content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
from flask import Blueprint, request as flask_request, jsonify
from cartmigration.libs.utils import *
route_path = Blueprint('route_path', __name__)
@route_path.route("/action/<string:method>", methods = ['post'])
| [
6738,
42903,
1330,
39932,
11,
2581,
355,
42903,
62,
25927,
11,
33918,
1958,
198,
198,
6738,
6383,
76,
4254,
13,
8019,
82,
13,
26791,
1330,
1635,
198,
198,
38629,
62,
6978,
796,
39932,
10786,
38629,
62,
6978,
3256,
11593,
3672,
834,
8,
198,
198,
31,
38629,
62,
6978,
13,
38629,
7203,
14,
2673,
14,
27,
8841,
25,
24396,
29,
1600,
5050,
796,
37250,
7353,
6,
12962,
628
] | 3.253731 | 67 |
# Copyright 2021, The TensorFlow Federated Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from unittest import mock
from absl.testing import absltest
from absl.testing import parameterized
from tensorflow_federated.python.core.templates import iterative_process
from tensorflow_federated.python.simulation import checkpoint_manager
from tensorflow_federated.python.simulation import metrics_manager
from tensorflow_federated.python.simulation import training_loop
if __name__ == '__main__':
absltest.main()
| [
2,
15069,
33448,
11,
383,
309,
22854,
37535,
35089,
515,
46665,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
11748,
17268,
198,
6738,
555,
715,
395,
1330,
15290,
198,
198,
6738,
2352,
75,
13,
33407,
1330,
2352,
2528,
395,
198,
6738,
2352,
75,
13,
33407,
1330,
11507,
1143,
198,
198,
6738,
11192,
273,
11125,
62,
69,
5702,
515,
13,
29412,
13,
7295,
13,
11498,
17041,
1330,
11629,
876,
62,
14681,
198,
6738,
11192,
273,
11125,
62,
69,
5702,
515,
13,
29412,
13,
14323,
1741,
1330,
26954,
62,
37153,
198,
6738,
11192,
273,
11125,
62,
69,
5702,
515,
13,
29412,
13,
14323,
1741,
1330,
20731,
62,
37153,
198,
6738,
11192,
273,
11125,
62,
69,
5702,
515,
13,
29412,
13,
14323,
1741,
1330,
3047,
62,
26268,
628,
628,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
2352,
2528,
395,
13,
12417,
3419,
198
] | 3.664336 | 286 |
from datetime import datetime
from typing import Any, Optional
import aioredis
from .store import RateLimiterStoreABC
class RedisStore(RateLimiterStoreABC):
"""An redis backed store of rate limits.
Arguments:
address: The address of the redis instance.
kwargs: Any keyword arguments to pass to the redis client on
creation, see the aioredis documentation.
"""
| [
6738,
4818,
8079,
1330,
4818,
8079,
198,
6738,
19720,
1330,
4377,
11,
32233,
198,
198,
11748,
257,
72,
1850,
271,
198,
198,
6738,
764,
8095,
1330,
14806,
19352,
2676,
22658,
24694,
628,
198,
4871,
2297,
271,
22658,
7,
32184,
19352,
2676,
22658,
24694,
2599,
198,
220,
220,
220,
37227,
2025,
2266,
271,
9763,
3650,
286,
2494,
7095,
13,
628,
220,
220,
220,
20559,
2886,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2209,
25,
383,
2209,
286,
262,
2266,
271,
4554,
13,
198,
220,
220,
220,
220,
220,
220,
220,
479,
86,
22046,
25,
4377,
21179,
7159,
284,
1208,
284,
262,
2266,
271,
5456,
319,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6282,
11,
766,
262,
257,
72,
1850,
271,
10314,
13,
198,
220,
220,
220,
37227,
198
] | 3.022388 | 134 |
"""keyrings.envvars tests."""
| [
37811,
365,
2417,
654,
13,
24330,
85,
945,
5254,
526,
15931,
198
] | 2.5 | 12 |
from time import time
| [
6738,
640,
1330,
640,
198
] | 4.4 | 5 |
from __future__ import absolute_import, unicode_literals
from qproject.celery import app as celery_app
__all__ = ['celery_app']
| [
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
28000,
1098,
62,
17201,
874,
198,
198,
6738,
10662,
16302,
13,
7015,
88,
1330,
598,
355,
18725,
1924,
62,
1324,
198,
198,
834,
439,
834,
796,
37250,
7015,
88,
62,
1324,
20520,
198
] | 3.095238 | 42 |
from numpy.testing import assert_allclose
import pytest
from ..bbox import AnchorPoint, FrozenError, BBox
| [
6738,
299,
32152,
13,
33407,
1330,
6818,
62,
439,
19836,
198,
11748,
12972,
9288,
198,
198,
6738,
11485,
65,
3524,
1330,
29253,
273,
12727,
11,
23673,
12331,
11,
12597,
1140,
628,
220,
220,
220,
220,
198,
220,
220,
220,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198
] | 2.418182 | 55 |
"""Example program to demonstrate how to send markers into LSL."""
import random
import time
from pylsl import StreamInfo, StreamOutlet
info = StreamInfo(name='markers', type='Markers', channel_count=1,
channel_format='int32', source_id='markers_test1234')
# next make an outlet
outlet = StreamOutlet(info)
trigger = 0
print("now sending markers...")
while True:
# pick a sample to send an wait for a bit
outlet.push_sample([trigger])
print(trigger)
trigger += 1
time.sleep(2.0)
| [
37811,
16281,
1430,
284,
10176,
703,
284,
3758,
19736,
656,
406,
8634,
526,
15931,
201,
198,
201,
198,
11748,
4738,
201,
198,
11748,
640,
201,
198,
201,
198,
6738,
279,
2645,
6649,
1330,
13860,
12360,
11,
13860,
7975,
1616,
201,
198,
201,
198,
10951,
796,
13860,
12360,
7,
3672,
11639,
4102,
364,
3256,
2099,
11639,
9704,
364,
3256,
6518,
62,
9127,
28,
16,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6518,
62,
18982,
11639,
600,
2624,
3256,
2723,
62,
312,
11639,
4102,
364,
62,
9288,
1065,
2682,
11537,
201,
198,
201,
198,
2,
1306,
787,
281,
16615,
201,
198,
448,
1616,
796,
13860,
7975,
1616,
7,
10951,
8,
201,
198,
46284,
796,
657,
201,
198,
4798,
7203,
2197,
7216,
19736,
9313,
8,
201,
198,
4514,
6407,
25,
201,
198,
220,
220,
220,
1303,
2298,
257,
6291,
284,
3758,
281,
4043,
329,
257,
1643,
201,
198,
220,
220,
220,
16615,
13,
14689,
62,
39873,
26933,
46284,
12962,
201,
198,
220,
220,
220,
3601,
7,
46284,
8,
201,
198,
220,
220,
220,
7616,
15853,
352,
201,
198,
220,
220,
220,
640,
13,
42832,
7,
17,
13,
15,
8,
201,
198
] | 2.691542 | 201 |
import json
import numpy as np
import pickle
from sklearn.linear_model import Ridge
from azureml.core.model import Model
from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
from utils import mylib
input_sample = np.array([[11, 0, 0, 0, 8, 5, 0, 0, 6]])
output_sample = np.array([0.95])
@input_schema('data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
| [
11748,
33918,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2298,
293,
198,
6738,
1341,
35720,
13,
29127,
62,
19849,
1330,
20614,
198,
6738,
35560,
495,
4029,
13,
7295,
13,
19849,
1330,
9104,
198,
6738,
32278,
62,
15952,
2611,
13,
15952,
2611,
62,
12501,
273,
2024,
1330,
5128,
62,
15952,
2611,
11,
5072,
62,
15952,
2611,
198,
6738,
32278,
62,
15952,
2611,
13,
17143,
2357,
62,
19199,
13,
77,
32152,
62,
17143,
2357,
62,
4906,
1330,
399,
32152,
36301,
6030,
198,
6738,
3384,
4487,
1330,
616,
8019,
628,
198,
198,
15414,
62,
39873,
796,
45941,
13,
18747,
26933,
58,
1157,
11,
657,
11,
657,
11,
657,
11,
807,
11,
642,
11,
657,
11,
657,
11,
718,
11907,
8,
198,
22915,
62,
39873,
796,
45941,
13,
18747,
26933,
15,
13,
3865,
12962,
198,
198,
31,
15414,
62,
15952,
2611,
10786,
7890,
3256,
399,
32152,
36301,
6030,
7,
15414,
62,
39873,
4008,
198,
31,
22915,
62,
15952,
2611,
7,
45,
32152,
36301,
6030,
7,
22915,
62,
39873,
4008,
198
] | 3.017964 | 167 |
"""
11292 : 키 큰 사람
URL : https://www.acmicpc.net/problem/11292
Input :
3
John 1.75
Mary 1.64
Sam 1.81
2
Jose 1.62
Miguel 1.58
5
John 1.75
Mary 1.75
Sam 1.74
Jose 1.75
Miguel 1.75
0
Output :
Sam
Jose
John Mary Jose Miguel
"""
while True:
n = int(input())
if n == 0:
break
high_height = 0
high_students = []
for i in range(n):
name, height = input().split()
height = float(height)
if height > high_height:
high_height = height
high_students = [name]
elif height == high_height:
high_students.append(name)
print(' '.join(high_students))
| [
37811,
198,
220,
220,
220,
13539,
5892,
1058,
220,
169,
224,
97,
220,
169,
223,
108,
23821,
8955,
167,
252,
234,
198,
220,
220,
220,
10289,
1058,
3740,
1378,
2503,
13,
330,
9383,
14751,
13,
3262,
14,
45573,
14,
14686,
5892,
198,
220,
220,
220,
23412,
1058,
198,
220,
220,
220,
220,
220,
220,
220,
513,
198,
220,
220,
220,
220,
220,
220,
220,
1757,
352,
13,
2425,
198,
220,
220,
220,
220,
220,
220,
220,
5335,
352,
13,
2414,
198,
220,
220,
220,
220,
220,
220,
220,
3409,
352,
13,
6659,
198,
220,
220,
220,
220,
220,
220,
220,
362,
198,
220,
220,
220,
220,
220,
220,
220,
5264,
352,
13,
5237,
198,
220,
220,
220,
220,
220,
220,
220,
29825,
352,
13,
3365,
198,
220,
220,
220,
220,
220,
220,
220,
642,
198,
220,
220,
220,
220,
220,
220,
220,
1757,
352,
13,
2425,
198,
220,
220,
220,
220,
220,
220,
220,
5335,
352,
13,
2425,
198,
220,
220,
220,
220,
220,
220,
220,
3409,
352,
13,
4524,
198,
220,
220,
220,
220,
220,
220,
220,
5264,
352,
13,
2425,
198,
220,
220,
220,
220,
220,
220,
220,
29825,
352,
13,
2425,
198,
220,
220,
220,
220,
220,
220,
220,
657,
198,
220,
220,
220,
25235,
1058,
198,
220,
220,
220,
220,
220,
220,
220,
3409,
198,
220,
220,
220,
220,
220,
220,
220,
5264,
198,
220,
220,
220,
220,
220,
220,
220,
1757,
5335,
5264,
29825,
198,
37811,
198,
198,
4514,
6407,
25,
198,
220,
220,
220,
299,
796,
493,
7,
15414,
28955,
198,
220,
220,
220,
611,
299,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
1029,
62,
17015,
796,
657,
198,
220,
220,
220,
1029,
62,
19149,
658,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
77,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
11,
6001,
796,
5128,
22446,
35312,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
6001,
796,
12178,
7,
17015,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
6001,
1875,
1029,
62,
17015,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1029,
62,
17015,
796,
6001,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1029,
62,
19149,
658,
796,
685,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
6001,
6624,
1029,
62,
17015,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1029,
62,
19149,
658,
13,
33295,
7,
3672,
8,
628,
220,
220,
220,
3601,
10786,
45302,
22179,
7,
8929,
62,
19149,
658,
4008,
198
] | 1.80137 | 438 |
#AUTOGENERATED! DO NOT EDIT! File to edit: dev/90_notebook_core.ipynb (unless otherwise specified).
__all__ = ['in_ipython', 'IN_IPYTHON', 'in_colab', 'IN_COLAB', 'in_notebook', 'IN_NOTEBOOK']
from ..imports import *
def in_ipython():
"Check if the code is running in the ipython environment (jupyter including)"
program_name = os.path.basename(os.getenv('_', ''))
if ('jupyter-notebook' in program_name or # jupyter-notebook
'ipython' in program_name or # ipython
'JPY_PARENT_PID' in os.environ): # ipython-notebook
return True
else:
return False
IN_IPYTHON = in_ipython()
def in_colab():
"Check if the code is running in Google Colaboratory"
if not IN_IPYTHON: return False
try:
from google import colab
return True
except: return False
IN_COLAB = in_colab()
def in_notebook():
"Check if the code is running in a jupyter notebook"
try:
from google import colab
return True
except: pass
try:
shell = get_ipython().__class__.__name__
if shell == 'ZMQInteractiveShell':
return True # Jupyter notebook, Spyder or qtconsole
elif shell == 'TerminalInteractiveShell':
return False # Terminal running IPython
else:
return False # Other type (?)
except NameError:
return False # Probably standard Python interpreter
IN_NOTEBOOK = in_notebook() | [
2,
39371,
7730,
1677,
1137,
11617,
0,
8410,
5626,
48483,
0,
9220,
284,
4370,
25,
1614,
14,
3829,
62,
11295,
2070,
62,
7295,
13,
541,
2047,
65,
357,
25252,
4306,
7368,
737,
198,
198,
834,
439,
834,
796,
37250,
259,
62,
541,
7535,
3256,
705,
1268,
62,
4061,
56,
4221,
1340,
3256,
705,
259,
62,
4033,
397,
3256,
705,
1268,
62,
25154,
6242,
3256,
705,
259,
62,
11295,
2070,
3256,
705,
1268,
62,
16580,
39453,
20520,
198,
198,
6738,
11485,
320,
3742,
1330,
1635,
198,
198,
4299,
287,
62,
541,
7535,
33529,
198,
220,
220,
220,
366,
9787,
611,
262,
2438,
318,
2491,
287,
262,
20966,
7535,
2858,
357,
73,
929,
88,
353,
1390,
16725,
198,
220,
220,
220,
1430,
62,
3672,
796,
28686,
13,
6978,
13,
12093,
12453,
7,
418,
13,
1136,
24330,
10786,
62,
3256,
10148,
4008,
198,
220,
220,
220,
611,
19203,
73,
929,
88,
353,
12,
11295,
2070,
6,
287,
1430,
62,
3672,
393,
1303,
474,
929,
88,
353,
12,
11295,
2070,
198,
220,
220,
220,
220,
220,
220,
220,
705,
541,
7535,
6,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
1430,
62,
3672,
393,
1303,
20966,
7535,
198,
220,
220,
220,
220,
220,
220,
220,
705,
12889,
56,
62,
27082,
3525,
62,
47,
2389,
6,
220,
220,
287,
28686,
13,
268,
2268,
2599,
220,
220,
220,
1303,
20966,
7535,
12,
11295,
2070,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
198,
1268,
62,
4061,
56,
4221,
1340,
796,
287,
62,
541,
7535,
3419,
198,
198,
4299,
287,
62,
4033,
397,
33529,
198,
220,
220,
220,
366,
9787,
611,
262,
2438,
318,
2491,
287,
3012,
1623,
4820,
2870,
1,
198,
220,
220,
220,
611,
407,
3268,
62,
4061,
56,
4221,
1340,
25,
1441,
10352,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
422,
23645,
1330,
951,
397,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
2845,
25,
1441,
10352,
198,
198,
1268,
62,
25154,
6242,
796,
287,
62,
4033,
397,
3419,
198,
198,
4299,
287,
62,
11295,
2070,
33529,
198,
220,
220,
220,
366,
9787,
611,
262,
2438,
318,
2491,
287,
257,
474,
929,
88,
353,
20922,
1,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
422,
23645,
1330,
951,
397,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
2845,
25,
1208,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
7582,
796,
651,
62,
541,
7535,
22446,
834,
4871,
834,
13,
834,
3672,
834,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7582,
6624,
705,
57,
49215,
9492,
5275,
23248,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
220,
220,
1303,
449,
929,
88,
353,
20922,
11,
23688,
1082,
393,
10662,
83,
41947,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
7582,
6624,
705,
44798,
282,
9492,
5275,
23248,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
220,
1303,
24523,
2491,
6101,
7535,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
220,
1303,
3819,
2099,
357,
10091,
198,
220,
220,
220,
2845,
6530,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
220,
220,
220,
220,
220,
1303,
18578,
3210,
11361,
28846,
198,
198,
1268,
62,
16580,
39453,
796,
287,
62,
11295,
2070,
3419
] | 2.407591 | 606 |
import requests
import random
from hackvt2016.app import create_app
from hackvt2016.resource.models import Resource
from hackvt2016.category.models import Category
def load_seeds():
"""
max longitudes and latitudes:
Coordinates
[5:55]
lat: 42.777 - 44.953
long: (-72.632) - (-73.132)
lat: 44.452 - 44.953
long: (-71.739) - (-72.632)
"""
for index in xrange(10):
resources = [
('Sports', 'Softball Practice', 'Weekly softball practice - bring gear!', 'Theo Fido', '[email protected]'),
('Event', 'Calligraphy Lesson', 'Workshop for Calligraphy Lessons on Tuesdays', 'Tanner Riley', '[email protected]'),
('Nature Site', 'Geocache', 'Placed in 1971.', '', ''),
('Event', 'Oliver Twist Auditions', 'Auditions for the Oliver Twist play begin at 3PM.', 'Julia Reynolds', '[email protected]'),
('Sports', 'Soccer Game', 'Everyone is invited to a quick soccer game this weekend.', 'Saul Costa', '[email protected]'),
('Resource', 'AndreWorks Studio', 'Available for reservations!', 'Andrew Minor', '[email protected]'),
('Event', 'Gymnastics Open Hours', 'Open to all age ranges!', 'Lydia Kiles', '[email protected]'),
('Museum', 'Middle Age Weapons Musuem', 'Open 10-5 Daily!', 'Brianna Wright', '[email protected]'),
('Nature Site', 'Hunter Trail', 'Requires appropriate footwear.', '', ''),
('Cool Stuff', 'Alden Partridge Monument', 'In memory of the Norwich University Founder.', '', ''),
('Sports', 'Ski Range', 'Bring your skis!', '', ''),
('Sports', 'Karate Lessons', 'Tae Kwon Do', 'Sensei Vivian', '[email protected]'),
('Nature Site', 'Crystal Mine Lake', 'No lifeguard on duty!', 'Trevor Daniels', '[email protected]'),
('Resource', 'School Supplies and Book Store', 'For all your education needs!', '', '[email protected]'),
('Musuem', 'Stone House Historical Center', 'With live-in actors!', 'Manny Curtis', '[email protected]'),
('Musuem', 'VT Historical Archives', 'Open 8 to 4 on weekdays.', '', '[email protected]'),
('Resource', 'Musical Studio', 'Instruments and soundrooms available to reserve!', '', '[email protected]')
('Museum', 'Black Manor Historical House', 'Provides historical reenactments on Mondays and Thursdays!', 'Tia Ramirez', '[email protected]')
('Nature Site', 'Red Fern Bike Trail', 'Maps are available at all entrances.', '', '[email protected]')
('Nature Site', 'Westerman Bird Viewing Platform', '', '', '[email protected]')
('Nature Site', 'Holmes Stargazing Platform', 'Parking is available down the road.', '', '[email protected]')
('Event', 'Ski Race', 'Open to grades 1-5', 'Scoville J Danis"' '[email protected]')
('Event', 'Guitar Lessons', 'Specialty: acoustic', 'Wren Fido', '[email protected]')
('Event', 'Stargazing', 'Bring a coat and blanket for the Fall stargazing event!', 'Julian Weng', '[email protected]')
('Event', 'Band Tryouts', 'Instrument rentals can be arranged beforehand with the contact person.' 'Valerie Collins', '[email protected]')
('Cool Stuff', 'Sundial', 'Built in 1834', '', '')
('Cool Stuff', 'Geodome', '', '', '')
('Cool Stuff', 'Historical Cemetery', 'Established in 1782', '', '')
('Cool Stuff', 'Old Weeping Willow Tree', 'Planted 1900', '', '')
('Sports', 'Horseback Riding Lessons', 'Beginner to Advanced lessons provided!', 'Leonard McGarth', '[email protected]')
('Sports', 'Hockey Tryouts', 'Open to grades 5-8, gear provided.', 'Olivia Olsen', '[email protected]')
('Sports', 'Swimming Lessons', 'Group classes and one-on-one mentoring offered.', '', '[email protected]')
('Sports', 'Cross Country Practice', 'We will be starting with a 3 mile run on Tuesday.', 'Gina Woo', '[email protected]')
]
for (category, title, description, host, email) in resources:
category = Category.query.filter_by(name=category).first()
if not category:
continue
Resource.create(
category_id=category.id,
title=title,
description=description,
host=host,
email=email,
longitude=random.uniform(-73.132, -72.632) if index <= 7 else random.uniform(-72.632, -71.739),
latitude=random.uniform(42.777, 44.953) if index <= 7 else random.uniform(44.452, 44.953))
if __name__ == '__main__':
main()
| [
11748,
7007,
198,
11748,
4738,
198,
6738,
8156,
36540,
5304,
13,
1324,
1330,
2251,
62,
1324,
198,
6738,
8156,
36540,
5304,
13,
31092,
13,
27530,
1330,
20857,
198,
6738,
8156,
36540,
5304,
13,
22872,
13,
27530,
1330,
21743,
628,
198,
198,
4299,
3440,
62,
325,
5379,
33529,
628,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3509,
890,
10455,
290,
3042,
10455,
25,
198,
220,
220,
220,
22819,
17540,
198,
198,
58,
20,
25,
2816,
60,
220,
220,
198,
15460,
25,
5433,
13,
29331,
532,
5846,
13,
49649,
198,
6511,
25,
13841,
4761,
13,
21,
2624,
8,
532,
13841,
4790,
13,
19924,
8,
198,
198,
15460,
25,
5846,
13,
37730,
532,
5846,
13,
49649,
198,
6511,
25,
13841,
4869,
13,
22,
2670,
8,
532,
13841,
4761,
13,
21,
2624,
8,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
329,
6376,
287,
2124,
9521,
7,
940,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4133,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
18153,
3256,
705,
18380,
1894,
19939,
3256,
705,
20916,
306,
2705,
1894,
3357,
532,
2222,
7733,
0,
3256,
705,
464,
78,
376,
17305,
3256,
705,
83,
6513,
31,
4215,
1894,
13,
785,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
9237,
3256,
705,
14134,
45920,
88,
12892,
261,
3256,
705,
23044,
8548,
329,
4889,
45920,
88,
46885,
319,
48496,
12545,
3256,
705,
45557,
1008,
22637,
3256,
705,
28461,
1636,
31,
565,
380,
1636,
13,
785,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
46934,
14413,
3256,
705,
10082,
420,
4891,
3256,
705,
3646,
2286,
287,
16382,
2637,
11,
705,
3256,
10148,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
9237,
3256,
705,
30098,
1428,
44088,
7591,
1756,
3256,
705,
16353,
1756,
329,
262,
15416,
44088,
711,
2221,
379,
513,
5868,
2637,
11,
705,
16980,
544,
21995,
3256,
705,
27171,
11167,
507,
31,
40774,
13,
785,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
18153,
3256,
705,
37949,
2189,
3776,
3256,
705,
16190,
318,
9392,
284,
257,
2068,
11783,
983,
428,
5041,
2637,
11,
705,
50,
2518,
18133,
3256,
705,
82,
2518,
15805,
64,
1507,
23148,
31,
14816,
13,
785,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
26198,
3256,
705,
31258,
23044,
11733,
3256,
705,
10493,
329,
24722,
0,
3256,
705,
20508,
15367,
3256,
705,
5669,
273,
31,
392,
1809,
3647,
13,
2398,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
9237,
3256,
705,
38,
4948,
77,
24232,
4946,
19347,
3256,
705,
11505,
284,
477,
2479,
16069,
0,
3256,
705,
43,
30708,
509,
2915,
3256,
705,
9654,
1360,
76,
31,
9654,
1360,
76,
13,
2398,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
44,
6744,
3256,
705,
34621,
7129,
18944,
2629,
84,
368,
3256,
705,
11505,
838,
12,
20,
6714,
0,
3256,
705,
33,
380,
7697,
12206,
3256,
705,
76,
707,
76,
31,
76,
1904,
5700,
13,
2398,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
46934,
14413,
3256,
705,
38803,
13069,
3256,
705,
39618,
5035,
43463,
2637,
11,
705,
3256,
10148,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
34530,
27864,
3256,
705,
32,
335,
268,
2142,
12818,
33075,
3256,
705,
818,
4088,
286,
262,
43586,
2059,
30153,
2637,
11,
705,
3256,
10148,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
18153,
3256,
705,
50,
4106,
13667,
3256,
705,
31416,
534,
1341,
271,
0,
3256,
705,
3256,
10148,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
18153,
3256,
705,
42,
30748,
46885,
3256,
705,
51,
3609,
509,
26502,
2141,
3256,
705,
41166,
72,
25313,
666,
3256,
705,
1169,
9866,
31,
1169,
21070,
265,
395,
463,
952,
13,
785,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
46934,
14413,
3256,
705,
43752,
11517,
6233,
3256,
705,
2949,
1204,
14864,
319,
7077,
0,
3256,
705,
51,
18218,
273,
28162,
3256,
705,
69,
380,
31,
13,
76,
5907,
13,
2398,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
26198,
3256,
705,
26130,
8105,
13508,
290,
4897,
9363,
3256,
705,
1890,
477,
534,
3707,
2476,
0,
3256,
705,
3256,
705,
1169,
847,
301,
28624,
31,
2070,
43409,
13,
785,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
10694,
84,
368,
3256,
705,
34346,
2097,
23121,
3337,
3256,
705,
3152,
2107,
12,
259,
10544,
0,
3256,
705,
44,
7737,
25157,
3256,
705,
23209,
3325,
271,
31,
6440,
4803,
13,
2398,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
10694,
84,
368,
3256,
705,
36392,
23121,
22275,
3256,
705,
11505,
807,
284,
604,
319,
1285,
12545,
2637,
11,
705,
3256,
705,
28482,
31,
36540,
48814,
13,
2398,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
26198,
3256,
705,
10694,
605,
11733,
3256,
705,
818,
2536,
2886,
290,
2128,
9649,
1695,
284,
11515,
0,
3256,
705,
3256,
705,
76,
19149,
952,
31,
36540,
28965,
13,
3262,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
44,
6744,
3256,
705,
9915,
33555,
23121,
2097,
3256,
705,
15946,
1460,
6754,
302,
268,
529,
902,
319,
49748,
290,
48971,
12545,
0,
3256,
705,
51,
544,
34783,
3256,
705,
83,
859,
31762,
31,
13424,
805,
273,
13,
15532,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
46934,
14413,
3256,
705,
7738,
38982,
26397,
13069,
3256,
705,
47010,
389,
1695,
379,
477,
43818,
2637,
11,
705,
3256,
705,
10745,
313,
430,
4487,
31,
1845,
591,
392,
8344,
36540,
13,
9567,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
46934,
14413,
3256,
705,
54,
7834,
805,
14506,
3582,
278,
19193,
3256,
705,
3256,
705,
3256,
705,
10745,
672,
11049,
31,
1845,
591,
392,
8344,
36540,
13,
9567,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
46934,
14413,
3256,
705,
28115,
6880,
44393,
4070,
19193,
3256,
705,
25478,
278,
318,
1695,
866,
262,
2975,
2637,
11,
705,
3256,
705,
73,
86,
1516,
31,
36540,
459,
1313,
9145,
13,
2398,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
9237,
3256,
705,
50,
4106,
12588,
3256,
705,
11505,
284,
19051,
352,
12,
20,
3256,
705,
3351,
709,
8270,
449,
6035,
271,
30543,
705,
1416,
73,
6814,
1065,
31,
46848,
16426,
13,
2398,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
9237,
3256,
705,
38,
5013,
283,
46885,
3256,
705,
13409,
774,
25,
26071,
3256,
705,
54,
918,
376,
17305,
3256,
705,
69,
17305,
31,
19129,
404,
70,
5013,
283,
13,
785,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
9237,
3256,
705,
1273,
853,
4070,
3256,
705,
31416,
257,
13209,
290,
18447,
329,
262,
7218,
336,
853,
4070,
1785,
0,
3256,
705,
16980,
666,
370,
1516,
3256,
705,
73,
86,
1516,
31,
36540,
459,
1313,
9145,
13,
2398,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
9237,
3256,
705,
31407,
9993,
5269,
3256,
705,
818,
43872,
39457,
460,
307,
14921,
27091,
351,
262,
2800,
1048,
2637,
705,
7762,
18287,
14006,
3256,
705,
85,
26000,
1040,
31,
1169,
28965,
19149,
952,
13,
2398,
11537,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
34530,
27864,
3256,
705,
20602,
498,
3256,
705,
39582,
287,
1248,
2682,
3256,
705,
3256,
10148,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
34530,
27864,
3256,
705,
10082,
375,
462,
3256,
705,
3256,
705,
3256,
10148,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
34530,
27864,
3256,
705,
13749,
12409,
35637,
3256,
705,
22362,
22555,
287,
1596,
6469,
3256,
705,
3256,
10148,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
34530,
27864,
3256,
705,
19620,
775,
7213,
33021,
12200,
3256,
705,
3646,
4126,
21489,
3256,
705,
3256,
10148,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
18153,
3256,
705,
39,
7615,
1891,
36032,
46885,
3256,
705,
24586,
5083,
284,
13435,
11658,
2810,
0,
3256,
705,
36185,
446,
11130,
11999,
3256,
705,
30527,
1891,
31,
30527,
1891,
36540,
13,
10951,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
18153,
3256,
705,
39,
8337,
9993,
5269,
3256,
705,
11505,
284,
19051,
642,
12,
23,
11,
7733,
2810,
2637,
11,
705,
46,
16017,
544,
39148,
3256,
705,
349,
6248,
31,
47261,
33487,
27171,
13,
785,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
18153,
3256,
705,
10462,
27428,
46885,
3256,
705,
13247,
6097,
290,
530,
12,
261,
12,
505,
6229,
3255,
4438,
2637,
11,
705,
3256,
705,
1203,
684,
31,
2032,
320,
36540,
13,
785,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
18153,
3256,
705,
21544,
12946,
19939,
3256,
705,
1135,
481,
307,
3599,
351,
257,
513,
10591,
1057,
319,
3431,
2637,
11,
705,
38,
1437,
39832,
3256,
705,
70,
86,
2238,
31,
83,
799,
261,
11994,
13,
785,
11537,
628,
628,
628,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
329,
357,
22872,
11,
3670,
11,
6764,
11,
2583,
11,
3053,
8,
287,
4133,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6536,
796,
21743,
13,
22766,
13,
24455,
62,
1525,
7,
3672,
28,
22872,
737,
11085,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
6536,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20857,
13,
17953,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6536,
62,
312,
28,
22872,
13,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
28,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6764,
28,
11213,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2583,
28,
4774,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3053,
28,
12888,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
890,
3984,
28,
25120,
13,
403,
6933,
32590,
4790,
13,
19924,
11,
532,
4761,
13,
21,
2624,
8,
611,
6376,
19841,
767,
2073,
4738,
13,
403,
6933,
32590,
4761,
13,
21,
2624,
11,
532,
4869,
13,
22,
2670,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32477,
28,
25120,
13,
403,
6933,
7,
3682,
13,
29331,
11,
5846,
13,
49649,
8,
611,
6376,
19841,
767,
2073,
4738,
13,
403,
6933,
7,
2598,
13,
37730,
11,
5846,
13,
49649,
4008,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.494032 | 1,927 |
import subprocess
from typing import List, Tuple
import vapoursynth as vs
from lvsfunc.misc import source
from lvsfunc.types import Range
from vardautomation import (FSRCNNX_56_16_4_1, JAPANESE, AudioCutter,
AudioStream, BasicTool, FileInfo, FlacEncoder, Mux,
PresetBD, PresetFLAC, RunnerConfig, SelfRunner,
VideoStream, VPath, X265Encoder)
from vardefunc.misc import get_bicubic_params
from vsutil import get_w
from bento_filters import flt
core = vs.core
core.num_threads = 16
EPNUM = __file__[-5:-3]
# Sources
JPBD = FileInfo(r'BDMV/Vol.1/BDMV/STREAM/00003.m2ts', 0, -24,
idx=lambda x: source(x, cachedir=''),
preset=[PresetBD, PresetFLAC])
JPBD.name_file_final = VPath(fr"premux/{JPBD.name} (Premux).mkv")
JPBD.do_qpfile = True
JPBD.a_src = VPath(f"{JPBD.name}.wav")
JPBD.a_src_cut = VPath(f"{JPBD.name}_cut.wav")
JPBD.a_enc_cut = VPath(f"{JPBD.name}_cut.flac")
# Common variables
op_aisle: List[Range] = [(281, 373)]
red_circle: List[Range] = [(1934, 1951), (1956, 1979), (1984, 2054)]
def main() -> vs.VideoNode:
"""Vapoursynth filtering"""
from adptvgrnMod import adptvgrnMod
from havsfunc import FastLineDarkenMOD
from lvsfunc.misc import replace_ranges
from vsutil import depth
src = JPBD.clip_cut
scaled = flt.rescaler(src, 720)
denoised = flt.denoiser(scaled, bm3d_sigma=[0.8, 0.6], bm3d_rad=1)
aa_rep = flt.clamped_aa(denoised)
trans_sraa = flt.transpose_sraa(denoised)
aa_ranges = replace_ranges(aa_rep, trans_sraa, red_circle)
darken = FastLineDarkenMOD(aa_ranges, strength=48, protection=6, luma_cap=255, threshold=2)
deband = flt.masked_deband(darken, denoised=True, deband_args={'iterations': 2, 'threshold': 5.0, 'radius': 8, 'grain': 6})
pdeband = flt.placebo_debander(darken, grain=4, deband_args={'iterations': 2, 'threshold': 8.0, 'radius': 10})
deband = replace_ranges(deband, pdeband, op_aisle)
grain = adptvgrnMod(deband, strength=0.3, luma_scaling=10, size=1.25, sharp=80, grain_chroma=False, seed=42069)
return depth(grain, 10).std.Limiter(16 << 2, [235 << 2, 240 << 2], [0, 1, 2])
if __name__ == '__main__':
filtered = main()
filtered = filtered
Encoding(JPBD, filtered).run()
else:
JPBD.clip_cut.set_output(0)
FILTERED = main()
FILTERED.set_output(1)
| [
11748,
850,
14681,
198,
6738,
19720,
1330,
7343,
11,
309,
29291,
198,
198,
11748,
38187,
454,
28869,
400,
355,
3691,
198,
6738,
300,
14259,
20786,
13,
44374,
1330,
2723,
198,
6738,
300,
14259,
20786,
13,
19199,
1330,
13667,
198,
6738,
410,
446,
2306,
296,
341,
1330,
357,
10652,
7397,
6144,
55,
62,
3980,
62,
1433,
62,
19,
62,
16,
11,
449,
2969,
1565,
33635,
11,
13491,
34,
10381,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13491,
12124,
11,
14392,
25391,
11,
9220,
12360,
11,
1610,
330,
27195,
12342,
11,
337,
2821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1763,
316,
14529,
11,
1763,
316,
3697,
2246,
11,
21529,
16934,
11,
12189,
49493,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7623,
12124,
11,
569,
15235,
11,
1395,
22980,
27195,
12342,
8,
198,
6738,
410,
446,
891,
19524,
13,
44374,
1330,
651,
62,
65,
291,
549,
291,
62,
37266,
198,
6738,
3691,
22602,
1330,
651,
62,
86,
198,
198,
6738,
17157,
78,
62,
10379,
1010,
1330,
781,
83,
198,
198,
7295,
796,
3691,
13,
7295,
198,
198,
7295,
13,
22510,
62,
16663,
82,
796,
1467,
198,
198,
8905,
41359,
796,
11593,
7753,
834,
58,
12,
20,
21912,
18,
60,
198,
198,
2,
26406,
198,
12889,
14529,
796,
9220,
12360,
7,
81,
6,
14529,
44,
53,
14,
16598,
13,
16,
14,
14529,
44,
53,
14,
2257,
32235,
14,
2388,
18,
13,
76,
17,
912,
3256,
657,
11,
532,
1731,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
28,
50033,
2124,
25,
2723,
7,
87,
11,
39986,
343,
28,
7061,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38266,
41888,
25460,
316,
14529,
11,
1763,
316,
3697,
2246,
12962,
198,
12889,
14529,
13,
3672,
62,
7753,
62,
20311,
796,
569,
15235,
7,
8310,
1,
31605,
2821,
14,
90,
12889,
14529,
13,
3672,
92,
357,
24914,
2821,
737,
28015,
85,
4943,
198,
12889,
14529,
13,
4598,
62,
80,
79,
7753,
796,
6407,
198,
12889,
14529,
13,
64,
62,
10677,
796,
569,
15235,
7,
69,
1,
90,
12889,
14529,
13,
3672,
27422,
45137,
4943,
198,
12889,
14529,
13,
64,
62,
10677,
62,
8968,
796,
569,
15235,
7,
69,
1,
90,
12889,
14529,
13,
3672,
92,
62,
8968,
13,
45137,
4943,
198,
12889,
14529,
13,
64,
62,
12685,
62,
8968,
796,
569,
15235,
7,
69,
1,
90,
12889,
14529,
13,
3672,
92,
62,
8968,
13,
2704,
330,
4943,
628,
198,
2,
8070,
9633,
198,
404,
62,
15152,
293,
25,
7343,
58,
17257,
60,
796,
47527,
30368,
11,
47946,
15437,
198,
445,
62,
45597,
25,
7343,
58,
17257,
60,
796,
47527,
1129,
2682,
11,
27937,
828,
357,
1129,
3980,
11,
13521,
828,
357,
28296,
11,
1160,
4051,
15437,
628,
198,
4299,
1388,
3419,
4613,
3691,
13,
10798,
19667,
25,
198,
220,
220,
220,
37227,
53,
499,
454,
28869,
400,
25431,
37811,
198,
220,
220,
220,
422,
512,
457,
85,
2164,
77,
5841,
1330,
512,
457,
85,
2164,
77,
5841,
198,
220,
220,
220,
422,
387,
14259,
20786,
1330,
12549,
13949,
17367,
268,
33365,
198,
220,
220,
220,
422,
300,
14259,
20786,
13,
44374,
1330,
6330,
62,
81,
6231,
198,
220,
220,
220,
422,
3691,
22602,
1330,
6795,
628,
220,
220,
220,
12351,
796,
21331,
14529,
13,
15036,
62,
8968,
628,
220,
220,
220,
27464,
796,
781,
83,
13,
411,
9948,
263,
7,
10677,
11,
26250,
8,
628,
220,
220,
220,
2853,
78,
1417,
796,
781,
83,
13,
6559,
78,
5847,
7,
1416,
3021,
11,
275,
76,
18,
67,
62,
82,
13495,
41888,
15,
13,
23,
11,
657,
13,
21,
4357,
275,
76,
18,
67,
62,
6335,
28,
16,
8,
628,
220,
220,
220,
257,
64,
62,
7856,
796,
781,
83,
13,
565,
13322,
62,
7252,
7,
6559,
78,
1417,
8,
198,
220,
220,
220,
1007,
62,
82,
430,
64,
796,
781,
83,
13,
7645,
3455,
62,
82,
430,
64,
7,
6559,
78,
1417,
8,
198,
220,
220,
220,
257,
64,
62,
81,
6231,
796,
6330,
62,
81,
6231,
7,
7252,
62,
7856,
11,
1007,
62,
82,
430,
64,
11,
2266,
62,
45597,
8,
628,
220,
220,
220,
3223,
268,
796,
12549,
13949,
17367,
268,
33365,
7,
7252,
62,
81,
6231,
11,
4202,
28,
2780,
11,
4800,
28,
21,
11,
300,
7487,
62,
11128,
28,
13381,
11,
11387,
28,
17,
8,
628,
220,
220,
220,
1915,
392,
796,
781,
83,
13,
27932,
276,
62,
11275,
392,
7,
21953,
268,
11,
2853,
78,
1417,
28,
17821,
11,
1915,
392,
62,
22046,
34758,
6,
2676,
602,
10354,
362,
11,
705,
400,
10126,
10354,
642,
13,
15,
11,
705,
42172,
10354,
807,
11,
705,
48270,
10354,
718,
30072,
198,
220,
220,
220,
279,
11275,
392,
796,
781,
83,
13,
5372,
2127,
62,
11275,
4066,
7,
21953,
268,
11,
13020,
28,
19,
11,
1915,
392,
62,
22046,
34758,
6,
2676,
602,
10354,
362,
11,
705,
400,
10126,
10354,
807,
13,
15,
11,
705,
42172,
10354,
838,
30072,
198,
220,
220,
220,
1915,
392,
796,
6330,
62,
81,
6231,
7,
11275,
392,
11,
279,
11275,
392,
11,
1034,
62,
15152,
293,
8,
628,
220,
220,
220,
13020,
796,
512,
457,
85,
2164,
77,
5841,
7,
11275,
392,
11,
4202,
28,
15,
13,
18,
11,
300,
7487,
62,
1416,
4272,
28,
940,
11,
2546,
28,
16,
13,
1495,
11,
7786,
28,
1795,
11,
13020,
62,
28663,
64,
28,
25101,
11,
9403,
28,
27211,
3388,
8,
628,
220,
220,
220,
1441,
6795,
7,
48270,
11,
838,
737,
19282,
13,
19352,
2676,
7,
1433,
9959,
362,
11,
685,
22370,
9959,
362,
11,
14956,
9959,
362,
4357,
685,
15,
11,
352,
11,
362,
12962,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
29083,
796,
1388,
3419,
198,
220,
220,
220,
29083,
796,
29083,
198,
220,
220,
220,
14711,
7656,
7,
12889,
14529,
11,
29083,
737,
5143,
3419,
198,
17772,
25,
198,
220,
220,
220,
21331,
14529,
13,
15036,
62,
8968,
13,
2617,
62,
22915,
7,
15,
8,
198,
220,
220,
220,
34020,
5781,
1961,
796,
1388,
3419,
198,
220,
220,
220,
34020,
5781,
1961,
13,
2617,
62,
22915,
7,
16,
8,
198
] | 2.212121 | 1,089 |
from kallikrein import Expectation
from kallikrein.matchers.comparison import eq
from ribosome.test.klk.expectation import await_k_with
from ribosome.nvim.io.compute import NvimIO
from ribosome.nvim.api.ui import current_cursor
__all__ = ('current_cursor_is',)
| [
6738,
479,
439,
1134,
260,
259,
1330,
23600,
341,
198,
6738,
479,
439,
1134,
260,
259,
13,
6759,
3533,
13,
785,
1845,
1653,
1330,
37430,
198,
198,
6738,
12183,
418,
462,
13,
9288,
13,
41582,
74,
13,
1069,
806,
341,
1330,
25507,
62,
74,
62,
4480,
198,
6738,
12183,
418,
462,
13,
77,
31124,
13,
952,
13,
5589,
1133,
1330,
399,
31124,
9399,
198,
6738,
12183,
418,
462,
13,
77,
31124,
13,
15042,
13,
9019,
1330,
1459,
62,
66,
21471,
628,
198,
198,
834,
439,
834,
796,
19203,
14421,
62,
66,
21471,
62,
271,
3256,
8,
198
] | 2.731959 | 97 |
# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# param_1 = obj.sumRegion(row1,col1,row2,col2)
| [
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
628,
198,
2,
3406,
31835,
46912,
2134,
481,
307,
9113,
12931,
290,
1444,
355,
884,
25,
198,
2,
26181,
796,
31835,
46912,
7,
6759,
8609,
8,
198,
2,
5772,
62,
16,
796,
26181,
13,
16345,
47371,
7,
808,
16,
11,
4033,
16,
11,
808,
17,
11,
4033,
17,
8,
198
] | 2.358209 | 67 |
import os
import numpy as np
import pandas as pd
from lingam.varma_lingam import VARMALiNGAM
def randnetbalanced(dims, samples, indegree, parminmax, errminmax):
"""
この関数は以前頂いたmatlabのスクリプトを移植したものですのでご確認不要です。
create a more balanced random network
Parameter
---------
dims : int
number of variables
samples : int
number of samples
indegree : int or float('inf')
number of parents of each node (float('inf') = fully connected)
parminmax : dictionary
standard deviation owing to parents
errminmax : dictionary
standard deviation owing to error variable
Return
------
B : array, shape (dims, dims)
the strictly lower triangular network matrix
errstd : array, shape (dims, 1)
the vector of error (disturbance) standard deviations
"""
# First, generate errstd
errstd = np.random.uniform(low=errminmax['min'], high=errminmax['max'], size=(dims, 1))
# Initializations
X = np.empty(shape=[dims, samples])
B = np.zeros([dims, dims])
# Go trough each node in turn
for i in range(dims):
# If indegree is finite, randomly pick that many parents,
# else, all previous variables are parents
if indegree == float('inf'):
if i <= indegree:
par = np.arange(i)
else:
par = np.random.permutation(i)[:indegree]
else:
par = np.arange(i)
if len(par) == 0:
# if node has no parents
# Increase errstd to get it to roughly same variance
parent_std = np.random.uniform(low=parminmax['min'], high=parminmax['max'])
errstd[i] = np.sqrt(errstd[i]**2 + parent_std**2)
# Set data matrix to empty
X[i] = np.zeros(samples)
else:
# If node has parents, do the following
w = np.random.normal(size=[1, len(par)])
# Randomly pick weights
wfull = np.zeros([1, i])
wfull[0, par] = w
# Calculate contribution of parents
X[i] = np.dot(wfull, X[:i, :])
# Randomly select a 'parents std'
parstd = np.random.uniform(low=parminmax['min'], high=parminmax['max'])
# Scale w so that the combination of parents has 'parstd' std
scaling = parstd / np.sqrt(np.mean(X[i] ** 2))
w = w * scaling
# Recalculate contribution of parents
wfull = np.zeros([1, i])
wfull[0, par] = w
X[i] = np.dot(wfull, X[:i, :])
# Fill in B
B[i, par] = w
# Update data matrix
X[i] = X[i] + np.random.normal(size=samples) * errstd[i]
return B, errstd
| [
11748,
28686,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
198,
6738,
18459,
321,
13,
85,
10961,
62,
1359,
321,
1330,
569,
33456,
1847,
72,
10503,
2390,
198,
198,
4299,
43720,
3262,
27753,
7,
67,
12078,
11,
8405,
11,
773,
1533,
631,
11,
1582,
1084,
9806,
11,
11454,
1084,
9806,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
23294,
241,
33426,
244,
95,
46763,
108,
31676,
20015,
98,
30298,
235,
165,
254,
224,
18566,
25224,
6759,
23912,
5641,
8943,
14099,
12675,
30965,
13298,
31758,
163,
100,
119,
162,
97,
235,
22180,
25224,
43266,
5641,
30640,
33623,
5641,
30640,
2515,
242,
163,
95,
118,
45739,
235,
38834,
17358,
223,
30640,
33623,
16764,
198,
220,
220,
220,
2251,
257,
517,
12974,
4738,
3127,
628,
220,
220,
220,
25139,
2357,
198,
220,
220,
220,
45337,
198,
220,
220,
220,
5391,
82,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
286,
9633,
198,
220,
220,
220,
8405,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
286,
8405,
198,
220,
220,
220,
773,
1533,
631,
1058,
493,
393,
12178,
10786,
10745,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
286,
3397,
286,
1123,
10139,
357,
22468,
10786,
10745,
11537,
796,
3938,
5884,
8,
198,
220,
220,
220,
1582,
1084,
9806,
1058,
22155,
198,
220,
220,
220,
220,
220,
220,
220,
3210,
28833,
27120,
284,
3397,
220,
198,
220,
220,
220,
11454,
1084,
9806,
1058,
22155,
198,
220,
220,
220,
220,
220,
220,
220,
3210,
28833,
27120,
284,
4049,
7885,
628,
220,
220,
220,
8229,
198,
220,
220,
220,
40103,
198,
220,
220,
220,
347,
1058,
7177,
11,
5485,
357,
67,
12078,
11,
5391,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
262,
14084,
2793,
46963,
3127,
17593,
198,
220,
220,
220,
11454,
19282,
1058,
7177,
11,
5485,
357,
67,
12078,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
262,
15879,
286,
4049,
357,
17080,
5945,
590,
8,
3210,
47060,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
3274,
11,
7716,
11454,
19282,
198,
220,
220,
220,
11454,
19282,
796,
45941,
13,
25120,
13,
403,
6933,
7,
9319,
28,
8056,
1084,
9806,
17816,
1084,
6,
4357,
1029,
28,
8056,
1084,
9806,
17816,
9806,
6,
4357,
2546,
16193,
67,
12078,
11,
352,
4008,
628,
220,
220,
220,
1303,
20768,
4582,
198,
220,
220,
220,
1395,
796,
45941,
13,
28920,
7,
43358,
41888,
67,
12078,
11,
8405,
12962,
198,
220,
220,
220,
347,
796,
45941,
13,
9107,
418,
26933,
67,
12078,
11,
5391,
82,
12962,
628,
220,
220,
220,
1303,
1514,
45047,
1123,
10139,
287,
1210,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
67,
12078,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
773,
1533,
631,
318,
27454,
11,
15456,
2298,
326,
867,
3397,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2073,
11,
477,
2180,
9633,
389,
3397,
198,
220,
220,
220,
220,
220,
220,
220,
611,
773,
1533,
631,
6624,
12178,
10786,
10745,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
19841,
773,
1533,
631,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1582,
796,
45941,
13,
283,
858,
7,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1582,
796,
45941,
13,
25120,
13,
16321,
7094,
7,
72,
38381,
25,
521,
1533,
631,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1582,
796,
45941,
13,
283,
858,
7,
72,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
1845,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
10139,
468,
645,
3397,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
25285,
11454,
19282,
284,
651,
340,
284,
7323,
976,
24198,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2560,
62,
19282,
796,
45941,
13,
25120,
13,
403,
6933,
7,
9319,
28,
1845,
1084,
9806,
17816,
1084,
6,
4357,
1029,
28,
1845,
1084,
9806,
17816,
9806,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11454,
19282,
58,
72,
60,
796,
45941,
13,
31166,
17034,
7,
8056,
19282,
58,
72,
60,
1174,
17,
1343,
2560,
62,
19282,
1174,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5345,
1366,
17593,
284,
6565,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
58,
72,
60,
796,
45941,
13,
9107,
418,
7,
82,
12629,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
10139,
468,
3397,
11,
466,
262,
1708,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
796,
45941,
13,
25120,
13,
11265,
7,
7857,
41888,
16,
11,
18896,
7,
1845,
8,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
14534,
306,
2298,
19590,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
12853,
796,
45941,
13,
9107,
418,
26933,
16,
11,
1312,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
12853,
58,
15,
11,
1582,
60,
796,
266,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
27131,
378,
10156,
286,
3397,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
58,
72,
60,
796,
45941,
13,
26518,
7,
86,
12853,
11,
1395,
58,
25,
72,
11,
1058,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
14534,
306,
2922,
257,
705,
23743,
14367,
6,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1582,
19282,
796,
45941,
13,
25120,
13,
403,
6933,
7,
9319,
28,
1845,
1084,
9806,
17816,
1084,
6,
4357,
1029,
28,
1845,
1084,
9806,
17816,
9806,
6,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
21589,
266,
523,
326,
262,
6087,
286,
3397,
468,
705,
1845,
19282,
6,
14367,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20796,
796,
1582,
19282,
1220,
45941,
13,
31166,
17034,
7,
37659,
13,
32604,
7,
55,
58,
72,
60,
12429,
362,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
796,
266,
1635,
20796,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3311,
282,
3129,
378,
10156,
286,
3397,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
12853,
796,
45941,
13,
9107,
418,
26933,
16,
11,
1312,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
12853,
58,
15,
11,
1582,
60,
796,
266,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
58,
72,
60,
796,
45941,
13,
26518,
7,
86,
12853,
11,
1395,
58,
25,
72,
11,
1058,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
27845,
287,
347,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
347,
58,
72,
11,
1582,
60,
796,
266,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
10133,
1366,
17593,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
58,
72,
60,
796,
1395,
58,
72,
60,
1343,
45941,
13,
25120,
13,
11265,
7,
7857,
28,
82,
12629,
8,
1635,
11454,
19282,
58,
72,
60,
628,
220,
220,
220,
1441,
347,
11,
11454,
19282,
198
] | 2.110856 | 1,308 |
from ctypes import *
import unittest
import comtypes.test
comtypes.test.requires("devel")
from comtypes import BSTR, IUnknown, GUID, COMMETHOD, HRESULT
malloc = POINTER(IMalloc)()
oledll.ole32.CoGetMalloc(1, byref(malloc))
assert bool(malloc)
c_wchar_p.__ctypes_from_outparam__ = from_outparm
## print comstring("Hello, World", c_wchar_p).__ctypes_from_outparam__()
## print comstring("Hello, World", c_wchar_p).__ctypes_from_outparam__()
## print comstring("Hello, World", c_wchar_p).__ctypes_from_outparam__()
## print comstring("Hello, World", c_wchar_p).__ctypes_from_outparam__()
if __name__ == "__main__":
unittest.main()
| [
6738,
269,
19199,
1330,
1635,
198,
11748,
555,
715,
395,
198,
198,
11748,
401,
19199,
13,
9288,
198,
785,
19199,
13,
9288,
13,
47911,
7203,
2934,
626,
4943,
198,
198,
6738,
401,
19199,
1330,
347,
18601,
11,
314,
20035,
11,
19348,
2389,
11,
22240,
36252,
11,
15172,
1546,
16724,
198,
198,
76,
32332,
796,
19922,
41358,
7,
3955,
32332,
8,
3419,
198,
45342,
297,
13,
2305,
2624,
13,
7222,
3855,
44,
32332,
7,
16,
11,
416,
5420,
7,
76,
32332,
4008,
198,
30493,
20512,
7,
76,
32332,
8,
198,
66,
62,
86,
10641,
62,
79,
13,
834,
310,
9497,
62,
6738,
62,
448,
17143,
834,
796,
422,
62,
448,
79,
1670,
198,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
3601,
401,
8841,
7203,
15496,
11,
2159,
1600,
269,
62,
86,
10641,
62,
79,
737,
834,
310,
9497,
62,
6738,
62,
448,
17143,
834,
3419,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
3601,
401,
8841,
7203,
15496,
11,
2159,
1600,
269,
62,
86,
10641,
62,
79,
737,
834,
310,
9497,
62,
6738,
62,
448,
17143,
834,
3419,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
3601,
401,
8841,
7203,
15496,
11,
2159,
1600,
269,
62,
86,
10641,
62,
79,
737,
834,
310,
9497,
62,
6738,
62,
448,
17143,
834,
3419,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
3601,
401,
8841,
7203,
15496,
11,
2159,
1600,
269,
62,
86,
10641,
62,
79,
737,
834,
310,
9497,
62,
6738,
62,
448,
17143,
834,
3419,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 2.453875 | 271 |
# Fit logistic regression models to 3 classs 2d data.
import superimport
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from scipy.stats import multivariate_normal as mvn
from sklearn.linear_model import LogisticRegression
import matplotlib.colors as mcol
import os
figdir = "../figures"
X, y = create_data(100)
nclasses = len(np.unique(y))
degrees = [1, 2, 10, 20]
for i, degree in enumerate(degrees):
transformer = PolynomialFeatures(degree)
name = 'Degree{}'.format(degree)
XX = transformer.fit_transform(X)[:, 1:] # skip the first column of 1s
model = LogisticRegression(C=1.0)
model = model.fit(XX, y)
#xx, yy = np.meshgrid(np.linspace(-1, 1, 150), np.linspace(-1, 1, 150))
xx, yy = np.meshgrid(np.linspace(-1, 1, 250), np.linspace(-1, 1, 250))
grid = np.c_[xx.ravel(), yy.ravel()]
grid2 = transformer.transform(grid)[:, 1:]
Z = model.predict(grid2).reshape(xx.shape)
fig, ax = plt.subplots()
# uses gray background for black dots
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.coolwarm)
# https://stackoverflow.com/questions/40601997/setting-discrete-colormap-corresponding-to-specific-data-range-in-matplotlib
#cmap = plt.cm.get_cmap("jet", lut=nclasses)
#cmap_bounds = np.arange(nclasses+1) - 0.5
#norm = mcol.BoundaryNorm(cmap_bounds, cmap.N)
#plt.pcolormesh(xx, yy, Z, cmap=cmap, norm=norm)
plot_data(X[:, 0], X[:, 1], y)
#plt.scatter(X[:,0], X[:,1], y)
plt.title(name)
fname = 'logregMulti-{}.png'.format(name)
save_fig(fname)
plt.draw()
plt.show()
| [
198,
2,
25048,
2604,
2569,
20683,
4981,
284,
513,
1398,
82,
362,
67,
1366,
13,
198,
198,
11748,
2208,
11748,
198,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
1341,
35720,
13,
3866,
36948,
1330,
12280,
26601,
498,
23595,
198,
6738,
629,
541,
88,
13,
34242,
1330,
1963,
42524,
62,
11265,
355,
285,
85,
77,
198,
6738,
1341,
35720,
13,
29127,
62,
19849,
1330,
5972,
2569,
8081,
2234,
198,
11748,
2603,
29487,
8019,
13,
4033,
669,
355,
285,
4033,
198,
11748,
28686,
198,
198,
5647,
15908,
796,
366,
40720,
5647,
942,
1,
628,
198,
198,
55,
11,
331,
796,
2251,
62,
7890,
7,
3064,
8,
198,
77,
37724,
796,
18896,
7,
37659,
13,
34642,
7,
88,
4008,
628,
198,
13500,
6037,
796,
685,
16,
11,
362,
11,
838,
11,
1160,
60,
628,
198,
1640,
1312,
11,
4922,
287,
27056,
378,
7,
13500,
6037,
2599,
198,
220,
220,
220,
47385,
796,
12280,
26601,
498,
23595,
7,
16863,
8,
198,
220,
220,
220,
1438,
796,
705,
35,
1533,
631,
90,
92,
4458,
18982,
7,
16863,
8,
198,
220,
220,
220,
21044,
796,
47385,
13,
11147,
62,
35636,
7,
55,
38381,
45299,
352,
47715,
220,
1303,
14267,
262,
717,
5721,
286,
352,
82,
198,
220,
220,
220,
2746,
796,
5972,
2569,
8081,
2234,
7,
34,
28,
16,
13,
15,
8,
198,
220,
220,
220,
2746,
796,
2746,
13,
11147,
7,
8051,
11,
331,
8,
628,
220,
220,
220,
1303,
5324,
11,
331,
88,
796,
45941,
13,
76,
5069,
25928,
7,
37659,
13,
21602,
10223,
32590,
16,
11,
352,
11,
6640,
828,
45941,
13,
21602,
10223,
32590,
16,
11,
352,
11,
6640,
4008,
198,
220,
220,
220,
31383,
11,
331,
88,
796,
45941,
13,
76,
5069,
25928,
7,
37659,
13,
21602,
10223,
32590,
16,
11,
352,
11,
8646,
828,
45941,
13,
21602,
10223,
32590,
16,
11,
352,
11,
8646,
4008,
198,
220,
220,
220,
10706,
796,
45941,
13,
66,
62,
58,
5324,
13,
25843,
22784,
331,
88,
13,
25843,
3419,
60,
198,
220,
220,
220,
10706,
17,
796,
47385,
13,
35636,
7,
25928,
38381,
45299,
352,
47715,
198,
220,
220,
220,
1168,
796,
2746,
13,
79,
17407,
7,
25928,
17,
737,
3447,
1758,
7,
5324,
13,
43358,
8,
198,
220,
220,
220,
2336,
11,
7877,
796,
458,
83,
13,
7266,
489,
1747,
3419,
198,
220,
220,
220,
1303,
3544,
12768,
4469,
329,
2042,
22969,
198,
220,
220,
220,
458,
83,
13,
79,
4033,
579,
5069,
7,
5324,
11,
331,
88,
11,
1168,
11,
269,
8899,
28,
489,
83,
13,
11215,
13,
24494,
31975,
8,
628,
220,
220,
220,
1303,
3740,
1378,
25558,
2502,
11125,
13,
785,
14,
6138,
507,
14,
29703,
486,
39647,
14,
33990,
12,
15410,
8374,
12,
4033,
579,
499,
12,
10215,
5546,
278,
12,
1462,
12,
11423,
12,
7890,
12,
9521,
12,
259,
12,
6759,
29487,
8019,
198,
220,
220,
220,
1303,
66,
8899,
796,
458,
83,
13,
11215,
13,
1136,
62,
66,
8899,
7203,
31173,
1600,
300,
315,
28,
77,
37724,
8,
198,
220,
220,
220,
1303,
66,
8899,
62,
65,
3733,
796,
45941,
13,
283,
858,
7,
77,
37724,
10,
16,
8,
532,
657,
13,
20,
198,
220,
220,
220,
1303,
27237,
796,
285,
4033,
13,
49646,
560,
35393,
7,
66,
8899,
62,
65,
3733,
11,
269,
8899,
13,
45,
8,
198,
220,
220,
220,
1303,
489,
83,
13,
79,
4033,
579,
5069,
7,
5324,
11,
331,
88,
11,
1168,
11,
269,
8899,
28,
66,
8899,
11,
2593,
28,
27237,
8,
628,
220,
220,
220,
7110,
62,
7890,
7,
55,
58,
45299,
657,
4357,
1395,
58,
45299,
352,
4357,
331,
8,
198,
220,
220,
220,
1303,
489,
83,
13,
1416,
1436,
7,
55,
58,
45299,
15,
4357,
1395,
58,
45299,
16,
4357,
331,
8,
198,
220,
220,
220,
458,
83,
13,
7839,
7,
3672,
8,
628,
220,
220,
220,
277,
3672,
796,
705,
6404,
2301,
29800,
12,
90,
27422,
11134,
4458,
18982,
7,
3672,
8,
198,
220,
220,
220,
3613,
62,
5647,
7,
69,
3672,
8,
198,
220,
220,
220,
458,
83,
13,
19334,
3419,
198,
198,
489,
83,
13,
12860,
3419,
198
] | 2.366423 | 685 |
from rolepermissions.roles import AbstractUserRole
| [
6738,
2597,
525,
8481,
13,
305,
829,
1330,
27741,
12982,
47445,
628,
628,
628,
628,
198
] | 3.6875 | 16 |
#!/usr/bin/env python
"""Pre-schedule DDF sequences
"""
# pylint: disable=no-member
# imports
import sys
import logging
from argparse import ArgumentParser
import yaml
import numpy as np
import pandas as pd
import astropy.coordinates
import astropy.units as u
import lsst.sims.utils
# constants
# exception classes
# interface functions
def schedule_all(mag_limit, location, config):
"""Schedule one field on one band.
Parameters
----------
m5 : `pandas.DataFrame`
Has a multilevel index with the following levels:
field_name : `str`
the field name
band : `str`
the band
Includes the following columns:
mjd : `float`
MJD of candidate time
m5 : `float`
5-sigma limiting magnitude of the field if observed at that time
`location` : `astropy.coordinates.EarthLocation`
the location of the observatory
config : `dict`
Configuration parameters
Return
------
schedule : `pandas.DataFrame`
includes three columns:
mjd : `float`
the best time at which to start the sequence of exposures
why : `str`
an indicator of why this sequence was scheduled
night : `int`
the MJD of the night (at midnight) on which the sequence is to be scheduled
sequence : `str`
which sequence this is
"""
seq_schedules = []
for seq_config in config["sequences"]:
logger.info(f'Scheduling {seq_config["label"]}')
seq_schedule = schedule_sequence(mag_limit, location, seq_config)
seq_schedule["sequence"] = seq_config["label"]
logger.info(f'Computing scheduled for {seq_config["label"]}')
mag_limit["scheduled"] = _compute_scheduled(
mag_limit, seq_schedule, seq_config["sequence_duration"]
)
seq_schedules.append(seq_schedule)
logger.info("Compiling full schedule")
full_schedule = (
pd.concat(seq_schedules).sort_values("mjd").set_index("mjd", drop=False)
)
return full_schedule
def schedule_sequence(mag_limit, location, config):
"""Schedule one set of sequences.
Parameters
----------
m5 : `pandas.DataFrame`
Has a multilevel index with the following levels:
field_name : `str`
the field name
band : `str`
the band
Includes the following columns:
mjd : `float`
MJD of candidate time
m5 : `float`
5-sigma limiting magnitude of the field if observed at that time
`location` : `astropy.coordinates.EarthLocation`
the location of the observatory
config : `dict`
Configuration parameters, with the following contents:
field_name : `str`
the name of the field to schedule
mag_lim_band : `str`
the name of the filter to schedule
sequence_duration : `astropy.units.Quantity`
the duration of a block of one sequence of exposures
caninocal_gap : `astropy.units.Quantity`
the desired time between sequences of exposures
min_gap: `astropy.units.Quantity`
the minimum gap for which "bridge" exposures should be scheduled
max_gap: `astropy.units.Quantity`
the target maximum time between sequences of exposures
season_gap : `astropy.units.Quantity`
the gap time greater than which no bridges should be attempted
mag_limit : `dict` of `str`: `float`
target magnitude limits in each band
Return
------
schedule : `pandas.DataFrame`
includes three columns:
mjd : `float`
the best time at which to start the sequence of exposures
why : `str`
an indicator of why this sequence was scheduled
night : `int`
the MJD of the night (at midnight) on which the sequence is to be scheduled
"""
# pylint: disable=too-many-locals
these_m5 = (
mag_limit.sort_index()
.loc[(config["field_name"], config["mag_lim_band"])]
.sort_index()
.copy()
)
min_m5 = _compute_rolling_m5(these_m5, config["sequence_duration"]).set_index(
"mjd", drop=False
)
min_m5["night_mjd"] = compute_night_mjd(min_m5["mjd"], location)
bridge_nights = _find_bridge_nights(mag_limit, location, config)
bridge_gap = config["bridge_gap"]
maintain_cadence = config["maintain_cadence_in_gap"]
scheduled_sequences = []
for night_mjd in range(min_m5.night_mjd.min(), min_m5.night_mjd.max()):
if night_mjd in bridge_nights["night_before_mjd"].values:
why = "pregap"
attempt_tonight = True
force_tonight = True
elif bridge_gap and (night_mjd in bridge_nights["bridge_night_mjd"].values):
why = "bridge"
attempt_tonight = True
force_tonight = True
elif night_mjd in bridge_nights["night_after_mjd"].values:
why = "postgap"
attempt_tonight = True
force_tonight = True
elif len(scheduled_sequences) == 0:
# We are just starting
why = "start"
attempt_tonight = True
force_tonight = False
elif (night_mjd - scheduled_sequences[-1]["night_mjd"]) * u.day >= config[
"canonical_gap"
]:
why = "cadence"
attempt_tonight = True
force_tonight = maintain_cadence
else:
continue
if not attempt_tonight:
continue
candidate_times = min_m5.query(f"night_mjd == {night_mjd}")
if len(candidate_times) < 1:
assert maintain_cadence or not force_tonight
continue
best_time = min_m5.loc[candidate_times["m5"].idxmax()]
if isinstance(best_time, pd.DataFrame):
best_time = best_time.sort_values("count", ascending=True).iloc[-1]
if (not force_tonight) and (best_time.m5 < config["mag_limit"]):
continue
if best_time.m5 < config["gap_mag_limit"]:
continue
scheduled_sequences.append({"mjd": best_time.mjd, "why": why})
scheduled_sequences[-1]["night_mjd"] = compute_night_mjd(
best_time.mjd, location
)
schedule = pd.DataFrame(scheduled_sequences)
return schedule
def compute_night_mjd(mjd, location):
"""Convert the floating point mjd to the integer local Julian date for the night.
Parameters
----------
mjd : `float`, `pandas.Series`, or `numpy.ndarray`
Returns
-------
jd : `int`, `pandas.Series`, or `numpy.ndarray`
"""
# add longitude to get into the local timezone,
# round to find the nearest midnight
night_mjd = np.round(mjd + (location.lon.deg / 360.0)).astype(int)
return night_mjd
def read_config(fname):
"""Read m5 configuration file
Parameters
----------
fname: `str`
The name of the file to read configuration from.
Return
------
config: `dict`
Dictionary of configuration values
"""
logger.debug("Reading configuration from %s", fname)
with open(fname, "r") as config_file:
config = yaml.load(config_file.read(), Loader=yaml.FullLoader)
# Apply units
for seq_config in config["sequences"]:
seq_config["sequence_duration"] = u.Quantity(
seq_config["sequence_duration"]
).to(u.second)
seq_config["max_gap"] = u.Quantity(seq_config["max_gap"]).to(u.day)
seq_config["min_gap"] = u.Quantity(seq_config["min_gap"]).to(u.day)
seq_config["season_gap"] = u.Quantity(seq_config["season_gap"]).to(u.day)
seq_config["canonical_gap"] = u.Quantity(seq_config["canonical_gap"]).to(u.day)
site_name = "LSST" if config["site_name"] == "LSST" else config["site_name"]
site = lsst.sims.utils.Site(site_name)
config["location"] = astropy.coordinates.EarthLocation(
lat=site.latitude, lon=site.longitude, height=site.height
)
return config
# classes
# internal functions & classes
def main():
"""Parse command line arguments and config file, and run"""
parser = ArgumentParser()
parser.add_argument("config", help="configuration file")
parser.add_argument("m5", help="file from which to load limiting magnitudes")
parser.add_argument("output", help="file in which to write results")
args = parser.parse_args()
config_fname = args.config
m5_fname = args.m5
output_fname = args.output
config = read_config(config_fname)
logger.info("Reading m5 from %s", m5_fname)
m5_limits = (
pd.read_hdf(m5_fname)
.reset_index()
.query("sun_alt < -18")
.set_index(["field_name", "band", "mjd"], drop=False)
.assign(scheduled=False)
)
schedule = schedule_all(m5_limits, config["location"], config)
schedule.to_csv(output_fname, sep="\t", index=False, header=True)
return 0
def _init_logger(log_level=logging.DEBUG):
"""Create the ddfpresched logger and set initial configuration"""
ddfpresched_logger = logging.getLogger("ddfpresched")
ddfpresched_logger.setLevel(log_level)
handler = logging.StreamHandler()
handler.setLevel(log_level)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
handler.setFormatter(formatter)
ddfpresched_logger.addHandler(handler)
return ddfpresched_logger
if __name__ == "__main__":
logger = _init_logger()
status = main() # pylint: disable=invalid-name
sys.exit(status)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
37811,
6719,
12,
15952,
5950,
360,
8068,
16311,
198,
37811,
198,
2,
279,
2645,
600,
25,
15560,
28,
3919,
12,
19522,
198,
198,
2,
17944,
198,
11748,
25064,
198,
11748,
18931,
198,
6738,
1822,
29572,
1330,
45751,
46677,
198,
198,
11748,
331,
43695,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
6468,
28338,
13,
37652,
17540,
198,
11748,
6468,
28338,
13,
41667,
355,
334,
198,
198,
11748,
43979,
301,
13,
82,
12078,
13,
26791,
198,
198,
2,
38491,
198,
198,
2,
6631,
6097,
198,
198,
2,
7071,
5499,
628,
198,
4299,
7269,
62,
439,
7,
19726,
62,
32374,
11,
4067,
11,
4566,
2599,
198,
220,
220,
220,
37227,
27054,
5950,
530,
2214,
319,
530,
4097,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
285,
20,
1058,
4600,
79,
392,
292,
13,
6601,
19778,
63,
198,
220,
220,
220,
220,
220,
220,
220,
7875,
257,
1963,
576,
626,
6376,
351,
262,
1708,
2974,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2214,
62,
3672,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
2214,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
4097,
628,
220,
220,
220,
220,
220,
220,
220,
29581,
262,
1708,
15180,
25,
198,
220,
220,
220,
220,
220,
220,
220,
285,
73,
67,
1058,
4600,
22468,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33974,
35,
286,
4540,
640,
198,
220,
220,
220,
220,
220,
220,
220,
285,
20,
1058,
4600,
22468,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
642,
12,
82,
13495,
15637,
14735,
286,
262,
2214,
611,
6515,
379,
326,
640,
198,
220,
220,
220,
4600,
24886,
63,
1058,
4600,
459,
28338,
13,
37652,
17540,
13,
22840,
14749,
63,
198,
220,
220,
220,
220,
220,
220,
220,
262,
4067,
286,
262,
3799,
2870,
198,
220,
220,
220,
4566,
1058,
4600,
11600,
63,
198,
220,
220,
220,
220,
220,
220,
220,
28373,
10007,
628,
220,
220,
220,
8229,
198,
220,
220,
220,
40103,
198,
220,
220,
220,
7269,
1058,
4600,
79,
392,
292,
13,
6601,
19778,
63,
198,
220,
220,
220,
220,
220,
220,
220,
3407,
1115,
15180,
25,
198,
220,
220,
220,
220,
220,
220,
220,
285,
73,
67,
1058,
4600,
22468,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
1266,
640,
379,
543,
284,
923,
262,
8379,
286,
32185,
198,
220,
220,
220,
220,
220,
220,
220,
1521,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
281,
16916,
286,
1521,
428,
8379,
373,
7530,
198,
220,
220,
220,
220,
220,
220,
220,
1755,
1058,
4600,
600,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
33974,
35,
286,
262,
1755,
357,
265,
15896,
8,
319,
543,
262,
8379,
318,
284,
307,
7530,
198,
220,
220,
220,
220,
220,
220,
220,
8379,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
543,
8379,
428,
318,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
33756,
62,
1416,
704,
5028,
796,
17635,
628,
220,
220,
220,
329,
33756,
62,
11250,
287,
4566,
14692,
3107,
3007,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
50,
1740,
16619,
1391,
41068,
62,
11250,
14692,
18242,
8973,
92,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
15952,
5950,
796,
7269,
62,
43167,
7,
19726,
62,
32374,
11,
4067,
11,
33756,
62,
11250,
8,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
15952,
5950,
14692,
43167,
8973,
796,
33756,
62,
11250,
14692,
18242,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
5377,
48074,
7530,
329,
1391,
41068,
62,
11250,
14692,
18242,
8973,
92,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2153,
62,
32374,
14692,
1416,
704,
6309,
8973,
796,
4808,
5589,
1133,
62,
1416,
704,
6309,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2153,
62,
32374,
11,
33756,
62,
15952,
5950,
11,
33756,
62,
11250,
14692,
43167,
62,
32257,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
1416,
704,
5028,
13,
33295,
7,
41068,
62,
15952,
5950,
8,
628,
220,
220,
220,
49706,
13,
10951,
7203,
7293,
4386,
1336,
7269,
4943,
198,
220,
220,
220,
1336,
62,
15952,
5950,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
279,
67,
13,
1102,
9246,
7,
41068,
62,
1416,
704,
5028,
737,
30619,
62,
27160,
7203,
76,
73,
67,
11074,
2617,
62,
9630,
7203,
76,
73,
67,
1600,
4268,
28,
25101,
8,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1441,
1336,
62,
15952,
5950,
628,
198,
4299,
7269,
62,
43167,
7,
19726,
62,
32374,
11,
4067,
11,
4566,
2599,
198,
220,
220,
220,
37227,
27054,
5950,
530,
900,
286,
16311,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
285,
20,
1058,
4600,
79,
392,
292,
13,
6601,
19778,
63,
198,
220,
220,
220,
220,
220,
220,
220,
7875,
257,
1963,
576,
626,
6376,
351,
262,
1708,
2974,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2214,
62,
3672,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
2214,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
4097,
628,
220,
220,
220,
220,
220,
220,
220,
29581,
262,
1708,
15180,
25,
198,
220,
220,
220,
220,
220,
220,
220,
285,
73,
67,
1058,
4600,
22468,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33974,
35,
286,
4540,
640,
198,
220,
220,
220,
220,
220,
220,
220,
285,
20,
1058,
4600,
22468,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
642,
12,
82,
13495,
15637,
14735,
286,
262,
2214,
611,
6515,
379,
326,
640,
198,
220,
220,
220,
4600,
24886,
63,
1058,
4600,
459,
28338,
13,
37652,
17540,
13,
22840,
14749,
63,
198,
220,
220,
220,
220,
220,
220,
220,
262,
4067,
286,
262,
3799,
2870,
198,
220,
220,
220,
4566,
1058,
4600,
11600,
63,
198,
220,
220,
220,
220,
220,
220,
220,
28373,
10007,
11,
351,
262,
1708,
10154,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2214,
62,
3672,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
1438,
286,
262,
2214,
284,
7269,
198,
220,
220,
220,
220,
220,
220,
220,
2153,
62,
2475,
62,
3903,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
1438,
286,
262,
8106,
284,
7269,
198,
220,
220,
220,
220,
220,
220,
220,
8379,
62,
32257,
1058,
4600,
459,
28338,
13,
41667,
13,
31208,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
9478,
286,
257,
2512,
286,
530,
8379,
286,
32185,
198,
220,
220,
220,
220,
220,
220,
220,
460,
259,
4374,
62,
43554,
1058,
4600,
459,
28338,
13,
41667,
13,
31208,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
10348,
640,
1022,
16311,
286,
32185,
198,
220,
220,
220,
220,
220,
220,
220,
949,
62,
43554,
25,
4600,
459,
28338,
13,
41667,
13,
31208,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
5288,
7625,
329,
543,
366,
9458,
1,
32185,
815,
307,
7530,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
43554,
25,
4600,
459,
28338,
13,
41667,
13,
31208,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
2496,
5415,
640,
1022,
16311,
286,
32185,
198,
220,
220,
220,
220,
220,
220,
220,
1622,
62,
43554,
1058,
220,
4600,
459,
28338,
13,
41667,
13,
31208,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
7625,
640,
3744,
621,
543,
645,
19432,
815,
307,
7482,
198,
220,
220,
220,
220,
220,
220,
220,
2153,
62,
32374,
1058,
4600,
11600,
63,
286,
4600,
2536,
63,
25,
4600,
22468,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2496,
14735,
7095,
287,
1123,
4097,
628,
220,
220,
220,
8229,
198,
220,
220,
220,
40103,
198,
220,
220,
220,
7269,
1058,
4600,
79,
392,
292,
13,
6601,
19778,
63,
198,
220,
220,
220,
220,
220,
220,
220,
3407,
1115,
15180,
25,
198,
220,
220,
220,
220,
220,
220,
220,
285,
73,
67,
1058,
4600,
22468,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
1266,
640,
379,
543,
284,
923,
262,
8379,
286,
32185,
198,
220,
220,
220,
220,
220,
220,
220,
1521,
1058,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
281,
16916,
286,
1521,
428,
8379,
373,
7530,
198,
220,
220,
220,
220,
220,
220,
220,
1755,
1058,
4600,
600,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
33974,
35,
286,
262,
1755,
357,
265,
15896,
8,
319,
543,
262,
8379,
318,
284,
307,
7530,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
279,
2645,
600,
25,
15560,
28,
18820,
12,
21834,
12,
17946,
874,
198,
220,
220,
220,
777,
62,
76,
20,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
2153,
62,
32374,
13,
30619,
62,
9630,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
764,
17946,
58,
7,
11250,
14692,
3245,
62,
3672,
33116,
4566,
14692,
19726,
62,
2475,
62,
3903,
8973,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
764,
30619,
62,
9630,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
764,
30073,
3419,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
949,
62,
76,
20,
796,
4808,
5589,
1133,
62,
18886,
62,
76,
20,
7,
27218,
62,
76,
20,
11,
4566,
14692,
43167,
62,
32257,
8973,
737,
2617,
62,
9630,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
76,
73,
67,
1600,
4268,
28,
25101,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
949,
62,
76,
20,
14692,
3847,
62,
76,
73,
67,
8973,
796,
24061,
62,
3847,
62,
76,
73,
67,
7,
1084,
62,
76,
20,
14692,
76,
73,
67,
33116,
4067,
8,
628,
220,
220,
220,
7696,
62,
77,
2337,
796,
4808,
19796,
62,
9458,
62,
77,
2337,
7,
19726,
62,
32374,
11,
4067,
11,
4566,
8,
198,
220,
220,
220,
7696,
62,
43554,
796,
4566,
14692,
9458,
62,
43554,
8973,
198,
220,
220,
220,
5529,
62,
66,
324,
594,
796,
4566,
14692,
76,
32725,
62,
66,
324,
594,
62,
259,
62,
43554,
8973,
628,
220,
220,
220,
7530,
62,
3107,
3007,
796,
17635,
198,
220,
220,
220,
329,
1755,
62,
76,
73,
67,
287,
2837,
7,
1084,
62,
76,
20,
13,
3847,
62,
76,
73,
67,
13,
1084,
22784,
949,
62,
76,
20,
13,
3847,
62,
76,
73,
67,
13,
9806,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1755,
62,
76,
73,
67,
287,
7696,
62,
77,
2337,
14692,
3847,
62,
19052,
62,
76,
73,
67,
1,
4083,
27160,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1521,
796,
366,
79,
2301,
499,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2230,
62,
1122,
432,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2700,
62,
1122,
432,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
7696,
62,
43554,
290,
357,
3847,
62,
76,
73,
67,
287,
7696,
62,
77,
2337,
14692,
9458,
62,
3847,
62,
76,
73,
67,
1,
4083,
27160,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1521,
796,
366,
9458,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2230,
62,
1122,
432,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2700,
62,
1122,
432,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1755,
62,
76,
73,
67,
287,
7696,
62,
77,
2337,
14692,
3847,
62,
8499,
62,
76,
73,
67,
1,
4083,
27160,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1521,
796,
366,
7353,
43554,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2230,
62,
1122,
432,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2700,
62,
1122,
432,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
18896,
7,
1416,
704,
6309,
62,
3107,
3007,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
775,
389,
655,
3599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1521,
796,
366,
9688,
1,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2230,
62,
1122,
432,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2700,
62,
1122,
432,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
357,
3847,
62,
76,
73,
67,
532,
7530,
62,
3107,
3007,
58,
12,
16,
7131,
1,
3847,
62,
76,
73,
67,
8973,
8,
1635,
334,
13,
820,
18189,
4566,
58,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
49883,
605,
62,
43554,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1521,
796,
366,
66,
324,
594,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2230,
62,
1122,
432,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2700,
62,
1122,
432,
796,
5529,
62,
66,
324,
594,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
2230,
62,
1122,
432,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
4540,
62,
22355,
796,
949,
62,
76,
20,
13,
22766,
7,
69,
1,
3847,
62,
76,
73,
67,
6624,
1391,
3847,
62,
76,
73,
67,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
46188,
20540,
62,
22355,
8,
1279,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
5529,
62,
66,
324,
594,
393,
407,
2700,
62,
1122,
432,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
2435,
796,
949,
62,
76,
20,
13,
17946,
58,
46188,
20540,
62,
22355,
14692,
76,
20,
1,
4083,
312,
87,
9806,
3419,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
13466,
62,
2435,
11,
279,
67,
13,
6601,
19778,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
2435,
796,
1266,
62,
2435,
13,
30619,
62,
27160,
7203,
9127,
1600,
41988,
28,
17821,
737,
346,
420,
58,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
357,
1662,
2700,
62,
1122,
432,
8,
290,
357,
13466,
62,
2435,
13,
76,
20,
1279,
4566,
14692,
19726,
62,
32374,
8973,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1266,
62,
2435,
13,
76,
20,
1279,
4566,
14692,
43554,
62,
19726,
62,
32374,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
7530,
62,
3107,
3007,
13,
33295,
7,
4895,
76,
73,
67,
1298,
1266,
62,
2435,
13,
76,
73,
67,
11,
366,
22850,
1298,
1521,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
7530,
62,
3107,
3007,
58,
12,
16,
7131,
1,
3847,
62,
76,
73,
67,
8973,
796,
24061,
62,
3847,
62,
76,
73,
67,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
2435,
13,
76,
73,
67,
11,
4067,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
7269,
796,
279,
67,
13,
6601,
19778,
7,
1416,
704,
6309,
62,
3107,
3007,
8,
628,
220,
220,
220,
1441,
7269,
628,
198,
4299,
24061,
62,
3847,
62,
76,
73,
67,
7,
76,
73,
67,
11,
4067,
2599,
198,
220,
220,
220,
37227,
3103,
1851,
262,
12462,
966,
285,
73,
67,
284,
262,
18253,
1957,
18322,
3128,
329,
262,
1755,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
285,
73,
67,
1058,
4600,
22468,
47671,
4600,
79,
392,
292,
13,
27996,
47671,
393,
4600,
77,
32152,
13,
358,
18747,
63,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
474,
67,
1058,
4600,
600,
47671,
4600,
79,
392,
292,
13,
27996,
47671,
393,
4600,
77,
32152,
13,
358,
18747,
63,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
751,
890,
3984,
284,
651,
656,
262,
1957,
640,
11340,
11,
198,
220,
220,
220,
1303,
2835,
284,
1064,
262,
16936,
15896,
198,
220,
220,
220,
1755,
62,
76,
73,
67,
796,
45941,
13,
744,
7,
76,
73,
67,
1343,
357,
24886,
13,
14995,
13,
13500,
1220,
11470,
13,
15,
29720,
459,
2981,
7,
600,
8,
198,
220,
220,
220,
1441,
1755,
62,
76,
73,
67,
628,
198,
4299,
1100,
62,
11250,
7,
69,
3672,
2599,
198,
220,
220,
220,
37227,
5569,
285,
20,
8398,
2393,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
277,
3672,
25,
4600,
2536,
63,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1438,
286,
262,
2393,
284,
1100,
8398,
422,
13,
628,
220,
220,
220,
8229,
198,
220,
220,
220,
40103,
198,
220,
220,
220,
4566,
25,
4600,
11600,
63,
198,
220,
220,
220,
220,
220,
220,
220,
28261,
286,
8398,
3815,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
49706,
13,
24442,
7203,
36120,
8398,
422,
4064,
82,
1600,
277,
3672,
8,
628,
220,
220,
220,
351,
1280,
7,
69,
3672,
11,
366,
81,
4943,
355,
4566,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4566,
796,
331,
43695,
13,
2220,
7,
11250,
62,
7753,
13,
961,
22784,
8778,
263,
28,
88,
43695,
13,
13295,
17401,
8,
628,
220,
220,
220,
1303,
27967,
4991,
198,
220,
220,
220,
329,
33756,
62,
11250,
287,
4566,
14692,
3107,
3007,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
11250,
14692,
43167,
62,
32257,
8973,
796,
334,
13,
31208,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
11250,
14692,
43167,
62,
32257,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
6739,
1462,
7,
84,
13,
12227,
8,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
11250,
14692,
9806,
62,
43554,
8973,
796,
334,
13,
31208,
7,
41068,
62,
11250,
14692,
9806,
62,
43554,
8973,
737,
1462,
7,
84,
13,
820,
8,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
11250,
14692,
1084,
62,
43554,
8973,
796,
334,
13,
31208,
7,
41068,
62,
11250,
14692,
1084,
62,
43554,
8973,
737,
1462,
7,
84,
13,
820,
8,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
11250,
14692,
6230,
62,
43554,
8973,
796,
334,
13,
31208,
7,
41068,
62,
11250,
14692,
6230,
62,
43554,
8973,
737,
1462,
7,
84,
13,
820,
8,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
11250,
14692,
49883,
605,
62,
43554,
8973,
796,
334,
13,
31208,
7,
41068,
62,
11250,
14692,
49883,
605,
62,
43554,
8973,
737,
1462,
7,
84,
13,
820,
8,
628,
220,
220,
220,
2524,
62,
3672,
796,
366,
6561,
2257,
1,
611,
4566,
14692,
15654,
62,
3672,
8973,
6624,
366,
6561,
2257,
1,
2073,
4566,
14692,
15654,
62,
3672,
8973,
198,
220,
220,
220,
2524,
796,
43979,
301,
13,
82,
12078,
13,
26791,
13,
29123,
7,
15654,
62,
3672,
8,
198,
220,
220,
220,
4566,
14692,
24886,
8973,
796,
6468,
28338,
13,
37652,
17540,
13,
22840,
14749,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3042,
28,
15654,
13,
15460,
3984,
11,
300,
261,
28,
15654,
13,
6511,
3984,
11,
6001,
28,
15654,
13,
17015,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
1441,
4566,
628,
198,
2,
6097,
198,
198,
2,
5387,
5499,
1222,
6097,
628,
628,
628,
198,
198,
4299,
1388,
33529,
198,
220,
220,
220,
37227,
10044,
325,
3141,
1627,
7159,
290,
4566,
2393,
11,
290,
1057,
37811,
198,
220,
220,
220,
30751,
796,
45751,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
11250,
1600,
1037,
2625,
11250,
3924,
2393,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
76,
20,
1600,
1037,
2625,
7753,
422,
543,
284,
3440,
15637,
7842,
10455,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
22915,
1600,
1037,
2625,
7753,
287,
543,
284,
3551,
2482,
4943,
628,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
4566,
62,
69,
3672,
796,
26498,
13,
11250,
198,
220,
220,
220,
285,
20,
62,
69,
3672,
796,
26498,
13,
76,
20,
198,
220,
220,
220,
5072,
62,
69,
3672,
796,
26498,
13,
22915,
628,
220,
220,
220,
4566,
796,
1100,
62,
11250,
7,
11250,
62,
69,
3672,
8,
628,
220,
220,
220,
49706,
13,
10951,
7203,
36120,
285,
20,
422,
4064,
82,
1600,
285,
20,
62,
69,
3672,
8,
198,
220,
220,
220,
285,
20,
62,
49196,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
279,
67,
13,
961,
62,
71,
7568,
7,
76,
20,
62,
69,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
764,
42503,
62,
9630,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
764,
22766,
7203,
19155,
62,
2501,
1279,
532,
1507,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
764,
2617,
62,
9630,
7,
14692,
3245,
62,
3672,
1600,
366,
3903,
1600,
366,
76,
73,
67,
33116,
4268,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
764,
562,
570,
7,
1416,
704,
6309,
28,
25101,
8,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
7269,
796,
7269,
62,
439,
7,
76,
20,
62,
49196,
11,
4566,
14692,
24886,
33116,
4566,
8,
198,
220,
220,
220,
7269,
13,
1462,
62,
40664,
7,
22915,
62,
69,
3672,
11,
41767,
2625,
59,
83,
1600,
6376,
28,
25101,
11,
13639,
28,
17821,
8,
628,
220,
220,
220,
1441,
657,
628,
198,
4299,
4808,
15003,
62,
6404,
1362,
7,
6404,
62,
5715,
28,
6404,
2667,
13,
30531,
2599,
198,
220,
220,
220,
37227,
16447,
262,
288,
7568,
18302,
1740,
49706,
290,
900,
4238,
8398,
37811,
198,
220,
220,
220,
288,
7568,
18302,
1740,
62,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7203,
1860,
69,
18302,
1740,
4943,
198,
220,
220,
220,
288,
7568,
18302,
1740,
62,
6404,
1362,
13,
2617,
4971,
7,
6404,
62,
5715,
8,
198,
220,
220,
220,
21360,
796,
18931,
13,
12124,
25060,
3419,
198,
220,
220,
220,
21360,
13,
2617,
4971,
7,
6404,
62,
5715,
8,
198,
220,
220,
220,
1296,
1436,
796,
18931,
13,
8479,
1436,
7203,
4,
7,
292,
310,
524,
8,
82,
59,
83,
4,
7,
3672,
8,
82,
59,
83,
4,
7,
5715,
3672,
8,
82,
59,
83,
4,
7,
20500,
8,
82,
4943,
198,
220,
220,
220,
21360,
13,
2617,
8479,
1436,
7,
687,
1436,
8,
198,
220,
220,
220,
288,
7568,
18302,
1740,
62,
6404,
1362,
13,
2860,
25060,
7,
30281,
8,
198,
220,
220,
220,
1441,
288,
7568,
18302,
1740,
62,
6404,
1362,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
49706,
796,
4808,
15003,
62,
6404,
1362,
3419,
198,
220,
220,
220,
3722,
796,
1388,
3419,
220,
1303,
279,
2645,
600,
25,
15560,
28,
259,
12102,
12,
3672,
198,
220,
220,
220,
25064,
13,
37023,
7,
13376,
8,
198
] | 2.358224 | 4,098 |
# -*- coding: utf-8 -*-
from numpy import *
from mab.binningtools import bingrid, binrange
import mab.gd.logging as logging
logger = logging.getLogger("gd.nbody.gadget")
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
6738,
299,
32152,
1330,
1635,
198,
6738,
285,
397,
13,
8800,
768,
31391,
1330,
275,
278,
6058,
11,
9874,
9521,
198,
11748,
285,
397,
13,
21287,
13,
6404,
2667,
355,
18931,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7203,
21287,
13,
77,
2618,
13,
70,
324,
1136,
4943,
628,
198,
197,
197,
197,
197,
197,
198
] | 2.452055 | 73 |
# ------------------------------------------------------------------------------
# CodeHawk Binary Analyzer
# Author: Henny Sipma
# ------------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2021 Aarno Labs LLC
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ------------------------------------------------------------------------------
import xml.etree.ElementTree as ET
from typing import Callable, cast, Dict, List, Mapping, Optional, Sequence
from chb.api.InterfaceDictionary import InterfaceDictionary
from chb.app.BasicBlock import BasicBlock
from chb.app.BDictionary import BDictionary
from chb.app.Function import Function
from chb.app.FunctionDictionary import FunctionDictionary
from chb.app.FunctionInfo import FunctionInfo
from chb.app.Cfg import Cfg
from chb.app.StringXRefs import StringsXRefs
from chb.invariants.FnVarDictionary import FnVarDictionary
from chb.invariants.FnXprDictionary import FnXprDictionary
from chb.arm.ARMBlock import ARMBlock
from chb.arm.ARMDictionary import ARMDictionary
from chb.arm.ARMInstruction import ARMInstruction
from chb.arm.ARMCfg import ARMCfg
import chb.util.fileutil as UF
| [
2,
16529,
26171,
198,
2,
6127,
39,
19301,
45755,
16213,
9107,
198,
2,
6434,
25,
367,
11870,
311,
541,
2611,
198,
2,
16529,
26171,
198,
2,
383,
17168,
13789,
357,
36393,
8,
198,
2,
198,
2,
15069,
357,
66,
8,
33448,
317,
1501,
78,
23500,
11419,
198,
2,
198,
2,
2448,
3411,
318,
29376,
7520,
11,
1479,
286,
3877,
11,
284,
597,
1048,
16727,
257,
4866,
198,
2,
286,
428,
3788,
290,
3917,
10314,
3696,
357,
1169,
366,
25423,
12340,
284,
1730,
198,
2,
287,
262,
10442,
1231,
17504,
11,
1390,
1231,
17385,
262,
2489,
198,
2,
284,
779,
11,
4866,
11,
13096,
11,
20121,
11,
7715,
11,
14983,
11,
850,
43085,
11,
290,
14,
273,
3677,
198,
2,
9088,
286,
262,
10442,
11,
290,
284,
8749,
6506,
284,
4150,
262,
10442,
318,
198,
2,
30760,
284,
466,
523,
11,
2426,
284,
262,
1708,
3403,
25,
198,
2,
198,
2,
383,
2029,
6634,
4003,
290,
428,
7170,
4003,
2236,
307,
3017,
287,
477,
198,
2,
9088,
393,
8904,
16690,
286,
262,
10442,
13,
198,
2,
198,
2,
3336,
47466,
3180,
36592,
2389,
1961,
366,
1921,
3180,
1600,
42881,
34764,
56,
3963,
15529,
509,
12115,
11,
7788,
32761,
6375,
198,
2,
8959,
49094,
11,
47783,
2751,
21728,
5626,
40880,
5390,
3336,
34764,
11015,
3963,
34482,
3398,
1565,
5603,
25382,
11,
198,
2,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
5357,
44521,
1268,
10913,
2751,
12529,
13,
3268,
8005,
49261,
50163,
3336,
198,
2,
37195,
20673,
6375,
27975,
38162,
9947,
367,
15173,
4877,
9348,
43031,
19146,
7473,
15529,
47666,
3955,
11,
29506,
25552,
6375,
25401,
198,
2,
43031,
25382,
11,
7655,
2767,
16879,
3268,
3537,
40282,
3963,
27342,
10659,
11,
309,
9863,
6375,
25401,
54,
24352,
11,
5923,
1797,
2751,
16034,
11,
198,
2,
16289,
3963,
6375,
3268,
7102,
45,
24565,
13315,
3336,
47466,
6375,
3336,
23210,
6375,
25401,
5550,
1847,
20754,
3268,
3336,
198,
2,
47466,
13,
198,
2,
16529,
26171,
198,
198,
11748,
35555,
13,
316,
631,
13,
20180,
27660,
355,
12152,
198,
198,
6738,
19720,
1330,
4889,
540,
11,
3350,
11,
360,
713,
11,
7343,
11,
337,
5912,
11,
32233,
11,
45835,
198,
198,
6738,
442,
65,
13,
15042,
13,
39317,
35,
14188,
1330,
26491,
35,
14188,
198,
198,
6738,
442,
65,
13,
1324,
13,
26416,
12235,
1330,
14392,
12235,
198,
6738,
442,
65,
13,
1324,
13,
14529,
14188,
1330,
28023,
14188,
198,
6738,
442,
65,
13,
1324,
13,
22203,
1330,
15553,
198,
6738,
442,
65,
13,
1324,
13,
22203,
35,
14188,
1330,
15553,
35,
14188,
198,
6738,
442,
65,
13,
1324,
13,
22203,
12360,
1330,
15553,
12360,
198,
6738,
442,
65,
13,
1324,
13,
34,
40616,
1330,
327,
40616,
198,
6738,
442,
65,
13,
1324,
13,
10100,
55,
8134,
82,
1330,
4285,
654,
55,
8134,
82,
198,
198,
6738,
442,
65,
13,
16340,
2743,
1187,
13,
37,
77,
19852,
35,
14188,
1330,
37481,
19852,
35,
14188,
198,
6738,
442,
65,
13,
16340,
2743,
1187,
13,
37,
77,
55,
1050,
35,
14188,
1330,
37481,
55,
1050,
35,
14188,
198,
198,
6738,
442,
65,
13,
1670,
13,
33456,
12235,
1330,
20359,
12235,
198,
6738,
442,
65,
13,
1670,
13,
1503,
12740,
14188,
1330,
5923,
12740,
14188,
198,
6738,
442,
65,
13,
1670,
13,
33456,
6310,
2762,
1330,
20359,
6310,
2762,
198,
6738,
442,
65,
13,
1670,
13,
1503,
9655,
40616,
1330,
5923,
9655,
40616,
198,
198,
11748,
442,
65,
13,
22602,
13,
7753,
22602,
355,
471,
37,
628
] | 3.875439 | 570 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
import os
import sys
import scipy.stats
from scipy.stats.mstats import gmean
import scipy.stats as stats
import math
import matplotlib as mpl
from sklearn.cluster import KMeans
mpl.rcParams['pdf.fonttype'] = 42
mpl.rcParams["font.sans-serif"] = "Arial"
#1.Z-score Normalzie DiseaseSP_DF:
Cell='Monocytes'
outDir=os.path.join('{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/KmeansCluster'.format(Cell))
if not os.path.exists(outDir):
os.mkdir(outDir)
DiseaseSP_F='{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/TwoTwoCompare_Merge.sortCol.txt'.format(Cell)
DiseaseSP_DF=pd.read_table(DiseaseSP_F,sep='\t',index_col=0)
DiseaseSP_DFz= DiseaseSP_DF.apply(scipy.stats.zscore,axis=1,result_type='broadcast')
#decide K:1.手肘法(误差平方法SSE);2.轮廓系数法
SSE = [] # 存放每次结果的误差平方和
for k in range(1,10):
estimator = KMeans(n_clusters=k)
estimator.fit(DiseaseSP_DFz)
SSE.append(estimator.inertia_)
X = range(1,10)
plt.style.use('seaborn-white')
fig=plt.figure(figsize=(3.5,2))
ax=fig.add_axes([0.2,0.2,0.7,0.7])
ax.set_ylabel('Sum of the squared errors',fontsize=10)
ax.set_xlabel('k number',fontsize=10)
ax.tick_params(axis='y',length=7,labelsize=8,direction='out')
ax.tick_params(axis='x',length=7,labelsize=8,direction='out')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['left'].set_linewidth(0.5)
ax.spines['right'].set_linewidth(0.5)
ax.spines['top'].set_linewidth(0.5)
plt.plot(X,SSE,color='purple', marker='o', linestyle='dashed',linewidth=1, markersize=5)
fig.savefig(outDir+'/Kvalue_SSE.pdf')
#print '误差平方和:'
plt.show()
2.#根据最佳K值进行KMeans聚类 (Kmeans聚类用的ZscoreNorm后的DF!!!)
KMean_Cluster(DiseaseSP_DFz,outDir,2)
KMean_Cluster(DiseaseSP_DFz,outDir,3)
print ('K-means Done !')
# In[5]:
k='3'
Cell='Monocytes'
DiseaseSP_F='{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/TwoTwoCompare_Merge.sortCol.txt'.format(Cell)
DiseaseSP_DF=pd.read_table(DiseaseSP_F,sep='\t',index_col=0)
RAs=[i for i in list(DiseaseSP_DF) if 'RA' in i]
OAs=[i for i in list(DiseaseSP_DF) if 'OA' in i]
HCs=[i for i in list(DiseaseSP_DF) if 'HC' in i]
BedF= '{}/RAOAHC.removeY.bed'.format(Cell) #read PeakBed
BedDF=pd.read_table(BedF,sep='\t',header=None)
BedDF.index=BedDF[3]
# In[6]:
k='3'
PlotKmeanCluster_K3(k)
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
19617,
25,
3384,
69,
12,
23,
198,
198,
2,
554,
58,
16,
5974,
628,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
9756,
27530,
13,
15042,
355,
895,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
6738,
1341,
35720,
13,
12501,
296,
9150,
1330,
4217,
32,
198,
6738,
285,
489,
62,
25981,
74,
896,
13,
76,
29487,
18,
67,
1330,
12176,
274,
18,
35,
198,
11748,
384,
397,
1211,
355,
3013,
82,
198,
11748,
28686,
198,
11748,
25064,
198,
11748,
629,
541,
88,
13,
34242,
198,
6738,
629,
541,
88,
13,
34242,
13,
76,
34242,
1330,
308,
32604,
198,
11748,
629,
541,
88,
13,
34242,
355,
9756,
198,
11748,
10688,
198,
11748,
2603,
29487,
8019,
355,
285,
489,
198,
6738,
1341,
35720,
13,
565,
5819,
1330,
509,
5308,
504,
198,
76,
489,
13,
6015,
10044,
4105,
17816,
12315,
13,
10331,
4906,
20520,
796,
5433,
198,
76,
489,
13,
6015,
10044,
4105,
14692,
10331,
13,
82,
504,
12,
2655,
361,
8973,
796,
366,
32,
4454,
1,
628,
198,
2,
16,
13,
57,
12,
26675,
14435,
49746,
17344,
4303,
62,
8068,
25,
198,
28780,
11639,
9069,
30309,
6,
198,
448,
35277,
28,
418,
13,
6978,
13,
22179,
10786,
90,
92,
14,
28813,
6435,
4730,
14,
32604,
18,
62,
16072,
17,
62,
79,
15,
13,
8298,
62,
69,
7109,
15,
13,
2713,
14,
42,
1326,
504,
2601,
5819,
4458,
18982,
7,
28780,
4008,
198,
361,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
448,
35277,
2599,
198,
220,
220,
220,
28686,
13,
28015,
15908,
7,
448,
35277,
8,
198,
198,
35,
786,
589,
4303,
62,
37,
11639,
90,
92,
14,
28813,
6435,
4730,
14,
32604,
18,
62,
16072,
17,
62,
79,
15,
13,
8298,
62,
69,
7109,
15,
13,
2713,
14,
7571,
7571,
41488,
62,
13102,
469,
13,
30619,
5216,
13,
14116,
4458,
18982,
7,
28780,
8,
198,
35,
786,
589,
4303,
62,
8068,
28,
30094,
13,
961,
62,
11487,
7,
35,
786,
589,
4303,
62,
37,
11,
325,
79,
11639,
59,
83,
3256,
9630,
62,
4033,
28,
15,
8,
198,
35,
786,
589,
4303,
62,
8068,
89,
28,
17344,
4303,
62,
8068,
13,
39014,
7,
1416,
541,
88,
13,
34242,
13,
89,
26675,
11,
22704,
28,
16,
11,
20274,
62,
4906,
11639,
36654,
2701,
11537,
198,
198,
2,
12501,
485,
509,
25,
16,
13,
33699,
233,
164,
224,
246,
37345,
243,
7,
46237,
107,
32432,
106,
33176,
111,
43095,
37345,
243,
50,
5188,
1776,
17,
13,
164,
121,
106,
161,
119,
241,
163,
111,
119,
46763,
108,
37345,
243,
198,
50,
5188,
796,
17635,
220,
1303,
10263,
255,
246,
162,
242,
122,
162,
107,
237,
162,
105,
94,
163,
119,
241,
162,
252,
250,
21410,
46237,
107,
32432,
106,
33176,
111,
43095,
161,
240,
234,
198,
1640,
479,
287,
2837,
7,
16,
11,
940,
2599,
198,
220,
220,
220,
3959,
1352,
796,
509,
5308,
504,
7,
77,
62,
565,
13654,
28,
74,
8,
198,
220,
220,
220,
3959,
1352,
13,
11147,
7,
35,
786,
589,
4303,
62,
8068,
89,
8,
198,
220,
220,
220,
311,
5188,
13,
33295,
7,
395,
320,
1352,
13,
259,
861,
544,
62,
8,
198,
55,
796,
2837,
7,
16,
11,
940,
8,
198,
489,
83,
13,
7635,
13,
1904,
10786,
325,
397,
1211,
12,
11186,
11537,
198,
5647,
28,
489,
83,
13,
26875,
7,
5647,
7857,
16193,
18,
13,
20,
11,
17,
4008,
198,
897,
28,
5647,
13,
2860,
62,
897,
274,
26933,
15,
13,
17,
11,
15,
13,
17,
11,
15,
13,
22,
11,
15,
13,
22,
12962,
198,
897,
13,
2617,
62,
2645,
9608,
10786,
13065,
286,
262,
44345,
8563,
3256,
10331,
7857,
28,
940,
8,
198,
897,
13,
2617,
62,
87,
18242,
10786,
74,
1271,
3256,
10331,
7857,
28,
940,
8,
198,
897,
13,
42298,
62,
37266,
7,
22704,
11639,
88,
3256,
13664,
28,
22,
11,
23912,
1424,
1096,
28,
23,
11,
37295,
11639,
448,
11537,
198,
897,
13,
42298,
62,
37266,
7,
22704,
11639,
87,
3256,
13664,
28,
22,
11,
23912,
1424,
1096,
28,
23,
11,
37295,
11639,
448,
11537,
198,
897,
13,
2777,
1127,
17816,
22487,
6,
4083,
2617,
62,
2815,
413,
5649,
7,
15,
13,
20,
8,
198,
897,
13,
2777,
1127,
17816,
9464,
6,
4083,
2617,
62,
2815,
413,
5649,
7,
15,
13,
20,
8,
198,
897,
13,
2777,
1127,
17816,
3506,
6,
4083,
2617,
62,
2815,
413,
5649,
7,
15,
13,
20,
8,
198,
897,
13,
2777,
1127,
17816,
4852,
6,
4083,
2617,
62,
2815,
413,
5649,
7,
15,
13,
20,
8,
198,
489,
83,
13,
29487,
7,
55,
11,
50,
5188,
11,
8043,
11639,
14225,
1154,
3256,
18364,
11639,
78,
3256,
9493,
10992,
11639,
67,
5263,
3256,
2815,
413,
5649,
28,
16,
11,
19736,
1096,
28,
20,
8,
198,
5647,
13,
21928,
5647,
7,
448,
35277,
10,
26488,
42,
8367,
62,
50,
5188,
13,
12315,
11537,
198,
2,
4798,
705,
46237,
107,
32432,
106,
33176,
111,
43095,
161,
240,
234,
171,
120,
248,
6,
198,
489,
83,
13,
12860,
3419,
198,
198,
17,
32535,
43718,
117,
162,
235,
106,
17312,
222,
19526,
111,
42,
161,
222,
120,
32573,
249,
26193,
234,
42,
5308,
504,
164,
223,
248,
163,
109,
119,
357,
42,
1326,
504,
164,
223,
248,
163,
109,
119,
18796,
101,
21410,
57,
26675,
35393,
28938,
236,
21410,
8068,
3228,
8133,
198,
42,
5308,
272,
62,
2601,
5819,
7,
35,
786,
589,
4303,
62,
8068,
89,
11,
448,
35277,
11,
17,
8,
198,
42,
5308,
272,
62,
2601,
5819,
7,
35,
786,
589,
4303,
62,
8068,
89,
11,
448,
35277,
11,
18,
8,
198,
198,
4798,
19203,
42,
12,
1326,
504,
24429,
5145,
11537,
628,
198,
2,
554,
58,
20,
5974,
628,
198,
74,
11639,
18,
6,
198,
28780,
11639,
9069,
30309,
6,
198,
35,
786,
589,
4303,
62,
37,
11639,
90,
92,
14,
28813,
6435,
4730,
14,
32604,
18,
62,
16072,
17,
62,
79,
15,
13,
8298,
62,
69,
7109,
15,
13,
2713,
14,
7571,
7571,
41488,
62,
13102,
469,
13,
30619,
5216,
13,
14116,
4458,
18982,
7,
28780,
8,
198,
35,
786,
589,
4303,
62,
8068,
28,
30094,
13,
961,
62,
11487,
7,
35,
786,
589,
4303,
62,
37,
11,
325,
79,
11639,
59,
83,
3256,
9630,
62,
4033,
28,
15,
8,
198,
49,
1722,
41888,
72,
329,
1312,
287,
1351,
7,
35,
786,
589,
4303,
62,
8068,
8,
611,
705,
3861,
6,
287,
1312,
60,
198,
46,
1722,
41888,
72,
329,
1312,
287,
1351,
7,
35,
786,
589,
4303,
62,
8068,
8,
611,
705,
23621,
6,
287,
1312,
60,
198,
16045,
82,
41888,
72,
329,
1312,
287,
1351,
7,
35,
786,
589,
4303,
62,
8068,
8,
611,
705,
16045,
6,
287,
1312,
60,
198,
198,
45896,
37,
28,
705,
90,
92,
14,
3861,
23621,
16045,
13,
28956,
56,
13,
3077,
4458,
18982,
7,
28780,
8,
220,
1303,
961,
23974,
45896,
198,
45896,
8068,
28,
30094,
13,
961,
62,
11487,
7,
45896,
37,
11,
325,
79,
11639,
59,
83,
3256,
25677,
28,
14202,
8,
198,
45896,
8068,
13,
9630,
28,
45896,
8068,
58,
18,
60,
628,
198,
2,
554,
58,
21,
5974,
628,
198,
74,
11639,
18,
6,
198,
43328,
42,
32604,
2601,
5819,
62,
42,
18,
7,
74,
8,
628,
198,
2,
554,
58,
2361,
25,
628,
628,
198,
198,
2,
554,
58,
2361,
25,
628,
628,
198,
198,
2,
554,
58,
2361,
25,
628,
628,
198,
198,
2,
554,
58,
2361,
25,
198
] | 1.997583 | 1,241 |
import redlab as rl
print("-------einzelneWerte-------------------------")
print("16BitValue:" + str(rl.cbAIn(0, 0, 1)))
print("VoltageValue:" + str(rl.cbVIn(0, 0, 1)))
print("-------Messreihe-------------------------")
print("Messreihe:" + str(rl.cbAInScan(0, 0, 0, 300, 8000, 1)))
print("Messreihe:" + str(rl.cbVInScan(0, 0, 0, 300, 8000, 1)))
print("Samplerate:" + str(rl.cbInScanRate(0, 0, 0, 8000)))
print("Nyquist:" + str(rl.cbInScanRate(0, 0, 0, 8000) / 2))
print("-------Ausgabe-------------------------")
| [
11748,
2266,
23912,
355,
374,
75,
198,
198,
4798,
7203,
26866,
68,
259,
17396,
710,
54,
263,
660,
22369,
12,
4943,
198,
4798,
7203,
1433,
13128,
11395,
11097,
1343,
965,
7,
45895,
13,
21101,
32,
818,
7,
15,
11,
657,
11,
352,
22305,
198,
4798,
7203,
53,
5978,
496,
11395,
11097,
1343,
965,
7,
45895,
13,
21101,
53,
818,
7,
15,
11,
657,
11,
352,
22305,
198,
4798,
7203,
26866,
36479,
260,
72,
258,
22369,
12,
4943,
198,
4798,
7203,
36479,
260,
72,
258,
11097,
1343,
965,
7,
45895,
13,
21101,
32,
818,
33351,
7,
15,
11,
657,
11,
657,
11,
5867,
11,
38055,
11,
352,
22305,
198,
4798,
7203,
36479,
260,
72,
258,
11097,
1343,
965,
7,
45895,
13,
21101,
53,
818,
33351,
7,
15,
11,
657,
11,
657,
11,
5867,
11,
38055,
11,
352,
22305,
198,
4798,
7203,
16305,
20053,
378,
11097,
1343,
965,
7,
45895,
13,
21101,
818,
33351,
32184,
7,
15,
11,
657,
11,
657,
11,
38055,
22305,
198,
4798,
7203,
45,
88,
30062,
11097,
1343,
965,
7,
45895,
13,
21101,
818,
33351,
32184,
7,
15,
11,
657,
11,
657,
11,
38055,
8,
1220,
362,
4008,
198,
4798,
7203,
26866,
32,
385,
70,
11231,
22369,
12,
4943,
198
] | 2.549505 | 202 |
import os
| [
11748,
28686,
628
] | 3.666667 | 3 |
# -*- coding: utf-8 -*-
"""DGCCA.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/15L_7jxf0KH81UjAO6waIbQso1nqML0kD
# Deep Generalized Cannonical Correlation Analysis Implementaion for 3 views
cca-zoo package is used for the implemntaion of gcca (Generalized Cannonical Correlation Analysis)
"""
#install the cca-zoo package
#pip install cca-zoo
#importing required libraries
import torch
import cca_zoo
import torch.nn as nn
import torch.optim as optim
import GCCA_loss #to be implemented
"""# Class DNN : Creates a new Deep Neural Network
**Parameters** :
* **layer_size** - It is the list of size of each layer in the DNN staring from the input layer
* **activation** - The type of activation function to be used. Choose from 'relu' , 'tanh' , 'sigmoid' . By default, sigmoid.
**Methods**
* **forward(self, l)** : forward propogates input l into the DNN and returns the output
"""
"""# Class : DGCCA_architecture - Defines the architecture for three DNNs
**Parameters**
* **layer_size1 , layer_size2 , layer_size3** : list of sizes of each layer of first, second and third DNN(view) respectively.
**Methods**
* **forward(self, x1, x2, x3)** : forward propogates x1 into the first DNN,x2 into the second DNN and x3 into the third DNN and returns the outputs.
"""
"""# Class DGCCA : Implements the DGCCA Algorithm
**Parameters**
* **architecture** : object of DGCCA_architecture class.
* **gcca_wrraper** : from cca-zoo package to implement gcca
* **learning_rate** : learning_rate of the network
* **epoch_num** :How long to train the model.
* **batch_size** : Number of example per minibatch.
* **reg_param** : the regularization parameter of the network
* **out_size** : the size of the new space learned by the model (number of the new features)
**Methods**
* **fit(self, train_x1, train_x2, train_x3, test_x1, test_x2, test_x3)** - trains and tests the networks batch-wise. Also, back propogates the ggca loss. First three parameters are the training set for each view respectively. The last three parameters are the testing set for each view respectively
* **_get_outputs(self, x1, x2, x3)** - returns gcca loss and output as both lists for given inputs x1, x2, x3 for view first, second, third respectively.
* **test(self, x1, x2, x3)** - returns gcca loss mean and output as list for given inputs x1, x2, x3 for view first, second, third respectively.
* **train_gcca(self, x1, x2, x3)** - uses the gcca.fit() from cca zoo on given inputs x1,x2,x3
"""
#def train_gcca(self, x1, x2, x3):
# self.gcca_wrapper = cca_zoo.wrapper.Wrapper(latent_dims=latent_dims, method='gcca')
# self.gcca.fit(x1, x2, self.outdim_size) | [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
35,
38,
4093,
32,
13,
541,
2047,
65,
198,
198,
38062,
4142,
7560,
416,
1623,
4820,
2870,
13,
198,
198,
20556,
2393,
318,
5140,
379,
198,
220,
220,
220,
3740,
1378,
4033,
397,
13,
34033,
13,
13297,
13,
785,
14,
19472,
14,
1314,
43,
62,
22,
73,
26152,
15,
42,
39,
6659,
52,
73,
32,
46,
21,
10247,
40,
65,
48,
568,
16,
77,
80,
5805,
15,
74,
35,
198,
198,
2,
10766,
3611,
1143,
20585,
605,
2744,
49501,
14691,
48282,
64,
295,
329,
513,
5009,
198,
198,
13227,
12,
89,
2238,
5301,
318,
973,
329,
262,
848,
10671,
429,
64,
295,
286,
308,
13227,
357,
12218,
1143,
20585,
605,
2744,
49501,
14691,
8,
198,
37811,
198,
198,
2,
17350,
262,
269,
6888,
12,
89,
2238,
5301,
198,
2,
79,
541,
2721,
269,
6888,
12,
89,
2238,
198,
198,
2,
11748,
278,
2672,
12782,
198,
11748,
28034,
198,
11748,
269,
6888,
62,
89,
2238,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
28034,
13,
40085,
355,
6436,
220,
198,
11748,
42362,
32,
62,
22462,
1303,
1462,
307,
9177,
198,
198,
37811,
2,
220,
5016,
360,
6144,
1058,
7921,
274,
257,
649,
10766,
47986,
7311,
198,
198,
1174,
48944,
1174,
1058,
628,
198,
9,
220,
220,
220,
12429,
29289,
62,
7857,
1174,
532,
632,
318,
262,
1351,
286,
2546,
286,
1123,
7679,
287,
262,
360,
6144,
16143,
422,
262,
5128,
7679,
198,
9,
220,
220,
12429,
48545,
1174,
532,
383,
2099,
286,
14916,
2163,
284,
307,
973,
13,
17489,
422,
705,
260,
2290,
6,
837,
705,
38006,
71,
6,
837,
705,
82,
17225,
1868,
6,
764,
2750,
4277,
11,
264,
17225,
1868,
13,
198,
198,
1174,
46202,
1174,
628,
220,
220,
198,
198,
9,
220,
220,
12429,
11813,
7,
944,
11,
300,
8,
1174,
1058,
2651,
2632,
519,
689,
5128,
300,
656,
262,
360,
6144,
290,
5860,
262,
5072,
198,
37811,
198,
198,
37811,
2,
5016,
1058,
46133,
4093,
32,
62,
998,
5712,
495,
532,
2896,
1127,
262,
10959,
329,
1115,
360,
6144,
82,
198,
198,
1174,
48944,
1174,
628,
198,
9,
220,
220,
12429,
29289,
62,
7857,
16,
837,
7679,
62,
7857,
17,
837,
7679,
62,
7857,
18,
1174,
1058,
1351,
286,
10620,
286,
1123,
7679,
286,
717,
11,
1218,
290,
2368,
360,
6144,
7,
1177,
8,
8148,
13,
198,
198,
1174,
46202,
1174,
628,
220,
220,
198,
198,
9,
220,
220,
12429,
11813,
7,
944,
11,
2124,
16,
11,
2124,
17,
11,
2124,
18,
8,
1174,
1058,
2651,
2632,
519,
689,
2124,
16,
656,
262,
717,
360,
6144,
11,
87,
17,
656,
262,
1218,
360,
6144,
290,
2124,
18,
656,
262,
2368,
360,
6144,
290,
5860,
262,
23862,
13,
198,
37811,
198,
198,
37811,
2,
5016,
46133,
4093,
32,
1058,
1846,
1154,
902,
262,
46133,
4093,
32,
978,
42289,
198,
198,
1174,
48944,
1174,
628,
198,
9,
220,
220,
12429,
998,
5712,
495,
1174,
1058,
2134,
286,
46133,
4093,
32,
62,
998,
5712,
495,
1398,
13,
198,
9,
220,
220,
12429,
70,
13227,
62,
18351,
38545,
1174,
1058,
422,
269,
6888,
12,
89,
2238,
5301,
284,
3494,
308,
13227,
198,
9,
220,
220,
12429,
40684,
62,
4873,
1174,
1058,
4673,
62,
4873,
286,
262,
3127,
198,
9,
220,
220,
12429,
538,
5374,
62,
22510,
1174,
1058,
2437,
890,
284,
4512,
262,
2746,
13,
198,
9,
220,
220,
12429,
43501,
62,
7857,
1174,
1058,
7913,
286,
1672,
583,
949,
571,
963,
13,
198,
9,
220,
220,
12429,
2301,
62,
17143,
1174,
1058,
220,
262,
3218,
1634,
11507,
286,
262,
3127,
198,
9,
220,
220,
12429,
448,
62,
7857,
1174,
1058,
262,
2546,
286,
262,
649,
2272,
4499,
416,
262,
2746,
357,
17618,
286,
262,
649,
3033,
8,
628,
198,
1174,
46202,
1174,
628,
220,
220,
198,
198,
9,
220,
220,
12429,
11147,
7,
944,
11,
4512,
62,
87,
16,
11,
4512,
62,
87,
17,
11,
4512,
62,
87,
18,
11,
1332,
62,
87,
16,
11,
1332,
62,
87,
17,
11,
1332,
62,
87,
18,
8,
1174,
532,
13404,
290,
5254,
262,
7686,
15458,
12,
3083,
13,
4418,
11,
736,
2632,
519,
689,
262,
308,
70,
6888,
2994,
13,
3274,
1115,
10007,
389,
262,
3047,
900,
329,
1123,
1570,
8148,
13,
383,
938,
1115,
10007,
389,
262,
4856,
900,
329,
1123,
1570,
8148,
198,
9,
220,
220,
12429,
62,
1136,
62,
22915,
82,
7,
944,
11,
2124,
16,
11,
2124,
17,
11,
2124,
18,
8,
1174,
532,
5860,
308,
13227,
2994,
290,
5072,
355,
1111,
8341,
329,
1813,
17311,
2124,
16,
11,
2124,
17,
11,
2124,
18,
329,
1570,
717,
11,
1218,
11,
2368,
8148,
13,
198,
9,
220,
220,
12429,
9288,
7,
944,
11,
2124,
16,
11,
2124,
17,
11,
2124,
18,
8,
1174,
532,
5860,
308,
13227,
2994,
1612,
290,
5072,
355,
1351,
329,
1813,
17311,
2124,
16,
11,
2124,
17,
11,
2124,
18,
329,
1570,
717,
11,
1218,
11,
2368,
8148,
13,
198,
9,
220,
12429,
27432,
62,
70,
13227,
7,
944,
11,
2124,
16,
11,
2124,
17,
11,
2124,
18,
8,
1174,
532,
3544,
262,
308,
13227,
13,
11147,
3419,
422,
269,
6888,
26626,
319,
1813,
17311,
2124,
16,
11,
87,
17,
11,
87,
18,
198,
37811,
628,
220,
1303,
4299,
4512,
62,
70,
13227,
7,
944,
11,
2124,
16,
11,
2124,
17,
11,
2124,
18,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13,
70,
13227,
62,
48553,
796,
269,
6888,
62,
89,
2238,
13,
48553,
13,
36918,
2848,
7,
15460,
298,
62,
67,
12078,
28,
15460,
298,
62,
67,
12078,
11,
2446,
11639,
70,
13227,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13,
70,
13227,
13,
11147,
7,
87,
16,
11,
2124,
17,
11,
2116,
13,
448,
27740,
62,
7857,
8
] | 2.898958 | 960 |
import FWCore.ParameterSet.Config as cms
#IsolatedPixelTrackCandidateProducer default configuration
isolPixelTrackProd = cms.EDProducer("IsolatedPixelTrackCandidateL1TProducer",
L1eTauJetsSource = cms.InputTag( 'hltGtStage2Digis','Tau' ),
tauAssociationCone = cms.double( 0.0 ),
tauUnbiasCone = cms.double( 1.2 ),
PixelTracksSources = cms.VInputTag( "hltPixelTracks" ),
ExtrapolationConeSize = cms.double(1.0),
PixelIsolationConeSizeAtEC = cms.double(40),
L1GTSeedLabel = cms.InputTag( "hltL1sV0SingleJet60" ),
MaxVtxDXYSeed = cms.double( 101.0 ),
MaxVtxDXYIsol = cms.double( 101.0 ),
VertexLabel = cms.InputTag( "hltTrimmedPixelVertices" ),
MagFieldRecordName = cms.string("VolumeBasedMagneticField"),
minPTrack = cms.double( 5.0 ),
maxPTrackForIsolation = cms.double( 3.0 ),
EBEtaBoundary = cms.double(1.479)
)
| [
11748,
48849,
14055,
13,
36301,
7248,
13,
16934,
355,
269,
907,
198,
198,
2,
3792,
50027,
40809,
24802,
41572,
20540,
11547,
2189,
4277,
8398,
198,
30152,
40809,
24802,
2964,
67,
220,
220,
220,
796,
269,
907,
13,
1961,
11547,
2189,
7203,
3792,
50027,
40809,
24802,
41572,
20540,
43,
16,
7250,
2076,
2189,
1600,
198,
220,
220,
220,
406,
16,
68,
51,
559,
41,
1039,
7416,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
20560,
24835,
7,
705,
71,
2528,
38,
83,
29391,
17,
19511,
271,
41707,
51,
559,
6,
10612,
198,
220,
220,
220,
256,
559,
8021,
41003,
34,
505,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
23352,
7,
657,
13,
15,
10612,
198,
220,
220,
220,
256,
559,
3118,
65,
4448,
34,
505,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
23352,
7,
352,
13,
17,
10612,
198,
220,
220,
220,
11349,
2898,
4595,
21188,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
53,
20560,
24835,
7,
366,
71,
2528,
40809,
2898,
4595,
1,
10612,
198,
220,
220,
220,
5683,
2416,
21417,
34,
505,
10699,
220,
220,
220,
220,
220,
796,
269,
907,
13,
23352,
7,
16,
13,
15,
828,
198,
220,
220,
220,
11349,
3792,
21417,
34,
505,
10699,
2953,
2943,
796,
269,
907,
13,
23352,
7,
1821,
828,
198,
220,
220,
220,
406,
16,
38,
4694,
2308,
33986,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
20560,
24835,
7,
366,
71,
2528,
43,
16,
82,
53,
15,
28008,
42273,
1899,
1,
10612,
198,
220,
220,
220,
5436,
53,
17602,
36227,
16309,
2308,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
23352,
7,
8949,
13,
15,
10612,
198,
220,
220,
220,
5436,
53,
17602,
35,
34278,
3792,
349,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
23352,
7,
8949,
13,
15,
10612,
198,
220,
220,
220,
4643,
16886,
33986,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
20560,
24835,
7,
366,
71,
2528,
2898,
320,
1150,
40809,
42369,
1063,
1,
10612,
198,
220,
220,
220,
2944,
15878,
23739,
5376,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
8841,
7203,
31715,
15001,
13436,
9833,
15878,
12340,
198,
220,
220,
220,
949,
47,
24802,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
23352,
7,
642,
13,
15,
10612,
198,
220,
220,
220,
3509,
47,
24802,
1890,
3792,
21417,
220,
220,
220,
220,
220,
796,
269,
907,
13,
23352,
7,
513,
13,
15,
10612,
198,
220,
220,
220,
412,
12473,
8326,
49646,
560,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
269,
907,
13,
23352,
7,
16,
13,
31714,
8,
198,
8,
628,
198
] | 2 | 508 |
#!/usr/bin/env python3
####################################################################################################
#
# Project: Embedded Learning Library (ELL)
# File: procmon.py
# Authors: Lisa Ong
#
# Requires: Python 3.4+, psutil (pip install psutil)
#
####################################################################################################
import argparse
import json
import psutil
import statistics
from time import sleep
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# required arguments
parser.add_argument("process_id", type=int, help="process identifier to monitor")
# options
parser.add_argument("--interval", type=float, default=1, help="monitoring interval in seconds")
parser.add_argument("--logfile", help="path to the output file")
args = parser.parse_args()
pm = ProcessMonitor(args.process_id, args.logfile, args.interval)
pm.start()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
29113,
29113,
29113,
4242,
198,
2,
198,
2,
220,
4935,
25,
220,
13302,
47238,
18252,
10074,
357,
23304,
8,
198,
2,
220,
9220,
25,
220,
220,
220,
220,
13834,
2144,
13,
9078,
198,
2,
220,
46665,
25,
220,
15378,
48041,
198,
2,
198,
2,
220,
26848,
25,
11361,
513,
13,
19,
28200,
26692,
22602,
357,
79,
541,
2721,
26692,
22602,
8,
198,
2,
198,
29113,
29113,
29113,
4242,
198,
11748,
1822,
29572,
198,
11748,
33918,
198,
11748,
26692,
22602,
198,
11748,
7869,
198,
6738,
640,
1330,
3993,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
628,
220,
220,
220,
1303,
2672,
7159,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
14681,
62,
312,
1600,
2099,
28,
600,
11,
1037,
2625,
14681,
27421,
284,
5671,
4943,
628,
220,
220,
220,
1303,
3689,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
3849,
2100,
1600,
2099,
28,
22468,
11,
4277,
28,
16,
11,
1037,
2625,
41143,
278,
16654,
287,
4201,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
6404,
7753,
1600,
1037,
2625,
6978,
284,
262,
5072,
2393,
4943,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
9114,
796,
10854,
35479,
7,
22046,
13,
14681,
62,
312,
11,
26498,
13,
6404,
7753,
11,
26498,
13,
3849,
2100,
8,
198,
220,
220,
220,
9114,
13,
9688,
3419,
198
] | 3.633205 | 259 |
'''
Source codes for Python Machine Learning By Example 3rd Edition (Packt Publishing)
Chapter 5 Predicting Online Ads Click-through with Logistic Regression
Author: Yuxi (Hayden) Liu ([email protected])
'''
import tensorflow as tf
import pandas as pd
n_rows = 300000
df = pd.read_csv("train", nrows=n_rows)
X = df.drop(['click', 'id', 'hour', 'device_id', 'device_ip'], axis=1).values
Y = df['click'].values
n_train = int(n_rows * 0.9)
X_train = X[:n_train]
Y_train = Y[:n_train].astype('float32')
X_test = X[n_train:]
Y_test = Y[n_train:].astype('float32')
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder(handle_unknown='ignore')
X_train_enc = enc.fit_transform(X_train).toarray().astype('float32')
X_test_enc = enc.transform(X_test).toarray().astype('float32')
batch_size = 1000
train_data = tf.data.Dataset.from_tensor_slices((X_train_enc, Y_train))
train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)
n_features = int(X_train_enc.shape[1])
W = tf.Variable(tf.zeros([n_features, 1]))
b = tf.Variable(tf.zeros([1]))
learning_rate = 0.0008
optimizer = tf.optimizers.Adam(learning_rate)
training_steps = 6000
for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1):
run_optimization(batch_x, batch_y)
if step % 500 == 0:
logits = tf.add(tf.matmul(batch_x, W), b)[:, 0]
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=batch_y, logits=logits))
print("step: %i, loss: %f" % (step, loss))
logits = tf.add(tf.matmul(X_test_enc, W), b)[:, 0]
pred = tf.nn.sigmoid(logits)
auc_metric = tf.keras.metrics.AUC()
auc_metric.update_state(Y_test, pred)
print(f'AUC on testing set: {auc_metric.result().numpy():.3f}')
| [
7061,
6,
198,
7416,
12416,
329,
11361,
10850,
18252,
2750,
17934,
513,
4372,
5061,
357,
11869,
83,
23499,
8,
198,
14126,
642,
49461,
278,
7467,
47442,
6914,
12,
9579,
351,
5972,
2569,
3310,
2234,
198,
13838,
25,
575,
2821,
72,
357,
31306,
6559,
8,
18258,
357,
88,
2821,
72,
13,
4528,
84,
13,
68,
344,
31,
14816,
13,
785,
8,
198,
7061,
6,
628,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
11748,
19798,
292,
355,
279,
67,
198,
77,
62,
8516,
796,
5867,
830,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
7203,
27432,
1600,
299,
8516,
28,
77,
62,
8516,
8,
198,
198,
55,
796,
47764,
13,
14781,
7,
17816,
12976,
3256,
705,
312,
3256,
705,
9769,
3256,
705,
25202,
62,
312,
3256,
705,
25202,
62,
541,
6,
4357,
16488,
28,
16,
737,
27160,
198,
56,
796,
47764,
17816,
12976,
6,
4083,
27160,
198,
198,
77,
62,
27432,
796,
493,
7,
77,
62,
8516,
1635,
657,
13,
24,
8,
198,
55,
62,
27432,
796,
1395,
58,
25,
77,
62,
27432,
60,
198,
56,
62,
27432,
796,
575,
58,
25,
77,
62,
27432,
4083,
459,
2981,
10786,
22468,
2624,
11537,
198,
55,
62,
9288,
796,
1395,
58,
77,
62,
27432,
47715,
198,
56,
62,
9288,
796,
575,
58,
77,
62,
27432,
25,
4083,
459,
2981,
10786,
22468,
2624,
11537,
198,
198,
6738,
1341,
35720,
13,
3866,
36948,
1330,
1881,
21352,
27195,
12342,
198,
12685,
796,
1881,
21352,
27195,
12342,
7,
28144,
62,
34680,
11639,
46430,
11537,
198,
55,
62,
27432,
62,
12685,
796,
2207,
13,
11147,
62,
35636,
7,
55,
62,
27432,
737,
1462,
18747,
22446,
459,
2981,
10786,
22468,
2624,
11537,
198,
55,
62,
9288,
62,
12685,
796,
2207,
13,
35636,
7,
55,
62,
9288,
737,
1462,
18747,
22446,
459,
2981,
10786,
22468,
2624,
11537,
628,
198,
43501,
62,
7857,
796,
8576,
198,
27432,
62,
7890,
796,
48700,
13,
7890,
13,
27354,
292,
316,
13,
6738,
62,
83,
22854,
62,
82,
677,
274,
19510,
55,
62,
27432,
62,
12685,
11,
575,
62,
27432,
4008,
198,
27432,
62,
7890,
796,
4512,
62,
7890,
13,
44754,
22446,
1477,
18137,
7,
27641,
737,
43501,
7,
43501,
62,
7857,
737,
3866,
69,
7569,
7,
16,
8,
628,
198,
77,
62,
40890,
796,
493,
7,
55,
62,
27432,
62,
12685,
13,
43358,
58,
16,
12962,
198,
54,
796,
48700,
13,
43015,
7,
27110,
13,
9107,
418,
26933,
77,
62,
40890,
11,
352,
60,
4008,
198,
65,
796,
48700,
13,
43015,
7,
27110,
13,
9107,
418,
26933,
16,
60,
4008,
198,
198,
40684,
62,
4873,
796,
657,
13,
830,
23,
198,
40085,
7509,
796,
48700,
13,
40085,
11341,
13,
23159,
7,
40684,
62,
4873,
8,
198,
198,
34409,
62,
20214,
796,
39064,
198,
1640,
2239,
11,
357,
43501,
62,
87,
11,
15458,
62,
88,
8,
287,
27056,
378,
7,
27432,
62,
7890,
13,
20657,
7,
34409,
62,
20214,
828,
352,
2599,
198,
220,
220,
220,
1057,
62,
40085,
1634,
7,
43501,
62,
87,
11,
15458,
62,
88,
8,
198,
220,
220,
220,
611,
2239,
4064,
5323,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
896,
796,
48700,
13,
2860,
7,
27110,
13,
6759,
76,
377,
7,
43501,
62,
87,
11,
370,
828,
275,
38381,
45299,
657,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2994,
796,
48700,
13,
445,
7234,
62,
32604,
7,
27110,
13,
20471,
13,
82,
17225,
1868,
62,
19692,
62,
298,
28338,
62,
4480,
62,
6404,
896,
7,
23912,
1424,
28,
43501,
62,
88,
11,
2604,
896,
28,
6404,
896,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
9662,
25,
4064,
72,
11,
2994,
25,
4064,
69,
1,
4064,
357,
9662,
11,
2994,
4008,
628,
198,
198,
6404,
896,
796,
48700,
13,
2860,
7,
27110,
13,
6759,
76,
377,
7,
55,
62,
9288,
62,
12685,
11,
370,
828,
275,
38381,
45299,
657,
60,
198,
28764,
796,
48700,
13,
20471,
13,
82,
17225,
1868,
7,
6404,
896,
8,
198,
14272,
62,
4164,
1173,
796,
48700,
13,
6122,
292,
13,
4164,
10466,
13,
32,
9598,
3419,
198,
14272,
62,
4164,
1173,
13,
19119,
62,
5219,
7,
56,
62,
9288,
11,
2747,
8,
198,
198,
4798,
7,
69,
6,
32,
9598,
319,
4856,
900,
25,
1391,
14272,
62,
4164,
1173,
13,
20274,
22446,
77,
32152,
33529,
13,
18,
69,
92,
11537,
198
] | 2.432357 | 717 |
"""
辅助函数
"""
from cswd.common.utils import ensure_list
from .core import symbols, to_tdates
def select_output_by(output, start=None, end=None, assets=None):
"""
按时间及代码选择`pipeline`输出数据框
专用于研究环境下的run_pipeline输出结果分析
参数
----
output : MultiIndex DataFrame
pipeline输出结果
start : str
开始时间
end : str
结束时间
assets : 可迭代对象或str
股票代码
案例
----
>>> # result 为运行`pipeline`输出结果
>>> select_output_by(result,'2018-04-23','2018-04-24',stock_codes=['000585','600871'])
mean_10
2018-04-23 00:00:00+00:00 *ST东电(000585) 2.7900
*ST油服(600871) 2.0316
2018-04-24 00:00:00+00:00 *ST东电(000585) 2.7620
*ST油服(600871) 2.0316
"""
nlevels = output.index.nlevels
_, start, end = to_tdates(start, end)
if nlevels != 2:
raise ValueError('输入数据框只能是run_pipeline输出结果,MultiIndex DataFrame')
if start:
output = output.loc[start:]
if end:
output = output.loc[:end]
if assets is not None:
assets = symbols(assets)
return output.loc[(slice(None), assets), :]
else:
return output | [
37811,
198,
164,
122,
227,
27950,
102,
49035,
121,
46763,
108,
198,
37811,
198,
6738,
269,
2032,
67,
13,
11321,
13,
26791,
1330,
4155,
62,
4868,
198,
198,
6738,
764,
7295,
1330,
14354,
11,
284,
62,
8671,
689,
628,
198,
4299,
2922,
62,
22915,
62,
1525,
7,
22915,
11,
923,
28,
14202,
11,
886,
28,
14202,
11,
6798,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
10545,
234,
231,
33768,
114,
29785,
112,
20998,
232,
47987,
163,
254,
223,
34460,
231,
162,
233,
102,
63,
79,
541,
4470,
63,
164,
122,
241,
49035,
118,
46763,
108,
162,
235,
106,
162,
94,
228,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
10310,
241,
18796,
101,
12859,
236,
163,
254,
242,
163,
102,
114,
163,
236,
107,
161,
95,
225,
10310,
233,
21410,
5143,
62,
79,
541,
4470,
164,
122,
241,
49035,
118,
163,
119,
241,
162,
252,
250,
26344,
228,
162,
252,
238,
628,
220,
220,
220,
10263,
237,
224,
46763,
108,
198,
220,
220,
220,
13498,
198,
220,
220,
220,
5072,
1058,
15237,
15732,
6060,
19778,
198,
220,
220,
220,
220,
220,
220,
220,
11523,
164,
122,
241,
49035,
118,
163,
119,
241,
162,
252,
250,
198,
220,
220,
220,
923,
27332,
120,
248,
965,
198,
220,
220,
220,
220,
220,
220,
220,
10263,
120,
222,
34650,
233,
33768,
114,
29785,
112,
198,
220,
220,
220,
886,
27332,
120,
248,
965,
198,
220,
220,
220,
220,
220,
220,
220,
13328,
119,
241,
30266,
253,
33768,
114,
29785,
112,
220,
220,
220,
220,
198,
220,
220,
220,
6798,
27332,
120,
248,
10263,
237,
107,
32573,
255,
47987,
43380,
117,
164,
109,
94,
22755,
244,
2536,
198,
220,
220,
220,
220,
220,
220,
220,
5525,
224,
94,
163,
98,
101,
47987,
163,
254,
223,
628,
220,
220,
220,
10545,
94,
230,
160,
122,
233,
198,
220,
220,
220,
13498,
220,
220,
198,
220,
220,
220,
13163,
1303,
1255,
220,
10310,
118,
32573,
238,
26193,
234,
63,
79,
541,
4470,
63,
164,
122,
241,
49035,
118,
163,
119,
241,
162,
252,
250,
220,
198,
220,
220,
220,
13163,
2922,
62,
22915,
62,
1525,
7,
20274,
4032,
7908,
12,
3023,
12,
1954,
41707,
7908,
12,
3023,
12,
1731,
3256,
13578,
62,
40148,
28,
17816,
830,
38905,
41707,
8054,
23,
4869,
6,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1612,
62,
940,
198,
220,
220,
220,
2864,
12,
3023,
12,
1954,
3571,
25,
405,
25,
405,
10,
405,
25,
405,
220,
197,
9,
2257,
10310,
250,
18796,
113,
7,
830,
38905,
8,
220,
197,
17,
13,
3720,
405,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
2257,
162,
110,
117,
17312,
235,
7,
8054,
23,
4869,
8,
220,
197,
17,
13,
3070,
1433,
198,
220,
220,
220,
2864,
12,
3023,
12,
1731,
3571,
25,
405,
25,
405,
10,
405,
25,
405,
220,
197,
9,
2257,
10310,
250,
18796,
113,
7,
830,
38905,
8,
220,
197,
17,
13,
4304,
1238,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
2257,
162,
110,
117,
17312,
235,
7,
8054,
23,
4869,
8,
220,
197,
17,
13,
3070,
1433,
220,
220,
220,
220,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
299,
46170,
796,
5072,
13,
9630,
13,
77,
46170,
198,
220,
220,
220,
4808,
11,
923,
11,
886,
796,
284,
62,
8671,
689,
7,
9688,
11,
886,
8,
198,
220,
220,
220,
611,
299,
46170,
14512,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
164,
122,
241,
17739,
98,
46763,
108,
162,
235,
106,
162,
94,
228,
20998,
103,
47797,
121,
42468,
5143,
62,
79,
541,
4470,
164,
122,
241,
49035,
118,
163,
119,
241,
162,
252,
250,
171,
120,
234,
29800,
15732,
6060,
19778,
11537,
198,
220,
220,
220,
611,
923,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
5072,
13,
17946,
58,
9688,
47715,
198,
220,
220,
220,
611,
886,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
5072,
13,
17946,
58,
25,
437,
60,
198,
220,
220,
220,
611,
6798,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6798,
796,
14354,
7,
19668,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
5072,
13,
17946,
58,
7,
48369,
7,
14202,
828,
6798,
828,
1058,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
5072
] | 1.510328 | 823 |
from typing import Callable, Dict, Any
import numpy as np
from . import _abstract
from ...ops.reshape import aligned_with
| [
6738,
19720,
1330,
4889,
540,
11,
360,
713,
11,
4377,
198,
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
764,
1330,
4808,
397,
8709,
198,
198,
6738,
2644,
2840,
13,
3447,
1758,
1330,
19874,
62,
4480,
628,
628
] | 3.282051 | 39 |
#!/usr/bin/python
from Qt import QtCore, QtWidgets
from .stylesheet import STYLE_QMENU
# disable for issue #142
# def hideEvent(self, event):
# super(BaseMenu, self).hideEvent(event)
# for a in self.actions():
# if hasattr(a, 'node_id'):
# a.node_id = None
| [
2,
48443,
14629,
14,
8800,
14,
29412,
198,
6738,
33734,
1330,
33734,
14055,
11,
33734,
54,
312,
11407,
198,
6738,
764,
47720,
25473,
1330,
3563,
56,
2538,
62,
48,
49275,
52,
628,
198,
220,
220,
220,
1303,
15560,
329,
2071,
1303,
23726,
198,
220,
220,
220,
1303,
825,
7808,
9237,
7,
944,
11,
1785,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2208,
7,
14881,
23381,
11,
2116,
737,
24717,
9237,
7,
15596,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
257,
287,
2116,
13,
4658,
33529,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
611,
468,
35226,
7,
64,
11,
705,
17440,
62,
312,
6,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
13,
17440,
62,
312,
796,
6045,
628,
198
] | 2.188811 | 143 |
'''
Created on Aug 29 2015
@author: [email protected]
'''
# server info status code
OK = FlamesStatus(0, 'common.ok', 'OK.')
# server error status code
UNEXPECTED_EXCEPTION = FlamesStatus(1000001, 'common.unexpected_exception', 'Unknown Error.')
UNKNOWN_RESOURCE = FlamesStatus(1000002, 'common.unknown_resource', 'Unknown Resource.')
PARAMETER_VALIDATED_FAILED = FlamesStatus(1000003, 'common.parameter_validated_failed',
'Parameter validated error : {messages}')
AUTH_FAILED = FlamesStatus(1000004, 'common.auth_failed', "Authorization failed : {messages}")
JSON_PARSING_FAILED = FlamesStatus(1000004, 'common.json_parsing_failed', 'Parsing json string failed : {message}')
USER_DUPLICATE = FlamesStatus(1080001, "user_duplicate", "'{user_id}' is existed")
USER_NOT_FOUND = FlamesStatus(1080002, "user_not_found", "'{user_id}' is not found")
| [
7061,
6,
198,
41972,
319,
2447,
2808,
1853,
198,
198,
31,
9800,
25,
885,
7114,
13,
354,
2013,
31,
24,
3559,
486,
13,
6888,
198,
7061,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2,
4382,
7508,
3722,
2438,
198,
11380,
796,
25814,
19580,
7,
15,
11,
705,
11321,
13,
482,
3256,
705,
11380,
2637,
8,
198,
198,
2,
4382,
4049,
3722,
2438,
198,
4944,
49864,
9782,
1961,
62,
6369,
42006,
2849,
796,
25814,
19580,
7,
49388,
486,
11,
705,
11321,
13,
403,
40319,
62,
1069,
4516,
3256,
705,
20035,
13047,
2637,
8,
198,
4944,
44706,
62,
19535,
31033,
796,
25814,
19580,
7,
3064,
34215,
11,
705,
11321,
13,
34680,
62,
31092,
3256,
705,
20035,
20857,
2637,
8,
198,
27082,
2390,
2767,
1137,
62,
23428,
2389,
11617,
62,
7708,
4146,
1961,
796,
25814,
19580,
7,
3064,
830,
18,
11,
705,
11321,
13,
17143,
2357,
62,
12102,
515,
62,
47904,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36301,
31031,
4049,
1058,
1391,
37348,
1095,
92,
11537,
198,
32,
24318,
62,
7708,
4146,
1961,
796,
25814,
19580,
7,
3064,
830,
19,
11,
705,
11321,
13,
18439,
62,
47904,
3256,
366,
13838,
1634,
4054,
1058,
1391,
37348,
1095,
92,
4943,
198,
40386,
62,
27082,
50,
2751,
62,
7708,
4146,
1961,
796,
25814,
19580,
7,
3064,
830,
19,
11,
705,
11321,
13,
17752,
62,
79,
945,
278,
62,
47904,
3256,
705,
47,
945,
278,
33918,
4731,
4054,
1058,
1391,
20500,
92,
11537,
198,
29904,
62,
35,
52,
31484,
6158,
796,
25814,
19580,
7,
940,
7410,
486,
11,
366,
7220,
62,
646,
489,
5344,
1600,
24018,
90,
7220,
62,
312,
92,
6,
318,
11196,
4943,
198,
29904,
62,
11929,
62,
37,
15919,
796,
25814,
19580,
7,
15711,
34215,
11,
366,
7220,
62,
1662,
62,
9275,
1600,
24018,
90,
7220,
62,
312,
92,
6,
318,
407,
1043,
4943,
628,
198
] | 2.631579 | 342 |
import pytest
import torch
import tempfile
import shutil
import os
from tests.material import utils
import padl
from padl import transform, identity, batch
from padl_ext.pytorch_lightning.prepare import LightningModule
try:
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
except (ImportError, ModuleNotFoundError):
pass
@transform
@transform
@transform
@pytest.mark.skipif((not utils.check_if_module_installed('pytorch_lightning')),
reason="requires the torchserve and torch-model-archiver")
| [
11748,
12972,
9288,
198,
11748,
28034,
198,
11748,
20218,
7753,
198,
11748,
4423,
346,
198,
11748,
28686,
198,
198,
6738,
5254,
13,
33665,
1330,
3384,
4487,
198,
198,
11748,
14841,
75,
198,
6738,
14841,
75,
1330,
6121,
11,
5369,
11,
15458,
198,
198,
6738,
14841,
75,
62,
2302,
13,
9078,
13165,
354,
62,
2971,
768,
13,
46012,
533,
1330,
12469,
26796,
198,
28311,
25,
198,
220,
220,
220,
1330,
12972,
13165,
354,
62,
2971,
768,
355,
458,
198,
220,
220,
220,
422,
12972,
13165,
354,
62,
2971,
768,
13,
13345,
10146,
1330,
9104,
9787,
4122,
198,
16341,
357,
20939,
12331,
11,
19937,
3673,
21077,
12331,
2599,
198,
220,
220,
220,
1208,
628,
198,
31,
35636,
628,
198,
31,
35636,
628,
198,
31,
35636,
628,
198,
198,
31,
9078,
9288,
13,
4102,
13,
48267,
361,
19510,
1662,
3384,
4487,
13,
9122,
62,
361,
62,
21412,
62,
37050,
10786,
9078,
13165,
354,
62,
2971,
768,
11537,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1738,
2625,
47911,
262,
28034,
2655,
303,
290,
28034,
12,
19849,
12,
998,
1428,
4943,
198
] | 3.010471 | 191 |
# coding: utf-8
from __future__ import print_function
import sys
import os
import datetime
import pprint
try:
from pyAnaf.api import Anaf
except:
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from pyAnaf.api import Anaf
if __name__ == '__main__':
main()
| [
2,
19617,
25,
3384,
69,
12,
23,
198,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
25064,
198,
11748,
28686,
198,
11748,
4818,
8079,
198,
11748,
279,
4798,
628,
198,
28311,
25,
198,
220,
220,
220,
422,
12972,
2025,
1878,
13,
15042,
1330,
1052,
1878,
198,
16341,
25,
198,
220,
220,
220,
25064,
13,
6978,
13,
28463,
7,
15,
11,
28686,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
492,
6,
22305,
198,
220,
220,
220,
422,
12972,
2025,
1878,
13,
15042,
1330,
1052,
1878,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.516129 | 124 |
import pandas as pd
df = pd.read_csv('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Stations_Selected_Colombia_RT.csv')
IDs = df['Codigo'].tolist()
COMIDs = df['COMID'].tolist()
Names = df['Nombre'].tolist()
Rivers = df['Corriente'].tolist()
'''Get Historical Observed Water Levels'''
observed_wl_dir = '/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_Water_Level'
waterLevelData = pd.read_csv('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_IDEAM/NIVEL.tr5.csv', index_col=1)
waterLevelData.index = pd.to_datetime(waterLevelData.index)
fechas = waterLevelData.index.tolist()
estaciones = waterLevelData['ESTACION'].tolist()
valores = waterLevelData['VALOR'].tolist()
for id in IDs:
waterLevel = []
dates = []
for i in range (0, len(estaciones)):
if (id == estaciones[i]):
waterLevel.append(valores[i])
dates.append(fechas[i])
pairs = [list(a) for a in zip(dates, waterLevel)]
pd.DataFrame(pairs, columns= ['Datetime', 'oberved water level (cm)']).to_csv(observed_wl_dir + "/{}_historic_observed_water_level.csv".format(id), encoding='utf-8', header=True, index=0)
print("{}_historic_observed_water_level.csv".format(id))
#Reading historic simulated and historic observed data
historicSimulatedFiles = []
historicObservedFiles = []
historicWaterLevelFiles = []
for id, comid in zip(IDs, COMIDs):
historicObservedFiles.append('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_Observed/' + str(id) + '_historic_observed.csv')
historicSimulatedFiles.append('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_Simulated/' + str(comid) + '_historic_simulatied.csv')
historicSimulatedFiles.append('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Historical_Water_Level/' + str(id) + '_historic_observed_water_level.csv')
for id, comid, name, rio, obsFile, simFile, wlFile in zip(IDs, COMIDs, Names, Rivers, historicObservedFiles, historicSimulatedFiles, historicWaterLevelFiles):
print(id, comid, name, rio)
'''Get Real Time Observed Water Levels'''
observed_WL_dir = '/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Real_Time_Water_Level'
daily_wl_dir = '/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Daily_Real_Time_Water_Level'
waterLevelData = pd.read_csv('/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Real_Time_IDEAM/NIVEL-DHIME.csv', index_col=9)
waterLevelData.index = pd.to_datetime(waterLevelData.index)
fechas = waterLevelData.index.tolist()
estaciones = waterLevelData['CodigoEstacion'].tolist()
valores = waterLevelData['Valor'].tolist()
# for id in IDs:
# waterLevel = []
# dates = []
#
# for i in range (0, len(estaciones)):
# if (id == estaciones[i]):
# waterLevel.append(valores[i])
# dates.append(fechas[i])
#
# pairs = [list(a) for a in zip(dates, waterLevel)]
# pd.DataFrame(pairs, columns= ['Datetime', 'oberved water level (cm)']).to_csv(observed_WL_dir + "/{}_real_time_observed_water_level.csv".format(id), encoding='utf-8', header=True, index=0)
# print("{}_real_time_observed_water_level.csv".format(id))
#
# data = pd.read_csv("/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Real_Time_Water_Level/{0}_real_time_observed_water_level.csv".format(id), index_col=0)
#
# data.index = pd.to_datetime(data.index)
#
# daily_df = data.groupby(data.index.strftime("%Y/%m/%d")).mean()
# daily_df.index = pd.to_datetime(daily_df.index)
#
# daily_df.to_csv("/Users/student/Dropbox/PhD/2019 Summer/Dissertation_v7/Colombia/Data/Daily_Real_Time_Water_Level/{0}_real_time_observed_water_level.csv".format(id), index_label="Datetime")
#
# print(daily_df)
#Defining the return periods for the historical Simulation | [
11748,
19798,
292,
355,
279,
67,
198,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
10786,
14,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
1273,
602,
62,
4653,
12609,
62,
5216,
2381,
544,
62,
14181,
13,
40664,
11537,
198,
198,
47954,
796,
47764,
17816,
43806,
14031,
6,
4083,
83,
349,
396,
3419,
198,
9858,
47954,
796,
47764,
17816,
9858,
2389,
6,
4083,
83,
349,
396,
3419,
198,
36690,
796,
47764,
17816,
45,
2381,
260,
6,
4083,
83,
349,
396,
3419,
198,
49,
1191,
796,
47764,
17816,
10606,
8289,
68,
6,
4083,
83,
349,
396,
3419,
198,
198,
7061,
6,
3855,
23121,
11086,
8520,
5638,
28248,
7061,
6,
198,
198,
672,
45852,
62,
40989,
62,
15908,
796,
31051,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
13749,
12409,
62,
19184,
62,
4971,
6,
198,
198,
7050,
4971,
6601,
796,
279,
67,
13,
961,
62,
40664,
10786,
14,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
13749,
12409,
62,
14114,
2390,
14,
45,
3824,
3698,
13,
2213,
20,
13,
40664,
3256,
6376,
62,
4033,
28,
16,
8,
198,
7050,
4971,
6601,
13,
9630,
796,
279,
67,
13,
1462,
62,
19608,
8079,
7,
7050,
4971,
6601,
13,
9630,
8,
198,
69,
3055,
292,
796,
1660,
4971,
6601,
13,
9630,
13,
83,
349,
396,
3419,
198,
395,
49443,
274,
796,
1660,
4971,
6601,
17816,
6465,
2246,
2849,
6,
4083,
83,
349,
396,
3419,
198,
2100,
2850,
796,
1660,
4971,
6601,
17816,
23428,
1581,
6,
4083,
83,
349,
396,
3419,
198,
198,
1640,
4686,
287,
32373,
25,
198,
197,
7050,
4971,
796,
17635,
198,
197,
19581,
796,
17635,
628,
197,
1640,
1312,
287,
2837,
357,
15,
11,
18896,
7,
395,
49443,
274,
8,
2599,
198,
197,
197,
361,
357,
312,
6624,
1556,
49443,
274,
58,
72,
60,
2599,
198,
197,
197,
197,
7050,
4971,
13,
33295,
7,
2100,
2850,
58,
72,
12962,
198,
197,
197,
197,
19581,
13,
33295,
7,
69,
3055,
292,
58,
72,
12962,
628,
197,
79,
3468,
796,
685,
4868,
7,
64,
8,
329,
257,
287,
19974,
7,
19581,
11,
1660,
4971,
15437,
198,
197,
30094,
13,
6601,
19778,
7,
79,
3468,
11,
15180,
28,
37250,
27354,
8079,
3256,
705,
2023,
1079,
1660,
1241,
357,
11215,
8,
20520,
737,
1462,
62,
40664,
7,
672,
45852,
62,
40989,
62,
15908,
1343,
12813,
90,
92,
62,
31304,
62,
672,
45852,
62,
7050,
62,
5715,
13,
40664,
1911,
18982,
7,
312,
828,
21004,
11639,
40477,
12,
23,
3256,
13639,
28,
17821,
11,
6376,
28,
15,
8,
198,
197,
4798,
7203,
90,
92,
62,
31304,
62,
672,
45852,
62,
7050,
62,
5715,
13,
40664,
1911,
18982,
7,
312,
4008,
628,
198,
2,
36120,
9566,
28590,
290,
9566,
6515,
1366,
198,
198,
31304,
8890,
4817,
25876,
796,
17635,
198,
31304,
31310,
8520,
25876,
796,
17635,
198,
31304,
19184,
4971,
25876,
796,
17635,
198,
198,
1640,
4686,
11,
401,
312,
287,
19974,
7,
47954,
11,
9440,
47954,
2599,
198,
197,
31304,
31310,
8520,
25876,
13,
33295,
10786,
14,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
13749,
12409,
62,
31310,
8520,
14,
6,
1343,
965,
7,
312,
8,
1343,
705,
62,
31304,
62,
672,
45852,
13,
40664,
11537,
198,
197,
31304,
8890,
4817,
25876,
13,
33295,
10786,
14,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
13749,
12409,
62,
8890,
4817,
14,
6,
1343,
965,
7,
785,
312,
8,
1343,
705,
62,
31304,
62,
14323,
377,
265,
798,
13,
40664,
11537,
198,
197,
31304,
8890,
4817,
25876,
13,
33295,
10786,
14,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
13749,
12409,
62,
19184,
62,
4971,
14,
6,
1343,
965,
7,
312,
8,
1343,
705,
62,
31304,
62,
672,
45852,
62,
7050,
62,
5715,
13,
40664,
11537,
198,
198,
1640,
4686,
11,
401,
312,
11,
1438,
11,
374,
952,
11,
10201,
8979,
11,
985,
8979,
11,
266,
75,
8979,
287,
19974,
7,
47954,
11,
9440,
47954,
11,
28531,
11,
18280,
11,
9566,
31310,
8520,
25876,
11,
9566,
8890,
4817,
25876,
11,
9566,
19184,
4971,
25876,
2599,
198,
197,
4798,
7,
312,
11,
401,
312,
11,
1438,
11,
374,
952,
8,
198,
198,
7061,
6,
3855,
6416,
3862,
11086,
8520,
5638,
28248,
7061,
6,
198,
198,
672,
45852,
62,
54,
43,
62,
15908,
796,
31051,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
15633,
62,
7575,
62,
19184,
62,
4971,
6,
198,
29468,
62,
40989,
62,
15908,
796,
31051,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
28545,
62,
15633,
62,
7575,
62,
19184,
62,
4971,
6,
198,
198,
7050,
4971,
6601,
796,
279,
67,
13,
961,
62,
40664,
10786,
14,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
15633,
62,
7575,
62,
14114,
2390,
14,
45,
3824,
3698,
12,
41473,
12789,
13,
40664,
3256,
6376,
62,
4033,
28,
24,
8,
198,
7050,
4971,
6601,
13,
9630,
796,
279,
67,
13,
1462,
62,
19608,
8079,
7,
7050,
4971,
6601,
13,
9630,
8,
198,
69,
3055,
292,
796,
1660,
4971,
6601,
13,
9630,
13,
83,
349,
396,
3419,
198,
395,
49443,
274,
796,
1660,
4971,
6601,
17816,
43806,
14031,
22362,
49443,
6,
4083,
83,
349,
396,
3419,
198,
2100,
2850,
796,
1660,
4971,
6601,
17816,
7762,
273,
6,
4083,
83,
349,
396,
3419,
198,
198,
2,
329,
4686,
287,
32373,
25,
198,
197,
2,
1660,
4971,
796,
17635,
198,
197,
2,
9667,
796,
17635,
198,
197,
2,
198,
197,
2,
329,
1312,
287,
2837,
357,
15,
11,
18896,
7,
395,
49443,
274,
8,
2599,
198,
197,
2,
220,
197,
361,
357,
312,
6624,
1556,
49443,
274,
58,
72,
60,
2599,
198,
197,
2,
220,
197,
197,
7050,
4971,
13,
33295,
7,
2100,
2850,
58,
72,
12962,
198,
197,
2,
220,
197,
197,
19581,
13,
33295,
7,
69,
3055,
292,
58,
72,
12962,
198,
197,
2,
198,
197,
2,
14729,
796,
685,
4868,
7,
64,
8,
329,
257,
287,
19974,
7,
19581,
11,
1660,
4971,
15437,
198,
197,
2,
279,
67,
13,
6601,
19778,
7,
79,
3468,
11,
15180,
28,
37250,
27354,
8079,
3256,
705,
2023,
1079,
1660,
1241,
357,
11215,
8,
20520,
737,
1462,
62,
40664,
7,
672,
45852,
62,
54,
43,
62,
15908,
1343,
12813,
90,
92,
62,
5305,
62,
2435,
62,
672,
45852,
62,
7050,
62,
5715,
13,
40664,
1911,
18982,
7,
312,
828,
21004,
11639,
40477,
12,
23,
3256,
13639,
28,
17821,
11,
6376,
28,
15,
8,
198,
197,
2,
3601,
7203,
90,
92,
62,
5305,
62,
2435,
62,
672,
45852,
62,
7050,
62,
5715,
13,
40664,
1911,
18982,
7,
312,
4008,
198,
197,
2,
198,
197,
2,
1366,
796,
279,
67,
13,
961,
62,
40664,
7203,
14,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
15633,
62,
7575,
62,
19184,
62,
4971,
14,
90,
15,
92,
62,
5305,
62,
2435,
62,
672,
45852,
62,
7050,
62,
5715,
13,
40664,
1911,
18982,
7,
312,
828,
6376,
62,
4033,
28,
15,
8,
198,
197,
2,
198,
197,
2,
1366,
13,
9630,
796,
279,
67,
13,
1462,
62,
19608,
8079,
7,
7890,
13,
9630,
8,
198,
197,
2,
198,
197,
2,
4445,
62,
7568,
796,
1366,
13,
8094,
1525,
7,
7890,
13,
9630,
13,
2536,
31387,
7203,
4,
56,
14,
4,
76,
14,
4,
67,
4943,
737,
32604,
3419,
198,
197,
2,
4445,
62,
7568,
13,
9630,
796,
279,
67,
13,
1462,
62,
19608,
8079,
7,
29468,
62,
7568,
13,
9630,
8,
198,
197,
2,
198,
197,
2,
4445,
62,
7568,
13,
1462,
62,
40664,
7203,
14,
14490,
14,
50139,
14,
26932,
3524,
14,
2725,
35,
14,
23344,
10216,
14,
35,
747,
42245,
62,
85,
22,
14,
5216,
2381,
544,
14,
6601,
14,
28545,
62,
15633,
62,
7575,
62,
19184,
62,
4971,
14,
90,
15,
92,
62,
5305,
62,
2435,
62,
672,
45852,
62,
7050,
62,
5715,
13,
40664,
1911,
18982,
7,
312,
828,
6376,
62,
18242,
2625,
27354,
8079,
4943,
198,
197,
2,
198,
197,
2,
3601,
7,
29468,
62,
7568,
8,
628,
628,
198,
198,
2,
7469,
3191,
262,
1441,
9574,
329,
262,
6754,
41798
] | 2.580363 | 1,487 |
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None | [
2,
30396,
329,
257,
13934,
5509,
10139,
13,
198,
2,
1398,
12200,
19667,
25,
198,
2,
220,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
2124,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2100,
796,
2124,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9464,
796,
6045,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3506,
796,
6045
] | 2.175676 | 74 |
import random
import time
import numpy as np
import os
import difflib
import torch
from utils.structure import Example, Batch, Patch, lists2tensor, Token, BIO
from utils.tokenizer import Tokenizer
from typing import List, Union
from tqdm import tqdm
from collections import Counter
import Levenshtein
import math
import copy
| [
11748,
4738,
198,
11748,
640,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28686,
198,
11748,
814,
8019,
198,
11748,
28034,
198,
6738,
3384,
4487,
13,
301,
5620,
1330,
17934,
11,
347,
963,
11,
17106,
11,
8341,
17,
83,
22854,
11,
29130,
11,
347,
9399,
198,
6738,
3384,
4487,
13,
30001,
7509,
1330,
29130,
7509,
198,
6738,
19720,
1330,
7343,
11,
4479,
198,
6738,
256,
80,
36020,
1330,
256,
80,
36020,
198,
6738,
17268,
1330,
15034,
198,
11748,
1004,
574,
1477,
22006,
198,
11748,
10688,
198,
11748,
4866,
198
] | 3.651685 | 89 |
from main_dir.drawing.background_loads import BackgroundLoads
"""getting the screen and setting background """
class BackGround:
"""taking the image"""
view_background = BackgroundLoads().load_and_move()
def redraw_game_window(self, screen):
"""setting background in the screen at position x y"""
screen.blit(self.view_background, (0, 0))
| [
6738,
1388,
62,
15908,
13,
19334,
278,
13,
25249,
62,
46030,
1330,
25353,
8912,
82,
198,
198,
37811,
37210,
262,
3159,
290,
4634,
4469,
220,
37227,
628,
198,
4871,
5157,
35539,
25,
198,
220,
220,
220,
37227,
26103,
262,
2939,
37811,
198,
220,
220,
220,
1570,
62,
25249,
796,
25353,
8912,
82,
22446,
2220,
62,
392,
62,
21084,
3419,
628,
220,
220,
220,
825,
2266,
1831,
62,
6057,
62,
17497,
7,
944,
11,
3159,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
33990,
4469,
287,
262,
3159,
379,
2292,
2124,
331,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
3159,
13,
2436,
270,
7,
944,
13,
1177,
62,
25249,
11,
357,
15,
11,
657,
4008,
198
] | 3.12605 | 119 |
# yellowbrick.utils.decorators
# Decorators and descriptors for annotating yellowbrick library functions.
#
# Author: Benjamin Bengfort <[email protected]>
# Created: Thu May 18 15:13:33 2017 -0400
#
# Copyright (C) 2017 District Data Labs
# For license information, see LICENSE.txt
#
# ID: decorators.py [79cd8cf] [email protected] $
"""
Decorators and descriptors for annotating yellowbrick library functions.
"""
##########################################################################
## Imports
##########################################################################
from functools import wraps
##########################################################################
## Decorators
##########################################################################
def memoized(fget):
"""
Return a property attribute for new-style classes that only calls its
getter on the first access. The result is stored and on subsequent
accesses is returned, preventing the need to call the getter any more.
Parameters
----------
fget: function
The getter method to memoize for subsequent access.
See also
--------
python-memoized-property
`python-memoized-property <https://github.com/estebistec/python-memoized-property>`_
"""
attr_name = '_{0}'.format(fget.__name__)
@wraps(fget)
return property(fget_memoized)
class docutil(object):
"""
This decorator can be used to apply the doc string from another function
to the decorated function. This is used for our single call wrapper
functions who implement the visualizer API without forcing the user to
jump through all the hoops. The docstring of both the visualizer and the
single call wrapper should be identical, this decorator ensures that we
only have to edit one doc string.
Usage::
@docutil(Visualizer.__init__)
def visualize(*args, **kwargs):
pass
The basic usage is that you instantiate the decorator with the function
whose docstring you want to copy, then apply that decorator to the the
function whose docstring you would like modified.
Note that this decorator performs no wrapping of the target function.
"""
def __init__(self, func):
"""Create a decorator to document other functions with the specified
function's doc string.
Parameters
----------
func : function
The function whose doc string we should decorate with
"""
self.doc = func.__doc__
def __call__(self, func):
"""Modify the decorated function with the stored doc string.
Parameters
----------
func: function
The function to apply the saved doc string to.
"""
func.__doc__ = self.doc
return func
| [
2,
7872,
1671,
624,
13,
26791,
13,
12501,
273,
2024,
198,
2,
4280,
273,
2024,
290,
12145,
669,
329,
24708,
803,
7872,
1671,
624,
5888,
5499,
13,
198,
2,
198,
2,
6434,
25,
220,
220,
14533,
14964,
3319,
1279,
11848,
1516,
3319,
31,
17080,
2012,
67,
10254,
8937,
13,
785,
29,
198,
2,
15622,
25,
220,
26223,
1737,
1248,
1315,
25,
1485,
25,
2091,
2177,
532,
3023,
405,
198,
2,
198,
2,
15069,
357,
34,
8,
2177,
5665,
6060,
23500,
198,
2,
1114,
5964,
1321,
11,
766,
38559,
24290,
13,
14116,
198,
2,
198,
2,
4522,
25,
11705,
2024,
13,
9078,
685,
3720,
10210,
23,
12993,
60,
1888,
13337,
31,
65,
1516,
3319,
13,
785,
720,
198,
198,
37811,
198,
10707,
273,
2024,
290,
12145,
669,
329,
24708,
803,
7872,
1671,
624,
5888,
5499,
13,
198,
37811,
198,
198,
29113,
29113,
7804,
2235,
198,
2235,
1846,
3742,
198,
29113,
29113,
7804,
2235,
198,
198,
6738,
1257,
310,
10141,
1330,
27521,
628,
198,
29113,
29113,
7804,
2235,
198,
2235,
4280,
273,
2024,
198,
29113,
29113,
7804,
2235,
198,
198,
4299,
16155,
1143,
7,
69,
1136,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
8229,
257,
3119,
11688,
329,
649,
12,
7635,
6097,
326,
691,
3848,
663,
198,
220,
220,
220,
651,
353,
319,
262,
717,
1895,
13,
383,
1255,
318,
8574,
290,
319,
8840,
198,
220,
220,
220,
1895,
274,
318,
4504,
11,
12174,
262,
761,
284,
869,
262,
651,
353,
597,
517,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
277,
1136,
25,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
383,
651,
353,
2446,
284,
16155,
1096,
329,
8840,
1895,
13,
628,
220,
220,
220,
4091,
635,
198,
220,
220,
220,
24200,
198,
220,
220,
220,
21015,
12,
11883,
78,
1143,
12,
26745,
198,
220,
220,
220,
220,
220,
220,
220,
4600,
29412,
12,
11883,
78,
1143,
12,
26745,
1279,
5450,
1378,
12567,
13,
785,
14,
395,
1765,
396,
721,
14,
29412,
12,
11883,
78,
1143,
12,
26745,
29,
63,
62,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
708,
81,
62,
3672,
796,
705,
23330,
15,
92,
4458,
18982,
7,
69,
1136,
13,
834,
3672,
834,
8,
628,
220,
220,
220,
2488,
29988,
862,
7,
69,
1136,
8,
628,
220,
220,
220,
1441,
3119,
7,
69,
1136,
62,
11883,
78,
1143,
8,
628,
198,
4871,
2205,
22602,
7,
15252,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
770,
11705,
1352,
460,
307,
973,
284,
4174,
262,
2205,
4731,
422,
1194,
2163,
198,
220,
220,
220,
284,
262,
24789,
2163,
13,
770,
318,
973,
329,
674,
2060,
869,
29908,
198,
220,
220,
220,
5499,
508,
3494,
262,
5874,
7509,
7824,
1231,
10833,
262,
2836,
284,
198,
220,
220,
220,
4391,
832,
477,
262,
46730,
13,
383,
2205,
8841,
286,
1111,
262,
5874,
7509,
290,
262,
198,
220,
220,
220,
2060,
869,
29908,
815,
307,
10411,
11,
428,
11705,
1352,
19047,
326,
356,
198,
220,
220,
220,
691,
423,
284,
4370,
530,
2205,
4731,
13,
628,
220,
220,
220,
29566,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
2488,
15390,
22602,
7,
36259,
7509,
13,
834,
15003,
834,
8,
198,
220,
220,
220,
220,
220,
220,
220,
825,
38350,
46491,
22046,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
628,
220,
220,
220,
383,
4096,
8748,
318,
326,
345,
9113,
9386,
262,
11705,
1352,
351,
262,
2163,
198,
220,
220,
220,
3025,
2205,
8841,
345,
765,
284,
4866,
11,
788,
4174,
326,
11705,
1352,
284,
262,
262,
198,
220,
220,
220,
2163,
3025,
2205,
8841,
345,
561,
588,
9518,
13,
628,
220,
220,
220,
5740,
326,
428,
11705,
1352,
17706,
645,
27074,
286,
262,
2496,
2163,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
25439,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16447,
257,
11705,
1352,
284,
3188,
584,
5499,
351,
262,
7368,
198,
220,
220,
220,
220,
220,
220,
220,
2163,
338,
2205,
4731,
13,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
25439,
1058,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
383,
2163,
3025,
2205,
4731,
356,
815,
11705,
378,
351,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
15390,
796,
25439,
13,
834,
15390,
834,
628,
220,
220,
220,
825,
11593,
13345,
834,
7,
944,
11,
25439,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
5841,
1958,
262,
24789,
2163,
351,
262,
8574,
2205,
4731,
13,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
25439,
25,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
383,
2163,
284,
4174,
262,
7448,
2205,
4731,
284,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
25439,
13,
834,
15390,
834,
796,
2116,
13,
15390,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
25439,
198
] | 3.229898 | 883 |
import argparse
from werkzeug.security import generate_password_hash
import secrets
import string
from modules.Auth.auth import auth
from modules.Auth.user_db import UserDatabase
from app import app
main()
| [
11748,
1822,
29572,
198,
6738,
266,
9587,
2736,
1018,
13,
12961,
1330,
7716,
62,
28712,
62,
17831,
198,
11748,
13141,
198,
11748,
4731,
198,
198,
6738,
13103,
13,
30515,
13,
18439,
1330,
6284,
198,
6738,
13103,
13,
30515,
13,
7220,
62,
9945,
1330,
11787,
38105,
198,
6738,
598,
1330,
598,
198,
198,
12417,
3419,
198
] | 3.781818 | 55 |
# """
# This file is part of Happypanda.
# Happypanda is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# any later version.
# Happypanda is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with Happypanda. If not, see <http://www.gnu.org/licenses/>.
# """
import logging
import os
import sqlite3
from sqlite3 import Connection
from typing import Tuple, List, Callable, Union, Optional
from . import db_constants
log = logging.getLogger(__name__)
log_i = log.info
log_d = log.debug
log_w = log.warning
log_e = log.error
log_c = log.critical
STRUCTURE_SCRIPT_FUNCS: List[Callable[[], Tuple[str, List[str]]]]
STRUCTURE_SCRIPT_FUNCS = [series_sql, chapters_sql, namespaces_sql, tags_sql, tags_mappings_sql,
series_tags_mappings_sql, hashes_sql, list_sql, series_list_map_sql]
STRUCTURE_SCRIPT = ''.join(f()[0] for f in STRUCTURE_SCRIPT_FUNCS)
def global_db_convert(conn: sqlite3.dbapi2.Connection) -> sqlite3.dbapi2.Cursor:
"""
Takes care of converting tables and columns.
Don't use this method directly. Use the add_db_revisions instead.
"""
log_i('Converting tables')
c = conn.cursor()
series, series_cols = series_sql()
chapters, chapters_cols = chapters_sql()
namespaces, namespaces_cols = namespaces_sql()
tags, tags_cols = tags_sql()
tags_mappings, tags_mappings_cols = tags_mappings_sql()
series_tags_mappings, series_tags_mappings_cols = series_tags_mappings_sql()
hashes, hashes_cols = hashes_sql()
_list, list_cols = list_sql()
series_list_map, series_list_map_cols = series_list_map_sql()
t_d = {
'series': series_cols,
'chapters': chapters_cols,
'namespaces': namespaces_cols,
'tags': tags_cols,
'tags_mappings': tags_mappings_cols,
'series_tags_mappings': series_tags_mappings_cols,
'hashes': hashes_cols,
'list': list_cols,
'series_list_map': series_list_map_cols
}
log_d('Checking table structures')
c.executescript(STRUCTURE_SCRIPT)
conn.commit()
log_d('Checking columns')
for table in t_d:
for col in t_d[table]:
try:
c.execute('ALTER TABLE {} ADD COLUMN {}'.format(table, col))
log_d('Added new column: {}'.format(col))
except sqlite3.OperationalError:
log_d('Skipped column: {}'.format(col))
conn.commit()
log_d('Committed DB changes')
return c
def add_db_revisions(old_db: Union[str, 'os.PathLike']) -> None:
"""
Adds specific DB revisions items.
Note: pass a path to db
"""
log_i('Converting DB')
conn = sqlite3.connect(old_db, check_same_thread=False)
conn.row_factory = sqlite3.Row
log_i('Converting tables and columns')
c = global_db_convert(conn)
log_d('Updating DB version')
c.execute('UPDATE version SET version=? WHERE 1', (db_constants.CURRENT_DB_VERSION,))
conn.commit()
conn.close()
return
def check_db_version(conn: sqlite3.dbapi2.Connection) -> bool:
"""Checks if DB version is allowed. Raises dialog if not."""
vs = "SELECT version FROM version"
c = conn.cursor()
c.execute(vs)
log_d('Checking DB Version')
db_vs = c.fetchone()
db_constants.REAL_DB_VERSION = db_vs[0]
if db_vs[0] not in db_constants.DB_VERSION:
msg = "Incompatible database"
log_c(msg)
log_d('Local database version: {}\nProgram database version:{}'.format(db_vs[0],
db_constants.CURRENT_DB_VERSION))
# ErrorQueue.put(msg)
return False
return True
def init_db(path: Union[str, 'os.PathLike'] = db_constants.DB_PATH) -> Optional[sqlite3.dbapi2.Connection]:
"""Initialises the DB. Returns a sqlite3 connection,
which will be passed to the db thread.
"""
# TODO: change saving version from float to string
if os.path.isfile(path):
conn = new_db(path)
if path == db_constants.DB_PATH and not check_db_version(conn):
return None
else:
create_db_path()
conn = new_db(path, True)
conn.isolation_level = None
conn.execute("PRAGMA foreign_keys = on")
return conn
class DBBase:
"""The base DB class. _DB_CONN should be set at runtime on startup"""
_DB_CONN: Optional[Connection] = None
_AUTO_COMMIT = True
_STATE = {'active': False}
@classmethod
def begin(cls) -> None:
"""Useful when modifying for a large amount of data"""
if not cls._STATE['active']:
cls._AUTO_COMMIT = False
cls.execute("BEGIN TRANSACTION")
cls._STATE['active'] = True
# print("STARTED DB OPTIMIZE")
@classmethod
def end(cls) -> None:
"""Called to commit and end transaction"""
if cls._STATE['active']:
try:
cls.execute("COMMIT")
except sqlite3.OperationalError:
pass
cls._AUTO_COMMIT = True
cls._STATE['active'] = False
# print("ENDED DB OPTIMIZE")
@classmethod
def execute(cls, *args):
"""Same as cursor.execute"""
if not cls._DB_CONN:
raise db_constants.NoDatabaseConnection
log_d('DB Query: {}'.format(args).encode(errors='ignore'))
if cls._AUTO_COMMIT:
try:
with cls._DB_CONN:
return cls._DB_CONN.execute(*args)
except sqlite3.InterfaceError:
return cls._DB_CONN.execute(*args)
else:
return cls._DB_CONN.execute(*args)
@classmethod
def executemany(cls, *args):
"""Same as cursor.executemany"""
if not cls._DB_CONN:
raise db_constants.NoDatabaseConnection
log_d('DB Query: {}'.format(args).encode(errors='ignore'))
if cls._AUTO_COMMIT:
with cls._DB_CONN:
return cls._DB_CONN.executemany(*args)
else:
c = cls._DB_CONN.executemany(*args)
return c
@classmethod
@classmethod
@classmethod
if __name__ == '__main__':
raise RuntimeError("Unit tests not yet implemented")
# unit tests here!
| [
2,
37227,
198,
2,
770,
2393,
318,
636,
286,
18321,
4464,
5282,
13,
198,
2,
18321,
4464,
5282,
318,
1479,
3788,
25,
345,
460,
17678,
4163,
340,
290,
14,
273,
13096,
198,
2,
340,
739,
262,
2846,
286,
262,
22961,
3611,
5094,
13789,
355,
3199,
416,
198,
2,
262,
3232,
10442,
5693,
11,
2035,
2196,
362,
286,
262,
13789,
11,
393,
198,
2,
597,
1568,
2196,
13,
198,
2,
18321,
4464,
5282,
318,
9387,
287,
262,
2911,
326,
340,
481,
307,
4465,
11,
198,
2,
475,
42881,
15529,
34764,
56,
26,
1231,
772,
262,
17142,
18215,
286,
198,
2,
34482,
3398,
1565,
5603,
25382,
393,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
13,
220,
4091,
262,
198,
2,
22961,
3611,
5094,
13789,
329,
517,
3307,
13,
198,
2,
921,
815,
423,
2722,
257,
4866,
286,
262,
22961,
3611,
5094,
13789,
198,
2,
1863,
351,
18321,
4464,
5282,
13,
220,
1002,
407,
11,
766,
1279,
4023,
1378,
2503,
13,
41791,
13,
2398,
14,
677,
4541,
15913,
13,
198,
2,
37227,
198,
198,
11748,
18931,
198,
11748,
28686,
198,
11748,
44161,
578,
18,
198,
6738,
44161,
578,
18,
1330,
26923,
198,
6738,
19720,
1330,
309,
29291,
11,
7343,
11,
4889,
540,
11,
4479,
11,
32233,
198,
198,
6738,
764,
1330,
20613,
62,
9979,
1187,
198,
198,
6404,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
6404,
62,
72,
796,
2604,
13,
10951,
198,
6404,
62,
67,
796,
2604,
13,
24442,
198,
6404,
62,
86,
796,
2604,
13,
43917,
198,
6404,
62,
68,
796,
2604,
13,
18224,
198,
6404,
62,
66,
796,
2604,
13,
34666,
628,
628,
628,
628,
628,
198,
198,
46126,
11335,
62,
6173,
46023,
62,
42296,
7902,
25,
7343,
58,
14134,
540,
30109,
4357,
309,
29291,
58,
2536,
11,
7343,
58,
2536,
11907,
11907,
198,
46126,
11335,
62,
6173,
46023,
62,
42296,
7902,
796,
685,
25076,
62,
25410,
11,
15754,
62,
25410,
11,
3891,
43076,
62,
25410,
11,
15940,
62,
25410,
11,
15940,
62,
76,
39242,
62,
25410,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2168,
62,
31499,
62,
76,
39242,
62,
25410,
11,
46621,
62,
25410,
11,
1351,
62,
25410,
11,
2168,
62,
4868,
62,
8899,
62,
25410,
60,
198,
46126,
11335,
62,
6173,
46023,
796,
705,
4458,
22179,
7,
69,
3419,
58,
15,
60,
329,
277,
287,
19269,
18415,
11335,
62,
6173,
46023,
62,
42296,
7902,
8,
628,
198,
4299,
3298,
62,
9945,
62,
1102,
1851,
7,
37043,
25,
44161,
578,
18,
13,
9945,
15042,
17,
13,
32048,
8,
4613,
44161,
578,
18,
13,
9945,
15042,
17,
13,
34,
21471,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
33687,
1337,
286,
23202,
8893,
290,
15180,
13,
198,
220,
220,
220,
2094,
470,
779,
428,
2446,
3264,
13,
5765,
262,
751,
62,
9945,
62,
18218,
3279,
2427,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2604,
62,
72,
10786,
3103,
48820,
8893,
11537,
198,
220,
220,
220,
269,
796,
48260,
13,
66,
21471,
3419,
198,
220,
220,
220,
2168,
11,
2168,
62,
4033,
82,
796,
2168,
62,
25410,
3419,
198,
220,
220,
220,
15754,
11,
15754,
62,
4033,
82,
796,
15754,
62,
25410,
3419,
198,
220,
220,
220,
3891,
43076,
11,
3891,
43076,
62,
4033,
82,
796,
3891,
43076,
62,
25410,
3419,
198,
220,
220,
220,
15940,
11,
15940,
62,
4033,
82,
796,
15940,
62,
25410,
3419,
198,
220,
220,
220,
15940,
62,
76,
39242,
11,
15940,
62,
76,
39242,
62,
4033,
82,
796,
15940,
62,
76,
39242,
62,
25410,
3419,
198,
220,
220,
220,
2168,
62,
31499,
62,
76,
39242,
11,
2168,
62,
31499,
62,
76,
39242,
62,
4033,
82,
796,
2168,
62,
31499,
62,
76,
39242,
62,
25410,
3419,
198,
220,
220,
220,
46621,
11,
46621,
62,
4033,
82,
796,
46621,
62,
25410,
3419,
198,
220,
220,
220,
4808,
4868,
11,
1351,
62,
4033,
82,
796,
1351,
62,
25410,
3419,
198,
220,
220,
220,
2168,
62,
4868,
62,
8899,
11,
2168,
62,
4868,
62,
8899,
62,
4033,
82,
796,
2168,
62,
4868,
62,
8899,
62,
25410,
3419,
628,
220,
220,
220,
256,
62,
67,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
25076,
10354,
2168,
62,
4033,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
354,
12126,
10354,
15754,
62,
4033,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
14933,
43076,
10354,
3891,
43076,
62,
4033,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
31499,
10354,
15940,
62,
4033,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
31499,
62,
76,
39242,
10354,
15940,
62,
76,
39242,
62,
4033,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
25076,
62,
31499,
62,
76,
39242,
10354,
2168,
62,
31499,
62,
76,
39242,
62,
4033,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
71,
7465,
10354,
46621,
62,
4033,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
4868,
10354,
1351,
62,
4033,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
25076,
62,
4868,
62,
8899,
10354,
2168,
62,
4868,
62,
8899,
62,
4033,
82,
198,
220,
220,
220,
1782,
628,
220,
220,
220,
2604,
62,
67,
10786,
9787,
278,
3084,
8573,
11537,
198,
220,
220,
220,
269,
13,
18558,
1769,
6519,
7,
46126,
11335,
62,
6173,
46023,
8,
198,
220,
220,
220,
48260,
13,
41509,
3419,
628,
220,
220,
220,
2604,
62,
67,
10786,
9787,
278,
15180,
11537,
198,
220,
220,
220,
329,
3084,
287,
256,
62,
67,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
951,
287,
256,
62,
67,
58,
11487,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
13,
41049,
10786,
1847,
5781,
43679,
23884,
27841,
20444,
5883,
45,
23884,
4458,
18982,
7,
11487,
11,
951,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2604,
62,
67,
10786,
13003,
649,
5721,
25,
23884,
4458,
18982,
7,
4033,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
44161,
578,
18,
13,
18843,
864,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2604,
62,
67,
10786,
15739,
3949,
5721,
25,
23884,
4458,
18982,
7,
4033,
4008,
198,
220,
220,
220,
48260,
13,
41509,
3419,
198,
220,
220,
220,
2604,
62,
67,
10786,
6935,
2175,
20137,
2458,
11537,
198,
220,
220,
220,
1441,
269,
628,
198,
4299,
751,
62,
9945,
62,
18218,
3279,
7,
727,
62,
9945,
25,
4479,
58,
2536,
11,
705,
418,
13,
15235,
7594,
6,
12962,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
34333,
2176,
20137,
33315,
3709,
13,
198,
220,
220,
220,
5740,
25,
1208,
257,
3108,
284,
20613,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2604,
62,
72,
10786,
3103,
48820,
20137,
11537,
198,
220,
220,
220,
48260,
796,
44161,
578,
18,
13,
8443,
7,
727,
62,
9945,
11,
2198,
62,
31642,
62,
16663,
28,
25101,
8,
198,
220,
220,
220,
48260,
13,
808,
62,
69,
9548,
796,
44161,
578,
18,
13,
25166,
628,
220,
220,
220,
2604,
62,
72,
10786,
3103,
48820,
8893,
290,
15180,
11537,
198,
220,
220,
220,
269,
796,
3298,
62,
9945,
62,
1102,
1851,
7,
37043,
8,
628,
220,
220,
220,
2604,
62,
67,
10786,
4933,
38734,
20137,
2196,
11537,
198,
220,
220,
220,
269,
13,
41049,
10786,
16977,
2196,
25823,
2196,
28,
30,
33411,
352,
3256,
357,
9945,
62,
9979,
1187,
13,
34,
39237,
62,
11012,
62,
43717,
11,
4008,
198,
220,
220,
220,
48260,
13,
41509,
3419,
198,
220,
220,
220,
48260,
13,
19836,
3419,
198,
220,
220,
220,
1441,
628,
198,
198,
4299,
2198,
62,
9945,
62,
9641,
7,
37043,
25,
44161,
578,
18,
13,
9945,
15042,
17,
13,
32048,
8,
4613,
20512,
25,
198,
220,
220,
220,
37227,
7376,
4657,
611,
20137,
2196,
318,
3142,
13,
7567,
2696,
17310,
611,
407,
526,
15931,
198,
220,
220,
220,
3691,
796,
366,
46506,
2196,
16034,
2196,
1,
198,
220,
220,
220,
269,
796,
48260,
13,
66,
21471,
3419,
198,
220,
220,
220,
269,
13,
41049,
7,
14259,
8,
198,
220,
220,
220,
2604,
62,
67,
10786,
9787,
278,
20137,
10628,
11537,
198,
220,
220,
220,
20613,
62,
14259,
796,
269,
13,
69,
7569,
505,
3419,
198,
220,
220,
220,
20613,
62,
9979,
1187,
13,
2200,
1847,
62,
11012,
62,
43717,
796,
20613,
62,
14259,
58,
15,
60,
198,
220,
220,
220,
611,
20613,
62,
14259,
58,
15,
60,
407,
287,
20613,
62,
9979,
1187,
13,
11012,
62,
43717,
25,
198,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
366,
818,
38532,
6831,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
62,
66,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
62,
67,
10786,
14565,
6831,
2196,
25,
23884,
59,
77,
15167,
6831,
2196,
29164,
92,
4458,
18982,
7,
9945,
62,
14259,
58,
15,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20613,
62,
9979,
1187,
13,
34,
39237,
62,
11012,
62,
43717,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
13047,
34991,
13,
1996,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
220,
220,
220,
1441,
6407,
628,
198,
4299,
2315,
62,
9945,
7,
6978,
25,
4479,
58,
2536,
11,
705,
418,
13,
15235,
7594,
20520,
796,
20613,
62,
9979,
1187,
13,
11012,
62,
34219,
8,
4613,
32233,
58,
25410,
578,
18,
13,
9945,
15042,
17,
13,
32048,
5974,
198,
220,
220,
220,
37227,
24243,
2696,
262,
20137,
13,
16409,
257,
44161,
578,
18,
4637,
11,
198,
220,
220,
220,
543,
481,
307,
3804,
284,
262,
20613,
4704,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
16926,
46,
25,
1487,
8914,
2196,
422,
12178,
284,
4731,
628,
220,
220,
220,
611,
28686,
13,
6978,
13,
4468,
576,
7,
6978,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
48260,
796,
649,
62,
9945,
7,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3108,
6624,
20613,
62,
9979,
1187,
13,
11012,
62,
34219,
290,
407,
2198,
62,
9945,
62,
9641,
7,
37043,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
9945,
62,
6978,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
48260,
796,
649,
62,
9945,
7,
6978,
11,
6407,
8,
628,
220,
220,
220,
48260,
13,
271,
21417,
62,
5715,
796,
6045,
198,
220,
220,
220,
48260,
13,
41049,
7203,
47,
33202,
5673,
3215,
62,
13083,
796,
319,
4943,
198,
220,
220,
220,
1441,
48260,
628,
198,
4871,
20137,
14881,
25,
198,
220,
220,
220,
37227,
464,
2779,
20137,
1398,
13,
4808,
11012,
62,
10943,
45,
815,
307,
900,
379,
19124,
319,
13693,
37811,
198,
220,
220,
220,
4808,
11012,
62,
10943,
45,
25,
32233,
58,
32048,
60,
796,
6045,
198,
220,
220,
220,
4808,
39371,
46,
62,
9858,
36393,
796,
6407,
198,
220,
220,
220,
4808,
44724,
796,
1391,
6,
5275,
10354,
10352,
92,
628,
220,
220,
220,
2488,
4871,
24396,
198,
220,
220,
220,
825,
2221,
7,
565,
82,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
11041,
913,
618,
30620,
329,
257,
1588,
2033,
286,
1366,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
537,
82,
13557,
44724,
17816,
5275,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
13557,
39371,
46,
62,
9858,
36393,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
13,
41049,
7203,
33,
43312,
44069,
44710,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
13557,
44724,
17816,
5275,
20520,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3601,
7203,
2257,
7227,
1961,
20137,
39852,
3955,
35400,
4943,
628,
220,
220,
220,
2488,
4871,
24396,
198,
220,
220,
220,
825,
886,
7,
565,
82,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
34,
4262,
284,
4589,
290,
886,
8611,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
611,
537,
82,
13557,
44724,
17816,
5275,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
13,
41049,
7203,
9858,
36393,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
44161,
578,
18,
13,
18843,
864,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
13557,
39371,
46,
62,
9858,
36393,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
13557,
44724,
17816,
5275,
20520,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3601,
7203,
49361,
20137,
39852,
3955,
35400,
4943,
628,
220,
220,
220,
2488,
4871,
24396,
198,
220,
220,
220,
825,
12260,
7,
565,
82,
11,
1635,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
30556,
355,
23493,
13,
41049,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
537,
82,
13557,
11012,
62,
10943,
45,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
20613,
62,
9979,
1187,
13,
2949,
38105,
32048,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
62,
67,
10786,
11012,
43301,
25,
23884,
4458,
18982,
7,
22046,
737,
268,
8189,
7,
48277,
11639,
46430,
6,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
611,
537,
82,
13557,
39371,
46,
62,
9858,
36393,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
537,
82,
13557,
11012,
62,
10943,
45,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
537,
82,
13557,
11012,
62,
10943,
45,
13,
41049,
46491,
22046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
44161,
578,
18,
13,
39317,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
537,
82,
13557,
11012,
62,
10943,
45,
13,
41049,
46491,
22046,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
537,
82,
13557,
11012,
62,
10943,
45,
13,
41049,
46491,
22046,
8,
628,
220,
220,
220,
2488,
4871,
24396,
198,
220,
220,
220,
825,
3121,
368,
1092,
7,
565,
82,
11,
1635,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
30556,
355,
23493,
13,
18558,
315,
368,
1092,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
537,
82,
13557,
11012,
62,
10943,
45,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
20613,
62,
9979,
1187,
13,
2949,
38105,
32048,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
62,
67,
10786,
11012,
43301,
25,
23884,
4458,
18982,
7,
22046,
737,
268,
8189,
7,
48277,
11639,
46430,
6,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
611,
537,
82,
13557,
39371,
46,
62,
9858,
36393,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
537,
82,
13557,
11012,
62,
10943,
45,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
537,
82,
13557,
11012,
62,
10943,
45,
13,
18558,
315,
368,
1092,
46491,
22046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
796,
537,
82,
13557,
11012,
62,
10943,
45,
13,
18558,
315,
368,
1092,
46491,
22046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
269,
628,
220,
220,
220,
2488,
4871,
24396,
628,
220,
220,
220,
2488,
4871,
24396,
628,
220,
220,
220,
2488,
4871,
24396,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
5298,
43160,
12331,
7203,
26453,
5254,
407,
1865,
9177,
4943,
198,
220,
220,
220,
1303,
4326,
5254,
994,
0,
198
] | 2.322592 | 2,855 |
#coding:utf-8
portList=(8888,8889)#本服务器监听端口
import tornado.ioloop
import tornado.web
import numpy as np
from time import sleep
#import shutil
#import os
from random import random
from io import BytesIO
from PIL import Image
from base64 import b64decode
import utils
model = utils.loadmodel('Model.json', 'Weights.h5')
REFSTR = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
## def get(self):
## #允许浏览器直接访问,手动上传图片并识别。此功能仅用于测试和娱乐
## self.write('''
##<html>
## <head><title>Upload File</title></head>
## <body>
## <form action='file' enctype="multipart/form-data" method='post'>
## <input type='file' name='file'/><br/>
## <input type='submit' value='submit'/>
## </form>
## </body>
##</html>
##''')
if __name__ == '__main__':
from multiprocessing import Process
length=len(portList)
for port in range(length-1):
p=Process(target=run_proc, args=(portList[port],))
p.start()
run_proc(portList[length-1])
| [
171,
119,
123,
2,
66,
7656,
25,
40477,
12,
23,
201,
198,
634,
8053,
16193,
3459,
3459,
11,
3459,
4531,
8,
2,
17312,
105,
17312,
235,
27950,
94,
161,
247,
101,
33566,
239,
28938,
105,
44165,
107,
20998,
96,
201,
198,
201,
198,
11748,
33718,
13,
1669,
11224,
201,
198,
11748,
33718,
13,
12384,
201,
198,
11748,
299,
32152,
355,
45941,
201,
198,
6738,
640,
1330,
3993,
201,
198,
2,
11748,
4423,
346,
201,
198,
2,
11748,
28686,
201,
198,
6738,
4738,
1330,
4738,
201,
198,
6738,
33245,
1330,
2750,
4879,
9399,
201,
198,
6738,
350,
4146,
1330,
7412,
201,
198,
6738,
2779,
2414,
1330,
275,
2414,
12501,
1098,
201,
198,
11748,
3384,
4487,
201,
198,
19849,
796,
3384,
4487,
13,
2220,
19849,
10786,
17633,
13,
17752,
3256,
705,
1135,
2337,
13,
71,
20,
11537,
201,
198,
31688,
18601,
796,
705,
486,
1954,
2231,
3134,
4531,
24694,
32988,
17511,
23852,
42,
31288,
45,
3185,
48,
49,
2257,
52,
30133,
34278,
57,
6,
201,
198,
2235,
220,
220,
220,
825,
651,
7,
944,
2599,
201,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
1303,
17739,
223,
164,
106,
116,
38184,
237,
164,
100,
230,
161,
247,
101,
33566,
112,
162,
236,
98,
164,
106,
123,
29785,
106,
171,
120,
234,
33699,
233,
27950,
101,
41468,
27670,
254,
32368,
122,
31965,
229,
33176,
114,
46237,
228,
26344,
104,
16764,
29826,
97,
27950,
253,
47797,
121,
20015,
227,
18796,
101,
12859,
236,
38184,
233,
46237,
243,
161,
240,
234,
161,
101,
109,
20046,
238,
201,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
13564,
7,
7061,
6,
201,
198,
2235,
27,
6494,
29,
201,
198,
2235,
220,
1279,
2256,
6927,
7839,
29,
41592,
9220,
3556,
7839,
12240,
2256,
29,
201,
198,
2235,
220,
1279,
2618,
29,
201,
198,
2235,
220,
220,
220,
1279,
687,
2223,
11639,
7753,
6,
551,
310,
2981,
2625,
16680,
541,
433,
14,
687,
12,
7890,
1,
2446,
11639,
7353,
44167,
201,
198,
2235,
220,
220,
220,
1279,
15414,
2099,
11639,
7753,
6,
1438,
11639,
7753,
26488,
6927,
1671,
15913,
201,
198,
2235,
220,
220,
220,
1279,
15414,
2099,
11639,
46002,
6,
1988,
11639,
46002,
6,
15913,
201,
198,
2235,
220,
220,
220,
7359,
687,
29,
201,
198,
2235,
220,
7359,
2618,
29,
201,
198,
2235,
3556,
6494,
29,
201,
198,
2235,
7061,
11537,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
201,
198,
220,
220,
220,
422,
18540,
305,
919,
278,
1330,
10854,
201,
198,
220,
220,
220,
4129,
28,
11925,
7,
634,
8053,
8,
201,
198,
220,
220,
220,
329,
2493,
287,
2837,
7,
13664,
12,
16,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
279,
28,
18709,
7,
16793,
28,
5143,
62,
36942,
11,
26498,
16193,
634,
8053,
58,
634,
4357,
4008,
201,
198,
220,
220,
220,
220,
220,
220,
220,
279,
13,
9688,
3419,
201,
198,
220,
220,
220,
1057,
62,
36942,
7,
634,
8053,
58,
13664,
12,
16,
12962,
201,
198
] | 2 | 498 |
# -*- coding: utf-8 -*-
# @Time : 2020/11/21 上午11:27
# @Author : 司云中
# @File : base_api.py
# @Software: Pycharm
"""
通用API共享函数
"""
from rest_framework import status
from rest_framework.response import Response
from rest_framework.generics import GenericAPIView
from Emall.exceptions import SqlServerError
from Emall.response_code import response_code
def check_code(redis, validated_data):
"""校验验证码"""
code_status = redis.check_code(validated_data.get('phone'), validated_data.get('code'))
# 验证码错误或者过期
if not code_status:
return Response(response_code.verification_code_error, status=status.HTTP_400_BAD_REQUEST)
class BackendGenericApiView(GenericAPIView):
"""用于后台操作的通用API"""
serializer_class = None
serializer_delete_class = None
def post(self, request):
"""添加"""
serializer = self.get_serializer(data=request.data)
serializer.is_valid(raise_exception=True)
serializer.add()
def get(self, request):
"""获取单个/多个记录"""
pk = request.query_params.get(self.lookup_field, None)
if pk:
obj = self.get_obj(pk)
serializer = self.get_serializer(instance=obj)
return Response(serializer.data)
else:
queryset = self.get_queryset()
serializer = self.get_serializer(instance=queryset, many=True)
return Response({
'count': queryset.count(),
'data': serializer.data
})
def put(self, request):
"""修改"""
serializer = self.get_serializer(data=request.data)
serializer.is_valid(raise_exception=True)
serializer.modify()
def delete(self, request):
"""删除"""
serializer = self.serializer_delete_class(data=request.data)
if self.request.query_params.get('all', None) == 'true':
result_num, _ = self.get_queryset().delete()
else:
serializer.is_valid(raise_exception=True)
result_num, _ = serializer.delete()
return result_num | [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
2488,
7575,
220,
1058,
12131,
14,
1157,
14,
2481,
220,
41468,
39355,
230,
1157,
25,
1983,
198,
2,
2488,
13838,
1058,
10263,
237,
116,
12859,
239,
40792,
198,
2,
2488,
8979,
1058,
2779,
62,
15042,
13,
9078,
198,
2,
2488,
25423,
25,
9485,
354,
1670,
198,
198,
37811,
198,
34460,
248,
18796,
101,
17614,
17739,
109,
12859,
104,
49035,
121,
46763,
108,
198,
37811,
198,
6738,
1334,
62,
30604,
1330,
3722,
198,
6738,
1334,
62,
30604,
13,
26209,
1330,
18261,
198,
6738,
1334,
62,
30604,
13,
8612,
873,
1330,
42044,
2969,
3824,
769,
198,
198,
6738,
2295,
439,
13,
1069,
11755,
1330,
311,
13976,
10697,
12331,
198,
6738,
2295,
439,
13,
26209,
62,
8189,
1330,
2882,
62,
8189,
628,
198,
4299,
2198,
62,
8189,
7,
445,
271,
11,
31031,
62,
7890,
2599,
198,
220,
220,
220,
37227,
43718,
94,
165,
103,
234,
165,
103,
234,
46237,
223,
163,
254,
223,
37811,
198,
220,
220,
220,
2438,
62,
13376,
796,
2266,
271,
13,
9122,
62,
8189,
7,
12102,
515,
62,
7890,
13,
1136,
10786,
4862,
33809,
31031,
62,
7890,
13,
1136,
10786,
8189,
6,
4008,
198,
220,
220,
220,
1303,
16268,
103,
234,
46237,
223,
163,
254,
223,
165,
242,
247,
46237,
107,
22755,
244,
38519,
32573,
229,
17312,
253,
198,
220,
220,
220,
611,
407,
2438,
62,
13376,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
18261,
7,
26209,
62,
8189,
13,
332,
2649,
62,
8189,
62,
18224,
11,
3722,
28,
13376,
13,
40717,
62,
7029,
62,
33,
2885,
62,
2200,
35780,
8,
628,
198,
4871,
5157,
437,
46189,
32,
14415,
7680,
7,
46189,
2969,
3824,
769,
2599,
198,
220,
220,
220,
37227,
18796,
101,
12859,
236,
28938,
236,
20998,
108,
162,
241,
235,
43291,
21410,
34460,
248,
18796,
101,
17614,
37811,
628,
220,
220,
220,
11389,
7509,
62,
4871,
796,
6045,
628,
220,
220,
220,
11389,
7509,
62,
33678,
62,
4871,
796,
6045,
628,
220,
220,
220,
825,
1281,
7,
944,
11,
2581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
162,
115,
119,
27950,
254,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
796,
2116,
13,
1136,
62,
46911,
7509,
7,
7890,
28,
25927,
13,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
13,
271,
62,
12102,
7,
40225,
62,
1069,
4516,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
13,
2860,
3419,
628,
220,
220,
220,
825,
651,
7,
944,
11,
2581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
164,
236,
115,
20998,
244,
39355,
243,
10310,
103,
14,
13783,
248,
10310,
103,
164,
106,
108,
37605,
243,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
279,
74,
796,
2581,
13,
22766,
62,
37266,
13,
1136,
7,
944,
13,
5460,
929,
62,
3245,
11,
6045,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
279,
74,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26181,
796,
2116,
13,
1136,
62,
26801,
7,
79,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
796,
2116,
13,
1136,
62,
46911,
7509,
7,
39098,
28,
26801,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
18261,
7,
46911,
7509,
13,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42517,
893,
316,
796,
2116,
13,
1136,
62,
10819,
893,
316,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
796,
2116,
13,
1136,
62,
46911,
7509,
7,
39098,
28,
10819,
893,
316,
11,
867,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
18261,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9127,
10354,
42517,
893,
316,
13,
9127,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
11389,
7509,
13,
7890,
198,
220,
220,
220,
220,
220,
220,
220,
32092,
628,
220,
220,
220,
825,
1234,
7,
944,
11,
2581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
46479,
106,
162,
242,
117,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
796,
2116,
13,
1136,
62,
46911,
7509,
7,
7890,
28,
25927,
13,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
13,
271,
62,
12102,
7,
40225,
62,
1069,
4516,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
13,
4666,
1958,
3419,
628,
220,
220,
220,
825,
12233,
7,
944,
11,
2581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
26344,
254,
165,
247,
97,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
796,
2116,
13,
46911,
7509,
62,
33678,
62,
4871,
7,
7890,
28,
25927,
13,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
25927,
13,
22766,
62,
37266,
13,
1136,
10786,
439,
3256,
6045,
8,
6624,
705,
7942,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
62,
22510,
11,
4808,
796,
2116,
13,
1136,
62,
10819,
893,
316,
22446,
33678,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11389,
7509,
13,
271,
62,
12102,
7,
40225,
62,
1069,
4516,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
62,
22510,
11,
4808,
796,
11389,
7509,
13,
33678,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1255,
62,
22510
] | 2.132984 | 955 |
"""
MIT License
Copyright (c) 2020 GamingGeek
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from fire.converters import TextChannel, Category
from discord.ext import commands
import traceback
import discord
import typing
| [
37811,
198,
36393,
13789,
198,
15269,
357,
66,
8,
12131,
14426,
10082,
988,
198,
198,
5990,
3411,
318,
29376,
7520,
11,
1479,
286,
3877,
11,
284,
597,
1048,
16727,
257,
4866,
286,
428,
3788,
198,
392,
3917,
10314,
3696,
357,
1169,
366,
25423,
12340,
284,
1730,
287,
262,
10442,
1231,
17504,
11,
198,
8201,
1231,
17385,
262,
2489,
284,
779,
11,
4866,
11,
13096,
11,
20121,
11,
7715,
11,
14983,
11,
850,
43085,
11,
198,
392,
14,
273,
3677,
9088,
286,
262,
10442,
11,
290,
284,
8749,
6506,
284,
4150,
262,
10442,
318,
30760,
284,
466,
523,
11,
198,
32796,
284,
262,
1708,
3403,
25,
198,
198,
464,
2029,
6634,
4003,
290,
428,
7170,
4003,
2236,
307,
3017,
287,
477,
9088,
393,
8904,
16690,
286,
262,
10442,
13,
198,
10970,
47466,
3180,
36592,
2389,
1961,
366,
1921,
3180,
1600,
42881,
34764,
56,
3963,
15529,
509,
12115,
11,
7788,
32761,
6375,
8959,
49094,
11,
47783,
2751,
21728,
5626,
40880,
5390,
3336,
34764,
11015,
3963,
198,
29296,
3398,
1565,
5603,
25382,
11,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
5357,
44521,
1268,
10913,
2751,
12529,
13,
3268,
8005,
49261,
50163,
3336,
37195,
20673,
6375,
27975,
38162,
9947,
367,
15173,
4877,
9348,
43031,
19146,
198,
13775,
15529,
47666,
3955,
11,
29506,
25552,
6375,
25401,
43031,
25382,
11,
7655,
2767,
16879,
3268,
3537,
40282,
3963,
27342,
10659,
11,
309,
9863,
6375,
25401,
54,
24352,
11,
5923,
1797,
2751,
16034,
11,
16289,
3963,
6375,
3268,
7102,
45,
24565,
198,
54,
10554,
3336,
47466,
6375,
3336,
23210,
6375,
25401,
5550,
1847,
20754,
3268,
3336,
47466,
13,
198,
37811,
628,
198,
6738,
2046,
13,
1102,
332,
1010,
1330,
8255,
29239,
11,
21743,
198,
6738,
36446,
13,
2302,
1330,
9729,
198,
11748,
12854,
1891,
198,
11748,
36446,
198,
11748,
19720,
628,
198
] | 4.074324 | 296 |
# -*- coding: utf-8 -*-
# Copyright (C) 2012 Anaconda, Inc
# SPDX-License-Identifier: BSD-3-Clause
from __future__ import absolute_import, division, print_function, unicode_literals
import bz2
import sys, os
from collections import defaultdict
from contextlib import closing
from errno import EACCES, ENODEV, EPERM
from genericpath import getmtime, isfile
import hashlib
import json
from logging import DEBUG, getLogger
from mmap import ACCESS_READ, mmap
from os.path import dirname, isdir, join, splitext
import re
from time import time
import warnings
from io import open as io_open
from conda import CondaError
from conda._vendor.auxlib.ish import dals
from conda._vendor.auxlib.logz import stringify
from conda._vendor.toolz import concat, take
from conda.base.constants import CONDA_HOMEPAGE_URL, REPODATA_FN
from conda.base.context import context
from conda.common.compat import (ensure_binary, ensure_text_type, ensure_unicode, iteritems,
string_types, text_type, with_metaclass)
from conda.common.io import ThreadLimitedThreadPoolExecutor, as_completed
from conda.common.url import join_url, maybe_unquote
from conda.core.package_cache_data import PackageCacheData
from conda.exceptions import (CondaDependencyError, CondaHTTPError, CondaUpgradeError,
NotWritableError, UnavailableInvalidChannel)
from conda.gateways.connection import (ConnectionError, HTTPError, InsecureRequestWarning,
InvalidSchema, SSLError)
from conda.gateways.connection.session import CondaSession
from conda.gateways.disk import mkdir_p, mkdir_p_sudo_safe
from conda.gateways.disk.delete import rm_rf
from conda.gateways.disk.update import touch
from conda.models.channel import Channel, all_channel_urls
from conda.models.match_spec import MatchSpec
from conda.models.records import PackageRecord
from conda.core.subdir_data import *
log = getLogger(__name__)
stderrlog = getLogger('conda.stderrlog')
REPODATA_PICKLE_VERSION = 28
MAX_REPODATA_VERSION = 1
REPODATA_HEADER_RE = b'"(_etag|_mod|_cache_control)":[ ]?"(.*?[^\\\\])"[,\}\s]' # NOQA
@with_metaclass(SubdirDataType)
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
15069,
357,
34,
8,
2321,
1052,
330,
13533,
11,
3457,
198,
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
347,
10305,
12,
18,
12,
2601,
682,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
7297,
11,
3601,
62,
8818,
11,
28000,
1098,
62,
17201,
874,
198,
198,
11748,
275,
89,
17,
198,
11748,
25064,
11,
28686,
198,
6738,
17268,
1330,
4277,
11600,
198,
6738,
4732,
8019,
1330,
9605,
198,
6738,
11454,
3919,
1330,
412,
26861,
1546,
11,
12964,
16820,
53,
11,
14724,
1137,
44,
198,
6738,
14276,
6978,
1330,
651,
76,
2435,
11,
318,
7753,
198,
11748,
12234,
8019,
198,
11748,
33918,
198,
6738,
18931,
1330,
16959,
11,
651,
11187,
1362,
198,
6738,
8085,
499,
1330,
15859,
7597,
62,
15675,
11,
8085,
499,
198,
6738,
28686,
13,
6978,
1330,
26672,
3672,
11,
318,
15908,
11,
4654,
11,
4328,
578,
742,
198,
11748,
302,
198,
6738,
640,
1330,
640,
198,
11748,
14601,
198,
6738,
33245,
1330,
1280,
355,
33245,
62,
9654,
198,
198,
6738,
1779,
64,
1330,
9724,
64,
12331,
198,
6738,
1779,
64,
13557,
85,
18738,
13,
14644,
8019,
13,
680,
1330,
288,
874,
198,
6738,
1779,
64,
13557,
85,
18738,
13,
14644,
8019,
13,
6404,
89,
1330,
4731,
1958,
198,
6738,
1779,
64,
13557,
85,
18738,
13,
25981,
89,
1330,
1673,
265,
11,
1011,
198,
6738,
1779,
64,
13,
8692,
13,
9979,
1187,
1330,
7102,
5631,
62,
39069,
4537,
8264,
62,
21886,
11,
4526,
47,
3727,
13563,
62,
43221,
198,
6738,
1779,
64,
13,
8692,
13,
22866,
1330,
4732,
198,
6738,
1779,
64,
13,
11321,
13,
5589,
265,
1330,
357,
641,
495,
62,
39491,
11,
4155,
62,
5239,
62,
4906,
11,
4155,
62,
46903,
1098,
11,
11629,
23814,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4731,
62,
19199,
11,
2420,
62,
4906,
11,
351,
62,
4164,
330,
31172,
8,
198,
6738,
1779,
64,
13,
11321,
13,
952,
1330,
14122,
37214,
16818,
27201,
23002,
38409,
11,
355,
62,
785,
16838,
198,
6738,
1779,
64,
13,
11321,
13,
6371,
1330,
4654,
62,
6371,
11,
3863,
62,
403,
22708,
198,
6738,
1779,
64,
13,
7295,
13,
26495,
62,
23870,
62,
7890,
1330,
15717,
30562,
6601,
198,
6738,
1779,
64,
13,
1069,
11755,
1330,
357,
34,
13533,
35,
2690,
1387,
12331,
11,
9724,
64,
40717,
12331,
11,
9724,
64,
44948,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1892,
20257,
540,
12331,
11,
791,
15182,
44651,
29239,
8,
198,
6738,
1779,
64,
13,
10494,
1322,
13,
38659,
1330,
357,
32048,
12331,
11,
14626,
12331,
11,
554,
22390,
18453,
20361,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17665,
27054,
2611,
11,
6723,
2538,
81,
1472,
8,
198,
6738,
1779,
64,
13,
10494,
1322,
13,
38659,
13,
29891,
1330,
9724,
64,
36044,
198,
6738,
1779,
64,
13,
10494,
1322,
13,
39531,
1330,
33480,
15908,
62,
79,
11,
33480,
15908,
62,
79,
62,
24032,
62,
21230,
198,
6738,
1779,
64,
13,
10494,
1322,
13,
39531,
13,
33678,
1330,
42721,
62,
41871,
198,
6738,
1779,
64,
13,
10494,
1322,
13,
39531,
13,
19119,
1330,
3638,
198,
6738,
1779,
64,
13,
27530,
13,
17620,
1330,
11102,
11,
477,
62,
17620,
62,
6371,
82,
198,
6738,
1779,
64,
13,
27530,
13,
15699,
62,
16684,
1330,
13225,
22882,
198,
6738,
1779,
64,
13,
27530,
13,
8344,
3669,
1330,
15717,
23739,
198,
6738,
1779,
64,
13,
7295,
13,
7266,
15908,
62,
7890,
1330,
1635,
198,
198,
6404,
796,
651,
11187,
1362,
7,
834,
3672,
834,
8,
198,
301,
1082,
81,
6404,
796,
651,
11187,
1362,
10786,
66,
13533,
13,
301,
1082,
81,
6404,
11537,
198,
198,
35316,
3727,
13563,
62,
47,
11860,
2538,
62,
43717,
796,
2579,
198,
22921,
62,
35316,
3727,
13563,
62,
43717,
796,
352,
198,
35316,
3727,
13563,
62,
37682,
1137,
62,
2200,
796,
275,
6,
18109,
62,
316,
363,
91,
62,
4666,
91,
62,
23870,
62,
13716,
8,
20598,
2361,
1701,
7,
15885,
30,
58,
61,
13426,
12962,
17912,
11,
59,
32239,
82,
49946,
220,
1303,
8005,
48,
32,
628,
198,
198,
31,
4480,
62,
4164,
330,
31172,
7,
7004,
15908,
6601,
6030,
8,
198
] | 2.844327 | 758 |
from lxml import etree
import logging
import random
import os
import shutil
import types, cgi
from pylons import config
from pylons import request, response, session, tmpl_context as c, url
from pylons.controllers.util import abort, redirect
from webenmr.model import Projects, Calculations, Jobs, CalculationTipology, Users
from webenmr.model.meta import Session
from webenmr.lib.base import *
from webenmr.lib.base import BaseController, render
from webenmr.lib.xplor_analysis import *
from webenmr.lib.make_xplor import *
from webenmr.lib.JobManagementSystem import *
log = logging.getLogger(__name__)
| [
6738,
300,
19875,
1330,
2123,
631,
198,
11748,
18931,
198,
11748,
4738,
198,
11748,
28686,
198,
11748,
4423,
346,
198,
11748,
3858,
11,
269,
12397,
198,
6738,
279,
2645,
684,
1330,
4566,
198,
6738,
279,
2645,
684,
1330,
2581,
11,
2882,
11,
6246,
11,
256,
76,
489,
62,
22866,
355,
269,
11,
19016,
198,
6738,
279,
2645,
684,
13,
3642,
36667,
13,
22602,
1330,
15614,
11,
18941,
198,
6738,
3992,
268,
43395,
13,
19849,
1330,
29898,
11,
27131,
602,
11,
19161,
11,
2199,
14902,
28434,
1435,
11,
18987,
198,
6738,
3992,
268,
43395,
13,
19849,
13,
28961,
1330,
23575,
198,
6738,
3992,
268,
43395,
13,
8019,
13,
8692,
1330,
1635,
198,
6738,
3992,
268,
43395,
13,
8019,
13,
8692,
1330,
7308,
22130,
11,
8543,
198,
6738,
3992,
268,
43395,
13,
8019,
13,
87,
489,
273,
62,
20930,
1330,
1635,
198,
6738,
3992,
268,
43395,
13,
8019,
13,
15883,
62,
87,
489,
273,
1330,
1635,
198,
6738,
3992,
268,
43395,
13,
8019,
13,
33308,
48032,
11964,
1330,
1635,
198,
198,
6404,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220
] | 3.219895 | 191 |
"""
This migration script adds support for storing tags in the context of a dataset in a library
"""
import logging
from sqlalchemy import (
Column,
ForeignKey,
Integer,
MetaData,
Table,
)
# Need our custom types, but don't import anything else from model
from galaxy.model.custom_types import TrimmedString
log = logging.getLogger(__name__)
metadata = MetaData()
LibraryDatasetDatasetAssociationTagAssociation_table = Table(
"library_dataset_dataset_association_tag_association",
metadata,
Column("id", Integer, primary_key=True),
Column(
"library_dataset_dataset_association_id",
Integer,
ForeignKey("library_dataset_dataset_association.id"),
index=True,
),
Column("tag_id", Integer, ForeignKey("tag.id"), index=True),
Column("user_tname", TrimmedString(255), index=True),
Column("value", TrimmedString(255), index=True),
Column("user_value", TrimmedString(255), index=True),
Column("user_id", Integer, ForeignKey("galaxy_user.id"), index=True),
)
| [
37811,
198,
1212,
13472,
4226,
6673,
1104,
329,
23069,
15940,
287,
262,
4732,
286,
257,
27039,
287,
257,
5888,
198,
37811,
198,
198,
11748,
18931,
198,
198,
6738,
44161,
282,
26599,
1330,
357,
198,
220,
220,
220,
29201,
11,
198,
220,
220,
220,
8708,
9218,
11,
198,
220,
220,
220,
34142,
11,
198,
220,
220,
220,
30277,
6601,
11,
198,
220,
220,
220,
8655,
11,
198,
8,
198,
198,
2,
10664,
674,
2183,
3858,
11,
475,
836,
470,
1330,
1997,
2073,
422,
2746,
198,
6738,
16161,
13,
19849,
13,
23144,
62,
19199,
1330,
833,
320,
1150,
10100,
198,
198,
6404,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
38993,
796,
30277,
6601,
3419,
628,
198,
23377,
27354,
292,
316,
27354,
292,
316,
8021,
41003,
24835,
8021,
41003,
62,
11487,
796,
8655,
7,
198,
220,
220,
220,
366,
32016,
62,
19608,
292,
316,
62,
19608,
292,
316,
62,
562,
41003,
62,
12985,
62,
562,
41003,
1600,
198,
220,
220,
220,
20150,
11,
198,
220,
220,
220,
29201,
7203,
312,
1600,
34142,
11,
4165,
62,
2539,
28,
17821,
828,
198,
220,
220,
220,
29201,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
32016,
62,
19608,
292,
316,
62,
19608,
292,
316,
62,
562,
41003,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
34142,
11,
198,
220,
220,
220,
220,
220,
220,
220,
8708,
9218,
7203,
32016,
62,
19608,
292,
316,
62,
19608,
292,
316,
62,
562,
41003,
13,
312,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
6376,
28,
17821,
11,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
29201,
7203,
12985,
62,
312,
1600,
34142,
11,
8708,
9218,
7203,
12985,
13,
312,
12340,
6376,
28,
17821,
828,
198,
220,
220,
220,
29201,
7203,
7220,
62,
83,
3672,
1600,
833,
320,
1150,
10100,
7,
13381,
828,
6376,
28,
17821,
828,
198,
220,
220,
220,
29201,
7203,
8367,
1600,
833,
320,
1150,
10100,
7,
13381,
828,
6376,
28,
17821,
828,
198,
220,
220,
220,
29201,
7203,
7220,
62,
8367,
1600,
833,
320,
1150,
10100,
7,
13381,
828,
6376,
28,
17821,
828,
198,
220,
220,
220,
29201,
7203,
7220,
62,
312,
1600,
34142,
11,
8708,
9218,
7203,
13528,
6969,
62,
7220,
13,
312,
12340,
6376,
28,
17821,
828,
198,
8,
628,
198
] | 2.770449 | 379 |
import os
from unittest import mock
from heliumcli import utils, settings
from heliumcli.main import main
from tests.helpers.commonhelper import given_config_exists
from .helpers import testcase, commonhelper
__author__ = "Alex Laird"
__copyright__ = "Copyright 2018, Helium Edu"
__version__ = "1.6.0"
| [
11748,
28686,
198,
6738,
555,
715,
395,
1330,
15290,
198,
198,
6738,
43142,
44506,
1330,
3384,
4487,
11,
6460,
198,
6738,
43142,
44506,
13,
12417,
1330,
1388,
198,
6738,
5254,
13,
16794,
364,
13,
11321,
2978,
525,
1330,
1813,
62,
11250,
62,
1069,
1023,
198,
6738,
764,
16794,
364,
1330,
1332,
7442,
11,
2219,
2978,
525,
198,
198,
834,
9800,
834,
796,
366,
15309,
15067,
67,
1,
198,
834,
22163,
4766,
834,
796,
366,
15269,
2864,
11,
5053,
1505,
40766,
1,
198,
834,
9641,
834,
796,
366,
16,
13,
21,
13,
15,
1,
628
] | 3.244681 | 94 |
from loguru import logger
logger.enable("snapflow")
if __name__ == "__main__":
test()
| [
6738,
2604,
14717,
1330,
49706,
198,
198,
6404,
1362,
13,
21633,
7203,
45380,
11125,
4943,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1332,
3419,
198
] | 2.685714 | 35 |
# Copyright [2018-2020] Peter Krenesky
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import logging
import boto3
import docker
from ixian.config import CONFIG
from ixian.utils.decorators import cached_property
logger = logging.getLogger(__name__)
# Global cache of registries that are created.
DOCKER_REGISTRIES = {}
class UnknownRegistry(Exception):
"""Exception raised when registry is not configured"""
pass
| [
2,
15069,
685,
7908,
12,
42334,
60,
5613,
509,
918,
274,
2584,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
11748,
2779,
2414,
198,
11748,
18931,
198,
198,
11748,
275,
2069,
18,
198,
11748,
36253,
198,
198,
6738,
220,
844,
666,
13,
11250,
1330,
25626,
198,
6738,
220,
844,
666,
13,
26791,
13,
12501,
273,
2024,
1330,
39986,
62,
26745,
628,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
198,
2,
8060,
12940,
286,
4214,
1678,
326,
389,
2727,
13,
198,
35,
11290,
1137,
62,
31553,
1797,
5446,
11015,
796,
23884,
628,
198,
198,
4871,
16185,
8081,
4592,
7,
16922,
2599,
198,
220,
220,
220,
37227,
16922,
4376,
618,
20478,
318,
407,
17839,
37811,
628,
220,
220,
220,
1208,
628,
198
] | 3.583333 | 264 |
from rest_framework.routers import DefaultRouter, DynamicRoute, Route
class CustomBulkDeleteRouter(DefaultRouter):
"""
A custom URL router for the Product API that correctly routes
DELETE requests with multiple query parameters.
"""
routes = [
Route(
url=r"^{prefix}$",
mapping={"get": "list", "post": "create", "delete": "destroy"},
name="{basename}-list",
detail=False,
initkwargs={"suffix": "List"},
),
Route(
url=r"^{prefix}/{lookup}$",
mapping={
"get": "retrieve",
"put": "update",
"patch": "partial_update",
},
name="{basename}-detail",
detail=True,
initkwargs={"suffix": "Detail"},
),
DynamicRoute(
url=r"^{prefix}/{lookup}/{url_path}$",
name="{basename}-{url_name}",
detail=True,
initkwargs={},
),
]
| [
6738,
1334,
62,
30604,
13,
472,
1010,
1330,
15161,
49,
39605,
11,
26977,
43401,
11,
18956,
628,
198,
4871,
8562,
33,
12171,
38727,
49,
39605,
7,
19463,
49,
39605,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
2183,
10289,
20264,
329,
262,
8721,
7824,
326,
9380,
11926,
198,
220,
220,
220,
5550,
2538,
9328,
7007,
351,
3294,
12405,
10007,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
11926,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
18956,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19016,
28,
81,
1,
36796,
40290,
92,
3,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16855,
28,
4895,
1136,
1298,
366,
4868,
1600,
366,
7353,
1298,
366,
17953,
1600,
366,
33678,
1298,
366,
41659,
25719,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
2625,
90,
12093,
12453,
92,
12,
4868,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3703,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2315,
46265,
22046,
28,
4895,
37333,
844,
1298,
366,
8053,
25719,
198,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
18956,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19016,
28,
81,
1,
36796,
40290,
92,
14,
90,
5460,
929,
92,
3,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16855,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
1298,
366,
1186,
30227,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1996,
1298,
366,
19119,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17147,
1298,
366,
47172,
62,
19119,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
2625,
90,
12093,
12453,
92,
12,
49170,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3703,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2315,
46265,
22046,
28,
4895,
37333,
844,
1298,
366,
11242,
603,
25719,
198,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
26977,
43401,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19016,
28,
81,
1,
36796,
40290,
92,
14,
90,
5460,
929,
92,
14,
90,
6371,
62,
6978,
92,
3,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
2625,
90,
12093,
12453,
92,
12,
90,
6371,
62,
3672,
92,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3703,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2315,
46265,
22046,
34758,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
2361,
198
] | 1.925714 | 525 |
#landing page inputs taken as a form input.
from django import forms
from . import models
| [
2,
1044,
278,
2443,
17311,
2077,
355,
257,
1296,
5128,
13,
198,
6738,
42625,
14208,
1330,
5107,
198,
6738,
764,
1330,
4981,
628,
197
] | 3.833333 | 24 |
from .upgrade_manifest import set_config
| [
6738,
764,
929,
9526,
62,
805,
8409,
1330,
900,
62,
11250,
198
] | 3.416667 | 12 |
from django.db import transaction
from rest_framework.exceptions import NotFound, PermissionDenied
from rest_framework.generics import get_object_or_404
from rest_framework.permissions import IsAuthenticated
from rest_framework.response import Response
from rest_framework.serializers import ModelSerializer
from rest_framework.views import APIView
from curation_portal.models import Project, Variant
from curation_portal.serializers import VariantSerializer as UploadedVariantSerializer
| [
6738,
42625,
14208,
13,
9945,
1330,
8611,
198,
6738,
1334,
62,
30604,
13,
1069,
11755,
1330,
1892,
21077,
11,
2448,
3411,
21306,
798,
198,
6738,
1334,
62,
30604,
13,
8612,
873,
1330,
651,
62,
15252,
62,
273,
62,
26429,
198,
6738,
1334,
62,
30604,
13,
525,
8481,
1330,
1148,
47649,
3474,
198,
6738,
1334,
62,
30604,
13,
26209,
1330,
18261,
198,
6738,
1334,
62,
30604,
13,
46911,
11341,
1330,
9104,
32634,
7509,
198,
6738,
1334,
62,
30604,
13,
33571,
1330,
3486,
3824,
769,
198,
198,
6738,
1090,
341,
62,
634,
282,
13,
27530,
1330,
4935,
11,
38215,
198,
6738,
1090,
341,
62,
634,
282,
13,
46911,
11341,
1330,
38215,
32634,
7509,
355,
36803,
276,
23907,
415,
32634,
7509,
628,
198
] | 4.091667 | 120 |
l = int(input())
operacao = input()
matriz = []
soma = 0.0
for x in range(0, 12):
linha = []
for y in range(0, 12):
linha.append(float(input()))
matriz.append(linha)
for x in range(0, 12):
soma += matriz[x][l]
if operacao == 'S':
print('{:.1f}'.format(soma))
else:
print('{:.1f}'.format(soma/12)) | [
75,
796,
493,
7,
15414,
28955,
198,
3575,
330,
5488,
796,
5128,
3419,
198,
6759,
47847,
796,
17635,
198,
82,
6086,
796,
657,
13,
15,
198,
1640,
2124,
287,
2837,
7,
15,
11,
1105,
2599,
198,
220,
220,
220,
9493,
3099,
796,
17635,
198,
220,
220,
220,
329,
331,
287,
2837,
7,
15,
11,
1105,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
9493,
3099,
13,
33295,
7,
22468,
7,
15414,
3419,
4008,
198,
220,
220,
220,
2603,
47847,
13,
33295,
7,
2815,
3099,
8,
198,
1640,
2124,
287,
2837,
7,
15,
11,
1105,
2599,
198,
220,
220,
220,
3870,
64,
15853,
2603,
47847,
58,
87,
7131,
75,
60,
198,
361,
1515,
330,
5488,
6624,
705,
50,
10354,
198,
220,
220,
220,
3601,
10786,
90,
25,
13,
16,
69,
92,
4458,
18982,
7,
82,
6086,
4008,
198,
17772,
25,
198,
220,
220,
220,
3601,
10786,
90,
25,
13,
16,
69,
92,
4458,
18982,
7,
82,
6086,
14,
1065,
4008
] | 2.05 | 160 |
# open Himawari-8 standard format
# output data dictionary ready to put in frp_pixel.py
# the struction of the dictionary should be like this
# ['ir39', 'ir12', 'saa', 'ir11', 'cloudfree', 'lat',
# 'ir11rad', 'diff', 'sun_glint', 'ACQTIME', 'vza',
# 'vaa', 'lon', 'cmask', 'CMa_TEST', 'pixsize', 'szen',
# 'tirradratio', 'infos', 'redrad', 'visradratio',
# 'tcwv', 'ir39rad', 'lcov']
import os
import datetime
import struct
import numpy as np
import scipy.ndimage
from subprocess import call
import bz2file as h8_bz2
import sys
def sunglint(vzen, vaz, szen, saz):
""" all the input in degrees
calculation from Prins et al. enhanced fired detection 1998
"""
vzen_r = np.radians(vzen)
vaz_r = np.radians(vaz)
szen_r = np.radians(szen)
saz_r = np.radians(saz)
raz_r = vaz_r - saz_r
G = np.cos(vzen_r) * np.cos(szen_r) - np.sin(vzen_r) * np.sin(szen_r) * np.cos(raz_r)
sun_glint = np.degrees(np.arccos(G))
return sun_glint
def cloud_mask(data):
"""
A simple cloud masking for Himawari8
for fire detection
"""
# threshold for Albedo
vis_day = 0.1
bt10_day = 290.
bt10_day_vz = 290
bt4_ni = 272.
bt10_ni = 268.
bt11_ni = 268.
Diffthresh_day = 15.0
Diffthresh_ni = 10.0
Diff2thresh = 13.7
data['cmask'] = np.zeros(data['ir39'].shape, dtype=np.int8) - 1
# work in the satellite visible area and the land
mask = ((data['vza'] > 0.0) & (data['lcov'] < 20))
data['cmask'][mask] = 0.
# check if day or night - day <70.degrees and night gt 70.degrees
# work on day time first
day = ((data['szen'] < 75.) & (data['szen'] > 0.0) & \
(data['lcov'] < 20) & (data['vza'] > 0.0))
# visible band
vis_thresh = ((data['vis'] > vis_day) & (data['ir11'] < bt10_day) & \
(data['cmask'] < 1) & (day > 0))
data['cmask'][vis_thresh] = 1
# 10mincron threshold
tir_thresh = ((data['ir11'] < bt10_day) & (data['cmask'] < 1) & (day > 0))
data['cmask'][tir_thresh] = 2
# his is the mid infrared temperature threshold used here for cloud detected
# bt4_th = -0.35 * data['szen'] + 300
diff = data['ir39'] - data['ir11']
# 10mincron and 3.9um difference threshold
dif_thresh = ((data['vis'] > vis_day / 3) & (diff > Diffthresh_day) & (data['ir11'] < bt10_day_vz) & \
(data['cmask'] < 1) & (day > 0))
data['cmask'][dif_thresh] = 5
# night time
night = ((data['szen'] > 90.0) & (data['vza'] > 0.) & (data['lcov'] < 20))
# MIR
# mir_thresh = ((data['ir39'] < bt4_ni) & (np.abs(diff) > 2) & (night > 0))
# data['cmask'][mir_thresh] = 7
# 10mincron
tir_thresh = ((data['ir11'] < bt10_ni) & (np.abs(diff) > 4) & (night > 0))
data['cmask'][tir_thresh] = 8
# 10mincron and 3.9um difference threshold
dif_thresh = ((diff > Diffthresh_ni) & (data['ir39'] < 275) & (night > 0))
data['cmask'][dif_thresh] = 5
# twilight time
twilight = ((data['szen'] >= 75.0) & (data['szen'] < 90.0) & (data['vza'] > 0.) & (data['lcov'] < 20))
vis_thresh = ((data['vis'] > vis_day / 4) & (data['cmask'] < 1) & (twilight > 0))
data['cmask'][vis_thresh] = 1
# sun glint affest area
glint = (data['sun_glint'] < 20.0)
vis_thresh = ((data['vis'] > vis_day / 4) & (data['cmask'] < 1) & (glint > 0))
data['cmask'][vis_thresh] = 1
# this is clear sky
data['cloudfree'] = (data['cmask'] < 1.0) & (data['cmask'] > -1.0)
return data
def water_mask(data):
"""
A simple water masking for Himawari8
for fire georeference
land: 1, water: 0, background:-1
"""
# threshold for Albedo
sir_day = 0.05
data['wmask'] = np.zeros(data['ir39'].shape, dtype=np.int8) - 1
# work in the satellite visible area and the land
mask = data['vza'] > 0.0
data['wmask'][mask] = 0.
# check if day or night - day <70.degrees and night gt 70.degrees
# work on day time first
day = ((data['szen'] < 80.) & (data['szen'] > 0.0) & (data['vza'] > 0.0))
# sir band
sir_thresh = ((data['sir'] > sir_day) & (data['wmask'] < 1) & \
(data['cmask'] < 1) & (day > 0) & (data['diff'] < 20))
data['wmask'][sir_thresh] = 1
return data
def geo_read(f, verbose=False):
"""
read in the static data like view angle, landcover
put them in a data dictionary
"""
dim = 5500 # hard coded for Himawari8 possible it is 5500 in which case we need to zoom
if verbose:
print 'reading file %s' % f
dtype = np.float32
shape = (2, dim, dim)
data = np.fromfile(f, dtype=dtype).reshape(shape)
lat = data[0, :, :].astype(dtype)
lon = data[1, :, :].astype(dtype)
return lat, lon
def static_read(file_dict, verbose=False):
"""
read in the static data like view angle, landcover
put them in a data dictionary
"""
d = {}
dim = 5500 # hard coded for Himawari8
for key in file_dict.keys():
file = file_dict[key][0][0]
if verbose:
print 'file path %s' % key
print 'reading file %s' % file
if key == 'landcover_path':
dtype = np.int8
shape = (dim, dim)
data = np.fromfile(file, dtype=dtype).reshape(shape)
data_key = file_dict[key][1]
d[data_key] = data.astype(dtype)
elif key == 'fixed_position_path':
dtype = np.float32
shape = (dim, dim)
data = np.fromfile(file, dtype=dtype).reshape(shape)
data_key = file_dict[key][1]
d[data_key] = data.astype(dtype)
else:
dtype = np.float32
shape = (2, dim, dim)
data = np.fromfile(file, dtype=dtype).reshape(shape)
data_key = file_dict[key][1]
d[data_key] = data[0, :, :].astype(dtype)
data_key = file_dict[key][2]
d[data_key] = data[1, :, :].astype(dtype)
# pixel size
d['pixsize'] = ((2.0 ** 2) * 1000.0 ** 2) * (1 / np.cos(np.radians(d['vza'])))
# # adjust sampled area based on blocks used
# for k in d.keys():
# d[k] = d[k][start_pix:stop_pix, :]
return d
def sun_angles(lat, lon, time_key):
"""
input: lat, np array; lon, np array
time_key, string
YYYYMMDDHHMM format like 201501031100
output:szen, sun zenith angle
saa, sun azimuth angle
"""
# Define internal constants used for conversion
EQTIME1 = 229.18
EQTIME2 = 0.000075
EQTIME3 = 0.001868
EQTIME4 = 0.032077
EQTIME5 = 0.014615
EQTIME6 = 0.040849
DECL1 = 0.006918
DECL2 = 0.399912
DECL3 = 0.070257
DECL4 = 0.006758
DECL5 = 0.000907
DECL6 = 0.002697
DECL7 = 0.00148
# Evaluate the input lat and lon in radians
RadLat = np.radians(lat)
dt = datetime.datetime.strptime(time_key, '%Y%m%d%H%M')
# get the days in the year, normal year:365; leap year:366
d1 = datetime.datetime(dt.year, 1, 1)
d2 = datetime.datetime(dt.year + 1, 1, 1)
days_in_year = (d2 - d1).days
# Evaluate the fractional year in radians
# dt.hour-12 because gamma start from local noon time
gamma = 2 * np.pi * (dt.timetuple().tm_yday - 1 + \
(dt.hour - 12) / 24.0) / days_in_year
# Evaluate the Equation of time in minutes
eqtime = EQTIME1 * (EQTIME2 + EQTIME3 * np.cos(gamma) - \
EQTIME4 * np.sin(gamma) - EQTIME5 * np.cos(2 * gamma) - \
0.040849 * np.sin(2 * gamma))
# Time offset in minutes
time_offset = eqtime + 4.0 * lon
# local solar time in minutes
true_solar_time = dt.hour * 60 + dt.minute + dt.second / 60 + time_offset
# Solar hour angle in degrees and in radians
HaRad = np.radians((true_solar_time / 4.) - 180.)
# Evaluate the solar declination angle in radians
Decli = DECL1 - DECL2 * np.cos(gamma) + DECL3 * np.sin(gamma) - \
DECL4 * np.cos(2 * gamma) + DECL5 * np.sin(2 * gamma) - \
DECL6 * np.cos(3 * gamma) + DECL7 * np.sin(3 * gamma)
# Evaluate the Solar local Coordinates
CosZen = (np.sin(RadLat) * np.sin(Decli) + \
np.cos(RadLat) * np.cos(Decli) * np.cos(HaRad))
TmpZenRad = np.arccos(CosZen)
szen = np.degrees(TmpZenRad)
CosAzi = -((np.sin(RadLat) * np.cos(TmpZenRad) - np.sin(Decli)) / \
(np.cos(RadLat) * np.sin(TmpZenRad)))
saa = 360. - np.degrees(np.arccos(CosAzi))
# Correct for Time < 12.00 ( -> in range 0 . 180 )
saa[(true_solar_time < 720)] = 360. - saa[(true_solar_time < 720)] # in minutes 12 *60
return (szen, saa)
def rebin(a, newshape):
'''Rebin an array to a new shape.
'''
assert len(a.shape) == len(newshape)
slices = [slice(0, old, float(old) / new) for old, new in zip(a.shape, newshape)]
coordinates = np.mgrid[slices]
indices = coordinates.astype('i') # choose the biggest smaller integer index
return a[tuple(indices)]
def H8_file_read(file, verbose=False):
# type: (object, object) -> object
'''
read in a single Himawari8 file.
'''
if not os.path.exists(file):
print 'can not read %s' % file
fileExtension = os.path.splitext(file)[1]
if fileExtension in '.bz2':
fh = h8_bz2.BZ2File(file, 'rb')
else:
fh = open(file, 'rb')
# doit = call(["bunzip2", file])
# if doit < 1:
# file = file[:-4]
# else:
# print 'can not unzip ', file
# Read in the head blocks
#print "processing %s" % file
total_len = 0
# read in the file as binary see python struct for help
for bb in xrange(11):
# for Block 1
fh.seek(total_len)
Block_no = struct.unpack('b', fh.read(1))[0]
if verbose:
print 'Reading block %s' % Block_no
fh.seek(total_len + 1)
Block_len = struct.unpack('h', fh.read(2))[0]
if verbose:
print 'The length of block %s is %s' % (Block_no, Block_len)
# from block 2 read in number of samps and lines
if Block_no == 2:
fh.seek(total_len + 5)
samps = struct.unpack('h', fh.read(2))[0]
fh.seek(total_len + 7)
lines = struct.unpack('h', fh.read(2))[0]
# from block 3 read projection information
elif Block_no == 3:
fh.seek(total_len + 3)
sub_lon = struct.unpack('d', fh.read(8))[0]
#print 'central longitude %r' % sub_lon
fh.seek(total_len + 11)
CFAC = struct.unpack('I', fh.read(4))[0]
fh.seek(total_len + 15)
LFAC = struct.unpack('I', fh.read(4))[0]
fh.seek(total_len + 19)
COFF = struct.unpack('f', fh.read(4))[0]
fh.seek(total_len + 23)
LOFF = struct.unpack('f', fh.read(4))[0]
fh.seek(total_len + 27)
# Information about satellite height, earth equatorial radius
# more infor can be found on page 16 of
# Himawari_D_users_guide_en
Proj_info = struct.unpack('ddddddd', fh.read(8 * 7))[:]
elif Block_no == 4:
fh.seek(total_len + 3)
Nav_info = struct.unpack('dddddddd', fh.read(8 * 8))[:]
elif Block_no == 5:
fh.seek(total_len + 3)
Band_no = struct.unpack('h', fh.read(2))[0]
fh.seek(total_len + 5)
central_wave = struct.unpack('d', fh.read(8))[0]
fh.seek(total_len + 19)
Cal_info = struct.unpack('ddddddddddd', fh.read(8 * 11))[:]
# Change the block length for next block
total_len += Block_len
if verbose:
print 'Total header length %s' % total_len
# Now read in image data
fh.seek(total_len)
dtype = 'u2'
shape = [lines, samps]
size = np.dtype(dtype).itemsize * samps * lines
data = fh.read()
data = np.frombuffer(data[:size], dtype).reshape(shape)
fh.close()
fileExtension = os.path.splitext(file)[1]
# if fileExtension in '.DAT':
# call(["bzip2", file])
if verbose:
print 'slope: %f, offset: %f for radiance' % (Cal_info[0], Cal_info[1])
radiance = data * Cal_info[0] + Cal_info[1]
# for infrared bands
if Band_no > 6:
# for Planck temperature
speed_of_light = Cal_info[8]
planck_constant = Cal_info[9]
boltzmann_constant = Cal_info[10]
# radiance = 2.5
# central_wave = 4
c1 = 2.0 * planck_constant * speed_of_light * speed_of_light
c2 = planck_constant * speed_of_light / boltzmann_constant
# -- Derived constant scaling factors for:
# c1: W.m2 to W/(m2.um-4) => multiplier of 1.0e+24 is required.
# c2: K.m to K.um a=> multiplier of 1.0e+06 is required.
c1_scale = 1.0e+24
c2_scale = 1.0e+06
# -- Calculate wavelength dependent "constants"
fk1 = c1_scale * c1 / (central_wave ** 5)
fk2 = c2_scale * c2 / central_wave
logarithm = np.log((fk1 / (radiance) + 1.0))
temperature = fk2 / logarithm
BT = Cal_info[2] + Cal_info[3] * temperature + Cal_info[4] * \
temperature * temperature
else:
# Lets not resample the himawari data here.
# if samps > 12000: # hard coded should find a better way later
# # Resampled by a factor of 0.25 with bilinear interpolation
# # sub = radiance[4300*4:4700*4,2500*4:2900*4]
# # d['vis_full'] = sub
# radiance = rebin(radiance, (lines / 4, samps / 4))
# elif samps > 5500:
# radiance = rebin(radiance, (lines / 2, samps / 2))
# for visible band this is Albedo
BT = radiance * Cal_info[2]
return (radiance, BT)
def Himawari_read(file_dict, verbose=False):
"""
Read the Himawari-8 channels
for fire detection, we only need red, MIR and TIR
input: file dictionary like
{'red_path' : 'HS_H08_20150109_0600_B03_FLDK_R20_S0101.DAT',
'mir_path' : 'HS_H08_20150109_0600_B07_FLDK_R20_S0101.DAT',
'tir_path' : 'HS_H08_20150109_0600_B14_FLDK_R20_S0101.DAT'}
output: date dictionary like
{'mir_BT' : np.array(5500,55500)}
reference: Himawari_D_users_guide_en from
http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_users_guide_en_v11.pdf
"""
d = {}
for key in file_dict.keys():
files = file_dict[key][0]
files.sort()
rad_data_list = []
BT_data_list = []
for file in files:
radiance, BT = H8_file_read(file)
rad_data_list.append(radiance)
BT_data_list.append(BT)
radiance = np.vstack(rad_data_list)
BT = np.vstack(BT_data_list)
data_key = file_dict[key][1]
d[data_key] = BT.astype(np.float32)
data_key = file_dict[key][2]
d[data_key] = radiance.astype(np.float32)
return d
def get_path(root, band, time_key=None, path_tree=None):
"""Finds path for given time key and data band
time_key: 201501081300, YYYYMMDDHHMM
band: B07,MIR (3.9um), B14,TIR (11um), B03,red (0.6um)
sometime B03 has both 500m and 2km resolution files
variable: BT, brightness temperature; Radiance
for static data return path
path_tree: HSFD, the original japan FTP path like:#
201501/09/201501090000/00/B03
else,weidong own path tree like
201501090000
"""
if time_key is not None: # EO realtime date
# separate the date and time from the time_key
dt_time_key = datetime.datetime.strptime(time_key, '%Y%m%d%H%M')
dt_date = dt_time_key.strftime('%Y%m%d')
dt_time = dt_time_key.strftime('%H%M')
# keys = [dt_date, dt_time, band] # Realtime EO channels
if path_tree in ['HSFD']:
root = os.path.join(root,
dt_time_key.strftime('%Y%m'),
dt_time_key.strftime('%d'),
dt_time_key.strftime('%Y%m%d%H') + '00',
dt_time_key.strftime('%M'),
band + '/')
# 500m resolution data
band_vis_05 = band + "_FLDK_R05_S"
# 2km resolution data
band = band + "_FLDK_R20_S"
else:
root = root + time_key + "/"
band_vis_05 = band
else:
root = os.path.join(root, "lcov/")
band_vis_05 = band
#print "root: %s" % root
#print "band: %s" % band
# now iterate over root path
if os.path.exists(root):
filepath = []
filepath1 = []
for f in os.listdir(root):
if band in f:
file_size = os.path.getsize(root + f)
if file_size > 10000:
filepath.append(root + f)
elif band_vis_05 in f:
filepath1.append(root + f)
else:
continue
if len(filepath) < 1:
filepath = filepath1
# return
# if filepath1 is not None:
# return filepath1
# else:
return filepath
else:
print root, 'does not exists'
sys.exit
def paths(root, time_key=None, path_tree=None, mode=0):
"""Constructs a dictionary for
the file paths
"""
# path dictionary construted from here
d = {}
if time_key is not None: # EO realtime date
# for fire detection model
if mode == 0:
d["red_path"] = [get_path(root, "B03", \
time_key=time_key, path_tree=path_tree), 'vis', 'redrad']
# d["nir_path"] = [get_path(root, "B04", \
# time_key=time_key,path_tree=path_tree), 'nir', 'nirrad']
# d["sir_path"] = [get_path(root, "B06", \
# time_key=time_key, path_tree=path_tree), 'sir', 'sirrad']
d["tir86_path"] = [get_path(root, "B11", \
time_key=time_key, path_tree=path_tree), 'ir86', 'ir86rad']
d["mir_path"] = [get_path(root, "B07", \
time_key=time_key, path_tree=path_tree), 'ir39', 'ir39rad']
d["tir11_path"] = [get_path(root, "B14", \
time_key=time_key, path_tree=path_tree), 'ir11', 'ir11rad']
else:
d["latlon_path"] = [get_path(root, "lat_lon.img"), 'lat', 'lon']
d["sat_view_angle_path"] = [get_path(root, "vza_vaa.img"), 'vza', 'vaa']
d["landcover_path"] = [get_path(root, "lcov.img"), 'lcov']
# d["fixed_position_path"] = [get_path(root, "H8_tir_201501090620.img"),'fpos']
return d
def load_h8(in_root, time_key, path_tree=None, mode=0):
"""
load all the data and put them in a dictionary
"""
# firstly setup the path dictionary
EO_path_dict = paths(in_root, time_key=time_key, path_tree=path_tree, mode=0)
# readin all the Himawari files here
EO_data = Himawari_read(EO_path_dict)
# construt a static data dictionary
static_path_dict = paths(in_root)
# readin all static data here
static_data = static_read(static_path_dict)
# get the sun angle
szen, saa = sun_angles(static_data['lat'], static_data['lon'], time_key)
# get the sun glint angle
sun_glint = sunglint(static_data['vza'], static_data['vaa'], szen, saa)
# combine EO and static data together
EO_data.update(static_data)
EO_data['szen'] = szen
EO_data['sun_glint'] = sun_glint
EO_data['ACQTIME'] = np.zeros(EO_data['ir39'].shape, dtype=np.int8)
# for fire detection
EO_data['diff'] = EO_data['ir39'] - EO_data['ir11']
EO_data['tirradratio'] = EO_data['ir39rad'] / EO_data['ir11rad']
EO_data['visradratio'] = EO_data['ir39rad'] / EO_data['redrad']
# d['ndvi'] = (d['nir'] - d['vis']) / (d['nir'] + d['vis'])
# correct the navigation problem
dt_time_key = datetime.datetime.strptime(time_key, '%Y%m%d%H%M')
dt_time = int(dt_time_key.strftime('%H'))
# if dt_time < 11:
# doit = img_move(EO_data)
# do the cloud masking
data = cloud_mask(EO_data)
# data = water_mask(EO_data)
return data
if __name__ == '__main__':
in_root = '/Volumes/INTENSO/him_downlaod'
# root for the output files
time_key = "201507060000"
data = load_h8(in_root, time_key, path_tree="HSFD")
| [
2,
1280,
10978,
707,
2743,
12,
23,
3210,
5794,
198,
2,
5072,
1366,
22155,
3492,
284,
1234,
287,
1216,
79,
62,
32515,
13,
9078,
198,
2,
262,
336,
2762,
286,
262,
22155,
815,
307,
588,
428,
198,
2,
37250,
343,
2670,
3256,
705,
343,
1065,
3256,
705,
82,
7252,
3256,
705,
343,
1157,
3256,
705,
17721,
5787,
3256,
705,
15460,
3256,
198,
2,
705,
343,
1157,
6335,
3256,
705,
26069,
3256,
705,
19155,
62,
4743,
600,
3256,
705,
2246,
48,
34694,
3256,
705,
85,
4496,
3256,
198,
2,
705,
6862,
64,
3256,
705,
14995,
3256,
705,
11215,
2093,
3256,
705,
34,
21467,
62,
51,
6465,
3256,
705,
79,
844,
7857,
3256,
705,
82,
4801,
3256,
198,
2,
705,
83,
343,
6335,
10366,
952,
3256,
705,
10745,
418,
3256,
705,
445,
6335,
3256,
705,
4703,
6335,
10366,
952,
3256,
198,
2,
705,
23047,
86,
85,
3256,
705,
343,
2670,
6335,
3256,
705,
44601,
709,
20520,
198,
198,
11748,
28686,
198,
11748,
4818,
8079,
198,
11748,
2878,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
629,
541,
88,
13,
358,
9060,
198,
6738,
850,
14681,
1330,
869,
198,
11748,
275,
89,
17,
7753,
355,
289,
23,
62,
65,
89,
17,
198,
11748,
25064,
628,
198,
4299,
23568,
75,
600,
7,
85,
4801,
11,
410,
1031,
11,
264,
4801,
11,
473,
89,
2599,
198,
220,
220,
220,
37227,
477,
262,
5128,
287,
7370,
198,
220,
220,
220,
220,
220,
220,
220,
17952,
422,
1736,
1040,
2123,
435,
13,
13105,
6294,
13326,
7795,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
410,
4801,
62,
81,
796,
45941,
13,
6335,
1547,
7,
85,
4801,
8,
198,
220,
220,
220,
410,
1031,
62,
81,
796,
45941,
13,
6335,
1547,
7,
85,
1031,
8,
198,
220,
220,
220,
264,
4801,
62,
81,
796,
45941,
13,
6335,
1547,
7,
82,
4801,
8,
198,
220,
220,
220,
473,
89,
62,
81,
796,
45941,
13,
6335,
1547,
7,
82,
1031,
8,
198,
220,
220,
220,
374,
1031,
62,
81,
796,
410,
1031,
62,
81,
532,
473,
89,
62,
81,
198,
220,
220,
220,
402,
796,
45941,
13,
6966,
7,
85,
4801,
62,
81,
8,
1635,
45941,
13,
6966,
7,
82,
4801,
62,
81,
8,
532,
45941,
13,
31369,
7,
85,
4801,
62,
81,
8,
1635,
45941,
13,
31369,
7,
82,
4801,
62,
81,
8,
1635,
45941,
13,
6966,
7,
3247,
62,
81,
8,
198,
220,
220,
220,
4252,
62,
4743,
600,
796,
45941,
13,
13500,
6037,
7,
37659,
13,
283,
535,
418,
7,
38,
4008,
198,
220,
220,
220,
1441,
4252,
62,
4743,
600,
628,
198,
4299,
6279,
62,
27932,
7,
7890,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
2829,
6279,
9335,
278,
329,
10978,
707,
2743,
23,
198,
220,
220,
220,
329,
2046,
13326,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
11387,
329,
978,
3077,
78,
198,
220,
220,
220,
1490,
62,
820,
796,
657,
13,
16,
198,
220,
220,
220,
275,
83,
940,
62,
820,
796,
26481,
13,
198,
220,
220,
220,
275,
83,
940,
62,
820,
62,
85,
89,
796,
26481,
628,
220,
220,
220,
275,
83,
19,
62,
8461,
796,
38107,
13,
198,
220,
220,
220,
275,
83,
940,
62,
8461,
796,
36678,
13,
198,
220,
220,
220,
275,
83,
1157,
62,
8461,
796,
36678,
13,
198,
220,
220,
220,
10631,
400,
3447,
62,
820,
796,
1315,
13,
15,
198,
220,
220,
220,
10631,
400,
3447,
62,
8461,
796,
838,
13,
15,
198,
220,
220,
220,
10631,
17,
400,
3447,
796,
1511,
13,
22,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
20520,
796,
45941,
13,
9107,
418,
7,
7890,
17816,
343,
2670,
6,
4083,
43358,
11,
288,
4906,
28,
37659,
13,
600,
23,
8,
532,
352,
198,
220,
220,
220,
1303,
670,
287,
262,
11210,
7424,
1989,
290,
262,
1956,
198,
220,
220,
220,
9335,
796,
14808,
7890,
17816,
85,
4496,
20520,
1875,
657,
13,
15,
8,
1222,
357,
7890,
17816,
44601,
709,
20520,
1279,
1160,
4008,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
6,
7131,
27932,
60,
796,
657,
13,
198,
220,
220,
220,
1303,
2198,
611,
1110,
393,
1755,
532,
1110,
1279,
2154,
13,
13500,
6037,
290,
1755,
308,
83,
4317,
13,
13500,
6037,
198,
220,
220,
220,
1303,
670,
319,
1110,
640,
717,
198,
220,
220,
220,
1110,
796,
14808,
7890,
17816,
82,
4801,
20520,
1279,
5441,
2014,
1222,
357,
7890,
17816,
82,
4801,
20520,
1875,
657,
13,
15,
8,
1222,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
7890,
17816,
44601,
709,
20520,
1279,
1160,
8,
1222,
357,
7890,
17816,
85,
4496,
20520,
1875,
657,
13,
15,
4008,
198,
220,
220,
220,
1303,
7424,
4097,
198,
220,
220,
220,
1490,
62,
400,
3447,
796,
14808,
7890,
17816,
4703,
20520,
1875,
1490,
62,
820,
8,
1222,
357,
7890,
17816,
343,
1157,
20520,
1279,
275,
83,
940,
62,
820,
8,
1222,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
7890,
17816,
11215,
2093,
20520,
1279,
352,
8,
1222,
357,
820,
1875,
657,
4008,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
6,
7131,
4703,
62,
400,
3447,
60,
796,
352,
628,
220,
220,
220,
1303,
838,
1084,
66,
1313,
11387,
198,
220,
220,
220,
48965,
62,
400,
3447,
796,
14808,
7890,
17816,
343,
1157,
20520,
1279,
275,
83,
940,
62,
820,
8,
1222,
357,
7890,
17816,
11215,
2093,
20520,
1279,
352,
8,
1222,
357,
820,
1875,
657,
4008,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
6,
7131,
83,
343,
62,
400,
3447,
60,
796,
362,
628,
220,
220,
220,
1303,
465,
318,
262,
3095,
30624,
5951,
11387,
220,
973,
994,
329,
6279,
12326,
198,
220,
220,
220,
1303,
275,
83,
19,
62,
400,
796,
532,
15,
13,
2327,
1635,
1366,
17816,
82,
4801,
20520,
1343,
5867,
198,
220,
220,
220,
814,
796,
1366,
17816,
343,
2670,
20520,
532,
1366,
17816,
343,
1157,
20520,
198,
220,
220,
220,
1303,
838,
1084,
66,
1313,
290,
513,
13,
24,
388,
3580,
11387,
198,
220,
220,
220,
288,
361,
62,
400,
3447,
796,
14808,
7890,
17816,
4703,
20520,
1875,
1490,
62,
820,
1220,
513,
8,
1222,
357,
26069,
1875,
10631,
400,
3447,
62,
820,
8,
1222,
357,
7890,
17816,
343,
1157,
20520,
1279,
275,
83,
940,
62,
820,
62,
85,
89,
8,
1222,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
7890,
17816,
11215,
2093,
20520,
1279,
352,
8,
1222,
357,
820,
1875,
657,
4008,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
6,
7131,
67,
361,
62,
400,
3447,
60,
796,
642,
628,
220,
220,
220,
1303,
1755,
640,
198,
220,
220,
220,
1755,
796,
14808,
7890,
17816,
82,
4801,
20520,
1875,
4101,
13,
15,
8,
1222,
357,
7890,
17816,
85,
4496,
20520,
1875,
657,
2014,
1222,
357,
7890,
17816,
44601,
709,
20520,
1279,
1160,
4008,
198,
220,
220,
220,
1303,
337,
4663,
198,
220,
220,
220,
1303,
5720,
62,
400,
3447,
796,
14808,
7890,
17816,
343,
2670,
20520,
1279,
275,
83,
19,
62,
8461,
8,
1222,
357,
37659,
13,
8937,
7,
26069,
8,
1875,
362,
8,
1222,
357,
3847,
1875,
657,
4008,
198,
220,
220,
220,
1303,
1366,
17816,
11215,
2093,
6,
7131,
10793,
62,
400,
3447,
60,
796,
767,
198,
220,
220,
220,
1303,
838,
1084,
66,
1313,
198,
220,
220,
220,
48965,
62,
400,
3447,
796,
14808,
7890,
17816,
343,
1157,
20520,
1279,
275,
83,
940,
62,
8461,
8,
1222,
357,
37659,
13,
8937,
7,
26069,
8,
1875,
604,
8,
1222,
357,
3847,
1875,
657,
4008,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
6,
7131,
83,
343,
62,
400,
3447,
60,
796,
807,
628,
220,
220,
220,
1303,
838,
1084,
66,
1313,
290,
513,
13,
24,
388,
3580,
11387,
198,
220,
220,
220,
288,
361,
62,
400,
3447,
796,
14808,
26069,
1875,
10631,
400,
3447,
62,
8461,
8,
1222,
357,
7890,
17816,
343,
2670,
20520,
1279,
25829,
8,
1222,
357,
3847,
1875,
657,
4008,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
6,
7131,
67,
361,
62,
400,
3447,
60,
796,
642,
198,
220,
220,
220,
1303,
45493,
640,
198,
220,
220,
220,
45493,
796,
14808,
7890,
17816,
82,
4801,
20520,
18189,
5441,
13,
15,
8,
1222,
357,
7890,
17816,
82,
4801,
20520,
1279,
4101,
13,
15,
8,
1222,
357,
7890,
17816,
85,
4496,
20520,
1875,
657,
2014,
1222,
357,
7890,
17816,
44601,
709,
20520,
1279,
1160,
4008,
198,
220,
220,
220,
1490,
62,
400,
3447,
796,
14808,
7890,
17816,
4703,
20520,
1875,
1490,
62,
820,
1220,
604,
8,
1222,
357,
7890,
17816,
11215,
2093,
20520,
1279,
352,
8,
1222,
357,
4246,
15512,
1875,
657,
4008,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
6,
7131,
4703,
62,
400,
3447,
60,
796,
352,
198,
220,
220,
220,
1303,
4252,
1278,
600,
1527,
395,
1989,
198,
220,
220,
220,
1278,
600,
796,
357,
7890,
17816,
19155,
62,
4743,
600,
20520,
1279,
1160,
13,
15,
8,
198,
220,
220,
220,
1490,
62,
400,
3447,
796,
14808,
7890,
17816,
4703,
20520,
1875,
1490,
62,
820,
1220,
604,
8,
1222,
357,
7890,
17816,
11215,
2093,
20520,
1279,
352,
8,
1222,
357,
4743,
600,
1875,
657,
4008,
198,
220,
220,
220,
1366,
17816,
11215,
2093,
6,
7131,
4703,
62,
400,
3447,
60,
796,
352,
628,
220,
220,
220,
1303,
428,
318,
1598,
6766,
198,
220,
220,
220,
1366,
17816,
17721,
5787,
20520,
796,
357,
7890,
17816,
11215,
2093,
20520,
1279,
352,
13,
15,
8,
1222,
357,
7890,
17816,
11215,
2093,
20520,
1875,
532,
16,
13,
15,
8,
198,
220,
220,
220,
1441,
1366,
628,
198,
4299,
1660,
62,
27932,
7,
7890,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
2829,
1660,
9335,
278,
329,
10978,
707,
2743,
23,
198,
220,
220,
220,
329,
2046,
4903,
382,
4288,
198,
220,
220,
220,
1956,
25,
352,
11,
1660,
25,
657,
11,
4469,
21912,
16,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
11387,
329,
978,
3077,
78,
198,
220,
220,
220,
15967,
62,
820,
796,
657,
13,
2713,
198,
220,
220,
220,
1366,
17816,
26377,
2093,
20520,
796,
45941,
13,
9107,
418,
7,
7890,
17816,
343,
2670,
6,
4083,
43358,
11,
288,
4906,
28,
37659,
13,
600,
23,
8,
532,
352,
198,
220,
220,
220,
1303,
670,
287,
262,
11210,
7424,
1989,
290,
262,
1956,
198,
220,
220,
220,
9335,
796,
1366,
17816,
85,
4496,
20520,
1875,
657,
13,
15,
198,
220,
220,
220,
1366,
17816,
26377,
2093,
6,
7131,
27932,
60,
796,
657,
13,
198,
220,
220,
220,
1303,
2198,
611,
1110,
393,
1755,
532,
1110,
1279,
2154,
13,
13500,
6037,
290,
1755,
308,
83,
4317,
13,
13500,
6037,
198,
220,
220,
220,
1303,
670,
319,
1110,
640,
717,
198,
220,
220,
220,
1110,
796,
14808,
7890,
17816,
82,
4801,
20520,
1279,
4019,
2014,
1222,
357,
7890,
17816,
82,
4801,
20520,
1875,
657,
13,
15,
8,
1222,
357,
7890,
17816,
85,
4496,
20520,
1875,
657,
13,
15,
4008,
198,
220,
220,
220,
1303,
15967,
4097,
198,
220,
220,
220,
15967,
62,
400,
3447,
796,
14808,
7890,
17816,
82,
343,
20520,
1875,
15967,
62,
820,
8,
1222,
357,
7890,
17816,
26377,
2093,
20520,
1279,
352,
8,
1222,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
7890,
17816,
11215,
2093,
20520,
1279,
352,
8,
1222,
357,
820,
1875,
657,
8,
1222,
357,
7890,
17816,
26069,
20520,
1279,
1160,
4008,
198,
220,
220,
220,
1366,
17816,
26377,
2093,
6,
7131,
82,
343,
62,
400,
3447,
60,
796,
352,
628,
220,
220,
220,
1441,
1366,
628,
198,
4299,
40087,
62,
961,
7,
69,
11,
15942,
577,
28,
25101,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1100,
287,
262,
9037,
1366,
588,
1570,
9848,
11,
1956,
9631,
198,
220,
220,
220,
1234,
606,
287,
257,
1366,
22155,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5391,
796,
642,
4059,
220,
1303,
1327,
30817,
329,
10978,
707,
2743,
23,
1744,
340,
318,
642,
4059,
287,
543,
1339,
356,
761,
284,
19792,
198,
220,
220,
220,
611,
15942,
577,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
25782,
2393,
4064,
82,
6,
4064,
277,
198,
220,
220,
220,
288,
4906,
796,
45941,
13,
22468,
2624,
198,
220,
220,
220,
5485,
796,
357,
17,
11,
5391,
11,
5391,
8,
198,
220,
220,
220,
1366,
796,
45941,
13,
6738,
7753,
7,
69,
11,
288,
4906,
28,
67,
4906,
737,
3447,
1758,
7,
43358,
8,
198,
220,
220,
220,
3042,
796,
1366,
58,
15,
11,
1058,
11,
1058,
4083,
459,
2981,
7,
67,
4906,
8,
198,
220,
220,
220,
300,
261,
796,
1366,
58,
16,
11,
1058,
11,
1058,
4083,
459,
2981,
7,
67,
4906,
8,
198,
220,
220,
220,
1441,
3042,
11,
300,
261,
628,
198,
4299,
9037,
62,
961,
7,
7753,
62,
11600,
11,
15942,
577,
28,
25101,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1100,
287,
262,
9037,
1366,
588,
1570,
9848,
11,
1956,
9631,
198,
220,
220,
220,
1234,
606,
287,
257,
1366,
22155,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
288,
796,
23884,
198,
220,
220,
220,
5391,
796,
642,
4059,
220,
1303,
1327,
30817,
329,
10978,
707,
2743,
23,
198,
220,
220,
220,
329,
1994,
287,
2393,
62,
11600,
13,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
796,
2393,
62,
11600,
58,
2539,
7131,
15,
7131,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
15942,
577,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
7753,
3108,
4064,
82,
6,
4064,
1994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
25782,
2393,
4064,
82,
6,
4064,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1994,
6624,
705,
1044,
9631,
62,
6978,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
796,
45941,
13,
600,
23,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5485,
796,
357,
27740,
11,
5391,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
45941,
13,
6738,
7753,
7,
7753,
11,
288,
4906,
28,
67,
4906,
737,
3447,
1758,
7,
43358,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
2539,
796,
2393,
62,
11600,
58,
2539,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
58,
7890,
62,
2539,
60,
796,
1366,
13,
459,
2981,
7,
67,
4906,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1994,
6624,
705,
34021,
62,
9150,
62,
6978,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
796,
45941,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5485,
796,
357,
27740,
11,
5391,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
45941,
13,
6738,
7753,
7,
7753,
11,
288,
4906,
28,
67,
4906,
737,
3447,
1758,
7,
43358,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
2539,
796,
2393,
62,
11600,
58,
2539,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
58,
7890,
62,
2539,
60,
796,
1366,
13,
459,
2981,
7,
67,
4906,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
796,
45941,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5485,
796,
357,
17,
11,
5391,
11,
5391,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
45941,
13,
6738,
7753,
7,
7753,
11,
288,
4906,
28,
67,
4906,
737,
3447,
1758,
7,
43358,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
2539,
796,
2393,
62,
11600,
58,
2539,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
58,
7890,
62,
2539,
60,
796,
1366,
58,
15,
11,
1058,
11,
1058,
4083,
459,
2981,
7,
67,
4906,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
2539,
796,
2393,
62,
11600,
58,
2539,
7131,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
58,
7890,
62,
2539,
60,
796,
1366,
58,
16,
11,
1058,
11,
1058,
4083,
459,
2981,
7,
67,
4906,
8,
198,
220,
220,
220,
1303,
17465,
2546,
198,
220,
220,
220,
288,
17816,
79,
844,
7857,
20520,
796,
14808,
17,
13,
15,
12429,
362,
8,
1635,
8576,
13,
15,
12429,
362,
8,
1635,
357,
16,
1220,
45941,
13,
6966,
7,
37659,
13,
6335,
1547,
7,
67,
17816,
85,
4496,
20520,
22305,
628,
220,
220,
220,
1303,
1303,
4532,
35846,
1989,
1912,
319,
7021,
973,
198,
220,
220,
220,
1303,
329,
479,
287,
288,
13,
13083,
33529,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
288,
58,
74,
60,
796,
288,
58,
74,
7131,
9688,
62,
79,
844,
25,
11338,
62,
79,
844,
11,
1058,
60,
628,
220,
220,
220,
1441,
288,
628,
198,
4299,
4252,
62,
27787,
7,
15460,
11,
300,
261,
11,
640,
62,
2539,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5128,
25,
3042,
11,
45941,
7177,
26,
300,
261,
11,
45941,
7177,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
62,
2539,
11,
4731,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
575,
26314,
56,
12038,
16458,
16768,
12038,
5794,
588,
1853,
486,
3070,
42060,
198,
220,
220,
220,
5072,
25,
82,
4801,
11,
4252,
1976,
268,
342,
9848,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
473,
64,
11,
4252,
35560,
320,
1071,
9848,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
2896,
500,
5387,
38491,
973,
329,
11315,
198,
220,
220,
220,
36529,
34694,
16,
796,
31064,
13,
1507,
198,
220,
220,
220,
36529,
34694,
17,
796,
657,
13,
2388,
2425,
198,
220,
220,
220,
36529,
34694,
18,
796,
657,
13,
405,
1507,
3104,
198,
220,
220,
220,
36529,
34694,
19,
796,
657,
13,
3070,
1238,
3324,
198,
220,
220,
220,
36529,
34694,
20,
796,
657,
13,
486,
3510,
1314,
198,
220,
220,
220,
36529,
34694,
21,
796,
657,
13,
15,
26200,
2920,
628,
220,
220,
220,
27196,
43,
16,
796,
657,
13,
405,
3388,
1507,
198,
220,
220,
220,
27196,
43,
17,
796,
657,
13,
18,
17032,
1065,
198,
220,
220,
220,
27196,
43,
18,
796,
657,
13,
43509,
28676,
198,
220,
220,
220,
27196,
43,
19,
796,
657,
13,
28041,
38569,
198,
220,
220,
220,
27196,
43,
20,
796,
657,
13,
830,
24,
2998,
198,
220,
220,
220,
27196,
43,
21,
796,
657,
13,
405,
2075,
5607,
198,
220,
220,
220,
27196,
43,
22,
796,
657,
13,
405,
18294,
198,
220,
220,
220,
1303,
26439,
4985,
262,
5128,
3042,
290,
300,
261,
287,
2511,
1547,
198,
220,
220,
220,
5325,
24220,
796,
45941,
13,
6335,
1547,
7,
15460,
8,
198,
220,
220,
220,
288,
83,
796,
4818,
8079,
13,
19608,
8079,
13,
2536,
457,
524,
7,
2435,
62,
2539,
11,
705,
4,
56,
4,
76,
4,
67,
4,
39,
4,
44,
11537,
198,
220,
220,
220,
1303,
651,
262,
1528,
287,
262,
614,
11,
3487,
614,
25,
24760,
26,
16470,
614,
25,
32459,
198,
220,
220,
220,
288,
16,
796,
4818,
8079,
13,
19608,
8079,
7,
28664,
13,
1941,
11,
352,
11,
352,
8,
198,
220,
220,
220,
288,
17,
796,
4818,
8079,
13,
19608,
8079,
7,
28664,
13,
1941,
1343,
352,
11,
352,
11,
352,
8,
198,
220,
220,
220,
1528,
62,
259,
62,
1941,
796,
357,
67,
17,
532,
288,
16,
737,
12545,
198,
220,
220,
220,
1303,
26439,
4985,
262,
13390,
282,
614,
287,
2511,
1547,
198,
220,
220,
220,
1303,
288,
83,
13,
9769,
12,
1065,
780,
34236,
923,
422,
1957,
19613,
640,
198,
220,
220,
220,
34236,
796,
362,
1635,
45941,
13,
14415,
1635,
357,
28664,
13,
16514,
316,
29291,
22446,
17209,
62,
88,
820,
532,
352,
1343,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
28664,
13,
9769,
532,
1105,
8,
1220,
1987,
13,
15,
8,
1220,
1528,
62,
259,
62,
1941,
198,
220,
220,
220,
1303,
26439,
4985,
262,
7889,
341,
286,
640,
287,
2431,
198,
220,
220,
220,
37430,
2435,
796,
36529,
34694,
16,
1635,
357,
36,
48,
34694,
17,
1343,
36529,
34694,
18,
1635,
45941,
13,
6966,
7,
28483,
2611,
8,
532,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36529,
34694,
19,
1635,
45941,
13,
31369,
7,
28483,
2611,
8,
532,
36529,
34694,
20,
1635,
45941,
13,
6966,
7,
17,
1635,
34236,
8,
532,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
15,
26200,
2920,
1635,
45941,
13,
31369,
7,
17,
1635,
34236,
4008,
198,
220,
220,
220,
1303,
3862,
11677,
287,
2431,
198,
220,
220,
220,
640,
62,
28968,
796,
37430,
2435,
1343,
604,
13,
15,
1635,
300,
261,
198,
220,
220,
220,
1303,
1957,
6591,
640,
287,
2431,
198,
220,
220,
220,
2081,
62,
82,
6192,
62,
2435,
796,
288,
83,
13,
9769,
1635,
3126,
1343,
288,
83,
13,
11374,
1343,
288,
83,
13,
12227,
1220,
3126,
1343,
640,
62,
28968,
198,
220,
220,
220,
1303,
12347,
1711,
9848,
287,
7370,
290,
287,
2511,
1547,
198,
220,
220,
220,
9398,
15546,
796,
45941,
13,
6335,
1547,
19510,
7942,
62,
82,
6192,
62,
2435,
1220,
604,
2014,
532,
11546,
2014,
198,
220,
220,
220,
1303,
26439,
4985,
262,
6591,
2377,
1883,
9848,
287,
2511,
1547,
198,
220,
220,
220,
16691,
72,
796,
27196,
43,
16,
532,
27196,
43,
17,
1635,
45941,
13,
6966,
7,
28483,
2611,
8,
1343,
27196,
43,
18,
1635,
45941,
13,
31369,
7,
28483,
2611,
8,
532,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27196,
43,
19,
1635,
45941,
13,
6966,
7,
17,
1635,
34236,
8,
1343,
27196,
43,
20,
1635,
45941,
13,
31369,
7,
17,
1635,
34236,
8,
532,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27196,
43,
21,
1635,
45941,
13,
6966,
7,
18,
1635,
34236,
8,
1343,
27196,
43,
22,
1635,
45941,
13,
31369,
7,
18,
1635,
34236,
8,
198,
220,
220,
220,
1303,
26439,
4985,
262,
12347,
1957,
22819,
17540,
198,
220,
220,
220,
10437,
47573,
796,
357,
37659,
13,
31369,
7,
15546,
24220,
8,
1635,
45941,
13,
31369,
7,
37835,
72,
8,
1343,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
6966,
7,
15546,
24220,
8,
1635,
45941,
13,
6966,
7,
37835,
72,
8,
1635,
45941,
13,
6966,
7,
23303,
15546,
4008,
628,
220,
220,
220,
309,
3149,
47573,
15546,
796,
45941,
13,
283,
535,
418,
7,
36734,
47573,
8,
628,
220,
220,
220,
264,
4801,
796,
45941,
13,
13500,
6037,
7,
51,
3149,
47573,
15546,
8,
628,
220,
220,
220,
10437,
32,
17027,
796,
532,
19510,
37659,
13,
31369,
7,
15546,
24220,
8,
1635,
45941,
13,
6966,
7,
51,
3149,
47573,
15546,
8,
532,
45941,
13,
31369,
7,
37835,
72,
4008,
1220,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
37659,
13,
6966,
7,
15546,
24220,
8,
1635,
45941,
13,
31369,
7,
51,
3149,
47573,
15546,
22305,
628,
220,
220,
220,
473,
64,
796,
11470,
13,
532,
45941,
13,
13500,
6037,
7,
37659,
13,
283,
535,
418,
7,
36734,
32,
17027,
4008,
198,
220,
220,
220,
1303,
22941,
329,
3862,
1279,
1105,
13,
405,
357,
4613,
287,
2837,
657,
764,
11546,
1267,
198,
220,
220,
220,
473,
64,
58,
7,
7942,
62,
82,
6192,
62,
2435,
1279,
26250,
15437,
796,
11470,
13,
532,
473,
64,
58,
7,
7942,
62,
82,
6192,
62,
2435,
1279,
26250,
15437,
220,
1303,
287,
2431,
1105,
1635,
1899,
628,
220,
220,
220,
1441,
357,
82,
4801,
11,
473,
64,
8,
628,
198,
4299,
3405,
259,
7,
64,
11,
649,
43358,
2599,
198,
220,
220,
220,
705,
7061,
49,
23497,
281,
7177,
284,
257,
649,
5485,
13,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
6818,
18896,
7,
64,
13,
43358,
8,
6624,
18896,
7,
3605,
43358,
8,
628,
220,
220,
220,
24314,
796,
685,
48369,
7,
15,
11,
1468,
11,
12178,
7,
727,
8,
1220,
649,
8,
329,
1468,
11,
649,
287,
19974,
7,
64,
13,
43358,
11,
649,
43358,
15437,
198,
220,
220,
220,
22715,
796,
45941,
13,
76,
25928,
58,
82,
677,
274,
60,
198,
220,
220,
220,
36525,
796,
22715,
13,
459,
2981,
10786,
72,
11537,
220,
1303,
3853,
262,
4094,
4833,
18253,
6376,
198,
220,
220,
220,
1441,
257,
58,
83,
29291,
7,
521,
1063,
15437,
628,
198,
4299,
367,
23,
62,
7753,
62,
961,
7,
7753,
11,
15942,
577,
28,
25101,
2599,
198,
220,
220,
220,
1303,
2099,
25,
357,
15252,
11,
2134,
8,
4613,
2134,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
1100,
287,
257,
2060,
10978,
707,
2743,
23,
2393,
13,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
7753,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
5171,
407,
1100,
4064,
82,
6,
4064,
2393,
198,
220,
220,
220,
2393,
11627,
3004,
796,
28686,
13,
6978,
13,
22018,
578,
742,
7,
7753,
38381,
16,
60,
198,
220,
220,
220,
611,
2393,
11627,
3004,
287,
45302,
65,
89,
17,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
277,
71,
796,
289,
23,
62,
65,
89,
17,
13,
33,
57,
17,
8979,
7,
7753,
11,
705,
26145,
11537,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
277,
71,
796,
1280,
7,
7753,
11,
705,
26145,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
466,
270,
796,
869,
7,
14692,
65,
403,
13344,
17,
1600,
2393,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
466,
270,
1279,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
2393,
796,
2393,
58,
21912,
19,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
3601,
705,
5171,
407,
555,
13344,
46083,
2393,
628,
220,
220,
220,
1303,
4149,
287,
262,
1182,
7021,
628,
220,
220,
220,
1303,
4798,
366,
36948,
4064,
82,
1,
4064,
2393,
198,
220,
220,
220,
2472,
62,
11925,
796,
657,
198,
220,
220,
220,
1303,
1100,
287,
262,
2393,
355,
13934,
766,
21015,
2878,
329,
1037,
198,
220,
220,
220,
329,
275,
65,
287,
2124,
9521,
7,
1157,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
9726,
352,
198,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9726,
62,
3919,
796,
2878,
13,
403,
8002,
10786,
65,
3256,
277,
71,
13,
961,
7,
16,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
15942,
577,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
36120,
2512,
4064,
82,
6,
4064,
9726,
62,
3919,
198,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9726,
62,
11925,
796,
2878,
13,
403,
8002,
10786,
71,
3256,
277,
71,
13,
961,
7,
17,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
15942,
577,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
464,
4129,
286,
2512,
4064,
82,
318,
4064,
82,
6,
4064,
357,
12235,
62,
3919,
11,
9726,
62,
11925,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
422,
2512,
362,
1100,
287,
1271,
286,
264,
9430,
290,
3951,
198,
220,
220,
220,
220,
220,
220,
220,
611,
9726,
62,
3919,
6624,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
642,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
264,
9430,
796,
2878,
13,
403,
8002,
10786,
71,
3256,
277,
71,
13,
961,
7,
17,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
767,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3951,
796,
2878,
13,
403,
8002,
10786,
71,
3256,
277,
71,
13,
961,
7,
17,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
422,
2512,
513,
1100,
20128,
1321,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
9726,
62,
3919,
6624,
513,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
850,
62,
14995,
796,
2878,
13,
403,
8002,
10786,
67,
3256,
277,
71,
13,
961,
7,
23,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
705,
31463,
890,
3984,
4064,
81,
6,
4064,
850,
62,
14995,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
1367,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18551,
2246,
796,
2878,
13,
403,
8002,
10786,
40,
3256,
277,
71,
13,
961,
7,
19,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
1315,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47629,
2246,
796,
2878,
13,
403,
8002,
10786,
40,
3256,
277,
71,
13,
961,
7,
19,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
678,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7375,
5777,
796,
2878,
13,
403,
8002,
10786,
69,
3256,
277,
71,
13,
961,
7,
19,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
2242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17579,
5777,
796,
2878,
13,
403,
8002,
10786,
69,
3256,
277,
71,
13,
961,
7,
19,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
2681,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6188,
546,
11210,
6001,
11,
4534,
1602,
21592,
16874,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
517,
1167,
273,
460,
307,
1043,
319,
2443,
1467,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10978,
707,
2743,
62,
35,
62,
18417,
62,
41311,
62,
268,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1041,
73,
62,
10951,
796,
2878,
13,
403,
8002,
10786,
1860,
1860,
1860,
67,
3256,
277,
71,
13,
961,
7,
23,
1635,
767,
4008,
58,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
9726,
62,
3919,
6624,
604,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13244,
62,
10951,
796,
2878,
13,
403,
8002,
10786,
1860,
1860,
1860,
1860,
3256,
277,
71,
13,
961,
7,
23,
1635,
807,
4008,
58,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
9726,
62,
3919,
6624,
642,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10243,
62,
3919,
796,
2878,
13,
403,
8002,
10786,
71,
3256,
277,
71,
13,
961,
7,
17,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
642,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4318,
62,
19204,
796,
2878,
13,
403,
8002,
10786,
67,
3256,
277,
71,
13,
961,
7,
23,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
1343,
678,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2199,
62,
10951,
796,
2878,
13,
403,
8002,
10786,
1860,
1860,
1860,
1860,
1860,
67,
3256,
277,
71,
13,
961,
7,
23,
1635,
1367,
4008,
58,
47715,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9794,
262,
2512,
4129,
329,
1306,
2512,
198,
220,
220,
220,
220,
220,
220,
220,
2472,
62,
11925,
15853,
9726,
62,
11925,
198,
220,
220,
220,
220,
220,
220,
220,
611,
15942,
577,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
14957,
13639,
4129,
4064,
82,
6,
4064,
2472,
62,
11925,
198,
220,
220,
220,
1303,
2735,
1100,
287,
2939,
1366,
198,
220,
220,
220,
277,
71,
13,
36163,
7,
23350,
62,
11925,
8,
198,
220,
220,
220,
288,
4906,
796,
705,
84,
17,
6,
198,
220,
220,
220,
5485,
796,
685,
6615,
11,
264,
9430,
60,
198,
220,
220,
220,
2546,
796,
45941,
13,
67,
4906,
7,
67,
4906,
737,
23814,
1096,
1635,
264,
9430,
1635,
3951,
198,
220,
220,
220,
1366,
796,
277,
71,
13,
961,
3419,
198,
220,
220,
220,
1366,
796,
45941,
13,
6738,
22252,
7,
7890,
58,
25,
7857,
4357,
288,
4906,
737,
3447,
1758,
7,
43358,
8,
198,
220,
220,
220,
277,
71,
13,
19836,
3419,
198,
220,
220,
220,
2393,
11627,
3004,
796,
28686,
13,
6978,
13,
22018,
578,
742,
7,
7753,
38381,
16,
60,
198,
220,
220,
220,
1303,
611,
2393,
11627,
3004,
287,
45302,
35,
1404,
10354,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
869,
7,
14692,
65,
13344,
17,
1600,
2393,
12962,
628,
220,
220,
220,
611,
15942,
577,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
6649,
3008,
25,
4064,
69,
11,
11677,
25,
4064,
69,
329,
2511,
3610,
6,
4064,
357,
9771,
62,
10951,
58,
15,
4357,
2199,
62,
10951,
58,
16,
12962,
198,
220,
220,
220,
2511,
3610,
796,
1366,
1635,
2199,
62,
10951,
58,
15,
60,
1343,
2199,
62,
10951,
58,
16,
60,
198,
220,
220,
220,
1303,
329,
30624,
11760,
198,
220,
220,
220,
611,
10243,
62,
3919,
1875,
718,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
5224,
694,
5951,
198,
220,
220,
220,
220,
220,
220,
220,
2866,
62,
1659,
62,
2971,
796,
2199,
62,
10951,
58,
23,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1410,
694,
62,
9979,
415,
796,
2199,
62,
10951,
58,
24,
60,
198,
220,
220,
220,
220,
220,
220,
220,
18100,
89,
9038,
62,
9979,
415,
796,
2199,
62,
10951,
58,
940,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2511,
3610,
796,
362,
13,
20,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4318,
62,
19204,
796,
604,
198,
220,
220,
220,
220,
220,
220,
220,
269,
16,
796,
362,
13,
15,
1635,
1410,
694,
62,
9979,
415,
1635,
2866,
62,
1659,
62,
2971,
1635,
2866,
62,
1659,
62,
2971,
198,
220,
220,
220,
220,
220,
220,
220,
269,
17,
796,
1410,
694,
62,
9979,
415,
1635,
2866,
62,
1659,
62,
2971,
1220,
18100,
89,
9038,
62,
9979,
415,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
1377,
9626,
1572,
6937,
20796,
5087,
329,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
269,
16,
25,
370,
13,
76,
17,
284,
370,
29006,
76,
17,
13,
388,
12,
19,
8,
5218,
33090,
286,
352,
13,
15,
68,
10,
1731,
318,
2672,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
269,
17,
25,
509,
13,
76,
284,
509,
13,
388,
257,
14804,
33090,
286,
352,
13,
15,
68,
10,
3312,
318,
2672,
13,
198,
220,
220,
220,
220,
220,
220,
220,
269,
16,
62,
9888,
796,
352,
13,
15,
68,
10,
1731,
198,
220,
220,
220,
220,
220,
220,
220,
269,
17,
62,
9888,
796,
352,
13,
15,
68,
10,
3312,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
1377,
27131,
378,
28400,
10795,
366,
9979,
1187,
1,
198,
220,
220,
220,
220,
220,
220,
220,
277,
74,
16,
796,
269,
16,
62,
9888,
1635,
269,
16,
1220,
357,
31463,
62,
19204,
12429,
642,
8,
198,
220,
220,
220,
220,
220,
220,
220,
277,
74,
17,
796,
269,
17,
62,
9888,
1635,
269,
17,
1220,
4318,
62,
19204,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
283,
342,
76,
796,
45941,
13,
6404,
19510,
69,
74,
16,
1220,
357,
6335,
3610,
8,
1343,
352,
13,
15,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
5951,
796,
277,
74,
17,
1220,
2604,
283,
342,
76,
198,
220,
220,
220,
220,
220,
220,
220,
22205,
796,
2199,
62,
10951,
58,
17,
60,
1343,
2199,
62,
10951,
58,
18,
60,
1635,
5951,
1343,
2199,
62,
10951,
58,
19,
60,
1635,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5951,
1635,
5951,
198,
220,
220,
220,
2073,
25,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
38257,
407,
581,
1403,
262,
683,
707,
2743,
1366,
994,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
264,
9430,
1875,
1105,
830,
25,
220,
1303,
1327,
30817,
815,
1064,
257,
1365,
835,
1568,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
1303,
1874,
321,
10137,
416,
257,
5766,
286,
657,
13,
1495,
351,
47027,
259,
451,
39555,
341,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
1303,
850,
796,
2511,
3610,
58,
3559,
405,
9,
19,
25,
2857,
405,
9,
19,
11,
44688,
9,
19,
25,
1959,
405,
9,
19,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
1303,
288,
17816,
4703,
62,
12853,
20520,
796,
850,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
2511,
3610,
796,
3405,
259,
7,
6335,
3610,
11,
357,
6615,
1220,
604,
11,
264,
9430,
1220,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1288,
361,
264,
9430,
1875,
642,
4059,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
2511,
3610,
796,
3405,
259,
7,
6335,
3610,
11,
357,
6615,
1220,
362,
11,
264,
9430,
1220,
362,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
7424,
4097,
428,
318,
978,
3077,
78,
198,
220,
220,
220,
220,
220,
220,
220,
22205,
796,
2511,
3610,
1635,
2199,
62,
10951,
58,
17,
60,
198,
220,
220,
220,
1441,
357,
6335,
3610,
11,
22205,
8,
628,
198,
4299,
10978,
707,
2743,
62,
961,
7,
7753,
62,
11600,
11,
15942,
577,
28,
25101,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4149,
262,
10978,
707,
2743,
12,
23,
9619,
198,
220,
220,
220,
329,
2046,
13326,
11,
356,
691,
761,
2266,
11,
337,
4663,
290,
309,
4663,
198,
220,
220,
220,
5128,
25,
2393,
22155,
588,
198,
220,
220,
220,
1391,
6,
445,
62,
6978,
6,
1058,
705,
7998,
62,
39,
2919,
62,
4626,
486,
2931,
62,
3312,
405,
62,
33,
3070,
62,
3697,
48510,
62,
49,
1238,
62,
50,
486,
486,
13,
35,
1404,
3256,
198,
220,
220,
220,
705,
10793,
62,
6978,
6,
1058,
705,
7998,
62,
39,
2919,
62,
4626,
486,
2931,
62,
3312,
405,
62,
33,
2998,
62,
3697,
48510,
62,
49,
1238,
62,
50,
486,
486,
13,
35,
1404,
3256,
198,
220,
220,
220,
705,
83,
343,
62,
6978,
6,
1058,
705,
7998,
62,
39,
2919,
62,
4626,
486,
2931,
62,
3312,
405,
62,
33,
1415,
62,
3697,
48510,
62,
49,
1238,
62,
50,
486,
486,
13,
35,
1404,
6,
92,
198,
220,
220,
220,
5072,
25,
3128,
22155,
588,
198,
220,
220,
220,
1391,
6,
10793,
62,
19313,
6,
1058,
45941,
13,
18747,
7,
2816,
405,
11,
2816,
4059,
38165,
198,
220,
220,
220,
4941,
25,
10978,
707,
2743,
62,
35,
62,
18417,
62,
41311,
62,
268,
422,
198,
220,
220,
220,
2638,
1378,
2503,
13,
7890,
13,
73,
2611,
13,
2188,
13,
34523,
14,
907,
66,
12384,
14,
268,
14,
38400,
707,
2743,
4531,
14,
13200,
62,
325,
5154,
14,
11994,
67,
62,
39873,
14,
7998,
62,
35,
62,
18417,
62,
41311,
62,
268,
62,
85,
1157,
13,
12315,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
288,
796,
23884,
198,
220,
220,
220,
329,
1994,
287,
2393,
62,
11600,
13,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
3696,
796,
2393,
62,
11600,
58,
2539,
7131,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3696,
13,
30619,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2511,
62,
7890,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
22205,
62,
7890,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2393,
287,
3696,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2511,
3610,
11,
22205,
796,
367,
23,
62,
7753,
62,
961,
7,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2511,
62,
7890,
62,
4868,
13,
33295,
7,
6335,
3610,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22205,
62,
7890,
62,
4868,
13,
33295,
7,
19313,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2511,
3610,
796,
45941,
13,
85,
25558,
7,
6335,
62,
7890,
62,
4868,
8,
198,
220,
220,
220,
220,
220,
220,
220,
22205,
796,
45941,
13,
85,
25558,
7,
19313,
62,
7890,
62,
4868,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
2539,
796,
2393,
62,
11600,
58,
2539,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
288,
58,
7890,
62,
2539,
60,
796,
22205,
13,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
2539,
796,
2393,
62,
11600,
58,
2539,
7131,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
288,
58,
7890,
62,
2539,
60,
796,
2511,
3610,
13,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
628,
220,
220,
220,
1441,
288,
628,
198,
4299,
651,
62,
6978,
7,
15763,
11,
4097,
11,
640,
62,
2539,
28,
14202,
11,
3108,
62,
21048,
28,
14202,
2599,
198,
220,
220,
220,
37227,
16742,
82,
3108,
329,
1813,
640,
1994,
290,
1366,
4097,
198,
220,
220,
220,
640,
62,
2539,
25,
1853,
486,
2919,
1485,
405,
11,
575,
26314,
56,
12038,
16458,
16768,
12038,
198,
220,
220,
220,
4097,
25,
347,
2998,
11,
44,
4663,
357,
18,
13,
24,
388,
828,
347,
1415,
11,
51,
4663,
357,
1157,
388,
828,
347,
3070,
11,
445,
357,
15,
13,
21,
388,
8,
198,
220,
220,
220,
17291,
347,
3070,
468,
1111,
5323,
76,
290,
362,
13276,
6323,
3696,
198,
220,
220,
220,
7885,
25,
22205,
11,
22204,
5951,
26,
5325,
3610,
198,
220,
220,
220,
329,
9037,
1366,
1441,
3108,
198,
220,
220,
220,
3108,
62,
21048,
25,
18070,
26009,
11,
262,
2656,
474,
2674,
45854,
3108,
588,
43922,
198,
220,
220,
220,
220,
220,
220,
220,
1853,
486,
14,
2931,
14,
4626,
486,
2931,
2388,
14,
405,
14,
33,
3070,
198,
220,
220,
220,
2073,
11,
732,
312,
506,
898,
3108,
5509,
588,
198,
220,
220,
220,
220,
220,
220,
220,
1853,
486,
2931,
2388,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
640,
62,
2539,
318,
407,
6045,
25,
220,
1303,
412,
46,
1103,
2435,
3128,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4553,
262,
3128,
290,
640,
422,
262,
640,
62,
2539,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
2435,
62,
2539,
796,
4818,
8079,
13,
19608,
8079,
13,
2536,
457,
524,
7,
2435,
62,
2539,
11,
705,
4,
56,
4,
76,
4,
67,
4,
39,
4,
44,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
4475,
796,
288,
83,
62,
2435,
62,
2539,
13,
2536,
31387,
10786,
4,
56,
4,
76,
4,
67,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
2435,
796,
288,
83,
62,
2435,
62,
2539,
13,
2536,
31387,
10786,
4,
39,
4,
44,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
8251,
796,
685,
28664,
62,
4475,
11,
288,
83,
62,
2435,
11,
4097,
60,
220,
1303,
6416,
2435,
412,
46,
9619,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3108,
62,
21048,
287,
37250,
7998,
26009,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6808,
796,
28686,
13,
6978,
13,
22179,
7,
15763,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
2435,
62,
2539,
13,
2536,
31387,
10786,
4,
56,
4,
76,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
2435,
62,
2539,
13,
2536,
31387,
10786,
4,
67,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
2435,
62,
2539,
13,
2536,
31387,
10786,
4,
56,
4,
76,
4,
67,
4,
39,
11537,
1343,
705,
405,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
2435,
62,
2539,
13,
2536,
31387,
10786,
4,
44,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4097,
1343,
31051,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5323,
76,
6323,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4097,
62,
4703,
62,
2713,
796,
4097,
1343,
45434,
3697,
48510,
62,
49,
2713,
62,
50,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
362,
13276,
6323,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4097,
796,
4097,
1343,
45434,
3697,
48510,
62,
49,
1238,
62,
50,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6808,
796,
6808,
1343,
640,
62,
2539,
1343,
12813,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4097,
62,
4703,
62,
2713,
796,
4097,
628,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6808,
796,
28686,
13,
6978,
13,
22179,
7,
15763,
11,
366,
44601,
709,
14,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
62,
4703,
62,
2713,
796,
4097,
198,
220,
220,
220,
1303,
4798,
366,
15763,
25,
4064,
82,
1,
4064,
6808,
198,
220,
220,
220,
1303,
4798,
366,
3903,
25,
4064,
82,
1,
4064,
4097,
198,
220,
220,
220,
1303,
783,
11629,
378,
625,
6808,
3108,
198,
220,
220,
220,
611,
28686,
13,
6978,
13,
1069,
1023,
7,
15763,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
16,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
329,
277,
287,
28686,
13,
4868,
15908,
7,
15763,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4097,
287,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
7857,
796,
28686,
13,
6978,
13,
11407,
1096,
7,
15763,
1343,
277,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2393,
62,
7857,
1875,
33028,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
13,
33295,
7,
15763,
1343,
277,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
4097,
62,
4703,
62,
2713,
287,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
16,
13,
33295,
7,
15763,
1343,
277,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
7753,
6978,
8,
1279,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
796,
2393,
6978,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1441,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
2393,
6978,
16,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
1441,
2393,
6978,
16,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2393,
6978,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
6808,
11,
705,
22437,
407,
7160,
6,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
628,
198,
4299,
13532,
7,
15763,
11,
640,
62,
2539,
28,
14202,
11,
3108,
62,
21048,
28,
14202,
11,
4235,
28,
15,
2599,
198,
220,
220,
220,
37227,
42316,
82,
257,
22155,
329,
198,
220,
220,
220,
262,
2393,
13532,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
3108,
22155,
1500,
81,
7241,
422,
994,
198,
220,
220,
220,
288,
796,
23884,
198,
220,
220,
220,
611,
640,
62,
2539,
318,
407,
6045,
25,
220,
1303,
412,
46,
1103,
2435,
3128,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
2046,
13326,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4235,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
14692,
445,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
33,
3070,
1600,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
62,
2539,
28,
2435,
62,
2539,
11,
3108,
62,
21048,
28,
6978,
62,
21048,
828,
705,
4703,
3256,
705,
445,
6335,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
288,
14692,
32986,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
33,
3023,
1600,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
640,
62,
2539,
28,
2435,
62,
2539,
11,
6978,
62,
21048,
28,
6978,
62,
21048,
828,
705,
32986,
3256,
705,
32986,
6335,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
288,
14692,
82,
343,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
33,
3312,
1600,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
62,
2539,
28,
2435,
62,
2539,
11,
3108,
62,
21048,
28,
6978,
62,
21048,
828,
705,
82,
343,
3256,
705,
82,
343,
6335,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
14692,
83,
343,
4521,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
33,
1157,
1600,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
62,
2539,
28,
2435,
62,
2539,
11,
3108,
62,
21048,
28,
6978,
62,
21048,
828,
705,
343,
4521,
3256,
705,
343,
4521,
6335,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
288,
14692,
10793,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
33,
2998,
1600,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
62,
2539,
28,
2435,
62,
2539,
11,
3108,
62,
21048,
28,
6978,
62,
21048,
828,
705,
343,
2670,
3256,
705,
343,
2670,
6335,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
288,
14692,
83,
343,
1157,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
33,
1415,
1600,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
62,
2539,
28,
2435,
62,
2539,
11,
3108,
62,
21048,
28,
6978,
62,
21048,
828,
705,
343,
1157,
3256,
705,
343,
1157,
6335,
20520,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
288,
14692,
15460,
14995,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
15460,
62,
14995,
13,
9600,
12340,
705,
15460,
3256,
705,
14995,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
288,
14692,
49720,
62,
1177,
62,
9248,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
85,
4496,
62,
6862,
64,
13,
9600,
12340,
705,
85,
4496,
3256,
705,
6862,
64,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
288,
14692,
1044,
9631,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
44601,
709,
13,
9600,
12340,
705,
44601,
709,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
288,
14692,
34021,
62,
9150,
62,
6978,
8973,
796,
685,
1136,
62,
6978,
7,
15763,
11,
366,
39,
23,
62,
83,
343,
62,
4626,
486,
2931,
3312,
1238,
13,
9600,
12340,
6,
69,
1930,
20520,
628,
220,
220,
220,
1441,
288,
628,
198,
198,
4299,
3440,
62,
71,
23,
7,
259,
62,
15763,
11,
640,
62,
2539,
11,
3108,
62,
21048,
28,
14202,
11,
4235,
28,
15,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3440,
477,
262,
1366,
290,
1234,
606,
287,
257,
22155,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
717,
306,
9058,
262,
3108,
22155,
198,
220,
220,
220,
412,
46,
62,
6978,
62,
11600,
796,
13532,
7,
259,
62,
15763,
11,
640,
62,
2539,
28,
2435,
62,
2539,
11,
3108,
62,
21048,
28,
6978,
62,
21048,
11,
4235,
28,
15,
8,
628,
220,
220,
220,
1303,
1100,
259,
477,
262,
10978,
707,
2743,
3696,
994,
198,
220,
220,
220,
412,
46,
62,
7890,
796,
10978,
707,
2743,
62,
961,
7,
4720,
62,
6978,
62,
11600,
8,
198,
220,
220,
220,
1303,
1500,
81,
315,
257,
9037,
1366,
22155,
198,
220,
220,
220,
9037,
62,
6978,
62,
11600,
796,
13532,
7,
259,
62,
15763,
8,
198,
220,
220,
220,
1303,
1100,
259,
477,
9037,
1366,
994,
198,
220,
220,
220,
9037,
62,
7890,
796,
9037,
62,
961,
7,
12708,
62,
6978,
62,
11600,
8,
198,
220,
220,
220,
1303,
651,
262,
4252,
9848,
198,
220,
220,
220,
264,
4801,
11,
473,
64,
796,
4252,
62,
27787,
7,
12708,
62,
7890,
17816,
15460,
6,
4357,
9037,
62,
7890,
17816,
14995,
6,
4357,
640,
62,
2539,
8,
198,
220,
220,
220,
1303,
651,
262,
4252,
1278,
600,
9848,
198,
220,
220,
220,
4252,
62,
4743,
600,
796,
23568,
75,
600,
7,
12708,
62,
7890,
17816,
85,
4496,
6,
4357,
9037,
62,
7890,
17816,
6862,
64,
6,
4357,
264,
4801,
11,
473,
64,
8,
198,
220,
220,
220,
1303,
12082,
412,
46,
290,
9037,
1366,
1978,
198,
220,
220,
220,
412,
46,
62,
7890,
13,
19119,
7,
12708,
62,
7890,
8,
198,
220,
220,
220,
412,
46,
62,
7890,
17816,
82,
4801,
20520,
796,
264,
4801,
198,
220,
220,
220,
412,
46,
62,
7890,
17816,
19155,
62,
4743,
600,
20520,
796,
4252,
62,
4743,
600,
198,
220,
220,
220,
412,
46,
62,
7890,
17816,
2246,
48,
34694,
20520,
796,
45941,
13,
9107,
418,
7,
4720,
62,
7890,
17816,
343,
2670,
6,
4083,
43358,
11,
288,
4906,
28,
37659,
13,
600,
23,
8,
198,
220,
220,
220,
1303,
329,
2046,
13326,
198,
220,
220,
220,
412,
46,
62,
7890,
17816,
26069,
20520,
796,
412,
46,
62,
7890,
17816,
343,
2670,
20520,
532,
412,
46,
62,
7890,
17816,
343,
1157,
20520,
198,
220,
220,
220,
412,
46,
62,
7890,
17816,
83,
343,
6335,
10366,
952,
20520,
796,
412,
46,
62,
7890,
17816,
343,
2670,
6335,
20520,
1220,
412,
46,
62,
7890,
17816,
343,
1157,
6335,
20520,
198,
220,
220,
220,
412,
46,
62,
7890,
17816,
4703,
6335,
10366,
952,
20520,
796,
412,
46,
62,
7890,
17816,
343,
2670,
6335,
20520,
1220,
412,
46,
62,
7890,
17816,
445,
6335,
20520,
198,
220,
220,
220,
1303,
288,
17816,
358,
8903,
20520,
796,
357,
67,
17816,
32986,
20520,
532,
288,
17816,
4703,
6,
12962,
1220,
357,
67,
17816,
32986,
20520,
1343,
288,
17816,
4703,
6,
12962,
628,
220,
220,
220,
1303,
3376,
262,
16408,
1917,
198,
220,
220,
220,
288,
83,
62,
2435,
62,
2539,
796,
4818,
8079,
13,
19608,
8079,
13,
2536,
457,
524,
7,
2435,
62,
2539,
11,
705,
4,
56,
4,
76,
4,
67,
4,
39,
4,
44,
11537,
198,
220,
220,
220,
288,
83,
62,
2435,
796,
493,
7,
28664,
62,
2435,
62,
2539,
13,
2536,
31387,
10786,
4,
39,
6,
4008,
198,
220,
220,
220,
1303,
611,
288,
83,
62,
2435,
1279,
1367,
25,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
466,
270,
796,
33705,
62,
21084,
7,
4720,
62,
7890,
8,
628,
198,
220,
220,
220,
1303,
466,
262,
6279,
9335,
278,
198,
220,
220,
220,
1366,
796,
6279,
62,
27932,
7,
4720,
62,
7890,
8,
198,
220,
220,
220,
1303,
1366,
796,
1660,
62,
27932,
7,
4720,
62,
7890,
8,
198,
220,
220,
220,
1441,
1366,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
287,
62,
15763,
796,
31051,
16598,
8139,
14,
12394,
1677,
15821,
14,
38400,
62,
2902,
5031,
375,
6,
198,
220,
220,
220,
1303,
6808,
329,
262,
5072,
3696,
198,
220,
220,
220,
640,
62,
2539,
796,
366,
1264,
1120,
35402,
2388,
1,
198,
220,
220,
220,
1366,
796,
3440,
62,
71,
23,
7,
259,
62,
15763,
11,
640,
62,
2539,
11,
3108,
62,
21048,
2625,
7998,
26009,
4943,
198
] | 2.035455 | 10,069 |
from django.urls import path,include
from rest_framework.routers import DefaultRouter
from profiles_api import views
router=DefaultRouter()
router.register('hello-viewset',views.HelloViewSet,basename='hello-viewset')
urlpatterns=[
path('hello-api/',views.HelloApi.as_view()),
path('',include(router.urls))
]
| [
6738,
42625,
14208,
13,
6371,
82,
1330,
3108,
11,
17256,
198,
6738,
1334,
62,
30604,
13,
472,
1010,
1330,
15161,
49,
39605,
198,
6738,
16545,
62,
15042,
1330,
5009,
198,
198,
472,
353,
28,
19463,
49,
39605,
3419,
198,
472,
353,
13,
30238,
10786,
31373,
12,
1177,
2617,
3256,
33571,
13,
15496,
7680,
7248,
11,
12093,
12453,
11639,
31373,
12,
1177,
2617,
11537,
198,
198,
6371,
33279,
82,
41888,
198,
220,
220,
220,
3108,
10786,
31373,
12,
15042,
14,
3256,
33571,
13,
15496,
32,
14415,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
3256,
17256,
7,
472,
353,
13,
6371,
82,
4008,
198,
60,
198
] | 2.917431 | 109 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
##################################################
# Copyright (c) 2019 Zhao Xiang Lim.
# Distributed under the Apache License 2.0 (the "License").
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# You should have received a copy of the Apache License 2.0
# along with this program.
# If not, see <http://www.apache.org/licenses/LICENSE-2.0>.
##################################################
from pyHookDeploy import init_app
app = init_app()
if __name__ == "__main__":
main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
29113,
14468,
2235,
198,
2,
15069,
357,
66,
8,
13130,
29436,
45641,
7576,
13,
198,
2,
4307,
6169,
739,
262,
24843,
13789,
362,
13,
15,
357,
1169,
366,
34156,
11074,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
198,
2,
921,
815,
423,
2722,
257,
4866,
286,
262,
24843,
13789,
362,
13,
15,
198,
2,
1863,
351,
428,
1430,
13,
198,
2,
1002,
407,
11,
766,
1279,
4023,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
28401,
198,
29113,
14468,
2235,
628,
198,
6738,
12972,
39,
566,
49322,
1330,
2315,
62,
1324,
628,
198,
1324,
796,
2315,
62,
1324,
3419,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
197,
12417,
3419,
198
] | 3.718894 | 217 |
from collections import OrderedDict
import pytest
from numpy.testing import assert_array_equal
from keanu.plots import traceplot
from keanu.vartypes import sample_types
@pytest.fixture
| [
6738,
17268,
1330,
14230,
1068,
35,
713,
198,
198,
11748,
12972,
9288,
198,
6738,
299,
32152,
13,
33407,
1330,
6818,
62,
18747,
62,
40496,
198,
198,
6738,
885,
42357,
13,
489,
1747,
1330,
12854,
29487,
198,
6738,
885,
42357,
13,
85,
433,
9497,
1330,
6291,
62,
19199,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628
] | 3.392857 | 56 |
# -*- coding: utf-8 -*-
import collections
from lexical_analyzer_helpers import *
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
11748,
17268,
198,
198,
6738,
31191,
605,
62,
38200,
9107,
62,
16794,
364,
1330,
1635,
628,
628,
628,
628,
198
] | 2.628571 | 35 |
#!/usr/bin/env python3
"""
Build everything from source.
Handles:
1. Install npm dependencies and build the UI client
2. Build source and binary distributions of the python package.
"""
import os
import shutil
import subprocess
import sys
WEB_CLIENT_DIR = os.path.join(
os.path.dirname(__file__), "pytest_commander", "web_client"
)
if __name__ == "__main__":
main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
37811,
198,
15580,
2279,
422,
2723,
13,
198,
198,
12885,
829,
25,
198,
16,
13,
15545,
30599,
20086,
290,
1382,
262,
12454,
5456,
198,
17,
13,
10934,
2723,
290,
13934,
24570,
286,
262,
21015,
5301,
13,
198,
37811,
198,
11748,
28686,
198,
11748,
4423,
346,
198,
11748,
850,
14681,
198,
11748,
25064,
628,
198,
8845,
33,
62,
5097,
28495,
62,
34720,
796,
28686,
13,
6978,
13,
22179,
7,
198,
220,
220,
220,
28686,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
366,
9078,
9288,
62,
9503,
4066,
1600,
366,
12384,
62,
16366,
1,
198,
8,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.992126 | 127 |
from src.util.ints import uint32, uint64
def calculate_block_reward(height: uint32) -> uint64:
"""
Returns the coinbase reward at a certain block height.
1 Chia coin = 16,000,000,000,000 = 16 trillion mojo.
"""
return uint64(14000000000000)
def calculate_base_fee(height: uint32) -> uint64:
"""
Returns the base fee reward at a certain block height.
1 base fee reward is 1/8 of total block reward
"""
return uint64(2000000000000)
| [
6738,
12351,
13,
22602,
13,
29503,
1330,
20398,
2624,
11,
20398,
2414,
628,
198,
4299,
15284,
62,
9967,
62,
260,
904,
7,
17015,
25,
20398,
2624,
8,
4613,
20398,
2414,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
262,
10752,
8692,
6721,
379,
257,
1728,
2512,
6001,
13,
198,
220,
220,
220,
352,
609,
544,
10752,
796,
1467,
11,
830,
11,
830,
11,
830,
11,
830,
796,
1467,
12989,
6941,
7639,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
20398,
2414,
7,
1415,
8269,
2388,
8,
628,
198,
4299,
15284,
62,
8692,
62,
39071,
7,
17015,
25,
20398,
2624,
8,
4613,
20398,
2414,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
262,
2779,
6838,
6721,
379,
257,
1728,
2512,
6001,
13,
198,
220,
220,
220,
352,
2779,
6838,
6721,
318,
352,
14,
23,
286,
2472,
2512,
6721,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
20398,
2414,
7,
2167,
8269,
405,
8,
198
] | 2.890244 | 164 |
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from dp_tornado.engine.helper import Helper as dpHelper
from Crypto.Cipher import AES
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
628,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
6738,
288,
79,
62,
45910,
4533,
13,
18392,
13,
2978,
525,
1330,
5053,
525,
355,
288,
79,
47429,
198,
6738,
36579,
13,
34,
10803,
1330,
34329,
628
] | 2.980392 | 51 |
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.cm
from scipy.signal.windows import gaussian
import sklearn.metrics
from DataSet import createDataSetFromFile
from Utils import getProjectPath
from Evaluation import getSpecificColorMap, plotMinErrors, plotAlongAxisErrors,\
plotMinErrorsSqueezed
if __name__ == '__main__':
matplotlib.rcParams.update({'font.size': 20})
createGroundTruthCreation()
| [
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
6738,
2603,
29487,
8019,
13,
1891,
2412,
13,
1891,
437,
62,
12315,
1330,
350,
7568,
47798,
198,
11748,
2603,
29487,
8019,
13,
11215,
198,
6738,
629,
541,
88,
13,
12683,
282,
13,
28457,
1330,
31986,
31562,
198,
11748,
1341,
35720,
13,
4164,
10466,
198,
6738,
6060,
7248,
1330,
2251,
6601,
7248,
4863,
8979,
198,
6738,
7273,
4487,
1330,
651,
16775,
15235,
198,
6738,
34959,
1330,
651,
32419,
10258,
13912,
11,
7110,
9452,
9139,
5965,
11,
7110,
24035,
31554,
271,
9139,
5965,
11,
59,
198,
220,
220,
220,
7110,
9452,
9139,
5965,
22266,
1453,
8863,
628,
628,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
628,
220,
220,
220,
220,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
2603,
29487,
8019,
13,
6015,
10044,
4105,
13,
19119,
15090,
6,
10331,
13,
7857,
10354,
1160,
30072,
198,
220,
220,
220,
2251,
35539,
38782,
12443,
341,
3419,
628,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220
] | 2.796875 | 192 |
# Python Object Oriented Programming by Joe Marini course example
# implementing default values in data classes
# Default Values always have to come first - i.e. before non-default values.
from dataclasses import dataclass, field
import random
@dataclass
b1 = Book("War and Peace", "Leo Tolstoy", 1225)
b2 = Book("The Catcher in the Rye", "JD Salinger", 234)
print(b1)
print(b2)
| [
2,
11361,
9515,
17954,
4714,
30297,
416,
5689,
1526,
5362,
1781,
1672,
198,
2,
15427,
4277,
3815,
287,
1366,
6097,
198,
2,
15161,
27068,
1464,
423,
284,
1282,
717,
532,
1312,
13,
68,
13,
878,
1729,
12,
12286,
3815,
13,
220,
198,
198,
6738,
4818,
330,
28958,
1330,
4818,
330,
31172,
11,
2214,
198,
11748,
4738,
628,
198,
31,
19608,
330,
31172,
198,
198,
65,
16,
796,
4897,
7203,
13195,
290,
12689,
1600,
366,
3123,
78,
20054,
301,
726,
1600,
1105,
1495,
8,
198,
65,
17,
796,
4897,
7203,
464,
5181,
2044,
287,
262,
45014,
1600,
366,
37882,
4849,
3889,
1600,
34323,
8,
198,
4798,
7,
65,
16,
8,
198,
4798,
7,
65,
17,
8,
198
] | 3.310345 | 116 |
import os
import sys
import logging
from telegram.ext import MessageHandler
from telegram.ext import CommandHandler
from telegram.ext import Filters
from telegram.ext import BaseFilter
from telegram.ext.dispatcher import run_async
from picture import Picture
logger = logging.getLogger(__name__)
BASE_FILE_PATH = os.path.abspath(os.path.dirname(sys.argv[0])) + '/tmp/{}_{}.jpg'
private_chat = FilterPrivateChat()
photo_reply = FilterReplyToPhoto()
@run_async
@run_async
| [
11748,
28686,
201,
198,
11748,
25064,
201,
198,
11748,
18931,
201,
198,
201,
198,
6738,
573,
30536,
13,
2302,
1330,
16000,
25060,
201,
198,
6738,
573,
30536,
13,
2302,
1330,
9455,
25060,
201,
198,
6738,
573,
30536,
13,
2302,
1330,
7066,
1010,
201,
198,
6738,
573,
30536,
13,
2302,
1330,
7308,
22417,
201,
198,
6738,
573,
30536,
13,
2302,
13,
6381,
8071,
2044,
1330,
1057,
62,
292,
13361,
201,
198,
201,
198,
6738,
4286,
1330,
17741,
201,
198,
201,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
201,
198,
201,
198,
33,
11159,
62,
25664,
62,
34219,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
15908,
3672,
7,
17597,
13,
853,
85,
58,
15,
60,
4008,
1343,
31051,
22065,
14,
90,
92,
23330,
27422,
9479,
6,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
19734,
62,
17006,
796,
25853,
29067,
30820,
3419,
201,
198,
23074,
62,
47768,
796,
25853,
36875,
2514,
6191,
3419,
201,
198,
201,
198,
201,
198,
201,
198,
31,
5143,
62,
292,
13361,
201,
198,
201,
198,
201,
198,
201,
198,
31,
5143,
62,
292,
13361,
201,
198,
201,
198
] | 2.627551 | 196 |
import numpy as np
"""Observations module class.
Dependencies:
numpy
scipy
"""
class Observations(object):
"""Observations class.
Parameters:
----------
observatory : string
Observatory for tiles ('apo' or 'lco'; default 'apo')
Attributes:
----------
nobservations : np.int32
number of observations
tileid : ndarray of np.int32
id of each tile for observations
mjd : ndarray of np.float64
MJD of observation (days)
duration : ndarray of np.float64
duration of observation (days)
sn2 : ndarray of np.float64
duration of observation (days)
Methods:
-------
add() : add an observation of a tile
toarray() : Return ndarray of tile properties
"""
def toarray(self, indx=None):
"""Return observations as a record array
Parameters:
----------
indx : ndarray of np.int32
indices of observations to return (default to all)
Returns:
-------
observations : record array
observation information
"""
obs0 = [('tileid', np.int32),
('mjd', np.float64),
('duration', np.float64),
('sn2', np.float64)]
if(indx is None):
indx = np.arange(self.nobservations)
nobs = len(indx)
obs = np.zeros(nobs, dtype=obs0)
if(nobs > 0):
obs['tileid'] = self.tileid[indx]
obs['mjd'] = self.mjd[indx]
obs['duration'] = self.duration[indx]
obs['sn2'] = self.sn2[indx]
return(obs)
| [
11748,
299,
32152,
355,
45941,
198,
198,
37811,
31310,
712,
602,
8265,
1398,
13,
198,
198,
35,
2690,
3976,
25,
628,
299,
32152,
198,
629,
541,
88,
198,
198,
37811,
628,
198,
4871,
19243,
602,
7,
15252,
2599,
198,
220,
220,
220,
37227,
31310,
712,
602,
1398,
13,
628,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
24200,
438,
628,
220,
220,
220,
3799,
2870,
1058,
4731,
198,
220,
220,
220,
220,
220,
220,
25758,
329,
19867,
19203,
41817,
6,
393,
705,
75,
1073,
17020,
4277,
705,
41817,
11537,
628,
220,
220,
220,
49213,
25,
198,
220,
220,
220,
24200,
438,
628,
220,
220,
220,
645,
1443,
712,
602,
1058,
45941,
13,
600,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
286,
13050,
628,
220,
220,
220,
17763,
312,
1058,
299,
67,
18747,
286,
45941,
13,
600,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
286,
1123,
17763,
329,
13050,
628,
220,
220,
220,
285,
73,
67,
1058,
299,
67,
18747,
286,
45941,
13,
22468,
2414,
198,
220,
220,
220,
220,
220,
220,
220,
33974,
35,
286,
13432,
357,
12545,
8,
628,
220,
220,
220,
9478,
1058,
299,
67,
18747,
286,
45941,
13,
22468,
2414,
198,
220,
220,
220,
220,
220,
220,
220,
9478,
286,
13432,
357,
12545,
8,
628,
220,
220,
220,
3013,
17,
1058,
299,
67,
18747,
286,
45941,
13,
22468,
2414,
198,
220,
220,
220,
220,
220,
220,
220,
9478,
286,
13432,
357,
12545,
8,
628,
220,
220,
220,
25458,
25,
198,
220,
220,
220,
35656,
628,
220,
220,
220,
751,
3419,
1058,
751,
281,
13432,
286,
257,
17763,
198,
220,
220,
220,
284,
18747,
3419,
1058,
8229,
299,
67,
18747,
286,
17763,
6608,
198,
198,
37811,
628,
220,
220,
220,
825,
284,
18747,
7,
944,
11,
773,
87,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
13050,
355,
257,
1700,
7177,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
628,
220,
220,
220,
220,
220,
220,
220,
773,
87,
1058,
299,
67,
18747,
286,
45941,
13,
600,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36525,
286,
13050,
284,
1441,
357,
12286,
284,
477,
8,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
628,
220,
220,
220,
220,
220,
220,
220,
13050,
1058,
1700,
7177,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13432,
1321,
198,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
10201,
15,
796,
685,
10786,
40927,
312,
3256,
45941,
13,
600,
2624,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
76,
73,
67,
3256,
45941,
13,
22468,
2414,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
32257,
3256,
45941,
13,
22468,
2414,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
16184,
17,
3256,
45941,
13,
22468,
2414,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7,
521,
87,
318,
6045,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
773,
87,
796,
45941,
13,
283,
858,
7,
944,
13,
34952,
3168,
602,
8,
198,
220,
220,
220,
220,
220,
220,
220,
645,
1443,
796,
18896,
7,
521,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
10201,
796,
45941,
13,
9107,
418,
7,
77,
8158,
11,
288,
4906,
28,
8158,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7,
77,
8158,
1875,
657,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10201,
17816,
40927,
312,
20520,
796,
2116,
13,
40927,
312,
58,
521,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10201,
17816,
76,
73,
67,
20520,
796,
2116,
13,
76,
73,
67,
58,
521,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10201,
17816,
32257,
20520,
796,
2116,
13,
32257,
58,
521,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10201,
17816,
16184,
17,
20520,
796,
2116,
13,
16184,
17,
58,
521,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
7,
8158,
8,
198
] | 2.206284 | 732 |
from typing import Callable, Literal, Tuple
from PyQt5.QtWidgets import QApplication, QComboBox, QWidget
from PyQt5.QtGui import QPixmap
from gui import Gui
from logic.luigi_sacco import luigi_sacco_encrypt, luigi_sacco_decrypt, confirm_text_in_correct_lang, format_key_and_input_text
from logic.route_encryption import create_empty_matrix, route_encrypt, route_decrypt, get_potential_table_sizes, apply_e4, apply_reverse_b3
import utils
ENCRYPT, DECRYPT = (True, False), (False, True)
def center_window(window: Gui) -> None:
"""
Center the given window on the screen
"""
centered_x = screen_geometry.center().x() - window.width()//2
centered_y = screen_geometry.center().y() - window.height()//2
window.move(centered_x, centered_y)
def create_main_window() -> Gui:
"""
Creates app main window from which user can go to luigi sacco or route encryption windows
"""
widget_ids = "assets/main-ids.json"
gui_file_path = "assets/main-menu.ui"
kto_image_path = utils.get_path_in_bundle_dir("assets/kto_logo.png")
gui = Gui(widget_ids, gui_file_path)
center_window(gui)
kto_image = QPixmap(kto_image_path)
gui.get_widget("mainLabel").setPixmap(kto_image)
gui.add_event_listener("exitButton", lambda: app.quit())
return gui
def create_error_message_window() -> Gui:
"""
Creates a small error message whose contents can be tuned to inform the user
of an error
"""
widget_ids = "assets/error-message.json"
gui_file_path = "assets/error-message.ui"
gui = Gui(widget_ids, gui_file_path)
# Hidden by default
gui.hide()
center_window(gui)
# Set the okay button to hide the window when clicked
gui.add_event_listener('okayButton', lambda: gui.hide())
return gui
def display_error_message( error_message_window: Gui, title: str, content: str, solution: str) -> None:
"""
Shows error dialog.
"""
error_message_window.get_widget('errorNameLabel').setText(title)
error_message_window.get_widget('errorMessageLabel').setText(content)
error_message_window.get_widget('errorSolutionLabel').setText(solution)
center_window(error_message_window)
error_message_window.show()
error_message_window.activateWindow()
def goto_window(source: Gui, destination: Gui) -> None:
"""
Hides source gui and centers then shows the destination gui
"""
source.hide()
center_window(destination)
destination.activateWindow()
destination.show()
def create_luigi_sacco_window(main_window: Gui, show_error: Callable[[str, str, str], None]) -> Gui:
"""
Creates a submenu where user can use luigi sacco encryption / decrypytion
"""
widget_ids = "assets/first-method-ids.json"
gui_file_path = "assets/first-method.ui"
gui = Gui(widget_ids, gui_file_path, show_error)
gui.hide()
gui.add_event_listener("backButton", lambda: goto_window(gui, main_window))
return gui
def create_luigi_sacco_info_window(luigi_sacco_window: Gui) -> Gui:
"""
Creates the info window for the Luigi Sacco encryption method
"""
widget_ids = "assets/luigi-sacco-info-ids.json"
gui_file_path = "assets/luigi-sacco-info.ui"
gui = Gui(widget_ids, gui_file_path)
gui.hide()
gui.add_event_listener("backButton", lambda: goto_window(gui, luigi_sacco_window))
return gui
def create_route_encryption_window(main_window: Gui, show_error: Callable[[str, str, str], None]) -> Gui:
"""
Creates window where user can use route encryption / decryption according to E4 & B3 Routes
"""
widget_ids = "assets/second-method-ids.json"
gui_file_path = "assets/second-method.ui"
gui = Gui(widget_ids, gui_file_path, show_error)
# Make this window hidden by default
gui.hide()
# Adding images for Route Visualization
routes_image_path = utils.get_path_in_bundle_dir("assets/routes.png")
routes_image = QPixmap(routes_image_path)
gui.get_widget("routesLabel").setPixmap(routes_image)
gui.add_event_listener("backButton", lambda: goto_window(gui, main_window))
return gui
def get_luigi_sacco_language(get: Callable[[str], QWidget]) -> Literal["EN", "TR"]:
"""
Extracts and returns chosen language from Luigi Sacco Gui
"""
return "EN" if get('englishRadioButton').isChecked() else "TR"
def get_luigi_sacco_input(get: Callable[[str], QWidget]) -> Tuple[str, str]:
"""
Extracts and returns key and text which user has given in Gui.
Raises ValueError if either key or text are empty
"""
key = get('keyTextEdit').toPlainText()
plain_text = get('inputTextEdit').toPlainText()
if key == "" or plain_text == "":
raise ValueError("Key or Plain Text not given")
return key, plain_text
def get_selected_action(get: Callable[[str], QWidget]) -> Tuple[bool, bool]:
"""
Returns whether given gui is in encrypt or decrypt state.
"""
encrypt = get('encryptRadioButton').isChecked()
decrypt = get('decryptRadioButton').isChecked()
return encrypt, decrypt
def run_luigi_sacco(window: Gui) -> None:
"""
Function to run when Run Button is clicked in Luigi Sacco window.
Runs luigi sacco encryption / decryption on the given key and
input text and takes given language into account.
Sets the output of the algorithm as the content of the output box
"""
# Shortcut for ops in this function
get = lambda x: window.get_widget(x)
language = get_luigi_sacco_language(get)
try:
key, plain_text = get_luigi_sacco_input(get)
except ValueError:
window.show_error(
title="Empty Key or Input Text",
content="Cannot run program without both Key and Input Text present.",
solution="Please fill in both of these fields and try again"
)
return
action = get_selected_action(get)
output = ""
formatted_key, formatted_plain_text = format_key_and_input_text(key, plain_text)
# Confirm Language has been correctly chosen
try:
confirm_text_in_correct_lang(formatted_key, language)
except ValueError:
window.show_error(
title="Key has invalid characters",
content="Your key includes characters that do not belong in your chosen language",
solution="Remove any characters than don't belong to your chosen language and try again"
)
return
try:
confirm_text_in_correct_lang(formatted_plain_text, language)
except ValueError:
window.show_error(
title="Plain Text has invalid characters",
content="Your Plain Text includes characters that do not belong in your chosen language",
solution="Remove any characters than don't belong to your chosen language and try again"
)
return
if action == ENCRYPT:
output = luigi_sacco_encrypt(key, plain_text, language)
elif action == DECRYPT:
output = luigi_sacco_decrypt(key, plain_text, language)
get('outputTextEdit').setPlainText(output)
def reset_luigi_sacco(window: Gui) -> None:
"""
Resets gui in luigi sacco to blank state
"""
window.get_widget('keyTextEdit').clear()
window.get_widget('inputTextEdit').clear()
window.get_widget('outputTextEdit').clear()
def get_chosen_table_size(input_text: str, get: Callable[[str], QWidget]) -> Tuple[int, int]:
"""
Returns chosen table size from gui according to given input text
"""
if len(input_text) <= 0:
return (0, 0)
sizes, _ = get_potential_table_sizes(len(input_text))
return sizes[get('arraySizeComboBox').currentIndex()]
def get_route_encryption_input(get: Callable[[str], QWidget]) -> Tuple[str, Tuple[int, int]]:
"""
Extracts and returns input text and table size from Route Encryption Gui
"""
input_text = get('inputTextEdit').toPlainText()
table_size = get_chosen_table_size(input_text, get)
return input_text, table_size
def run_route_encryption(window: Gui) -> None:
"""
Function to run when Run Button is clicked in Route Encryption window.
Runs route encryption / decryption on the given key and
input text and takes given language into account.
Sets the output of the algorithm as the content of the output box
"""
# Shortcut for ops in this function
input_text, table_size = get_route_encryption_input(get)
if len(input_text) == 0:
window.show_error(
title="Cannot Encrypt / Decrypt Empty Message",
content="You attempted to start the program with no input text",
solution="Enter at least one character in input field and try again"
)
return
elif len(input_text) > 50:
window.show_error(
title="Your input is too long",
content="Maximum allowed is 50 characters",
solution=f"You have entered {len(input_text)} characters. Please make sure your input is less than 50 characters."
)
return
if utils.is_prime(len(input_text)):
window.show_error(
title="Warning! Text Length is Prime",
content=f"Your input text has a prime length of {len(input_text)} characters",
solution="To get better performance using this encryption method, add another letter to your message."
)
# Encrypt vs. Decrypt
action = get_selected_action(get)
# Final output message which goes to output box
output = ""
matrix_output = []
if action == ENCRYPT:
output = route_encrypt(input_text, table_size)
matrix_output = apply_e4(input_text, create_empty_matrix(table_size))
elif action == DECRYPT:
output = route_decrypt(input_text, table_size)
matrix_output = apply_reverse_b3(input_text, table_size)
# Convert output matrix into a string
formatted_matrix_output = "\n".join(', '.join(row) for row in matrix_output)
get('outputTextEdit').setPlainText(output)
get('matrixOutputTextEdit').setPlainText(formatted_matrix_output)
def reset_route_encryption(window: Gui) -> None:
"""
Resets route encryption gui to blank state
"""
get('inputTextEdit').clear()
get('outputTextEdit').clear()
get('matrixOutputTextEdit').clear()
get('arraySizeComboBox').clear()
def populate_combobox(combobox: QComboBox, get_message: Callable[[], str]) -> None:
"""
Populates given combobox with potential tables sizes for the given message.
"""
combobox.clear()
message = get_message()
if len(message) <= 0:
return
# Populate combobox with list of sizes
sizes, optimal_size = get_potential_table_sizes(len(message))
for size in sizes:
if size == optimal_size or size == optimal_size[::-1]:
combobox.addItem(f"{size[0]} x {size[1]} (Recommended)")
else:
combobox.addItem(f"{size[0]} x {size[1]}")
def add_route_encryption_hooks(window: Gui) -> None:
"""
Hooks Route Encryption Gui with its Logic
"""
# Set Encrypt as default option
get('encryptRadioButton').setChecked(True)
# Set drop-select to have no elements at the start
get('arraySizeComboBox').clear()
input_text = get('inputTextEdit').toPlainText()
combobox = get('arraySizeComboBox')
# As text gets typed, the table size combo-box gets filled with new values
get('inputTextEdit').textChanged.connect(
lambda: populate_combobox(combobox, lambda: get('inputTextEdit').toPlainText())
)
# Run and Reset Button Listeners
window.add_event_listener(
"runButton",
lambda: run_route_encryption(window)
)
window.add_event_listener(
"resetButton",
lambda: reset_route_encryption(window)
)
def add_luigi_sacco_hooks(luigi_sacco_window: Gui, info_window: Gui) -> None:
"""
Hooks Luigi Sacco Gui with its Logic
"""
# Shortcuts for ops in this function
get = lambda x: luigi_sacco_window.get_widget(x)
# Check English by default
get('englishRadioButton').setChecked(True)
# Check Encrypt by default
get('encryptRadioButton').setChecked(True)
# Set listeners for RUN and RESET buttons
luigi_sacco_window.add_event_listener('runButton', lambda: run_luigi_sacco(luigi_sacco_window))
luigi_sacco_window.add_event_listener('resetButton', lambda: reset_luigi_sacco(luigi_sacco_window))
luigi_sacco_window.add_event_listener('informationButton', lambda: goto_window(luigi_sacco_window, info_window))
if __name__ == '__main__':
app = QApplication([])
screen_geometry = QApplication.desktop().screenGeometry()
SCREEN_WIDTH = screen_geometry.width()
SCREEN_HEIGHT = screen_geometry.height()
main_window = create_main_window()
error_dialog = create_error_message_window()
show_error = lambda title, content, solution: display_error_message(error_dialog, title, content, solution)
luigi_sacco_window = create_luigi_sacco_window(main_window, show_error)
luigi_sacco_info_window = create_luigi_sacco_info_window(luigi_sacco_window)
route_encryption_window = create_route_encryption_window(main_window, show_error)
main_window.add_event_listener(
"firstMethodButton",
lambda: goto_window(main_window, luigi_sacco_window)
)
main_window.add_event_listener(
"secondMethodButton",
lambda: goto_window(main_window, route_encryption_window)
)
add_luigi_sacco_hooks(luigi_sacco_window, luigi_sacco_info_window)
add_route_encryption_hooks(route_encryption_window)
app.exec_()
| [
6738,
19720,
1330,
4889,
540,
11,
25659,
1691,
11,
309,
29291,
198,
198,
6738,
9485,
48,
83,
20,
13,
48,
83,
54,
312,
11407,
1330,
1195,
23416,
11,
1195,
5377,
2127,
14253,
11,
1195,
38300,
198,
6738,
9485,
48,
83,
20,
13,
48,
83,
8205,
72,
1330,
1195,
47,
844,
8899,
628,
198,
6738,
11774,
1330,
1962,
72,
198,
198,
6738,
9156,
13,
2290,
25754,
62,
82,
8679,
1330,
300,
84,
25754,
62,
82,
8679,
62,
12685,
6012,
11,
300,
84,
25754,
62,
82,
8679,
62,
12501,
6012,
11,
6216,
62,
5239,
62,
259,
62,
30283,
62,
17204,
11,
5794,
62,
2539,
62,
392,
62,
15414,
62,
5239,
198,
6738,
9156,
13,
38629,
62,
12685,
13168,
1330,
2251,
62,
28920,
62,
6759,
8609,
11,
6339,
62,
12685,
6012,
11,
6339,
62,
12501,
6012,
11,
651,
62,
13059,
1843,
62,
11487,
62,
82,
4340,
11,
4174,
62,
68,
19,
11,
4174,
62,
50188,
62,
65,
18,
198,
198,
11748,
3384,
4487,
198,
198,
1677,
9419,
56,
11571,
11,
27196,
18276,
11571,
796,
357,
17821,
11,
10352,
828,
357,
25101,
11,
6407,
8,
628,
198,
4299,
3641,
62,
17497,
7,
17497,
25,
1962,
72,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3337,
262,
1813,
4324,
319,
262,
3159,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
19254,
62,
87,
796,
3159,
62,
469,
15748,
13,
16159,
22446,
87,
3419,
532,
4324,
13,
10394,
3419,
1003,
17,
198,
220,
220,
220,
19254,
62,
88,
796,
3159,
62,
469,
15748,
13,
16159,
22446,
88,
3419,
532,
4324,
13,
17015,
3419,
1003,
17,
628,
220,
220,
220,
4324,
13,
21084,
7,
38050,
62,
87,
11,
19254,
62,
88,
8,
628,
198,
198,
4299,
2251,
62,
12417,
62,
17497,
3419,
4613,
1962,
72,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7921,
274,
598,
1388,
4324,
422,
543,
2836,
460,
467,
284,
300,
84,
25754,
5360,
1073,
393,
6339,
15835,
9168,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
26295,
62,
2340,
796,
366,
19668,
14,
12417,
12,
2340,
13,
17752,
1,
198,
220,
220,
220,
11774,
62,
7753,
62,
6978,
796,
366,
19668,
14,
12417,
12,
26272,
13,
9019,
1,
198,
220,
220,
220,
479,
1462,
62,
9060,
62,
6978,
796,
3384,
4487,
13,
1136,
62,
6978,
62,
259,
62,
65,
31249,
62,
15908,
7203,
19668,
14,
74,
1462,
62,
6404,
78,
13,
11134,
4943,
628,
220,
220,
220,
11774,
796,
1962,
72,
7,
42655,
62,
2340,
11,
11774,
62,
7753,
62,
6978,
8,
628,
220,
220,
220,
3641,
62,
17497,
7,
48317,
8,
628,
220,
220,
220,
479,
1462,
62,
9060,
796,
1195,
47,
844,
8899,
7,
74,
1462,
62,
9060,
62,
6978,
8,
198,
220,
220,
220,
11774,
13,
1136,
62,
42655,
7203,
12417,
33986,
11074,
2617,
47,
844,
8899,
7,
74,
1462,
62,
9060,
8,
628,
220,
220,
220,
11774,
13,
2860,
62,
15596,
62,
4868,
877,
7203,
37023,
21864,
1600,
37456,
25,
598,
13,
47391,
28955,
628,
220,
220,
220,
1441,
11774,
628,
198,
198,
4299,
2251,
62,
18224,
62,
20500,
62,
17497,
3419,
4613,
1962,
72,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7921,
274,
257,
1402,
4049,
3275,
3025,
10154,
460,
307,
16524,
284,
4175,
262,
2836,
198,
220,
220,
220,
286,
281,
4049,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
26295,
62,
2340,
796,
366,
19668,
14,
18224,
12,
20500,
13,
17752,
1,
198,
220,
220,
220,
11774,
62,
7753,
62,
6978,
796,
366,
19668,
14,
18224,
12,
20500,
13,
9019,
1,
628,
220,
220,
220,
11774,
796,
1962,
72,
7,
42655,
62,
2340,
11,
11774,
62,
7753,
62,
6978,
8,
628,
220,
220,
220,
1303,
20458,
416,
4277,
198,
220,
220,
220,
11774,
13,
24717,
3419,
628,
220,
220,
220,
3641,
62,
17497,
7,
48317,
8,
628,
220,
220,
220,
1303,
5345,
262,
8788,
4936,
284,
7808,
262,
4324,
618,
28384,
198,
220,
220,
220,
11774,
13,
2860,
62,
15596,
62,
4868,
877,
10786,
482,
323,
21864,
3256,
37456,
25,
11774,
13,
24717,
28955,
628,
220,
220,
220,
1441,
11774,
628,
198,
198,
4299,
3359,
62,
18224,
62,
20500,
7,
4049,
62,
20500,
62,
17497,
25,
1962,
72,
11,
3670,
25,
965,
11,
2695,
25,
965,
11,
4610,
25,
965,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
25156,
4049,
17310,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4049,
62,
20500,
62,
17497,
13,
1136,
62,
42655,
10786,
18224,
5376,
33986,
27691,
2617,
8206,
7,
7839,
8,
198,
220,
220,
220,
4049,
62,
20500,
62,
17497,
13,
1136,
62,
42655,
10786,
18224,
12837,
33986,
27691,
2617,
8206,
7,
11299,
8,
198,
220,
220,
220,
4049,
62,
20500,
62,
17497,
13,
1136,
62,
42655,
10786,
18224,
46344,
33986,
27691,
2617,
8206,
7,
82,
2122,
8,
628,
220,
220,
220,
3641,
62,
17497,
7,
18224,
62,
20500,
62,
17497,
8,
628,
220,
220,
220,
4049,
62,
20500,
62,
17497,
13,
12860,
3419,
628,
220,
220,
220,
4049,
62,
20500,
62,
17497,
13,
39022,
27703,
3419,
628,
198,
4299,
43197,
62,
17497,
7,
10459,
25,
1962,
72,
11,
10965,
25,
1962,
72,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
367,
1460,
2723,
11774,
290,
10399,
788,
2523,
262,
10965,
11774,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2723,
13,
24717,
3419,
628,
220,
220,
220,
3641,
62,
17497,
7,
16520,
1883,
8,
628,
220,
220,
220,
10965,
13,
39022,
27703,
3419,
628,
220,
220,
220,
10965,
13,
12860,
3419,
628,
198,
198,
4299,
2251,
62,
2290,
25754,
62,
82,
8679,
62,
17497,
7,
12417,
62,
17497,
25,
1962,
72,
11,
905,
62,
18224,
25,
4889,
540,
30109,
2536,
11,
965,
11,
965,
4357,
6045,
12962,
4613,
1962,
72,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7921,
274,
257,
850,
26272,
810,
2836,
460,
779,
300,
84,
25754,
5360,
1073,
15835,
1220,
875,
563,
9078,
5378,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
26295,
62,
2340,
796,
366,
19668,
14,
11085,
12,
24396,
12,
2340,
13,
17752,
1,
198,
220,
220,
220,
11774,
62,
7753,
62,
6978,
796,
366,
19668,
14,
11085,
12,
24396,
13,
9019,
1,
628,
220,
220,
220,
11774,
796,
1962,
72,
7,
42655,
62,
2340,
11,
11774,
62,
7753,
62,
6978,
11,
905,
62,
18224,
8,
628,
220,
220,
220,
11774,
13,
24717,
3419,
628,
220,
220,
220,
11774,
13,
2860,
62,
15596,
62,
4868,
877,
7203,
1891,
21864,
1600,
37456,
25,
43197,
62,
17497,
7,
48317,
11,
1388,
62,
17497,
4008,
628,
220,
220,
220,
1441,
11774,
628,
198,
4299,
2251,
62,
2290,
25754,
62,
82,
8679,
62,
10951,
62,
17497,
7,
2290,
25754,
62,
82,
8679,
62,
17497,
25,
1962,
72,
8,
4613,
1962,
72,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7921,
274,
262,
7508,
4324,
329,
262,
39139,
311,
8679,
15835,
2446,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
198,
220,
220,
220,
26295,
62,
2340,
796,
366,
19668,
14,
2290,
25754,
12,
82,
8679,
12,
10951,
12,
2340,
13,
17752,
1,
198,
220,
220,
220,
11774,
62,
7753,
62,
6978,
796,
366,
19668,
14,
2290,
25754,
12,
82,
8679,
12,
10951,
13,
9019,
1,
628,
220,
220,
220,
11774,
796,
1962,
72,
7,
42655,
62,
2340,
11,
11774,
62,
7753,
62,
6978,
8,
628,
220,
220,
220,
11774,
13,
24717,
3419,
628,
220,
220,
220,
11774,
13,
2860,
62,
15596,
62,
4868,
877,
7203,
1891,
21864,
1600,
37456,
25,
43197,
62,
17497,
7,
48317,
11,
300,
84,
25754,
62,
82,
8679,
62,
17497,
4008,
628,
220,
220,
220,
1441,
11774,
628,
198,
4299,
2251,
62,
38629,
62,
12685,
13168,
62,
17497,
7,
12417,
62,
17497,
25,
1962,
72,
11,
905,
62,
18224,
25,
4889,
540,
30109,
2536,
11,
965,
11,
965,
4357,
6045,
12962,
4613,
1962,
72,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7921,
274,
4324,
810,
2836,
460,
779,
6339,
15835,
1220,
875,
13168,
1864,
284,
412,
19,
1222,
347,
18,
39602,
274,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
26295,
62,
2340,
796,
366,
19668,
14,
12227,
12,
24396,
12,
2340,
13,
17752,
1,
198,
220,
220,
220,
11774,
62,
7753,
62,
6978,
796,
366,
19668,
14,
12227,
12,
24396,
13,
9019,
1,
628,
220,
220,
220,
11774,
796,
1962,
72,
7,
42655,
62,
2340,
11,
11774,
62,
7753,
62,
6978,
11,
905,
62,
18224,
8,
628,
220,
220,
220,
1303,
6889,
428,
4324,
7104,
416,
4277,
198,
220,
220,
220,
11774,
13,
24717,
3419,
628,
220,
220,
220,
1303,
18247,
4263,
329,
18956,
15612,
1634,
198,
220,
220,
220,
11926,
62,
9060,
62,
6978,
796,
3384,
4487,
13,
1136,
62,
6978,
62,
259,
62,
65,
31249,
62,
15908,
7203,
19668,
14,
81,
448,
274,
13,
11134,
4943,
198,
220,
220,
220,
11926,
62,
9060,
796,
1195,
47,
844,
8899,
7,
81,
448,
274,
62,
9060,
62,
6978,
8,
628,
220,
220,
220,
11774,
13,
1136,
62,
42655,
7203,
81,
448,
274,
33986,
11074,
2617,
47,
844,
8899,
7,
81,
448,
274,
62,
9060,
8,
628,
220,
220,
220,
11774,
13,
2860,
62,
15596,
62,
4868,
877,
7203,
1891,
21864,
1600,
37456,
25,
43197,
62,
17497,
7,
48317,
11,
1388,
62,
17497,
4008,
628,
220,
220,
220,
1441,
11774,
628,
198,
198,
4299,
651,
62,
2290,
25754,
62,
82,
8679,
62,
16129,
7,
1136,
25,
4889,
540,
30109,
2536,
4357,
1195,
38300,
12962,
4613,
25659,
1691,
14692,
1677,
1600,
366,
5446,
1,
5974,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
29677,
82,
290,
5860,
7147,
3303,
422,
39139,
311,
8679,
1962,
72,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
366,
1677,
1,
611,
651,
10786,
39126,
26093,
21864,
27691,
271,
9787,
276,
3419,
2073,
366,
5446,
1,
628,
198,
4299,
651,
62,
2290,
25754,
62,
82,
8679,
62,
15414,
7,
1136,
25,
4889,
540,
30109,
2536,
4357,
1195,
38300,
12962,
4613,
309,
29291,
58,
2536,
11,
965,
5974,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
29677,
82,
290,
5860,
1994,
290,
2420,
543,
2836,
468,
1813,
287,
1962,
72,
13,
628,
220,
220,
220,
7567,
2696,
11052,
12331,
611,
2035,
1994,
393,
2420,
389,
6565,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1994,
796,
651,
10786,
2539,
8206,
18378,
27691,
1462,
3646,
391,
8206,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
8631,
62,
5239,
796,
651,
10786,
15414,
8206,
18378,
27691,
1462,
3646,
391,
8206,
3419,
628,
220,
220,
220,
611,
1994,
6624,
13538,
393,
8631,
62,
5239,
6624,
366,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
9218,
393,
28847,
8255,
407,
1813,
4943,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
1994,
11,
8631,
62,
5239,
628,
198,
4299,
651,
62,
34213,
62,
2673,
7,
1136,
25,
4889,
540,
30109,
2536,
4357,
1195,
38300,
12962,
4613,
309,
29291,
58,
30388,
11,
20512,
5974,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
1771,
1813,
11774,
318,
287,
34117,
393,
42797,
1181,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
34117,
796,
651,
10786,
12685,
6012,
26093,
21864,
27691,
271,
9787,
276,
3419,
198,
220,
220,
220,
42797,
796,
651,
10786,
12501,
6012,
26093,
21864,
27691,
271,
9787,
276,
3419,
628,
220,
220,
220,
1441,
34117,
11,
42797,
628,
198,
4299,
1057,
62,
2290,
25754,
62,
82,
8679,
7,
17497,
25,
1962,
72,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
15553,
284,
1057,
618,
5660,
20969,
318,
28384,
287,
39139,
311,
8679,
4324,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
44743,
300,
84,
25754,
5360,
1073,
15835,
1220,
875,
13168,
319,
262,
1813,
1994,
290,
198,
220,
220,
220,
5128,
2420,
290,
2753,
1813,
3303,
656,
1848,
13,
628,
220,
220,
220,
21394,
262,
5072,
286,
262,
11862,
355,
262,
2695,
286,
262,
5072,
3091,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
10073,
8968,
329,
39628,
287,
428,
2163,
198,
220,
220,
220,
651,
796,
37456,
2124,
25,
4324,
13,
1136,
62,
42655,
7,
87,
8,
628,
220,
220,
220,
3303,
796,
651,
62,
2290,
25754,
62,
82,
8679,
62,
16129,
7,
1136,
8,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1994,
11,
8631,
62,
5239,
796,
651,
62,
2290,
25754,
62,
82,
8679,
62,
15414,
7,
1136,
8,
628,
220,
220,
220,
2845,
11052,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4324,
13,
12860,
62,
18224,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
2625,
40613,
7383,
393,
23412,
8255,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2695,
2625,
34,
34574,
1057,
1430,
1231,
1111,
7383,
290,
23412,
8255,
1944,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4610,
2625,
5492,
6070,
287,
1111,
286,
777,
7032,
290,
1949,
757,
1,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
2223,
796,
651,
62,
34213,
62,
2673,
7,
1136,
8,
628,
220,
220,
220,
5072,
796,
13538,
628,
198,
220,
220,
220,
39559,
62,
2539,
11,
39559,
62,
25638,
62,
5239,
796,
5794,
62,
2539,
62,
392,
62,
15414,
62,
5239,
7,
2539,
11,
8631,
62,
5239,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
7326,
2533,
15417,
468,
587,
9380,
7147,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6216,
62,
5239,
62,
259,
62,
30283,
62,
17204,
7,
687,
16898,
62,
2539,
11,
3303,
8,
198,
220,
220,
220,
2845,
11052,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4324,
13,
12860,
62,
18224,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
2625,
9218,
468,
12515,
3435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2695,
2625,
7120,
1994,
3407,
3435,
326,
466,
407,
5594,
287,
534,
7147,
3303,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4610,
2625,
27914,
597,
3435,
621,
836,
470,
5594,
284,
534,
7147,
3303,
290,
1949,
757,
1,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6216,
62,
5239,
62,
259,
62,
30283,
62,
17204,
7,
687,
16898,
62,
25638,
62,
5239,
11,
3303,
8,
198,
220,
220,
220,
2845,
11052,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4324,
13,
12860,
62,
18224,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
2625,
3646,
391,
8255,
468,
12515,
3435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2695,
2625,
7120,
28847,
8255,
3407,
3435,
326,
466,
407,
5594,
287,
534,
7147,
3303,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4610,
2625,
27914,
597,
3435,
621,
836,
470,
5594,
284,
534,
7147,
3303,
290,
1949,
757,
1,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
611,
2223,
6624,
412,
7792,
18276,
11571,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
300,
84,
25754,
62,
82,
8679,
62,
12685,
6012,
7,
2539,
11,
8631,
62,
5239,
11,
3303,
8,
628,
220,
220,
220,
1288,
361,
2223,
6624,
27196,
18276,
11571,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
300,
84,
25754,
62,
82,
8679,
62,
12501,
6012,
7,
2539,
11,
8631,
62,
5239,
11,
3303,
8,
628,
220,
220,
220,
651,
10786,
22915,
8206,
18378,
27691,
2617,
3646,
391,
8206,
7,
22915,
8,
628,
198,
4299,
13259,
62,
2290,
25754,
62,
82,
8679,
7,
17497,
25,
1962,
72,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1874,
1039,
11774,
287,
300,
84,
25754,
5360,
1073,
284,
9178,
1181,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4324,
13,
1136,
62,
42655,
10786,
2539,
8206,
18378,
27691,
20063,
3419,
198,
220,
220,
220,
4324,
13,
1136,
62,
42655,
10786,
15414,
8206,
18378,
27691,
20063,
3419,
198,
220,
220,
220,
4324,
13,
1136,
62,
42655,
10786,
22915,
8206,
18378,
27691,
20063,
3419,
628,
198,
198,
4299,
651,
62,
354,
5233,
62,
11487,
62,
7857,
7,
15414,
62,
5239,
25,
965,
11,
651,
25,
4889,
540,
30109,
2536,
4357,
1195,
38300,
12962,
4613,
309,
29291,
58,
600,
11,
493,
5974,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
7147,
3084,
2546,
422,
11774,
1864,
284,
1813,
5128,
2420,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
18896,
7,
15414,
62,
5239,
8,
19841,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
15,
11,
657,
8,
628,
220,
220,
220,
10620,
11,
4808,
796,
651,
62,
13059,
1843,
62,
11487,
62,
82,
4340,
7,
11925,
7,
15414,
62,
5239,
4008,
628,
220,
220,
220,
1441,
10620,
58,
1136,
10786,
18747,
10699,
5377,
2127,
14253,
27691,
14421,
15732,
3419,
60,
628,
198,
4299,
651,
62,
38629,
62,
12685,
13168,
62,
15414,
7,
1136,
25,
4889,
540,
30109,
2536,
4357,
1195,
38300,
12962,
4613,
309,
29291,
58,
2536,
11,
309,
29291,
58,
600,
11,
493,
60,
5974,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
29677,
82,
290,
5860,
5128,
2420,
290,
3084,
2546,
422,
18956,
14711,
13168,
1962,
72,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5128,
62,
5239,
796,
651,
10786,
15414,
8206,
18378,
27691,
1462,
3646,
391,
8206,
3419,
628,
220,
220,
220,
3084,
62,
7857,
796,
651,
62,
354,
5233,
62,
11487,
62,
7857,
7,
15414,
62,
5239,
11,
651,
8,
628,
220,
220,
220,
1441,
5128,
62,
5239,
11,
3084,
62,
7857,
628,
198,
4299,
1057,
62,
38629,
62,
12685,
13168,
7,
17497,
25,
1962,
72,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
15553,
284,
1057,
618,
5660,
20969,
318,
28384,
287,
18956,
14711,
13168,
4324,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
44743,
6339,
15835,
1220,
875,
13168,
319,
262,
1813,
1994,
290,
198,
220,
220,
220,
5128,
2420,
290,
2753,
1813,
3303,
656,
1848,
13,
628,
220,
220,
220,
21394,
262,
5072,
286,
262,
11862,
355,
262,
2695,
286,
262,
5072,
3091,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
10073,
8968,
329,
39628,
287,
428,
2163,
628,
220,
220,
220,
5128,
62,
5239,
11,
3084,
62,
7857,
796,
651,
62,
38629,
62,
12685,
13168,
62,
15414,
7,
1136,
8,
628,
220,
220,
220,
611,
18896,
7,
15414,
62,
5239,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4324,
13,
12860,
62,
18224,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
2625,
34,
34574,
14711,
6012,
1220,
4280,
6012,
33523,
16000,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2695,
2625,
1639,
7482,
284,
923,
262,
1430,
351,
645,
5128,
2420,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4610,
2625,
17469,
379,
1551,
530,
2095,
287,
5128,
2214,
290,
1949,
757,
1,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
1288,
361,
18896,
7,
15414,
62,
5239,
8,
1875,
2026,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4324,
13,
12860,
62,
18224,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
2625,
7120,
5128,
318,
1165,
890,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2695,
2625,
40541,
3142,
318,
2026,
3435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4610,
28,
69,
1,
1639,
423,
5982,
1391,
11925,
7,
15414,
62,
5239,
38165,
3435,
13,
4222,
787,
1654,
534,
5128,
318,
1342,
621,
2026,
3435,
526,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
611,
3384,
4487,
13,
271,
62,
35505,
7,
11925,
7,
15414,
62,
5239,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4324,
13,
12860,
62,
18224,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
2625,
20361,
0,
8255,
22313,
318,
5537,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2695,
28,
69,
1,
7120,
5128,
2420,
468,
257,
6994,
4129,
286,
1391,
11925,
7,
15414,
62,
5239,
38165,
3435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4610,
2625,
2514,
651,
1365,
2854,
1262,
428,
15835,
2446,
11,
751,
1194,
3850,
284,
534,
3275,
526,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
198,
220,
220,
220,
1303,
14711,
6012,
3691,
13,
4280,
6012,
198,
220,
220,
220,
2223,
796,
651,
62,
34213,
62,
2673,
7,
1136,
8,
628,
220,
220,
220,
1303,
8125,
5072,
3275,
543,
2925,
284,
5072,
3091,
198,
220,
220,
220,
5072,
796,
13538,
198,
220,
220,
220,
17593,
62,
22915,
796,
17635,
628,
220,
220,
220,
611,
2223,
6624,
412,
7792,
18276,
11571,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
6339,
62,
12685,
6012,
7,
15414,
62,
5239,
11,
3084,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
17593,
62,
22915,
796,
4174,
62,
68,
19,
7,
15414,
62,
5239,
11,
2251,
62,
28920,
62,
6759,
8609,
7,
11487,
62,
7857,
4008,
628,
220,
220,
220,
1288,
361,
2223,
6624,
27196,
18276,
11571,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
6339,
62,
12501,
6012,
7,
15414,
62,
5239,
11,
3084,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
17593,
62,
22915,
796,
4174,
62,
50188,
62,
65,
18,
7,
15414,
62,
5239,
11,
3084,
62,
7857,
8,
628,
220,
220,
220,
1303,
38240,
5072,
17593,
656,
257,
4731,
198,
220,
220,
220,
39559,
62,
6759,
8609,
62,
22915,
796,
37082,
77,
1911,
22179,
7,
3256,
45302,
22179,
7,
808,
8,
329,
5752,
287,
17593,
62,
22915,
8,
198,
220,
220,
220,
651,
10786,
22915,
8206,
18378,
27691,
2617,
3646,
391,
8206,
7,
22915,
8,
198,
220,
220,
220,
651,
10786,
6759,
8609,
26410,
8206,
18378,
27691,
2617,
3646,
391,
8206,
7,
687,
16898,
62,
6759,
8609,
62,
22915,
8,
628,
198,
4299,
13259,
62,
38629,
62,
12685,
13168,
7,
17497,
25,
1962,
72,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1874,
1039,
6339,
15835,
11774,
284,
9178,
1181,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
651,
10786,
15414,
8206,
18378,
27691,
20063,
3419,
198,
220,
220,
220,
651,
10786,
22915,
8206,
18378,
27691,
20063,
3419,
198,
220,
220,
220,
651,
10786,
6759,
8609,
26410,
8206,
18378,
27691,
20063,
3419,
198,
220,
220,
220,
651,
10786,
18747,
10699,
5377,
2127,
14253,
27691,
20063,
3419,
628,
198,
4299,
48040,
62,
24011,
672,
1140,
7,
24011,
672,
1140,
25,
1195,
5377,
2127,
14253,
11,
651,
62,
20500,
25,
4889,
540,
30109,
4357,
965,
12962,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
8099,
15968,
1813,
1974,
672,
1140,
351,
2785,
8893,
10620,
329,
262,
1813,
3275,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1974,
672,
1140,
13,
20063,
3419,
628,
220,
220,
220,
3275,
796,
651,
62,
20500,
3419,
628,
220,
220,
220,
611,
18896,
7,
20500,
8,
19841,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
1303,
8099,
5039,
1974,
672,
1140,
351,
1351,
286,
10620,
198,
220,
220,
220,
10620,
11,
16586,
62,
7857,
796,
651,
62,
13059,
1843,
62,
11487,
62,
82,
4340,
7,
11925,
7,
20500,
4008,
628,
220,
220,
220,
329,
2546,
287,
10620,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2546,
6624,
16586,
62,
7857,
393,
2546,
6624,
16586,
62,
7857,
58,
3712,
12,
16,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1974,
672,
1140,
13,
2860,
7449,
7,
69,
1,
90,
7857,
58,
15,
48999,
2124,
1391,
7857,
58,
16,
48999,
357,
36171,
8,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1974,
672,
1140,
13,
2860,
7449,
7,
69,
1,
90,
7857,
58,
15,
48999,
2124,
1391,
7857,
58,
16,
48999,
4943,
628,
198,
198,
4299,
751,
62,
38629,
62,
12685,
13168,
62,
25480,
82,
7,
17497,
25,
1962,
72,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
18531,
82,
18956,
14711,
13168,
1962,
72,
351,
663,
30146,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
5345,
14711,
6012,
355,
4277,
3038,
198,
220,
220,
220,
651,
10786,
12685,
6012,
26093,
21864,
27691,
2617,
9787,
276,
7,
17821,
8,
628,
220,
220,
220,
1303,
5345,
4268,
12,
19738,
284,
423,
645,
4847,
379,
262,
923,
198,
220,
220,
220,
651,
10786,
18747,
10699,
5377,
2127,
14253,
27691,
20063,
3419,
628,
220,
220,
220,
5128,
62,
5239,
796,
651,
10786,
15414,
8206,
18378,
27691,
1462,
3646,
391,
8206,
3419,
198,
220,
220,
220,
1974,
672,
1140,
796,
651,
10786,
18747,
10699,
5377,
2127,
14253,
11537,
628,
220,
220,
220,
1303,
1081,
2420,
3011,
25683,
11,
262,
3084,
2546,
14831,
12,
3524,
3011,
5901,
351,
649,
3815,
198,
220,
220,
220,
651,
10786,
15414,
8206,
18378,
27691,
5239,
31813,
13,
8443,
7,
198,
220,
220,
220,
220,
220,
220,
220,
37456,
25,
48040,
62,
24011,
672,
1140,
7,
24011,
672,
1140,
11,
37456,
25,
651,
10786,
15414,
8206,
18378,
27691,
1462,
3646,
391,
8206,
28955,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
1303,
5660,
290,
30027,
20969,
20600,
364,
198,
220,
220,
220,
4324,
13,
2860,
62,
15596,
62,
4868,
877,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
5143,
21864,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
37456,
25,
1057,
62,
38629,
62,
12685,
13168,
7,
17497,
8,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
4324,
13,
2860,
62,
15596,
62,
4868,
877,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
42503,
21864,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
37456,
25,
13259,
62,
38629,
62,
12685,
13168,
7,
17497,
8,
198,
220,
220,
220,
1267,
628,
198,
4299,
751,
62,
2290,
25754,
62,
82,
8679,
62,
25480,
82,
7,
2290,
25754,
62,
82,
8679,
62,
17497,
25,
1962,
72,
11,
7508,
62,
17497,
25,
1962,
72,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
18531,
82,
39139,
311,
8679,
1962,
72,
351,
663,
30146,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
10073,
23779,
329,
39628,
287,
428,
2163,
198,
220,
220,
220,
651,
796,
37456,
2124,
25,
300,
84,
25754,
62,
82,
8679,
62,
17497,
13,
1136,
62,
42655,
7,
87,
8,
628,
220,
220,
220,
1303,
6822,
3594,
416,
4277,
198,
220,
220,
220,
651,
10786,
39126,
26093,
21864,
27691,
2617,
9787,
276,
7,
17821,
8,
628,
220,
220,
220,
1303,
6822,
14711,
6012,
416,
4277,
198,
220,
220,
220,
651,
10786,
12685,
6012,
26093,
21864,
27691,
2617,
9787,
276,
7,
17821,
8,
628,
220,
220,
220,
1303,
5345,
22054,
329,
32494,
290,
15731,
2767,
12163,
198,
220,
220,
220,
300,
84,
25754,
62,
82,
8679,
62,
17497,
13,
2860,
62,
15596,
62,
4868,
877,
10786,
5143,
21864,
3256,
37456,
25,
1057,
62,
2290,
25754,
62,
82,
8679,
7,
2290,
25754,
62,
82,
8679,
62,
17497,
4008,
198,
220,
220,
220,
300,
84,
25754,
62,
82,
8679,
62,
17497,
13,
2860,
62,
15596,
62,
4868,
877,
10786,
42503,
21864,
3256,
37456,
25,
13259,
62,
2290,
25754,
62,
82,
8679,
7,
2290,
25754,
62,
82,
8679,
62,
17497,
4008,
628,
220,
220,
220,
300,
84,
25754,
62,
82,
8679,
62,
17497,
13,
2860,
62,
15596,
62,
4868,
877,
10786,
17018,
21864,
3256,
37456,
25,
43197,
62,
17497,
7,
2290,
25754,
62,
82,
8679,
62,
17497,
11,
7508,
62,
17497,
4008,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
628,
220,
220,
220,
598,
796,
1195,
23416,
26933,
12962,
628,
220,
220,
220,
3159,
62,
469,
15748,
796,
1195,
23416,
13,
41375,
22446,
9612,
10082,
15748,
3419,
198,
220,
220,
220,
6374,
2200,
1677,
62,
54,
2389,
4221,
796,
3159,
62,
469,
15748,
13,
10394,
3419,
198,
220,
220,
220,
6374,
2200,
1677,
62,
13909,
9947,
796,
3159,
62,
469,
15748,
13,
17015,
3419,
628,
220,
220,
220,
1388,
62,
17497,
796,
2251,
62,
12417,
62,
17497,
3419,
198,
220,
220,
220,
4049,
62,
38969,
519,
796,
2251,
62,
18224,
62,
20500,
62,
17497,
3419,
628,
220,
220,
220,
905,
62,
18224,
796,
37456,
3670,
11,
2695,
11,
4610,
25,
3359,
62,
18224,
62,
20500,
7,
18224,
62,
38969,
519,
11,
3670,
11,
2695,
11,
4610,
8,
628,
220,
220,
220,
300,
84,
25754,
62,
82,
8679,
62,
17497,
796,
2251,
62,
2290,
25754,
62,
82,
8679,
62,
17497,
7,
12417,
62,
17497,
11,
905,
62,
18224,
8,
198,
220,
220,
220,
300,
84,
25754,
62,
82,
8679,
62,
10951,
62,
17497,
796,
2251,
62,
2290,
25754,
62,
82,
8679,
62,
10951,
62,
17497,
7,
2290,
25754,
62,
82,
8679,
62,
17497,
8,
628,
220,
220,
220,
6339,
62,
12685,
13168,
62,
17497,
796,
2251,
62,
38629,
62,
12685,
13168,
62,
17497,
7,
12417,
62,
17497,
11,
905,
62,
18224,
8,
628,
220,
220,
220,
1388,
62,
17497,
13,
2860,
62,
15596,
62,
4868,
877,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11085,
17410,
21864,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
37456,
25,
43197,
62,
17497,
7,
12417,
62,
17497,
11,
300,
84,
25754,
62,
82,
8679,
62,
17497,
8,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
1388,
62,
17497,
13,
2860,
62,
15596,
62,
4868,
877,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12227,
17410,
21864,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
37456,
25,
43197,
62,
17497,
7,
12417,
62,
17497,
11,
6339,
62,
12685,
13168,
62,
17497,
8,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
751,
62,
2290,
25754,
62,
82,
8679,
62,
25480,
82,
7,
2290,
25754,
62,
82,
8679,
62,
17497,
11,
300,
84,
25754,
62,
82,
8679,
62,
10951,
62,
17497,
8,
628,
220,
220,
220,
751,
62,
38629,
62,
12685,
13168,
62,
25480,
82,
7,
38629,
62,
12685,
13168,
62,
17497,
8,
628,
220,
220,
220,
598,
13,
18558,
62,
3419,
198
] | 2.678767 | 5,124 |
""" this program kills humans """
import sys
import time
import random
import builtins
import termcolor
PRINT_SPEED = 0.005
DEBUG_MODE = False
class human:
""" a human exists... to die """
def checkWound(self):
""" checks if a human is wounded """
dmg = random.randint(1, 4)
print("{} is hit".format(self.name), end="")
time.sleep(.2)
if random.randint(0, 100) > self.advantage:
print(" [not wounded]", None, "green")
else:
if self.hp != 0:
print(" [wounded][hp = {}]".format(self.hp - dmg), None, "red")
elif self.hp <= 0:
print(" [dead]")
self.hp -= dmg
def remove_lines(amount):
""" deletes lines printed previously """
cursor_up = "\x1b[1A"
erase = "\x1b[2K"
for _ in range(amount):
sys.stdout.write(cursor_up)
sys.stdout.write(erase)
def delayed_print(text, end=None, color=None):
""" prints characters with delay provided between each character. color for prompt is optional """
text = str(text)
if end != "":
text += "\n"
for char in text:
if color:
sys.stdout.write(termcolor.colored(char, color))
else:
sys.stdout.write(char)
sys.stdout.flush()
time.sleep(PRINT_SPEED)
time.sleep(PRINT_SPEED * 5)
def contest(other):
"""contests human ability"""
return random.randint(1, 20) > round(other.advantage / 5)
def getAdvantage():
"""shut is advantage"""
return random.randint(0, 100)
def hpBar(hp):
""" returns an hp bar """
ber = ""
for _ in range(hp):
ber += "#"
for _ in range(10 - hp):
ber += " "
return "|" + ber + "|"
def getColor(hp):
""" allows for specifically colored hp bars """
if hp < 4:
color = "red"
if hp >= 4 and hp <= 7:
color = "yellow"
if hp > 7:
color = "green"
return color
def combat(playerOne, playerTwo):
"""full combat"""
rounds = 0
if playerOne.name == playerTwo.name:
print("{} commits suicide".format(playerOne.name))
return 1
while playerOne.hp != 0 and playerTwo.hp != 0:
combatRound(playerOne, playerTwo)
rounds += 1
if rounds % 10 == 0 and rounds != 0:
print("We are taking a break!")
print("{} hp:{}".format(playerOne.name, playerOne.hp))
print("{} hp:{}".format(playerTwo.name, playerTwo.hp))
time.sleep(3)
remove_lines(3)
if playerOne.hp <= 0:
print("{} is dead, {} is is the champion".format(playerOne.name, playerTwo.name))
print("combat took {} rounds".format(rounds))
return 1
else:
print("{} is dead, {} is is the champion".format(playerTwo.name, playerOne.name))
print("combat took {} rounds".format(rounds))
return 2
def combatRound(playerOne, playerTwo):
"""single rounds of human to human combat"""
hpOne = hpBar(playerOne.hp)
hpTwo = hpBar(playerTwo.hp)
colorOne = getColor(playerOne.hp)
colorTwo = getColor(playerTwo.hp)
print(playerOne.name)
print("{}".format(hpOne), None, colorOne)
print(playerTwo.name)
print("{}".format(hpTwo), None, colorTwo)
if random.randint(0, 1) == 1:
success = contest(playerTwo)
print("{} attacks {}".format(playerOne.name, playerTwo.name), end="")
if success is True:
print(" [success]")
playerTwo.checkWound()
else:
print(" [failed]")
successTwo = contest(playerOne)
print("{} attacks {}".format(playerTwo.name, playerOne.name), end="")
if successTwo is True:
print(" [success]")
playerOne.checkWound()
else:
print(" [failed]")
else:
success = contest(playerOne)
print("{} attacks {}".format(playerTwo.name, playerOne.name), end="")
if success is True:
print(" [success]")
playerOne.checkWound()
else:
print(" [failed]")
successTwo = contest(playerTwo)
print("{} attacks {}".format(playerOne.name, playerTwo.name), end="")
if successTwo is True:
print(" [success]")
playerTwo.checkWound()
else:
print(" [failed]")
print("[round over]")
time.sleep(.5)
if DEBUG_MODE is not True:
remove_lines(10)
def spawn(name):
"""allows for human corpse overwriting"""
bloo = human(name)
return bloo
def main():
""" main arena """
builtins.print = delayed_print
print("welcome to fight simulator")
print("enter names of combatants")
combatantOne = input("combatant one\n>> ")
combatantTwo = input("combatant two\n>> ")
remove_lines(6)
combatantOne = spawn(combatantOne)
combatantTwo = spawn(combatantTwo)
while True:
combatantOne.advantage = random.randint(25, 100)
combatantTwo.advantage = random.randint(25, 100)
result = combat(combatantOne, combatantTwo)
if result == 1:
combatantOne = spawn(input("new combatant\n>> "))
combatantTwo.hp = 10
elif result == 2:
combatantTwo = spawn(input("new combatant\n>> "))
combatantOne.hp = 10
if __name__ == "__main__":
main()
| [
37811,
428,
1430,
12847,
5384,
37227,
198,
11748,
25064,
198,
11748,
640,
198,
11748,
4738,
198,
11748,
3170,
1040,
198,
11748,
3381,
8043,
198,
198,
4805,
12394,
62,
4303,
41841,
796,
657,
13,
22544,
198,
30531,
62,
49058,
796,
10352,
198,
198,
4871,
1692,
25,
198,
220,
220,
220,
37227,
257,
1692,
7160,
986,
284,
4656,
37227,
628,
198,
220,
220,
220,
825,
2198,
54,
633,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
8794,
611,
257,
1692,
318,
10657,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
41323,
796,
4738,
13,
25192,
600,
7,
16,
11,
604,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
318,
2277,
1911,
18982,
7,
944,
13,
3672,
828,
886,
2625,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
640,
13,
42832,
7,
13,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
4738,
13,
25192,
600,
7,
15,
11,
1802,
8,
1875,
2116,
13,
13461,
496,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
1662,
10657,
60,
1600,
6045,
11,
366,
14809,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
24831,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
86,
6302,
7131,
24831,
796,
23884,
60,
1911,
18982,
7,
944,
13,
24831,
532,
41323,
828,
6045,
11,
366,
445,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2116,
13,
24831,
19841,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
25124,
60,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
24831,
48185,
41323,
628,
198,
4299,
4781,
62,
6615,
7,
17287,
2599,
198,
220,
220,
220,
37227,
28128,
274,
3951,
10398,
4271,
37227,
628,
220,
220,
220,
23493,
62,
929,
796,
37082,
87,
16,
65,
58,
16,
32,
1,
198,
220,
220,
220,
28602,
796,
37082,
87,
16,
65,
58,
17,
42,
1,
628,
220,
220,
220,
329,
4808,
287,
2837,
7,
17287,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
19282,
448,
13,
13564,
7,
66,
21471,
62,
929,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
19282,
448,
13,
13564,
7,
263,
589,
8,
628,
198,
4299,
11038,
62,
4798,
7,
5239,
11,
886,
28,
14202,
11,
3124,
28,
14202,
2599,
198,
220,
220,
220,
37227,
20842,
3435,
351,
5711,
2810,
1022,
1123,
2095,
13,
3124,
329,
6152,
318,
11902,
37227,
198,
220,
220,
220,
2420,
796,
965,
7,
5239,
8,
628,
220,
220,
220,
611,
886,
14512,
366,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
2420,
15853,
37082,
77,
1,
628,
220,
220,
220,
329,
1149,
287,
2420,
25,
628,
220,
220,
220,
220,
220,
220,
220,
611,
3124,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
19282,
448,
13,
13564,
7,
4354,
8043,
13,
25717,
7,
10641,
11,
3124,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
19282,
448,
13,
13564,
7,
10641,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
19282,
448,
13,
25925,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
640,
13,
42832,
7,
4805,
12394,
62,
4303,
41841,
8,
198,
220,
220,
220,
640,
13,
42832,
7,
4805,
12394,
62,
4303,
41841,
1635,
642,
8,
198,
4299,
8414,
7,
847,
2599,
198,
220,
220,
220,
37227,
3642,
3558,
1692,
2694,
37811,
198,
220,
220,
220,
1441,
4738,
13,
25192,
600,
7,
16,
11,
1160,
8,
1875,
2835,
7,
847,
13,
13461,
496,
1220,
642,
8,
628,
198,
4299,
651,
2782,
38815,
33529,
198,
220,
220,
220,
37227,
49625,
318,
4621,
37811,
198,
220,
220,
220,
1441,
4738,
13,
25192,
600,
7,
15,
11,
1802,
8,
628,
198,
4299,
27673,
10374,
7,
24831,
2599,
198,
220,
220,
220,
37227,
5860,
281,
27673,
2318,
37227,
198,
220,
220,
220,
18157,
796,
13538,
198,
220,
220,
220,
329,
4808,
287,
2837,
7,
24831,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
18157,
15853,
25113,
1,
198,
220,
220,
220,
329,
4808,
287,
2837,
7,
940,
532,
27673,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
18157,
15853,
366,
366,
198,
220,
220,
220,
1441,
366,
91,
1,
1343,
18157,
1343,
366,
91,
1,
628,
198,
4299,
651,
10258,
7,
24831,
2599,
198,
220,
220,
220,
37227,
3578,
329,
5734,
16396,
27673,
9210,
37227,
198,
220,
220,
220,
611,
27673,
1279,
604,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3124,
796,
366,
445,
1,
198,
220,
220,
220,
611,
27673,
18189,
604,
290,
27673,
19841,
767,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3124,
796,
366,
36022,
1,
198,
220,
220,
220,
611,
27673,
1875,
767,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3124,
796,
366,
14809,
1,
198,
220,
220,
220,
1441,
3124,
628,
198,
4299,
5249,
7,
7829,
3198,
11,
2137,
7571,
2599,
198,
220,
220,
220,
37227,
12853,
5249,
37811,
198,
220,
220,
220,
9196,
796,
657,
198,
220,
220,
220,
611,
2137,
3198,
13,
3672,
6624,
2137,
7571,
13,
3672,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
23463,
7341,
1911,
18982,
7,
7829,
3198,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
352,
628,
220,
220,
220,
981,
2137,
3198,
13,
24831,
14512,
657,
290,
2137,
7571,
13,
24831,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5249,
22685,
7,
7829,
3198,
11,
2137,
7571,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9196,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
611,
9196,
4064,
838,
6624,
657,
290,
9196,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
1135,
389,
2263,
257,
2270,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
27673,
29164,
92,
1911,
18982,
7,
7829,
3198,
13,
3672,
11,
2137,
3198,
13,
24831,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
27673,
29164,
92,
1911,
18982,
7,
7829,
7571,
13,
3672,
11,
2137,
7571,
13,
24831,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
13,
42832,
7,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4781,
62,
6615,
7,
18,
8,
628,
220,
220,
220,
611,
2137,
3198,
13,
24831,
19841,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
318,
2636,
11,
23884,
318,
318,
262,
8783,
1911,
18982,
7,
7829,
3198,
13,
3672,
11,
2137,
7571,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
39969,
1718,
23884,
9196,
1911,
18982,
7,
744,
82,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
352,
628,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
318,
2636,
11,
23884,
318,
318,
262,
8783,
1911,
18982,
7,
7829,
7571,
13,
3672,
11,
2137,
3198,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
39969,
1718,
23884,
9196,
1911,
18982,
7,
744,
82,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
362,
628,
198,
4299,
5249,
22685,
7,
7829,
3198,
11,
2137,
7571,
2599,
628,
220,
220,
220,
37227,
29762,
9196,
286,
1692,
284,
1692,
5249,
37811,
198,
220,
220,
220,
27673,
3198,
796,
27673,
10374,
7,
7829,
3198,
13,
24831,
8,
198,
220,
220,
220,
27673,
7571,
796,
27673,
10374,
7,
7829,
7571,
13,
24831,
8,
198,
220,
220,
220,
3124,
3198,
796,
651,
10258,
7,
7829,
3198,
13,
24831,
8,
198,
220,
220,
220,
3124,
7571,
796,
651,
10258,
7,
7829,
7571,
13,
24831,
8,
198,
220,
220,
220,
3601,
7,
7829,
3198,
13,
3672,
8,
198,
220,
220,
220,
3601,
7203,
90,
92,
1911,
18982,
7,
24831,
3198,
828,
6045,
11,
3124,
3198,
8,
198,
220,
220,
220,
3601,
7,
7829,
7571,
13,
3672,
8,
198,
220,
220,
220,
3601,
7203,
90,
92,
1911,
18982,
7,
24831,
7571,
828,
6045,
11,
3124,
7571,
8,
628,
220,
220,
220,
611,
4738,
13,
25192,
600,
7,
15,
11,
352,
8,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
8414,
7,
7829,
7571,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
3434,
23884,
1911,
18982,
7,
7829,
3198,
13,
3672,
11,
2137,
7571,
13,
3672,
828,
886,
2625,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1943,
318,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
13138,
60,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
7571,
13,
9122,
54,
633,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
47904,
60,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1943,
7571,
796,
8414,
7,
7829,
3198,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
3434,
23884,
1911,
18982,
7,
7829,
7571,
13,
3672,
11,
2137,
3198,
13,
3672,
828,
886,
2625,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1943,
7571,
318,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
13138,
60,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
3198,
13,
9122,
54,
633,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
47904,
60,
4943,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
8414,
7,
7829,
3198,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
3434,
23884,
1911,
18982,
7,
7829,
7571,
13,
3672,
11,
2137,
3198,
13,
3672,
828,
886,
2625,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1943,
318,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
13138,
60,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
3198,
13,
9122,
54,
633,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
47904,
60,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1943,
7571,
796,
8414,
7,
7829,
7571,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
92,
3434,
23884,
1911,
18982,
7,
7829,
3198,
13,
3672,
11,
2137,
7571,
13,
3672,
828,
886,
2625,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1943,
7571,
318,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
13138,
60,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
7571,
13,
9122,
54,
633,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
685,
47904,
60,
4943,
628,
220,
220,
220,
3601,
7203,
58,
744,
625,
60,
4943,
198,
220,
220,
220,
640,
13,
42832,
7,
13,
20,
8,
628,
220,
220,
220,
611,
16959,
62,
49058,
318,
407,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4781,
62,
6615,
7,
940,
8,
628,
198,
4299,
10922,
7,
3672,
2599,
198,
220,
220,
220,
37227,
47205,
329,
1692,
21304,
6993,
799,
278,
37811,
198,
220,
220,
220,
698,
2238,
796,
1692,
7,
3672,
8,
198,
220,
220,
220,
1441,
698,
2238,
628,
198,
4299,
1388,
33529,
198,
220,
220,
220,
37227,
1388,
13478,
37227,
198,
220,
220,
220,
3170,
1040,
13,
4798,
796,
11038,
62,
4798,
198,
220,
220,
220,
3601,
7203,
86,
9571,
284,
1907,
35375,
4943,
198,
220,
220,
220,
3601,
7203,
9255,
3891,
286,
40711,
4943,
198,
220,
220,
220,
5249,
415,
3198,
796,
5128,
7203,
39969,
415,
530,
59,
77,
4211,
366,
8,
198,
220,
220,
220,
5249,
415,
7571,
796,
5128,
7203,
39969,
415,
734,
59,
77,
4211,
366,
8,
198,
220,
220,
220,
4781,
62,
6615,
7,
21,
8,
198,
220,
220,
220,
5249,
415,
3198,
796,
10922,
7,
39969,
415,
3198,
8,
198,
220,
220,
220,
5249,
415,
7571,
796,
10922,
7,
39969,
415,
7571,
8,
628,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5249,
415,
3198,
13,
13461,
496,
796,
4738,
13,
25192,
600,
7,
1495,
11,
1802,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5249,
415,
7571,
13,
13461,
496,
796,
4738,
13,
25192,
600,
7,
1495,
11,
1802,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
5249,
7,
39969,
415,
3198,
11,
5249,
415,
7571,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1255,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5249,
415,
3198,
796,
10922,
7,
15414,
7203,
3605,
5249,
415,
59,
77,
4211,
366,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5249,
415,
7571,
13,
24831,
796,
838,
628,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1255,
6624,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5249,
415,
7571,
796,
10922,
7,
15414,
7203,
3605,
5249,
415,
59,
77,
4211,
366,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5249,
415,
3198,
13,
24831,
796,
838,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.25383 | 2,415 |
from Tools.NumericalTextInput import NumericalTextInput
from Screens.VirtualKeyBoard import VirtualKeyBoard
from Components.ActionMap import NumberActionMap
| [
6738,
20003,
13,
45,
6975,
605,
8206,
20560,
1330,
399,
6975,
605,
8206,
20560,
198,
6738,
1446,
5681,
13,
37725,
9218,
29828,
1330,
15595,
9218,
29828,
198,
6738,
36109,
13,
12502,
13912,
1330,
7913,
12502,
13912,
628
] | 4.27027 | 37 |
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB.PDBIO import PDBIO
import numpy as np
import shutil
f = open("log.txt", "a")
parser = PDBParser(PERMISSIVE=1)
structure_id = "3rgk"
filename = "../1-1-build/MYO_HEME_MUT.pdb"
structure = parser.get_structure(structure_id, filename)
atoms = structure.get_atoms()
listOfCoords = []
for atom in atoms:
coords = atom.get_coord()
listOfCoords.append(coords)
coorNP = np.asarray(listOfCoords)
geoCenter = coorNP.mean(axis=0)
log = "Geometric Center: {}\n".format(geoCenter)
f.write(log)
# calculating Euclidean distance
# using linalg.norm()
maxDistMan = 0
maxDistL2 = 0
for atom in coorNP:
#manDist = np.sqrt((atom[0] - geoCenter[0])**2 + (atom[1] - geoCenter[1])**2 + (atom[2] - geoCenter[2])**2)
dist = np.linalg.norm(geoCenter - atom)
#print ("manDist {} dist {}".format(manDist,dist))
#print(dist)
if (dist > maxDistL2):
maxDistL2 = dist
#if (manDist > maxDistMan):
# maxDistMan = manDist
log = "maxDistL2 {}\n".format(maxDistL2)
f.write(log)
# 2 times the Max internal distance of protein atoms + 2 angstroms on each side
# The padding is in case the radius of gyration of the protein increases.
# Currently the maximum allowed increase in radius of gyration is 2 angstroms.
# This is likely a highly liberal amount for a globular protein at 310 K in minimal Na/Cl.
maxDistL2_padded = maxDistL2+20
log = "maxDistL2_padded {}\n".format(maxDistL2_padded)
f.write(log)
shutil.copyfile("../1-1-build/MYO_HEME.psf", "MYO_HEME_SHIFTED.psf")
import mbuild as mb
import numpy as np
from foyer import Forcefield
import mbuild.formats.charmm_writer as mf_charmm
import mbuild.formats.gomc_conf_writer as gomc_control
FF_file_O2 = './FFs/charmmD_molecular_oxygen.xml'
O2 = mb.load('./FFs/DIOX.mol2')
O2.name = 'DIOX'
#O2.energy_minimize(forcefield=FF_file_O2, steps=10**5)
FF_file_water = './FFs/charmm_tip3p.xml'
water = mb.load('O', smiles=True)
water.name = 'TIP3'
#water.energy_minimize(forcefield=FF_file_water, steps=10**5)
FF_dict = {water.name: FF_file_water, O2.name: FF_file_O2}
residues_list = [water.name, O2.name]
fix_bonds_angles_residues = [water.name, O2.name]
bead_to_atom_name_dict = { '_ON':'ON', '_OP':'OP'}
# Build the main simulation liquid box (box 0) and the vapor (box 1) for the simulation [1, 2, 13-17]
water_O2_box_liq = mb.fill_box(compound=[water,O2],
density= 950,
compound_ratio=[0.98, 0.02] ,
box=[2*maxDistL2_padded/10, 2*maxDistL2_padded/10, 2*maxDistL2_padded/10])
geoCenterBox = water_O2_box_liq.center
log = "BOX CENTER : {}\n".format(geoCenterBox*10)
f.write(log)
trueCenter = [maxDistL2_padded/10, maxDistL2_padded/10, maxDistL2_padded/10]
log = "DESIRED BOX CENTER : {}\n".format(trueCenter*10)
f.write(log)
translationVectorBox = trueCenter-geoCenterBox
log = "BOX TRANSLATION VECTOR : {}\n".format(translationVectorBox*10)
f.write(log)
water_O2_box_liq.translate(translationVectorBox)
geoCenterBoxPostTranslate = water_O2_box_liq.center
log = "BOX CENTER POST TRANSLATE : {}\n".format(geoCenterBoxPostTranslate*10)
f.write(log)
water_O2_box_res = mb.fill_box(compound=[water,O2],
density= 950,
compound_ratio=[0.80 0.20] ,
box=[9, 9, 9])
charmmNAMD = mf_charmm.Charmm(water_O2_box_liq,
'GCMC_water_O2_liq_NAMD',
structure_box_1=water_O2_box_res,
filename_box_1='GCMC_water_O2_res_NAMD',
ff_filename="GCMC_water_O2_FF_NAMD",
forcefield_selection=FF_dict,
residues=residues_list,
bead_to_atom_name_dict=bead_to_atom_name_dict,
fix_residue=None,
gomc_fix_bonds_angles=None,
reorder_res_in_pdb_psf=True
)
charmm = mf_charmm.Charmm(water_O2_box_liq,
'GCMC_water_O2_liq',
structure_box_1=water_O2_box_res,
filename_box_1='GCMC_water_O2_res',
ff_filename="GCMC_water_O2_FF",
forcefield_selection=FF_dict,
residues=residues_list,
bead_to_atom_name_dict=bead_to_atom_name_dict,
fix_residue=None,
gomc_fix_bonds_angles=fix_bonds_angles_residues,
reorder_res_in_pdb_psf=True
)
charmm.write_inp()
charmm.write_psf()
charmm.write_pdb()
charmmNAMD.write_inp()
gomc_control.write_gomc_control_file(charmm, 'in_GCMC_NVT.conf', 'GCMC', 100, 310,
input_variables_dict={"VDWGeometricSigma": True,
"Rcut": 12,
"DisFreq": 0.00,
"RotFreq": 0.00,
"IntraSwapFreq": 0.00,
"SwapFreq": 1.00,
"RegrowthFreq": 0.00,
"CrankShaftFreq": 0.00,
"VolFreq": 0.00,
"MultiParticleFreq": 0.00,
"ChemPot" : {"TIP3" : -4166, "DIOX" : -8000}
}
)
f.write('Completed: GOMC FF file, and the psf and pdb files')
log = "PROTEIN GEOMETRIC CENTER: {}\n".format(geoCenter)
f.write(log)
log = "BOX GEOMETRIC CENTER: {}\n".format(geoCenterBoxPostTranslate*10)
f.write(log)
translationArrayProt = np.abs(geoCenterBoxPostTranslate*10 - geoCenter)
log = "PROTEIN TRANSLATION VECTOR : {}\n".format(translationArrayProt)
f.write(log)
atoms = structure.get_atoms()
for atom in atoms:
newCoords = atom.get_coord()+translationArrayProt
atom.set_coord(newCoords)
io = PDBIO()
io.set_structure(structure)
io.save("MYO_HEME_MUT_SHIFTED.pdb")
| [
6738,
16024,
13,
5760,
33,
13,
5760,
20866,
28198,
1330,
350,
11012,
46677,
198,
6738,
16024,
13,
5760,
33,
13,
5760,
3483,
46,
1330,
14340,
3483,
46,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
4423,
346,
198,
198,
69,
796,
1280,
7203,
6404,
13,
14116,
1600,
366,
64,
4943,
198,
198,
48610,
796,
350,
11012,
46677,
7,
18973,
44,
16744,
9306,
28,
16,
8,
198,
301,
5620,
62,
312,
796,
366,
18,
41345,
74,
1,
198,
34345,
796,
366,
40720,
16,
12,
16,
12,
11249,
14,
26708,
46,
62,
39,
3620,
36,
62,
44,
3843,
13,
79,
9945,
1,
198,
301,
5620,
796,
30751,
13,
1136,
62,
301,
5620,
7,
301,
5620,
62,
312,
11,
29472,
8,
198,
265,
3150,
796,
4645,
13,
1136,
62,
265,
3150,
3419,
198,
4868,
5189,
7222,
3669,
796,
17635,
198,
1640,
22037,
287,
23235,
25,
198,
197,
1073,
3669,
796,
22037,
13,
1136,
62,
37652,
3419,
198,
197,
4868,
5189,
7222,
3669,
13,
33295,
7,
1073,
3669,
8,
198,
1073,
273,
22182,
796,
45941,
13,
292,
18747,
7,
4868,
5189,
7222,
3669,
8,
198,
469,
78,
23656,
796,
763,
273,
22182,
13,
32604,
7,
22704,
28,
15,
8,
198,
6404,
796,
366,
10082,
16996,
3337,
25,
23884,
59,
77,
1911,
18982,
7,
469,
78,
23656,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
2,
26019,
48862,
485,
272,
5253,
198,
2,
1262,
300,
1292,
70,
13,
27237,
3419,
198,
9806,
20344,
5124,
796,
657,
198,
9806,
20344,
43,
17,
796,
657,
198,
1640,
22037,
287,
763,
273,
22182,
25,
198,
197,
2,
805,
20344,
796,
45941,
13,
31166,
17034,
19510,
37696,
58,
15,
60,
532,
40087,
23656,
58,
15,
12962,
1174,
17,
1343,
357,
37696,
58,
16,
60,
532,
40087,
23656,
58,
16,
12962,
1174,
17,
1343,
357,
37696,
58,
17,
60,
532,
40087,
23656,
58,
17,
12962,
1174,
17,
8,
198,
197,
17080,
796,
45941,
13,
75,
1292,
70,
13,
27237,
7,
469,
78,
23656,
532,
22037,
8,
198,
197,
2,
4798,
5855,
805,
20344,
23884,
1233,
23884,
1911,
18982,
7,
805,
20344,
11,
17080,
4008,
628,
197,
2,
4798,
7,
17080,
8,
197,
198,
197,
361,
357,
17080,
1875,
3509,
20344,
43,
17,
2599,
198,
197,
197,
9806,
20344,
43,
17,
796,
1233,
198,
197,
2,
361,
357,
805,
20344,
1875,
3509,
20344,
5124,
2599,
198,
197,
2,
197,
9806,
20344,
5124,
796,
582,
20344,
198,
198,
6404,
796,
366,
9806,
20344,
43,
17,
23884,
59,
77,
1911,
18982,
7,
9806,
20344,
43,
17,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
2,
362,
1661,
262,
5436,
5387,
5253,
286,
7532,
23235,
1343,
362,
3550,
20282,
82,
319,
1123,
1735,
198,
2,
383,
24511,
318,
287,
1339,
262,
16874,
286,
21486,
1358,
286,
262,
7532,
5732,
13,
198,
2,
16888,
262,
5415,
3142,
2620,
287,
16874,
286,
21486,
1358,
318,
362,
3550,
20282,
82,
13,
198,
2,
770,
318,
1884,
257,
4047,
7270,
2033,
329,
257,
15095,
934,
7532,
379,
28947,
509,
287,
10926,
11013,
14,
2601,
13,
198,
9806,
20344,
43,
17,
62,
79,
29373,
796,
3509,
20344,
43,
17,
10,
1238,
198,
6404,
796,
366,
9806,
20344,
43,
17,
62,
79,
29373,
23884,
59,
77,
1911,
18982,
7,
9806,
20344,
43,
17,
62,
79,
29373,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
1477,
22602,
13,
30073,
7753,
7203,
40720,
16,
12,
16,
12,
11249,
14,
26708,
46,
62,
39,
3620,
36,
13,
862,
69,
1600,
366,
26708,
46,
62,
39,
3620,
36,
62,
9693,
32297,
1961,
13,
862,
69,
4943,
628,
198,
11748,
285,
11249,
355,
285,
65,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
277,
35301,
1330,
5221,
3245,
198,
11748,
285,
11249,
13,
687,
1381,
13,
354,
1670,
76,
62,
16002,
355,
285,
69,
62,
354,
1670,
76,
198,
11748,
285,
11249,
13,
687,
1381,
13,
19120,
66,
62,
10414,
62,
16002,
355,
308,
296,
66,
62,
13716,
198,
198,
5777,
62,
7753,
62,
46,
17,
796,
705,
19571,
5777,
82,
14,
354,
1670,
76,
35,
62,
76,
2305,
10440,
62,
23536,
5235,
13,
19875,
6,
198,
46,
17,
796,
285,
65,
13,
2220,
7,
4458,
14,
5777,
82,
14,
35,
9399,
55,
13,
43132,
17,
11537,
198,
46,
17,
13,
3672,
796,
705,
35,
9399,
55,
6,
198,
2,
46,
17,
13,
22554,
62,
1084,
48439,
7,
3174,
3245,
28,
5777,
62,
7753,
62,
46,
17,
11,
4831,
28,
940,
1174,
20,
8,
198,
5777,
62,
7753,
62,
7050,
796,
705,
19571,
5777,
82,
14,
354,
1670,
76,
62,
22504,
18,
79,
13,
19875,
6,
198,
7050,
796,
285,
65,
13,
2220,
10786,
46,
3256,
21845,
28,
17821,
8,
198,
7050,
13,
3672,
796,
705,
51,
4061,
18,
6,
198,
2,
7050,
13,
22554,
62,
1084,
48439,
7,
3174,
3245,
28,
5777,
62,
7753,
62,
7050,
11,
4831,
28,
940,
1174,
20,
8,
198,
198,
5777,
62,
11600,
796,
1391,
7050,
13,
3672,
25,
18402,
62,
7753,
62,
7050,
11,
440,
17,
13,
3672,
25,
18402,
62,
7753,
62,
46,
17,
92,
198,
411,
312,
947,
62,
4868,
796,
685,
7050,
13,
3672,
11,
440,
17,
13,
3672,
60,
198,
13049,
62,
65,
24764,
62,
27787,
62,
411,
312,
947,
796,
685,
7050,
13,
3672,
11,
440,
17,
13,
3672,
60,
198,
65,
1329,
62,
1462,
62,
37696,
62,
3672,
62,
11600,
796,
1391,
705,
62,
1340,
10354,
6,
1340,
3256,
705,
62,
3185,
10354,
6,
3185,
6,
92,
198,
198,
2,
10934,
262,
1388,
18640,
8122,
3091,
357,
3524,
657,
8,
290,
262,
20199,
357,
3524,
352,
8,
329,
262,
18640,
685,
16,
11,
362,
11,
1511,
12,
1558,
60,
628,
198,
7050,
62,
46,
17,
62,
3524,
62,
4528,
80,
796,
285,
65,
13,
20797,
62,
3524,
7,
5589,
633,
41888,
7050,
11,
46,
17,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12109,
28,
38384,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13061,
62,
10366,
952,
41888,
15,
13,
4089,
11,
657,
13,
2999,
60,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3091,
41888,
17,
9,
9806,
20344,
43,
17,
62,
79,
29373,
14,
940,
11,
362,
9,
9806,
20344,
43,
17,
62,
79,
29373,
14,
940,
11,
362,
9,
9806,
20344,
43,
17,
62,
79,
29373,
14,
940,
12962,
628,
198,
469,
78,
23656,
14253,
796,
1660,
62,
46,
17,
62,
3524,
62,
4528,
80,
13,
16159,
198,
6404,
796,
366,
39758,
33269,
1137,
1058,
220,
23884,
59,
77,
1911,
18982,
7,
469,
78,
23656,
14253,
9,
940,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
7942,
23656,
796,
685,
9806,
20344,
43,
17,
62,
79,
29373,
14,
940,
11,
3509,
20344,
43,
17,
62,
79,
29373,
14,
940,
11,
3509,
20344,
43,
17,
62,
79,
29373,
14,
940,
60,
198,
6404,
796,
366,
30910,
37819,
45216,
33269,
1137,
1058,
23884,
59,
77,
1911,
18982,
7,
7942,
23656,
9,
940,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
41519,
38469,
14253,
796,
2081,
23656,
12,
469,
78,
23656,
14253,
198,
6404,
796,
366,
39758,
48213,
8634,
6234,
569,
9782,
1581,
1058,
23884,
59,
77,
1911,
18982,
7,
41519,
38469,
14253,
9,
940,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
7050,
62,
46,
17,
62,
3524,
62,
4528,
80,
13,
7645,
17660,
7,
41519,
38469,
14253,
8,
198,
198,
469,
78,
23656,
14253,
6307,
8291,
17660,
796,
1660,
62,
46,
17,
62,
3524,
62,
4528,
80,
13,
16159,
198,
6404,
796,
366,
39758,
33269,
1137,
24582,
48213,
8634,
6158,
1058,
23884,
59,
77,
1911,
18982,
7,
469,
78,
23656,
14253,
6307,
8291,
17660,
9,
940,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
7050,
62,
46,
17,
62,
3524,
62,
411,
796,
285,
65,
13,
20797,
62,
3524,
7,
5589,
633,
41888,
7050,
11,
46,
17,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12109,
28,
38384,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13061,
62,
10366,
952,
41888,
15,
13,
1795,
657,
13,
1238,
60,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3091,
41888,
24,
11,
860,
11,
860,
12962,
628,
198,
354,
1670,
76,
45,
28075,
796,
285,
69,
62,
354,
1670,
76,
13,
1925,
1670,
76,
7,
7050,
62,
46,
17,
62,
3524,
62,
4528,
80,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15916,
9655,
62,
7050,
62,
46,
17,
62,
4528,
80,
62,
45,
28075,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4645,
62,
3524,
62,
16,
28,
7050,
62,
46,
17,
62,
3524,
62,
411,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29472,
62,
3524,
62,
16,
11639,
15916,
9655,
62,
7050,
62,
46,
17,
62,
411,
62,
45,
28075,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31246,
62,
34345,
2625,
15916,
9655,
62,
7050,
62,
46,
17,
62,
5777,
62,
45,
28075,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2700,
3245,
62,
49283,
28,
5777,
62,
11600,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47185,
28,
411,
312,
947,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49773,
62,
1462,
62,
37696,
62,
3672,
62,
11600,
28,
65,
1329,
62,
1462,
62,
37696,
62,
3672,
62,
11600,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4259,
62,
411,
312,
518,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
296,
66,
62,
13049,
62,
65,
24764,
62,
27787,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
302,
2875,
62,
411,
62,
259,
62,
79,
9945,
62,
862,
69,
28,
17821,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
198,
354,
1670,
76,
796,
285,
69,
62,
354,
1670,
76,
13,
1925,
1670,
76,
7,
7050,
62,
46,
17,
62,
3524,
62,
4528,
80,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15916,
9655,
62,
7050,
62,
46,
17,
62,
4528,
80,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4645,
62,
3524,
62,
16,
28,
7050,
62,
46,
17,
62,
3524,
62,
411,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29472,
62,
3524,
62,
16,
11639,
15916,
9655,
62,
7050,
62,
46,
17,
62,
411,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31246,
62,
34345,
2625,
15916,
9655,
62,
7050,
62,
46,
17,
62,
5777,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2700,
3245,
62,
49283,
28,
5777,
62,
11600,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47185,
28,
411,
312,
947,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49773,
62,
1462,
62,
37696,
62,
3672,
62,
11600,
28,
65,
1329,
62,
1462,
62,
37696,
62,
3672,
62,
11600,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4259,
62,
411,
312,
518,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
296,
66,
62,
13049,
62,
65,
24764,
62,
27787,
28,
13049,
62,
65,
24764,
62,
27787,
62,
411,
312,
947,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
302,
2875,
62,
411,
62,
259,
62,
79,
9945,
62,
862,
69,
28,
17821,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
198,
354,
1670,
76,
13,
13564,
62,
259,
79,
3419,
198,
198,
354,
1670,
76,
13,
13564,
62,
862,
69,
3419,
198,
198,
354,
1670,
76,
13,
13564,
62,
79,
9945,
3419,
198,
198,
354,
1670,
76,
45,
28075,
13,
13564,
62,
259,
79,
3419,
198,
198,
19120,
66,
62,
13716,
13,
13564,
62,
19120,
66,
62,
13716,
62,
7753,
7,
354,
1670,
76,
11,
705,
259,
62,
15916,
9655,
62,
27159,
51,
13,
10414,
3256,
705,
15916,
9655,
3256,
1802,
11,
28947,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
25641,
2977,
62,
11600,
28,
4895,
8898,
54,
10082,
16996,
50,
13495,
1298,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
49,
8968,
1298,
1105,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
7279,
20366,
80,
1298,
657,
13,
405,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
24864,
20366,
80,
1298,
657,
13,
405,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
5317,
430,
10462,
499,
20366,
80,
1298,
657,
13,
405,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
10462,
499,
20366,
80,
1298,
352,
13,
405,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
8081,
13046,
20366,
80,
1298,
657,
13,
405,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
13916,
962,
2484,
14940,
20366,
80,
1298,
657,
13,
405,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
16598,
20366,
80,
1298,
657,
13,
405,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
29800,
7841,
1548,
20366,
80,
1298,
657,
13,
405,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
41829,
25396,
1,
1058,
19779,
51,
4061,
18,
1,
1058,
532,
19,
23055,
11,
366,
35,
9399,
55,
1,
1058,
532,
33942,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
198,
69,
13,
13564,
10786,
43768,
25,
402,
2662,
34,
18402,
2393,
11,
290,
262,
26692,
69,
290,
279,
9945,
3696,
11537,
198,
198,
6404,
796,
366,
4805,
23051,
1268,
22319,
2662,
2767,
41132,
33269,
1137,
25,
23884,
59,
77,
1911,
18982,
7,
469,
78,
23656,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
6404,
796,
366,
39758,
22319,
2662,
2767,
41132,
33269,
1137,
25,
23884,
59,
77,
1911,
18982,
7,
469,
78,
23656,
14253,
6307,
8291,
17660,
9,
940,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
41519,
19182,
19703,
796,
45941,
13,
8937,
7,
469,
78,
23656,
14253,
6307,
8291,
17660,
9,
940,
532,
40087,
23656,
8,
198,
6404,
796,
366,
4805,
23051,
1268,
48213,
8634,
6234,
569,
9782,
1581,
1058,
23884,
59,
77,
1911,
18982,
7,
41519,
19182,
19703,
8,
198,
69,
13,
13564,
7,
6404,
8,
198,
198,
265,
3150,
796,
4645,
13,
1136,
62,
265,
3150,
3419,
198,
1640,
22037,
287,
23235,
25,
198,
197,
3605,
7222,
3669,
796,
22037,
13,
1136,
62,
37652,
3419,
10,
41519,
19182,
19703,
198,
197,
37696,
13,
2617,
62,
37652,
7,
3605,
7222,
3669,
8,
198,
952,
796,
14340,
3483,
46,
3419,
198,
952,
13,
2617,
62,
301,
5620,
7,
301,
5620,
8,
198,
952,
13,
21928,
7203,
26708,
46,
62,
39,
3620,
36,
62,
44,
3843,
62,
9693,
32297,
1961,
13,
79,
9945,
4943,
198
] | 1.788976 | 3,592 |
"""A set of utility functions
"""
from collections import OrderedDict
import pkgutil
from typing import Dict, Tuple
import numpy as np # type: ignore
import scipy as sp # type: ignore
from scipy import stats
from typing import List
from .util_funcs import (avail_approaches, read_param_file, _check_bounds, _check_groups)
from .problem import ProblemSpec
from .results import ResultDict
__all__ = ["scale_samples", "read_param_file",
"ResultDict", "avail_approaches"]
def _scale_samples(params: np.ndarray, bounds: List):
"""Rescale samples in 0-to-1 range to arbitrary bounds
Parameters
----------
params : numpy.ndarray
numpy array of dimensions `num_params`-by-:math:`N`,
where :math:`N` is the number of samples
bounds : list
list of lists of dimensions `num_params`-by-2
"""
# Check bounds are legal (upper bound is greater than lower bound)
lower_bounds, upper_bounds = _check_bounds(bounds)
# This scales the samples in-place, by using the optional output
# argument for the numpy ufunctions
# The calculation is equivalent to:
# sample * (upper_bound - lower_bound) + lower_bound
np.add(np.multiply(params,
(upper_bounds - lower_bounds),
out=params),
lower_bounds,
out=params)
def scale_samples(params: np.ndarray, problem: Dict):
"""Scale samples based on specified distribution (defaulting to uniform).
Adds an entry to the problem specification to indicate samples have been
scaled to maintain backwards compatibility (`sample_scaled`).
Parameters
----------
params : np.ndarray,
numpy array of dimensions `num_params`-by-:math:`N`,
where :math:`N` is the number of samples
problem : dictionary,
SALib problem specification
Returns
----------
np.ndarray, scaled samples
"""
bounds = problem['bounds']
dists = problem.get('dists')
if dists is None:
_scale_samples(params, bounds)
else:
if params.shape[1] != len(dists):
msg = "Mismatch in number of parameters and distributions.\n"
msg += "Num parameters: {}".format(params.shape[1])
msg += "Num distributions: {}".format(len(dists))
raise ValueError(msg)
params = _nonuniform_scale_samples(
params, bounds, dists)
problem['sample_scaled'] = True
return params
# limited_params = limit_samples(params, upper_bound, lower_bound, dists)
def _unscale_samples(params, bounds):
"""Rescale samples from arbitrary bounds back to [0,1] range
Parameters
----------
bounds : list
list of lists of dimensions num_params-by-2
params : numpy.ndarray
numpy array of dimensions num_params-by-N,
where N is the number of samples
"""
# Check bounds are legal (upper bound is greater than lower bound)
b = np.array(bounds)
lower_bounds = b[:, 0]
upper_bounds = b[:, 1]
if np.any(lower_bounds >= upper_bounds):
raise ValueError("Bounds are not legal")
# This scales the samples in-place, by using the optional output
# argument for the numpy ufunctions
# The calculation is equivalent to:
# (sample - lower_bound) / (upper_bound - lower_bound)
np.divide(np.subtract(params, lower_bounds, out=params),
np.subtract(upper_bounds, lower_bounds),
out=params)
def _nonuniform_scale_samples(params, bounds, dists):
"""Rescale samples in 0-to-1 range to other distributions
Parameters
----------
problem : dict
problem definition including bounds
params : numpy.ndarray
numpy array of dimensions num_params-by-N,
where N is the number of samples
dists : list
list of distributions, one for each parameter
unif: uniform with lower and upper bounds
triang: triangular with width (scale) and location of peak
location of peak is in percentage of width
lower bound assumed to be zero
norm: normal distribution with mean and standard deviation
truncnorm: truncated normal distribution with upper and lower
bounds, mean and standard deviation
lognorm: lognormal with ln-space mean and standard deviation
"""
b = np.array(bounds)
# initializing matrix for converted values
conv_params = np.empty_like(params)
# loop over the parameters
for i in range(conv_params.shape[1]):
# setting first and second arguments for distributions
b1 = b[i][0]
b2 = b[i][1]
if dists[i] == 'triang':
# checking for correct parameters
if b1 <= 0 or b2 <= 0 or b2 >= 1:
raise ValueError("""Triangular distribution: Scale must be
greater than zero; peak on interval [0,1]""")
else:
conv_params[:, i] = sp.stats.triang.ppf(
params[:, i], c=b2, scale=b1, loc=0)
elif dists[i] == 'unif':
if b1 >= b2:
raise ValueError("""Uniform distribution: lower bound
must be less than upper bound""")
else:
conv_params[:, i] = params[:, i] * (b2 - b1) + b1
elif dists[i] == 'norm':
if b2 <= 0:
raise ValueError("""Normal distribution: stdev must be > 0""")
else:
conv_params[:, i] = sp.stats.norm.ppf(
params[:, i], loc=b1, scale=b2)
# Truncated normal distribution
# parameters are lower bound and upper bound, mean and stdev
elif dists[i] == 'truncnorm':
b3 = b[i][2]
b4 = b[i][3]
if b4 <= 0:
raise ValueError(
"""Truncated normal distribution: stdev must
be > 0"""
)
if b1 >= b2:
raise ValueError(
"""Truncated normal distribution: lower bound
must be less than upper bound"""
)
else:
conv_params[:, i] = sp.stats.truncnorm.ppf(
params[:, i], (b1 - b3) / b4, (b2 - b3) / b4, loc=b3, scale=b4
)
# lognormal distribution (ln-space, not base-10)
# paramters are ln-space mean and standard deviation
elif dists[i] == 'lognorm':
# checking for valid parameters
if b2 <= 0:
raise ValueError(
"""Lognormal distribution: stdev must be > 0""")
else:
conv_params[:, i] = np.exp(
sp.stats.norm.ppf(params[:, i], loc=b1, scale=b2))
else:
valid_dists = ['unif', 'triang', 'norm', 'truncnorm', 'lognorm']
raise ValueError('Distributions: choose one of %s' %
", ".join(valid_dists))
return conv_params
def extract_group_names(groups: List) -> Tuple:
"""Get a unique set of the group names.
Reverts to parameter names (and number of parameters) if groups not
defined.
Parameters
----------
groups : List
Returns
-------
tuple : names, number of groups
"""
names = list(OrderedDict.fromkeys(groups))
number = len(names)
return names, number
def compute_groups_matrix(groups: List):
"""Generate matrix which notes factor membership of groups
Computes a k-by-g matrix which notes factor membership of groups
where:
k is the number of variables (factors)
g is the number of groups
Also returns a g-length list of unique group_names whose positions
correspond to the order of groups in the k-by-g matrix
Parameters
----------
groups : List
Group names corresponding to each variable
Returns
-------
tuple
containing group matrix assigning parameters to
groups and a list of unique group names
"""
num_vars = len(groups)
unique_group_names, number_of_groups = extract_group_names(groups)
indices = dict([(x, i) for (i, x) in enumerate(unique_group_names)])
output = np.zeros((num_vars, number_of_groups), dtype=np.int)
for parameter_row, group_membership in enumerate(groups):
group_index = indices[group_membership]
output[parameter_row, group_index] = 1
return output, unique_group_names
def _define_problem_with_groups(problem: Dict) -> Dict:
"""
Checks if the user defined the 'groups' key in the problem dictionary.
If not, makes the 'groups' key equal to the variables names. In other
words, the number of groups will be equal to the number of variables, which
is equivalent to no groups.
Parameters
----------
problem : dict
The problem definition
Returns
-------
problem : dict
The problem definition with the 'groups' key, even if the user doesn't
define it
"""
# Checks if there isn't a key 'groups' or if it exists and is set to 'None'
if 'groups' not in problem or not problem['groups']:
problem['groups'] = problem['names']
elif len(problem['groups']) != problem['num_vars']:
raise ValueError("Number of entries in \'groups\' should be the same "
"as in \'names\'")
return problem
def _compute_delta(num_levels: int) -> float:
"""Computes the delta value from number of levels
Parameters
---------
num_levels : int
The number of levels
Returns
-------
float
"""
return num_levels / (2.0 * (num_levels - 1))
| [
37811,
32,
900,
286,
10361,
5499,
198,
198,
37811,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
198,
11748,
279,
10025,
22602,
198,
6738,
19720,
1330,
360,
713,
11,
309,
29291,
198,
198,
11748,
299,
32152,
355,
45941,
220,
1303,
2099,
25,
8856,
198,
11748,
629,
541,
88,
355,
599,
220,
1303,
2099,
25,
8856,
198,
6738,
629,
541,
88,
1330,
9756,
198,
6738,
19720,
1330,
7343,
198,
198,
6738,
764,
22602,
62,
12543,
6359,
1330,
357,
615,
603,
62,
21064,
3694,
11,
1100,
62,
17143,
62,
7753,
11,
4808,
9122,
62,
65,
3733,
11,
4808,
9122,
62,
24432,
8,
198,
6738,
764,
45573,
1330,
20647,
22882,
198,
6738,
764,
43420,
1330,
25414,
35,
713,
628,
198,
834,
439,
834,
796,
14631,
9888,
62,
82,
12629,
1600,
366,
961,
62,
17143,
62,
7753,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23004,
35,
713,
1600,
366,
615,
603,
62,
21064,
3694,
8973,
628,
198,
4299,
4808,
9888,
62,
82,
12629,
7,
37266,
25,
45941,
13,
358,
18747,
11,
22303,
25,
7343,
2599,
198,
220,
220,
220,
37227,
49,
3798,
1000,
8405,
287,
657,
12,
1462,
12,
16,
2837,
284,
14977,
22303,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
42287,
1058,
299,
32152,
13,
358,
18747,
198,
220,
220,
220,
220,
220,
220,
220,
299,
32152,
7177,
286,
15225,
4600,
22510,
62,
37266,
63,
12,
1525,
12,
25,
11018,
25,
63,
45,
47671,
198,
220,
220,
220,
220,
220,
220,
220,
810,
1058,
11018,
25,
63,
45,
63,
318,
262,
1271,
286,
8405,
628,
220,
220,
220,
22303,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
1351,
286,
8341,
286,
15225,
4600,
22510,
62,
37266,
63,
12,
1525,
12,
17,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
6822,
22303,
389,
2742,
357,
45828,
5421,
318,
3744,
621,
2793,
5421,
8,
198,
220,
220,
220,
2793,
62,
65,
3733,
11,
6727,
62,
65,
3733,
796,
4808,
9122,
62,
65,
3733,
7,
65,
3733,
8,
628,
220,
220,
220,
1303,
770,
16252,
262,
8405,
287,
12,
5372,
11,
416,
1262,
262,
11902,
5072,
198,
220,
220,
220,
1303,
4578,
329,
262,
299,
32152,
334,
12543,
2733,
198,
220,
220,
220,
1303,
383,
17952,
318,
7548,
284,
25,
198,
220,
220,
220,
1303,
220,
220,
6291,
1635,
357,
45828,
62,
7784,
532,
2793,
62,
7784,
8,
1343,
2793,
62,
7784,
198,
220,
220,
220,
45941,
13,
2860,
7,
37659,
13,
16680,
541,
306,
7,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
45828,
62,
65,
3733,
532,
2793,
62,
65,
3733,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
28,
37266,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2793,
62,
65,
3733,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
28,
37266,
8,
628,
198,
4299,
5046,
62,
82,
12629,
7,
37266,
25,
45941,
13,
358,
18747,
11,
1917,
25,
360,
713,
2599,
198,
220,
220,
220,
37227,
29990,
8405,
1912,
319,
7368,
6082,
357,
12286,
278,
284,
8187,
737,
628,
220,
220,
220,
34333,
281,
5726,
284,
262,
1917,
20855,
284,
7603,
8405,
423,
587,
198,
220,
220,
220,
27464,
284,
5529,
16196,
17764,
357,
63,
39873,
62,
1416,
3021,
63,
737,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
42287,
1058,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
32152,
7177,
286,
15225,
4600,
22510,
62,
37266,
63,
12,
1525,
12,
25,
11018,
25,
63,
45,
47671,
198,
220,
220,
220,
220,
220,
220,
220,
810,
1058,
11018,
25,
63,
45,
63,
318,
262,
1271,
286,
8405,
198,
220,
220,
220,
1917,
1058,
22155,
11,
198,
220,
220,
220,
220,
220,
220,
220,
42475,
571,
1917,
20855,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
45941,
13,
358,
18747,
11,
27464,
8405,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
22303,
796,
1917,
17816,
65,
3733,
20520,
198,
220,
220,
220,
288,
1023,
796,
1917,
13,
1136,
10786,
67,
1023,
11537,
628,
220,
220,
220,
611,
288,
1023,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
9888,
62,
82,
12629,
7,
37266,
11,
22303,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
42287,
13,
43358,
58,
16,
60,
14512,
18896,
7,
67,
1023,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
366,
44,
1042,
963,
287,
1271,
286,
10007,
290,
24570,
13,
59,
77,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
15853,
366,
33111,
10007,
25,
23884,
1911,
18982,
7,
37266,
13,
43358,
58,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
15853,
366,
33111,
24570,
25,
23884,
1911,
18982,
7,
11925,
7,
67,
1023,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
19662,
8,
628,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
4808,
13159,
403,
6933,
62,
9888,
62,
82,
12629,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
11,
22303,
11,
288,
1023,
8,
628,
220,
220,
220,
1917,
17816,
39873,
62,
1416,
3021,
20520,
796,
6407,
628,
220,
220,
220,
1441,
42287,
198,
220,
220,
220,
1303,
3614,
62,
37266,
796,
4179,
62,
82,
12629,
7,
37266,
11,
6727,
62,
7784,
11,
2793,
62,
7784,
11,
288,
1023,
8,
628,
198,
4299,
4808,
403,
9888,
62,
82,
12629,
7,
37266,
11,
22303,
2599,
198,
220,
220,
220,
37227,
49,
3798,
1000,
8405,
422,
14977,
22303,
736,
284,
685,
15,
11,
16,
60,
2837,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
22303,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
1351,
286,
8341,
286,
15225,
997,
62,
37266,
12,
1525,
12,
17,
198,
220,
220,
220,
42287,
1058,
299,
32152,
13,
358,
18747,
198,
220,
220,
220,
220,
220,
220,
220,
299,
32152,
7177,
286,
15225,
997,
62,
37266,
12,
1525,
12,
45,
11,
198,
220,
220,
220,
220,
220,
220,
220,
810,
399,
318,
262,
1271,
286,
8405,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
6822,
22303,
389,
2742,
357,
45828,
5421,
318,
3744,
621,
2793,
5421,
8,
198,
220,
220,
220,
275,
796,
45941,
13,
18747,
7,
65,
3733,
8,
198,
220,
220,
220,
2793,
62,
65,
3733,
796,
275,
58,
45299,
657,
60,
198,
220,
220,
220,
6727,
62,
65,
3733,
796,
275,
58,
45299,
352,
60,
628,
220,
220,
220,
611,
45941,
13,
1092,
7,
21037,
62,
65,
3733,
18189,
6727,
62,
65,
3733,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
33,
3733,
389,
407,
2742,
4943,
628,
220,
220,
220,
1303,
770,
16252,
262,
8405,
287,
12,
5372,
11,
416,
1262,
262,
11902,
5072,
198,
220,
220,
220,
1303,
4578,
329,
262,
299,
32152,
334,
12543,
2733,
198,
220,
220,
220,
1303,
383,
17952,
318,
7548,
284,
25,
198,
220,
220,
220,
1303,
220,
220,
357,
39873,
532,
2793,
62,
7784,
8,
1220,
357,
45828,
62,
7784,
532,
2793,
62,
7784,
8,
198,
220,
220,
220,
45941,
13,
7146,
485,
7,
37659,
13,
7266,
83,
974,
7,
37266,
11,
2793,
62,
65,
3733,
11,
503,
28,
37266,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
7266,
83,
974,
7,
45828,
62,
65,
3733,
11,
2793,
62,
65,
3733,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
28,
37266,
8,
628,
198,
4299,
4808,
13159,
403,
6933,
62,
9888,
62,
82,
12629,
7,
37266,
11,
22303,
11,
288,
1023,
2599,
198,
220,
220,
220,
37227,
49,
3798,
1000,
8405,
287,
657,
12,
1462,
12,
16,
2837,
284,
584,
24570,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
1917,
1058,
8633,
198,
220,
220,
220,
220,
220,
220,
220,
1917,
6770,
1390,
22303,
198,
220,
220,
220,
42287,
1058,
299,
32152,
13,
358,
18747,
198,
220,
220,
220,
220,
220,
220,
220,
299,
32152,
7177,
286,
15225,
997,
62,
37266,
12,
1525,
12,
45,
11,
198,
220,
220,
220,
220,
220,
220,
220,
810,
399,
318,
262,
1271,
286,
8405,
198,
220,
220,
220,
288,
1023,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
1351,
286,
24570,
11,
530,
329,
1123,
11507,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
555,
361,
25,
8187,
351,
2793,
290,
6727,
22303,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1333,
648,
25,
46963,
351,
9647,
357,
9888,
8,
290,
4067,
286,
9103,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4067,
286,
9103,
318,
287,
5873,
286,
9647,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2793,
5421,
9672,
284,
307,
6632,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2593,
25,
3487,
6082,
351,
1612,
290,
3210,
28833,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40122,
27237,
25,
40122,
515,
3487,
6082,
351,
6727,
290,
2793,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22303,
11,
1612,
290,
3210,
28833,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
300,
2360,
579,
25,
300,
2360,
6636,
351,
300,
77,
12,
13200,
1612,
290,
3210,
28833,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
275,
796,
45941,
13,
18747,
7,
65,
3733,
8,
628,
220,
220,
220,
1303,
4238,
2890,
17593,
329,
11513,
3815,
198,
220,
220,
220,
3063,
62,
37266,
796,
45941,
13,
28920,
62,
2339,
7,
37266,
8,
628,
220,
220,
220,
1303,
9052,
625,
262,
10007,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
42946,
62,
37266,
13,
43358,
58,
16,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4634,
717,
290,
1218,
7159,
329,
24570,
198,
220,
220,
220,
220,
220,
220,
220,
275,
16,
796,
275,
58,
72,
7131,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
275,
17,
796,
275,
58,
72,
7131,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
611,
288,
1023,
58,
72,
60,
6624,
705,
28461,
648,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10627,
329,
3376,
10007,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
275,
16,
19841,
657,
393,
275,
17,
19841,
657,
393,
275,
17,
18189,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
15931,
14824,
21413,
6082,
25,
21589,
1276,
307,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3744,
621,
6632,
26,
9103,
319,
16654,
685,
15,
11,
16,
60,
15931,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3063,
62,
37266,
58,
45299,
1312,
60,
796,
599,
13,
34242,
13,
28461,
648,
13,
381,
69,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
58,
45299,
1312,
4357,
269,
28,
65,
17,
11,
5046,
28,
65,
16,
11,
1179,
28,
15,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
288,
1023,
58,
72,
60,
6624,
705,
403,
361,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
275,
16,
18189,
275,
17,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
15931,
3118,
6933,
6082,
25,
2793,
5421,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1276,
307,
1342,
621,
6727,
5421,
15931,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3063,
62,
37266,
58,
45299,
1312,
60,
796,
42287,
58,
45299,
1312,
60,
1635,
357,
65,
17,
532,
275,
16,
8,
1343,
275,
16,
628,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
288,
1023,
58,
72,
60,
6624,
705,
27237,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
275,
17,
19841,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
15931,
26447,
6082,
25,
336,
7959,
1276,
307,
1875,
657,
15931,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3063,
62,
37266,
58,
45299,
1312,
60,
796,
599,
13,
34242,
13,
27237,
13,
381,
69,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
58,
45299,
1312,
4357,
1179,
28,
65,
16,
11,
5046,
28,
65,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
833,
19524,
515,
3487,
6082,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
10007,
389,
2793,
5421,
290,
6727,
5421,
11,
1612,
290,
336,
7959,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
288,
1023,
58,
72,
60,
6624,
705,
2213,
19524,
27237,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
18,
796,
275,
58,
72,
7131,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
19,
796,
275,
58,
72,
7131,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
275,
19,
19841,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
2898,
19524,
515,
3487,
6082,
25,
336,
7959,
1276,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
307,
1875,
657,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
275,
16,
18189,
275,
17,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
2898,
19524,
515,
3487,
6082,
25,
2793,
5421,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1276,
307,
1342,
621,
6727,
5421,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3063,
62,
37266,
58,
45299,
1312,
60,
796,
599,
13,
34242,
13,
2213,
19524,
27237,
13,
381,
69,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
58,
45299,
1312,
4357,
357,
65,
16,
532,
275,
18,
8,
1220,
275,
19,
11,
357,
65,
17,
532,
275,
18,
8,
1220,
275,
19,
11,
1179,
28,
65,
18,
11,
5046,
28,
65,
19,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
300,
2360,
6636,
6082,
357,
18755,
12,
13200,
11,
407,
2779,
12,
940,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5772,
1010,
389,
300,
77,
12,
13200,
1612,
290,
3210,
28833,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
288,
1023,
58,
72,
60,
6624,
705,
75,
2360,
579,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10627,
329,
4938,
10007,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
275,
17,
19841,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
43,
2360,
6636,
6082,
25,
336,
7959,
1276,
307,
1875,
657,
15931,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3063,
62,
37266,
58,
45299,
1312,
60,
796,
45941,
13,
11201,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
599,
13,
34242,
13,
27237,
13,
381,
69,
7,
37266,
58,
45299,
1312,
4357,
1179,
28,
65,
16,
11,
5046,
28,
65,
17,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4938,
62,
67,
1023,
796,
37250,
403,
361,
3256,
705,
28461,
648,
3256,
705,
27237,
3256,
705,
2213,
19524,
27237,
3256,
705,
75,
2360,
579,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
20344,
2455,
507,
25,
3853,
530,
286,
4064,
82,
6,
4064,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33172,
27071,
22179,
7,
12102,
62,
67,
1023,
4008,
628,
220,
220,
220,
1441,
3063,
62,
37266,
628,
198,
4299,
7925,
62,
8094,
62,
14933,
7,
24432,
25,
7343,
8,
4613,
309,
29291,
25,
198,
220,
220,
220,
37227,
3855,
257,
3748,
900,
286,
262,
1448,
3891,
13,
628,
220,
220,
220,
797,
24040,
284,
11507,
3891,
357,
392,
1271,
286,
10007,
8,
611,
2628,
407,
198,
220,
220,
220,
5447,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2628,
1058,
7343,
198,
220,
220,
220,
220,
220,
220,
220,
220,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
46545,
1058,
3891,
11,
1271,
286,
2628,
220,
220,
220,
220,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3891,
796,
1351,
7,
35422,
1068,
35,
713,
13,
6738,
13083,
7,
24432,
4008,
198,
220,
220,
220,
1271,
796,
18896,
7,
14933,
8,
628,
220,
220,
220,
1441,
3891,
11,
1271,
628,
198,
4299,
24061,
62,
24432,
62,
6759,
8609,
7,
24432,
25,
7343,
2599,
198,
220,
220,
220,
37227,
8645,
378,
17593,
543,
4710,
5766,
9931,
286,
2628,
628,
220,
220,
220,
3082,
1769,
257,
479,
12,
1525,
12,
70,
17593,
543,
4710,
5766,
9931,
286,
2628,
198,
220,
220,
220,
810,
25,
198,
220,
220,
220,
220,
220,
220,
220,
479,
318,
262,
1271,
286,
9633,
357,
22584,
669,
8,
198,
220,
220,
220,
220,
220,
220,
220,
308,
318,
262,
1271,
286,
2628,
198,
220,
220,
220,
4418,
5860,
257,
308,
12,
13664,
1351,
286,
3748,
1448,
62,
14933,
3025,
6116,
198,
220,
220,
220,
6053,
284,
262,
1502,
286,
2628,
287,
262,
479,
12,
1525,
12,
70,
17593,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2628,
1058,
7343,
198,
220,
220,
220,
220,
220,
220,
220,
4912,
3891,
11188,
284,
1123,
7885,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
46545,
198,
220,
220,
220,
220,
220,
220,
220,
7268,
1448,
17593,
38875,
10007,
284,
198,
220,
220,
220,
220,
220,
220,
220,
2628,
290,
257,
1351,
286,
3748,
1448,
3891,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
997,
62,
85,
945,
796,
18896,
7,
24432,
8,
198,
220,
220,
220,
3748,
62,
8094,
62,
14933,
11,
1271,
62,
1659,
62,
24432,
796,
7925,
62,
8094,
62,
14933,
7,
24432,
8,
628,
220,
220,
220,
36525,
796,
8633,
26933,
7,
87,
11,
1312,
8,
329,
357,
72,
11,
2124,
8,
287,
27056,
378,
7,
34642,
62,
8094,
62,
14933,
8,
12962,
628,
220,
220,
220,
5072,
796,
45941,
13,
9107,
418,
19510,
22510,
62,
85,
945,
11,
1271,
62,
1659,
62,
24432,
828,
288,
4906,
28,
37659,
13,
600,
8,
628,
220,
220,
220,
329,
11507,
62,
808,
11,
1448,
62,
30814,
1056,
287,
27056,
378,
7,
24432,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
9630,
796,
36525,
58,
8094,
62,
30814,
1056,
60,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
58,
17143,
2357,
62,
808,
11,
1448,
62,
9630,
60,
796,
352,
628,
220,
220,
220,
1441,
5072,
11,
3748,
62,
8094,
62,
14933,
628,
198,
4299,
4808,
13086,
62,
45573,
62,
4480,
62,
24432,
7,
45573,
25,
360,
713,
8,
4613,
360,
713,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
47719,
611,
262,
2836,
5447,
262,
705,
24432,
6,
1994,
287,
262,
1917,
22155,
13,
198,
220,
220,
220,
1002,
407,
11,
1838,
262,
705,
24432,
6,
1994,
4961,
284,
262,
9633,
3891,
13,
554,
584,
198,
220,
220,
220,
2456,
11,
262,
1271,
286,
2628,
481,
307,
4961,
284,
262,
1271,
286,
9633,
11,
543,
198,
220,
220,
220,
318,
7548,
284,
645,
2628,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
1917,
1058,
8633,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1917,
6770,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
1917,
1058,
8633,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1917,
6770,
351,
262,
705,
24432,
6,
1994,
11,
772,
611,
262,
2836,
1595,
470,
198,
220,
220,
220,
220,
220,
220,
220,
8160,
340,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
47719,
611,
612,
2125,
470,
257,
1994,
705,
24432,
6,
393,
611,
340,
7160,
290,
318,
900,
284,
705,
14202,
6,
198,
220,
220,
220,
611,
705,
24432,
6,
407,
287,
1917,
393,
407,
1917,
17816,
24432,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
1917,
17816,
24432,
20520,
796,
1917,
17816,
14933,
20520,
198,
220,
220,
220,
1288,
361,
18896,
7,
45573,
17816,
24432,
6,
12962,
14512,
1917,
17816,
22510,
62,
85,
945,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
15057,
286,
12784,
287,
34373,
24432,
43054,
815,
307,
262,
976,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
292,
287,
34373,
14933,
43054,
4943,
198,
220,
220,
220,
1441,
1917,
628,
198,
4299,
4808,
5589,
1133,
62,
67,
12514,
7,
22510,
62,
46170,
25,
493,
8,
4613,
12178,
25,
198,
220,
220,
220,
37227,
7293,
1769,
262,
25979,
1988,
422,
1271,
286,
2974,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
45337,
198,
220,
220,
220,
997,
62,
46170,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1271,
286,
2974,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
12178,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
997,
62,
46170,
1220,
357,
17,
13,
15,
1635,
357,
22510,
62,
46170,
532,
352,
4008,
198
] | 2.412651 | 4,047 |
# -*- coding: utf-8 -*-
import json
import re
import subprocess
import sys
import time
from requests_oauthlib import OAuth1Session
# 取得したConsumer Key等と置き換えてください
CK = 'consumer_key'
CS = 'consumer_secret'
AT = 'access_token'
AS = 'access_token_secret'
FILTER_URL = 'https://stream.twitter.com/1.1/statuses/filter.json'
# 文字列から参戦IDを抽出
# stringをクリップボードにコピー
if __name__ == "__main__":
main()
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
11748,
33918,
198,
11748,
302,
198,
11748,
850,
14681,
198,
11748,
25064,
198,
11748,
640,
198,
6738,
7007,
62,
12162,
1071,
8019,
1330,
440,
30515,
16,
36044,
198,
198,
2,
10263,
237,
244,
36181,
245,
22180,
25224,
49106,
7383,
163,
255,
231,
30201,
163,
121,
106,
33778,
162,
237,
249,
2515,
230,
28134,
31917,
46777,
43357,
18566,
198,
34,
42,
796,
705,
49827,
62,
2539,
6,
198,
7902,
796,
705,
49827,
62,
21078,
6,
198,
1404,
796,
705,
15526,
62,
30001,
6,
198,
1921,
796,
705,
15526,
62,
30001,
62,
21078,
6,
198,
198,
46700,
5781,
62,
21886,
796,
705,
5450,
1378,
5532,
13,
6956,
13,
785,
14,
16,
13,
16,
14,
14269,
2664,
14,
24455,
13,
17752,
6,
198,
198,
2,
10545,
244,
229,
27764,
245,
26344,
245,
27370,
36853,
20998,
224,
36704,
2389,
31758,
162,
232,
121,
49035,
118,
198,
198,
2,
4731,
31758,
14099,
12675,
14777,
30965,
1209,
250,
12045,
231,
28618,
24679,
1209,
242,
6312,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.062176 | 193 |
#
# PySNMP MIB module ASCEND-MIBTRANSACTION-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ASCEND-MIBTRANSACTION-MIB
# Produced by pysmi-0.3.4 at Mon Apr 29 17:12:43 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
configuration, = mibBuilder.importSymbols("ASCEND-MIB", "configuration")
Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
SingleValueConstraint, ValueRangeConstraint, ValueSizeConstraint, ConstraintsIntersection, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsIntersection", "ConstraintsUnion")
NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance")
Counter32, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, IpAddress, Gauge32, ModuleIdentity, TimeTicks, Integer32, NotificationType, Bits, iso, ObjectIdentity, Unsigned32 = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "IpAddress", "Gauge32", "ModuleIdentity", "TimeTicks", "Integer32", "NotificationType", "Bits", "iso", "ObjectIdentity", "Unsigned32")
DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention")
mibtransactionProfile = MibIdentifier((1, 3, 6, 1, 4, 1, 529, 23, 131))
mibtransactionProfileTable = MibTable((1, 3, 6, 1, 4, 1, 529, 23, 131, 1), )
if mibBuilder.loadTexts: mibtransactionProfileTable.setStatus('mandatory')
mibtransactionProfileEntry = MibTableRow((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1), ).setIndexNames((0, "ASCEND-MIBTRANSACTION-MIB", "transactionProfile-Index-o"))
if mibBuilder.loadTexts: mibtransactionProfileEntry.setStatus('mandatory')
transactionProfile_Index_o = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 1), Integer32()).setLabel("transactionProfile-Index-o").setMaxAccess("readonly")
if mibBuilder.loadTexts: transactionProfile_Index_o.setStatus('mandatory')
transactionProfile_SelectionTimeout = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 2), Integer32()).setLabel("transactionProfile-SelectionTimeout").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_SelectionTimeout.setStatus('mandatory')
transactionProfile_DataAckTimeout = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 3), Integer32()).setLabel("transactionProfile-DataAckTimeout").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_DataAckTimeout.setStatus('mandatory')
transactionProfile_KeepAliveTimeout = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 4), Integer32()).setLabel("transactionProfile-KeepAliveTimeout").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_KeepAliveTimeout.setStatus('mandatory')
transactionProfile_QtpPort = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 5), Integer32()).setLabel("transactionProfile-QtpPort").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_QtpPort.setStatus('mandatory')
transactionProfile_MetricMax = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 6), Integer32()).setLabel("transactionProfile-MetricMax").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_MetricMax.setStatus('mandatory')
transactionProfile_NoConnAckIncrement = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 7), Integer32()).setLabel("transactionProfile-NoConnAckIncrement").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_NoConnAckIncrement.setStatus('mandatory')
transactionProfile_CallRejectIncrement = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 8), Integer32()).setLabel("transactionProfile-CallRejectIncrement").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_CallRejectIncrement.setStatus('mandatory')
transactionProfile_CallAckDecrement = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 9), Integer32()).setLabel("transactionProfile-CallAckDecrement").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_CallAckDecrement.setStatus('mandatory')
transactionProfile_AvailableMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 10), Integer32()).setLabel("transactionProfile-AvailableMetric").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_AvailableMetric.setStatus('mandatory')
transactionProfile_PartlyCongestedMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 11), Integer32()).setLabel("transactionProfile-PartlyCongestedMetric").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_PartlyCongestedMetric.setStatus('mandatory')
transactionProfile_CongestedMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 12), Integer32()).setLabel("transactionProfile-CongestedMetric").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_CongestedMetric.setStatus('mandatory')
transactionProfile_ShutdownMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 13), Integer32()).setLabel("transactionProfile-ShutdownMetric").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_ShutdownMetric.setStatus('mandatory')
transactionProfile_NoFirstStatusMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 14), Integer32()).setLabel("transactionProfile-NoFirstStatusMetric").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_NoFirstStatusMetric.setStatus('mandatory')
transactionProfile_NoSecondStatusMetric = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 15), Integer32()).setLabel("transactionProfile-NoSecondStatusMetric").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_NoSecondStatusMetric.setStatus('mandatory')
transactionProfile_MaxQtpPduSize = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 16), Integer32()).setLabel("transactionProfile-MaxQtpPduSize").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_MaxQtpPduSize.setStatus('mandatory')
transactionProfile_Action_o = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 131, 1, 1, 17), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("noAction", 1), ("createProfile", 2), ("deleteProfile", 3)))).setLabel("transactionProfile-Action-o").setMaxAccess("readwrite")
if mibBuilder.loadTexts: transactionProfile_Action_o.setStatus('mandatory')
mibBuilder.exportSymbols("ASCEND-MIBTRANSACTION-MIB", transactionProfile_Index_o=transactionProfile_Index_o, transactionProfile_DataAckTimeout=transactionProfile_DataAckTimeout, mibtransactionProfileEntry=mibtransactionProfileEntry, transactionProfile_CallRejectIncrement=transactionProfile_CallRejectIncrement, transactionProfile_CallAckDecrement=transactionProfile_CallAckDecrement, transactionProfile_NoSecondStatusMetric=transactionProfile_NoSecondStatusMetric, transactionProfile_NoConnAckIncrement=transactionProfile_NoConnAckIncrement, transactionProfile_ShutdownMetric=transactionProfile_ShutdownMetric, transactionProfile_Action_o=transactionProfile_Action_o, mibtransactionProfileTable=mibtransactionProfileTable, transactionProfile_NoFirstStatusMetric=transactionProfile_NoFirstStatusMetric, transactionProfile_MaxQtpPduSize=transactionProfile_MaxQtpPduSize, transactionProfile_SelectionTimeout=transactionProfile_SelectionTimeout, transactionProfile_PartlyCongestedMetric=transactionProfile_PartlyCongestedMetric, transactionProfile_AvailableMetric=transactionProfile_AvailableMetric, transactionProfile_CongestedMetric=transactionProfile_CongestedMetric, mibtransactionProfile=mibtransactionProfile, DisplayString=DisplayString, transactionProfile_QtpPort=transactionProfile_QtpPort, transactionProfile_MetricMax=transactionProfile_MetricMax, transactionProfile_KeepAliveTimeout=transactionProfile_KeepAliveTimeout)
| [
2,
198,
2,
9485,
15571,
7378,
337,
9865,
8265,
25400,
10619,
12,
8895,
33,
5446,
15037,
44710,
12,
8895,
33,
357,
4023,
1378,
16184,
76,
489,
8937,
13,
785,
14,
79,
893,
11632,
8,
198,
2,
7054,
45,
13,
16,
2723,
2393,
1378,
14,
14490,
14,
67,
615,
47562,
19,
14,
13603,
14,
76,
571,
82,
13,
16184,
76,
489,
8937,
13,
785,
14,
292,
77,
16,
14,
42643,
10619,
12,
8895,
33,
5446,
15037,
44710,
12,
8895,
33,
198,
2,
21522,
771,
416,
279,
893,
11632,
12,
15,
13,
18,
13,
19,
379,
2892,
2758,
2808,
1596,
25,
1065,
25,
3559,
13130,
198,
2,
1550,
2583,
42274,
54,
15567,
19,
12,
44,
12,
1415,
2425,
3859,
21450,
2196,
1248,
13,
20,
13,
15,
416,
2836,
288,
615,
47562,
19,
198,
2,
8554,
11361,
2196,
513,
13,
22,
13,
18,
357,
12286,
11,
1526,
2681,
13130,
11,
7769,
25,
1954,
25,
1314,
8,
220,
198,
2,
198,
11250,
3924,
11,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
42643,
10619,
12,
8895,
33,
1600,
366,
11250,
3924,
4943,
198,
46541,
11,
9515,
33234,
7483,
11,
2556,
316,
10100,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
1921,
45,
16,
1600,
366,
46541,
1600,
366,
10267,
33234,
7483,
1600,
366,
12349,
316,
10100,
4943,
198,
45,
2434,
40161,
11,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
1921,
45,
16,
12,
1677,
5883,
1137,
6234,
1600,
366,
45,
2434,
40161,
4943,
198,
28008,
11395,
3103,
2536,
2913,
11,
11052,
17257,
3103,
2536,
2913,
11,
11052,
10699,
3103,
2536,
2913,
11,
1482,
2536,
6003,
9492,
5458,
11,
1482,
2536,
6003,
38176,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
1921,
45,
16,
12,
2200,
20032,
12529,
1600,
366,
28008,
11395,
3103,
2536,
2913,
1600,
366,
11395,
17257,
3103,
2536,
2913,
1600,
366,
11395,
10699,
3103,
2536,
2913,
1600,
366,
3103,
2536,
6003,
9492,
5458,
1600,
366,
3103,
2536,
6003,
38176,
4943,
198,
3673,
2649,
13247,
11,
19937,
38143,
3610,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
15571,
7378,
85,
17,
12,
10943,
37,
1600,
366,
3673,
2649,
13247,
1600,
366,
26796,
38143,
3610,
4943,
198,
31694,
2624,
11,
337,
571,
33234,
7483,
11,
337,
571,
3351,
282,
283,
11,
337,
571,
10962,
11,
337,
571,
10962,
25166,
11,
337,
571,
10962,
39470,
11,
15034,
2414,
11,
314,
79,
20231,
11,
35094,
469,
2624,
11,
19937,
7390,
26858,
11,
3862,
51,
3378,
11,
34142,
2624,
11,
42808,
6030,
11,
44733,
11,
47279,
11,
9515,
7390,
26858,
11,
791,
32696,
2624,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
15571,
7378,
85,
17,
12,
50,
8895,
1600,
366,
31694,
2624,
1600,
366,
44,
571,
33234,
7483,
1600,
366,
44,
571,
3351,
282,
283,
1600,
366,
44,
571,
10962,
1600,
366,
44,
571,
10962,
25166,
1600,
366,
44,
571,
10962,
39470,
1600,
366,
31694,
2414,
1600,
366,
40,
79,
20231,
1600,
366,
38,
559,
469,
2624,
1600,
366,
26796,
7390,
26858,
1600,
366,
7575,
51,
3378,
1600,
366,
46541,
2624,
1600,
366,
3673,
2649,
6030,
1600,
366,
33,
896,
1600,
366,
26786,
1600,
366,
10267,
7390,
26858,
1600,
366,
3118,
32696,
2624,
4943,
198,
23114,
10100,
11,
8255,
723,
3103,
4018,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
15571,
7378,
85,
17,
12,
4825,
1600,
366,
23114,
10100,
1600,
366,
8206,
723,
3103,
4018,
4943,
198,
198,
76,
571,
7645,
2673,
37046,
796,
337,
571,
33234,
7483,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
4008,
198,
76,
571,
7645,
2673,
37046,
10962,
796,
337,
571,
10962,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
828,
1267,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
285,
571,
7645,
2673,
37046,
10962,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
76,
571,
7645,
2673,
37046,
30150,
796,
337,
571,
10962,
25166,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
828,
6739,
2617,
15732,
36690,
19510,
15,
11,
366,
42643,
10619,
12,
8895,
33,
5446,
15037,
44710,
12,
8895,
33,
1600,
366,
7645,
2673,
37046,
12,
15732,
12,
78,
48774,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
285,
571,
7645,
2673,
37046,
30150,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
15732,
62,
78,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
352,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
15732,
12,
78,
11074,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
15732,
62,
78,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
4653,
1564,
48031,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
362,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
4653,
1564,
48031,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
4653,
1564,
48031,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
6601,
32,
694,
48031,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
513,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
6601,
32,
694,
48031,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
6601,
32,
694,
48031,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
15597,
2348,
425,
48031,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
604,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
15597,
2348,
425,
48031,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
15597,
2348,
425,
48031,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
48,
34788,
13924,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
642,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
48,
34788,
13924,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
48,
34788,
13924,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
9171,
1173,
11518,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
718,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
9171,
1173,
11518,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
9171,
1173,
11518,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
2949,
37321,
32,
694,
15562,
434,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
767,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
2949,
37321,
32,
694,
15562,
434,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
2949,
37321,
32,
694,
15562,
434,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
14134,
3041,
752,
15562,
434,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
807,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
14134,
3041,
752,
15562,
434,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
14134,
3041,
752,
15562,
434,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
14134,
32,
694,
43198,
434,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
860,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
14134,
32,
694,
43198,
434,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
14134,
32,
694,
43198,
434,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
10493,
9171,
1173,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
838,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
10493,
9171,
1173,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
10493,
9171,
1173,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
7841,
306,
18649,
7287,
9171,
1173,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
1367,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
7841,
306,
18649,
7287,
9171,
1173,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
7841,
306,
18649,
7287,
9171,
1173,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
18649,
7287,
9171,
1173,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
1105,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
18649,
7287,
9171,
1173,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
18649,
7287,
9171,
1173,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
39079,
2902,
9171,
1173,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
1511,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
39079,
2902,
9171,
1173,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
39079,
2902,
9171,
1173,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
2949,
5962,
19580,
9171,
1173,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
1478,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
2949,
5962,
19580,
9171,
1173,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
2949,
5962,
19580,
9171,
1173,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
2949,
12211,
19580,
9171,
1173,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
1315,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
2949,
12211,
19580,
9171,
1173,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
2949,
12211,
19580,
9171,
1173,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
11518,
48,
34788,
47,
646,
10699,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
1467,
828,
34142,
2624,
3419,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
11518,
48,
34788,
47,
646,
10699,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
11518,
48,
34788,
47,
646,
10699,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
7645,
2673,
37046,
62,
12502,
62,
78,
796,
337,
571,
3351,
282,
283,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
49888,
11,
2242,
11,
23134,
11,
352,
11,
352,
11,
1596,
828,
34142,
2624,
22446,
7266,
4906,
7,
7266,
4906,
22882,
28,
3103,
2536,
6003,
38176,
7,
28008,
11395,
3103,
2536,
2913,
7,
16,
11,
362,
11,
513,
4008,
737,
21018,
7,
13190,
40161,
28,
45,
2434,
40161,
7,
7203,
3919,
12502,
1600,
352,
828,
5855,
17953,
37046,
1600,
362,
828,
5855,
33678,
37046,
1600,
513,
22305,
737,
2617,
33986,
7203,
7645,
2673,
37046,
12,
12502,
12,
78,
11074,
2617,
11518,
15457,
7203,
961,
13564,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
8611,
37046,
62,
12502,
62,
78,
13,
2617,
19580,
10786,
22249,
2870,
11537,
198,
76,
571,
32875,
13,
39344,
13940,
2022,
10220,
7203,
42643,
10619,
12,
8895,
33,
5446,
15037,
44710,
12,
8895,
33,
1600,
8611,
37046,
62,
15732,
62,
78,
28,
7645,
2673,
37046,
62,
15732,
62,
78,
11,
8611,
37046,
62,
6601,
32,
694,
48031,
28,
7645,
2673,
37046,
62,
6601,
32,
694,
48031,
11,
285,
571,
7645,
2673,
37046,
30150,
28,
76,
571,
7645,
2673,
37046,
30150,
11,
8611,
37046,
62,
14134,
3041,
752,
15562,
434,
28,
7645,
2673,
37046,
62,
14134,
3041,
752,
15562,
434,
11,
8611,
37046,
62,
14134,
32,
694,
43198,
434,
28,
7645,
2673,
37046,
62,
14134,
32,
694,
43198,
434,
11,
8611,
37046,
62,
2949,
12211,
19580,
9171,
1173,
28,
7645,
2673,
37046,
62,
2949,
12211,
19580,
9171,
1173,
11,
8611,
37046,
62,
2949,
37321,
32,
694,
15562,
434,
28,
7645,
2673,
37046,
62,
2949,
37321,
32,
694,
15562,
434,
11,
8611,
37046,
62,
39079,
2902,
9171,
1173,
28,
7645,
2673,
37046,
62,
39079,
2902,
9171,
1173,
11,
8611,
37046,
62,
12502,
62,
78,
28,
7645,
2673,
37046,
62,
12502,
62,
78,
11,
285,
571,
7645,
2673,
37046,
10962,
28,
76,
571,
7645,
2673,
37046,
10962,
11,
8611,
37046,
62,
2949,
5962,
19580,
9171,
1173,
28,
7645,
2673,
37046,
62,
2949,
5962,
19580,
9171,
1173,
11,
8611,
37046,
62,
11518,
48,
34788,
47,
646,
10699,
28,
7645,
2673,
37046,
62,
11518,
48,
34788,
47,
646,
10699,
11,
8611,
37046,
62,
4653,
1564,
48031,
28,
7645,
2673,
37046,
62,
4653,
1564,
48031,
11,
8611,
37046,
62,
7841,
306,
18649,
7287,
9171,
1173,
28,
7645,
2673,
37046,
62,
7841,
306,
18649,
7287,
9171,
1173,
11,
8611,
37046,
62,
10493,
9171,
1173,
28,
7645,
2673,
37046,
62,
10493,
9171,
1173,
11,
8611,
37046,
62,
18649,
7287,
9171,
1173,
28,
7645,
2673,
37046,
62,
18649,
7287,
9171,
1173,
11,
285,
571,
7645,
2673,
37046,
28,
76,
571,
7645,
2673,
37046,
11,
16531,
10100,
28,
23114,
10100,
11,
8611,
37046,
62,
48,
34788,
13924,
28,
7645,
2673,
37046,
62,
48,
34788,
13924,
11,
8611,
37046,
62,
9171,
1173,
11518,
28,
7645,
2673,
37046,
62,
9171,
1173,
11518,
11,
8611,
37046,
62,
15597,
2348,
425,
48031,
28,
7645,
2673,
37046,
62,
15597,
2348,
425,
48031,
8,
198
] | 3.03775 | 2,649 |
#! /usr/bin/env python
from __future__ import division
from scipy.integrate import ode
import numpy as np
import matplotlib.pyplot as plt
from solution import SIR #, SIRS, SIS
from scikits import bvp_solver
# Example()
# Exercise1()
# Exercise2()
# Exercise2a()
# Exercise2b()
Exercise3()
# Exercise4()
| [
2,
0,
1220,
14629,
14,
8800,
14,
24330,
21015,
198,
6738,
11593,
37443,
834,
1330,
7297,
198,
6738,
629,
541,
88,
13,
18908,
4873,
1330,
267,
2934,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
6738,
4610,
1330,
311,
4663,
1303,
11,
311,
4663,
50,
11,
311,
1797,
198,
6738,
629,
1134,
896,
1330,
275,
36133,
62,
82,
14375,
628,
628,
628,
628,
198,
198,
2,
17934,
3419,
198,
2,
32900,
16,
3419,
198,
2,
32900,
17,
3419,
198,
2,
32900,
17,
64,
3419,
198,
2,
32900,
17,
65,
3419,
198,
3109,
23697,
18,
3419,
198,
2,
32900,
19,
3419,
628,
628,
198
] | 2.79646 | 113 |
# Single place version should be set.
__version__ = '0.2.2'
| [
2,
14206,
1295,
2196,
815,
307,
900,
13,
220,
198,
834,
9641,
834,
796,
705,
15,
13,
17,
13,
17,
6,
198
] | 2.772727 | 22 |
import json
from typing import Dict, Any, Sequence
from abc import ABC, abstractmethod
from typing import List
from app.base_types import Image
from app.result_types import BaseResult
class BaseWrapper(ABC):
"""
Base class for creating custom wrappers for
models based on neural networks
"""
@abstractmethod
def predict(self, image: Image) -> List[BaseResult]:
"""
Abstract method for predict result based on
input image
"""
raise NotImplementedError
@abstractmethod
def preprocess(self, image: Image) -> Any:
"""
Abstract method for image preprocessing
for certain model/framework
"""
raise NotImplementedError
def load_config(self, path_to_config: str) -> Dict[str, Any]:
"""
Generic method for loading json config
Parameters
----------
path_to_config: str
Path to config file
Returns
-------
config: Dict[str, Any]
Model config in dictionary
"""
with open(path_to_config, 'r') as conf_file:
config = json.load(conf_file)
return config
| [
11748,
33918,
198,
6738,
19720,
1330,
360,
713,
11,
4377,
11,
45835,
198,
6738,
450,
66,
1330,
9738,
11,
12531,
24396,
198,
198,
6738,
19720,
1330,
7343,
198,
6738,
598,
13,
8692,
62,
19199,
1330,
7412,
198,
6738,
598,
13,
20274,
62,
19199,
1330,
7308,
23004,
628,
198,
4871,
7308,
36918,
2848,
7,
24694,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7308,
1398,
329,
4441,
2183,
7917,
11799,
329,
220,
198,
220,
220,
220,
4981,
1912,
319,
17019,
7686,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
4331,
7,
944,
11,
2939,
25,
7412,
8,
4613,
7343,
58,
14881,
23004,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
27741,
2446,
329,
4331,
1255,
1912,
319,
198,
220,
220,
220,
220,
220,
220,
220,
5128,
2939,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
628,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
662,
14681,
7,
944,
11,
2939,
25,
7412,
8,
4613,
4377,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
27741,
2446,
329,
2939,
662,
36948,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1728,
2746,
14,
30604,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
628,
220,
220,
220,
825,
3440,
62,
11250,
7,
944,
11,
3108,
62,
1462,
62,
11250,
25,
965,
8,
4613,
360,
713,
58,
2536,
11,
4377,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
42044,
2446,
329,
11046,
33918,
4566,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
62,
1462,
62,
11250,
25,
965,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10644,
284,
4566,
2393,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4566,
25,
360,
713,
58,
2536,
11,
4377,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9104,
4566,
287,
22155,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
6978,
62,
1462,
62,
11250,
11,
705,
81,
11537,
355,
1013,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4566,
796,
33918,
13,
2220,
7,
10414,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
4566,
198
] | 2.460123 | 489 |
#################################################################################
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. #
# #
# Licensed under the Apache License, Version 2.0 (the "License"). #
# You may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
#################################################################################
"""A class for configuration server."""
import json
import logging
from threading import RLock
from typing import Iterable, List, Optional, Union
from deepracer_env_config.configs.config_interface import ConfigInterface
from deepracer_env_config.configs.area import Area
from deepracer_env_config.configs.agent import Agent
from deepracer_env_config.configs.track import Track
from deepracer_env_config.constants import ActionType, TargetType
from ude import (
SideChannelObserverInterface,
AbstractSideChannel,
SideChannelData
)
class ConfigServer(SideChannelObserverInterface):
"""
Config Server
"""
KEY_PREFIX = "deepracer_config"
KEY_SPLITTER = "::"
def __init__(self,
side_channel: AbstractSideChannel,
area: Optional[Area] = None,
track: Optional[Track] = None,
agents: Optional[Iterable[Agent]] = None) -> None:
"""
Initialize Config Server
Args:
side_channel (AbstractSideChannel): side channel to communicate with client.
area (Optional[Area]): the area config
track (Optional[Track]): the track config
agents (Optional[Iterable[Agent]]): list of agent configs
"""
self._lock = RLock()
self._area = area or Area()
self._track = track or Track()
agents = list(agents) if agents else [Agent()]
self._agent_map = {agent.name: agent for agent in agents}
self._side_channel = side_channel
self._is_started = False
self._server_lock = RLock()
self.start()
@property
def is_started(self):
"""
Returns the flag whether server is started or not.
Returns:
bool: the flag whether server is started or not.
"""
return self._is_started
def start(self) -> None:
"""
Start the server.
"""
with self._server_lock:
if not self._is_started:
self._side_channel.register(observer=self)
self._is_started = True
def stop(self) -> None:
"""
Stop the server.
"""
with self._server_lock:
if self._is_started:
self._side_channel.unregister(observer=self)
self._is_started = False
def get_area(self, *args, **kwargs) -> Area:
"""
Returns the area config.
Returns:
Area: area config.
"""
return self._area.copy()
def get_agents(self, *args, **kwargs) -> List[Agent]:
"""
Returns the list of agent configs.
Returns:
List[Agent]: the list of agent configs.
"""
agents = list(self._agent_map.values())
return [agent.copy() for agent in agents]
def get_agent(self, name: str, *args, **kwargs) -> Agent:
"""
Return the agent with given name.
Args:
name (str): the name of the agent.
Returns:
Agent: the agent with given name.
"""
agent = self._agent_map.get(name)
return agent.copy() if agent else None
def get_track(self, *args, **kwargs) -> Track:
"""
Returns the track config.
Returns:
Track: the track config.
"""
return self._track.copy()
def apply_area(self, area: Union[Area, dict]) -> None:
"""
Applies the new area config given.
Args:
area (Union[Area, dict]): the new area config.
"""
self._area = area if isinstance(area, Area) else Area.from_json(area)
def apply_agent(self, agent: Union[Agent, dict]) -> None:
"""
Applies the new agent config given.
Args:
agent (Union[Agent, dict]): the new agent config.
"""
agent = agent if isinstance(agent, Agent) else Agent.from_json(agent)
if agent.name in self._agent_map:
self._agent_map[agent.name] = agent
def apply_track(self, track: Union[Track, dict]) -> None:
"""
Applies the track config given.
Args:
track (Union[Track, dict]): the new track config.
"""
self._track = track if isinstance(track, Track) else Track.from_json(track)
def spawn_agent(self, agent: Union[Agent, dict]) -> None:
"""
Spawns new agent with given agent config.
Args:
agent (Union[Agent, dict]): new agent config in str format.
"""
agent = agent if isinstance(agent, Agent) else Agent.from_json(agent)
self._agent_map[agent.name] = agent
def delete_agent(self, agent: Union[Agent, dict]) -> None:
"""
Deletes the agent with given agent config.
Args:
agent (Union[Agent, dict]): the agent config to delete.
"""
if len(self._agent_map) > 1:
agent = agent if isinstance(agent, Agent) else Agent.from_json(agent)
self._agent_map.pop(agent.name, None)
def on_received(self, side_channel: AbstractSideChannel, key: str, value: SideChannelData) -> None:
"""
Callback when side channel instance receives new message.
Args:
side_channel (AbstractSideChannel): side channel instance
key (str): The string identifier of message
value (SideChannelData): The data of the message.
"""
if key.startswith(ConfigServer.KEY_PREFIX):
with self._lock:
try:
prefix, action, target = key.split(self.KEY_SPLITTER)
if prefix != ConfigServer.KEY_PREFIX:
logging.info("[Server] Invalid prefix received.")
return
action = ActionType(action)
target = TargetType(target)
except Exception as ex:
logging.info("[Server] Invalid key received.", exc_info=ex)
return
method_name = "{}_{}".format(action.value,
target.value)
method = getattr(self, method_name)
try:
config = method(value)
except Exception as ex:
logging.info("[Server] method {} threw Exception.".format(method_name),
exc_info=ex)
return
if action == ActionType.GET:
if isinstance(config, ConfigInterface):
side_channel.send(key, json.dumps(config.to_json()))
elif isinstance(config, list):
json_list = [item.to_json() for item in config]
side_channel.send(key, json.dumps(json_list))
| [
29113,
29113,
14468,
2,
198,
2,
220,
220,
15069,
6186,
13,
785,
11,
3457,
13,
393,
663,
29116,
13,
1439,
6923,
33876,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
11074,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
921,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
220,
220,
220,
1303,
198,
2,
220,
220,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
220,
220,
11247,
739,
262,
13789,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
29113,
29113,
14468,
2,
198,
37811,
32,
1398,
329,
8398,
4382,
526,
15931,
198,
11748,
33918,
198,
11748,
18931,
198,
6738,
4704,
278,
1330,
371,
25392,
198,
6738,
19720,
1330,
40806,
540,
11,
7343,
11,
32233,
11,
4479,
198,
198,
6738,
2769,
11510,
263,
62,
24330,
62,
11250,
13,
11250,
82,
13,
11250,
62,
39994,
1330,
17056,
39317,
198,
6738,
2769,
11510,
263,
62,
24330,
62,
11250,
13,
11250,
82,
13,
20337,
1330,
9498,
198,
6738,
2769,
11510,
263,
62,
24330,
62,
11250,
13,
11250,
82,
13,
25781,
1330,
15906,
198,
6738,
2769,
11510,
263,
62,
24330,
62,
11250,
13,
11250,
82,
13,
11659,
1330,
17762,
198,
6738,
2769,
11510,
263,
62,
24330,
62,
11250,
13,
9979,
1187,
1330,
7561,
6030,
11,
12744,
6030,
198,
198,
6738,
334,
2934,
1330,
357,
198,
220,
220,
220,
12075,
29239,
31310,
18497,
39317,
11,
198,
220,
220,
220,
27741,
24819,
29239,
11,
198,
220,
220,
220,
12075,
29239,
6601,
198,
8,
628,
198,
4871,
17056,
10697,
7,
24819,
29239,
31310,
18497,
39317,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
17056,
9652,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
35374,
62,
47,
31688,
10426,
796,
366,
22089,
11510,
263,
62,
11250,
1,
198,
220,
220,
220,
35374,
62,
4303,
43,
2043,
5781,
796,
366,
3712,
1,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1735,
62,
17620,
25,
27741,
24819,
29239,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1989,
25,
32233,
58,
30547,
60,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2610,
25,
32233,
58,
24802,
60,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6554,
25,
32233,
58,
29993,
540,
58,
36772,
11907,
796,
6045,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
20768,
1096,
17056,
9652,
198,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1735,
62,
17620,
357,
23839,
24819,
29239,
2599,
1735,
6518,
284,
10996,
351,
5456,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1989,
357,
30719,
58,
30547,
60,
2599,
262,
1989,
4566,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2610,
357,
30719,
58,
24802,
60,
2599,
262,
2610,
4566,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6554,
357,
30719,
58,
29993,
540,
58,
36772,
11907,
2599,
1351,
286,
5797,
4566,
82,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
5354,
796,
371,
25392,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
20337,
796,
1989,
393,
9498,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
11659,
796,
2610,
393,
17762,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
6554,
796,
1351,
7,
49638,
8,
611,
6554,
2073,
685,
36772,
3419,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
25781,
62,
8899,
796,
1391,
25781,
13,
3672,
25,
5797,
329,
5797,
287,
6554,
92,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
1589,
62,
17620,
796,
1735,
62,
17620,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
271,
62,
46981,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
15388,
62,
5354,
796,
371,
25392,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9688,
3419,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
318,
62,
46981,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
6056,
1771,
4382,
318,
2067,
393,
407,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20512,
25,
262,
6056,
1771,
4382,
318,
2067,
393,
407,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13557,
271,
62,
46981,
628,
220,
220,
220,
825,
923,
7,
944,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
7253,
262,
4382,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
351,
2116,
13557,
15388,
62,
5354,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
2116,
13557,
271,
62,
46981,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
1589,
62,
17620,
13,
30238,
7,
672,
15388,
28,
944,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
271,
62,
46981,
796,
6407,
628,
220,
220,
220,
825,
2245,
7,
944,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
13707,
262,
4382,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
351,
2116,
13557,
15388,
62,
5354,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
271,
62,
46981,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
1589,
62,
17620,
13,
403,
30238,
7,
672,
15388,
28,
944,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
271,
62,
46981,
796,
10352,
628,
220,
220,
220,
825,
651,
62,
20337,
7,
944,
11,
1635,
22046,
11,
12429,
46265,
22046,
8,
4613,
9498,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
1989,
4566,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9498,
25,
1989,
4566,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13557,
20337,
13,
30073,
3419,
628,
220,
220,
220,
825,
651,
62,
49638,
7,
944,
11,
1635,
22046,
11,
12429,
46265,
22046,
8,
4613,
7343,
58,
36772,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
1351,
286,
5797,
4566,
82,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7343,
58,
36772,
5974,
262,
1351,
286,
5797,
4566,
82,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
6554,
796,
1351,
7,
944,
13557,
25781,
62,
8899,
13,
27160,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
685,
25781,
13,
30073,
3419,
329,
5797,
287,
6554,
60,
628,
220,
220,
220,
825,
651,
62,
25781,
7,
944,
11,
1438,
25,
965,
11,
1635,
22046,
11,
12429,
46265,
22046,
8,
4613,
15906,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
8229,
262,
5797,
351,
1813,
1438,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
357,
2536,
2599,
262,
1438,
286,
262,
5797,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15906,
25,
262,
5797,
351,
1813,
1438,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5797,
796,
2116,
13557,
25781,
62,
8899,
13,
1136,
7,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
5797,
13,
30073,
3419,
611,
5797,
2073,
6045,
628,
220,
220,
220,
825,
651,
62,
11659,
7,
944,
11,
1635,
22046,
11,
12429,
46265,
22046,
8,
4613,
17762,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
2610,
4566,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17762,
25,
262,
2610,
4566,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13557,
11659,
13,
30073,
3419,
628,
220,
220,
220,
825,
4174,
62,
20337,
7,
944,
11,
1989,
25,
4479,
58,
30547,
11,
8633,
12962,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2034,
13508,
262,
649,
1989,
4566,
1813,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1989,
357,
38176,
58,
30547,
11,
8633,
60,
2599,
262,
649,
1989,
4566,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
20337,
796,
1989,
611,
318,
39098,
7,
20337,
11,
9498,
8,
2073,
9498,
13,
6738,
62,
17752,
7,
20337,
8,
628,
220,
220,
220,
825,
4174,
62,
25781,
7,
944,
11,
5797,
25,
4479,
58,
36772,
11,
8633,
12962,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2034,
13508,
262,
649,
5797,
4566,
1813,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5797,
357,
38176,
58,
36772,
11,
8633,
60,
2599,
262,
649,
5797,
4566,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5797,
796,
5797,
611,
318,
39098,
7,
25781,
11,
15906,
8,
2073,
15906,
13,
6738,
62,
17752,
7,
25781,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5797,
13,
3672,
287,
2116,
13557,
25781,
62,
8899,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
25781,
62,
8899,
58,
25781,
13,
3672,
60,
796,
5797,
628,
220,
220,
220,
825,
4174,
62,
11659,
7,
944,
11,
2610,
25,
4479,
58,
24802,
11,
8633,
12962,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2034,
13508,
262,
2610,
4566,
1813,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2610,
357,
38176,
58,
24802,
11,
8633,
60,
2599,
262,
649,
2610,
4566,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
11659,
796,
2610,
611,
318,
39098,
7,
11659,
11,
17762,
8,
2073,
17762,
13,
6738,
62,
17752,
7,
11659,
8,
628,
220,
220,
220,
825,
10922,
62,
25781,
7,
944,
11,
5797,
25,
4479,
58,
36772,
11,
8633,
12962,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
36356,
82,
649,
5797,
351,
1813,
5797,
4566,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5797,
357,
38176,
58,
36772,
11,
8633,
60,
2599,
649,
5797,
4566,
287,
965,
5794,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5797,
796,
5797,
611,
318,
39098,
7,
25781,
11,
15906,
8,
2073,
15906,
13,
6738,
62,
17752,
7,
25781,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
25781,
62,
8899,
58,
25781,
13,
3672,
60,
796,
5797,
628,
220,
220,
220,
825,
12233,
62,
25781,
7,
944,
11,
5797,
25,
4479,
58,
36772,
11,
8633,
12962,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1024,
40676,
262,
5797,
351,
1813,
5797,
4566,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5797,
357,
38176,
58,
36772,
11,
8633,
60,
2599,
262,
5797,
4566,
284,
12233,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
944,
13557,
25781,
62,
8899,
8,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5797,
796,
5797,
611,
318,
39098,
7,
25781,
11,
15906,
8,
2073,
15906,
13,
6738,
62,
17752,
7,
25781,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
25781,
62,
8899,
13,
12924,
7,
25781,
13,
3672,
11,
6045,
8,
628,
220,
220,
220,
825,
319,
62,
47844,
7,
944,
11,
1735,
62,
17620,
25,
27741,
24819,
29239,
11,
1994,
25,
965,
11,
1988,
25,
12075,
29239,
6601,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
4889,
1891,
618,
1735,
6518,
4554,
11583,
649,
3275,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1735,
62,
17620,
357,
23839,
24819,
29239,
2599,
1735,
6518,
4554,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
357,
2536,
2599,
383,
4731,
27421,
286,
3275,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1988,
357,
24819,
29239,
6601,
2599,
383,
1366,
286,
262,
3275,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1994,
13,
9688,
2032,
342,
7,
16934,
10697,
13,
20373,
62,
47,
31688,
10426,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
2116,
13557,
5354,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21231,
11,
2223,
11,
2496,
796,
1994,
13,
35312,
7,
944,
13,
20373,
62,
4303,
43,
2043,
5781,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
21231,
14512,
17056,
10697,
13,
20373,
62,
47,
31688,
10426,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
58,
10697,
60,
17665,
21231,
2722,
19570,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
796,
7561,
6030,
7,
2673,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2496,
796,
12744,
6030,
7,
16793,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
58,
10697,
60,
17665,
1994,
2722,
33283,
2859,
62,
10951,
28,
1069,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2446,
62,
3672,
796,
45144,
92,
23330,
92,
1911,
18982,
7,
2673,
13,
8367,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2496,
13,
8367,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2446,
796,
651,
35226,
7,
944,
11,
2446,
62,
3672,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4566,
796,
2446,
7,
8367,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
58,
10697,
60,
2446,
23884,
9617,
35528,
526,
13,
18982,
7,
24396,
62,
3672,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2859,
62,
10951,
28,
1069,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2223,
6624,
7561,
6030,
13,
18851,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
11250,
11,
17056,
39317,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1735,
62,
17620,
13,
21280,
7,
2539,
11,
33918,
13,
67,
8142,
7,
11250,
13,
1462,
62,
17752,
3419,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
318,
39098,
7,
11250,
11,
1351,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33918,
62,
4868,
796,
685,
9186,
13,
1462,
62,
17752,
3419,
329,
2378,
287,
4566,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1735,
62,
17620,
13,
21280,
7,
2539,
11,
33918,
13,
67,
8142,
7,
17752,
62,
4868,
4008,
198
] | 2.16092 | 3,741 |
import mock
import pytest
from flask_wtf import Form
from wtforms.fields.core import Field
from wtforms.validators import StopValidation, ValidationError
from app.main.forms import AdminEmailAddressValidator, NotInDomainSuffixBlacklistValidator
from ..helpers import BaseApplicationTest
@mock.patch('app.main.forms.data_api_client')
| [
11748,
15290,
198,
11748,
12972,
9288,
198,
6738,
42903,
62,
86,
27110,
1330,
5178,
198,
6738,
266,
83,
23914,
13,
25747,
13,
7295,
1330,
7663,
198,
6738,
266,
83,
23914,
13,
12102,
2024,
1330,
13707,
7762,
24765,
11,
3254,
24765,
12331,
198,
198,
6738,
598,
13,
12417,
13,
23914,
1330,
32053,
15333,
20231,
47139,
1352,
11,
1892,
818,
43961,
50,
1648,
844,
9915,
4868,
47139,
1352,
198,
198,
6738,
11485,
16794,
364,
1330,
7308,
23416,
14402,
628,
198,
31,
76,
735,
13,
17147,
10786,
1324,
13,
12417,
13,
23914,
13,
7890,
62,
15042,
62,
16366,
11537,
628
] | 3.484536 | 97 |
import jinja2
from jinja2.ext import Extension
from django.template.loader import render_to_string
from django.utils.safestring import mark_safe
from .models import SendinBlueSettings
@jinja2.contextfunction
settings = SendinBlueExtension
| [
11748,
474,
259,
6592,
17,
198,
6738,
474,
259,
6592,
17,
13,
2302,
1330,
27995,
198,
198,
6738,
42625,
14208,
13,
28243,
13,
29356,
1330,
8543,
62,
1462,
62,
8841,
198,
6738,
42625,
14208,
13,
26791,
13,
49585,
395,
1806,
1330,
1317,
62,
21230,
198,
198,
6738,
764,
27530,
1330,
16290,
259,
14573,
26232,
628,
198,
31,
18594,
6592,
17,
13,
22866,
8818,
628,
198,
198,
33692,
796,
16290,
259,
14573,
11627,
3004,
198
] | 3.324324 | 74 |
import database
import os
DIRECTORY = "pages/"
# helper script to add target contents to db
# could be refactored to accept a list of files via shell expansion
if __name__ == "__main__":
# test script
db = database.Database()
for path, dirs, files in os.walk(os.path.abspath(DIRECTORY)):
for singular in files:
if singular.endswith("txt"):
filepath = os.path.abspath(os.path.join(path, singular))
print db.inserttxt(filepath)
else:
print "DONE."
| [
11748,
6831,
198,
11748,
28686,
198,
198,
17931,
23988,
15513,
796,
366,
31126,
30487,
198,
198,
2,
31904,
4226,
284,
751,
2496,
10154,
284,
20613,
198,
2,
714,
307,
1006,
529,
1850,
284,
2453,
257,
1351,
286,
3696,
2884,
7582,
7118,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1303,
1332,
4226,
198,
220,
220,
220,
20613,
796,
6831,
13,
38105,
3419,
198,
220,
220,
220,
329,
3108,
11,
288,
17062,
11,
3696,
287,
28686,
13,
11152,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
17931,
23988,
15513,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
329,
18032,
287,
3696,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18032,
13,
437,
2032,
342,
7203,
14116,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
22179,
7,
6978,
11,
18032,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
20613,
13,
28463,
14116,
7,
7753,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
35,
11651,
526,
198
] | 2.379464 | 224 |
if __name__ == '__main__':
main()
| [
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.166667 | 18 |
import os
import glob
import sys
from ansibleflow import log
from ansibleflow.config import get_config
from ansibleflow.venv import execute_under_env, env_exists
| [
11748,
28686,
198,
11748,
15095,
198,
11748,
25064,
198,
198,
6738,
9093,
856,
11125,
1330,
2604,
198,
6738,
9093,
856,
11125,
13,
11250,
1330,
651,
62,
11250,
198,
6738,
9093,
856,
11125,
13,
574,
85,
1330,
12260,
62,
4625,
62,
24330,
11,
17365,
62,
1069,
1023,
628,
628,
628
] | 3.428571 | 49 |
from SciDataTool.Functions.Plot.plot_2D import plot_2D
from SciDataTool.Functions.Plot import (
unit_dict,
norm_dict,
axes_dict,
COLORS,
)
from SciDataTool.Functions.Load.import_class import import_class
from SciDataTool.Classes.Norm_indices import Norm_indices
from numpy import (
squeeze,
split,
array,
where,
unique,
nanmax as np_max,
array2string,
insert,
nanmin as np_min,
linspace,
log10,
nan,
)
def plot_2D_Data(
self,
*arg_list,
axis_data=None,
is_norm=False,
unit="SI",
overall_axes=[],
data_list=[],
legend_list=[],
color_list=None,
curve_colors=None,
phase_colors=None,
linestyles=None,
linewidth_list=[2],
save_path=None,
x_min=None,
x_max=None,
y_min=None,
y_max=None,
is_logscale_x=False,
is_logscale_y=False,
is_disp_title=True,
is_grid=True,
is_auto_ticks=True,
is_auto_range=True,
xlabel=None,
ylabel=None,
title=None,
fig=None,
ax=None,
barwidth=100,
type_plot=None,
fund_harm_dict=None,
is_show_fig=None,
win_title=None,
thresh=None,
font_name="arial",
font_size_title=12,
font_size_label=10,
font_size_legend=8,
is_show_legend=True,
is_outside_legend=False,
is_frame_legend=True,
):
"""Plots a field as a function of time
Parameters
----------
data : Data
a Data object
*arg_list : list of str
arguments to specify which axes to plot
is_norm : bool
boolean indicating if the field must be normalized
unit : str
unit in which to plot the field
data_list : list
list of Data objects to compare
legend_list : list
list of legends to use for each Data object (including reference one) instead of data.name
color_list : list
list of colors to use for each Data object
save_path : str
full path including folder, name and extension of the file to save if save_path is not None
x_min : float
minimum value for the x-axis
x_max : float
maximum value for the x-axis
y_min : float
minimum value for the y-axis
y_max : float
maximum value for the y-axis
is_logscale_x : bool
boolean indicating if the x-axis must be set in logarithmic scale
is_logscale_y : bool
boolean indicating if the y-axis must be set in logarithmic scale
is_disp_title : bool
boolean indicating if the title must be displayed
is_grid : bool
boolean indicating if the grid must be displayed
is_auto_ticks : bool
in fft, adjust ticks to freqs (deactivate if too close)
is_auto_range : bool
in fft, display up to 1% of max
fig : Matplotlib.figure.Figure
existing figure to use if None create a new one
ax : Matplotlib.axes.Axes object
ax on which to plot the data
barwidth : float
barwidth scaling factor, only if type_plot = "bargraph"
type_plot : str
type of 2D graph : "curve", "bargraph", "barchart" or "quiver"
fund_harm_dict : dict
Dict containing axis name as key and frequency/order/wavenumber of fundamental harmonic as value to display fundamental harmonic in red in the fft
is_show_fig : bool
True to show figure after plot
win_title : str
Title of the plot window
thresh : float
threshold for automatic fft ticks
is_outside_legend : bool
True to display legend outside the graph
is_frame_legend : bool
True to display legend in a frame
"""
# Dynamic import to avoid import loop
DataPattern = import_class("SciDataTool.Classes", "DataPattern")
# Extract arg_list it the function called from another script with *arg_list
if len(arg_list) == 1 and type(arg_list[0]) == tuple:
arg_list = arg_list[0]
# In case of 1D fft, keep only positive wavenumbers
for i, arg in enumerate(arg_list):
if "wavenumber" in arg and "=" not in arg and "[" not in arg:
liste = list(arg_list)
liste[i] = arg.replace("wavenumber", "wavenumber>0")
arg_list = tuple(liste)
if color_list == [] or color_list is None:
color_list = COLORS
new_color_list = color_list.copy()
# Set unit
if unit == "SI":
unit = self.unit
# Detect if is fft, build ylabel
is_fft = False
if (
any("wavenumber" in s for s in arg_list) or any("freqs" in s for s in arg_list)
) and type_plot != "curve":
is_fft = True
if "dB" in unit:
unit_str = (
"["
+ unit
+ " re. "
+ str(self.normalizations["ref"].ref)
+ " $"
+ self.unit
+ "$]"
)
else:
unit_str = r"$[" + unit + "]$"
if self.symbol == "Magnitude":
if ylabel is None:
ylabel = "Magnitude " + unit_str
else:
if ylabel is None:
ylabel = r"$|\widehat{" + self.symbol + "}|$ " + unit_str
else:
if is_norm:
if ylabel is None:
ylabel = (
r"$\frac{"
+ self.symbol
+ "}{"
+ self.symbol
+ "_0}\, ["
+ unit
+ "]$"
)
else:
if self.symbol == "Magnitude":
if ylabel is None:
ylabel = "Magnitude " + r"$[" + unit + "]$"
else:
if ylabel is None:
ylabel = r"$" + self.symbol + "\, [" + unit + "]$"
# Extract field and axes
Xdatas = []
Ydatas = []
data_list2 = [self] + data_list
for i, d in enumerate(data_list2):
if is_fft or "dB" in unit:
result = d.get_magnitude_along(
arg_list, axis_data=axis_data, unit=unit, is_norm=is_norm
)
if i == 0:
axes_list = result.pop("axes_list")
axes_dict_other = result.pop("axes_dict_other")
result_0 = result
else:
result = d.get_along(
arg_list, axis_data=axis_data, unit=unit, is_norm=is_norm
)
if i == 0:
axes_list = result.pop("axes_list")
axes_dict_other = result.pop("axes_dict_other")
result_0 = result
Ydatas.append(result.pop(d.symbol))
# in string case not overlay, Xdatas is a linspace
if axes_list[0].is_components and axes_list[0].extension != "list":
xdata = linspace(
0, len(result[list(result)[0]]) - 1, len(result[list(result)[0]])
)
else:
xdata = result[list(result)[0]]
Xdatas.append(xdata)
# Build xlabel and title
title1 = self.name.capitalize() + " "
title2 = "for "
for axis in axes_list:
if axis.unit in norm_dict:
name = norm_dict[axis.unit].split(" [")[0]
elif axis.name in axes_dict:
name = axes_dict[axis.name]
else:
name = axis.name
if (
axis.extension
in [
"whole",
"interval",
"oneperiod",
"antiperiod",
"smallestperiod",
"axis_data",
]
and len(axis.values) > 1
or (len(axis.values) == 1 and len(axes_list) == 1)
):
if axis.unit == "SI":
if axis.name in unit_dict:
axis_unit = unit_dict[axis.name]
else:
axis_unit = axis.unit
if xlabel is None:
xlabel = name.capitalize() + " [" + axis_unit + "]"
main_axis_name = name
elif axis.unit in norm_dict:
if xlabel is None:
xlabel = norm_dict[axis.unit]
if axis.unit == "Hz":
main_axis_name = "frequency"
else:
main_axis_name = axis.unit
else:
axis_unit = axis.unit
if xlabel is None:
xlabel = name.capitalize() + " [" + axis_unit + "]"
main_axis_name = name
if (
axis.name == "angle"
and axis.unit == "°"
and round(np_max(axis.values) / 6) % 5 == 0
):
xticks = [i * round(np_max(axis.values) / 6) for i in range(7)]
else:
xticks = None
if axes_list[0].is_components and axes_list[0].extension != "list":
xticklabels = result[list(result)[0]]
xticks = Xdatas[0]
else:
xticklabels = None
else:
is_display = True
if axis.is_pattern and len(axis.values) == 1:
is_display = False
if is_display:
if axis.unit == "SI":
if axis.name in unit_dict:
axis_unit = unit_dict[axis.name]
else:
axis_unit = axis.unit
elif axis.unit in norm_dict:
axis_unit = norm_dict[axis.unit]
else:
axis_unit = axis.unit
if isinstance(result_0[axis.name], str):
title2 += name + "=" + result_0[axis.name]
else:
axis_str = array2string(
result_0[axis.name], formatter={"float_kind": "{:.3g}".format}
).replace(" ", ", ")
if len(result_0[axis.name]) == 1:
axis_str = axis_str.strip("[]")
title2 += (
name + "=" + axis_str.rstrip(", ") + " [" + axis_unit + "], "
)
# Title part 3 containing axes that are here but not involved in requested axes
title3 = ""
for axis_name in axes_dict_other:
is_display = True
for axis in self.axes:
if axis.name == axis_name:
if isinstance(axis, DataPattern) and len(axis.unique_indices) == 1:
is_display = False
if is_display:
title3 += (
axis_name
+ "="
+ array2string(
axes_dict_other[axis_name][0],
formatter={"float_kind": "{:.3g}".format},
).replace(" ", ", ")
+ " ["
+ axes_dict_other[axis_name][1]
+ "], "
)
if title2 == "for " and title3 == "":
title2 = ""
# Detect discontinuous axis (Norm_indices) to use bargraph
for axis in axes_list:
if axis.unit in self.axes[axis.index].normalizations:
if isinstance(
self.axes[axis.index].normalizations[axis.unit], Norm_indices
):
type_plot = "bargraph"
# Detect how many curves are overlaid, build legend and color lists
if legend_list == [] and data_list != []:
legend_list = [d.name for d in data_list2]
elif legend_list == []:
legend_list = ["" for d in data_list2]
legends = []
# Prepare colors
linestyle_list = linestyles
for i, d in enumerate(data_list2):
is_overlay = False
for axis in axes_list:
if axis.extension == "list":
is_overlay = True
if linestyles is None:
linestyles = ["dashed"]
n_curves = len(axis.values)
if axis.unit == "SI":
if axis.name in unit_dict:
axis_unit = unit_dict[axis.name]
else:
axis_unit = axis.unit
elif axis.unit in norm_dict:
axis_unit = norm_dict[axis.unit]
else:
axis_unit = axis.unit
if len(d.axes[axis.index].get_values()) > 1:
legends += [
legend_list[i]
+ axis.name
+ "="
+ axis.values.tolist()[j]
+ " "
+ axis_unit
if isinstance(axis.values.tolist()[j], str)
else legend_list[i]
+ axis.name
+ "="
+ "%.3g" % axis.values.tolist()[j]
+ " "
+ axis_unit
for j in range(n_curves)
]
else:
legends += [legend_list[i]]
if not is_overlay:
legends += [legend_list[i]]
# Adjust colors in non overlay case with overlay axis
if len(data_list2) > 1:
for axis in self.get_axes():
if axis.is_overlay and len(color_list) > len(axis.values):
new_color_list[1:] = color_list[len(axis.values) :]
# Split Ydatas if the plot overlays several curves
if is_overlay:
Ydata = []
for d in Ydatas:
if d.ndim != 1:
axis_index = where(array(d.shape) == n_curves)[0]
if axis_index.size > 1:
print("WARNING, several axes with same dimensions")
Ydata += split(d, n_curves, axis=axis_index[0])
else:
Ydata += [d]
Ydatas = [squeeze(d) for d in Ydata]
Xdata = []
for i in range(len(data_list2)):
Xdata += [Xdatas[i] for x in range(n_curves)]
Xdatas = Xdata
# Finish title
if title is None:
# Concatenate all title parts
if is_overlay:
title = title1 + title3
else:
title = title1 + title2 + title3
# Remove last coma due to title2 or title3
title = title.rstrip(", ")
# Remove dimless and quotes
title = title.replace("[]", "")
title = title.replace("'", "")
# Overall computation
if overall_axes != []:
if self.unit == "W":
op = "=sum"
else:
op = "=rss"
arg_list_ovl = [0 for i in range(len(arg_list))]
# Add sum to overall_axes
for axis in overall_axes:
is_match = False
for i, arg in enumerate(arg_list):
if axis in arg:
is_match = True
arg_list_ovl[i] = axis + op
if not is_match:
arg_list_ovl.append(axis + op)
# Add other requested axes
for i, arg in enumerate(arg_list):
if arg_list_ovl[i] == 0:
arg_list_ovl[i] = arg
if is_fft or "dB" in unit:
result = self.get_magnitude_along(*arg_list_ovl, unit=unit)
else:
result = self.get_along(*arg_list_ovl, unit=unit)
Y_overall = result[self.symbol]
# in string case not overlay, Xdatas is a linspace
if axes_list[0].is_components and axes_list[0].extension != "list":
xdata = linspace(
0, len(result[list(result)[0]]) - 1, len(result[list(result)[0]])
)
else:
xdata = result[list(result)[0]]
Ydatas.insert(0, Y_overall)
Xdatas.insert(0, xdata)
color_list = color_list.copy()
color_list.insert(0, "#000000")
legends.insert(0, "Overall")
if "dB" in unit: # Replace <=0 by nans
for ydata in Ydatas:
ydata[ydata <= 0] = nan
# Call generic plot function
if is_fft:
if thresh is None:
if self.normalizations is not None and "ref" in self.normalizations:
thresh = self.normalizations["ref"].ref
else:
thresh = 0.02
freqs = Xdatas[0]
if "dB" in unit:
indices = [
ind
for ind, y in enumerate(Ydatas[0])
if abs(y) > max(10 * log10(thresh) + abs(np_max(Ydatas[0])), 0)
]
else:
if Ydatas[0].size == 1:
indices = [0]
else:
indices = [
ind
for ind, y in enumerate(Ydatas[0])
if abs(y) > abs(thresh * np_max(Ydatas[0]))
]
xticks = unique(insert(freqs[indices], 0, 0))
if is_auto_range:
if len(xticks) > 1:
if x_min is None:
x_min = xticks[0]
else:
x_min = max(x_min, xticks[0])
if x_max is None:
x_max = xticks[-1]
else:
x_max = min(x_max, xticks[-1])
else:
if x_min is None:
x_min = np_min(freqs)
else:
x_min = max(x_min, np_min(freqs))
if x_max is None:
x_max = np_max(freqs)
else:
x_max = min(x_max, np_max(freqs))
else:
if x_min is None:
x_min = np_min(freqs)
if x_max is None:
x_max = np_max(freqs)
x_min = x_min - x_max * 0.05
x_max = x_max * 1.05
if (
len(xticks) == 0
or (len(xticks) > 20 and not axes_list[0].is_components)
or not is_auto_range
):
xticks = None
# Force bargraph for fft if type_graph not specified
if type_plot is None:
type_plot = "bargraph"
# Option to draw fundamental harmonic in red
if not fund_harm_dict:
fund_harm = None
else:
# Activate the option only if main axis is in dict and only one Data is plotted
if main_axis_name in fund_harm_dict and len(Ydatas) == 1:
fund_harm = fund_harm_dict[main_axis_name]
else:
# Deactivate the option
fund_harm = None
plot_2D(
Xdatas,
Ydatas,
legend_list=legends,
color_list=new_color_list,
linestyle_list=linestyle_list,
linewidth_list=linewidth_list,
fig=fig,
ax=ax,
title=title,
xlabel=xlabel,
ylabel=ylabel,
type_plot=type_plot,
x_min=x_min,
x_max=x_max,
y_min=y_min,
y_max=y_max,
is_logscale_x=is_logscale_x,
is_logscale_y=is_logscale_y,
is_disp_title=is_disp_title,
is_grid=is_grid,
xticks=xticks,
xticklabels=xticklabels,
save_path=save_path,
barwidth=barwidth,
fund_harm=fund_harm,
is_show_fig=is_show_fig,
win_title=win_title,
font_name=font_name,
font_size_title=font_size_title,
font_size_label=font_size_label,
font_size_legend=font_size_legend,
is_show_legend=is_show_legend,
is_outside_legend=is_outside_legend,
is_frame_legend=is_frame_legend,
)
else:
# Force curve plot if type_plot not specified
if type_plot is None:
type_plot = "curve"
plot_2D(
Xdatas,
Ydatas,
legend_list=legends,
color_list=new_color_list,
fig=fig,
ax=ax,
title=title,
xlabel=xlabel,
ylabel=ylabel,
type_plot=type_plot,
x_min=x_min,
x_max=x_max,
y_min=y_min,
y_max=y_max,
is_logscale_x=is_logscale_x,
is_logscale_y=is_logscale_y,
is_disp_title=is_disp_title,
is_grid=is_grid,
xticks=xticks,
xticklabels=xticklabels,
barwidth=barwidth,
linestyle_list=linestyle_list,
linewidth_list=linewidth_list,
save_path=save_path,
is_show_fig=is_show_fig,
win_title=win_title,
font_name=font_name,
font_size_title=font_size_title,
font_size_label=font_size_label,
font_size_legend=font_size_legend,
is_show_legend=is_show_legend,
is_outside_legend=is_outside_legend,
is_frame_legend=is_frame_legend,
)
| [
6738,
10286,
6601,
25391,
13,
24629,
2733,
13,
43328,
13,
29487,
62,
17,
35,
1330,
7110,
62,
17,
35,
198,
6738,
10286,
6601,
25391,
13,
24629,
2733,
13,
43328,
1330,
357,
198,
220,
220,
220,
4326,
62,
11600,
11,
198,
220,
220,
220,
2593,
62,
11600,
11,
198,
220,
220,
220,
34197,
62,
11600,
11,
198,
220,
220,
220,
20444,
20673,
11,
198,
8,
198,
6738,
10286,
6601,
25391,
13,
24629,
2733,
13,
8912,
13,
11748,
62,
4871,
1330,
1330,
62,
4871,
198,
6738,
10286,
6601,
25391,
13,
9487,
274,
13,
35393,
62,
521,
1063,
1330,
11220,
62,
521,
1063,
198,
6738,
299,
32152,
1330,
357,
198,
220,
220,
220,
21229,
11,
198,
220,
220,
220,
6626,
11,
198,
220,
220,
220,
7177,
11,
198,
220,
220,
220,
810,
11,
198,
220,
220,
220,
3748,
11,
198,
220,
220,
220,
15709,
9806,
355,
45941,
62,
9806,
11,
198,
220,
220,
220,
7177,
17,
8841,
11,
198,
220,
220,
220,
7550,
11,
198,
220,
220,
220,
15709,
1084,
355,
45941,
62,
1084,
11,
198,
220,
220,
220,
300,
1040,
10223,
11,
198,
220,
220,
220,
2604,
940,
11,
198,
220,
220,
220,
15709,
11,
198,
8,
628,
198,
4299,
7110,
62,
17,
35,
62,
6601,
7,
198,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
1635,
853,
62,
4868,
11,
198,
220,
220,
220,
16488,
62,
7890,
28,
14202,
11,
198,
220,
220,
220,
318,
62,
27237,
28,
25101,
11,
198,
220,
220,
220,
4326,
2625,
11584,
1600,
198,
220,
220,
220,
4045,
62,
897,
274,
41888,
4357,
198,
220,
220,
220,
1366,
62,
4868,
41888,
4357,
198,
220,
220,
220,
8177,
62,
4868,
41888,
4357,
198,
220,
220,
220,
3124,
62,
4868,
28,
14202,
11,
198,
220,
220,
220,
12133,
62,
4033,
669,
28,
14202,
11,
198,
220,
220,
220,
7108,
62,
4033,
669,
28,
14202,
11,
198,
220,
220,
220,
9493,
42530,
28,
14202,
11,
198,
220,
220,
220,
9493,
413,
5649,
62,
4868,
41888,
17,
4357,
198,
220,
220,
220,
3613,
62,
6978,
28,
14202,
11,
198,
220,
220,
220,
2124,
62,
1084,
28,
14202,
11,
198,
220,
220,
220,
2124,
62,
9806,
28,
14202,
11,
198,
220,
220,
220,
331,
62,
1084,
28,
14202,
11,
198,
220,
220,
220,
331,
62,
9806,
28,
14202,
11,
198,
220,
220,
220,
318,
62,
6404,
9888,
62,
87,
28,
25101,
11,
198,
220,
220,
220,
318,
62,
6404,
9888,
62,
88,
28,
25101,
11,
198,
220,
220,
220,
318,
62,
6381,
79,
62,
7839,
28,
17821,
11,
198,
220,
220,
220,
318,
62,
25928,
28,
17821,
11,
198,
220,
220,
220,
318,
62,
23736,
62,
83,
3378,
28,
17821,
11,
198,
220,
220,
220,
318,
62,
23736,
62,
9521,
28,
17821,
11,
198,
220,
220,
220,
2124,
18242,
28,
14202,
11,
198,
220,
220,
220,
331,
18242,
28,
14202,
11,
198,
220,
220,
220,
3670,
28,
14202,
11,
198,
220,
220,
220,
2336,
28,
14202,
11,
198,
220,
220,
220,
7877,
28,
14202,
11,
198,
220,
220,
220,
2318,
10394,
28,
3064,
11,
198,
220,
220,
220,
2099,
62,
29487,
28,
14202,
11,
198,
220,
220,
220,
1814,
62,
29155,
62,
11600,
28,
14202,
11,
198,
220,
220,
220,
318,
62,
12860,
62,
5647,
28,
14202,
11,
198,
220,
220,
220,
1592,
62,
7839,
28,
14202,
11,
198,
220,
220,
220,
294,
3447,
28,
14202,
11,
198,
220,
220,
220,
10369,
62,
3672,
2625,
36098,
1600,
198,
220,
220,
220,
10369,
62,
7857,
62,
7839,
28,
1065,
11,
198,
220,
220,
220,
10369,
62,
7857,
62,
18242,
28,
940,
11,
198,
220,
220,
220,
10369,
62,
7857,
62,
1455,
437,
28,
23,
11,
198,
220,
220,
220,
318,
62,
12860,
62,
1455,
437,
28,
17821,
11,
198,
220,
220,
220,
318,
62,
43435,
62,
1455,
437,
28,
25101,
11,
198,
220,
220,
220,
318,
62,
14535,
62,
1455,
437,
28,
17821,
11,
198,
2599,
198,
220,
220,
220,
37227,
3646,
1747,
257,
2214,
355,
257,
2163,
286,
640,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
1366,
1058,
6060,
198,
220,
220,
220,
220,
220,
220,
220,
257,
6060,
2134,
198,
220,
220,
220,
1635,
853,
62,
4868,
1058,
1351,
286,
965,
198,
220,
220,
220,
220,
220,
220,
220,
7159,
284,
11986,
543,
34197,
284,
7110,
198,
220,
220,
220,
318,
62,
27237,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
25131,
12739,
611,
262,
2214,
1276,
307,
39279,
198,
220,
220,
220,
4326,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
4326,
287,
543,
284,
7110,
262,
2214,
198,
220,
220,
220,
1366,
62,
4868,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
1351,
286,
6060,
5563,
284,
8996,
198,
220,
220,
220,
8177,
62,
4868,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
1351,
286,
24901,
284,
779,
329,
1123,
6060,
2134,
357,
8201,
4941,
530,
8,
2427,
286,
1366,
13,
3672,
198,
220,
220,
220,
3124,
62,
4868,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
1351,
286,
7577,
284,
779,
329,
1123,
6060,
2134,
198,
220,
220,
220,
3613,
62,
6978,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
1336,
3108,
1390,
9483,
11,
1438,
290,
7552,
286,
262,
2393,
284,
3613,
611,
3613,
62,
6978,
318,
407,
6045,
198,
220,
220,
220,
2124,
62,
1084,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
5288,
1988,
329,
262,
2124,
12,
22704,
198,
220,
220,
220,
2124,
62,
9806,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
5415,
1988,
329,
262,
2124,
12,
22704,
198,
220,
220,
220,
331,
62,
1084,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
5288,
1988,
329,
262,
331,
12,
22704,
198,
220,
220,
220,
331,
62,
9806,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
5415,
1988,
329,
262,
331,
12,
22704,
198,
220,
220,
220,
318,
62,
6404,
9888,
62,
87,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
25131,
12739,
611,
262,
2124,
12,
22704,
1276,
307,
900,
287,
2604,
283,
342,
9383,
5046,
198,
220,
220,
220,
318,
62,
6404,
9888,
62,
88,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
25131,
12739,
611,
262,
331,
12,
22704,
1276,
307,
900,
287,
2604,
283,
342,
9383,
5046,
198,
220,
220,
220,
318,
62,
6381,
79,
62,
7839,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
25131,
12739,
611,
262,
3670,
1276,
307,
9066,
198,
220,
220,
220,
318,
62,
25928,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
25131,
12739,
611,
262,
10706,
1276,
307,
9066,
198,
220,
220,
220,
318,
62,
23736,
62,
83,
3378,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
287,
277,
701,
11,
4532,
36066,
284,
2030,
48382,
357,
2934,
39022,
611,
1165,
1969,
8,
198,
220,
220,
220,
318,
62,
23736,
62,
9521,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
287,
277,
701,
11,
3359,
510,
284,
352,
4,
286,
3509,
198,
220,
220,
220,
2336,
1058,
6550,
29487,
8019,
13,
26875,
13,
11337,
198,
220,
220,
220,
220,
220,
220,
220,
4683,
3785,
284,
779,
611,
6045,
2251,
257,
649,
530,
198,
220,
220,
220,
7877,
1058,
6550,
29487,
8019,
13,
897,
274,
13,
31554,
274,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
319,
543,
284,
7110,
262,
1366,
198,
220,
220,
220,
2318,
10394,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
2318,
10394,
20796,
5766,
11,
691,
611,
2099,
62,
29487,
796,
366,
65,
853,
1470,
1,
198,
220,
220,
220,
2099,
62,
29487,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
2099,
286,
362,
35,
4823,
1058,
366,
22019,
303,
1600,
366,
65,
853,
1470,
1600,
366,
65,
998,
433,
1,
393,
366,
421,
1428,
1,
198,
220,
220,
220,
1814,
62,
29155,
62,
11600,
1058,
8633,
198,
220,
220,
220,
220,
220,
220,
220,
360,
713,
7268,
16488,
1438,
355,
1994,
290,
8373,
14,
2875,
14,
86,
4005,
4494,
286,
7531,
49239,
355,
1988,
284,
3359,
7531,
49239,
287,
2266,
287,
262,
277,
701,
198,
220,
220,
220,
318,
62,
12860,
62,
5647,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
6407,
284,
905,
3785,
706,
7110,
198,
220,
220,
220,
1592,
62,
7839,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
11851,
286,
262,
7110,
4324,
198,
220,
220,
220,
294,
3447,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
329,
11353,
277,
701,
36066,
198,
220,
220,
220,
318,
62,
43435,
62,
1455,
437,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
6407,
284,
3359,
8177,
2354,
262,
4823,
198,
220,
220,
220,
318,
62,
14535,
62,
1455,
437,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
6407,
284,
3359,
8177,
287,
257,
5739,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
26977,
1330,
284,
3368,
1330,
9052,
198,
220,
220,
220,
6060,
47546,
796,
1330,
62,
4871,
7203,
50,
979,
6601,
25391,
13,
9487,
274,
1600,
366,
6601,
47546,
4943,
628,
220,
220,
220,
1303,
29677,
1822,
62,
4868,
340,
262,
2163,
1444,
422,
1194,
4226,
351,
1635,
853,
62,
4868,
198,
220,
220,
220,
611,
18896,
7,
853,
62,
4868,
8,
6624,
352,
290,
2099,
7,
853,
62,
4868,
58,
15,
12962,
6624,
46545,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
4868,
796,
1822,
62,
4868,
58,
15,
60,
628,
220,
220,
220,
1303,
554,
1339,
286,
352,
35,
277,
701,
11,
1394,
691,
3967,
2082,
574,
17024,
198,
220,
220,
220,
329,
1312,
11,
1822,
287,
27056,
378,
7,
853,
62,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
366,
86,
4005,
4494,
1,
287,
1822,
290,
366,
2625,
407,
287,
1822,
290,
12878,
1,
407,
287,
1822,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1351,
68,
796,
1351,
7,
853,
62,
4868,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1351,
68,
58,
72,
60,
796,
1822,
13,
33491,
7203,
86,
4005,
4494,
1600,
366,
86,
4005,
4494,
29,
15,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
4868,
796,
46545,
7,
4868,
68,
8,
628,
220,
220,
220,
611,
3124,
62,
4868,
6624,
17635,
393,
3124,
62,
4868,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3124,
62,
4868,
796,
20444,
20673,
628,
220,
220,
220,
649,
62,
8043,
62,
4868,
796,
3124,
62,
4868,
13,
30073,
3419,
628,
220,
220,
220,
1303,
5345,
4326,
198,
220,
220,
220,
611,
4326,
6624,
366,
11584,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
4326,
796,
2116,
13,
20850,
628,
220,
220,
220,
1303,
35874,
611,
318,
277,
701,
11,
1382,
331,
18242,
198,
220,
220,
220,
318,
62,
487,
83,
796,
10352,
198,
220,
220,
220,
611,
357,
198,
220,
220,
220,
220,
220,
220,
220,
597,
7203,
86,
4005,
4494,
1,
287,
264,
329,
264,
287,
1822,
62,
4868,
8,
393,
597,
7203,
19503,
48382,
1,
287,
264,
329,
264,
287,
1822,
62,
4868,
8,
198,
220,
220,
220,
1267,
290,
2099,
62,
29487,
14512,
366,
22019,
303,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
318,
62,
487,
83,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
611,
366,
36077,
1,
287,
4326,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4326,
62,
2536,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12878,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
4326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
302,
13,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
965,
7,
944,
13,
11265,
4582,
14692,
5420,
1,
4083,
5420,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
720,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
2116,
13,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
17971,
30866,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4326,
62,
2536,
796,
374,
1,
3,
14692,
1343,
4326,
1343,
366,
60,
3,
1,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
1837,
23650,
6624,
366,
48017,
3984,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
331,
18242,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
18242,
796,
366,
48017,
3984,
366,
1343,
4326,
62,
2536,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
331,
18242,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
18242,
796,
374,
1,
3,
91,
59,
4421,
5183,
4895,
1343,
2116,
13,
1837,
23650,
1343,
366,
92,
91,
3,
366,
1343,
4326,
62,
2536,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
27237,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
331,
18242,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
18242,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
1,
3,
59,
31944,
4895,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
2116,
13,
1837,
23650,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
92,
4895,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
2116,
13,
1837,
23650,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
45434,
15,
32239,
11,
14631,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
4326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
60,
3,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
1837,
23650,
6624,
366,
48017,
3984,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
331,
18242,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
18242,
796,
366,
48017,
3984,
366,
1343,
374,
1,
3,
14692,
1343,
4326,
1343,
366,
60,
3,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
331,
18242,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
18242,
796,
374,
1,
3,
1,
1343,
2116,
13,
1837,
23650,
1343,
37082,
11,
14631,
1343,
4326,
1343,
366,
60,
3,
1,
628,
220,
220,
220,
1303,
29677,
2214,
290,
34197,
198,
220,
220,
220,
1395,
19608,
292,
796,
17635,
198,
220,
220,
220,
575,
19608,
292,
796,
17635,
198,
220,
220,
220,
1366,
62,
4868,
17,
796,
685,
944,
60,
1343,
1366,
62,
4868,
198,
220,
220,
220,
329,
1312,
11,
288,
287,
27056,
378,
7,
7890,
62,
4868,
17,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
487,
83,
393,
366,
36077,
1,
287,
4326,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
288,
13,
1136,
62,
76,
4660,
3984,
62,
24176,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
4868,
11,
16488,
62,
7890,
28,
22704,
62,
7890,
11,
4326,
28,
20850,
11,
318,
62,
27237,
28,
271,
62,
27237,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34197,
62,
4868,
796,
1255,
13,
12924,
7203,
897,
274,
62,
4868,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34197,
62,
11600,
62,
847,
796,
1255,
13,
12924,
7203,
897,
274,
62,
11600,
62,
847,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
62,
15,
796,
1255,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
288,
13,
1136,
62,
24176,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
4868,
11,
16488,
62,
7890,
28,
22704,
62,
7890,
11,
4326,
28,
20850,
11,
318,
62,
27237,
28,
271,
62,
27237,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34197,
62,
4868,
796,
1255,
13,
12924,
7203,
897,
274,
62,
4868,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34197,
62,
11600,
62,
847,
796,
1255,
13,
12924,
7203,
897,
274,
62,
11600,
62,
847,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
62,
15,
796,
1255,
198,
220,
220,
220,
220,
220,
220,
220,
575,
19608,
292,
13,
33295,
7,
20274,
13,
12924,
7,
67,
13,
1837,
23650,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
287,
4731,
1339,
407,
33345,
11,
1395,
19608,
292,
318,
257,
300,
1040,
10223,
198,
220,
220,
220,
220,
220,
220,
220,
611,
34197,
62,
4868,
58,
15,
4083,
271,
62,
5589,
3906,
290,
34197,
62,
4868,
58,
15,
4083,
2302,
3004,
14512,
366,
4868,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
7890,
796,
300,
1040,
10223,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
11,
18896,
7,
20274,
58,
4868,
7,
20274,
38381,
15,
11907,
8,
532,
352,
11,
18896,
7,
20274,
58,
4868,
7,
20274,
38381,
15,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
7890,
796,
1255,
58,
4868,
7,
20274,
38381,
15,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
19608,
292,
13,
33295,
7,
87,
7890,
8,
628,
220,
220,
220,
1303,
10934,
2124,
18242,
290,
3670,
198,
220,
220,
220,
3670,
16,
796,
2116,
13,
3672,
13,
27544,
1096,
3419,
1343,
366,
366,
198,
220,
220,
220,
3670,
17,
796,
366,
1640,
366,
198,
220,
220,
220,
329,
16488,
287,
34197,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
20850,
287,
2593,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
2593,
62,
11600,
58,
22704,
13,
20850,
4083,
35312,
7203,
685,
4943,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
16488,
13,
3672,
287,
34197,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
34197,
62,
11600,
58,
22704,
13,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
16488,
13,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
611,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
13,
2302,
3004,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1929,
2305,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3849,
2100,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
505,
41007,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
415,
9346,
2101,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17470,
395,
41007,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
22704,
62,
7890,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
18896,
7,
22704,
13,
27160,
8,
1875,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
357,
11925,
7,
22704,
13,
27160,
8,
6624,
352,
290,
18896,
7,
897,
274,
62,
4868,
8,
6624,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
20850,
6624,
366,
11584,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
3672,
287,
4326,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
4326,
62,
11600,
58,
22704,
13,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
16488,
13,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
18242,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
18242,
796,
1438,
13,
27544,
1096,
3419,
1343,
366,
14631,
1343,
16488,
62,
20850,
1343,
366,
30866,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1388,
62,
22704,
62,
3672,
796,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
16488,
13,
20850,
287,
2593,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
18242,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
18242,
796,
2593,
62,
11600,
58,
22704,
13,
20850,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
20850,
6624,
366,
7399,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1388,
62,
22704,
62,
3672,
796,
366,
35324,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1388,
62,
22704,
62,
3672,
796,
16488,
13,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
16488,
13,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
18242,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
18242,
796,
1438,
13,
27544,
1096,
3419,
1343,
366,
14631,
1343,
16488,
62,
20850,
1343,
366,
30866,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1388,
62,
22704,
62,
3672,
796,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
13,
3672,
6624,
366,
9248,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
16488,
13,
20850,
6624,
366,
7200,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
2835,
7,
37659,
62,
9806,
7,
22704,
13,
27160,
8,
1220,
718,
8,
4064,
642,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
3378,
796,
685,
72,
1635,
2835,
7,
37659,
62,
9806,
7,
22704,
13,
27160,
8,
1220,
718,
8,
329,
1312,
287,
2837,
7,
22,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
3378,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
34197,
62,
4868,
58,
15,
4083,
271,
62,
5589,
3906,
290,
34197,
62,
4868,
58,
15,
4083,
2302,
3004,
14512,
366,
4868,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
624,
23912,
1424,
796,
1255,
58,
4868,
7,
20274,
38381,
15,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
3378,
796,
1395,
19608,
292,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
624,
23912,
1424,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
13812,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
271,
62,
33279,
290,
18896,
7,
22704,
13,
27160,
8,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
13812,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
13812,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
20850,
6624,
366,
11584,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
3672,
287,
4326,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
4326,
62,
11600,
58,
22704,
13,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
16488,
13,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
16488,
13,
20850,
287,
2593,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
2593,
62,
11600,
58,
22704,
13,
20850,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
16488,
13,
20850,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
20274,
62,
15,
58,
22704,
13,
3672,
4357,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
17,
15853,
1438,
1343,
366,
2625,
1343,
1255,
62,
15,
58,
22704,
13,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
2536,
796,
7177,
17,
8841,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
62,
15,
58,
22704,
13,
3672,
4357,
1296,
1436,
28,
4895,
22468,
62,
11031,
1298,
45144,
25,
13,
18,
70,
92,
1911,
18982,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6739,
33491,
7203,
33172,
33172,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
20274,
62,
15,
58,
22704,
13,
3672,
12962,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
2536,
796,
16488,
62,
2536,
13,
36311,
7203,
21737,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
17,
15853,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
1343,
366,
2625,
1343,
16488,
62,
2536,
13,
81,
36311,
7,
1600,
366,
8,
1343,
366,
14631,
1343,
16488,
62,
20850,
1343,
366,
4357,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
1303,
11851,
636,
513,
7268,
34197,
326,
389,
994,
475,
407,
2950,
287,
9167,
34197,
198,
220,
220,
220,
3670,
18,
796,
13538,
198,
220,
220,
220,
329,
16488,
62,
3672,
287,
34197,
62,
11600,
62,
847,
25,
198,
220,
220,
220,
220,
220,
220,
220,
318,
62,
13812,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
329,
16488,
287,
2116,
13,
897,
274,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
3672,
6624,
16488,
62,
3672,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
22704,
11,
6060,
47546,
8,
290,
18896,
7,
22704,
13,
34642,
62,
521,
1063,
8,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
13812,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
13812,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
18,
15853,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
2625,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
7177,
17,
8841,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34197,
62,
11600,
62,
847,
58,
22704,
62,
3672,
7131,
15,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1296,
1436,
28,
4895,
22468,
62,
11031,
1298,
45144,
25,
13,
18,
70,
92,
1911,
18982,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6739,
33491,
7203,
33172,
33172,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
14631,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
34197,
62,
11600,
62,
847,
58,
22704,
62,
3672,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
4357,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
611,
3670,
17,
6624,
366,
1640,
366,
290,
3670,
18,
6624,
366,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
3670,
17,
796,
13538,
628,
220,
220,
220,
1303,
35874,
19936,
5623,
16488,
357,
35393,
62,
521,
1063,
8,
284,
779,
12828,
1470,
198,
220,
220,
220,
329,
16488,
287,
34197,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
20850,
287,
2116,
13,
897,
274,
58,
22704,
13,
9630,
4083,
11265,
4582,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
897,
274,
58,
22704,
13,
9630,
4083,
11265,
4582,
58,
22704,
13,
20850,
4357,
11220,
62,
521,
1063,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
62,
29487,
796,
366,
65,
853,
1470,
1,
628,
220,
220,
220,
1303,
35874,
703,
867,
23759,
389,
12893,
1698,
11,
1382,
8177,
290,
3124,
8341,
198,
220,
220,
220,
611,
8177,
62,
4868,
6624,
17635,
290,
1366,
62,
4868,
14512,
685,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
8177,
62,
4868,
796,
685,
67,
13,
3672,
329,
288,
287,
1366,
62,
4868,
17,
60,
198,
220,
220,
220,
1288,
361,
8177,
62,
4868,
6624,
685,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
8177,
62,
4868,
796,
14631,
1,
329,
288,
287,
1366,
62,
4868,
17,
60,
198,
220,
220,
220,
24901,
796,
17635,
198,
220,
220,
220,
1303,
43426,
7577,
198,
220,
220,
220,
9493,
10992,
62,
4868,
796,
9493,
42530,
198,
220,
220,
220,
329,
1312,
11,
288,
287,
27056,
378,
7,
7890,
62,
4868,
17,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
318,
62,
2502,
10724,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
329,
16488,
287,
34197,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
2302,
3004,
6624,
366,
4868,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
2502,
10724,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
9493,
42530,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9493,
42530,
796,
14631,
67,
5263,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
22019,
1158,
796,
18896,
7,
22704,
13,
27160,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
20850,
6624,
366,
11584,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
3672,
287,
4326,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
4326,
62,
11600,
58,
22704,
13,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
16488,
13,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
16488,
13,
20850,
287,
2593,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
2593,
62,
11600,
58,
22704,
13,
20850,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
20850,
796,
16488,
13,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
67,
13,
897,
274,
58,
22704,
13,
9630,
4083,
1136,
62,
27160,
28955,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24901,
15853,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8177,
62,
4868,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
16488,
13,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
2625,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
16488,
13,
27160,
13,
83,
349,
396,
3419,
58,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
16488,
62,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
22704,
13,
27160,
13,
83,
349,
396,
3419,
58,
73,
4357,
965,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
8177,
62,
4868,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
16488,
13,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
2625,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
7225,
18,
70,
1,
4064,
16488,
13,
27160,
13,
83,
349,
396,
3419,
58,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
16488,
62,
20850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
2837,
7,
77,
62,
22019,
1158,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24901,
15853,
685,
1455,
437,
62,
4868,
58,
72,
11907,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
318,
62,
2502,
10724,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24901,
15853,
685,
1455,
437,
62,
4868,
58,
72,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
20292,
7577,
287,
1729,
33345,
1339,
351,
33345,
16488,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
7890,
62,
4868,
17,
8,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
16488,
287,
2116,
13,
1136,
62,
897,
274,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
13,
271,
62,
2502,
10724,
290,
18896,
7,
8043,
62,
4868,
8,
1875,
18896,
7,
22704,
13,
27160,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
8043,
62,
4868,
58,
16,
47715,
796,
3124,
62,
4868,
58,
11925,
7,
22704,
13,
27160,
8,
1058,
60,
628,
220,
220,
220,
1303,
27758,
575,
19608,
292,
611,
262,
7110,
12893,
592,
1811,
23759,
198,
220,
220,
220,
611,
318,
62,
2502,
10724,
25,
198,
220,
220,
220,
220,
220,
220,
220,
575,
7890,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
288,
287,
575,
19608,
292,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
288,
13,
358,
320,
14512,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16488,
62,
9630,
796,
810,
7,
18747,
7,
67,
13,
43358,
8,
6624,
299,
62,
22019,
1158,
38381,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
62,
9630,
13,
7857,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
31502,
11,
1811,
34197,
351,
976,
15225,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
575,
7890,
15853,
6626,
7,
67,
11,
299,
62,
22019,
1158,
11,
16488,
28,
22704,
62,
9630,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
575,
7890,
15853,
685,
67,
60,
198,
220,
220,
220,
220,
220,
220,
220,
575,
19608,
292,
796,
685,
16485,
1453,
2736,
7,
67,
8,
329,
288,
287,
575,
7890,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
7890,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
11925,
7,
7890,
62,
4868,
17,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
7890,
15853,
685,
55,
19608,
292,
58,
72,
60,
329,
2124,
287,
2837,
7,
77,
62,
22019,
1158,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
19608,
292,
796,
1395,
7890,
628,
220,
220,
220,
1303,
32585,
3670,
198,
220,
220,
220,
611,
3670,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1482,
9246,
268,
378,
477,
3670,
3354,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
2502,
10724,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
796,
3670,
16,
1343,
3670,
18,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
796,
3670,
16,
1343,
3670,
17,
1343,
3670,
18,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
17220,
938,
33658,
2233,
284,
3670,
17,
393,
3670,
18,
198,
220,
220,
220,
220,
220,
220,
220,
3670,
796,
3670,
13,
81,
36311,
7,
1600,
366,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
17220,
5391,
1203,
290,
13386,
198,
220,
220,
220,
220,
220,
220,
220,
3670,
796,
3670,
13,
33491,
7203,
21737,
1600,
366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
3670,
796,
3670,
13,
33491,
7203,
6,
1600,
366,
4943,
628,
220,
220,
220,
1303,
14674,
29964,
198,
220,
220,
220,
611,
4045,
62,
897,
274,
14512,
685,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
20850,
6624,
366,
54,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
796,
366,
28,
16345,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
796,
366,
28,
42216,
1,
198,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
4868,
62,
709,
75,
796,
685,
15,
329,
1312,
287,
2837,
7,
11925,
7,
853,
62,
4868,
4008,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
2160,
284,
4045,
62,
897,
274,
198,
220,
220,
220,
220,
220,
220,
220,
329,
16488,
287,
4045,
62,
897,
274,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
15699,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
1822,
287,
27056,
378,
7,
853,
62,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16488,
287,
1822,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
15699,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
4868,
62,
709,
75,
58,
72,
60,
796,
16488,
1343,
1034,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
318,
62,
15699,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
4868,
62,
709,
75,
13,
33295,
7,
22704,
1343,
1034,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
584,
9167,
34197,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
1822,
287,
27056,
378,
7,
853,
62,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1822,
62,
4868,
62,
709,
75,
58,
72,
60,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
4868,
62,
709,
75,
58,
72,
60,
796,
1822,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
487,
83,
393,
366,
36077,
1,
287,
4326,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
2116,
13,
1136,
62,
76,
4660,
3984,
62,
24176,
46491,
853,
62,
4868,
62,
709,
75,
11,
4326,
28,
20850,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
2116,
13,
1136,
62,
24176,
46491,
853,
62,
4868,
62,
709,
75,
11,
4326,
28,
20850,
8,
198,
220,
220,
220,
220,
220,
220,
220,
575,
62,
2502,
439,
796,
1255,
58,
944,
13,
1837,
23650,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
287,
4731,
1339,
407,
33345,
11,
1395,
19608,
292,
318,
257,
300,
1040,
10223,
198,
220,
220,
220,
220,
220,
220,
220,
611,
34197,
62,
4868,
58,
15,
4083,
271,
62,
5589,
3906,
290,
34197,
62,
4868,
58,
15,
4083,
2302,
3004,
14512,
366,
4868,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
7890,
796,
300,
1040,
10223,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
11,
18896,
7,
20274,
58,
4868,
7,
20274,
38381,
15,
11907,
8,
532,
352,
11,
18896,
7,
20274,
58,
4868,
7,
20274,
38381,
15,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
7890,
796,
1255,
58,
4868,
7,
20274,
38381,
15,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
575,
19608,
292,
13,
28463,
7,
15,
11,
575,
62,
2502,
439,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
19608,
292,
13,
28463,
7,
15,
11,
2124,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3124,
62,
4868,
796,
3124,
62,
4868,
13,
30073,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3124,
62,
4868,
13,
28463,
7,
15,
11,
25113,
10535,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
24901,
13,
28463,
7,
15,
11,
366,
16350,
4943,
628,
220,
220,
220,
611,
366,
36077,
1,
287,
4326,
25,
220,
1303,
40177,
19841,
15,
416,
299,
504,
198,
220,
220,
220,
220,
220,
220,
220,
329,
331,
7890,
287,
575,
19608,
292,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
7890,
58,
5173,
1045,
19841,
657,
60,
796,
15709,
628,
220,
220,
220,
1303,
4889,
14276,
7110,
2163,
198,
220,
220,
220,
611,
318,
62,
487,
83,
25,
628,
220,
220,
220,
220,
220,
220,
220,
611,
294,
3447,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
11265,
4582,
318,
407,
6045,
290,
366,
5420,
1,
287,
2116,
13,
11265,
4582,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
294,
3447,
796,
2116,
13,
11265,
4582,
14692,
5420,
1,
4083,
5420,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
294,
3447,
796,
657,
13,
2999,
628,
220,
220,
220,
220,
220,
220,
220,
2030,
48382,
796,
1395,
19608,
292,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
366,
36077,
1,
287,
4326,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36525,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
773,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
773,
11,
331,
287,
27056,
378,
7,
56,
19608,
292,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
88,
8,
1875,
3509,
7,
940,
1635,
2604,
940,
7,
400,
3447,
8,
1343,
2352,
7,
37659,
62,
9806,
7,
56,
19608,
292,
58,
15,
12962,
828,
657,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
575,
19608,
292,
58,
15,
4083,
7857,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36525,
796,
685,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36525,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
773,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
773,
11,
331,
287,
27056,
378,
7,
56,
19608,
292,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
88,
8,
1875,
2352,
7,
400,
3447,
1635,
45941,
62,
9806,
7,
56,
19608,
292,
58,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
220,
742,
3378,
796,
3748,
7,
28463,
7,
19503,
48382,
58,
521,
1063,
4357,
657,
11,
657,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
23736,
62,
9521,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
742,
3378,
8,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
62,
1084,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
1084,
796,
220,
742,
3378,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
1084,
796,
3509,
7,
87,
62,
1084,
11,
220,
742,
3378,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
62,
9806,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
796,
220,
742,
3378,
58,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
796,
949,
7,
87,
62,
9806,
11,
220,
742,
3378,
58,
12,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
62,
1084,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
1084,
796,
45941,
62,
1084,
7,
19503,
48382,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
1084,
796,
3509,
7,
87,
62,
1084,
11,
45941,
62,
1084,
7,
19503,
48382,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
62,
9806,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
796,
45941,
62,
9806,
7,
19503,
48382,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
796,
949,
7,
87,
62,
9806,
11,
45941,
62,
9806,
7,
19503,
48382,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
62,
1084,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
1084,
796,
45941,
62,
1084,
7,
19503,
48382,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
62,
9806,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
796,
45941,
62,
9806,
7,
19503,
48382,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
1084,
796,
2124,
62,
1084,
532,
2124,
62,
9806,
1635,
657,
13,
2713,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
796,
2124,
62,
9806,
1635,
352,
13,
2713,
628,
220,
220,
220,
220,
220,
220,
220,
611,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18896,
7,
742,
3378,
8,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
357,
11925,
7,
742,
3378,
8,
1875,
1160,
290,
407,
34197,
62,
4868,
58,
15,
4083,
271,
62,
5589,
3906,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
407,
318,
62,
23736,
62,
9521,
198,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
3378,
796,
6045,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
5221,
12828,
1470,
329,
277,
701,
611,
2099,
62,
34960,
407,
7368,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2099,
62,
29487,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
62,
29487,
796,
366,
65,
853,
1470,
1,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16018,
284,
3197,
7531,
49239,
287,
2266,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
1814,
62,
29155,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1814,
62,
29155,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
33120,
262,
3038,
691,
611,
1388,
16488,
318,
287,
8633,
290,
691,
530,
6060,
318,
37515,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1388,
62,
22704,
62,
3672,
287,
1814,
62,
29155,
62,
11600,
290,
18896,
7,
56,
19608,
292,
8,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1814,
62,
29155,
796,
1814,
62,
29155,
62,
11600,
58,
12417,
62,
22704,
62,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1024,
39022,
262,
3038,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1814,
62,
29155,
796,
6045,
628,
220,
220,
220,
220,
220,
220,
220,
7110,
62,
17,
35,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
19608,
292,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
575,
19608,
292,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8177,
62,
4868,
28,
1455,
2412,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
62,
4868,
28,
3605,
62,
8043,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9493,
10992,
62,
4868,
28,
2815,
10992,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9493,
413,
5649,
62,
4868,
28,
2815,
413,
5649,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
28,
5647,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
28,
897,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
28,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
18242,
28,
87,
18242,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
18242,
28,
2645,
9608,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
62,
29487,
28,
4906,
62,
29487,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
1084,
28,
87,
62,
1084,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
28,
87,
62,
9806,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
1084,
28,
88,
62,
1084,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
9806,
28,
88,
62,
9806,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
6404,
9888,
62,
87,
28,
271,
62,
6404,
9888,
62,
87,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
6404,
9888,
62,
88,
28,
271,
62,
6404,
9888,
62,
88,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
6381,
79,
62,
7839,
28,
271,
62,
6381,
79,
62,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
25928,
28,
271,
62,
25928,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
3378,
28,
742,
3378,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
624,
23912,
1424,
28,
742,
624,
23912,
1424,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
6978,
28,
21928,
62,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2318,
10394,
28,
5657,
10394,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1814,
62,
29155,
28,
10990,
62,
29155,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
12860,
62,
5647,
28,
271,
62,
12860,
62,
5647,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1592,
62,
7839,
28,
5404,
62,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10369,
62,
3672,
28,
10331,
62,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10369,
62,
7857,
62,
7839,
28,
10331,
62,
7857,
62,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10369,
62,
7857,
62,
18242,
28,
10331,
62,
7857,
62,
18242,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10369,
62,
7857,
62,
1455,
437,
28,
10331,
62,
7857,
62,
1455,
437,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
12860,
62,
1455,
437,
28,
271,
62,
12860,
62,
1455,
437,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
43435,
62,
1455,
437,
28,
271,
62,
43435,
62,
1455,
437,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
14535,
62,
1455,
437,
28,
271,
62,
14535,
62,
1455,
437,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
2073,
25,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
5221,
12133,
7110,
611,
2099,
62,
29487,
407,
7368,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2099,
62,
29487,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
62,
29487,
796,
366,
22019,
303,
1,
628,
220,
220,
220,
220,
220,
220,
220,
7110,
62,
17,
35,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
19608,
292,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
575,
19608,
292,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8177,
62,
4868,
28,
1455,
2412,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
62,
4868,
28,
3605,
62,
8043,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
28,
5647,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
28,
897,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
28,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
18242,
28,
87,
18242,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
18242,
28,
2645,
9608,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
62,
29487,
28,
4906,
62,
29487,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
1084,
28,
87,
62,
1084,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
28,
87,
62,
9806,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
1084,
28,
88,
62,
1084,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
9806,
28,
88,
62,
9806,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
6404,
9888,
62,
87,
28,
271,
62,
6404,
9888,
62,
87,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
6404,
9888,
62,
88,
28,
271,
62,
6404,
9888,
62,
88,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
6381,
79,
62,
7839,
28,
271,
62,
6381,
79,
62,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
25928,
28,
271,
62,
25928,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
3378,
28,
742,
3378,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
624,
23912,
1424,
28,
742,
624,
23912,
1424,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2318,
10394,
28,
5657,
10394,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9493,
10992,
62,
4868,
28,
2815,
10992,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9493,
413,
5649,
62,
4868,
28,
2815,
413,
5649,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
6978,
28,
21928,
62,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
12860,
62,
5647,
28,
271,
62,
12860,
62,
5647,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1592,
62,
7839,
28,
5404,
62,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10369,
62,
3672,
28,
10331,
62,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10369,
62,
7857,
62,
7839,
28,
10331,
62,
7857,
62,
7839,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10369,
62,
7857,
62,
18242,
28,
10331,
62,
7857,
62,
18242,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10369,
62,
7857,
62,
1455,
437,
28,
10331,
62,
7857,
62,
1455,
437,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
12860,
62,
1455,
437,
28,
271,
62,
12860,
62,
1455,
437,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
43435,
62,
1455,
437,
28,
271,
62,
43435,
62,
1455,
437,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
14535,
62,
1455,
437,
28,
271,
62,
14535,
62,
1455,
437,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198
] | 1.809258 | 11,471 |
#!/usr/bin/python3
import json
import falcon
from database import Database
| [
2,
48443,
14629,
14,
8800,
14,
29412,
18,
198,
198,
11748,
33918,
198,
11748,
24215,
1102,
198,
6738,
6831,
1330,
24047,
198
] | 3.454545 | 22 |
from .utils import get_X_y, evaluate_binary_classifier, load_img, ColumnSelector
try:
from inspect import signature
except ImportError:
from funcsigs import signature
__all__ = [
'get_X_y',
'evaluate_binary_classifier',
'load_img',
'ColumnSelector',
'signature'
]
| [
6738,
764,
26791,
1330,
651,
62,
55,
62,
88,
11,
13446,
62,
39491,
62,
4871,
7483,
11,
3440,
62,
9600,
11,
29201,
17563,
273,
198,
198,
28311,
25,
198,
220,
220,
220,
422,
10104,
1330,
9877,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
422,
1257,
6359,
9235,
1330,
9877,
198,
198,
834,
439,
834,
796,
685,
198,
220,
220,
220,
705,
1136,
62,
55,
62,
88,
3256,
198,
220,
220,
220,
705,
49786,
62,
39491,
62,
4871,
7483,
3256,
198,
220,
220,
220,
705,
2220,
62,
9600,
3256,
198,
220,
220,
220,
705,
39470,
17563,
273,
3256,
198,
220,
220,
220,
705,
12683,
1300,
6,
198,
60,
198
] | 2.672727 | 110 |
# -*- coding: utf-8 -*-
"""
Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community
Edition) available.
Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved.
Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://opensource.org/licenses/MIT
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
"""
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
24893,
1087,
318,
10607,
284,
1104,
262,
1280,
2723,
2055,
416,
1642,
5525,
241,
251,
165,
110,
116,
162,
247,
118,
12859,
239,
47,
7252,
50,
33176,
111,
20998,
108,
163,
97,
122,
44293,
118,
48304,
357,
14573,
15708,
350,
7252,
50,
8108,
198,
7407,
653,
8,
1695,
13,
198,
15269,
357,
34,
8,
2177,
12,
23344,
2320,
43,
317,
1959,
15302,
11,
257,
9368,
1087,
1664,
13,
1439,
2489,
10395,
13,
198,
26656,
15385,
739,
262,
17168,
13789,
357,
1169,
366,
34156,
15341,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
1639,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
4023,
1378,
44813,
1668,
13,
2398,
14,
677,
4541,
14,
36393,
198,
28042,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
9387,
739,
262,
13789,
318,
9387,
319,
198,
272,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
13789,
329,
262,
198,
11423,
3303,
15030,
21627,
290,
11247,
739,
262,
13789,
13,
198,
37811,
628
] | 3.665 | 200 |
import re
s = "is this a string?!"
print("The original string is : " + s)
res = re.sub(r'[^\w\s]', '', s) #remove any char that is not a word, space, or tab using regex
print("The string after removing punctuation is: " + res)
| [
11748,
302,
198,
198,
82,
796,
366,
271,
428,
257,
4731,
30823,
198,
198,
4798,
7203,
464,
2656,
4731,
318,
1058,
366,
1343,
264,
8,
198,
198,
411,
796,
302,
13,
7266,
7,
81,
6,
58,
61,
59,
86,
59,
82,
60,
3256,
705,
3256,
264,
8,
1303,
28956,
597,
1149,
326,
318,
407,
257,
1573,
11,
2272,
11,
393,
7400,
1262,
40364,
198,
198,
4798,
7203,
464,
4731,
706,
10829,
21025,
2288,
318,
25,
366,
1343,
581,
8,
198
] | 2.8875 | 80 |
class IllegalCarError(Exception):
"""Raised when the attributes of Car class are wrong"""
pass
| [
4871,
42272,
9914,
12331,
7,
16922,
2599,
198,
220,
220,
220,
37227,
21762,
1417,
618,
262,
12608,
286,
1879,
1398,
389,
2642,
37811,
198,
220,
220,
220,
1208,
628
] | 3.586207 | 29 |
import os
from peewee import *
from NavigationDB.Premise.PremiseDB import Premise
os.chdir('../../..')
PremiseRemove()
PremiseAdd() | [
11748,
28686,
198,
6738,
613,
413,
1453,
1330,
1635,
198,
6738,
42115,
11012,
13,
24914,
786,
13,
24914,
786,
11012,
1330,
6929,
786,
628,
198,
198,
418,
13,
354,
15908,
10786,
40720,
40720,
492,
11537,
198,
24914,
786,
27914,
3419,
198,
24914,
786,
4550,
3419
] | 2.977778 | 45 |
# -*- coding: utf-8 -*-
"""
Tencent is pleased to support the open source community by making GameAISDK available.
This source code file is licensed under the GNU General Public License Version 3.
For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package.
Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
"""
class AIModelParameter(object):
"""
Agent AI model parameter, including env, module, model package and class etc
provider the data class manage the parameter
"""
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
24893,
1087,
318,
10607,
284,
1104,
262,
1280,
2723,
2055,
416,
1642,
3776,
32,
1797,
48510,
1695,
13,
198,
198,
1212,
2723,
2438,
2393,
318,
11971,
739,
262,
22961,
3611,
5094,
13789,
10628,
513,
13,
198,
1890,
1336,
3307,
11,
3387,
3522,
284,
262,
2393,
366,
43,
2149,
24290,
13,
14116,
1,
543,
318,
2810,
355,
636,
286,
428,
2723,
2438,
5301,
13,
198,
198,
15269,
357,
34,
8,
12131,
2320,
43,
317,
1959,
15302,
11,
257,
9368,
1087,
1664,
13,
220,
1439,
2489,
10395,
13,
198,
37811,
198,
198,
4871,
317,
3955,
375,
417,
36301,
7,
15252,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
15906,
9552,
2746,
11507,
11,
1390,
17365,
11,
8265,
11,
2746,
5301,
290,
1398,
3503,
198,
220,
220,
220,
10131,
262,
1366,
1398,
6687,
262,
11507,
198,
220,
220,
220,
37227,
198
] | 3.660256 | 156 |
# -*- coding: utf-8 -*-
"""
Created on Thu May 9 10:29:45 2019
@author: DiPu
"""
from collections import OrderedDict
od=OrderedDict()
while True:
user_inp = input("Enter Product: ")
if user_inp == "":
break
user_inp = user_inp.split()
key = " ".join(user_inp[:-1])
value = int(user_inp[-1])
od[key] = od.get(key,0)+value
print(od)
#for key,value in od.items():
# if "apple" in od.keys():
# od["apple"] = od["apple"]+20
# else:
# od["apple"] = 20
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
41972,
319,
26223,
1737,
220,
860,
838,
25,
1959,
25,
2231,
13130,
198,
198,
31,
9800,
25,
6031,
47,
84,
198,
37811,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
198,
375,
28,
35422,
1068,
35,
713,
3419,
198,
220,
220,
220,
220,
198,
4514,
6407,
25,
198,
220,
220,
220,
2836,
62,
259,
79,
796,
5128,
7203,
17469,
8721,
25,
366,
8,
198,
220,
220,
220,
611,
2836,
62,
259,
79,
6624,
366,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
2836,
62,
259,
79,
796,
2836,
62,
259,
79,
13,
35312,
3419,
198,
220,
220,
220,
1994,
796,
366,
27071,
22179,
7,
7220,
62,
259,
79,
58,
21912,
16,
12962,
198,
220,
220,
220,
1988,
796,
493,
7,
7220,
62,
259,
79,
58,
12,
16,
12962,
198,
220,
220,
220,
16298,
58,
2539,
60,
796,
16298,
13,
1136,
7,
2539,
11,
15,
47762,
8367,
198,
4798,
7,
375,
8,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
2,
1640,
1994,
11,
8367,
287,
16298,
13,
23814,
33529,
198,
2,
220,
220,
220,
611,
366,
18040,
1,
287,
16298,
13,
13083,
33529,
198,
2,
220,
220,
220,
220,
220,
220,
220,
16298,
14692,
18040,
8973,
796,
16298,
14692,
18040,
8973,
10,
1238,
198,
2,
220,
220,
220,
2073,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
16298,
14692,
18040,
8973,
796,
1160,
628,
220,
220,
220,
220,
628,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198
] | 1.988848 | 269 |
# Copyright 2013, Big Switch Networks
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import sqlalchemy as sa
from sqlalchemy import orm
from neutron.db import model_base
| [
2,
15069,
2211,
11,
4403,
14645,
27862,
198,
2,
1439,
6923,
33876,
13,
198,
2,
198,
2,
220,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
220,
220,
220,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
220,
220,
220,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
220,
220,
220,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
220,
220,
220,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
220,
220,
220,
739,
262,
13789,
13,
198,
198,
11748,
44161,
282,
26599,
355,
473,
198,
6738,
44161,
282,
26599,
1330,
393,
76,
198,
198,
6738,
49810,
13,
9945,
1330,
2746,
62,
8692,
628,
198
] | 3.43128 | 211 |
### soma de números
print('Iremos somar números ímpares que são múltiplos de 3')
s = 0
p = 0
for c in range(1,501,2):
print(c, end=' ')
if c%3==0:
p = p + 1
s = s + c
print('\nA soma de todos os números ímpares que são múltiplos de 3 é {}.\n O total de números múltiplos é {}.'.format(s, p)) | [
21017,
3870,
64,
390,
299,
21356,
647,
418,
198,
4798,
10786,
40,
2787,
418,
3870,
283,
299,
21356,
647,
418,
6184,
255,
3149,
3565,
8358,
264,
28749,
285,
21356,
2528,
24705,
418,
390,
513,
11537,
198,
82,
796,
657,
198,
79,
796,
657,
198,
1640,
269,
287,
2837,
7,
16,
11,
33548,
11,
17,
2599,
198,
220,
220,
220,
3601,
7,
66,
11,
886,
11639,
705,
8,
198,
220,
220,
220,
611,
269,
4,
18,
855,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
279,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
264,
796,
264,
1343,
269,
198,
4798,
10786,
59,
77,
32,
3870,
64,
390,
284,
37427,
28686,
299,
21356,
647,
418,
6184,
255,
3149,
3565,
8358,
264,
28749,
285,
21356,
2528,
24705,
418,
390,
513,
38251,
23884,
13,
59,
77,
440,
2472,
390,
299,
21356,
647,
418,
285,
21356,
2528,
24705,
418,
38251,
23884,
2637,
13,
18982,
7,
82,
11,
279,
4008
] | 1.956522 | 161 |
import os
import pprint
import re
import sys
import time
import paramiko
from scp import SCPClient
import functest.utils.functest_utils as ft_utils
import functest.utils.openstack_utils as os_utils
FUNCTEST_REPO = ft_utils.FUNCTEST_REPO
NAME_VM_1 = ft_utils.get_functest_config('vping.vm_name_1')
NAME_VM_2 = ft_utils.get_functest_config('vping.vm_name_2')
VM_BOOT_TIMEOUT = 180
VM_DELETE_TIMEOUT = 100
PING_TIMEOUT = ft_utils.get_functest_config('vping.ping_timeout')
GLANCE_IMAGE_NAME = ft_utils.get_functest_config('vping.image_name')
GLANCE_IMAGE_FILENAME = \
ft_utils.get_functest_config('general.openstack.image_file_name')
GLANCE_IMAGE_FORMAT = \
ft_utils.get_functest_config('general.openstack.image_disk_format')
GLANCE_IMAGE_PATH = \
ft_utils.get_functest_config('general.directories.dir_functest_data') + \
"/" + GLANCE_IMAGE_FILENAME
FLAVOR = ft_utils.get_functest_config('vping.vm_flavor')
# NEUTRON Private Network parameters
PRIVATE_NET_NAME = \
ft_utils.get_functest_config('vping.vping_private_net_name')
PRIVATE_SUBNET_NAME = \
ft_utils.get_functest_config('vping.vping_private_subnet_name')
PRIVATE_SUBNET_CIDR = \
ft_utils.get_functest_config('vping.vping_private_subnet_cidr')
ROUTER_NAME = ft_utils.get_functest_config('vping.vping_router_name')
SECGROUP_NAME = ft_utils.get_functest_config('vping.vping_sg_name')
SECGROUP_DESCR = ft_utils.get_functest_config('vping.vping_sg_descr')
neutron_client = None
glance_client = None
nova_client = None
logger = None
pp = pprint.PrettyPrinter(indent=4)
def pMsg(value):
"""pretty printing"""
pp.pprint(value)
| [
11748,
28686,
198,
11748,
279,
4798,
198,
11748,
302,
198,
11748,
25064,
198,
11748,
640,
198,
198,
11748,
5772,
12125,
198,
6738,
629,
79,
1330,
17527,
11792,
198,
198,
11748,
1257,
310,
395,
13,
26791,
13,
12543,
310,
395,
62,
26791,
355,
10117,
62,
26791,
198,
11748,
1257,
310,
395,
13,
26791,
13,
9654,
25558,
62,
26791,
355,
28686,
62,
26791,
198,
42296,
4177,
6465,
62,
2200,
16402,
796,
10117,
62,
26791,
13,
42296,
4177,
6465,
62,
2200,
16402,
198,
198,
20608,
62,
15996,
62,
16,
796,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
14761,
62,
3672,
62,
16,
11537,
198,
20608,
62,
15996,
62,
17,
796,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
14761,
62,
3672,
62,
17,
11537,
198,
198,
15996,
62,
8202,
2394,
62,
34694,
12425,
796,
11546,
198,
15996,
62,
7206,
2538,
9328,
62,
34694,
12425,
796,
1802,
198,
47,
2751,
62,
34694,
12425,
796,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
13886,
62,
48678,
11537,
198,
198,
8763,
19240,
62,
3955,
11879,
62,
20608,
796,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
9060,
62,
3672,
11537,
198,
8763,
19240,
62,
3955,
11879,
62,
46700,
1677,
10067,
796,
3467,
198,
220,
220,
220,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
24622,
13,
9654,
25558,
13,
9060,
62,
7753,
62,
3672,
11537,
198,
8763,
19240,
62,
3955,
11879,
62,
21389,
1404,
796,
3467,
198,
220,
220,
220,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
24622,
13,
9654,
25558,
13,
9060,
62,
39531,
62,
18982,
11537,
198,
8763,
19240,
62,
3955,
11879,
62,
34219,
796,
3467,
198,
220,
220,
220,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
24622,
13,
12942,
1749,
13,
15908,
62,
12543,
310,
395,
62,
7890,
11537,
1343,
3467,
198,
220,
220,
220,
12813,
1,
1343,
10188,
19240,
62,
3955,
11879,
62,
46700,
1677,
10067,
628,
198,
3697,
10116,
1581,
796,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
14761,
62,
2704,
5570,
11537,
198,
198,
2,
10635,
3843,
45806,
15348,
7311,
10007,
198,
4805,
3824,
6158,
62,
12884,
62,
20608,
796,
3467,
198,
220,
220,
220,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
85,
13886,
62,
19734,
62,
3262,
62,
3672,
11537,
198,
4805,
3824,
6158,
62,
50,
10526,
12884,
62,
20608,
796,
3467,
198,
220,
220,
220,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
85,
13886,
62,
19734,
62,
7266,
3262,
62,
3672,
11537,
198,
4805,
3824,
6158,
62,
50,
10526,
12884,
62,
34,
2389,
49,
796,
3467,
198,
220,
220,
220,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
85,
13886,
62,
19734,
62,
7266,
3262,
62,
66,
312,
81,
11537,
198,
49,
2606,
5781,
62,
20608,
796,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
85,
13886,
62,
472,
353,
62,
3672,
11537,
198,
198,
23683,
46846,
62,
20608,
796,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
85,
13886,
62,
45213,
62,
3672,
11537,
198,
23683,
46846,
62,
30910,
9419,
796,
10117,
62,
26791,
13,
1136,
62,
12543,
310,
395,
62,
11250,
10786,
85,
13886,
13,
85,
13886,
62,
45213,
62,
20147,
81,
11537,
628,
198,
710,
315,
1313,
62,
16366,
796,
6045,
198,
4743,
590,
62,
16366,
796,
6045,
198,
38438,
62,
16366,
796,
6045,
198,
6404,
1362,
796,
6045,
198,
198,
381,
796,
279,
4798,
13,
35700,
6836,
3849,
7,
521,
298,
28,
19,
8,
628,
198,
4299,
279,
50108,
7,
8367,
2599,
198,
220,
220,
220,
37227,
37784,
13570,
37811,
198,
220,
220,
220,
9788,
13,
381,
22272,
7,
8367,
8,
628,
628,
628,
628,
628,
628,
628,
628,
628,
628,
628,
628
] | 2.432792 | 677 |
from spikelearn.data import io, select, to_feature_array, SHORTCUTS
from spikelearn.models.shuffle_decoding import shuffle_cross_predict
from catboost import CatBoostClassifier
from sklearn.linear_model import BayesianRidgeRegression
import pickle
allres = {}
for rat, dset in product(SHORTCUTS['group']['eletro'], DSETS):
data = select(io.load(rat, dset), _min_duration=.5, is_tired=False)
tercils = [data.duration.quantile(q) for q in [1/3, 2/3]]
t1 = to_feature_array(select(data, _max_duration=tercils[0]), subset='full')
t3 = to_feature_array(select(data, _min_duration=tercils[1]), subset='full')
res = shuffle_cross_predict(reg, [t1,t3], ['short', 'long'], n_splits=5,
problem='regression', feature_scaling='robust')
allres[(rat, dset)] = res
pickle.dump(open('data/results/warping.pickle', 'wb'))
# TODO calculate bias and mean bias direction | [
6738,
20240,
35720,
13,
7890,
1330,
33245,
11,
2922,
11,
284,
62,
30053,
62,
18747,
11,
6006,
1581,
4825,
3843,
50,
198,
6738,
20240,
35720,
13,
27530,
13,
1477,
18137,
62,
12501,
7656,
1330,
220,
36273,
62,
19692,
62,
79,
17407,
198,
6738,
3797,
39521,
1330,
5181,
45686,
9487,
7483,
198,
6738,
1341,
35720,
13,
29127,
62,
19849,
1330,
4696,
35610,
49,
3130,
8081,
2234,
198,
11748,
2298,
293,
198,
198,
439,
411,
796,
23884,
198,
1640,
4227,
11,
288,
2617,
287,
1720,
7,
9693,
1581,
4825,
3843,
50,
17816,
8094,
6,
7131,
6,
68,
1616,
305,
6,
4357,
17400,
32716,
2599,
198,
220,
220,
220,
1366,
796,
2922,
7,
952,
13,
2220,
7,
10366,
11,
288,
2617,
828,
4808,
1084,
62,
32257,
28,
13,
20,
11,
318,
62,
83,
1202,
28,
25101,
8,
198,
220,
220,
220,
1059,
2856,
82,
796,
685,
7890,
13,
32257,
13,
40972,
576,
7,
80,
8,
329,
10662,
287,
685,
16,
14,
18,
11,
362,
14,
18,
11907,
628,
220,
220,
220,
256,
16,
796,
284,
62,
30053,
62,
18747,
7,
19738,
7,
7890,
11,
4808,
9806,
62,
32257,
28,
353,
2856,
82,
58,
15,
46570,
24637,
11639,
12853,
11537,
198,
220,
220,
220,
256,
18,
796,
284,
62,
30053,
62,
18747,
7,
19738,
7,
7890,
11,
4808,
1084,
62,
32257,
28,
353,
2856,
82,
58,
16,
46570,
24637,
11639,
12853,
11537,
198,
220,
220,
220,
581,
796,
36273,
62,
19692,
62,
79,
17407,
7,
2301,
11,
685,
83,
16,
11,
83,
18,
4357,
37250,
19509,
3256,
705,
6511,
6,
4357,
299,
62,
22018,
896,
28,
20,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1917,
11639,
2301,
2234,
3256,
3895,
62,
1416,
4272,
11639,
22609,
436,
11537,
628,
220,
220,
220,
477,
411,
58,
7,
10366,
11,
288,
2617,
15437,
796,
581,
198,
220,
220,
220,
220,
198,
27729,
293,
13,
39455,
7,
9654,
10786,
7890,
14,
43420,
14,
86,
5117,
278,
13,
27729,
293,
3256,
705,
39346,
6,
4008,
198,
220,
220,
220,
1303,
16926,
46,
15284,
10690,
290,
1612,
10690,
4571
] | 2.517808 | 365 |
from decimal import Decimal
from .. import logic
from ..portfolio import VirtualAccount
# class Calculator:
# def __init__(self, allocated_margin: Decimal):
# self.margin = allocated_margin
# def calc_amount_and_round_by_unit(self, real_price: Decimal, min_unit: Decimal):
# return logic.calc_unit_amount(
# budget=self.margin, real_price=real_price, min_unit=min_unit
# )
# def calc_amount_and_round_by_infered_min_unit(self, real_price: Decimal):
# inferd = logic.infer_min_unit(real_price)
# return logic.calc_unit_amount(
# budget=self.margin, real_price=real_price, min_unit=inferd
# )
# @staticmethod
# def infer_min_unit(price: Decimal) -> Decimal:
# return logic.infer_min_unit(price)
| [
6738,
32465,
1330,
4280,
4402,
198,
198,
6738,
11485,
1330,
9156,
198,
6738,
11485,
634,
13652,
1330,
15595,
30116,
198,
198,
2,
1398,
43597,
25,
198,
2,
220,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
19171,
62,
36153,
25,
4280,
4402,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
36153,
796,
19171,
62,
36153,
198,
198,
2,
220,
220,
220,
220,
825,
42302,
62,
17287,
62,
392,
62,
744,
62,
1525,
62,
20850,
7,
944,
11,
1103,
62,
20888,
25,
4280,
4402,
11,
949,
62,
20850,
25,
4280,
4402,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
9156,
13,
9948,
66,
62,
20850,
62,
17287,
7,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4466,
28,
944,
13,
36153,
11,
1103,
62,
20888,
28,
5305,
62,
20888,
11,
949,
62,
20850,
28,
1084,
62,
20850,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
198,
2,
220,
220,
220,
220,
825,
42302,
62,
17287,
62,
392,
62,
744,
62,
1525,
62,
10745,
1068,
62,
1084,
62,
20850,
7,
944,
11,
1103,
62,
20888,
25,
4280,
4402,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
13249,
67,
796,
9156,
13,
259,
2232,
62,
1084,
62,
20850,
7,
5305,
62,
20888,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
9156,
13,
9948,
66,
62,
20850,
62,
17287,
7,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4466,
28,
944,
13,
36153,
11,
1103,
62,
20888,
28,
5305,
62,
20888,
11,
949,
62,
20850,
28,
259,
2232,
67,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
198,
2,
220,
220,
220,
220,
2488,
12708,
24396,
198,
2,
220,
220,
220,
220,
825,
13249,
62,
1084,
62,
20850,
7,
20888,
25,
4280,
4402,
8,
4613,
4280,
4402,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
9156,
13,
259,
2232,
62,
1084,
62,
20850,
7,
20888,
8,
198
] | 2.313043 | 345 |
"""A multi-thread tool to crop large images to sub-images for faster IO."""
import os
import os.path as osp
import sys
from multiprocessing import Pool
import numpy as np
import cv2
from PIL import Image
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from utils.util import ProgressBar # noqa: E402
import data.util as data_util # noqa: E402
if __name__ == '__main__':
main()
| [
37811,
32,
5021,
12,
16663,
2891,
284,
13833,
1588,
4263,
284,
850,
12,
17566,
329,
5443,
24418,
526,
15931,
198,
11748,
28686,
198,
11748,
28686,
13,
6978,
355,
267,
2777,
198,
11748,
25064,
198,
6738,
18540,
305,
919,
278,
1330,
19850,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
269,
85,
17,
198,
6738,
350,
4146,
1330,
7412,
198,
17597,
13,
6978,
13,
33295,
7,
2117,
13,
15908,
3672,
7,
2117,
13,
15908,
3672,
7,
2117,
13,
397,
2777,
776,
7,
834,
7753,
834,
35514,
198,
6738,
3384,
4487,
13,
22602,
1330,
18387,
10374,
220,
1303,
645,
20402,
25,
412,
32531,
198,
11748,
1366,
13,
22602,
355,
1366,
62,
22602,
220,
1303,
645,
20402,
25,
412,
32531,
628,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.942029 | 138 |
import torch as T
import torch
import torch.nn.functional as F
import numpy as np
import tqdm
import random
import sys, os
from matplotlib import pyplot as plt
from sympy.combinatorics.graycode import GrayCode
import time
import ipdb
from torch.autograd import Variable, Function
def pairwise_distances(x, y=None):
'''
Input: x is a Nxd matrix
y is an optional Mxd matirx
Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:]
if y is not given then use 'y=x'.
i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2
'''
x_norm = (x**2).sum(1).view(-1, 1)
if y is not None:
y_t = torch.transpose(y, 0, 1)
y_norm = (y**2).sum(1).view(1, -1)
else:
y_t = torch.transpose(x, 0, 1)
y_norm = x_norm.view(1, -1)
dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t)
# Ensure diagonal is zero if x=y
# if y is None:
# dist = dist - torch.diag(dist.diag)
return torch.clamp(dist, 0.0, np.inf)
############# Model Architecture
| [
11748,
28034,
355,
309,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
256,
80,
36020,
198,
11748,
4738,
198,
11748,
25064,
11,
28686,
198,
6738,
2603,
29487,
8019,
1330,
12972,
29487,
355,
458,
83,
198,
6738,
10558,
88,
13,
785,
8800,
1352,
873,
13,
44605,
8189,
1330,
12723,
10669,
198,
11748,
640,
198,
11748,
20966,
9945,
628,
628,
628,
628,
198,
6738,
28034,
13,
2306,
519,
6335,
1330,
35748,
11,
15553,
198,
198,
4299,
5166,
3083,
62,
17080,
1817,
7,
87,
11,
331,
28,
14202,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
23412,
25,
2124,
318,
257,
399,
24954,
17593,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
318,
281,
11902,
337,
24954,
2603,
343,
87,
198,
220,
220,
220,
25235,
25,
1233,
318,
257,
399,
87,
44,
17593,
810,
1233,
58,
72,
11,
73,
60,
318,
262,
6616,
2593,
1022,
2124,
58,
72,
11,
47715,
290,
331,
58,
73,
11,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
331,
318,
407,
1813,
788,
779,
705,
88,
28,
87,
4458,
198,
220,
220,
220,
1312,
13,
68,
13,
1233,
58,
72,
11,
73,
60,
796,
8614,
87,
58,
72,
11,
25,
45297,
88,
58,
73,
11,
47715,
15886,
61,
17,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
2124,
62,
27237,
796,
357,
87,
1174,
17,
737,
16345,
7,
16,
737,
1177,
32590,
16,
11,
352,
8,
198,
220,
220,
220,
611,
331,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
83,
796,
28034,
13,
7645,
3455,
7,
88,
11,
657,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
27237,
796,
357,
88,
1174,
17,
737,
16345,
7,
16,
737,
1177,
7,
16,
11,
532,
16,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
83,
796,
28034,
13,
7645,
3455,
7,
87,
11,
657,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
27237,
796,
2124,
62,
27237,
13,
1177,
7,
16,
11,
532,
16,
8,
628,
220,
220,
220,
1233,
796,
2124,
62,
27237,
1343,
331,
62,
27237,
532,
362,
13,
15,
1635,
28034,
13,
3020,
7,
87,
11,
331,
62,
83,
8,
198,
220,
220,
220,
1303,
48987,
40039,
318,
6632,
611,
2124,
28,
88,
198,
220,
220,
220,
1303,
611,
331,
318,
6045,
25,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1233,
796,
1233,
532,
28034,
13,
10989,
363,
7,
17080,
13,
10989,
363,
8,
198,
220,
220,
220,
1441,
28034,
13,
565,
696,
7,
17080,
11,
657,
13,
15,
11,
45941,
13,
10745,
8,
628,
628,
628,
628,
628,
198,
7804,
4242,
2,
9104,
29778,
198
] | 2.229474 | 475 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.