"][i + j] = result[0] f["shape_volume"][i + j] = result[1] f["texture_volume"][i + j] = result[2] except: print("error in extraction, i: {}".format(i)) exit() def get_mito_volume(self, region): ''' Preprocessing function to extract and scale the mitochondria as volume :param region: (dict) one region object provided by Dataloader.prep_data_info :returns result: (numpy.array) a numpy array with the target dimensions and the mitochondria in it ''' gt_volume, em_volume = self.get_volumes_from_slices(region) mito_regions = regionprops(gt_volume, cache=False) if len(mito_regions) != 1: print("something went wrong during volume building. region count: {}".format(len(mito_regions))) mito_region = mito_regions[0] if len(mito_region.bbox) < 6: return [-1, np.zeros(shape=(1, *self.target_size)), np.zeros(shape=(1, *self.target_size))] shape = gt_volume[mito_region.bbox[0]:mito_region.bbox[3] + 1, mito_region.bbox[1]:mito_region.bbox[4] + 1, mito_region.bbox[2]:mito_region.bbox[5] + 1].astype(np.float32) texture = em_volume[mito_region.bbox[0]:mito_region.bbox[3] + 1, mito_region.bbox[1]:mito_region.bbox[4] + 1, mito_region.bbox[2]:mito_region.bbox[5] + 1].astype(np.float32) scaled_shape = resize(shape, self.target_size, order=1, anti_aliasing=True) scaled_shape = scaled_shape / scaled_shape.max() scaled_shape = np.expand_dims(scaled_shape, 0) scaled_texture = resize(texture, self.target_size, order=1, anti_aliasing=True) scaled_texture = scaled_texture / scaled_texture.max() scaled_texture = np.expand_dims(scaled_texture, 0) if scaled_shape.sum() < self.lower_limit * 0.1: print("region {} was too small".format(region[0])) return [-1, np.zeros(shape=(1, *self.target_size)), np.zeros(shape=(1, *self.target_size))] return [region[0], scaled_shape, scaled_texture] def get_volumes_from_slices(self, region): ''' #TODO :param region: :returns gt_volume, em_volume: ''' gt_all_fn = sorted(glob.glob(self.labelpath + '*.' + self.ff)) em_all_fn = sorted(glob.glob(self.volpath + '*.' + self.ff)) gt_fns = [gt_all_fn[id] for id in region["slices"]] em_fns = [em_all_fn[id] for id in region["slices"]] gt_volume = [] em_volume = [] for i in range(len(gt_fns)): gt_slice = imageio.imread(gt_fns[i]) em_slice = imageio.imread(em_fns[i]) gt_slice[gt_slice != region["id"]] = 0 em_slice[gt_slice != region["id"]] = 0 gt_volume.append(gt_slice) em_volume.append(em_slice) return np.array(gt_volume), np.array(em_volume) def extract_scale_mitos_samples(self): ''' Function to extract the objects as volumes and scale them. Then its saves the scaled volumes to an h5 file. ''' regions = self.prep_data_info(save=True) print("{} objects found in the ground truth".format(len(regions))) regex = re.compile('([0-9]+)_mito_samples.h5') for root, dirs, files in os.walk(self.cfg.DATASET.ROOTD): for file in files: if regex.match(file): os.remove(self.cfg.DATASET.ROOTD + file) in_q = multiprocessing.Queue() processes = [] for region in regions: in_q.put(region) pbar = tqdm(total=len(regions)) for cpu in range(self.cpus): p = multiprocessing.Process(target=self.get_mito_chunk, args=(in_q, cpu)) p.start() processes.append(p) progress = 0 while not in_q.empty(): progress_step = len(regions)-in_q.qsize() if progress != progress_step: pbar.update(progress_step-progress) progress = progress_step time.sleep(30) for p in processes: p.join() self.cleanup_h5() return
[ 11748, 15095, 198, 11748, 33918, 198, 11748, 10688, 198, 11748, 18540, 305, 919, 278, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 640, 198, 198, 11748, 289, 20, 9078, 198, 11748, 2939, 952, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 299, 32152, 12685, 12342, 1330, 399, 32152, 27195, 12342, 198, 6738, 1341, 9060, 13, 1326, 5015, 1330, 6167, 11, 3814, 1676, 862, 198, 6738, 1341, 9060, 13, 35636, 1330, 47558, 198, 6738, 1341, 35720, 13, 565, 5819, 1330, 509, 5308, 504, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 6738, 4284, 9107, 13, 7890, 13, 26791, 13, 7890, 62, 1831, 1330, 1100, 10396, 11, 9483, 17, 16598, 198, 6738, 4284, 9107, 13, 26791, 13, 18206, 62, 19849, 1330, 34959, 19849, 628, 198, 4871, 360, 10254, 1170, 263, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 360, 10254, 1170, 263, 1398, 329, 9041, 262, 795, 27039, 290, 262, 3519, 14722, 13, 628, 220, 220, 220, 1058, 17143, 30218, 70, 25, 8398, 4706, 13, 198, 220, 220, 220, 1058, 17143, 6115, 25, 262, 17228, 6115, 13, 198, 220, 220, 220, 1058, 17143, 14722, 25, 14722, 326, 389, 5447, 416, 1692, 393, 10618, 341, 290, 481, 307, 49480, 2582, 13, 198, 220, 220, 220, 1058, 17143, 308, 83, 25, 2323, 35310, 1366, 357, 565, 5819, 8, 198, 220, 220, 220, 1058, 17143, 3895, 25, 2896, 1127, 262, 3895, 326, 262, 13753, 36, 815, 467, 329, 13, 198, 220, 220, 220, 1058, 17143, 16058, 62, 7857, 25, 357, 83, 29291, 8, 15738, 262, 22716, 287, 543, 262, 1366, 318, 9639, 13, 1680, 1037, 284, 10980, 14059, 8563, 13, 198, 220, 220, 220, 1058, 17143, 31246, 25, 357, 8841, 8, 15738, 262, 2393, 5794, 326, 345, 765, 284, 670, 351, 13, 357, 12286, 25, 279, 782, 8, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 20906, 416, 28034, 284, 1441, 262, 4129, 286, 262, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 944, 13, 2781, 78, 62, 29048, 62, 7753, 62, 3672, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 69, 14692, 312, 8973, 8, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 4686, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 20906, 416, 28034, 284, 1441, 530, 2378, 286, 262, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4686, 87, 25, 6376, 286, 262, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 2134, 422, 262, 6115, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 944, 13, 2781, 78, 62, 29048, 62, 7753, 62, 3672, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 14692, 354, 2954, 1, 7131, 312, 87, 4357, 4686, 87, 628, 220, 220, 220, 825, 651, 62, 69, 5907, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 7783, 82, 262, 795, 11, 6167, 290, 308, 83, 1226, 268, 1047, 286, 790, 2939, 2637, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 795, 69, 5907, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 10396, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 69, 5907, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 18242, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 308, 27110, 5907, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 13655, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 368, 69, 5907, 11, 6167, 69, 5907, 11, 308, 27110, 5907, 8, 628, 220, 220, 220, 825, 3440, 62, 354, 2954, 7, 944, 11, 2322, 11639, 439, 3256, 4235, 11639, 18, 67, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 16058, 286, 795, 290, 2323, 35310, 1366, 329, 2252, 7587, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2322, 25, 357, 8841, 8, 3853, 1022, 4613, 705, 439, 3256, 705, 368, 3256, 705, 18242, 6, 287, 1502, 284, 11986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 6115, 345, 765, 284, 3440, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 795, 69, 5907, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 10396, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 69, 5907, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 18242, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 705, 17, 67, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10396, 6624, 705, 368, 11537, 393, 357, 10396, 6624, 705, 439, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 795, 7890, 796, 1100, 10396, 7, 368, 69, 5907, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 795, 7890, 796, 45941, 13, 16485, 1453, 2736, 7, 368, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 368, 1366, 9639, 25, 46083, 795, 7890, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10396, 6624, 705, 18242, 11537, 393, 357, 10396, 6624, 705, 439, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 1100, 10396, 7, 23912, 7046, 5907, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 45941, 13, 16485, 1453, 2736, 7, 23912, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18242, 1366, 9639, 25, 46083, 14722, 13, 43358, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 705, 18, 67, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10396, 6624, 705, 368, 11537, 393, 357, 10396, 6624, 705, 439, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 29048, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 795, 7890, 796, 9483, 17, 16598, 7, 944, 13, 10396, 6978, 11, 2116, 13, 354, 2954, 62, 7857, 11, 2393, 62, 18982, 28, 944, 13, 487, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 368, 1366, 9639, 25, 46083, 795, 7890, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10396, 6624, 705, 18242, 11537, 393, 357, 10396, 6624, 705, 439, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 23912, 1424, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 9483, 17, 16598, 7, 944, 13, 18242, 6978, 11, 2116, 13, 354, 2954, 62, 7857, 11, 2393, 62, 18982, 28, 944, 13, 487, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18242, 1366, 9639, 25, 46083, 14722, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10396, 6624, 705, 13655, 11537, 393, 357, 10396, 6624, 705, 439, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13655, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 796, 9483, 17, 16598, 7, 944, 13, 13655, 6978, 11, 2116, 13, 354, 2954, 62, 7857, 11, 2393, 62, 18982, 28, 944, 13, 487, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 13655, 1366, 9639, 25, 46083, 308, 83, 13, 43358, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 368, 7890, 11, 14722, 11, 308, 83, 8, 628, 220, 220, 220, 825, 1351, 62, 325, 11726, 7, 944, 11, 2322, 11, 14722, 11, 949, 62, 7857, 28, 11024, 11, 28686, 28, 15, 11, 4235, 11639, 18, 67, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 1827, 82, 257, 1351, 286, 26515, 326, 3994, 262, 3748, 17894, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2322, 25, 357, 37659, 13, 18747, 8, 6115, 326, 4909, 262, 5899, 795, 1366, 13, 357, 17, 67, 8614, 513, 67, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6167, 25, 357, 37659, 13, 18747, 8, 6115, 326, 4909, 262, 2323, 35310, 13, 357, 17, 67, 8614, 513, 67, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 949, 62, 7857, 25, 357, 600, 8, 428, 5621, 262, 5288, 2546, 286, 25387, 7496, 3814, 287, 1502, 284, 307, 1932, 276, 284, 262, 1351, 13, 16718, 691, 287, 362, 67, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 28686, 25, 357, 600, 8, 15738, 262, 11677, 326, 815, 307, 973, 329, 7720, 262, 5421, 278, 3091, 13, 1355, 8161, 351, 11677, 355, 340, 460, 1085, 284, 3224, 7652, 287, 262, 22716, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4235, 25, 357, 8841, 8, 362, 67, 8614, 513, 67, 14610, 362, 67, 3607, 345, 362, 67, 26515, 286, 1123, 16416, 357, 31642, 25387, 7496, 389, 5716, 10338, 355, 484, 9155, 511, 3638, 706, 49289, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14610, 513, 67, 3607, 345, 262, 2187, 25387, 7496, 287, 257, 513, 67, 6115, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 357, 11600, 8, 286, 357, 37659, 13, 18747, 8, 5563, 326, 3994, 262, 17894, 351, 14722, 355, 8251, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 45941, 13, 9107, 418, 7, 43358, 28, 10396, 13, 43358, 11, 288, 4906, 28, 37659, 13, 28611, 1433, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 58, 23912, 1424, 1875, 657, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2322, 58, 27932, 6624, 657, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 705, 17, 67, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 287, 2837, 7, 10396, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2322, 58, 312, 87, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 9600, 796, 14722, 58, 312, 87, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 17, 67, 11, 997, 62, 18242, 796, 6167, 7, 13655, 62, 9600, 11, 1441, 62, 22510, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 3814, 1676, 862, 7, 18242, 17, 67, 11, 12940, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 25744, 287, 7652, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5421, 3524, 796, 25744, 13, 65, 3524, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 25744, 13, 65, 3524, 62, 20337, 1875, 949, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14808, 7784, 3524, 58, 15, 60, 532, 28686, 8, 1279, 657, 8, 393, 14808, 7784, 3524, 58, 17, 60, 1343, 28686, 8, 1875, 2939, 13, 43358, 58, 15, 12962, 393, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7784, 3524, 58, 16, 60, 532, 28686, 8, 1279, 657, 8, 393, 14808, 7784, 3524, 58, 18, 60, 1343, 28686, 8, 1875, 2939, 13, 43358, 58, 16, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 1845, 81, 796, 2939, 58, 7784, 3524, 58, 15, 5974, 7784, 3524, 58, 17, 4357, 5421, 3524, 58, 16, 5974, 7784, 3524, 58, 18, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 1845, 81, 796, 2939, 58, 7, 7784, 3524, 58, 15, 60, 532, 28686, 2599, 7, 7784, 3524, 58, 17, 60, 1343, 28686, 828, 357, 7784, 3524, 58, 16, 60, 532, 28686, 2599, 7, 7784, 3524, 58, 18, 60, 1343, 28686, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 4868, 13, 33295, 7, 17209, 1845, 81, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 11600, 796, 1391, 72, 25, 275, 3524, 62, 4868, 58, 72, 60, 329, 1312, 287, 2837, 7, 11925, 7, 65, 3524, 62, 4868, 4008, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 705, 18, 67, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16058, 62, 11600, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 18, 67, 11, 997, 62, 18242, 796, 6167, 7, 23912, 1424, 11, 1441, 62, 22510, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 3814, 1676, 862, 7, 18242, 18, 67, 11, 12940, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 25744, 287, 7652, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5421, 3524, 796, 25744, 13, 65, 3524, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14808, 7784, 3524, 58, 16, 60, 532, 28686, 8, 1279, 657, 8, 393, 14808, 7784, 3524, 58, 19, 60, 1343, 28686, 8, 1875, 2322, 13, 43358, 58, 16, 12962, 393, 14808, 7784, 3524, 58, 17, 60, 532, 28686, 8, 1279, 657, 8, 393, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7784, 3524, 58, 20, 60, 1343, 28686, 8, 1875, 2322, 13, 43358, 58, 17, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 1845, 81, 796, 2322, 58, 7784, 3524, 58, 15, 5974, 7784, 3524, 58, 18, 4357, 5421, 3524, 58, 16, 5974, 7784, 3524, 58, 19, 4357, 5421, 3524, 58, 17, 5974, 7784, 3524, 58, 20, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 1845, 81, 796, 2322, 58, 7784, 3524, 58, 15, 5974, 7784, 3524, 58, 18, 4357, 357, 7784, 3524, 58, 16, 60, 532, 28686, 2599, 7, 7784, 3524, 58, 19, 60, 1343, 28686, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7784, 3524, 58, 17, 60, 532, 28686, 2599, 7, 7784, 3524, 58, 20, 60, 1343, 28686, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 11600, 58, 1676, 862, 13, 18242, 60, 796, 256, 76, 1845, 81, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 2949, 4938, 15793, 1483, 4235, 287, 2163, 1351, 62, 325, 11726, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 65, 3524, 62, 11600, 8, 628, 220, 220, 220, 825, 3143, 62, 7890, 62, 10951, 7, 944, 11, 2322, 8738, 11639, 18242, 3256, 3613, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 12031, 355, 281, 287, 23395, 2163, 11629, 803, 625, 262, 2187, 27039, 287, 6942, 198, 220, 220, 220, 220, 220, 220, 220, 290, 4088, 6617, 6977, 287, 1502, 284, 12201, 1321, 326, 318, 2622, 329, 2252, 4831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2322, 8738, 25, 357, 8841, 8, 428, 5621, 262, 6115, 345, 765, 284, 779, 329, 262, 4905, 13, 4277, 25, 308, 83, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9720, 62, 77, 25, 357, 600, 8, 1271, 286, 9135, 50207, 345, 765, 284, 779, 329, 18540, 305, 919, 278, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 2087, 25, 357, 11600, 8, 326, 4909, 262, 14722, 351, 11756, 1321, 355, 357, 4868, 2599, 685, 79, 14810, 1096, 11, 685, 48369, 62, 9630, 7, 82, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2322, 8738, 6624, 705, 18242, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 5907, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 18242, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2322, 8738, 6624, 705, 368, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 5907, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 10396, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 5492, 3802, 262, 6115, 319, 543, 34373, 46012, 62, 7890, 62, 10951, 43054, 815, 1057, 319, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1069, 9152, 62, 65, 6361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 5907, 796, 277, 5907, 58, 16, 21912, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 351, 18540, 305, 919, 278, 13, 27201, 7, 14681, 274, 28, 944, 13, 13155, 385, 8, 355, 5933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 5933, 13, 301, 1670, 499, 7, 944, 13, 9948, 66, 62, 1676, 862, 11, 27056, 378, 7, 69, 5907, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2087, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 8633, 82, 287, 1255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 8633, 82, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 2087, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 58, 2539, 7131, 15, 60, 15853, 1988, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 58, 2539, 7131, 16, 4083, 33295, 7, 8367, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1069, 9152, 62, 65, 6361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2087, 58, 2539, 7131, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 58, 2539, 4083, 33295, 7, 8367, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 13, 2617, 12286, 7, 2539, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 58, 2539, 4083, 33295, 7, 8367, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 58, 2539, 4083, 33295, 26933, 8367, 58, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1069, 9152, 62, 65, 6361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 58, 2539, 4083, 33295, 7, 8367, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 18747, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1255, 287, 2087, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1069, 9152, 62, 65, 6361, 290, 2087, 58, 20274, 7131, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 18747, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1255, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7857, 10354, 2087, 58, 20274, 7131, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 677, 274, 10354, 2087, 58, 20274, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3613, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 37581, 13, 23060, 25361, 13, 13252, 2394, 62, 34720, 11, 2116, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 26947, 10778, 828, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 20274, 62, 18747, 11, 277, 11, 537, 82, 28, 45, 32152, 27195, 12342, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 20274, 62, 18747, 8, 628, 220, 220, 220, 825, 42302, 62, 1676, 862, 7, 944, 11, 4686, 87, 11, 277, 5907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 5053, 525, 2163, 329, 705, 46012, 62, 7890, 62, 10951, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4686, 87, 25, 357, 600, 8, 428, 318, 262, 16416, 6376, 326, 6053, 274, 284, 262, 2939, 16416, 13, 412, 13, 70, 13, 4686, 87, 1802, 14448, 284, 2939, 1802, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 277, 5907, 25, 357, 8841, 8, 1351, 286, 1226, 268, 1047, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 1255, 25, 357, 11600, 8, 351, 1123, 10618, 13, 1994, 25, 4686, 87, 286, 10618, 1377, 1988, 25, 685, 17618, 286, 17848, 287, 10618, 11, 4686, 87, 286, 16416, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 69, 5907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 2939, 952, 13, 320, 961, 7, 69, 5907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3814, 287, 3814, 1676, 862, 7, 22065, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 2617, 12286, 7, 36996, 13, 18242, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 36996, 13, 18242, 4083, 33295, 7, 36996, 13, 20337, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 36996, 13, 18242, 4083, 33295, 7, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 36996, 13, 18242, 4083, 33295, 7, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1069, 9152, 62, 65, 6361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 81, 11, 949, 66, 11, 3509, 81, 11, 3509, 66, 796, 3814, 13, 65, 3524, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 949, 81, 6624, 657, 393, 949, 66, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 36996, 13, 18242, 7131, 12, 16, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 81, 6624, 45218, 13, 43358, 58, 15, 60, 393, 3509, 66, 6624, 45218, 13, 43358, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 36996, 13, 18242, 7131, 12, 16, 60, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 662, 565, 5819, 7, 944, 11, 285, 1349, 11639, 36439, 3256, 299, 62, 24432, 28, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 662, 565, 13654, 262, 25387, 7496, 656, 38674, 286, 2092, 2546, 287, 1502, 284, 3368, 198, 220, 220, 220, 220, 220, 220, 220, 599, 45826, 290, 2994, 286, 1321, 981, 37895, 41270, 10552, 286, 262, 25387, 7496, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 37581, 13, 23060, 25361, 13, 13252, 2394, 62, 34720, 11, 2116, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 26947, 10778, 4008, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 28686, 13, 14269, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 37581, 13, 23060, 25361, 13, 13252, 2394, 62, 34720, 11, 2116, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 26947, 10778, 29720, 301, 62, 7857, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 37581, 13, 23060, 25361, 13, 13252, 2394, 62, 34720, 11, 2116, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 26947, 10778, 828, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 10951, 796, 33918, 13, 46030, 7, 69, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 10951, 796, 2116, 13, 46012, 62, 7890, 62, 10951, 7, 21928, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 45941, 13, 25558, 19510, 58, 2781, 78, 17816, 312, 20520, 329, 285, 10094, 287, 1366, 62, 10951, 4357, 685, 2781, 78, 17816, 7857, 20520, 329, 285, 10094, 287, 1366, 62, 10951, 46570, 16488, 10779, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 285, 1349, 6624, 705, 36439, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 796, 45218, 58, 22065, 58, 45299, 352, 4083, 22046, 419, 3419, 58, 3712, 12, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 796, 45941, 13, 18747, 62, 35312, 7, 82, 9741, 11, 299, 62, 24432, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 20713, 796, 685, 22065, 58, 45299, 657, 4083, 83, 349, 396, 3419, 329, 45218, 287, 4328, 2175, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 285, 1349, 6624, 705, 565, 5819, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 509, 5308, 504, 7, 77, 62, 565, 13654, 28, 77, 62, 24432, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 2164, 862, 796, 2746, 13, 11147, 62, 79, 17407, 7, 37659, 13, 18747, 7, 22065, 58, 45299, 352, 35944, 3447, 1758, 32590, 16, 11, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 20713, 796, 16410, 11907, 1635, 299, 62, 24432, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 287, 2837, 7, 11925, 7, 411, 62, 2164, 862, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 20713, 58, 411, 62, 2164, 862, 58, 312, 87, 60, 4083, 33295, 7, 22065, 58, 45299, 657, 7131, 312, 87, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5492, 3802, 262, 257, 4938, 9030, 77, 345, 765, 284, 1448, 326, 25387, 7496, 13, 34373, 36439, 43054, 393, 34373, 565, 5819, 43054, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4686, 62, 20713, 628, 220, 220, 220, 825, 7925, 62, 9888, 62, 2781, 418, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 7925, 262, 5563, 355, 15343, 290, 5046, 606, 13, 3244, 663, 16031, 262, 27464, 15343, 284, 281, 289, 20, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 37581, 13, 23060, 25361, 13, 13252, 2394, 62, 34720, 11, 2116, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 26947, 10778, 4008, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 28686, 13, 14269, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 37581, 13, 23060, 25361, 13, 13252, 2394, 62, 34720, 11, 2116, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 26947, 10778, 29720, 301, 62, 7857, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 37581, 13, 23060, 25361, 13, 13252, 2394, 62, 34720, 11, 2116, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 26947, 10778, 828, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 33918, 13, 46030, 7, 69, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 2116, 13, 46012, 62, 7890, 62, 10951, 7, 21928, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 5563, 1043, 287, 262, 2323, 3872, 1911, 18982, 7, 11925, 7, 2301, 507, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 279, 67, 13, 6601, 19778, 7, 2301, 507, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 7652, 58, 7, 944, 13, 45828, 62, 32374, 1875, 7652, 17816, 7857, 6, 12962, 1222, 357, 944, 13, 21037, 62, 32374, 1279, 7652, 17816, 7857, 6, 12962, 1222, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 2301, 507, 17816, 82, 677, 274, 6, 12962, 1875, 352, 25295, 27160, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 13664, 796, 18896, 7, 2301, 507, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 1626, 7095, 23884, 290, 23884, 1911, 18982, 7, 10379, 4400, 62, 13664, 11, 2116, 13, 21037, 62, 32374, 11, 2116, 13, 45828, 62, 32374, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 36996, 62, 32374, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 7652, 58, 25, 944, 13, 36996, 62, 32374, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 481, 307, 21242, 2233, 284, 900, 3814, 62, 32374, 1911, 18982, 7, 944, 13, 36996, 62, 32374, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 944, 13, 2781, 78, 62, 29048, 62, 7753, 62, 3672, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 7203, 43358, 62, 29048, 1600, 357, 11925, 7, 2301, 507, 828, 352, 11, 1635, 944, 13, 16793, 62, 7857, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 7203, 41293, 62, 29048, 1600, 357, 11925, 7, 2301, 507, 828, 352, 11, 1635, 944, 13, 16793, 62, 7857, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 7203, 312, 1600, 357, 11925, 7, 2301, 507, 828, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13155, 385, 1279, 362, 290, 2116, 13, 354, 14125, 62, 525, 62, 36166, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 29762, 42804, 4235, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 256, 80, 36020, 7, 9521, 7, 15, 11, 18896, 7, 2301, 507, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1279, 1367, 830, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 1136, 62, 2781, 78, 62, 29048, 7, 2301, 507, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 14692, 312, 1, 7131, 72, 60, 796, 1255, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 14692, 43358, 62, 29048, 1, 7131, 72, 60, 796, 1255, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 14692, 41293, 62, 29048, 1, 7131, 72, 60, 796, 1255, 58, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 18540, 305, 919, 278, 13, 27201, 7, 14681, 274, 28, 944, 13, 13155, 385, 8, 355, 5933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 256, 80, 36020, 7, 9521, 7, 15, 11, 18896, 7, 2301, 507, 828, 493, 7, 944, 13, 13155, 385, 1635, 2116, 13, 354, 14125, 62, 525, 62, 36166, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 5933, 13, 8899, 7, 944, 13, 1136, 62, 2781, 78, 62, 29048, 11, 7652, 58, 72, 25, 72, 1343, 493, 7, 944, 13, 13155, 385, 1635, 2116, 13, 354, 14125, 62, 525, 62, 36166, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 11, 1255, 287, 27056, 378, 7, 43420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 14692, 312, 1, 7131, 72, 1343, 474, 60, 796, 1255, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 14692, 43358, 62, 29048, 1, 7131, 72, 1343, 474, 60, 796, 1255, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 14692, 41293, 62, 29048, 1, 7131, 72, 1343, 474, 60, 796, 1255, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18224, 287, 22236, 11, 1312, 25, 23884, 1911, 18982, 7, 72, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 628, 220, 220, 220, 825, 651, 62, 2781, 78, 62, 29048, 7, 944, 11, 3814, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3771, 36948, 2163, 284, 7925, 290, 5046, 262, 25387, 7496, 355, 6115, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3814, 25, 357, 11600, 8, 530, 3814, 2134, 2810, 416, 360, 10254, 1170, 263, 13, 46012, 62, 7890, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 1255, 25, 357, 77, 32152, 13, 18747, 8, 257, 299, 32152, 7177, 351, 262, 2496, 15225, 290, 262, 25387, 7496, 287, 340, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 29048, 11, 795, 62, 29048, 796, 2116, 13, 1136, 62, 10396, 8139, 62, 6738, 62, 82, 677, 274, 7, 36996, 8, 628, 220, 220, 220, 220, 220, 220, 220, 285, 10094, 62, 2301, 507, 796, 3814, 1676, 862, 7, 13655, 62, 29048, 11, 12940, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2781, 78, 62, 2301, 507, 8, 14512, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18927, 1816, 2642, 1141, 6115, 2615, 13, 3814, 954, 25, 23884, 1911, 18982, 7, 11925, 7, 2781, 78, 62, 2301, 507, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 285, 10094, 62, 36996, 796, 285, 10094, 62, 2301, 507, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2781, 78, 62, 36996, 13, 65, 3524, 8, 1279, 718, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 25915, 16, 11, 45941, 13, 9107, 418, 7, 43358, 16193, 16, 11, 1635, 944, 13, 16793, 62, 7857, 36911, 45941, 13, 9107, 418, 7, 43358, 16193, 16, 11, 1635, 944, 13, 16793, 62, 7857, 4008, 60, 628, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 308, 83, 62, 29048, 58, 2781, 78, 62, 36996, 13, 65, 3524, 58, 15, 5974, 2781, 78, 62, 36996, 13, 65, 3524, 58, 18, 60, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 10094, 62, 36996, 13, 65, 3524, 58, 16, 5974, 2781, 78, 62, 36996, 13, 65, 3524, 58, 19, 60, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 10094, 62, 36996, 13, 65, 3524, 58, 17, 5974, 2781, 78, 62, 36996, 13, 65, 3524, 58, 20, 60, 1343, 352, 4083, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11743, 796, 795, 62, 29048, 58, 2781, 78, 62, 36996, 13, 65, 3524, 58, 15, 5974, 2781, 78, 62, 36996, 13, 65, 3524, 58, 18, 60, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 10094, 62, 36996, 13, 65, 3524, 58, 16, 5974, 2781, 78, 62, 36996, 13, 65, 3524, 58, 19, 60, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 10094, 62, 36996, 13, 65, 3524, 58, 17, 5974, 2781, 78, 62, 36996, 13, 65, 3524, 58, 20, 60, 1343, 352, 4083, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 27464, 62, 43358, 796, 47558, 7, 43358, 11, 2116, 13, 16793, 62, 7857, 11, 1502, 28, 16, 11, 3098, 62, 7344, 2313, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27464, 62, 43358, 796, 27464, 62, 43358, 1220, 27464, 62, 43358, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27464, 62, 43358, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 1416, 3021, 62, 43358, 11, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 27464, 62, 41293, 796, 47558, 7, 41293, 11, 2116, 13, 16793, 62, 7857, 11, 1502, 28, 16, 11, 3098, 62, 7344, 2313, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27464, 62, 41293, 796, 27464, 62, 41293, 1220, 27464, 62, 41293, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27464, 62, 41293, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 1416, 3021, 62, 41293, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27464, 62, 43358, 13, 16345, 3419, 1279, 2116, 13, 21037, 62, 32374, 1635, 657, 13, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 36996, 23884, 373, 1165, 1402, 1911, 18982, 7, 36996, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 25915, 16, 11, 45941, 13, 9107, 418, 7, 43358, 16193, 16, 11, 1635, 944, 13, 16793, 62, 7857, 36911, 45941, 13, 9107, 418, 7, 43358, 16193, 16, 11, 1635, 944, 13, 16793, 62, 7857, 4008, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 36996, 58, 15, 4357, 27464, 62, 43358, 11, 27464, 62, 41293, 60, 628, 220, 220, 220, 825, 651, 62, 10396, 8139, 62, 6738, 62, 82, 677, 274, 7, 944, 11, 3814, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 51, 3727, 46, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3814, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 308, 83, 62, 29048, 11, 795, 62, 29048, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 439, 62, 22184, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 18242, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 795, 62, 439, 62, 22184, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7, 944, 13, 10396, 6978, 1343, 705, 9, 2637, 1343, 2116, 13, 487, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 69, 5907, 796, 685, 13655, 62, 439, 62, 22184, 58, 312, 60, 329, 4686, 287, 3814, 14692, 82, 677, 274, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 795, 62, 69, 5907, 796, 685, 368, 62, 439, 62, 22184, 58, 312, 60, 329, 4686, 287, 3814, 14692, 82, 677, 274, 8973, 60, 628, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 29048, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 795, 62, 29048, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 13655, 62, 69, 5907, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 48369, 796, 2939, 952, 13, 320, 961, 7, 13655, 62, 69, 5907, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 795, 62, 48369, 796, 2939, 952, 13, 320, 961, 7, 368, 62, 69, 5907, 58, 72, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 48369, 58, 13655, 62, 48369, 14512, 3814, 14692, 312, 8973, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 795, 62, 48369, 58, 13655, 62, 48369, 14512, 3814, 14692, 312, 8973, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 29048, 13, 33295, 7, 13655, 62, 48369, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 795, 62, 29048, 13, 33295, 7, 368, 62, 48369, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 7, 13655, 62, 29048, 828, 45941, 13, 18747, 7, 368, 62, 29048, 8, 628, 220, 220, 220, 825, 7925, 62, 9888, 62, 2781, 418, 62, 82, 12629, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 7925, 262, 5563, 355, 15343, 290, 5046, 606, 13, 3244, 663, 16031, 262, 27464, 15343, 284, 281, 289, 20, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 2116, 13, 46012, 62, 7890, 62, 10951, 7, 21928, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 5563, 1043, 287, 262, 2323, 3872, 1911, 18982, 7, 11925, 7, 2301, 507, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 40364, 796, 302, 13, 5589, 576, 10786, 26933, 15, 12, 24, 60, 28988, 62, 2781, 78, 62, 82, 12629, 13, 71, 20, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 944, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 13252, 2394, 35, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 40364, 13, 15699, 7, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 944, 13, 37581, 13, 35, 1404, 1921, 2767, 13, 13252, 2394, 35, 1343, 2393, 8, 628, 220, 220, 220, 220, 220, 220, 220, 287, 62, 80, 796, 18540, 305, 919, 278, 13, 34991, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 7767, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 3814, 287, 7652, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 80, 13, 1996, 7, 36996, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 796, 256, 80, 36020, 7, 23350, 28, 11925, 7, 2301, 507, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 42804, 287, 2837, 7, 944, 13, 13155, 385, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 28, 944, 13, 1136, 62, 2781, 78, 62, 354, 2954, 11, 26498, 16193, 259, 62, 80, 11, 42804, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7767, 13, 33295, 7, 79, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4371, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 407, 287, 62, 80, 13, 28920, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 9662, 796, 18896, 7, 2301, 507, 13219, 259, 62, 80, 13, 80, 7857, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4371, 14512, 4371, 62, 9662, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 19119, 7, 33723, 62, 9662, 12, 33723, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4371, 796, 4371, 62, 9662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 1270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 7767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 22179, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27773, 929, 62, 71, 20, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198 ]
2.04398
8,845
import argparse import yaml import datetime import os import torch import torch.nn.functional as F import wandb import random import numpy as np import utils import graph import dgl import models from dgl import DGLError from utils import pbar import torchmetrics import pickle as pkl if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", type = str, required = True, help = 'path to config file') parser.add_argument("-o", "--output", type = str, default = f"output/{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')}", help = "path to output file" ) parser.add_argument("-w","--wandb", action = "store_true", help = 'wandb logging') parser.add_argument("-n", "--name", type = str, default = f"{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')}", help = 'name of wandb run') args = parser.parse_args() try: config = yaml.safe_load(open(args.config, "r")) except: raise ValueError(f"Incorrect path to config file : {args.config}") if not config.get('output', False): config['output'] = args.output if args.wandb: if not config.get('name', False): config['name'] = args.name config['wandb'] = args.wandb trainer = Trainer(config, pretrain = True) trainer.run() config['encoder_save'] = f"{config['output']}/best_encoder.ckpt" config['lr'] = 1.0e-4 config['weight_decay'] = 1.0e-8 trainer = Trainer(config, pretrain = False, reinit = True) trainer.run()
[ 11748, 1822, 29572, 198, 11748, 331, 43695, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 11569, 65, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 3384, 4487, 198, 11748, 4823, 198, 11748, 288, 4743, 198, 11748, 4981, 198, 6738, 288, 4743, 1330, 46133, 2538, 81, 1472, 198, 6738, 3384, 4487, 1330, 279, 5657, 198, 11748, 28034, 4164, 10466, 198, 11748, 2298, 293, 355, 279, 41582, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 66, 1600, 366, 438, 11250, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 796, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 796, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 705, 6978, 284, 4566, 2393, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 78, 1600, 366, 438, 22915, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 796, 965, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 277, 1, 22915, 14, 90, 19608, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 62, 4, 39, 12, 4, 44, 11537, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 366, 6978, 284, 5072, 2393, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 86, 2430, 438, 86, 392, 65, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 366, 8095, 62, 7942, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 705, 86, 392, 65, 18931, 11537, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 77, 1600, 366, 438, 3672, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 796, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 277, 1, 90, 19608, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 62, 4, 39, 12, 4, 44, 11537, 92, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 705, 3672, 286, 11569, 65, 1057, 11537, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 331, 43695, 13, 21230, 62, 2220, 7, 9654, 7, 22046, 13, 11250, 11, 366, 81, 48774, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 818, 30283, 3108, 284, 4566, 2393, 1058, 1391, 22046, 13, 11250, 92, 4943, 628, 220, 220, 220, 611, 407, 4566, 13, 1136, 10786, 22915, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 22915, 20520, 796, 26498, 13, 22915, 628, 220, 220, 220, 611, 26498, 13, 86, 392, 65, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4566, 13, 1136, 10786, 3672, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 3672, 20520, 796, 26498, 13, 3672, 198, 220, 220, 220, 220, 198, 220, 220, 220, 4566, 17816, 86, 392, 65, 20520, 796, 26498, 13, 86, 392, 65, 628, 220, 220, 220, 21997, 796, 31924, 7, 11250, 11, 2181, 3201, 796, 6407, 8, 220, 198, 220, 220, 220, 21997, 13, 5143, 3419, 198, 220, 220, 220, 4566, 17816, 12685, 12342, 62, 21928, 20520, 796, 277, 1, 90, 11250, 17816, 22915, 20520, 92, 14, 13466, 62, 12685, 12342, 13, 694, 457, 1, 198, 220, 220, 220, 4566, 17816, 14050, 20520, 796, 352, 13, 15, 68, 12, 19, 198, 220, 220, 220, 4566, 17816, 6551, 62, 12501, 323, 20520, 796, 352, 13, 15, 68, 12, 23, 198, 220, 220, 220, 21997, 796, 31924, 7, 11250, 11, 2181, 3201, 796, 10352, 11, 6865, 270, 796, 6407, 8, 220, 198, 220, 220, 220, 21997, 13, 5143, 3419, 198, 220, 220, 220, 220, 198 ]
2.017335
923
# tests.test_text.test_base # Tests for the text visualization base classes # # Author: Benjamin Bengfort # Created: Mon Feb 20 06:34:50 2017 -0500 # # Copyright (C) 2016 The scikit-yb developers # For license information, see LICENSE.txt # # ID: test_base.py [6aa9198] [email protected] $ """ Tests for the text visualization base classes """ ########################################################################## ## Imports ########################################################################## from yellowbrick.base import * from yellowbrick.text.base import * from sklearn.base import BaseEstimator, TransformerMixin ########################################################################## ## TextVisualizer Base Tests ##########################################################################
[ 2, 5254, 13, 9288, 62, 5239, 13, 9288, 62, 8692, 198, 2, 30307, 329, 262, 2420, 32704, 2779, 6097, 198, 2, 198, 2, 6434, 25, 220, 220, 14533, 14964, 3319, 198, 2, 15622, 25, 220, 2892, 3158, 1160, 9130, 25, 2682, 25, 1120, 2177, 532, 2713, 405, 198, 2, 198, 2, 15069, 357, 34, 8, 1584, 383, 629, 1134, 270, 12, 88, 65, 6505, 198, 2, 1114, 5964, 1321, 11, 766, 38559, 24290, 13, 14116, 198, 2, 198, 2, 4522, 25, 1332, 62, 8692, 13, 9078, 685, 21, 7252, 24, 22337, 60, 1888, 13337, 31, 65, 1516, 3319, 13, 785, 720, 198, 198, 37811, 198, 51, 3558, 329, 262, 2420, 32704, 2779, 6097, 198, 37811, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 1846, 3742, 198, 29113, 29113, 7804, 2235, 198, 198, 6738, 7872, 1671, 624, 13, 8692, 1330, 1635, 198, 6738, 7872, 1671, 624, 13, 5239, 13, 8692, 1330, 1635, 198, 6738, 1341, 35720, 13, 8692, 1330, 7308, 22362, 320, 1352, 11, 3602, 16354, 35608, 259, 628, 198, 29113, 29113, 7804, 2235, 198, 2235, 8255, 36259, 7509, 7308, 30307, 198, 29113, 29113, 7804, 2235, 628 ]
4.413978
186
# -*- coding: utf-8 -*- """ Created on Thu Oct 7 09:42:38 2021 @author: VISHAKHA V """ arr=list(map(int,input().split())) result=max_subarray_product(arr) print("The maximum sub_array product =",result) #Take the input as [6,-3,-10,0,2] if you want, then the output will be 180
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 26223, 2556, 220, 767, 7769, 25, 3682, 25, 2548, 33448, 198, 198, 31, 9800, 25, 50035, 7801, 42, 7801, 569, 198, 37811, 198, 198, 3258, 28, 4868, 7, 8899, 7, 600, 11, 15414, 22446, 35312, 3419, 4008, 198, 198, 20274, 28, 9806, 62, 7266, 18747, 62, 11167, 7, 3258, 8, 198, 198, 4798, 7203, 464, 5415, 850, 62, 18747, 1720, 796, 1600, 20274, 8, 220, 198, 2, 12322, 262, 220, 5128, 355, 685, 21, 12095, 18, 12095, 940, 11, 15, 11, 17, 60, 611, 345, 765, 11, 788, 262, 5072, 481, 307, 11546, 198 ]
2.544643
112
# Copyright (c) 2022 Dai HBG """ 该脚本用于将1分钟数据中不在市的部分删除 """ import os import pandas as pd if __name__ == '__main__': main()
[ 2, 15069, 357, 66, 8, 33160, 39604, 25997, 38, 628, 198, 37811, 198, 46237, 98, 164, 226, 248, 17312, 105, 18796, 101, 12859, 236, 49546, 16, 26344, 228, 165, 240, 253, 46763, 108, 162, 235, 106, 40792, 38834, 28839, 101, 30585, 224, 21410, 32849, 101, 26344, 228, 26344, 254, 165, 247, 97, 198, 37811, 628, 198, 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
1.564706
85
import math import torch.nn as nn import torch.nn.functional as F # class InvertedResidual(nn.Module): # def __init__(self, inp, oup, kernel_size, stride, expand_ratio): # super(InvertedResidual, self).__init__() # assert stride in [1, 2] # self.stride = stride # padding = kernel_size // 2 # hidden_dim = round(inp * expand_ratio) # self.use_res_connect = self.stride == 1 and inp == oup # self.conv1 = nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False) # self.bn1 = nn.BatchNorm2d(hidden_dim) # self.conv2 = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, padding, groups=hidden_dim, bias=False) # self.bn2 = nn.BatchNorm2d(hidden_dim) # self.conv3 = nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False) # self.bn3 = nn.BatchNorm2d(oup) # # def forward(self, x): # inputs = x # x = self.conv1(x) # x = self.bn1(x) # x = F.relu6(x, inplace=True) # x = self.conv2(x) # x = self.bn2(x) # x = F.relu6(x, inplace=True) # x = self.conv3(x) # x = self.bn3(x) # if self.use_res_connect: # return inputs + x # else: # return x
[ 11748, 10688, 198, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 628, 628, 628, 198, 2, 1398, 554, 13658, 4965, 312, 723, 7, 20471, 13, 26796, 2599, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 287, 79, 11, 267, 929, 11, 9720, 62, 7857, 11, 33769, 11, 4292, 62, 10366, 952, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 818, 13658, 4965, 312, 723, 11, 2116, 737, 834, 15003, 834, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 33769, 287, 685, 16, 11, 362, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 485, 796, 33769, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 796, 9720, 62, 7857, 3373, 362, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 27740, 796, 2835, 7, 259, 79, 1635, 4292, 62, 10366, 952, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1904, 62, 411, 62, 8443, 796, 2116, 13, 2536, 485, 6624, 352, 290, 287, 79, 6624, 267, 929, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42946, 16, 796, 299, 77, 13, 3103, 85, 17, 67, 7, 259, 79, 11, 7104, 62, 27740, 11, 352, 11, 352, 11, 657, 11, 10690, 28, 25101, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9374, 16, 796, 299, 77, 13, 33, 963, 35393, 17, 67, 7, 30342, 62, 27740, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42946, 17, 796, 299, 77, 13, 3103, 85, 17, 67, 7, 30342, 62, 27740, 11, 7104, 62, 27740, 11, 9720, 62, 7857, 11, 33769, 11, 24511, 11, 2628, 28, 30342, 62, 27740, 11, 10690, 28, 25101, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9374, 17, 796, 299, 77, 13, 33, 963, 35393, 17, 67, 7, 30342, 62, 27740, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42946, 18, 796, 299, 77, 13, 3103, 85, 17, 67, 7, 30342, 62, 27740, 11, 267, 929, 11, 352, 11, 352, 11, 657, 11, 10690, 28, 25101, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9374, 18, 796, 299, 77, 13, 33, 963, 35393, 17, 67, 7, 10486, 8, 198, 2, 198, 2, 220, 220, 220, 220, 825, 2651, 7, 944, 11, 2124, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 42946, 16, 7, 87, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 9374, 16, 7, 87, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 376, 13, 260, 2290, 21, 7, 87, 11, 287, 5372, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 42946, 17, 7, 87, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 9374, 17, 7, 87, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 376, 13, 260, 2290, 21, 7, 87, 11, 287, 5372, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 42946, 18, 7, 87, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 9374, 18, 7, 87, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1904, 62, 411, 62, 8443, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17311, 1343, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 628 ]
1.871988
664
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import pandas as pd import tensorflow as tf parser = argparse.ArgumentParser() parser.add_argument('--batch_size', default=100, type=int, help='batch size') parser.add_argument('--train_steps', default=200, type=int, help='number of training steps') TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv" TEST_URL = "http://download.tensorflow.org/data/iris_test.csv" COLUMNS = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species'] SPECIES = ['Sentosa', 'Versicolor', 'Virginica'] def load_data(train_fraction=0.8, seed=0, y_name='Species'): """Returns the iris dataset as (train_x, train_y), (test_x, test_y).""" train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL) train = pd.read_csv(train_path, names=COLUMNS, header=0) train_x, train_y = train, train.pop(y_name) test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL) test = pd.read_csv(test_path, names=COLUMNS, header=0) test_x, test_y = test, test.pop(y_name) return (train_x, train_y), (test_x, test_y) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) tf.app.run(main)
[ 2, 220, 15069, 1584, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 37811, 16281, 286, 360, 6144, 9487, 7483, 329, 34230, 4618, 27039, 526, 15931, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 1822, 29572, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 43501, 62, 7857, 3256, 4277, 28, 3064, 11, 2099, 28, 600, 11, 1037, 11639, 43501, 2546, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 27432, 62, 20214, 3256, 4277, 28, 2167, 11, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 17618, 286, 3047, 4831, 11537, 198, 198, 51, 3861, 1268, 62, 21886, 796, 366, 4023, 1378, 15002, 13, 83, 22854, 11125, 13, 2398, 14, 7890, 14, 29616, 62, 34409, 13, 40664, 1, 198, 51, 6465, 62, 21886, 796, 366, 4023, 1378, 15002, 13, 83, 22854, 11125, 13, 2398, 14, 7890, 14, 29616, 62, 9288, 13, 40664, 1, 198, 198, 25154, 5883, 8035, 796, 37250, 19117, 282, 24539, 3256, 705, 19117, 282, 30916, 3256, 705, 25803, 282, 24539, 3256, 705, 25803, 282, 30916, 3256, 705, 5248, 3171, 20520, 198, 48451, 11015, 796, 37250, 31837, 8546, 3256, 705, 34947, 27045, 273, 3256, 705, 34674, 3970, 20520, 628, 198, 4299, 3440, 62, 7890, 7, 27432, 62, 69, 7861, 28, 15, 13, 23, 11, 9403, 28, 15, 11, 331, 62, 3672, 11639, 5248, 3171, 6, 2599, 198, 220, 220, 220, 37227, 35561, 262, 4173, 271, 27039, 355, 357, 27432, 62, 87, 11, 4512, 62, 88, 828, 357, 9288, 62, 87, 11, 1332, 62, 88, 21387, 15931, 198, 220, 220, 220, 4512, 62, 6978, 796, 48700, 13, 6122, 292, 13, 26791, 13, 1136, 62, 7753, 7, 51, 3861, 1268, 62, 21886, 13, 35312, 10786, 14, 11537, 58, 12, 16, 4357, 29125, 1268, 62, 21886, 8, 198, 220, 220, 220, 4512, 796, 279, 67, 13, 961, 62, 40664, 7, 27432, 62, 6978, 11, 3891, 28, 25154, 5883, 8035, 11, 13639, 28, 15, 8, 198, 220, 220, 220, 4512, 62, 87, 11, 4512, 62, 88, 796, 4512, 11, 4512, 13, 12924, 7, 88, 62, 3672, 8, 628, 220, 220, 220, 1332, 62, 6978, 796, 48700, 13, 6122, 292, 13, 26791, 13, 1136, 62, 7753, 7, 51, 6465, 62, 21886, 13, 35312, 10786, 14, 11537, 58, 12, 16, 4357, 43001, 62, 21886, 8, 198, 220, 220, 220, 1332, 796, 279, 67, 13, 961, 62, 40664, 7, 9288, 62, 6978, 11, 3891, 28, 25154, 5883, 8035, 11, 13639, 28, 15, 8, 198, 220, 220, 220, 1332, 62, 87, 11, 1332, 62, 88, 796, 1332, 11, 1332, 13, 12924, 7, 88, 62, 3672, 8, 628, 220, 220, 220, 1441, 357, 27432, 62, 87, 11, 4512, 62, 88, 828, 357, 9288, 62, 87, 11, 1332, 62, 88, 8, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 48700, 13, 6404, 2667, 13, 2617, 62, 19011, 16579, 7, 27110, 13, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 48700, 13, 1324, 13, 5143, 7, 12417, 8, 198 ]
2.819346
703
import unittest import time import asyncio import random import math import collections from .siridb import SiriDB from .server import Server from .client import Client
[ 11748, 555, 715, 395, 198, 11748, 640, 198, 11748, 30351, 952, 198, 11748, 4738, 198, 11748, 10688, 198, 11748, 17268, 198, 6738, 764, 82, 343, 312, 65, 1330, 34461, 11012, 198, 6738, 764, 15388, 1330, 9652, 198, 6738, 764, 16366, 1330, 20985, 628, 198 ]
3.886364
44
from .types import StaticShape, RBF, Adjacency from .math import tf_hgrid_coords, hgrid_normalize, bezier_multi, tri_ones_lower, tf_repeat_1d from .math import piecewise_linear_curve_closest_pts from .math import random_uniform_hypersphere, mutual_sq_distances, gauss_rbf, rbf_factory, crbf_wendland_d3c2 from .config import TF_FLOAT, EPSILON, BEZIER_DEFAULT_DEGREE from .model import create_entity_name, get_active_model, Entity, SingleVarContrib, TensorRef, expand_tensor_ref from .model import stop_gradient_tape from .utils import join_ident, export, apply_colormap from typing import Sequence, List, Optional, Union, Dict, Callable, Tuple import abc import tensorflow as tf import pandas as pd import numpy as np import h5py from copy import copy from contextlib import nullcontext RBF_DEFAULT = 'gauss' class Lambda(Entity): """ Entity wrapping an arbitrary expression involving tensors. """ def __init__(self, fun: Callable, tensor_ref: Union[TensorRef, Dict[str, TensorRef], List[TensorRef]], *, name=None, enable_grad: bool = True): """ Init lambda entity. :param fun: The callable to be wrapped. :param tensor_ref: Tensor ref or a list or dict of tensor refs. :param name: The name of the entity. :param enable_grad: Boolean (default true) specifying whether the gradient tape should be enabled when in training mode. """ super().__init__(name=name) self.fun = fun self.tensor_ref = copy(tensor_ref) self.enable_grad = enable_grad self.add_to_active_model() @export def lambda_(fun: Callable, tensor_ref: Union[TensorRef, Dict[str, TensorRef], List[TensorRef]], *, name=None, enable_grad: bool = True): """ Create an entity that wraps an arbitrary expression involving tensors. :param fun: A lambda function invoked with the expanded tensor refs declared in the parameter tensor_ref. :param tensor_ref: A tensor ref, a list of tensor refs or a dictionary. In the case of a dictionary the function will be invoked with named parameters whereas in the other cases positional parameters will be used. :param name: Name of the entity wrapping the expression. :param enable_grad: if true (default) the tensor tape is enabled while in training mode. :return: An entity wrapping the expression implemented in fun. """ return Lambda(fun=fun, tensor_ref=tensor_ref, name=name, enable_grad=enable_grad).get_value_ref() TensorRefs = Union[Sequence[TensorRef], TensorRef] def tensor_refs_clone(refs: TensorRefs) -> TensorRefs: """ Clone a tensor ref or a sequence of tensor refs. :param refs: :return: """ if isinstance(refs, (tf.Tensor, tf.Variable, Callable)): return refs return list(refs) @export @export @export def aggregate_rasters(rasters: Union[TensorRef, List[TensorRef]], *, bias: float = 0., name=None): """ Aggregate a list of images. The activation function ReLU is applied after the input tensors are stacked and added. :param rasters: A list of tensor refs representing the input images. :param bias: Bias value. :param name: Name of the entity. :return: An entity implementing the aggregation. """ return lambda_(adder, tensor_ref=rasters, name=name) class RBFNet: """ Radial basis function network. """ def __init__(self, rbf: RBF): """ Init RBF network. :param rbf: The radial basis function, eg the value returned by degraph.math.rbf_factory(...). """ self.rbf = rbf @staticmethod @tf.function @tf.function def grid_lines_on_grid(self, shape: StaticShape, centres: tf.Tensor): """ Apply radial basis function on a grid using distances from lines aligned with the axes. """ grid_acc = tf.zeros(shape=tf.reduce_prod(shape), dtype=TF_FLOAT) grid = tf.cast(tf.expand_dims(tf_hgrid_coords(shape), axis=1), dtype=TF_FLOAT) for k in range(centres.shape[1]): level = tf.squeeze(tf.square(grid[:, :, k:k+1] - centres[:, k:k+1]), axis=-1) level = self.rbf(level) level = tf.reduce_sum(level, axis=-1) # form a mixture grid_acc += level grid_acc = tf.reshape(grid_acc, shape=shape) # reshape values to an image return grid_acc @export class GraphRepr: # TODO extend tf.Module? """ Symmetric directed graph representation. """ # TODO Another ideas would be of getting rid of this class and have individual entities for var and other op, # this is in line with the idea of using other type of coordinates (eg. polar). HDF5_SER_TYPE = 'degraph.GraphRepr' DEF_NAME_PREFIX = 'graph_def' def __init__(self, adjacency: Adjacency, dim: int = 2, name=None, **kwargs): """ Init the graph representation object. :param adjacency: Adjacency matrix, this can be either a Numpy array, a Pandas DataFrame or a tensor. :param dim: Number of spatial dimensions of this representation, currently many internal components are limited to the 2D case it is the only option. :param name: :param kwargs: """ # TODO optional param positions_generator (space positions) self._name = create_entity_name(name, prefix=self.DEF_NAME_PREFIX) self._static = False if '_internal_skip_init' in kwargs: return if len(kwargs) != 0: raise ValueError(f'Unsupported extra parameters: {kwargs.keys()}') dim = int(dim) assert dim >= 1 if dim not in (2, 3): raise ValueError(f'Space dimensions not supported: {dim}') if isinstance(adjacency, pd.DataFrame): assert adjacency.index == adjacency.columns adjacency = np.array(adjacency) if isinstance(adjacency, np.ndarray): adjacency = tf.convert_to_tensor(adjacency) if not isinstance(adjacency, (tf.Tensor, tf.Variable)): raise ValueError(f'Unsupported type for adjacency matrix: {type(adjacency)}') assert len(adjacency.shape) == 2 and adjacency.shape[0] == adjacency.shape[1] # Mask upper triangular values of the adjacency matrix adjacency = tf.cast(adjacency, dtype=TF_FLOAT) * tf.cast(tri_ones_lower(adjacency.shape[0]), dtype=TF_FLOAT) adjacency /= tf.reduce_max(tf.abs(adjacency)) + EPSILON # Normalize edge abs weights edge_count = tf.math.count_nonzero(adjacency) edge_extreme_indexes = tf.where(adjacency) assert edge_count == edge_extreme_indexes.shape[0] and edge_extreme_indexes.shape[1] == 2 self.adjacency = adjacency # The indexes of the extreme points of each edge. The indexes point at the first axis of the variable positions. self.edge_extreme_indexes = edge_extreme_indexes with tf.name_scope(self.name): self.positions = tf.Variable(random_uniform_hypersphere(size=adjacency.shape[0], dim=dim), trainable=True, name='positions') total_ctrl_point_count = edge_extreme_indexes.shape[0] * ((BEZIER_DEFAULT_DEGREE+1)-2) ctrl_points_init = tf.reshape(random_uniform_hypersphere(size=total_ctrl_point_count, dim=dim), shape=(-1, (BEZIER_DEFAULT_DEGREE+1)-2, dim)) self.edge_internal_ctrl_points = tf.Variable(ctrl_points_init, trainable=True, name='edge_internal_ctrl_points') @property @property def static(self) -> bool: """ Boolean property, true if the current graph representation is static (i.e. the positions are not of the type tf.Variable). :return: """ return self._static def copy(self, *, static=False, name: Optional[str] = None): """ Clone the current instance of GraphRepr with the excpection of the static flag which is passed through the arguments. :param static: When static is set the variables are transformed to static tensors in the destination object. This is useful to take snapshots of the status. :param name: Optional name for the graph, otherwise an automatic one is generated. :return: """ obj = GraphRepr(np.asarray(0), _internal_skip_init=True) obj.adjacency = self.adjacency obj.edge_extreme_indexes = self.edge_extreme_indexes obj._static = static obj._name = create_entity_name(name, prefix=self.DEF_NAME_PREFIX) # Convert variables to tensors, note that when GraphRepr.static is set these are already tensors. positions = tf.convert_to_tensor(self.positions) edge_internal_ctrl_points = tf.convert_to_tensor(self.edge_internal_ctrl_points) if static: obj.positions = positions obj.edge_internal_ctrl_points = edge_internal_ctrl_points else: obj.positions = tf.Variable(positions, trainable=True) obj.edge_internal_ctrl_points = tf.Variable(edge_internal_ctrl_points, trainable=True) return obj def get_ctrl_points_vars(self) -> List[tf.Variable]: """ Get the control point variables relative to the vertexes and the edges. :return: A list of elements of type tf.Variable. """ if self.static: return [] return [self.positions, self.edge_internal_ctrl_points] def serialize(self, fobj): """ Serialize the current object in HDF5 format using the file-like object provided. :param fobj: A file-like object :return: """ with h5py.File(fobj, mode='w') as f: f['type'] = self.HDF5_SER_TYPE f['adjacency'] = self.adjacency.numpy() f['edge_extreme_indexes'] = self.edge_extreme_indexes.numpy() f['positions'] = self.positions.numpy() f['edge_internal_ctrl_points'] = self.edge_internal_ctrl_points.numpy() @property def dim(self) -> int: """ The number of spatial dimentions of this representation. :return: """ return self.positions.shape[1] def get_positions(self) -> tf.Tensor: """ Get a tensor containing the positions of the vertexes. The expected shape is [pt_count, dim]. :return: """ # TODO optionally we may include a calculation here, eg polar coordinates to cartesian return tf.convert_to_tensor(self.positions) def get_positions_ref(self) -> TensorRef: """ Get a tensor ref relative to the positions of the vertexes. See get_positions(). :return: """ return fun def get_edges_ctrl_points(self) -> tf.Tensor: """ Get the control points of the edges, the shape of the tensor is [edge_count, ctrl_point_count, dim] :return: """ # edge_extreme_points, shape: [edge_count, 2, dim] edge_extreme_points = tf.gather(self.positions, indices=self.edge_extreme_indexes) # Compose a tensor with edge's end point positions and internal control points return tf.concat([edge_extreme_points[:, 0:1, :], # start points self.edge_internal_ctrl_points, # internal points edge_extreme_points[:, 1:2, :]], axis=1) # end points class Vertexes(SingleVarContrib): """ Entity representing the vertexes of a graph. """ @export def vertexes(graph: GraphRepr, *, trainable: bool = True, name=None) -> TensorRef: """ Create an entity that represents the vertexes of a graph. :param graph: The graph object. :param trainable: If true the variable relative to the positions of the vertexes are marked as trainable. :param name: The name of the entity. :return: The entity object. """ return Vertexes(graph=graph, trainable=trainable, name=name).get_value_ref() @export @export def unit_sphere_bounds_loss(points_tensor_ref: TensorRef, *, factor: float = 1.0): """ Get a loss that penalises points laying outside the unit hyper-sphere centred in the origin. :param points_tensor_ref: A tensor ref containing the coordinates of the points. :param factor: A multiplicative factor for the loss. :return: An entity implementing the loss. """ @tf.function return lambda_(fun, points_tensor_ref) @export def mse_loss(value_ref: TensorRef, *, factor: float = 1.0) -> TensorRef: """ Get a MSE Loss. :param value_ref: The input tensor. :param factor: A multiplicative factor for the loss. :return: An entity implementing the loss. """ @tf.function return lambda_(fun, value_ref) @export def sse_loss(value_ref: TensorRef, *, factor: float = 1.0) -> TensorRef: """ Get a sum of squares loss. :param value_ref: The input tensor. :param factor: A multiplicative factor for the loss. :return: An entity implementing the loss. """ @tf.function return lambda_(fun, value_ref) class RBFNetRaster(SingleVarContrib): """ An entity that creates a raster using a radial basis function network. """ def __init__(self, points_tensor_ref: TensorRef, *, shape: StaticShape, rbf: str = RBF_DEFAULT, peak: float = 1.0, spread: float = 1.0, name=None): """ Init the entity. :param points_tensor_ref: A tensor ref referencing a tensor with expected shape: [point_count, dim]. The points are used as centres of the radial basis functions. :param shape: The shape of the raster. :param rbf: The rbf to be used, see degraph.math.rbf_factory. :param peak: The peak of the RBF. :param spread: The spread of the RBF. :param name: The name of the entity. """ super().__init__(name=name) self.points_tensor_ref = points_tensor_ref self.shape = shape self.rbf = rbf self.peak = peak self.spread = spread self._rbf_net = None self.add_to_active_model() @export @export def _scope_prepare(scope: str) -> Tuple[object, str]: """ Parse a scope string a return a tuple consisting of context manager for the assignation of the tf's scope and a string representing the summary name. The scope is of the form "<ident1>.<ident2>. ... .<ident3>", the righmost identifier is used as summary name whereas the prefix is used as scope name. :param scope: A string containing a qualified name. :return: """ splits = scope.rsplit('.', 1) if any(map(lambda v: len(v) == 0, splits)): raise ValueError(f'Invalid scope name: {scope}') if len(splits) == 1: return nullcontext(), splits[0] return tf.name_scope(splits[0]), splits[1] SummaryFunction = Callable[[tf.Tensor, str], None] class SummaryBase(Entity): """ A base template for summary entities. """ def __init__(self, var: TensorRef, fun: SummaryFunction, *, scope: str, name=None): """ Init summary entity. :param var: The variable to the summarised. :param fun: A callable of the form fun(tensor, name) that invokes the low level Tensorflow functions. :param scope: :param name: The name of this entity, note that the name of the summary is taken from parameter scope. """ super().__init__(name=name) self.var = var self.fun = fun self.scope = scope self.add_to_active_model() @export @export @export def summary_image(var: TensorRef, *, scope: str, name=None, **kwargs): """ Create an image summary entity. This function wraps tf.summary.image. :param var: The tensor to be interpreted as image. :param scope: :param name: The name of the entity representing this operation, note that the identifier of the summary in Tensorboard is determined by the parameter scope. :param kwargs: Additional parameters to be passed to tf.summary.image. :return: """ return SummaryBase(var, fun=fun, scope=scope, name=name)
[ 6738, 764, 19199, 1330, 36125, 33383, 11, 17986, 37, 11, 1215, 30482, 1387, 198, 6738, 764, 11018, 1330, 48700, 62, 71, 25928, 62, 1073, 3669, 11, 289, 25928, 62, 11265, 1096, 11, 307, 89, 959, 62, 41684, 11, 1333, 62, 1952, 62, 21037, 11, 48700, 62, 44754, 62, 16, 67, 198, 6738, 764, 11018, 1330, 3704, 3083, 62, 29127, 62, 22019, 303, 62, 565, 418, 395, 62, 457, 82, 198, 6738, 764, 11018, 1330, 4738, 62, 403, 6933, 62, 36362, 364, 79, 1456, 11, 13584, 62, 31166, 62, 17080, 1817, 11, 31986, 1046, 62, 81, 19881, 11, 374, 19881, 62, 69, 9548, 11, 1067, 19881, 62, 86, 437, 1044, 62, 67, 18, 66, 17, 198, 6738, 764, 11250, 1330, 24958, 62, 3697, 46, 1404, 11, 47013, 4146, 1340, 11, 9348, 57, 38311, 62, 7206, 38865, 62, 35, 7156, 11587, 198, 6738, 764, 19849, 1330, 2251, 62, 26858, 62, 3672, 11, 651, 62, 5275, 62, 19849, 11, 20885, 11, 14206, 19852, 4264, 822, 11, 309, 22854, 8134, 11, 4292, 62, 83, 22854, 62, 5420, 198, 6738, 764, 19849, 1330, 2245, 62, 49607, 62, 83, 1758, 198, 6738, 764, 26791, 1330, 4654, 62, 738, 11, 10784, 11, 4174, 62, 4033, 579, 499, 198, 198, 6738, 19720, 1330, 45835, 11, 7343, 11, 32233, 11, 4479, 11, 360, 713, 11, 4889, 540, 11, 309, 29291, 198, 11748, 450, 66, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 289, 20, 9078, 198, 6738, 4866, 1330, 4866, 198, 6738, 4732, 8019, 1330, 9242, 22866, 628, 198, 27912, 37, 62, 7206, 38865, 796, 705, 4908, 1046, 6, 628, 198, 4871, 21114, 6814, 7, 32398, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20885, 27074, 281, 14977, 5408, 7411, 11192, 669, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1257, 25, 4889, 540, 11, 11192, 273, 62, 5420, 25, 4479, 58, 51, 22854, 8134, 11, 360, 713, 58, 2536, 11, 309, 22854, 8134, 4357, 7343, 58, 51, 22854, 8134, 60, 4357, 1635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 14202, 11, 7139, 62, 9744, 25, 20512, 796, 6407, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 44707, 37456, 9312, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1257, 25, 383, 869, 540, 284, 307, 12908, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 11192, 273, 62, 5420, 25, 309, 22854, 1006, 393, 257, 1351, 393, 8633, 286, 11192, 273, 1006, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 383, 1438, 286, 262, 9312, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7139, 62, 9744, 25, 41146, 357, 12286, 2081, 8, 31577, 1771, 262, 31312, 9154, 815, 307, 9343, 618, 287, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 4235, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 3672, 28, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12543, 796, 1257, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 22854, 62, 5420, 796, 4866, 7, 83, 22854, 62, 5420, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21633, 62, 9744, 796, 7139, 62, 9744, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 1462, 62, 5275, 62, 19849, 3419, 628, 198, 31, 39344, 198, 4299, 37456, 41052, 12543, 25, 4889, 540, 11, 11192, 273, 62, 5420, 25, 4479, 58, 51, 22854, 8134, 11, 360, 713, 58, 2536, 11, 309, 22854, 8134, 4357, 7343, 58, 51, 22854, 8134, 60, 4357, 1635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 14202, 11, 7139, 62, 9744, 25, 20512, 796, 6407, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 281, 9312, 326, 27521, 281, 14977, 5408, 7411, 11192, 669, 13, 198, 220, 220, 220, 1058, 17143, 1257, 25, 317, 37456, 2163, 24399, 351, 262, 9902, 11192, 273, 1006, 82, 6875, 287, 262, 11507, 11192, 273, 62, 5420, 13, 198, 220, 220, 220, 1058, 17143, 11192, 273, 62, 5420, 25, 317, 11192, 273, 1006, 11, 257, 1351, 286, 11192, 273, 1006, 82, 393, 257, 22155, 13, 554, 262, 1339, 286, 257, 22155, 262, 2163, 198, 220, 220, 220, 481, 307, 24399, 351, 3706, 10007, 9472, 287, 262, 584, 2663, 45203, 10007, 481, 307, 973, 13, 198, 220, 220, 220, 1058, 17143, 1438, 25, 6530, 286, 262, 9312, 27074, 262, 5408, 13, 198, 220, 220, 220, 1058, 17143, 7139, 62, 9744, 25, 611, 2081, 357, 12286, 8, 262, 11192, 273, 9154, 318, 9343, 981, 287, 3047, 4235, 13, 198, 220, 220, 220, 1058, 7783, 25, 1052, 9312, 27074, 262, 5408, 9177, 287, 1257, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 21114, 6814, 7, 12543, 28, 12543, 11, 11192, 273, 62, 5420, 28, 83, 22854, 62, 5420, 11, 1438, 28, 3672, 11, 7139, 62, 9744, 28, 21633, 62, 9744, 737, 1136, 62, 8367, 62, 5420, 3419, 628, 198, 51, 22854, 8134, 82, 796, 4479, 58, 44015, 594, 58, 51, 22854, 8134, 4357, 309, 22854, 8134, 60, 628, 198, 4299, 11192, 273, 62, 5420, 82, 62, 21018, 7, 5420, 82, 25, 309, 22854, 8134, 82, 8, 4613, 309, 22854, 8134, 82, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30698, 257, 11192, 273, 1006, 393, 257, 8379, 286, 11192, 273, 1006, 82, 13, 198, 220, 220, 220, 1058, 17143, 1006, 82, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 5420, 82, 11, 357, 27110, 13, 51, 22854, 11, 48700, 13, 43015, 11, 4889, 540, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1006, 82, 198, 220, 220, 220, 1441, 1351, 7, 5420, 82, 8, 628, 198, 31, 39344, 628, 198, 31, 39344, 628, 198, 31, 39344, 198, 4299, 19406, 62, 81, 7060, 7, 81, 7060, 25, 4479, 58, 51, 22854, 8134, 11, 7343, 58, 51, 22854, 8134, 60, 4357, 1635, 11, 10690, 25, 12178, 796, 657, 1539, 1438, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19015, 49373, 257, 1351, 286, 4263, 13, 383, 14916, 2163, 797, 41596, 318, 5625, 706, 262, 5128, 11192, 669, 389, 24167, 290, 2087, 13, 198, 220, 220, 220, 1058, 17143, 374, 7060, 25, 317, 1351, 286, 11192, 273, 1006, 82, 10200, 262, 5128, 4263, 13, 198, 220, 220, 220, 1058, 17143, 10690, 25, 347, 4448, 1988, 13, 198, 220, 220, 220, 1058, 17143, 1438, 25, 6530, 286, 262, 9312, 13, 198, 220, 220, 220, 1058, 7783, 25, 1052, 9312, 15427, 262, 46500, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 37456, 41052, 26676, 11, 11192, 273, 62, 5420, 28, 81, 7060, 11, 1438, 28, 3672, 8, 628, 198, 4871, 17986, 37, 7934, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5325, 498, 4308, 2163, 3127, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 374, 19881, 25, 17986, 37, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 44707, 17986, 37, 3127, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 374, 19881, 25, 383, 44503, 4308, 2163, 11, 29206, 262, 1988, 4504, 416, 3396, 1470, 13, 11018, 13, 81, 19881, 62, 69, 9548, 7, 986, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 19881, 796, 374, 19881, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 27110, 13, 8818, 628, 220, 220, 220, 2488, 27110, 13, 8818, 198, 220, 220, 220, 825, 10706, 62, 6615, 62, 261, 62, 25928, 7, 944, 11, 5485, 25, 36125, 33383, 11, 19788, 25, 48700, 13, 51, 22854, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27967, 44503, 4308, 2163, 319, 257, 10706, 1262, 18868, 422, 3951, 19874, 351, 262, 34197, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 4134, 796, 48700, 13, 9107, 418, 7, 43358, 28, 27110, 13, 445, 7234, 62, 1676, 67, 7, 43358, 828, 288, 4906, 28, 10234, 62, 3697, 46, 1404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 796, 48700, 13, 2701, 7, 27110, 13, 11201, 392, 62, 67, 12078, 7, 27110, 62, 71, 25928, 62, 1073, 3669, 7, 43358, 828, 16488, 28, 16, 828, 288, 4906, 28, 10234, 62, 3697, 46, 1404, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 1087, 411, 13, 43358, 58, 16, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 796, 48700, 13, 16485, 1453, 2736, 7, 27110, 13, 23415, 7, 25928, 58, 45299, 1058, 11, 479, 25, 74, 10, 16, 60, 532, 19788, 58, 45299, 479, 25, 74, 10, 16, 46570, 16488, 10779, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 796, 2116, 13, 81, 19881, 7, 5715, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 796, 48700, 13, 445, 7234, 62, 16345, 7, 5715, 11, 16488, 10779, 16, 8, 220, 1303, 1296, 257, 11710, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 4134, 15853, 1241, 628, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 4134, 796, 48700, 13, 3447, 1758, 7, 25928, 62, 4134, 11, 5485, 28, 43358, 8, 220, 1303, 27179, 1758, 3815, 284, 281, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10706, 62, 4134, 628, 198, 198, 31, 39344, 198, 4871, 29681, 6207, 81, 25, 220, 220, 220, 1303, 16926, 46, 9117, 48700, 13, 26796, 30, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1632, 3020, 19482, 7924, 4823, 10552, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16926, 46, 6023, 4213, 561, 307, 286, 1972, 5755, 286, 428, 1398, 290, 423, 1981, 12066, 329, 1401, 290, 584, 1034, 11, 198, 220, 220, 220, 1303, 220, 220, 428, 318, 287, 1627, 351, 262, 2126, 286, 1262, 584, 2099, 286, 22715, 357, 1533, 13, 13559, 737, 628, 220, 220, 220, 5572, 37, 20, 62, 35009, 62, 25216, 796, 705, 13500, 1470, 13, 37065, 6207, 81, 6, 198, 220, 220, 220, 23449, 62, 20608, 62, 47, 31688, 10426, 796, 705, 34960, 62, 4299, 6, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9224, 330, 1387, 25, 1215, 30482, 1387, 11, 5391, 25, 493, 796, 362, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 44707, 262, 4823, 10552, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9224, 330, 1387, 25, 1215, 30482, 1387, 17593, 11, 428, 460, 307, 2035, 257, 399, 32152, 7177, 11, 257, 16492, 292, 6060, 19778, 393, 257, 11192, 273, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5391, 25, 7913, 286, 21739, 15225, 286, 428, 10552, 11, 3058, 867, 5387, 6805, 389, 3614, 198, 220, 220, 220, 220, 220, 220, 220, 284, 262, 362, 35, 1339, 340, 318, 262, 691, 3038, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 11902, 5772, 6116, 62, 8612, 1352, 357, 13200, 6116, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 2251, 62, 26858, 62, 3672, 7, 3672, 11, 21231, 28, 944, 13, 32988, 62, 20608, 62, 47, 31688, 10426, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12708, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 62, 32538, 62, 48267, 62, 15003, 6, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 46265, 22046, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 3118, 15999, 3131, 10007, 25, 1391, 46265, 22046, 13, 13083, 3419, 92, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 5391, 796, 493, 7, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 5391, 18189, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5391, 407, 287, 357, 17, 11, 513, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 14106, 15225, 407, 4855, 25, 1391, 27740, 92, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 324, 30482, 1387, 11, 279, 67, 13, 6601, 19778, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 9224, 330, 1387, 13, 9630, 6624, 9224, 330, 1387, 13, 28665, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 330, 1387, 796, 45941, 13, 18747, 7, 324, 30482, 1387, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 324, 30482, 1387, 11, 45941, 13, 358, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 330, 1387, 796, 48700, 13, 1102, 1851, 62, 1462, 62, 83, 22854, 7, 324, 30482, 1387, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 324, 30482, 1387, 11, 357, 27110, 13, 51, 22854, 11, 48700, 13, 43015, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 3118, 15999, 2099, 329, 9224, 330, 1387, 17593, 25, 1391, 4906, 7, 324, 30482, 1387, 38165, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 324, 30482, 1387, 13, 43358, 8, 6624, 362, 290, 9224, 330, 1387, 13, 43358, 58, 15, 60, 6624, 9224, 330, 1387, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18007, 6727, 46963, 3815, 286, 262, 9224, 330, 1387, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 330, 1387, 796, 48700, 13, 2701, 7, 324, 30482, 1387, 11, 288, 4906, 28, 10234, 62, 3697, 46, 1404, 8, 1635, 48700, 13, 2701, 7, 28461, 62, 1952, 62, 21037, 7, 324, 30482, 1387, 13, 43358, 58, 15, 46570, 288, 4906, 28, 10234, 62, 3697, 46, 1404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 330, 1387, 1220, 28, 48700, 13, 445, 7234, 62, 9806, 7, 27110, 13, 8937, 7, 324, 30482, 1387, 4008, 1343, 47013, 4146, 1340, 220, 220, 220, 220, 220, 1303, 14435, 1096, 5743, 2352, 19590, 198, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 9127, 796, 48700, 13, 11018, 13, 9127, 62, 13159, 22570, 7, 324, 30482, 1387, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 29896, 62, 9630, 274, 796, 48700, 13, 3003, 7, 324, 30482, 1387, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 5743, 62, 9127, 6624, 5743, 62, 29896, 62, 9630, 274, 13, 43358, 58, 15, 60, 290, 5743, 62, 29896, 62, 9630, 274, 13, 43358, 58, 16, 60, 6624, 362, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 324, 30482, 1387, 796, 9224, 330, 1387, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 39199, 286, 262, 3257, 2173, 286, 1123, 5743, 13, 383, 39199, 966, 379, 262, 717, 16488, 286, 262, 7885, 6116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14907, 62, 29896, 62, 9630, 274, 796, 5743, 62, 29896, 62, 9630, 274, 628, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 3672, 62, 29982, 7, 944, 13, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1930, 1756, 796, 48700, 13, 43015, 7, 25120, 62, 403, 6933, 62, 36362, 364, 79, 1456, 7, 7857, 28, 324, 30482, 1387, 13, 43358, 58, 15, 4357, 5391, 28, 27740, 828, 4512, 540, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 1930, 1756, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 44755, 62, 4122, 62, 9127, 796, 5743, 62, 29896, 62, 9630, 274, 13, 43358, 58, 15, 60, 1635, 14808, 12473, 57, 38311, 62, 7206, 38865, 62, 35, 7156, 11587, 10, 16, 13219, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 14859, 62, 13033, 62, 15003, 796, 48700, 13, 3447, 1758, 7, 25120, 62, 403, 6933, 62, 36362, 364, 79, 1456, 7, 7857, 28, 23350, 62, 44755, 62, 4122, 62, 9127, 11, 5391, 28, 27740, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 12, 16, 11, 357, 12473, 57, 38311, 62, 7206, 38865, 62, 35, 7156, 11587, 10, 16, 13219, 17, 11, 5391, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14907, 62, 32538, 62, 44755, 62, 13033, 796, 48700, 13, 43015, 7, 44755, 62, 13033, 62, 15003, 11, 4512, 540, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 14907, 62, 32538, 62, 44755, 62, 13033, 11537, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9037, 7, 944, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41146, 3119, 11, 2081, 611, 262, 1459, 4823, 10552, 318, 9037, 357, 72, 13, 68, 13, 262, 6116, 389, 407, 286, 262, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 43015, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 12708, 628, 220, 220, 220, 825, 4866, 7, 944, 11, 1635, 11, 9037, 28, 25101, 11, 1438, 25, 32233, 58, 2536, 60, 796, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30698, 262, 1459, 4554, 286, 29681, 6207, 81, 351, 262, 2859, 14978, 286, 262, 9037, 6056, 543, 318, 3804, 832, 262, 198, 220, 220, 220, 220, 220, 220, 220, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9037, 25, 1649, 9037, 318, 900, 262, 9633, 389, 14434, 284, 9037, 11192, 669, 287, 262, 10965, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 4465, 284, 1011, 47787, 286, 262, 3722, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 32233, 1438, 329, 262, 4823, 11, 4306, 281, 11353, 530, 318, 7560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 29681, 6207, 81, 7, 37659, 13, 292, 18747, 7, 15, 828, 4808, 32538, 62, 48267, 62, 15003, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 324, 30482, 1387, 796, 2116, 13, 324, 30482, 1387, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 14907, 62, 29896, 62, 9630, 274, 796, 2116, 13, 14907, 62, 29896, 62, 9630, 274, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13557, 12708, 796, 9037, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13557, 3672, 796, 2251, 62, 26858, 62, 3672, 7, 3672, 11, 21231, 28, 944, 13, 32988, 62, 20608, 62, 47, 31688, 10426, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 9633, 284, 11192, 669, 11, 3465, 326, 618, 29681, 6207, 81, 13, 12708, 318, 900, 777, 389, 1541, 11192, 669, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6116, 796, 48700, 13, 1102, 1851, 62, 1462, 62, 83, 22854, 7, 944, 13, 1930, 1756, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 32538, 62, 44755, 62, 13033, 796, 48700, 13, 1102, 1851, 62, 1462, 62, 83, 22854, 7, 944, 13, 14907, 62, 32538, 62, 44755, 62, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9037, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 1930, 1756, 796, 6116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 14907, 62, 32538, 62, 44755, 62, 13033, 796, 5743, 62, 32538, 62, 44755, 62, 13033, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 1930, 1756, 796, 48700, 13, 43015, 7, 1930, 1756, 11, 4512, 540, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 14907, 62, 32538, 62, 44755, 62, 13033, 796, 48700, 13, 43015, 7, 14907, 62, 32538, 62, 44755, 62, 13033, 11, 4512, 540, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26181, 628, 220, 220, 220, 825, 651, 62, 44755, 62, 13033, 62, 85, 945, 7, 944, 8, 4613, 7343, 58, 27110, 13, 43015, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 1630, 966, 9633, 3585, 284, 262, 37423, 274, 290, 262, 13015, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 1351, 286, 4847, 286, 2099, 48700, 13, 43015, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 12708, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 944, 13, 1930, 1756, 11, 2116, 13, 14907, 62, 32538, 62, 44755, 62, 13033, 60, 628, 220, 220, 220, 825, 11389, 1096, 7, 944, 11, 277, 26801, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23283, 1096, 262, 1459, 2134, 287, 5572, 37, 20, 5794, 1262, 262, 2393, 12, 2339, 2134, 2810, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 277, 26801, 25, 317, 2393, 12, 2339, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 69, 26801, 11, 4235, 11639, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 17816, 4906, 20520, 796, 2116, 13, 39, 8068, 20, 62, 35009, 62, 25216, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 17816, 324, 30482, 1387, 20520, 796, 2116, 13, 324, 30482, 1387, 13, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 17816, 14907, 62, 29896, 62, 9630, 274, 20520, 796, 2116, 13, 14907, 62, 29896, 62, 9630, 274, 13, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 17816, 1930, 1756, 20520, 796, 2116, 13, 1930, 1756, 13, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 17816, 14907, 62, 32538, 62, 44755, 62, 13033, 20520, 796, 2116, 13, 14907, 62, 32538, 62, 44755, 62, 13033, 13, 77, 32152, 3419, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5391, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 21739, 288, 3681, 507, 286, 428, 10552, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1930, 1756, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 825, 651, 62, 1930, 1756, 7, 944, 8, 4613, 48700, 13, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 257, 11192, 273, 7268, 262, 6116, 286, 262, 37423, 274, 13, 383, 2938, 5485, 318, 685, 457, 62, 9127, 11, 5391, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 42976, 356, 743, 2291, 257, 17952, 994, 11, 29206, 13559, 22715, 284, 6383, 35610, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48700, 13, 1102, 1851, 62, 1462, 62, 83, 22854, 7, 944, 13, 1930, 1756, 8, 628, 220, 220, 220, 825, 651, 62, 1930, 1756, 62, 5420, 7, 944, 8, 4613, 309, 22854, 8134, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 257, 11192, 273, 1006, 3585, 284, 262, 6116, 286, 262, 37423, 274, 13, 4091, 651, 62, 1930, 1756, 22446, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1257, 628, 220, 220, 220, 825, 651, 62, 276, 3212, 62, 44755, 62, 13033, 7, 944, 8, 4613, 48700, 13, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 1630, 2173, 286, 262, 13015, 11, 262, 5485, 286, 262, 11192, 273, 318, 685, 14907, 62, 9127, 11, 269, 14859, 62, 4122, 62, 9127, 11, 5391, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5743, 62, 29896, 62, 13033, 11, 5485, 25, 685, 14907, 62, 9127, 11, 362, 11, 5391, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 29896, 62, 13033, 796, 48700, 13, 70, 1032, 7, 944, 13, 1930, 1756, 11, 36525, 28, 944, 13, 14907, 62, 29896, 62, 9630, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 577, 257, 11192, 273, 351, 5743, 338, 886, 966, 6116, 290, 5387, 1630, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48700, 13, 1102, 9246, 26933, 14907, 62, 29896, 62, 13033, 58, 45299, 657, 25, 16, 11, 1058, 4357, 220, 220, 1303, 923, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14907, 62, 32538, 62, 44755, 62, 13033, 11, 220, 220, 1303, 5387, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 29896, 62, 13033, 58, 45299, 352, 25, 17, 11, 1058, 60, 4357, 16488, 28, 16, 8, 220, 1303, 886, 2173, 628, 198, 4871, 4643, 16886, 274, 7, 28008, 19852, 4264, 822, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20885, 10200, 262, 37423, 274, 286, 257, 4823, 13, 198, 220, 220, 220, 37227, 628, 198, 31, 39344, 198, 4299, 37423, 274, 7, 34960, 25, 29681, 6207, 81, 11, 1635, 11, 4512, 540, 25, 20512, 796, 6407, 11, 1438, 28, 14202, 8, 4613, 309, 22854, 8134, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 281, 9312, 326, 6870, 262, 37423, 274, 286, 257, 4823, 13, 198, 220, 220, 220, 1058, 17143, 4823, 25, 383, 4823, 2134, 13, 198, 220, 220, 220, 1058, 17143, 4512, 540, 25, 1002, 2081, 262, 7885, 3585, 284, 262, 6116, 286, 262, 37423, 274, 389, 7498, 355, 4512, 540, 13, 198, 220, 220, 220, 1058, 17143, 1438, 25, 383, 1438, 286, 262, 9312, 13, 198, 220, 220, 220, 1058, 7783, 25, 383, 9312, 2134, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4643, 16886, 274, 7, 34960, 28, 34960, 11, 4512, 540, 28, 27432, 540, 11, 1438, 28, 3672, 737, 1136, 62, 8367, 62, 5420, 3419, 628, 198, 198, 31, 39344, 628, 198, 31, 39344, 198, 4299, 4326, 62, 2777, 1456, 62, 65, 3733, 62, 22462, 7, 13033, 62, 83, 22854, 62, 5420, 25, 309, 22854, 8134, 11, 1635, 11, 5766, 25, 12178, 796, 352, 13, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 257, 2994, 326, 23634, 2696, 2173, 16299, 2354, 262, 4326, 8718, 12, 2777, 1456, 1247, 445, 287, 262, 8159, 13, 198, 220, 220, 220, 1058, 17143, 2173, 62, 83, 22854, 62, 5420, 25, 317, 11192, 273, 1006, 7268, 262, 22715, 286, 262, 2173, 13, 198, 220, 220, 220, 1058, 17143, 5766, 25, 317, 15082, 43058, 5766, 329, 262, 2994, 13, 198, 220, 220, 220, 1058, 7783, 25, 1052, 9312, 15427, 262, 2994, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 27110, 13, 8818, 198, 220, 220, 220, 1441, 37456, 41052, 12543, 11, 2173, 62, 83, 22854, 62, 5420, 8, 628, 198, 198, 31, 39344, 198, 4299, 285, 325, 62, 22462, 7, 8367, 62, 5420, 25, 309, 22854, 8134, 11, 1635, 11, 5766, 25, 12178, 796, 352, 13, 15, 8, 4613, 309, 22854, 8134, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 257, 337, 5188, 22014, 13, 198, 220, 220, 220, 1058, 17143, 1988, 62, 5420, 25, 383, 5128, 11192, 273, 13, 198, 220, 220, 220, 1058, 17143, 5766, 25, 317, 15082, 43058, 5766, 329, 262, 2994, 13, 198, 220, 220, 220, 1058, 7783, 25, 1052, 9312, 15427, 262, 2994, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 27110, 13, 8818, 628, 220, 220, 220, 1441, 37456, 41052, 12543, 11, 1988, 62, 5420, 8, 628, 198, 31, 39344, 198, 4299, 264, 325, 62, 22462, 7, 8367, 62, 5420, 25, 309, 22854, 8134, 11, 1635, 11, 5766, 25, 12178, 796, 352, 13, 15, 8, 4613, 309, 22854, 8134, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 257, 2160, 286, 24438, 2994, 13, 198, 220, 220, 220, 1058, 17143, 1988, 62, 5420, 25, 383, 5128, 11192, 273, 13, 198, 220, 220, 220, 1058, 17143, 5766, 25, 317, 15082, 43058, 5766, 329, 262, 2994, 13, 198, 220, 220, 220, 1058, 7783, 25, 1052, 9312, 15427, 262, 2994, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 27110, 13, 8818, 628, 220, 220, 220, 1441, 37456, 41052, 12543, 11, 1988, 62, 5420, 8, 628, 198, 4871, 17986, 37, 7934, 49, 1603, 7, 28008, 19852, 4264, 822, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 9312, 326, 8075, 257, 374, 1603, 1262, 257, 44503, 4308, 2163, 3127, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2173, 62, 83, 22854, 62, 5420, 25, 309, 22854, 8134, 11, 1635, 11, 5485, 25, 36125, 33383, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 19881, 25, 965, 796, 17986, 37, 62, 7206, 38865, 11, 9103, 25, 12178, 796, 352, 13, 15, 11, 4104, 25, 12178, 796, 352, 13, 15, 11, 1438, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 44707, 262, 9312, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2173, 62, 83, 22854, 62, 5420, 25, 317, 11192, 273, 1006, 32578, 257, 11192, 273, 351, 2938, 5485, 25, 685, 4122, 62, 9127, 11, 5391, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2173, 389, 973, 355, 19788, 286, 262, 44503, 4308, 5499, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5485, 25, 383, 5485, 286, 262, 374, 1603, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 374, 19881, 25, 383, 374, 19881, 284, 307, 973, 11, 766, 3396, 1470, 13, 11018, 13, 81, 19881, 62, 69, 9548, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9103, 25, 383, 9103, 286, 262, 17986, 37, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4104, 25, 383, 4104, 286, 262, 17986, 37, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 383, 1438, 286, 262, 9312, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 3672, 28, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13033, 62, 83, 22854, 62, 5420, 796, 2173, 62, 83, 22854, 62, 5420, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43358, 796, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 19881, 796, 374, 19881, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36729, 796, 9103, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43639, 796, 4104, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 81, 19881, 62, 3262, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 1462, 62, 5275, 62, 19849, 3419, 628, 198, 31, 39344, 628, 198, 198, 31, 39344, 628, 198, 4299, 4808, 29982, 62, 46012, 533, 7, 29982, 25, 965, 8, 4613, 309, 29291, 58, 15252, 11, 965, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2547, 325, 257, 8354, 4731, 257, 1441, 257, 46545, 17747, 286, 4732, 4706, 329, 262, 8333, 341, 286, 262, 48700, 338, 8354, 198, 220, 220, 220, 290, 257, 4731, 10200, 262, 10638, 1438, 13, 383, 8354, 318, 286, 262, 1296, 33490, 738, 16, 28401, 27, 738, 17, 28401, 2644, 764, 27, 738, 18, 29, 1600, 262, 198, 220, 220, 220, 374, 394, 1712, 27421, 318, 973, 355, 10638, 1438, 9472, 262, 21231, 318, 973, 355, 8354, 1438, 13, 198, 220, 220, 220, 1058, 17143, 8354, 25, 317, 4731, 7268, 257, 10617, 1438, 13, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30778, 796, 8354, 13, 3808, 489, 270, 10786, 2637, 11, 352, 8, 198, 220, 220, 220, 611, 597, 7, 8899, 7, 50033, 410, 25, 18896, 7, 85, 8, 6624, 657, 11, 30778, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 44651, 8354, 1438, 25, 1391, 29982, 92, 11537, 198, 220, 220, 220, 611, 18896, 7, 22018, 896, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9242, 22866, 22784, 30778, 58, 15, 60, 198, 220, 220, 220, 1441, 48700, 13, 3672, 62, 29982, 7, 22018, 896, 58, 15, 46570, 30778, 58, 16, 60, 628, 198, 22093, 22203, 796, 4889, 540, 30109, 27110, 13, 51, 22854, 11, 965, 4357, 6045, 60, 628, 198, 4871, 21293, 14881, 7, 32398, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2779, 11055, 329, 10638, 12066, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1401, 25, 309, 22854, 8134, 11, 1257, 25, 21293, 22203, 11, 1635, 11, 8354, 25, 965, 11, 1438, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 44707, 10638, 9312, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1401, 25, 383, 7885, 284, 262, 15676, 1417, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1257, 25, 317, 869, 540, 286, 262, 1296, 1257, 7, 83, 22854, 11, 1438, 8, 326, 800, 3369, 262, 1877, 1241, 309, 22854, 11125, 5499, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 383, 1438, 286, 428, 9312, 11, 3465, 326, 262, 1438, 286, 262, 10638, 318, 2077, 422, 11507, 8354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 3672, 28, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 796, 1401, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12543, 796, 1257, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29982, 796, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 1462, 62, 5275, 62, 19849, 3419, 628, 198, 31, 39344, 628, 198, 31, 39344, 628, 198, 31, 39344, 198, 4299, 10638, 62, 9060, 7, 7785, 25, 309, 22854, 8134, 11, 1635, 11, 8354, 25, 965, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 281, 2939, 10638, 9312, 13, 770, 2163, 27521, 48700, 13, 49736, 13, 9060, 13, 198, 220, 220, 220, 1058, 17143, 1401, 25, 383, 11192, 273, 284, 307, 16173, 355, 2939, 13, 198, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 1058, 17143, 1438, 25, 383, 1438, 286, 262, 9312, 10200, 428, 4905, 11, 3465, 326, 262, 27421, 286, 262, 10638, 287, 198, 220, 220, 220, 309, 22854, 3526, 318, 5295, 416, 262, 11507, 8354, 13, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 15891, 10007, 284, 307, 3804, 284, 48700, 13, 49736, 13, 9060, 13, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 21293, 14881, 7, 7785, 11, 1257, 28, 12543, 11, 8354, 28, 29982, 11, 1438, 28, 3672, 8, 198 ]
2.53379
6,422
# import unittest # from unittest.mock import patch # from selenium.common.exceptions import WebDriverException # from draytekwebadmin.driver import load_driver, unload_driver # class TestDriver(unittest.TestCase): # def setUp(self): # pass # def tearDown(self): # pass # @patch("selenium.webdriver.FirefoxOptions", autospec=True) # @patch("selenium.webdriver.Firefox", autospec=True) # def test_Load_Driver_Named_Firefox(self, mock_firefox, mock_FirefoxOptions): # load_driver(browser_name="firefox") # self.assertTrue(mock_firefox.called) # self.assertTrue(mock_FirefoxOptions.called) # self.assertTrue(mock_firefox().maximize_window.called) # self.assertFalse(mock_FirefoxOptions().headless) # @patch("selenium.webdriver.FirefoxOptions", autospec=True) # @patch("selenium.webdriver.Firefox", autospec=True) # def test_Load_Driver_Named_Firefox_Headless( # self, mock_firefox, mock_FirefoxOptions # ): # load_driver(browser_name="firefox", headless=True) # self.assertTrue(mock_firefox.called) # self.assertTrue(mock_FirefoxOptions.called) # self.assertTrue(mock_FirefoxOptions().headless) # @patch("selenium.webdriver.ChromeOptions", autospec=True) # @patch("selenium.webdriver.Chrome", autospec=True) # def test_Load_Driver_Named_Chrome(self, mock_chrome, mock_ChromeOptions): # load_driver(browser_name="chrome") # self.assertTrue(mock_chrome.called) # self.assertTrue(mock_ChromeOptions.called) # self.assertFalse(mock_ChromeOptions().headless) # @patch("selenium.webdriver.ChromeOptions", autospec=True) # @patch("selenium.webdriver.Chrome", autospec=True) # def test_Load_Driver_Named_Chrome_Headless(self, mock_chrome, mock_ChromeOptions): # load_driver(browser_name="chrome", headless=True) # self.assertTrue(mock_chrome.called) # self.assertTrue(mock_ChromeOptions.called) # self.assertTrue(mock_ChromeOptions().headless) # @patch("selenium.webdriver.Edge", autospec=True) # def test_Load_Driver_Named_Edge(self, mock_edge): # load_driver(browser_name="edge") # self.assertTrue(mock_edge.called) # @patch("draytekwebadmin.driver.load_firefox", autospec=True) # def test_Load_Driver_Unspecified_Browser(self, mock_load_firefox): # load_driver() # self.assertTrue(mock_load_firefox.called) # def test_Load_Driver_Unsupported_Browser(self): # with self.assertRaises(Exception): # load_driver(browser_name="NonExistent Browser") # @patch("draytekwebadmin.driver.load_firefox", side_effect=WebDriverException()) # @patch("draytekwebadmin.driver.load_chrome", side_effect=WebDriverException()) # @patch("draytekwebadmin.driver.load_edge", side_effect=WebDriverException()) # def test_Load_Driver_FallThrough(self, mock_edge, mock_chrome, mock_firefox): # with self.assertRaises(Exception) as cm: # load_driver() # self.assertEqual( # "Unable to find suitable browser. Error Message: None", # str(cm.exception).rstrip(), # ) # @patch("selenium.webdriver.firefox") # def test_Unload_Driver(self, mock_firefox): # unload_driver(mock_firefox()) # self.assertTrue(mock_firefox().quit.called)
[ 2, 1330, 555, 715, 395, 198, 2, 422, 555, 715, 395, 13, 76, 735, 1330, 8529, 198, 2, 422, 384, 11925, 1505, 13, 11321, 13, 1069, 11755, 1330, 5313, 32103, 16922, 198, 198, 2, 422, 1553, 323, 35424, 12384, 28482, 13, 26230, 1330, 3440, 62, 26230, 11, 555, 2220, 62, 26230, 628, 198, 2, 1398, 6208, 32103, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 2, 220, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 198, 2, 220, 220, 220, 220, 825, 11626, 8048, 7, 944, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 13543, 12792, 29046, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 13543, 12792, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 8912, 62, 32103, 62, 45, 2434, 62, 13543, 12792, 7, 944, 11, 15290, 62, 6495, 12792, 11, 15290, 62, 13543, 12792, 29046, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 26230, 7, 40259, 62, 3672, 2625, 6495, 12792, 4943, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 6495, 12792, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 13543, 12792, 29046, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 6495, 12792, 22446, 9806, 48439, 62, 17497, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 25101, 7, 76, 735, 62, 13543, 12792, 29046, 22446, 2256, 1203, 8, 198, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 13543, 12792, 29046, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 13543, 12792, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 8912, 62, 32103, 62, 45, 2434, 62, 13543, 12792, 62, 13847, 1203, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 15290, 62, 6495, 12792, 11, 15290, 62, 13543, 12792, 29046, 198, 2, 220, 220, 220, 220, 15179, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 26230, 7, 40259, 62, 3672, 2625, 6495, 12792, 1600, 1182, 1203, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 6495, 12792, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 13543, 12792, 29046, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 13543, 12792, 29046, 22446, 2256, 1203, 8, 198, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 1925, 5998, 29046, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 1925, 5998, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 8912, 62, 32103, 62, 45, 2434, 62, 1925, 5998, 7, 944, 11, 15290, 62, 46659, 11, 15290, 62, 1925, 5998, 29046, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 26230, 7, 40259, 62, 3672, 2625, 46659, 4943, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 46659, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 1925, 5998, 29046, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 25101, 7, 76, 735, 62, 1925, 5998, 29046, 22446, 2256, 1203, 8, 198, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 1925, 5998, 29046, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 1925, 5998, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 8912, 62, 32103, 62, 45, 2434, 62, 1925, 5998, 62, 13847, 1203, 7, 944, 11, 15290, 62, 46659, 11, 15290, 62, 1925, 5998, 29046, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 26230, 7, 40259, 62, 3672, 2625, 46659, 1600, 1182, 1203, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 46659, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 1925, 5998, 29046, 13, 7174, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 1925, 5998, 29046, 22446, 2256, 1203, 8, 198, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 37021, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 8912, 62, 32103, 62, 45, 2434, 62, 37021, 7, 944, 11, 15290, 62, 14907, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 26230, 7, 40259, 62, 3672, 2625, 14907, 4943, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 14907, 13, 7174, 8, 198, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 67, 2433, 35424, 12384, 28482, 13, 26230, 13, 2220, 62, 6495, 12792, 1600, 44619, 43106, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 8912, 62, 32103, 62, 3118, 23599, 62, 46532, 7, 944, 11, 15290, 62, 2220, 62, 6495, 12792, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 26230, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 2220, 62, 6495, 12792, 13, 7174, 8, 198, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 8912, 62, 32103, 62, 3118, 15999, 62, 46532, 7, 944, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 16922, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 26230, 7, 40259, 62, 3672, 2625, 15419, 3109, 7609, 34270, 4943, 198, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 67, 2433, 35424, 12384, 28482, 13, 26230, 13, 2220, 62, 6495, 12792, 1600, 1735, 62, 10760, 28, 13908, 32103, 16922, 28955, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 67, 2433, 35424, 12384, 28482, 13, 26230, 13, 2220, 62, 46659, 1600, 1735, 62, 10760, 28, 13908, 32103, 16922, 28955, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 67, 2433, 35424, 12384, 28482, 13, 26230, 13, 2220, 62, 14907, 1600, 1735, 62, 10760, 28, 13908, 32103, 16922, 28955, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 8912, 62, 32103, 62, 24750, 15046, 7, 944, 11, 15290, 62, 14907, 11, 15290, 62, 46659, 11, 15290, 62, 6495, 12792, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 16922, 8, 355, 12067, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 26230, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3118, 540, 284, 1064, 11080, 6444, 13, 13047, 16000, 25, 6045, 1600, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 11215, 13, 1069, 4516, 737, 81, 36311, 22784, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 2, 220, 220, 220, 220, 2488, 17147, 7203, 741, 47477, 13, 12384, 26230, 13, 6495, 12792, 4943, 198, 2, 220, 220, 220, 220, 825, 1332, 62, 3118, 2220, 62, 32103, 7, 944, 11, 15290, 62, 6495, 12792, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 555, 2220, 62, 26230, 7, 76, 735, 62, 6495, 12792, 28955, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 76, 735, 62, 6495, 12792, 22446, 47391, 13, 7174, 8, 198 ]
2.370551
1,433
import sys import toml import pytest from teststack import cli from teststack import import_commands from teststack.errors import IncompatibleVersionError
[ 11748, 25064, 198, 198, 11748, 284, 4029, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 1332, 25558, 1330, 537, 72, 198, 6738, 1332, 25558, 1330, 1330, 62, 9503, 1746, 198, 6738, 1332, 25558, 13, 48277, 1330, 554, 38532, 14815, 12331, 628, 198 ]
3.809524
42
#! /usr/bin/python # -*- coding: utf8 -*- from __future__ import print_function # Description: """ plot or save MRI images / masks in a screenshot ------- Types of sequences in the data = ['Sag_T2' 'Sag_T1' 'Sag_Stir'] """ # Imports import os, time import glob import random import pandas as pd import numpy as np import numpy.ma as ma import matplotlib import math matplotlib.use('Agg') import matplotlib.pyplot as plt def plot_screenshot(images, mask = True, cols=4, smooth=True, ch=1, path_name = './', label_name='screenshot', save = True): """ plot or save images / masks in a screenshot Parameters ---------- images = images or mask, np.ndarray image data [slice][width][height][channel] mask = if True, returns mask's screenshot smooth = if True, interpolation = 'spline16', if False = interpolation = 'nearest' path_name = save path, str label_name = filename, str save = if True, save images in path_ + label_name + .jpg Returns ------- plot or save images / masks in a screenshot """ n = np.shape(images)[0] rows = np.rint(n/np.float(cols)).astype(int) if (rows*cols)>n: cover = np.zeros((np.shape(images)[1],np.shape(images)[2])) for i in range(rows*cols-n): images=np.dstack((np.array(images), np.array(cover))) # Create figure with sub-plots. fig, axes = plt.subplots(rows, cols, figsize=(12,10)) # Adjust vertical spacing if we need to print ensemble and best-net. hspace = 0.03 fig.subplots_adjust(hspace=hspace, wspace=0.03) for i, ax in enumerate(axes.flat): # Interpolation type. if smooth: interpolation = 'spline16' else: interpolation = 'nearest' if mask : # Plot mask. ax.imshow(rotate((images[i,...,ch]/np.max(images[i,...,ch])),90).squeeze(), cmap='jet', interpolation=interpolation) xlabel = "Mask: {0}".format(i+1) else: # Plot image. ax.imshow(rotate(images[i,...,ch],90).squeeze(), cmap='bone', interpolation=interpolation) xlabel = "MRI_Scan: {0}".format(i+1) ax.set_xlabel(xlabel) ax.set_xticks([]) ax.set_yticks([]) if save: fig.savefig(path_name+label_name+'.jpg', format='jpg', bbox_inches='tight')#, dpi=600 plt.close(fig) else: plt.show()
[ 2, 0, 1220, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 2, 12489, 25, 220, 198, 37811, 198, 7110, 393, 3613, 30278, 4263, 1220, 20680, 287, 257, 22032, 220, 198, 26866, 198, 31431, 286, 16311, 287, 262, 1366, 796, 37250, 50, 363, 62, 51, 17, 6, 705, 50, 363, 62, 51, 16, 6, 705, 50, 363, 62, 1273, 343, 20520, 198, 37811, 198, 2, 1846, 3742, 198, 198, 11748, 28686, 11, 640, 198, 11748, 15095, 198, 11748, 4738, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 299, 32152, 13, 2611, 355, 17266, 198, 11748, 2603, 29487, 8019, 198, 11748, 10688, 198, 6759, 29487, 8019, 13, 1904, 10786, 46384, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 4299, 7110, 62, 1416, 26892, 7, 17566, 11, 9335, 796, 6407, 11, 951, 82, 28, 19, 11, 7209, 28, 17821, 11, 442, 28, 16, 11, 3108, 62, 3672, 796, 705, 19571, 3256, 6167, 62, 3672, 11639, 1416, 26892, 3256, 3613, 796, 6407, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7110, 393, 3613, 4263, 1220, 20680, 287, 257, 22032, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4263, 796, 4263, 393, 9335, 11, 45941, 13, 358, 18747, 2939, 1366, 685, 48369, 7131, 10394, 7131, 17015, 7131, 17620, 60, 198, 220, 220, 220, 9335, 796, 220, 220, 611, 6407, 11, 5860, 9335, 338, 22032, 198, 220, 220, 220, 7209, 796, 611, 6407, 11, 39555, 341, 796, 705, 22018, 500, 1433, 3256, 611, 10352, 796, 39555, 341, 796, 705, 710, 12423, 6, 198, 220, 220, 220, 3108, 62, 3672, 796, 3613, 3108, 11, 965, 198, 220, 220, 220, 6167, 62, 3672, 796, 29472, 11, 965, 198, 220, 220, 220, 3613, 796, 611, 6407, 11, 3613, 4263, 287, 3108, 62, 1343, 6167, 62, 3672, 1343, 764, 9479, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7110, 393, 3613, 4263, 1220, 20680, 287, 257, 22032, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 299, 796, 45941, 13, 43358, 7, 17566, 38381, 15, 60, 198, 220, 220, 220, 15274, 796, 45941, 13, 22272, 7, 77, 14, 37659, 13, 22468, 7, 4033, 82, 29720, 459, 2981, 7, 600, 8, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 357, 8516, 9, 4033, 82, 8, 29, 77, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3002, 796, 45941, 13, 9107, 418, 19510, 37659, 13, 43358, 7, 17566, 38381, 16, 4357, 37659, 13, 43358, 7, 17566, 38381, 17, 60, 4008, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 8516, 9, 4033, 82, 12, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4263, 28, 37659, 13, 67, 25558, 19510, 37659, 13, 18747, 7, 17566, 828, 45941, 13, 18747, 7, 9631, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 13610, 3785, 351, 850, 12, 489, 1747, 13, 198, 220, 220, 220, 2336, 11, 34197, 796, 458, 83, 13, 7266, 489, 1747, 7, 8516, 11, 951, 82, 11, 2336, 7857, 16193, 1065, 11, 940, 4008, 628, 220, 220, 220, 1303, 20292, 11723, 31050, 611, 356, 761, 284, 3601, 34549, 290, 1266, 12, 3262, 13, 198, 220, 220, 220, 289, 13200, 796, 657, 13, 3070, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 71, 13200, 28, 71, 13200, 11, 266, 13200, 28, 15, 13, 3070, 8, 628, 220, 220, 220, 329, 1312, 11, 7877, 287, 27056, 378, 7, 897, 274, 13, 38568, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4225, 16104, 341, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7209, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39555, 341, 796, 705, 22018, 500, 1433, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39555, 341, 796, 705, 710, 12423, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9335, 1058, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 9335, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 320, 12860, 7, 10599, 378, 19510, 17566, 58, 72, 42303, 11, 354, 60, 14, 37659, 13, 9806, 7, 17566, 58, 72, 42303, 11, 354, 12962, 828, 3829, 737, 16485, 1453, 2736, 22784, 269, 8899, 11639, 31173, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39555, 341, 28, 3849, 16104, 341, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 18242, 796, 366, 45195, 25, 1391, 15, 92, 1911, 18982, 7, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 320, 12860, 7, 10599, 378, 7, 17566, 58, 72, 42303, 11, 354, 4357, 3829, 737, 16485, 1453, 2736, 22784, 269, 8899, 11639, 15992, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39555, 341, 28, 3849, 16104, 341, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 18242, 796, 366, 40952, 62, 33351, 25, 1391, 15, 92, 1911, 18982, 7, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 87, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 742, 3378, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 20760, 3378, 26933, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 3613, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 6978, 62, 3672, 10, 18242, 62, 3672, 10, 4458, 9479, 3256, 5794, 11639, 9479, 3256, 275, 3524, 62, 45457, 11639, 33464, 11537, 2, 11, 288, 14415, 28, 8054, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 8, 198, 220, 220, 220, 2073, 25, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 220, 198 ]
2.20793
1,135
#!/usr/bin/env python # Copyright (c) 2014 CNRS # Author: Florent Lamiraux # from .robot import Robot
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 15069, 357, 66, 8, 1946, 31171, 6998, 198, 2, 6434, 25, 23347, 429, 10923, 343, 14644, 198, 2, 198, 198, 6738, 764, 305, 13645, 1330, 16071, 198 ]
2.783784
37
""" Gary Simmons March 2018 Kata Prompt Description: A Narcissistic Number is a number which is the sum of its own digits, each raised to the power of the number of digits in a given base. In this Kata, we will restrict ourselves to decimal (base 10). For example, take 153 (3 digits): 1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153 and 1634 (4 digits): 1^4 + 6^4 + 3^4 + 4^4 = 1 + 1296 + 81 + 256 = 1634 The Challenge: Your code must return true or false depending upon whether the given number is a Narcissistic number in base 10. Error checking for text strings or other invalid inputs is not required, only valid integers will be passed into the function. """
[ 37811, 198, 33820, 22553, 198, 16192, 2864, 198, 198, 42, 1045, 45965, 12489, 25, 317, 31987, 747, 2569, 7913, 318, 257, 1271, 543, 318, 262, 2160, 286, 663, 898, 19561, 11, 1123, 4376, 284, 262, 1176, 286, 262, 1271, 286, 19561, 287, 257, 1813, 2779, 13, 554, 428, 509, 1045, 11, 356, 481, 4239, 6731, 284, 32465, 357, 8692, 838, 737, 198, 198, 1890, 1672, 11, 1011, 24652, 357, 18, 19561, 2599, 628, 220, 220, 220, 352, 61, 18, 1343, 642, 61, 18, 1343, 513, 61, 18, 796, 352, 1343, 13151, 1343, 2681, 796, 24652, 198, 392, 1467, 2682, 357, 19, 19561, 2599, 628, 220, 220, 220, 352, 61, 19, 1343, 718, 61, 19, 1343, 513, 61, 19, 1343, 604, 61, 19, 796, 352, 1343, 1105, 4846, 1343, 9773, 1343, 17759, 796, 1467, 2682, 198, 464, 13879, 25, 198, 198, 7120, 2438, 1276, 1441, 2081, 393, 3991, 6906, 2402, 1771, 262, 1813, 1271, 318, 257, 31987, 747, 2569, 1271, 287, 2779, 838, 13, 198, 198, 12331, 10627, 329, 2420, 13042, 393, 584, 12515, 17311, 318, 407, 2672, 11, 691, 4938, 37014, 481, 307, 3804, 656, 262, 2163, 13, 198, 198, 37811, 198 ]
3.484375
192
#!/usr/bin/env python import logging from daemonize import Daemonize from rq import Connection, Worker from core.utils.Executor import check_output __workers__ = [ 'alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lambda', 'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi', 'chi', 'psi', 'omega' ] def get_available_rq_worker_name() -> str: """ Assign a worker name which is not already used :return: Name of the worker """ out = check_output( cmd='rq info', cwd='/' ) for each in __workers__: if each not in out: return each # TODO: Raise exception for worker limit def launch_rq_worker() -> None: """ Blocking function to launch a worker using Python RQ's internal API """ with Connection(): w = Worker( get_available_rq_worker_name() ) w.work()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 18931, 198, 198, 6738, 33386, 1096, 1330, 9637, 7966, 1096, 198, 6738, 374, 80, 1330, 26923, 11, 35412, 198, 198, 6738, 4755, 13, 26791, 13, 23002, 38409, 1330, 2198, 62, 22915, 198, 198, 834, 22896, 834, 796, 685, 198, 220, 220, 220, 705, 26591, 3256, 198, 220, 220, 220, 705, 31361, 3256, 198, 220, 220, 220, 705, 28483, 2611, 3256, 198, 220, 220, 220, 705, 67, 12514, 3256, 198, 220, 220, 220, 705, 538, 18217, 261, 3256, 198, 220, 220, 220, 705, 89, 17167, 3256, 198, 220, 220, 220, 705, 17167, 3256, 198, 220, 220, 220, 705, 1169, 8326, 3256, 198, 220, 220, 220, 705, 72, 4265, 3256, 198, 220, 220, 220, 705, 74, 20975, 3256, 198, 220, 220, 220, 705, 50033, 3256, 198, 220, 220, 220, 705, 30300, 3256, 198, 220, 220, 220, 705, 28803, 3256, 198, 220, 220, 220, 705, 29992, 3256, 198, 220, 220, 220, 705, 10179, 1313, 3256, 198, 220, 220, 220, 705, 14415, 3256, 198, 220, 220, 220, 705, 81, 8873, 3256, 198, 220, 220, 220, 705, 82, 13495, 3256, 198, 220, 220, 220, 705, 83, 559, 3256, 198, 220, 220, 220, 705, 4739, 33576, 3256, 198, 220, 220, 220, 705, 34846, 3256, 198, 220, 220, 220, 705, 11072, 3256, 198, 220, 220, 220, 705, 862, 72, 3256, 198, 220, 220, 220, 705, 462, 4908, 6, 198, 60, 628, 198, 4299, 651, 62, 15182, 62, 81, 80, 62, 28816, 62, 3672, 3419, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2195, 570, 257, 8383, 1438, 543, 318, 407, 1541, 973, 628, 220, 220, 220, 1058, 7783, 25, 6530, 286, 262, 8383, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 796, 2198, 62, 22915, 7, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 11639, 81, 80, 7508, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 269, 16993, 11639, 14, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 329, 1123, 287, 11593, 22896, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1123, 407, 287, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1123, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 35123, 6631, 329, 8383, 4179, 628, 198, 4299, 4219, 62, 81, 80, 62, 28816, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1086, 8629, 2163, 284, 4219, 257, 8383, 1262, 11361, 371, 48, 338, 5387, 7824, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 26923, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 266, 796, 35412, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 15182, 62, 81, 80, 62, 28816, 62, 3672, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 266, 13, 1818, 3419, 628 ]
2.126016
492
import re import numpy as np from solution.utils.constant import ( QUESTION_COLUMN_NAME, CONTEXT_COLUMN_NAME, ANSWER_COLUMN_NAME, ) def get_extractive_features(tokenizer, mode, data_args): """ Get extractive features for train, eval and test. Args: tokenizer (BERT Tokenizer): tokenizer for preprocessing mode (str): [description] : one of train, eval, test data_args (DataArguments): data arguments """ def tokenize_fn(examples): """Tokenize questions and contexts Args: examples (Dict): DatasetDict Returns: Dict: Tokenized examples """ pad_on_right = tokenizer.padding_side == "right" max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # truncation과 padding을 통해 tokenization을 진행 # stride를 이용하여 overflow를 유지 # 각 example들은 이전의 context와 조금씩 겹침 # overflow 발생 시 지정한 batch size보다 더 많은 sample이 들어올 수 있음 -> data augmentation tokenized_examples = tokenizer( examples[QUESTION_COLUMN_NAME if pad_on_right else CONTEXT_COLUMN_NAME], examples[CONTEXT_COLUMN_NAME if pad_on_right else QUESTION_COLUMN_NAME], # 길이가 긴 context가 등장할 경우 truncation을 진행 truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, # overflow 발생 시 원래 인덱스를 찾을 수 있게 mapping 가능한 값이 필요 return_overflowing_tokens=True, # token의 캐릭터 단위 position을 찾을 수 있는 offset을 반환 # start position과 end position을 찾는데 도움을 줌 return_offsets_mapping=True, # sentence pair가 입력으로 들어올 때 0과 1로 구분지음 return_token_type_ids=data_args.return_token_type_ids, padding="max_length" if data_args.pad_to_max_length else False, # return_tensors='pt' ) return tokenized_examples def prepare_train_features(examples): """ Reset for train dataset that do not have the correct answer or where the correct answer position has changed. Args: examples (Dict): DatasetDict Returns: Dict: Tokenized examples where the answer has been reset """ pad_on_right = tokenizer.padding_side == "right" tokenized_examples = tokenize_fn(examples) sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") offset_mapping = tokenized_examples.pop("offset_mapping") # 데이터셋에 "start position", "enc position" label을 부여합니다. tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) # cls index # sequence id를 설정합니다 (context와 question을 구분). sequence_ids = tokenized_examples.sequence_ids(i) context_index = 1 if pad_on_right else 0 # 길이가 긴 context에 대해 truncation을 진행하기 때문에 # 하나의 example이 여러 개의 span을 가질 수 있음 sample_index = sample_mapping[i] answers = examples[ANSWER_COLUMN_NAME][sample_index] # answer가 없을 경우 cls_index를 answer로 설정 # example에서 정답이 없는 경우가 있을 수 있음 if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # text에서 정답의 start/end character index를 가져옴 start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # sequence_ids는 0, 1, None의 세 값만 가짐 # None 0 0 ... 0 None 1 1 ... 1 None # text에서 context가 시작하는 위치로 이동 token_start_index = 0 while sequence_ids[token_start_index] != context_index: token_start_index += 1 # text에서 context가 끝나는 위치로 이동 token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != context_index: token_end_index -= 1 # 정답이 span을 벗어나는지 체크. # 정답이 없는 경우 CLS index로 labeling (Retro일 경우 다르게 처리) if not ( offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char ): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # token_start_index 및 token_end_index를 answer의 끝으로 이동 # Note: answer가 마지막 단어인 경우 last offset을 따라갈 수 있음 # token_start_index를 실제 위치로 맞춰주는 과정 while ( token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char ): token_start_index += 1 tokenized_examples["start_positions"].append( token_start_index - 1) # token_end_index를 실제 위치로 맞춰주는 과정 while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append( token_end_index + 1) return tokenized_examples def prepare_validation_features(examples, retriever=None): """Preprocessing validation dataset for extractive model Args: examples (Dict): DatasetDict retriever (Dict): DatasetDict from wiki. Defaults to None. Returns: Dict: Tokenized examples """ pad_on_right = tokenizer.padding_side == "right" tokenized_examples = tokenize_fn(examples) sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # evaluation을 위해 prediction을 context의 substring으로 변환 # corresponding example_id를 유지하고 offset mappings을 저장 tokenized_examples["example_id"] = [] for i in range(len(tokenized_examples["input_ids"])): # sequence id를 설정합니다 (context와 question을 구분). sequence_ids = tokenized_examples.sequence_ids(i) context_index = 1 if pad_on_right else 0 # 하나의 example이 여러 개의 span을 가질 수 있음 sample_index = sample_mapping[i] tokenized_examples["example_id"].append( examples["id"][sample_index]) tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples if mode == "train": get_features_fn = prepare_train_features elif mode == "eval": get_features_fn = prepare_validation_features elif mode == "test": get_features_fn = prepare_validation_features return get_features_fn, True PREP_PIPELINE = { "extractive": get_extractive_features, }
[ 11748, 302, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 4610, 13, 26791, 13, 9979, 415, 1330, 357, 198, 220, 220, 220, 43658, 2849, 62, 25154, 5883, 45, 62, 20608, 11, 198, 220, 220, 220, 22904, 13918, 62, 25154, 5883, 45, 62, 20608, 11, 198, 220, 220, 220, 3537, 17887, 1137, 62, 25154, 5883, 45, 62, 20608, 11, 198, 8, 628, 198, 4299, 651, 62, 2302, 35587, 62, 40890, 7, 30001, 7509, 11, 4235, 11, 1366, 62, 22046, 2599, 198, 220, 220, 220, 37227, 3497, 7925, 425, 3033, 329, 4512, 11, 5418, 290, 1332, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 357, 13246, 51, 29130, 7509, 2599, 11241, 7509, 329, 662, 36948, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 357, 2536, 2599, 685, 11213, 60, 1058, 530, 286, 4512, 11, 5418, 11, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 22046, 357, 6601, 28100, 2886, 2599, 1366, 7159, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11241, 1096, 62, 22184, 7, 1069, 12629, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30642, 1096, 2683, 290, 26307, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6096, 357, 35, 713, 2599, 16092, 292, 316, 35, 713, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 713, 25, 29130, 1143, 6096, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 261, 62, 3506, 796, 11241, 7509, 13, 39231, 62, 1589, 6624, 366, 3506, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 41068, 62, 13664, 796, 949, 7, 7890, 62, 22046, 13, 9806, 62, 41068, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 13, 19849, 62, 9806, 62, 13664, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 40122, 341, 166, 111, 120, 24511, 35975, 226, 220, 169, 228, 113, 47991, 112, 11241, 1634, 35975, 226, 23821, 100, 226, 169, 244, 231, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33769, 167, 98, 120, 23821, 251, 112, 168, 248, 102, 47991, 246, 168, 245, 105, 30343, 167, 98, 120, 23821, 250, 254, 168, 100, 222, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 166, 108, 223, 1672, 167, 241, 97, 35975, 222, 23821, 251, 112, 168, 254, 226, 35975, 246, 4732, 168, 247, 222, 23821, 94, 108, 166, 116, 230, 168, 242, 102, 220, 166, 110, 117, 168, 117, 101, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 30343, 31619, 108, 250, 168, 225, 251, 23821, 233, 250, 23821, 100, 222, 168, 254, 243, 47991, 250, 15458, 2546, 167, 111, 112, 46695, 97, 31619, 235, 242, 31619, 100, 236, 35975, 222, 6291, 35975, 112, 31619, 241, 97, 168, 244, 112, 168, 246, 105, 23821, 230, 246, 23821, 252, 230, 35975, 234, 4613, 1366, 16339, 14374, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 796, 11241, 7509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6096, 58, 35780, 2849, 62, 25154, 5883, 45, 62, 20608, 611, 14841, 62, 261, 62, 3506, 2073, 22904, 13918, 62, 25154, 5883, 45, 62, 20608, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6096, 58, 10943, 32541, 62, 25154, 5883, 45, 62, 20608, 611, 14841, 62, 261, 62, 3506, 2073, 43658, 2849, 62, 25154, 5883, 45, 62, 20608, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 166, 116, 116, 35975, 112, 166, 108, 222, 220, 166, 116, 112, 4732, 166, 108, 222, 31619, 241, 109, 168, 252, 98, 47991, 254, 220, 166, 110, 121, 168, 248, 108, 40122, 341, 35975, 226, 23821, 100, 226, 169, 244, 231, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 341, 2625, 8807, 62, 12227, 1, 611, 14841, 62, 261, 62, 3506, 2073, 366, 8807, 62, 11085, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 9806, 62, 41068, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 7890, 62, 22046, 13, 15390, 62, 2536, 485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 30343, 31619, 108, 250, 168, 225, 251, 23821, 233, 250, 23821, 249, 238, 167, 252, 246, 23821, 251, 116, 167, 235, 109, 168, 232, 97, 167, 98, 120, 23821, 108, 122, 35975, 226, 23821, 230, 246, 23821, 252, 230, 166, 110, 234, 16855, 220, 166, 108, 222, 167, 232, 98, 47991, 250, 220, 166, 108, 240, 35975, 112, 220, 47991, 226, 168, 248, 242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 2502, 2704, 7855, 62, 83, 482, 641, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11241, 35975, 246, 23821, 118, 238, 167, 99, 255, 169, 226, 108, 31619, 233, 101, 168, 250, 226, 2292, 35975, 226, 23821, 108, 122, 35975, 226, 23821, 230, 246, 23821, 252, 230, 167, 232, 242, 11677, 35975, 226, 31619, 108, 246, 169, 247, 246, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 923, 2292, 166, 111, 120, 886, 2292, 35975, 226, 23821, 108, 122, 167, 232, 242, 167, 235, 108, 31619, 237, 226, 168, 249, 222, 35975, 226, 23821, 97, 234, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 8210, 1039, 62, 76, 5912, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6827, 5166, 166, 108, 222, 23821, 252, 227, 167, 254, 98, 168, 250, 120, 167, 94, 250, 31619, 241, 97, 168, 244, 112, 168, 246, 105, 31619, 243, 234, 657, 166, 111, 120, 352, 167, 94, 250, 220, 166, 113, 105, 167, 114, 226, 168, 100, 222, 35975, 234, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 30001, 62, 4906, 62, 2340, 28, 7890, 62, 22046, 13, 7783, 62, 30001, 62, 4906, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 2625, 9806, 62, 13664, 1, 611, 1366, 62, 22046, 13, 15636, 62, 1462, 62, 9806, 62, 13664, 2073, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 62, 83, 641, 669, 11639, 457, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11241, 1143, 62, 1069, 12629, 628, 198, 220, 220, 220, 825, 8335, 62, 27432, 62, 40890, 7, 1069, 12629, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30027, 329, 4512, 27039, 326, 466, 407, 423, 262, 3376, 3280, 220, 198, 220, 220, 220, 220, 220, 220, 220, 393, 810, 262, 3376, 3280, 2292, 468, 3421, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6096, 357, 35, 713, 2599, 16092, 292, 316, 35, 713, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 713, 25, 29130, 1143, 6096, 810, 262, 3280, 468, 587, 13259, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 261, 62, 3506, 796, 11241, 7509, 13, 39231, 62, 1589, 6624, 366, 3506, 1, 628, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 796, 11241, 1096, 62, 22184, 7, 1069, 12629, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 76, 5912, 796, 11241, 1143, 62, 1069, 12629, 13, 12924, 7203, 2502, 11125, 62, 1462, 62, 39873, 62, 76, 5912, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 76, 5912, 796, 11241, 1143, 62, 1069, 12629, 13, 12924, 7203, 28968, 62, 76, 5912, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31619, 235, 108, 35975, 112, 169, 226, 108, 168, 26534, 168, 245, 238, 366, 9688, 2292, 1600, 366, 12685, 2292, 1, 6167, 35975, 226, 31619, 114, 222, 168, 245, 105, 47991, 102, 46695, 230, 46695, 97, 13, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 9688, 62, 1930, 1756, 8973, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 437, 62, 1930, 1756, 8973, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 49005, 287, 27056, 378, 7, 28968, 62, 76, 5912, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2340, 796, 11241, 1143, 62, 1069, 12629, 14692, 15414, 62, 2340, 1, 7131, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 62, 9630, 796, 5128, 62, 2340, 13, 9630, 7, 30001, 7509, 13, 565, 82, 62, 30001, 62, 312, 8, 220, 1303, 537, 82, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8379, 4686, 167, 98, 120, 23821, 226, 97, 168, 254, 243, 47991, 102, 46695, 230, 46695, 97, 357, 22866, 168, 247, 222, 1808, 35975, 226, 220, 166, 113, 105, 167, 114, 226, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8379, 62, 2340, 796, 11241, 1143, 62, 1069, 12629, 13, 43167, 62, 2340, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 9630, 796, 352, 611, 14841, 62, 261, 62, 3506, 2073, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 166, 116, 116, 35975, 112, 166, 108, 222, 220, 166, 116, 112, 4732, 168, 245, 238, 31619, 234, 222, 47991, 112, 40122, 341, 35975, 226, 23821, 100, 226, 169, 244, 231, 47991, 246, 166, 116, 108, 31619, 243, 234, 167, 105, 116, 168, 245, 238, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 47991, 246, 167, 224, 246, 35975, 246, 1672, 35975, 112, 23821, 245, 105, 167, 253, 105, 220, 166, 108, 250, 35975, 246, 11506, 35975, 226, 220, 166, 108, 222, 168, 100, 230, 23821, 230, 246, 23821, 252, 230, 35975, 234, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 9630, 796, 6291, 62, 76, 5912, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7429, 796, 6096, 58, 15037, 45532, 62, 25154, 5883, 45, 62, 20608, 7131, 39873, 62, 9630, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3280, 166, 108, 222, 23821, 245, 228, 35975, 226, 220, 166, 110, 121, 168, 248, 108, 537, 82, 62, 9630, 167, 98, 120, 3280, 167, 94, 250, 23821, 226, 97, 168, 254, 243, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1672, 168, 245, 238, 168, 226, 250, 23821, 254, 243, 46695, 113, 35975, 112, 23821, 245, 228, 167, 232, 242, 220, 166, 110, 121, 168, 248, 108, 166, 108, 222, 23821, 252, 230, 35975, 226, 23821, 230, 246, 23821, 252, 230, 35975, 234, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 504, 86, 364, 14692, 41484, 62, 9688, 8973, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 9688, 62, 1930, 1756, 1, 4083, 33295, 7, 565, 82, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 437, 62, 1930, 1756, 1, 4083, 33295, 7, 565, 82, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2420, 168, 245, 238, 168, 226, 250, 23821, 254, 243, 46695, 113, 35975, 246, 923, 14, 437, 2095, 6376, 167, 98, 120, 220, 166, 108, 222, 168, 254, 116, 168, 246, 112, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 10641, 796, 7429, 14692, 41484, 62, 9688, 1, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 10641, 796, 923, 62, 10641, 1343, 18896, 7, 504, 86, 364, 14692, 5239, 1, 7131, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8379, 62, 2340, 167, 232, 242, 657, 11, 352, 11, 6045, 35975, 246, 23821, 226, 116, 220, 166, 108, 240, 167, 100, 234, 220, 166, 108, 222, 168, 100, 238, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6045, 657, 657, 2644, 657, 6045, 352, 352, 2644, 352, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2420, 168, 245, 238, 168, 226, 250, 4732, 166, 108, 222, 23821, 233, 250, 168, 252, 239, 47991, 246, 167, 232, 242, 23821, 250, 226, 168, 117, 246, 167, 94, 250, 23821, 251, 112, 167, 237, 247, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 9688, 62, 9630, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 8379, 62, 2340, 58, 30001, 62, 9688, 62, 9630, 60, 14512, 4732, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 9688, 62, 9630, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2420, 168, 245, 238, 168, 226, 250, 4732, 166, 108, 222, 31619, 223, 251, 167, 224, 246, 167, 232, 242, 23821, 250, 226, 168, 117, 246, 167, 94, 250, 23821, 251, 112, 167, 237, 247, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 437, 62, 9630, 796, 18896, 7, 15414, 62, 2340, 8, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 8379, 62, 2340, 58, 30001, 62, 437, 62, 9630, 60, 14512, 4732, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 437, 62, 9630, 48185, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23821, 254, 243, 46695, 113, 35975, 112, 11506, 35975, 226, 31619, 110, 245, 168, 244, 112, 167, 224, 246, 167, 232, 242, 168, 100, 222, 23821, 110, 112, 169, 223, 105, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23821, 254, 243, 46695, 113, 35975, 112, 23821, 245, 228, 167, 232, 242, 220, 166, 110, 121, 168, 248, 108, 39241, 6376, 167, 94, 250, 27393, 357, 9781, 305, 35975, 120, 220, 166, 110, 121, 168, 248, 108, 31619, 233, 97, 167, 98, 112, 166, 110, 234, 23821, 110, 246, 167, 99, 105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49005, 58, 30001, 62, 9688, 62, 9630, 7131, 15, 60, 19841, 923, 62, 10641, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49005, 58, 30001, 62, 437, 62, 9630, 7131, 16, 60, 18189, 886, 62, 10641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 9688, 62, 1930, 1756, 1, 4083, 33295, 7, 565, 82, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 437, 62, 1930, 1756, 1, 4083, 33295, 7, 565, 82, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11241, 62, 9688, 62, 9630, 31619, 108, 237, 11241, 62, 437, 62, 9630, 167, 98, 120, 3280, 35975, 246, 31619, 223, 251, 168, 250, 120, 167, 94, 250, 23821, 251, 112, 167, 237, 247, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 25, 3280, 166, 108, 222, 31619, 100, 230, 168, 100, 222, 167, 100, 231, 31619, 233, 101, 168, 244, 112, 35975, 116, 220, 166, 110, 121, 168, 248, 108, 938, 11677, 35975, 226, 31619, 242, 108, 167, 251, 120, 166, 108, 230, 23821, 230, 246, 23821, 252, 230, 35975, 234, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11241, 62, 9688, 62, 9630, 167, 98, 120, 23821, 233, 97, 168, 254, 250, 23821, 250, 226, 168, 117, 246, 167, 94, 250, 31619, 100, 252, 168, 114, 108, 168, 96, 120, 167, 232, 242, 220, 166, 111, 120, 168, 254, 243, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 9688, 62, 9630, 1279, 18896, 7, 8210, 1039, 8, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49005, 58, 30001, 62, 9688, 62, 9630, 7131, 15, 60, 19841, 923, 62, 10641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 9688, 62, 9630, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 9688, 62, 1930, 1756, 1, 4083, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 9688, 62, 9630, 532, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11241, 62, 437, 62, 9630, 167, 98, 120, 23821, 233, 97, 168, 254, 250, 23821, 250, 226, 168, 117, 246, 167, 94, 250, 31619, 100, 252, 168, 114, 108, 168, 96, 120, 167, 232, 242, 220, 166, 111, 120, 168, 254, 243, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 49005, 58, 30001, 62, 437, 62, 9630, 7131, 16, 60, 18189, 886, 62, 10641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 437, 62, 9630, 48185, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 437, 62, 1930, 1756, 1, 4083, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 437, 62, 9630, 1343, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 11241, 1143, 62, 1069, 12629, 628, 220, 220, 220, 825, 8335, 62, 12102, 341, 62, 40890, 7, 1069, 12629, 11, 37715, 964, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6719, 36948, 21201, 27039, 329, 7925, 425, 2746, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6096, 357, 35, 713, 2599, 16092, 292, 316, 35, 713, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37715, 964, 357, 35, 713, 2599, 16092, 292, 316, 35, 713, 422, 22719, 13, 2896, 13185, 284, 6045, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 713, 25, 29130, 1143, 6096, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 261, 62, 3506, 796, 11241, 7509, 13, 39231, 62, 1589, 6624, 366, 3506, 1, 628, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 796, 11241, 1096, 62, 22184, 7, 1069, 12629, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 76, 5912, 796, 11241, 1143, 62, 1069, 12629, 13, 12924, 7203, 2502, 11125, 62, 1462, 62, 39873, 62, 76, 5912, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12660, 35975, 226, 23821, 250, 226, 47991, 112, 17724, 35975, 226, 4732, 35975, 246, 3293, 1806, 168, 250, 120, 167, 94, 250, 31619, 111, 222, 169, 247, 246, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11188, 1672, 62, 312, 167, 98, 120, 23821, 250, 254, 168, 100, 222, 47991, 246, 166, 111, 254, 11677, 285, 39242, 35975, 226, 23821, 254, 222, 168, 252, 98, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 20688, 62, 312, 8973, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 30001, 1143, 62, 1069, 12629, 14692, 15414, 62, 2340, 8973, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8379, 4686, 167, 98, 120, 23821, 226, 97, 168, 254, 243, 47991, 102, 46695, 230, 46695, 97, 357, 22866, 168, 247, 222, 1808, 35975, 226, 220, 166, 113, 105, 167, 114, 226, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8379, 62, 2340, 796, 11241, 1143, 62, 1069, 12629, 13, 43167, 62, 2340, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 9630, 796, 352, 611, 14841, 62, 261, 62, 3506, 2073, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 47991, 246, 167, 224, 246, 35975, 246, 1672, 35975, 112, 23821, 245, 105, 167, 253, 105, 220, 166, 108, 250, 35975, 246, 11506, 35975, 226, 220, 166, 108, 222, 168, 100, 230, 23821, 230, 246, 23821, 252, 230, 35975, 234, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 9630, 796, 6291, 62, 76, 5912, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 20688, 62, 312, 1, 4083, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6096, 14692, 312, 1, 7131, 39873, 62, 9630, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 1143, 62, 1069, 12629, 14692, 28968, 62, 76, 5912, 1, 7131, 72, 60, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 78, 611, 8379, 62, 2340, 58, 74, 60, 6624, 4732, 62, 9630, 2073, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 267, 287, 27056, 378, 7, 30001, 1143, 62, 1069, 12629, 14692, 28968, 62, 76, 5912, 1, 7131, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 11241, 1143, 62, 1069, 12629, 628, 220, 220, 220, 611, 4235, 6624, 366, 27432, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 40890, 62, 22184, 796, 8335, 62, 27432, 62, 40890, 198, 220, 220, 220, 1288, 361, 4235, 6624, 366, 18206, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 40890, 62, 22184, 796, 8335, 62, 12102, 341, 62, 40890, 198, 220, 220, 220, 1288, 361, 4235, 6624, 366, 9288, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 40890, 62, 22184, 796, 8335, 62, 12102, 341, 62, 40890, 628, 220, 220, 220, 1441, 651, 62, 40890, 62, 22184, 11, 6407, 628, 198, 47, 35316, 62, 47, 4061, 3698, 8881, 796, 1391, 198, 220, 220, 220, 366, 2302, 35587, 1298, 651, 62, 2302, 35587, 62, 40890, 11, 198, 92, 198 ]
1.711012
4,277
#!/usr/bin/python3 import sys import gi gi.require_version('Gst', '1.0') from gi.repository import Gst from gi.repository import GLib from gi.repository import Gtk if __name__ == "__main__": main(sys.argv) #self.pipe = Gst.parse_launch ("videotestsrc is-live=true ! capsfilter name=caps ! x264enc speed-preset=superfast ! h264parse ! decodebin ! autovideosink")
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 25064, 198, 11748, 308, 72, 198, 198, 12397, 13, 46115, 62, 9641, 10786, 38, 301, 3256, 705, 16, 13, 15, 11537, 198, 6738, 308, 72, 13, 260, 1930, 37765, 1330, 402, 301, 198, 6738, 308, 72, 13, 260, 1930, 37765, 1330, 10188, 571, 198, 6738, 308, 72, 13, 260, 1930, 37765, 1330, 402, 30488, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1388, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 1303, 944, 13, 34360, 796, 402, 301, 13, 29572, 62, 35681, 5855, 85, 485, 313, 3558, 6015, 318, 12, 12583, 28, 7942, 5145, 11022, 24455, 1438, 28, 27979, 5145, 2124, 18897, 12685, 2866, 12, 18302, 316, 28, 16668, 7217, 5145, 289, 18897, 29572, 5145, 36899, 8800, 5145, 1960, 709, 4921, 676, 4943, 198 ]
2.590278
144
from os import listdir from random import choice from django.conf import settings from django.contrib.auth import login, authenticate from django.contrib.auth.views import LoginView from django.shortcuts import get_object_or_404, redirect from django.views.generic import TemplateView, DetailView from django.views.generic.edit import FormView from ..forms import ImageForm, ChessUserCreationForm from ..models import ChessUser
[ 6738, 28686, 1330, 1351, 15908, 198, 6738, 4738, 1330, 3572, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 17594, 11, 8323, 5344, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 33571, 1330, 23093, 7680, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 11, 18941, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 37350, 7680, 11, 42585, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 19312, 1330, 5178, 7680, 198, 198, 6738, 11485, 23914, 1330, 7412, 8479, 11, 25774, 12982, 12443, 341, 8479, 198, 6738, 11485, 27530, 1330, 25774, 12982, 628, 628, 198 ]
3.798246
114
"""A module with the class `AbstractAlgorithm` defined""" # from abc import ABC, abstractmethod from abc import abstractmethod from steinerpy.library.misc.abc_utils import abstract_attribute, ABC as newABC from steinerpy.library.graphs.graph import IGraph from typing import List class AbstractAlgorithm(newABC): """An abstract barebones superclass for each algorithm implementation. All algorithm implementations should inhereit :py:class:: AbstractAlgorithm. Do not instantiate this directly! Attributes: terminals (list): A list of tuples representing terminals on a graph. Exact format depends on the type of graph used (see below). graph (SquareGrid, MyGraph): Graph classes from superclass IGraph. Created using 'GraphFactory' class from the 'graph' module S (dict): A dictionary containing information to output Steiner Tree 'sol': is a list of tree edges, e.g. ((x1,y1),(x2,y2)) if using SquareGrid graph 'dist': is a list of each tree edge's distance cost 'path': is a list of vertices of G, that make up each tree edge 'stats': {'run_time': x, closed_nodes: y, open_nodes: z} """ def return_solutions(self): """Return solution set of final tree Returns: S (dict): A dictionary containing information to output Steiner Tree """ return self.S @abstractmethod def run_algorithm(self): """Queries the algorithm and populates solution set 'S' This is an abstract method, which must be explicitly defined in subclasses """ pass
[ 37811, 32, 8265, 351, 262, 1398, 4600, 23839, 2348, 42289, 63, 5447, 37811, 198, 198, 2, 422, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 450, 66, 1330, 12531, 24396, 198, 6738, 2876, 7274, 9078, 13, 32016, 13, 44374, 13, 39305, 62, 26791, 1330, 12531, 62, 42348, 11, 9738, 355, 649, 24694, 198, 6738, 2876, 7274, 9078, 13, 32016, 13, 34960, 82, 13, 34960, 1330, 35336, 1470, 198, 6738, 19720, 1330, 7343, 198, 198, 4871, 27741, 2348, 42289, 7, 3605, 24694, 2599, 198, 220, 220, 220, 37227, 2025, 12531, 6247, 35095, 2208, 4871, 329, 1123, 11862, 7822, 13, 628, 220, 220, 220, 1439, 11862, 25504, 815, 287, 1456, 270, 1058, 9078, 25, 4871, 3712, 27741, 2348, 42289, 13, 198, 220, 220, 220, 2141, 407, 9113, 9386, 428, 3264, 0, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30237, 357, 4868, 2599, 317, 1351, 286, 12777, 2374, 10200, 30237, 319, 257, 4823, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1475, 529, 5794, 8338, 319, 262, 2099, 286, 4823, 973, 357, 3826, 2174, 737, 198, 220, 220, 220, 220, 220, 220, 220, 4823, 357, 48011, 41339, 11, 2011, 37065, 2599, 29681, 6097, 422, 2208, 4871, 35336, 1470, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15622, 1262, 705, 37065, 22810, 6, 1398, 422, 262, 705, 34960, 6, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 311, 357, 11600, 2599, 317, 22155, 7268, 1321, 284, 5072, 2441, 7274, 12200, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34453, 10354, 318, 257, 1351, 286, 5509, 13015, 11, 304, 13, 70, 13, 14808, 87, 16, 11, 88, 16, 828, 7, 87, 17, 11, 88, 17, 4008, 611, 1262, 9276, 41339, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17080, 10354, 318, 257, 1351, 286, 1123, 5509, 5743, 338, 5253, 1575, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 318, 257, 1351, 286, 9421, 1063, 286, 402, 11, 326, 787, 510, 1123, 5509, 5743, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34242, 10354, 1391, 6, 5143, 62, 2435, 10354, 2124, 11, 4838, 62, 77, 4147, 25, 331, 11, 1280, 62, 77, 4147, 25, 1976, 92, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1441, 62, 82, 14191, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 4610, 900, 286, 2457, 5509, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 357, 11600, 2599, 317, 22155, 7268, 1321, 284, 5072, 2441, 7274, 12200, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 50, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 1057, 62, 282, 42289, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4507, 10640, 262, 11862, 290, 1461, 15968, 4610, 900, 705, 50, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 281, 12531, 2446, 11, 543, 1276, 307, 11777, 5447, 198, 220, 220, 220, 220, 220, 220, 220, 287, 850, 37724, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208 ]
2.851282
585
from socket import * from time import ctime HOST = '' PORT = 8888 BUFSIZ = 1024 ADDRESS = (HOST, PORT) udpServerSocket = socket(AF_INET, SOCK_DGRAM) udpServerSocket.bind(ADDRESS) # 绑定客户端口和地址 while True: print("udp waiting for message...") data, addr = udpServerSocket.recvfrom(BUFSIZ) print("接收到数据:", data.decode('utf-8')) content = '[%s] %s' % (bytes(ctime(), 'utf-8'), data.decode('utf-8')) udpServerSocket.sendto(content.encode('utf-8'), addr) print('...received from and returned to:', addr) udpServerSocket.close()
[ 6738, 17802, 1330, 1635, 198, 6738, 640, 1330, 269, 2435, 198, 198, 39, 10892, 796, 10148, 198, 15490, 796, 807, 28011, 198, 19499, 10652, 14887, 796, 28119, 198, 2885, 7707, 7597, 796, 357, 39, 10892, 11, 350, 9863, 8, 198, 198, 463, 79, 10697, 39105, 796, 17802, 7, 8579, 62, 1268, 2767, 11, 311, 11290, 62, 35, 10761, 2390, 8, 198, 463, 79, 10697, 39105, 13, 21653, 7, 2885, 7707, 7597, 8, 220, 1303, 13328, 119, 239, 22522, 248, 22522, 95, 22755, 115, 44165, 107, 20998, 96, 161, 240, 234, 28839, 108, 161, 251, 222, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 3601, 7203, 463, 79, 4953, 329, 3275, 9313, 8, 198, 220, 220, 220, 1366, 11, 37817, 796, 334, 26059, 10697, 39105, 13, 8344, 85, 6738, 7, 19499, 10652, 14887, 8, 198, 220, 220, 220, 3601, 7203, 162, 236, 98, 162, 242, 114, 26344, 108, 46763, 108, 162, 235, 106, 171, 120, 248, 1600, 1366, 13, 12501, 1098, 10786, 40477, 12, 23, 6, 4008, 628, 220, 220, 220, 2695, 796, 44438, 4, 82, 60, 4064, 82, 6, 4064, 357, 33661, 7, 310, 524, 22784, 705, 40477, 12, 23, 33809, 1366, 13, 12501, 1098, 10786, 40477, 12, 23, 6, 4008, 198, 220, 220, 220, 334, 26059, 10697, 39105, 13, 21280, 1462, 7, 11299, 13, 268, 8189, 10786, 40477, 12, 23, 33809, 37817, 8, 198, 220, 220, 220, 3601, 10786, 986, 47844, 422, 290, 4504, 284, 25, 3256, 37817, 8, 198, 198, 463, 79, 10697, 39105, 13, 19836, 3419, 198 ]
2.191235
251
#!/usr/bin/python # -*- coding: utf-8 -*- from abc import abstractproperty, ABCMeta from cloudshell.devices.networking_utils import command_logging from cloudshell.devices.runners.interfaces.autoload_runner_interface import AutoloadOperationsInterface
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 450, 66, 1330, 12531, 26745, 11, 9738, 48526, 198, 198, 6738, 6279, 29149, 13, 42034, 13, 3262, 16090, 62, 26791, 1330, 3141, 62, 6404, 2667, 198, 6738, 6279, 29149, 13, 42034, 13, 36740, 13, 3849, 32186, 13, 2306, 349, 1170, 62, 16737, 62, 39994, 1330, 5231, 349, 1170, 18843, 602, 39317, 628 ]
3.355263
76
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created Nov 2020 @author: hassi """ from qiskit import QuantumCircuit, Aer, execute from IPython.core.display import display from qiskit.tools.visualization import plot_histogram print("Ch 9: Grover with ancilla qubits") print("--------------------------------") # Create 3 qubit circuit with two classical bits qc=QuantumCircuit(3,2) qc.h([0,1]) qc.x(2) # Code for the oracle qc.barrier([0,1,2]) qc.x(0) qc.barrier([0,1,2]) # Phase kickback using the ancilla qubit qc.h(2) qc.ccx(0,1,2) qc.h(2) # End code for the oracle qc.barrier([0,1,2]) qc.x(0) qc.barrier([0,1,2]) # Amplifier qc.h([0,1]) qc.x([0,1]) qc.h(1) qc.cx(0,1) qc.h(1) qc.barrier([0,1,2]) qc.x([0,1]) qc.h([0,1]) # Measure two qubits qc.measure([0,1],[0,1]) # Display circuit and execute on simulator display(qc.draw('mpl')) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1) result = job.result() counts = result.get_counts(qc) display(plot_histogram(counts))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 5267, 12131, 198, 198, 31, 9800, 25, 468, 13396, 198, 37811, 198, 198, 6738, 10662, 1984, 270, 1330, 29082, 31560, 5013, 11, 15781, 11, 12260, 198, 6738, 6101, 7535, 13, 7295, 13, 13812, 1330, 3359, 198, 6738, 10662, 1984, 270, 13, 31391, 13, 41464, 1634, 1330, 7110, 62, 10034, 21857, 198, 198, 4798, 7203, 1925, 860, 25, 10299, 332, 351, 281, 66, 5049, 627, 9895, 4943, 198, 4798, 7203, 3880, 4943, 198, 198, 2, 13610, 513, 627, 2545, 10349, 351, 734, 15993, 10340, 198, 80, 66, 28, 24915, 388, 31560, 5013, 7, 18, 11, 17, 8, 628, 198, 80, 66, 13, 71, 26933, 15, 11, 16, 12962, 198, 80, 66, 13, 87, 7, 17, 8, 198, 198, 2, 6127, 329, 262, 393, 6008, 198, 80, 66, 13, 5657, 5277, 26933, 15, 11, 16, 11, 17, 12962, 198, 80, 66, 13, 87, 7, 15, 8, 198, 80, 66, 13, 5657, 5277, 26933, 15, 11, 16, 11, 17, 12962, 198, 198, 2, 18983, 4829, 1891, 1262, 262, 281, 66, 5049, 627, 2545, 198, 80, 66, 13, 71, 7, 17, 8, 198, 80, 66, 13, 535, 87, 7, 15, 11, 16, 11, 17, 8, 198, 80, 66, 13, 71, 7, 17, 8, 198, 198, 2, 5268, 2438, 329, 262, 393, 6008, 198, 80, 66, 13, 5657, 5277, 26933, 15, 11, 16, 11, 17, 12962, 198, 80, 66, 13, 87, 7, 15, 8, 198, 80, 66, 13, 5657, 5277, 26933, 15, 11, 16, 11, 17, 12962, 198, 198, 2, 44074, 7483, 198, 80, 66, 13, 71, 26933, 15, 11, 16, 12962, 198, 80, 66, 13, 87, 26933, 15, 11, 16, 12962, 198, 80, 66, 13, 71, 7, 16, 8, 198, 80, 66, 13, 66, 87, 7, 15, 11, 16, 8, 198, 80, 66, 13, 71, 7, 16, 8, 198, 80, 66, 13, 5657, 5277, 26933, 15, 11, 16, 11, 17, 12962, 198, 80, 66, 13, 87, 26933, 15, 11, 16, 12962, 198, 80, 66, 13, 71, 26933, 15, 11, 16, 12962, 198, 198, 2, 24291, 734, 627, 9895, 198, 80, 66, 13, 1326, 5015, 26933, 15, 11, 16, 38430, 15, 11, 16, 12962, 198, 198, 2, 16531, 10349, 290, 12260, 319, 35375, 198, 13812, 7, 80, 66, 13, 19334, 10786, 76, 489, 6, 4008, 198, 198, 1891, 437, 796, 15781, 13, 1136, 62, 1891, 437, 10786, 80, 8597, 62, 14323, 8927, 11537, 198, 21858, 796, 12260, 7, 80, 66, 11, 30203, 11, 6934, 28, 16, 8, 198, 20274, 796, 1693, 13, 20274, 3419, 198, 9127, 82, 796, 1255, 13, 1136, 62, 9127, 82, 7, 80, 66, 8, 198, 198, 13812, 7, 29487, 62, 10034, 21857, 7, 9127, 82, 4008, 198 ]
2.200864
463
__author__ = 'saeedamen' from pythalesians.util.loggermanager import LoggerManager from pythalesians.market.requests.timeseriesrequest import TimeSeriesRequest from pythalesians.timeseries.techind.techparams import TechParams
[ 834, 9800, 834, 796, 705, 11400, 2308, 41763, 6, 198, 198, 6738, 279, 5272, 2040, 1547, 13, 22602, 13, 6404, 1362, 37153, 1330, 5972, 1362, 13511, 198, 6738, 279, 5272, 2040, 1547, 13, 10728, 13, 8897, 3558, 13, 22355, 10640, 25927, 1330, 3862, 27996, 18453, 198, 6738, 279, 5272, 2040, 1547, 13, 22355, 10640, 13, 13670, 521, 13, 13670, 37266, 1330, 9634, 10044, 4105, 628 ]
3.507692
65
#!/usr/bin/env python # coding: utf-8 # In[43]: import cv2 import csv from scipy import ndimage import numpy as np # In[44]: lines = [] with open("./data/driving_log.csv") as dl: reader = csv.reader(dl) for line in reader: lines.append(line) # In[45]: lines = lines[1:] corr = 0.2 source_path = "./data/" images = [] measurements = [] for line in lines: m = float(line[3]) m_list = [m, m+corr, m-corr] for i in range(3): # try: image = cv2.imread(source_path + line[i].strip()) # print(source_path + line[i]) image = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)[:,:,1:] # image = np.reshape(image, newshape = (image.shape[0], image.shape[1], 1)) images.append(image) measurements.append(m_list[i]) # except Exception as e: # continue # In[5]: print(image.shape) aug_images = [] aug_measure = [] # In[6]: for image, measurement in zip(images, measurements): aug_images.append(image) aug_measure.append(measurement) aug_images.append(np.fliplr(image)) aug_measure.append(-1.0*measurement) # In[7]: X_train = np.array(aug_images) y_train = np.array(aug_measure) # In[19]: import tensorflow as tf # In[40]: from keras.models import Sequential from keras.layers import Dense, Flatten, Lambda, Cropping2D, Conv2D # In[42]: model = Sequential() model.add(Cropping2D(cropping=((60,20),(0,0)), input_shape = (160,320,3))) model.add(Lambda(lambda x:x/255.0 - 0.5)) model.add(Conv2D(24, (5,5),strides=(2,2),activation='relu')) model.add(Conv2D(36, (5,5),strides=(2,2),activation='relu')) model.add(Conv2D(48, (5,5),strides=(2,2),activation='relu')) model.add(Conv2D(64, (3,3),activation='relu')) model.add(Conv2D(64, (3,3),activation='relu')) model.add(Flatten()) model.add(Dense(100, activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(10)) model.add(Dense(1)) # In[13]: model.compile(optimizer='adam', loss = 'mse') model.fit(X_train, y_train, validation_split=0.2,shuffle=True, epochs=5) # In[40]: model.save('model_hls.h5')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 3559, 5974, 628, 198, 11748, 269, 85, 17, 198, 11748, 269, 21370, 198, 6738, 629, 541, 88, 1330, 299, 67, 9060, 198, 11748, 299, 32152, 355, 45941, 628, 198, 2, 554, 58, 2598, 5974, 628, 198, 6615, 796, 17635, 198, 4480, 1280, 7, 1911, 14, 7890, 14, 24255, 62, 6404, 13, 40664, 4943, 355, 288, 75, 25, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 25404, 8, 198, 220, 220, 220, 329, 1627, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 1370, 8, 628, 198, 2, 554, 58, 2231, 5974, 628, 198, 6615, 796, 3951, 58, 16, 47715, 628, 198, 198, 10215, 81, 796, 657, 13, 17, 198, 198, 10459, 62, 6978, 796, 366, 19571, 7890, 30487, 198, 17566, 796, 17635, 198, 1326, 5015, 902, 796, 17635, 198, 1640, 1627, 287, 3951, 25, 198, 220, 220, 220, 285, 796, 12178, 7, 1370, 58, 18, 12962, 198, 220, 220, 220, 285, 62, 4868, 796, 685, 76, 11, 285, 10, 10215, 81, 11, 285, 12, 10215, 81, 60, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 269, 85, 17, 13, 320, 961, 7, 10459, 62, 6978, 1343, 1627, 58, 72, 4083, 36311, 28955, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 10459, 62, 6978, 1343, 1627, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9060, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 39, 6561, 38381, 45299, 45299, 16, 47715, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 45941, 13, 3447, 1758, 7, 9060, 11, 649, 43358, 796, 357, 9060, 13, 43358, 58, 15, 4357, 2939, 13, 43358, 58, 16, 4357, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 13, 33295, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13871, 13, 33295, 7, 76, 62, 4868, 58, 72, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 198, 2, 554, 58, 20, 5974, 198, 4798, 7, 9060, 13, 43358, 8, 198, 198, 7493, 62, 17566, 796, 17635, 198, 7493, 62, 1326, 5015, 796, 17635, 628, 198, 2, 554, 58, 21, 5974, 628, 198, 1640, 2939, 11, 15558, 287, 19974, 7, 17566, 11, 13871, 2599, 198, 220, 220, 220, 16339, 62, 17566, 13, 33295, 7, 9060, 8, 198, 220, 220, 220, 16339, 62, 1326, 5015, 13, 33295, 7, 1326, 5015, 434, 8, 198, 220, 220, 220, 16339, 62, 17566, 13, 33295, 7, 37659, 13, 2704, 24705, 81, 7, 9060, 4008, 198, 220, 220, 220, 16339, 62, 1326, 5015, 13, 33295, 32590, 16, 13, 15, 9, 1326, 5015, 434, 8, 628, 198, 2, 554, 58, 22, 5974, 628, 198, 55, 62, 27432, 796, 45941, 13, 18747, 7, 7493, 62, 17566, 8, 198, 88, 62, 27432, 796, 45941, 13, 18747, 7, 7493, 62, 1326, 5015, 8, 628, 198, 2, 554, 58, 1129, 5974, 628, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 2, 554, 58, 1821, 5974, 628, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 360, 1072, 11, 1610, 41769, 11, 21114, 6814, 11, 9325, 2105, 17, 35, 11, 34872, 17, 35, 628, 198, 2, 554, 58, 3682, 5974, 628, 198, 19849, 796, 24604, 1843, 3419, 198, 19849, 13, 2860, 7, 35403, 2105, 17, 35, 7, 19915, 2105, 16193, 7, 1899, 11, 1238, 828, 7, 15, 11, 15, 36911, 5128, 62, 43358, 796, 357, 14198, 11, 19504, 11, 18, 22305, 198, 19849, 13, 2860, 7, 43, 4131, 6814, 7, 50033, 2124, 25, 87, 14, 13381, 13, 15, 532, 657, 13, 20, 4008, 198, 19849, 13, 2860, 7, 3103, 85, 17, 35, 7, 1731, 11, 357, 20, 11, 20, 828, 2536, 1460, 16193, 17, 11, 17, 828, 48545, 11639, 260, 2290, 6, 4008, 198, 19849, 13, 2860, 7, 3103, 85, 17, 35, 7, 2623, 11, 357, 20, 11, 20, 828, 2536, 1460, 16193, 17, 11, 17, 828, 48545, 11639, 260, 2290, 6, 4008, 198, 19849, 13, 2860, 7, 3103, 85, 17, 35, 7, 2780, 11, 357, 20, 11, 20, 828, 2536, 1460, 16193, 17, 11, 17, 828, 48545, 11639, 260, 2290, 6, 4008, 198, 19849, 13, 2860, 7, 3103, 85, 17, 35, 7, 2414, 11, 357, 18, 11, 18, 828, 48545, 11639, 260, 2290, 6, 4008, 198, 19849, 13, 2860, 7, 3103, 85, 17, 35, 7, 2414, 11, 357, 18, 11, 18, 828, 48545, 11639, 260, 2290, 6, 4008, 198, 19849, 13, 2860, 7, 7414, 41769, 28955, 198, 19849, 13, 2860, 7, 35, 1072, 7, 3064, 11, 14916, 11639, 260, 2290, 6, 4008, 198, 19849, 13, 2860, 7, 35, 1072, 7, 1120, 11, 14916, 11639, 260, 2290, 6, 4008, 198, 19849, 13, 2860, 7, 35, 1072, 7, 940, 4008, 198, 19849, 13, 2860, 7, 35, 1072, 7, 16, 4008, 628, 198, 2, 554, 58, 1485, 5974, 628, 198, 19849, 13, 5589, 576, 7, 40085, 7509, 11639, 324, 321, 3256, 2994, 796, 705, 76, 325, 11537, 198, 19849, 13, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 11, 21201, 62, 35312, 28, 15, 13, 17, 11, 1477, 18137, 28, 17821, 11, 36835, 82, 28, 20, 8, 628, 198, 2, 554, 58, 1821, 5974, 628, 198, 19849, 13, 21928, 10786, 19849, 62, 71, 7278, 13, 71, 20, 11537, 628 ]
2.210305
951
# Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. """ API interface. """ import os import shutil from .constants import EXTENSIONS_FOLDER from .constants import JUPYTERLAB from .constants import LANG_PACKS_FOLDER from .constants import LC_MESSAGES from .constants import LOCALE_FOLDER from .converters import convert_catalog_to_json from .utils import check_locale from .utils import compile_to_mo from .utils import compile_translations from .utils import create_new_language_pack from .utils import extract_translations from .utils import update_translations def check_locales(locales): """ Check if a given list of locale values is valid. Raises an exception if an invalid locale value is found. Parameters ---------- locales: list List of locales """ for locale in locales: if not check_locale(locale): raise Exception("Invalid locale '{locale}'".format(locale=locale)) def normalize_project(project): """ FIXME: Parameters ---------- project: str FIXME: """ return project.lower().replace("-", "_") def extract_package(package_repo_dir, project): """ FIXME: """ def update_package(package_repo_dir, project, locales): """ FIXME: """ if locales: check_locales(locales) project = normalize_project(project) output_dir = os.path.join(package_repo_dir, project) if not os.path.isdir(output_dir): raise Exception( "Output dir `{output_dir}` not found!".format(output_dir=output_dir) ) update_translations(package_repo_dir, output_dir, project, locales) def compile_package(package_repo_dir, project, locales): """ FIXME """ if locales: check_locales(locales) project = normalize_project(project) output_dir = os.path.join(package_repo_dir, project) po_paths = compile_translations(output_dir, project, locales) for __, po_path in po_paths.items(): output_path = os.path.dirname(po_path) convert_catalog_to_json(po_path, output_path, project) def extract_language_pack(package_repo_dir, language_packs_repo_dir, project): """ FIXME: """ project = normalize_project(project) if project == JUPYTERLAB: output_dir = os.path.join(language_packs_repo_dir, project) else: output_dir = os.path.join(language_packs_repo_dir, EXTENSIONS_FOLDER, project) os.makedirs(output_dir, exist_ok=True) extract_translations(package_repo_dir, output_dir, project) def update_language_pack(package_repo_dir, language_packs_repo_dir, project, locales): """ FIXME """ if locales: check_locales(locales) project = normalize_project(project) if project == JUPYTERLAB: output_dir = os.path.join(language_packs_repo_dir, project) else: output_dir = os.path.join( language_packs_repo_dir, "jupyterlab_extensions", project ) os.makedirs(output_dir, exist_ok=True) update_translations(package_repo_dir, output_dir, project, locales) def compile_language_pack(language_packs_repo_dir, project, locales): """ FIXME: """ if locales: check_locales(locales) project = normalize_project(project) if project == JUPYTERLAB: output_dir = os.path.join(language_packs_repo_dir, project) else: output_dir = os.path.join(language_packs_repo_dir, EXTENSIONS_FOLDER, project) po_paths = compile_translations(output_dir, project, locales) for locale, po_path in po_paths.items(): output_path = os.path.dirname(po_path) json_path = convert_catalog_to_json(po_path, output_path, project) mo_path = compile_to_mo(po_path) # Move to language pack folder language_packs_dir = os.path.join(language_packs_repo_dir, LANG_PACKS_FOLDER) pkg_name = "jupyterlab-language-pack-{locale}".format(locale=locale).replace( "_", "-" ) locale_language_pack_dir = os.path.join( language_packs_dir, pkg_name, pkg_name.replace("-", "_") ) # Check if it exists, otherwise create it if not os.path.isdir(locale_language_pack_dir): create_new_language_pack(language_packs_dir, locale) if project == JUPYTERLAB: output_dir = os.path.join(locale_language_pack_dir) else: output_dir = os.path.join(locale_language_pack_dir, EXTENSIONS_FOLDER) shutil.rmtree( os.path.join(output_dir, os.path.basename(mo_path)), ignore_errors=True ) shutil.rmtree( os.path.join(output_dir, os.path.basename(json_path)), ignore_errors=True ) shutil.move(mo_path, os.path.join(output_dir, os.path.basename(mo_path))) shutil.move(json_path, os.path.join(output_dir, os.path.basename(json_path)))
[ 2, 15069, 357, 66, 8, 449, 929, 88, 353, 7712, 4816, 13, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 40499, 347, 10305, 13789, 13, 198, 37811, 198, 17614, 7071, 13, 198, 37811, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 198, 6738, 764, 9979, 1187, 1330, 27489, 16938, 11053, 62, 37, 3535, 14418, 198, 6738, 764, 9979, 1187, 1330, 449, 8577, 56, 5781, 48780, 198, 6738, 764, 9979, 1187, 1330, 406, 15567, 62, 47, 8120, 50, 62, 37, 3535, 14418, 198, 6738, 764, 9979, 1187, 1330, 22228, 62, 44, 1546, 4090, 48075, 198, 6738, 764, 9979, 1187, 1330, 37347, 21358, 62, 37, 3535, 14418, 198, 6738, 764, 1102, 332, 1010, 1330, 10385, 62, 9246, 11794, 62, 1462, 62, 17752, 198, 6738, 764, 26791, 1330, 2198, 62, 17946, 1000, 198, 6738, 764, 26791, 1330, 17632, 62, 1462, 62, 5908, 198, 6738, 764, 26791, 1330, 17632, 62, 7645, 49905, 198, 6738, 764, 26791, 1330, 2251, 62, 3605, 62, 16129, 62, 8002, 198, 6738, 764, 26791, 1330, 7925, 62, 7645, 49905, 198, 6738, 764, 26791, 1330, 4296, 62, 7645, 49905, 628, 198, 4299, 2198, 62, 17946, 2040, 7, 17946, 2040, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 611, 257, 1813, 1351, 220, 286, 36693, 3815, 318, 4938, 13, 628, 220, 220, 220, 7567, 2696, 281, 6631, 611, 281, 12515, 36693, 1988, 318, 1043, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1957, 274, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 1957, 274, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 36693, 287, 1957, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2198, 62, 17946, 1000, 7, 17946, 1000, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 44651, 36693, 705, 90, 17946, 1000, 92, 6, 1911, 18982, 7, 17946, 1000, 28, 17946, 1000, 4008, 628, 198, 4299, 3487, 1096, 62, 16302, 7, 16302, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44855, 11682, 25, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1628, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 44855, 11682, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1628, 13, 21037, 22446, 33491, 7203, 12, 1600, 45434, 4943, 628, 198, 4299, 7925, 62, 26495, 7, 26495, 62, 260, 7501, 62, 15908, 11, 1628, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44855, 11682, 25, 198, 220, 220, 220, 37227, 628, 198, 4299, 4296, 62, 26495, 7, 26495, 62, 260, 7501, 62, 15908, 11, 1628, 11, 1957, 274, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44855, 11682, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1957, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 17946, 2040, 7, 17946, 2040, 8, 628, 220, 220, 220, 1628, 796, 3487, 1096, 62, 16302, 7, 16302, 8, 198, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 26495, 62, 260, 7501, 62, 15908, 11, 1628, 8, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 22915, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26410, 26672, 4600, 90, 22915, 62, 15908, 92, 63, 407, 1043, 48220, 18982, 7, 22915, 62, 15908, 28, 22915, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 4296, 62, 7645, 49905, 7, 26495, 62, 260, 7501, 62, 15908, 11, 5072, 62, 15908, 11, 1628, 11, 1957, 274, 8, 628, 198, 4299, 17632, 62, 26495, 7, 26495, 62, 260, 7501, 62, 15908, 11, 1628, 11, 1957, 274, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44855, 11682, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1957, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 17946, 2040, 7, 17946, 2040, 8, 628, 220, 220, 220, 1628, 796, 3487, 1096, 62, 16302, 7, 16302, 8, 198, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 26495, 62, 260, 7501, 62, 15908, 11, 1628, 8, 198, 220, 220, 220, 745, 62, 6978, 82, 796, 17632, 62, 7645, 49905, 7, 22915, 62, 15908, 11, 1628, 11, 1957, 274, 8, 198, 220, 220, 220, 329, 11593, 11, 745, 62, 6978, 287, 745, 62, 6978, 82, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 7501, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10385, 62, 9246, 11794, 62, 1462, 62, 17752, 7, 7501, 62, 6978, 11, 5072, 62, 6978, 11, 1628, 8, 628, 198, 4299, 7925, 62, 16129, 62, 8002, 7, 26495, 62, 260, 7501, 62, 15908, 11, 3303, 62, 32377, 62, 260, 7501, 62, 15908, 11, 1628, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44855, 11682, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1628, 796, 3487, 1096, 62, 16302, 7, 16302, 8, 628, 220, 220, 220, 611, 1628, 6624, 449, 8577, 56, 5781, 48780, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 16129, 62, 32377, 62, 260, 7501, 62, 15908, 11, 1628, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 16129, 62, 32377, 62, 260, 7501, 62, 15908, 11, 27489, 16938, 11053, 62, 37, 3535, 14418, 11, 1628, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 22915, 62, 15908, 11, 2152, 62, 482, 28, 17821, 8, 628, 220, 220, 220, 7925, 62, 7645, 49905, 7, 26495, 62, 260, 7501, 62, 15908, 11, 5072, 62, 15908, 11, 1628, 8, 628, 198, 4299, 4296, 62, 16129, 62, 8002, 7, 26495, 62, 260, 7501, 62, 15908, 11, 3303, 62, 32377, 62, 260, 7501, 62, 15908, 11, 1628, 11, 1957, 274, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44855, 11682, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1957, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 17946, 2040, 7, 17946, 2040, 8, 628, 220, 220, 220, 1628, 796, 3487, 1096, 62, 16302, 7, 16302, 8, 628, 220, 220, 220, 611, 1628, 6624, 449, 8577, 56, 5781, 48780, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 16129, 62, 32377, 62, 260, 7501, 62, 15908, 11, 1628, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3303, 62, 32377, 62, 260, 7501, 62, 15908, 11, 366, 73, 929, 88, 353, 23912, 62, 2302, 5736, 1600, 1628, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 22915, 62, 15908, 11, 2152, 62, 482, 28, 17821, 8, 628, 220, 220, 220, 4296, 62, 7645, 49905, 7, 26495, 62, 260, 7501, 62, 15908, 11, 5072, 62, 15908, 11, 1628, 11, 1957, 274, 8, 628, 198, 4299, 17632, 62, 16129, 62, 8002, 7, 16129, 62, 32377, 62, 260, 7501, 62, 15908, 11, 1628, 11, 1957, 274, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44855, 11682, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1957, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 17946, 2040, 7, 17946, 2040, 8, 628, 220, 220, 220, 1628, 796, 3487, 1096, 62, 16302, 7, 16302, 8, 628, 220, 220, 220, 611, 1628, 6624, 449, 8577, 56, 5781, 48780, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 16129, 62, 32377, 62, 260, 7501, 62, 15908, 11, 1628, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 16129, 62, 32377, 62, 260, 7501, 62, 15908, 11, 27489, 16938, 11053, 62, 37, 3535, 14418, 11, 1628, 8, 628, 220, 220, 220, 745, 62, 6978, 82, 796, 17632, 62, 7645, 49905, 7, 22915, 62, 15908, 11, 1628, 11, 1957, 274, 8, 198, 220, 220, 220, 329, 36693, 11, 745, 62, 6978, 287, 745, 62, 6978, 82, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 7501, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 6978, 796, 10385, 62, 9246, 11794, 62, 1462, 62, 17752, 7, 7501, 62, 6978, 11, 5072, 62, 6978, 11, 1628, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6941, 62, 6978, 796, 17632, 62, 1462, 62, 5908, 7, 7501, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10028, 284, 3303, 2353, 9483, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 62, 32377, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 16129, 62, 32377, 62, 260, 7501, 62, 15908, 11, 406, 15567, 62, 47, 8120, 50, 62, 37, 3535, 14418, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 10025, 62, 3672, 796, 366, 73, 929, 88, 353, 23912, 12, 16129, 12, 8002, 12, 90, 17946, 1000, 92, 1911, 18982, 7, 17946, 1000, 28, 17946, 1000, 737, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 1600, 366, 21215, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 36693, 62, 16129, 62, 8002, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3303, 62, 32377, 62, 15908, 11, 279, 10025, 62, 3672, 11, 279, 10025, 62, 3672, 13, 33491, 7203, 12, 1600, 45434, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 340, 7160, 11, 4306, 2251, 340, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 17946, 1000, 62, 16129, 62, 8002, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 3605, 62, 16129, 62, 8002, 7, 16129, 62, 32377, 62, 15908, 11, 36693, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1628, 6624, 449, 8577, 56, 5781, 48780, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 17946, 1000, 62, 16129, 62, 8002, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 17946, 1000, 62, 16129, 62, 8002, 62, 15908, 11, 27489, 16938, 11053, 62, 37, 3535, 14418, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 28686, 13, 6978, 13, 12093, 12453, 7, 5908, 62, 6978, 36911, 8856, 62, 48277, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 28686, 13, 6978, 13, 12093, 12453, 7, 17752, 62, 6978, 36911, 8856, 62, 48277, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 21084, 7, 5908, 62, 6978, 11, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 28686, 13, 6978, 13, 12093, 12453, 7, 5908, 62, 6978, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 21084, 7, 17752, 62, 6978, 11, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 28686, 13, 6978, 13, 12093, 12453, 7, 17752, 62, 6978, 22305, 198 ]
2.399709
2,064
#!/usr/bin/env python # -*- coding: utf-8 -*- # # advent3_triangles.py # import itertools import sys _KNOWN_TRUE = ((5, 12, 13), (3, 3, 3), (200, 300, 450), (2, 1, 2)) _KNOWN_FALSE = ((1, 2, 3), (5, 10, 25)) if __name__ == '__main__': assert sum(evaluate(_KNOWN_TRUE)) == len(_KNOWN_TRUE) assert sum(evaluate(_KNOWN_FALSE)) == 0 from argparse import ArgumentParser p = ArgumentParser() p.add_argument("parse_mode", choices=('rows', 'cols'), help="how triples are oriented in the input") p.add_argument("sidelengths", nargs="*", help="side lengths, every 3 of which are interpreted as a possible triangle; leave empty to read from stdin", default=[]) p.add_argument("--verbose", default=False, action="store_true") args = p.parse_args() if len(args.sidelengths) == 0: args.sidelengths = sys.stdin.read().split() sys.exit(main(args))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 220, 19980, 18, 62, 28461, 27787, 13, 9078, 198, 2, 220, 220, 198, 198, 11748, 340, 861, 10141, 198, 11748, 25064, 198, 198, 62, 44706, 62, 5446, 8924, 796, 14808, 20, 11, 1105, 11, 1511, 828, 357, 18, 11, 513, 11, 513, 828, 357, 2167, 11, 5867, 11, 18523, 828, 357, 17, 11, 352, 11, 362, 4008, 198, 62, 44706, 62, 37, 23719, 796, 14808, 16, 11, 362, 11, 513, 828, 357, 20, 11, 838, 11, 1679, 4008, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 6818, 2160, 7, 49786, 28264, 44706, 62, 5446, 8924, 4008, 6624, 18896, 28264, 44706, 62, 5446, 8924, 8, 198, 220, 220, 220, 6818, 2160, 7, 49786, 28264, 44706, 62, 37, 23719, 4008, 6624, 657, 198, 220, 220, 220, 422, 1822, 29572, 1330, 45751, 46677, 198, 220, 220, 220, 279, 796, 45751, 46677, 3419, 198, 220, 220, 220, 279, 13, 2860, 62, 49140, 7203, 29572, 62, 14171, 1600, 7747, 28, 10786, 8516, 3256, 705, 4033, 82, 33809, 1037, 2625, 4919, 1333, 2374, 389, 25921, 287, 262, 5128, 4943, 198, 220, 220, 220, 279, 13, 2860, 62, 49140, 7203, 82, 5943, 3286, 82, 1600, 299, 22046, 2625, 9, 1600, 1037, 2625, 1589, 20428, 11, 790, 513, 286, 543, 389, 16173, 355, 257, 1744, 22950, 26, 2666, 6565, 284, 1100, 422, 14367, 259, 1600, 4277, 41888, 12962, 198, 220, 220, 220, 279, 13, 2860, 62, 49140, 7203, 438, 19011, 577, 1600, 4277, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 220, 220, 220, 26498, 796, 279, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 611, 18896, 7, 22046, 13, 82, 5943, 3286, 82, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 82, 5943, 3286, 82, 796, 25064, 13, 19282, 259, 13, 961, 22446, 35312, 3419, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 7, 22046, 4008, 220, 198, 220, 220, 220, 220, 198 ]
2.548571
350
from __future__ import annotations from datetime import datetime from pathlib import Path from typing import List, Optional, Tuple
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 7343, 11, 32233, 11, 309, 29291, 628 ]
4.290323
31