content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from flask import Blueprint, request as flask_request, jsonify from cartmigration.libs.utils import * route_path = Blueprint('route_path', __name__) @route_path.route("/action/<string:method>", methods = ['post'])
[ 6738, 42903, 1330, 39932, 11, 2581, 355, 42903, 62, 25927, 11, 33918, 1958, 198, 198, 6738, 6383, 76, 4254, 13, 8019, 82, 13, 26791, 1330, 1635, 198, 198, 38629, 62, 6978, 796, 39932, 10786, 38629, 62, 6978, 3256, 11593, 3672, 834, 8, 198, 198, 31, 38629, 62, 6978, 13, 38629, 7203, 14, 2673, 14, 27, 8841, 25, 24396, 29, 1600, 5050, 796, 37250, 7353, 6, 12962, 628 ]
3.253731
67
# Copyright 2021, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from unittest import mock from absl.testing import absltest from absl.testing import parameterized from tensorflow_federated.python.core.templates import iterative_process from tensorflow_federated.python.simulation import checkpoint_manager from tensorflow_federated.python.simulation import metrics_manager from tensorflow_federated.python.simulation import training_loop if __name__ == '__main__': absltest.main()
[ 2, 15069, 33448, 11, 383, 309, 22854, 37535, 35089, 515, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 17268, 198, 6738, 555, 715, 395, 1330, 15290, 198, 198, 6738, 2352, 75, 13, 33407, 1330, 2352, 2528, 395, 198, 6738, 2352, 75, 13, 33407, 1330, 11507, 1143, 198, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 7295, 13, 11498, 17041, 1330, 11629, 876, 62, 14681, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 14323, 1741, 1330, 26954, 62, 37153, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 14323, 1741, 1330, 20731, 62, 37153, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 14323, 1741, 1330, 3047, 62, 26268, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 2352, 2528, 395, 13, 12417, 3419, 198 ]
3.664336
286
from datetime import datetime from typing import Any, Optional import aioredis from .store import RateLimiterStoreABC class RedisStore(RateLimiterStoreABC): """An redis backed store of rate limits. Arguments: address: The address of the redis instance. kwargs: Any keyword arguments to pass to the redis client on creation, see the aioredis documentation. """
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 4377, 11, 32233, 198, 198, 11748, 257, 72, 1850, 271, 198, 198, 6738, 764, 8095, 1330, 14806, 19352, 2676, 22658, 24694, 628, 198, 4871, 2297, 271, 22658, 7, 32184, 19352, 2676, 22658, 24694, 2599, 198, 220, 220, 220, 37227, 2025, 2266, 271, 9763, 3650, 286, 2494, 7095, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2209, 25, 383, 2209, 286, 262, 2266, 271, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 25, 4377, 21179, 7159, 284, 1208, 284, 262, 2266, 271, 5456, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6282, 11, 766, 262, 257, 72, 1850, 271, 10314, 13, 198, 220, 220, 220, 37227, 198 ]
3.022388
134
"""keyrings.envvars tests."""
[ 37811, 365, 2417, 654, 13, 24330, 85, 945, 5254, 526, 15931, 198 ]
2.5
12
from time import time
[ 6738, 640, 1330, 640, 198 ]
4.4
5
from __future__ import absolute_import, unicode_literals from qproject.celery import app as celery_app __all__ = ['celery_app']
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 10662, 16302, 13, 7015, 88, 1330, 598, 355, 18725, 1924, 62, 1324, 198, 198, 834, 439, 834, 796, 37250, 7015, 88, 62, 1324, 20520, 198 ]
3.095238
42
from numpy.testing import assert_allclose import pytest from ..bbox import AnchorPoint, FrozenError, BBox
[ 6738, 299, 32152, 13, 33407, 1330, 6818, 62, 439, 19836, 198, 11748, 12972, 9288, 198, 198, 6738, 11485, 65, 3524, 1330, 29253, 273, 12727, 11, 23673, 12331, 11, 12597, 1140, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198 ]
2.418182
55
"""Example program to demonstrate how to send markers into LSL.""" import random import time from pylsl import StreamInfo, StreamOutlet info = StreamInfo(name='markers', type='Markers', channel_count=1, channel_format='int32', source_id='markers_test1234') # next make an outlet outlet = StreamOutlet(info) trigger = 0 print("now sending markers...") while True: # pick a sample to send an wait for a bit outlet.push_sample([trigger]) print(trigger) trigger += 1 time.sleep(2.0)
[ 37811, 16281, 1430, 284, 10176, 703, 284, 3758, 19736, 656, 406, 8634, 526, 15931, 201, 198, 201, 198, 11748, 4738, 201, 198, 11748, 640, 201, 198, 201, 198, 6738, 279, 2645, 6649, 1330, 13860, 12360, 11, 13860, 7975, 1616, 201, 198, 201, 198, 10951, 796, 13860, 12360, 7, 3672, 11639, 4102, 364, 3256, 2099, 11639, 9704, 364, 3256, 6518, 62, 9127, 28, 16, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6518, 62, 18982, 11639, 600, 2624, 3256, 2723, 62, 312, 11639, 4102, 364, 62, 9288, 1065, 2682, 11537, 201, 198, 201, 198, 2, 1306, 787, 281, 16615, 201, 198, 448, 1616, 796, 13860, 7975, 1616, 7, 10951, 8, 201, 198, 46284, 796, 657, 201, 198, 4798, 7203, 2197, 7216, 19736, 9313, 8, 201, 198, 4514, 6407, 25, 201, 198, 220, 220, 220, 1303, 2298, 257, 6291, 284, 3758, 281, 4043, 329, 257, 1643, 201, 198, 220, 220, 220, 16615, 13, 14689, 62, 39873, 26933, 46284, 12962, 201, 198, 220, 220, 220, 3601, 7, 46284, 8, 201, 198, 220, 220, 220, 7616, 15853, 352, 201, 198, 220, 220, 220, 640, 13, 42832, 7, 17, 13, 15, 8, 201, 198 ]
2.691542
201
import json import numpy as np import pickle from sklearn.linear_model import Ridge from azureml.core.model import Model from inference_schema.schema_decorators import input_schema, output_schema from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType from utils import mylib input_sample = np.array([[11, 0, 0, 0, 8, 5, 0, 0, 6]]) output_sample = np.array([0.95]) @input_schema('data', NumpyParameterType(input_sample)) @output_schema(NumpyParameterType(output_sample))
[ 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2298, 293, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 20614, 198, 6738, 35560, 495, 4029, 13, 7295, 13, 19849, 1330, 9104, 198, 6738, 32278, 62, 15952, 2611, 13, 15952, 2611, 62, 12501, 273, 2024, 1330, 5128, 62, 15952, 2611, 11, 5072, 62, 15952, 2611, 198, 6738, 32278, 62, 15952, 2611, 13, 17143, 2357, 62, 19199, 13, 77, 32152, 62, 17143, 2357, 62, 4906, 1330, 399, 32152, 36301, 6030, 198, 6738, 3384, 4487, 1330, 616, 8019, 628, 198, 198, 15414, 62, 39873, 796, 45941, 13, 18747, 26933, 58, 1157, 11, 657, 11, 657, 11, 657, 11, 807, 11, 642, 11, 657, 11, 657, 11, 718, 11907, 8, 198, 22915, 62, 39873, 796, 45941, 13, 18747, 26933, 15, 13, 3865, 12962, 198, 198, 31, 15414, 62, 15952, 2611, 10786, 7890, 3256, 399, 32152, 36301, 6030, 7, 15414, 62, 39873, 4008, 198, 31, 22915, 62, 15952, 2611, 7, 45, 32152, 36301, 6030, 7, 22915, 62, 39873, 4008, 198 ]
3.017964
167
""" 11292 : 키 큰 사람 URL : https://www.acmicpc.net/problem/11292 Input : 3 John 1.75 Mary 1.64 Sam 1.81 2 Jose 1.62 Miguel 1.58 5 John 1.75 Mary 1.75 Sam 1.74 Jose 1.75 Miguel 1.75 0 Output : Sam Jose John Mary Jose Miguel """ while True: n = int(input()) if n == 0: break high_height = 0 high_students = [] for i in range(n): name, height = input().split() height = float(height) if height > high_height: high_height = height high_students = [name] elif height == high_height: high_students.append(name) print(' '.join(high_students))
[ 37811, 198, 220, 220, 220, 13539, 5892, 1058, 220, 169, 224, 97, 220, 169, 223, 108, 23821, 8955, 167, 252, 234, 198, 220, 220, 220, 10289, 1058, 3740, 1378, 2503, 13, 330, 9383, 14751, 13, 3262, 14, 45573, 14, 14686, 5892, 198, 220, 220, 220, 23412, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 513, 198, 220, 220, 220, 220, 220, 220, 220, 1757, 352, 13, 2425, 198, 220, 220, 220, 220, 220, 220, 220, 5335, 352, 13, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 352, 13, 6659, 198, 220, 220, 220, 220, 220, 220, 220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 5264, 352, 13, 5237, 198, 220, 220, 220, 220, 220, 220, 220, 29825, 352, 13, 3365, 198, 220, 220, 220, 220, 220, 220, 220, 642, 198, 220, 220, 220, 220, 220, 220, 220, 1757, 352, 13, 2425, 198, 220, 220, 220, 220, 220, 220, 220, 5335, 352, 13, 2425, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 352, 13, 4524, 198, 220, 220, 220, 220, 220, 220, 220, 5264, 352, 13, 2425, 198, 220, 220, 220, 220, 220, 220, 220, 29825, 352, 13, 2425, 198, 220, 220, 220, 220, 220, 220, 220, 657, 198, 220, 220, 220, 25235, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 198, 220, 220, 220, 220, 220, 220, 220, 5264, 198, 220, 220, 220, 220, 220, 220, 220, 1757, 5335, 5264, 29825, 198, 37811, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 299, 796, 493, 7, 15414, 28955, 198, 220, 220, 220, 611, 299, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1029, 62, 17015, 796, 657, 198, 220, 220, 220, 1029, 62, 19149, 658, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 6001, 796, 5128, 22446, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6001, 796, 12178, 7, 17015, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6001, 1875, 1029, 62, 17015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 17015, 796, 6001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 19149, 658, 796, 685, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6001, 6624, 1029, 62, 17015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 19149, 658, 13, 33295, 7, 3672, 8, 628, 220, 220, 220, 3601, 10786, 45302, 22179, 7, 8929, 62, 19149, 658, 4008, 198 ]
1.80137
438
#AUTOGENERATED! DO NOT EDIT! File to edit: dev/90_notebook_core.ipynb (unless otherwise specified). __all__ = ['in_ipython', 'IN_IPYTHON', 'in_colab', 'IN_COLAB', 'in_notebook', 'IN_NOTEBOOK'] from ..imports import * def in_ipython(): "Check if the code is running in the ipython environment (jupyter including)" program_name = os.path.basename(os.getenv('_', '')) if ('jupyter-notebook' in program_name or # jupyter-notebook 'ipython' in program_name or # ipython 'JPY_PARENT_PID' in os.environ): # ipython-notebook return True else: return False IN_IPYTHON = in_ipython() def in_colab(): "Check if the code is running in Google Colaboratory" if not IN_IPYTHON: return False try: from google import colab return True except: return False IN_COLAB = in_colab() def in_notebook(): "Check if the code is running in a jupyter notebook" try: from google import colab return True except: pass try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': return True # Jupyter notebook, Spyder or qtconsole elif shell == 'TerminalInteractiveShell': return False # Terminal running IPython else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter IN_NOTEBOOK = in_notebook()
[ 2, 39371, 7730, 1677, 1137, 11617, 0, 8410, 5626, 48483, 0, 9220, 284, 4370, 25, 1614, 14, 3829, 62, 11295, 2070, 62, 7295, 13, 541, 2047, 65, 357, 25252, 4306, 7368, 737, 198, 198, 834, 439, 834, 796, 37250, 259, 62, 541, 7535, 3256, 705, 1268, 62, 4061, 56, 4221, 1340, 3256, 705, 259, 62, 4033, 397, 3256, 705, 1268, 62, 25154, 6242, 3256, 705, 259, 62, 11295, 2070, 3256, 705, 1268, 62, 16580, 39453, 20520, 198, 198, 6738, 11485, 320, 3742, 1330, 1635, 198, 198, 4299, 287, 62, 541, 7535, 33529, 198, 220, 220, 220, 366, 9787, 611, 262, 2438, 318, 2491, 287, 262, 20966, 7535, 2858, 357, 73, 929, 88, 353, 1390, 16725, 198, 220, 220, 220, 1430, 62, 3672, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 418, 13, 1136, 24330, 10786, 62, 3256, 10148, 4008, 198, 220, 220, 220, 611, 19203, 73, 929, 88, 353, 12, 11295, 2070, 6, 287, 1430, 62, 3672, 393, 1303, 474, 929, 88, 353, 12, 11295, 2070, 198, 220, 220, 220, 220, 220, 220, 220, 705, 541, 7535, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 1430, 62, 3672, 393, 1303, 20966, 7535, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12889, 56, 62, 27082, 3525, 62, 47, 2389, 6, 220, 220, 287, 28686, 13, 268, 2268, 2599, 220, 220, 220, 1303, 20966, 7535, 12, 11295, 2070, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 198, 1268, 62, 4061, 56, 4221, 1340, 796, 287, 62, 541, 7535, 3419, 198, 198, 4299, 287, 62, 4033, 397, 33529, 198, 220, 220, 220, 366, 9787, 611, 262, 2438, 318, 2491, 287, 3012, 1623, 4820, 2870, 1, 198, 220, 220, 220, 611, 407, 3268, 62, 4061, 56, 4221, 1340, 25, 1441, 10352, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 23645, 1330, 951, 397, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2845, 25, 1441, 10352, 198, 198, 1268, 62, 25154, 6242, 796, 287, 62, 4033, 397, 3419, 198, 198, 4299, 287, 62, 11295, 2070, 33529, 198, 220, 220, 220, 366, 9787, 611, 262, 2438, 318, 2491, 287, 257, 474, 929, 88, 353, 20922, 1, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 23645, 1330, 951, 397, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2845, 25, 1208, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7582, 796, 651, 62, 541, 7535, 22446, 834, 4871, 834, 13, 834, 3672, 834, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7582, 6624, 705, 57, 49215, 9492, 5275, 23248, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 220, 220, 1303, 449, 929, 88, 353, 20922, 11, 23688, 1082, 393, 10662, 83, 41947, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7582, 6624, 705, 44798, 282, 9492, 5275, 23248, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 220, 1303, 24523, 2491, 6101, 7535, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 220, 1303, 3819, 2099, 357, 10091, 198, 220, 220, 220, 2845, 6530, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 220, 220, 220, 220, 220, 1303, 18578, 3210, 11361, 28846, 198, 198, 1268, 62, 16580, 39453, 796, 287, 62, 11295, 2070, 3419 ]
2.407591
606
import requests import random from hackvt2016.app import create_app from hackvt2016.resource.models import Resource from hackvt2016.category.models import Category def load_seeds(): """ max longitudes and latitudes: Coordinates [5:55] lat: 42.777 - 44.953 long: (-72.632) - (-73.132) lat: 44.452 - 44.953 long: (-71.739) - (-72.632) """ for index in xrange(10): resources = [ ('Sports', 'Softball Practice', 'Weekly softball practice - bring gear!', 'Theo Fido', '[email protected]'), ('Event', 'Calligraphy Lesson', 'Workshop for Calligraphy Lessons on Tuesdays', 'Tanner Riley', '[email protected]'), ('Nature Site', 'Geocache', 'Placed in 1971.', '', ''), ('Event', 'Oliver Twist Auditions', 'Auditions for the Oliver Twist play begin at 3PM.', 'Julia Reynolds', '[email protected]'), ('Sports', 'Soccer Game', 'Everyone is invited to a quick soccer game this weekend.', 'Saul Costa', '[email protected]'), ('Resource', 'AndreWorks Studio', 'Available for reservations!', 'Andrew Minor', '[email protected]'), ('Event', 'Gymnastics Open Hours', 'Open to all age ranges!', 'Lydia Kiles', '[email protected]'), ('Museum', 'Middle Age Weapons Musuem', 'Open 10-5 Daily!', 'Brianna Wright', '[email protected]'), ('Nature Site', 'Hunter Trail', 'Requires appropriate footwear.', '', ''), ('Cool Stuff', 'Alden Partridge Monument', 'In memory of the Norwich University Founder.', '', ''), ('Sports', 'Ski Range', 'Bring your skis!', '', ''), ('Sports', 'Karate Lessons', 'Tae Kwon Do', 'Sensei Vivian', '[email protected]'), ('Nature Site', 'Crystal Mine Lake', 'No lifeguard on duty!', 'Trevor Daniels', '[email protected]'), ('Resource', 'School Supplies and Book Store', 'For all your education needs!', '', '[email protected]'), ('Musuem', 'Stone House Historical Center', 'With live-in actors!', 'Manny Curtis', '[email protected]'), ('Musuem', 'VT Historical Archives', 'Open 8 to 4 on weekdays.', '', '[email protected]'), ('Resource', 'Musical Studio', 'Instruments and soundrooms available to reserve!', '', '[email protected]') ('Museum', 'Black Manor Historical House', 'Provides historical reenactments on Mondays and Thursdays!', 'Tia Ramirez', '[email protected]') ('Nature Site', 'Red Fern Bike Trail', 'Maps are available at all entrances.', '', '[email protected]') ('Nature Site', 'Westerman Bird Viewing Platform', '', '', '[email protected]') ('Nature Site', 'Holmes Stargazing Platform', 'Parking is available down the road.', '', '[email protected]') ('Event', 'Ski Race', 'Open to grades 1-5', 'Scoville J Danis"' '[email protected]') ('Event', 'Guitar Lessons', 'Specialty: acoustic', 'Wren Fido', '[email protected]') ('Event', 'Stargazing', 'Bring a coat and blanket for the Fall stargazing event!', 'Julian Weng', '[email protected]') ('Event', 'Band Tryouts', 'Instrument rentals can be arranged beforehand with the contact person.' 'Valerie Collins', '[email protected]') ('Cool Stuff', 'Sundial', 'Built in 1834', '', '') ('Cool Stuff', 'Geodome', '', '', '') ('Cool Stuff', 'Historical Cemetery', 'Established in 1782', '', '') ('Cool Stuff', 'Old Weeping Willow Tree', 'Planted 1900', '', '') ('Sports', 'Horseback Riding Lessons', 'Beginner to Advanced lessons provided!', 'Leonard McGarth', '[email protected]') ('Sports', 'Hockey Tryouts', 'Open to grades 5-8, gear provided.', 'Olivia Olsen', '[email protected]') ('Sports', 'Swimming Lessons', 'Group classes and one-on-one mentoring offered.', '', '[email protected]') ('Sports', 'Cross Country Practice', 'We will be starting with a 3 mile run on Tuesday.', 'Gina Woo', '[email protected]') ] for (category, title, description, host, email) in resources: category = Category.query.filter_by(name=category).first() if not category: continue Resource.create( category_id=category.id, title=title, description=description, host=host, email=email, longitude=random.uniform(-73.132, -72.632) if index <= 7 else random.uniform(-72.632, -71.739), latitude=random.uniform(42.777, 44.953) if index <= 7 else random.uniform(44.452, 44.953)) if __name__ == '__main__': main()
[ 11748, 7007, 198, 11748, 4738, 198, 6738, 8156, 36540, 5304, 13, 1324, 1330, 2251, 62, 1324, 198, 6738, 8156, 36540, 5304, 13, 31092, 13, 27530, 1330, 20857, 198, 6738, 8156, 36540, 5304, 13, 22872, 13, 27530, 1330, 21743, 628, 198, 198, 4299, 3440, 62, 325, 5379, 33529, 628, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3509, 890, 10455, 290, 3042, 10455, 25, 198, 220, 220, 220, 22819, 17540, 198, 198, 58, 20, 25, 2816, 60, 220, 220, 198, 15460, 25, 5433, 13, 29331, 532, 5846, 13, 49649, 198, 6511, 25, 13841, 4761, 13, 21, 2624, 8, 532, 13841, 4790, 13, 19924, 8, 198, 198, 15460, 25, 5846, 13, 37730, 532, 5846, 13, 49649, 198, 6511, 25, 13841, 4869, 13, 22, 2670, 8, 532, 13841, 4761, 13, 21, 2624, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 6376, 287, 2124, 9521, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4133, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18153, 3256, 705, 18380, 1894, 19939, 3256, 705, 20916, 306, 2705, 1894, 3357, 532, 2222, 7733, 0, 3256, 705, 464, 78, 376, 17305, 3256, 705, 83, 6513, 31, 4215, 1894, 13, 785, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9237, 3256, 705, 14134, 45920, 88, 12892, 261, 3256, 705, 23044, 8548, 329, 4889, 45920, 88, 46885, 319, 48496, 12545, 3256, 705, 45557, 1008, 22637, 3256, 705, 28461, 1636, 31, 565, 380, 1636, 13, 785, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 46934, 14413, 3256, 705, 10082, 420, 4891, 3256, 705, 3646, 2286, 287, 16382, 2637, 11, 705, 3256, 10148, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9237, 3256, 705, 30098, 1428, 44088, 7591, 1756, 3256, 705, 16353, 1756, 329, 262, 15416, 44088, 711, 2221, 379, 513, 5868, 2637, 11, 705, 16980, 544, 21995, 3256, 705, 27171, 11167, 507, 31, 40774, 13, 785, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18153, 3256, 705, 37949, 2189, 3776, 3256, 705, 16190, 318, 9392, 284, 257, 2068, 11783, 983, 428, 5041, 2637, 11, 705, 50, 2518, 18133, 3256, 705, 82, 2518, 15805, 64, 1507, 23148, 31, 14816, 13, 785, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 26198, 3256, 705, 31258, 23044, 11733, 3256, 705, 10493, 329, 24722, 0, 3256, 705, 20508, 15367, 3256, 705, 5669, 273, 31, 392, 1809, 3647, 13, 2398, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9237, 3256, 705, 38, 4948, 77, 24232, 4946, 19347, 3256, 705, 11505, 284, 477, 2479, 16069, 0, 3256, 705, 43, 30708, 509, 2915, 3256, 705, 9654, 1360, 76, 31, 9654, 1360, 76, 13, 2398, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 44, 6744, 3256, 705, 34621, 7129, 18944, 2629, 84, 368, 3256, 705, 11505, 838, 12, 20, 6714, 0, 3256, 705, 33, 380, 7697, 12206, 3256, 705, 76, 707, 76, 31, 76, 1904, 5700, 13, 2398, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 46934, 14413, 3256, 705, 38803, 13069, 3256, 705, 39618, 5035, 43463, 2637, 11, 705, 3256, 10148, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 34530, 27864, 3256, 705, 32, 335, 268, 2142, 12818, 33075, 3256, 705, 818, 4088, 286, 262, 43586, 2059, 30153, 2637, 11, 705, 3256, 10148, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18153, 3256, 705, 50, 4106, 13667, 3256, 705, 31416, 534, 1341, 271, 0, 3256, 705, 3256, 10148, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18153, 3256, 705, 42, 30748, 46885, 3256, 705, 51, 3609, 509, 26502, 2141, 3256, 705, 41166, 72, 25313, 666, 3256, 705, 1169, 9866, 31, 1169, 21070, 265, 395, 463, 952, 13, 785, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 46934, 14413, 3256, 705, 43752, 11517, 6233, 3256, 705, 2949, 1204, 14864, 319, 7077, 0, 3256, 705, 51, 18218, 273, 28162, 3256, 705, 69, 380, 31, 13, 76, 5907, 13, 2398, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 26198, 3256, 705, 26130, 8105, 13508, 290, 4897, 9363, 3256, 705, 1890, 477, 534, 3707, 2476, 0, 3256, 705, 3256, 705, 1169, 847, 301, 28624, 31, 2070, 43409, 13, 785, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 10694, 84, 368, 3256, 705, 34346, 2097, 23121, 3337, 3256, 705, 3152, 2107, 12, 259, 10544, 0, 3256, 705, 44, 7737, 25157, 3256, 705, 23209, 3325, 271, 31, 6440, 4803, 13, 2398, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 10694, 84, 368, 3256, 705, 36392, 23121, 22275, 3256, 705, 11505, 807, 284, 604, 319, 1285, 12545, 2637, 11, 705, 3256, 705, 28482, 31, 36540, 48814, 13, 2398, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 26198, 3256, 705, 10694, 605, 11733, 3256, 705, 818, 2536, 2886, 290, 2128, 9649, 1695, 284, 11515, 0, 3256, 705, 3256, 705, 76, 19149, 952, 31, 36540, 28965, 13, 3262, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 44, 6744, 3256, 705, 9915, 33555, 23121, 2097, 3256, 705, 15946, 1460, 6754, 302, 268, 529, 902, 319, 49748, 290, 48971, 12545, 0, 3256, 705, 51, 544, 34783, 3256, 705, 83, 859, 31762, 31, 13424, 805, 273, 13, 15532, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 46934, 14413, 3256, 705, 7738, 38982, 26397, 13069, 3256, 705, 47010, 389, 1695, 379, 477, 43818, 2637, 11, 705, 3256, 705, 10745, 313, 430, 4487, 31, 1845, 591, 392, 8344, 36540, 13, 9567, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 46934, 14413, 3256, 705, 54, 7834, 805, 14506, 3582, 278, 19193, 3256, 705, 3256, 705, 3256, 705, 10745, 672, 11049, 31, 1845, 591, 392, 8344, 36540, 13, 9567, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 46934, 14413, 3256, 705, 28115, 6880, 44393, 4070, 19193, 3256, 705, 25478, 278, 318, 1695, 866, 262, 2975, 2637, 11, 705, 3256, 705, 73, 86, 1516, 31, 36540, 459, 1313, 9145, 13, 2398, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9237, 3256, 705, 50, 4106, 12588, 3256, 705, 11505, 284, 19051, 352, 12, 20, 3256, 705, 3351, 709, 8270, 449, 6035, 271, 30543, 705, 1416, 73, 6814, 1065, 31, 46848, 16426, 13, 2398, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9237, 3256, 705, 38, 5013, 283, 46885, 3256, 705, 13409, 774, 25, 26071, 3256, 705, 54, 918, 376, 17305, 3256, 705, 69, 17305, 31, 19129, 404, 70, 5013, 283, 13, 785, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9237, 3256, 705, 1273, 853, 4070, 3256, 705, 31416, 257, 13209, 290, 18447, 329, 262, 7218, 336, 853, 4070, 1785, 0, 3256, 705, 16980, 666, 370, 1516, 3256, 705, 73, 86, 1516, 31, 36540, 459, 1313, 9145, 13, 2398, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9237, 3256, 705, 31407, 9993, 5269, 3256, 705, 818, 43872, 39457, 460, 307, 14921, 27091, 351, 262, 2800, 1048, 2637, 705, 7762, 18287, 14006, 3256, 705, 85, 26000, 1040, 31, 1169, 28965, 19149, 952, 13, 2398, 11537, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 34530, 27864, 3256, 705, 20602, 498, 3256, 705, 39582, 287, 1248, 2682, 3256, 705, 3256, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 34530, 27864, 3256, 705, 10082, 375, 462, 3256, 705, 3256, 705, 3256, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 34530, 27864, 3256, 705, 13749, 12409, 35637, 3256, 705, 22362, 22555, 287, 1596, 6469, 3256, 705, 3256, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 34530, 27864, 3256, 705, 19620, 775, 7213, 33021, 12200, 3256, 705, 3646, 4126, 21489, 3256, 705, 3256, 10148, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18153, 3256, 705, 39, 7615, 1891, 36032, 46885, 3256, 705, 24586, 5083, 284, 13435, 11658, 2810, 0, 3256, 705, 36185, 446, 11130, 11999, 3256, 705, 30527, 1891, 31, 30527, 1891, 36540, 13, 10951, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18153, 3256, 705, 39, 8337, 9993, 5269, 3256, 705, 11505, 284, 19051, 642, 12, 23, 11, 7733, 2810, 2637, 11, 705, 46, 16017, 544, 39148, 3256, 705, 349, 6248, 31, 47261, 33487, 27171, 13, 785, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18153, 3256, 705, 10462, 27428, 46885, 3256, 705, 13247, 6097, 290, 530, 12, 261, 12, 505, 6229, 3255, 4438, 2637, 11, 705, 3256, 705, 1203, 684, 31, 2032, 320, 36540, 13, 785, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18153, 3256, 705, 21544, 12946, 19939, 3256, 705, 1135, 481, 307, 3599, 351, 257, 513, 10591, 1057, 319, 3431, 2637, 11, 705, 38, 1437, 39832, 3256, 705, 70, 86, 2238, 31, 83, 799, 261, 11994, 13, 785, 11537, 628, 628, 628, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 22872, 11, 3670, 11, 6764, 11, 2583, 11, 3053, 8, 287, 4133, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 796, 21743, 13, 22766, 13, 24455, 62, 1525, 7, 3672, 28, 22872, 737, 11085, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20857, 13, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 62, 312, 28, 22872, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 28, 11213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2583, 28, 4774, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 28, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 890, 3984, 28, 25120, 13, 403, 6933, 32590, 4790, 13, 19924, 11, 532, 4761, 13, 21, 2624, 8, 611, 6376, 19841, 767, 2073, 4738, 13, 403, 6933, 32590, 4761, 13, 21, 2624, 11, 532, 4869, 13, 22, 2670, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32477, 28, 25120, 13, 403, 6933, 7, 3682, 13, 29331, 11, 5846, 13, 49649, 8, 611, 6376, 19841, 767, 2073, 4738, 13, 403, 6933, 7, 2598, 13, 37730, 11, 5846, 13, 49649, 4008, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.494032
1,927
import subprocess from typing import List, Tuple import vapoursynth as vs from lvsfunc.misc import source from lvsfunc.types import Range from vardautomation import (FSRCNNX_56_16_4_1, JAPANESE, AudioCutter, AudioStream, BasicTool, FileInfo, FlacEncoder, Mux, PresetBD, PresetFLAC, RunnerConfig, SelfRunner, VideoStream, VPath, X265Encoder) from vardefunc.misc import get_bicubic_params from vsutil import get_w from bento_filters import flt core = vs.core core.num_threads = 16 EPNUM = __file__[-5:-3] # Sources JPBD = FileInfo(r'BDMV/Vol.1/BDMV/STREAM/00003.m2ts', 0, -24, idx=lambda x: source(x, cachedir=''), preset=[PresetBD, PresetFLAC]) JPBD.name_file_final = VPath(fr"premux/{JPBD.name} (Premux).mkv") JPBD.do_qpfile = True JPBD.a_src = VPath(f"{JPBD.name}.wav") JPBD.a_src_cut = VPath(f"{JPBD.name}_cut.wav") JPBD.a_enc_cut = VPath(f"{JPBD.name}_cut.flac") # Common variables op_aisle: List[Range] = [(281, 373)] red_circle: List[Range] = [(1934, 1951), (1956, 1979), (1984, 2054)] def main() -> vs.VideoNode: """Vapoursynth filtering""" from adptvgrnMod import adptvgrnMod from havsfunc import FastLineDarkenMOD from lvsfunc.misc import replace_ranges from vsutil import depth src = JPBD.clip_cut scaled = flt.rescaler(src, 720) denoised = flt.denoiser(scaled, bm3d_sigma=[0.8, 0.6], bm3d_rad=1) aa_rep = flt.clamped_aa(denoised) trans_sraa = flt.transpose_sraa(denoised) aa_ranges = replace_ranges(aa_rep, trans_sraa, red_circle) darken = FastLineDarkenMOD(aa_ranges, strength=48, protection=6, luma_cap=255, threshold=2) deband = flt.masked_deband(darken, denoised=True, deband_args={'iterations': 2, 'threshold': 5.0, 'radius': 8, 'grain': 6}) pdeband = flt.placebo_debander(darken, grain=4, deband_args={'iterations': 2, 'threshold': 8.0, 'radius': 10}) deband = replace_ranges(deband, pdeband, op_aisle) grain = adptvgrnMod(deband, strength=0.3, luma_scaling=10, size=1.25, sharp=80, grain_chroma=False, seed=42069) return depth(grain, 10).std.Limiter(16 << 2, [235 << 2, 240 << 2], [0, 1, 2]) if __name__ == '__main__': filtered = main() filtered = filtered Encoding(JPBD, filtered).run() else: JPBD.clip_cut.set_output(0) FILTERED = main() FILTERED.set_output(1)
[ 11748, 850, 14681, 198, 6738, 19720, 1330, 7343, 11, 309, 29291, 198, 198, 11748, 38187, 454, 28869, 400, 355, 3691, 198, 6738, 300, 14259, 20786, 13, 44374, 1330, 2723, 198, 6738, 300, 14259, 20786, 13, 19199, 1330, 13667, 198, 6738, 410, 446, 2306, 296, 341, 1330, 357, 10652, 7397, 6144, 55, 62, 3980, 62, 1433, 62, 19, 62, 16, 11, 449, 2969, 1565, 33635, 11, 13491, 34, 10381, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13491, 12124, 11, 14392, 25391, 11, 9220, 12360, 11, 1610, 330, 27195, 12342, 11, 337, 2821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1763, 316, 14529, 11, 1763, 316, 3697, 2246, 11, 21529, 16934, 11, 12189, 49493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7623, 12124, 11, 569, 15235, 11, 1395, 22980, 27195, 12342, 8, 198, 6738, 410, 446, 891, 19524, 13, 44374, 1330, 651, 62, 65, 291, 549, 291, 62, 37266, 198, 6738, 3691, 22602, 1330, 651, 62, 86, 198, 198, 6738, 17157, 78, 62, 10379, 1010, 1330, 781, 83, 198, 198, 7295, 796, 3691, 13, 7295, 198, 198, 7295, 13, 22510, 62, 16663, 82, 796, 1467, 198, 198, 8905, 41359, 796, 11593, 7753, 834, 58, 12, 20, 21912, 18, 60, 198, 198, 2, 26406, 198, 12889, 14529, 796, 9220, 12360, 7, 81, 6, 14529, 44, 53, 14, 16598, 13, 16, 14, 14529, 44, 53, 14, 2257, 32235, 14, 2388, 18, 13, 76, 17, 912, 3256, 657, 11, 532, 1731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 28, 50033, 2124, 25, 2723, 7, 87, 11, 39986, 343, 28, 7061, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38266, 41888, 25460, 316, 14529, 11, 1763, 316, 3697, 2246, 12962, 198, 12889, 14529, 13, 3672, 62, 7753, 62, 20311, 796, 569, 15235, 7, 8310, 1, 31605, 2821, 14, 90, 12889, 14529, 13, 3672, 92, 357, 24914, 2821, 737, 28015, 85, 4943, 198, 12889, 14529, 13, 4598, 62, 80, 79, 7753, 796, 6407, 198, 12889, 14529, 13, 64, 62, 10677, 796, 569, 15235, 7, 69, 1, 90, 12889, 14529, 13, 3672, 27422, 45137, 4943, 198, 12889, 14529, 13, 64, 62, 10677, 62, 8968, 796, 569, 15235, 7, 69, 1, 90, 12889, 14529, 13, 3672, 92, 62, 8968, 13, 45137, 4943, 198, 12889, 14529, 13, 64, 62, 12685, 62, 8968, 796, 569, 15235, 7, 69, 1, 90, 12889, 14529, 13, 3672, 92, 62, 8968, 13, 2704, 330, 4943, 628, 198, 2, 8070, 9633, 198, 404, 62, 15152, 293, 25, 7343, 58, 17257, 60, 796, 47527, 30368, 11, 47946, 15437, 198, 445, 62, 45597, 25, 7343, 58, 17257, 60, 796, 47527, 1129, 2682, 11, 27937, 828, 357, 1129, 3980, 11, 13521, 828, 357, 28296, 11, 1160, 4051, 15437, 628, 198, 4299, 1388, 3419, 4613, 3691, 13, 10798, 19667, 25, 198, 220, 220, 220, 37227, 53, 499, 454, 28869, 400, 25431, 37811, 198, 220, 220, 220, 422, 512, 457, 85, 2164, 77, 5841, 1330, 512, 457, 85, 2164, 77, 5841, 198, 220, 220, 220, 422, 387, 14259, 20786, 1330, 12549, 13949, 17367, 268, 33365, 198, 220, 220, 220, 422, 300, 14259, 20786, 13, 44374, 1330, 6330, 62, 81, 6231, 198, 220, 220, 220, 422, 3691, 22602, 1330, 6795, 628, 220, 220, 220, 12351, 796, 21331, 14529, 13, 15036, 62, 8968, 628, 220, 220, 220, 27464, 796, 781, 83, 13, 411, 9948, 263, 7, 10677, 11, 26250, 8, 628, 220, 220, 220, 2853, 78, 1417, 796, 781, 83, 13, 6559, 78, 5847, 7, 1416, 3021, 11, 275, 76, 18, 67, 62, 82, 13495, 41888, 15, 13, 23, 11, 657, 13, 21, 4357, 275, 76, 18, 67, 62, 6335, 28, 16, 8, 628, 220, 220, 220, 257, 64, 62, 7856, 796, 781, 83, 13, 565, 13322, 62, 7252, 7, 6559, 78, 1417, 8, 198, 220, 220, 220, 1007, 62, 82, 430, 64, 796, 781, 83, 13, 7645, 3455, 62, 82, 430, 64, 7, 6559, 78, 1417, 8, 198, 220, 220, 220, 257, 64, 62, 81, 6231, 796, 6330, 62, 81, 6231, 7, 7252, 62, 7856, 11, 1007, 62, 82, 430, 64, 11, 2266, 62, 45597, 8, 628, 220, 220, 220, 3223, 268, 796, 12549, 13949, 17367, 268, 33365, 7, 7252, 62, 81, 6231, 11, 4202, 28, 2780, 11, 4800, 28, 21, 11, 300, 7487, 62, 11128, 28, 13381, 11, 11387, 28, 17, 8, 628, 220, 220, 220, 1915, 392, 796, 781, 83, 13, 27932, 276, 62, 11275, 392, 7, 21953, 268, 11, 2853, 78, 1417, 28, 17821, 11, 1915, 392, 62, 22046, 34758, 6, 2676, 602, 10354, 362, 11, 705, 400, 10126, 10354, 642, 13, 15, 11, 705, 42172, 10354, 807, 11, 705, 48270, 10354, 718, 30072, 198, 220, 220, 220, 279, 11275, 392, 796, 781, 83, 13, 5372, 2127, 62, 11275, 4066, 7, 21953, 268, 11, 13020, 28, 19, 11, 1915, 392, 62, 22046, 34758, 6, 2676, 602, 10354, 362, 11, 705, 400, 10126, 10354, 807, 13, 15, 11, 705, 42172, 10354, 838, 30072, 198, 220, 220, 220, 1915, 392, 796, 6330, 62, 81, 6231, 7, 11275, 392, 11, 279, 11275, 392, 11, 1034, 62, 15152, 293, 8, 628, 220, 220, 220, 13020, 796, 512, 457, 85, 2164, 77, 5841, 7, 11275, 392, 11, 4202, 28, 15, 13, 18, 11, 300, 7487, 62, 1416, 4272, 28, 940, 11, 2546, 28, 16, 13, 1495, 11, 7786, 28, 1795, 11, 13020, 62, 28663, 64, 28, 25101, 11, 9403, 28, 27211, 3388, 8, 628, 220, 220, 220, 1441, 6795, 7, 48270, 11, 838, 737, 19282, 13, 19352, 2676, 7, 1433, 9959, 362, 11, 685, 22370, 9959, 362, 11, 14956, 9959, 362, 4357, 685, 15, 11, 352, 11, 362, 12962, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 29083, 796, 1388, 3419, 198, 220, 220, 220, 29083, 796, 29083, 198, 220, 220, 220, 14711, 7656, 7, 12889, 14529, 11, 29083, 737, 5143, 3419, 198, 17772, 25, 198, 220, 220, 220, 21331, 14529, 13, 15036, 62, 8968, 13, 2617, 62, 22915, 7, 15, 8, 198, 220, 220, 220, 34020, 5781, 1961, 796, 1388, 3419, 198, 220, 220, 220, 34020, 5781, 1961, 13, 2617, 62, 22915, 7, 16, 8, 198 ]
2.212121
1,089
from kallikrein import Expectation from kallikrein.matchers.comparison import eq from ribosome.test.klk.expectation import await_k_with from ribosome.nvim.io.compute import NvimIO from ribosome.nvim.api.ui import current_cursor __all__ = ('current_cursor_is',)
[ 6738, 479, 439, 1134, 260, 259, 1330, 23600, 341, 198, 6738, 479, 439, 1134, 260, 259, 13, 6759, 3533, 13, 785, 1845, 1653, 1330, 37430, 198, 198, 6738, 12183, 418, 462, 13, 9288, 13, 41582, 74, 13, 1069, 806, 341, 1330, 25507, 62, 74, 62, 4480, 198, 6738, 12183, 418, 462, 13, 77, 31124, 13, 952, 13, 5589, 1133, 1330, 399, 31124, 9399, 198, 6738, 12183, 418, 462, 13, 77, 31124, 13, 15042, 13, 9019, 1330, 1459, 62, 66, 21471, 628, 198, 198, 834, 439, 834, 796, 19203, 14421, 62, 66, 21471, 62, 271, 3256, 8, 198 ]
2.731959
97
# Your NumMatrix object will be instantiated and called as such: # obj = NumMatrix(matrix) # param_1 = obj.sumRegion(row1,col1,row2,col2)
[ 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 2, 3406, 31835, 46912, 2134, 481, 307, 9113, 12931, 290, 1444, 355, 884, 25, 198, 2, 26181, 796, 31835, 46912, 7, 6759, 8609, 8, 198, 2, 5772, 62, 16, 796, 26181, 13, 16345, 47371, 7, 808, 16, 11, 4033, 16, 11, 808, 17, 11, 4033, 17, 8, 198 ]
2.358209
67
import os import numpy as np import pandas as pd from lingam.varma_lingam import VARMALiNGAM def randnetbalanced(dims, samples, indegree, parminmax, errminmax): """ この関数は以前頂いたmatlabのスクリプトを移植したものですのでご確認不要です。 create a more balanced random network Parameter --------- dims : int number of variables samples : int number of samples indegree : int or float('inf') number of parents of each node (float('inf') = fully connected) parminmax : dictionary standard deviation owing to parents errminmax : dictionary standard deviation owing to error variable Return ------ B : array, shape (dims, dims) the strictly lower triangular network matrix errstd : array, shape (dims, 1) the vector of error (disturbance) standard deviations """ # First, generate errstd errstd = np.random.uniform(low=errminmax['min'], high=errminmax['max'], size=(dims, 1)) # Initializations X = np.empty(shape=[dims, samples]) B = np.zeros([dims, dims]) # Go trough each node in turn for i in range(dims): # If indegree is finite, randomly pick that many parents, # else, all previous variables are parents if indegree == float('inf'): if i <= indegree: par = np.arange(i) else: par = np.random.permutation(i)[:indegree] else: par = np.arange(i) if len(par) == 0: # if node has no parents # Increase errstd to get it to roughly same variance parent_std = np.random.uniform(low=parminmax['min'], high=parminmax['max']) errstd[i] = np.sqrt(errstd[i]**2 + parent_std**2) # Set data matrix to empty X[i] = np.zeros(samples) else: # If node has parents, do the following w = np.random.normal(size=[1, len(par)]) # Randomly pick weights wfull = np.zeros([1, i]) wfull[0, par] = w # Calculate contribution of parents X[i] = np.dot(wfull, X[:i, :]) # Randomly select a 'parents std' parstd = np.random.uniform(low=parminmax['min'], high=parminmax['max']) # Scale w so that the combination of parents has 'parstd' std scaling = parstd / np.sqrt(np.mean(X[i] ** 2)) w = w * scaling # Recalculate contribution of parents wfull = np.zeros([1, i]) wfull[0, par] = w X[i] = np.dot(wfull, X[:i, :]) # Fill in B B[i, par] = w # Update data matrix X[i] = X[i] + np.random.normal(size=samples) * errstd[i] return B, errstd
[ 11748, 28686, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 18459, 321, 13, 85, 10961, 62, 1359, 321, 1330, 569, 33456, 1847, 72, 10503, 2390, 198, 198, 4299, 43720, 3262, 27753, 7, 67, 12078, 11, 8405, 11, 773, 1533, 631, 11, 1582, 1084, 9806, 11, 11454, 1084, 9806, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23294, 241, 33426, 244, 95, 46763, 108, 31676, 20015, 98, 30298, 235, 165, 254, 224, 18566, 25224, 6759, 23912, 5641, 8943, 14099, 12675, 30965, 13298, 31758, 163, 100, 119, 162, 97, 235, 22180, 25224, 43266, 5641, 30640, 33623, 5641, 30640, 2515, 242, 163, 95, 118, 45739, 235, 38834, 17358, 223, 30640, 33623, 16764, 198, 220, 220, 220, 2251, 257, 517, 12974, 4738, 3127, 628, 220, 220, 220, 25139, 2357, 198, 220, 220, 220, 45337, 198, 220, 220, 220, 5391, 82, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 9633, 198, 220, 220, 220, 8405, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 8405, 198, 220, 220, 220, 773, 1533, 631, 1058, 493, 393, 12178, 10786, 10745, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 3397, 286, 1123, 10139, 357, 22468, 10786, 10745, 11537, 796, 3938, 5884, 8, 198, 220, 220, 220, 1582, 1084, 9806, 1058, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 28833, 27120, 284, 3397, 220, 198, 220, 220, 220, 11454, 1084, 9806, 1058, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 28833, 27120, 284, 4049, 7885, 628, 220, 220, 220, 8229, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 347, 1058, 7177, 11, 5485, 357, 67, 12078, 11, 5391, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 262, 14084, 2793, 46963, 3127, 17593, 198, 220, 220, 220, 11454, 19282, 1058, 7177, 11, 5485, 357, 67, 12078, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 262, 15879, 286, 4049, 357, 17080, 5945, 590, 8, 3210, 47060, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 3274, 11, 7716, 11454, 19282, 198, 220, 220, 220, 11454, 19282, 796, 45941, 13, 25120, 13, 403, 6933, 7, 9319, 28, 8056, 1084, 9806, 17816, 1084, 6, 4357, 1029, 28, 8056, 1084, 9806, 17816, 9806, 6, 4357, 2546, 16193, 67, 12078, 11, 352, 4008, 628, 220, 220, 220, 1303, 20768, 4582, 198, 220, 220, 220, 1395, 796, 45941, 13, 28920, 7, 43358, 41888, 67, 12078, 11, 8405, 12962, 198, 220, 220, 220, 347, 796, 45941, 13, 9107, 418, 26933, 67, 12078, 11, 5391, 82, 12962, 628, 220, 220, 220, 1303, 1514, 45047, 1123, 10139, 287, 1210, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 67, 12078, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 773, 1533, 631, 318, 27454, 11, 15456, 2298, 326, 867, 3397, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 11, 477, 2180, 9633, 389, 3397, 198, 220, 220, 220, 220, 220, 220, 220, 611, 773, 1533, 631, 6624, 12178, 10786, 10745, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 19841, 773, 1533, 631, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 796, 45941, 13, 283, 858, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 796, 45941, 13, 25120, 13, 16321, 7094, 7, 72, 38381, 25, 521, 1533, 631, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 796, 45941, 13, 283, 858, 7, 72, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1845, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 10139, 468, 645, 3397, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25285, 11454, 19282, 284, 651, 340, 284, 7323, 976, 24198, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 19282, 796, 45941, 13, 25120, 13, 403, 6933, 7, 9319, 28, 1845, 1084, 9806, 17816, 1084, 6, 4357, 1029, 28, 1845, 1084, 9806, 17816, 9806, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 19282, 58, 72, 60, 796, 45941, 13, 31166, 17034, 7, 8056, 19282, 58, 72, 60, 1174, 17, 1343, 2560, 62, 19282, 1174, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 1366, 17593, 284, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 58, 72, 60, 796, 45941, 13, 9107, 418, 7, 82, 12629, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 10139, 468, 3397, 11, 466, 262, 1708, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 45941, 13, 25120, 13, 11265, 7, 7857, 41888, 16, 11, 18896, 7, 1845, 8, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14534, 306, 2298, 19590, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 12853, 796, 45941, 13, 9107, 418, 26933, 16, 11, 1312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 12853, 58, 15, 11, 1582, 60, 796, 266, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 10156, 286, 3397, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 58, 72, 60, 796, 45941, 13, 26518, 7, 86, 12853, 11, 1395, 58, 25, 72, 11, 1058, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14534, 306, 2922, 257, 705, 23743, 14367, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 19282, 796, 45941, 13, 25120, 13, 403, 6933, 7, 9319, 28, 1845, 1084, 9806, 17816, 1084, 6, 4357, 1029, 28, 1845, 1084, 9806, 17816, 9806, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 21589, 266, 523, 326, 262, 6087, 286, 3397, 468, 705, 1845, 19282, 6, 14367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20796, 796, 1582, 19282, 1220, 45941, 13, 31166, 17034, 7, 37659, 13, 32604, 7, 55, 58, 72, 60, 12429, 362, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 266, 1635, 20796, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3311, 282, 3129, 378, 10156, 286, 3397, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 12853, 796, 45941, 13, 9107, 418, 26933, 16, 11, 1312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 12853, 58, 15, 11, 1582, 60, 796, 266, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 58, 72, 60, 796, 45941, 13, 26518, 7, 86, 12853, 11, 1395, 58, 25, 72, 11, 1058, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27845, 287, 347, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 58, 72, 11, 1582, 60, 796, 266, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 1366, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 58, 72, 60, 796, 1395, 58, 72, 60, 1343, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 82, 12629, 8, 1635, 11454, 19282, 58, 72, 60, 628, 220, 220, 220, 1441, 347, 11, 11454, 19282, 198 ]
2.110856
1,308
from ctypes import * import unittest import comtypes.test comtypes.test.requires("devel") from comtypes import BSTR, IUnknown, GUID, COMMETHOD, HRESULT malloc = POINTER(IMalloc)() oledll.ole32.CoGetMalloc(1, byref(malloc)) assert bool(malloc) c_wchar_p.__ctypes_from_outparam__ = from_outparm ## print comstring("Hello, World", c_wchar_p).__ctypes_from_outparam__() ## print comstring("Hello, World", c_wchar_p).__ctypes_from_outparam__() ## print comstring("Hello, World", c_wchar_p).__ctypes_from_outparam__() ## print comstring("Hello, World", c_wchar_p).__ctypes_from_outparam__() if __name__ == "__main__": unittest.main()
[ 6738, 269, 19199, 1330, 1635, 198, 11748, 555, 715, 395, 198, 198, 11748, 401, 19199, 13, 9288, 198, 785, 19199, 13, 9288, 13, 47911, 7203, 2934, 626, 4943, 198, 198, 6738, 401, 19199, 1330, 347, 18601, 11, 314, 20035, 11, 19348, 2389, 11, 22240, 36252, 11, 15172, 1546, 16724, 198, 198, 76, 32332, 796, 19922, 41358, 7, 3955, 32332, 8, 3419, 198, 45342, 297, 13, 2305, 2624, 13, 7222, 3855, 44, 32332, 7, 16, 11, 416, 5420, 7, 76, 32332, 4008, 198, 30493, 20512, 7, 76, 32332, 8, 198, 66, 62, 86, 10641, 62, 79, 13, 834, 310, 9497, 62, 6738, 62, 448, 17143, 834, 796, 422, 62, 448, 79, 1670, 198, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 3601, 401, 8841, 7203, 15496, 11, 2159, 1600, 269, 62, 86, 10641, 62, 79, 737, 834, 310, 9497, 62, 6738, 62, 448, 17143, 834, 3419, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 3601, 401, 8841, 7203, 15496, 11, 2159, 1600, 269, 62, 86, 10641, 62, 79, 737, 834, 310, 9497, 62, 6738, 62, 448, 17143, 834, 3419, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 3601, 401, 8841, 7203, 15496, 11, 2159, 1600, 269, 62, 86, 10641, 62, 79, 737, 834, 310, 9497, 62, 6738, 62, 448, 17143, 834, 3419, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 3601, 401, 8841, 7203, 15496, 11, 2159, 1600, 269, 62, 86, 10641, 62, 79, 737, 834, 310, 9497, 62, 6738, 62, 448, 17143, 834, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.453875
271
# Fit logistic regression models to 3 classs 2d data. import superimport import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import PolynomialFeatures from scipy.stats import multivariate_normal as mvn from sklearn.linear_model import LogisticRegression import matplotlib.colors as mcol import os figdir = "../figures" X, y = create_data(100) nclasses = len(np.unique(y)) degrees = [1, 2, 10, 20] for i, degree in enumerate(degrees): transformer = PolynomialFeatures(degree) name = 'Degree{}'.format(degree) XX = transformer.fit_transform(X)[:, 1:] # skip the first column of 1s model = LogisticRegression(C=1.0) model = model.fit(XX, y) #xx, yy = np.meshgrid(np.linspace(-1, 1, 150), np.linspace(-1, 1, 150)) xx, yy = np.meshgrid(np.linspace(-1, 1, 250), np.linspace(-1, 1, 250)) grid = np.c_[xx.ravel(), yy.ravel()] grid2 = transformer.transform(grid)[:, 1:] Z = model.predict(grid2).reshape(xx.shape) fig, ax = plt.subplots() # uses gray background for black dots plt.pcolormesh(xx, yy, Z, cmap=plt.cm.coolwarm) # https://stackoverflow.com/questions/40601997/setting-discrete-colormap-corresponding-to-specific-data-range-in-matplotlib #cmap = plt.cm.get_cmap("jet", lut=nclasses) #cmap_bounds = np.arange(nclasses+1) - 0.5 #norm = mcol.BoundaryNorm(cmap_bounds, cmap.N) #plt.pcolormesh(xx, yy, Z, cmap=cmap, norm=norm) plot_data(X[:, 0], X[:, 1], y) #plt.scatter(X[:,0], X[:,1], y) plt.title(name) fname = 'logregMulti-{}.png'.format(name) save_fig(fname) plt.draw() plt.show()
[ 198, 2, 25048, 2604, 2569, 20683, 4981, 284, 513, 1398, 82, 362, 67, 1366, 13, 198, 198, 11748, 2208, 11748, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 12280, 26601, 498, 23595, 198, 6738, 629, 541, 88, 13, 34242, 1330, 1963, 42524, 62, 11265, 355, 285, 85, 77, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 198, 11748, 2603, 29487, 8019, 13, 4033, 669, 355, 285, 4033, 198, 11748, 28686, 198, 198, 5647, 15908, 796, 366, 40720, 5647, 942, 1, 628, 198, 198, 55, 11, 331, 796, 2251, 62, 7890, 7, 3064, 8, 198, 77, 37724, 796, 18896, 7, 37659, 13, 34642, 7, 88, 4008, 628, 198, 13500, 6037, 796, 685, 16, 11, 362, 11, 838, 11, 1160, 60, 628, 198, 1640, 1312, 11, 4922, 287, 27056, 378, 7, 13500, 6037, 2599, 198, 220, 220, 220, 47385, 796, 12280, 26601, 498, 23595, 7, 16863, 8, 198, 220, 220, 220, 1438, 796, 705, 35, 1533, 631, 90, 92, 4458, 18982, 7, 16863, 8, 198, 220, 220, 220, 21044, 796, 47385, 13, 11147, 62, 35636, 7, 55, 38381, 45299, 352, 47715, 220, 1303, 14267, 262, 717, 5721, 286, 352, 82, 198, 220, 220, 220, 2746, 796, 5972, 2569, 8081, 2234, 7, 34, 28, 16, 13, 15, 8, 198, 220, 220, 220, 2746, 796, 2746, 13, 11147, 7, 8051, 11, 331, 8, 628, 220, 220, 220, 1303, 5324, 11, 331, 88, 796, 45941, 13, 76, 5069, 25928, 7, 37659, 13, 21602, 10223, 32590, 16, 11, 352, 11, 6640, 828, 45941, 13, 21602, 10223, 32590, 16, 11, 352, 11, 6640, 4008, 198, 220, 220, 220, 31383, 11, 331, 88, 796, 45941, 13, 76, 5069, 25928, 7, 37659, 13, 21602, 10223, 32590, 16, 11, 352, 11, 8646, 828, 45941, 13, 21602, 10223, 32590, 16, 11, 352, 11, 8646, 4008, 198, 220, 220, 220, 10706, 796, 45941, 13, 66, 62, 58, 5324, 13, 25843, 22784, 331, 88, 13, 25843, 3419, 60, 198, 220, 220, 220, 10706, 17, 796, 47385, 13, 35636, 7, 25928, 38381, 45299, 352, 47715, 198, 220, 220, 220, 1168, 796, 2746, 13, 79, 17407, 7, 25928, 17, 737, 3447, 1758, 7, 5324, 13, 43358, 8, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 220, 220, 220, 1303, 3544, 12768, 4469, 329, 2042, 22969, 198, 220, 220, 220, 458, 83, 13, 79, 4033, 579, 5069, 7, 5324, 11, 331, 88, 11, 1168, 11, 269, 8899, 28, 489, 83, 13, 11215, 13, 24494, 31975, 8, 628, 220, 220, 220, 1303, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 29703, 486, 39647, 14, 33990, 12, 15410, 8374, 12, 4033, 579, 499, 12, 10215, 5546, 278, 12, 1462, 12, 11423, 12, 7890, 12, 9521, 12, 259, 12, 6759, 29487, 8019, 198, 220, 220, 220, 1303, 66, 8899, 796, 458, 83, 13, 11215, 13, 1136, 62, 66, 8899, 7203, 31173, 1600, 300, 315, 28, 77, 37724, 8, 198, 220, 220, 220, 1303, 66, 8899, 62, 65, 3733, 796, 45941, 13, 283, 858, 7, 77, 37724, 10, 16, 8, 532, 657, 13, 20, 198, 220, 220, 220, 1303, 27237, 796, 285, 4033, 13, 49646, 560, 35393, 7, 66, 8899, 62, 65, 3733, 11, 269, 8899, 13, 45, 8, 198, 220, 220, 220, 1303, 489, 83, 13, 79, 4033, 579, 5069, 7, 5324, 11, 331, 88, 11, 1168, 11, 269, 8899, 28, 66, 8899, 11, 2593, 28, 27237, 8, 628, 220, 220, 220, 7110, 62, 7890, 7, 55, 58, 45299, 657, 4357, 1395, 58, 45299, 352, 4357, 331, 8, 198, 220, 220, 220, 1303, 489, 83, 13, 1416, 1436, 7, 55, 58, 45299, 15, 4357, 1395, 58, 45299, 16, 4357, 331, 8, 198, 220, 220, 220, 458, 83, 13, 7839, 7, 3672, 8, 628, 220, 220, 220, 277, 3672, 796, 705, 6404, 2301, 29800, 12, 90, 27422, 11134, 4458, 18982, 7, 3672, 8, 198, 220, 220, 220, 3613, 62, 5647, 7, 69, 3672, 8, 198, 220, 220, 220, 458, 83, 13, 19334, 3419, 198, 198, 489, 83, 13, 12860, 3419, 198 ]
2.366423
685
from rolepermissions.roles import AbstractUserRole
[ 6738, 2597, 525, 8481, 13, 305, 829, 1330, 27741, 12982, 47445, 628, 628, 628, 628, 198 ]
3.6875
16
#!/usr/bin/env python """Pre-schedule DDF sequences """ # pylint: disable=no-member # imports import sys import logging from argparse import ArgumentParser import yaml import numpy as np import pandas as pd import astropy.coordinates import astropy.units as u import lsst.sims.utils # constants # exception classes # interface functions def schedule_all(mag_limit, location, config): """Schedule one field on one band. Parameters ---------- m5 : `pandas.DataFrame` Has a multilevel index with the following levels: field_name : `str` the field name band : `str` the band Includes the following columns: mjd : `float` MJD of candidate time m5 : `float` 5-sigma limiting magnitude of the field if observed at that time `location` : `astropy.coordinates.EarthLocation` the location of the observatory config : `dict` Configuration parameters Return ------ schedule : `pandas.DataFrame` includes three columns: mjd : `float` the best time at which to start the sequence of exposures why : `str` an indicator of why this sequence was scheduled night : `int` the MJD of the night (at midnight) on which the sequence is to be scheduled sequence : `str` which sequence this is """ seq_schedules = [] for seq_config in config["sequences"]: logger.info(f'Scheduling {seq_config["label"]}') seq_schedule = schedule_sequence(mag_limit, location, seq_config) seq_schedule["sequence"] = seq_config["label"] logger.info(f'Computing scheduled for {seq_config["label"]}') mag_limit["scheduled"] = _compute_scheduled( mag_limit, seq_schedule, seq_config["sequence_duration"] ) seq_schedules.append(seq_schedule) logger.info("Compiling full schedule") full_schedule = ( pd.concat(seq_schedules).sort_values("mjd").set_index("mjd", drop=False) ) return full_schedule def schedule_sequence(mag_limit, location, config): """Schedule one set of sequences. Parameters ---------- m5 : `pandas.DataFrame` Has a multilevel index with the following levels: field_name : `str` the field name band : `str` the band Includes the following columns: mjd : `float` MJD of candidate time m5 : `float` 5-sigma limiting magnitude of the field if observed at that time `location` : `astropy.coordinates.EarthLocation` the location of the observatory config : `dict` Configuration parameters, with the following contents: field_name : `str` the name of the field to schedule mag_lim_band : `str` the name of the filter to schedule sequence_duration : `astropy.units.Quantity` the duration of a block of one sequence of exposures caninocal_gap : `astropy.units.Quantity` the desired time between sequences of exposures min_gap: `astropy.units.Quantity` the minimum gap for which "bridge" exposures should be scheduled max_gap: `astropy.units.Quantity` the target maximum time between sequences of exposures season_gap : `astropy.units.Quantity` the gap time greater than which no bridges should be attempted mag_limit : `dict` of `str`: `float` target magnitude limits in each band Return ------ schedule : `pandas.DataFrame` includes three columns: mjd : `float` the best time at which to start the sequence of exposures why : `str` an indicator of why this sequence was scheduled night : `int` the MJD of the night (at midnight) on which the sequence is to be scheduled """ # pylint: disable=too-many-locals these_m5 = ( mag_limit.sort_index() .loc[(config["field_name"], config["mag_lim_band"])] .sort_index() .copy() ) min_m5 = _compute_rolling_m5(these_m5, config["sequence_duration"]).set_index( "mjd", drop=False ) min_m5["night_mjd"] = compute_night_mjd(min_m5["mjd"], location) bridge_nights = _find_bridge_nights(mag_limit, location, config) bridge_gap = config["bridge_gap"] maintain_cadence = config["maintain_cadence_in_gap"] scheduled_sequences = [] for night_mjd in range(min_m5.night_mjd.min(), min_m5.night_mjd.max()): if night_mjd in bridge_nights["night_before_mjd"].values: why = "pregap" attempt_tonight = True force_tonight = True elif bridge_gap and (night_mjd in bridge_nights["bridge_night_mjd"].values): why = "bridge" attempt_tonight = True force_tonight = True elif night_mjd in bridge_nights["night_after_mjd"].values: why = "postgap" attempt_tonight = True force_tonight = True elif len(scheduled_sequences) == 0: # We are just starting why = "start" attempt_tonight = True force_tonight = False elif (night_mjd - scheduled_sequences[-1]["night_mjd"]) * u.day >= config[ "canonical_gap" ]: why = "cadence" attempt_tonight = True force_tonight = maintain_cadence else: continue if not attempt_tonight: continue candidate_times = min_m5.query(f"night_mjd == {night_mjd}") if len(candidate_times) < 1: assert maintain_cadence or not force_tonight continue best_time = min_m5.loc[candidate_times["m5"].idxmax()] if isinstance(best_time, pd.DataFrame): best_time = best_time.sort_values("count", ascending=True).iloc[-1] if (not force_tonight) and (best_time.m5 < config["mag_limit"]): continue if best_time.m5 < config["gap_mag_limit"]: continue scheduled_sequences.append({"mjd": best_time.mjd, "why": why}) scheduled_sequences[-1]["night_mjd"] = compute_night_mjd( best_time.mjd, location ) schedule = pd.DataFrame(scheduled_sequences) return schedule def compute_night_mjd(mjd, location): """Convert the floating point mjd to the integer local Julian date for the night. Parameters ---------- mjd : `float`, `pandas.Series`, or `numpy.ndarray` Returns ------- jd : `int`, `pandas.Series`, or `numpy.ndarray` """ # add longitude to get into the local timezone, # round to find the nearest midnight night_mjd = np.round(mjd + (location.lon.deg / 360.0)).astype(int) return night_mjd def read_config(fname): """Read m5 configuration file Parameters ---------- fname: `str` The name of the file to read configuration from. Return ------ config: `dict` Dictionary of configuration values """ logger.debug("Reading configuration from %s", fname) with open(fname, "r") as config_file: config = yaml.load(config_file.read(), Loader=yaml.FullLoader) # Apply units for seq_config in config["sequences"]: seq_config["sequence_duration"] = u.Quantity( seq_config["sequence_duration"] ).to(u.second) seq_config["max_gap"] = u.Quantity(seq_config["max_gap"]).to(u.day) seq_config["min_gap"] = u.Quantity(seq_config["min_gap"]).to(u.day) seq_config["season_gap"] = u.Quantity(seq_config["season_gap"]).to(u.day) seq_config["canonical_gap"] = u.Quantity(seq_config["canonical_gap"]).to(u.day) site_name = "LSST" if config["site_name"] == "LSST" else config["site_name"] site = lsst.sims.utils.Site(site_name) config["location"] = astropy.coordinates.EarthLocation( lat=site.latitude, lon=site.longitude, height=site.height ) return config # classes # internal functions & classes def main(): """Parse command line arguments and config file, and run""" parser = ArgumentParser() parser.add_argument("config", help="configuration file") parser.add_argument("m5", help="file from which to load limiting magnitudes") parser.add_argument("output", help="file in which to write results") args = parser.parse_args() config_fname = args.config m5_fname = args.m5 output_fname = args.output config = read_config(config_fname) logger.info("Reading m5 from %s", m5_fname) m5_limits = ( pd.read_hdf(m5_fname) .reset_index() .query("sun_alt < -18") .set_index(["field_name", "band", "mjd"], drop=False) .assign(scheduled=False) ) schedule = schedule_all(m5_limits, config["location"], config) schedule.to_csv(output_fname, sep="\t", index=False, header=True) return 0 def _init_logger(log_level=logging.DEBUG): """Create the ddfpresched logger and set initial configuration""" ddfpresched_logger = logging.getLogger("ddfpresched") ddfpresched_logger.setLevel(log_level) handler = logging.StreamHandler() handler.setLevel(log_level) formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") handler.setFormatter(formatter) ddfpresched_logger.addHandler(handler) return ddfpresched_logger if __name__ == "__main__": logger = _init_logger() status = main() # pylint: disable=invalid-name sys.exit(status)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 6719, 12, 15952, 5950, 360, 8068, 16311, 198, 37811, 198, 2, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 198, 2, 17944, 198, 11748, 25064, 198, 11748, 18931, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 198, 11748, 331, 43695, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 6468, 28338, 13, 37652, 17540, 198, 11748, 6468, 28338, 13, 41667, 355, 334, 198, 198, 11748, 43979, 301, 13, 82, 12078, 13, 26791, 198, 198, 2, 38491, 198, 198, 2, 6631, 6097, 198, 198, 2, 7071, 5499, 628, 198, 4299, 7269, 62, 439, 7, 19726, 62, 32374, 11, 4067, 11, 4566, 2599, 198, 220, 220, 220, 37227, 27054, 5950, 530, 2214, 319, 530, 4097, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 285, 20, 1058, 4600, 79, 392, 292, 13, 6601, 19778, 63, 198, 220, 220, 220, 220, 220, 220, 220, 7875, 257, 1963, 576, 626, 6376, 351, 262, 1708, 2974, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 3672, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2214, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 4097, 628, 220, 220, 220, 220, 220, 220, 220, 29581, 262, 1708, 15180, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 73, 67, 1058, 4600, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33974, 35, 286, 4540, 640, 198, 220, 220, 220, 220, 220, 220, 220, 285, 20, 1058, 4600, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 642, 12, 82, 13495, 15637, 14735, 286, 262, 2214, 611, 6515, 379, 326, 640, 198, 220, 220, 220, 4600, 24886, 63, 1058, 4600, 459, 28338, 13, 37652, 17540, 13, 22840, 14749, 63, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4067, 286, 262, 3799, 2870, 198, 220, 220, 220, 4566, 1058, 4600, 11600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 28373, 10007, 628, 220, 220, 220, 8229, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 7269, 1058, 4600, 79, 392, 292, 13, 6601, 19778, 63, 198, 220, 220, 220, 220, 220, 220, 220, 3407, 1115, 15180, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 73, 67, 1058, 4600, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1266, 640, 379, 543, 284, 923, 262, 8379, 286, 32185, 198, 220, 220, 220, 220, 220, 220, 220, 1521, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 16916, 286, 1521, 428, 8379, 373, 7530, 198, 220, 220, 220, 220, 220, 220, 220, 1755, 1058, 4600, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 33974, 35, 286, 262, 1755, 357, 265, 15896, 8, 319, 543, 262, 8379, 318, 284, 307, 7530, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 543, 8379, 428, 318, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 33756, 62, 1416, 704, 5028, 796, 17635, 628, 220, 220, 220, 329, 33756, 62, 11250, 287, 4566, 14692, 3107, 3007, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 50, 1740, 16619, 1391, 41068, 62, 11250, 14692, 18242, 8973, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 15952, 5950, 796, 7269, 62, 43167, 7, 19726, 62, 32374, 11, 4067, 11, 33756, 62, 11250, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 15952, 5950, 14692, 43167, 8973, 796, 33756, 62, 11250, 14692, 18242, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 5377, 48074, 7530, 329, 1391, 41068, 62, 11250, 14692, 18242, 8973, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2153, 62, 32374, 14692, 1416, 704, 6309, 8973, 796, 4808, 5589, 1133, 62, 1416, 704, 6309, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2153, 62, 32374, 11, 33756, 62, 15952, 5950, 11, 33756, 62, 11250, 14692, 43167, 62, 32257, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 1416, 704, 5028, 13, 33295, 7, 41068, 62, 15952, 5950, 8, 628, 220, 220, 220, 49706, 13, 10951, 7203, 7293, 4386, 1336, 7269, 4943, 198, 220, 220, 220, 1336, 62, 15952, 5950, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 1102, 9246, 7, 41068, 62, 1416, 704, 5028, 737, 30619, 62, 27160, 7203, 76, 73, 67, 11074, 2617, 62, 9630, 7203, 76, 73, 67, 1600, 4268, 28, 25101, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1441, 1336, 62, 15952, 5950, 628, 198, 4299, 7269, 62, 43167, 7, 19726, 62, 32374, 11, 4067, 11, 4566, 2599, 198, 220, 220, 220, 37227, 27054, 5950, 530, 900, 286, 16311, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 285, 20, 1058, 4600, 79, 392, 292, 13, 6601, 19778, 63, 198, 220, 220, 220, 220, 220, 220, 220, 7875, 257, 1963, 576, 626, 6376, 351, 262, 1708, 2974, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 3672, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2214, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 4097, 628, 220, 220, 220, 220, 220, 220, 220, 29581, 262, 1708, 15180, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 73, 67, 1058, 4600, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33974, 35, 286, 4540, 640, 198, 220, 220, 220, 220, 220, 220, 220, 285, 20, 1058, 4600, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 642, 12, 82, 13495, 15637, 14735, 286, 262, 2214, 611, 6515, 379, 326, 640, 198, 220, 220, 220, 4600, 24886, 63, 1058, 4600, 459, 28338, 13, 37652, 17540, 13, 22840, 14749, 63, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4067, 286, 262, 3799, 2870, 198, 220, 220, 220, 4566, 1058, 4600, 11600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 28373, 10007, 11, 351, 262, 1708, 10154, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 3672, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1438, 286, 262, 2214, 284, 7269, 198, 220, 220, 220, 220, 220, 220, 220, 2153, 62, 2475, 62, 3903, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1438, 286, 262, 8106, 284, 7269, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 62, 32257, 1058, 4600, 459, 28338, 13, 41667, 13, 31208, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 9478, 286, 257, 2512, 286, 530, 8379, 286, 32185, 198, 220, 220, 220, 220, 220, 220, 220, 460, 259, 4374, 62, 43554, 1058, 4600, 459, 28338, 13, 41667, 13, 31208, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 10348, 640, 1022, 16311, 286, 32185, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 43554, 25, 4600, 459, 28338, 13, 41667, 13, 31208, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 5288, 7625, 329, 543, 366, 9458, 1, 32185, 815, 307, 7530, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 43554, 25, 4600, 459, 28338, 13, 41667, 13, 31208, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2496, 5415, 640, 1022, 16311, 286, 32185, 198, 220, 220, 220, 220, 220, 220, 220, 1622, 62, 43554, 1058, 220, 4600, 459, 28338, 13, 41667, 13, 31208, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 7625, 640, 3744, 621, 543, 645, 19432, 815, 307, 7482, 198, 220, 220, 220, 220, 220, 220, 220, 2153, 62, 32374, 1058, 4600, 11600, 63, 286, 4600, 2536, 63, 25, 4600, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 14735, 7095, 287, 1123, 4097, 628, 220, 220, 220, 8229, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 7269, 1058, 4600, 79, 392, 292, 13, 6601, 19778, 63, 198, 220, 220, 220, 220, 220, 220, 220, 3407, 1115, 15180, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 73, 67, 1058, 4600, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1266, 640, 379, 543, 284, 923, 262, 8379, 286, 32185, 198, 220, 220, 220, 220, 220, 220, 220, 1521, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 16916, 286, 1521, 428, 8379, 373, 7530, 198, 220, 220, 220, 220, 220, 220, 220, 1755, 1058, 4600, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 33974, 35, 286, 262, 1755, 357, 265, 15896, 8, 319, 543, 262, 8379, 318, 284, 307, 7530, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 18820, 12, 21834, 12, 17946, 874, 198, 220, 220, 220, 777, 62, 76, 20, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 2153, 62, 32374, 13, 30619, 62, 9630, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 764, 17946, 58, 7, 11250, 14692, 3245, 62, 3672, 33116, 4566, 14692, 19726, 62, 2475, 62, 3903, 8973, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 764, 30619, 62, 9630, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 764, 30073, 3419, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 949, 62, 76, 20, 796, 4808, 5589, 1133, 62, 18886, 62, 76, 20, 7, 27218, 62, 76, 20, 11, 4566, 14692, 43167, 62, 32257, 8973, 737, 2617, 62, 9630, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 73, 67, 1600, 4268, 28, 25101, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 949, 62, 76, 20, 14692, 3847, 62, 76, 73, 67, 8973, 796, 24061, 62, 3847, 62, 76, 73, 67, 7, 1084, 62, 76, 20, 14692, 76, 73, 67, 33116, 4067, 8, 628, 220, 220, 220, 7696, 62, 77, 2337, 796, 4808, 19796, 62, 9458, 62, 77, 2337, 7, 19726, 62, 32374, 11, 4067, 11, 4566, 8, 198, 220, 220, 220, 7696, 62, 43554, 796, 4566, 14692, 9458, 62, 43554, 8973, 198, 220, 220, 220, 5529, 62, 66, 324, 594, 796, 4566, 14692, 76, 32725, 62, 66, 324, 594, 62, 259, 62, 43554, 8973, 628, 220, 220, 220, 7530, 62, 3107, 3007, 796, 17635, 198, 220, 220, 220, 329, 1755, 62, 76, 73, 67, 287, 2837, 7, 1084, 62, 76, 20, 13, 3847, 62, 76, 73, 67, 13, 1084, 22784, 949, 62, 76, 20, 13, 3847, 62, 76, 73, 67, 13, 9806, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1755, 62, 76, 73, 67, 287, 7696, 62, 77, 2337, 14692, 3847, 62, 19052, 62, 76, 73, 67, 1, 4083, 27160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1521, 796, 366, 79, 2301, 499, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2230, 62, 1122, 432, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 1122, 432, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7696, 62, 43554, 290, 357, 3847, 62, 76, 73, 67, 287, 7696, 62, 77, 2337, 14692, 9458, 62, 3847, 62, 76, 73, 67, 1, 4083, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1521, 796, 366, 9458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2230, 62, 1122, 432, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 1122, 432, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1755, 62, 76, 73, 67, 287, 7696, 62, 77, 2337, 14692, 3847, 62, 8499, 62, 76, 73, 67, 1, 4083, 27160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1521, 796, 366, 7353, 43554, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2230, 62, 1122, 432, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 1122, 432, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 1416, 704, 6309, 62, 3107, 3007, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 389, 655, 3599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1521, 796, 366, 9688, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2230, 62, 1122, 432, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 1122, 432, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 357, 3847, 62, 76, 73, 67, 532, 7530, 62, 3107, 3007, 58, 12, 16, 7131, 1, 3847, 62, 76, 73, 67, 8973, 8, 1635, 334, 13, 820, 18189, 4566, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49883, 605, 62, 43554, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1521, 796, 366, 66, 324, 594, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2230, 62, 1122, 432, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 1122, 432, 796, 5529, 62, 66, 324, 594, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2230, 62, 1122, 432, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 4540, 62, 22355, 796, 949, 62, 76, 20, 13, 22766, 7, 69, 1, 3847, 62, 76, 73, 67, 6624, 1391, 3847, 62, 76, 73, 67, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 46188, 20540, 62, 22355, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 5529, 62, 66, 324, 594, 393, 407, 2700, 62, 1122, 432, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 2435, 796, 949, 62, 76, 20, 13, 17946, 58, 46188, 20540, 62, 22355, 14692, 76, 20, 1, 4083, 312, 87, 9806, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 13466, 62, 2435, 11, 279, 67, 13, 6601, 19778, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 2435, 796, 1266, 62, 2435, 13, 30619, 62, 27160, 7203, 9127, 1600, 41988, 28, 17821, 737, 346, 420, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 1662, 2700, 62, 1122, 432, 8, 290, 357, 13466, 62, 2435, 13, 76, 20, 1279, 4566, 14692, 19726, 62, 32374, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1266, 62, 2435, 13, 76, 20, 1279, 4566, 14692, 43554, 62, 19726, 62, 32374, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 7530, 62, 3107, 3007, 13, 33295, 7, 4895, 76, 73, 67, 1298, 1266, 62, 2435, 13, 76, 73, 67, 11, 366, 22850, 1298, 1521, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 7530, 62, 3107, 3007, 58, 12, 16, 7131, 1, 3847, 62, 76, 73, 67, 8973, 796, 24061, 62, 3847, 62, 76, 73, 67, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 2435, 13, 76, 73, 67, 11, 4067, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 7269, 796, 279, 67, 13, 6601, 19778, 7, 1416, 704, 6309, 62, 3107, 3007, 8, 628, 220, 220, 220, 1441, 7269, 628, 198, 4299, 24061, 62, 3847, 62, 76, 73, 67, 7, 76, 73, 67, 11, 4067, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 262, 12462, 966, 285, 73, 67, 284, 262, 18253, 1957, 18322, 3128, 329, 262, 1755, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 285, 73, 67, 1058, 4600, 22468, 47671, 4600, 79, 392, 292, 13, 27996, 47671, 393, 4600, 77, 32152, 13, 358, 18747, 63, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 474, 67, 1058, 4600, 600, 47671, 4600, 79, 392, 292, 13, 27996, 47671, 393, 4600, 77, 32152, 13, 358, 18747, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 751, 890, 3984, 284, 651, 656, 262, 1957, 640, 11340, 11, 198, 220, 220, 220, 1303, 2835, 284, 1064, 262, 16936, 15896, 198, 220, 220, 220, 1755, 62, 76, 73, 67, 796, 45941, 13, 744, 7, 76, 73, 67, 1343, 357, 24886, 13, 14995, 13, 13500, 1220, 11470, 13, 15, 29720, 459, 2981, 7, 600, 8, 198, 220, 220, 220, 1441, 1755, 62, 76, 73, 67, 628, 198, 4299, 1100, 62, 11250, 7, 69, 3672, 2599, 198, 220, 220, 220, 37227, 5569, 285, 20, 8398, 2393, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 277, 3672, 25, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 286, 262, 2393, 284, 1100, 8398, 422, 13, 628, 220, 220, 220, 8229, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 4566, 25, 4600, 11600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 8398, 3815, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 13, 24442, 7203, 36120, 8398, 422, 4064, 82, 1600, 277, 3672, 8, 628, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 366, 81, 4943, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 331, 43695, 13, 2220, 7, 11250, 62, 7753, 13, 961, 22784, 8778, 263, 28, 88, 43695, 13, 13295, 17401, 8, 628, 220, 220, 220, 1303, 27967, 4991, 198, 220, 220, 220, 329, 33756, 62, 11250, 287, 4566, 14692, 3107, 3007, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11250, 14692, 43167, 62, 32257, 8973, 796, 334, 13, 31208, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11250, 14692, 43167, 62, 32257, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 1462, 7, 84, 13, 12227, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11250, 14692, 9806, 62, 43554, 8973, 796, 334, 13, 31208, 7, 41068, 62, 11250, 14692, 9806, 62, 43554, 8973, 737, 1462, 7, 84, 13, 820, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11250, 14692, 1084, 62, 43554, 8973, 796, 334, 13, 31208, 7, 41068, 62, 11250, 14692, 1084, 62, 43554, 8973, 737, 1462, 7, 84, 13, 820, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11250, 14692, 6230, 62, 43554, 8973, 796, 334, 13, 31208, 7, 41068, 62, 11250, 14692, 6230, 62, 43554, 8973, 737, 1462, 7, 84, 13, 820, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11250, 14692, 49883, 605, 62, 43554, 8973, 796, 334, 13, 31208, 7, 41068, 62, 11250, 14692, 49883, 605, 62, 43554, 8973, 737, 1462, 7, 84, 13, 820, 8, 628, 220, 220, 220, 2524, 62, 3672, 796, 366, 6561, 2257, 1, 611, 4566, 14692, 15654, 62, 3672, 8973, 6624, 366, 6561, 2257, 1, 2073, 4566, 14692, 15654, 62, 3672, 8973, 198, 220, 220, 220, 2524, 796, 43979, 301, 13, 82, 12078, 13, 26791, 13, 29123, 7, 15654, 62, 3672, 8, 198, 220, 220, 220, 4566, 14692, 24886, 8973, 796, 6468, 28338, 13, 37652, 17540, 13, 22840, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3042, 28, 15654, 13, 15460, 3984, 11, 300, 261, 28, 15654, 13, 6511, 3984, 11, 6001, 28, 15654, 13, 17015, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 4566, 628, 198, 2, 6097, 198, 198, 2, 5387, 5499, 1222, 6097, 628, 628, 628, 198, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 10044, 325, 3141, 1627, 7159, 290, 4566, 2393, 11, 290, 1057, 37811, 198, 220, 220, 220, 30751, 796, 45751, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 11250, 1600, 1037, 2625, 11250, 3924, 2393, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 76, 20, 1600, 1037, 2625, 7753, 422, 543, 284, 3440, 15637, 7842, 10455, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 22915, 1600, 1037, 2625, 7753, 287, 543, 284, 3551, 2482, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 4566, 62, 69, 3672, 796, 26498, 13, 11250, 198, 220, 220, 220, 285, 20, 62, 69, 3672, 796, 26498, 13, 76, 20, 198, 220, 220, 220, 5072, 62, 69, 3672, 796, 26498, 13, 22915, 628, 220, 220, 220, 4566, 796, 1100, 62, 11250, 7, 11250, 62, 69, 3672, 8, 628, 220, 220, 220, 49706, 13, 10951, 7203, 36120, 285, 20, 422, 4064, 82, 1600, 285, 20, 62, 69, 3672, 8, 198, 220, 220, 220, 285, 20, 62, 49196, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 961, 62, 71, 7568, 7, 76, 20, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 42503, 62, 9630, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 764, 22766, 7203, 19155, 62, 2501, 1279, 532, 1507, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 764, 2617, 62, 9630, 7, 14692, 3245, 62, 3672, 1600, 366, 3903, 1600, 366, 76, 73, 67, 33116, 4268, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 562, 570, 7, 1416, 704, 6309, 28, 25101, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 7269, 796, 7269, 62, 439, 7, 76, 20, 62, 49196, 11, 4566, 14692, 24886, 33116, 4566, 8, 198, 220, 220, 220, 7269, 13, 1462, 62, 40664, 7, 22915, 62, 69, 3672, 11, 41767, 2625, 59, 83, 1600, 6376, 28, 25101, 11, 13639, 28, 17821, 8, 628, 220, 220, 220, 1441, 657, 628, 198, 4299, 4808, 15003, 62, 6404, 1362, 7, 6404, 62, 5715, 28, 6404, 2667, 13, 30531, 2599, 198, 220, 220, 220, 37227, 16447, 262, 288, 7568, 18302, 1740, 49706, 290, 900, 4238, 8398, 37811, 198, 220, 220, 220, 288, 7568, 18302, 1740, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 1860, 69, 18302, 1740, 4943, 198, 220, 220, 220, 288, 7568, 18302, 1740, 62, 6404, 1362, 13, 2617, 4971, 7, 6404, 62, 5715, 8, 198, 220, 220, 220, 21360, 796, 18931, 13, 12124, 25060, 3419, 198, 220, 220, 220, 21360, 13, 2617, 4971, 7, 6404, 62, 5715, 8, 198, 220, 220, 220, 1296, 1436, 796, 18931, 13, 8479, 1436, 7203, 4, 7, 292, 310, 524, 8, 82, 59, 83, 4, 7, 3672, 8, 82, 59, 83, 4, 7, 5715, 3672, 8, 82, 59, 83, 4, 7, 20500, 8, 82, 4943, 198, 220, 220, 220, 21360, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 220, 220, 220, 288, 7568, 18302, 1740, 62, 6404, 1362, 13, 2860, 25060, 7, 30281, 8, 198, 220, 220, 220, 1441, 288, 7568, 18302, 1740, 62, 6404, 1362, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 49706, 796, 4808, 15003, 62, 6404, 1362, 3419, 198, 220, 220, 220, 3722, 796, 1388, 3419, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 25064, 13, 37023, 7, 13376, 8, 198 ]
2.358224
4,098
# -*- coding: utf-8 -*- from numpy import * from mab.binningtools import bingrid, binrange import mab.gd.logging as logging logger = logging.getLogger("gd.nbody.gadget")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 299, 32152, 1330, 1635, 198, 6738, 285, 397, 13, 8800, 768, 31391, 1330, 275, 278, 6058, 11, 9874, 9521, 198, 11748, 285, 397, 13, 21287, 13, 6404, 2667, 355, 18931, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 21287, 13, 77, 2618, 13, 70, 324, 1136, 4943, 628, 198, 197, 197, 197, 197, 197, 198 ]
2.452055
73
# ------------------------------------------------------------------------------ # CodeHawk Binary Analyzer # Author: Henny Sipma # ------------------------------------------------------------------------------ # The MIT License (MIT) # # Copyright (c) 2021 Aarno Labs LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ------------------------------------------------------------------------------ import xml.etree.ElementTree as ET from typing import Callable, cast, Dict, List, Mapping, Optional, Sequence from chb.api.InterfaceDictionary import InterfaceDictionary from chb.app.BasicBlock import BasicBlock from chb.app.BDictionary import BDictionary from chb.app.Function import Function from chb.app.FunctionDictionary import FunctionDictionary from chb.app.FunctionInfo import FunctionInfo from chb.app.Cfg import Cfg from chb.app.StringXRefs import StringsXRefs from chb.invariants.FnVarDictionary import FnVarDictionary from chb.invariants.FnXprDictionary import FnXprDictionary from chb.arm.ARMBlock import ARMBlock from chb.arm.ARMDictionary import ARMDictionary from chb.arm.ARMInstruction import ARMInstruction from chb.arm.ARMCfg import ARMCfg import chb.util.fileutil as UF
[ 2, 16529, 26171, 198, 2, 6127, 39, 19301, 45755, 16213, 9107, 198, 2, 6434, 25, 367, 11870, 311, 541, 2611, 198, 2, 16529, 26171, 198, 2, 383, 17168, 13789, 357, 36393, 8, 198, 2, 198, 2, 15069, 357, 66, 8, 33448, 317, 1501, 78, 23500, 11419, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 2, 16529, 26171, 198, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 198, 6738, 19720, 1330, 4889, 540, 11, 3350, 11, 360, 713, 11, 7343, 11, 337, 5912, 11, 32233, 11, 45835, 198, 198, 6738, 442, 65, 13, 15042, 13, 39317, 35, 14188, 1330, 26491, 35, 14188, 198, 198, 6738, 442, 65, 13, 1324, 13, 26416, 12235, 1330, 14392, 12235, 198, 6738, 442, 65, 13, 1324, 13, 14529, 14188, 1330, 28023, 14188, 198, 6738, 442, 65, 13, 1324, 13, 22203, 1330, 15553, 198, 6738, 442, 65, 13, 1324, 13, 22203, 35, 14188, 1330, 15553, 35, 14188, 198, 6738, 442, 65, 13, 1324, 13, 22203, 12360, 1330, 15553, 12360, 198, 6738, 442, 65, 13, 1324, 13, 34, 40616, 1330, 327, 40616, 198, 6738, 442, 65, 13, 1324, 13, 10100, 55, 8134, 82, 1330, 4285, 654, 55, 8134, 82, 198, 198, 6738, 442, 65, 13, 16340, 2743, 1187, 13, 37, 77, 19852, 35, 14188, 1330, 37481, 19852, 35, 14188, 198, 6738, 442, 65, 13, 16340, 2743, 1187, 13, 37, 77, 55, 1050, 35, 14188, 1330, 37481, 55, 1050, 35, 14188, 198, 198, 6738, 442, 65, 13, 1670, 13, 33456, 12235, 1330, 20359, 12235, 198, 6738, 442, 65, 13, 1670, 13, 1503, 12740, 14188, 1330, 5923, 12740, 14188, 198, 6738, 442, 65, 13, 1670, 13, 33456, 6310, 2762, 1330, 20359, 6310, 2762, 198, 6738, 442, 65, 13, 1670, 13, 1503, 9655, 40616, 1330, 5923, 9655, 40616, 198, 198, 11748, 442, 65, 13, 22602, 13, 7753, 22602, 355, 471, 37, 628 ]
3.875439
570
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import statsmodels.api as sm import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import seaborn as sns import os import sys import scipy.stats from scipy.stats.mstats import gmean import scipy.stats as stats import math import matplotlib as mpl from sklearn.cluster import KMeans mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams["font.sans-serif"] = "Arial" #1.Z-score Normalzie DiseaseSP_DF: Cell='Monocytes' outDir=os.path.join('{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/KmeansCluster'.format(Cell)) if not os.path.exists(outDir): os.mkdir(outDir) DiseaseSP_F='{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/TwoTwoCompare_Merge.sortCol.txt'.format(Cell) DiseaseSP_DF=pd.read_table(DiseaseSP_F,sep='\t',index_col=0) DiseaseSP_DFz= DiseaseSP_DF.apply(scipy.stats.zscore,axis=1,result_type='broadcast') #decide K:1.手肘法(误差平方法SSE);2.轮廓系数法 SSE = [] # 存放每次结果的误差平方和 for k in range(1,10): estimator = KMeans(n_clusters=k) estimator.fit(DiseaseSP_DFz) SSE.append(estimator.inertia_) X = range(1,10) plt.style.use('seaborn-white') fig=plt.figure(figsize=(3.5,2)) ax=fig.add_axes([0.2,0.2,0.7,0.7]) ax.set_ylabel('Sum of the squared errors',fontsize=10) ax.set_xlabel('k number',fontsize=10) ax.tick_params(axis='y',length=7,labelsize=8,direction='out') ax.tick_params(axis='x',length=7,labelsize=8,direction='out') ax.spines['bottom'].set_linewidth(0.5) ax.spines['left'].set_linewidth(0.5) ax.spines['right'].set_linewidth(0.5) ax.spines['top'].set_linewidth(0.5) plt.plot(X,SSE,color='purple', marker='o', linestyle='dashed',linewidth=1, markersize=5) fig.savefig(outDir+'/Kvalue_SSE.pdf') #print '误差平方和:' plt.show() 2.#根据最佳K值进行KMeans聚类 (Kmeans聚类用的ZscoreNorm后的DF!!!) KMean_Cluster(DiseaseSP_DFz,outDir,2) KMean_Cluster(DiseaseSP_DFz,outDir,3) print ('K-means Done !') # In[5]: k='3' Cell='Monocytes' DiseaseSP_F='{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/TwoTwoCompare_Merge.sortCol.txt'.format(Cell) DiseaseSP_DF=pd.read_table(DiseaseSP_F,sep='\t',index_col=0) RAs=[i for i in list(DiseaseSP_DF) if 'RA' in i] OAs=[i for i in list(DiseaseSP_DF) if 'OA' in i] HCs=[i for i in list(DiseaseSP_DF) if 'HC' in i] BedF= '{}/RAOAHC.removeY.bed'.format(Cell) #read PeakBed BedDF=pd.read_table(BedF,sep='\t',header=None) BedDF.index=BedDF[3] # In[6]: k='3' PlotKmeanCluster_K3(k) # In[ ]: # In[ ]: # In[ ]: # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 16, 5974, 628, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 9756, 27530, 13, 15042, 355, 895, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 1341, 35720, 13, 12501, 296, 9150, 1330, 4217, 32, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 76, 29487, 18, 67, 1330, 12176, 274, 18, 35, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 629, 541, 88, 13, 34242, 198, 6738, 629, 541, 88, 13, 34242, 13, 76, 34242, 1330, 308, 32604, 198, 11748, 629, 541, 88, 13, 34242, 355, 9756, 198, 11748, 10688, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 6738, 1341, 35720, 13, 565, 5819, 1330, 509, 5308, 504, 198, 76, 489, 13, 6015, 10044, 4105, 17816, 12315, 13, 10331, 4906, 20520, 796, 5433, 198, 76, 489, 13, 6015, 10044, 4105, 14692, 10331, 13, 82, 504, 12, 2655, 361, 8973, 796, 366, 32, 4454, 1, 628, 198, 2, 16, 13, 57, 12, 26675, 14435, 49746, 17344, 4303, 62, 8068, 25, 198, 28780, 11639, 9069, 30309, 6, 198, 448, 35277, 28, 418, 13, 6978, 13, 22179, 10786, 90, 92, 14, 28813, 6435, 4730, 14, 32604, 18, 62, 16072, 17, 62, 79, 15, 13, 8298, 62, 69, 7109, 15, 13, 2713, 14, 42, 1326, 504, 2601, 5819, 4458, 18982, 7, 28780, 4008, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 35277, 2599, 198, 220, 220, 220, 28686, 13, 28015, 15908, 7, 448, 35277, 8, 198, 198, 35, 786, 589, 4303, 62, 37, 11639, 90, 92, 14, 28813, 6435, 4730, 14, 32604, 18, 62, 16072, 17, 62, 79, 15, 13, 8298, 62, 69, 7109, 15, 13, 2713, 14, 7571, 7571, 41488, 62, 13102, 469, 13, 30619, 5216, 13, 14116, 4458, 18982, 7, 28780, 8, 198, 35, 786, 589, 4303, 62, 8068, 28, 30094, 13, 961, 62, 11487, 7, 35, 786, 589, 4303, 62, 37, 11, 325, 79, 11639, 59, 83, 3256, 9630, 62, 4033, 28, 15, 8, 198, 35, 786, 589, 4303, 62, 8068, 89, 28, 17344, 4303, 62, 8068, 13, 39014, 7, 1416, 541, 88, 13, 34242, 13, 89, 26675, 11, 22704, 28, 16, 11, 20274, 62, 4906, 11639, 36654, 2701, 11537, 198, 198, 2, 12501, 485, 509, 25, 16, 13, 33699, 233, 164, 224, 246, 37345, 243, 7, 46237, 107, 32432, 106, 33176, 111, 43095, 37345, 243, 50, 5188, 1776, 17, 13, 164, 121, 106, 161, 119, 241, 163, 111, 119, 46763, 108, 37345, 243, 198, 50, 5188, 796, 17635, 220, 1303, 10263, 255, 246, 162, 242, 122, 162, 107, 237, 162, 105, 94, 163, 119, 241, 162, 252, 250, 21410, 46237, 107, 32432, 106, 33176, 111, 43095, 161, 240, 234, 198, 1640, 479, 287, 2837, 7, 16, 11, 940, 2599, 198, 220, 220, 220, 3959, 1352, 796, 509, 5308, 504, 7, 77, 62, 565, 13654, 28, 74, 8, 198, 220, 220, 220, 3959, 1352, 13, 11147, 7, 35, 786, 589, 4303, 62, 8068, 89, 8, 198, 220, 220, 220, 311, 5188, 13, 33295, 7, 395, 320, 1352, 13, 259, 861, 544, 62, 8, 198, 55, 796, 2837, 7, 16, 11, 940, 8, 198, 489, 83, 13, 7635, 13, 1904, 10786, 325, 397, 1211, 12, 11186, 11537, 198, 5647, 28, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 18, 13, 20, 11, 17, 4008, 198, 897, 28, 5647, 13, 2860, 62, 897, 274, 26933, 15, 13, 17, 11, 15, 13, 17, 11, 15, 13, 22, 11, 15, 13, 22, 12962, 198, 897, 13, 2617, 62, 2645, 9608, 10786, 13065, 286, 262, 44345, 8563, 3256, 10331, 7857, 28, 940, 8, 198, 897, 13, 2617, 62, 87, 18242, 10786, 74, 1271, 3256, 10331, 7857, 28, 940, 8, 198, 897, 13, 42298, 62, 37266, 7, 22704, 11639, 88, 3256, 13664, 28, 22, 11, 23912, 1424, 1096, 28, 23, 11, 37295, 11639, 448, 11537, 198, 897, 13, 42298, 62, 37266, 7, 22704, 11639, 87, 3256, 13664, 28, 22, 11, 23912, 1424, 1096, 28, 23, 11, 37295, 11639, 448, 11537, 198, 897, 13, 2777, 1127, 17816, 22487, 6, 4083, 2617, 62, 2815, 413, 5649, 7, 15, 13, 20, 8, 198, 897, 13, 2777, 1127, 17816, 9464, 6, 4083, 2617, 62, 2815, 413, 5649, 7, 15, 13, 20, 8, 198, 897, 13, 2777, 1127, 17816, 3506, 6, 4083, 2617, 62, 2815, 413, 5649, 7, 15, 13, 20, 8, 198, 897, 13, 2777, 1127, 17816, 4852, 6, 4083, 2617, 62, 2815, 413, 5649, 7, 15, 13, 20, 8, 198, 489, 83, 13, 29487, 7, 55, 11, 50, 5188, 11, 8043, 11639, 14225, 1154, 3256, 18364, 11639, 78, 3256, 9493, 10992, 11639, 67, 5263, 3256, 2815, 413, 5649, 28, 16, 11, 19736, 1096, 28, 20, 8, 198, 5647, 13, 21928, 5647, 7, 448, 35277, 10, 26488, 42, 8367, 62, 50, 5188, 13, 12315, 11537, 198, 2, 4798, 705, 46237, 107, 32432, 106, 33176, 111, 43095, 161, 240, 234, 171, 120, 248, 6, 198, 489, 83, 13, 12860, 3419, 198, 198, 17, 32535, 43718, 117, 162, 235, 106, 17312, 222, 19526, 111, 42, 161, 222, 120, 32573, 249, 26193, 234, 42, 5308, 504, 164, 223, 248, 163, 109, 119, 357, 42, 1326, 504, 164, 223, 248, 163, 109, 119, 18796, 101, 21410, 57, 26675, 35393, 28938, 236, 21410, 8068, 3228, 8133, 198, 42, 5308, 272, 62, 2601, 5819, 7, 35, 786, 589, 4303, 62, 8068, 89, 11, 448, 35277, 11, 17, 8, 198, 42, 5308, 272, 62, 2601, 5819, 7, 35, 786, 589, 4303, 62, 8068, 89, 11, 448, 35277, 11, 18, 8, 198, 198, 4798, 19203, 42, 12, 1326, 504, 24429, 5145, 11537, 628, 198, 2, 554, 58, 20, 5974, 628, 198, 74, 11639, 18, 6, 198, 28780, 11639, 9069, 30309, 6, 198, 35, 786, 589, 4303, 62, 37, 11639, 90, 92, 14, 28813, 6435, 4730, 14, 32604, 18, 62, 16072, 17, 62, 79, 15, 13, 8298, 62, 69, 7109, 15, 13, 2713, 14, 7571, 7571, 41488, 62, 13102, 469, 13, 30619, 5216, 13, 14116, 4458, 18982, 7, 28780, 8, 198, 35, 786, 589, 4303, 62, 8068, 28, 30094, 13, 961, 62, 11487, 7, 35, 786, 589, 4303, 62, 37, 11, 325, 79, 11639, 59, 83, 3256, 9630, 62, 4033, 28, 15, 8, 198, 49, 1722, 41888, 72, 329, 1312, 287, 1351, 7, 35, 786, 589, 4303, 62, 8068, 8, 611, 705, 3861, 6, 287, 1312, 60, 198, 46, 1722, 41888, 72, 329, 1312, 287, 1351, 7, 35, 786, 589, 4303, 62, 8068, 8, 611, 705, 23621, 6, 287, 1312, 60, 198, 16045, 82, 41888, 72, 329, 1312, 287, 1351, 7, 35, 786, 589, 4303, 62, 8068, 8, 611, 705, 16045, 6, 287, 1312, 60, 198, 198, 45896, 37, 28, 705, 90, 92, 14, 3861, 23621, 16045, 13, 28956, 56, 13, 3077, 4458, 18982, 7, 28780, 8, 220, 1303, 961, 23974, 45896, 198, 45896, 8068, 28, 30094, 13, 961, 62, 11487, 7, 45896, 37, 11, 325, 79, 11639, 59, 83, 3256, 25677, 28, 14202, 8, 198, 45896, 8068, 13, 9630, 28, 45896, 8068, 58, 18, 60, 628, 198, 2, 554, 58, 21, 5974, 628, 198, 74, 11639, 18, 6, 198, 43328, 42, 32604, 2601, 5819, 62, 42, 18, 7, 74, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 198, 2, 554, 58, 2361, 25, 198 ]
1.997583
1,241
import redlab as rl print("-------einzelneWerte-------------------------") print("16BitValue:" + str(rl.cbAIn(0, 0, 1))) print("VoltageValue:" + str(rl.cbVIn(0, 0, 1))) print("-------Messreihe-------------------------") print("Messreihe:" + str(rl.cbAInScan(0, 0, 0, 300, 8000, 1))) print("Messreihe:" + str(rl.cbVInScan(0, 0, 0, 300, 8000, 1))) print("Samplerate:" + str(rl.cbInScanRate(0, 0, 0, 8000))) print("Nyquist:" + str(rl.cbInScanRate(0, 0, 0, 8000) / 2)) print("-------Ausgabe-------------------------")
[ 11748, 2266, 23912, 355, 374, 75, 198, 198, 4798, 7203, 26866, 68, 259, 17396, 710, 54, 263, 660, 22369, 12, 4943, 198, 4798, 7203, 1433, 13128, 11395, 11097, 1343, 965, 7, 45895, 13, 21101, 32, 818, 7, 15, 11, 657, 11, 352, 22305, 198, 4798, 7203, 53, 5978, 496, 11395, 11097, 1343, 965, 7, 45895, 13, 21101, 53, 818, 7, 15, 11, 657, 11, 352, 22305, 198, 4798, 7203, 26866, 36479, 260, 72, 258, 22369, 12, 4943, 198, 4798, 7203, 36479, 260, 72, 258, 11097, 1343, 965, 7, 45895, 13, 21101, 32, 818, 33351, 7, 15, 11, 657, 11, 657, 11, 5867, 11, 38055, 11, 352, 22305, 198, 4798, 7203, 36479, 260, 72, 258, 11097, 1343, 965, 7, 45895, 13, 21101, 53, 818, 33351, 7, 15, 11, 657, 11, 657, 11, 5867, 11, 38055, 11, 352, 22305, 198, 4798, 7203, 16305, 20053, 378, 11097, 1343, 965, 7, 45895, 13, 21101, 818, 33351, 32184, 7, 15, 11, 657, 11, 657, 11, 38055, 22305, 198, 4798, 7203, 45, 88, 30062, 11097, 1343, 965, 7, 45895, 13, 21101, 818, 33351, 32184, 7, 15, 11, 657, 11, 657, 11, 38055, 8, 1220, 362, 4008, 198, 4798, 7203, 26866, 32, 385, 70, 11231, 22369, 12, 4943, 198 ]
2.549505
202
import os
[ 11748, 28686, 628 ]
3.666667
3
# -*- coding: utf-8 -*- """DGCCA.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/15L_7jxf0KH81UjAO6waIbQso1nqML0kD # Deep Generalized Cannonical Correlation Analysis Implementaion for 3 views cca-zoo package is used for the implemntaion of gcca (Generalized Cannonical Correlation Analysis) """ #install the cca-zoo package #pip install cca-zoo #importing required libraries import torch import cca_zoo import torch.nn as nn import torch.optim as optim import GCCA_loss #to be implemented """# Class DNN : Creates a new Deep Neural Network **Parameters** : * **layer_size** - It is the list of size of each layer in the DNN staring from the input layer * **activation** - The type of activation function to be used. Choose from 'relu' , 'tanh' , 'sigmoid' . By default, sigmoid. **Methods** * **forward(self, l)** : forward propogates input l into the DNN and returns the output """ """# Class : DGCCA_architecture - Defines the architecture for three DNNs **Parameters** * **layer_size1 , layer_size2 , layer_size3** : list of sizes of each layer of first, second and third DNN(view) respectively. **Methods** * **forward(self, x1, x2, x3)** : forward propogates x1 into the first DNN,x2 into the second DNN and x3 into the third DNN and returns the outputs. """ """# Class DGCCA : Implements the DGCCA Algorithm **Parameters** * **architecture** : object of DGCCA_architecture class. * **gcca_wrraper** : from cca-zoo package to implement gcca * **learning_rate** : learning_rate of the network * **epoch_num** :How long to train the model. * **batch_size** : Number of example per minibatch. * **reg_param** : the regularization parameter of the network * **out_size** : the size of the new space learned by the model (number of the new features) **Methods** * **fit(self, train_x1, train_x2, train_x3, test_x1, test_x2, test_x3)** - trains and tests the networks batch-wise. Also, back propogates the ggca loss. First three parameters are the training set for each view respectively. The last three parameters are the testing set for each view respectively * **_get_outputs(self, x1, x2, x3)** - returns gcca loss and output as both lists for given inputs x1, x2, x3 for view first, second, third respectively. * **test(self, x1, x2, x3)** - returns gcca loss mean and output as list for given inputs x1, x2, x3 for view first, second, third respectively. * **train_gcca(self, x1, x2, x3)** - uses the gcca.fit() from cca zoo on given inputs x1,x2,x3 """ #def train_gcca(self, x1, x2, x3): # self.gcca_wrapper = cca_zoo.wrapper.Wrapper(latent_dims=latent_dims, method='gcca') # self.gcca.fit(x1, x2, self.outdim_size)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 35, 38, 4093, 32, 13, 541, 2047, 65, 198, 198, 38062, 4142, 7560, 416, 1623, 4820, 2870, 13, 198, 198, 20556, 2393, 318, 5140, 379, 198, 220, 220, 220, 3740, 1378, 4033, 397, 13, 34033, 13, 13297, 13, 785, 14, 19472, 14, 1314, 43, 62, 22, 73, 26152, 15, 42, 39, 6659, 52, 73, 32, 46, 21, 10247, 40, 65, 48, 568, 16, 77, 80, 5805, 15, 74, 35, 198, 198, 2, 10766, 3611, 1143, 20585, 605, 2744, 49501, 14691, 48282, 64, 295, 329, 513, 5009, 198, 198, 13227, 12, 89, 2238, 5301, 318, 973, 329, 262, 848, 10671, 429, 64, 295, 286, 308, 13227, 357, 12218, 1143, 20585, 605, 2744, 49501, 14691, 8, 198, 37811, 198, 198, 2, 17350, 262, 269, 6888, 12, 89, 2238, 5301, 198, 2, 79, 541, 2721, 269, 6888, 12, 89, 2238, 198, 198, 2, 11748, 278, 2672, 12782, 198, 11748, 28034, 198, 11748, 269, 6888, 62, 89, 2238, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 40085, 355, 6436, 220, 198, 11748, 42362, 32, 62, 22462, 1303, 1462, 307, 9177, 198, 198, 37811, 2, 220, 5016, 360, 6144, 1058, 7921, 274, 257, 649, 10766, 47986, 7311, 198, 198, 1174, 48944, 1174, 1058, 628, 198, 9, 220, 220, 220, 12429, 29289, 62, 7857, 1174, 532, 632, 318, 262, 1351, 286, 2546, 286, 1123, 7679, 287, 262, 360, 6144, 16143, 422, 262, 5128, 7679, 198, 9, 220, 220, 12429, 48545, 1174, 532, 383, 2099, 286, 14916, 2163, 284, 307, 973, 13, 17489, 422, 705, 260, 2290, 6, 837, 705, 38006, 71, 6, 837, 705, 82, 17225, 1868, 6, 764, 2750, 4277, 11, 264, 17225, 1868, 13, 198, 198, 1174, 46202, 1174, 628, 220, 220, 198, 198, 9, 220, 220, 12429, 11813, 7, 944, 11, 300, 8, 1174, 1058, 2651, 2632, 519, 689, 5128, 300, 656, 262, 360, 6144, 290, 5860, 262, 5072, 198, 37811, 198, 198, 37811, 2, 5016, 1058, 46133, 4093, 32, 62, 998, 5712, 495, 532, 2896, 1127, 262, 10959, 329, 1115, 360, 6144, 82, 198, 198, 1174, 48944, 1174, 628, 198, 9, 220, 220, 12429, 29289, 62, 7857, 16, 837, 7679, 62, 7857, 17, 837, 7679, 62, 7857, 18, 1174, 1058, 1351, 286, 10620, 286, 1123, 7679, 286, 717, 11, 1218, 290, 2368, 360, 6144, 7, 1177, 8, 8148, 13, 198, 198, 1174, 46202, 1174, 628, 220, 220, 198, 198, 9, 220, 220, 12429, 11813, 7, 944, 11, 2124, 16, 11, 2124, 17, 11, 2124, 18, 8, 1174, 1058, 2651, 2632, 519, 689, 2124, 16, 656, 262, 717, 360, 6144, 11, 87, 17, 656, 262, 1218, 360, 6144, 290, 2124, 18, 656, 262, 2368, 360, 6144, 290, 5860, 262, 23862, 13, 198, 37811, 198, 198, 37811, 2, 5016, 46133, 4093, 32, 1058, 1846, 1154, 902, 262, 46133, 4093, 32, 978, 42289, 198, 198, 1174, 48944, 1174, 628, 198, 9, 220, 220, 12429, 998, 5712, 495, 1174, 1058, 2134, 286, 46133, 4093, 32, 62, 998, 5712, 495, 1398, 13, 198, 9, 220, 220, 12429, 70, 13227, 62, 18351, 38545, 1174, 1058, 422, 269, 6888, 12, 89, 2238, 5301, 284, 3494, 308, 13227, 198, 9, 220, 220, 12429, 40684, 62, 4873, 1174, 1058, 4673, 62, 4873, 286, 262, 3127, 198, 9, 220, 220, 12429, 538, 5374, 62, 22510, 1174, 1058, 2437, 890, 284, 4512, 262, 2746, 13, 198, 9, 220, 220, 12429, 43501, 62, 7857, 1174, 1058, 7913, 286, 1672, 583, 949, 571, 963, 13, 198, 9, 220, 220, 12429, 2301, 62, 17143, 1174, 1058, 220, 262, 3218, 1634, 11507, 286, 262, 3127, 198, 9, 220, 220, 12429, 448, 62, 7857, 1174, 1058, 262, 2546, 286, 262, 649, 2272, 4499, 416, 262, 2746, 357, 17618, 286, 262, 649, 3033, 8, 628, 198, 1174, 46202, 1174, 628, 220, 220, 198, 198, 9, 220, 220, 12429, 11147, 7, 944, 11, 4512, 62, 87, 16, 11, 4512, 62, 87, 17, 11, 4512, 62, 87, 18, 11, 1332, 62, 87, 16, 11, 1332, 62, 87, 17, 11, 1332, 62, 87, 18, 8, 1174, 532, 13404, 290, 5254, 262, 7686, 15458, 12, 3083, 13, 4418, 11, 736, 2632, 519, 689, 262, 308, 70, 6888, 2994, 13, 3274, 1115, 10007, 389, 262, 3047, 900, 329, 1123, 1570, 8148, 13, 383, 938, 1115, 10007, 389, 262, 4856, 900, 329, 1123, 1570, 8148, 198, 9, 220, 220, 12429, 62, 1136, 62, 22915, 82, 7, 944, 11, 2124, 16, 11, 2124, 17, 11, 2124, 18, 8, 1174, 532, 5860, 308, 13227, 2994, 290, 5072, 355, 1111, 8341, 329, 1813, 17311, 2124, 16, 11, 2124, 17, 11, 2124, 18, 329, 1570, 717, 11, 1218, 11, 2368, 8148, 13, 198, 9, 220, 220, 12429, 9288, 7, 944, 11, 2124, 16, 11, 2124, 17, 11, 2124, 18, 8, 1174, 532, 5860, 308, 13227, 2994, 1612, 290, 5072, 355, 1351, 329, 1813, 17311, 2124, 16, 11, 2124, 17, 11, 2124, 18, 329, 1570, 717, 11, 1218, 11, 2368, 8148, 13, 198, 9, 220, 12429, 27432, 62, 70, 13227, 7, 944, 11, 2124, 16, 11, 2124, 17, 11, 2124, 18, 8, 1174, 532, 3544, 262, 308, 13227, 13, 11147, 3419, 422, 269, 6888, 26626, 319, 1813, 17311, 2124, 16, 11, 87, 17, 11, 87, 18, 198, 37811, 628, 220, 1303, 4299, 4512, 62, 70, 13227, 7, 944, 11, 2124, 16, 11, 2124, 17, 11, 2124, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 70, 13227, 62, 48553, 796, 269, 6888, 62, 89, 2238, 13, 48553, 13, 36918, 2848, 7, 15460, 298, 62, 67, 12078, 28, 15460, 298, 62, 67, 12078, 11, 2446, 11639, 70, 13227, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 70, 13227, 13, 11147, 7, 87, 16, 11, 2124, 17, 11, 2116, 13, 448, 27740, 62, 7857, 8 ]
2.898958
960
import FWCore.ParameterSet.Config as cms #IsolatedPixelTrackCandidateProducer default configuration isolPixelTrackProd = cms.EDProducer("IsolatedPixelTrackCandidateL1TProducer", L1eTauJetsSource = cms.InputTag( 'hltGtStage2Digis','Tau' ), tauAssociationCone = cms.double( 0.0 ), tauUnbiasCone = cms.double( 1.2 ), PixelTracksSources = cms.VInputTag( "hltPixelTracks" ), ExtrapolationConeSize = cms.double(1.0), PixelIsolationConeSizeAtEC = cms.double(40), L1GTSeedLabel = cms.InputTag( "hltL1sV0SingleJet60" ), MaxVtxDXYSeed = cms.double( 101.0 ), MaxVtxDXYIsol = cms.double( 101.0 ), VertexLabel = cms.InputTag( "hltTrimmedPixelVertices" ), MagFieldRecordName = cms.string("VolumeBasedMagneticField"), minPTrack = cms.double( 5.0 ), maxPTrackForIsolation = cms.double( 3.0 ), EBEtaBoundary = cms.double(1.479) )
[ 11748, 48849, 14055, 13, 36301, 7248, 13, 16934, 355, 269, 907, 198, 198, 2, 3792, 50027, 40809, 24802, 41572, 20540, 11547, 2189, 4277, 8398, 198, 30152, 40809, 24802, 2964, 67, 220, 220, 220, 796, 269, 907, 13, 1961, 11547, 2189, 7203, 3792, 50027, 40809, 24802, 41572, 20540, 43, 16, 7250, 2076, 2189, 1600, 198, 220, 220, 220, 406, 16, 68, 51, 559, 41, 1039, 7416, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 20560, 24835, 7, 705, 71, 2528, 38, 83, 29391, 17, 19511, 271, 41707, 51, 559, 6, 10612, 198, 220, 220, 220, 256, 559, 8021, 41003, 34, 505, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 23352, 7, 657, 13, 15, 10612, 198, 220, 220, 220, 256, 559, 3118, 65, 4448, 34, 505, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 23352, 7, 352, 13, 17, 10612, 198, 220, 220, 220, 11349, 2898, 4595, 21188, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 53, 20560, 24835, 7, 366, 71, 2528, 40809, 2898, 4595, 1, 10612, 198, 220, 220, 220, 5683, 2416, 21417, 34, 505, 10699, 220, 220, 220, 220, 220, 796, 269, 907, 13, 23352, 7, 16, 13, 15, 828, 198, 220, 220, 220, 11349, 3792, 21417, 34, 505, 10699, 2953, 2943, 796, 269, 907, 13, 23352, 7, 1821, 828, 198, 220, 220, 220, 406, 16, 38, 4694, 2308, 33986, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 20560, 24835, 7, 366, 71, 2528, 43, 16, 82, 53, 15, 28008, 42273, 1899, 1, 10612, 198, 220, 220, 220, 5436, 53, 17602, 36227, 16309, 2308, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 23352, 7, 8949, 13, 15, 10612, 198, 220, 220, 220, 5436, 53, 17602, 35, 34278, 3792, 349, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 23352, 7, 8949, 13, 15, 10612, 198, 220, 220, 220, 4643, 16886, 33986, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 20560, 24835, 7, 366, 71, 2528, 2898, 320, 1150, 40809, 42369, 1063, 1, 10612, 198, 220, 220, 220, 2944, 15878, 23739, 5376, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 8841, 7203, 31715, 15001, 13436, 9833, 15878, 12340, 198, 220, 220, 220, 949, 47, 24802, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 23352, 7, 642, 13, 15, 10612, 198, 220, 220, 220, 3509, 47, 24802, 1890, 3792, 21417, 220, 220, 220, 220, 220, 796, 269, 907, 13, 23352, 7, 513, 13, 15, 10612, 198, 220, 220, 220, 412, 12473, 8326, 49646, 560, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 907, 13, 23352, 7, 16, 13, 31714, 8, 198, 8, 628, 198 ]
2
508
#!/usr/bin/env python3 #################################################################################################### # # Project: Embedded Learning Library (ELL) # File: procmon.py # Authors: Lisa Ong # # Requires: Python 3.4+, psutil (pip install psutil) # #################################################################################################### import argparse import json import psutil import statistics from time import sleep if __name__ == "__main__": parser = argparse.ArgumentParser() # required arguments parser.add_argument("process_id", type=int, help="process identifier to monitor") # options parser.add_argument("--interval", type=float, default=1, help="monitoring interval in seconds") parser.add_argument("--logfile", help="path to the output file") args = parser.parse_args() pm = ProcessMonitor(args.process_id, args.logfile, args.interval) pm.start()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 29113, 29113, 29113, 4242, 198, 2, 198, 2, 220, 4935, 25, 220, 13302, 47238, 18252, 10074, 357, 23304, 8, 198, 2, 220, 9220, 25, 220, 220, 220, 220, 13834, 2144, 13, 9078, 198, 2, 220, 46665, 25, 220, 15378, 48041, 198, 2, 198, 2, 220, 26848, 25, 11361, 513, 13, 19, 28200, 26692, 22602, 357, 79, 541, 2721, 26692, 22602, 8, 198, 2, 198, 29113, 29113, 29113, 4242, 198, 11748, 1822, 29572, 198, 11748, 33918, 198, 11748, 26692, 22602, 198, 11748, 7869, 198, 6738, 640, 1330, 3993, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 628, 220, 220, 220, 1303, 2672, 7159, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 14681, 62, 312, 1600, 2099, 28, 600, 11, 1037, 2625, 14681, 27421, 284, 5671, 4943, 628, 220, 220, 220, 1303, 3689, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 3849, 2100, 1600, 2099, 28, 22468, 11, 4277, 28, 16, 11, 1037, 2625, 41143, 278, 16654, 287, 4201, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 6404, 7753, 1600, 1037, 2625, 6978, 284, 262, 5072, 2393, 4943, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 9114, 796, 10854, 35479, 7, 22046, 13, 14681, 62, 312, 11, 26498, 13, 6404, 7753, 11, 26498, 13, 3849, 2100, 8, 198, 220, 220, 220, 9114, 13, 9688, 3419, 198 ]
3.633205
259
''' Source codes for Python Machine Learning By Example 3rd Edition (Packt Publishing) Chapter 5 Predicting Online Ads Click-through with Logistic Regression Author: Yuxi (Hayden) Liu ([email protected]) ''' import tensorflow as tf import pandas as pd n_rows = 300000 df = pd.read_csv("train", nrows=n_rows) X = df.drop(['click', 'id', 'hour', 'device_id', 'device_ip'], axis=1).values Y = df['click'].values n_train = int(n_rows * 0.9) X_train = X[:n_train] Y_train = Y[:n_train].astype('float32') X_test = X[n_train:] Y_test = Y[n_train:].astype('float32') from sklearn.preprocessing import OneHotEncoder enc = OneHotEncoder(handle_unknown='ignore') X_train_enc = enc.fit_transform(X_train).toarray().astype('float32') X_test_enc = enc.transform(X_test).toarray().astype('float32') batch_size = 1000 train_data = tf.data.Dataset.from_tensor_slices((X_train_enc, Y_train)) train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1) n_features = int(X_train_enc.shape[1]) W = tf.Variable(tf.zeros([n_features, 1])) b = tf.Variable(tf.zeros([1])) learning_rate = 0.0008 optimizer = tf.optimizers.Adam(learning_rate) training_steps = 6000 for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1): run_optimization(batch_x, batch_y) if step % 500 == 0: logits = tf.add(tf.matmul(batch_x, W), b)[:, 0] loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=batch_y, logits=logits)) print("step: %i, loss: %f" % (step, loss)) logits = tf.add(tf.matmul(X_test_enc, W), b)[:, 0] pred = tf.nn.sigmoid(logits) auc_metric = tf.keras.metrics.AUC() auc_metric.update_state(Y_test, pred) print(f'AUC on testing set: {auc_metric.result().numpy():.3f}')
[ 7061, 6, 198, 7416, 12416, 329, 11361, 10850, 18252, 2750, 17934, 513, 4372, 5061, 357, 11869, 83, 23499, 8, 198, 14126, 642, 49461, 278, 7467, 47442, 6914, 12, 9579, 351, 5972, 2569, 3310, 2234, 198, 13838, 25, 575, 2821, 72, 357, 31306, 6559, 8, 18258, 357, 88, 2821, 72, 13, 4528, 84, 13, 68, 344, 31, 14816, 13, 785, 8, 198, 7061, 6, 628, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 19798, 292, 355, 279, 67, 198, 77, 62, 8516, 796, 5867, 830, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7203, 27432, 1600, 299, 8516, 28, 77, 62, 8516, 8, 198, 198, 55, 796, 47764, 13, 14781, 7, 17816, 12976, 3256, 705, 312, 3256, 705, 9769, 3256, 705, 25202, 62, 312, 3256, 705, 25202, 62, 541, 6, 4357, 16488, 28, 16, 737, 27160, 198, 56, 796, 47764, 17816, 12976, 6, 4083, 27160, 198, 198, 77, 62, 27432, 796, 493, 7, 77, 62, 8516, 1635, 657, 13, 24, 8, 198, 55, 62, 27432, 796, 1395, 58, 25, 77, 62, 27432, 60, 198, 56, 62, 27432, 796, 575, 58, 25, 77, 62, 27432, 4083, 459, 2981, 10786, 22468, 2624, 11537, 198, 55, 62, 9288, 796, 1395, 58, 77, 62, 27432, 47715, 198, 56, 62, 9288, 796, 575, 58, 77, 62, 27432, 25, 4083, 459, 2981, 10786, 22468, 2624, 11537, 198, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 1881, 21352, 27195, 12342, 198, 12685, 796, 1881, 21352, 27195, 12342, 7, 28144, 62, 34680, 11639, 46430, 11537, 198, 55, 62, 27432, 62, 12685, 796, 2207, 13, 11147, 62, 35636, 7, 55, 62, 27432, 737, 1462, 18747, 22446, 459, 2981, 10786, 22468, 2624, 11537, 198, 55, 62, 9288, 62, 12685, 796, 2207, 13, 35636, 7, 55, 62, 9288, 737, 1462, 18747, 22446, 459, 2981, 10786, 22468, 2624, 11537, 628, 198, 43501, 62, 7857, 796, 8576, 198, 27432, 62, 7890, 796, 48700, 13, 7890, 13, 27354, 292, 316, 13, 6738, 62, 83, 22854, 62, 82, 677, 274, 19510, 55, 62, 27432, 62, 12685, 11, 575, 62, 27432, 4008, 198, 27432, 62, 7890, 796, 4512, 62, 7890, 13, 44754, 22446, 1477, 18137, 7, 27641, 737, 43501, 7, 43501, 62, 7857, 737, 3866, 69, 7569, 7, 16, 8, 628, 198, 77, 62, 40890, 796, 493, 7, 55, 62, 27432, 62, 12685, 13, 43358, 58, 16, 12962, 198, 54, 796, 48700, 13, 43015, 7, 27110, 13, 9107, 418, 26933, 77, 62, 40890, 11, 352, 60, 4008, 198, 65, 796, 48700, 13, 43015, 7, 27110, 13, 9107, 418, 26933, 16, 60, 4008, 198, 198, 40684, 62, 4873, 796, 657, 13, 830, 23, 198, 40085, 7509, 796, 48700, 13, 40085, 11341, 13, 23159, 7, 40684, 62, 4873, 8, 198, 198, 34409, 62, 20214, 796, 39064, 198, 1640, 2239, 11, 357, 43501, 62, 87, 11, 15458, 62, 88, 8, 287, 27056, 378, 7, 27432, 62, 7890, 13, 20657, 7, 34409, 62, 20214, 828, 352, 2599, 198, 220, 220, 220, 1057, 62, 40085, 1634, 7, 43501, 62, 87, 11, 15458, 62, 88, 8, 198, 220, 220, 220, 611, 2239, 4064, 5323, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 796, 48700, 13, 2860, 7, 27110, 13, 6759, 76, 377, 7, 43501, 62, 87, 11, 370, 828, 275, 38381, 45299, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 48700, 13, 445, 7234, 62, 32604, 7, 27110, 13, 20471, 13, 82, 17225, 1868, 62, 19692, 62, 298, 28338, 62, 4480, 62, 6404, 896, 7, 23912, 1424, 28, 43501, 62, 88, 11, 2604, 896, 28, 6404, 896, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9662, 25, 4064, 72, 11, 2994, 25, 4064, 69, 1, 4064, 357, 9662, 11, 2994, 4008, 628, 198, 198, 6404, 896, 796, 48700, 13, 2860, 7, 27110, 13, 6759, 76, 377, 7, 55, 62, 9288, 62, 12685, 11, 370, 828, 275, 38381, 45299, 657, 60, 198, 28764, 796, 48700, 13, 20471, 13, 82, 17225, 1868, 7, 6404, 896, 8, 198, 14272, 62, 4164, 1173, 796, 48700, 13, 6122, 292, 13, 4164, 10466, 13, 32, 9598, 3419, 198, 14272, 62, 4164, 1173, 13, 19119, 62, 5219, 7, 56, 62, 9288, 11, 2747, 8, 198, 198, 4798, 7, 69, 6, 32, 9598, 319, 4856, 900, 25, 1391, 14272, 62, 4164, 1173, 13, 20274, 22446, 77, 32152, 33529, 13, 18, 69, 92, 11537, 198 ]
2.432357
717
""" 辅助函数 """ from cswd.common.utils import ensure_list from .core import symbols, to_tdates def select_output_by(output, start=None, end=None, assets=None): """ 按时间及代码选择`pipeline`输出数据框 专用于研究环境下的run_pipeline输出结果分析 参数 ---- output : MultiIndex DataFrame pipeline输出结果 start : str 开始时间 end : str 结束时间 assets : 可迭代对象或str 股票代码 案例 ---- >>> # result 为运行`pipeline`输出结果 >>> select_output_by(result,'2018-04-23','2018-04-24',stock_codes=['000585','600871']) mean_10 2018-04-23 00:00:00+00:00 *ST东电(000585) 2.7900 *ST油服(600871) 2.0316 2018-04-24 00:00:00+00:00 *ST东电(000585) 2.7620 *ST油服(600871) 2.0316 """ nlevels = output.index.nlevels _, start, end = to_tdates(start, end) if nlevels != 2: raise ValueError('输入数据框只能是run_pipeline输出结果,MultiIndex DataFrame') if start: output = output.loc[start:] if end: output = output.loc[:end] if assets is not None: assets = symbols(assets) return output.loc[(slice(None), assets), :] else: return output
[ 37811, 198, 164, 122, 227, 27950, 102, 49035, 121, 46763, 108, 198, 37811, 198, 6738, 269, 2032, 67, 13, 11321, 13, 26791, 1330, 4155, 62, 4868, 198, 198, 6738, 764, 7295, 1330, 14354, 11, 284, 62, 8671, 689, 628, 198, 4299, 2922, 62, 22915, 62, 1525, 7, 22915, 11, 923, 28, 14202, 11, 886, 28, 14202, 11, 6798, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 234, 231, 33768, 114, 29785, 112, 20998, 232, 47987, 163, 254, 223, 34460, 231, 162, 233, 102, 63, 79, 541, 4470, 63, 164, 122, 241, 49035, 118, 46763, 108, 162, 235, 106, 162, 94, 228, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 10310, 241, 18796, 101, 12859, 236, 163, 254, 242, 163, 102, 114, 163, 236, 107, 161, 95, 225, 10310, 233, 21410, 5143, 62, 79, 541, 4470, 164, 122, 241, 49035, 118, 163, 119, 241, 162, 252, 250, 26344, 228, 162, 252, 238, 628, 220, 220, 220, 10263, 237, 224, 46763, 108, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 5072, 1058, 15237, 15732, 6060, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 11523, 164, 122, 241, 49035, 118, 163, 119, 241, 162, 252, 250, 198, 220, 220, 220, 923, 27332, 120, 248, 965, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 120, 222, 34650, 233, 33768, 114, 29785, 112, 198, 220, 220, 220, 886, 27332, 120, 248, 965, 198, 220, 220, 220, 220, 220, 220, 220, 13328, 119, 241, 30266, 253, 33768, 114, 29785, 112, 220, 220, 220, 220, 198, 220, 220, 220, 6798, 27332, 120, 248, 10263, 237, 107, 32573, 255, 47987, 43380, 117, 164, 109, 94, 22755, 244, 2536, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 224, 94, 163, 98, 101, 47987, 163, 254, 223, 628, 220, 220, 220, 10545, 94, 230, 160, 122, 233, 198, 220, 220, 220, 13498, 220, 220, 198, 220, 220, 220, 13163, 1303, 1255, 220, 10310, 118, 32573, 238, 26193, 234, 63, 79, 541, 4470, 63, 164, 122, 241, 49035, 118, 163, 119, 241, 162, 252, 250, 220, 198, 220, 220, 220, 13163, 2922, 62, 22915, 62, 1525, 7, 20274, 4032, 7908, 12, 3023, 12, 1954, 41707, 7908, 12, 3023, 12, 1731, 3256, 13578, 62, 40148, 28, 17816, 830, 38905, 41707, 8054, 23, 4869, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 940, 198, 220, 220, 220, 2864, 12, 3023, 12, 1954, 3571, 25, 405, 25, 405, 10, 405, 25, 405, 220, 197, 9, 2257, 10310, 250, 18796, 113, 7, 830, 38905, 8, 220, 197, 17, 13, 3720, 405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2257, 162, 110, 117, 17312, 235, 7, 8054, 23, 4869, 8, 220, 197, 17, 13, 3070, 1433, 198, 220, 220, 220, 2864, 12, 3023, 12, 1731, 3571, 25, 405, 25, 405, 10, 405, 25, 405, 220, 197, 9, 2257, 10310, 250, 18796, 113, 7, 830, 38905, 8, 220, 197, 17, 13, 4304, 1238, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2257, 162, 110, 117, 17312, 235, 7, 8054, 23, 4869, 8, 220, 197, 17, 13, 3070, 1433, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 46170, 796, 5072, 13, 9630, 13, 77, 46170, 198, 220, 220, 220, 4808, 11, 923, 11, 886, 796, 284, 62, 8671, 689, 7, 9688, 11, 886, 8, 198, 220, 220, 220, 611, 299, 46170, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 164, 122, 241, 17739, 98, 46763, 108, 162, 235, 106, 162, 94, 228, 20998, 103, 47797, 121, 42468, 5143, 62, 79, 541, 4470, 164, 122, 241, 49035, 118, 163, 119, 241, 162, 252, 250, 171, 120, 234, 29800, 15732, 6060, 19778, 11537, 198, 220, 220, 220, 611, 923, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 5072, 13, 17946, 58, 9688, 47715, 198, 220, 220, 220, 611, 886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 5072, 13, 17946, 58, 25, 437, 60, 198, 220, 220, 220, 611, 6798, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6798, 796, 14354, 7, 19668, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 13, 17946, 58, 7, 48369, 7, 14202, 828, 6798, 828, 1058, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5072 ]
1.510328
823
from typing import Callable, Dict, Any import numpy as np from . import _abstract from ...ops.reshape import aligned_with
[ 6738, 19720, 1330, 4889, 540, 11, 360, 713, 11, 4377, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 764, 1330, 4808, 397, 8709, 198, 198, 6738, 2644, 2840, 13, 3447, 1758, 1330, 19874, 62, 4480, 628, 628 ]
3.282051
39
#!/usr/bin/python from Qt import QtCore, QtWidgets from .stylesheet import STYLE_QMENU # disable for issue #142 # def hideEvent(self, event): # super(BaseMenu, self).hideEvent(event) # for a in self.actions(): # if hasattr(a, 'node_id'): # a.node_id = None
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 6738, 33734, 1330, 33734, 14055, 11, 33734, 54, 312, 11407, 198, 6738, 764, 47720, 25473, 1330, 3563, 56, 2538, 62, 48, 49275, 52, 628, 198, 220, 220, 220, 1303, 15560, 329, 2071, 1303, 23726, 198, 220, 220, 220, 1303, 825, 7808, 9237, 7, 944, 11, 1785, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2208, 7, 14881, 23381, 11, 2116, 737, 24717, 9237, 7, 15596, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 257, 287, 2116, 13, 4658, 33529, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 64, 11, 705, 17440, 62, 312, 6, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 13, 17440, 62, 312, 796, 6045, 628, 198 ]
2.188811
143
''' Created on Aug 29 2015 @author: [email protected] ''' # server info status code OK = FlamesStatus(0, 'common.ok', 'OK.') # server error status code UNEXPECTED_EXCEPTION = FlamesStatus(1000001, 'common.unexpected_exception', 'Unknown Error.') UNKNOWN_RESOURCE = FlamesStatus(1000002, 'common.unknown_resource', 'Unknown Resource.') PARAMETER_VALIDATED_FAILED = FlamesStatus(1000003, 'common.parameter_validated_failed', 'Parameter validated error : {messages}') AUTH_FAILED = FlamesStatus(1000004, 'common.auth_failed', "Authorization failed : {messages}") JSON_PARSING_FAILED = FlamesStatus(1000004, 'common.json_parsing_failed', 'Parsing json string failed : {message}') USER_DUPLICATE = FlamesStatus(1080001, "user_duplicate", "'{user_id}' is existed") USER_NOT_FOUND = FlamesStatus(1080002, "user_not_found", "'{user_id}' is not found")
[ 7061, 6, 198, 41972, 319, 2447, 2808, 1853, 198, 198, 31, 9800, 25, 885, 7114, 13, 354, 2013, 31, 24, 3559, 486, 13, 6888, 198, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 4382, 7508, 3722, 2438, 198, 11380, 796, 25814, 19580, 7, 15, 11, 705, 11321, 13, 482, 3256, 705, 11380, 2637, 8, 198, 198, 2, 4382, 4049, 3722, 2438, 198, 4944, 49864, 9782, 1961, 62, 6369, 42006, 2849, 796, 25814, 19580, 7, 49388, 486, 11, 705, 11321, 13, 403, 40319, 62, 1069, 4516, 3256, 705, 20035, 13047, 2637, 8, 198, 4944, 44706, 62, 19535, 31033, 796, 25814, 19580, 7, 3064, 34215, 11, 705, 11321, 13, 34680, 62, 31092, 3256, 705, 20035, 20857, 2637, 8, 198, 27082, 2390, 2767, 1137, 62, 23428, 2389, 11617, 62, 7708, 4146, 1961, 796, 25814, 19580, 7, 3064, 830, 18, 11, 705, 11321, 13, 17143, 2357, 62, 12102, 515, 62, 47904, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36301, 31031, 4049, 1058, 1391, 37348, 1095, 92, 11537, 198, 32, 24318, 62, 7708, 4146, 1961, 796, 25814, 19580, 7, 3064, 830, 19, 11, 705, 11321, 13, 18439, 62, 47904, 3256, 366, 13838, 1634, 4054, 1058, 1391, 37348, 1095, 92, 4943, 198, 40386, 62, 27082, 50, 2751, 62, 7708, 4146, 1961, 796, 25814, 19580, 7, 3064, 830, 19, 11, 705, 11321, 13, 17752, 62, 79, 945, 278, 62, 47904, 3256, 705, 47, 945, 278, 33918, 4731, 4054, 1058, 1391, 20500, 92, 11537, 198, 29904, 62, 35, 52, 31484, 6158, 796, 25814, 19580, 7, 940, 7410, 486, 11, 366, 7220, 62, 646, 489, 5344, 1600, 24018, 90, 7220, 62, 312, 92, 6, 318, 11196, 4943, 198, 29904, 62, 11929, 62, 37, 15919, 796, 25814, 19580, 7, 15711, 34215, 11, 366, 7220, 62, 1662, 62, 9275, 1600, 24018, 90, 7220, 62, 312, 92, 6, 318, 407, 1043, 4943, 628, 198 ]
2.631579
342
import pytest import torch import tempfile import shutil import os from tests.material import utils import padl from padl import transform, identity, batch from padl_ext.pytorch_lightning.prepare import LightningModule try: import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint except (ImportError, ModuleNotFoundError): pass @transform @transform @transform @pytest.mark.skipif((not utils.check_if_module_installed('pytorch_lightning')), reason="requires the torchserve and torch-model-archiver")
[ 11748, 12972, 9288, 198, 11748, 28034, 198, 11748, 20218, 7753, 198, 11748, 4423, 346, 198, 11748, 28686, 198, 198, 6738, 5254, 13, 33665, 1330, 3384, 4487, 198, 198, 11748, 14841, 75, 198, 6738, 14841, 75, 1330, 6121, 11, 5369, 11, 15458, 198, 198, 6738, 14841, 75, 62, 2302, 13, 9078, 13165, 354, 62, 2971, 768, 13, 46012, 533, 1330, 12469, 26796, 198, 28311, 25, 198, 220, 220, 220, 1330, 12972, 13165, 354, 62, 2971, 768, 355, 458, 198, 220, 220, 220, 422, 12972, 13165, 354, 62, 2971, 768, 13, 13345, 10146, 1330, 9104, 9787, 4122, 198, 16341, 357, 20939, 12331, 11, 19937, 3673, 21077, 12331, 2599, 198, 220, 220, 220, 1208, 628, 198, 31, 35636, 628, 198, 31, 35636, 628, 198, 31, 35636, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 19510, 1662, 3384, 4487, 13, 9122, 62, 361, 62, 21412, 62, 37050, 10786, 9078, 13165, 354, 62, 2971, 768, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1738, 2625, 47911, 262, 28034, 2655, 303, 290, 28034, 12, 19849, 12, 998, 1428, 4943, 198 ]
3.010471
191
# coding: utf-8 from __future__ import print_function import sys import os import datetime import pprint try: from pyAnaf.api import Anaf except: sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from pyAnaf.api import Anaf if __name__ == '__main__': main()
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 4818, 8079, 198, 11748, 279, 4798, 628, 198, 28311, 25, 198, 220, 220, 220, 422, 12972, 2025, 1878, 13, 15042, 1330, 1052, 1878, 198, 16341, 25, 198, 220, 220, 220, 25064, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 492, 6, 22305, 198, 220, 220, 220, 422, 12972, 2025, 1878, 13, 15042, 1330, 1052, 1878, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.516129
124
import pandas as pd df = pd.read_csv('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Stations_Selected_Colombia_RT.csv') IDs = df['Codigo'].tolist() COMIDs = df['COMID'].tolist() Names = df['Nombre'].tolist() Rivers = df['Corriente'].tolist() '''Get Historical Observed Water Levels''' observed_wl_dir = '/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_Water_Level' waterLevelData = pd.read_csv('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_IDEAM/NIVEL.tr5.csv', index_col=1) waterLevelData.index = pd.to_datetime(waterLevelData.index) fechas = waterLevelData.index.tolist() estaciones = waterLevelData['ESTACION'].tolist() valores = waterLevelData['VALOR'].tolist() for id in IDs: waterLevel = [] dates = [] for i in range (0, len(estaciones)): if (id == estaciones[i]): waterLevel.append(valores[i]) dates.append(fechas[i]) pairs = [list(a) for a in zip(dates, waterLevel)] pd.DataFrame(pairs, columns= ['Datetime', 'oberved water level (cm)']).to_csv(observed_wl_dir + "/{}_historic_observed_water_level.csv".format(id), encoding='utf-8', header=True, index=0) print("{}_historic_observed_water_level.csv".format(id)) #Reading historic simulated and historic observed data historicSimulatedFiles = [] historicObservedFiles = [] historicWaterLevelFiles = [] for id, comid in zip(IDs, COMIDs): historicObservedFiles.append('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_Observed/' + str(id) + '_historic_observed.csv') historicSimulatedFiles.append('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_Simulated/' + str(comid) + '_historic_simulatied.csv') historicSimulatedFiles.append('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_Water_Level/' + str(id) + '_historic_observed_water_level.csv') for id, comid, name, rio, obsFile, simFile, wlFile in zip(IDs, COMIDs, Names, Rivers, historicObservedFiles, historicSimulatedFiles, historicWaterLevelFiles): print(id, comid, name, rio) '''Get Real Time Observed Water Levels''' observed_WL_dir = '/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Real_Time_Water_Level' daily_wl_dir = '/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Daily_Real_Time_Water_Level' waterLevelData = pd.read_csv('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Real_Time_IDEAM/NIVEL-DHIME.csv', index_col=9) waterLevelData.index = pd.to_datetime(waterLevelData.index) fechas = waterLevelData.index.tolist() estaciones = waterLevelData['CodigoEstacion'].tolist() valores = waterLevelData['Valor'].tolist() # for id in IDs: # waterLevel = [] # dates = [] # # for i in range (0, len(estaciones)): # if (id == estaciones[i]): # waterLevel.append(valores[i]) # dates.append(fechas[i]) # # pairs = [list(a) for a in zip(dates, waterLevel)] # pd.DataFrame(pairs, columns= ['Datetime', 'oberved water level (cm)']).to_csv(observed_WL_dir + "/{}_real_time_observed_water_level.csv".format(id), encoding='utf-8', header=True, index=0) # print("{}_real_time_observed_water_level.csv".format(id)) # # data = pd.read_csv("/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Real_Time_Water_Level/{0}_real_time_observed_water_level.csv".format(id), index_col=0) # # data.index = pd.to_datetime(data.index) # # daily_df = data.groupby(data.index.strftime("%Y/%m/%d")).mean() # daily_df.index = pd.to_datetime(daily_df.index) # # daily_df.to_csv("/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Daily_Real_Time_Water_Level/{0}_real_time_observed_water_level.csv".format(id), index_label="Datetime") # # print(daily_df) #Defining the return periods for the historical Simulation
[ 11748, 19798, 292, 355, 279, 67, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 14, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 1273, 602, 62, 4653, 12609, 62, 5216, 2381, 544, 62, 14181, 13, 40664, 11537, 198, 198, 47954, 796, 47764, 17816, 43806, 14031, 6, 4083, 83, 349, 396, 3419, 198, 9858, 47954, 796, 47764, 17816, 9858, 2389, 6, 4083, 83, 349, 396, 3419, 198, 36690, 796, 47764, 17816, 45, 2381, 260, 6, 4083, 83, 349, 396, 3419, 198, 49, 1191, 796, 47764, 17816, 10606, 8289, 68, 6, 4083, 83, 349, 396, 3419, 198, 198, 7061, 6, 3855, 23121, 11086, 8520, 5638, 28248, 7061, 6, 198, 198, 672, 45852, 62, 40989, 62, 15908, 796, 31051, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 13749, 12409, 62, 19184, 62, 4971, 6, 198, 198, 7050, 4971, 6601, 796, 279, 67, 13, 961, 62, 40664, 10786, 14, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 13749, 12409, 62, 14114, 2390, 14, 45, 3824, 3698, 13, 2213, 20, 13, 40664, 3256, 6376, 62, 4033, 28, 16, 8, 198, 7050, 4971, 6601, 13, 9630, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 7050, 4971, 6601, 13, 9630, 8, 198, 69, 3055, 292, 796, 1660, 4971, 6601, 13, 9630, 13, 83, 349, 396, 3419, 198, 395, 49443, 274, 796, 1660, 4971, 6601, 17816, 6465, 2246, 2849, 6, 4083, 83, 349, 396, 3419, 198, 2100, 2850, 796, 1660, 4971, 6601, 17816, 23428, 1581, 6, 4083, 83, 349, 396, 3419, 198, 198, 1640, 4686, 287, 32373, 25, 198, 197, 7050, 4971, 796, 17635, 198, 197, 19581, 796, 17635, 628, 197, 1640, 1312, 287, 2837, 357, 15, 11, 18896, 7, 395, 49443, 274, 8, 2599, 198, 197, 197, 361, 357, 312, 6624, 1556, 49443, 274, 58, 72, 60, 2599, 198, 197, 197, 197, 7050, 4971, 13, 33295, 7, 2100, 2850, 58, 72, 12962, 198, 197, 197, 197, 19581, 13, 33295, 7, 69, 3055, 292, 58, 72, 12962, 628, 197, 79, 3468, 796, 685, 4868, 7, 64, 8, 329, 257, 287, 19974, 7, 19581, 11, 1660, 4971, 15437, 198, 197, 30094, 13, 6601, 19778, 7, 79, 3468, 11, 15180, 28, 37250, 27354, 8079, 3256, 705, 2023, 1079, 1660, 1241, 357, 11215, 8, 20520, 737, 1462, 62, 40664, 7, 672, 45852, 62, 40989, 62, 15908, 1343, 12813, 90, 92, 62, 31304, 62, 672, 45852, 62, 7050, 62, 5715, 13, 40664, 1911, 18982, 7, 312, 828, 21004, 11639, 40477, 12, 23, 3256, 13639, 28, 17821, 11, 6376, 28, 15, 8, 198, 197, 4798, 7203, 90, 92, 62, 31304, 62, 672, 45852, 62, 7050, 62, 5715, 13, 40664, 1911, 18982, 7, 312, 4008, 628, 198, 2, 36120, 9566, 28590, 290, 9566, 6515, 1366, 198, 198, 31304, 8890, 4817, 25876, 796, 17635, 198, 31304, 31310, 8520, 25876, 796, 17635, 198, 31304, 19184, 4971, 25876, 796, 17635, 198, 198, 1640, 4686, 11, 401, 312, 287, 19974, 7, 47954, 11, 9440, 47954, 2599, 198, 197, 31304, 31310, 8520, 25876, 13, 33295, 10786, 14, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 13749, 12409, 62, 31310, 8520, 14, 6, 1343, 965, 7, 312, 8, 1343, 705, 62, 31304, 62, 672, 45852, 13, 40664, 11537, 198, 197, 31304, 8890, 4817, 25876, 13, 33295, 10786, 14, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 13749, 12409, 62, 8890, 4817, 14, 6, 1343, 965, 7, 785, 312, 8, 1343, 705, 62, 31304, 62, 14323, 377, 265, 798, 13, 40664, 11537, 198, 197, 31304, 8890, 4817, 25876, 13, 33295, 10786, 14, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 13749, 12409, 62, 19184, 62, 4971, 14, 6, 1343, 965, 7, 312, 8, 1343, 705, 62, 31304, 62, 672, 45852, 62, 7050, 62, 5715, 13, 40664, 11537, 198, 198, 1640, 4686, 11, 401, 312, 11, 1438, 11, 374, 952, 11, 10201, 8979, 11, 985, 8979, 11, 266, 75, 8979, 287, 19974, 7, 47954, 11, 9440, 47954, 11, 28531, 11, 18280, 11, 9566, 31310, 8520, 25876, 11, 9566, 8890, 4817, 25876, 11, 9566, 19184, 4971, 25876, 2599, 198, 197, 4798, 7, 312, 11, 401, 312, 11, 1438, 11, 374, 952, 8, 198, 198, 7061, 6, 3855, 6416, 3862, 11086, 8520, 5638, 28248, 7061, 6, 198, 198, 672, 45852, 62, 54, 43, 62, 15908, 796, 31051, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 15633, 62, 7575, 62, 19184, 62, 4971, 6, 198, 29468, 62, 40989, 62, 15908, 796, 31051, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 28545, 62, 15633, 62, 7575, 62, 19184, 62, 4971, 6, 198, 198, 7050, 4971, 6601, 796, 279, 67, 13, 961, 62, 40664, 10786, 14, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 15633, 62, 7575, 62, 14114, 2390, 14, 45, 3824, 3698, 12, 41473, 12789, 13, 40664, 3256, 6376, 62, 4033, 28, 24, 8, 198, 7050, 4971, 6601, 13, 9630, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 7050, 4971, 6601, 13, 9630, 8, 198, 69, 3055, 292, 796, 1660, 4971, 6601, 13, 9630, 13, 83, 349, 396, 3419, 198, 395, 49443, 274, 796, 1660, 4971, 6601, 17816, 43806, 14031, 22362, 49443, 6, 4083, 83, 349, 396, 3419, 198, 2100, 2850, 796, 1660, 4971, 6601, 17816, 7762, 273, 6, 4083, 83, 349, 396, 3419, 198, 198, 2, 329, 4686, 287, 32373, 25, 198, 197, 2, 1660, 4971, 796, 17635, 198, 197, 2, 9667, 796, 17635, 198, 197, 2, 198, 197, 2, 329, 1312, 287, 2837, 357, 15, 11, 18896, 7, 395, 49443, 274, 8, 2599, 198, 197, 2, 220, 197, 361, 357, 312, 6624, 1556, 49443, 274, 58, 72, 60, 2599, 198, 197, 2, 220, 197, 197, 7050, 4971, 13, 33295, 7, 2100, 2850, 58, 72, 12962, 198, 197, 2, 220, 197, 197, 19581, 13, 33295, 7, 69, 3055, 292, 58, 72, 12962, 198, 197, 2, 198, 197, 2, 14729, 796, 685, 4868, 7, 64, 8, 329, 257, 287, 19974, 7, 19581, 11, 1660, 4971, 15437, 198, 197, 2, 279, 67, 13, 6601, 19778, 7, 79, 3468, 11, 15180, 28, 37250, 27354, 8079, 3256, 705, 2023, 1079, 1660, 1241, 357, 11215, 8, 20520, 737, 1462, 62, 40664, 7, 672, 45852, 62, 54, 43, 62, 15908, 1343, 12813, 90, 92, 62, 5305, 62, 2435, 62, 672, 45852, 62, 7050, 62, 5715, 13, 40664, 1911, 18982, 7, 312, 828, 21004, 11639, 40477, 12, 23, 3256, 13639, 28, 17821, 11, 6376, 28, 15, 8, 198, 197, 2, 3601, 7203, 90, 92, 62, 5305, 62, 2435, 62, 672, 45852, 62, 7050, 62, 5715, 13, 40664, 1911, 18982, 7, 312, 4008, 198, 197, 2, 198, 197, 2, 1366, 796, 279, 67, 13, 961, 62, 40664, 7203, 14, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 15633, 62, 7575, 62, 19184, 62, 4971, 14, 90, 15, 92, 62, 5305, 62, 2435, 62, 672, 45852, 62, 7050, 62, 5715, 13, 40664, 1911, 18982, 7, 312, 828, 6376, 62, 4033, 28, 15, 8, 198, 197, 2, 198, 197, 2, 1366, 13, 9630, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 7890, 13, 9630, 8, 198, 197, 2, 198, 197, 2, 4445, 62, 7568, 796, 1366, 13, 8094, 1525, 7, 7890, 13, 9630, 13, 2536, 31387, 7203, 4, 56, 14, 4, 76, 14, 4, 67, 4943, 737, 32604, 3419, 198, 197, 2, 4445, 62, 7568, 13, 9630, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 29468, 62, 7568, 13, 9630, 8, 198, 197, 2, 198, 197, 2, 4445, 62, 7568, 13, 1462, 62, 40664, 7203, 14, 14490, 14, 50139, 14, 26932, 3524, 14, 2725, 35, 14, 23344, 10216, 14, 35, 747, 42245, 62, 85, 22, 14, 5216, 2381, 544, 14, 6601, 14, 28545, 62, 15633, 62, 7575, 62, 19184, 62, 4971, 14, 90, 15, 92, 62, 5305, 62, 2435, 62, 672, 45852, 62, 7050, 62, 5715, 13, 40664, 1911, 18982, 7, 312, 828, 6376, 62, 18242, 2625, 27354, 8079, 4943, 198, 197, 2, 198, 197, 2, 3601, 7, 29468, 62, 7568, 8, 628, 628, 198, 198, 2, 7469, 3191, 262, 1441, 9574, 329, 262, 6754, 41798 ]
2.580363
1,487
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None
[ 2, 30396, 329, 257, 13934, 5509, 10139, 13, 198, 2, 1398, 12200, 19667, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2124, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 796, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9464, 796, 6045, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3506, 796, 6045 ]
2.175676
74
import random import time import numpy as np import os import difflib import torch from utils.structure import Example, Batch, Patch, lists2tensor, Token, BIO from utils.tokenizer import Tokenizer from typing import List, Union from tqdm import tqdm from collections import Counter import Levenshtein import math import copy
[ 11748, 4738, 198, 11748, 640, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 814, 8019, 198, 11748, 28034, 198, 6738, 3384, 4487, 13, 301, 5620, 1330, 17934, 11, 347, 963, 11, 17106, 11, 8341, 17, 83, 22854, 11, 29130, 11, 347, 9399, 198, 6738, 3384, 4487, 13, 30001, 7509, 1330, 29130, 7509, 198, 6738, 19720, 1330, 7343, 11, 4479, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 17268, 1330, 15034, 198, 11748, 1004, 574, 1477, 22006, 198, 11748, 10688, 198, 11748, 4866, 198 ]
3.651685
89
from main_dir.drawing.background_loads import BackgroundLoads """getting the screen and setting background """ class BackGround: """taking the image""" view_background = BackgroundLoads().load_and_move() def redraw_game_window(self, screen): """setting background in the screen at position x y""" screen.blit(self.view_background, (0, 0))
[ 6738, 1388, 62, 15908, 13, 19334, 278, 13, 25249, 62, 46030, 1330, 25353, 8912, 82, 198, 198, 37811, 37210, 262, 3159, 290, 4634, 4469, 220, 37227, 628, 198, 4871, 5157, 35539, 25, 198, 220, 220, 220, 37227, 26103, 262, 2939, 37811, 198, 220, 220, 220, 1570, 62, 25249, 796, 25353, 8912, 82, 22446, 2220, 62, 392, 62, 21084, 3419, 628, 220, 220, 220, 825, 2266, 1831, 62, 6057, 62, 17497, 7, 944, 11, 3159, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 33990, 4469, 287, 262, 3159, 379, 2292, 2124, 331, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 3159, 13, 2436, 270, 7, 944, 13, 1177, 62, 25249, 11, 357, 15, 11, 657, 4008, 198 ]
3.12605
119
# yellowbrick.utils.decorators # Decorators and descriptors for annotating yellowbrick library functions. # # Author: Benjamin Bengfort <[email protected]> # Created: Thu May 18 15:13:33 2017 -0400 # # Copyright (C) 2017 District Data Labs # For license information, see LICENSE.txt # # ID: decorators.py [79cd8cf] [email protected] $ """ Decorators and descriptors for annotating yellowbrick library functions. """ ########################################################################## ## Imports ########################################################################## from functools import wraps ########################################################################## ## Decorators ########################################################################## def memoized(fget): """ Return a property attribute for new-style classes that only calls its getter on the first access. The result is stored and on subsequent accesses is returned, preventing the need to call the getter any more. Parameters ---------- fget: function The getter method to memoize for subsequent access. See also -------- python-memoized-property `python-memoized-property <https://github.com/estebistec/python-memoized-property>`_ """ attr_name = '_{0}'.format(fget.__name__) @wraps(fget) return property(fget_memoized) class docutil(object): """ This decorator can be used to apply the doc string from another function to the decorated function. This is used for our single call wrapper functions who implement the visualizer API without forcing the user to jump through all the hoops. The docstring of both the visualizer and the single call wrapper should be identical, this decorator ensures that we only have to edit one doc string. Usage:: @docutil(Visualizer.__init__) def visualize(*args, **kwargs): pass The basic usage is that you instantiate the decorator with the function whose docstring you want to copy, then apply that decorator to the the function whose docstring you would like modified. Note that this decorator performs no wrapping of the target function. """ def __init__(self, func): """Create a decorator to document other functions with the specified function's doc string. Parameters ---------- func : function The function whose doc string we should decorate with """ self.doc = func.__doc__ def __call__(self, func): """Modify the decorated function with the stored doc string. Parameters ---------- func: function The function to apply the saved doc string to. """ func.__doc__ = self.doc return func
[ 2, 7872, 1671, 624, 13, 26791, 13, 12501, 273, 2024, 198, 2, 4280, 273, 2024, 290, 12145, 669, 329, 24708, 803, 7872, 1671, 624, 5888, 5499, 13, 198, 2, 198, 2, 6434, 25, 220, 220, 14533, 14964, 3319, 1279, 11848, 1516, 3319, 31, 17080, 2012, 67, 10254, 8937, 13, 785, 29, 198, 2, 15622, 25, 220, 26223, 1737, 1248, 1315, 25, 1485, 25, 2091, 2177, 532, 3023, 405, 198, 2, 198, 2, 15069, 357, 34, 8, 2177, 5665, 6060, 23500, 198, 2, 1114, 5964, 1321, 11, 766, 38559, 24290, 13, 14116, 198, 2, 198, 2, 4522, 25, 11705, 2024, 13, 9078, 685, 3720, 10210, 23, 12993, 60, 1888, 13337, 31, 65, 1516, 3319, 13, 785, 720, 198, 198, 37811, 198, 10707, 273, 2024, 290, 12145, 669, 329, 24708, 803, 7872, 1671, 624, 5888, 5499, 13, 198, 37811, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 1846, 3742, 198, 29113, 29113, 7804, 2235, 198, 198, 6738, 1257, 310, 10141, 1330, 27521, 628, 198, 29113, 29113, 7804, 2235, 198, 2235, 4280, 273, 2024, 198, 29113, 29113, 7804, 2235, 198, 198, 4299, 16155, 1143, 7, 69, 1136, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 3119, 11688, 329, 649, 12, 7635, 6097, 326, 691, 3848, 663, 198, 220, 220, 220, 651, 353, 319, 262, 717, 1895, 13, 383, 1255, 318, 8574, 290, 319, 8840, 198, 220, 220, 220, 1895, 274, 318, 4504, 11, 12174, 262, 761, 284, 869, 262, 651, 353, 597, 517, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 277, 1136, 25, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 383, 651, 353, 2446, 284, 16155, 1096, 329, 8840, 1895, 13, 628, 220, 220, 220, 4091, 635, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 21015, 12, 11883, 78, 1143, 12, 26745, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 29412, 12, 11883, 78, 1143, 12, 26745, 1279, 5450, 1378, 12567, 13, 785, 14, 395, 1765, 396, 721, 14, 29412, 12, 11883, 78, 1143, 12, 26745, 29, 63, 62, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 708, 81, 62, 3672, 796, 705, 23330, 15, 92, 4458, 18982, 7, 69, 1136, 13, 834, 3672, 834, 8, 628, 220, 220, 220, 2488, 29988, 862, 7, 69, 1136, 8, 628, 220, 220, 220, 1441, 3119, 7, 69, 1136, 62, 11883, 78, 1143, 8, 628, 198, 4871, 2205, 22602, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 11705, 1352, 460, 307, 973, 284, 4174, 262, 2205, 4731, 422, 1194, 2163, 198, 220, 220, 220, 284, 262, 24789, 2163, 13, 770, 318, 973, 329, 674, 2060, 869, 29908, 198, 220, 220, 220, 5499, 508, 3494, 262, 5874, 7509, 7824, 1231, 10833, 262, 2836, 284, 198, 220, 220, 220, 4391, 832, 477, 262, 46730, 13, 383, 2205, 8841, 286, 1111, 262, 5874, 7509, 290, 262, 198, 220, 220, 220, 2060, 869, 29908, 815, 307, 10411, 11, 428, 11705, 1352, 19047, 326, 356, 198, 220, 220, 220, 691, 423, 284, 4370, 530, 2205, 4731, 13, 628, 220, 220, 220, 29566, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 15390, 22602, 7, 36259, 7509, 13, 834, 15003, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 825, 38350, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 383, 4096, 8748, 318, 326, 345, 9113, 9386, 262, 11705, 1352, 351, 262, 2163, 198, 220, 220, 220, 3025, 2205, 8841, 345, 765, 284, 4866, 11, 788, 4174, 326, 11705, 1352, 284, 262, 262, 198, 220, 220, 220, 2163, 3025, 2205, 8841, 345, 561, 588, 9518, 13, 628, 220, 220, 220, 5740, 326, 428, 11705, 1352, 17706, 645, 27074, 286, 262, 2496, 2163, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 25439, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 11705, 1352, 284, 3188, 584, 5499, 351, 262, 7368, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 338, 2205, 4731, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 25439, 1058, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2163, 3025, 2205, 4731, 356, 815, 11705, 378, 351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15390, 796, 25439, 13, 834, 15390, 834, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 25439, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5841, 1958, 262, 24789, 2163, 351, 262, 8574, 2205, 4731, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 25439, 25, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2163, 284, 4174, 262, 7448, 2205, 4731, 284, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 834, 15390, 834, 796, 2116, 13, 15390, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 25439, 198 ]
3.229898
883
import argparse from werkzeug.security import generate_password_hash import secrets import string from modules.Auth.auth import auth from modules.Auth.user_db import UserDatabase from app import app main()
[ 11748, 1822, 29572, 198, 6738, 266, 9587, 2736, 1018, 13, 12961, 1330, 7716, 62, 28712, 62, 17831, 198, 11748, 13141, 198, 11748, 4731, 198, 198, 6738, 13103, 13, 30515, 13, 18439, 1330, 6284, 198, 6738, 13103, 13, 30515, 13, 7220, 62, 9945, 1330, 11787, 38105, 198, 6738, 598, 1330, 598, 198, 198, 12417, 3419, 198 ]
3.781818
55
# """ # This file is part of Happypanda. # Happypanda is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # any later version. # Happypanda is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Happypanda. If not, see <http://www.gnu.org/licenses/>. # """ import logging import os import sqlite3 from sqlite3 import Connection from typing import Tuple, List, Callable, Union, Optional from . import db_constants log = logging.getLogger(__name__) log_i = log.info log_d = log.debug log_w = log.warning log_e = log.error log_c = log.critical STRUCTURE_SCRIPT_FUNCS: List[Callable[[], Tuple[str, List[str]]]] STRUCTURE_SCRIPT_FUNCS = [series_sql, chapters_sql, namespaces_sql, tags_sql, tags_mappings_sql, series_tags_mappings_sql, hashes_sql, list_sql, series_list_map_sql] STRUCTURE_SCRIPT = ''.join(f()[0] for f in STRUCTURE_SCRIPT_FUNCS) def global_db_convert(conn: sqlite3.dbapi2.Connection) -> sqlite3.dbapi2.Cursor: """ Takes care of converting tables and columns. Don't use this method directly. Use the add_db_revisions instead. """ log_i('Converting tables') c = conn.cursor() series, series_cols = series_sql() chapters, chapters_cols = chapters_sql() namespaces, namespaces_cols = namespaces_sql() tags, tags_cols = tags_sql() tags_mappings, tags_mappings_cols = tags_mappings_sql() series_tags_mappings, series_tags_mappings_cols = series_tags_mappings_sql() hashes, hashes_cols = hashes_sql() _list, list_cols = list_sql() series_list_map, series_list_map_cols = series_list_map_sql() t_d = { 'series': series_cols, 'chapters': chapters_cols, 'namespaces': namespaces_cols, 'tags': tags_cols, 'tags_mappings': tags_mappings_cols, 'series_tags_mappings': series_tags_mappings_cols, 'hashes': hashes_cols, 'list': list_cols, 'series_list_map': series_list_map_cols } log_d('Checking table structures') c.executescript(STRUCTURE_SCRIPT) conn.commit() log_d('Checking columns') for table in t_d: for col in t_d[table]: try: c.execute('ALTER TABLE {} ADD COLUMN {}'.format(table, col)) log_d('Added new column: {}'.format(col)) except sqlite3.OperationalError: log_d('Skipped column: {}'.format(col)) conn.commit() log_d('Committed DB changes') return c def add_db_revisions(old_db: Union[str, 'os.PathLike']) -> None: """ Adds specific DB revisions items. Note: pass a path to db """ log_i('Converting DB') conn = sqlite3.connect(old_db, check_same_thread=False) conn.row_factory = sqlite3.Row log_i('Converting tables and columns') c = global_db_convert(conn) log_d('Updating DB version') c.execute('UPDATE version SET version=? WHERE 1', (db_constants.CURRENT_DB_VERSION,)) conn.commit() conn.close() return def check_db_version(conn: sqlite3.dbapi2.Connection) -> bool: """Checks if DB version is allowed. Raises dialog if not.""" vs = "SELECT version FROM version" c = conn.cursor() c.execute(vs) log_d('Checking DB Version') db_vs = c.fetchone() db_constants.REAL_DB_VERSION = db_vs[0] if db_vs[0] not in db_constants.DB_VERSION: msg = "Incompatible database" log_c(msg) log_d('Local database version: {}\nProgram database version:{}'.format(db_vs[0], db_constants.CURRENT_DB_VERSION)) # ErrorQueue.put(msg) return False return True def init_db(path: Union[str, 'os.PathLike'] = db_constants.DB_PATH) -> Optional[sqlite3.dbapi2.Connection]: """Initialises the DB. Returns a sqlite3 connection, which will be passed to the db thread. """ # TODO: change saving version from float to string if os.path.isfile(path): conn = new_db(path) if path == db_constants.DB_PATH and not check_db_version(conn): return None else: create_db_path() conn = new_db(path, True) conn.isolation_level = None conn.execute("PRAGMA foreign_keys = on") return conn class DBBase: """The base DB class. _DB_CONN should be set at runtime on startup""" _DB_CONN: Optional[Connection] = None _AUTO_COMMIT = True _STATE = {'active': False} @classmethod def begin(cls) -> None: """Useful when modifying for a large amount of data""" if not cls._STATE['active']: cls._AUTO_COMMIT = False cls.execute("BEGIN TRANSACTION") cls._STATE['active'] = True # print("STARTED DB OPTIMIZE") @classmethod def end(cls) -> None: """Called to commit and end transaction""" if cls._STATE['active']: try: cls.execute("COMMIT") except sqlite3.OperationalError: pass cls._AUTO_COMMIT = True cls._STATE['active'] = False # print("ENDED DB OPTIMIZE") @classmethod def execute(cls, *args): """Same as cursor.execute""" if not cls._DB_CONN: raise db_constants.NoDatabaseConnection log_d('DB Query: {}'.format(args).encode(errors='ignore')) if cls._AUTO_COMMIT: try: with cls._DB_CONN: return cls._DB_CONN.execute(*args) except sqlite3.InterfaceError: return cls._DB_CONN.execute(*args) else: return cls._DB_CONN.execute(*args) @classmethod def executemany(cls, *args): """Same as cursor.executemany""" if not cls._DB_CONN: raise db_constants.NoDatabaseConnection log_d('DB Query: {}'.format(args).encode(errors='ignore')) if cls._AUTO_COMMIT: with cls._DB_CONN: return cls._DB_CONN.executemany(*args) else: c = cls._DB_CONN.executemany(*args) return c @classmethod @classmethod @classmethod if __name__ == '__main__': raise RuntimeError("Unit tests not yet implemented") # unit tests here!
[ 2, 37227, 198, 2, 770, 2393, 318, 636, 286, 18321, 4464, 5282, 13, 198, 2, 18321, 4464, 5282, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 362, 286, 262, 13789, 11, 393, 198, 2, 597, 1568, 2196, 13, 198, 2, 18321, 4464, 5282, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 1863, 351, 18321, 4464, 5282, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 2, 37227, 198, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 44161, 578, 18, 198, 6738, 44161, 578, 18, 1330, 26923, 198, 6738, 19720, 1330, 309, 29291, 11, 7343, 11, 4889, 540, 11, 4479, 11, 32233, 198, 198, 6738, 764, 1330, 20613, 62, 9979, 1187, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 62, 72, 796, 2604, 13, 10951, 198, 6404, 62, 67, 796, 2604, 13, 24442, 198, 6404, 62, 86, 796, 2604, 13, 43917, 198, 6404, 62, 68, 796, 2604, 13, 18224, 198, 6404, 62, 66, 796, 2604, 13, 34666, 628, 628, 628, 628, 628, 198, 198, 46126, 11335, 62, 6173, 46023, 62, 42296, 7902, 25, 7343, 58, 14134, 540, 30109, 4357, 309, 29291, 58, 2536, 11, 7343, 58, 2536, 11907, 11907, 198, 46126, 11335, 62, 6173, 46023, 62, 42296, 7902, 796, 685, 25076, 62, 25410, 11, 15754, 62, 25410, 11, 3891, 43076, 62, 25410, 11, 15940, 62, 25410, 11, 15940, 62, 76, 39242, 62, 25410, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2168, 62, 31499, 62, 76, 39242, 62, 25410, 11, 46621, 62, 25410, 11, 1351, 62, 25410, 11, 2168, 62, 4868, 62, 8899, 62, 25410, 60, 198, 46126, 11335, 62, 6173, 46023, 796, 705, 4458, 22179, 7, 69, 3419, 58, 15, 60, 329, 277, 287, 19269, 18415, 11335, 62, 6173, 46023, 62, 42296, 7902, 8, 628, 198, 4299, 3298, 62, 9945, 62, 1102, 1851, 7, 37043, 25, 44161, 578, 18, 13, 9945, 15042, 17, 13, 32048, 8, 4613, 44161, 578, 18, 13, 9945, 15042, 17, 13, 34, 21471, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 1337, 286, 23202, 8893, 290, 15180, 13, 198, 220, 220, 220, 2094, 470, 779, 428, 2446, 3264, 13, 5765, 262, 751, 62, 9945, 62, 18218, 3279, 2427, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2604, 62, 72, 10786, 3103, 48820, 8893, 11537, 198, 220, 220, 220, 269, 796, 48260, 13, 66, 21471, 3419, 198, 220, 220, 220, 2168, 11, 2168, 62, 4033, 82, 796, 2168, 62, 25410, 3419, 198, 220, 220, 220, 15754, 11, 15754, 62, 4033, 82, 796, 15754, 62, 25410, 3419, 198, 220, 220, 220, 3891, 43076, 11, 3891, 43076, 62, 4033, 82, 796, 3891, 43076, 62, 25410, 3419, 198, 220, 220, 220, 15940, 11, 15940, 62, 4033, 82, 796, 15940, 62, 25410, 3419, 198, 220, 220, 220, 15940, 62, 76, 39242, 11, 15940, 62, 76, 39242, 62, 4033, 82, 796, 15940, 62, 76, 39242, 62, 25410, 3419, 198, 220, 220, 220, 2168, 62, 31499, 62, 76, 39242, 11, 2168, 62, 31499, 62, 76, 39242, 62, 4033, 82, 796, 2168, 62, 31499, 62, 76, 39242, 62, 25410, 3419, 198, 220, 220, 220, 46621, 11, 46621, 62, 4033, 82, 796, 46621, 62, 25410, 3419, 198, 220, 220, 220, 4808, 4868, 11, 1351, 62, 4033, 82, 796, 1351, 62, 25410, 3419, 198, 220, 220, 220, 2168, 62, 4868, 62, 8899, 11, 2168, 62, 4868, 62, 8899, 62, 4033, 82, 796, 2168, 62, 4868, 62, 8899, 62, 25410, 3419, 628, 220, 220, 220, 256, 62, 67, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25076, 10354, 2168, 62, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 354, 12126, 10354, 15754, 62, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 43076, 10354, 3891, 43076, 62, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31499, 10354, 15940, 62, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31499, 62, 76, 39242, 10354, 15940, 62, 76, 39242, 62, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25076, 62, 31499, 62, 76, 39242, 10354, 2168, 62, 31499, 62, 76, 39242, 62, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 71, 7465, 10354, 46621, 62, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4868, 10354, 1351, 62, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25076, 62, 4868, 62, 8899, 10354, 2168, 62, 4868, 62, 8899, 62, 4033, 82, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 2604, 62, 67, 10786, 9787, 278, 3084, 8573, 11537, 198, 220, 220, 220, 269, 13, 18558, 1769, 6519, 7, 46126, 11335, 62, 6173, 46023, 8, 198, 220, 220, 220, 48260, 13, 41509, 3419, 628, 220, 220, 220, 2604, 62, 67, 10786, 9787, 278, 15180, 11537, 198, 220, 220, 220, 329, 3084, 287, 256, 62, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 951, 287, 256, 62, 67, 58, 11487, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 41049, 10786, 1847, 5781, 43679, 23884, 27841, 20444, 5883, 45, 23884, 4458, 18982, 7, 11487, 11, 951, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 10786, 13003, 649, 5721, 25, 23884, 4458, 18982, 7, 4033, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 44161, 578, 18, 13, 18843, 864, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 10786, 15739, 3949, 5721, 25, 23884, 4458, 18982, 7, 4033, 4008, 198, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 2604, 62, 67, 10786, 6935, 2175, 20137, 2458, 11537, 198, 220, 220, 220, 1441, 269, 628, 198, 4299, 751, 62, 9945, 62, 18218, 3279, 7, 727, 62, 9945, 25, 4479, 58, 2536, 11, 705, 418, 13, 15235, 7594, 6, 12962, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 34333, 2176, 20137, 33315, 3709, 13, 198, 220, 220, 220, 5740, 25, 1208, 257, 3108, 284, 20613, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2604, 62, 72, 10786, 3103, 48820, 20137, 11537, 198, 220, 220, 220, 48260, 796, 44161, 578, 18, 13, 8443, 7, 727, 62, 9945, 11, 2198, 62, 31642, 62, 16663, 28, 25101, 8, 198, 220, 220, 220, 48260, 13, 808, 62, 69, 9548, 796, 44161, 578, 18, 13, 25166, 628, 220, 220, 220, 2604, 62, 72, 10786, 3103, 48820, 8893, 290, 15180, 11537, 198, 220, 220, 220, 269, 796, 3298, 62, 9945, 62, 1102, 1851, 7, 37043, 8, 628, 220, 220, 220, 2604, 62, 67, 10786, 4933, 38734, 20137, 2196, 11537, 198, 220, 220, 220, 269, 13, 41049, 10786, 16977, 2196, 25823, 2196, 28, 30, 33411, 352, 3256, 357, 9945, 62, 9979, 1187, 13, 34, 39237, 62, 11012, 62, 43717, 11, 4008, 198, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 48260, 13, 19836, 3419, 198, 220, 220, 220, 1441, 628, 198, 198, 4299, 2198, 62, 9945, 62, 9641, 7, 37043, 25, 44161, 578, 18, 13, 9945, 15042, 17, 13, 32048, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 7376, 4657, 611, 20137, 2196, 318, 3142, 13, 7567, 2696, 17310, 611, 407, 526, 15931, 198, 220, 220, 220, 3691, 796, 366, 46506, 2196, 16034, 2196, 1, 198, 220, 220, 220, 269, 796, 48260, 13, 66, 21471, 3419, 198, 220, 220, 220, 269, 13, 41049, 7, 14259, 8, 198, 220, 220, 220, 2604, 62, 67, 10786, 9787, 278, 20137, 10628, 11537, 198, 220, 220, 220, 20613, 62, 14259, 796, 269, 13, 69, 7569, 505, 3419, 198, 220, 220, 220, 20613, 62, 9979, 1187, 13, 2200, 1847, 62, 11012, 62, 43717, 796, 20613, 62, 14259, 58, 15, 60, 198, 220, 220, 220, 611, 20613, 62, 14259, 58, 15, 60, 407, 287, 20613, 62, 9979, 1187, 13, 11012, 62, 43717, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 818, 38532, 6831, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 66, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 10786, 14565, 6831, 2196, 25, 23884, 59, 77, 15167, 6831, 2196, 29164, 92, 4458, 18982, 7, 9945, 62, 14259, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 9979, 1187, 13, 34, 39237, 62, 11012, 62, 43717, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13047, 34991, 13, 1996, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 6407, 628, 198, 4299, 2315, 62, 9945, 7, 6978, 25, 4479, 58, 2536, 11, 705, 418, 13, 15235, 7594, 20520, 796, 20613, 62, 9979, 1187, 13, 11012, 62, 34219, 8, 4613, 32233, 58, 25410, 578, 18, 13, 9945, 15042, 17, 13, 32048, 5974, 198, 220, 220, 220, 37227, 24243, 2696, 262, 20137, 13, 16409, 257, 44161, 578, 18, 4637, 11, 198, 220, 220, 220, 543, 481, 307, 3804, 284, 262, 20613, 4704, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16926, 46, 25, 1487, 8914, 2196, 422, 12178, 284, 4731, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 649, 62, 9945, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3108, 6624, 20613, 62, 9979, 1187, 13, 11012, 62, 34219, 290, 407, 2198, 62, 9945, 62, 9641, 7, 37043, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 9945, 62, 6978, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 649, 62, 9945, 7, 6978, 11, 6407, 8, 628, 220, 220, 220, 48260, 13, 271, 21417, 62, 5715, 796, 6045, 198, 220, 220, 220, 48260, 13, 41049, 7203, 47, 33202, 5673, 3215, 62, 13083, 796, 319, 4943, 198, 220, 220, 220, 1441, 48260, 628, 198, 4871, 20137, 14881, 25, 198, 220, 220, 220, 37227, 464, 2779, 20137, 1398, 13, 4808, 11012, 62, 10943, 45, 815, 307, 900, 379, 19124, 319, 13693, 37811, 198, 220, 220, 220, 4808, 11012, 62, 10943, 45, 25, 32233, 58, 32048, 60, 796, 6045, 198, 220, 220, 220, 4808, 39371, 46, 62, 9858, 36393, 796, 6407, 198, 220, 220, 220, 4808, 44724, 796, 1391, 6, 5275, 10354, 10352, 92, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 2221, 7, 565, 82, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11041, 913, 618, 30620, 329, 257, 1588, 2033, 286, 1366, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 537, 82, 13557, 44724, 17816, 5275, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13557, 39371, 46, 62, 9858, 36393, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 41049, 7203, 33, 43312, 44069, 44710, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13557, 44724, 17816, 5275, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 2257, 7227, 1961, 20137, 39852, 3955, 35400, 4943, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 886, 7, 565, 82, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34, 4262, 284, 4589, 290, 886, 8611, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 537, 82, 13557, 44724, 17816, 5275, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 41049, 7203, 9858, 36393, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 44161, 578, 18, 13, 18843, 864, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13557, 39371, 46, 62, 9858, 36393, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13557, 44724, 17816, 5275, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 49361, 20137, 39852, 3955, 35400, 4943, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 12260, 7, 565, 82, 11, 1635, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30556, 355, 23493, 13, 41049, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 537, 82, 13557, 11012, 62, 10943, 45, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20613, 62, 9979, 1187, 13, 2949, 38105, 32048, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 10786, 11012, 43301, 25, 23884, 4458, 18982, 7, 22046, 737, 268, 8189, 7, 48277, 11639, 46430, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 537, 82, 13557, 39371, 46, 62, 9858, 36393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 537, 82, 13557, 11012, 62, 10943, 45, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13557, 11012, 62, 10943, 45, 13, 41049, 46491, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 44161, 578, 18, 13, 39317, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13557, 11012, 62, 10943, 45, 13, 41049, 46491, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13557, 11012, 62, 10943, 45, 13, 41049, 46491, 22046, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 3121, 368, 1092, 7, 565, 82, 11, 1635, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30556, 355, 23493, 13, 18558, 315, 368, 1092, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 537, 82, 13557, 11012, 62, 10943, 45, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20613, 62, 9979, 1187, 13, 2949, 38105, 32048, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 10786, 11012, 43301, 25, 23884, 4458, 18982, 7, 22046, 737, 268, 8189, 7, 48277, 11639, 46430, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 537, 82, 13557, 39371, 46, 62, 9858, 36393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 537, 82, 13557, 11012, 62, 10943, 45, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13557, 11012, 62, 10943, 45, 13, 18558, 315, 368, 1092, 46491, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 537, 82, 13557, 11012, 62, 10943, 45, 13, 18558, 315, 368, 1092, 46491, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 5298, 43160, 12331, 7203, 26453, 5254, 407, 1865, 9177, 4943, 198, 220, 220, 220, 1303, 4326, 5254, 994, 0, 198 ]
2.322592
2,855
#coding:utf-8 portList=(8888,8889)#本服务器监听端口 import tornado.ioloop import tornado.web import numpy as np from time import sleep #import shutil #import os from random import random from io import BytesIO from PIL import Image from base64 import b64decode import utils model = utils.loadmodel('Model.json', 'Weights.h5') REFSTR = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' ## def get(self): ## #允许浏览器直接访问,手动上传图片并识别。此功能仅用于测试和娱乐 ## self.write(''' ##<html> ## <head><title>Upload File</title></head> ## <body> ## <form action='file' enctype="multipart/form-data" method='post'> ## <input type='file' name='file'/><br/> ## <input type='submit' value='submit'/> ## </form> ## </body> ##</html> ##''') if __name__ == '__main__': from multiprocessing import Process length=len(portList) for port in range(length-1): p=Process(target=run_proc, args=(portList[port],)) p.start() run_proc(portList[length-1])
[ 171, 119, 123, 2, 66, 7656, 25, 40477, 12, 23, 201, 198, 634, 8053, 16193, 3459, 3459, 11, 3459, 4531, 8, 2, 17312, 105, 17312, 235, 27950, 94, 161, 247, 101, 33566, 239, 28938, 105, 44165, 107, 20998, 96, 201, 198, 201, 198, 11748, 33718, 13, 1669, 11224, 201, 198, 11748, 33718, 13, 12384, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 640, 1330, 3993, 201, 198, 2, 11748, 4423, 346, 201, 198, 2, 11748, 28686, 201, 198, 6738, 4738, 1330, 4738, 201, 198, 6738, 33245, 1330, 2750, 4879, 9399, 201, 198, 6738, 350, 4146, 1330, 7412, 201, 198, 6738, 2779, 2414, 1330, 275, 2414, 12501, 1098, 201, 198, 11748, 3384, 4487, 201, 198, 19849, 796, 3384, 4487, 13, 2220, 19849, 10786, 17633, 13, 17752, 3256, 705, 1135, 2337, 13, 71, 20, 11537, 201, 198, 31688, 18601, 796, 705, 486, 1954, 2231, 3134, 4531, 24694, 32988, 17511, 23852, 42, 31288, 45, 3185, 48, 49, 2257, 52, 30133, 34278, 57, 6, 201, 198, 2235, 220, 220, 220, 825, 651, 7, 944, 2599, 201, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 1303, 17739, 223, 164, 106, 116, 38184, 237, 164, 100, 230, 161, 247, 101, 33566, 112, 162, 236, 98, 164, 106, 123, 29785, 106, 171, 120, 234, 33699, 233, 27950, 101, 41468, 27670, 254, 32368, 122, 31965, 229, 33176, 114, 46237, 228, 26344, 104, 16764, 29826, 97, 27950, 253, 47797, 121, 20015, 227, 18796, 101, 12859, 236, 38184, 233, 46237, 243, 161, 240, 234, 161, 101, 109, 20046, 238, 201, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 7, 7061, 6, 201, 198, 2235, 27, 6494, 29, 201, 198, 2235, 220, 1279, 2256, 6927, 7839, 29, 41592, 9220, 3556, 7839, 12240, 2256, 29, 201, 198, 2235, 220, 1279, 2618, 29, 201, 198, 2235, 220, 220, 220, 1279, 687, 2223, 11639, 7753, 6, 551, 310, 2981, 2625, 16680, 541, 433, 14, 687, 12, 7890, 1, 2446, 11639, 7353, 44167, 201, 198, 2235, 220, 220, 220, 1279, 15414, 2099, 11639, 7753, 6, 1438, 11639, 7753, 26488, 6927, 1671, 15913, 201, 198, 2235, 220, 220, 220, 1279, 15414, 2099, 11639, 46002, 6, 1988, 11639, 46002, 6, 15913, 201, 198, 2235, 220, 220, 220, 7359, 687, 29, 201, 198, 2235, 220, 7359, 2618, 29, 201, 198, 2235, 3556, 6494, 29, 201, 198, 2235, 7061, 11537, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 422, 18540, 305, 919, 278, 1330, 10854, 201, 198, 220, 220, 220, 4129, 28, 11925, 7, 634, 8053, 8, 201, 198, 220, 220, 220, 329, 2493, 287, 2837, 7, 13664, 12, 16, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 28, 18709, 7, 16793, 28, 5143, 62, 36942, 11, 26498, 16193, 634, 8053, 58, 634, 4357, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 9688, 3419, 201, 198, 220, 220, 220, 1057, 62, 36942, 7, 634, 8053, 58, 13664, 12, 16, 12962, 201, 198 ]
2
498
# -*- coding: utf-8 -*- # @Time : 2020/11/21 上午11:27 # @Author : 司云中 # @File : base_api.py # @Software: Pycharm """ 通用API共享函数 """ from rest_framework import status from rest_framework.response import Response from rest_framework.generics import GenericAPIView from Emall.exceptions import SqlServerError from Emall.response_code import response_code def check_code(redis, validated_data): """校验验证码""" code_status = redis.check_code(validated_data.get('phone'), validated_data.get('code')) # 验证码错误或者过期 if not code_status: return Response(response_code.verification_code_error, status=status.HTTP_400_BAD_REQUEST) class BackendGenericApiView(GenericAPIView): """用于后台操作的通用API""" serializer_class = None serializer_delete_class = None def post(self, request): """添加""" serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) serializer.add() def get(self, request): """获取单个/多个记录""" pk = request.query_params.get(self.lookup_field, None) if pk: obj = self.get_obj(pk) serializer = self.get_serializer(instance=obj) return Response(serializer.data) else: queryset = self.get_queryset() serializer = self.get_serializer(instance=queryset, many=True) return Response({ 'count': queryset.count(), 'data': serializer.data }) def put(self, request): """修改""" serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) serializer.modify() def delete(self, request): """删除""" serializer = self.serializer_delete_class(data=request.data) if self.request.query_params.get('all', None) == 'true': result_num, _ = self.get_queryset().delete() else: serializer.is_valid(raise_exception=True) result_num, _ = serializer.delete() return result_num
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 1058, 12131, 14, 1157, 14, 2481, 220, 41468, 39355, 230, 1157, 25, 1983, 198, 2, 2488, 13838, 1058, 10263, 237, 116, 12859, 239, 40792, 198, 2, 2488, 8979, 1058, 2779, 62, 15042, 13, 9078, 198, 2, 2488, 25423, 25, 9485, 354, 1670, 198, 198, 37811, 198, 34460, 248, 18796, 101, 17614, 17739, 109, 12859, 104, 49035, 121, 46763, 108, 198, 37811, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 8612, 873, 1330, 42044, 2969, 3824, 769, 198, 198, 6738, 2295, 439, 13, 1069, 11755, 1330, 311, 13976, 10697, 12331, 198, 6738, 2295, 439, 13, 26209, 62, 8189, 1330, 2882, 62, 8189, 628, 198, 4299, 2198, 62, 8189, 7, 445, 271, 11, 31031, 62, 7890, 2599, 198, 220, 220, 220, 37227, 43718, 94, 165, 103, 234, 165, 103, 234, 46237, 223, 163, 254, 223, 37811, 198, 220, 220, 220, 2438, 62, 13376, 796, 2266, 271, 13, 9122, 62, 8189, 7, 12102, 515, 62, 7890, 13, 1136, 10786, 4862, 33809, 31031, 62, 7890, 13, 1136, 10786, 8189, 6, 4008, 198, 220, 220, 220, 1303, 16268, 103, 234, 46237, 223, 163, 254, 223, 165, 242, 247, 46237, 107, 22755, 244, 38519, 32573, 229, 17312, 253, 198, 220, 220, 220, 611, 407, 2438, 62, 13376, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 26209, 62, 8189, 13, 332, 2649, 62, 8189, 62, 18224, 11, 3722, 28, 13376, 13, 40717, 62, 7029, 62, 33, 2885, 62, 2200, 35780, 8, 628, 198, 4871, 5157, 437, 46189, 32, 14415, 7680, 7, 46189, 2969, 3824, 769, 2599, 198, 220, 220, 220, 37227, 18796, 101, 12859, 236, 28938, 236, 20998, 108, 162, 241, 235, 43291, 21410, 34460, 248, 18796, 101, 17614, 37811, 628, 220, 220, 220, 11389, 7509, 62, 4871, 796, 6045, 628, 220, 220, 220, 11389, 7509, 62, 33678, 62, 4871, 796, 6045, 628, 220, 220, 220, 825, 1281, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 162, 115, 119, 27950, 254, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 796, 2116, 13, 1136, 62, 46911, 7509, 7, 7890, 28, 25927, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 13, 271, 62, 12102, 7, 40225, 62, 1069, 4516, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 13, 2860, 3419, 628, 220, 220, 220, 825, 651, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 164, 236, 115, 20998, 244, 39355, 243, 10310, 103, 14, 13783, 248, 10310, 103, 164, 106, 108, 37605, 243, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 279, 74, 796, 2581, 13, 22766, 62, 37266, 13, 1136, 7, 944, 13, 5460, 929, 62, 3245, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 74, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 2116, 13, 1136, 62, 26801, 7, 79, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 796, 2116, 13, 1136, 62, 46911, 7509, 7, 39098, 28, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 46911, 7509, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42517, 893, 316, 796, 2116, 13, 1136, 62, 10819, 893, 316, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 796, 2116, 13, 1136, 62, 46911, 7509, 7, 39098, 28, 10819, 893, 316, 11, 867, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9127, 10354, 42517, 893, 316, 13, 9127, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 11389, 7509, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 825, 1234, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46479, 106, 162, 242, 117, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 796, 2116, 13, 1136, 62, 46911, 7509, 7, 7890, 28, 25927, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 13, 271, 62, 12102, 7, 40225, 62, 1069, 4516, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 13, 4666, 1958, 3419, 628, 220, 220, 220, 825, 12233, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26344, 254, 165, 247, 97, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 796, 2116, 13, 46911, 7509, 62, 33678, 62, 4871, 7, 7890, 28, 25927, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 25927, 13, 22766, 62, 37266, 13, 1136, 10786, 439, 3256, 6045, 8, 6624, 705, 7942, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 22510, 11, 4808, 796, 2116, 13, 1136, 62, 10819, 893, 316, 22446, 33678, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 13, 271, 62, 12102, 7, 40225, 62, 1069, 4516, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 22510, 11, 4808, 796, 11389, 7509, 13, 33678, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 62, 22510 ]
2.132984
955
""" MIT License Copyright (c) 2020 GamingGeek Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from fire.converters import TextChannel, Category from discord.ext import commands import traceback import discord import typing
[ 37811, 198, 36393, 13789, 198, 15269, 357, 66, 8, 12131, 14426, 10082, 988, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 286, 428, 3788, 198, 392, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 287, 262, 10442, 1231, 17504, 11, 198, 8201, 1231, 17385, 262, 2489, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 198, 392, 14, 273, 3677, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 30760, 284, 466, 523, 11, 198, 32796, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 198, 29296, 3398, 1565, 5603, 25382, 11, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 198, 13775, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 16289, 3963, 6375, 3268, 7102, 45, 24565, 198, 54, 10554, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 47466, 13, 198, 37811, 628, 198, 6738, 2046, 13, 1102, 332, 1010, 1330, 8255, 29239, 11, 21743, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 11748, 12854, 1891, 198, 11748, 36446, 198, 11748, 19720, 628, 198 ]
4.074324
296
# -*- coding: utf-8 -*- # Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause from __future__ import absolute_import, division, print_function, unicode_literals import bz2 import sys, os from collections import defaultdict from contextlib import closing from errno import EACCES, ENODEV, EPERM from genericpath import getmtime, isfile import hashlib import json from logging import DEBUG, getLogger from mmap import ACCESS_READ, mmap from os.path import dirname, isdir, join, splitext import re from time import time import warnings from io import open as io_open from conda import CondaError from conda._vendor.auxlib.ish import dals from conda._vendor.auxlib.logz import stringify from conda._vendor.toolz import concat, take from conda.base.constants import CONDA_HOMEPAGE_URL, REPODATA_FN from conda.base.context import context from conda.common.compat import (ensure_binary, ensure_text_type, ensure_unicode, iteritems, string_types, text_type, with_metaclass) from conda.common.io import ThreadLimitedThreadPoolExecutor, as_completed from conda.common.url import join_url, maybe_unquote from conda.core.package_cache_data import PackageCacheData from conda.exceptions import (CondaDependencyError, CondaHTTPError, CondaUpgradeError, NotWritableError, UnavailableInvalidChannel) from conda.gateways.connection import (ConnectionError, HTTPError, InsecureRequestWarning, InvalidSchema, SSLError) from conda.gateways.connection.session import CondaSession from conda.gateways.disk import mkdir_p, mkdir_p_sudo_safe from conda.gateways.disk.delete import rm_rf from conda.gateways.disk.update import touch from conda.models.channel import Channel, all_channel_urls from conda.models.match_spec import MatchSpec from conda.models.records import PackageRecord from conda.core.subdir_data import * log = getLogger(__name__) stderrlog = getLogger('conda.stderrlog') REPODATA_PICKLE_VERSION = 28 MAX_REPODATA_VERSION = 1 REPODATA_HEADER_RE = b'"(_etag|_mod|_cache_control)":[ ]?"(.*?[^\\\\])"[,\}\s]' # NOQA @with_metaclass(SubdirDataType)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 34, 8, 2321, 1052, 330, 13533, 11, 3457, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 18, 12, 2601, 682, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 275, 89, 17, 198, 11748, 25064, 11, 28686, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 4732, 8019, 1330, 9605, 198, 6738, 11454, 3919, 1330, 412, 26861, 1546, 11, 12964, 16820, 53, 11, 14724, 1137, 44, 198, 6738, 14276, 6978, 1330, 651, 76, 2435, 11, 318, 7753, 198, 11748, 12234, 8019, 198, 11748, 33918, 198, 6738, 18931, 1330, 16959, 11, 651, 11187, 1362, 198, 6738, 8085, 499, 1330, 15859, 7597, 62, 15675, 11, 8085, 499, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 318, 15908, 11, 4654, 11, 4328, 578, 742, 198, 11748, 302, 198, 6738, 640, 1330, 640, 198, 11748, 14601, 198, 6738, 33245, 1330, 1280, 355, 33245, 62, 9654, 198, 198, 6738, 1779, 64, 1330, 9724, 64, 12331, 198, 6738, 1779, 64, 13557, 85, 18738, 13, 14644, 8019, 13, 680, 1330, 288, 874, 198, 6738, 1779, 64, 13557, 85, 18738, 13, 14644, 8019, 13, 6404, 89, 1330, 4731, 1958, 198, 6738, 1779, 64, 13557, 85, 18738, 13, 25981, 89, 1330, 1673, 265, 11, 1011, 198, 6738, 1779, 64, 13, 8692, 13, 9979, 1187, 1330, 7102, 5631, 62, 39069, 4537, 8264, 62, 21886, 11, 4526, 47, 3727, 13563, 62, 43221, 198, 6738, 1779, 64, 13, 8692, 13, 22866, 1330, 4732, 198, 6738, 1779, 64, 13, 11321, 13, 5589, 265, 1330, 357, 641, 495, 62, 39491, 11, 4155, 62, 5239, 62, 4906, 11, 4155, 62, 46903, 1098, 11, 11629, 23814, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 62, 19199, 11, 2420, 62, 4906, 11, 351, 62, 4164, 330, 31172, 8, 198, 6738, 1779, 64, 13, 11321, 13, 952, 1330, 14122, 37214, 16818, 27201, 23002, 38409, 11, 355, 62, 785, 16838, 198, 6738, 1779, 64, 13, 11321, 13, 6371, 1330, 4654, 62, 6371, 11, 3863, 62, 403, 22708, 198, 6738, 1779, 64, 13, 7295, 13, 26495, 62, 23870, 62, 7890, 1330, 15717, 30562, 6601, 198, 6738, 1779, 64, 13, 1069, 11755, 1330, 357, 34, 13533, 35, 2690, 1387, 12331, 11, 9724, 64, 40717, 12331, 11, 9724, 64, 44948, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1892, 20257, 540, 12331, 11, 791, 15182, 44651, 29239, 8, 198, 6738, 1779, 64, 13, 10494, 1322, 13, 38659, 1330, 357, 32048, 12331, 11, 14626, 12331, 11, 554, 22390, 18453, 20361, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17665, 27054, 2611, 11, 6723, 2538, 81, 1472, 8, 198, 6738, 1779, 64, 13, 10494, 1322, 13, 38659, 13, 29891, 1330, 9724, 64, 36044, 198, 6738, 1779, 64, 13, 10494, 1322, 13, 39531, 1330, 33480, 15908, 62, 79, 11, 33480, 15908, 62, 79, 62, 24032, 62, 21230, 198, 6738, 1779, 64, 13, 10494, 1322, 13, 39531, 13, 33678, 1330, 42721, 62, 41871, 198, 6738, 1779, 64, 13, 10494, 1322, 13, 39531, 13, 19119, 1330, 3638, 198, 6738, 1779, 64, 13, 27530, 13, 17620, 1330, 11102, 11, 477, 62, 17620, 62, 6371, 82, 198, 6738, 1779, 64, 13, 27530, 13, 15699, 62, 16684, 1330, 13225, 22882, 198, 6738, 1779, 64, 13, 27530, 13, 8344, 3669, 1330, 15717, 23739, 198, 6738, 1779, 64, 13, 7295, 13, 7266, 15908, 62, 7890, 1330, 1635, 198, 198, 6404, 796, 651, 11187, 1362, 7, 834, 3672, 834, 8, 198, 301, 1082, 81, 6404, 796, 651, 11187, 1362, 10786, 66, 13533, 13, 301, 1082, 81, 6404, 11537, 198, 198, 35316, 3727, 13563, 62, 47, 11860, 2538, 62, 43717, 796, 2579, 198, 22921, 62, 35316, 3727, 13563, 62, 43717, 796, 352, 198, 35316, 3727, 13563, 62, 37682, 1137, 62, 2200, 796, 275, 6, 18109, 62, 316, 363, 91, 62, 4666, 91, 62, 23870, 62, 13716, 8, 20598, 2361, 1701, 7, 15885, 30, 58, 61, 13426, 12962, 17912, 11, 59, 32239, 82, 49946, 220, 1303, 8005, 48, 32, 628, 198, 198, 31, 4480, 62, 4164, 330, 31172, 7, 7004, 15908, 6601, 6030, 8, 198 ]
2.844327
758
from lxml import etree import logging import random import os import shutil import types, cgi from pylons import config from pylons import request, response, session, tmpl_context as c, url from pylons.controllers.util import abort, redirect from webenmr.model import Projects, Calculations, Jobs, CalculationTipology, Users from webenmr.model.meta import Session from webenmr.lib.base import * from webenmr.lib.base import BaseController, render from webenmr.lib.xplor_analysis import * from webenmr.lib.make_xplor import * from webenmr.lib.JobManagementSystem import * log = logging.getLogger(__name__)
[ 6738, 300, 19875, 1330, 2123, 631, 198, 11748, 18931, 198, 11748, 4738, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 3858, 11, 269, 12397, 198, 6738, 279, 2645, 684, 1330, 4566, 198, 6738, 279, 2645, 684, 1330, 2581, 11, 2882, 11, 6246, 11, 256, 76, 489, 62, 22866, 355, 269, 11, 19016, 198, 6738, 279, 2645, 684, 13, 3642, 36667, 13, 22602, 1330, 15614, 11, 18941, 198, 6738, 3992, 268, 43395, 13, 19849, 1330, 29898, 11, 27131, 602, 11, 19161, 11, 2199, 14902, 28434, 1435, 11, 18987, 198, 6738, 3992, 268, 43395, 13, 19849, 13, 28961, 1330, 23575, 198, 6738, 3992, 268, 43395, 13, 8019, 13, 8692, 1330, 1635, 198, 6738, 3992, 268, 43395, 13, 8019, 13, 8692, 1330, 7308, 22130, 11, 8543, 198, 6738, 3992, 268, 43395, 13, 8019, 13, 87, 489, 273, 62, 20930, 1330, 1635, 198, 6738, 3992, 268, 43395, 13, 8019, 13, 15883, 62, 87, 489, 273, 1330, 1635, 198, 6738, 3992, 268, 43395, 13, 8019, 13, 33308, 48032, 11964, 1330, 1635, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
3.219895
191
""" This migration script adds support for storing tags in the context of a dataset in a library """ import logging from sqlalchemy import ( Column, ForeignKey, Integer, MetaData, Table, ) # Need our custom types, but don't import anything else from model from galaxy.model.custom_types import TrimmedString log = logging.getLogger(__name__) metadata = MetaData() LibraryDatasetDatasetAssociationTagAssociation_table = Table( "library_dataset_dataset_association_tag_association", metadata, Column("id", Integer, primary_key=True), Column( "library_dataset_dataset_association_id", Integer, ForeignKey("library_dataset_dataset_association.id"), index=True, ), Column("tag_id", Integer, ForeignKey("tag.id"), index=True), Column("user_tname", TrimmedString(255), index=True), Column("value", TrimmedString(255), index=True), Column("user_value", TrimmedString(255), index=True), Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True), )
[ 37811, 198, 1212, 13472, 4226, 6673, 1104, 329, 23069, 15940, 287, 262, 4732, 286, 257, 27039, 287, 257, 5888, 198, 37811, 198, 198, 11748, 18931, 198, 198, 6738, 44161, 282, 26599, 1330, 357, 198, 220, 220, 220, 29201, 11, 198, 220, 220, 220, 8708, 9218, 11, 198, 220, 220, 220, 34142, 11, 198, 220, 220, 220, 30277, 6601, 11, 198, 220, 220, 220, 8655, 11, 198, 8, 198, 198, 2, 10664, 674, 2183, 3858, 11, 475, 836, 470, 1330, 1997, 2073, 422, 2746, 198, 6738, 16161, 13, 19849, 13, 23144, 62, 19199, 1330, 833, 320, 1150, 10100, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 38993, 796, 30277, 6601, 3419, 628, 198, 23377, 27354, 292, 316, 27354, 292, 316, 8021, 41003, 24835, 8021, 41003, 62, 11487, 796, 8655, 7, 198, 220, 220, 220, 366, 32016, 62, 19608, 292, 316, 62, 19608, 292, 316, 62, 562, 41003, 62, 12985, 62, 562, 41003, 1600, 198, 220, 220, 220, 20150, 11, 198, 220, 220, 220, 29201, 7203, 312, 1600, 34142, 11, 4165, 62, 2539, 28, 17821, 828, 198, 220, 220, 220, 29201, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32016, 62, 19608, 292, 316, 62, 19608, 292, 316, 62, 562, 41003, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 34142, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8708, 9218, 7203, 32016, 62, 19608, 292, 316, 62, 19608, 292, 316, 62, 562, 41003, 13, 312, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 17821, 11, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 29201, 7203, 12985, 62, 312, 1600, 34142, 11, 8708, 9218, 7203, 12985, 13, 312, 12340, 6376, 28, 17821, 828, 198, 220, 220, 220, 29201, 7203, 7220, 62, 83, 3672, 1600, 833, 320, 1150, 10100, 7, 13381, 828, 6376, 28, 17821, 828, 198, 220, 220, 220, 29201, 7203, 8367, 1600, 833, 320, 1150, 10100, 7, 13381, 828, 6376, 28, 17821, 828, 198, 220, 220, 220, 29201, 7203, 7220, 62, 8367, 1600, 833, 320, 1150, 10100, 7, 13381, 828, 6376, 28, 17821, 828, 198, 220, 220, 220, 29201, 7203, 7220, 62, 312, 1600, 34142, 11, 8708, 9218, 7203, 13528, 6969, 62, 7220, 13, 312, 12340, 6376, 28, 17821, 828, 198, 8, 628, 198 ]
2.770449
379
import os from unittest import mock from heliumcli import utils, settings from heliumcli.main import main from tests.helpers.commonhelper import given_config_exists from .helpers import testcase, commonhelper __author__ = "Alex Laird" __copyright__ = "Copyright 2018, Helium Edu" __version__ = "1.6.0"
[ 11748, 28686, 198, 6738, 555, 715, 395, 1330, 15290, 198, 198, 6738, 43142, 44506, 1330, 3384, 4487, 11, 6460, 198, 6738, 43142, 44506, 13, 12417, 1330, 1388, 198, 6738, 5254, 13, 16794, 364, 13, 11321, 2978, 525, 1330, 1813, 62, 11250, 62, 1069, 1023, 198, 6738, 764, 16794, 364, 1330, 1332, 7442, 11, 2219, 2978, 525, 198, 198, 834, 9800, 834, 796, 366, 15309, 15067, 67, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 2864, 11, 5053, 1505, 40766, 1, 198, 834, 9641, 834, 796, 366, 16, 13, 21, 13, 15, 1, 628 ]
3.244681
94
from loguru import logger logger.enable("snapflow") if __name__ == "__main__": test()
[ 6738, 2604, 14717, 1330, 49706, 198, 198, 6404, 1362, 13, 21633, 7203, 45380, 11125, 4943, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1332, 3419, 198 ]
2.685714
35
# Copyright [2018-2020] Peter Krenesky # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import logging import boto3 import docker from ixian.config import CONFIG from ixian.utils.decorators import cached_property logger = logging.getLogger(__name__) # Global cache of registries that are created. DOCKER_REGISTRIES = {} class UnknownRegistry(Exception): """Exception raised when registry is not configured""" pass
[ 2, 15069, 685, 7908, 12, 42334, 60, 5613, 509, 918, 274, 2584, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 2779, 2414, 198, 11748, 18931, 198, 198, 11748, 275, 2069, 18, 198, 11748, 36253, 198, 198, 6738, 220, 844, 666, 13, 11250, 1330, 25626, 198, 6738, 220, 844, 666, 13, 26791, 13, 12501, 273, 2024, 1330, 39986, 62, 26745, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 2, 8060, 12940, 286, 4214, 1678, 326, 389, 2727, 13, 198, 35, 11290, 1137, 62, 31553, 1797, 5446, 11015, 796, 23884, 628, 198, 198, 4871, 16185, 8081, 4592, 7, 16922, 2599, 198, 220, 220, 220, 37227, 16922, 4376, 618, 20478, 318, 407, 17839, 37811, 628, 220, 220, 220, 1208, 628, 198 ]
3.583333
264
from rest_framework.routers import DefaultRouter, DynamicRoute, Route class CustomBulkDeleteRouter(DefaultRouter): """ A custom URL router for the Product API that correctly routes DELETE requests with multiple query parameters. """ routes = [ Route( url=r"^{prefix}$", mapping={"get": "list", "post": "create", "delete": "destroy"}, name="{basename}-list", detail=False, initkwargs={"suffix": "List"}, ), Route( url=r"^{prefix}/{lookup}$", mapping={ "get": "retrieve", "put": "update", "patch": "partial_update", }, name="{basename}-detail", detail=True, initkwargs={"suffix": "Detail"}, ), DynamicRoute( url=r"^{prefix}/{lookup}/{url_path}$", name="{basename}-{url_name}", detail=True, initkwargs={}, ), ]
[ 6738, 1334, 62, 30604, 13, 472, 1010, 1330, 15161, 49, 39605, 11, 26977, 43401, 11, 18956, 628, 198, 4871, 8562, 33, 12171, 38727, 49, 39605, 7, 19463, 49, 39605, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2183, 10289, 20264, 329, 262, 8721, 7824, 326, 9380, 11926, 198, 220, 220, 220, 5550, 2538, 9328, 7007, 351, 3294, 12405, 10007, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11926, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 18956, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 81, 1, 36796, 40290, 92, 3, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16855, 28, 4895, 1136, 1298, 366, 4868, 1600, 366, 7353, 1298, 366, 17953, 1600, 366, 33678, 1298, 366, 41659, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 90, 12093, 12453, 92, 12, 4868, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3703, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 46265, 22046, 28, 4895, 37333, 844, 1298, 366, 8053, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 18956, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 81, 1, 36796, 40290, 92, 14, 90, 5460, 929, 92, 3, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16855, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 1298, 366, 1186, 30227, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1996, 1298, 366, 19119, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17147, 1298, 366, 47172, 62, 19119, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 90, 12093, 12453, 92, 12, 49170, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3703, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 46265, 22046, 28, 4895, 37333, 844, 1298, 366, 11242, 603, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 26977, 43401, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 81, 1, 36796, 40290, 92, 14, 90, 5460, 929, 92, 14, 90, 6371, 62, 6978, 92, 3, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 90, 12093, 12453, 92, 12, 90, 6371, 62, 3672, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3703, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 46265, 22046, 34758, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 2361, 198 ]
1.925714
525
#landing page inputs taken as a form input. from django import forms from . import models
[ 2, 1044, 278, 2443, 17311, 2077, 355, 257, 1296, 5128, 13, 198, 6738, 42625, 14208, 1330, 5107, 198, 6738, 764, 1330, 4981, 628, 197 ]
3.833333
24
from .upgrade_manifest import set_config
[ 6738, 764, 929, 9526, 62, 805, 8409, 1330, 900, 62, 11250, 198 ]
3.416667
12
from django.db import transaction from rest_framework.exceptions import NotFound, PermissionDenied from rest_framework.generics import get_object_or_404 from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.serializers import ModelSerializer from rest_framework.views import APIView from curation_portal.models import Project, Variant from curation_portal.serializers import VariantSerializer as UploadedVariantSerializer
[ 6738, 42625, 14208, 13, 9945, 1330, 8611, 198, 6738, 1334, 62, 30604, 13, 1069, 11755, 1330, 1892, 21077, 11, 2448, 3411, 21306, 798, 198, 6738, 1334, 62, 30604, 13, 8612, 873, 1330, 651, 62, 15252, 62, 273, 62, 26429, 198, 6738, 1334, 62, 30604, 13, 525, 8481, 1330, 1148, 47649, 3474, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 46911, 11341, 1330, 9104, 32634, 7509, 198, 6738, 1334, 62, 30604, 13, 33571, 1330, 3486, 3824, 769, 198, 198, 6738, 1090, 341, 62, 634, 282, 13, 27530, 1330, 4935, 11, 38215, 198, 6738, 1090, 341, 62, 634, 282, 13, 46911, 11341, 1330, 38215, 32634, 7509, 355, 36803, 276, 23907, 415, 32634, 7509, 628, 198 ]
4.091667
120
l = int(input()) operacao = input() matriz = [] soma = 0.0 for x in range(0, 12): linha = [] for y in range(0, 12): linha.append(float(input())) matriz.append(linha) for x in range(0, 12): soma += matriz[x][l] if operacao == 'S': print('{:.1f}'.format(soma)) else: print('{:.1f}'.format(soma/12))
[ 75, 796, 493, 7, 15414, 28955, 198, 3575, 330, 5488, 796, 5128, 3419, 198, 6759, 47847, 796, 17635, 198, 82, 6086, 796, 657, 13, 15, 198, 1640, 2124, 287, 2837, 7, 15, 11, 1105, 2599, 198, 220, 220, 220, 9493, 3099, 796, 17635, 198, 220, 220, 220, 329, 331, 287, 2837, 7, 15, 11, 1105, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9493, 3099, 13, 33295, 7, 22468, 7, 15414, 3419, 4008, 198, 220, 220, 220, 2603, 47847, 13, 33295, 7, 2815, 3099, 8, 198, 1640, 2124, 287, 2837, 7, 15, 11, 1105, 2599, 198, 220, 220, 220, 3870, 64, 15853, 2603, 47847, 58, 87, 7131, 75, 60, 198, 361, 1515, 330, 5488, 6624, 705, 50, 10354, 198, 220, 220, 220, 3601, 10786, 90, 25, 13, 16, 69, 92, 4458, 18982, 7, 82, 6086, 4008, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 90, 25, 13, 16, 69, 92, 4458, 18982, 7, 82, 6086, 14, 1065, 4008 ]
2.05
160
# open Himawari-8 standard format # output data dictionary ready to put in frp_pixel.py # the struction of the dictionary should be like this # ['ir39', 'ir12', 'saa', 'ir11', 'cloudfree', 'lat', # 'ir11rad', 'diff', 'sun_glint', 'ACQTIME', 'vza', # 'vaa', 'lon', 'cmask', 'CMa_TEST', 'pixsize', 'szen', # 'tirradratio', 'infos', 'redrad', 'visradratio', # 'tcwv', 'ir39rad', 'lcov'] import os import datetime import struct import numpy as np import scipy.ndimage from subprocess import call import bz2file as h8_bz2 import sys def sunglint(vzen, vaz, szen, saz): """ all the input in degrees calculation from Prins et al. enhanced fired detection 1998 """ vzen_r = np.radians(vzen) vaz_r = np.radians(vaz) szen_r = np.radians(szen) saz_r = np.radians(saz) raz_r = vaz_r - saz_r G = np.cos(vzen_r) * np.cos(szen_r) - np.sin(vzen_r) * np.sin(szen_r) * np.cos(raz_r) sun_glint = np.degrees(np.arccos(G)) return sun_glint def cloud_mask(data): """ A simple cloud masking for Himawari8 for fire detection """ # threshold for Albedo vis_day = 0.1 bt10_day = 290. bt10_day_vz = 290 bt4_ni = 272. bt10_ni = 268. bt11_ni = 268. Diffthresh_day = 15.0 Diffthresh_ni = 10.0 Diff2thresh = 13.7 data['cmask'] = np.zeros(data['ir39'].shape, dtype=np.int8) - 1 # work in the satellite visible area and the land mask = ((data['vza'] > 0.0) & (data['lcov'] < 20)) data['cmask'][mask] = 0. # check if day or night - day <70.degrees and night gt 70.degrees # work on day time first day = ((data['szen'] < 75.) & (data['szen'] > 0.0) & \ (data['lcov'] < 20) & (data['vza'] > 0.0)) # visible band vis_thresh = ((data['vis'] > vis_day) & (data['ir11'] < bt10_day) & \ (data['cmask'] < 1) & (day > 0)) data['cmask'][vis_thresh] = 1 # 10mincron threshold tir_thresh = ((data['ir11'] < bt10_day) & (data['cmask'] < 1) & (day > 0)) data['cmask'][tir_thresh] = 2 # his is the mid infrared temperature threshold used here for cloud detected # bt4_th = -0.35 * data['szen'] + 300 diff = data['ir39'] - data['ir11'] # 10mincron and 3.9um difference threshold dif_thresh = ((data['vis'] > vis_day / 3) & (diff > Diffthresh_day) & (data['ir11'] < bt10_day_vz) & \ (data['cmask'] < 1) & (day > 0)) data['cmask'][dif_thresh] = 5 # night time night = ((data['szen'] > 90.0) & (data['vza'] > 0.) & (data['lcov'] < 20)) # MIR # mir_thresh = ((data['ir39'] < bt4_ni) & (np.abs(diff) > 2) & (night > 0)) # data['cmask'][mir_thresh] = 7 # 10mincron tir_thresh = ((data['ir11'] < bt10_ni) & (np.abs(diff) > 4) & (night > 0)) data['cmask'][tir_thresh] = 8 # 10mincron and 3.9um difference threshold dif_thresh = ((diff > Diffthresh_ni) & (data['ir39'] < 275) & (night > 0)) data['cmask'][dif_thresh] = 5 # twilight time twilight = ((data['szen'] >= 75.0) & (data['szen'] < 90.0) & (data['vza'] > 0.) & (data['lcov'] < 20)) vis_thresh = ((data['vis'] > vis_day / 4) & (data['cmask'] < 1) & (twilight > 0)) data['cmask'][vis_thresh] = 1 # sun glint affest area glint = (data['sun_glint'] < 20.0) vis_thresh = ((data['vis'] > vis_day / 4) & (data['cmask'] < 1) & (glint > 0)) data['cmask'][vis_thresh] = 1 # this is clear sky data['cloudfree'] = (data['cmask'] < 1.0) & (data['cmask'] > -1.0) return data def water_mask(data): """ A simple water masking for Himawari8 for fire georeference land: 1, water: 0, background:-1 """ # threshold for Albedo sir_day = 0.05 data['wmask'] = np.zeros(data['ir39'].shape, dtype=np.int8) - 1 # work in the satellite visible area and the land mask = data['vza'] > 0.0 data['wmask'][mask] = 0. # check if day or night - day <70.degrees and night gt 70.degrees # work on day time first day = ((data['szen'] < 80.) & (data['szen'] > 0.0) & (data['vza'] > 0.0)) # sir band sir_thresh = ((data['sir'] > sir_day) & (data['wmask'] < 1) & \ (data['cmask'] < 1) & (day > 0) & (data['diff'] < 20)) data['wmask'][sir_thresh] = 1 return data def geo_read(f, verbose=False): """ read in the static data like view angle, landcover put them in a data dictionary """ dim = 5500 # hard coded for Himawari8 possible it is 5500 in which case we need to zoom if verbose: print 'reading file %s' % f dtype = np.float32 shape = (2, dim, dim) data = np.fromfile(f, dtype=dtype).reshape(shape) lat = data[0, :, :].astype(dtype) lon = data[1, :, :].astype(dtype) return lat, lon def static_read(file_dict, verbose=False): """ read in the static data like view angle, landcover put them in a data dictionary """ d = {} dim = 5500 # hard coded for Himawari8 for key in file_dict.keys(): file = file_dict[key][0][0] if verbose: print 'file path %s' % key print 'reading file %s' % file if key == 'landcover_path': dtype = np.int8 shape = (dim, dim) data = np.fromfile(file, dtype=dtype).reshape(shape) data_key = file_dict[key][1] d[data_key] = data.astype(dtype) elif key == 'fixed_position_path': dtype = np.float32 shape = (dim, dim) data = np.fromfile(file, dtype=dtype).reshape(shape) data_key = file_dict[key][1] d[data_key] = data.astype(dtype) else: dtype = np.float32 shape = (2, dim, dim) data = np.fromfile(file, dtype=dtype).reshape(shape) data_key = file_dict[key][1] d[data_key] = data[0, :, :].astype(dtype) data_key = file_dict[key][2] d[data_key] = data[1, :, :].astype(dtype) # pixel size d['pixsize'] = ((2.0 ** 2) * 1000.0 ** 2) * (1 / np.cos(np.radians(d['vza']))) # # adjust sampled area based on blocks used # for k in d.keys(): # d[k] = d[k][start_pix:stop_pix, :] return d def sun_angles(lat, lon, time_key): """ input: lat, np array; lon, np array time_key, string YYYYMMDDHHMM format like 201501031100 output:szen, sun zenith angle saa, sun azimuth angle """ # Define internal constants used for conversion EQTIME1 = 229.18 EQTIME2 = 0.000075 EQTIME3 = 0.001868 EQTIME4 = 0.032077 EQTIME5 = 0.014615 EQTIME6 = 0.040849 DECL1 = 0.006918 DECL2 = 0.399912 DECL3 = 0.070257 DECL4 = 0.006758 DECL5 = 0.000907 DECL6 = 0.002697 DECL7 = 0.00148 # Evaluate the input lat and lon in radians RadLat = np.radians(lat) dt = datetime.datetime.strptime(time_key, '%Y%m%d%H%M') # get the days in the year, normal year:365; leap year:366 d1 = datetime.datetime(dt.year, 1, 1) d2 = datetime.datetime(dt.year + 1, 1, 1) days_in_year = (d2 - d1).days # Evaluate the fractional year in radians # dt.hour-12 because gamma start from local noon time gamma = 2 * np.pi * (dt.timetuple().tm_yday - 1 + \ (dt.hour - 12) / 24.0) / days_in_year # Evaluate the Equation of time in minutes eqtime = EQTIME1 * (EQTIME2 + EQTIME3 * np.cos(gamma) - \ EQTIME4 * np.sin(gamma) - EQTIME5 * np.cos(2 * gamma) - \ 0.040849 * np.sin(2 * gamma)) # Time offset in minutes time_offset = eqtime + 4.0 * lon # local solar time in minutes true_solar_time = dt.hour * 60 + dt.minute + dt.second / 60 + time_offset # Solar hour angle in degrees and in radians HaRad = np.radians((true_solar_time / 4.) - 180.) # Evaluate the solar declination angle in radians Decli = DECL1 - DECL2 * np.cos(gamma) + DECL3 * np.sin(gamma) - \ DECL4 * np.cos(2 * gamma) + DECL5 * np.sin(2 * gamma) - \ DECL6 * np.cos(3 * gamma) + DECL7 * np.sin(3 * gamma) # Evaluate the Solar local Coordinates CosZen = (np.sin(RadLat) * np.sin(Decli) + \ np.cos(RadLat) * np.cos(Decli) * np.cos(HaRad)) TmpZenRad = np.arccos(CosZen) szen = np.degrees(TmpZenRad) CosAzi = -((np.sin(RadLat) * np.cos(TmpZenRad) - np.sin(Decli)) / \ (np.cos(RadLat) * np.sin(TmpZenRad))) saa = 360. - np.degrees(np.arccos(CosAzi)) # Correct for Time < 12.00 ( -> in range 0 . 180 ) saa[(true_solar_time < 720)] = 360. - saa[(true_solar_time < 720)] # in minutes 12 *60 return (szen, saa) def rebin(a, newshape): '''Rebin an array to a new shape. ''' assert len(a.shape) == len(newshape) slices = [slice(0, old, float(old) / new) for old, new in zip(a.shape, newshape)] coordinates = np.mgrid[slices] indices = coordinates.astype('i') # choose the biggest smaller integer index return a[tuple(indices)] def H8_file_read(file, verbose=False): # type: (object, object) -> object ''' read in a single Himawari8 file. ''' if not os.path.exists(file): print 'can not read %s' % file fileExtension = os.path.splitext(file)[1] if fileExtension in '.bz2': fh = h8_bz2.BZ2File(file, 'rb') else: fh = open(file, 'rb') # doit = call(["bunzip2", file]) # if doit < 1: # file = file[:-4] # else: # print 'can not unzip ', file # Read in the head blocks #print "processing %s" % file total_len = 0 # read in the file as binary see python struct for help for bb in xrange(11): # for Block 1 fh.seek(total_len) Block_no = struct.unpack('b', fh.read(1))[0] if verbose: print 'Reading block %s' % Block_no fh.seek(total_len + 1) Block_len = struct.unpack('h', fh.read(2))[0] if verbose: print 'The length of block %s is %s' % (Block_no, Block_len) # from block 2 read in number of samps and lines if Block_no == 2: fh.seek(total_len + 5) samps = struct.unpack('h', fh.read(2))[0] fh.seek(total_len + 7) lines = struct.unpack('h', fh.read(2))[0] # from block 3 read projection information elif Block_no == 3: fh.seek(total_len + 3) sub_lon = struct.unpack('d', fh.read(8))[0] #print 'central longitude %r' % sub_lon fh.seek(total_len + 11) CFAC = struct.unpack('I', fh.read(4))[0] fh.seek(total_len + 15) LFAC = struct.unpack('I', fh.read(4))[0] fh.seek(total_len + 19) COFF = struct.unpack('f', fh.read(4))[0] fh.seek(total_len + 23) LOFF = struct.unpack('f', fh.read(4))[0] fh.seek(total_len + 27) # Information about satellite height, earth equatorial radius # more infor can be found on page 16 of # Himawari_D_users_guide_en Proj_info = struct.unpack('ddddddd', fh.read(8 * 7))[:] elif Block_no == 4: fh.seek(total_len + 3) Nav_info = struct.unpack('dddddddd', fh.read(8 * 8))[:] elif Block_no == 5: fh.seek(total_len + 3) Band_no = struct.unpack('h', fh.read(2))[0] fh.seek(total_len + 5) central_wave = struct.unpack('d', fh.read(8))[0] fh.seek(total_len + 19) Cal_info = struct.unpack('ddddddddddd', fh.read(8 * 11))[:] # Change the block length for next block total_len += Block_len if verbose: print 'Total header length %s' % total_len # Now read in image data fh.seek(total_len) dtype = 'u2' shape = [lines, samps] size = np.dtype(dtype).itemsize * samps * lines data = fh.read() data = np.frombuffer(data[:size], dtype).reshape(shape) fh.close() fileExtension = os.path.splitext(file)[1] # if fileExtension in '.DAT': # call(["bzip2", file]) if verbose: print 'slope: %f, offset: %f for radiance' % (Cal_info[0], Cal_info[1]) radiance = data * Cal_info[0] + Cal_info[1] # for infrared bands if Band_no > 6: # for Planck temperature speed_of_light = Cal_info[8] planck_constant = Cal_info[9] boltzmann_constant = Cal_info[10] # radiance = 2.5 # central_wave = 4 c1 = 2.0 * planck_constant * speed_of_light * speed_of_light c2 = planck_constant * speed_of_light / boltzmann_constant # -- Derived constant scaling factors for: # c1: W.m2 to W/(m2.um-4) => multiplier of 1.0e+24 is required. # c2: K.m to K.um a=> multiplier of 1.0e+06 is required. c1_scale = 1.0e+24 c2_scale = 1.0e+06 # -- Calculate wavelength dependent "constants" fk1 = c1_scale * c1 / (central_wave ** 5) fk2 = c2_scale * c2 / central_wave logarithm = np.log((fk1 / (radiance) + 1.0)) temperature = fk2 / logarithm BT = Cal_info[2] + Cal_info[3] * temperature + Cal_info[4] * \ temperature * temperature else: # Lets not resample the himawari data here. # if samps > 12000: # hard coded should find a better way later # # Resampled by a factor of 0.25 with bilinear interpolation # # sub = radiance[4300*4:4700*4,2500*4:2900*4] # # d['vis_full'] = sub # radiance = rebin(radiance, (lines / 4, samps / 4)) # elif samps > 5500: # radiance = rebin(radiance, (lines / 2, samps / 2)) # for visible band this is Albedo BT = radiance * Cal_info[2] return (radiance, BT) def Himawari_read(file_dict, verbose=False): """ Read the Himawari-8 channels for fire detection, we only need red, MIR and TIR input: file dictionary like {'red_path' : 'HS_H08_20150109_0600_B03_FLDK_R20_S0101.DAT', 'mir_path' : 'HS_H08_20150109_0600_B07_FLDK_R20_S0101.DAT', 'tir_path' : 'HS_H08_20150109_0600_B14_FLDK_R20_S0101.DAT'} output: date dictionary like {'mir_BT' : np.array(5500,55500)} reference: Himawari_D_users_guide_en from http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_users_guide_en_v11.pdf """ d = {} for key in file_dict.keys(): files = file_dict[key][0] files.sort() rad_data_list = [] BT_data_list = [] for file in files: radiance, BT = H8_file_read(file) rad_data_list.append(radiance) BT_data_list.append(BT) radiance = np.vstack(rad_data_list) BT = np.vstack(BT_data_list) data_key = file_dict[key][1] d[data_key] = BT.astype(np.float32) data_key = file_dict[key][2] d[data_key] = radiance.astype(np.float32) return d def get_path(root, band, time_key=None, path_tree=None): """Finds path for given time key and data band time_key: 201501081300, YYYYMMDDHHMM band: B07,MIR (3.9um), B14,TIR (11um), B03,red (0.6um) sometime B03 has both 500m and 2km resolution files variable: BT, brightness temperature; Radiance for static data return path path_tree: HSFD, the original japan FTP path like:# 201501/09/201501090000/00/B03 else,weidong own path tree like 201501090000 """ if time_key is not None: # EO realtime date # separate the date and time from the time_key dt_time_key = datetime.datetime.strptime(time_key, '%Y%m%d%H%M') dt_date = dt_time_key.strftime('%Y%m%d') dt_time = dt_time_key.strftime('%H%M') # keys = [dt_date, dt_time, band] # Realtime EO channels if path_tree in ['HSFD']: root = os.path.join(root, dt_time_key.strftime('%Y%m'), dt_time_key.strftime('%d'), dt_time_key.strftime('%Y%m%d%H') + '00', dt_time_key.strftime('%M'), band + '/') # 500m resolution data band_vis_05 = band + "_FLDK_R05_S" # 2km resolution data band = band + "_FLDK_R20_S" else: root = root + time_key + "/" band_vis_05 = band else: root = os.path.join(root, "lcov/") band_vis_05 = band #print "root: %s" % root #print "band: %s" % band # now iterate over root path if os.path.exists(root): filepath = [] filepath1 = [] for f in os.listdir(root): if band in f: file_size = os.path.getsize(root + f) if file_size > 10000: filepath.append(root + f) elif band_vis_05 in f: filepath1.append(root + f) else: continue if len(filepath) < 1: filepath = filepath1 # return # if filepath1 is not None: # return filepath1 # else: return filepath else: print root, 'does not exists' sys.exit def paths(root, time_key=None, path_tree=None, mode=0): """Constructs a dictionary for the file paths """ # path dictionary construted from here d = {} if time_key is not None: # EO realtime date # for fire detection model if mode == 0: d["red_path"] = [get_path(root, "B03", \ time_key=time_key, path_tree=path_tree), 'vis', 'redrad'] # d["nir_path"] = [get_path(root, "B04", \ # time_key=time_key,path_tree=path_tree), 'nir', 'nirrad'] # d["sir_path"] = [get_path(root, "B06", \ # time_key=time_key, path_tree=path_tree), 'sir', 'sirrad'] d["tir86_path"] = [get_path(root, "B11", \ time_key=time_key, path_tree=path_tree), 'ir86', 'ir86rad'] d["mir_path"] = [get_path(root, "B07", \ time_key=time_key, path_tree=path_tree), 'ir39', 'ir39rad'] d["tir11_path"] = [get_path(root, "B14", \ time_key=time_key, path_tree=path_tree), 'ir11', 'ir11rad'] else: d["latlon_path"] = [get_path(root, "lat_lon.img"), 'lat', 'lon'] d["sat_view_angle_path"] = [get_path(root, "vza_vaa.img"), 'vza', 'vaa'] d["landcover_path"] = [get_path(root, "lcov.img"), 'lcov'] # d["fixed_position_path"] = [get_path(root, "H8_tir_201501090620.img"),'fpos'] return d def load_h8(in_root, time_key, path_tree=None, mode=0): """ load all the data and put them in a dictionary """ # firstly setup the path dictionary EO_path_dict = paths(in_root, time_key=time_key, path_tree=path_tree, mode=0) # readin all the Himawari files here EO_data = Himawari_read(EO_path_dict) # construt a static data dictionary static_path_dict = paths(in_root) # readin all static data here static_data = static_read(static_path_dict) # get the sun angle szen, saa = sun_angles(static_data['lat'], static_data['lon'], time_key) # get the sun glint angle sun_glint = sunglint(static_data['vza'], static_data['vaa'], szen, saa) # combine EO and static data together EO_data.update(static_data) EO_data['szen'] = szen EO_data['sun_glint'] = sun_glint EO_data['ACQTIME'] = np.zeros(EO_data['ir39'].shape, dtype=np.int8) # for fire detection EO_data['diff'] = EO_data['ir39'] - EO_data['ir11'] EO_data['tirradratio'] = EO_data['ir39rad'] / EO_data['ir11rad'] EO_data['visradratio'] = EO_data['ir39rad'] / EO_data['redrad'] # d['ndvi'] = (d['nir'] - d['vis']) / (d['nir'] + d['vis']) # correct the navigation problem dt_time_key = datetime.datetime.strptime(time_key, '%Y%m%d%H%M') dt_time = int(dt_time_key.strftime('%H')) # if dt_time < 11: # doit = img_move(EO_data) # do the cloud masking data = cloud_mask(EO_data) # data = water_mask(EO_data) return data if __name__ == '__main__': in_root = '/Volumes/INTENSO/him_downlaod' # root for the output files time_key = "201507060000" data = load_h8(in_root, time_key, path_tree="HSFD")
[ 2, 1280, 10978, 707, 2743, 12, 23, 3210, 5794, 198, 2, 5072, 1366, 22155, 3492, 284, 1234, 287, 1216, 79, 62, 32515, 13, 9078, 198, 2, 262, 336, 2762, 286, 262, 22155, 815, 307, 588, 428, 198, 2, 37250, 343, 2670, 3256, 705, 343, 1065, 3256, 705, 82, 7252, 3256, 705, 343, 1157, 3256, 705, 17721, 5787, 3256, 705, 15460, 3256, 198, 2, 705, 343, 1157, 6335, 3256, 705, 26069, 3256, 705, 19155, 62, 4743, 600, 3256, 705, 2246, 48, 34694, 3256, 705, 85, 4496, 3256, 198, 2, 705, 6862, 64, 3256, 705, 14995, 3256, 705, 11215, 2093, 3256, 705, 34, 21467, 62, 51, 6465, 3256, 705, 79, 844, 7857, 3256, 705, 82, 4801, 3256, 198, 2, 705, 83, 343, 6335, 10366, 952, 3256, 705, 10745, 418, 3256, 705, 445, 6335, 3256, 705, 4703, 6335, 10366, 952, 3256, 198, 2, 705, 23047, 86, 85, 3256, 705, 343, 2670, 6335, 3256, 705, 44601, 709, 20520, 198, 198, 11748, 28686, 198, 11748, 4818, 8079, 198, 11748, 2878, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 358, 9060, 198, 6738, 850, 14681, 1330, 869, 198, 11748, 275, 89, 17, 7753, 355, 289, 23, 62, 65, 89, 17, 198, 11748, 25064, 628, 198, 4299, 23568, 75, 600, 7, 85, 4801, 11, 410, 1031, 11, 264, 4801, 11, 473, 89, 2599, 198, 220, 220, 220, 37227, 477, 262, 5128, 287, 7370, 198, 220, 220, 220, 220, 220, 220, 220, 17952, 422, 1736, 1040, 2123, 435, 13, 13105, 6294, 13326, 7795, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 410, 4801, 62, 81, 796, 45941, 13, 6335, 1547, 7, 85, 4801, 8, 198, 220, 220, 220, 410, 1031, 62, 81, 796, 45941, 13, 6335, 1547, 7, 85, 1031, 8, 198, 220, 220, 220, 264, 4801, 62, 81, 796, 45941, 13, 6335, 1547, 7, 82, 4801, 8, 198, 220, 220, 220, 473, 89, 62, 81, 796, 45941, 13, 6335, 1547, 7, 82, 1031, 8, 198, 220, 220, 220, 374, 1031, 62, 81, 796, 410, 1031, 62, 81, 532, 473, 89, 62, 81, 198, 220, 220, 220, 402, 796, 45941, 13, 6966, 7, 85, 4801, 62, 81, 8, 1635, 45941, 13, 6966, 7, 82, 4801, 62, 81, 8, 532, 45941, 13, 31369, 7, 85, 4801, 62, 81, 8, 1635, 45941, 13, 31369, 7, 82, 4801, 62, 81, 8, 1635, 45941, 13, 6966, 7, 3247, 62, 81, 8, 198, 220, 220, 220, 4252, 62, 4743, 600, 796, 45941, 13, 13500, 6037, 7, 37659, 13, 283, 535, 418, 7, 38, 4008, 198, 220, 220, 220, 1441, 4252, 62, 4743, 600, 628, 198, 4299, 6279, 62, 27932, 7, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2829, 6279, 9335, 278, 329, 10978, 707, 2743, 23, 198, 220, 220, 220, 329, 2046, 13326, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 11387, 329, 978, 3077, 78, 198, 220, 220, 220, 1490, 62, 820, 796, 657, 13, 16, 198, 220, 220, 220, 275, 83, 940, 62, 820, 796, 26481, 13, 198, 220, 220, 220, 275, 83, 940, 62, 820, 62, 85, 89, 796, 26481, 628, 220, 220, 220, 275, 83, 19, 62, 8461, 796, 38107, 13, 198, 220, 220, 220, 275, 83, 940, 62, 8461, 796, 36678, 13, 198, 220, 220, 220, 275, 83, 1157, 62, 8461, 796, 36678, 13, 198, 220, 220, 220, 10631, 400, 3447, 62, 820, 796, 1315, 13, 15, 198, 220, 220, 220, 10631, 400, 3447, 62, 8461, 796, 838, 13, 15, 198, 220, 220, 220, 10631, 17, 400, 3447, 796, 1511, 13, 22, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 20520, 796, 45941, 13, 9107, 418, 7, 7890, 17816, 343, 2670, 6, 4083, 43358, 11, 288, 4906, 28, 37659, 13, 600, 23, 8, 532, 352, 198, 220, 220, 220, 1303, 670, 287, 262, 11210, 7424, 1989, 290, 262, 1956, 198, 220, 220, 220, 9335, 796, 14808, 7890, 17816, 85, 4496, 20520, 1875, 657, 13, 15, 8, 1222, 357, 7890, 17816, 44601, 709, 20520, 1279, 1160, 4008, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 6, 7131, 27932, 60, 796, 657, 13, 198, 220, 220, 220, 1303, 2198, 611, 1110, 393, 1755, 532, 1110, 1279, 2154, 13, 13500, 6037, 290, 1755, 308, 83, 4317, 13, 13500, 6037, 198, 220, 220, 220, 1303, 670, 319, 1110, 640, 717, 198, 220, 220, 220, 1110, 796, 14808, 7890, 17816, 82, 4801, 20520, 1279, 5441, 2014, 1222, 357, 7890, 17816, 82, 4801, 20520, 1875, 657, 13, 15, 8, 1222, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 17816, 44601, 709, 20520, 1279, 1160, 8, 1222, 357, 7890, 17816, 85, 4496, 20520, 1875, 657, 13, 15, 4008, 198, 220, 220, 220, 1303, 7424, 4097, 198, 220, 220, 220, 1490, 62, 400, 3447, 796, 14808, 7890, 17816, 4703, 20520, 1875, 1490, 62, 820, 8, 1222, 357, 7890, 17816, 343, 1157, 20520, 1279, 275, 83, 940, 62, 820, 8, 1222, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 17816, 11215, 2093, 20520, 1279, 352, 8, 1222, 357, 820, 1875, 657, 4008, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 6, 7131, 4703, 62, 400, 3447, 60, 796, 352, 628, 220, 220, 220, 1303, 838, 1084, 66, 1313, 11387, 198, 220, 220, 220, 48965, 62, 400, 3447, 796, 14808, 7890, 17816, 343, 1157, 20520, 1279, 275, 83, 940, 62, 820, 8, 1222, 357, 7890, 17816, 11215, 2093, 20520, 1279, 352, 8, 1222, 357, 820, 1875, 657, 4008, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 6, 7131, 83, 343, 62, 400, 3447, 60, 796, 362, 628, 220, 220, 220, 1303, 465, 318, 262, 3095, 30624, 5951, 11387, 220, 973, 994, 329, 6279, 12326, 198, 220, 220, 220, 1303, 275, 83, 19, 62, 400, 796, 532, 15, 13, 2327, 1635, 1366, 17816, 82, 4801, 20520, 1343, 5867, 198, 220, 220, 220, 814, 796, 1366, 17816, 343, 2670, 20520, 532, 1366, 17816, 343, 1157, 20520, 198, 220, 220, 220, 1303, 838, 1084, 66, 1313, 290, 513, 13, 24, 388, 3580, 11387, 198, 220, 220, 220, 288, 361, 62, 400, 3447, 796, 14808, 7890, 17816, 4703, 20520, 1875, 1490, 62, 820, 1220, 513, 8, 1222, 357, 26069, 1875, 10631, 400, 3447, 62, 820, 8, 1222, 357, 7890, 17816, 343, 1157, 20520, 1279, 275, 83, 940, 62, 820, 62, 85, 89, 8, 1222, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 17816, 11215, 2093, 20520, 1279, 352, 8, 1222, 357, 820, 1875, 657, 4008, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 6, 7131, 67, 361, 62, 400, 3447, 60, 796, 642, 628, 220, 220, 220, 1303, 1755, 640, 198, 220, 220, 220, 1755, 796, 14808, 7890, 17816, 82, 4801, 20520, 1875, 4101, 13, 15, 8, 1222, 357, 7890, 17816, 85, 4496, 20520, 1875, 657, 2014, 1222, 357, 7890, 17816, 44601, 709, 20520, 1279, 1160, 4008, 198, 220, 220, 220, 1303, 337, 4663, 198, 220, 220, 220, 1303, 5720, 62, 400, 3447, 796, 14808, 7890, 17816, 343, 2670, 20520, 1279, 275, 83, 19, 62, 8461, 8, 1222, 357, 37659, 13, 8937, 7, 26069, 8, 1875, 362, 8, 1222, 357, 3847, 1875, 657, 4008, 198, 220, 220, 220, 1303, 1366, 17816, 11215, 2093, 6, 7131, 10793, 62, 400, 3447, 60, 796, 767, 198, 220, 220, 220, 1303, 838, 1084, 66, 1313, 198, 220, 220, 220, 48965, 62, 400, 3447, 796, 14808, 7890, 17816, 343, 1157, 20520, 1279, 275, 83, 940, 62, 8461, 8, 1222, 357, 37659, 13, 8937, 7, 26069, 8, 1875, 604, 8, 1222, 357, 3847, 1875, 657, 4008, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 6, 7131, 83, 343, 62, 400, 3447, 60, 796, 807, 628, 220, 220, 220, 1303, 838, 1084, 66, 1313, 290, 513, 13, 24, 388, 3580, 11387, 198, 220, 220, 220, 288, 361, 62, 400, 3447, 796, 14808, 26069, 1875, 10631, 400, 3447, 62, 8461, 8, 1222, 357, 7890, 17816, 343, 2670, 20520, 1279, 25829, 8, 1222, 357, 3847, 1875, 657, 4008, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 6, 7131, 67, 361, 62, 400, 3447, 60, 796, 642, 198, 220, 220, 220, 1303, 45493, 640, 198, 220, 220, 220, 45493, 796, 14808, 7890, 17816, 82, 4801, 20520, 18189, 5441, 13, 15, 8, 1222, 357, 7890, 17816, 82, 4801, 20520, 1279, 4101, 13, 15, 8, 1222, 357, 7890, 17816, 85, 4496, 20520, 1875, 657, 2014, 1222, 357, 7890, 17816, 44601, 709, 20520, 1279, 1160, 4008, 198, 220, 220, 220, 1490, 62, 400, 3447, 796, 14808, 7890, 17816, 4703, 20520, 1875, 1490, 62, 820, 1220, 604, 8, 1222, 357, 7890, 17816, 11215, 2093, 20520, 1279, 352, 8, 1222, 357, 4246, 15512, 1875, 657, 4008, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 6, 7131, 4703, 62, 400, 3447, 60, 796, 352, 198, 220, 220, 220, 1303, 4252, 1278, 600, 1527, 395, 1989, 198, 220, 220, 220, 1278, 600, 796, 357, 7890, 17816, 19155, 62, 4743, 600, 20520, 1279, 1160, 13, 15, 8, 198, 220, 220, 220, 1490, 62, 400, 3447, 796, 14808, 7890, 17816, 4703, 20520, 1875, 1490, 62, 820, 1220, 604, 8, 1222, 357, 7890, 17816, 11215, 2093, 20520, 1279, 352, 8, 1222, 357, 4743, 600, 1875, 657, 4008, 198, 220, 220, 220, 1366, 17816, 11215, 2093, 6, 7131, 4703, 62, 400, 3447, 60, 796, 352, 628, 220, 220, 220, 1303, 428, 318, 1598, 6766, 198, 220, 220, 220, 1366, 17816, 17721, 5787, 20520, 796, 357, 7890, 17816, 11215, 2093, 20520, 1279, 352, 13, 15, 8, 1222, 357, 7890, 17816, 11215, 2093, 20520, 1875, 532, 16, 13, 15, 8, 198, 220, 220, 220, 1441, 1366, 628, 198, 4299, 1660, 62, 27932, 7, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2829, 1660, 9335, 278, 329, 10978, 707, 2743, 23, 198, 220, 220, 220, 329, 2046, 4903, 382, 4288, 198, 220, 220, 220, 1956, 25, 352, 11, 1660, 25, 657, 11, 4469, 21912, 16, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 11387, 329, 978, 3077, 78, 198, 220, 220, 220, 15967, 62, 820, 796, 657, 13, 2713, 198, 220, 220, 220, 1366, 17816, 26377, 2093, 20520, 796, 45941, 13, 9107, 418, 7, 7890, 17816, 343, 2670, 6, 4083, 43358, 11, 288, 4906, 28, 37659, 13, 600, 23, 8, 532, 352, 198, 220, 220, 220, 1303, 670, 287, 262, 11210, 7424, 1989, 290, 262, 1956, 198, 220, 220, 220, 9335, 796, 1366, 17816, 85, 4496, 20520, 1875, 657, 13, 15, 198, 220, 220, 220, 1366, 17816, 26377, 2093, 6, 7131, 27932, 60, 796, 657, 13, 198, 220, 220, 220, 1303, 2198, 611, 1110, 393, 1755, 532, 1110, 1279, 2154, 13, 13500, 6037, 290, 1755, 308, 83, 4317, 13, 13500, 6037, 198, 220, 220, 220, 1303, 670, 319, 1110, 640, 717, 198, 220, 220, 220, 1110, 796, 14808, 7890, 17816, 82, 4801, 20520, 1279, 4019, 2014, 1222, 357, 7890, 17816, 82, 4801, 20520, 1875, 657, 13, 15, 8, 1222, 357, 7890, 17816, 85, 4496, 20520, 1875, 657, 13, 15, 4008, 198, 220, 220, 220, 1303, 15967, 4097, 198, 220, 220, 220, 15967, 62, 400, 3447, 796, 14808, 7890, 17816, 82, 343, 20520, 1875, 15967, 62, 820, 8, 1222, 357, 7890, 17816, 26377, 2093, 20520, 1279, 352, 8, 1222, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 17816, 11215, 2093, 20520, 1279, 352, 8, 1222, 357, 820, 1875, 657, 8, 1222, 357, 7890, 17816, 26069, 20520, 1279, 1160, 4008, 198, 220, 220, 220, 1366, 17816, 26377, 2093, 6, 7131, 82, 343, 62, 400, 3447, 60, 796, 352, 628, 220, 220, 220, 1441, 1366, 628, 198, 4299, 40087, 62, 961, 7, 69, 11, 15942, 577, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1100, 287, 262, 9037, 1366, 588, 1570, 9848, 11, 1956, 9631, 198, 220, 220, 220, 1234, 606, 287, 257, 1366, 22155, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5391, 796, 642, 4059, 220, 1303, 1327, 30817, 329, 10978, 707, 2743, 23, 1744, 340, 318, 642, 4059, 287, 543, 1339, 356, 761, 284, 19792, 198, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 25782, 2393, 4064, 82, 6, 4064, 277, 198, 220, 220, 220, 288, 4906, 796, 45941, 13, 22468, 2624, 198, 220, 220, 220, 5485, 796, 357, 17, 11, 5391, 11, 5391, 8, 198, 220, 220, 220, 1366, 796, 45941, 13, 6738, 7753, 7, 69, 11, 288, 4906, 28, 67, 4906, 737, 3447, 1758, 7, 43358, 8, 198, 220, 220, 220, 3042, 796, 1366, 58, 15, 11, 1058, 11, 1058, 4083, 459, 2981, 7, 67, 4906, 8, 198, 220, 220, 220, 300, 261, 796, 1366, 58, 16, 11, 1058, 11, 1058, 4083, 459, 2981, 7, 67, 4906, 8, 198, 220, 220, 220, 1441, 3042, 11, 300, 261, 628, 198, 4299, 9037, 62, 961, 7, 7753, 62, 11600, 11, 15942, 577, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1100, 287, 262, 9037, 1366, 588, 1570, 9848, 11, 1956, 9631, 198, 220, 220, 220, 1234, 606, 287, 257, 1366, 22155, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 796, 23884, 198, 220, 220, 220, 5391, 796, 642, 4059, 220, 1303, 1327, 30817, 329, 10978, 707, 2743, 23, 198, 220, 220, 220, 329, 1994, 287, 2393, 62, 11600, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 796, 2393, 62, 11600, 58, 2539, 7131, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 7753, 3108, 4064, 82, 6, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 25782, 2393, 4064, 82, 6, 4064, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 6624, 705, 1044, 9631, 62, 6978, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 45941, 13, 600, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 357, 27740, 11, 5391, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 45941, 13, 6738, 7753, 7, 7753, 11, 288, 4906, 28, 67, 4906, 737, 3447, 1758, 7, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 2539, 796, 2393, 62, 11600, 58, 2539, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 7890, 62, 2539, 60, 796, 1366, 13, 459, 2981, 7, 67, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 6624, 705, 34021, 62, 9150, 62, 6978, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 45941, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 357, 27740, 11, 5391, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 45941, 13, 6738, 7753, 7, 7753, 11, 288, 4906, 28, 67, 4906, 737, 3447, 1758, 7, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 2539, 796, 2393, 62, 11600, 58, 2539, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 7890, 62, 2539, 60, 796, 1366, 13, 459, 2981, 7, 67, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 45941, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 357, 17, 11, 5391, 11, 5391, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 45941, 13, 6738, 7753, 7, 7753, 11, 288, 4906, 28, 67, 4906, 737, 3447, 1758, 7, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 2539, 796, 2393, 62, 11600, 58, 2539, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 7890, 62, 2539, 60, 796, 1366, 58, 15, 11, 1058, 11, 1058, 4083, 459, 2981, 7, 67, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 2539, 796, 2393, 62, 11600, 58, 2539, 7131, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 7890, 62, 2539, 60, 796, 1366, 58, 16, 11, 1058, 11, 1058, 4083, 459, 2981, 7, 67, 4906, 8, 198, 220, 220, 220, 1303, 17465, 2546, 198, 220, 220, 220, 288, 17816, 79, 844, 7857, 20520, 796, 14808, 17, 13, 15, 12429, 362, 8, 1635, 8576, 13, 15, 12429, 362, 8, 1635, 357, 16, 1220, 45941, 13, 6966, 7, 37659, 13, 6335, 1547, 7, 67, 17816, 85, 4496, 20520, 22305, 628, 220, 220, 220, 1303, 1303, 4532, 35846, 1989, 1912, 319, 7021, 973, 198, 220, 220, 220, 1303, 329, 479, 287, 288, 13, 13083, 33529, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 288, 58, 74, 60, 796, 288, 58, 74, 7131, 9688, 62, 79, 844, 25, 11338, 62, 79, 844, 11, 1058, 60, 628, 220, 220, 220, 1441, 288, 628, 198, 4299, 4252, 62, 27787, 7, 15460, 11, 300, 261, 11, 640, 62, 2539, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5128, 25, 3042, 11, 45941, 7177, 26, 300, 261, 11, 45941, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 2539, 11, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 26314, 56, 12038, 16458, 16768, 12038, 5794, 588, 1853, 486, 3070, 42060, 198, 220, 220, 220, 5072, 25, 82, 4801, 11, 4252, 1976, 268, 342, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 64, 11, 4252, 35560, 320, 1071, 9848, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2896, 500, 5387, 38491, 973, 329, 11315, 198, 220, 220, 220, 36529, 34694, 16, 796, 31064, 13, 1507, 198, 220, 220, 220, 36529, 34694, 17, 796, 657, 13, 2388, 2425, 198, 220, 220, 220, 36529, 34694, 18, 796, 657, 13, 405, 1507, 3104, 198, 220, 220, 220, 36529, 34694, 19, 796, 657, 13, 3070, 1238, 3324, 198, 220, 220, 220, 36529, 34694, 20, 796, 657, 13, 486, 3510, 1314, 198, 220, 220, 220, 36529, 34694, 21, 796, 657, 13, 15, 26200, 2920, 628, 220, 220, 220, 27196, 43, 16, 796, 657, 13, 405, 3388, 1507, 198, 220, 220, 220, 27196, 43, 17, 796, 657, 13, 18, 17032, 1065, 198, 220, 220, 220, 27196, 43, 18, 796, 657, 13, 43509, 28676, 198, 220, 220, 220, 27196, 43, 19, 796, 657, 13, 28041, 38569, 198, 220, 220, 220, 27196, 43, 20, 796, 657, 13, 830, 24, 2998, 198, 220, 220, 220, 27196, 43, 21, 796, 657, 13, 405, 2075, 5607, 198, 220, 220, 220, 27196, 43, 22, 796, 657, 13, 405, 18294, 198, 220, 220, 220, 1303, 26439, 4985, 262, 5128, 3042, 290, 300, 261, 287, 2511, 1547, 198, 220, 220, 220, 5325, 24220, 796, 45941, 13, 6335, 1547, 7, 15460, 8, 198, 220, 220, 220, 288, 83, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 2435, 62, 2539, 11, 705, 4, 56, 4, 76, 4, 67, 4, 39, 4, 44, 11537, 198, 220, 220, 220, 1303, 651, 262, 1528, 287, 262, 614, 11, 3487, 614, 25, 24760, 26, 16470, 614, 25, 32459, 198, 220, 220, 220, 288, 16, 796, 4818, 8079, 13, 19608, 8079, 7, 28664, 13, 1941, 11, 352, 11, 352, 8, 198, 220, 220, 220, 288, 17, 796, 4818, 8079, 13, 19608, 8079, 7, 28664, 13, 1941, 1343, 352, 11, 352, 11, 352, 8, 198, 220, 220, 220, 1528, 62, 259, 62, 1941, 796, 357, 67, 17, 532, 288, 16, 737, 12545, 198, 220, 220, 220, 1303, 26439, 4985, 262, 13390, 282, 614, 287, 2511, 1547, 198, 220, 220, 220, 1303, 288, 83, 13, 9769, 12, 1065, 780, 34236, 923, 422, 1957, 19613, 640, 198, 220, 220, 220, 34236, 796, 362, 1635, 45941, 13, 14415, 1635, 357, 28664, 13, 16514, 316, 29291, 22446, 17209, 62, 88, 820, 532, 352, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 28664, 13, 9769, 532, 1105, 8, 1220, 1987, 13, 15, 8, 1220, 1528, 62, 259, 62, 1941, 198, 220, 220, 220, 1303, 26439, 4985, 262, 7889, 341, 286, 640, 287, 2431, 198, 220, 220, 220, 37430, 2435, 796, 36529, 34694, 16, 1635, 357, 36, 48, 34694, 17, 1343, 36529, 34694, 18, 1635, 45941, 13, 6966, 7, 28483, 2611, 8, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36529, 34694, 19, 1635, 45941, 13, 31369, 7, 28483, 2611, 8, 532, 36529, 34694, 20, 1635, 45941, 13, 6966, 7, 17, 1635, 34236, 8, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 26200, 2920, 1635, 45941, 13, 31369, 7, 17, 1635, 34236, 4008, 198, 220, 220, 220, 1303, 3862, 11677, 287, 2431, 198, 220, 220, 220, 640, 62, 28968, 796, 37430, 2435, 1343, 604, 13, 15, 1635, 300, 261, 198, 220, 220, 220, 1303, 1957, 6591, 640, 287, 2431, 198, 220, 220, 220, 2081, 62, 82, 6192, 62, 2435, 796, 288, 83, 13, 9769, 1635, 3126, 1343, 288, 83, 13, 11374, 1343, 288, 83, 13, 12227, 1220, 3126, 1343, 640, 62, 28968, 198, 220, 220, 220, 1303, 12347, 1711, 9848, 287, 7370, 290, 287, 2511, 1547, 198, 220, 220, 220, 9398, 15546, 796, 45941, 13, 6335, 1547, 19510, 7942, 62, 82, 6192, 62, 2435, 1220, 604, 2014, 532, 11546, 2014, 198, 220, 220, 220, 1303, 26439, 4985, 262, 6591, 2377, 1883, 9848, 287, 2511, 1547, 198, 220, 220, 220, 16691, 72, 796, 27196, 43, 16, 532, 27196, 43, 17, 1635, 45941, 13, 6966, 7, 28483, 2611, 8, 1343, 27196, 43, 18, 1635, 45941, 13, 31369, 7, 28483, 2611, 8, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27196, 43, 19, 1635, 45941, 13, 6966, 7, 17, 1635, 34236, 8, 1343, 27196, 43, 20, 1635, 45941, 13, 31369, 7, 17, 1635, 34236, 8, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27196, 43, 21, 1635, 45941, 13, 6966, 7, 18, 1635, 34236, 8, 1343, 27196, 43, 22, 1635, 45941, 13, 31369, 7, 18, 1635, 34236, 8, 198, 220, 220, 220, 1303, 26439, 4985, 262, 12347, 1957, 22819, 17540, 198, 220, 220, 220, 10437, 47573, 796, 357, 37659, 13, 31369, 7, 15546, 24220, 8, 1635, 45941, 13, 31369, 7, 37835, 72, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 6966, 7, 15546, 24220, 8, 1635, 45941, 13, 6966, 7, 37835, 72, 8, 1635, 45941, 13, 6966, 7, 23303, 15546, 4008, 628, 220, 220, 220, 309, 3149, 47573, 15546, 796, 45941, 13, 283, 535, 418, 7, 36734, 47573, 8, 628, 220, 220, 220, 264, 4801, 796, 45941, 13, 13500, 6037, 7, 51, 3149, 47573, 15546, 8, 628, 220, 220, 220, 10437, 32, 17027, 796, 532, 19510, 37659, 13, 31369, 7, 15546, 24220, 8, 1635, 45941, 13, 6966, 7, 51, 3149, 47573, 15546, 8, 532, 45941, 13, 31369, 7, 37835, 72, 4008, 1220, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 37659, 13, 6966, 7, 15546, 24220, 8, 1635, 45941, 13, 31369, 7, 51, 3149, 47573, 15546, 22305, 628, 220, 220, 220, 473, 64, 796, 11470, 13, 532, 45941, 13, 13500, 6037, 7, 37659, 13, 283, 535, 418, 7, 36734, 32, 17027, 4008, 198, 220, 220, 220, 1303, 22941, 329, 3862, 1279, 1105, 13, 405, 357, 4613, 287, 2837, 657, 764, 11546, 1267, 198, 220, 220, 220, 473, 64, 58, 7, 7942, 62, 82, 6192, 62, 2435, 1279, 26250, 15437, 796, 11470, 13, 532, 473, 64, 58, 7, 7942, 62, 82, 6192, 62, 2435, 1279, 26250, 15437, 220, 1303, 287, 2431, 1105, 1635, 1899, 628, 220, 220, 220, 1441, 357, 82, 4801, 11, 473, 64, 8, 628, 198, 4299, 3405, 259, 7, 64, 11, 649, 43358, 2599, 198, 220, 220, 220, 705, 7061, 49, 23497, 281, 7177, 284, 257, 649, 5485, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6818, 18896, 7, 64, 13, 43358, 8, 6624, 18896, 7, 3605, 43358, 8, 628, 220, 220, 220, 24314, 796, 685, 48369, 7, 15, 11, 1468, 11, 12178, 7, 727, 8, 1220, 649, 8, 329, 1468, 11, 649, 287, 19974, 7, 64, 13, 43358, 11, 649, 43358, 15437, 198, 220, 220, 220, 22715, 796, 45941, 13, 76, 25928, 58, 82, 677, 274, 60, 198, 220, 220, 220, 36525, 796, 22715, 13, 459, 2981, 10786, 72, 11537, 220, 1303, 3853, 262, 4094, 4833, 18253, 6376, 198, 220, 220, 220, 1441, 257, 58, 83, 29291, 7, 521, 1063, 15437, 628, 198, 4299, 367, 23, 62, 7753, 62, 961, 7, 7753, 11, 15942, 577, 28, 25101, 2599, 198, 220, 220, 220, 1303, 2099, 25, 357, 15252, 11, 2134, 8, 4613, 2134, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1100, 287, 257, 2060, 10978, 707, 2743, 23, 2393, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 5171, 407, 1100, 4064, 82, 6, 4064, 2393, 198, 220, 220, 220, 2393, 11627, 3004, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 7753, 38381, 16, 60, 198, 220, 220, 220, 611, 2393, 11627, 3004, 287, 45302, 65, 89, 17, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 277, 71, 796, 289, 23, 62, 65, 89, 17, 13, 33, 57, 17, 8979, 7, 7753, 11, 705, 26145, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 71, 796, 1280, 7, 7753, 11, 705, 26145, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 270, 796, 869, 7, 14692, 65, 403, 13344, 17, 1600, 2393, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 466, 270, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2393, 796, 2393, 58, 21912, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 705, 5171, 407, 555, 13344, 46083, 2393, 628, 220, 220, 220, 1303, 4149, 287, 262, 1182, 7021, 628, 220, 220, 220, 1303, 4798, 366, 36948, 4064, 82, 1, 4064, 2393, 198, 220, 220, 220, 2472, 62, 11925, 796, 657, 198, 220, 220, 220, 1303, 1100, 287, 262, 2393, 355, 13934, 766, 21015, 2878, 329, 1037, 198, 220, 220, 220, 329, 275, 65, 287, 2124, 9521, 7, 1157, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 9726, 352, 198, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9726, 62, 3919, 796, 2878, 13, 403, 8002, 10786, 65, 3256, 277, 71, 13, 961, 7, 16, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 36120, 2512, 4064, 82, 6, 4064, 9726, 62, 3919, 198, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9726, 62, 11925, 796, 2878, 13, 403, 8002, 10786, 71, 3256, 277, 71, 13, 961, 7, 17, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 464, 4129, 286, 2512, 4064, 82, 318, 4064, 82, 6, 4064, 357, 12235, 62, 3919, 11, 9726, 62, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 422, 2512, 362, 1100, 287, 1271, 286, 264, 9430, 290, 3951, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9726, 62, 3919, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 642, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 9430, 796, 2878, 13, 403, 8002, 10786, 71, 3256, 277, 71, 13, 961, 7, 17, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 767, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 2878, 13, 403, 8002, 10786, 71, 3256, 277, 71, 13, 961, 7, 17, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 422, 2512, 513, 1100, 20128, 1321, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9726, 62, 3919, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 62, 14995, 796, 2878, 13, 403, 8002, 10786, 67, 3256, 277, 71, 13, 961, 7, 23, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 705, 31463, 890, 3984, 4064, 81, 6, 4064, 850, 62, 14995, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 1367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18551, 2246, 796, 2878, 13, 403, 8002, 10786, 40, 3256, 277, 71, 13, 961, 7, 19, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 1315, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47629, 2246, 796, 2878, 13, 403, 8002, 10786, 40, 3256, 277, 71, 13, 961, 7, 19, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 678, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7375, 5777, 796, 2878, 13, 403, 8002, 10786, 69, 3256, 277, 71, 13, 961, 7, 19, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 2242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17579, 5777, 796, 2878, 13, 403, 8002, 10786, 69, 3256, 277, 71, 13, 961, 7, 19, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 2681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6188, 546, 11210, 6001, 11, 4534, 1602, 21592, 16874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 517, 1167, 273, 460, 307, 1043, 319, 2443, 1467, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10978, 707, 2743, 62, 35, 62, 18417, 62, 41311, 62, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1041, 73, 62, 10951, 796, 2878, 13, 403, 8002, 10786, 1860, 1860, 1860, 67, 3256, 277, 71, 13, 961, 7, 23, 1635, 767, 4008, 58, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9726, 62, 3919, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13244, 62, 10951, 796, 2878, 13, 403, 8002, 10786, 1860, 1860, 1860, 1860, 3256, 277, 71, 13, 961, 7, 23, 1635, 807, 4008, 58, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9726, 62, 3919, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10243, 62, 3919, 796, 2878, 13, 403, 8002, 10786, 71, 3256, 277, 71, 13, 961, 7, 17, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 642, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4318, 62, 19204, 796, 2878, 13, 403, 8002, 10786, 67, 3256, 277, 71, 13, 961, 7, 23, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 1343, 678, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2199, 62, 10951, 796, 2878, 13, 403, 8002, 10786, 1860, 1860, 1860, 1860, 1860, 67, 3256, 277, 71, 13, 961, 7, 23, 1635, 1367, 4008, 58, 47715, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9794, 262, 2512, 4129, 329, 1306, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 11925, 15853, 9726, 62, 11925, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 14957, 13639, 4129, 4064, 82, 6, 4064, 2472, 62, 11925, 198, 220, 220, 220, 1303, 2735, 1100, 287, 2939, 1366, 198, 220, 220, 220, 277, 71, 13, 36163, 7, 23350, 62, 11925, 8, 198, 220, 220, 220, 288, 4906, 796, 705, 84, 17, 6, 198, 220, 220, 220, 5485, 796, 685, 6615, 11, 264, 9430, 60, 198, 220, 220, 220, 2546, 796, 45941, 13, 67, 4906, 7, 67, 4906, 737, 23814, 1096, 1635, 264, 9430, 1635, 3951, 198, 220, 220, 220, 1366, 796, 277, 71, 13, 961, 3419, 198, 220, 220, 220, 1366, 796, 45941, 13, 6738, 22252, 7, 7890, 58, 25, 7857, 4357, 288, 4906, 737, 3447, 1758, 7, 43358, 8, 198, 220, 220, 220, 277, 71, 13, 19836, 3419, 198, 220, 220, 220, 2393, 11627, 3004, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 7753, 38381, 16, 60, 198, 220, 220, 220, 1303, 611, 2393, 11627, 3004, 287, 45302, 35, 1404, 10354, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 869, 7, 14692, 65, 13344, 17, 1600, 2393, 12962, 628, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 6649, 3008, 25, 4064, 69, 11, 11677, 25, 4064, 69, 329, 2511, 3610, 6, 4064, 357, 9771, 62, 10951, 58, 15, 4357, 2199, 62, 10951, 58, 16, 12962, 198, 220, 220, 220, 2511, 3610, 796, 1366, 1635, 2199, 62, 10951, 58, 15, 60, 1343, 2199, 62, 10951, 58, 16, 60, 198, 220, 220, 220, 1303, 329, 30624, 11760, 198, 220, 220, 220, 611, 10243, 62, 3919, 1875, 718, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 5224, 694, 5951, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 1659, 62, 2971, 796, 2199, 62, 10951, 58, 23, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1410, 694, 62, 9979, 415, 796, 2199, 62, 10951, 58, 24, 60, 198, 220, 220, 220, 220, 220, 220, 220, 18100, 89, 9038, 62, 9979, 415, 796, 2199, 62, 10951, 58, 940, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2511, 3610, 796, 362, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4318, 62, 19204, 796, 604, 198, 220, 220, 220, 220, 220, 220, 220, 269, 16, 796, 362, 13, 15, 1635, 1410, 694, 62, 9979, 415, 1635, 2866, 62, 1659, 62, 2971, 1635, 2866, 62, 1659, 62, 2971, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17, 796, 1410, 694, 62, 9979, 415, 1635, 2866, 62, 1659, 62, 2971, 1220, 18100, 89, 9038, 62, 9979, 415, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 1377, 9626, 1572, 6937, 20796, 5087, 329, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 269, 16, 25, 370, 13, 76, 17, 284, 370, 29006, 76, 17, 13, 388, 12, 19, 8, 5218, 33090, 286, 352, 13, 15, 68, 10, 1731, 318, 2672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 269, 17, 25, 509, 13, 76, 284, 509, 13, 388, 257, 14804, 33090, 286, 352, 13, 15, 68, 10, 3312, 318, 2672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 269, 16, 62, 9888, 796, 352, 13, 15, 68, 10, 1731, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17, 62, 9888, 796, 352, 13, 15, 68, 10, 3312, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 1377, 27131, 378, 28400, 10795, 366, 9979, 1187, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 74, 16, 796, 269, 16, 62, 9888, 1635, 269, 16, 1220, 357, 31463, 62, 19204, 12429, 642, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 74, 17, 796, 269, 17, 62, 9888, 1635, 269, 17, 1220, 4318, 62, 19204, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 283, 342, 76, 796, 45941, 13, 6404, 19510, 69, 74, 16, 1220, 357, 6335, 3610, 8, 1343, 352, 13, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 796, 277, 74, 17, 1220, 2604, 283, 342, 76, 198, 220, 220, 220, 220, 220, 220, 220, 22205, 796, 2199, 62, 10951, 58, 17, 60, 1343, 2199, 62, 10951, 58, 18, 60, 1635, 5951, 1343, 2199, 62, 10951, 58, 19, 60, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5951, 1635, 5951, 198, 220, 220, 220, 2073, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38257, 407, 581, 1403, 262, 683, 707, 2743, 1366, 994, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 264, 9430, 1875, 1105, 830, 25, 220, 1303, 1327, 30817, 815, 1064, 257, 1365, 835, 1568, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 1874, 321, 10137, 416, 257, 5766, 286, 657, 13, 1495, 351, 47027, 259, 451, 39555, 341, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 850, 796, 2511, 3610, 58, 3559, 405, 9, 19, 25, 2857, 405, 9, 19, 11, 44688, 9, 19, 25, 1959, 405, 9, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 288, 17816, 4703, 62, 12853, 20520, 796, 850, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2511, 3610, 796, 3405, 259, 7, 6335, 3610, 11, 357, 6615, 1220, 604, 11, 264, 9430, 1220, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1288, 361, 264, 9430, 1875, 642, 4059, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2511, 3610, 796, 3405, 259, 7, 6335, 3610, 11, 357, 6615, 1220, 362, 11, 264, 9430, 1220, 362, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 7424, 4097, 428, 318, 978, 3077, 78, 198, 220, 220, 220, 220, 220, 220, 220, 22205, 796, 2511, 3610, 1635, 2199, 62, 10951, 58, 17, 60, 198, 220, 220, 220, 1441, 357, 6335, 3610, 11, 22205, 8, 628, 198, 4299, 10978, 707, 2743, 62, 961, 7, 7753, 62, 11600, 11, 15942, 577, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 262, 10978, 707, 2743, 12, 23, 9619, 198, 220, 220, 220, 329, 2046, 13326, 11, 356, 691, 761, 2266, 11, 337, 4663, 290, 309, 4663, 198, 220, 220, 220, 5128, 25, 2393, 22155, 588, 198, 220, 220, 220, 1391, 6, 445, 62, 6978, 6, 1058, 705, 7998, 62, 39, 2919, 62, 4626, 486, 2931, 62, 3312, 405, 62, 33, 3070, 62, 3697, 48510, 62, 49, 1238, 62, 50, 486, 486, 13, 35, 1404, 3256, 198, 220, 220, 220, 705, 10793, 62, 6978, 6, 1058, 705, 7998, 62, 39, 2919, 62, 4626, 486, 2931, 62, 3312, 405, 62, 33, 2998, 62, 3697, 48510, 62, 49, 1238, 62, 50, 486, 486, 13, 35, 1404, 3256, 198, 220, 220, 220, 705, 83, 343, 62, 6978, 6, 1058, 705, 7998, 62, 39, 2919, 62, 4626, 486, 2931, 62, 3312, 405, 62, 33, 1415, 62, 3697, 48510, 62, 49, 1238, 62, 50, 486, 486, 13, 35, 1404, 6, 92, 198, 220, 220, 220, 5072, 25, 3128, 22155, 588, 198, 220, 220, 220, 1391, 6, 10793, 62, 19313, 6, 1058, 45941, 13, 18747, 7, 2816, 405, 11, 2816, 4059, 38165, 198, 220, 220, 220, 4941, 25, 10978, 707, 2743, 62, 35, 62, 18417, 62, 41311, 62, 268, 422, 198, 220, 220, 220, 2638, 1378, 2503, 13, 7890, 13, 73, 2611, 13, 2188, 13, 34523, 14, 907, 66, 12384, 14, 268, 14, 38400, 707, 2743, 4531, 14, 13200, 62, 325, 5154, 14, 11994, 67, 62, 39873, 14, 7998, 62, 35, 62, 18417, 62, 41311, 62, 268, 62, 85, 1157, 13, 12315, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 796, 23884, 198, 220, 220, 220, 329, 1994, 287, 2393, 62, 11600, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 2393, 62, 11600, 58, 2539, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 13, 30619, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2511, 62, 7890, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 22205, 62, 7890, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2511, 3610, 11, 22205, 796, 367, 23, 62, 7753, 62, 961, 7, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2511, 62, 7890, 62, 4868, 13, 33295, 7, 6335, 3610, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22205, 62, 7890, 62, 4868, 13, 33295, 7, 19313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2511, 3610, 796, 45941, 13, 85, 25558, 7, 6335, 62, 7890, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22205, 796, 45941, 13, 85, 25558, 7, 19313, 62, 7890, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 2539, 796, 2393, 62, 11600, 58, 2539, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 7890, 62, 2539, 60, 796, 22205, 13, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 2539, 796, 2393, 62, 11600, 58, 2539, 7131, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 7890, 62, 2539, 60, 796, 2511, 3610, 13, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 628, 220, 220, 220, 1441, 288, 628, 198, 4299, 651, 62, 6978, 7, 15763, 11, 4097, 11, 640, 62, 2539, 28, 14202, 11, 3108, 62, 21048, 28, 14202, 2599, 198, 220, 220, 220, 37227, 16742, 82, 3108, 329, 1813, 640, 1994, 290, 1366, 4097, 198, 220, 220, 220, 640, 62, 2539, 25, 1853, 486, 2919, 1485, 405, 11, 575, 26314, 56, 12038, 16458, 16768, 12038, 198, 220, 220, 220, 4097, 25, 347, 2998, 11, 44, 4663, 357, 18, 13, 24, 388, 828, 347, 1415, 11, 51, 4663, 357, 1157, 388, 828, 347, 3070, 11, 445, 357, 15, 13, 21, 388, 8, 198, 220, 220, 220, 17291, 347, 3070, 468, 1111, 5323, 76, 290, 362, 13276, 6323, 3696, 198, 220, 220, 220, 7885, 25, 22205, 11, 22204, 5951, 26, 5325, 3610, 198, 220, 220, 220, 329, 9037, 1366, 1441, 3108, 198, 220, 220, 220, 3108, 62, 21048, 25, 18070, 26009, 11, 262, 2656, 474, 2674, 45854, 3108, 588, 43922, 198, 220, 220, 220, 220, 220, 220, 220, 1853, 486, 14, 2931, 14, 4626, 486, 2931, 2388, 14, 405, 14, 33, 3070, 198, 220, 220, 220, 2073, 11, 732, 312, 506, 898, 3108, 5509, 588, 198, 220, 220, 220, 220, 220, 220, 220, 1853, 486, 2931, 2388, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 640, 62, 2539, 318, 407, 6045, 25, 220, 1303, 412, 46, 1103, 2435, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4553, 262, 3128, 290, 640, 422, 262, 640, 62, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 2435, 62, 2539, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 2435, 62, 2539, 11, 705, 4, 56, 4, 76, 4, 67, 4, 39, 4, 44, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 4475, 796, 288, 83, 62, 2435, 62, 2539, 13, 2536, 31387, 10786, 4, 56, 4, 76, 4, 67, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 2435, 796, 288, 83, 62, 2435, 62, 2539, 13, 2536, 31387, 10786, 4, 39, 4, 44, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8251, 796, 685, 28664, 62, 4475, 11, 288, 83, 62, 2435, 11, 4097, 60, 220, 1303, 6416, 2435, 412, 46, 9619, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3108, 62, 21048, 287, 37250, 7998, 26009, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 2435, 62, 2539, 13, 2536, 31387, 10786, 4, 56, 4, 76, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 2435, 62, 2539, 13, 2536, 31387, 10786, 4, 67, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 2435, 62, 2539, 13, 2536, 31387, 10786, 4, 56, 4, 76, 4, 67, 4, 39, 11537, 1343, 705, 405, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 2435, 62, 2539, 13, 2536, 31387, 10786, 4, 44, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4097, 1343, 31051, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5323, 76, 6323, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4097, 62, 4703, 62, 2713, 796, 4097, 1343, 45434, 3697, 48510, 62, 49, 2713, 62, 50, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 362, 13276, 6323, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4097, 796, 4097, 1343, 45434, 3697, 48510, 62, 49, 1238, 62, 50, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 796, 6808, 1343, 640, 62, 2539, 1343, 12813, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4097, 62, 4703, 62, 2713, 796, 4097, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 366, 44601, 709, 14, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 62, 4703, 62, 2713, 796, 4097, 198, 220, 220, 220, 1303, 4798, 366, 15763, 25, 4064, 82, 1, 4064, 6808, 198, 220, 220, 220, 1303, 4798, 366, 3903, 25, 4064, 82, 1, 4064, 4097, 198, 220, 220, 220, 1303, 783, 11629, 378, 625, 6808, 3108, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 15763, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 16, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 28686, 13, 4868, 15908, 7, 15763, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4097, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 7857, 796, 28686, 13, 6978, 13, 11407, 1096, 7, 15763, 1343, 277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 62, 7857, 1875, 33028, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 13, 33295, 7, 15763, 1343, 277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4097, 62, 4703, 62, 2713, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 16, 13, 33295, 7, 15763, 1343, 277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7753, 6978, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 2393, 6978, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 2393, 6978, 16, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 2393, 6978, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2393, 6978, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 6808, 11, 705, 22437, 407, 7160, 6, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 628, 198, 4299, 13532, 7, 15763, 11, 640, 62, 2539, 28, 14202, 11, 3108, 62, 21048, 28, 14202, 11, 4235, 28, 15, 2599, 198, 220, 220, 220, 37227, 42316, 82, 257, 22155, 329, 198, 220, 220, 220, 262, 2393, 13532, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 3108, 22155, 1500, 81, 7241, 422, 994, 198, 220, 220, 220, 288, 796, 23884, 198, 220, 220, 220, 611, 640, 62, 2539, 318, 407, 6045, 25, 220, 1303, 412, 46, 1103, 2435, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 2046, 13326, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14692, 445, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 33, 3070, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 2539, 28, 2435, 62, 2539, 11, 3108, 62, 21048, 28, 6978, 62, 21048, 828, 705, 4703, 3256, 705, 445, 6335, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 288, 14692, 32986, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 33, 3023, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 640, 62, 2539, 28, 2435, 62, 2539, 11, 6978, 62, 21048, 28, 6978, 62, 21048, 828, 705, 32986, 3256, 705, 32986, 6335, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 288, 14692, 82, 343, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 33, 3312, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 2539, 28, 2435, 62, 2539, 11, 3108, 62, 21048, 28, 6978, 62, 21048, 828, 705, 82, 343, 3256, 705, 82, 343, 6335, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14692, 83, 343, 4521, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 33, 1157, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 2539, 28, 2435, 62, 2539, 11, 3108, 62, 21048, 28, 6978, 62, 21048, 828, 705, 343, 4521, 3256, 705, 343, 4521, 6335, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 288, 14692, 10793, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 33, 2998, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 2539, 28, 2435, 62, 2539, 11, 3108, 62, 21048, 28, 6978, 62, 21048, 828, 705, 343, 2670, 3256, 705, 343, 2670, 6335, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 288, 14692, 83, 343, 1157, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 33, 1415, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 2539, 28, 2435, 62, 2539, 11, 3108, 62, 21048, 28, 6978, 62, 21048, 828, 705, 343, 1157, 3256, 705, 343, 1157, 6335, 20520, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 14692, 15460, 14995, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 15460, 62, 14995, 13, 9600, 12340, 705, 15460, 3256, 705, 14995, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 288, 14692, 49720, 62, 1177, 62, 9248, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 85, 4496, 62, 6862, 64, 13, 9600, 12340, 705, 85, 4496, 3256, 705, 6862, 64, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 288, 14692, 1044, 9631, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 44601, 709, 13, 9600, 12340, 705, 44601, 709, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 288, 14692, 34021, 62, 9150, 62, 6978, 8973, 796, 685, 1136, 62, 6978, 7, 15763, 11, 366, 39, 23, 62, 83, 343, 62, 4626, 486, 2931, 3312, 1238, 13, 9600, 12340, 6, 69, 1930, 20520, 628, 220, 220, 220, 1441, 288, 628, 198, 198, 4299, 3440, 62, 71, 23, 7, 259, 62, 15763, 11, 640, 62, 2539, 11, 3108, 62, 21048, 28, 14202, 11, 4235, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3440, 477, 262, 1366, 290, 1234, 606, 287, 257, 22155, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 717, 306, 9058, 262, 3108, 22155, 198, 220, 220, 220, 412, 46, 62, 6978, 62, 11600, 796, 13532, 7, 259, 62, 15763, 11, 640, 62, 2539, 28, 2435, 62, 2539, 11, 3108, 62, 21048, 28, 6978, 62, 21048, 11, 4235, 28, 15, 8, 628, 220, 220, 220, 1303, 1100, 259, 477, 262, 10978, 707, 2743, 3696, 994, 198, 220, 220, 220, 412, 46, 62, 7890, 796, 10978, 707, 2743, 62, 961, 7, 4720, 62, 6978, 62, 11600, 8, 198, 220, 220, 220, 1303, 1500, 81, 315, 257, 9037, 1366, 22155, 198, 220, 220, 220, 9037, 62, 6978, 62, 11600, 796, 13532, 7, 259, 62, 15763, 8, 198, 220, 220, 220, 1303, 1100, 259, 477, 9037, 1366, 994, 198, 220, 220, 220, 9037, 62, 7890, 796, 9037, 62, 961, 7, 12708, 62, 6978, 62, 11600, 8, 198, 220, 220, 220, 1303, 651, 262, 4252, 9848, 198, 220, 220, 220, 264, 4801, 11, 473, 64, 796, 4252, 62, 27787, 7, 12708, 62, 7890, 17816, 15460, 6, 4357, 9037, 62, 7890, 17816, 14995, 6, 4357, 640, 62, 2539, 8, 198, 220, 220, 220, 1303, 651, 262, 4252, 1278, 600, 9848, 198, 220, 220, 220, 4252, 62, 4743, 600, 796, 23568, 75, 600, 7, 12708, 62, 7890, 17816, 85, 4496, 6, 4357, 9037, 62, 7890, 17816, 6862, 64, 6, 4357, 264, 4801, 11, 473, 64, 8, 198, 220, 220, 220, 1303, 12082, 412, 46, 290, 9037, 1366, 1978, 198, 220, 220, 220, 412, 46, 62, 7890, 13, 19119, 7, 12708, 62, 7890, 8, 198, 220, 220, 220, 412, 46, 62, 7890, 17816, 82, 4801, 20520, 796, 264, 4801, 198, 220, 220, 220, 412, 46, 62, 7890, 17816, 19155, 62, 4743, 600, 20520, 796, 4252, 62, 4743, 600, 198, 220, 220, 220, 412, 46, 62, 7890, 17816, 2246, 48, 34694, 20520, 796, 45941, 13, 9107, 418, 7, 4720, 62, 7890, 17816, 343, 2670, 6, 4083, 43358, 11, 288, 4906, 28, 37659, 13, 600, 23, 8, 198, 220, 220, 220, 1303, 329, 2046, 13326, 198, 220, 220, 220, 412, 46, 62, 7890, 17816, 26069, 20520, 796, 412, 46, 62, 7890, 17816, 343, 2670, 20520, 532, 412, 46, 62, 7890, 17816, 343, 1157, 20520, 198, 220, 220, 220, 412, 46, 62, 7890, 17816, 83, 343, 6335, 10366, 952, 20520, 796, 412, 46, 62, 7890, 17816, 343, 2670, 6335, 20520, 1220, 412, 46, 62, 7890, 17816, 343, 1157, 6335, 20520, 198, 220, 220, 220, 412, 46, 62, 7890, 17816, 4703, 6335, 10366, 952, 20520, 796, 412, 46, 62, 7890, 17816, 343, 2670, 6335, 20520, 1220, 412, 46, 62, 7890, 17816, 445, 6335, 20520, 198, 220, 220, 220, 1303, 288, 17816, 358, 8903, 20520, 796, 357, 67, 17816, 32986, 20520, 532, 288, 17816, 4703, 6, 12962, 1220, 357, 67, 17816, 32986, 20520, 1343, 288, 17816, 4703, 6, 12962, 628, 220, 220, 220, 1303, 3376, 262, 16408, 1917, 198, 220, 220, 220, 288, 83, 62, 2435, 62, 2539, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 2435, 62, 2539, 11, 705, 4, 56, 4, 76, 4, 67, 4, 39, 4, 44, 11537, 198, 220, 220, 220, 288, 83, 62, 2435, 796, 493, 7, 28664, 62, 2435, 62, 2539, 13, 2536, 31387, 10786, 4, 39, 6, 4008, 198, 220, 220, 220, 1303, 611, 288, 83, 62, 2435, 1279, 1367, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 466, 270, 796, 33705, 62, 21084, 7, 4720, 62, 7890, 8, 628, 198, 220, 220, 220, 1303, 466, 262, 6279, 9335, 278, 198, 220, 220, 220, 1366, 796, 6279, 62, 27932, 7, 4720, 62, 7890, 8, 198, 220, 220, 220, 1303, 1366, 796, 1660, 62, 27932, 7, 4720, 62, 7890, 8, 198, 220, 220, 220, 1441, 1366, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 287, 62, 15763, 796, 31051, 16598, 8139, 14, 12394, 1677, 15821, 14, 38400, 62, 2902, 5031, 375, 6, 198, 220, 220, 220, 1303, 6808, 329, 262, 5072, 3696, 198, 220, 220, 220, 640, 62, 2539, 796, 366, 1264, 1120, 35402, 2388, 1, 198, 220, 220, 220, 1366, 796, 3440, 62, 71, 23, 7, 259, 62, 15763, 11, 640, 62, 2539, 11, 3108, 62, 21048, 2625, 7998, 26009, 4943, 198 ]
2.035455
10,069
from django.urls import path,include from rest_framework.routers import DefaultRouter from profiles_api import views router=DefaultRouter() router.register('hello-viewset',views.HelloViewSet,basename='hello-viewset') urlpatterns=[ path('hello-api/',views.HelloApi.as_view()), path('',include(router.urls)) ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 11, 17256, 198, 6738, 1334, 62, 30604, 13, 472, 1010, 1330, 15161, 49, 39605, 198, 6738, 16545, 62, 15042, 1330, 5009, 198, 198, 472, 353, 28, 19463, 49, 39605, 3419, 198, 472, 353, 13, 30238, 10786, 31373, 12, 1177, 2617, 3256, 33571, 13, 15496, 7680, 7248, 11, 12093, 12453, 11639, 31373, 12, 1177, 2617, 11537, 198, 198, 6371, 33279, 82, 41888, 198, 220, 220, 220, 3108, 10786, 31373, 12, 15042, 14, 3256, 33571, 13, 15496, 32, 14415, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 3256, 17256, 7, 472, 353, 13, 6371, 82, 4008, 198, 60, 198 ]
2.917431
109
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ################################################## # Copyright (c) 2019 Zhao Xiang Lim. # Distributed under the Apache License 2.0 (the "License"). # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # You should have received a copy of the Apache License 2.0 # along with this program. # If not, see <http://www.apache.org/licenses/LICENSE-2.0>. ################################################## from pyHookDeploy import init_app app = init_app() if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 29113, 14468, 2235, 198, 2, 15069, 357, 66, 8, 13130, 29436, 45641, 7576, 13, 198, 2, 4307, 6169, 739, 262, 24843, 13789, 362, 13, 15, 357, 1169, 366, 34156, 11074, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 24843, 13789, 362, 13, 15, 198, 2, 1863, 351, 428, 1430, 13, 198, 2, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 28401, 198, 29113, 14468, 2235, 628, 198, 6738, 12972, 39, 566, 49322, 1330, 2315, 62, 1324, 628, 198, 1324, 796, 2315, 62, 1324, 3419, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 12417, 3419, 198 ]
3.718894
217
from collections import OrderedDict import pytest from numpy.testing import assert_array_equal from keanu.plots import traceplot from keanu.vartypes import sample_types @pytest.fixture
[ 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 11748, 12972, 9288, 198, 6738, 299, 32152, 13, 33407, 1330, 6818, 62, 18747, 62, 40496, 198, 198, 6738, 885, 42357, 13, 489, 1747, 1330, 12854, 29487, 198, 6738, 885, 42357, 13, 85, 433, 9497, 1330, 6291, 62, 19199, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628 ]
3.392857
56
# -*- coding: utf-8 -*- import collections from lexical_analyzer_helpers import *
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 17268, 198, 198, 6738, 31191, 605, 62, 38200, 9107, 62, 16794, 364, 1330, 1635, 628, 628, 628, 628, 198 ]
2.628571
35
#!/usr/bin/env python3 """ Build everything from source. Handles: 1. Install npm dependencies and build the UI client 2. Build source and binary distributions of the python package. """ import os import shutil import subprocess import sys WEB_CLIENT_DIR = os.path.join( os.path.dirname(__file__), "pytest_commander", "web_client" ) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 15580, 2279, 422, 2723, 13, 198, 198, 12885, 829, 25, 198, 16, 13, 15545, 30599, 20086, 290, 1382, 262, 12454, 5456, 198, 17, 13, 10934, 2723, 290, 13934, 24570, 286, 262, 21015, 5301, 13, 198, 37811, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 25064, 628, 198, 8845, 33, 62, 5097, 28495, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 366, 9078, 9288, 62, 9503, 4066, 1600, 366, 12384, 62, 16366, 1, 198, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.992126
127
from src.util.ints import uint32, uint64 def calculate_block_reward(height: uint32) -> uint64: """ Returns the coinbase reward at a certain block height. 1 Chia coin = 16,000,000,000,000 = 16 trillion mojo. """ return uint64(14000000000000) def calculate_base_fee(height: uint32) -> uint64: """ Returns the base fee reward at a certain block height. 1 base fee reward is 1/8 of total block reward """ return uint64(2000000000000)
[ 6738, 12351, 13, 22602, 13, 29503, 1330, 20398, 2624, 11, 20398, 2414, 628, 198, 4299, 15284, 62, 9967, 62, 260, 904, 7, 17015, 25, 20398, 2624, 8, 4613, 20398, 2414, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 10752, 8692, 6721, 379, 257, 1728, 2512, 6001, 13, 198, 220, 220, 220, 352, 609, 544, 10752, 796, 1467, 11, 830, 11, 830, 11, 830, 11, 830, 796, 1467, 12989, 6941, 7639, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 20398, 2414, 7, 1415, 8269, 2388, 8, 628, 198, 4299, 15284, 62, 8692, 62, 39071, 7, 17015, 25, 20398, 2624, 8, 4613, 20398, 2414, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 2779, 6838, 6721, 379, 257, 1728, 2512, 6001, 13, 198, 220, 220, 220, 352, 2779, 6838, 6721, 318, 352, 14, 23, 286, 2472, 2512, 6721, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 20398, 2414, 7, 2167, 8269, 405, 8, 198 ]
2.890244
164
# -*- coding: utf-8 -*- from __future__ import absolute_import from dp_tornado.engine.helper import Helper as dpHelper from Crypto.Cipher import AES
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 288, 79, 62, 45910, 4533, 13, 18392, 13, 2978, 525, 1330, 5053, 525, 355, 288, 79, 47429, 198, 6738, 36579, 13, 34, 10803, 1330, 34329, 628 ]
2.980392
51
import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import matplotlib.cm from scipy.signal.windows import gaussian import sklearn.metrics from DataSet import createDataSetFromFile from Utils import getProjectPath from Evaluation import getSpecificColorMap, plotMinErrors, plotAlongAxisErrors,\ plotMinErrorsSqueezed if __name__ == '__main__': matplotlib.rcParams.update({'font.size': 20}) createGroundTruthCreation()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 12315, 1330, 350, 7568, 47798, 198, 11748, 2603, 29487, 8019, 13, 11215, 198, 6738, 629, 541, 88, 13, 12683, 282, 13, 28457, 1330, 31986, 31562, 198, 11748, 1341, 35720, 13, 4164, 10466, 198, 6738, 6060, 7248, 1330, 2251, 6601, 7248, 4863, 8979, 198, 6738, 7273, 4487, 1330, 651, 16775, 15235, 198, 6738, 34959, 1330, 651, 32419, 10258, 13912, 11, 7110, 9452, 9139, 5965, 11, 7110, 24035, 31554, 271, 9139, 5965, 11, 59, 198, 220, 220, 220, 7110, 9452, 9139, 5965, 22266, 1453, 8863, 628, 628, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 220, 220, 220, 220, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2603, 29487, 8019, 13, 6015, 10044, 4105, 13, 19119, 15090, 6, 10331, 13, 7857, 10354, 1160, 30072, 198, 220, 220, 220, 2251, 35539, 38782, 12443, 341, 3419, 628, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.796875
192
# Python Object Oriented Programming by Joe Marini course example # implementing default values in data classes # Default Values always have to come first - i.e. before non-default values. from dataclasses import dataclass, field import random @dataclass b1 = Book("War and Peace", "Leo Tolstoy", 1225) b2 = Book("The Catcher in the Rye", "JD Salinger", 234) print(b1) print(b2)
[ 2, 11361, 9515, 17954, 4714, 30297, 416, 5689, 1526, 5362, 1781, 1672, 198, 2, 15427, 4277, 3815, 287, 1366, 6097, 198, 2, 15161, 27068, 1464, 423, 284, 1282, 717, 532, 1312, 13, 68, 13, 878, 1729, 12, 12286, 3815, 13, 220, 198, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 11748, 4738, 628, 198, 31, 19608, 330, 31172, 198, 198, 65, 16, 796, 4897, 7203, 13195, 290, 12689, 1600, 366, 3123, 78, 20054, 301, 726, 1600, 1105, 1495, 8, 198, 65, 17, 796, 4897, 7203, 464, 5181, 2044, 287, 262, 45014, 1600, 366, 37882, 4849, 3889, 1600, 34323, 8, 198, 4798, 7, 65, 16, 8, 198, 4798, 7, 65, 17, 8, 198 ]
3.310345
116
import os import sys import logging from telegram.ext import MessageHandler from telegram.ext import CommandHandler from telegram.ext import Filters from telegram.ext import BaseFilter from telegram.ext.dispatcher import run_async from picture import Picture logger = logging.getLogger(__name__) BASE_FILE_PATH = os.path.abspath(os.path.dirname(sys.argv[0])) + '/tmp/{}_{}.jpg' private_chat = FilterPrivateChat() photo_reply = FilterReplyToPhoto() @run_async @run_async
[ 11748, 28686, 201, 198, 11748, 25064, 201, 198, 11748, 18931, 201, 198, 201, 198, 6738, 573, 30536, 13, 2302, 1330, 16000, 25060, 201, 198, 6738, 573, 30536, 13, 2302, 1330, 9455, 25060, 201, 198, 6738, 573, 30536, 13, 2302, 1330, 7066, 1010, 201, 198, 6738, 573, 30536, 13, 2302, 1330, 7308, 22417, 201, 198, 6738, 573, 30536, 13, 2302, 13, 6381, 8071, 2044, 1330, 1057, 62, 292, 13361, 201, 198, 201, 198, 6738, 4286, 1330, 17741, 201, 198, 201, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 201, 198, 201, 198, 33, 11159, 62, 25664, 62, 34219, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 17597, 13, 853, 85, 58, 15, 60, 4008, 1343, 31051, 22065, 14, 90, 92, 23330, 27422, 9479, 6, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 19734, 62, 17006, 796, 25853, 29067, 30820, 3419, 201, 198, 23074, 62, 47768, 796, 25853, 36875, 2514, 6191, 3419, 201, 198, 201, 198, 201, 198, 201, 198, 31, 5143, 62, 292, 13361, 201, 198, 201, 198, 201, 198, 201, 198, 31, 5143, 62, 292, 13361, 201, 198, 201, 198 ]
2.627551
196
import numpy as np """Observations module class. Dependencies: numpy scipy """ class Observations(object): """Observations class. Parameters: ---------- observatory : string Observatory for tiles ('apo' or 'lco'; default 'apo') Attributes: ---------- nobservations : np.int32 number of observations tileid : ndarray of np.int32 id of each tile for observations mjd : ndarray of np.float64 MJD of observation (days) duration : ndarray of np.float64 duration of observation (days) sn2 : ndarray of np.float64 duration of observation (days) Methods: ------- add() : add an observation of a tile toarray() : Return ndarray of tile properties """ def toarray(self, indx=None): """Return observations as a record array Parameters: ---------- indx : ndarray of np.int32 indices of observations to return (default to all) Returns: ------- observations : record array observation information """ obs0 = [('tileid', np.int32), ('mjd', np.float64), ('duration', np.float64), ('sn2', np.float64)] if(indx is None): indx = np.arange(self.nobservations) nobs = len(indx) obs = np.zeros(nobs, dtype=obs0) if(nobs > 0): obs['tileid'] = self.tileid[indx] obs['mjd'] = self.mjd[indx] obs['duration'] = self.duration[indx] obs['sn2'] = self.sn2[indx] return(obs)
[ 11748, 299, 32152, 355, 45941, 198, 198, 37811, 31310, 712, 602, 8265, 1398, 13, 198, 198, 35, 2690, 3976, 25, 628, 299, 32152, 198, 629, 541, 88, 198, 198, 37811, 628, 198, 4871, 19243, 602, 7, 15252, 2599, 198, 220, 220, 220, 37227, 31310, 712, 602, 1398, 13, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 3799, 2870, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 25758, 329, 19867, 19203, 41817, 6, 393, 705, 75, 1073, 17020, 4277, 705, 41817, 11537, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 645, 1443, 712, 602, 1058, 45941, 13, 600, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 13050, 628, 220, 220, 220, 17763, 312, 1058, 299, 67, 18747, 286, 45941, 13, 600, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 286, 1123, 17763, 329, 13050, 628, 220, 220, 220, 285, 73, 67, 1058, 299, 67, 18747, 286, 45941, 13, 22468, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 33974, 35, 286, 13432, 357, 12545, 8, 628, 220, 220, 220, 9478, 1058, 299, 67, 18747, 286, 45941, 13, 22468, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 9478, 286, 13432, 357, 12545, 8, 628, 220, 220, 220, 3013, 17, 1058, 299, 67, 18747, 286, 45941, 13, 22468, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 9478, 286, 13432, 357, 12545, 8, 628, 220, 220, 220, 25458, 25, 198, 220, 220, 220, 35656, 628, 220, 220, 220, 751, 3419, 1058, 751, 281, 13432, 286, 257, 17763, 198, 220, 220, 220, 284, 18747, 3419, 1058, 8229, 299, 67, 18747, 286, 17763, 6608, 198, 198, 37811, 628, 220, 220, 220, 825, 284, 18747, 7, 944, 11, 773, 87, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 13050, 355, 257, 1700, 7177, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 220, 220, 220, 220, 773, 87, 1058, 299, 67, 18747, 286, 45941, 13, 600, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 286, 13050, 284, 1441, 357, 12286, 284, 477, 8, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 628, 220, 220, 220, 220, 220, 220, 220, 13050, 1058, 1700, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13432, 1321, 198, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 10201, 15, 796, 685, 10786, 40927, 312, 3256, 45941, 13, 600, 2624, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 76, 73, 67, 3256, 45941, 13, 22468, 2414, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 32257, 3256, 45941, 13, 22468, 2414, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 16184, 17, 3256, 45941, 13, 22468, 2414, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 521, 87, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 87, 796, 45941, 13, 283, 858, 7, 944, 13, 34952, 3168, 602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 645, 1443, 796, 18896, 7, 521, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10201, 796, 45941, 13, 9107, 418, 7, 77, 8158, 11, 288, 4906, 28, 8158, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 77, 8158, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10201, 17816, 40927, 312, 20520, 796, 2116, 13, 40927, 312, 58, 521, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10201, 17816, 76, 73, 67, 20520, 796, 2116, 13, 76, 73, 67, 58, 521, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10201, 17816, 32257, 20520, 796, 2116, 13, 32257, 58, 521, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10201, 17816, 16184, 17, 20520, 796, 2116, 13, 16184, 17, 58, 521, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7, 8158, 8, 198 ]
2.206284
732
from typing import Callable, Literal, Tuple from PyQt5.QtWidgets import QApplication, QComboBox, QWidget from PyQt5.QtGui import QPixmap from gui import Gui from logic.luigi_sacco import luigi_sacco_encrypt, luigi_sacco_decrypt, confirm_text_in_correct_lang, format_key_and_input_text from logic.route_encryption import create_empty_matrix, route_encrypt, route_decrypt, get_potential_table_sizes, apply_e4, apply_reverse_b3 import utils ENCRYPT, DECRYPT = (True, False), (False, True) def center_window(window: Gui) -> None: """ Center the given window on the screen """ centered_x = screen_geometry.center().x() - window.width()//2 centered_y = screen_geometry.center().y() - window.height()//2 window.move(centered_x, centered_y) def create_main_window() -> Gui: """ Creates app main window from which user can go to luigi sacco or route encryption windows """ widget_ids = "assets/main-ids.json" gui_file_path = "assets/main-menu.ui" kto_image_path = utils.get_path_in_bundle_dir("assets/kto_logo.png") gui = Gui(widget_ids, gui_file_path) center_window(gui) kto_image = QPixmap(kto_image_path) gui.get_widget("mainLabel").setPixmap(kto_image) gui.add_event_listener("exitButton", lambda: app.quit()) return gui def create_error_message_window() -> Gui: """ Creates a small error message whose contents can be tuned to inform the user of an error """ widget_ids = "assets/error-message.json" gui_file_path = "assets/error-message.ui" gui = Gui(widget_ids, gui_file_path) # Hidden by default gui.hide() center_window(gui) # Set the okay button to hide the window when clicked gui.add_event_listener('okayButton', lambda: gui.hide()) return gui def display_error_message( error_message_window: Gui, title: str, content: str, solution: str) -> None: """ Shows error dialog. """ error_message_window.get_widget('errorNameLabel').setText(title) error_message_window.get_widget('errorMessageLabel').setText(content) error_message_window.get_widget('errorSolutionLabel').setText(solution) center_window(error_message_window) error_message_window.show() error_message_window.activateWindow() def goto_window(source: Gui, destination: Gui) -> None: """ Hides source gui and centers then shows the destination gui """ source.hide() center_window(destination) destination.activateWindow() destination.show() def create_luigi_sacco_window(main_window: Gui, show_error: Callable[[str, str, str], None]) -> Gui: """ Creates a submenu where user can use luigi sacco encryption / decrypytion """ widget_ids = "assets/first-method-ids.json" gui_file_path = "assets/first-method.ui" gui = Gui(widget_ids, gui_file_path, show_error) gui.hide() gui.add_event_listener("backButton", lambda: goto_window(gui, main_window)) return gui def create_luigi_sacco_info_window(luigi_sacco_window: Gui) -> Gui: """ Creates the info window for the Luigi Sacco encryption method """ widget_ids = "assets/luigi-sacco-info-ids.json" gui_file_path = "assets/luigi-sacco-info.ui" gui = Gui(widget_ids, gui_file_path) gui.hide() gui.add_event_listener("backButton", lambda: goto_window(gui, luigi_sacco_window)) return gui def create_route_encryption_window(main_window: Gui, show_error: Callable[[str, str, str], None]) -> Gui: """ Creates window where user can use route encryption / decryption according to E4 & B3 Routes """ widget_ids = "assets/second-method-ids.json" gui_file_path = "assets/second-method.ui" gui = Gui(widget_ids, gui_file_path, show_error) # Make this window hidden by default gui.hide() # Adding images for Route Visualization routes_image_path = utils.get_path_in_bundle_dir("assets/routes.png") routes_image = QPixmap(routes_image_path) gui.get_widget("routesLabel").setPixmap(routes_image) gui.add_event_listener("backButton", lambda: goto_window(gui, main_window)) return gui def get_luigi_sacco_language(get: Callable[[str], QWidget]) -> Literal["EN", "TR"]: """ Extracts and returns chosen language from Luigi Sacco Gui """ return "EN" if get('englishRadioButton').isChecked() else "TR" def get_luigi_sacco_input(get: Callable[[str], QWidget]) -> Tuple[str, str]: """ Extracts and returns key and text which user has given in Gui. Raises ValueError if either key or text are empty """ key = get('keyTextEdit').toPlainText() plain_text = get('inputTextEdit').toPlainText() if key == "" or plain_text == "": raise ValueError("Key or Plain Text not given") return key, plain_text def get_selected_action(get: Callable[[str], QWidget]) -> Tuple[bool, bool]: """ Returns whether given gui is in encrypt or decrypt state. """ encrypt = get('encryptRadioButton').isChecked() decrypt = get('decryptRadioButton').isChecked() return encrypt, decrypt def run_luigi_sacco(window: Gui) -> None: """ Function to run when Run Button is clicked in Luigi Sacco window. Runs luigi sacco encryption / decryption on the given key and input text and takes given language into account. Sets the output of the algorithm as the content of the output box """ # Shortcut for ops in this function get = lambda x: window.get_widget(x) language = get_luigi_sacco_language(get) try: key, plain_text = get_luigi_sacco_input(get) except ValueError: window.show_error( title="Empty Key or Input Text", content="Cannot run program without both Key and Input Text present.", solution="Please fill in both of these fields and try again" ) return action = get_selected_action(get) output = "" formatted_key, formatted_plain_text = format_key_and_input_text(key, plain_text) # Confirm Language has been correctly chosen try: confirm_text_in_correct_lang(formatted_key, language) except ValueError: window.show_error( title="Key has invalid characters", content="Your key includes characters that do not belong in your chosen language", solution="Remove any characters than don't belong to your chosen language and try again" ) return try: confirm_text_in_correct_lang(formatted_plain_text, language) except ValueError: window.show_error( title="Plain Text has invalid characters", content="Your Plain Text includes characters that do not belong in your chosen language", solution="Remove any characters than don't belong to your chosen language and try again" ) return if action == ENCRYPT: output = luigi_sacco_encrypt(key, plain_text, language) elif action == DECRYPT: output = luigi_sacco_decrypt(key, plain_text, language) get('outputTextEdit').setPlainText(output) def reset_luigi_sacco(window: Gui) -> None: """ Resets gui in luigi sacco to blank state """ window.get_widget('keyTextEdit').clear() window.get_widget('inputTextEdit').clear() window.get_widget('outputTextEdit').clear() def get_chosen_table_size(input_text: str, get: Callable[[str], QWidget]) -> Tuple[int, int]: """ Returns chosen table size from gui according to given input text """ if len(input_text) <= 0: return (0, 0) sizes, _ = get_potential_table_sizes(len(input_text)) return sizes[get('arraySizeComboBox').currentIndex()] def get_route_encryption_input(get: Callable[[str], QWidget]) -> Tuple[str, Tuple[int, int]]: """ Extracts and returns input text and table size from Route Encryption Gui """ input_text = get('inputTextEdit').toPlainText() table_size = get_chosen_table_size(input_text, get) return input_text, table_size def run_route_encryption(window: Gui) -> None: """ Function to run when Run Button is clicked in Route Encryption window. Runs route encryption / decryption on the given key and input text and takes given language into account. Sets the output of the algorithm as the content of the output box """ # Shortcut for ops in this function input_text, table_size = get_route_encryption_input(get) if len(input_text) == 0: window.show_error( title="Cannot Encrypt / Decrypt Empty Message", content="You attempted to start the program with no input text", solution="Enter at least one character in input field and try again" ) return elif len(input_text) > 50: window.show_error( title="Your input is too long", content="Maximum allowed is 50 characters", solution=f"You have entered {len(input_text)} characters. Please make sure your input is less than 50 characters." ) return if utils.is_prime(len(input_text)): window.show_error( title="Warning! Text Length is Prime", content=f"Your input text has a prime length of {len(input_text)} characters", solution="To get better performance using this encryption method, add another letter to your message." ) # Encrypt vs. Decrypt action = get_selected_action(get) # Final output message which goes to output box output = "" matrix_output = [] if action == ENCRYPT: output = route_encrypt(input_text, table_size) matrix_output = apply_e4(input_text, create_empty_matrix(table_size)) elif action == DECRYPT: output = route_decrypt(input_text, table_size) matrix_output = apply_reverse_b3(input_text, table_size) # Convert output matrix into a string formatted_matrix_output = "\n".join(', '.join(row) for row in matrix_output) get('outputTextEdit').setPlainText(output) get('matrixOutputTextEdit').setPlainText(formatted_matrix_output) def reset_route_encryption(window: Gui) -> None: """ Resets route encryption gui to blank state """ get('inputTextEdit').clear() get('outputTextEdit').clear() get('matrixOutputTextEdit').clear() get('arraySizeComboBox').clear() def populate_combobox(combobox: QComboBox, get_message: Callable[[], str]) -> None: """ Populates given combobox with potential tables sizes for the given message. """ combobox.clear() message = get_message() if len(message) <= 0: return # Populate combobox with list of sizes sizes, optimal_size = get_potential_table_sizes(len(message)) for size in sizes: if size == optimal_size or size == optimal_size[::-1]: combobox.addItem(f"{size[0]} x {size[1]} (Recommended)") else: combobox.addItem(f"{size[0]} x {size[1]}") def add_route_encryption_hooks(window: Gui) -> None: """ Hooks Route Encryption Gui with its Logic """ # Set Encrypt as default option get('encryptRadioButton').setChecked(True) # Set drop-select to have no elements at the start get('arraySizeComboBox').clear() input_text = get('inputTextEdit').toPlainText() combobox = get('arraySizeComboBox') # As text gets typed, the table size combo-box gets filled with new values get('inputTextEdit').textChanged.connect( lambda: populate_combobox(combobox, lambda: get('inputTextEdit').toPlainText()) ) # Run and Reset Button Listeners window.add_event_listener( "runButton", lambda: run_route_encryption(window) ) window.add_event_listener( "resetButton", lambda: reset_route_encryption(window) ) def add_luigi_sacco_hooks(luigi_sacco_window: Gui, info_window: Gui) -> None: """ Hooks Luigi Sacco Gui with its Logic """ # Shortcuts for ops in this function get = lambda x: luigi_sacco_window.get_widget(x) # Check English by default get('englishRadioButton').setChecked(True) # Check Encrypt by default get('encryptRadioButton').setChecked(True) # Set listeners for RUN and RESET buttons luigi_sacco_window.add_event_listener('runButton', lambda: run_luigi_sacco(luigi_sacco_window)) luigi_sacco_window.add_event_listener('resetButton', lambda: reset_luigi_sacco(luigi_sacco_window)) luigi_sacco_window.add_event_listener('informationButton', lambda: goto_window(luigi_sacco_window, info_window)) if __name__ == '__main__': app = QApplication([]) screen_geometry = QApplication.desktop().screenGeometry() SCREEN_WIDTH = screen_geometry.width() SCREEN_HEIGHT = screen_geometry.height() main_window = create_main_window() error_dialog = create_error_message_window() show_error = lambda title, content, solution: display_error_message(error_dialog, title, content, solution) luigi_sacco_window = create_luigi_sacco_window(main_window, show_error) luigi_sacco_info_window = create_luigi_sacco_info_window(luigi_sacco_window) route_encryption_window = create_route_encryption_window(main_window, show_error) main_window.add_event_listener( "firstMethodButton", lambda: goto_window(main_window, luigi_sacco_window) ) main_window.add_event_listener( "secondMethodButton", lambda: goto_window(main_window, route_encryption_window) ) add_luigi_sacco_hooks(luigi_sacco_window, luigi_sacco_info_window) add_route_encryption_hooks(route_encryption_window) app.exec_()
[ 6738, 19720, 1330, 4889, 540, 11, 25659, 1691, 11, 309, 29291, 198, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 23416, 11, 1195, 5377, 2127, 14253, 11, 1195, 38300, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1195, 47, 844, 8899, 628, 198, 6738, 11774, 1330, 1962, 72, 198, 198, 6738, 9156, 13, 2290, 25754, 62, 82, 8679, 1330, 300, 84, 25754, 62, 82, 8679, 62, 12685, 6012, 11, 300, 84, 25754, 62, 82, 8679, 62, 12501, 6012, 11, 6216, 62, 5239, 62, 259, 62, 30283, 62, 17204, 11, 5794, 62, 2539, 62, 392, 62, 15414, 62, 5239, 198, 6738, 9156, 13, 38629, 62, 12685, 13168, 1330, 2251, 62, 28920, 62, 6759, 8609, 11, 6339, 62, 12685, 6012, 11, 6339, 62, 12501, 6012, 11, 651, 62, 13059, 1843, 62, 11487, 62, 82, 4340, 11, 4174, 62, 68, 19, 11, 4174, 62, 50188, 62, 65, 18, 198, 198, 11748, 3384, 4487, 198, 198, 1677, 9419, 56, 11571, 11, 27196, 18276, 11571, 796, 357, 17821, 11, 10352, 828, 357, 25101, 11, 6407, 8, 628, 198, 4299, 3641, 62, 17497, 7, 17497, 25, 1962, 72, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3337, 262, 1813, 4324, 319, 262, 3159, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19254, 62, 87, 796, 3159, 62, 469, 15748, 13, 16159, 22446, 87, 3419, 532, 4324, 13, 10394, 3419, 1003, 17, 198, 220, 220, 220, 19254, 62, 88, 796, 3159, 62, 469, 15748, 13, 16159, 22446, 88, 3419, 532, 4324, 13, 17015, 3419, 1003, 17, 628, 220, 220, 220, 4324, 13, 21084, 7, 38050, 62, 87, 11, 19254, 62, 88, 8, 628, 198, 198, 4299, 2251, 62, 12417, 62, 17497, 3419, 4613, 1962, 72, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 598, 1388, 4324, 422, 543, 2836, 460, 467, 284, 300, 84, 25754, 5360, 1073, 393, 6339, 15835, 9168, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 26295, 62, 2340, 796, 366, 19668, 14, 12417, 12, 2340, 13, 17752, 1, 198, 220, 220, 220, 11774, 62, 7753, 62, 6978, 796, 366, 19668, 14, 12417, 12, 26272, 13, 9019, 1, 198, 220, 220, 220, 479, 1462, 62, 9060, 62, 6978, 796, 3384, 4487, 13, 1136, 62, 6978, 62, 259, 62, 65, 31249, 62, 15908, 7203, 19668, 14, 74, 1462, 62, 6404, 78, 13, 11134, 4943, 628, 220, 220, 220, 11774, 796, 1962, 72, 7, 42655, 62, 2340, 11, 11774, 62, 7753, 62, 6978, 8, 628, 220, 220, 220, 3641, 62, 17497, 7, 48317, 8, 628, 220, 220, 220, 479, 1462, 62, 9060, 796, 1195, 47, 844, 8899, 7, 74, 1462, 62, 9060, 62, 6978, 8, 198, 220, 220, 220, 11774, 13, 1136, 62, 42655, 7203, 12417, 33986, 11074, 2617, 47, 844, 8899, 7, 74, 1462, 62, 9060, 8, 628, 220, 220, 220, 11774, 13, 2860, 62, 15596, 62, 4868, 877, 7203, 37023, 21864, 1600, 37456, 25, 598, 13, 47391, 28955, 628, 220, 220, 220, 1441, 11774, 628, 198, 198, 4299, 2251, 62, 18224, 62, 20500, 62, 17497, 3419, 4613, 1962, 72, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 1402, 4049, 3275, 3025, 10154, 460, 307, 16524, 284, 4175, 262, 2836, 198, 220, 220, 220, 286, 281, 4049, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 26295, 62, 2340, 796, 366, 19668, 14, 18224, 12, 20500, 13, 17752, 1, 198, 220, 220, 220, 11774, 62, 7753, 62, 6978, 796, 366, 19668, 14, 18224, 12, 20500, 13, 9019, 1, 628, 220, 220, 220, 11774, 796, 1962, 72, 7, 42655, 62, 2340, 11, 11774, 62, 7753, 62, 6978, 8, 628, 220, 220, 220, 1303, 20458, 416, 4277, 198, 220, 220, 220, 11774, 13, 24717, 3419, 628, 220, 220, 220, 3641, 62, 17497, 7, 48317, 8, 628, 220, 220, 220, 1303, 5345, 262, 8788, 4936, 284, 7808, 262, 4324, 618, 28384, 198, 220, 220, 220, 11774, 13, 2860, 62, 15596, 62, 4868, 877, 10786, 482, 323, 21864, 3256, 37456, 25, 11774, 13, 24717, 28955, 628, 220, 220, 220, 1441, 11774, 628, 198, 198, 4299, 3359, 62, 18224, 62, 20500, 7, 4049, 62, 20500, 62, 17497, 25, 1962, 72, 11, 3670, 25, 965, 11, 2695, 25, 965, 11, 4610, 25, 965, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 4049, 17310, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4049, 62, 20500, 62, 17497, 13, 1136, 62, 42655, 10786, 18224, 5376, 33986, 27691, 2617, 8206, 7, 7839, 8, 198, 220, 220, 220, 4049, 62, 20500, 62, 17497, 13, 1136, 62, 42655, 10786, 18224, 12837, 33986, 27691, 2617, 8206, 7, 11299, 8, 198, 220, 220, 220, 4049, 62, 20500, 62, 17497, 13, 1136, 62, 42655, 10786, 18224, 46344, 33986, 27691, 2617, 8206, 7, 82, 2122, 8, 628, 220, 220, 220, 3641, 62, 17497, 7, 18224, 62, 20500, 62, 17497, 8, 628, 220, 220, 220, 4049, 62, 20500, 62, 17497, 13, 12860, 3419, 628, 220, 220, 220, 4049, 62, 20500, 62, 17497, 13, 39022, 27703, 3419, 628, 198, 4299, 43197, 62, 17497, 7, 10459, 25, 1962, 72, 11, 10965, 25, 1962, 72, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 367, 1460, 2723, 11774, 290, 10399, 788, 2523, 262, 10965, 11774, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2723, 13, 24717, 3419, 628, 220, 220, 220, 3641, 62, 17497, 7, 16520, 1883, 8, 628, 220, 220, 220, 10965, 13, 39022, 27703, 3419, 628, 220, 220, 220, 10965, 13, 12860, 3419, 628, 198, 198, 4299, 2251, 62, 2290, 25754, 62, 82, 8679, 62, 17497, 7, 12417, 62, 17497, 25, 1962, 72, 11, 905, 62, 18224, 25, 4889, 540, 30109, 2536, 11, 965, 11, 965, 4357, 6045, 12962, 4613, 1962, 72, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 850, 26272, 810, 2836, 460, 779, 300, 84, 25754, 5360, 1073, 15835, 1220, 875, 563, 9078, 5378, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26295, 62, 2340, 796, 366, 19668, 14, 11085, 12, 24396, 12, 2340, 13, 17752, 1, 198, 220, 220, 220, 11774, 62, 7753, 62, 6978, 796, 366, 19668, 14, 11085, 12, 24396, 13, 9019, 1, 628, 220, 220, 220, 11774, 796, 1962, 72, 7, 42655, 62, 2340, 11, 11774, 62, 7753, 62, 6978, 11, 905, 62, 18224, 8, 628, 220, 220, 220, 11774, 13, 24717, 3419, 628, 220, 220, 220, 11774, 13, 2860, 62, 15596, 62, 4868, 877, 7203, 1891, 21864, 1600, 37456, 25, 43197, 62, 17497, 7, 48317, 11, 1388, 62, 17497, 4008, 628, 220, 220, 220, 1441, 11774, 628, 198, 4299, 2251, 62, 2290, 25754, 62, 82, 8679, 62, 10951, 62, 17497, 7, 2290, 25754, 62, 82, 8679, 62, 17497, 25, 1962, 72, 8, 4613, 1962, 72, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 262, 7508, 4324, 329, 262, 39139, 311, 8679, 15835, 2446, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 26295, 62, 2340, 796, 366, 19668, 14, 2290, 25754, 12, 82, 8679, 12, 10951, 12, 2340, 13, 17752, 1, 198, 220, 220, 220, 11774, 62, 7753, 62, 6978, 796, 366, 19668, 14, 2290, 25754, 12, 82, 8679, 12, 10951, 13, 9019, 1, 628, 220, 220, 220, 11774, 796, 1962, 72, 7, 42655, 62, 2340, 11, 11774, 62, 7753, 62, 6978, 8, 628, 220, 220, 220, 11774, 13, 24717, 3419, 628, 220, 220, 220, 11774, 13, 2860, 62, 15596, 62, 4868, 877, 7203, 1891, 21864, 1600, 37456, 25, 43197, 62, 17497, 7, 48317, 11, 300, 84, 25754, 62, 82, 8679, 62, 17497, 4008, 628, 220, 220, 220, 1441, 11774, 628, 198, 4299, 2251, 62, 38629, 62, 12685, 13168, 62, 17497, 7, 12417, 62, 17497, 25, 1962, 72, 11, 905, 62, 18224, 25, 4889, 540, 30109, 2536, 11, 965, 11, 965, 4357, 6045, 12962, 4613, 1962, 72, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 4324, 810, 2836, 460, 779, 6339, 15835, 1220, 875, 13168, 1864, 284, 412, 19, 1222, 347, 18, 39602, 274, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26295, 62, 2340, 796, 366, 19668, 14, 12227, 12, 24396, 12, 2340, 13, 17752, 1, 198, 220, 220, 220, 11774, 62, 7753, 62, 6978, 796, 366, 19668, 14, 12227, 12, 24396, 13, 9019, 1, 628, 220, 220, 220, 11774, 796, 1962, 72, 7, 42655, 62, 2340, 11, 11774, 62, 7753, 62, 6978, 11, 905, 62, 18224, 8, 628, 220, 220, 220, 1303, 6889, 428, 4324, 7104, 416, 4277, 198, 220, 220, 220, 11774, 13, 24717, 3419, 628, 220, 220, 220, 1303, 18247, 4263, 329, 18956, 15612, 1634, 198, 220, 220, 220, 11926, 62, 9060, 62, 6978, 796, 3384, 4487, 13, 1136, 62, 6978, 62, 259, 62, 65, 31249, 62, 15908, 7203, 19668, 14, 81, 448, 274, 13, 11134, 4943, 198, 220, 220, 220, 11926, 62, 9060, 796, 1195, 47, 844, 8899, 7, 81, 448, 274, 62, 9060, 62, 6978, 8, 628, 220, 220, 220, 11774, 13, 1136, 62, 42655, 7203, 81, 448, 274, 33986, 11074, 2617, 47, 844, 8899, 7, 81, 448, 274, 62, 9060, 8, 628, 220, 220, 220, 11774, 13, 2860, 62, 15596, 62, 4868, 877, 7203, 1891, 21864, 1600, 37456, 25, 43197, 62, 17497, 7, 48317, 11, 1388, 62, 17497, 4008, 628, 220, 220, 220, 1441, 11774, 628, 198, 198, 4299, 651, 62, 2290, 25754, 62, 82, 8679, 62, 16129, 7, 1136, 25, 4889, 540, 30109, 2536, 4357, 1195, 38300, 12962, 4613, 25659, 1691, 14692, 1677, 1600, 366, 5446, 1, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 82, 290, 5860, 7147, 3303, 422, 39139, 311, 8679, 1962, 72, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 366, 1677, 1, 611, 651, 10786, 39126, 26093, 21864, 27691, 271, 9787, 276, 3419, 2073, 366, 5446, 1, 628, 198, 4299, 651, 62, 2290, 25754, 62, 82, 8679, 62, 15414, 7, 1136, 25, 4889, 540, 30109, 2536, 4357, 1195, 38300, 12962, 4613, 309, 29291, 58, 2536, 11, 965, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 82, 290, 5860, 1994, 290, 2420, 543, 2836, 468, 1813, 287, 1962, 72, 13, 628, 220, 220, 220, 7567, 2696, 11052, 12331, 611, 2035, 1994, 393, 2420, 389, 6565, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1994, 796, 651, 10786, 2539, 8206, 18378, 27691, 1462, 3646, 391, 8206, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 8631, 62, 5239, 796, 651, 10786, 15414, 8206, 18378, 27691, 1462, 3646, 391, 8206, 3419, 628, 220, 220, 220, 611, 1994, 6624, 13538, 393, 8631, 62, 5239, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 9218, 393, 28847, 8255, 407, 1813, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1994, 11, 8631, 62, 5239, 628, 198, 4299, 651, 62, 34213, 62, 2673, 7, 1136, 25, 4889, 540, 30109, 2536, 4357, 1195, 38300, 12962, 4613, 309, 29291, 58, 30388, 11, 20512, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 1771, 1813, 11774, 318, 287, 34117, 393, 42797, 1181, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 34117, 796, 651, 10786, 12685, 6012, 26093, 21864, 27691, 271, 9787, 276, 3419, 198, 220, 220, 220, 42797, 796, 651, 10786, 12501, 6012, 26093, 21864, 27691, 271, 9787, 276, 3419, 628, 220, 220, 220, 1441, 34117, 11, 42797, 628, 198, 4299, 1057, 62, 2290, 25754, 62, 82, 8679, 7, 17497, 25, 1962, 72, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 1057, 618, 5660, 20969, 318, 28384, 287, 39139, 311, 8679, 4324, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 44743, 300, 84, 25754, 5360, 1073, 15835, 1220, 875, 13168, 319, 262, 1813, 1994, 290, 198, 220, 220, 220, 5128, 2420, 290, 2753, 1813, 3303, 656, 1848, 13, 628, 220, 220, 220, 21394, 262, 5072, 286, 262, 11862, 355, 262, 2695, 286, 262, 5072, 3091, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 10073, 8968, 329, 39628, 287, 428, 2163, 198, 220, 220, 220, 651, 796, 37456, 2124, 25, 4324, 13, 1136, 62, 42655, 7, 87, 8, 628, 220, 220, 220, 3303, 796, 651, 62, 2290, 25754, 62, 82, 8679, 62, 16129, 7, 1136, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 11, 8631, 62, 5239, 796, 651, 62, 2290, 25754, 62, 82, 8679, 62, 15414, 7, 1136, 8, 628, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 12860, 62, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 2625, 40613, 7383, 393, 23412, 8255, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 2625, 34, 34574, 1057, 1430, 1231, 1111, 7383, 290, 23412, 8255, 1944, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 2625, 5492, 6070, 287, 1111, 286, 777, 7032, 290, 1949, 757, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 2223, 796, 651, 62, 34213, 62, 2673, 7, 1136, 8, 628, 220, 220, 220, 5072, 796, 13538, 628, 198, 220, 220, 220, 39559, 62, 2539, 11, 39559, 62, 25638, 62, 5239, 796, 5794, 62, 2539, 62, 392, 62, 15414, 62, 5239, 7, 2539, 11, 8631, 62, 5239, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 7326, 2533, 15417, 468, 587, 9380, 7147, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6216, 62, 5239, 62, 259, 62, 30283, 62, 17204, 7, 687, 16898, 62, 2539, 11, 3303, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 12860, 62, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 2625, 9218, 468, 12515, 3435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 2625, 7120, 1994, 3407, 3435, 326, 466, 407, 5594, 287, 534, 7147, 3303, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 2625, 27914, 597, 3435, 621, 836, 470, 5594, 284, 534, 7147, 3303, 290, 1949, 757, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6216, 62, 5239, 62, 259, 62, 30283, 62, 17204, 7, 687, 16898, 62, 25638, 62, 5239, 11, 3303, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 12860, 62, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 2625, 3646, 391, 8255, 468, 12515, 3435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 2625, 7120, 28847, 8255, 3407, 3435, 326, 466, 407, 5594, 287, 534, 7147, 3303, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 2625, 27914, 597, 3435, 621, 836, 470, 5594, 284, 534, 7147, 3303, 290, 1949, 757, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 611, 2223, 6624, 412, 7792, 18276, 11571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 300, 84, 25754, 62, 82, 8679, 62, 12685, 6012, 7, 2539, 11, 8631, 62, 5239, 11, 3303, 8, 628, 220, 220, 220, 1288, 361, 2223, 6624, 27196, 18276, 11571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 300, 84, 25754, 62, 82, 8679, 62, 12501, 6012, 7, 2539, 11, 8631, 62, 5239, 11, 3303, 8, 628, 220, 220, 220, 651, 10786, 22915, 8206, 18378, 27691, 2617, 3646, 391, 8206, 7, 22915, 8, 628, 198, 4299, 13259, 62, 2290, 25754, 62, 82, 8679, 7, 17497, 25, 1962, 72, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1874, 1039, 11774, 287, 300, 84, 25754, 5360, 1073, 284, 9178, 1181, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4324, 13, 1136, 62, 42655, 10786, 2539, 8206, 18378, 27691, 20063, 3419, 198, 220, 220, 220, 4324, 13, 1136, 62, 42655, 10786, 15414, 8206, 18378, 27691, 20063, 3419, 198, 220, 220, 220, 4324, 13, 1136, 62, 42655, 10786, 22915, 8206, 18378, 27691, 20063, 3419, 628, 198, 198, 4299, 651, 62, 354, 5233, 62, 11487, 62, 7857, 7, 15414, 62, 5239, 25, 965, 11, 651, 25, 4889, 540, 30109, 2536, 4357, 1195, 38300, 12962, 4613, 309, 29291, 58, 600, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 7147, 3084, 2546, 422, 11774, 1864, 284, 1813, 5128, 2420, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 18896, 7, 15414, 62, 5239, 8, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 15, 11, 657, 8, 628, 220, 220, 220, 10620, 11, 4808, 796, 651, 62, 13059, 1843, 62, 11487, 62, 82, 4340, 7, 11925, 7, 15414, 62, 5239, 4008, 628, 220, 220, 220, 1441, 10620, 58, 1136, 10786, 18747, 10699, 5377, 2127, 14253, 27691, 14421, 15732, 3419, 60, 628, 198, 4299, 651, 62, 38629, 62, 12685, 13168, 62, 15414, 7, 1136, 25, 4889, 540, 30109, 2536, 4357, 1195, 38300, 12962, 4613, 309, 29291, 58, 2536, 11, 309, 29291, 58, 600, 11, 493, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 82, 290, 5860, 5128, 2420, 290, 3084, 2546, 422, 18956, 14711, 13168, 1962, 72, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5128, 62, 5239, 796, 651, 10786, 15414, 8206, 18378, 27691, 1462, 3646, 391, 8206, 3419, 628, 220, 220, 220, 3084, 62, 7857, 796, 651, 62, 354, 5233, 62, 11487, 62, 7857, 7, 15414, 62, 5239, 11, 651, 8, 628, 220, 220, 220, 1441, 5128, 62, 5239, 11, 3084, 62, 7857, 628, 198, 4299, 1057, 62, 38629, 62, 12685, 13168, 7, 17497, 25, 1962, 72, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 1057, 618, 5660, 20969, 318, 28384, 287, 18956, 14711, 13168, 4324, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 44743, 6339, 15835, 1220, 875, 13168, 319, 262, 1813, 1994, 290, 198, 220, 220, 220, 5128, 2420, 290, 2753, 1813, 3303, 656, 1848, 13, 628, 220, 220, 220, 21394, 262, 5072, 286, 262, 11862, 355, 262, 2695, 286, 262, 5072, 3091, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 10073, 8968, 329, 39628, 287, 428, 2163, 628, 220, 220, 220, 5128, 62, 5239, 11, 3084, 62, 7857, 796, 651, 62, 38629, 62, 12685, 13168, 62, 15414, 7, 1136, 8, 628, 220, 220, 220, 611, 18896, 7, 15414, 62, 5239, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 12860, 62, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 2625, 34, 34574, 14711, 6012, 1220, 4280, 6012, 33523, 16000, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 2625, 1639, 7482, 284, 923, 262, 1430, 351, 645, 5128, 2420, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 2625, 17469, 379, 1551, 530, 2095, 287, 5128, 2214, 290, 1949, 757, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1288, 361, 18896, 7, 15414, 62, 5239, 8, 1875, 2026, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 12860, 62, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 2625, 7120, 5128, 318, 1165, 890, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 2625, 40541, 3142, 318, 2026, 3435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 28, 69, 1, 1639, 423, 5982, 1391, 11925, 7, 15414, 62, 5239, 38165, 3435, 13, 4222, 787, 1654, 534, 5128, 318, 1342, 621, 2026, 3435, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 611, 3384, 4487, 13, 271, 62, 35505, 7, 11925, 7, 15414, 62, 5239, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 12860, 62, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 2625, 20361, 0, 8255, 22313, 318, 5537, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 28, 69, 1, 7120, 5128, 2420, 468, 257, 6994, 4129, 286, 1391, 11925, 7, 15414, 62, 5239, 38165, 3435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 2625, 2514, 651, 1365, 2854, 1262, 428, 15835, 2446, 11, 751, 1194, 3850, 284, 534, 3275, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 220, 220, 220, 1303, 14711, 6012, 3691, 13, 4280, 6012, 198, 220, 220, 220, 2223, 796, 651, 62, 34213, 62, 2673, 7, 1136, 8, 628, 220, 220, 220, 1303, 8125, 5072, 3275, 543, 2925, 284, 5072, 3091, 198, 220, 220, 220, 5072, 796, 13538, 198, 220, 220, 220, 17593, 62, 22915, 796, 17635, 628, 220, 220, 220, 611, 2223, 6624, 412, 7792, 18276, 11571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 6339, 62, 12685, 6012, 7, 15414, 62, 5239, 11, 3084, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 62, 22915, 796, 4174, 62, 68, 19, 7, 15414, 62, 5239, 11, 2251, 62, 28920, 62, 6759, 8609, 7, 11487, 62, 7857, 4008, 628, 220, 220, 220, 1288, 361, 2223, 6624, 27196, 18276, 11571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 6339, 62, 12501, 6012, 7, 15414, 62, 5239, 11, 3084, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 62, 22915, 796, 4174, 62, 50188, 62, 65, 18, 7, 15414, 62, 5239, 11, 3084, 62, 7857, 8, 628, 220, 220, 220, 1303, 38240, 5072, 17593, 656, 257, 4731, 198, 220, 220, 220, 39559, 62, 6759, 8609, 62, 22915, 796, 37082, 77, 1911, 22179, 7, 3256, 45302, 22179, 7, 808, 8, 329, 5752, 287, 17593, 62, 22915, 8, 198, 220, 220, 220, 651, 10786, 22915, 8206, 18378, 27691, 2617, 3646, 391, 8206, 7, 22915, 8, 198, 220, 220, 220, 651, 10786, 6759, 8609, 26410, 8206, 18378, 27691, 2617, 3646, 391, 8206, 7, 687, 16898, 62, 6759, 8609, 62, 22915, 8, 628, 198, 4299, 13259, 62, 38629, 62, 12685, 13168, 7, 17497, 25, 1962, 72, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1874, 1039, 6339, 15835, 11774, 284, 9178, 1181, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 651, 10786, 15414, 8206, 18378, 27691, 20063, 3419, 198, 220, 220, 220, 651, 10786, 22915, 8206, 18378, 27691, 20063, 3419, 198, 220, 220, 220, 651, 10786, 6759, 8609, 26410, 8206, 18378, 27691, 20063, 3419, 198, 220, 220, 220, 651, 10786, 18747, 10699, 5377, 2127, 14253, 27691, 20063, 3419, 628, 198, 4299, 48040, 62, 24011, 672, 1140, 7, 24011, 672, 1140, 25, 1195, 5377, 2127, 14253, 11, 651, 62, 20500, 25, 4889, 540, 30109, 4357, 965, 12962, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8099, 15968, 1813, 1974, 672, 1140, 351, 2785, 8893, 10620, 329, 262, 1813, 3275, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1974, 672, 1140, 13, 20063, 3419, 628, 220, 220, 220, 3275, 796, 651, 62, 20500, 3419, 628, 220, 220, 220, 611, 18896, 7, 20500, 8, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1303, 8099, 5039, 1974, 672, 1140, 351, 1351, 286, 10620, 198, 220, 220, 220, 10620, 11, 16586, 62, 7857, 796, 651, 62, 13059, 1843, 62, 11487, 62, 82, 4340, 7, 11925, 7, 20500, 4008, 628, 220, 220, 220, 329, 2546, 287, 10620, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2546, 6624, 16586, 62, 7857, 393, 2546, 6624, 16586, 62, 7857, 58, 3712, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1974, 672, 1140, 13, 2860, 7449, 7, 69, 1, 90, 7857, 58, 15, 48999, 2124, 1391, 7857, 58, 16, 48999, 357, 36171, 8, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1974, 672, 1140, 13, 2860, 7449, 7, 69, 1, 90, 7857, 58, 15, 48999, 2124, 1391, 7857, 58, 16, 48999, 4943, 628, 198, 198, 4299, 751, 62, 38629, 62, 12685, 13168, 62, 25480, 82, 7, 17497, 25, 1962, 72, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18531, 82, 18956, 14711, 13168, 1962, 72, 351, 663, 30146, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 5345, 14711, 6012, 355, 4277, 3038, 198, 220, 220, 220, 651, 10786, 12685, 6012, 26093, 21864, 27691, 2617, 9787, 276, 7, 17821, 8, 628, 220, 220, 220, 1303, 5345, 4268, 12, 19738, 284, 423, 645, 4847, 379, 262, 923, 198, 220, 220, 220, 651, 10786, 18747, 10699, 5377, 2127, 14253, 27691, 20063, 3419, 628, 220, 220, 220, 5128, 62, 5239, 796, 651, 10786, 15414, 8206, 18378, 27691, 1462, 3646, 391, 8206, 3419, 198, 220, 220, 220, 1974, 672, 1140, 796, 651, 10786, 18747, 10699, 5377, 2127, 14253, 11537, 628, 220, 220, 220, 1303, 1081, 2420, 3011, 25683, 11, 262, 3084, 2546, 14831, 12, 3524, 3011, 5901, 351, 649, 3815, 198, 220, 220, 220, 651, 10786, 15414, 8206, 18378, 27691, 5239, 31813, 13, 8443, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 48040, 62, 24011, 672, 1140, 7, 24011, 672, 1140, 11, 37456, 25, 651, 10786, 15414, 8206, 18378, 27691, 1462, 3646, 391, 8206, 28955, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 5660, 290, 30027, 20969, 20600, 364, 198, 220, 220, 220, 4324, 13, 2860, 62, 15596, 62, 4868, 877, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5143, 21864, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 1057, 62, 38629, 62, 12685, 13168, 7, 17497, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4324, 13, 2860, 62, 15596, 62, 4868, 877, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 42503, 21864, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 13259, 62, 38629, 62, 12685, 13168, 7, 17497, 8, 198, 220, 220, 220, 1267, 628, 198, 4299, 751, 62, 2290, 25754, 62, 82, 8679, 62, 25480, 82, 7, 2290, 25754, 62, 82, 8679, 62, 17497, 25, 1962, 72, 11, 7508, 62, 17497, 25, 1962, 72, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18531, 82, 39139, 311, 8679, 1962, 72, 351, 663, 30146, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 10073, 23779, 329, 39628, 287, 428, 2163, 198, 220, 220, 220, 651, 796, 37456, 2124, 25, 300, 84, 25754, 62, 82, 8679, 62, 17497, 13, 1136, 62, 42655, 7, 87, 8, 628, 220, 220, 220, 1303, 6822, 3594, 416, 4277, 198, 220, 220, 220, 651, 10786, 39126, 26093, 21864, 27691, 2617, 9787, 276, 7, 17821, 8, 628, 220, 220, 220, 1303, 6822, 14711, 6012, 416, 4277, 198, 220, 220, 220, 651, 10786, 12685, 6012, 26093, 21864, 27691, 2617, 9787, 276, 7, 17821, 8, 628, 220, 220, 220, 1303, 5345, 22054, 329, 32494, 290, 15731, 2767, 12163, 198, 220, 220, 220, 300, 84, 25754, 62, 82, 8679, 62, 17497, 13, 2860, 62, 15596, 62, 4868, 877, 10786, 5143, 21864, 3256, 37456, 25, 1057, 62, 2290, 25754, 62, 82, 8679, 7, 2290, 25754, 62, 82, 8679, 62, 17497, 4008, 198, 220, 220, 220, 300, 84, 25754, 62, 82, 8679, 62, 17497, 13, 2860, 62, 15596, 62, 4868, 877, 10786, 42503, 21864, 3256, 37456, 25, 13259, 62, 2290, 25754, 62, 82, 8679, 7, 2290, 25754, 62, 82, 8679, 62, 17497, 4008, 628, 220, 220, 220, 300, 84, 25754, 62, 82, 8679, 62, 17497, 13, 2860, 62, 15596, 62, 4868, 877, 10786, 17018, 21864, 3256, 37456, 25, 43197, 62, 17497, 7, 2290, 25754, 62, 82, 8679, 62, 17497, 11, 7508, 62, 17497, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 598, 796, 1195, 23416, 26933, 12962, 628, 220, 220, 220, 3159, 62, 469, 15748, 796, 1195, 23416, 13, 41375, 22446, 9612, 10082, 15748, 3419, 198, 220, 220, 220, 6374, 2200, 1677, 62, 54, 2389, 4221, 796, 3159, 62, 469, 15748, 13, 10394, 3419, 198, 220, 220, 220, 6374, 2200, 1677, 62, 13909, 9947, 796, 3159, 62, 469, 15748, 13, 17015, 3419, 628, 220, 220, 220, 1388, 62, 17497, 796, 2251, 62, 12417, 62, 17497, 3419, 198, 220, 220, 220, 4049, 62, 38969, 519, 796, 2251, 62, 18224, 62, 20500, 62, 17497, 3419, 628, 220, 220, 220, 905, 62, 18224, 796, 37456, 3670, 11, 2695, 11, 4610, 25, 3359, 62, 18224, 62, 20500, 7, 18224, 62, 38969, 519, 11, 3670, 11, 2695, 11, 4610, 8, 628, 220, 220, 220, 300, 84, 25754, 62, 82, 8679, 62, 17497, 796, 2251, 62, 2290, 25754, 62, 82, 8679, 62, 17497, 7, 12417, 62, 17497, 11, 905, 62, 18224, 8, 198, 220, 220, 220, 300, 84, 25754, 62, 82, 8679, 62, 10951, 62, 17497, 796, 2251, 62, 2290, 25754, 62, 82, 8679, 62, 10951, 62, 17497, 7, 2290, 25754, 62, 82, 8679, 62, 17497, 8, 628, 220, 220, 220, 6339, 62, 12685, 13168, 62, 17497, 796, 2251, 62, 38629, 62, 12685, 13168, 62, 17497, 7, 12417, 62, 17497, 11, 905, 62, 18224, 8, 628, 220, 220, 220, 1388, 62, 17497, 13, 2860, 62, 15596, 62, 4868, 877, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 17410, 21864, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 43197, 62, 17497, 7, 12417, 62, 17497, 11, 300, 84, 25754, 62, 82, 8679, 62, 17497, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1388, 62, 17497, 13, 2860, 62, 15596, 62, 4868, 877, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12227, 17410, 21864, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 43197, 62, 17497, 7, 12417, 62, 17497, 11, 6339, 62, 12685, 13168, 62, 17497, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 751, 62, 2290, 25754, 62, 82, 8679, 62, 25480, 82, 7, 2290, 25754, 62, 82, 8679, 62, 17497, 11, 300, 84, 25754, 62, 82, 8679, 62, 10951, 62, 17497, 8, 628, 220, 220, 220, 751, 62, 38629, 62, 12685, 13168, 62, 25480, 82, 7, 38629, 62, 12685, 13168, 62, 17497, 8, 628, 220, 220, 220, 598, 13, 18558, 62, 3419, 198 ]
2.678767
5,124
""" this program kills humans """ import sys import time import random import builtins import termcolor PRINT_SPEED = 0.005 DEBUG_MODE = False class human: """ a human exists... to die """ def checkWound(self): """ checks if a human is wounded """ dmg = random.randint(1, 4) print("{} is hit".format(self.name), end="") time.sleep(.2) if random.randint(0, 100) > self.advantage: print(" [not wounded]", None, "green") else: if self.hp != 0: print(" [wounded][hp = {}]".format(self.hp - dmg), None, "red") elif self.hp <= 0: print(" [dead]") self.hp -= dmg def remove_lines(amount): """ deletes lines printed previously """ cursor_up = "\x1b[1A" erase = "\x1b[2K" for _ in range(amount): sys.stdout.write(cursor_up) sys.stdout.write(erase) def delayed_print(text, end=None, color=None): """ prints characters with delay provided between each character. color for prompt is optional """ text = str(text) if end != "": text += "\n" for char in text: if color: sys.stdout.write(termcolor.colored(char, color)) else: sys.stdout.write(char) sys.stdout.flush() time.sleep(PRINT_SPEED) time.sleep(PRINT_SPEED * 5) def contest(other): """contests human ability""" return random.randint(1, 20) > round(other.advantage / 5) def getAdvantage(): """shut is advantage""" return random.randint(0, 100) def hpBar(hp): """ returns an hp bar """ ber = "" for _ in range(hp): ber += "#" for _ in range(10 - hp): ber += " " return "|" + ber + "|" def getColor(hp): """ allows for specifically colored hp bars """ if hp < 4: color = "red" if hp >= 4 and hp <= 7: color = "yellow" if hp > 7: color = "green" return color def combat(playerOne, playerTwo): """full combat""" rounds = 0 if playerOne.name == playerTwo.name: print("{} commits suicide".format(playerOne.name)) return 1 while playerOne.hp != 0 and playerTwo.hp != 0: combatRound(playerOne, playerTwo) rounds += 1 if rounds % 10 == 0 and rounds != 0: print("We are taking a break!") print("{} hp:{}".format(playerOne.name, playerOne.hp)) print("{} hp:{}".format(playerTwo.name, playerTwo.hp)) time.sleep(3) remove_lines(3) if playerOne.hp <= 0: print("{} is dead, {} is is the champion".format(playerOne.name, playerTwo.name)) print("combat took {} rounds".format(rounds)) return 1 else: print("{} is dead, {} is is the champion".format(playerTwo.name, playerOne.name)) print("combat took {} rounds".format(rounds)) return 2 def combatRound(playerOne, playerTwo): """single rounds of human to human combat""" hpOne = hpBar(playerOne.hp) hpTwo = hpBar(playerTwo.hp) colorOne = getColor(playerOne.hp) colorTwo = getColor(playerTwo.hp) print(playerOne.name) print("{}".format(hpOne), None, colorOne) print(playerTwo.name) print("{}".format(hpTwo), None, colorTwo) if random.randint(0, 1) == 1: success = contest(playerTwo) print("{} attacks {}".format(playerOne.name, playerTwo.name), end="") if success is True: print(" [success]") playerTwo.checkWound() else: print(" [failed]") successTwo = contest(playerOne) print("{} attacks {}".format(playerTwo.name, playerOne.name), end="") if successTwo is True: print(" [success]") playerOne.checkWound() else: print(" [failed]") else: success = contest(playerOne) print("{} attacks {}".format(playerTwo.name, playerOne.name), end="") if success is True: print(" [success]") playerOne.checkWound() else: print(" [failed]") successTwo = contest(playerTwo) print("{} attacks {}".format(playerOne.name, playerTwo.name), end="") if successTwo is True: print(" [success]") playerTwo.checkWound() else: print(" [failed]") print("[round over]") time.sleep(.5) if DEBUG_MODE is not True: remove_lines(10) def spawn(name): """allows for human corpse overwriting""" bloo = human(name) return bloo def main(): """ main arena """ builtins.print = delayed_print print("welcome to fight simulator") print("enter names of combatants") combatantOne = input("combatant one\n>> ") combatantTwo = input("combatant two\n>> ") remove_lines(6) combatantOne = spawn(combatantOne) combatantTwo = spawn(combatantTwo) while True: combatantOne.advantage = random.randint(25, 100) combatantTwo.advantage = random.randint(25, 100) result = combat(combatantOne, combatantTwo) if result == 1: combatantOne = spawn(input("new combatant\n>> ")) combatantTwo.hp = 10 elif result == 2: combatantTwo = spawn(input("new combatant\n>> ")) combatantOne.hp = 10 if __name__ == "__main__": main()
[ 37811, 428, 1430, 12847, 5384, 37227, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 4738, 198, 11748, 3170, 1040, 198, 11748, 3381, 8043, 198, 198, 4805, 12394, 62, 4303, 41841, 796, 657, 13, 22544, 198, 30531, 62, 49058, 796, 10352, 198, 198, 4871, 1692, 25, 198, 220, 220, 220, 37227, 257, 1692, 7160, 986, 284, 4656, 37227, 628, 198, 220, 220, 220, 825, 2198, 54, 633, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8794, 611, 257, 1692, 318, 10657, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 41323, 796, 4738, 13, 25192, 600, 7, 16, 11, 604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 318, 2277, 1911, 18982, 7, 944, 13, 3672, 828, 886, 2625, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 13, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4738, 13, 25192, 600, 7, 15, 11, 1802, 8, 1875, 2116, 13, 13461, 496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 1662, 10657, 60, 1600, 6045, 11, 366, 14809, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 24831, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 86, 6302, 7131, 24831, 796, 23884, 60, 1911, 18982, 7, 944, 13, 24831, 532, 41323, 828, 6045, 11, 366, 445, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 24831, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 25124, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24831, 48185, 41323, 628, 198, 4299, 4781, 62, 6615, 7, 17287, 2599, 198, 220, 220, 220, 37227, 28128, 274, 3951, 10398, 4271, 37227, 628, 220, 220, 220, 23493, 62, 929, 796, 37082, 87, 16, 65, 58, 16, 32, 1, 198, 220, 220, 220, 28602, 796, 37082, 87, 16, 65, 58, 17, 42, 1, 628, 220, 220, 220, 329, 4808, 287, 2837, 7, 17287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 66, 21471, 62, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 263, 589, 8, 628, 198, 4299, 11038, 62, 4798, 7, 5239, 11, 886, 28, 14202, 11, 3124, 28, 14202, 2599, 198, 220, 220, 220, 37227, 20842, 3435, 351, 5711, 2810, 1022, 1123, 2095, 13, 3124, 329, 6152, 318, 11902, 37227, 198, 220, 220, 220, 2420, 796, 965, 7, 5239, 8, 628, 220, 220, 220, 611, 886, 14512, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 15853, 37082, 77, 1, 628, 220, 220, 220, 329, 1149, 287, 2420, 25, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3124, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 4354, 8043, 13, 25717, 7, 10641, 11, 3124, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 10641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 4805, 12394, 62, 4303, 41841, 8, 198, 220, 220, 220, 640, 13, 42832, 7, 4805, 12394, 62, 4303, 41841, 1635, 642, 8, 198, 4299, 8414, 7, 847, 2599, 198, 220, 220, 220, 37227, 3642, 3558, 1692, 2694, 37811, 198, 220, 220, 220, 1441, 4738, 13, 25192, 600, 7, 16, 11, 1160, 8, 1875, 2835, 7, 847, 13, 13461, 496, 1220, 642, 8, 628, 198, 4299, 651, 2782, 38815, 33529, 198, 220, 220, 220, 37227, 49625, 318, 4621, 37811, 198, 220, 220, 220, 1441, 4738, 13, 25192, 600, 7, 15, 11, 1802, 8, 628, 198, 4299, 27673, 10374, 7, 24831, 2599, 198, 220, 220, 220, 37227, 5860, 281, 27673, 2318, 37227, 198, 220, 220, 220, 18157, 796, 13538, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 24831, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18157, 15853, 25113, 1, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 940, 532, 27673, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18157, 15853, 366, 366, 198, 220, 220, 220, 1441, 366, 91, 1, 1343, 18157, 1343, 366, 91, 1, 628, 198, 4299, 651, 10258, 7, 24831, 2599, 198, 220, 220, 220, 37227, 3578, 329, 5734, 16396, 27673, 9210, 37227, 198, 220, 220, 220, 611, 27673, 1279, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 366, 445, 1, 198, 220, 220, 220, 611, 27673, 18189, 604, 290, 27673, 19841, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 366, 36022, 1, 198, 220, 220, 220, 611, 27673, 1875, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 366, 14809, 1, 198, 220, 220, 220, 1441, 3124, 628, 198, 4299, 5249, 7, 7829, 3198, 11, 2137, 7571, 2599, 198, 220, 220, 220, 37227, 12853, 5249, 37811, 198, 220, 220, 220, 9196, 796, 657, 198, 220, 220, 220, 611, 2137, 3198, 13, 3672, 6624, 2137, 7571, 13, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 23463, 7341, 1911, 18982, 7, 7829, 3198, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 220, 220, 220, 981, 2137, 3198, 13, 24831, 14512, 657, 290, 2137, 7571, 13, 24831, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5249, 22685, 7, 7829, 3198, 11, 2137, 7571, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9196, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9196, 4064, 838, 6624, 657, 290, 9196, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1135, 389, 2263, 257, 2270, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 27673, 29164, 92, 1911, 18982, 7, 7829, 3198, 13, 3672, 11, 2137, 3198, 13, 24831, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 27673, 29164, 92, 1911, 18982, 7, 7829, 7571, 13, 3672, 11, 2137, 7571, 13, 24831, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 6615, 7, 18, 8, 628, 220, 220, 220, 611, 2137, 3198, 13, 24831, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 318, 2636, 11, 23884, 318, 318, 262, 8783, 1911, 18982, 7, 7829, 3198, 13, 3672, 11, 2137, 7571, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 39969, 1718, 23884, 9196, 1911, 18982, 7, 744, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 318, 2636, 11, 23884, 318, 318, 262, 8783, 1911, 18982, 7, 7829, 7571, 13, 3672, 11, 2137, 3198, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 39969, 1718, 23884, 9196, 1911, 18982, 7, 744, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 628, 198, 4299, 5249, 22685, 7, 7829, 3198, 11, 2137, 7571, 2599, 628, 220, 220, 220, 37227, 29762, 9196, 286, 1692, 284, 1692, 5249, 37811, 198, 220, 220, 220, 27673, 3198, 796, 27673, 10374, 7, 7829, 3198, 13, 24831, 8, 198, 220, 220, 220, 27673, 7571, 796, 27673, 10374, 7, 7829, 7571, 13, 24831, 8, 198, 220, 220, 220, 3124, 3198, 796, 651, 10258, 7, 7829, 3198, 13, 24831, 8, 198, 220, 220, 220, 3124, 7571, 796, 651, 10258, 7, 7829, 7571, 13, 24831, 8, 198, 220, 220, 220, 3601, 7, 7829, 3198, 13, 3672, 8, 198, 220, 220, 220, 3601, 7203, 90, 92, 1911, 18982, 7, 24831, 3198, 828, 6045, 11, 3124, 3198, 8, 198, 220, 220, 220, 3601, 7, 7829, 7571, 13, 3672, 8, 198, 220, 220, 220, 3601, 7203, 90, 92, 1911, 18982, 7, 24831, 7571, 828, 6045, 11, 3124, 7571, 8, 628, 220, 220, 220, 611, 4738, 13, 25192, 600, 7, 15, 11, 352, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 8414, 7, 7829, 7571, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 3434, 23884, 1911, 18982, 7, 7829, 3198, 13, 3672, 11, 2137, 7571, 13, 3672, 828, 886, 2625, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1943, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 13138, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 7571, 13, 9122, 54, 633, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 47904, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 7571, 796, 8414, 7, 7829, 3198, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 3434, 23884, 1911, 18982, 7, 7829, 7571, 13, 3672, 11, 2137, 3198, 13, 3672, 828, 886, 2625, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1943, 7571, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 13138, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 3198, 13, 9122, 54, 633, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 47904, 60, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 8414, 7, 7829, 3198, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 3434, 23884, 1911, 18982, 7, 7829, 7571, 13, 3672, 11, 2137, 3198, 13, 3672, 828, 886, 2625, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1943, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 13138, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 3198, 13, 9122, 54, 633, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 47904, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 7571, 796, 8414, 7, 7829, 7571, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 3434, 23884, 1911, 18982, 7, 7829, 3198, 13, 3672, 11, 2137, 7571, 13, 3672, 828, 886, 2625, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1943, 7571, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 13138, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 7571, 13, 9122, 54, 633, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 685, 47904, 60, 4943, 628, 220, 220, 220, 3601, 7203, 58, 744, 625, 60, 4943, 198, 220, 220, 220, 640, 13, 42832, 7, 13, 20, 8, 628, 220, 220, 220, 611, 16959, 62, 49058, 318, 407, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 6615, 7, 940, 8, 628, 198, 4299, 10922, 7, 3672, 2599, 198, 220, 220, 220, 37227, 47205, 329, 1692, 21304, 6993, 799, 278, 37811, 198, 220, 220, 220, 698, 2238, 796, 1692, 7, 3672, 8, 198, 220, 220, 220, 1441, 698, 2238, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 1388, 13478, 37227, 198, 220, 220, 220, 3170, 1040, 13, 4798, 796, 11038, 62, 4798, 198, 220, 220, 220, 3601, 7203, 86, 9571, 284, 1907, 35375, 4943, 198, 220, 220, 220, 3601, 7203, 9255, 3891, 286, 40711, 4943, 198, 220, 220, 220, 5249, 415, 3198, 796, 5128, 7203, 39969, 415, 530, 59, 77, 4211, 366, 8, 198, 220, 220, 220, 5249, 415, 7571, 796, 5128, 7203, 39969, 415, 734, 59, 77, 4211, 366, 8, 198, 220, 220, 220, 4781, 62, 6615, 7, 21, 8, 198, 220, 220, 220, 5249, 415, 3198, 796, 10922, 7, 39969, 415, 3198, 8, 198, 220, 220, 220, 5249, 415, 7571, 796, 10922, 7, 39969, 415, 7571, 8, 628, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5249, 415, 3198, 13, 13461, 496, 796, 4738, 13, 25192, 600, 7, 1495, 11, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5249, 415, 7571, 13, 13461, 496, 796, 4738, 13, 25192, 600, 7, 1495, 11, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 5249, 7, 39969, 415, 3198, 11, 5249, 415, 7571, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5249, 415, 3198, 796, 10922, 7, 15414, 7203, 3605, 5249, 415, 59, 77, 4211, 366, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5249, 415, 7571, 13, 24831, 796, 838, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1255, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5249, 415, 7571, 796, 10922, 7, 15414, 7203, 3605, 5249, 415, 59, 77, 4211, 366, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5249, 415, 3198, 13, 24831, 796, 838, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.25383
2,415
from Tools.NumericalTextInput import NumericalTextInput from Screens.VirtualKeyBoard import VirtualKeyBoard from Components.ActionMap import NumberActionMap
[ 6738, 20003, 13, 45, 6975, 605, 8206, 20560, 1330, 399, 6975, 605, 8206, 20560, 198, 6738, 1446, 5681, 13, 37725, 9218, 29828, 1330, 15595, 9218, 29828, 198, 6738, 36109, 13, 12502, 13912, 1330, 7913, 12502, 13912, 628 ]
4.27027
37
from Bio.PDB.PDBParser import PDBParser from Bio.PDB.PDBIO import PDBIO import numpy as np import shutil f = open("log.txt", "a") parser = PDBParser(PERMISSIVE=1) structure_id = "3rgk" filename = "../1-1-build/MYO_HEME_MUT.pdb" structure = parser.get_structure(structure_id, filename) atoms = structure.get_atoms() listOfCoords = [] for atom in atoms: coords = atom.get_coord() listOfCoords.append(coords) coorNP = np.asarray(listOfCoords) geoCenter = coorNP.mean(axis=0) log = "Geometric Center: {}\n".format(geoCenter) f.write(log) # calculating Euclidean distance # using linalg.norm() maxDistMan = 0 maxDistL2 = 0 for atom in coorNP: #manDist = np.sqrt((atom[0] - geoCenter[0])**2 + (atom[1] - geoCenter[1])**2 + (atom[2] - geoCenter[2])**2) dist = np.linalg.norm(geoCenter - atom) #print ("manDist {} dist {}".format(manDist,dist)) #print(dist) if (dist > maxDistL2): maxDistL2 = dist #if (manDist > maxDistMan): # maxDistMan = manDist log = "maxDistL2 {}\n".format(maxDistL2) f.write(log) # 2 times the Max internal distance of protein atoms + 2 angstroms on each side # The padding is in case the radius of gyration of the protein increases. # Currently the maximum allowed increase in radius of gyration is 2 angstroms. # This is likely a highly liberal amount for a globular protein at 310 K in minimal Na/Cl. maxDistL2_padded = maxDistL2+20 log = "maxDistL2_padded {}\n".format(maxDistL2_padded) f.write(log) shutil.copyfile("../1-1-build/MYO_HEME.psf", "MYO_HEME_SHIFTED.psf") import mbuild as mb import numpy as np from foyer import Forcefield import mbuild.formats.charmm_writer as mf_charmm import mbuild.formats.gomc_conf_writer as gomc_control FF_file_O2 = './FFs/charmmD_molecular_oxygen.xml' O2 = mb.load('./FFs/DIOX.mol2') O2.name = 'DIOX' #O2.energy_minimize(forcefield=FF_file_O2, steps=10**5) FF_file_water = './FFs/charmm_tip3p.xml' water = mb.load('O', smiles=True) water.name = 'TIP3' #water.energy_minimize(forcefield=FF_file_water, steps=10**5) FF_dict = {water.name: FF_file_water, O2.name: FF_file_O2} residues_list = [water.name, O2.name] fix_bonds_angles_residues = [water.name, O2.name] bead_to_atom_name_dict = { '_ON':'ON', '_OP':'OP'} # Build the main simulation liquid box (box 0) and the vapor (box 1) for the simulation [1, 2, 13-17] water_O2_box_liq = mb.fill_box(compound=[water,O2], density= 950, compound_ratio=[0.98, 0.02] , box=[2*maxDistL2_padded/10, 2*maxDistL2_padded/10, 2*maxDistL2_padded/10]) geoCenterBox = water_O2_box_liq.center log = "BOX CENTER : {}\n".format(geoCenterBox*10) f.write(log) trueCenter = [maxDistL2_padded/10, maxDistL2_padded/10, maxDistL2_padded/10] log = "DESIRED BOX CENTER : {}\n".format(trueCenter*10) f.write(log) translationVectorBox = trueCenter-geoCenterBox log = "BOX TRANSLATION VECTOR : {}\n".format(translationVectorBox*10) f.write(log) water_O2_box_liq.translate(translationVectorBox) geoCenterBoxPostTranslate = water_O2_box_liq.center log = "BOX CENTER POST TRANSLATE : {}\n".format(geoCenterBoxPostTranslate*10) f.write(log) water_O2_box_res = mb.fill_box(compound=[water,O2], density= 950, compound_ratio=[0.80 0.20] , box=[9, 9, 9]) charmmNAMD = mf_charmm.Charmm(water_O2_box_liq, 'GCMC_water_O2_liq_NAMD', structure_box_1=water_O2_box_res, filename_box_1='GCMC_water_O2_res_NAMD', ff_filename="GCMC_water_O2_FF_NAMD", forcefield_selection=FF_dict, residues=residues_list, bead_to_atom_name_dict=bead_to_atom_name_dict, fix_residue=None, gomc_fix_bonds_angles=None, reorder_res_in_pdb_psf=True ) charmm = mf_charmm.Charmm(water_O2_box_liq, 'GCMC_water_O2_liq', structure_box_1=water_O2_box_res, filename_box_1='GCMC_water_O2_res', ff_filename="GCMC_water_O2_FF", forcefield_selection=FF_dict, residues=residues_list, bead_to_atom_name_dict=bead_to_atom_name_dict, fix_residue=None, gomc_fix_bonds_angles=fix_bonds_angles_residues, reorder_res_in_pdb_psf=True ) charmm.write_inp() charmm.write_psf() charmm.write_pdb() charmmNAMD.write_inp() gomc_control.write_gomc_control_file(charmm, 'in_GCMC_NVT.conf', 'GCMC', 100, 310, input_variables_dict={"VDWGeometricSigma": True, "Rcut": 12, "DisFreq": 0.00, "RotFreq": 0.00, "IntraSwapFreq": 0.00, "SwapFreq": 1.00, "RegrowthFreq": 0.00, "CrankShaftFreq": 0.00, "VolFreq": 0.00, "MultiParticleFreq": 0.00, "ChemPot" : {"TIP3" : -4166, "DIOX" : -8000} } ) f.write('Completed: GOMC FF file, and the psf and pdb files') log = "PROTEIN GEOMETRIC CENTER: {}\n".format(geoCenter) f.write(log) log = "BOX GEOMETRIC CENTER: {}\n".format(geoCenterBoxPostTranslate*10) f.write(log) translationArrayProt = np.abs(geoCenterBoxPostTranslate*10 - geoCenter) log = "PROTEIN TRANSLATION VECTOR : {}\n".format(translationArrayProt) f.write(log) atoms = structure.get_atoms() for atom in atoms: newCoords = atom.get_coord()+translationArrayProt atom.set_coord(newCoords) io = PDBIO() io.set_structure(structure) io.save("MYO_HEME_MUT_SHIFTED.pdb")
[ 6738, 16024, 13, 5760, 33, 13, 5760, 20866, 28198, 1330, 350, 11012, 46677, 198, 6738, 16024, 13, 5760, 33, 13, 5760, 3483, 46, 1330, 14340, 3483, 46, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4423, 346, 198, 198, 69, 796, 1280, 7203, 6404, 13, 14116, 1600, 366, 64, 4943, 198, 198, 48610, 796, 350, 11012, 46677, 7, 18973, 44, 16744, 9306, 28, 16, 8, 198, 301, 5620, 62, 312, 796, 366, 18, 41345, 74, 1, 198, 34345, 796, 366, 40720, 16, 12, 16, 12, 11249, 14, 26708, 46, 62, 39, 3620, 36, 62, 44, 3843, 13, 79, 9945, 1, 198, 301, 5620, 796, 30751, 13, 1136, 62, 301, 5620, 7, 301, 5620, 62, 312, 11, 29472, 8, 198, 265, 3150, 796, 4645, 13, 1136, 62, 265, 3150, 3419, 198, 4868, 5189, 7222, 3669, 796, 17635, 198, 1640, 22037, 287, 23235, 25, 198, 197, 1073, 3669, 796, 22037, 13, 1136, 62, 37652, 3419, 198, 197, 4868, 5189, 7222, 3669, 13, 33295, 7, 1073, 3669, 8, 198, 1073, 273, 22182, 796, 45941, 13, 292, 18747, 7, 4868, 5189, 7222, 3669, 8, 198, 469, 78, 23656, 796, 763, 273, 22182, 13, 32604, 7, 22704, 28, 15, 8, 198, 6404, 796, 366, 10082, 16996, 3337, 25, 23884, 59, 77, 1911, 18982, 7, 469, 78, 23656, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 2, 26019, 48862, 485, 272, 5253, 198, 2, 1262, 300, 1292, 70, 13, 27237, 3419, 198, 9806, 20344, 5124, 796, 657, 198, 9806, 20344, 43, 17, 796, 657, 198, 1640, 22037, 287, 763, 273, 22182, 25, 198, 197, 2, 805, 20344, 796, 45941, 13, 31166, 17034, 19510, 37696, 58, 15, 60, 532, 40087, 23656, 58, 15, 12962, 1174, 17, 1343, 357, 37696, 58, 16, 60, 532, 40087, 23656, 58, 16, 12962, 1174, 17, 1343, 357, 37696, 58, 17, 60, 532, 40087, 23656, 58, 17, 12962, 1174, 17, 8, 198, 197, 17080, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 469, 78, 23656, 532, 22037, 8, 198, 197, 2, 4798, 5855, 805, 20344, 23884, 1233, 23884, 1911, 18982, 7, 805, 20344, 11, 17080, 4008, 628, 197, 2, 4798, 7, 17080, 8, 197, 198, 197, 361, 357, 17080, 1875, 3509, 20344, 43, 17, 2599, 198, 197, 197, 9806, 20344, 43, 17, 796, 1233, 198, 197, 2, 361, 357, 805, 20344, 1875, 3509, 20344, 5124, 2599, 198, 197, 2, 197, 9806, 20344, 5124, 796, 582, 20344, 198, 198, 6404, 796, 366, 9806, 20344, 43, 17, 23884, 59, 77, 1911, 18982, 7, 9806, 20344, 43, 17, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 2, 362, 1661, 262, 5436, 5387, 5253, 286, 7532, 23235, 1343, 362, 3550, 20282, 82, 319, 1123, 1735, 198, 2, 383, 24511, 318, 287, 1339, 262, 16874, 286, 21486, 1358, 286, 262, 7532, 5732, 13, 198, 2, 16888, 262, 5415, 3142, 2620, 287, 16874, 286, 21486, 1358, 318, 362, 3550, 20282, 82, 13, 198, 2, 770, 318, 1884, 257, 4047, 7270, 2033, 329, 257, 15095, 934, 7532, 379, 28947, 509, 287, 10926, 11013, 14, 2601, 13, 198, 9806, 20344, 43, 17, 62, 79, 29373, 796, 3509, 20344, 43, 17, 10, 1238, 198, 6404, 796, 366, 9806, 20344, 43, 17, 62, 79, 29373, 23884, 59, 77, 1911, 18982, 7, 9806, 20344, 43, 17, 62, 79, 29373, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 1477, 22602, 13, 30073, 7753, 7203, 40720, 16, 12, 16, 12, 11249, 14, 26708, 46, 62, 39, 3620, 36, 13, 862, 69, 1600, 366, 26708, 46, 62, 39, 3620, 36, 62, 9693, 32297, 1961, 13, 862, 69, 4943, 628, 198, 11748, 285, 11249, 355, 285, 65, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 277, 35301, 1330, 5221, 3245, 198, 11748, 285, 11249, 13, 687, 1381, 13, 354, 1670, 76, 62, 16002, 355, 285, 69, 62, 354, 1670, 76, 198, 11748, 285, 11249, 13, 687, 1381, 13, 19120, 66, 62, 10414, 62, 16002, 355, 308, 296, 66, 62, 13716, 198, 198, 5777, 62, 7753, 62, 46, 17, 796, 705, 19571, 5777, 82, 14, 354, 1670, 76, 35, 62, 76, 2305, 10440, 62, 23536, 5235, 13, 19875, 6, 198, 46, 17, 796, 285, 65, 13, 2220, 7, 4458, 14, 5777, 82, 14, 35, 9399, 55, 13, 43132, 17, 11537, 198, 46, 17, 13, 3672, 796, 705, 35, 9399, 55, 6, 198, 2, 46, 17, 13, 22554, 62, 1084, 48439, 7, 3174, 3245, 28, 5777, 62, 7753, 62, 46, 17, 11, 4831, 28, 940, 1174, 20, 8, 198, 5777, 62, 7753, 62, 7050, 796, 705, 19571, 5777, 82, 14, 354, 1670, 76, 62, 22504, 18, 79, 13, 19875, 6, 198, 7050, 796, 285, 65, 13, 2220, 10786, 46, 3256, 21845, 28, 17821, 8, 198, 7050, 13, 3672, 796, 705, 51, 4061, 18, 6, 198, 2, 7050, 13, 22554, 62, 1084, 48439, 7, 3174, 3245, 28, 5777, 62, 7753, 62, 7050, 11, 4831, 28, 940, 1174, 20, 8, 198, 198, 5777, 62, 11600, 796, 1391, 7050, 13, 3672, 25, 18402, 62, 7753, 62, 7050, 11, 440, 17, 13, 3672, 25, 18402, 62, 7753, 62, 46, 17, 92, 198, 411, 312, 947, 62, 4868, 796, 685, 7050, 13, 3672, 11, 440, 17, 13, 3672, 60, 198, 13049, 62, 65, 24764, 62, 27787, 62, 411, 312, 947, 796, 685, 7050, 13, 3672, 11, 440, 17, 13, 3672, 60, 198, 65, 1329, 62, 1462, 62, 37696, 62, 3672, 62, 11600, 796, 1391, 705, 62, 1340, 10354, 6, 1340, 3256, 705, 62, 3185, 10354, 6, 3185, 6, 92, 198, 198, 2, 10934, 262, 1388, 18640, 8122, 3091, 357, 3524, 657, 8, 290, 262, 20199, 357, 3524, 352, 8, 329, 262, 18640, 685, 16, 11, 362, 11, 1511, 12, 1558, 60, 628, 198, 7050, 62, 46, 17, 62, 3524, 62, 4528, 80, 796, 285, 65, 13, 20797, 62, 3524, 7, 5589, 633, 41888, 7050, 11, 46, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12109, 28, 38384, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13061, 62, 10366, 952, 41888, 15, 13, 4089, 11, 657, 13, 2999, 60, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 41888, 17, 9, 9806, 20344, 43, 17, 62, 79, 29373, 14, 940, 11, 362, 9, 9806, 20344, 43, 17, 62, 79, 29373, 14, 940, 11, 362, 9, 9806, 20344, 43, 17, 62, 79, 29373, 14, 940, 12962, 628, 198, 469, 78, 23656, 14253, 796, 1660, 62, 46, 17, 62, 3524, 62, 4528, 80, 13, 16159, 198, 6404, 796, 366, 39758, 33269, 1137, 1058, 220, 23884, 59, 77, 1911, 18982, 7, 469, 78, 23656, 14253, 9, 940, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 7942, 23656, 796, 685, 9806, 20344, 43, 17, 62, 79, 29373, 14, 940, 11, 3509, 20344, 43, 17, 62, 79, 29373, 14, 940, 11, 3509, 20344, 43, 17, 62, 79, 29373, 14, 940, 60, 198, 6404, 796, 366, 30910, 37819, 45216, 33269, 1137, 1058, 23884, 59, 77, 1911, 18982, 7, 7942, 23656, 9, 940, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 41519, 38469, 14253, 796, 2081, 23656, 12, 469, 78, 23656, 14253, 198, 6404, 796, 366, 39758, 48213, 8634, 6234, 569, 9782, 1581, 1058, 23884, 59, 77, 1911, 18982, 7, 41519, 38469, 14253, 9, 940, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 7050, 62, 46, 17, 62, 3524, 62, 4528, 80, 13, 7645, 17660, 7, 41519, 38469, 14253, 8, 198, 198, 469, 78, 23656, 14253, 6307, 8291, 17660, 796, 1660, 62, 46, 17, 62, 3524, 62, 4528, 80, 13, 16159, 198, 6404, 796, 366, 39758, 33269, 1137, 24582, 48213, 8634, 6158, 1058, 23884, 59, 77, 1911, 18982, 7, 469, 78, 23656, 14253, 6307, 8291, 17660, 9, 940, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 7050, 62, 46, 17, 62, 3524, 62, 411, 796, 285, 65, 13, 20797, 62, 3524, 7, 5589, 633, 41888, 7050, 11, 46, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12109, 28, 38384, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13061, 62, 10366, 952, 41888, 15, 13, 1795, 657, 13, 1238, 60, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 41888, 24, 11, 860, 11, 860, 12962, 628, 198, 354, 1670, 76, 45, 28075, 796, 285, 69, 62, 354, 1670, 76, 13, 1925, 1670, 76, 7, 7050, 62, 46, 17, 62, 3524, 62, 4528, 80, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15916, 9655, 62, 7050, 62, 46, 17, 62, 4528, 80, 62, 45, 28075, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4645, 62, 3524, 62, 16, 28, 7050, 62, 46, 17, 62, 3524, 62, 411, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 62, 3524, 62, 16, 11639, 15916, 9655, 62, 7050, 62, 46, 17, 62, 411, 62, 45, 28075, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31246, 62, 34345, 2625, 15916, 9655, 62, 7050, 62, 46, 17, 62, 5777, 62, 45, 28075, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 3245, 62, 49283, 28, 5777, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47185, 28, 411, 312, 947, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49773, 62, 1462, 62, 37696, 62, 3672, 62, 11600, 28, 65, 1329, 62, 1462, 62, 37696, 62, 3672, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 62, 411, 312, 518, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 296, 66, 62, 13049, 62, 65, 24764, 62, 27787, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 2875, 62, 411, 62, 259, 62, 79, 9945, 62, 862, 69, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 354, 1670, 76, 796, 285, 69, 62, 354, 1670, 76, 13, 1925, 1670, 76, 7, 7050, 62, 46, 17, 62, 3524, 62, 4528, 80, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15916, 9655, 62, 7050, 62, 46, 17, 62, 4528, 80, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4645, 62, 3524, 62, 16, 28, 7050, 62, 46, 17, 62, 3524, 62, 411, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 62, 3524, 62, 16, 11639, 15916, 9655, 62, 7050, 62, 46, 17, 62, 411, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31246, 62, 34345, 2625, 15916, 9655, 62, 7050, 62, 46, 17, 62, 5777, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 3245, 62, 49283, 28, 5777, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47185, 28, 411, 312, 947, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49773, 62, 1462, 62, 37696, 62, 3672, 62, 11600, 28, 65, 1329, 62, 1462, 62, 37696, 62, 3672, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 62, 411, 312, 518, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 296, 66, 62, 13049, 62, 65, 24764, 62, 27787, 28, 13049, 62, 65, 24764, 62, 27787, 62, 411, 312, 947, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 2875, 62, 411, 62, 259, 62, 79, 9945, 62, 862, 69, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 354, 1670, 76, 13, 13564, 62, 259, 79, 3419, 198, 198, 354, 1670, 76, 13, 13564, 62, 862, 69, 3419, 198, 198, 354, 1670, 76, 13, 13564, 62, 79, 9945, 3419, 198, 198, 354, 1670, 76, 45, 28075, 13, 13564, 62, 259, 79, 3419, 198, 198, 19120, 66, 62, 13716, 13, 13564, 62, 19120, 66, 62, 13716, 62, 7753, 7, 354, 1670, 76, 11, 705, 259, 62, 15916, 9655, 62, 27159, 51, 13, 10414, 3256, 705, 15916, 9655, 3256, 1802, 11, 28947, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 25641, 2977, 62, 11600, 28, 4895, 8898, 54, 10082, 16996, 50, 13495, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49, 8968, 1298, 1105, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7279, 20366, 80, 1298, 657, 13, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24864, 20366, 80, 1298, 657, 13, 405, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5317, 430, 10462, 499, 20366, 80, 1298, 657, 13, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10462, 499, 20366, 80, 1298, 352, 13, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8081, 13046, 20366, 80, 1298, 657, 13, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13916, 962, 2484, 14940, 20366, 80, 1298, 657, 13, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16598, 20366, 80, 1298, 657, 13, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29800, 7841, 1548, 20366, 80, 1298, 657, 13, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41829, 25396, 1, 1058, 19779, 51, 4061, 18, 1, 1058, 532, 19, 23055, 11, 366, 35, 9399, 55, 1, 1058, 532, 33942, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 69, 13, 13564, 10786, 43768, 25, 402, 2662, 34, 18402, 2393, 11, 290, 262, 26692, 69, 290, 279, 9945, 3696, 11537, 198, 198, 6404, 796, 366, 4805, 23051, 1268, 22319, 2662, 2767, 41132, 33269, 1137, 25, 23884, 59, 77, 1911, 18982, 7, 469, 78, 23656, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 6404, 796, 366, 39758, 22319, 2662, 2767, 41132, 33269, 1137, 25, 23884, 59, 77, 1911, 18982, 7, 469, 78, 23656, 14253, 6307, 8291, 17660, 9, 940, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 41519, 19182, 19703, 796, 45941, 13, 8937, 7, 469, 78, 23656, 14253, 6307, 8291, 17660, 9, 940, 532, 40087, 23656, 8, 198, 6404, 796, 366, 4805, 23051, 1268, 48213, 8634, 6234, 569, 9782, 1581, 1058, 23884, 59, 77, 1911, 18982, 7, 41519, 19182, 19703, 8, 198, 69, 13, 13564, 7, 6404, 8, 198, 198, 265, 3150, 796, 4645, 13, 1136, 62, 265, 3150, 3419, 198, 1640, 22037, 287, 23235, 25, 198, 197, 3605, 7222, 3669, 796, 22037, 13, 1136, 62, 37652, 3419, 10, 41519, 19182, 19703, 198, 197, 37696, 13, 2617, 62, 37652, 7, 3605, 7222, 3669, 8, 198, 952, 796, 14340, 3483, 46, 3419, 198, 952, 13, 2617, 62, 301, 5620, 7, 301, 5620, 8, 198, 952, 13, 21928, 7203, 26708, 46, 62, 39, 3620, 36, 62, 44, 3843, 62, 9693, 32297, 1961, 13, 79, 9945, 4943, 198 ]
1.788976
3,592
"""A set of utility functions """ from collections import OrderedDict import pkgutil from typing import Dict, Tuple import numpy as np # type: ignore import scipy as sp # type: ignore from scipy import stats from typing import List from .util_funcs import (avail_approaches, read_param_file, _check_bounds, _check_groups) from .problem import ProblemSpec from .results import ResultDict __all__ = ["scale_samples", "read_param_file", "ResultDict", "avail_approaches"] def _scale_samples(params: np.ndarray, bounds: List): """Rescale samples in 0-to-1 range to arbitrary bounds Parameters ---------- params : numpy.ndarray numpy array of dimensions `num_params`-by-:math:`N`, where :math:`N` is the number of samples bounds : list list of lists of dimensions `num_params`-by-2 """ # Check bounds are legal (upper bound is greater than lower bound) lower_bounds, upper_bounds = _check_bounds(bounds) # This scales the samples in-place, by using the optional output # argument for the numpy ufunctions # The calculation is equivalent to: # sample * (upper_bound - lower_bound) + lower_bound np.add(np.multiply(params, (upper_bounds - lower_bounds), out=params), lower_bounds, out=params) def scale_samples(params: np.ndarray, problem: Dict): """Scale samples based on specified distribution (defaulting to uniform). Adds an entry to the problem specification to indicate samples have been scaled to maintain backwards compatibility (`sample_scaled`). Parameters ---------- params : np.ndarray, numpy array of dimensions `num_params`-by-:math:`N`, where :math:`N` is the number of samples problem : dictionary, SALib problem specification Returns ---------- np.ndarray, scaled samples """ bounds = problem['bounds'] dists = problem.get('dists') if dists is None: _scale_samples(params, bounds) else: if params.shape[1] != len(dists): msg = "Mismatch in number of parameters and distributions.\n" msg += "Num parameters: {}".format(params.shape[1]) msg += "Num distributions: {}".format(len(dists)) raise ValueError(msg) params = _nonuniform_scale_samples( params, bounds, dists) problem['sample_scaled'] = True return params # limited_params = limit_samples(params, upper_bound, lower_bound, dists) def _unscale_samples(params, bounds): """Rescale samples from arbitrary bounds back to [0,1] range Parameters ---------- bounds : list list of lists of dimensions num_params-by-2 params : numpy.ndarray numpy array of dimensions num_params-by-N, where N is the number of samples """ # Check bounds are legal (upper bound is greater than lower bound) b = np.array(bounds) lower_bounds = b[:, 0] upper_bounds = b[:, 1] if np.any(lower_bounds >= upper_bounds): raise ValueError("Bounds are not legal") # This scales the samples in-place, by using the optional output # argument for the numpy ufunctions # The calculation is equivalent to: # (sample - lower_bound) / (upper_bound - lower_bound) np.divide(np.subtract(params, lower_bounds, out=params), np.subtract(upper_bounds, lower_bounds), out=params) def _nonuniform_scale_samples(params, bounds, dists): """Rescale samples in 0-to-1 range to other distributions Parameters ---------- problem : dict problem definition including bounds params : numpy.ndarray numpy array of dimensions num_params-by-N, where N is the number of samples dists : list list of distributions, one for each parameter unif: uniform with lower and upper bounds triang: triangular with width (scale) and location of peak location of peak is in percentage of width lower bound assumed to be zero norm: normal distribution with mean and standard deviation truncnorm: truncated normal distribution with upper and lower bounds, mean and standard deviation lognorm: lognormal with ln-space mean and standard deviation """ b = np.array(bounds) # initializing matrix for converted values conv_params = np.empty_like(params) # loop over the parameters for i in range(conv_params.shape[1]): # setting first and second arguments for distributions b1 = b[i][0] b2 = b[i][1] if dists[i] == 'triang': # checking for correct parameters if b1 <= 0 or b2 <= 0 or b2 >= 1: raise ValueError("""Triangular distribution: Scale must be greater than zero; peak on interval [0,1]""") else: conv_params[:, i] = sp.stats.triang.ppf( params[:, i], c=b2, scale=b1, loc=0) elif dists[i] == 'unif': if b1 >= b2: raise ValueError("""Uniform distribution: lower bound must be less than upper bound""") else: conv_params[:, i] = params[:, i] * (b2 - b1) + b1 elif dists[i] == 'norm': if b2 <= 0: raise ValueError("""Normal distribution: stdev must be > 0""") else: conv_params[:, i] = sp.stats.norm.ppf( params[:, i], loc=b1, scale=b2) # Truncated normal distribution # parameters are lower bound and upper bound, mean and stdev elif dists[i] == 'truncnorm': b3 = b[i][2] b4 = b[i][3] if b4 <= 0: raise ValueError( """Truncated normal distribution: stdev must be > 0""" ) if b1 >= b2: raise ValueError( """Truncated normal distribution: lower bound must be less than upper bound""" ) else: conv_params[:, i] = sp.stats.truncnorm.ppf( params[:, i], (b1 - b3) / b4, (b2 - b3) / b4, loc=b3, scale=b4 ) # lognormal distribution (ln-space, not base-10) # paramters are ln-space mean and standard deviation elif dists[i] == 'lognorm': # checking for valid parameters if b2 <= 0: raise ValueError( """Lognormal distribution: stdev must be > 0""") else: conv_params[:, i] = np.exp( sp.stats.norm.ppf(params[:, i], loc=b1, scale=b2)) else: valid_dists = ['unif', 'triang', 'norm', 'truncnorm', 'lognorm'] raise ValueError('Distributions: choose one of %s' % ", ".join(valid_dists)) return conv_params def extract_group_names(groups: List) -> Tuple: """Get a unique set of the group names. Reverts to parameter names (and number of parameters) if groups not defined. Parameters ---------- groups : List Returns ------- tuple : names, number of groups """ names = list(OrderedDict.fromkeys(groups)) number = len(names) return names, number def compute_groups_matrix(groups: List): """Generate matrix which notes factor membership of groups Computes a k-by-g matrix which notes factor membership of groups where: k is the number of variables (factors) g is the number of groups Also returns a g-length list of unique group_names whose positions correspond to the order of groups in the k-by-g matrix Parameters ---------- groups : List Group names corresponding to each variable Returns ------- tuple containing group matrix assigning parameters to groups and a list of unique group names """ num_vars = len(groups) unique_group_names, number_of_groups = extract_group_names(groups) indices = dict([(x, i) for (i, x) in enumerate(unique_group_names)]) output = np.zeros((num_vars, number_of_groups), dtype=np.int) for parameter_row, group_membership in enumerate(groups): group_index = indices[group_membership] output[parameter_row, group_index] = 1 return output, unique_group_names def _define_problem_with_groups(problem: Dict) -> Dict: """ Checks if the user defined the 'groups' key in the problem dictionary. If not, makes the 'groups' key equal to the variables names. In other words, the number of groups will be equal to the number of variables, which is equivalent to no groups. Parameters ---------- problem : dict The problem definition Returns ------- problem : dict The problem definition with the 'groups' key, even if the user doesn't define it """ # Checks if there isn't a key 'groups' or if it exists and is set to 'None' if 'groups' not in problem or not problem['groups']: problem['groups'] = problem['names'] elif len(problem['groups']) != problem['num_vars']: raise ValueError("Number of entries in \'groups\' should be the same " "as in \'names\'") return problem def _compute_delta(num_levels: int) -> float: """Computes the delta value from number of levels Parameters --------- num_levels : int The number of levels Returns ------- float """ return num_levels / (2.0 * (num_levels - 1))
[ 37811, 32, 900, 286, 10361, 5499, 198, 198, 37811, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 279, 10025, 22602, 198, 6738, 19720, 1330, 360, 713, 11, 309, 29291, 198, 198, 11748, 299, 32152, 355, 45941, 220, 1303, 2099, 25, 8856, 198, 11748, 629, 541, 88, 355, 599, 220, 1303, 2099, 25, 8856, 198, 6738, 629, 541, 88, 1330, 9756, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 764, 22602, 62, 12543, 6359, 1330, 357, 615, 603, 62, 21064, 3694, 11, 1100, 62, 17143, 62, 7753, 11, 4808, 9122, 62, 65, 3733, 11, 4808, 9122, 62, 24432, 8, 198, 6738, 764, 45573, 1330, 20647, 22882, 198, 6738, 764, 43420, 1330, 25414, 35, 713, 628, 198, 834, 439, 834, 796, 14631, 9888, 62, 82, 12629, 1600, 366, 961, 62, 17143, 62, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23004, 35, 713, 1600, 366, 615, 603, 62, 21064, 3694, 8973, 628, 198, 4299, 4808, 9888, 62, 82, 12629, 7, 37266, 25, 45941, 13, 358, 18747, 11, 22303, 25, 7343, 2599, 198, 220, 220, 220, 37227, 49, 3798, 1000, 8405, 287, 657, 12, 1462, 12, 16, 2837, 284, 14977, 22303, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 42287, 1058, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 7177, 286, 15225, 4600, 22510, 62, 37266, 63, 12, 1525, 12, 25, 11018, 25, 63, 45, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 810, 1058, 11018, 25, 63, 45, 63, 318, 262, 1271, 286, 8405, 628, 220, 220, 220, 22303, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 8341, 286, 15225, 4600, 22510, 62, 37266, 63, 12, 1525, 12, 17, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6822, 22303, 389, 2742, 357, 45828, 5421, 318, 3744, 621, 2793, 5421, 8, 198, 220, 220, 220, 2793, 62, 65, 3733, 11, 6727, 62, 65, 3733, 796, 4808, 9122, 62, 65, 3733, 7, 65, 3733, 8, 628, 220, 220, 220, 1303, 770, 16252, 262, 8405, 287, 12, 5372, 11, 416, 1262, 262, 11902, 5072, 198, 220, 220, 220, 1303, 4578, 329, 262, 299, 32152, 334, 12543, 2733, 198, 220, 220, 220, 1303, 383, 17952, 318, 7548, 284, 25, 198, 220, 220, 220, 1303, 220, 220, 6291, 1635, 357, 45828, 62, 7784, 532, 2793, 62, 7784, 8, 1343, 2793, 62, 7784, 198, 220, 220, 220, 45941, 13, 2860, 7, 37659, 13, 16680, 541, 306, 7, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 45828, 62, 65, 3733, 532, 2793, 62, 65, 3733, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 28, 37266, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 62, 65, 3733, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 28, 37266, 8, 628, 198, 4299, 5046, 62, 82, 12629, 7, 37266, 25, 45941, 13, 358, 18747, 11, 1917, 25, 360, 713, 2599, 198, 220, 220, 220, 37227, 29990, 8405, 1912, 319, 7368, 6082, 357, 12286, 278, 284, 8187, 737, 628, 220, 220, 220, 34333, 281, 5726, 284, 262, 1917, 20855, 284, 7603, 8405, 423, 587, 198, 220, 220, 220, 27464, 284, 5529, 16196, 17764, 357, 63, 39873, 62, 1416, 3021, 63, 737, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 42287, 1058, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 7177, 286, 15225, 4600, 22510, 62, 37266, 63, 12, 1525, 12, 25, 11018, 25, 63, 45, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 810, 1058, 11018, 25, 63, 45, 63, 318, 262, 1271, 286, 8405, 198, 220, 220, 220, 1917, 1058, 22155, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42475, 571, 1917, 20855, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 45941, 13, 358, 18747, 11, 27464, 8405, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22303, 796, 1917, 17816, 65, 3733, 20520, 198, 220, 220, 220, 288, 1023, 796, 1917, 13, 1136, 10786, 67, 1023, 11537, 628, 220, 220, 220, 611, 288, 1023, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 9888, 62, 82, 12629, 7, 37266, 11, 22303, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 42287, 13, 43358, 58, 16, 60, 14512, 18896, 7, 67, 1023, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 44, 1042, 963, 287, 1271, 286, 10007, 290, 24570, 13, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 15853, 366, 33111, 10007, 25, 23884, 1911, 18982, 7, 37266, 13, 43358, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 15853, 366, 33111, 24570, 25, 23884, 1911, 18982, 7, 11925, 7, 67, 1023, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 19662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 4808, 13159, 403, 6933, 62, 9888, 62, 82, 12629, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 11, 22303, 11, 288, 1023, 8, 628, 220, 220, 220, 1917, 17816, 39873, 62, 1416, 3021, 20520, 796, 6407, 628, 220, 220, 220, 1441, 42287, 198, 220, 220, 220, 1303, 3614, 62, 37266, 796, 4179, 62, 82, 12629, 7, 37266, 11, 6727, 62, 7784, 11, 2793, 62, 7784, 11, 288, 1023, 8, 628, 198, 4299, 4808, 403, 9888, 62, 82, 12629, 7, 37266, 11, 22303, 2599, 198, 220, 220, 220, 37227, 49, 3798, 1000, 8405, 422, 14977, 22303, 736, 284, 685, 15, 11, 16, 60, 2837, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 22303, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 8341, 286, 15225, 997, 62, 37266, 12, 1525, 12, 17, 198, 220, 220, 220, 42287, 1058, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 7177, 286, 15225, 997, 62, 37266, 12, 1525, 12, 45, 11, 198, 220, 220, 220, 220, 220, 220, 220, 810, 399, 318, 262, 1271, 286, 8405, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6822, 22303, 389, 2742, 357, 45828, 5421, 318, 3744, 621, 2793, 5421, 8, 198, 220, 220, 220, 275, 796, 45941, 13, 18747, 7, 65, 3733, 8, 198, 220, 220, 220, 2793, 62, 65, 3733, 796, 275, 58, 45299, 657, 60, 198, 220, 220, 220, 6727, 62, 65, 3733, 796, 275, 58, 45299, 352, 60, 628, 220, 220, 220, 611, 45941, 13, 1092, 7, 21037, 62, 65, 3733, 18189, 6727, 62, 65, 3733, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 33, 3733, 389, 407, 2742, 4943, 628, 220, 220, 220, 1303, 770, 16252, 262, 8405, 287, 12, 5372, 11, 416, 1262, 262, 11902, 5072, 198, 220, 220, 220, 1303, 4578, 329, 262, 299, 32152, 334, 12543, 2733, 198, 220, 220, 220, 1303, 383, 17952, 318, 7548, 284, 25, 198, 220, 220, 220, 1303, 220, 220, 357, 39873, 532, 2793, 62, 7784, 8, 1220, 357, 45828, 62, 7784, 532, 2793, 62, 7784, 8, 198, 220, 220, 220, 45941, 13, 7146, 485, 7, 37659, 13, 7266, 83, 974, 7, 37266, 11, 2793, 62, 65, 3733, 11, 503, 28, 37266, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 7266, 83, 974, 7, 45828, 62, 65, 3733, 11, 2793, 62, 65, 3733, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 28, 37266, 8, 628, 198, 4299, 4808, 13159, 403, 6933, 62, 9888, 62, 82, 12629, 7, 37266, 11, 22303, 11, 288, 1023, 2599, 198, 220, 220, 220, 37227, 49, 3798, 1000, 8405, 287, 657, 12, 1462, 12, 16, 2837, 284, 584, 24570, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1917, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 1917, 6770, 1390, 22303, 198, 220, 220, 220, 42287, 1058, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 7177, 286, 15225, 997, 62, 37266, 12, 1525, 12, 45, 11, 198, 220, 220, 220, 220, 220, 220, 220, 810, 399, 318, 262, 1271, 286, 8405, 198, 220, 220, 220, 288, 1023, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 24570, 11, 530, 329, 1123, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 361, 25, 8187, 351, 2793, 290, 6727, 22303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1333, 648, 25, 46963, 351, 9647, 357, 9888, 8, 290, 4067, 286, 9103, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 286, 9103, 318, 287, 5873, 286, 9647, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 5421, 9672, 284, 307, 6632, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 25, 3487, 6082, 351, 1612, 290, 3210, 28833, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 27237, 25, 40122, 515, 3487, 6082, 351, 6727, 290, 2793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 11, 1612, 290, 3210, 28833, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 2360, 579, 25, 300, 2360, 6636, 351, 300, 77, 12, 13200, 1612, 290, 3210, 28833, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 275, 796, 45941, 13, 18747, 7, 65, 3733, 8, 628, 220, 220, 220, 1303, 4238, 2890, 17593, 329, 11513, 3815, 198, 220, 220, 220, 3063, 62, 37266, 796, 45941, 13, 28920, 62, 2339, 7, 37266, 8, 628, 220, 220, 220, 1303, 9052, 625, 262, 10007, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 42946, 62, 37266, 13, 43358, 58, 16, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4634, 717, 290, 1218, 7159, 329, 24570, 198, 220, 220, 220, 220, 220, 220, 220, 275, 16, 796, 275, 58, 72, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 17, 796, 275, 58, 72, 7131, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 288, 1023, 58, 72, 60, 6624, 705, 28461, 648, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10627, 329, 3376, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 16, 19841, 657, 393, 275, 17, 19841, 657, 393, 275, 17, 18189, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 15931, 14824, 21413, 6082, 25, 21589, 1276, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3744, 621, 6632, 26, 9103, 319, 16654, 685, 15, 11, 16, 60, 15931, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 37266, 58, 45299, 1312, 60, 796, 599, 13, 34242, 13, 28461, 648, 13, 381, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 45299, 1312, 4357, 269, 28, 65, 17, 11, 5046, 28, 65, 16, 11, 1179, 28, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 288, 1023, 58, 72, 60, 6624, 705, 403, 361, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 16, 18189, 275, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 15931, 3118, 6933, 6082, 25, 2793, 5421, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1276, 307, 1342, 621, 6727, 5421, 15931, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 37266, 58, 45299, 1312, 60, 796, 42287, 58, 45299, 1312, 60, 1635, 357, 65, 17, 532, 275, 16, 8, 1343, 275, 16, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 288, 1023, 58, 72, 60, 6624, 705, 27237, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 17, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 15931, 26447, 6082, 25, 336, 7959, 1276, 307, 1875, 657, 15931, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 37266, 58, 45299, 1312, 60, 796, 599, 13, 34242, 13, 27237, 13, 381, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 45299, 1312, 4357, 1179, 28, 65, 16, 11, 5046, 28, 65, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 833, 19524, 515, 3487, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10007, 389, 2793, 5421, 290, 6727, 5421, 11, 1612, 290, 336, 7959, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 288, 1023, 58, 72, 60, 6624, 705, 2213, 19524, 27237, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 18, 796, 275, 58, 72, 7131, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 19, 796, 275, 58, 72, 7131, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 19, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 2898, 19524, 515, 3487, 6082, 25, 336, 7959, 1276, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 1875, 657, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 16, 18189, 275, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 2898, 19524, 515, 3487, 6082, 25, 2793, 5421, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1276, 307, 1342, 621, 6727, 5421, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 37266, 58, 45299, 1312, 60, 796, 599, 13, 34242, 13, 2213, 19524, 27237, 13, 381, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 45299, 1312, 4357, 357, 65, 16, 532, 275, 18, 8, 1220, 275, 19, 11, 357, 65, 17, 532, 275, 18, 8, 1220, 275, 19, 11, 1179, 28, 65, 18, 11, 5046, 28, 65, 19, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 300, 2360, 6636, 6082, 357, 18755, 12, 13200, 11, 407, 2779, 12, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5772, 1010, 389, 300, 77, 12, 13200, 1612, 290, 3210, 28833, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 288, 1023, 58, 72, 60, 6624, 705, 75, 2360, 579, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10627, 329, 4938, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 17, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 43, 2360, 6636, 6082, 25, 336, 7959, 1276, 307, 1875, 657, 15931, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 37266, 58, 45299, 1312, 60, 796, 45941, 13, 11201, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 599, 13, 34242, 13, 27237, 13, 381, 69, 7, 37266, 58, 45299, 1312, 4357, 1179, 28, 65, 16, 11, 5046, 28, 65, 17, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 67, 1023, 796, 37250, 403, 361, 3256, 705, 28461, 648, 3256, 705, 27237, 3256, 705, 2213, 19524, 27237, 3256, 705, 75, 2360, 579, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 20344, 2455, 507, 25, 3853, 530, 286, 4064, 82, 6, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 27071, 22179, 7, 12102, 62, 67, 1023, 4008, 628, 220, 220, 220, 1441, 3063, 62, 37266, 628, 198, 4299, 7925, 62, 8094, 62, 14933, 7, 24432, 25, 7343, 8, 4613, 309, 29291, 25, 198, 220, 220, 220, 37227, 3855, 257, 3748, 900, 286, 262, 1448, 3891, 13, 628, 220, 220, 220, 797, 24040, 284, 11507, 3891, 357, 392, 1271, 286, 10007, 8, 611, 2628, 407, 198, 220, 220, 220, 5447, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2628, 1058, 7343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 46545, 1058, 3891, 11, 1271, 286, 2628, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3891, 796, 1351, 7, 35422, 1068, 35, 713, 13, 6738, 13083, 7, 24432, 4008, 198, 220, 220, 220, 1271, 796, 18896, 7, 14933, 8, 628, 220, 220, 220, 1441, 3891, 11, 1271, 628, 198, 4299, 24061, 62, 24432, 62, 6759, 8609, 7, 24432, 25, 7343, 2599, 198, 220, 220, 220, 37227, 8645, 378, 17593, 543, 4710, 5766, 9931, 286, 2628, 628, 220, 220, 220, 3082, 1769, 257, 479, 12, 1525, 12, 70, 17593, 543, 4710, 5766, 9931, 286, 2628, 198, 220, 220, 220, 810, 25, 198, 220, 220, 220, 220, 220, 220, 220, 479, 318, 262, 1271, 286, 9633, 357, 22584, 669, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 318, 262, 1271, 286, 2628, 198, 220, 220, 220, 4418, 5860, 257, 308, 12, 13664, 1351, 286, 3748, 1448, 62, 14933, 3025, 6116, 198, 220, 220, 220, 6053, 284, 262, 1502, 286, 2628, 287, 262, 479, 12, 1525, 12, 70, 17593, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2628, 1058, 7343, 198, 220, 220, 220, 220, 220, 220, 220, 4912, 3891, 11188, 284, 1123, 7885, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 7268, 1448, 17593, 38875, 10007, 284, 198, 220, 220, 220, 220, 220, 220, 220, 2628, 290, 257, 1351, 286, 3748, 1448, 3891, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 997, 62, 85, 945, 796, 18896, 7, 24432, 8, 198, 220, 220, 220, 3748, 62, 8094, 62, 14933, 11, 1271, 62, 1659, 62, 24432, 796, 7925, 62, 8094, 62, 14933, 7, 24432, 8, 628, 220, 220, 220, 36525, 796, 8633, 26933, 7, 87, 11, 1312, 8, 329, 357, 72, 11, 2124, 8, 287, 27056, 378, 7, 34642, 62, 8094, 62, 14933, 8, 12962, 628, 220, 220, 220, 5072, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 85, 945, 11, 1271, 62, 1659, 62, 24432, 828, 288, 4906, 28, 37659, 13, 600, 8, 628, 220, 220, 220, 329, 11507, 62, 808, 11, 1448, 62, 30814, 1056, 287, 27056, 378, 7, 24432, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 9630, 796, 36525, 58, 8094, 62, 30814, 1056, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 58, 17143, 2357, 62, 808, 11, 1448, 62, 9630, 60, 796, 352, 628, 220, 220, 220, 1441, 5072, 11, 3748, 62, 8094, 62, 14933, 628, 198, 4299, 4808, 13086, 62, 45573, 62, 4480, 62, 24432, 7, 45573, 25, 360, 713, 8, 4613, 360, 713, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 611, 262, 2836, 5447, 262, 705, 24432, 6, 1994, 287, 262, 1917, 22155, 13, 198, 220, 220, 220, 1002, 407, 11, 1838, 262, 705, 24432, 6, 1994, 4961, 284, 262, 9633, 3891, 13, 554, 584, 198, 220, 220, 220, 2456, 11, 262, 1271, 286, 2628, 481, 307, 4961, 284, 262, 1271, 286, 9633, 11, 543, 198, 220, 220, 220, 318, 7548, 284, 645, 2628, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1917, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1917, 6770, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1917, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1917, 6770, 351, 262, 705, 24432, 6, 1994, 11, 772, 611, 262, 2836, 1595, 470, 198, 220, 220, 220, 220, 220, 220, 220, 8160, 340, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 47719, 611, 612, 2125, 470, 257, 1994, 705, 24432, 6, 393, 611, 340, 7160, 290, 318, 900, 284, 705, 14202, 6, 198, 220, 220, 220, 611, 705, 24432, 6, 407, 287, 1917, 393, 407, 1917, 17816, 24432, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1917, 17816, 24432, 20520, 796, 1917, 17816, 14933, 20520, 198, 220, 220, 220, 1288, 361, 18896, 7, 45573, 17816, 24432, 6, 12962, 14512, 1917, 17816, 22510, 62, 85, 945, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 15057, 286, 12784, 287, 34373, 24432, 43054, 815, 307, 262, 976, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 292, 287, 34373, 14933, 43054, 4943, 198, 220, 220, 220, 1441, 1917, 628, 198, 4299, 4808, 5589, 1133, 62, 67, 12514, 7, 22510, 62, 46170, 25, 493, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 7293, 1769, 262, 25979, 1988, 422, 1271, 286, 2974, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 45337, 198, 220, 220, 220, 997, 62, 46170, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 2974, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 12178, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 997, 62, 46170, 1220, 357, 17, 13, 15, 1635, 357, 22510, 62, 46170, 532, 352, 4008, 198 ]
2.412651
4,047
# -*- coding: utf-8 -*- import json import re import subprocess import sys import time from requests_oauthlib import OAuth1Session # 取得したConsumer Key等と置き換えてください CK = 'consumer_key' CS = 'consumer_secret' AT = 'access_token' AS = 'access_token_secret' FILTER_URL = 'https://stream.twitter.com/1.1/statuses/filter.json' # 文字列から参戦IDを抽出 # stringをクリップボードにコピー if __name__ == "__main__": main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 33918, 198, 11748, 302, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 640, 198, 6738, 7007, 62, 12162, 1071, 8019, 1330, 440, 30515, 16, 36044, 198, 198, 2, 10263, 237, 244, 36181, 245, 22180, 25224, 49106, 7383, 163, 255, 231, 30201, 163, 121, 106, 33778, 162, 237, 249, 2515, 230, 28134, 31917, 46777, 43357, 18566, 198, 34, 42, 796, 705, 49827, 62, 2539, 6, 198, 7902, 796, 705, 49827, 62, 21078, 6, 198, 1404, 796, 705, 15526, 62, 30001, 6, 198, 1921, 796, 705, 15526, 62, 30001, 62, 21078, 6, 198, 198, 46700, 5781, 62, 21886, 796, 705, 5450, 1378, 5532, 13, 6956, 13, 785, 14, 16, 13, 16, 14, 14269, 2664, 14, 24455, 13, 17752, 6, 198, 198, 2, 10545, 244, 229, 27764, 245, 26344, 245, 27370, 36853, 20998, 224, 36704, 2389, 31758, 162, 232, 121, 49035, 118, 198, 198, 2, 4731, 31758, 14099, 12675, 14777, 30965, 1209, 250, 12045, 231, 28618, 24679, 1209, 242, 6312, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.062176
193
# # PySNMP MIB module ASCEND-MIBTRANSACTION-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ASCEND-MIBTRANSACTION-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:12:43 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # configuration, = mibBuilder.importSymbols("ASCEND-MIB", "configuration") Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueRangeConstraint, ValueSizeConstraint, ConstraintsIntersection, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsIntersection", "ConstraintsUnion") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Counter32, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, IpAddress, Gauge32, ModuleIdentity, TimeTicks, Integer32, NotificationType, Bits, iso, ObjectIdentity, Unsigned32 = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "IpAddress", "Gauge32", "ModuleIdentity", "TimeTicks", "Integer32", "NotificationType", "Bits", "iso", "ObjectIdentity", "Unsigned32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") mibtransactionProfile = MibIdentifier((1, 3, 6, 1, 4, 1, 529, 23, 131)) mibtransactionProfileTable = MibTable((1, 3, 6, 1, 4, 1, 529, 23, 131, 1), ) if mibBuilder.loadTexts: mibtransactionProfileTable.setStatus('mandatory') mibtransactionProfileEntry = MibTableRow((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1), ).setIndexNames((0, "ASCEND-MIBTRANSACTION-MIB", "transactionProfile-Index-o")) if mibBuilder.loadTexts: mibtransactionProfileEntry.setStatus('mandatory') transactionProfile_Index_o = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 1), Integer32()).setLabel("transactionProfile-Index-o").setMaxAccess("readonly") if mibBuilder.loadTexts: transactionProfile_Index_o.setStatus('mandatory') transactionProfile_SelectionTimeout = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 2), Integer32()).setLabel("transactionProfile-SelectionTimeout").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_SelectionTimeout.setStatus('mandatory') transactionProfile_DataAckTimeout = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 3), Integer32()).setLabel("transactionProfile-DataAckTimeout").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_DataAckTimeout.setStatus('mandatory') transactionProfile_KeepAliveTimeout = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 4), Integer32()).setLabel("transactionProfile-KeepAliveTimeout").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_KeepAliveTimeout.setStatus('mandatory') transactionProfile_QtpPort = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 5), Integer32()).setLabel("transactionProfile-QtpPort").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_QtpPort.setStatus('mandatory') transactionProfile_MetricMax = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 6), Integer32()).setLabel("transactionProfile-MetricMax").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_MetricMax.setStatus('mandatory') transactionProfile_NoConnAckIncrement = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 7), Integer32()).setLabel("transactionProfile-NoConnAckIncrement").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_NoConnAckIncrement.setStatus('mandatory') transactionProfile_CallRejectIncrement = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 8), Integer32()).setLabel("transactionProfile-CallRejectIncrement").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_CallRejectIncrement.setStatus('mandatory') transactionProfile_CallAckDecrement = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 9), Integer32()).setLabel("transactionProfile-CallAckDecrement").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_CallAckDecrement.setStatus('mandatory') transactionProfile_AvailableMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 10), Integer32()).setLabel("transactionProfile-AvailableMetric").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_AvailableMetric.setStatus('mandatory') transactionProfile_PartlyCongestedMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 11), Integer32()).setLabel("transactionProfile-PartlyCongestedMetric").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_PartlyCongestedMetric.setStatus('mandatory') transactionProfile_CongestedMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 12), Integer32()).setLabel("transactionProfile-CongestedMetric").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_CongestedMetric.setStatus('mandatory') transactionProfile_ShutdownMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 13), Integer32()).setLabel("transactionProfile-ShutdownMetric").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_ShutdownMetric.setStatus('mandatory') transactionProfile_NoFirstStatusMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 14), Integer32()).setLabel("transactionProfile-NoFirstStatusMetric").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_NoFirstStatusMetric.setStatus('mandatory') transactionProfile_NoSecondStatusMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 15), Integer32()).setLabel("transactionProfile-NoSecondStatusMetric").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_NoSecondStatusMetric.setStatus('mandatory') transactionProfile_MaxQtpPduSize = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 16), Integer32()).setLabel("transactionProfile-MaxQtpPduSize").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_MaxQtpPduSize.setStatus('mandatory') transactionProfile_Action_o = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 17), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("noAction", 1), ("createProfile", 2), ("deleteProfile", 3)))).setLabel("transactionProfile-Action-o").setMaxAccess("readwrite") if mibBuilder.loadTexts: transactionProfile_Action_o.setStatus('mandatory') mibBuilder.exportSymbols("ASCEND-MIBTRANSACTION-MIB", transactionProfile_Index_o=transactionProfile_Index_o, transactionProfile_DataAckTimeout=transactionProfile_DataAckTimeout, mibtransactionProfileEntry=mibtransactionProfileEntry, transactionProfile_CallRejectIncrement=transactionProfile_CallRejectIncrement, transactionProfile_CallAckDecrement=transactionProfile_CallAckDecrement, transactionProfile_NoSecondStatusMetric=transactionProfile_NoSecondStatusMetric, transactionProfile_NoConnAckIncrement=transactionProfile_NoConnAckIncrement, transactionProfile_ShutdownMetric=transactionProfile_ShutdownMetric, transactionProfile_Action_o=transactionProfile_Action_o, mibtransactionProfileTable=mibtransactionProfileTable, transactionProfile_NoFirstStatusMetric=transactionProfile_NoFirstStatusMetric, transactionProfile_MaxQtpPduSize=transactionProfile_MaxQtpPduSize, transactionProfile_SelectionTimeout=transactionProfile_SelectionTimeout, transactionProfile_PartlyCongestedMetric=transactionProfile_PartlyCongestedMetric, transactionProfile_AvailableMetric=transactionProfile_AvailableMetric, transactionProfile_CongestedMetric=transactionProfile_CongestedMetric, mibtransactionProfile=mibtransactionProfile, DisplayString=DisplayString, transactionProfile_QtpPort=transactionProfile_QtpPort, transactionProfile_MetricMax=transactionProfile_MetricMax, transactionProfile_KeepAliveTimeout=transactionProfile_KeepAliveTimeout)
[ 2, 198, 2, 9485, 15571, 7378, 337, 9865, 8265, 25400, 10619, 12, 8895, 33, 5446, 15037, 44710, 12, 8895, 33, 357, 4023, 1378, 16184, 76, 489, 8937, 13, 785, 14, 79, 893, 11632, 8, 198, 2, 7054, 45, 13, 16, 2723, 2393, 1378, 14, 14490, 14, 67, 615, 47562, 19, 14, 13603, 14, 76, 571, 82, 13, 16184, 76, 489, 8937, 13, 785, 14, 292, 77, 16, 14, 42643, 10619, 12, 8895, 33, 5446, 15037, 44710, 12, 8895, 33, 198, 2, 21522, 771, 416, 279, 893, 11632, 12, 15, 13, 18, 13, 19, 379, 2892, 2758, 2808, 1596, 25, 1065, 25, 3559, 13130, 198, 2, 1550, 2583, 42274, 54, 15567, 19, 12, 44, 12, 1415, 2425, 3859, 21450, 2196, 1248, 13, 20, 13, 15, 416, 2836, 288, 615, 47562, 19, 198, 2, 8554, 11361, 2196, 513, 13, 22, 13, 18, 357, 12286, 11, 1526, 2681, 13130, 11, 7769, 25, 1954, 25, 1314, 8, 220, 198, 2, 198, 11250, 3924, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 42643, 10619, 12, 8895, 33, 1600, 366, 11250, 3924, 4943, 198, 46541, 11, 9515, 33234, 7483, 11, 2556, 316, 10100, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 1600, 366, 46541, 1600, 366, 10267, 33234, 7483, 1600, 366, 12349, 316, 10100, 4943, 198, 45, 2434, 40161, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 1677, 5883, 1137, 6234, 1600, 366, 45, 2434, 40161, 4943, 198, 28008, 11395, 3103, 2536, 2913, 11, 11052, 17257, 3103, 2536, 2913, 11, 11052, 10699, 3103, 2536, 2913, 11, 1482, 2536, 6003, 9492, 5458, 11, 1482, 2536, 6003, 38176, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 2200, 20032, 12529, 1600, 366, 28008, 11395, 3103, 2536, 2913, 1600, 366, 11395, 17257, 3103, 2536, 2913, 1600, 366, 11395, 10699, 3103, 2536, 2913, 1600, 366, 3103, 2536, 6003, 9492, 5458, 1600, 366, 3103, 2536, 6003, 38176, 4943, 198, 3673, 2649, 13247, 11, 19937, 38143, 3610, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 10943, 37, 1600, 366, 3673, 2649, 13247, 1600, 366, 26796, 38143, 3610, 4943, 198, 31694, 2624, 11, 337, 571, 33234, 7483, 11, 337, 571, 3351, 282, 283, 11, 337, 571, 10962, 11, 337, 571, 10962, 25166, 11, 337, 571, 10962, 39470, 11, 15034, 2414, 11, 314, 79, 20231, 11, 35094, 469, 2624, 11, 19937, 7390, 26858, 11, 3862, 51, 3378, 11, 34142, 2624, 11, 42808, 6030, 11, 44733, 11, 47279, 11, 9515, 7390, 26858, 11, 791, 32696, 2624, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 50, 8895, 1600, 366, 31694, 2624, 1600, 366, 44, 571, 33234, 7483, 1600, 366, 44, 571, 3351, 282, 283, 1600, 366, 44, 571, 10962, 1600, 366, 44, 571, 10962, 25166, 1600, 366, 44, 571, 10962, 39470, 1600, 366, 31694, 2414, 1600, 366, 40, 79, 20231, 1600, 366, 38, 559, 469, 2624, 1600, 366, 26796, 7390, 26858, 1600, 366, 7575, 51, 3378, 1600, 366, 46541, 2624, 1600, 366, 3673, 2649, 6030, 1600, 366, 33, 896, 1600, 366, 26786, 1600, 366, 10267, 7390, 26858, 1600, 366, 3118, 32696, 2624, 4943, 198, 23114, 10100, 11, 8255, 723, 3103, 4018, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 4825, 1600, 366, 23114, 10100, 1600, 366, 8206, 723, 3103, 4018, 4943, 198, 198, 76, 571, 7645, 2673, 37046, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 4008, 198, 76, 571, 7645, 2673, 37046, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 285, 571, 7645, 2673, 37046, 10962, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 76, 571, 7645, 2673, 37046, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 42643, 10619, 12, 8895, 33, 5446, 15037, 44710, 12, 8895, 33, 1600, 366, 7645, 2673, 37046, 12, 15732, 12, 78, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 285, 571, 7645, 2673, 37046, 30150, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 15732, 62, 78, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 352, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 15732, 12, 78, 11074, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 15732, 62, 78, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 4653, 1564, 48031, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 362, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 4653, 1564, 48031, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 4653, 1564, 48031, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 6601, 32, 694, 48031, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 513, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 6601, 32, 694, 48031, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 6601, 32, 694, 48031, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 15597, 2348, 425, 48031, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 604, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 15597, 2348, 425, 48031, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 15597, 2348, 425, 48031, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 48, 34788, 13924, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 642, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 48, 34788, 13924, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 48, 34788, 13924, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 9171, 1173, 11518, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 718, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 9171, 1173, 11518, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 9171, 1173, 11518, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 2949, 37321, 32, 694, 15562, 434, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 767, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 2949, 37321, 32, 694, 15562, 434, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 2949, 37321, 32, 694, 15562, 434, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 14134, 3041, 752, 15562, 434, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 807, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 14134, 3041, 752, 15562, 434, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 14134, 3041, 752, 15562, 434, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 14134, 32, 694, 43198, 434, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 860, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 14134, 32, 694, 43198, 434, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 14134, 32, 694, 43198, 434, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 10493, 9171, 1173, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 838, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 10493, 9171, 1173, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 10493, 9171, 1173, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 7841, 306, 18649, 7287, 9171, 1173, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 1367, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 7841, 306, 18649, 7287, 9171, 1173, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 7841, 306, 18649, 7287, 9171, 1173, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 18649, 7287, 9171, 1173, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 1105, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 18649, 7287, 9171, 1173, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 18649, 7287, 9171, 1173, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 39079, 2902, 9171, 1173, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 1511, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 39079, 2902, 9171, 1173, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 39079, 2902, 9171, 1173, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 2949, 5962, 19580, 9171, 1173, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 1478, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 2949, 5962, 19580, 9171, 1173, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 2949, 5962, 19580, 9171, 1173, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 2949, 12211, 19580, 9171, 1173, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 1315, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 2949, 12211, 19580, 9171, 1173, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 2949, 12211, 19580, 9171, 1173, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 11518, 48, 34788, 47, 646, 10699, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 1467, 828, 34142, 2624, 3419, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 11518, 48, 34788, 47, 646, 10699, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 11518, 48, 34788, 47, 646, 10699, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 7645, 2673, 37046, 62, 12502, 62, 78, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 49888, 11, 2242, 11, 23134, 11, 352, 11, 352, 11, 1596, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 3919, 12502, 1600, 352, 828, 5855, 17953, 37046, 1600, 362, 828, 5855, 33678, 37046, 1600, 513, 22305, 737, 2617, 33986, 7203, 7645, 2673, 37046, 12, 12502, 12, 78, 11074, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 8611, 37046, 62, 12502, 62, 78, 13, 2617, 19580, 10786, 22249, 2870, 11537, 198, 76, 571, 32875, 13, 39344, 13940, 2022, 10220, 7203, 42643, 10619, 12, 8895, 33, 5446, 15037, 44710, 12, 8895, 33, 1600, 8611, 37046, 62, 15732, 62, 78, 28, 7645, 2673, 37046, 62, 15732, 62, 78, 11, 8611, 37046, 62, 6601, 32, 694, 48031, 28, 7645, 2673, 37046, 62, 6601, 32, 694, 48031, 11, 285, 571, 7645, 2673, 37046, 30150, 28, 76, 571, 7645, 2673, 37046, 30150, 11, 8611, 37046, 62, 14134, 3041, 752, 15562, 434, 28, 7645, 2673, 37046, 62, 14134, 3041, 752, 15562, 434, 11, 8611, 37046, 62, 14134, 32, 694, 43198, 434, 28, 7645, 2673, 37046, 62, 14134, 32, 694, 43198, 434, 11, 8611, 37046, 62, 2949, 12211, 19580, 9171, 1173, 28, 7645, 2673, 37046, 62, 2949, 12211, 19580, 9171, 1173, 11, 8611, 37046, 62, 2949, 37321, 32, 694, 15562, 434, 28, 7645, 2673, 37046, 62, 2949, 37321, 32, 694, 15562, 434, 11, 8611, 37046, 62, 39079, 2902, 9171, 1173, 28, 7645, 2673, 37046, 62, 39079, 2902, 9171, 1173, 11, 8611, 37046, 62, 12502, 62, 78, 28, 7645, 2673, 37046, 62, 12502, 62, 78, 11, 285, 571, 7645, 2673, 37046, 10962, 28, 76, 571, 7645, 2673, 37046, 10962, 11, 8611, 37046, 62, 2949, 5962, 19580, 9171, 1173, 28, 7645, 2673, 37046, 62, 2949, 5962, 19580, 9171, 1173, 11, 8611, 37046, 62, 11518, 48, 34788, 47, 646, 10699, 28, 7645, 2673, 37046, 62, 11518, 48, 34788, 47, 646, 10699, 11, 8611, 37046, 62, 4653, 1564, 48031, 28, 7645, 2673, 37046, 62, 4653, 1564, 48031, 11, 8611, 37046, 62, 7841, 306, 18649, 7287, 9171, 1173, 28, 7645, 2673, 37046, 62, 7841, 306, 18649, 7287, 9171, 1173, 11, 8611, 37046, 62, 10493, 9171, 1173, 28, 7645, 2673, 37046, 62, 10493, 9171, 1173, 11, 8611, 37046, 62, 18649, 7287, 9171, 1173, 28, 7645, 2673, 37046, 62, 18649, 7287, 9171, 1173, 11, 285, 571, 7645, 2673, 37046, 28, 76, 571, 7645, 2673, 37046, 11, 16531, 10100, 28, 23114, 10100, 11, 8611, 37046, 62, 48, 34788, 13924, 28, 7645, 2673, 37046, 62, 48, 34788, 13924, 11, 8611, 37046, 62, 9171, 1173, 11518, 28, 7645, 2673, 37046, 62, 9171, 1173, 11518, 11, 8611, 37046, 62, 15597, 2348, 425, 48031, 28, 7645, 2673, 37046, 62, 15597, 2348, 425, 48031, 8, 198 ]
3.03775
2,649
#! /usr/bin/env python from __future__ import division from scipy.integrate import ode import numpy as np import matplotlib.pyplot as plt from solution import SIR #, SIRS, SIS from scikits import bvp_solver # Example() # Exercise1() # Exercise2() # Exercise2a() # Exercise2b() Exercise3() # Exercise4()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 629, 541, 88, 13, 18908, 4873, 1330, 267, 2934, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 4610, 1330, 311, 4663, 1303, 11, 311, 4663, 50, 11, 311, 1797, 198, 6738, 629, 1134, 896, 1330, 275, 36133, 62, 82, 14375, 628, 628, 628, 628, 198, 198, 2, 17934, 3419, 198, 2, 32900, 16, 3419, 198, 2, 32900, 17, 3419, 198, 2, 32900, 17, 64, 3419, 198, 2, 32900, 17, 65, 3419, 198, 3109, 23697, 18, 3419, 198, 2, 32900, 19, 3419, 628, 628, 198 ]
2.79646
113
# Single place version should be set. __version__ = '0.2.2'
[ 2, 14206, 1295, 2196, 815, 307, 900, 13, 220, 198, 834, 9641, 834, 796, 705, 15, 13, 17, 13, 17, 6, 198 ]
2.772727
22
import json from typing import Dict, Any, Sequence from abc import ABC, abstractmethod from typing import List from app.base_types import Image from app.result_types import BaseResult class BaseWrapper(ABC): """ Base class for creating custom wrappers for models based on neural networks """ @abstractmethod def predict(self, image: Image) -> List[BaseResult]: """ Abstract method for predict result based on input image """ raise NotImplementedError @abstractmethod def preprocess(self, image: Image) -> Any: """ Abstract method for image preprocessing for certain model/framework """ raise NotImplementedError def load_config(self, path_to_config: str) -> Dict[str, Any]: """ Generic method for loading json config Parameters ---------- path_to_config: str Path to config file Returns ------- config: Dict[str, Any] Model config in dictionary """ with open(path_to_config, 'r') as conf_file: config = json.load(conf_file) return config
[ 11748, 33918, 198, 6738, 19720, 1330, 360, 713, 11, 4377, 11, 45835, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 198, 6738, 19720, 1330, 7343, 198, 6738, 598, 13, 8692, 62, 19199, 1330, 7412, 198, 6738, 598, 13, 20274, 62, 19199, 1330, 7308, 23004, 628, 198, 4871, 7308, 36918, 2848, 7, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 1398, 329, 4441, 2183, 7917, 11799, 329, 220, 198, 220, 220, 220, 4981, 1912, 319, 17019, 7686, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 4331, 7, 944, 11, 2939, 25, 7412, 8, 4613, 7343, 58, 14881, 23004, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27741, 2446, 329, 4331, 1255, 1912, 319, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 662, 14681, 7, 944, 11, 2939, 25, 7412, 8, 4613, 4377, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27741, 2446, 329, 2939, 662, 36948, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1728, 2746, 14, 30604, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 3440, 62, 11250, 7, 944, 11, 3108, 62, 1462, 62, 11250, 25, 965, 8, 4613, 360, 713, 58, 2536, 11, 4377, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42044, 2446, 329, 11046, 33918, 4566, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 1462, 62, 11250, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 4566, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 360, 713, 58, 2536, 11, 4377, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9104, 4566, 287, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 62, 1462, 62, 11250, 11, 705, 81, 11537, 355, 1013, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 33918, 13, 2220, 7, 10414, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4566, 198 ]
2.460123
489
################################################################################# # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). # # You may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # ################################################################################# """A class for configuration server.""" import json import logging from threading import RLock from typing import Iterable, List, Optional, Union from deepracer_env_config.configs.config_interface import ConfigInterface from deepracer_env_config.configs.area import Area from deepracer_env_config.configs.agent import Agent from deepracer_env_config.configs.track import Track from deepracer_env_config.constants import ActionType, TargetType from ude import ( SideChannelObserverInterface, AbstractSideChannel, SideChannelData ) class ConfigServer(SideChannelObserverInterface): """ Config Server """ KEY_PREFIX = "deepracer_config" KEY_SPLITTER = "::" def __init__(self, side_channel: AbstractSideChannel, area: Optional[Area] = None, track: Optional[Track] = None, agents: Optional[Iterable[Agent]] = None) -> None: """ Initialize Config Server Args: side_channel (AbstractSideChannel): side channel to communicate with client. area (Optional[Area]): the area config track (Optional[Track]): the track config agents (Optional[Iterable[Agent]]): list of agent configs """ self._lock = RLock() self._area = area or Area() self._track = track or Track() agents = list(agents) if agents else [Agent()] self._agent_map = {agent.name: agent for agent in agents} self._side_channel = side_channel self._is_started = False self._server_lock = RLock() self.start() @property def is_started(self): """ Returns the flag whether server is started or not. Returns: bool: the flag whether server is started or not. """ return self._is_started def start(self) -> None: """ Start the server. """ with self._server_lock: if not self._is_started: self._side_channel.register(observer=self) self._is_started = True def stop(self) -> None: """ Stop the server. """ with self._server_lock: if self._is_started: self._side_channel.unregister(observer=self) self._is_started = False def get_area(self, *args, **kwargs) -> Area: """ Returns the area config. Returns: Area: area config. """ return self._area.copy() def get_agents(self, *args, **kwargs) -> List[Agent]: """ Returns the list of agent configs. Returns: List[Agent]: the list of agent configs. """ agents = list(self._agent_map.values()) return [agent.copy() for agent in agents] def get_agent(self, name: str, *args, **kwargs) -> Agent: """ Return the agent with given name. Args: name (str): the name of the agent. Returns: Agent: the agent with given name. """ agent = self._agent_map.get(name) return agent.copy() if agent else None def get_track(self, *args, **kwargs) -> Track: """ Returns the track config. Returns: Track: the track config. """ return self._track.copy() def apply_area(self, area: Union[Area, dict]) -> None: """ Applies the new area config given. Args: area (Union[Area, dict]): the new area config. """ self._area = area if isinstance(area, Area) else Area.from_json(area) def apply_agent(self, agent: Union[Agent, dict]) -> None: """ Applies the new agent config given. Args: agent (Union[Agent, dict]): the new agent config. """ agent = agent if isinstance(agent, Agent) else Agent.from_json(agent) if agent.name in self._agent_map: self._agent_map[agent.name] = agent def apply_track(self, track: Union[Track, dict]) -> None: """ Applies the track config given. Args: track (Union[Track, dict]): the new track config. """ self._track = track if isinstance(track, Track) else Track.from_json(track) def spawn_agent(self, agent: Union[Agent, dict]) -> None: """ Spawns new agent with given agent config. Args: agent (Union[Agent, dict]): new agent config in str format. """ agent = agent if isinstance(agent, Agent) else Agent.from_json(agent) self._agent_map[agent.name] = agent def delete_agent(self, agent: Union[Agent, dict]) -> None: """ Deletes the agent with given agent config. Args: agent (Union[Agent, dict]): the agent config to delete. """ if len(self._agent_map) > 1: agent = agent if isinstance(agent, Agent) else Agent.from_json(agent) self._agent_map.pop(agent.name, None) def on_received(self, side_channel: AbstractSideChannel, key: str, value: SideChannelData) -> None: """ Callback when side channel instance receives new message. Args: side_channel (AbstractSideChannel): side channel instance key (str): The string identifier of message value (SideChannelData): The data of the message. """ if key.startswith(ConfigServer.KEY_PREFIX): with self._lock: try: prefix, action, target = key.split(self.KEY_SPLITTER) if prefix != ConfigServer.KEY_PREFIX: logging.info("[Server] Invalid prefix received.") return action = ActionType(action) target = TargetType(target) except Exception as ex: logging.info("[Server] Invalid key received.", exc_info=ex) return method_name = "{}_{}".format(action.value, target.value) method = getattr(self, method_name) try: config = method(value) except Exception as ex: logging.info("[Server] method {} threw Exception.".format(method_name), exc_info=ex) return if action == ActionType.GET: if isinstance(config, ConfigInterface): side_channel.send(key, json.dumps(config.to_json())) elif isinstance(config, list): json_list = [item.to_json() for item in config] side_channel.send(key, json.dumps(json_list))
[ 29113, 29113, 14468, 2, 198, 2, 220, 220, 15069, 6186, 13, 785, 11, 3457, 13, 393, 663, 29116, 13, 1439, 6923, 33876, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 11074, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 921, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 220, 220, 1303, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 29113, 29113, 14468, 2, 198, 37811, 32, 1398, 329, 8398, 4382, 526, 15931, 198, 11748, 33918, 198, 11748, 18931, 198, 6738, 4704, 278, 1330, 371, 25392, 198, 6738, 19720, 1330, 40806, 540, 11, 7343, 11, 32233, 11, 4479, 198, 198, 6738, 2769, 11510, 263, 62, 24330, 62, 11250, 13, 11250, 82, 13, 11250, 62, 39994, 1330, 17056, 39317, 198, 6738, 2769, 11510, 263, 62, 24330, 62, 11250, 13, 11250, 82, 13, 20337, 1330, 9498, 198, 6738, 2769, 11510, 263, 62, 24330, 62, 11250, 13, 11250, 82, 13, 25781, 1330, 15906, 198, 6738, 2769, 11510, 263, 62, 24330, 62, 11250, 13, 11250, 82, 13, 11659, 1330, 17762, 198, 6738, 2769, 11510, 263, 62, 24330, 62, 11250, 13, 9979, 1187, 1330, 7561, 6030, 11, 12744, 6030, 198, 198, 6738, 334, 2934, 1330, 357, 198, 220, 220, 220, 12075, 29239, 31310, 18497, 39317, 11, 198, 220, 220, 220, 27741, 24819, 29239, 11, 198, 220, 220, 220, 12075, 29239, 6601, 198, 8, 628, 198, 4871, 17056, 10697, 7, 24819, 29239, 31310, 18497, 39317, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17056, 9652, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35374, 62, 47, 31688, 10426, 796, 366, 22089, 11510, 263, 62, 11250, 1, 198, 220, 220, 220, 35374, 62, 4303, 43, 2043, 5781, 796, 366, 3712, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 17620, 25, 27741, 24819, 29239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 25, 32233, 58, 30547, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2610, 25, 32233, 58, 24802, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6554, 25, 32233, 58, 29993, 540, 58, 36772, 11907, 796, 6045, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 17056, 9652, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 17620, 357, 23839, 24819, 29239, 2599, 1735, 6518, 284, 10996, 351, 5456, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 357, 30719, 58, 30547, 60, 2599, 262, 1989, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2610, 357, 30719, 58, 24802, 60, 2599, 262, 2610, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6554, 357, 30719, 58, 29993, 540, 58, 36772, 11907, 2599, 1351, 286, 5797, 4566, 82, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5354, 796, 371, 25392, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20337, 796, 1989, 393, 9498, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11659, 796, 2610, 393, 17762, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6554, 796, 1351, 7, 49638, 8, 611, 6554, 2073, 685, 36772, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25781, 62, 8899, 796, 1391, 25781, 13, 3672, 25, 5797, 329, 5797, 287, 6554, 92, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1589, 62, 17620, 796, 1735, 62, 17620, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 271, 62, 46981, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15388, 62, 5354, 796, 371, 25392, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 3419, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 318, 62, 46981, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6056, 1771, 4382, 318, 2067, 393, 407, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20512, 25, 262, 6056, 1771, 4382, 318, 2067, 393, 407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 271, 62, 46981, 628, 220, 220, 220, 825, 923, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7253, 262, 4382, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 15388, 62, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 271, 62, 46981, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1589, 62, 17620, 13, 30238, 7, 672, 15388, 28, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 271, 62, 46981, 796, 6407, 628, 220, 220, 220, 825, 2245, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 262, 4382, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 15388, 62, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 271, 62, 46981, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1589, 62, 17620, 13, 403, 30238, 7, 672, 15388, 28, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 271, 62, 46981, 796, 10352, 628, 220, 220, 220, 825, 651, 62, 20337, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 4613, 9498, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1989, 4566, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9498, 25, 1989, 4566, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 20337, 13, 30073, 3419, 628, 220, 220, 220, 825, 651, 62, 49638, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 4613, 7343, 58, 36772, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1351, 286, 5797, 4566, 82, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 58, 36772, 5974, 262, 1351, 286, 5797, 4566, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6554, 796, 1351, 7, 944, 13557, 25781, 62, 8899, 13, 27160, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 25781, 13, 30073, 3419, 329, 5797, 287, 6554, 60, 628, 220, 220, 220, 825, 651, 62, 25781, 7, 944, 11, 1438, 25, 965, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 4613, 15906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 5797, 351, 1813, 1438, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 357, 2536, 2599, 262, 1438, 286, 262, 5797, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15906, 25, 262, 5797, 351, 1813, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 796, 2116, 13557, 25781, 62, 8899, 13, 1136, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5797, 13, 30073, 3419, 611, 5797, 2073, 6045, 628, 220, 220, 220, 825, 651, 62, 11659, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 4613, 17762, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2610, 4566, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17762, 25, 262, 2610, 4566, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 11659, 13, 30073, 3419, 628, 220, 220, 220, 825, 4174, 62, 20337, 7, 944, 11, 1989, 25, 4479, 58, 30547, 11, 8633, 12962, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2034, 13508, 262, 649, 1989, 4566, 1813, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 357, 38176, 58, 30547, 11, 8633, 60, 2599, 262, 649, 1989, 4566, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20337, 796, 1989, 611, 318, 39098, 7, 20337, 11, 9498, 8, 2073, 9498, 13, 6738, 62, 17752, 7, 20337, 8, 628, 220, 220, 220, 825, 4174, 62, 25781, 7, 944, 11, 5797, 25, 4479, 58, 36772, 11, 8633, 12962, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2034, 13508, 262, 649, 5797, 4566, 1813, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 357, 38176, 58, 36772, 11, 8633, 60, 2599, 262, 649, 5797, 4566, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 796, 5797, 611, 318, 39098, 7, 25781, 11, 15906, 8, 2073, 15906, 13, 6738, 62, 17752, 7, 25781, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5797, 13, 3672, 287, 2116, 13557, 25781, 62, 8899, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25781, 62, 8899, 58, 25781, 13, 3672, 60, 796, 5797, 628, 220, 220, 220, 825, 4174, 62, 11659, 7, 944, 11, 2610, 25, 4479, 58, 24802, 11, 8633, 12962, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2034, 13508, 262, 2610, 4566, 1813, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2610, 357, 38176, 58, 24802, 11, 8633, 60, 2599, 262, 649, 2610, 4566, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11659, 796, 2610, 611, 318, 39098, 7, 11659, 11, 17762, 8, 2073, 17762, 13, 6738, 62, 17752, 7, 11659, 8, 628, 220, 220, 220, 825, 10922, 62, 25781, 7, 944, 11, 5797, 25, 4479, 58, 36772, 11, 8633, 12962, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36356, 82, 649, 5797, 351, 1813, 5797, 4566, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 357, 38176, 58, 36772, 11, 8633, 60, 2599, 649, 5797, 4566, 287, 965, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 796, 5797, 611, 318, 39098, 7, 25781, 11, 15906, 8, 2073, 15906, 13, 6738, 62, 17752, 7, 25781, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25781, 62, 8899, 58, 25781, 13, 3672, 60, 796, 5797, 628, 220, 220, 220, 825, 12233, 62, 25781, 7, 944, 11, 5797, 25, 4479, 58, 36772, 11, 8633, 12962, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1024, 40676, 262, 5797, 351, 1813, 5797, 4566, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 357, 38176, 58, 36772, 11, 8633, 60, 2599, 262, 5797, 4566, 284, 12233, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 944, 13557, 25781, 62, 8899, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 796, 5797, 611, 318, 39098, 7, 25781, 11, 15906, 8, 2073, 15906, 13, 6738, 62, 17752, 7, 25781, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25781, 62, 8899, 13, 12924, 7, 25781, 13, 3672, 11, 6045, 8, 628, 220, 220, 220, 825, 319, 62, 47844, 7, 944, 11, 1735, 62, 17620, 25, 27741, 24819, 29239, 11, 1994, 25, 965, 11, 1988, 25, 12075, 29239, 6601, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 1891, 618, 1735, 6518, 4554, 11583, 649, 3275, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 17620, 357, 23839, 24819, 29239, 2599, 1735, 6518, 4554, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 357, 2536, 2599, 383, 4731, 27421, 286, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 357, 24819, 29239, 6601, 2599, 383, 1366, 286, 262, 3275, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 13, 9688, 2032, 342, 7, 16934, 10697, 13, 20373, 62, 47, 31688, 10426, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 11, 2223, 11, 2496, 796, 1994, 13, 35312, 7, 944, 13, 20373, 62, 4303, 43, 2043, 5781, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21231, 14512, 17056, 10697, 13, 20373, 62, 47, 31688, 10426, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 58, 10697, 60, 17665, 21231, 2722, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 7561, 6030, 7, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 12744, 6030, 7, 16793, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 58, 10697, 60, 17665, 1994, 2722, 33283, 2859, 62, 10951, 28, 1069, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 62, 3672, 796, 45144, 92, 23330, 92, 1911, 18982, 7, 2673, 13, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 796, 651, 35226, 7, 944, 11, 2446, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 2446, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 58, 10697, 60, 2446, 23884, 9617, 35528, 526, 13, 18982, 7, 24396, 62, 3672, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2859, 62, 10951, 28, 1069, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2223, 6624, 7561, 6030, 13, 18851, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 11250, 11, 17056, 39317, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 17620, 13, 21280, 7, 2539, 11, 33918, 13, 67, 8142, 7, 11250, 13, 1462, 62, 17752, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 11250, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 4868, 796, 685, 9186, 13, 1462, 62, 17752, 3419, 329, 2378, 287, 4566, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 17620, 13, 21280, 7, 2539, 11, 33918, 13, 67, 8142, 7, 17752, 62, 4868, 4008, 198 ]
2.16092
3,741
import mock import pytest from flask_wtf import Form from wtforms.fields.core import Field from wtforms.validators import StopValidation, ValidationError from app.main.forms import AdminEmailAddressValidator, NotInDomainSuffixBlacklistValidator from ..helpers import BaseApplicationTest @mock.patch('app.main.forms.data_api_client')
[ 11748, 15290, 198, 11748, 12972, 9288, 198, 6738, 42903, 62, 86, 27110, 1330, 5178, 198, 6738, 266, 83, 23914, 13, 25747, 13, 7295, 1330, 7663, 198, 6738, 266, 83, 23914, 13, 12102, 2024, 1330, 13707, 7762, 24765, 11, 3254, 24765, 12331, 198, 198, 6738, 598, 13, 12417, 13, 23914, 1330, 32053, 15333, 20231, 47139, 1352, 11, 1892, 818, 43961, 50, 1648, 844, 9915, 4868, 47139, 1352, 198, 198, 6738, 11485, 16794, 364, 1330, 7308, 23416, 14402, 628, 198, 31, 76, 735, 13, 17147, 10786, 1324, 13, 12417, 13, 23914, 13, 7890, 62, 15042, 62, 16366, 11537, 628 ]
3.484536
97
import jinja2 from jinja2.ext import Extension from django.template.loader import render_to_string from django.utils.safestring import mark_safe from .models import SendinBlueSettings @jinja2.contextfunction settings = SendinBlueExtension
[ 11748, 474, 259, 6592, 17, 198, 6738, 474, 259, 6592, 17, 13, 2302, 1330, 27995, 198, 198, 6738, 42625, 14208, 13, 28243, 13, 29356, 1330, 8543, 62, 1462, 62, 8841, 198, 6738, 42625, 14208, 13, 26791, 13, 49585, 395, 1806, 1330, 1317, 62, 21230, 198, 198, 6738, 764, 27530, 1330, 16290, 259, 14573, 26232, 628, 198, 31, 18594, 6592, 17, 13, 22866, 8818, 628, 198, 198, 33692, 796, 16290, 259, 14573, 11627, 3004, 198 ]
3.324324
74
import database import os DIRECTORY = "pages/" # helper script to add target contents to db # could be refactored to accept a list of files via shell expansion if __name__ == "__main__": # test script db = database.Database() for path, dirs, files in os.walk(os.path.abspath(DIRECTORY)): for singular in files: if singular.endswith("txt"): filepath = os.path.abspath(os.path.join(path, singular)) print db.inserttxt(filepath) else: print "DONE."
[ 11748, 6831, 198, 11748, 28686, 198, 198, 17931, 23988, 15513, 796, 366, 31126, 30487, 198, 198, 2, 31904, 4226, 284, 751, 2496, 10154, 284, 20613, 198, 2, 714, 307, 1006, 529, 1850, 284, 2453, 257, 1351, 286, 3696, 2884, 7582, 7118, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 1332, 4226, 198, 220, 220, 220, 20613, 796, 6831, 13, 38105, 3419, 198, 220, 220, 220, 329, 3108, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 17931, 23988, 15513, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 18032, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18032, 13, 437, 2032, 342, 7203, 14116, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 18032, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 20613, 13, 28463, 14116, 7, 7753, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 35, 11651, 526, 198 ]
2.379464
224
if __name__ == '__main__': main()
[ 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.166667
18
import os import glob import sys from ansibleflow import log from ansibleflow.config import get_config from ansibleflow.venv import execute_under_env, env_exists
[ 11748, 28686, 198, 11748, 15095, 198, 11748, 25064, 198, 198, 6738, 9093, 856, 11125, 1330, 2604, 198, 6738, 9093, 856, 11125, 13, 11250, 1330, 651, 62, 11250, 198, 6738, 9093, 856, 11125, 13, 574, 85, 1330, 12260, 62, 4625, 62, 24330, 11, 17365, 62, 1069, 1023, 628, 628, 628 ]
3.428571
49
from SciDataTool.Functions.Plot.plot_2D import plot_2D from SciDataTool.Functions.Plot import ( unit_dict, norm_dict, axes_dict, COLORS, ) from SciDataTool.Functions.Load.import_class import import_class from SciDataTool.Classes.Norm_indices import Norm_indices from numpy import ( squeeze, split, array, where, unique, nanmax as np_max, array2string, insert, nanmin as np_min, linspace, log10, nan, ) def plot_2D_Data( self, *arg_list, axis_data=None, is_norm=False, unit="SI", overall_axes=[], data_list=[], legend_list=[], color_list=None, curve_colors=None, phase_colors=None, linestyles=None, linewidth_list=[2], save_path=None, x_min=None, x_max=None, y_min=None, y_max=None, is_logscale_x=False, is_logscale_y=False, is_disp_title=True, is_grid=True, is_auto_ticks=True, is_auto_range=True, xlabel=None, ylabel=None, title=None, fig=None, ax=None, barwidth=100, type_plot=None, fund_harm_dict=None, is_show_fig=None, win_title=None, thresh=None, font_name="arial", font_size_title=12, font_size_label=10, font_size_legend=8, is_show_legend=True, is_outside_legend=False, is_frame_legend=True, ): """Plots a field as a function of time Parameters ---------- data : Data a Data object *arg_list : list of str arguments to specify which axes to plot is_norm : bool boolean indicating if the field must be normalized unit : str unit in which to plot the field data_list : list list of Data objects to compare legend_list : list list of legends to use for each Data object (including reference one) instead of data.name color_list : list list of colors to use for each Data object save_path : str full path including folder, name and extension of the file to save if save_path is not None x_min : float minimum value for the x-axis x_max : float maximum value for the x-axis y_min : float minimum value for the y-axis y_max : float maximum value for the y-axis is_logscale_x : bool boolean indicating if the x-axis must be set in logarithmic scale is_logscale_y : bool boolean indicating if the y-axis must be set in logarithmic scale is_disp_title : bool boolean indicating if the title must be displayed is_grid : bool boolean indicating if the grid must be displayed is_auto_ticks : bool in fft, adjust ticks to freqs (deactivate if too close) is_auto_range : bool in fft, display up to 1% of max fig : Matplotlib.figure.Figure existing figure to use if None create a new one ax : Matplotlib.axes.Axes object ax on which to plot the data barwidth : float barwidth scaling factor, only if type_plot = "bargraph" type_plot : str type of 2D graph : "curve", "bargraph", "barchart" or "quiver" fund_harm_dict : dict Dict containing axis name as key and frequency/order/wavenumber of fundamental harmonic as value to display fundamental harmonic in red in the fft is_show_fig : bool True to show figure after plot win_title : str Title of the plot window thresh : float threshold for automatic fft ticks is_outside_legend : bool True to display legend outside the graph is_frame_legend : bool True to display legend in a frame """ # Dynamic import to avoid import loop DataPattern = import_class("SciDataTool.Classes", "DataPattern") # Extract arg_list it the function called from another script with *arg_list if len(arg_list) == 1 and type(arg_list[0]) == tuple: arg_list = arg_list[0] # In case of 1D fft, keep only positive wavenumbers for i, arg in enumerate(arg_list): if "wavenumber" in arg and "=" not in arg and "[" not in arg: liste = list(arg_list) liste[i] = arg.replace("wavenumber", "wavenumber>0") arg_list = tuple(liste) if color_list == [] or color_list is None: color_list = COLORS new_color_list = color_list.copy() # Set unit if unit == "SI": unit = self.unit # Detect if is fft, build ylabel is_fft = False if ( any("wavenumber" in s for s in arg_list) or any("freqs" in s for s in arg_list) ) and type_plot != "curve": is_fft = True if "dB" in unit: unit_str = ( "[" + unit + " re. " + str(self.normalizations["ref"].ref) + " $" + self.unit + "$]" ) else: unit_str = r"$[" + unit + "]$" if self.symbol == "Magnitude": if ylabel is None: ylabel = "Magnitude " + unit_str else: if ylabel is None: ylabel = r"$|\widehat{" + self.symbol + "}|$ " + unit_str else: if is_norm: if ylabel is None: ylabel = ( r"$\frac{" + self.symbol + "}{" + self.symbol + "_0}\, [" + unit + "]$" ) else: if self.symbol == "Magnitude": if ylabel is None: ylabel = "Magnitude " + r"$[" + unit + "]$" else: if ylabel is None: ylabel = r"$" + self.symbol + "\, [" + unit + "]$" # Extract field and axes Xdatas = [] Ydatas = [] data_list2 = [self] + data_list for i, d in enumerate(data_list2): if is_fft or "dB" in unit: result = d.get_magnitude_along( arg_list, axis_data=axis_data, unit=unit, is_norm=is_norm ) if i == 0: axes_list = result.pop("axes_list") axes_dict_other = result.pop("axes_dict_other") result_0 = result else: result = d.get_along( arg_list, axis_data=axis_data, unit=unit, is_norm=is_norm ) if i == 0: axes_list = result.pop("axes_list") axes_dict_other = result.pop("axes_dict_other") result_0 = result Ydatas.append(result.pop(d.symbol)) # in string case not overlay, Xdatas is a linspace if axes_list[0].is_components and axes_list[0].extension != "list": xdata = linspace( 0, len(result[list(result)[0]]) - 1, len(result[list(result)[0]]) ) else: xdata = result[list(result)[0]] Xdatas.append(xdata) # Build xlabel and title title1 = self.name.capitalize() + " " title2 = "for " for axis in axes_list: if axis.unit in norm_dict: name = norm_dict[axis.unit].split(" [")[0] elif axis.name in axes_dict: name = axes_dict[axis.name] else: name = axis.name if ( axis.extension in [ "whole", "interval", "oneperiod", "antiperiod", "smallestperiod", "axis_data", ] and len(axis.values) > 1 or (len(axis.values) == 1 and len(axes_list) == 1) ): if axis.unit == "SI": if axis.name in unit_dict: axis_unit = unit_dict[axis.name] else: axis_unit = axis.unit if xlabel is None: xlabel = name.capitalize() + " [" + axis_unit + "]" main_axis_name = name elif axis.unit in norm_dict: if xlabel is None: xlabel = norm_dict[axis.unit] if axis.unit == "Hz": main_axis_name = "frequency" else: main_axis_name = axis.unit else: axis_unit = axis.unit if xlabel is None: xlabel = name.capitalize() + " [" + axis_unit + "]" main_axis_name = name if ( axis.name == "angle" and axis.unit == "°" and round(np_max(axis.values) / 6) % 5 == 0 ): xticks = [i * round(np_max(axis.values) / 6) for i in range(7)] else: xticks = None if axes_list[0].is_components and axes_list[0].extension != "list": xticklabels = result[list(result)[0]] xticks = Xdatas[0] else: xticklabels = None else: is_display = True if axis.is_pattern and len(axis.values) == 1: is_display = False if is_display: if axis.unit == "SI": if axis.name in unit_dict: axis_unit = unit_dict[axis.name] else: axis_unit = axis.unit elif axis.unit in norm_dict: axis_unit = norm_dict[axis.unit] else: axis_unit = axis.unit if isinstance(result_0[axis.name], str): title2 += name + "=" + result_0[axis.name] else: axis_str = array2string( result_0[axis.name], formatter={"float_kind": "{:.3g}".format} ).replace(" ", ", ") if len(result_0[axis.name]) == 1: axis_str = axis_str.strip("[]") title2 += ( name + "=" + axis_str.rstrip(", ") + " [" + axis_unit + "], " ) # Title part 3 containing axes that are here but not involved in requested axes title3 = "" for axis_name in axes_dict_other: is_display = True for axis in self.axes: if axis.name == axis_name: if isinstance(axis, DataPattern) and len(axis.unique_indices) == 1: is_display = False if is_display: title3 += ( axis_name + "=" + array2string( axes_dict_other[axis_name][0], formatter={"float_kind": "{:.3g}".format}, ).replace(" ", ", ") + " [" + axes_dict_other[axis_name][1] + "], " ) if title2 == "for " and title3 == "": title2 = "" # Detect discontinuous axis (Norm_indices) to use bargraph for axis in axes_list: if axis.unit in self.axes[axis.index].normalizations: if isinstance( self.axes[axis.index].normalizations[axis.unit], Norm_indices ): type_plot = "bargraph" # Detect how many curves are overlaid, build legend and color lists if legend_list == [] and data_list != []: legend_list = [d.name for d in data_list2] elif legend_list == []: legend_list = ["" for d in data_list2] legends = [] # Prepare colors linestyle_list = linestyles for i, d in enumerate(data_list2): is_overlay = False for axis in axes_list: if axis.extension == "list": is_overlay = True if linestyles is None: linestyles = ["dashed"] n_curves = len(axis.values) if axis.unit == "SI": if axis.name in unit_dict: axis_unit = unit_dict[axis.name] else: axis_unit = axis.unit elif axis.unit in norm_dict: axis_unit = norm_dict[axis.unit] else: axis_unit = axis.unit if len(d.axes[axis.index].get_values()) > 1: legends += [ legend_list[i] + axis.name + "=" + axis.values.tolist()[j] + " " + axis_unit if isinstance(axis.values.tolist()[j], str) else legend_list[i] + axis.name + "=" + "%.3g" % axis.values.tolist()[j] + " " + axis_unit for j in range(n_curves) ] else: legends += [legend_list[i]] if not is_overlay: legends += [legend_list[i]] # Adjust colors in non overlay case with overlay axis if len(data_list2) > 1: for axis in self.get_axes(): if axis.is_overlay and len(color_list) > len(axis.values): new_color_list[1:] = color_list[len(axis.values) :] # Split Ydatas if the plot overlays several curves if is_overlay: Ydata = [] for d in Ydatas: if d.ndim != 1: axis_index = where(array(d.shape) == n_curves)[0] if axis_index.size > 1: print("WARNING, several axes with same dimensions") Ydata += split(d, n_curves, axis=axis_index[0]) else: Ydata += [d] Ydatas = [squeeze(d) for d in Ydata] Xdata = [] for i in range(len(data_list2)): Xdata += [Xdatas[i] for x in range(n_curves)] Xdatas = Xdata # Finish title if title is None: # Concatenate all title parts if is_overlay: title = title1 + title3 else: title = title1 + title2 + title3 # Remove last coma due to title2 or title3 title = title.rstrip(", ") # Remove dimless and quotes title = title.replace("[]", "") title = title.replace("'", "") # Overall computation if overall_axes != []: if self.unit == "W": op = "=sum" else: op = "=rss" arg_list_ovl = [0 for i in range(len(arg_list))] # Add sum to overall_axes for axis in overall_axes: is_match = False for i, arg in enumerate(arg_list): if axis in arg: is_match = True arg_list_ovl[i] = axis + op if not is_match: arg_list_ovl.append(axis + op) # Add other requested axes for i, arg in enumerate(arg_list): if arg_list_ovl[i] == 0: arg_list_ovl[i] = arg if is_fft or "dB" in unit: result = self.get_magnitude_along(*arg_list_ovl, unit=unit) else: result = self.get_along(*arg_list_ovl, unit=unit) Y_overall = result[self.symbol] # in string case not overlay, Xdatas is a linspace if axes_list[0].is_components and axes_list[0].extension != "list": xdata = linspace( 0, len(result[list(result)[0]]) - 1, len(result[list(result)[0]]) ) else: xdata = result[list(result)[0]] Ydatas.insert(0, Y_overall) Xdatas.insert(0, xdata) color_list = color_list.copy() color_list.insert(0, "#000000") legends.insert(0, "Overall") if "dB" in unit: # Replace <=0 by nans for ydata in Ydatas: ydata[ydata <= 0] = nan # Call generic plot function if is_fft: if thresh is None: if self.normalizations is not None and "ref" in self.normalizations: thresh = self.normalizations["ref"].ref else: thresh = 0.02 freqs = Xdatas[0] if "dB" in unit: indices = [ ind for ind, y in enumerate(Ydatas[0]) if abs(y) > max(10 * log10(thresh) + abs(np_max(Ydatas[0])), 0) ] else: if Ydatas[0].size == 1: indices = [0] else: indices = [ ind for ind, y in enumerate(Ydatas[0]) if abs(y) > abs(thresh * np_max(Ydatas[0])) ] xticks = unique(insert(freqs[indices], 0, 0)) if is_auto_range: if len(xticks) > 1: if x_min is None: x_min = xticks[0] else: x_min = max(x_min, xticks[0]) if x_max is None: x_max = xticks[-1] else: x_max = min(x_max, xticks[-1]) else: if x_min is None: x_min = np_min(freqs) else: x_min = max(x_min, np_min(freqs)) if x_max is None: x_max = np_max(freqs) else: x_max = min(x_max, np_max(freqs)) else: if x_min is None: x_min = np_min(freqs) if x_max is None: x_max = np_max(freqs) x_min = x_min - x_max * 0.05 x_max = x_max * 1.05 if ( len(xticks) == 0 or (len(xticks) > 20 and not axes_list[0].is_components) or not is_auto_range ): xticks = None # Force bargraph for fft if type_graph not specified if type_plot is None: type_plot = "bargraph" # Option to draw fundamental harmonic in red if not fund_harm_dict: fund_harm = None else: # Activate the option only if main axis is in dict and only one Data is plotted if main_axis_name in fund_harm_dict and len(Ydatas) == 1: fund_harm = fund_harm_dict[main_axis_name] else: # Deactivate the option fund_harm = None plot_2D( Xdatas, Ydatas, legend_list=legends, color_list=new_color_list, linestyle_list=linestyle_list, linewidth_list=linewidth_list, fig=fig, ax=ax, title=title, xlabel=xlabel, ylabel=ylabel, type_plot=type_plot, x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max, is_logscale_x=is_logscale_x, is_logscale_y=is_logscale_y, is_disp_title=is_disp_title, is_grid=is_grid, xticks=xticks, xticklabels=xticklabels, save_path=save_path, barwidth=barwidth, fund_harm=fund_harm, is_show_fig=is_show_fig, win_title=win_title, font_name=font_name, font_size_title=font_size_title, font_size_label=font_size_label, font_size_legend=font_size_legend, is_show_legend=is_show_legend, is_outside_legend=is_outside_legend, is_frame_legend=is_frame_legend, ) else: # Force curve plot if type_plot not specified if type_plot is None: type_plot = "curve" plot_2D( Xdatas, Ydatas, legend_list=legends, color_list=new_color_list, fig=fig, ax=ax, title=title, xlabel=xlabel, ylabel=ylabel, type_plot=type_plot, x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max, is_logscale_x=is_logscale_x, is_logscale_y=is_logscale_y, is_disp_title=is_disp_title, is_grid=is_grid, xticks=xticks, xticklabels=xticklabels, barwidth=barwidth, linestyle_list=linestyle_list, linewidth_list=linewidth_list, save_path=save_path, is_show_fig=is_show_fig, win_title=win_title, font_name=font_name, font_size_title=font_size_title, font_size_label=font_size_label, font_size_legend=font_size_legend, is_show_legend=is_show_legend, is_outside_legend=is_outside_legend, is_frame_legend=is_frame_legend, )
[ 6738, 10286, 6601, 25391, 13, 24629, 2733, 13, 43328, 13, 29487, 62, 17, 35, 1330, 7110, 62, 17, 35, 198, 6738, 10286, 6601, 25391, 13, 24629, 2733, 13, 43328, 1330, 357, 198, 220, 220, 220, 4326, 62, 11600, 11, 198, 220, 220, 220, 2593, 62, 11600, 11, 198, 220, 220, 220, 34197, 62, 11600, 11, 198, 220, 220, 220, 20444, 20673, 11, 198, 8, 198, 6738, 10286, 6601, 25391, 13, 24629, 2733, 13, 8912, 13, 11748, 62, 4871, 1330, 1330, 62, 4871, 198, 6738, 10286, 6601, 25391, 13, 9487, 274, 13, 35393, 62, 521, 1063, 1330, 11220, 62, 521, 1063, 198, 6738, 299, 32152, 1330, 357, 198, 220, 220, 220, 21229, 11, 198, 220, 220, 220, 6626, 11, 198, 220, 220, 220, 7177, 11, 198, 220, 220, 220, 810, 11, 198, 220, 220, 220, 3748, 11, 198, 220, 220, 220, 15709, 9806, 355, 45941, 62, 9806, 11, 198, 220, 220, 220, 7177, 17, 8841, 11, 198, 220, 220, 220, 7550, 11, 198, 220, 220, 220, 15709, 1084, 355, 45941, 62, 1084, 11, 198, 220, 220, 220, 300, 1040, 10223, 11, 198, 220, 220, 220, 2604, 940, 11, 198, 220, 220, 220, 15709, 11, 198, 8, 628, 198, 4299, 7110, 62, 17, 35, 62, 6601, 7, 198, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 1635, 853, 62, 4868, 11, 198, 220, 220, 220, 16488, 62, 7890, 28, 14202, 11, 198, 220, 220, 220, 318, 62, 27237, 28, 25101, 11, 198, 220, 220, 220, 4326, 2625, 11584, 1600, 198, 220, 220, 220, 4045, 62, 897, 274, 41888, 4357, 198, 220, 220, 220, 1366, 62, 4868, 41888, 4357, 198, 220, 220, 220, 8177, 62, 4868, 41888, 4357, 198, 220, 220, 220, 3124, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 12133, 62, 4033, 669, 28, 14202, 11, 198, 220, 220, 220, 7108, 62, 4033, 669, 28, 14202, 11, 198, 220, 220, 220, 9493, 42530, 28, 14202, 11, 198, 220, 220, 220, 9493, 413, 5649, 62, 4868, 41888, 17, 4357, 198, 220, 220, 220, 3613, 62, 6978, 28, 14202, 11, 198, 220, 220, 220, 2124, 62, 1084, 28, 14202, 11, 198, 220, 220, 220, 2124, 62, 9806, 28, 14202, 11, 198, 220, 220, 220, 331, 62, 1084, 28, 14202, 11, 198, 220, 220, 220, 331, 62, 9806, 28, 14202, 11, 198, 220, 220, 220, 318, 62, 6404, 9888, 62, 87, 28, 25101, 11, 198, 220, 220, 220, 318, 62, 6404, 9888, 62, 88, 28, 25101, 11, 198, 220, 220, 220, 318, 62, 6381, 79, 62, 7839, 28, 17821, 11, 198, 220, 220, 220, 318, 62, 25928, 28, 17821, 11, 198, 220, 220, 220, 318, 62, 23736, 62, 83, 3378, 28, 17821, 11, 198, 220, 220, 220, 318, 62, 23736, 62, 9521, 28, 17821, 11, 198, 220, 220, 220, 2124, 18242, 28, 14202, 11, 198, 220, 220, 220, 331, 18242, 28, 14202, 11, 198, 220, 220, 220, 3670, 28, 14202, 11, 198, 220, 220, 220, 2336, 28, 14202, 11, 198, 220, 220, 220, 7877, 28, 14202, 11, 198, 220, 220, 220, 2318, 10394, 28, 3064, 11, 198, 220, 220, 220, 2099, 62, 29487, 28, 14202, 11, 198, 220, 220, 220, 1814, 62, 29155, 62, 11600, 28, 14202, 11, 198, 220, 220, 220, 318, 62, 12860, 62, 5647, 28, 14202, 11, 198, 220, 220, 220, 1592, 62, 7839, 28, 14202, 11, 198, 220, 220, 220, 294, 3447, 28, 14202, 11, 198, 220, 220, 220, 10369, 62, 3672, 2625, 36098, 1600, 198, 220, 220, 220, 10369, 62, 7857, 62, 7839, 28, 1065, 11, 198, 220, 220, 220, 10369, 62, 7857, 62, 18242, 28, 940, 11, 198, 220, 220, 220, 10369, 62, 7857, 62, 1455, 437, 28, 23, 11, 198, 220, 220, 220, 318, 62, 12860, 62, 1455, 437, 28, 17821, 11, 198, 220, 220, 220, 318, 62, 43435, 62, 1455, 437, 28, 25101, 11, 198, 220, 220, 220, 318, 62, 14535, 62, 1455, 437, 28, 17821, 11, 198, 2599, 198, 220, 220, 220, 37227, 3646, 1747, 257, 2214, 355, 257, 2163, 286, 640, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 6060, 198, 220, 220, 220, 220, 220, 220, 220, 257, 6060, 2134, 198, 220, 220, 220, 1635, 853, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 7159, 284, 11986, 543, 34197, 284, 7110, 198, 220, 220, 220, 318, 62, 27237, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 25131, 12739, 611, 262, 2214, 1276, 307, 39279, 198, 220, 220, 220, 4326, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 4326, 287, 543, 284, 7110, 262, 2214, 198, 220, 220, 220, 1366, 62, 4868, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 6060, 5563, 284, 8996, 198, 220, 220, 220, 8177, 62, 4868, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 24901, 284, 779, 329, 1123, 6060, 2134, 357, 8201, 4941, 530, 8, 2427, 286, 1366, 13, 3672, 198, 220, 220, 220, 3124, 62, 4868, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 7577, 284, 779, 329, 1123, 6060, 2134, 198, 220, 220, 220, 3613, 62, 6978, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 3108, 1390, 9483, 11, 1438, 290, 7552, 286, 262, 2393, 284, 3613, 611, 3613, 62, 6978, 318, 407, 6045, 198, 220, 220, 220, 2124, 62, 1084, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5288, 1988, 329, 262, 2124, 12, 22704, 198, 220, 220, 220, 2124, 62, 9806, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5415, 1988, 329, 262, 2124, 12, 22704, 198, 220, 220, 220, 331, 62, 1084, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5288, 1988, 329, 262, 331, 12, 22704, 198, 220, 220, 220, 331, 62, 9806, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5415, 1988, 329, 262, 331, 12, 22704, 198, 220, 220, 220, 318, 62, 6404, 9888, 62, 87, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 25131, 12739, 611, 262, 2124, 12, 22704, 1276, 307, 900, 287, 2604, 283, 342, 9383, 5046, 198, 220, 220, 220, 318, 62, 6404, 9888, 62, 88, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 25131, 12739, 611, 262, 331, 12, 22704, 1276, 307, 900, 287, 2604, 283, 342, 9383, 5046, 198, 220, 220, 220, 318, 62, 6381, 79, 62, 7839, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 25131, 12739, 611, 262, 3670, 1276, 307, 9066, 198, 220, 220, 220, 318, 62, 25928, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 25131, 12739, 611, 262, 10706, 1276, 307, 9066, 198, 220, 220, 220, 318, 62, 23736, 62, 83, 3378, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 287, 277, 701, 11, 4532, 36066, 284, 2030, 48382, 357, 2934, 39022, 611, 1165, 1969, 8, 198, 220, 220, 220, 318, 62, 23736, 62, 9521, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 287, 277, 701, 11, 3359, 510, 284, 352, 4, 286, 3509, 198, 220, 220, 220, 2336, 1058, 6550, 29487, 8019, 13, 26875, 13, 11337, 198, 220, 220, 220, 220, 220, 220, 220, 4683, 3785, 284, 779, 611, 6045, 2251, 257, 649, 530, 198, 220, 220, 220, 7877, 1058, 6550, 29487, 8019, 13, 897, 274, 13, 31554, 274, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 319, 543, 284, 7110, 262, 1366, 198, 220, 220, 220, 2318, 10394, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 2318, 10394, 20796, 5766, 11, 691, 611, 2099, 62, 29487, 796, 366, 65, 853, 1470, 1, 198, 220, 220, 220, 2099, 62, 29487, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 286, 362, 35, 4823, 1058, 366, 22019, 303, 1600, 366, 65, 853, 1470, 1600, 366, 65, 998, 433, 1, 393, 366, 421, 1428, 1, 198, 220, 220, 220, 1814, 62, 29155, 62, 11600, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 360, 713, 7268, 16488, 1438, 355, 1994, 290, 8373, 14, 2875, 14, 86, 4005, 4494, 286, 7531, 49239, 355, 1988, 284, 3359, 7531, 49239, 287, 2266, 287, 262, 277, 701, 198, 220, 220, 220, 318, 62, 12860, 62, 5647, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 284, 905, 3785, 706, 7110, 198, 220, 220, 220, 1592, 62, 7839, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11851, 286, 262, 7110, 4324, 198, 220, 220, 220, 294, 3447, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 329, 11353, 277, 701, 36066, 198, 220, 220, 220, 318, 62, 43435, 62, 1455, 437, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 284, 3359, 8177, 2354, 262, 4823, 198, 220, 220, 220, 318, 62, 14535, 62, 1455, 437, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 284, 3359, 8177, 287, 257, 5739, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 26977, 1330, 284, 3368, 1330, 9052, 198, 220, 220, 220, 6060, 47546, 796, 1330, 62, 4871, 7203, 50, 979, 6601, 25391, 13, 9487, 274, 1600, 366, 6601, 47546, 4943, 628, 220, 220, 220, 1303, 29677, 1822, 62, 4868, 340, 262, 2163, 1444, 422, 1194, 4226, 351, 1635, 853, 62, 4868, 198, 220, 220, 220, 611, 18896, 7, 853, 62, 4868, 8, 6624, 352, 290, 2099, 7, 853, 62, 4868, 58, 15, 12962, 6624, 46545, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4868, 796, 1822, 62, 4868, 58, 15, 60, 628, 220, 220, 220, 1303, 554, 1339, 286, 352, 35, 277, 701, 11, 1394, 691, 3967, 2082, 574, 17024, 198, 220, 220, 220, 329, 1312, 11, 1822, 287, 27056, 378, 7, 853, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 86, 4005, 4494, 1, 287, 1822, 290, 366, 2625, 407, 287, 1822, 290, 12878, 1, 407, 287, 1822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 68, 796, 1351, 7, 853, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 68, 58, 72, 60, 796, 1822, 13, 33491, 7203, 86, 4005, 4494, 1600, 366, 86, 4005, 4494, 29, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4868, 796, 46545, 7, 4868, 68, 8, 628, 220, 220, 220, 611, 3124, 62, 4868, 6624, 17635, 393, 3124, 62, 4868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 4868, 796, 20444, 20673, 628, 220, 220, 220, 649, 62, 8043, 62, 4868, 796, 3124, 62, 4868, 13, 30073, 3419, 628, 220, 220, 220, 1303, 5345, 4326, 198, 220, 220, 220, 611, 4326, 6624, 366, 11584, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 4326, 796, 2116, 13, 20850, 628, 220, 220, 220, 1303, 35874, 611, 318, 277, 701, 11, 1382, 331, 18242, 198, 220, 220, 220, 318, 62, 487, 83, 796, 10352, 198, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 597, 7203, 86, 4005, 4494, 1, 287, 264, 329, 264, 287, 1822, 62, 4868, 8, 393, 597, 7203, 19503, 48382, 1, 287, 264, 329, 264, 287, 1822, 62, 4868, 8, 198, 220, 220, 220, 1267, 290, 2099, 62, 29487, 14512, 366, 22019, 303, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 487, 83, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 36077, 1, 287, 4326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 2536, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12878, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 4326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 302, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 965, 7, 944, 13, 11265, 4582, 14692, 5420, 1, 4083, 5420, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 720, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2116, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 17971, 30866, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 2536, 796, 374, 1, 3, 14692, 1343, 4326, 1343, 366, 60, 3, 1, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1837, 23650, 6624, 366, 48017, 3984, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 18242, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 796, 366, 48017, 3984, 366, 1343, 4326, 62, 2536, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 18242, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 796, 374, 1, 3, 91, 59, 4421, 5183, 4895, 1343, 2116, 13, 1837, 23650, 1343, 366, 92, 91, 3, 366, 1343, 4326, 62, 2536, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 27237, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 18242, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 1, 3, 59, 31944, 4895, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2116, 13, 1837, 23650, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 92, 4895, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2116, 13, 1837, 23650, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 45434, 15, 32239, 11, 14631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 4326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 60, 3, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1837, 23650, 6624, 366, 48017, 3984, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 18242, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 796, 366, 48017, 3984, 366, 1343, 374, 1, 3, 14692, 1343, 4326, 1343, 366, 60, 3, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 18242, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 796, 374, 1, 3, 1, 1343, 2116, 13, 1837, 23650, 1343, 37082, 11, 14631, 1343, 4326, 1343, 366, 60, 3, 1, 628, 220, 220, 220, 1303, 29677, 2214, 290, 34197, 198, 220, 220, 220, 1395, 19608, 292, 796, 17635, 198, 220, 220, 220, 575, 19608, 292, 796, 17635, 198, 220, 220, 220, 1366, 62, 4868, 17, 796, 685, 944, 60, 1343, 1366, 62, 4868, 198, 220, 220, 220, 329, 1312, 11, 288, 287, 27056, 378, 7, 7890, 62, 4868, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 487, 83, 393, 366, 36077, 1, 287, 4326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 288, 13, 1136, 62, 76, 4660, 3984, 62, 24176, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4868, 11, 16488, 62, 7890, 28, 22704, 62, 7890, 11, 4326, 28, 20850, 11, 318, 62, 27237, 28, 271, 62, 27237, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 62, 4868, 796, 1255, 13, 12924, 7203, 897, 274, 62, 4868, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 62, 11600, 62, 847, 796, 1255, 13, 12924, 7203, 897, 274, 62, 11600, 62, 847, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 15, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 288, 13, 1136, 62, 24176, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4868, 11, 16488, 62, 7890, 28, 22704, 62, 7890, 11, 4326, 28, 20850, 11, 318, 62, 27237, 28, 271, 62, 27237, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 62, 4868, 796, 1255, 13, 12924, 7203, 897, 274, 62, 4868, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 62, 11600, 62, 847, 796, 1255, 13, 12924, 7203, 897, 274, 62, 11600, 62, 847, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 15, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 575, 19608, 292, 13, 33295, 7, 20274, 13, 12924, 7, 67, 13, 1837, 23650, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 4731, 1339, 407, 33345, 11, 1395, 19608, 292, 318, 257, 300, 1040, 10223, 198, 220, 220, 220, 220, 220, 220, 220, 611, 34197, 62, 4868, 58, 15, 4083, 271, 62, 5589, 3906, 290, 34197, 62, 4868, 58, 15, 4083, 2302, 3004, 14512, 366, 4868, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 7890, 796, 300, 1040, 10223, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 18896, 7, 20274, 58, 4868, 7, 20274, 38381, 15, 11907, 8, 532, 352, 11, 18896, 7, 20274, 58, 4868, 7, 20274, 38381, 15, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 7890, 796, 1255, 58, 4868, 7, 20274, 38381, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 19608, 292, 13, 33295, 7, 87, 7890, 8, 628, 220, 220, 220, 1303, 10934, 2124, 18242, 290, 3670, 198, 220, 220, 220, 3670, 16, 796, 2116, 13, 3672, 13, 27544, 1096, 3419, 1343, 366, 366, 198, 220, 220, 220, 3670, 17, 796, 366, 1640, 366, 198, 220, 220, 220, 329, 16488, 287, 34197, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 20850, 287, 2593, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 2593, 62, 11600, 58, 22704, 13, 20850, 4083, 35312, 7203, 685, 4943, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 16488, 13, 3672, 287, 34197, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 34197, 62, 11600, 58, 22704, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 16488, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 2302, 3004, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1929, 2305, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3849, 2100, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 505, 41007, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 415, 9346, 2101, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17470, 395, 41007, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22704, 62, 7890, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 18896, 7, 22704, 13, 27160, 8, 1875, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 357, 11925, 7, 22704, 13, 27160, 8, 6624, 352, 290, 18896, 7, 897, 274, 62, 4868, 8, 6624, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 20850, 6624, 366, 11584, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 3672, 287, 4326, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 4326, 62, 11600, 58, 22704, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 16488, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 18242, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 18242, 796, 1438, 13, 27544, 1096, 3419, 1343, 366, 14631, 1343, 16488, 62, 20850, 1343, 366, 30866, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 22704, 62, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 16488, 13, 20850, 287, 2593, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 18242, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 18242, 796, 2593, 62, 11600, 58, 22704, 13, 20850, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 20850, 6624, 366, 7399, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 22704, 62, 3672, 796, 366, 35324, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 22704, 62, 3672, 796, 16488, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 16488, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 18242, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 18242, 796, 1438, 13, 27544, 1096, 3419, 1343, 366, 14631, 1343, 16488, 62, 20850, 1343, 366, 30866, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 22704, 62, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 3672, 6624, 366, 9248, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 16488, 13, 20850, 6624, 366, 7200, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2835, 7, 37659, 62, 9806, 7, 22704, 13, 27160, 8, 1220, 718, 8, 4064, 642, 6624, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 3378, 796, 685, 72, 1635, 2835, 7, 37659, 62, 9806, 7, 22704, 13, 27160, 8, 1220, 718, 8, 329, 1312, 287, 2837, 7, 22, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 3378, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 34197, 62, 4868, 58, 15, 4083, 271, 62, 5589, 3906, 290, 34197, 62, 4868, 58, 15, 4083, 2302, 3004, 14512, 366, 4868, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 624, 23912, 1424, 796, 1255, 58, 4868, 7, 20274, 38381, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 3378, 796, 1395, 19608, 292, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 624, 23912, 1424, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 13812, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 271, 62, 33279, 290, 18896, 7, 22704, 13, 27160, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 13812, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 13812, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 20850, 6624, 366, 11584, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 3672, 287, 4326, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 4326, 62, 11600, 58, 22704, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 16488, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 16488, 13, 20850, 287, 2593, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 2593, 62, 11600, 58, 22704, 13, 20850, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 16488, 13, 20850, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 20274, 62, 15, 58, 22704, 13, 3672, 4357, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 17, 15853, 1438, 1343, 366, 2625, 1343, 1255, 62, 15, 58, 22704, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 2536, 796, 7177, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 15, 58, 22704, 13, 3672, 4357, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 45144, 25, 13, 18, 70, 92, 1911, 18982, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 33491, 7203, 33172, 33172, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20274, 62, 15, 58, 22704, 13, 3672, 12962, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 2536, 796, 16488, 62, 2536, 13, 36311, 7203, 21737, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 17, 15853, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 1343, 366, 2625, 1343, 16488, 62, 2536, 13, 81, 36311, 7, 1600, 366, 8, 1343, 366, 14631, 1343, 16488, 62, 20850, 1343, 366, 4357, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 11851, 636, 513, 7268, 34197, 326, 389, 994, 475, 407, 2950, 287, 9167, 34197, 198, 220, 220, 220, 3670, 18, 796, 13538, 198, 220, 220, 220, 329, 16488, 62, 3672, 287, 34197, 62, 11600, 62, 847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 13812, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16488, 287, 2116, 13, 897, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 3672, 6624, 16488, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 22704, 11, 6060, 47546, 8, 290, 18896, 7, 22704, 13, 34642, 62, 521, 1063, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 13812, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 13812, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 18, 15853, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 2625, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 7177, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 62, 11600, 62, 847, 58, 22704, 62, 3672, 7131, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 45144, 25, 13, 18, 70, 92, 1911, 18982, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 33491, 7203, 33172, 33172, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 14631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 34197, 62, 11600, 62, 847, 58, 22704, 62, 3672, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 4357, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 611, 3670, 17, 6624, 366, 1640, 366, 290, 3670, 18, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 17, 796, 13538, 628, 220, 220, 220, 1303, 35874, 19936, 5623, 16488, 357, 35393, 62, 521, 1063, 8, 284, 779, 12828, 1470, 198, 220, 220, 220, 329, 16488, 287, 34197, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 20850, 287, 2116, 13, 897, 274, 58, 22704, 13, 9630, 4083, 11265, 4582, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 897, 274, 58, 22704, 13, 9630, 4083, 11265, 4582, 58, 22704, 13, 20850, 4357, 11220, 62, 521, 1063, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 29487, 796, 366, 65, 853, 1470, 1, 628, 220, 220, 220, 1303, 35874, 703, 867, 23759, 389, 12893, 1698, 11, 1382, 8177, 290, 3124, 8341, 198, 220, 220, 220, 611, 8177, 62, 4868, 6624, 17635, 290, 1366, 62, 4868, 14512, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 8177, 62, 4868, 796, 685, 67, 13, 3672, 329, 288, 287, 1366, 62, 4868, 17, 60, 198, 220, 220, 220, 1288, 361, 8177, 62, 4868, 6624, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 8177, 62, 4868, 796, 14631, 1, 329, 288, 287, 1366, 62, 4868, 17, 60, 198, 220, 220, 220, 24901, 796, 17635, 198, 220, 220, 220, 1303, 43426, 7577, 198, 220, 220, 220, 9493, 10992, 62, 4868, 796, 9493, 42530, 198, 220, 220, 220, 329, 1312, 11, 288, 287, 27056, 378, 7, 7890, 62, 4868, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 2502, 10724, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16488, 287, 34197, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 2302, 3004, 6624, 366, 4868, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 2502, 10724, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9493, 42530, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 42530, 796, 14631, 67, 5263, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 22019, 1158, 796, 18896, 7, 22704, 13, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 20850, 6624, 366, 11584, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 3672, 287, 4326, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 4326, 62, 11600, 58, 22704, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 16488, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 16488, 13, 20850, 287, 2593, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 2593, 62, 11600, 58, 22704, 13, 20850, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 20850, 796, 16488, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 67, 13, 897, 274, 58, 22704, 13, 9630, 4083, 1136, 62, 27160, 28955, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24901, 15853, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8177, 62, 4868, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 16488, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 2625, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 16488, 13, 27160, 13, 83, 349, 396, 3419, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 16488, 62, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 22704, 13, 27160, 13, 83, 349, 396, 3419, 58, 73, 4357, 965, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 8177, 62, 4868, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 16488, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 2625, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 7225, 18, 70, 1, 4064, 16488, 13, 27160, 13, 83, 349, 396, 3419, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 16488, 62, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 77, 62, 22019, 1158, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24901, 15853, 685, 1455, 437, 62, 4868, 58, 72, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 62, 2502, 10724, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24901, 15853, 685, 1455, 437, 62, 4868, 58, 72, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20292, 7577, 287, 1729, 33345, 1339, 351, 33345, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7890, 62, 4868, 17, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16488, 287, 2116, 13, 1136, 62, 897, 274, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 13, 271, 62, 2502, 10724, 290, 18896, 7, 8043, 62, 4868, 8, 1875, 18896, 7, 22704, 13, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 8043, 62, 4868, 58, 16, 47715, 796, 3124, 62, 4868, 58, 11925, 7, 22704, 13, 27160, 8, 1058, 60, 628, 220, 220, 220, 1303, 27758, 575, 19608, 292, 611, 262, 7110, 12893, 592, 1811, 23759, 198, 220, 220, 220, 611, 318, 62, 2502, 10724, 25, 198, 220, 220, 220, 220, 220, 220, 220, 575, 7890, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 575, 19608, 292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 13, 358, 320, 14512, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 9630, 796, 810, 7, 18747, 7, 67, 13, 43358, 8, 6624, 299, 62, 22019, 1158, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 62, 9630, 13, 7857, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 31502, 11, 1811, 34197, 351, 976, 15225, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 7890, 15853, 6626, 7, 67, 11, 299, 62, 22019, 1158, 11, 16488, 28, 22704, 62, 9630, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 7890, 15853, 685, 67, 60, 198, 220, 220, 220, 220, 220, 220, 220, 575, 19608, 292, 796, 685, 16485, 1453, 2736, 7, 67, 8, 329, 288, 287, 575, 7890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 7890, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 7890, 62, 4868, 17, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 7890, 15853, 685, 55, 19608, 292, 58, 72, 60, 329, 2124, 287, 2837, 7, 77, 62, 22019, 1158, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 19608, 292, 796, 1395, 7890, 628, 220, 220, 220, 1303, 32585, 3670, 198, 220, 220, 220, 611, 3670, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 9246, 268, 378, 477, 3670, 3354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 2502, 10724, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 3670, 16, 1343, 3670, 18, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 3670, 16, 1343, 3670, 17, 1343, 3670, 18, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 938, 33658, 2233, 284, 3670, 17, 393, 3670, 18, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 3670, 13, 81, 36311, 7, 1600, 366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 5391, 1203, 290, 13386, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 3670, 13, 33491, 7203, 21737, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 3670, 13, 33491, 7203, 6, 1600, 366, 4943, 628, 220, 220, 220, 1303, 14674, 29964, 198, 220, 220, 220, 611, 4045, 62, 897, 274, 14512, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 20850, 6624, 366, 54, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 796, 366, 28, 16345, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 796, 366, 28, 42216, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4868, 62, 709, 75, 796, 685, 15, 329, 1312, 287, 2837, 7, 11925, 7, 853, 62, 4868, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 2160, 284, 4045, 62, 897, 274, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16488, 287, 4045, 62, 897, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 15699, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1822, 287, 27056, 378, 7, 853, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 287, 1822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 15699, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4868, 62, 709, 75, 58, 72, 60, 796, 16488, 1343, 1034, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 62, 15699, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4868, 62, 709, 75, 13, 33295, 7, 22704, 1343, 1034, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 584, 9167, 34197, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1822, 287, 27056, 378, 7, 853, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1822, 62, 4868, 62, 709, 75, 58, 72, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4868, 62, 709, 75, 58, 72, 60, 796, 1822, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 487, 83, 393, 366, 36077, 1, 287, 4326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 1136, 62, 76, 4660, 3984, 62, 24176, 46491, 853, 62, 4868, 62, 709, 75, 11, 4326, 28, 20850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 1136, 62, 24176, 46491, 853, 62, 4868, 62, 709, 75, 11, 4326, 28, 20850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 575, 62, 2502, 439, 796, 1255, 58, 944, 13, 1837, 23650, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 4731, 1339, 407, 33345, 11, 1395, 19608, 292, 318, 257, 300, 1040, 10223, 198, 220, 220, 220, 220, 220, 220, 220, 611, 34197, 62, 4868, 58, 15, 4083, 271, 62, 5589, 3906, 290, 34197, 62, 4868, 58, 15, 4083, 2302, 3004, 14512, 366, 4868, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 7890, 796, 300, 1040, 10223, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 18896, 7, 20274, 58, 4868, 7, 20274, 38381, 15, 11907, 8, 532, 352, 11, 18896, 7, 20274, 58, 4868, 7, 20274, 38381, 15, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 7890, 796, 1255, 58, 4868, 7, 20274, 38381, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 575, 19608, 292, 13, 28463, 7, 15, 11, 575, 62, 2502, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 19608, 292, 13, 28463, 7, 15, 11, 2124, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 4868, 796, 3124, 62, 4868, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 4868, 13, 28463, 7, 15, 11, 25113, 10535, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 24901, 13, 28463, 7, 15, 11, 366, 16350, 4943, 628, 220, 220, 220, 611, 366, 36077, 1, 287, 4326, 25, 220, 1303, 40177, 19841, 15, 416, 299, 504, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 7890, 287, 575, 19608, 292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 7890, 58, 5173, 1045, 19841, 657, 60, 796, 15709, 628, 220, 220, 220, 1303, 4889, 14276, 7110, 2163, 198, 220, 220, 220, 611, 318, 62, 487, 83, 25, 628, 220, 220, 220, 220, 220, 220, 220, 611, 294, 3447, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11265, 4582, 318, 407, 6045, 290, 366, 5420, 1, 287, 2116, 13, 11265, 4582, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 294, 3447, 796, 2116, 13, 11265, 4582, 14692, 5420, 1, 4083, 5420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 294, 3447, 796, 657, 13, 2999, 628, 220, 220, 220, 220, 220, 220, 220, 2030, 48382, 796, 1395, 19608, 292, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 36077, 1, 287, 4326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 773, 11, 331, 287, 27056, 378, 7, 56, 19608, 292, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 88, 8, 1875, 3509, 7, 940, 1635, 2604, 940, 7, 400, 3447, 8, 1343, 2352, 7, 37659, 62, 9806, 7, 56, 19608, 292, 58, 15, 12962, 828, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 575, 19608, 292, 58, 15, 4083, 7857, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 796, 685, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 773, 11, 331, 287, 27056, 378, 7, 56, 19608, 292, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 88, 8, 1875, 2352, 7, 400, 3447, 1635, 45941, 62, 9806, 7, 56, 19608, 292, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 742, 3378, 796, 3748, 7, 28463, 7, 19503, 48382, 58, 521, 1063, 4357, 657, 11, 657, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 23736, 62, 9521, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 742, 3378, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 62, 1084, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1084, 796, 220, 742, 3378, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1084, 796, 3509, 7, 87, 62, 1084, 11, 220, 742, 3378, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 62, 9806, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 796, 220, 742, 3378, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 796, 949, 7, 87, 62, 9806, 11, 220, 742, 3378, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 62, 1084, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1084, 796, 45941, 62, 1084, 7, 19503, 48382, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1084, 796, 3509, 7, 87, 62, 1084, 11, 45941, 62, 1084, 7, 19503, 48382, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 62, 9806, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 796, 45941, 62, 9806, 7, 19503, 48382, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 796, 949, 7, 87, 62, 9806, 11, 45941, 62, 9806, 7, 19503, 48382, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 62, 1084, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1084, 796, 45941, 62, 1084, 7, 19503, 48382, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 62, 9806, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 796, 45941, 62, 9806, 7, 19503, 48382, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1084, 796, 2124, 62, 1084, 532, 2124, 62, 9806, 1635, 657, 13, 2713, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 796, 2124, 62, 9806, 1635, 352, 13, 2713, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 742, 3378, 8, 6624, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 357, 11925, 7, 742, 3378, 8, 1875, 1160, 290, 407, 34197, 62, 4868, 58, 15, 4083, 271, 62, 5589, 3906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 407, 318, 62, 23736, 62, 9521, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 3378, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5221, 12828, 1470, 329, 277, 701, 611, 2099, 62, 34960, 407, 7368, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 29487, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 29487, 796, 366, 65, 853, 1470, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16018, 284, 3197, 7531, 49239, 287, 2266, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1814, 62, 29155, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1814, 62, 29155, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 33120, 262, 3038, 691, 611, 1388, 16488, 318, 287, 8633, 290, 691, 530, 6060, 318, 37515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1388, 62, 22704, 62, 3672, 287, 1814, 62, 29155, 62, 11600, 290, 18896, 7, 56, 19608, 292, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1814, 62, 29155, 796, 1814, 62, 29155, 62, 11600, 58, 12417, 62, 22704, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1024, 39022, 262, 3038, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1814, 62, 29155, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 17, 35, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 19608, 292, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 19608, 292, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8177, 62, 4868, 28, 1455, 2412, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 4868, 28, 3605, 62, 8043, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 62, 4868, 28, 2815, 10992, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 62, 4868, 28, 2815, 413, 5649, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 28, 5647, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 28, 897, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 18242, 28, 87, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 28, 2645, 9608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 29487, 28, 4906, 62, 29487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1084, 28, 87, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 28, 87, 62, 9806, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1084, 28, 88, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 9806, 28, 88, 62, 9806, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 6404, 9888, 62, 87, 28, 271, 62, 6404, 9888, 62, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 6404, 9888, 62, 88, 28, 271, 62, 6404, 9888, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 6381, 79, 62, 7839, 28, 271, 62, 6381, 79, 62, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 25928, 28, 271, 62, 25928, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 3378, 28, 742, 3378, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 624, 23912, 1424, 28, 742, 624, 23912, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 6978, 28, 21928, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2318, 10394, 28, 5657, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1814, 62, 29155, 28, 10990, 62, 29155, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12860, 62, 5647, 28, 271, 62, 12860, 62, 5647, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 7839, 28, 5404, 62, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 3672, 28, 10331, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 7857, 62, 7839, 28, 10331, 62, 7857, 62, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 7857, 62, 18242, 28, 10331, 62, 7857, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 7857, 62, 1455, 437, 28, 10331, 62, 7857, 62, 1455, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12860, 62, 1455, 437, 28, 271, 62, 12860, 62, 1455, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 43435, 62, 1455, 437, 28, 271, 62, 43435, 62, 1455, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 14535, 62, 1455, 437, 28, 271, 62, 14535, 62, 1455, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2073, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5221, 12133, 7110, 611, 2099, 62, 29487, 407, 7368, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 29487, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 29487, 796, 366, 22019, 303, 1, 628, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 17, 35, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 19608, 292, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 19608, 292, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8177, 62, 4868, 28, 1455, 2412, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 4868, 28, 3605, 62, 8043, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 28, 5647, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 28, 897, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 18242, 28, 87, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 28, 2645, 9608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 29487, 28, 4906, 62, 29487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1084, 28, 87, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 28, 87, 62, 9806, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1084, 28, 88, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 9806, 28, 88, 62, 9806, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 6404, 9888, 62, 87, 28, 271, 62, 6404, 9888, 62, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 6404, 9888, 62, 88, 28, 271, 62, 6404, 9888, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 6381, 79, 62, 7839, 28, 271, 62, 6381, 79, 62, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 25928, 28, 271, 62, 25928, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 3378, 28, 742, 3378, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 624, 23912, 1424, 28, 742, 624, 23912, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2318, 10394, 28, 5657, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 62, 4868, 28, 2815, 10992, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 62, 4868, 28, 2815, 413, 5649, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 6978, 28, 21928, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12860, 62, 5647, 28, 271, 62, 12860, 62, 5647, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 7839, 28, 5404, 62, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 3672, 28, 10331, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 7857, 62, 7839, 28, 10331, 62, 7857, 62, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 7857, 62, 18242, 28, 10331, 62, 7857, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 7857, 62, 1455, 437, 28, 10331, 62, 7857, 62, 1455, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12860, 62, 1455, 437, 28, 271, 62, 12860, 62, 1455, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 43435, 62, 1455, 437, 28, 271, 62, 43435, 62, 1455, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 14535, 62, 1455, 437, 28, 271, 62, 14535, 62, 1455, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
1.809258
11,471
#!/usr/bin/python3 import json import falcon from database import Database
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 33918, 198, 11748, 24215, 1102, 198, 6738, 6831, 1330, 24047, 198 ]
3.454545
22
from .utils import get_X_y, evaluate_binary_classifier, load_img, ColumnSelector try: from inspect import signature except ImportError: from funcsigs import signature __all__ = [ 'get_X_y', 'evaluate_binary_classifier', 'load_img', 'ColumnSelector', 'signature' ]
[ 6738, 764, 26791, 1330, 651, 62, 55, 62, 88, 11, 13446, 62, 39491, 62, 4871, 7483, 11, 3440, 62, 9600, 11, 29201, 17563, 273, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 10104, 1330, 9877, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 1257, 6359, 9235, 1330, 9877, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 1136, 62, 55, 62, 88, 3256, 198, 220, 220, 220, 705, 49786, 62, 39491, 62, 4871, 7483, 3256, 198, 220, 220, 220, 705, 2220, 62, 9600, 3256, 198, 220, 220, 220, 705, 39470, 17563, 273, 3256, 198, 220, 220, 220, 705, 12683, 1300, 6, 198, 60, 198 ]
2.672727
110
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 24893, 1087, 318, 10607, 284, 1104, 262, 1280, 2723, 2055, 416, 1642, 5525, 241, 251, 165, 110, 116, 162, 247, 118, 12859, 239, 47, 7252, 50, 33176, 111, 20998, 108, 163, 97, 122, 44293, 118, 48304, 357, 14573, 15708, 350, 7252, 50, 8108, 198, 7407, 653, 8, 1695, 13, 198, 15269, 357, 34, 8, 2177, 12, 23344, 2320, 43, 317, 1959, 15302, 11, 257, 9368, 1087, 1664, 13, 1439, 2489, 10395, 13, 198, 26656, 15385, 739, 262, 17168, 13789, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 4023, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 198, 272, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 262, 198, 11423, 3303, 15030, 21627, 290, 11247, 739, 262, 13789, 13, 198, 37811, 628 ]
3.665
200
import re s = "is this a string?!" print("The original string is : " + s) res = re.sub(r'[^\w\s]', '', s) #remove any char that is not a word, space, or tab using regex print("The string after removing punctuation is: " + res)
[ 11748, 302, 198, 198, 82, 796, 366, 271, 428, 257, 4731, 30823, 198, 198, 4798, 7203, 464, 2656, 4731, 318, 1058, 366, 1343, 264, 8, 198, 198, 411, 796, 302, 13, 7266, 7, 81, 6, 58, 61, 59, 86, 59, 82, 60, 3256, 705, 3256, 264, 8, 1303, 28956, 597, 1149, 326, 318, 407, 257, 1573, 11, 2272, 11, 393, 7400, 1262, 40364, 198, 198, 4798, 7203, 464, 4731, 706, 10829, 21025, 2288, 318, 25, 366, 1343, 581, 8, 198 ]
2.8875
80
class IllegalCarError(Exception): """Raised when the attributes of Car class are wrong""" pass
[ 4871, 42272, 9914, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 21762, 1417, 618, 262, 12608, 286, 1879, 1398, 389, 2642, 37811, 198, 220, 220, 220, 1208, 628 ]
3.586207
29
import os from peewee import * from NavigationDB.Premise.PremiseDB import Premise os.chdir('../../..') PremiseRemove() PremiseAdd()
[ 11748, 28686, 198, 6738, 613, 413, 1453, 1330, 1635, 198, 6738, 42115, 11012, 13, 24914, 786, 13, 24914, 786, 11012, 1330, 6929, 786, 628, 198, 198, 418, 13, 354, 15908, 10786, 40720, 40720, 492, 11537, 198, 24914, 786, 27914, 3419, 198, 24914, 786, 4550, 3419 ]
2.977778
45
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making GameAISDK available. This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ class AIModelParameter(object): """ Agent AI model parameter, including env, module, model package and class etc provider the data class manage the parameter """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 24893, 1087, 318, 10607, 284, 1104, 262, 1280, 2723, 2055, 416, 1642, 3776, 32, 1797, 48510, 1695, 13, 198, 198, 1212, 2723, 2438, 2393, 318, 11971, 739, 262, 22961, 3611, 5094, 13789, 10628, 513, 13, 198, 1890, 1336, 3307, 11, 3387, 3522, 284, 262, 2393, 366, 43, 2149, 24290, 13, 14116, 1, 543, 318, 2810, 355, 636, 286, 428, 2723, 2438, 5301, 13, 198, 198, 15269, 357, 34, 8, 12131, 2320, 43, 317, 1959, 15302, 11, 257, 9368, 1087, 1664, 13, 220, 1439, 2489, 10395, 13, 198, 37811, 198, 198, 4871, 317, 3955, 375, 417, 36301, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15906, 9552, 2746, 11507, 11, 1390, 17365, 11, 8265, 11, 2746, 5301, 290, 1398, 3503, 198, 220, 220, 220, 10131, 262, 1366, 1398, 6687, 262, 11507, 198, 220, 220, 220, 37227, 198 ]
3.660256
156
# -*- coding: utf-8 -*- """ Created on Thu May 9 10:29:45 2019 @author: DiPu """ from collections import OrderedDict od=OrderedDict() while True: user_inp = input("Enter Product: ") if user_inp == "": break user_inp = user_inp.split() key = " ".join(user_inp[:-1]) value = int(user_inp[-1]) od[key] = od.get(key,0)+value print(od) #for key,value in od.items(): # if "apple" in od.keys(): # od["apple"] = od["apple"]+20 # else: # od["apple"] = 20
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 26223, 1737, 220, 860, 838, 25, 1959, 25, 2231, 13130, 198, 198, 31, 9800, 25, 6031, 47, 84, 198, 37811, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 375, 28, 35422, 1068, 35, 713, 3419, 198, 220, 220, 220, 220, 198, 4514, 6407, 25, 198, 220, 220, 220, 2836, 62, 259, 79, 796, 5128, 7203, 17469, 8721, 25, 366, 8, 198, 220, 220, 220, 611, 2836, 62, 259, 79, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2836, 62, 259, 79, 796, 2836, 62, 259, 79, 13, 35312, 3419, 198, 220, 220, 220, 1994, 796, 366, 27071, 22179, 7, 7220, 62, 259, 79, 58, 21912, 16, 12962, 198, 220, 220, 220, 1988, 796, 493, 7, 7220, 62, 259, 79, 58, 12, 16, 12962, 198, 220, 220, 220, 16298, 58, 2539, 60, 796, 16298, 13, 1136, 7, 2539, 11, 15, 47762, 8367, 198, 4798, 7, 375, 8, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 2, 1640, 1994, 11, 8367, 287, 16298, 13, 23814, 33529, 198, 2, 220, 220, 220, 611, 366, 18040, 1, 287, 16298, 13, 13083, 33529, 198, 2, 220, 220, 220, 220, 220, 220, 220, 16298, 14692, 18040, 8973, 796, 16298, 14692, 18040, 8973, 10, 1238, 198, 2, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 16298, 14692, 18040, 8973, 796, 1160, 628, 220, 220, 220, 220, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
1.988848
269
# Copyright 2013, Big Switch Networks # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sqlalchemy as sa from sqlalchemy import orm from neutron.db import model_base
[ 2, 15069, 2211, 11, 4403, 14645, 27862, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 44161, 282, 26599, 355, 473, 198, 6738, 44161, 282, 26599, 1330, 393, 76, 198, 198, 6738, 49810, 13, 9945, 1330, 2746, 62, 8692, 628, 198 ]
3.43128
211
### soma de números print('Iremos somar números ímpares que são múltiplos de 3') s = 0 p = 0 for c in range(1,501,2): print(c, end=' ') if c%3==0: p = p + 1 s = s + c print('\nA soma de todos os números ímpares que são múltiplos de 3 é {}.\n O total de números múltiplos é {}.'.format(s, p))
[ 21017, 3870, 64, 390, 299, 21356, 647, 418, 198, 4798, 10786, 40, 2787, 418, 3870, 283, 299, 21356, 647, 418, 6184, 255, 3149, 3565, 8358, 264, 28749, 285, 21356, 2528, 24705, 418, 390, 513, 11537, 198, 82, 796, 657, 198, 79, 796, 657, 198, 1640, 269, 287, 2837, 7, 16, 11, 33548, 11, 17, 2599, 198, 220, 220, 220, 3601, 7, 66, 11, 886, 11639, 705, 8, 198, 220, 220, 220, 611, 269, 4, 18, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 279, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 264, 1343, 269, 198, 4798, 10786, 59, 77, 32, 3870, 64, 390, 284, 37427, 28686, 299, 21356, 647, 418, 6184, 255, 3149, 3565, 8358, 264, 28749, 285, 21356, 2528, 24705, 418, 390, 513, 38251, 23884, 13, 59, 77, 440, 2472, 390, 299, 21356, 647, 418, 285, 21356, 2528, 24705, 418, 38251, 23884, 2637, 13, 18982, 7, 82, 11, 279, 4008 ]
1.956522
161
import os import pprint import re import sys import time import paramiko from scp import SCPClient import functest.utils.functest_utils as ft_utils import functest.utils.openstack_utils as os_utils FUNCTEST_REPO = ft_utils.FUNCTEST_REPO NAME_VM_1 = ft_utils.get_functest_config('vping.vm_name_1') NAME_VM_2 = ft_utils.get_functest_config('vping.vm_name_2') VM_BOOT_TIMEOUT = 180 VM_DELETE_TIMEOUT = 100 PING_TIMEOUT = ft_utils.get_functest_config('vping.ping_timeout') GLANCE_IMAGE_NAME = ft_utils.get_functest_config('vping.image_name') GLANCE_IMAGE_FILENAME = \ ft_utils.get_functest_config('general.openstack.image_file_name') GLANCE_IMAGE_FORMAT = \ ft_utils.get_functest_config('general.openstack.image_disk_format') GLANCE_IMAGE_PATH = \ ft_utils.get_functest_config('general.directories.dir_functest_data') + \ "/" + GLANCE_IMAGE_FILENAME FLAVOR = ft_utils.get_functest_config('vping.vm_flavor') # NEUTRON Private Network parameters PRIVATE_NET_NAME = \ ft_utils.get_functest_config('vping.vping_private_net_name') PRIVATE_SUBNET_NAME = \ ft_utils.get_functest_config('vping.vping_private_subnet_name') PRIVATE_SUBNET_CIDR = \ ft_utils.get_functest_config('vping.vping_private_subnet_cidr') ROUTER_NAME = ft_utils.get_functest_config('vping.vping_router_name') SECGROUP_NAME = ft_utils.get_functest_config('vping.vping_sg_name') SECGROUP_DESCR = ft_utils.get_functest_config('vping.vping_sg_descr') neutron_client = None glance_client = None nova_client = None logger = None pp = pprint.PrettyPrinter(indent=4) def pMsg(value): """pretty printing""" pp.pprint(value)
[ 11748, 28686, 198, 11748, 279, 4798, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 640, 198, 198, 11748, 5772, 12125, 198, 6738, 629, 79, 1330, 17527, 11792, 198, 198, 11748, 1257, 310, 395, 13, 26791, 13, 12543, 310, 395, 62, 26791, 355, 10117, 62, 26791, 198, 11748, 1257, 310, 395, 13, 26791, 13, 9654, 25558, 62, 26791, 355, 28686, 62, 26791, 198, 42296, 4177, 6465, 62, 2200, 16402, 796, 10117, 62, 26791, 13, 42296, 4177, 6465, 62, 2200, 16402, 198, 198, 20608, 62, 15996, 62, 16, 796, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 14761, 62, 3672, 62, 16, 11537, 198, 20608, 62, 15996, 62, 17, 796, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 14761, 62, 3672, 62, 17, 11537, 198, 198, 15996, 62, 8202, 2394, 62, 34694, 12425, 796, 11546, 198, 15996, 62, 7206, 2538, 9328, 62, 34694, 12425, 796, 1802, 198, 47, 2751, 62, 34694, 12425, 796, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 13886, 62, 48678, 11537, 198, 198, 8763, 19240, 62, 3955, 11879, 62, 20608, 796, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 9060, 62, 3672, 11537, 198, 8763, 19240, 62, 3955, 11879, 62, 46700, 1677, 10067, 796, 3467, 198, 220, 220, 220, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 24622, 13, 9654, 25558, 13, 9060, 62, 7753, 62, 3672, 11537, 198, 8763, 19240, 62, 3955, 11879, 62, 21389, 1404, 796, 3467, 198, 220, 220, 220, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 24622, 13, 9654, 25558, 13, 9060, 62, 39531, 62, 18982, 11537, 198, 8763, 19240, 62, 3955, 11879, 62, 34219, 796, 3467, 198, 220, 220, 220, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 24622, 13, 12942, 1749, 13, 15908, 62, 12543, 310, 395, 62, 7890, 11537, 1343, 3467, 198, 220, 220, 220, 12813, 1, 1343, 10188, 19240, 62, 3955, 11879, 62, 46700, 1677, 10067, 628, 198, 3697, 10116, 1581, 796, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 14761, 62, 2704, 5570, 11537, 198, 198, 2, 10635, 3843, 45806, 15348, 7311, 10007, 198, 4805, 3824, 6158, 62, 12884, 62, 20608, 796, 3467, 198, 220, 220, 220, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 85, 13886, 62, 19734, 62, 3262, 62, 3672, 11537, 198, 4805, 3824, 6158, 62, 50, 10526, 12884, 62, 20608, 796, 3467, 198, 220, 220, 220, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 85, 13886, 62, 19734, 62, 7266, 3262, 62, 3672, 11537, 198, 4805, 3824, 6158, 62, 50, 10526, 12884, 62, 34, 2389, 49, 796, 3467, 198, 220, 220, 220, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 85, 13886, 62, 19734, 62, 7266, 3262, 62, 66, 312, 81, 11537, 198, 49, 2606, 5781, 62, 20608, 796, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 85, 13886, 62, 472, 353, 62, 3672, 11537, 198, 198, 23683, 46846, 62, 20608, 796, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 85, 13886, 62, 45213, 62, 3672, 11537, 198, 23683, 46846, 62, 30910, 9419, 796, 10117, 62, 26791, 13, 1136, 62, 12543, 310, 395, 62, 11250, 10786, 85, 13886, 13, 85, 13886, 62, 45213, 62, 20147, 81, 11537, 628, 198, 710, 315, 1313, 62, 16366, 796, 6045, 198, 4743, 590, 62, 16366, 796, 6045, 198, 38438, 62, 16366, 796, 6045, 198, 6404, 1362, 796, 6045, 198, 198, 381, 796, 279, 4798, 13, 35700, 6836, 3849, 7, 521, 298, 28, 19, 8, 628, 198, 4299, 279, 50108, 7, 8367, 2599, 198, 220, 220, 220, 37227, 37784, 13570, 37811, 198, 220, 220, 220, 9788, 13, 381, 22272, 7, 8367, 8, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628 ]
2.432792
677
from spikelearn.data import io, select, to_feature_array, SHORTCUTS from spikelearn.models.shuffle_decoding import shuffle_cross_predict from catboost import CatBoostClassifier from sklearn.linear_model import BayesianRidgeRegression import pickle allres = {} for rat, dset in product(SHORTCUTS['group']['eletro'], DSETS): data = select(io.load(rat, dset), _min_duration=.5, is_tired=False) tercils = [data.duration.quantile(q) for q in [1/3, 2/3]] t1 = to_feature_array(select(data, _max_duration=tercils[0]), subset='full') t3 = to_feature_array(select(data, _min_duration=tercils[1]), subset='full') res = shuffle_cross_predict(reg, [t1,t3], ['short', 'long'], n_splits=5, problem='regression', feature_scaling='robust') allres[(rat, dset)] = res pickle.dump(open('data/results/warping.pickle', 'wb')) # TODO calculate bias and mean bias direction
[ 6738, 20240, 35720, 13, 7890, 1330, 33245, 11, 2922, 11, 284, 62, 30053, 62, 18747, 11, 6006, 1581, 4825, 3843, 50, 198, 6738, 20240, 35720, 13, 27530, 13, 1477, 18137, 62, 12501, 7656, 1330, 220, 36273, 62, 19692, 62, 79, 17407, 198, 6738, 3797, 39521, 1330, 5181, 45686, 9487, 7483, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 4696, 35610, 49, 3130, 8081, 2234, 198, 11748, 2298, 293, 198, 198, 439, 411, 796, 23884, 198, 1640, 4227, 11, 288, 2617, 287, 1720, 7, 9693, 1581, 4825, 3843, 50, 17816, 8094, 6, 7131, 6, 68, 1616, 305, 6, 4357, 17400, 32716, 2599, 198, 220, 220, 220, 1366, 796, 2922, 7, 952, 13, 2220, 7, 10366, 11, 288, 2617, 828, 4808, 1084, 62, 32257, 28, 13, 20, 11, 318, 62, 83, 1202, 28, 25101, 8, 198, 220, 220, 220, 1059, 2856, 82, 796, 685, 7890, 13, 32257, 13, 40972, 576, 7, 80, 8, 329, 10662, 287, 685, 16, 14, 18, 11, 362, 14, 18, 11907, 628, 220, 220, 220, 256, 16, 796, 284, 62, 30053, 62, 18747, 7, 19738, 7, 7890, 11, 4808, 9806, 62, 32257, 28, 353, 2856, 82, 58, 15, 46570, 24637, 11639, 12853, 11537, 198, 220, 220, 220, 256, 18, 796, 284, 62, 30053, 62, 18747, 7, 19738, 7, 7890, 11, 4808, 1084, 62, 32257, 28, 353, 2856, 82, 58, 16, 46570, 24637, 11639, 12853, 11537, 198, 220, 220, 220, 581, 796, 36273, 62, 19692, 62, 79, 17407, 7, 2301, 11, 685, 83, 16, 11, 83, 18, 4357, 37250, 19509, 3256, 705, 6511, 6, 4357, 299, 62, 22018, 896, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1917, 11639, 2301, 2234, 3256, 3895, 62, 1416, 4272, 11639, 22609, 436, 11537, 628, 220, 220, 220, 477, 411, 58, 7, 10366, 11, 288, 2617, 15437, 796, 581, 198, 220, 220, 220, 220, 198, 27729, 293, 13, 39455, 7, 9654, 10786, 7890, 14, 43420, 14, 86, 5117, 278, 13, 27729, 293, 3256, 705, 39346, 6, 4008, 198, 220, 220, 220, 1303, 16926, 46, 15284, 10690, 290, 1612, 10690, 4571 ]
2.517808
365
from decimal import Decimal from .. import logic from ..portfolio import VirtualAccount # class Calculator: # def __init__(self, allocated_margin: Decimal): # self.margin = allocated_margin # def calc_amount_and_round_by_unit(self, real_price: Decimal, min_unit: Decimal): # return logic.calc_unit_amount( # budget=self.margin, real_price=real_price, min_unit=min_unit # ) # def calc_amount_and_round_by_infered_min_unit(self, real_price: Decimal): # inferd = logic.infer_min_unit(real_price) # return logic.calc_unit_amount( # budget=self.margin, real_price=real_price, min_unit=inferd # ) # @staticmethod # def infer_min_unit(price: Decimal) -> Decimal: # return logic.infer_min_unit(price)
[ 6738, 32465, 1330, 4280, 4402, 198, 198, 6738, 11485, 1330, 9156, 198, 6738, 11485, 634, 13652, 1330, 15595, 30116, 198, 198, 2, 1398, 43597, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 19171, 62, 36153, 25, 4280, 4402, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36153, 796, 19171, 62, 36153, 198, 198, 2, 220, 220, 220, 220, 825, 42302, 62, 17287, 62, 392, 62, 744, 62, 1525, 62, 20850, 7, 944, 11, 1103, 62, 20888, 25, 4280, 4402, 11, 949, 62, 20850, 25, 4280, 4402, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9156, 13, 9948, 66, 62, 20850, 62, 17287, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4466, 28, 944, 13, 36153, 11, 1103, 62, 20888, 28, 5305, 62, 20888, 11, 949, 62, 20850, 28, 1084, 62, 20850, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 2, 220, 220, 220, 220, 825, 42302, 62, 17287, 62, 392, 62, 744, 62, 1525, 62, 10745, 1068, 62, 1084, 62, 20850, 7, 944, 11, 1103, 62, 20888, 25, 4280, 4402, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 13249, 67, 796, 9156, 13, 259, 2232, 62, 1084, 62, 20850, 7, 5305, 62, 20888, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9156, 13, 9948, 66, 62, 20850, 62, 17287, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4466, 28, 944, 13, 36153, 11, 1103, 62, 20888, 28, 5305, 62, 20888, 11, 949, 62, 20850, 28, 259, 2232, 67, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 2, 220, 220, 220, 220, 2488, 12708, 24396, 198, 2, 220, 220, 220, 220, 825, 13249, 62, 1084, 62, 20850, 7, 20888, 25, 4280, 4402, 8, 4613, 4280, 4402, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9156, 13, 259, 2232, 62, 1084, 62, 20850, 7, 20888, 8, 198 ]
2.313043
345
"""A multi-thread tool to crop large images to sub-images for faster IO.""" import os import os.path as osp import sys from multiprocessing import Pool import numpy as np import cv2 from PIL import Image sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__)))) from utils.util import ProgressBar # noqa: E402 import data.util as data_util # noqa: E402 if __name__ == '__main__': main()
[ 37811, 32, 5021, 12, 16663, 2891, 284, 13833, 1588, 4263, 284, 850, 12, 17566, 329, 5443, 24418, 526, 15931, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 25064, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 6738, 350, 4146, 1330, 7412, 198, 17597, 13, 6978, 13, 33295, 7, 2117, 13, 15908, 3672, 7, 2117, 13, 15908, 3672, 7, 2117, 13, 397, 2777, 776, 7, 834, 7753, 834, 35514, 198, 6738, 3384, 4487, 13, 22602, 1330, 18387, 10374, 220, 1303, 645, 20402, 25, 412, 32531, 198, 11748, 1366, 13, 22602, 355, 1366, 62, 22602, 220, 1303, 645, 20402, 25, 412, 32531, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.942029
138
import torch as T import torch import torch.nn.functional as F import numpy as np import tqdm import random import sys, os from matplotlib import pyplot as plt from sympy.combinatorics.graycode import GrayCode import time import ipdb from torch.autograd import Variable, Function def pairwise_distances(x, y=None): ''' Input: x is a Nxd matrix y is an optional Mxd matirx Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] if y is not given then use 'y=x'. i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 ''' x_norm = (x**2).sum(1).view(-1, 1) if y is not None: y_t = torch.transpose(y, 0, 1) y_norm = (y**2).sum(1).view(1, -1) else: y_t = torch.transpose(x, 0, 1) y_norm = x_norm.view(1, -1) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) # Ensure diagonal is zero if x=y # if y is None: # dist = dist - torch.diag(dist.diag) return torch.clamp(dist, 0.0, np.inf) ############# Model Architecture
[ 11748, 28034, 355, 309, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 256, 80, 36020, 198, 11748, 4738, 198, 11748, 25064, 11, 28686, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 6738, 10558, 88, 13, 785, 8800, 1352, 873, 13, 44605, 8189, 1330, 12723, 10669, 198, 11748, 640, 198, 11748, 20966, 9945, 628, 628, 628, 628, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 11, 15553, 198, 198, 4299, 5166, 3083, 62, 17080, 1817, 7, 87, 11, 331, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 23412, 25, 2124, 318, 257, 399, 24954, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 318, 281, 11902, 337, 24954, 2603, 343, 87, 198, 220, 220, 220, 25235, 25, 1233, 318, 257, 399, 87, 44, 17593, 810, 1233, 58, 72, 11, 73, 60, 318, 262, 6616, 2593, 1022, 2124, 58, 72, 11, 47715, 290, 331, 58, 73, 11, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 318, 407, 1813, 788, 779, 705, 88, 28, 87, 4458, 198, 220, 220, 220, 1312, 13, 68, 13, 1233, 58, 72, 11, 73, 60, 796, 8614, 87, 58, 72, 11, 25, 45297, 88, 58, 73, 11, 47715, 15886, 61, 17, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2124, 62, 27237, 796, 357, 87, 1174, 17, 737, 16345, 7, 16, 737, 1177, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 611, 331, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 28034, 13, 7645, 3455, 7, 88, 11, 657, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 27237, 796, 357, 88, 1174, 17, 737, 16345, 7, 16, 737, 1177, 7, 16, 11, 532, 16, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 28034, 13, 7645, 3455, 7, 87, 11, 657, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 27237, 796, 2124, 62, 27237, 13, 1177, 7, 16, 11, 532, 16, 8, 628, 220, 220, 220, 1233, 796, 2124, 62, 27237, 1343, 331, 62, 27237, 532, 362, 13, 15, 1635, 28034, 13, 3020, 7, 87, 11, 331, 62, 83, 8, 198, 220, 220, 220, 1303, 48987, 40039, 318, 6632, 611, 2124, 28, 88, 198, 220, 220, 220, 1303, 611, 331, 318, 6045, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1233, 796, 1233, 532, 28034, 13, 10989, 363, 7, 17080, 13, 10989, 363, 8, 198, 220, 220, 220, 1441, 28034, 13, 565, 696, 7, 17080, 11, 657, 13, 15, 11, 45941, 13, 10745, 8, 628, 628, 628, 628, 628, 198, 7804, 4242, 2, 9104, 29778, 198 ]
2.229474
475