content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from django import forms
[ 6738, 42625, 14208, 1330, 5107, 201, 198, 201, 198 ]
3.111111
9
import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = 'tdzf@9g8lofi@lo$=126jrka1ydzjix^!8j)vg$6cd+kz^ei5h' INSTALLED_APPS = [ 'django.contrib.contenttypes', 'tests' ] test_db = os.environ.get('TEST_DB_CONFIG', 'postgres') db_user = os.environ.get('TEST_DB_USER', os.environ.get('USER', '')) db_name = 'timerseries_tests' + os.environ.get('TEST_DB_NAME', '') DB_CONFIGS = { # N.B. sqlite doesn't support DISTINCT ON for some reason... ??? 'postgres': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': db_name, 'USER': db_user, 'PASSWORD': '' } } DATABASES = { 'default': DB_CONFIGS.get(test_db) }
[ 11748, 28686, 198, 198, 2, 10934, 13532, 2641, 262, 1628, 588, 428, 25, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 2644, 8, 198, 33, 11159, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 22305, 198, 198, 23683, 26087, 62, 20373, 796, 705, 8671, 89, 69, 31, 24, 70, 23, 75, 39542, 31, 5439, 3, 28, 19420, 73, 81, 4914, 16, 5173, 89, 73, 844, 61, 0, 23, 73, 8, 45119, 3, 21, 10210, 10, 74, 89, 61, 20295, 20, 71, 6, 198, 198, 38604, 7036, 1961, 62, 2969, 3705, 796, 685, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 11299, 19199, 3256, 198, 220, 220, 220, 705, 41989, 6, 198, 60, 628, 198, 9288, 62, 9945, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 51, 6465, 62, 11012, 62, 10943, 16254, 3256, 705, 7353, 34239, 11537, 198, 9945, 62, 7220, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 51, 6465, 62, 11012, 62, 29904, 3256, 28686, 13, 268, 2268, 13, 1136, 10786, 29904, 3256, 10148, 4008, 198, 9945, 62, 3672, 796, 705, 16514, 364, 10640, 62, 41989, 6, 1343, 28686, 13, 268, 2268, 13, 1136, 10786, 51, 6465, 62, 11012, 62, 20608, 3256, 10148, 8, 198, 198, 11012, 62, 10943, 16254, 50, 796, 1391, 198, 220, 220, 220, 1303, 399, 13, 33, 13, 44161, 578, 1595, 470, 1104, 360, 8808, 1268, 4177, 6177, 329, 617, 1738, 986, 34913, 198, 220, 220, 220, 705, 7353, 34239, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26808, 8881, 10354, 705, 28241, 14208, 13, 9945, 13, 1891, 2412, 13, 7353, 34239, 13976, 62, 13764, 22163, 70, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 10354, 20613, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29904, 10354, 20613, 62, 7220, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47924, 54, 12532, 10354, 10148, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 35, 1404, 6242, 1921, 1546, 796, 1391, 198, 220, 220, 220, 705, 12286, 10354, 20137, 62, 10943, 16254, 50, 13, 1136, 7, 9288, 62, 9945, 8, 198, 92, 198 ]
2.082447
376
import torch.nn as nn import torch.nn.functional as F from .layers import GraphConvolution
[ 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 764, 75, 6962, 1330, 29681, 3103, 85, 2122, 628 ]
3.407407
27
from django.db import models # class Person(models.Model): # name = models.CharField(max_length=50) # age = models.IntegerField() # city = models.CharField(max_length=50) # rating = models.IntegerField() # # # class PersonalData(models.Model): # name = models.CharField(max_length=50) # mail = models.EmailField(max_length=254) # telephone = models.CharField(max_length=20) # social_id_1 = models.CharField(max_length=50) # social_id_2 = models.CharField(max_length=50) # social_id_3 = models.CharField(max_length=50) # social_id_4 = models.CharField(max_length=50)
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 628, 628, 198, 2, 1398, 7755, 7, 27530, 13, 17633, 2599, 198, 2, 220, 220, 220, 220, 1438, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1120, 8, 198, 2, 220, 220, 220, 220, 2479, 796, 4981, 13, 46541, 15878, 3419, 198, 2, 220, 220, 220, 220, 1748, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1120, 8, 198, 2, 220, 220, 220, 220, 7955, 796, 4981, 13, 46541, 15878, 3419, 198, 2, 198, 2, 198, 2, 1398, 15644, 6601, 7, 27530, 13, 17633, 2599, 198, 2, 220, 220, 220, 220, 1438, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1120, 8, 198, 2, 220, 220, 220, 220, 6920, 796, 4981, 13, 15333, 15878, 7, 9806, 62, 13664, 28, 24970, 8, 198, 2, 220, 220, 220, 220, 11426, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1238, 8, 198, 2, 220, 220, 220, 220, 1919, 62, 312, 62, 16, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1120, 8, 198, 2, 220, 220, 220, 220, 1919, 62, 312, 62, 17, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1120, 8, 198, 2, 220, 220, 220, 220, 1919, 62, 312, 62, 18, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1120, 8, 198, 2, 220, 220, 220, 220, 1919, 62, 312, 62, 19, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1120, 8 ]
2.502041
245
import logging import traceback import sys from .processor_work_manager import ProcessorWorkManager class ProcessorWorker: """Process worker class""" def run(self): """Run worker""" while self._running: try: self.process() except Exception as ex: logging.error(traceback.format_exception(*sys.exc_info())) continue def process(self): """Call process on queue""" self.processor_work_manager.run() def join(self): """Join processes""" self._running = False
[ 11748, 18931, 198, 11748, 12854, 1891, 198, 11748, 25064, 198, 198, 6738, 764, 41341, 62, 1818, 62, 37153, 1330, 32893, 12468, 13511, 198, 198, 4871, 32893, 12468, 263, 25, 198, 220, 220, 220, 37227, 18709, 8383, 1398, 37811, 628, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 8383, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13557, 20270, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14681, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 40546, 1891, 13, 18982, 62, 1069, 4516, 46491, 17597, 13, 41194, 62, 10951, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 825, 1429, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14134, 1429, 319, 16834, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41341, 62, 1818, 62, 37153, 13, 5143, 3419, 628, 220, 220, 220, 825, 4654, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18234, 7767, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20270, 796, 10352 ]
2.38
250
from email.charset import QP from serial import Serial from serial.tools.list_ports import comports qPort = None for p in list(comports()): if p.product and 'FT232R' in p.product: qPort = p.device break if not qPort: raise Exception('No Quiet Board found') quite = Serial(qPort, 57600, timeout=1) loops = 0 while True: loops += 1 quite.write('DIGI?\r\n'.encode()) read = quite.read_until() if len(read) <= 0: raise Exception(f'Failed after {loops} rounds')
[ 6738, 3053, 13, 354, 945, 316, 1330, 1195, 47, 198, 6738, 11389, 1330, 23283, 198, 6738, 11389, 13, 31391, 13, 4868, 62, 3742, 1330, 552, 2096, 628, 198, 80, 13924, 796, 6045, 198, 1640, 279, 287, 1351, 7, 785, 3742, 3419, 2599, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 279, 13, 11167, 290, 705, 9792, 24339, 49, 6, 287, 279, 13, 11167, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 13924, 796, 279, 13, 25202, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 198, 361, 407, 10662, 13924, 25, 198, 220, 220, 220, 5298, 35528, 10786, 2949, 37355, 5926, 1043, 11537, 198, 198, 37121, 796, 23283, 7, 80, 13924, 11, 642, 4304, 405, 11, 26827, 28, 16, 8, 198, 198, 5439, 2840, 796, 657, 198, 4514, 6407, 25, 198, 220, 220, 220, 23607, 15853, 352, 198, 220, 220, 220, 2407, 13, 13564, 10786, 35, 3528, 40, 30, 59, 81, 59, 77, 4458, 268, 8189, 28955, 198, 220, 220, 220, 1100, 796, 2407, 13, 961, 62, 28446, 3419, 628, 220, 220, 220, 611, 18896, 7, 961, 8, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 69, 6, 37, 6255, 706, 1391, 5439, 2840, 92, 9196, 11537, 198 ]
2.45283
212
from setuptools import setup, find_packages long_description = ( open("README.rst", encoding="utf-8").read() + "\n\n" + open("CHANGES.rst", encoding="utf-8").read() ) setup( name="more.body_model", version="0.1dev0", description="load_json infrastructure for Morepath", long_description=long_description, author="Henri Hulski", author_email="[email protected]", keywords="morepath validation", license="BSD", url="https://github.com/morepath/more.body_model", namespace_packages=["more"], packages=find_packages(), include_package_data=True, zip_safe=False, classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], install_requires=["morepath >= 0.17"], extras_require=dict( test=["pytest >= 2.9.1", "pytest-remove-stale-bytecode", "webtest"], coverage=[ "pytest-cov", ], pep8=[ "flake8", "pep8-naming", ], ), )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 6511, 62, 11213, 796, 357, 198, 220, 220, 220, 1280, 7203, 15675, 11682, 13, 81, 301, 1600, 21004, 2625, 40477, 12, 23, 11074, 961, 3419, 198, 220, 220, 220, 1343, 37082, 77, 59, 77, 1, 198, 220, 220, 220, 1343, 1280, 7203, 3398, 15567, 1546, 13, 81, 301, 1600, 21004, 2625, 40477, 12, 23, 11074, 961, 3419, 198, 8, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 3549, 13, 2618, 62, 19849, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 16, 7959, 15, 1600, 198, 220, 220, 220, 6764, 2625, 2220, 62, 17752, 6884, 329, 3125, 6978, 1600, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 1772, 2625, 26055, 380, 367, 5753, 4106, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 831, 380, 13, 71, 5753, 4106, 31, 70, 1031, 17167, 13, 489, 1600, 198, 220, 220, 220, 26286, 2625, 3549, 6978, 21201, 1600, 198, 220, 220, 220, 5964, 2625, 21800, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 3549, 6978, 14, 3549, 13, 2618, 62, 19849, 1600, 198, 220, 220, 220, 25745, 62, 43789, 28, 14692, 3549, 33116, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5317, 1631, 7591, 1240, 7904, 34152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 347, 10305, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 24, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2721, 62, 47911, 28, 14692, 3549, 6978, 18189, 657, 13, 1558, 33116, 198, 220, 220, 220, 33849, 62, 46115, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 14692, 9078, 9288, 18189, 362, 13, 24, 13, 16, 1600, 366, 9078, 9288, 12, 28956, 12, 301, 1000, 12, 26327, 8189, 1600, 366, 12384, 9288, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 5197, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9078, 9288, 12, 66, 709, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 279, 538, 23, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47597, 23, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 431, 79, 23, 12, 77, 3723, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 10612, 198, 8, 198 ]
2.321361
529
from flask import abort from flask_restful_swagger_3 import Resource, swagger from flask_jwt_extended import jwt_required from models.message import Messages, MessagesComment, MessagesUser from models.user import silence_user_fields from database.manager import db
[ 6738, 42903, 1330, 15614, 198, 6738, 42903, 62, 2118, 913, 62, 2032, 7928, 62, 18, 1330, 20857, 11, 1509, 7928, 198, 6738, 42903, 62, 73, 46569, 62, 2302, 1631, 1330, 474, 46569, 62, 35827, 198, 6738, 4981, 13, 20500, 1330, 43534, 11, 43534, 21357, 11, 43534, 12982, 198, 6738, 4981, 13, 7220, 1330, 9550, 62, 7220, 62, 25747, 198, 6738, 6831, 13, 37153, 1330, 20613, 198 ]
4.015152
66
# Teary Expression (6508) from net.swordie.ms.enums import Stat camilla = 1012108 rubble = 4000022 ouch = 5160024 # Grab current fame for quest-induced defame later fame = chr.getStat(Stat.pop) sm.setSpeakerID(camilla) sm.sendNext(''.join(["Hello. Is there something I can... Eeek! " "Is that #t", repr(rubble), "#? Is there a Golem nearby?! I'm scared! WAAAAAAH! \r\n\r\n" "#fUI/UIWindow2.img/QuestIcon/4/0# \r\n" "#i", repr(ouch), "# #t", repr(ouch), "# x 1 \r\n" "#fUI/UIWindow2.img/QuestIcon/6/0# -1"])) sm.giveItem(ouch) chr.setStatAndSendPacket(Stat.pop, fame-1) sm.completeQuest(parentID) sm.setPlayerAsSpeaker() sm.sendNext("#b(You learned the Teary Expression from Camilla. " "However, your Fame went down as a result...)")
[ 2, 309, 451, 88, 41986, 357, 17544, 23, 8, 198, 198, 6738, 2010, 13, 30553, 494, 13, 907, 13, 268, 5700, 1330, 5133, 198, 198, 20991, 5049, 796, 8949, 17, 15711, 198, 198, 25089, 903, 796, 604, 2388, 1828, 198, 7673, 796, 642, 36150, 1731, 198, 198, 2, 25339, 1459, 16117, 329, 1235, 12, 17223, 825, 480, 1568, 198, 69, 480, 796, 442, 81, 13, 1136, 17126, 7, 17126, 13, 12924, 8, 198, 198, 5796, 13, 2617, 5248, 3110, 2389, 7, 20991, 5049, 8, 198, 5796, 13, 21280, 10019, 10786, 4458, 22179, 7, 14692, 15496, 13, 1148, 612, 1223, 314, 460, 986, 412, 68, 988, 0, 366, 198, 1, 3792, 326, 1303, 83, 1600, 41575, 7, 25089, 903, 828, 25113, 30, 1148, 612, 257, 27167, 6716, 12248, 314, 1101, 12008, 0, 370, 17922, 3838, 39, 0, 3467, 81, 59, 77, 59, 81, 59, 77, 1, 198, 1, 2, 69, 10080, 14, 10080, 27703, 17, 13, 9600, 14, 12166, 19578, 14, 19, 14, 15, 2, 3467, 81, 59, 77, 1, 198, 1, 2, 72, 1600, 41575, 7, 7673, 828, 25113, 1303, 83, 1600, 41575, 7, 7673, 828, 25113, 2124, 352, 3467, 81, 59, 77, 1, 198, 1, 2, 69, 10080, 14, 10080, 27703, 17, 13, 9600, 14, 12166, 19578, 14, 21, 14, 15, 2, 532, 16, 8973, 4008, 198, 198, 5796, 13, 26535, 7449, 7, 7673, 8, 198, 354, 81, 13, 2617, 17126, 1870, 25206, 47, 8317, 7, 17126, 13, 12924, 11, 16117, 12, 16, 8, 198, 5796, 13, 20751, 12166, 7, 8000, 2389, 8, 198, 198, 5796, 13, 2617, 14140, 1722, 5248, 3110, 3419, 198, 5796, 13, 21280, 10019, 7203, 2, 65, 7, 1639, 4499, 262, 309, 451, 88, 41986, 422, 7298, 5049, 13, 366, 198, 1, 4864, 11, 534, 18864, 1816, 866, 355, 257, 1255, 23029, 4943 ]
2.479866
298
from import_export import resources from import_export.admin import ImportExportModelAdmin # from import_export.admin import ImportExportActionModelAdmin from django.contrib import admin from .models import TimePost, Client, Project # admin.site.register(TimePost) @admin.register(TimePost) # class TimePostAdmin(ImportExportActionModelAdmin): admin.site.register(Client) admin.site.register(Project)
[ 6738, 1330, 62, 39344, 1330, 4133, 198, 6738, 1330, 62, 39344, 13, 28482, 1330, 17267, 43834, 17633, 46787, 198, 2, 422, 1330, 62, 39344, 13, 28482, 1330, 17267, 43834, 12502, 17633, 46787, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 3862, 6307, 11, 20985, 11, 4935, 628, 628, 198, 2, 13169, 13, 15654, 13, 30238, 7, 7575, 6307, 8, 198, 31, 28482, 13, 30238, 7, 7575, 6307, 8, 198, 2, 1398, 3862, 6307, 46787, 7, 20939, 43834, 12502, 17633, 46787, 2599, 198, 220, 220, 220, 220, 198, 198, 28482, 13, 15654, 13, 30238, 7, 11792, 8, 198, 28482, 13, 15654, 13, 30238, 7, 16775, 8, 198 ]
3.669643
112
from __future__ import print_function from builtins import range from builtins import object import scipy.interpolate as interp import numpy as np import pdb """ This module calculates the galaxy and intrinsic alignment bias using the flexible grid parameterisation of Joachimi and Bridle (2010) p 6-9. Outputs both stochastic and systematic terms rI, bI, rg and bg. """
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 3170, 1040, 1330, 2837, 198, 6738, 3170, 1040, 1330, 2134, 198, 11748, 629, 541, 88, 13, 3849, 16104, 378, 355, 987, 79, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 279, 9945, 198, 37811, 198, 1212, 8265, 43707, 262, 16161, 290, 28327, 19114, 10690, 198, 3500, 262, 12846, 10706, 11507, 5612, 286, 5302, 620, 25236, 290, 28320, 293, 198, 7, 10333, 8, 279, 718, 12, 24, 13, 220, 198, 26410, 82, 1111, 3995, 354, 3477, 290, 17895, 2846, 374, 40, 11, 275, 40, 11, 48670, 290, 275, 70, 13, 220, 220, 220, 220, 220, 220, 220, 198, 198, 37811, 628, 198 ]
3.441441
111
import psycopg2 import re from backend.mg import MGBackend ''' @author: anant bhardwaj @date: Oct 3, 2013 DataHub DB wrapper for backends (only postgres implemented) Any new backend must implement the DataHubConnection interface ''' class DataHubConnection: ''' The following methods works only in superuser mode '''
[ 11748, 17331, 22163, 70, 17, 198, 11748, 302, 198, 198, 6738, 30203, 13, 11296, 1330, 337, 4579, 441, 437, 198, 198, 7061, 6, 198, 31, 9800, 25, 281, 415, 275, 10424, 86, 1228, 198, 31, 4475, 25, 2556, 513, 11, 2211, 198, 198, 6601, 16066, 20137, 29908, 329, 736, 2412, 357, 8807, 1281, 34239, 9177, 8, 198, 7149, 649, 30203, 1276, 3494, 262, 6060, 16066, 32048, 7071, 198, 7061, 6, 198, 198, 4871, 6060, 16066, 32048, 25, 628, 198, 220, 705, 7061, 198, 220, 383, 1708, 5050, 2499, 691, 287, 2208, 7220, 4235, 198, 220, 705, 7061, 198 ]
3.357143
98
# -*- coding: utf-8 -*- from __future__ import unicode_literals from debug_toolbar.panels import Panel from django.utils.translation import ugettext_lazy as _, ungettext import requests.sessions
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 14257, 62, 25981, 5657, 13, 6839, 1424, 1330, 18810, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 11, 555, 1136, 5239, 198, 198, 11748, 7007, 13, 82, 6202, 628, 628 ]
3.030303
66
from models.villain.villain import Villain
[ 6738, 4981, 13, 41082, 391, 13, 41082, 391, 1330, 9757, 391, 201, 198, 201, 198 ]
3.066667
15
t_carros = ("HRV", "Golf", "Argo")#tupla, não pode alterar o valor l_carros = list(t_carros) l_carros[2] = "Focus" t_carros = tuple(l_carros) for x in t_carros: print(x) input()#lista fica aberta
[ 83, 62, 7718, 4951, 796, 5855, 17184, 53, 1600, 366, 38, 4024, 1600, 366, 3163, 2188, 4943, 2, 28047, 489, 64, 11, 299, 28749, 279, 1098, 8343, 283, 267, 1188, 273, 198, 75, 62, 7718, 4951, 796, 1351, 7, 83, 62, 7718, 4951, 8, 198, 75, 62, 7718, 4951, 58, 17, 60, 796, 366, 34888, 1, 220, 198, 83, 62, 7718, 4951, 796, 46545, 7, 75, 62, 7718, 4951, 8, 198, 198, 1640, 2124, 287, 256, 62, 7718, 4951, 25, 198, 220, 220, 220, 3601, 7, 87, 8, 198, 15414, 3419, 2, 4868, 64, 277, 3970, 450, 861, 64 ]
2.030303
99
#!/usr/bin/env python3 # Copyright 2022 The IREE Authors # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception """Utils for accessing Linux device information.""" import re from typing import Optional, Sequence from .benchmark_definition import (execute_cmd_and_get_output, DeviceInfo, PlatformType) def get_linux_cpu_arch(verbose: bool = False) -> str: """Returns CPU Architecture, e.g., 'x86_64'.""" return _get_lscpu_field("Architecture", verbose) def get_linux_cpu_features(verbose: bool = False) -> Sequence[str]: """Returns CPU feature lists, e.g., ['mmx', 'fxsr', 'sse', 'sse2'].""" return _get_lscpu_field("Flags", verbose).split(" ") def get_linux_device_info(device_model: str = "Unknown", cpu_uarch: Optional[str] = None, verbose: bool = False) -> DeviceInfo: """Returns device info for the Linux device. Args: - device_model: the device model name, e.g., 'ThinkStation P520' - cpu_uarch: the CPU microarchitecture, e.g., 'CascadeLake' """ return DeviceInfo( PlatformType.LINUX, # Includes CPU model as it is the key factor of the device performance. model=device_model, # Currently we only have x86, so CPU ABI = CPU arch. cpu_abi=get_linux_cpu_arch(verbose), cpu_uarch=cpu_uarch, cpu_features=get_linux_cpu_features(verbose), # We don't yet support GPU benchmark on Linux devices. gpu_name="Unknown")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 33160, 383, 314, 11587, 46665, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 410, 17, 13, 15, 351, 27140, 15996, 1475, 11755, 13, 198, 2, 4091, 3740, 1378, 297, 14761, 13, 2398, 14, 43, 2149, 24290, 13, 14116, 329, 5964, 1321, 13, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 13315, 27140, 15996, 12, 1069, 4516, 198, 37811, 18274, 4487, 329, 22534, 7020, 3335, 1321, 526, 15931, 198, 198, 11748, 302, 198, 6738, 19720, 1330, 32233, 11, 45835, 198, 198, 6738, 764, 26968, 4102, 62, 46758, 1330, 357, 41049, 62, 28758, 62, 392, 62, 1136, 62, 22915, 11, 16232, 12360, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19193, 6030, 8, 628, 198, 198, 4299, 651, 62, 23289, 62, 36166, 62, 998, 7, 19011, 577, 25, 20512, 796, 10352, 8, 4613, 965, 25, 198, 220, 37227, 35561, 9135, 29778, 11, 304, 13, 70, 1539, 705, 87, 4521, 62, 2414, 30827, 15931, 198, 220, 1441, 4808, 1136, 62, 75, 1416, 19944, 62, 3245, 7203, 19895, 5712, 495, 1600, 15942, 577, 8, 628, 198, 4299, 651, 62, 23289, 62, 36166, 62, 40890, 7, 19011, 577, 25, 20512, 796, 10352, 8, 4613, 45835, 58, 2536, 5974, 198, 220, 37227, 35561, 9135, 3895, 8341, 11, 304, 13, 70, 1539, 37250, 3020, 87, 3256, 705, 21373, 27891, 3256, 705, 82, 325, 3256, 705, 82, 325, 17, 20520, 526, 15931, 198, 220, 1441, 4808, 1136, 62, 75, 1416, 19944, 62, 3245, 7203, 40053, 1600, 15942, 577, 737, 35312, 7203, 366, 8, 628, 198, 4299, 651, 62, 23289, 62, 25202, 62, 10951, 7, 25202, 62, 19849, 25, 965, 796, 366, 20035, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42804, 62, 84, 998, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 25, 20512, 796, 10352, 8, 4613, 16232, 12360, 25, 198, 220, 37227, 35561, 3335, 7508, 329, 262, 7020, 3335, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 532, 3335, 62, 19849, 25, 262, 3335, 2746, 1438, 11, 304, 13, 70, 1539, 705, 22073, 12367, 350, 31211, 6, 198, 220, 220, 220, 532, 42804, 62, 84, 998, 25, 262, 9135, 4580, 998, 5712, 495, 11, 304, 13, 70, 1539, 705, 34, 28966, 43035, 6, 198, 220, 37227, 198, 220, 1441, 16232, 12360, 7, 198, 220, 220, 220, 220, 220, 19193, 6030, 13, 34509, 31235, 11, 198, 220, 220, 220, 220, 220, 1303, 29581, 9135, 2746, 355, 340, 318, 262, 1994, 5766, 286, 262, 3335, 2854, 13, 198, 220, 220, 220, 220, 220, 2746, 28, 25202, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 1303, 16888, 356, 691, 423, 2124, 4521, 11, 523, 9135, 317, 3483, 796, 9135, 3934, 13, 198, 220, 220, 220, 220, 220, 42804, 62, 17914, 28, 1136, 62, 23289, 62, 36166, 62, 998, 7, 19011, 577, 828, 198, 220, 220, 220, 220, 220, 42804, 62, 84, 998, 28, 36166, 62, 84, 998, 11, 198, 220, 220, 220, 220, 220, 42804, 62, 40890, 28, 1136, 62, 23289, 62, 36166, 62, 40890, 7, 19011, 577, 828, 198, 220, 220, 220, 220, 220, 1303, 775, 836, 470, 1865, 1104, 11362, 18335, 319, 7020, 4410, 13, 198, 220, 220, 220, 220, 220, 308, 19944, 62, 3672, 2625, 20035, 4943, 198 ]
2.604502
622
input = """nop +116 acc +12 acc -8 acc +34 jmp +485 acc +42 jmp +388 acc +36 nop +605 acc +17 jmp +411 acc +49 jmp +1 acc -9 jmp +289 jmp +288 jmp +74 acc +4 acc +42 jmp +258 acc +14 acc -13 nop +106 jmp +280 jmp +534 acc +41 acc +40 jmp +224 acc +43 acc +10 nop +240 jmp +211 acc +7 acc -3 acc +7 jmp +1 jmp +559 jmp +415 jmp +528 acc -16 jmp +568 jmp +442 nop +113 jmp +464 acc +42 jmp +336 acc -2 acc +39 jmp +251 acc -4 acc +42 jmp +528 acc +5 acc +30 nop +429 acc +49 jmp +86 acc +15 nop +145 acc -8 jmp +1 jmp +404 acc +26 acc +50 jmp +251 acc +47 jmp +1 acc +45 acc -5 jmp +357 acc +31 jmp +62 acc +25 nop +540 acc -13 acc +0 jmp +72 acc +28 acc +36 nop +475 acc -17 jmp +166 acc +4 acc +20 acc +30 acc +43 jmp +464 acc +4 jmp +94 jmp +44 nop +446 acc -16 nop +267 acc +30 jmp +519 acc +45 acc +47 jmp +62 acc +28 acc -13 acc +45 jmp +239 acc +12 jmp +1 nop +153 jmp +245 jmp +244 acc -12 jmp +308 jmp +190 jmp -86 acc +45 acc +1 acc +15 acc +30 jmp +350 acc +30 jmp +42 jmp +214 jmp +447 acc +24 jmp +453 acc +29 acc +42 jmp +302 acc -4 acc +33 jmp +447 acc -18 acc +15 acc -2 jmp -24 jmp -4 jmp +35 acc +0 jmp -83 acc -13 nop +437 acc -15 jmp +95 nop +289 jmp +348 acc +17 acc +23 acc +45 jmp +359 acc +18 jmp +352 acc +0 acc +13 acc +25 acc +11 jmp +331 acc -2 jmp +19 jmp -103 acc +34 acc +48 jmp +141 acc +44 jmp +1 acc +42 jmp +374 acc +45 acc +35 nop -37 acc -2 jmp +244 jmp +151 acc +36 acc +4 nop -64 jmp +231 nop +321 nop +291 acc +16 jmp -161 acc +17 nop +412 nop -89 nop +179 jmp -8 nop -167 acc +44 acc +4 jmp +42 acc +22 acc +28 acc +22 jmp +192 acc -18 acc -7 jmp -70 acc +27 acc +25 jmp +312 acc +50 acc -16 jmp -121 acc +14 acc +43 nop -111 jmp -54 nop +39 acc -4 acc +41 jmp +236 acc -11 jmp -118 jmp +150 acc -15 jmp -141 acc +14 jmp +1 acc -8 jmp -96 acc +11 nop -95 jmp +1 acc +47 jmp -113 nop +257 jmp +35 acc +45 acc +25 acc -6 jmp +31 jmp +1 nop +153 nop -39 jmp +25 acc +0 acc +50 jmp +362 acc -15 acc +0 acc +31 acc +22 jmp +69 acc -18 acc +24 jmp -38 acc +39 acc -10 acc +40 jmp +6 jmp +143 jmp -44 acc +32 acc -8 jmp +358 jmp +248 nop +343 nop -11 jmp +116 jmp +74 jmp +120 acc +37 acc -19 acc +36 jmp +341 acc +49 jmp -164 acc +14 acc +13 acc +0 acc +50 jmp +291 jmp +1 jmp -79 acc +19 jmp +243 acc +25 acc -13 acc -12 acc -7 jmp +228 jmp -81 acc +18 nop -163 acc +0 acc +8 jmp +212 acc +38 acc -12 jmp +6 acc +24 acc +42 acc +21 acc +12 jmp +136 acc -12 acc -2 acc +46 acc +35 jmp +290 acc +6 acc +36 jmp -182 acc +14 acc +7 jmp +228 jmp -19 acc +48 acc +25 jmp +106 jmp +70 acc +24 jmp +1 acc +24 acc +29 jmp -156 nop +296 acc +34 jmp +115 acc -12 acc +41 jmp +28 jmp +165 acc +0 acc +24 acc +42 acc +27 jmp +106 acc +24 acc -11 acc +4 acc -6 jmp -180 acc -2 jmp +2 jmp -314 acc -9 acc +1 jmp -327 acc -8 acc +7 acc -6 acc +32 jmp -157 acc +10 acc +10 acc -16 jmp +278 jmp +6 acc +0 nop +178 acc +26 jmp +231 jmp +175 acc +29 acc +36 acc +7 jmp -255 acc +46 acc +45 acc +7 nop -7 jmp -101 jmp +3 acc -13 jmp -140 nop -115 jmp +1 jmp -336 acc +9 acc +9 nop -68 acc -3 jmp -37 acc -13 nop +128 jmp +1 jmp -90 acc +49 jmp -124 acc +16 acc +9 jmp +212 acc -18 jmp -303 acc +33 acc +23 acc +26 jmp +140 acc +25 nop -123 acc +22 jmp +148 acc +1 acc +44 jmp -352 acc -11 jmp +33 acc +16 nop -199 acc +15 jmp -351 jmp +5 jmp -357 nop -284 acc +32 jmp -43 acc +5 acc +23 acc +3 jmp +59 acc -10 nop -266 nop +43 jmp +79 acc +21 jmp -42 acc +35 acc +5 jmp +68 acc +24 acc -4 jmp -155 acc +45 jmp +154 jmp -311 acc +10 acc +17 acc +39 jmp -297 jmp -175 acc +49 jmp -151 acc -4 acc -9 jmp -219 acc +48 acc -17 acc +30 jmp -9 acc +10 jmp -61 nop -396 acc +11 acc +37 jmp -331 acc +14 acc +22 acc +30 acc +2 jmp -43 nop -265 acc +5 acc +40 acc -15 jmp -35 acc -3 acc +24 jmp -415 acc +0 jmp +98 acc +17 acc +25 nop -48 acc -17 jmp -302 acc +11 acc +11 jmp -181 acc +46 acc +19 jmp -331 nop +90 acc +45 acc +8 jmp -237 acc -11 nop -421 jmp -145 acc -16 acc +47 jmp -387 acc +50 jmp -375 acc +38 jmp +1 jmp -225 acc +47 acc +39 jmp +69 acc +46 acc +41 jmp -89 acc +19 jmp -453 nop +63 acc +18 jmp -386 nop -243 acc +48 jmp +70 acc +25 jmp -191 acc +48 acc +31 jmp +40 acc -10 jmp -46 acc +45 jmp -48 jmp -12 acc +16 acc -16 jmp -120 acc -10 jmp +1 acc -10 jmp -124 acc +48 acc +15 acc +8 acc -15 jmp -66 nop -130 acc +16 acc +10 acc +31 jmp -375 acc +9 acc +20 jmp -37 acc +14 jmp -134 acc -9 acc -6 jmp -120 acc +24 acc +17 acc +49 jmp -332 acc +7 acc +35 nop -149 jmp -103 jmp -277 acc -1 acc +28 nop -211 jmp -371 nop -129 acc -15 acc +6 acc +19 jmp -120 acc -6 jmp -79 acc +0 jmp -64 acc +33 acc +33 jmp -440 jmp -85 acc +37 nop -183 acc +24 acc +42 jmp -545 acc +50 acc +6 jmp -7 nop +8 acc +1 jmp -359 acc -1 nop -388 acc -7 acc +28 jmp -211 jmp -384 acc +32 acc +16 acc +40 jmp +17 acc +0 acc +43 acc -14 jmp -512 nop -264 jmp -474 nop -543 acc +17 nop -288 jmp -38 jmp +24 acc -4 jmp -321 acc +49 acc -16 jmp -532 acc +0 acc -11 acc -16 jmp -104 acc -12 jmp -301 acc +6 nop -498 acc +0 jmp -126 nop -127 acc +1 jmp -6 acc +40 jmp -547 acc +16 acc +18 jmp -123 acc -5 acc +27 acc +44 acc +15 jmp -22 acc +48 acc -18 jmp -350 acc -7 acc +30 acc +26 jmp +1 jmp +1""" lines = input.split("\n") commands = [] for line in lines: c, i = line.split(' ') if c == "nop": com = nop() com.parse_args(i) commands.append(com) elif c == "jmp": com = jmp() com.parse_args(i) commands.append(com) elif c == "acc": com = acc() com.parse_args(i) commands.append(com) #print(commands) #s = stack(commands) #while(s.next()): # pass #print(s.acc) for it in range(len(commands)): commands_2 = commands[:] if isinstance(commands[it], nop): com = jmp() com.parse_args(commands[it].args) commands_2[it] = com if isinstance(commands[it], jmp): com = nop() commands_2[it] = com if isinstance(commands[it], acc): continue s2 = stack_2(commands_2) while(s2.next()): pass if s2.sp == len(commands_2): print(s2.acc) break
[ 15414, 796, 37227, 77, 404, 1343, 18298, 201, 198, 4134, 1343, 1065, 201, 198, 4134, 532, 23, 201, 198, 4134, 1343, 2682, 201, 198, 73, 3149, 1343, 32642, 201, 198, 4134, 1343, 3682, 201, 198, 73, 3149, 1343, 30460, 201, 198, 4134, 1343, 2623, 201, 198, 77, 404, 1343, 32417, 201, 198, 4134, 1343, 1558, 201, 198, 73, 3149, 1343, 42224, 201, 198, 4134, 1343, 2920, 201, 198, 73, 3149, 1343, 16, 201, 198, 4134, 532, 24, 201, 198, 73, 3149, 1343, 27693, 201, 198, 73, 3149, 1343, 25270, 201, 198, 73, 3149, 1343, 4524, 201, 198, 4134, 1343, 19, 201, 198, 4134, 1343, 3682, 201, 198, 73, 3149, 1343, 25600, 201, 198, 4134, 1343, 1415, 201, 198, 4134, 532, 1485, 201, 198, 77, 404, 1343, 15801, 201, 198, 73, 3149, 1343, 21033, 201, 198, 73, 3149, 1343, 20, 2682, 201, 198, 4134, 1343, 3901, 201, 198, 4134, 1343, 1821, 201, 198, 73, 3149, 1343, 24137, 201, 198, 4134, 1343, 3559, 201, 198, 4134, 1343, 940, 201, 198, 77, 404, 1343, 16102, 201, 198, 73, 3149, 1343, 21895, 201, 198, 4134, 1343, 22, 201, 198, 4134, 532, 18, 201, 198, 4134, 1343, 22, 201, 198, 73, 3149, 1343, 16, 201, 198, 73, 3149, 1343, 38605, 201, 198, 73, 3149, 1343, 35038, 201, 198, 73, 3149, 1343, 49351, 201, 198, 4134, 532, 1433, 201, 198, 73, 3149, 1343, 49211, 201, 198, 73, 3149, 1343, 39506, 201, 198, 77, 404, 1343, 16616, 201, 198, 73, 3149, 1343, 44578, 201, 198, 4134, 1343, 3682, 201, 198, 73, 3149, 1343, 29211, 201, 198, 4134, 532, 17, 201, 198, 4134, 1343, 2670, 201, 198, 73, 3149, 1343, 28072, 201, 198, 4134, 532, 19, 201, 198, 4134, 1343, 3682, 201, 198, 73, 3149, 1343, 49351, 201, 198, 4134, 1343, 20, 201, 198, 4134, 1343, 1270, 201, 198, 77, 404, 1343, 11785, 201, 198, 4134, 1343, 2920, 201, 198, 73, 3149, 1343, 4521, 201, 198, 4134, 1343, 1314, 201, 198, 77, 404, 1343, 18781, 201, 198, 4134, 532, 23, 201, 198, 73, 3149, 1343, 16, 201, 198, 73, 3149, 1343, 26429, 201, 198, 4134, 1343, 2075, 201, 198, 4134, 1343, 1120, 201, 198, 73, 3149, 1343, 28072, 201, 198, 4134, 1343, 2857, 201, 198, 73, 3149, 1343, 16, 201, 198, 4134, 1343, 2231, 201, 198, 4134, 532, 20, 201, 198, 73, 3149, 1343, 27277, 201, 198, 4134, 1343, 3132, 201, 198, 73, 3149, 1343, 5237, 201, 198, 4134, 1343, 1495, 201, 198, 77, 404, 1343, 35005, 201, 198, 4134, 532, 1485, 201, 198, 4134, 1343, 15, 201, 198, 73, 3149, 1343, 4761, 201, 198, 4134, 1343, 2078, 201, 198, 4134, 1343, 2623, 201, 198, 77, 404, 1343, 32576, 201, 198, 4134, 532, 1558, 201, 198, 73, 3149, 1343, 23055, 201, 198, 4134, 1343, 19, 201, 198, 4134, 1343, 1238, 201, 198, 4134, 1343, 1270, 201, 198, 4134, 1343, 3559, 201, 198, 73, 3149, 1343, 44578, 201, 198, 4134, 1343, 19, 201, 198, 73, 3149, 1343, 5824, 201, 198, 73, 3149, 1343, 2598, 201, 198, 77, 404, 1343, 27260, 201, 198, 4134, 532, 1433, 201, 198, 77, 404, 1343, 25674, 201, 198, 4134, 1343, 1270, 201, 198, 73, 3149, 1343, 47785, 201, 198, 4134, 1343, 2231, 201, 198, 4134, 1343, 2857, 201, 198, 73, 3149, 1343, 5237, 201, 198, 4134, 1343, 2078, 201, 198, 4134, 532, 1485, 201, 198, 4134, 1343, 2231, 201, 198, 73, 3149, 1343, 23516, 201, 198, 4134, 1343, 1065, 201, 198, 73, 3149, 1343, 16, 201, 198, 77, 404, 1343, 21395, 201, 198, 73, 3149, 1343, 22995, 201, 198, 73, 3149, 1343, 25707, 201, 198, 4134, 532, 1065, 201, 198, 73, 3149, 1343, 21495, 201, 198, 73, 3149, 1343, 19782, 201, 198, 73, 3149, 532, 4521, 201, 198, 4134, 1343, 2231, 201, 198, 4134, 1343, 16, 201, 198, 4134, 1343, 1314, 201, 198, 4134, 1343, 1270, 201, 198, 73, 3149, 1343, 14877, 201, 198, 4134, 1343, 1270, 201, 198, 73, 3149, 1343, 3682, 201, 198, 73, 3149, 1343, 22291, 201, 198, 73, 3149, 1343, 34825, 201, 198, 4134, 1343, 1731, 201, 198, 73, 3149, 1343, 36625, 201, 198, 4134, 1343, 1959, 201, 198, 4134, 1343, 3682, 201, 198, 73, 3149, 1343, 22709, 201, 198, 4134, 532, 19, 201, 198, 4134, 1343, 2091, 201, 198, 73, 3149, 1343, 34825, 201, 198, 4134, 532, 1507, 201, 198, 4134, 1343, 1314, 201, 198, 4134, 532, 17, 201, 198, 73, 3149, 532, 1731, 201, 198, 73, 3149, 532, 19, 201, 198, 73, 3149, 1343, 2327, 201, 198, 4134, 1343, 15, 201, 198, 73, 3149, 532, 5999, 201, 198, 4134, 532, 1485, 201, 198, 77, 404, 1343, 43284, 201, 198, 4134, 532, 1314, 201, 198, 73, 3149, 1343, 3865, 201, 198, 77, 404, 1343, 27693, 201, 198, 73, 3149, 1343, 28978, 201, 198, 4134, 1343, 1558, 201, 198, 4134, 1343, 1954, 201, 198, 4134, 1343, 2231, 201, 198, 73, 3149, 1343, 30743, 201, 198, 4134, 1343, 1507, 201, 198, 73, 3149, 1343, 33394, 201, 198, 4134, 1343, 15, 201, 198, 4134, 1343, 1485, 201, 198, 4134, 1343, 1495, 201, 198, 4134, 1343, 1157, 201, 198, 73, 3149, 1343, 31697, 201, 198, 4134, 532, 17, 201, 198, 73, 3149, 1343, 1129, 201, 198, 73, 3149, 532, 15197, 201, 198, 4134, 1343, 2682, 201, 198, 4134, 1343, 2780, 201, 198, 73, 3149, 1343, 23756, 201, 198, 4134, 1343, 2598, 201, 198, 73, 3149, 1343, 16, 201, 198, 4134, 1343, 3682, 201, 198, 73, 3149, 1343, 31020, 201, 198, 4134, 1343, 2231, 201, 198, 4134, 1343, 2327, 201, 198, 77, 404, 532, 2718, 201, 198, 4134, 532, 17, 201, 198, 73, 3149, 1343, 25707, 201, 198, 73, 3149, 1343, 24309, 201, 198, 4134, 1343, 2623, 201, 198, 4134, 1343, 19, 201, 198, 77, 404, 532, 2414, 201, 198, 73, 3149, 1343, 25667, 201, 198, 77, 404, 1343, 36453, 201, 198, 77, 404, 1343, 33551, 201, 198, 4134, 1343, 1433, 201, 198, 73, 3149, 532, 25948, 201, 198, 4134, 1343, 1558, 201, 198, 77, 404, 1343, 39226, 201, 198, 77, 404, 532, 4531, 201, 198, 77, 404, 1343, 21738, 201, 198, 73, 3149, 532, 23, 201, 198, 77, 404, 532, 21940, 201, 198, 4134, 1343, 2598, 201, 198, 4134, 1343, 19, 201, 198, 73, 3149, 1343, 3682, 201, 198, 4134, 1343, 1828, 201, 198, 4134, 1343, 2078, 201, 198, 4134, 1343, 1828, 201, 198, 73, 3149, 1343, 17477, 201, 198, 4134, 532, 1507, 201, 198, 4134, 532, 22, 201, 198, 73, 3149, 532, 2154, 201, 198, 4134, 1343, 1983, 201, 198, 4134, 1343, 1495, 201, 198, 73, 3149, 1343, 27970, 201, 198, 4134, 1343, 1120, 201, 198, 4134, 532, 1433, 201, 198, 73, 3149, 532, 19244, 201, 198, 4134, 1343, 1415, 201, 198, 4134, 1343, 3559, 201, 198, 77, 404, 532, 16243, 201, 198, 73, 3149, 532, 4051, 201, 198, 77, 404, 1343, 2670, 201, 198, 4134, 532, 19, 201, 198, 4134, 1343, 3901, 201, 198, 73, 3149, 1343, 24940, 201, 198, 4134, 532, 1157, 201, 198, 73, 3149, 532, 16817, 201, 198, 73, 3149, 1343, 8628, 201, 198, 4134, 532, 1314, 201, 198, 73, 3149, 532, 23756, 201, 198, 4134, 1343, 1415, 201, 198, 73, 3149, 1343, 16, 201, 198, 4134, 532, 23, 201, 198, 73, 3149, 532, 4846, 201, 198, 4134, 1343, 1157, 201, 198, 77, 404, 532, 3865, 201, 198, 73, 3149, 1343, 16, 201, 198, 4134, 1343, 2857, 201, 198, 73, 3149, 532, 16616, 201, 198, 77, 404, 1343, 28676, 201, 198, 73, 3149, 1343, 2327, 201, 198, 4134, 1343, 2231, 201, 198, 4134, 1343, 1495, 201, 198, 4134, 532, 21, 201, 198, 73, 3149, 1343, 3132, 201, 198, 73, 3149, 1343, 16, 201, 198, 77, 404, 1343, 21395, 201, 198, 77, 404, 532, 2670, 201, 198, 73, 3149, 1343, 1495, 201, 198, 4134, 1343, 15, 201, 198, 4134, 1343, 1120, 201, 198, 73, 3149, 1343, 35667, 201, 198, 4134, 532, 1314, 201, 198, 4134, 1343, 15, 201, 198, 4134, 1343, 3132, 201, 198, 4134, 1343, 1828, 201, 198, 73, 3149, 1343, 3388, 201, 198, 4134, 532, 1507, 201, 198, 4134, 1343, 1731, 201, 198, 73, 3149, 532, 2548, 201, 198, 4134, 1343, 2670, 201, 198, 4134, 532, 940, 201, 198, 4134, 1343, 1821, 201, 198, 73, 3149, 1343, 21, 201, 198, 73, 3149, 1343, 21139, 201, 198, 73, 3149, 532, 2598, 201, 198, 4134, 1343, 2624, 201, 198, 4134, 532, 23, 201, 198, 73, 3149, 1343, 31128, 201, 198, 73, 3149, 1343, 23045, 201, 198, 77, 404, 1343, 32118, 201, 198, 77, 404, 532, 1157, 201, 198, 73, 3149, 1343, 18298, 201, 198, 73, 3149, 1343, 4524, 201, 198, 73, 3149, 1343, 10232, 201, 198, 4134, 1343, 2718, 201, 198, 4134, 532, 1129, 201, 198, 4134, 1343, 2623, 201, 198, 73, 3149, 1343, 33660, 201, 198, 4134, 1343, 2920, 201, 198, 73, 3149, 532, 23237, 201, 198, 4134, 1343, 1415, 201, 198, 4134, 1343, 1485, 201, 198, 4134, 1343, 15, 201, 198, 4134, 1343, 1120, 201, 198, 73, 3149, 1343, 33551, 201, 198, 73, 3149, 1343, 16, 201, 198, 73, 3149, 532, 3720, 201, 198, 4134, 1343, 1129, 201, 198, 73, 3149, 1343, 26660, 201, 198, 4134, 1343, 1495, 201, 198, 4134, 532, 1485, 201, 198, 4134, 532, 1065, 201, 198, 4134, 532, 22, 201, 198, 73, 3149, 1343, 23815, 201, 198, 73, 3149, 532, 6659, 201, 198, 4134, 1343, 1507, 201, 198, 77, 404, 532, 24136, 201, 198, 4134, 1343, 15, 201, 198, 4134, 1343, 23, 201, 198, 73, 3149, 1343, 21777, 201, 198, 4134, 1343, 2548, 201, 198, 4134, 532, 1065, 201, 198, 73, 3149, 1343, 21, 201, 198, 4134, 1343, 1731, 201, 198, 4134, 1343, 3682, 201, 198, 4134, 1343, 2481, 201, 198, 4134, 1343, 1065, 201, 198, 73, 3149, 1343, 20809, 201, 198, 4134, 532, 1065, 201, 198, 4134, 532, 17, 201, 198, 4134, 1343, 3510, 201, 198, 4134, 1343, 2327, 201, 198, 73, 3149, 1343, 24369, 201, 198, 4134, 1343, 21, 201, 198, 4134, 1343, 2623, 201, 198, 73, 3149, 532, 24294, 201, 198, 4134, 1343, 1415, 201, 198, 4134, 1343, 22, 201, 198, 73, 3149, 1343, 23815, 201, 198, 73, 3149, 532, 1129, 201, 198, 4134, 1343, 2780, 201, 198, 4134, 1343, 1495, 201, 198, 73, 3149, 1343, 15801, 201, 198, 73, 3149, 1343, 2154, 201, 198, 4134, 1343, 1731, 201, 198, 73, 3149, 1343, 16, 201, 198, 4134, 1343, 1731, 201, 198, 4134, 1343, 1959, 201, 198, 73, 3149, 532, 21599, 201, 198, 77, 404, 1343, 27137, 201, 198, 4134, 1343, 2682, 201, 198, 73, 3149, 1343, 15363, 201, 198, 4134, 532, 1065, 201, 198, 4134, 1343, 3901, 201, 198, 73, 3149, 1343, 2078, 201, 198, 73, 3149, 1343, 20986, 201, 198, 4134, 1343, 15, 201, 198, 4134, 1343, 1731, 201, 198, 4134, 1343, 3682, 201, 198, 4134, 1343, 1983, 201, 198, 73, 3149, 1343, 15801, 201, 198, 4134, 1343, 1731, 201, 198, 4134, 532, 1157, 201, 198, 4134, 1343, 19, 201, 198, 4134, 532, 21, 201, 198, 73, 3149, 532, 15259, 201, 198, 4134, 532, 17, 201, 198, 73, 3149, 1343, 17, 201, 198, 73, 3149, 532, 33638, 201, 198, 4134, 532, 24, 201, 198, 4134, 1343, 16, 201, 198, 73, 3149, 532, 34159, 201, 198, 4134, 532, 23, 201, 198, 4134, 1343, 22, 201, 198, 4134, 532, 21, 201, 198, 4134, 1343, 2624, 201, 198, 73, 3149, 532, 18458, 201, 198, 4134, 1343, 940, 201, 198, 4134, 1343, 940, 201, 198, 4134, 532, 1433, 201, 198, 73, 3149, 1343, 25870, 201, 198, 73, 3149, 1343, 21, 201, 198, 4134, 1343, 15, 201, 198, 77, 404, 1343, 23188, 201, 198, 4134, 1343, 2075, 201, 198, 73, 3149, 1343, 25667, 201, 198, 73, 3149, 1343, 17430, 201, 198, 4134, 1343, 1959, 201, 198, 4134, 1343, 2623, 201, 198, 4134, 1343, 22, 201, 198, 73, 3149, 532, 13381, 201, 198, 4134, 1343, 3510, 201, 198, 4134, 1343, 2231, 201, 198, 4134, 1343, 22, 201, 198, 77, 404, 532, 22, 201, 198, 73, 3149, 532, 8784, 201, 198, 73, 3149, 1343, 18, 201, 198, 4134, 532, 1485, 201, 198, 73, 3149, 532, 15187, 201, 198, 77, 404, 532, 15363, 201, 198, 73, 3149, 1343, 16, 201, 198, 73, 3149, 532, 29211, 201, 198, 4134, 1343, 24, 201, 198, 4134, 1343, 24, 201, 198, 77, 404, 532, 3104, 201, 198, 4134, 532, 18, 201, 198, 73, 3149, 532, 2718, 201, 198, 4134, 532, 1485, 201, 198, 77, 404, 1343, 12762, 201, 198, 73, 3149, 1343, 16, 201, 198, 73, 3149, 532, 3829, 201, 198, 4134, 1343, 2920, 201, 198, 73, 3149, 532, 17464, 201, 198, 4134, 1343, 1433, 201, 198, 4134, 1343, 24, 201, 198, 73, 3149, 1343, 21777, 201, 198, 4134, 532, 1507, 201, 198, 73, 3149, 532, 22572, 201, 198, 4134, 1343, 2091, 201, 198, 4134, 1343, 1954, 201, 198, 4134, 1343, 2075, 201, 198, 73, 3149, 1343, 15187, 201, 198, 4134, 1343, 1495, 201, 198, 77, 404, 532, 10163, 201, 198, 4134, 1343, 1828, 201, 198, 73, 3149, 1343, 18294, 201, 198, 4134, 1343, 16, 201, 198, 4134, 1343, 2598, 201, 198, 73, 3149, 532, 33394, 201, 198, 4134, 532, 1157, 201, 198, 73, 3149, 1343, 2091, 201, 198, 4134, 1343, 1433, 201, 198, 77, 404, 532, 19104, 201, 198, 4134, 1343, 1314, 201, 198, 73, 3149, 532, 35273, 201, 198, 73, 3149, 1343, 20, 201, 198, 73, 3149, 532, 27277, 201, 198, 77, 404, 532, 30336, 201, 198, 4134, 1343, 2624, 201, 198, 73, 3149, 532, 3559, 201, 198, 4134, 1343, 20, 201, 198, 4134, 1343, 1954, 201, 198, 4134, 1343, 18, 201, 198, 73, 3149, 1343, 3270, 201, 198, 4134, 532, 940, 201, 198, 77, 404, 532, 25540, 201, 198, 77, 404, 1343, 3559, 201, 198, 73, 3149, 1343, 3720, 201, 198, 4134, 1343, 2481, 201, 198, 73, 3149, 532, 3682, 201, 198, 4134, 1343, 2327, 201, 198, 4134, 1343, 20, 201, 198, 73, 3149, 1343, 3104, 201, 198, 4134, 1343, 1731, 201, 198, 4134, 532, 19, 201, 198, 73, 3149, 532, 18742, 201, 198, 4134, 1343, 2231, 201, 198, 73, 3149, 1343, 21526, 201, 198, 73, 3149, 532, 36244, 201, 198, 4134, 1343, 940, 201, 198, 4134, 1343, 1558, 201, 198, 4134, 1343, 2670, 201, 198, 73, 3149, 532, 26561, 201, 198, 73, 3149, 532, 17430, 201, 198, 4134, 1343, 2920, 201, 198, 73, 3149, 532, 24309, 201, 198, 4134, 532, 19, 201, 198, 4134, 532, 24, 201, 198, 73, 3149, 532, 28896, 201, 198, 4134, 1343, 2780, 201, 198, 4134, 532, 1558, 201, 198, 4134, 1343, 1270, 201, 198, 73, 3149, 532, 24, 201, 198, 4134, 1343, 940, 201, 198, 73, 3149, 532, 5333, 201, 198, 77, 404, 532, 34107, 201, 198, 4134, 1343, 1157, 201, 198, 4134, 1343, 2718, 201, 198, 73, 3149, 532, 31697, 201, 198, 4134, 1343, 1415, 201, 198, 4134, 1343, 1828, 201, 198, 4134, 1343, 1270, 201, 198, 4134, 1343, 17, 201, 198, 73, 3149, 532, 3559, 201, 198, 77, 404, 532, 22980, 201, 198, 4134, 1343, 20, 201, 198, 4134, 1343, 1821, 201, 198, 4134, 532, 1314, 201, 198, 73, 3149, 532, 2327, 201, 198, 4134, 532, 18, 201, 198, 4134, 1343, 1731, 201, 198, 73, 3149, 532, 35038, 201, 198, 4134, 1343, 15, 201, 198, 73, 3149, 1343, 4089, 201, 198, 4134, 1343, 1558, 201, 198, 4134, 1343, 1495, 201, 198, 77, 404, 532, 2780, 201, 198, 4134, 532, 1558, 201, 198, 73, 3149, 532, 22709, 201, 198, 4134, 1343, 1157, 201, 198, 4134, 1343, 1157, 201, 198, 73, 3149, 532, 27057, 201, 198, 4134, 1343, 3510, 201, 198, 4134, 1343, 1129, 201, 198, 73, 3149, 532, 31697, 201, 198, 77, 404, 1343, 3829, 201, 198, 4134, 1343, 2231, 201, 198, 4134, 1343, 23, 201, 198, 73, 3149, 532, 24693, 201, 198, 4134, 532, 1157, 201, 198, 77, 404, 532, 46636, 201, 198, 73, 3149, 532, 18781, 201, 198, 4134, 532, 1433, 201, 198, 4134, 1343, 2857, 201, 198, 73, 3149, 532, 32220, 201, 198, 4134, 1343, 1120, 201, 198, 73, 3149, 532, 22318, 201, 198, 4134, 1343, 2548, 201, 198, 73, 3149, 1343, 16, 201, 198, 73, 3149, 532, 18182, 201, 198, 4134, 1343, 2857, 201, 198, 4134, 1343, 2670, 201, 198, 73, 3149, 1343, 3388, 201, 198, 4134, 1343, 3510, 201, 198, 4134, 1343, 3901, 201, 198, 73, 3149, 532, 4531, 201, 198, 4134, 1343, 1129, 201, 198, 73, 3149, 532, 36625, 201, 198, 77, 404, 1343, 5066, 201, 198, 4134, 1343, 1507, 201, 198, 73, 3149, 532, 21734, 201, 198, 77, 404, 532, 26660, 201, 198, 4134, 1343, 2780, 201, 198, 73, 3149, 1343, 2154, 201, 198, 4134, 1343, 1495, 201, 198, 73, 3149, 532, 26492, 201, 198, 4134, 1343, 2780, 201, 198, 4134, 1343, 3132, 201, 198, 73, 3149, 1343, 1821, 201, 198, 4134, 532, 940, 201, 198, 73, 3149, 532, 3510, 201, 198, 4134, 1343, 2231, 201, 198, 73, 3149, 532, 2780, 201, 198, 73, 3149, 532, 1065, 201, 198, 4134, 1343, 1433, 201, 198, 4134, 532, 1433, 201, 198, 73, 3149, 532, 10232, 201, 198, 4134, 532, 940, 201, 198, 73, 3149, 1343, 16, 201, 198, 4134, 532, 940, 201, 198, 73, 3149, 532, 17464, 201, 198, 4134, 1343, 2780, 201, 198, 4134, 1343, 1314, 201, 198, 4134, 1343, 23, 201, 198, 4134, 532, 1314, 201, 198, 73, 3149, 532, 2791, 201, 198, 77, 404, 532, 12952, 201, 198, 4134, 1343, 1433, 201, 198, 4134, 1343, 940, 201, 198, 4134, 1343, 3132, 201, 198, 73, 3149, 532, 22318, 201, 198, 4134, 1343, 24, 201, 198, 4134, 1343, 1238, 201, 198, 73, 3149, 532, 2718, 201, 198, 4134, 1343, 1415, 201, 198, 73, 3149, 532, 19880, 201, 198, 4134, 532, 24, 201, 198, 4134, 532, 21, 201, 198, 73, 3149, 532, 10232, 201, 198, 4134, 1343, 1731, 201, 198, 4134, 1343, 1558, 201, 198, 4134, 1343, 2920, 201, 198, 73, 3149, 532, 32148, 201, 198, 4134, 1343, 22, 201, 198, 4134, 1343, 2327, 201, 198, 77, 404, 532, 19442, 201, 198, 73, 3149, 532, 15197, 201, 198, 73, 3149, 532, 27019, 201, 198, 4134, 532, 16, 201, 198, 4134, 1343, 2078, 201, 198, 77, 404, 532, 21895, 201, 198, 73, 3149, 532, 38056, 201, 198, 77, 404, 532, 18741, 201, 198, 4134, 532, 1314, 201, 198, 4134, 1343, 21, 201, 198, 4134, 1343, 1129, 201, 198, 73, 3149, 532, 10232, 201, 198, 4134, 532, 21, 201, 198, 73, 3149, 532, 3720, 201, 198, 4134, 1343, 15, 201, 198, 73, 3149, 532, 2414, 201, 198, 4134, 1343, 2091, 201, 198, 4134, 1343, 2091, 201, 198, 73, 3149, 532, 25644, 201, 198, 73, 3149, 532, 5332, 201, 198, 4134, 1343, 2718, 201, 198, 77, 404, 532, 24839, 201, 198, 4134, 1343, 1731, 201, 198, 4134, 1343, 3682, 201, 198, 73, 3149, 532, 45326, 201, 198, 4134, 1343, 1120, 201, 198, 4134, 1343, 21, 201, 198, 73, 3149, 532, 22, 201, 198, 77, 404, 1343, 23, 201, 198, 4134, 1343, 16, 201, 198, 73, 3149, 532, 30743, 201, 198, 4134, 532, 16, 201, 198, 77, 404, 532, 30460, 201, 198, 4134, 532, 22, 201, 198, 4134, 1343, 2078, 201, 198, 73, 3149, 532, 21895, 201, 198, 73, 3149, 532, 22842, 201, 198, 4134, 1343, 2624, 201, 198, 4134, 1343, 1433, 201, 198, 4134, 1343, 1821, 201, 198, 73, 3149, 1343, 1558, 201, 198, 4134, 1343, 15, 201, 198, 4134, 1343, 3559, 201, 198, 4134, 532, 1415, 201, 198, 73, 3149, 532, 25836, 201, 198, 77, 404, 532, 18897, 201, 198, 73, 3149, 532, 38652, 201, 198, 77, 404, 532, 20, 3559, 201, 198, 4134, 1343, 1558, 201, 198, 77, 404, 532, 25270, 201, 198, 73, 3149, 532, 2548, 201, 198, 73, 3149, 1343, 1731, 201, 198, 4134, 532, 19, 201, 198, 73, 3149, 532, 36453, 201, 198, 4134, 1343, 2920, 201, 198, 4134, 532, 1433, 201, 198, 73, 3149, 532, 20, 2624, 201, 198, 4134, 1343, 15, 201, 198, 4134, 532, 1157, 201, 198, 4134, 532, 1433, 201, 198, 73, 3149, 532, 13464, 201, 198, 4134, 532, 1065, 201, 198, 73, 3149, 532, 18938, 201, 198, 4134, 1343, 21, 201, 198, 77, 404, 532, 36260, 201, 198, 4134, 1343, 15, 201, 198, 73, 3149, 532, 19420, 201, 198, 77, 404, 532, 16799, 201, 198, 4134, 1343, 16, 201, 198, 73, 3149, 532, 21, 201, 198, 4134, 1343, 1821, 201, 198, 73, 3149, 532, 20, 2857, 201, 198, 4134, 1343, 1433, 201, 198, 4134, 1343, 1507, 201, 198, 73, 3149, 532, 10163, 201, 198, 4134, 532, 20, 201, 198, 4134, 1343, 1983, 201, 198, 4134, 1343, 2598, 201, 198, 4134, 1343, 1314, 201, 198, 73, 3149, 532, 1828, 201, 198, 4134, 1343, 2780, 201, 198, 4134, 532, 1507, 201, 198, 73, 3149, 532, 14877, 201, 198, 4134, 532, 22, 201, 198, 4134, 1343, 1270, 201, 198, 4134, 1343, 2075, 201, 198, 73, 3149, 1343, 16, 201, 198, 73, 3149, 1343, 16, 37811, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 6615, 796, 5128, 13, 35312, 7203, 59, 77, 4943, 201, 198, 9503, 1746, 796, 17635, 201, 198, 201, 198, 1640, 1627, 287, 3951, 25, 201, 198, 220, 220, 220, 269, 11, 1312, 796, 1627, 13, 35312, 10786, 705, 8, 201, 198, 220, 220, 220, 611, 269, 6624, 366, 77, 404, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 796, 299, 404, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 13, 29572, 62, 22046, 7, 72, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9729, 13, 33295, 7, 785, 8, 201, 198, 220, 220, 220, 1288, 361, 269, 6624, 366, 73, 3149, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 796, 474, 3149, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 13, 29572, 62, 22046, 7, 72, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9729, 13, 33295, 7, 785, 8, 201, 198, 220, 220, 220, 1288, 361, 269, 6624, 366, 4134, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 796, 697, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 13, 29572, 62, 22046, 7, 72, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9729, 13, 33295, 7, 785, 8, 201, 198, 2, 4798, 7, 9503, 1746, 8, 201, 198, 2, 82, 796, 8931, 7, 9503, 1746, 8, 201, 198, 2, 4514, 7, 82, 13, 19545, 3419, 2599, 201, 198, 2, 220, 220, 220, 1208, 201, 198, 2, 4798, 7, 82, 13, 4134, 8, 201, 198, 201, 198, 1640, 340, 287, 2837, 7, 11925, 7, 9503, 1746, 8, 2599, 201, 198, 220, 220, 220, 9729, 62, 17, 796, 9729, 58, 47715, 201, 198, 220, 220, 220, 611, 318, 39098, 7, 9503, 1746, 58, 270, 4357, 299, 404, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 796, 474, 3149, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 13, 29572, 62, 22046, 7, 9503, 1746, 58, 270, 4083, 22046, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9729, 62, 17, 58, 270, 60, 796, 401, 201, 198, 220, 220, 220, 611, 318, 39098, 7, 9503, 1746, 58, 270, 4357, 474, 3149, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 401, 796, 299, 404, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9729, 62, 17, 58, 270, 60, 796, 401, 201, 198, 220, 220, 220, 611, 318, 39098, 7, 9503, 1746, 58, 270, 4357, 697, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 201, 198, 220, 220, 220, 264, 17, 796, 8931, 62, 17, 7, 9503, 1746, 62, 17, 8, 201, 198, 220, 220, 220, 981, 7, 82, 17, 13, 19545, 3419, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 611, 264, 17, 13, 2777, 6624, 18896, 7, 9503, 1746, 62, 17, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 82, 17, 13, 4134, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198 ]
1.693945
3,947
# -*- encoding: utf-8 -*- # Copyright (c) 2020 Dantali0n # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from copy import copy from unittest import mock from cliff.show import ShowOne from sqlalchemy.orm.exc import MultipleResultsFound from radloggerpy.cli.v1.device import device_show from radloggerpy.device.device_manager import DeviceManager as dm from radloggerpy.tests import base from radloggerpy.types.device_interfaces import DeviceInterfaces from radloggerpy.types.device_interfaces import INTERFACE_CHOICES from radloggerpy.types.device_types import DeviceTypes from radloggerpy.types.serial_bytesize import SerialBytesizeTypes from radloggerpy.types.serial_parity import SerialParityTypes from radloggerpy.types.serial_stopbit import SerialStopbitTypes
[ 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 66, 8, 12131, 360, 415, 7344, 15, 77, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 6738, 4866, 1330, 4866, 198, 6738, 555, 715, 395, 1330, 15290, 198, 198, 6738, 19516, 13, 12860, 1330, 5438, 3198, 198, 6738, 44161, 282, 26599, 13, 579, 13, 41194, 1330, 20401, 25468, 21077, 198, 198, 6738, 2511, 6404, 1362, 9078, 13, 44506, 13, 85, 16, 13, 25202, 1330, 3335, 62, 12860, 198, 6738, 2511, 6404, 1362, 9078, 13, 25202, 13, 25202, 62, 37153, 1330, 16232, 13511, 355, 288, 76, 198, 198, 6738, 2511, 6404, 1362, 9078, 13, 41989, 1330, 2779, 198, 6738, 2511, 6404, 1362, 9078, 13, 19199, 13, 25202, 62, 3849, 32186, 1330, 16232, 9492, 32186, 198, 6738, 2511, 6404, 1362, 9078, 13, 19199, 13, 25202, 62, 3849, 32186, 1330, 23255, 49836, 62, 44899, 34444, 198, 6738, 2511, 6404, 1362, 9078, 13, 19199, 13, 25202, 62, 19199, 1330, 16232, 31431, 198, 6738, 2511, 6404, 1362, 9078, 13, 19199, 13, 46911, 62, 33661, 1096, 1330, 23283, 45992, 1096, 31431, 198, 6738, 2511, 6404, 1362, 9078, 13, 19199, 13, 46911, 62, 1845, 414, 1330, 23283, 47, 6806, 31431, 198, 6738, 2511, 6404, 1362, 9078, 13, 19199, 13, 46911, 62, 11338, 2545, 1330, 23283, 19485, 2545, 31431, 628 ]
3.564607
356
from unittest.mock import patch from django.core.management import call_command from django.db.utils import OperationalError from django.test import TestCase
[ 6738, 555, 715, 395, 13, 76, 735, 1330, 8529, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 1330, 869, 62, 21812, 198, 6738, 42625, 14208, 13, 9945, 13, 26791, 1330, 6564, 864, 12331, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198 ]
3.613636
44
#!/usr/bin/env python # -*- coding: utf-8 -*- # # RaiBlocks Telegram bot # @RaiWalletBot https://t.me/RaiWalletBot # # Source code: # https://github.com/SergiySW/RaiWalletBot # # Released under the BSD 3-Clause License # # # Run by cron every hour, 1-2 minutes after distribution starts # With new rules it can be inaccurate # from telegram.ext import Updater, CommandHandler, MessageHandler, Filters from telegram import Bot, ParseMode import logging import urllib3, certifi, socket, json import time, math # Parse config import ConfigParser config = ConfigParser.ConfigParser() config.read('bot.cfg') api_key = config.get('main', 'api_key') log_file_faucet = config.get('main', 'log_file_faucet') # Enable logging logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO, filename=log_file_faucet) logger = logging.getLogger(__name__) # MySQL requests from common_mysql import mysql_select_accounts_list, mysql_select_blacklist, mysql_select_language, mysql_select_accounts_list_extra # Common functions from common import push_simple # Translation with open('language.json') as lang_file: language = json.load(lang_file) # Faucet faucet()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 42954, 45356, 50203, 10214, 198, 2, 2488, 49, 1872, 47152, 20630, 3740, 1378, 83, 13, 1326, 14, 49, 1872, 47152, 20630, 198, 2, 220, 198, 2, 8090, 2438, 25, 198, 2, 3740, 1378, 12567, 13, 785, 14, 50, 6422, 7745, 17887, 14, 49, 1872, 47152, 20630, 198, 2, 220, 198, 2, 28728, 739, 262, 347, 10305, 513, 12, 2601, 682, 13789, 198, 2, 220, 198, 2, 220, 198, 2, 5660, 416, 1067, 261, 790, 1711, 11, 352, 12, 17, 2431, 706, 6082, 4940, 198, 2, 2080, 649, 3173, 340, 460, 307, 21873, 198, 2, 220, 628, 198, 6738, 573, 30536, 13, 2302, 1330, 3205, 67, 729, 11, 9455, 25060, 11, 16000, 25060, 11, 7066, 1010, 198, 6738, 573, 30536, 1330, 18579, 11, 2547, 325, 19076, 198, 11748, 18931, 198, 11748, 2956, 297, 571, 18, 11, 5051, 22238, 11, 17802, 11, 33918, 198, 11748, 640, 11, 10688, 198, 198, 2, 2547, 325, 4566, 198, 11748, 17056, 46677, 198, 11250, 796, 17056, 46677, 13, 16934, 46677, 3419, 198, 11250, 13, 961, 10786, 13645, 13, 37581, 11537, 198, 15042, 62, 2539, 796, 4566, 13, 1136, 10786, 12417, 3256, 705, 15042, 62, 2539, 11537, 198, 6404, 62, 7753, 62, 69, 14272, 316, 796, 4566, 13, 1136, 10786, 12417, 3256, 705, 6404, 62, 7753, 62, 69, 14272, 316, 11537, 198, 198, 2, 27882, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 3672, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 3256, 198, 197, 197, 197, 197, 197, 5715, 28, 6404, 2667, 13, 10778, 11, 29472, 28, 6404, 62, 7753, 62, 69, 14272, 316, 8, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 198, 2, 33476, 7007, 198, 6738, 2219, 62, 28744, 13976, 1330, 48761, 62, 19738, 62, 23317, 82, 62, 4868, 11, 48761, 62, 19738, 62, 13424, 4868, 11, 48761, 62, 19738, 62, 16129, 11, 48761, 62, 19738, 62, 23317, 82, 62, 4868, 62, 26086, 628, 198, 2, 8070, 5499, 198, 6738, 2219, 1330, 4574, 62, 36439, 628, 198, 2, 33322, 198, 4480, 1280, 10786, 16129, 13, 17752, 11537, 355, 42392, 62, 7753, 25, 220, 220, 220, 220, 198, 197, 16129, 796, 33918, 13, 2220, 7, 17204, 62, 7753, 8, 198, 198, 2, 376, 14272, 316, 198, 197, 198, 197, 198, 69, 14272, 316, 3419 ]
2.875
424
# TODO: check https://en.wikipedia.org/wiki/Earley_parser data = ''' 0: 1 2 3 1: "a" 2: "b" 3: 1 1 4 2 4: 1 | 2 abaabb baaabb ababab abaaab abaabb abaabc'''.strip() def solve(rules, message): """check whether message matches r""" queue = [(0, ['0'])] while queue: position, (rule, *following) = queue.pop() rule = rules[rule] # skip too short messages if position >= len(message): continue if is_char(rule): if message[position] == rule[0][1]: if not following and position == len(message) - 1: # match last char with terminal -> success return 1 if following: queue.append((position + 1, following)) else: # check OR blocks for subrule in rule: queue.append((position, subrule + following)) return 0 rules, msg = parse(data) assert count(rules, message) == 3 rules, msg = parse(open('input_noloop.txt').read()) assert count(rules, message) == 3 rules, msg = parse(open('input.txt').read()) assert count(rules, message) == 12 rules, msg = parse(open('input_big_mod.txt').read()) # --> 306 print(count(rules, message))
[ 198, 2, 16926, 46, 25, 2198, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 8419, 1636, 62, 48610, 198, 198, 7890, 796, 705, 7061, 198, 15, 25, 352, 362, 513, 198, 16, 25, 366, 64, 1, 198, 17, 25, 366, 65, 1, 198, 18, 25, 352, 352, 604, 362, 198, 19, 25, 352, 930, 362, 198, 198, 15498, 6485, 198, 7012, 64, 6485, 198, 397, 397, 397, 198, 397, 7252, 397, 198, 15498, 6485, 198, 15498, 39305, 7061, 4458, 36311, 3419, 628, 628, 220, 220, 198, 4299, 8494, 7, 38785, 11, 3275, 2599, 198, 220, 220, 220, 37227, 9122, 1771, 3275, 7466, 374, 37811, 198, 220, 220, 220, 16834, 796, 47527, 15, 11, 37250, 15, 6, 12962, 60, 198, 220, 220, 220, 981, 16834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 11, 357, 25135, 11, 1635, 27780, 278, 8, 796, 16834, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3896, 796, 3173, 58, 25135, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 1165, 1790, 6218, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2292, 18189, 18896, 7, 20500, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 10641, 7, 25135, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3275, 58, 9150, 60, 6624, 3896, 58, 15, 7131, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1708, 290, 2292, 6624, 18896, 7, 20500, 8, 532, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2872, 938, 1149, 351, 12094, 4613, 1943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1708, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 13, 33295, 19510, 9150, 1343, 352, 11, 1708, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 6375, 7021, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 850, 25135, 287, 3896, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 13, 33295, 19510, 9150, 11, 850, 25135, 1343, 1708, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 657, 628, 198, 38785, 11, 31456, 796, 21136, 7, 7890, 8, 198, 30493, 954, 7, 38785, 11, 3275, 8, 6624, 513, 198, 198, 38785, 11, 31456, 796, 21136, 7, 9654, 10786, 15414, 62, 77, 349, 11224, 13, 14116, 27691, 961, 28955, 198, 30493, 954, 7, 38785, 11, 3275, 8, 6624, 513, 198, 198, 38785, 11, 31456, 796, 21136, 7, 9654, 10786, 15414, 13, 14116, 27691, 961, 28955, 198, 30493, 954, 7, 38785, 11, 3275, 8, 6624, 1105, 198, 198, 38785, 11, 31456, 796, 21136, 7, 9654, 10786, 15414, 62, 14261, 62, 4666, 13, 14116, 27691, 961, 28955, 1303, 14610, 37255, 198, 4798, 7, 9127, 7, 38785, 11, 3275, 4008, 198 ]
2.19554
583
#todo / schedule/ internet connection #todo instabot.log at api.py / instabot started at bot.py #todo set follow followers count limit #generate random number at server send to apps #both check import os import random import shutil import sys import time import threading import errno import requests import API_Util from PyQt5 import QtCore,QtGui, QtWidgets from PyQt5 import uic from tqdm import tqdm #IMPORT INSTABOT sys.path.append(os.path.join(sys.path[0], '../')) from instabot import Bot from UI import mainwindow #IMPORT DIC from dic import dicAcc ############ IMPORT QWIDGET / QDIALOG ################# from Limit_Setting import Limit_Setting_class from Login import Login_class from Like import Like_class ############ WRITE FILE .TXT ################ hashtag_file = "Private/hashtagsdb.txt" users_file = "Private/usersdb.txt" whitelist = "Private/whitelist.txt" blacklist = "Private/blacklist.txt" userlist = "Private/userlist.txt" comment = "Private/comments.txt" setting = "Private/setting.txt" SECRET_FILE = "Private/secret.txt" unfollow_job_file = "Private/unfollow_job.txt" follow_job_file = "Private/follow_job.txt" follow_random_file = "Private/follow_random.txt" like_job_file = "Private/like_job.txt" like_random_file = "Private/like_random.txt" comment_job_file = "Private/comment_job.txt" comment_file = "Private/comment.txt" comment_usertag_file = "Private/comment_usertag.txt" class OutputWrapper(QtCore.QObject): """ to show all output in ui text edit""" outputWritten = QtCore.pyqtSignal(object, object) ############ OPEN QWIDGET / QDIALOG ################# if __name__== "__main__": try: os.makedirs("Private") except OSError as e: if e.errno != errno.EEXIST: raise app = QtWidgets.QApplication(sys.argv) MainWindow = MainWindow_class() MainWindow.show() sys.exit(app.exec_())
[ 2, 83, 24313, 1220, 7269, 14, 5230, 4637, 201, 198, 2, 83, 24313, 916, 397, 313, 13, 6404, 379, 40391, 13, 9078, 1220, 916, 397, 313, 2067, 379, 10214, 13, 9078, 201, 198, 2, 83, 24313, 900, 1061, 10569, 954, 4179, 201, 198, 2, 8612, 378, 4738, 1271, 379, 4382, 3758, 284, 6725, 201, 198, 2, 16885, 2198, 201, 198, 201, 198, 11748, 28686, 201, 198, 11748, 4738, 201, 198, 11748, 4423, 346, 201, 198, 11748, 25064, 201, 198, 11748, 640, 201, 198, 11748, 4704, 278, 201, 198, 11748, 11454, 3919, 201, 198, 201, 198, 11748, 7007, 201, 198, 201, 198, 11748, 7824, 62, 18274, 346, 201, 198, 201, 198, 6738, 9485, 48, 83, 20, 1330, 33734, 14055, 11, 48, 83, 8205, 72, 11, 33734, 54, 312, 11407, 201, 198, 6738, 9485, 48, 83, 20, 1330, 334, 291, 201, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 201, 198, 201, 198, 2, 3955, 15490, 40589, 6242, 2394, 201, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 17597, 13, 6978, 58, 15, 4357, 705, 40720, 6, 4008, 201, 198, 6738, 916, 397, 313, 1330, 18579, 201, 198, 6738, 12454, 1330, 1388, 17497, 201, 198, 201, 198, 2, 3955, 15490, 360, 2149, 201, 198, 6738, 288, 291, 1330, 288, 291, 17320, 201, 198, 201, 198, 7804, 4242, 30023, 9863, 1195, 54, 2389, 18851, 1220, 1195, 35, 12576, 7730, 220, 1303, 14468, 201, 198, 6738, 27272, 62, 34149, 1330, 27272, 62, 34149, 62, 4871, 201, 198, 6738, 23093, 1330, 23093, 62, 4871, 201, 198, 6738, 4525, 1330, 4525, 62, 4871, 201, 198, 201, 198, 7804, 4242, 220, 220, 220, 220, 44423, 45811, 764, 51, 25010, 220, 220, 220, 1303, 7804, 4242, 21017, 201, 198, 17831, 12985, 62, 7753, 796, 366, 29067, 14, 17831, 31499, 9945, 13, 14116, 1, 201, 198, 18417, 62, 7753, 796, 366, 29067, 14, 18417, 9945, 13, 14116, 1, 201, 198, 1929, 270, 46331, 796, 366, 29067, 14, 1929, 270, 46331, 13, 14116, 1, 201, 198, 13424, 4868, 796, 366, 29067, 14, 13424, 4868, 13, 14116, 1, 201, 198, 7220, 4868, 796, 366, 29067, 14, 7220, 4868, 13, 14116, 1, 201, 198, 23893, 796, 366, 29067, 14, 15944, 13, 14116, 1, 201, 198, 33990, 796, 366, 29067, 14, 33990, 13, 14116, 1, 201, 198, 23683, 26087, 62, 25664, 796, 366, 29067, 14, 21078, 13, 14116, 1, 201, 198, 201, 198, 403, 27780, 62, 21858, 62, 7753, 796, 366, 29067, 14, 403, 27780, 62, 21858, 13, 14116, 1, 201, 198, 27780, 62, 21858, 62, 7753, 796, 366, 29067, 14, 27780, 62, 21858, 13, 14116, 1, 201, 198, 27780, 62, 25120, 62, 7753, 796, 366, 29067, 14, 27780, 62, 25120, 13, 14116, 1, 201, 198, 2339, 62, 21858, 62, 7753, 796, 366, 29067, 14, 2339, 62, 21858, 13, 14116, 1, 201, 198, 2339, 62, 25120, 62, 7753, 796, 366, 29067, 14, 2339, 62, 25120, 13, 14116, 1, 201, 198, 23893, 62, 21858, 62, 7753, 796, 366, 29067, 14, 23893, 62, 21858, 13, 14116, 1, 201, 198, 23893, 62, 7753, 796, 366, 29067, 14, 23893, 13, 14116, 1, 201, 198, 23893, 62, 385, 861, 363, 62, 7753, 796, 366, 29067, 14, 23893, 62, 385, 861, 363, 13, 14116, 1, 201, 198, 201, 198, 201, 198, 4871, 25235, 36918, 2848, 7, 48, 83, 14055, 13, 48, 10267, 2599, 201, 198, 220, 220, 220, 37227, 284, 905, 477, 5072, 287, 334, 72, 2420, 4370, 37811, 201, 198, 220, 220, 220, 5072, 25354, 796, 33734, 14055, 13, 9078, 39568, 11712, 282, 7, 15252, 11, 2134, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 7804, 21017, 220, 220, 220, 38303, 1195, 54, 2389, 18851, 1220, 1195, 35, 12576, 7730, 220, 220, 1303, 14468, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 855, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7203, 29067, 4943, 201, 198, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 8056, 3919, 14512, 11454, 3919, 13, 36, 6369, 8808, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 201, 198, 201, 198, 220, 220, 220, 598, 796, 33734, 54, 312, 11407, 13, 48, 23416, 7, 17597, 13, 853, 85, 8, 201, 198, 220, 220, 220, 8774, 27703, 796, 8774, 27703, 62, 4871, 3419, 201, 198, 220, 220, 220, 8774, 27703, 13, 12860, 3419, 201, 198, 220, 220, 220, 25064, 13, 37023, 7, 1324, 13, 18558, 62, 28955, 201, 198 ]
2.576471
765
#!/usr/bin/python3 import subprocess,sys ## Rules #I1 = ['''-A OUTPUT -m state --state RELATED,ESTABLISHED -j ACCEPT''','''-A OUTPUT -j REJECT'''] I1 = ['''ufw-not-local -j DROP'''] #For testing purposes B1 = ['''-A INPUT -p tcp --dport 53 -j DROP'''] B2 = ['''-A INPUT -p icmp -j REJECT --reject-with icmp-port-unreachable'''] ## Check if Rules are Applied # I'm lazy main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 11748, 850, 14681, 11, 17597, 198, 198, 2235, 14252, 198, 2, 40, 16, 796, 685, 7061, 29001, 32, 16289, 30076, 532, 76, 1181, 1377, 5219, 29749, 11617, 11, 1546, 5603, 9148, 18422, 1961, 532, 73, 15859, 8905, 51, 7061, 3256, 7061, 29001, 32, 16289, 30076, 532, 73, 4526, 23680, 7061, 20520, 198, 40, 16, 796, 685, 7061, 6, 3046, 86, 12, 1662, 12, 12001, 532, 73, 10560, 3185, 7061, 20520, 1303, 1890, 4856, 4959, 198, 33, 16, 796, 685, 7061, 29001, 32, 3268, 30076, 532, 79, 48265, 1377, 67, 634, 7192, 532, 73, 10560, 3185, 7061, 20520, 198, 33, 17, 796, 685, 7061, 29001, 32, 3268, 30076, 532, 79, 14158, 3149, 532, 73, 4526, 23680, 1377, 260, 752, 12, 4480, 14158, 3149, 12, 634, 12, 403, 16250, 540, 7061, 20520, 628, 198, 198, 2235, 6822, 611, 14252, 389, 27684, 220, 198, 198, 2, 314, 1101, 16931, 198, 198, 12417, 3419, 628 ]
2.4
160
#!/usr/bin/python # -*- coding: utf-8 -*- root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) solution = Solution() ans = solution.pathSum(root, 4) for i in range(len(ans)): print(ans[i])
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 15763, 796, 12200, 19667, 7, 16, 8, 198, 15763, 13, 9464, 796, 12200, 19667, 7, 17, 8, 198, 15763, 13, 3506, 796, 12200, 19667, 7, 18, 8, 198, 82, 2122, 796, 28186, 3419, 198, 504, 796, 4610, 13, 6978, 13065, 7, 15763, 11, 604, 8, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 504, 8, 2599, 198, 220, 220, 220, 3601, 7, 504, 58, 72, 12962, 198 ]
2.322222
90
import countries import e404 import index import search import static_files import timeline if __name__ == "__main__": run()
[ 11748, 2678, 201, 198, 11748, 304, 26429, 201, 198, 11748, 6376, 201, 198, 11748, 2989, 201, 198, 11748, 9037, 62, 16624, 201, 198, 11748, 15264, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1057, 3419, 201, 198 ]
2.895833
48
# Copyright (c) 2021 Delbert Yip # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import os import logging import pandas as pd from pathlib import Path from typing import Dict, Any, List import GeneralProcess.base as base from GeneralProcess.ephys_info_filter import EphysInfoFiltering import regex as re from pydantic import BaseModel, validator import pyabf """Find CSV and ABF files that meet selection criteria This module contains classes and methods that specialize in 1. Applying, but not validating/reading, selection criteria 2. Finding files with given extensions and at given location(s) The key class is `DataLoader`, which holds information such as 1. Raw data files (CSV, ABF) 2. Experimental parameters (e.g. series resistance, recording protocol name) 3. Paths to all files An alternative use case would be to work with non-ABF file formats. To do so, implement a subclass of `DataLoader` and override the `getDataFiles` method. """ # -------------------------------- Find files -------------------------------- # class FileFinder(BaseModel): """Find files at `path`. Optionally ignore files in `to_ignore` :param paths: path(s) to check for files :type paths: List[str] :param to_ignore: list of filenames to ignore, defaults to None :type to_ignore: List[str], optional """ paths: List[str] to_ignore: List[str] = None fmt: str = '.csv' @validator('fmt') @validator('to_ignore') @staticmethod def _readFiles(self, files: List[Path]) -> None: """Load csv files""" ignore_msg = "File ignored: {0}" for file in files: fname = file.stem if not file.is_file(): continue elif fname in self.to_ignore: logging.info(ignore_msg.format(fname)) else: df = self._readFile(file, fname) self.data_files[fname] = df return # -------------------------------- Main parser ------------------------------- # class DataLoader: """Select and find CSV and ABF files""" def __init__(self, main_dir: str, csv_path: str, abf_path: str, ephys_info_path: str, filter_criteria: Dict[str, Any], log_path: str = None, out_path: str = None ) -> None: """Load CSV and ABF files :param main_dir: [description] :type main_dir: str :param csv_path: path to CSV files :type csv_path: str :param abf_path: path to ABF files :type abf_path: str :param filter_criteria: criteria used to select files. See `EphysInfoFiltering` for more information :type filter_criteria: Dict[str, Any] :param log_path: path to save logs, defaults to None :type log_path: str, optional :param out_path: path for output files, defaults to None :type out_path: str, optional :raises ValueError: if filter criteria are not provided """ if not filter_criteria: raise ValueError(f"No filter criteria provided.") self.paths = self.validatePaths( dict(main=main_dir, csv=csv_path, abf=abf_path, ephys_info_path=ephys_info_path, log=log_path, out=out_path)) self.criteria = filter_criteria self.filenames: List[str] = None self.ephys_info: pd.DataFrame = None self.exp_params: pd.DataFrame = None self.paired_files: Dict[str, Any] = None def validatePaths(self, paths: Dict[str, str]) -> Dict[str, Path]: """Check that paths are valid and convert to `Path` objects""" for key, path in paths.items(): if os.path.isdir(path): paths[key] = Path(path) elif os.path.isdir(paths['main'] + path): paths[key] = Path(paths['main'] + path) else: raise ValueError(f'{path} is not a valid path.') return paths def getDataFiles(self, filenames: List[str], to_ignore: List[str]) -> List[str]: """Get Dataframes and pyABF objects for CSV and ABF files, respectively :param filenames: file names :type filenames: List[str] :param to_ignore: list of file names to ignore :type to_ignore: List[str] :return: list of missing files :rtype: List[str] """ CSVs = FileFinder(self.paths['csv'], to_ignore=to_ignore, fmt='.csv').find(filenames, rglob=False) ABFs = ABF_Finder(self.paths['abf'], to_ignore=to_ignore, fmt='.abf').find(filenames, rglob=True) missing: List[str] = [] missing_msg = "{0} in CSVs: {1}\n{0} in ABFs: {2}" for f in filenames: if f in CSVs and f in ABFs: continue logging.info( missing_msg.format(f, (f in CSVs), (f in ABFs)) ) missing.append(f) self.CSVs = CSVs self.ABFs = ABFs return missing
[ 2, 15069, 357, 66, 8, 33448, 4216, 4835, 575, 541, 198, 2, 198, 2, 770, 3788, 318, 2716, 739, 262, 17168, 13789, 13, 198, 2, 3740, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 198, 11748, 28686, 198, 11748, 18931, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 19720, 1330, 360, 713, 11, 4377, 11, 7343, 198, 198, 11748, 3611, 18709, 13, 8692, 355, 2779, 198, 6738, 3611, 18709, 13, 27446, 893, 62, 10951, 62, 24455, 1330, 412, 34411, 12360, 11928, 20212, 198, 198, 11748, 40364, 355, 302, 198, 198, 6738, 279, 5173, 5109, 1330, 7308, 17633, 11, 4938, 1352, 198, 198, 11748, 12972, 397, 69, 198, 198, 37811, 16742, 44189, 290, 9564, 37, 3696, 326, 1826, 6356, 9987, 198, 1212, 8265, 4909, 6097, 290, 5050, 326, 39868, 287, 198, 220, 220, 220, 352, 13, 2034, 3157, 11, 475, 407, 4938, 803, 14, 25782, 11, 6356, 9987, 198, 220, 220, 220, 362, 13, 27063, 3696, 351, 1813, 18366, 290, 379, 1813, 4067, 7, 82, 8, 198, 220, 220, 220, 220, 198, 464, 1994, 1398, 318, 4600, 6601, 17401, 47671, 543, 6622, 1321, 884, 355, 198, 220, 220, 220, 352, 13, 16089, 1366, 3696, 357, 7902, 53, 11, 9564, 37, 8, 198, 220, 220, 220, 362, 13, 32286, 10007, 357, 68, 13, 70, 13, 2168, 6625, 11, 8296, 8435, 1438, 8, 198, 220, 220, 220, 513, 13, 10644, 82, 284, 477, 3696, 198, 220, 220, 220, 220, 198, 2025, 5559, 779, 1339, 561, 307, 284, 670, 351, 1729, 12, 6242, 37, 2393, 17519, 13, 1675, 466, 523, 11, 198, 320, 26908, 257, 47611, 286, 4600, 6601, 17401, 63, 290, 20957, 262, 4600, 1136, 6601, 25876, 63, 2446, 13, 198, 37811, 198, 198, 2, 20368, 9938, 3696, 20368, 1303, 628, 198, 4871, 9220, 37, 5540, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 16742, 3696, 379, 4600, 6978, 44646, 16018, 453, 8856, 3696, 287, 4600, 1462, 62, 46430, 63, 628, 220, 220, 220, 1058, 17143, 13532, 25, 3108, 7, 82, 8, 284, 2198, 329, 3696, 220, 198, 220, 220, 220, 1058, 4906, 13532, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 1058, 17143, 284, 62, 46430, 25, 1351, 286, 1226, 268, 1047, 284, 8856, 11, 26235, 284, 6045, 198, 220, 220, 220, 1058, 4906, 284, 62, 46430, 25, 7343, 58, 2536, 4357, 11902, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13532, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 284, 62, 46430, 25, 7343, 58, 2536, 60, 796, 6045, 198, 220, 220, 220, 46996, 25, 965, 796, 45302, 40664, 6, 628, 220, 220, 220, 2488, 12102, 1352, 10786, 69, 16762, 11537, 628, 220, 220, 220, 2488, 12102, 1352, 10786, 1462, 62, 46430, 11537, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 825, 4808, 961, 25876, 7, 944, 11, 3696, 25, 7343, 58, 15235, 12962, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 269, 21370, 3696, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 19662, 796, 366, 8979, 9514, 25, 1391, 15, 36786, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 796, 2393, 13, 927, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2393, 13, 271, 62, 7753, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 277, 3672, 287, 2116, 13, 1462, 62, 46430, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7, 46430, 62, 19662, 13, 18982, 7, 69, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 2116, 13557, 961, 8979, 7, 7753, 11, 277, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 62, 16624, 58, 69, 3672, 60, 796, 47764, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 2, 20368, 8774, 30751, 34400, 24305, 1303, 628, 198, 4871, 6060, 17401, 25, 198, 220, 220, 220, 37227, 17563, 290, 1064, 44189, 290, 9564, 37, 3696, 37811, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 15908, 25, 965, 11, 269, 21370, 62, 6978, 25, 965, 11, 450, 69, 62, 6978, 25, 965, 11, 304, 34411, 62, 10951, 62, 6978, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 22213, 5142, 25, 360, 713, 58, 2536, 11, 4377, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 6978, 25, 965, 796, 6045, 11, 503, 62, 6978, 25, 965, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 44189, 290, 9564, 37, 3696, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1388, 62, 15908, 25, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1388, 62, 15908, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 269, 21370, 62, 6978, 25, 3108, 284, 44189, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 269, 21370, 62, 6978, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 450, 69, 62, 6978, 25, 3108, 284, 9564, 37, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 450, 69, 62, 6978, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8106, 62, 22213, 5142, 25, 9987, 973, 284, 2922, 3696, 13, 4091, 4600, 36, 34411, 12360, 11928, 20212, 63, 329, 517, 1321, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 8106, 62, 22213, 5142, 25, 360, 713, 58, 2536, 11, 4377, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2604, 62, 6978, 25, 3108, 284, 3613, 17259, 11, 26235, 284, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2604, 62, 6978, 25, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 503, 62, 6978, 25, 3108, 329, 5072, 3696, 11, 26235, 284, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 503, 62, 6978, 25, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 11052, 12331, 25, 611, 8106, 9987, 389, 407, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8106, 62, 22213, 5142, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 2949, 8106, 9987, 2810, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 82, 796, 2116, 13, 12102, 378, 15235, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 12417, 28, 12417, 62, 15908, 11, 269, 21370, 28, 40664, 62, 6978, 11, 450, 69, 28, 397, 69, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 34411, 62, 10951, 62, 6978, 28, 27446, 893, 62, 10951, 62, 6978, 11, 2604, 28, 6404, 62, 6978, 11, 503, 28, 448, 62, 6978, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22213, 5142, 796, 8106, 62, 22213, 5142, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10379, 268, 1047, 25, 7343, 58, 2536, 60, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27446, 893, 62, 10951, 25, 279, 67, 13, 6601, 19778, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11201, 62, 37266, 25, 279, 67, 13, 6601, 19778, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8957, 1202, 62, 16624, 25, 360, 713, 58, 2536, 11, 4377, 60, 796, 6045, 628, 220, 220, 220, 825, 26571, 15235, 82, 7, 944, 11, 13532, 25, 360, 713, 58, 2536, 11, 965, 12962, 4613, 360, 713, 58, 2536, 11, 10644, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 13532, 389, 4938, 290, 10385, 284, 4600, 15235, 63, 5563, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 3108, 287, 13532, 13, 23814, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 58, 2539, 60, 796, 10644, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 28686, 13, 6978, 13, 9409, 343, 7, 6978, 82, 17816, 12417, 20520, 1343, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 58, 2539, 60, 796, 10644, 7, 6978, 82, 17816, 12417, 20520, 1343, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 90, 6978, 92, 318, 407, 257, 4938, 3108, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 13532, 628, 220, 220, 220, 825, 651, 6601, 25876, 7, 944, 11, 1226, 268, 1047, 25, 7343, 58, 2536, 4357, 284, 62, 46430, 25, 7343, 58, 2536, 12962, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 6060, 37805, 290, 12972, 6242, 37, 5563, 329, 44189, 290, 9564, 37, 3696, 11, 8148, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1226, 268, 1047, 25, 2393, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1226, 268, 1047, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 284, 62, 46430, 25, 1351, 286, 2393, 3891, 284, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 284, 62, 46430, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 286, 4814, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 9429, 23266, 796, 9220, 37, 5540, 7, 944, 13, 6978, 82, 17816, 40664, 6, 4357, 284, 62, 46430, 28, 1462, 62, 46430, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46996, 28, 4458, 40664, 27691, 19796, 7, 10379, 268, 1047, 11, 374, 4743, 672, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9564, 42388, 796, 9564, 37, 62, 37, 5540, 7, 944, 13, 6978, 82, 17816, 397, 69, 6, 4357, 284, 62, 46430, 28, 1462, 62, 46430, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46996, 28, 4458, 397, 69, 27691, 19796, 7, 10379, 268, 1047, 11, 374, 4743, 672, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4814, 25, 7343, 58, 2536, 60, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 19662, 796, 45144, 15, 92, 287, 9429, 23266, 25, 1391, 16, 32239, 77, 90, 15, 92, 287, 9564, 42388, 25, 1391, 17, 36786, 628, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 1226, 268, 1047, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 287, 9429, 23266, 290, 277, 287, 9564, 42388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 19662, 13, 18982, 7, 69, 11, 357, 69, 287, 9429, 23266, 828, 357, 69, 287, 9564, 42388, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 13, 33295, 7, 69, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7902, 23266, 796, 9429, 23266, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6242, 42388, 796, 9564, 42388, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4814, 198 ]
2.350137
2,182
# -*- coding: utf-8 -*- from .cost_breakdown import CostBreakdown from .manufacturing_expense import ManufacturingExpense from .stock import Stock from .factory import TableAdaptorFactory from .me2 import ManufacturingExpense2 from .product_price import ProductPrice from .product_cost import ProductCost
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 764, 15805, 62, 9032, 2902, 1330, 6446, 31737, 2902, 198, 6738, 764, 48119, 870, 62, 11201, 1072, 1330, 32760, 16870, 1072, 198, 6738, 764, 13578, 1330, 10500, 198, 6738, 764, 69, 9548, 1330, 8655, 48003, 273, 22810, 198, 6738, 764, 1326, 17, 1330, 32760, 16870, 1072, 17, 198, 6738, 764, 11167, 62, 20888, 1330, 8721, 18124, 198, 6738, 764, 11167, 62, 15805, 1330, 8721, 13729, 198 ]
3.731707
82
from pathlib import Path from fhir.resources.valueset import ValueSet as _ValueSet from oops_fhir.utils import ValueSet from oops_fhir.r4.code_system.v3_processing_mode import ( v3ProcessingMode as v3ProcessingMode_, ) __all__ = ["v3ProcessingMode"] _resource = _ValueSet.parse_file(Path(__file__).with_suffix(".json")) class v3ProcessingMode(v3ProcessingMode_): """ v3 Code System ProcessingMode **** MISSING DEFINITIONS **** Status: active - Version: 2018-08-12 http://terminology.hl7.org/ValueSet/v3-ProcessingMode """
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 277, 71, 343, 13, 37540, 13, 27160, 316, 1330, 11052, 7248, 355, 4808, 11395, 7248, 198, 198, 6738, 267, 2840, 62, 69, 71, 343, 13, 26791, 1330, 11052, 7248, 628, 198, 6738, 267, 2840, 62, 69, 71, 343, 13, 81, 19, 13, 8189, 62, 10057, 13, 85, 18, 62, 36948, 62, 14171, 1330, 357, 198, 220, 220, 220, 410, 18, 18709, 278, 19076, 355, 410, 18, 18709, 278, 19076, 62, 11, 198, 8, 628, 198, 834, 439, 834, 796, 14631, 85, 18, 18709, 278, 19076, 8973, 198, 198, 62, 31092, 796, 4808, 11395, 7248, 13, 29572, 62, 7753, 7, 15235, 7, 834, 7753, 834, 737, 4480, 62, 37333, 844, 7, 1911, 17752, 48774, 628, 198, 4871, 410, 18, 18709, 278, 19076, 7, 85, 18, 18709, 278, 19076, 62, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 410, 18, 6127, 4482, 28403, 19076, 628, 220, 220, 220, 25998, 49684, 2751, 5550, 20032, 2043, 11053, 25998, 628, 220, 220, 220, 12678, 25, 4075, 532, 10628, 25, 2864, 12, 2919, 12, 1065, 628, 220, 220, 220, 2638, 1378, 23705, 1435, 13, 18519, 22, 13, 2398, 14, 11395, 7248, 14, 85, 18, 12, 18709, 278, 19076, 198, 220, 220, 220, 37227, 198 ]
2.701923
208
from django.contrib import admin from .models import Post,ReviewRating # Register your models here. admin.site.register(Post) admin.site.register(ReviewRating)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 2947, 11, 14832, 29321, 198, 198, 2, 17296, 534, 4981, 994, 13, 198, 198, 28482, 13, 15654, 13, 30238, 7, 6307, 8, 198, 28482, 13, 15654, 13, 30238, 7, 14832, 29321, 8 ]
3.577778
45
import joblib from wickedhot import OneHotEncoder from cd4ml.train import get_trained_model from cd4ml.model_utils import get_target_id_features_lists import logging import mlflow.sklearn import mlflow import os from cd4ml.utils.utils import mini_batch_eval
[ 11748, 1693, 8019, 198, 6738, 20589, 8940, 1330, 1881, 21352, 27195, 12342, 198, 6738, 22927, 19, 4029, 13, 27432, 1330, 651, 62, 35311, 62, 19849, 198, 6738, 22927, 19, 4029, 13, 19849, 62, 26791, 1330, 651, 62, 16793, 62, 312, 62, 40890, 62, 20713, 198, 11748, 18931, 198, 11748, 285, 1652, 9319, 13, 8135, 35720, 198, 11748, 285, 1652, 9319, 198, 11748, 28686, 198, 198, 6738, 22927, 19, 4029, 13, 26791, 13, 26791, 1330, 9927, 62, 43501, 62, 18206, 628 ]
3.25
80
# -*- coding: utf-8 -*- """Parses the ranking CSVs and writes them to the database.""" import csv import logging import os import sys from datetime import datetime, timezone from functools import lru_cache from itertools import groupby from pathlib import Path import pandas as pd from django.core.management.base import BaseCommand from pytility import arg_to_iter, batchify, parse_date from snaptime import snap from ...models import Game, Ranking from ...utils import format_from_path csv.field_size_limit(sys.maxsize) LOGGER = logging.getLogger(__name__) WEEK_DAYS = ("SUN", "MON", "TUE", "WED", "THU", "FRI", "SAT") @lru_cache(maxsize=128) @lru_cache(maxsize=128) def parse_ranking_csv(path_file, date=None, tzinfo=timezone.utc): """Parses a ranking CSV file.""" LOGGER.info("Reading ranking from <%s>...", path_file) date = _extract_date(path_file=path_file, tzinfo=tzinfo) if date is None else date ranking = pd.read_csv(path_file) ranking["date"] = date return ranking def parse_ranking_csvs( path_dir, week_day="SUN", tzinfo=timezone.utc, min_date=None, max_date=None, ): """Parses all ranking CSV files in a directory.""" path_dir = Path(path_dir).resolve() LOGGER.info("Iterating through all CSV files in <%s>...", path_dir) files = (file for file in path_dir.iterdir() if format_from_path(file) == "csv") files = ( (_extract_date(path_file=file, tzinfo=tzinfo), file) for file in sorted(files) ) if min_date: LOGGER.info("Filter out files before %s", min_date) files = ((date, file) for date, file in files if date >= min_date) if max_date: LOGGER.info("Filter out files after %s", max_date) files = ((date, file) for date, file in files if date <= max_date) if not week_day: for date, file in files: LOGGER.info("Processing rankings from %s...", date) yield date, parse_ranking_csv(path_file=file, date=date) return for group_date, group in groupby( files, key=lambda pair: _following(date=pair[0], week_day=week_day, tzinfo=tzinfo), ): LOGGER.info("Processing rankings from the week ending in %s...", group_date) dfs = ( parse_ranking_csv(path_file=path_file, date=date) for date, path_file in group ) yield group_date, pd.concat(dfs, ignore_index=True) class Command(BaseCommand): """Parses the ranking CSVs and writes them to the database.""" help = "Parses the ranking CSVs and writes them to the database." ranking_types = { Ranking.BGG: ("bgg", "last", None, None), Ranking.RECOMMEND_GAMES: ("r_g", "mean", None, 0), Ranking.FACTOR: ("factor", "mean", None, None), Ranking.SIMILARITY: ("similarity", "mean", None, None), Ranking.CHARTS: ( "charts", "all", datetime(2016, 1, 1, tzinfo=timezone.utc), None, ), }
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 47, 945, 274, 262, 12759, 9429, 23266, 290, 6797, 606, 284, 262, 6831, 526, 15931, 198, 198, 11748, 269, 21370, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 640, 11340, 198, 6738, 1257, 310, 10141, 1330, 300, 622, 62, 23870, 198, 6738, 340, 861, 10141, 1330, 1448, 1525, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 6738, 12972, 83, 879, 1330, 1822, 62, 1462, 62, 2676, 11, 15458, 1958, 11, 21136, 62, 4475, 198, 6738, 3013, 2373, 524, 1330, 11495, 198, 198, 6738, 2644, 27530, 1330, 3776, 11, 45407, 198, 6738, 2644, 26791, 1330, 5794, 62, 6738, 62, 6978, 198, 198, 40664, 13, 3245, 62, 7857, 62, 32374, 7, 17597, 13, 9806, 7857, 8, 198, 198, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 54, 33823, 62, 26442, 50, 796, 5855, 50, 4944, 1600, 366, 27857, 1600, 366, 51, 8924, 1600, 366, 54, 1961, 1600, 366, 4221, 52, 1600, 366, 37, 7112, 1600, 366, 50, 1404, 4943, 628, 198, 31, 75, 622, 62, 23870, 7, 9806, 7857, 28, 12762, 8, 628, 198, 31, 75, 622, 62, 23870, 7, 9806, 7857, 28, 12762, 8, 628, 628, 198, 4299, 21136, 62, 28405, 62, 40664, 7, 6978, 62, 7753, 11, 3128, 28, 14202, 11, 256, 89, 10951, 28, 2435, 11340, 13, 315, 66, 2599, 198, 220, 220, 220, 37227, 47, 945, 274, 257, 12759, 44189, 2393, 526, 15931, 628, 220, 220, 220, 41605, 30373, 13, 10951, 7203, 36120, 12759, 422, 1279, 4, 82, 29, 9313, 11, 3108, 62, 7753, 8, 628, 220, 220, 220, 3128, 796, 4808, 2302, 974, 62, 4475, 7, 6978, 62, 7753, 28, 6978, 62, 7753, 11, 256, 89, 10951, 28, 22877, 10951, 8, 611, 3128, 318, 6045, 2073, 3128, 628, 220, 220, 220, 12759, 796, 279, 67, 13, 961, 62, 40664, 7, 6978, 62, 7753, 8, 198, 220, 220, 220, 12759, 14692, 4475, 8973, 796, 3128, 628, 220, 220, 220, 1441, 12759, 628, 198, 4299, 21136, 62, 28405, 62, 6359, 14259, 7, 198, 220, 220, 220, 3108, 62, 15908, 11, 198, 220, 220, 220, 1285, 62, 820, 2625, 50, 4944, 1600, 198, 220, 220, 220, 256, 89, 10951, 28, 2435, 11340, 13, 315, 66, 11, 198, 220, 220, 220, 949, 62, 4475, 28, 14202, 11, 198, 220, 220, 220, 3509, 62, 4475, 28, 14202, 11, 198, 2599, 198, 220, 220, 220, 37227, 47, 945, 274, 477, 12759, 44189, 3696, 287, 257, 8619, 526, 15931, 628, 220, 220, 220, 3108, 62, 15908, 796, 10644, 7, 6978, 62, 15908, 737, 411, 6442, 3419, 198, 220, 220, 220, 41605, 30373, 13, 10951, 7203, 29993, 803, 832, 477, 44189, 3696, 287, 1279, 4, 82, 29, 9313, 11, 3108, 62, 15908, 8, 628, 220, 220, 220, 3696, 796, 357, 7753, 329, 2393, 287, 3108, 62, 15908, 13, 2676, 15908, 3419, 611, 5794, 62, 6738, 62, 6978, 7, 7753, 8, 6624, 366, 40664, 4943, 198, 220, 220, 220, 3696, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 44104, 2302, 974, 62, 4475, 7, 6978, 62, 7753, 28, 7753, 11, 256, 89, 10951, 28, 22877, 10951, 828, 2393, 8, 329, 2393, 287, 23243, 7, 16624, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 949, 62, 4475, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 30373, 13, 10951, 7203, 22417, 503, 3696, 878, 4064, 82, 1600, 949, 62, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 14808, 4475, 11, 2393, 8, 329, 3128, 11, 2393, 287, 3696, 611, 3128, 18189, 949, 62, 4475, 8, 198, 220, 220, 220, 611, 3509, 62, 4475, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 30373, 13, 10951, 7203, 22417, 503, 3696, 706, 4064, 82, 1600, 3509, 62, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 14808, 4475, 11, 2393, 8, 329, 3128, 11, 2393, 287, 3696, 611, 3128, 19841, 3509, 62, 4475, 8, 628, 220, 220, 220, 611, 407, 1285, 62, 820, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3128, 11, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 30373, 13, 10951, 7203, 18709, 278, 16905, 422, 4064, 82, 9313, 11, 3128, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 3128, 11, 21136, 62, 28405, 62, 40664, 7, 6978, 62, 7753, 28, 7753, 11, 3128, 28, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 329, 1448, 62, 4475, 11, 1448, 287, 1448, 1525, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 28, 50033, 5166, 25, 4808, 27780, 278, 7, 4475, 28, 24874, 58, 15, 4357, 1285, 62, 820, 28, 10464, 62, 820, 11, 256, 89, 10951, 28, 22877, 10951, 828, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 30373, 13, 10951, 7203, 18709, 278, 16905, 422, 262, 1285, 7464, 287, 4064, 82, 9313, 11, 1448, 62, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9501, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28405, 62, 40664, 7, 6978, 62, 7753, 28, 6978, 62, 7753, 11, 3128, 28, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3128, 11, 3108, 62, 7753, 287, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 1448, 62, 4475, 11, 279, 67, 13, 1102, 9246, 7, 7568, 82, 11, 8856, 62, 9630, 28, 17821, 8, 628, 628, 198, 198, 4871, 9455, 7, 14881, 21575, 2599, 198, 220, 220, 220, 37227, 47, 945, 274, 262, 12759, 9429, 23266, 290, 6797, 606, 284, 262, 6831, 526, 15931, 628, 220, 220, 220, 1037, 796, 366, 47, 945, 274, 262, 12759, 9429, 23266, 290, 6797, 606, 284, 262, 6831, 526, 628, 220, 220, 220, 12759, 62, 19199, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 45407, 13, 33, 11190, 25, 5855, 65, 1130, 1600, 366, 12957, 1600, 6045, 11, 6045, 828, 198, 220, 220, 220, 220, 220, 220, 220, 45407, 13, 2200, 9858, 44, 10619, 62, 38, 29559, 25, 5855, 81, 62, 70, 1600, 366, 32604, 1600, 6045, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 45407, 13, 37, 10659, 1581, 25, 5855, 31412, 1600, 366, 32604, 1600, 6045, 11, 6045, 828, 198, 220, 220, 220, 220, 220, 220, 220, 45407, 13, 48913, 4146, 1503, 9050, 25, 5855, 38610, 414, 1600, 366, 32604, 1600, 6045, 11, 6045, 828, 198, 220, 220, 220, 220, 220, 220, 220, 45407, 13, 38019, 4694, 25, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 5889, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 439, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 7, 5304, 11, 352, 11, 352, 11, 256, 89, 10951, 28, 2435, 11340, 13, 315, 66, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1782, 198 ]
2.415064
1,248
import json import logging import os import threading import uuid import grpc from event_store_pb2 import PublishRequest, SubscribeRequest, UnsubscribeRequest, GetRequest from event_store_pb2_grpc import EventStoreStub EVENT_STORE_HOSTNAME = os.getenv('EVENT_STORE_HOSTNAME', 'localhost') EVENT_STORE_PORTNR = os.getenv('EVENT_STORE_PORTNR', '50051') def create_event(_action, _data): """ Create an event. :param _action: The event action. :param _data: A dict with the event data. :return: A dict with the event information. """ return { 'event_id': str(uuid.uuid4()), 'event_action': _action, 'event_data': json.dumps(_data) } class EventStoreClient(object): """ Event Store Client class. """ def publish(self, _topic, _info): """ Publish an event. :param _topic: The event topic. :param _info: A dict with the event information. :return: The entry ID. """ response = self.stub.publish(PublishRequest( event_topic=_topic, event_info=json.dumps(_info) )) return response.entry_id def subscribe(self, _topic, _handler, _group=None): """ Subscribe to an event topic. :param _topic: The event topic. :param _handler: The event handler. :param _group: Optional group name. :return: Success. """ if _topic in self.subscribers: self.subscribers[_topic].add_handler(_handler) else: subscriber = Subscriber(_topic, _handler, self.stub, _group) subscriber.start() self.subscribers[_topic] = subscriber return True def unsubscribe(self, _topic, _handler): """ Unsubscribe from an event topic. :param _topic: The event topic. :param _handler: The event handler. :return: Success. """ subscriber = self.subscribers.get(_topic) if not subscriber: return False response = self.stub.unsubscribe(UnsubscribeRequest(event_topic=_topic)) subscriber.rem_handler(_handler) if not subscriber: del self.subscribers[_topic] return response.success def get(self, _topic): """ Get events for a topic. :param _topic: The event topic, i.e name of event stream. :return: A list with entities. """ response = self.stub.get(GetRequest(event_topic=_topic)) return json.loads(response.events) if response.events else None class Subscriber(threading.Thread): """ Subscriber Thread class. """ def __init__(self, _topic, _handler, _stub, _group=None): """ :param _topic: The topic to subscirbe to. :param _handler: A handler function. :param _group: The name of the subscriber. """ super(Subscriber, self).__init__() self._running = False self.handlers = [_handler] self.topic = _topic self.stub = _stub self.group = _group def run(self): """ Poll the event stream and call each handler with each entry returned. """ if self._running: return self._running = True for item in self.stub.subscribe( SubscribeRequest(event_topic=self.topic, group_name=self.group)): for handler in self.handlers: try: handler(item) except Exception as e: logging.error( 'error calling handler function ({}) for {}.{}: {}'.format( e.__class__.__name__, self.topic, handler.__name__, str(e) ) ) self._running = False def add_handler(self, _handler): """ Add an event handler. :param _handler: The event handler function. """ self.handlers.append(_handler) def rem_handler(self, _handler): """ Remove an event handler. :param _handler: The event handler function. """ self.handlers.remove(_handler)
[ 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 4704, 278, 198, 11748, 334, 27112, 198, 198, 11748, 1036, 14751, 198, 198, 6738, 1785, 62, 8095, 62, 40842, 17, 1330, 8525, 1836, 18453, 11, 19808, 18453, 11, 791, 7266, 12522, 18453, 11, 3497, 18453, 198, 6738, 1785, 62, 8095, 62, 40842, 17, 62, 2164, 14751, 1330, 8558, 22658, 1273, 549, 198, 198, 20114, 3525, 62, 2257, 6965, 62, 39, 10892, 20608, 796, 28686, 13, 1136, 24330, 10786, 20114, 3525, 62, 2257, 6965, 62, 39, 10892, 20608, 3256, 705, 36750, 11537, 198, 20114, 3525, 62, 2257, 6965, 62, 15490, 24723, 796, 28686, 13, 1136, 24330, 10786, 20114, 3525, 62, 2257, 6965, 62, 15490, 24723, 3256, 705, 4059, 4349, 11537, 628, 198, 4299, 2251, 62, 15596, 28264, 2673, 11, 4808, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 281, 1785, 13, 628, 220, 220, 220, 1058, 17143, 4808, 2673, 25, 383, 1785, 2223, 13, 198, 220, 220, 220, 1058, 17143, 4808, 7890, 25, 317, 8633, 351, 262, 1785, 1366, 13, 198, 220, 220, 220, 1058, 7783, 25, 317, 8633, 351, 262, 1785, 1321, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 312, 10354, 965, 7, 12303, 312, 13, 12303, 312, 19, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 2673, 10354, 4808, 2673, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 7890, 10354, 33918, 13, 67, 8142, 28264, 7890, 8, 198, 220, 220, 220, 1782, 628, 198, 4871, 8558, 22658, 11792, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8558, 9363, 20985, 1398, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 7715, 7, 944, 11, 4808, 26652, 11, 4808, 10951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8525, 1836, 281, 1785, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 26652, 25, 383, 1785, 7243, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 10951, 25, 317, 8633, 351, 262, 1785, 1321, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 5726, 4522, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 301, 549, 13, 12984, 1836, 7, 14876, 1836, 18453, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 26652, 28, 62, 26652, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 10951, 28, 17752, 13, 67, 8142, 28264, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 13, 13000, 62, 312, 628, 220, 220, 220, 825, 12383, 7, 944, 11, 4808, 26652, 11, 4808, 30281, 11, 4808, 8094, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19808, 284, 281, 1785, 7243, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 26652, 25, 383, 1785, 7243, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 30281, 25, 383, 1785, 21360, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 8094, 25, 32233, 1448, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16282, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 26652, 287, 2116, 13, 7266, 40075, 364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7266, 40075, 364, 29795, 26652, 4083, 2860, 62, 30281, 28264, 30281, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32944, 796, 3834, 1416, 24735, 28264, 26652, 11, 4808, 30281, 11, 2116, 13, 301, 549, 11, 4808, 8094, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32944, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7266, 40075, 364, 29795, 26652, 60, 796, 32944, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 32793, 12522, 7, 944, 11, 4808, 26652, 11, 4808, 30281, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 791, 7266, 12522, 422, 281, 1785, 7243, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 26652, 25, 383, 1785, 7243, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 30281, 25, 383, 1785, 21360, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16282, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 32944, 796, 2116, 13, 7266, 40075, 364, 13, 1136, 28264, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 32944, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 301, 549, 13, 403, 7266, 12522, 7, 3118, 7266, 12522, 18453, 7, 15596, 62, 26652, 28, 62, 26652, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 32944, 13, 2787, 62, 30281, 28264, 30281, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 32944, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 2116, 13, 7266, 40075, 364, 29795, 26652, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 13, 13138, 628, 220, 220, 220, 825, 651, 7, 944, 11, 4808, 26652, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 2995, 329, 257, 7243, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 26652, 25, 383, 1785, 7243, 11, 1312, 13, 68, 1438, 286, 1785, 4269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 1351, 351, 12066, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 301, 549, 13, 1136, 7, 3855, 18453, 7, 15596, 62, 26652, 28, 62, 26652, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 46030, 7, 26209, 13, 31534, 8, 611, 2882, 13, 31534, 2073, 6045, 628, 198, 4871, 3834, 1416, 24735, 7, 16663, 278, 13, 16818, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3834, 1416, 24735, 14122, 1398, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4808, 26652, 11, 4808, 30281, 11, 4808, 301, 549, 11, 4808, 8094, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 26652, 25, 383, 7243, 284, 5294, 343, 1350, 284, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 30281, 25, 317, 21360, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 8094, 25, 383, 1438, 286, 262, 32944, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 7004, 1416, 24735, 11, 2116, 737, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20270, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4993, 8116, 796, 685, 62, 30281, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26652, 796, 4808, 26652, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 549, 796, 4808, 301, 549, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8094, 796, 4808, 8094, 628, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12868, 262, 1785, 4269, 290, 869, 1123, 21360, 351, 1123, 5726, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 20270, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20270, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 2116, 13, 301, 549, 13, 7266, 12522, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19808, 18453, 7, 15596, 62, 26652, 28, 944, 13, 26652, 11, 1448, 62, 3672, 28, 944, 13, 8094, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 21360, 287, 2116, 13, 4993, 8116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21360, 7, 9186, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18224, 4585, 21360, 2163, 37913, 30072, 329, 23884, 13, 90, 38362, 23884, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 13, 834, 4871, 834, 13, 834, 3672, 834, 11, 2116, 13, 26652, 11, 21360, 13, 834, 3672, 834, 11, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20270, 796, 10352, 628, 220, 220, 220, 825, 751, 62, 30281, 7, 944, 11, 4808, 30281, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 281, 1785, 21360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 30281, 25, 383, 1785, 21360, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4993, 8116, 13, 33295, 28264, 30281, 8, 628, 220, 220, 220, 825, 816, 62, 30281, 7, 944, 11, 4808, 30281, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17220, 281, 1785, 21360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 30281, 25, 383, 1785, 21360, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4993, 8116, 13, 28956, 28264, 30281, 8, 198 ]
2.240701
1,882
import re from typing import Optional def normalize_field_name(name: str, leading_undescores_prefix: Optional[str] = None) -> str: """ Normalize a string to take a Pythonic form. Normalize a string to take a Pythonic form by: - replacing leading underscores with a given (optional) prefix - converting the name so snake_case """ return convert_to_snake_case(replace_leading_underscores(name, prefix=leading_undescores_prefix)) def convert_to_snake_case(name: str) -> str: """ Convert a given string to snake_case. Converts a given string to snake_case from camel case or kebab case >>> normalize_field_name('SomeCamelCase') 'some_camel_case' >>> normalize_field_name('sample-kebab-case') 'sample_kebab_case' """ return re.sub(r"(?<!^)(?=[A-Z])", "_", name).replace("-", "_").lower() def normalize_class_name(name: str) -> str: """ Normalize class name by converting it to PascalCase. >>> normalize_class_name('some_hyphen_case') 'SomeHyphenCase' """ if re.match(r"(?:[A-Z][a-z]+)+", name): return name return "".join([fragment.capitalize() for fragment in normalize_field_name(name).split("_")]) def replace_leading_underscores(name: str, prefix: Optional[str] = None) -> str: """ Replace leading underscores with a given prefix. Replaces leading underscores with a given prefix. If no prefix is specified, the leading underscores are removed. >>> replace_leading_underscores('_private_field') 'private_field' >>> replace_leading_underscores('__private_field', prefix='dunder') 'dunder_private_field' """ return re.sub(r"^_+", f"{prefix}_" if prefix else "", name) def indent_statement(indent: int, statement: str) -> str: """ Indents the given string by a specified number of indents. Indents the given string by a specified number of indents, e.g. indenting by 1 will preprend the string with 4 space characters: >>> indent_statement(0, 'x = 3') 'x = 3' >>> indent_statement(1, 'x = 3') ' x = 3' """ return " " * 4 * indent + statement
[ 11748, 302, 198, 6738, 19720, 1330, 32233, 628, 198, 4299, 3487, 1096, 62, 3245, 62, 3672, 7, 3672, 25, 965, 11, 3756, 62, 917, 3798, 2850, 62, 40290, 25, 32233, 58, 2536, 60, 796, 6045, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14435, 1096, 257, 4731, 284, 1011, 257, 11361, 291, 1296, 13, 628, 220, 220, 220, 14435, 1096, 257, 4731, 284, 1011, 257, 11361, 291, 1296, 416, 25, 198, 220, 220, 220, 532, 13586, 3756, 41731, 351, 257, 1813, 357, 25968, 8, 21231, 198, 220, 220, 220, 532, 23202, 262, 1438, 523, 17522, 62, 7442, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 10385, 62, 1462, 62, 16184, 539, 62, 7442, 7, 33491, 62, 12294, 62, 41116, 66, 2850, 7, 3672, 11, 21231, 28, 12294, 62, 917, 3798, 2850, 62, 40290, 4008, 628, 198, 4299, 10385, 62, 1462, 62, 16184, 539, 62, 7442, 7, 3672, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 257, 1813, 4731, 284, 17522, 62, 7442, 13, 628, 220, 220, 220, 1482, 24040, 257, 1813, 4731, 284, 17522, 62, 7442, 422, 41021, 1339, 393, 885, 65, 397, 1339, 198, 220, 220, 220, 13163, 3487, 1096, 62, 3245, 62, 3672, 10786, 4366, 34, 17983, 20448, 11537, 198, 220, 220, 220, 705, 11246, 62, 66, 17983, 62, 7442, 6, 198, 220, 220, 220, 13163, 3487, 1096, 62, 3245, 62, 3672, 10786, 39873, 12, 365, 65, 397, 12, 7442, 11537, 198, 220, 220, 220, 705, 39873, 62, 365, 65, 397, 62, 7442, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 302, 13, 7266, 7, 81, 18109, 30, 27, 0, 61, 5769, 30, 41888, 32, 12, 57, 12962, 1600, 45434, 1600, 1438, 737, 33491, 7203, 12, 1600, 45434, 11074, 21037, 3419, 628, 198, 4299, 3487, 1096, 62, 4871, 62, 3672, 7, 3672, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14435, 1096, 1398, 1438, 416, 23202, 340, 284, 35163, 20448, 13, 628, 220, 220, 220, 13163, 3487, 1096, 62, 4871, 62, 3672, 10786, 11246, 62, 36362, 831, 62, 7442, 11537, 198, 220, 220, 220, 705, 4366, 49926, 831, 20448, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 302, 13, 15699, 7, 81, 18109, 27514, 58, 32, 12, 57, 7131, 64, 12, 89, 60, 28988, 10, 1600, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 628, 220, 220, 220, 1441, 366, 1911, 22179, 26933, 8310, 363, 434, 13, 27544, 1096, 3419, 329, 24225, 287, 3487, 1096, 62, 3245, 62, 3672, 7, 3672, 737, 35312, 7203, 62, 4943, 12962, 628, 198, 4299, 6330, 62, 12294, 62, 41116, 66, 2850, 7, 3672, 25, 965, 11, 21231, 25, 32233, 58, 2536, 60, 796, 6045, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40177, 3756, 41731, 351, 257, 1813, 21231, 13, 628, 220, 220, 220, 18407, 2114, 3756, 41731, 351, 257, 1813, 21231, 13, 1002, 645, 21231, 318, 7368, 11, 262, 3756, 41731, 389, 4615, 13, 198, 220, 220, 220, 13163, 6330, 62, 12294, 62, 41116, 66, 2850, 10786, 62, 19734, 62, 3245, 11537, 198, 220, 220, 220, 705, 19734, 62, 3245, 6, 198, 220, 220, 220, 13163, 6330, 62, 12294, 62, 41116, 66, 2850, 10786, 834, 19734, 62, 3245, 3256, 21231, 11639, 646, 681, 11537, 198, 220, 220, 220, 705, 646, 681, 62, 19734, 62, 3245, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 302, 13, 7266, 7, 81, 1, 61, 62, 10, 1600, 277, 1, 90, 40290, 92, 62, 1, 611, 21231, 2073, 366, 1600, 1438, 8, 628, 198, 4299, 33793, 62, 26090, 7, 521, 298, 25, 493, 11, 2643, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1423, 658, 262, 1813, 4731, 416, 257, 7368, 1271, 286, 773, 658, 13, 628, 220, 220, 220, 1423, 658, 262, 1813, 4731, 416, 257, 7368, 1271, 286, 773, 658, 11, 304, 13, 70, 13, 33793, 278, 416, 352, 481, 3143, 10920, 262, 4731, 198, 220, 220, 220, 351, 604, 2272, 3435, 25, 198, 220, 220, 220, 13163, 33793, 62, 26090, 7, 15, 11, 705, 87, 796, 513, 11537, 198, 220, 220, 220, 705, 87, 796, 513, 6, 198, 220, 220, 220, 13163, 33793, 62, 26090, 7, 16, 11, 705, 87, 796, 513, 11537, 198, 220, 220, 220, 705, 220, 220, 220, 2124, 796, 513, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 366, 366, 1635, 604, 1635, 33793, 1343, 2643, 198 ]
2.813984
758
#!/usr/bin/env python3 from math import pi from multiprocessing import Pool from tempfile import NamedTemporaryFile from subprocess import call, DEVNULL import time import os import os.path as path from shared import update_progress, plot_data baseflags = ['--interpolate=linear', '--enable-weights'] config = { "base": baseflags + ['-n=128'], "smoothing": baseflags + ['-n=128', '--enable-aa'], "128x128-multigrid-3-layers": baseflags + ['-n=128', '-l=3'], "64x128-multigrid-3-layers": baseflags + ['-n=64x128', '-l=3'], } if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 6738, 10688, 1330, 31028, 198, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 6738, 20218, 7753, 1330, 34441, 12966, 5551, 8979, 198, 6738, 850, 14681, 1330, 869, 11, 5550, 53, 33991, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 3108, 198, 198, 6738, 4888, 1330, 4296, 62, 33723, 11, 7110, 62, 7890, 198, 198, 8692, 33152, 796, 37250, 438, 3849, 16104, 378, 28, 29127, 3256, 705, 438, 21633, 12, 43775, 20520, 198, 198, 11250, 796, 1391, 198, 220, 220, 220, 366, 8692, 1298, 2779, 33152, 1343, 685, 29001, 77, 28, 12762, 6, 4357, 198, 220, 220, 220, 366, 5796, 1025, 722, 1298, 2779, 33152, 1343, 685, 29001, 77, 28, 12762, 3256, 705, 438, 21633, 12, 7252, 6, 4357, 198, 220, 220, 220, 366, 12762, 87, 12762, 12, 16680, 3692, 312, 12, 18, 12, 75, 6962, 1298, 2779, 33152, 1343, 685, 29001, 77, 28, 12762, 3256, 705, 12, 75, 28, 18, 6, 4357, 198, 220, 220, 220, 366, 2414, 87, 12762, 12, 16680, 3692, 312, 12, 18, 12, 75, 6962, 1298, 2779, 33152, 1343, 685, 29001, 77, 28, 2414, 87, 12762, 3256, 705, 12, 75, 28, 18, 6, 4357, 198, 92, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.607143
224
#!/usr/bin/env python3 import random for i in range(100000):print(chr(9585+random.randint(0,1)), end="")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 4738, 198, 1640, 1312, 287, 2837, 7, 3064, 830, 2599, 4798, 7, 354, 81, 7, 24, 38905, 10, 25120, 13, 25192, 600, 7, 15, 11, 16, 36911, 886, 2625, 4943, 198 ]
2.465116
43
# -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Zyxel.ZyNOS.get_switchport # --------------------------------------------------------------------- # Copyright (C) 2007-2015 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import re # NOC modules from noc.core.script.base import BaseScript from noc.sa.interfaces.igetswitchport import IGetSwitchport
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 16529, 30934, 198, 2, 1168, 28391, 417, 13, 57, 88, 45, 2640, 13, 1136, 62, 31943, 634, 198, 2, 16529, 30934, 198, 2, 15069, 357, 34, 8, 4343, 12, 4626, 383, 399, 4503, 4935, 198, 2, 4091, 38559, 24290, 329, 3307, 198, 2, 16529, 30934, 198, 198, 2, 11361, 13103, 198, 11748, 302, 198, 198, 2, 399, 4503, 13103, 198, 6738, 299, 420, 13, 7295, 13, 12048, 13, 8692, 1330, 7308, 7391, 198, 6738, 299, 420, 13, 11400, 13, 3849, 32186, 13, 328, 1039, 42248, 634, 1330, 314, 3855, 38978, 634, 628 ]
4.53271
107
#!/usr/bin/python # -*- coding: UTF-8 -*- if __name__ == '__main__': a = 077 b = a | 3 print 'a | b = %d' % b b |= 7 print 'a|b=%d' % b
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 257, 796, 657, 3324, 198, 220, 220, 220, 275, 796, 257, 930, 513, 198, 220, 220, 220, 3601, 705, 64, 930, 275, 796, 4064, 67, 6, 4064, 275, 198, 220, 220, 220, 275, 930, 28, 767, 198, 220, 220, 220, 3601, 705, 64, 91, 65, 28, 4, 67, 6, 4064, 275, 198 ]
1.784091
88
import sys, operator sys.path.append('..') from scipy.ndimage.morphology import binary_fill_holes from configuration import Configuration from dataset.reader import * from dataset.folder import TrainFolder from utility.draw import * from net.lib.nms.cython_nms.cython_nms import cython_nms from net.layer.mask import instance_to_binary from multiprocessing import Pool from numba import jit def clustering_masks(instances, iou_threshold=0.5, overlap_threshold=0.8): """ :param instances: numpy array of instances :return: """ clusters = [] num = instances.shape[0] instance_sizes = [] for i in range(num): instance = instances[i] instance_sizes.append((i, instance.sum())) sorted_sizes = sorted(instance_sizes, key=lambda tup: tup[1], reverse=True) for i, instance_size in sorted_sizes: instance = instances[i] added_to_group = False for c in clusters: cluster_size = c.core_size inter = np.logical_and(c.core, instance).sum() union = np.logical_or(c.core, instance).sum() iou = inter / (union + 1e-12) if ((inter / cluster_size) > overlap_threshold) or \ ((inter / instance_size) > overlap_threshold) or \ (iou > iou_threshold): c.add(instance) added_to_group = True if added_to_group == False: c = MaskCluster() c.add(instance) clusters.append(c) return clusters @jit @jit def filter_small(proposals, instances, area_threshold=36): """ :param instances: numpy array of 0/1 instance in one image :param area_threshold: do filter if max mask / min mask > this :param min_threshold: min area ratio :return: filtered instances """ H, W = instances[0].shape[:2] keep_instances = [] keep_proposals = [] max_size = 0 min_size = H*W for i in range(instances.shape[0]): size = instances[i].sum() if size > max_size: max_size = size elif size < min_size: min_size = size size_threshold = max_size / area_threshold if (max_size / min_size) > area_threshold: for i in range(instances.shape[0]): size = instances[i].sum() if size > size_threshold: #print('%d: %d'%(i, size), ' > ', size_threshold, 'append') keep_instances.append(instances[i]) keep_proposals.append(proposals[i]) else: pass #print('%d: %d'%(i, size), ' < ', size_threshold, 'exclude') else: keep_instances = instances keep_proposals = proposals keep_proposals = np.array(keep_proposals) keep_instances = np.array(keep_instances) return keep_proposals, keep_instances if __name__ == '__main__': print('%s: calling main function ... ' % os.path.basename(__file__)) ensemble_masks(multiprocess=False) print('\nsucess!')
[ 11748, 25064, 11, 10088, 198, 198, 17597, 13, 6978, 13, 33295, 10786, 492, 11537, 198, 6738, 629, 541, 88, 13, 358, 9060, 13, 24503, 1435, 1330, 13934, 62, 20797, 62, 28439, 198, 6738, 8398, 1330, 28373, 198, 6738, 27039, 13, 46862, 1330, 1635, 198, 6738, 27039, 13, 43551, 1330, 16835, 41092, 198, 6738, 10361, 13, 19334, 1330, 1635, 198, 6738, 2010, 13, 8019, 13, 77, 907, 13, 948, 400, 261, 62, 77, 907, 13, 948, 400, 261, 62, 77, 907, 1330, 3075, 400, 261, 62, 77, 907, 198, 6738, 2010, 13, 29289, 13, 27932, 1330, 4554, 62, 1462, 62, 39491, 198, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 6738, 997, 7012, 1330, 474, 270, 628, 198, 198, 4299, 32966, 1586, 62, 5356, 591, 7, 8625, 1817, 11, 1312, 280, 62, 400, 10126, 28, 15, 13, 20, 11, 21721, 62, 400, 10126, 28, 15, 13, 23, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 17143, 10245, 25, 299, 32152, 7177, 286, 10245, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23163, 796, 17635, 198, 220, 220, 220, 997, 796, 10245, 13, 43358, 58, 15, 60, 628, 220, 220, 220, 4554, 62, 82, 4340, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 796, 10245, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 62, 82, 4340, 13, 33295, 19510, 72, 11, 4554, 13, 16345, 3419, 4008, 198, 220, 220, 220, 23243, 62, 82, 4340, 796, 23243, 7, 39098, 62, 82, 4340, 11, 1994, 28, 50033, 256, 929, 25, 256, 929, 58, 16, 4357, 9575, 28, 17821, 8, 628, 220, 220, 220, 329, 1312, 11, 4554, 62, 7857, 287, 23243, 62, 82, 4340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 796, 10245, 58, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 2087, 62, 1462, 62, 8094, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 23163, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 7857, 796, 269, 13, 7295, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 796, 45941, 13, 6404, 605, 62, 392, 7, 66, 13, 7295, 11, 4554, 737, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6441, 796, 45941, 13, 6404, 605, 62, 273, 7, 66, 13, 7295, 11, 4554, 737, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 280, 796, 987, 1220, 357, 24592, 1343, 352, 68, 12, 1065, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14808, 3849, 1220, 13946, 62, 7857, 8, 1875, 21721, 62, 400, 10126, 8, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14808, 3849, 1220, 4554, 62, 7857, 8, 1875, 21721, 62, 400, 10126, 8, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 280, 1875, 1312, 280, 62, 400, 10126, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 2860, 7, 39098, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 62, 1462, 62, 8094, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2087, 62, 1462, 62, 8094, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 18007, 2601, 5819, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 2860, 7, 39098, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23163, 13, 33295, 7, 66, 8, 628, 220, 220, 220, 1441, 23163, 198, 198, 31, 45051, 198, 198, 31, 45051, 198, 4299, 8106, 62, 17470, 7, 1676, 1930, 874, 11, 10245, 11, 1989, 62, 400, 10126, 28, 2623, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 17143, 10245, 25, 299, 32152, 7177, 286, 657, 14, 16, 4554, 287, 530, 2939, 198, 220, 220, 220, 1058, 17143, 1989, 62, 400, 10126, 25, 466, 8106, 611, 3509, 9335, 1220, 949, 9335, 1875, 428, 198, 220, 220, 220, 1058, 17143, 949, 62, 400, 10126, 25, 949, 1989, 8064, 198, 220, 220, 220, 1058, 7783, 25, 29083, 10245, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 367, 11, 370, 796, 10245, 58, 15, 4083, 43358, 58, 25, 17, 60, 628, 220, 220, 220, 1394, 62, 8625, 1817, 796, 17635, 198, 220, 220, 220, 1394, 62, 1676, 1930, 874, 796, 17635, 198, 220, 220, 220, 3509, 62, 7857, 796, 657, 198, 220, 220, 220, 949, 62, 7857, 796, 367, 9, 54, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 8625, 1817, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 10245, 58, 72, 4083, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2546, 1875, 3509, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 7857, 796, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2546, 1279, 949, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 7857, 796, 2546, 628, 220, 220, 220, 2546, 62, 400, 10126, 796, 3509, 62, 7857, 1220, 1989, 62, 400, 10126, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 357, 9806, 62, 7857, 1220, 949, 62, 7857, 8, 1875, 1989, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 8625, 1817, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 10245, 58, 72, 4083, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2546, 1875, 2546, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 4, 67, 25, 4064, 67, 6, 4, 7, 72, 11, 2546, 828, 705, 1875, 46083, 2546, 62, 400, 10126, 11, 705, 33295, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 8625, 1817, 13, 33295, 7, 8625, 1817, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 1676, 1930, 874, 13, 33295, 7, 1676, 1930, 874, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 4, 67, 25, 4064, 67, 6, 4, 7, 72, 11, 2546, 828, 705, 1279, 46083, 2546, 62, 400, 10126, 11, 705, 1069, 9152, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 8625, 1817, 796, 10245, 198, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 1676, 1930, 874, 796, 11628, 628, 220, 220, 220, 1394, 62, 1676, 1930, 874, 796, 45941, 13, 18747, 7, 14894, 62, 1676, 1930, 874, 8, 198, 220, 220, 220, 1394, 62, 8625, 1817, 796, 45941, 13, 18747, 7, 14894, 62, 8625, 1817, 8, 628, 220, 220, 220, 1441, 1394, 62, 1676, 1930, 874, 11, 1394, 62, 8625, 1817, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 10786, 4, 82, 25, 4585, 1388, 2163, 2644, 705, 4064, 28686, 13, 6978, 13, 12093, 12453, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 34549, 62, 5356, 591, 7, 16680, 541, 305, 919, 28, 25101, 8, 198, 220, 220, 220, 3601, 10786, 59, 77, 2385, 919, 0, 11537 ]
2.232575
1,363
import cv2 import keras from keras.applications.imagenet_utils import preprocess_input from keras.backend.tensorflow_backend import set_session from keras.models import Model from keras.preprocessing import image import matplotlib.pyplot as plt import numpy as np from scipy.misc import imread import tensorflow as tf import matplotlib.image as mpimg from ssd_k2 import SSD300 # # for keras version 1.2 # from ssd import SSD300 # from ssd_utils import BBoxUtility plt.rcParams['figure.figsize'] = (8, 8) plt.rcParams['image.interpolation'] = 'nearest' np.set_printoptions(suppress=True) from PIL import ImageEnhance from PIL import Image as pil_image from timeit import default_timer as timer config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.45 set_session(tf.Session(config=config))
[ 11748, 269, 85, 17, 198, 11748, 41927, 292, 198, 6738, 41927, 292, 13, 1324, 677, 602, 13, 320, 11286, 316, 62, 26791, 1330, 662, 14681, 62, 15414, 198, 6738, 41927, 292, 13, 1891, 437, 13, 83, 22854, 11125, 62, 1891, 437, 1330, 900, 62, 29891, 198, 6738, 41927, 292, 13, 27530, 1330, 9104, 198, 6738, 41927, 292, 13, 3866, 36948, 1330, 2939, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 44374, 1330, 545, 961, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 11748, 2603, 29487, 8019, 13, 9060, 355, 29034, 9600, 198, 198, 6738, 264, 21282, 62, 74, 17, 1330, 21252, 6200, 198, 2, 198, 2, 329, 41927, 292, 2196, 352, 13, 17, 198, 2, 422, 264, 21282, 1330, 21252, 6200, 198, 2, 198, 6738, 264, 21282, 62, 26791, 1330, 12597, 1140, 18274, 879, 198, 198, 489, 83, 13, 6015, 10044, 4105, 17816, 26875, 13, 5647, 7857, 20520, 796, 357, 23, 11, 807, 8, 198, 489, 83, 13, 6015, 10044, 4105, 17816, 9060, 13, 3849, 16104, 341, 20520, 796, 705, 710, 12423, 6, 198, 198, 37659, 13, 2617, 62, 4798, 25811, 7, 18608, 601, 28, 17821, 8, 198, 198, 6738, 350, 4146, 1330, 7412, 35476, 590, 198, 6738, 350, 4146, 1330, 7412, 355, 5560, 62, 9060, 198, 198, 6738, 640, 270, 1330, 4277, 62, 45016, 355, 19781, 198, 198, 11250, 796, 48700, 13, 16934, 2964, 1462, 3419, 198, 11250, 13, 46999, 62, 25811, 13, 525, 62, 14681, 62, 46999, 62, 31673, 62, 69, 7861, 796, 657, 13, 2231, 198, 2617, 62, 29891, 7, 27110, 13, 36044, 7, 11250, 28, 11250, 4008, 628, 198 ]
2.956989
279
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Libtree(CMakePackage): """ldd as a tree with an option to bundle dependencies into a single folder""" homepage = "https://github.com/haampie/libtree" git = "https://github.com/haampie/libtree.git" url = "https://github.com/haampie/libtree/archive/refs/tags/v2.0.0.tar.gz" maintainers = ['haampie'] version('master', branch='master') version('2.0.0', sha256='099e85d8ba3c3d849ce05b8ba2791dd25cd042a813be947fb321b0676ef71883') version('1.2.3', sha256='4a912cf97109219fe931942a30579336b6ab9865395447bd157bbfa74bf4e8cf') version('1.2.2', sha256='4ccf09227609869b85a170550b636defcf0b0674ecb0785063b81785b1c29bdd') version('1.2.1', sha256='26791c0f418b93d502879db0e1fd2fd3081b885ad87326611d992a5f8977a9b0') version('1.2.0', sha256='3e74655f22b1dcc19e8a1b9e7796b8ad44bc37f29e9a99134119e8521e28be97') version('1.1.4', sha256='38648f67c8fa72c3a4a3af2bb254b5fd6989c0f1362387ab298176db5cbbcc4e') version('1.1.3', sha256='4c681d7b67ef3d62f95450fb7eb84e33ff10a3b9db1f7e195b965b2c3c58226b') version('1.1.2', sha256='31641c6bf6c2980ffa7b4c57392460434f97ba66fe51fe6346867430b33a0374') version('1.1.1', sha256='3e8543145a40a94e9e2ce9fed003d2bf68294e1fce9607028a286bc132e17dc4') version('1.1.0', sha256='6cf36fb9a4c8c3af01855527d4931110732bb2d1c19be9334c689f1fd1c78536') version('1.0.4', sha256='b15a54b6f388b8bd8636e288fcb581029f1e65353660387b0096a554ad8e9e45') version('1.0.3', sha256='67ce886c191d50959a5727246cdb04af38872cd811c9ed4e3822f77a8f40b20b') variant('chrpath', default=False, description='Use chrpath for deployment') variant('strip', default=False, description='Use binutils strip for deployment') # header only dependencies depends_on('cpp-termcolor', when='@2.0:', type='build') depends_on('cxxopts', when='@2.0:', type='build') depends_on('elfio', when='@2.0:', type='build') # runtime deps depends_on('chrpath', when='+chrpath', type='run') depends_on('binutils', when='+strip', type='run') # testing depends_on('googletest', type='test')
[ 2, 15069, 2211, 12, 1238, 2481, 13914, 45036, 3549, 2351, 4765, 11, 11419, 290, 584, 198, 2, 1338, 441, 4935, 34152, 13, 4091, 262, 1353, 12, 5715, 27975, 38162, 9947, 2393, 329, 3307, 13, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 357, 25189, 4891, 12, 17, 13, 15, 6375, 17168, 8, 198, 198, 6738, 599, 441, 1330, 1635, 628, 198, 4871, 7980, 21048, 7, 34, 12050, 27813, 2599, 198, 220, 220, 220, 37227, 335, 67, 355, 257, 5509, 351, 281, 3038, 284, 18537, 20086, 656, 257, 198, 220, 220, 220, 220, 220, 220, 2060, 9483, 37811, 628, 220, 220, 220, 34940, 796, 366, 5450, 1378, 12567, 13, 785, 14, 3099, 696, 494, 14, 8019, 21048, 1, 198, 220, 220, 220, 17606, 220, 220, 220, 220, 220, 796, 366, 5450, 1378, 12567, 13, 785, 14, 3099, 696, 494, 14, 8019, 21048, 13, 18300, 1, 198, 220, 220, 220, 19016, 220, 220, 220, 220, 220, 796, 366, 5450, 1378, 12567, 13, 785, 14, 3099, 696, 494, 14, 8019, 21048, 14, 17474, 14, 5420, 82, 14, 31499, 14, 85, 17, 13, 15, 13, 15, 13, 18870, 13, 34586, 1, 198, 220, 220, 220, 5529, 364, 796, 37250, 3099, 696, 494, 20520, 628, 220, 220, 220, 2196, 10786, 9866, 3256, 8478, 11639, 9866, 11537, 198, 220, 220, 220, 2196, 10786, 17, 13, 15, 13, 15, 3256, 427, 64, 11645, 11639, 15, 2079, 68, 5332, 67, 23, 7012, 18, 66, 18, 67, 23, 2920, 344, 2713, 65, 23, 7012, 1983, 6420, 1860, 1495, 10210, 3023, 17, 64, 23, 1485, 1350, 24, 2857, 21855, 36453, 65, 15, 42548, 891, 45720, 5999, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 17, 13, 18, 3256, 427, 64, 11645, 11639, 19, 64, 24, 1065, 12993, 5607, 940, 5892, 1129, 5036, 6052, 1129, 3682, 64, 1270, 41734, 29211, 65, 21, 397, 4089, 2996, 31010, 34825, 17457, 18458, 11848, 13331, 4524, 19881, 19, 68, 23, 12993, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 17, 13, 17, 3256, 427, 64, 11645, 11639, 19, 535, 69, 2931, 24403, 1899, 4089, 3388, 65, 5332, 64, 1558, 2713, 1120, 65, 21, 2623, 4299, 12993, 15, 65, 15, 45385, 721, 65, 2998, 25764, 5066, 65, 23, 1558, 5332, 65, 16, 66, 1959, 65, 1860, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 17, 13, 16, 3256, 427, 64, 11645, 11639, 2075, 3720, 16, 66, 15, 69, 39667, 65, 6052, 67, 1120, 2078, 3720, 9945, 15, 68, 16, 16344, 17, 16344, 1270, 6659, 65, 44230, 324, 23, 4790, 25540, 1157, 67, 41561, 64, 20, 69, 4531, 3324, 64, 24, 65, 15, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 17, 13, 15, 3256, 427, 64, 11645, 11639, 18, 68, 22, 3510, 2816, 69, 1828, 65, 16, 67, 535, 1129, 68, 23, 64, 16, 65, 24, 68, 3324, 4846, 65, 23, 324, 2598, 15630, 2718, 69, 1959, 68, 24, 64, 2079, 1485, 3901, 1129, 68, 5332, 2481, 68, 2078, 1350, 5607, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 16, 13, 19, 3256, 427, 64, 11645, 11639, 2548, 34287, 69, 3134, 66, 23, 13331, 4761, 66, 18, 64, 19, 64, 18, 1878, 17, 11848, 24970, 65, 20, 16344, 3388, 4531, 66, 15, 69, 20809, 1954, 5774, 397, 27728, 24096, 9945, 20, 66, 11848, 535, 19, 68, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 16, 13, 18, 3256, 427, 64, 11645, 11639, 19, 66, 48564, 67, 22, 65, 3134, 891, 18, 67, 5237, 69, 3865, 17885, 21855, 22, 1765, 5705, 68, 2091, 487, 940, 64, 18, 65, 24, 9945, 16, 69, 22, 68, 22186, 65, 24, 2996, 65, 17, 66, 18, 66, 3365, 24909, 65, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 16, 13, 17, 3256, 427, 64, 11645, 11639, 33400, 3901, 66, 21, 19881, 21, 66, 1959, 1795, 487, 64, 22, 65, 19, 66, 3553, 2670, 1731, 31916, 2682, 69, 5607, 7012, 2791, 5036, 4349, 5036, 21, 2682, 3104, 3134, 31794, 65, 2091, 64, 15, 31020, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 16, 13, 16, 3256, 427, 64, 11645, 11639, 18, 68, 5332, 3559, 18781, 64, 1821, 64, 5824, 68, 24, 68, 17, 344, 24, 19082, 11245, 67, 17, 19881, 3104, 27696, 68, 16, 69, 344, 39277, 2154, 2078, 64, 27033, 15630, 19924, 68, 1558, 17896, 19, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 16, 13, 15, 3256, 427, 64, 11645, 11639, 21, 12993, 2623, 21855, 24, 64, 19, 66, 23, 66, 18, 1878, 29159, 31046, 1983, 67, 2920, 36244, 15982, 2624, 11848, 17, 67, 16, 66, 1129, 1350, 24, 31380, 66, 40523, 69, 16, 16344, 16, 66, 41172, 2623, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 15, 13, 19, 3256, 427, 64, 11645, 11639, 65, 1314, 64, 4051, 65, 21, 69, 30460, 65, 23, 17457, 4521, 2623, 68, 25270, 16072, 65, 3365, 940, 1959, 69, 16, 68, 2996, 2327, 2623, 1899, 32220, 65, 405, 4846, 64, 44218, 324, 23, 68, 24, 68, 2231, 11537, 198, 220, 220, 220, 2196, 10786, 16, 13, 15, 13, 18, 3256, 427, 64, 11645, 11639, 3134, 344, 44980, 66, 26492, 67, 29022, 3270, 64, 3553, 1983, 26912, 66, 9945, 3023, 1878, 30460, 4761, 10210, 23, 1157, 66, 24, 276, 19, 68, 2548, 1828, 69, 3324, 64, 23, 69, 1821, 65, 1238, 65, 11537, 628, 220, 220, 220, 15304, 10786, 354, 81, 6978, 3256, 4277, 28, 25101, 11, 6764, 11639, 11041, 442, 81, 6978, 329, 14833, 11537, 198, 220, 220, 220, 15304, 10786, 36311, 3256, 4277, 28, 25101, 11, 6764, 11639, 11041, 9874, 26791, 10283, 329, 14833, 11537, 628, 220, 220, 220, 1303, 13639, 691, 20086, 198, 220, 220, 220, 8338, 62, 261, 10786, 20322, 12, 4354, 8043, 3256, 618, 11639, 31, 17, 13, 15, 25, 3256, 2099, 11639, 11249, 11537, 198, 220, 220, 220, 8338, 62, 261, 10786, 66, 5324, 404, 912, 3256, 618, 11639, 31, 17, 13, 15, 25, 3256, 2099, 11639, 11249, 11537, 198, 220, 220, 220, 8338, 62, 261, 10786, 7046, 952, 3256, 618, 11639, 31, 17, 13, 15, 25, 3256, 2099, 11639, 11249, 11537, 628, 220, 220, 220, 1303, 19124, 390, 862, 198, 220, 220, 220, 8338, 62, 261, 10786, 354, 81, 6978, 3256, 618, 11639, 10, 354, 81, 6978, 3256, 2099, 11639, 5143, 11537, 198, 220, 220, 220, 8338, 62, 261, 10786, 8800, 26791, 3256, 618, 11639, 10, 36311, 3256, 2099, 11639, 5143, 11537, 628, 220, 220, 220, 1303, 4856, 198, 220, 220, 220, 8338, 62, 261, 10786, 2188, 519, 1616, 395, 3256, 2099, 11639, 9288, 11537, 198 ]
2.127424
1,083
import psycopg2 # Redownloading the models is a pain, maybe a better solution is to keep the models on the ram and transfer back and forth from video card
[ 11748, 17331, 22163, 70, 17, 628, 220, 220, 220, 1303, 2297, 593, 25138, 262, 4981, 318, 257, 2356, 11, 3863, 257, 1365, 4610, 318, 284, 1394, 262, 4981, 319, 262, 15770, 290, 4351, 736, 290, 6071, 422, 2008, 2657 ]
4.076923
39
from django.urls import path, include # new
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 11, 2291, 1303, 649, 198 ]
3.384615
13
# TODO: Utils ? like load so we don't duplicate code ? from unittest import TestCase from unittest.mock import patch import pytest from ruamel.yaml import YAML from yaml import SafeLoader from conda_vendor.env_yaml_from_manifest import YamlFromManifest @pytest.fixture
[ 2, 16926, 46, 25, 7273, 4487, 5633, 588, 3440, 523, 356, 836, 470, 23418, 2438, 5633, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 8529, 198, 198, 11748, 12972, 9288, 198, 6738, 7422, 17983, 13, 88, 43695, 1330, 575, 2390, 43, 198, 6738, 331, 43695, 1330, 19978, 17401, 198, 198, 6738, 1779, 64, 62, 85, 18738, 13, 24330, 62, 88, 43695, 62, 6738, 62, 805, 8409, 1330, 14063, 75, 4863, 5124, 8409, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 198 ]
3.01087
92
cont=0 while cont<5: print(cont) cont=cont+1 else: print('o loop while foi encerrado com sucesso.')
[ 3642, 28, 15, 198, 4514, 542, 27, 20, 25, 198, 220, 220, 220, 3601, 7, 3642, 8, 198, 220, 220, 220, 542, 28, 3642, 10, 16, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 78, 9052, 981, 11511, 72, 551, 2189, 81, 4533, 401, 424, 919, 78, 2637, 8, 198 ]
2.196078
51
""" Spire library and API version. """ SPIRE_VERSION = "0.4.0"
[ 37811, 198, 4561, 557, 5888, 290, 7824, 2196, 13, 198, 37811, 198, 198, 4303, 41736, 62, 43717, 796, 366, 15, 13, 19, 13, 15, 1, 198 ]
2.461538
26
import tensorflow as tf import utils
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 3384, 4487, 628, 628, 628 ]
3.230769
13
import pickle import os import shutil class File_Operation: """This class shall be used to save the model after training and load the saved model for prediction.""" def save_model(self,model,filename): """ Method Name: save_model Description: Save the model file to directory Outcome: File gets saved On Failure: Raise Exception """ self.logger_object.log(self.file_object, 'Entered the save_model method of the File_Operation class') try: path = os.path.join(self.model_directory,filename) #create seperate directory for each cluster if os.path.isdir(path): #remove previously existing models for each clusters shutil.rmtree(self.model_directory) os.makedirs(path) else: os.makedirs(path) # with open(path +'/' + filename+'.sav', 'wb') as f: pickle.dump(model, f) # save the model to file self.logger_object.log(self.file_object, 'Model File '+filename+' saved. Exited the save_model method of the Model_Finder class') return 'success' except Exception as e: self.logger_object.log(self.file_object,'Exception occured in save_model method of the Model_Finder class. Exception message: ' + str(e)) self.logger_object.log(self.file_object, 'Model File '+filename+' could not be saved. Exited the save_model method of the Model_Finder class') raise Exception() def load_model(self,filename): """ Method Name: load_model Description: load the model file to memory Output: The Model file loaded in memory On Failure: Raise Exception """ self.logger_object.log(self.file_object, 'Entered the load_model method of the File_Operation class') try: with open(self.model_directory + filename + '/' + filename + '.sav', 'rb') as f: self.logger_object.log(self.file_object, 'Model File ' + filename + ' loaded. Exited the load_model method of the Model_Finder class') return pickle.load(f) except Exception as e: self.logger_object.log(self.file_object, 'Exception occured in load_model method of the Model_Finder class. Exception message: ' + str( e)) self.logger_object.log(self.file_object, 'Model File ' + filename + ' could not be saved. Exited the load_model method of the Model_Finder class') raise Exception() def find_correct_model_file(self,cluster_number): """ Method Name: find_correct_model_file Description: Select the correct model based on cluster number Output: The Model file On Failure: Raise Exception """ self.logger_object.log(self.file_object, 'Entered the find_correct_model_file method of the File_Operation class') try: self.cluster_number= cluster_number self.folder_name=self.model_directory self.list_of_model_files = [] self.list_of_files = os.listdir(self.folder_name) for self.file in self.list_of_files: try: if (self.file.index(str( self.cluster_number))!=-1): self.model_name=self.file except: continue self.model_name=self.model_name.split('.')[0] self.logger_object.log(self.file_object, 'Exited the find_correct_model_file method of the Model_Finder class.') return self.model_name except Exception as e: self.logger_object.log(self.file_object, 'Exception occured in find_correct_model_file method of the Model_Finder class. Exception message: ' + str( e)) self.logger_object.log(self.file_object, 'Exited the find_correct_model_file method of the Model_Finder class with Failure') raise Exception()
[ 11748, 2298, 293, 201, 198, 11748, 28686, 201, 198, 11748, 4423, 346, 201, 198, 201, 198, 201, 198, 4871, 9220, 62, 32180, 25, 201, 198, 220, 220, 220, 37227, 1212, 1398, 2236, 307, 973, 284, 3613, 262, 2746, 706, 3047, 290, 3440, 262, 7448, 2746, 329, 17724, 526, 15931, 201, 198, 201, 198, 220, 220, 220, 825, 3613, 62, 19849, 7, 944, 11, 19849, 11, 34345, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11789, 6530, 25, 3613, 62, 19849, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12489, 25, 12793, 262, 2746, 2393, 284, 8619, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3806, 2958, 25, 9220, 3011, 7448, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1550, 25743, 25, 35123, 35528, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 705, 14539, 1068, 262, 3613, 62, 19849, 2446, 286, 262, 9220, 62, 32180, 1398, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 19849, 62, 34945, 11, 34345, 8, 1303, 17953, 384, 30052, 8619, 329, 1123, 13946, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 6978, 2599, 1303, 28956, 4271, 4683, 4981, 329, 1123, 23163, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 944, 13, 19849, 62, 34945, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6978, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6978, 8, 1303, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 1343, 26488, 6, 1343, 29472, 10, 4458, 39308, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39346, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 19849, 11, 277, 8, 1303, 3613, 262, 2746, 284, 2393, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17633, 9220, 705, 10, 34345, 10, 6, 7448, 13, 1475, 863, 262, 3613, 62, 19849, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 11537, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 13138, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 4032, 16922, 1609, 1522, 287, 3613, 62, 19849, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 13, 35528, 3275, 25, 220, 705, 1343, 965, 7, 68, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17633, 9220, 705, 10, 34345, 10, 6, 714, 407, 307, 7448, 13, 1475, 863, 262, 3613, 62, 19849, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 3419, 201, 198, 201, 198, 220, 220, 220, 825, 3440, 62, 19849, 7, 944, 11, 34345, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11789, 6530, 25, 3440, 62, 19849, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12489, 25, 3440, 262, 2746, 2393, 284, 4088, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25235, 25, 383, 9104, 2393, 9639, 287, 4088, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1550, 25743, 25, 35123, 35528, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 705, 14539, 1068, 262, 3440, 62, 19849, 2446, 286, 262, 9220, 62, 32180, 1398, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 19849, 62, 34945, 1343, 29472, 1343, 31051, 6, 1343, 29472, 1343, 45302, 39308, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26145, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17633, 9220, 705, 1343, 29472, 1343, 705, 9639, 13, 1475, 863, 262, 3440, 62, 19849, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2298, 293, 13, 2220, 7, 69, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16922, 1609, 1522, 287, 3440, 62, 19849, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 13, 35528, 3275, 25, 220, 705, 1343, 965, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17633, 9220, 705, 1343, 29472, 1343, 705, 714, 407, 307, 7448, 13, 1475, 863, 262, 3440, 62, 19849, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 3419, 201, 198, 201, 198, 220, 220, 220, 825, 1064, 62, 30283, 62, 19849, 62, 7753, 7, 944, 11, 565, 5819, 62, 17618, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11789, 6530, 25, 1064, 62, 30283, 62, 19849, 62, 7753, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12489, 25, 9683, 262, 3376, 2746, 1912, 319, 13946, 1271, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25235, 25, 383, 9104, 2393, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1550, 25743, 25, 35123, 35528, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 705, 14539, 1068, 262, 1064, 62, 30283, 62, 19849, 62, 7753, 2446, 286, 262, 9220, 62, 32180, 1398, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 565, 5819, 62, 17618, 28, 13946, 62, 17618, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43551, 62, 3672, 28, 944, 13, 19849, 62, 34945, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 62, 1659, 62, 19849, 62, 16624, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 62, 1659, 62, 16624, 796, 28686, 13, 4868, 15908, 7, 944, 13, 43551, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2116, 13, 7753, 287, 2116, 13, 4868, 62, 1659, 62, 16624, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 7753, 13, 9630, 7, 2536, 7, 2116, 13, 565, 5819, 62, 17618, 4008, 0, 10779, 16, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 62, 3672, 28, 944, 13, 7753, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 62, 3672, 28, 944, 13, 19849, 62, 3672, 13, 35312, 10786, 2637, 38381, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3109, 863, 262, 1064, 62, 30283, 62, 19849, 62, 7753, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 2637, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 19849, 62, 3672, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16922, 1609, 1522, 287, 1064, 62, 30283, 62, 19849, 62, 7753, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 13, 35528, 3275, 25, 220, 705, 1343, 965, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 62, 15252, 13, 6404, 7, 944, 13, 7753, 62, 15252, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3109, 863, 262, 1064, 62, 30283, 62, 19849, 62, 7753, 2446, 286, 262, 9104, 62, 37, 5540, 1398, 351, 25743, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 3419 ]
2.009624
2,286
from rest_framework import serializers from roda_purchase import models '''Aqui é onde transformamos dados em um formato que pode ser armazenado ou transmitido'''
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 686, 6814, 62, 79, 18737, 1330, 4981, 628, 198, 7061, 6, 32, 421, 72, 38251, 319, 2934, 6121, 321, 418, 9955, 418, 795, 23781, 1296, 5549, 8358, 279, 1098, 1055, 3211, 1031, 268, 4533, 267, 84, 21937, 17305, 7061, 6 ]
3.346939
49
import setuptools long_description = "Check full documentation [here](https://github.com/pptx704/torpedo)" setuptools.setup( name="mailtorpedo", version="1.1.0", author="Rafeed M. Bhuiyan", author_email="[email protected]", description="A Python package for sending personalized emails using own SMTP server.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/pptx704/torpedo", project_urls={ "Bug Tracker": "https://github.com/pptx704/torpedo/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ 'beautifulsoup4', 'openpyxl' ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.6", )
[ 11748, 900, 37623, 10141, 198, 198, 6511, 62, 11213, 796, 366, 9787, 1336, 10314, 685, 1456, 16151, 5450, 1378, 12567, 13, 785, 14, 381, 17602, 32869, 14, 13165, 9124, 78, 16725, 198, 198, 2617, 37623, 10141, 13, 40406, 7, 198, 220, 220, 220, 1438, 2625, 4529, 13165, 9124, 78, 1600, 198, 220, 220, 220, 2196, 2625, 16, 13, 16, 13, 15, 1600, 198, 220, 220, 220, 1772, 2625, 49, 1878, 2308, 337, 13, 16581, 9019, 4121, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 430, 12363, 76, 13, 34369, 9019, 4121, 31, 14816, 13, 785, 1600, 198, 220, 220, 220, 6764, 2625, 32, 11361, 5301, 329, 7216, 28949, 7237, 1262, 898, 9447, 7250, 4382, 33283, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 381, 17602, 32869, 14, 13165, 9124, 78, 1600, 198, 220, 220, 220, 1628, 62, 6371, 82, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25624, 26885, 1298, 366, 5450, 1378, 12567, 13, 785, 14, 381, 17602, 32869, 14, 13165, 9124, 78, 14, 37165, 1600, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40544, 4135, 82, 10486, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9654, 9078, 87, 75, 6, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 5301, 62, 15908, 28, 4895, 1298, 366, 10677, 25719, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 7, 3003, 2625, 10677, 12340, 198, 220, 220, 220, 21015, 62, 47911, 2625, 29, 28, 18, 13, 21, 1600, 198, 8 ]
2.562327
361
import six from oct.core.exceptions import OctConfigurationError from oct.results.output import output from oct.results.models import db, set_database from oct.utilities.configuration import configure, get_db_uri
[ 11748, 2237, 198, 6738, 19318, 13, 7295, 13, 1069, 11755, 1330, 2556, 38149, 12331, 198, 198, 6738, 19318, 13, 43420, 13, 22915, 1330, 5072, 198, 6738, 19318, 13, 43420, 13, 27530, 1330, 20613, 11, 900, 62, 48806, 198, 6738, 19318, 13, 315, 2410, 13, 11250, 3924, 1330, 17425, 11, 651, 62, 9945, 62, 9900, 628, 198 ]
3.857143
56
""" In a row of trees, the i-th tree produces fruit with type tree[i]. You start at any tree of your choice, then repeatedly perform the following steps: Add one piece of fruit from this tree to your baskets. If you cannot, stop. Move to the next tree to the right of the current tree. If there is no tree to the right, stop. Note that you do not have any choice after the initial choice of starting tree: you must perform step 1, then step 2, then back to step 1, then step 2, and so on until you stop. You have two baskets, and each basket can carry any quantity of fruit, but you want each basket to only carry one type of fruit each. What is the total amount of fruit you can collect with this procedure? Example 1: Input: [1,2,1] Output: 3 Explanation: We can collect [1,2,1]. Example 2: Input: [0,1,2,2] Output: 3 Explanation: We can collect [1,2,2]. If we started at the first tree, we would only collect [0, 1]. Example 3: Input: [1,2,3,2,2] Output: 4 Explanation: We can collect [2,3,2,2]. If we started at the first tree, we would only collect [1, 2]. Example 4: Input: [3,3,3,1,2,1,1,2,3,3,4] Output: 5 Explanation: We can collect [1,2,1,1,2]. If we started at the first tree or the eighth tree, we would only collect 4 fruits. Note: 1 <= tree.length <= 40000 0 <= tree[i] < tree.length If I start from a tree I can't stop and have to put the fruit in a basket, but I want basket to have only one type of fruit. It is not clear if one needs to stop after a 3rd type of fruit is encountered. Since about 4 contests there is at least one question that is harder to understand than to solve. Is it too hard to have someone proofread it before posting? """ s = Solution() print(s.totalFruit([1,2,1])) print(s.totalFruit([0,1,2,2])) print(s.totalFruit([1,2,3,2,2])) print(s.totalFruit([3,3,3,1,2,1,1,2,3,3,4]))
[ 37811, 198, 818, 257, 5752, 286, 7150, 11, 262, 1312, 12, 400, 5509, 11073, 8234, 351, 2099, 5509, 58, 72, 4083, 198, 198, 1639, 923, 379, 597, 5509, 286, 534, 3572, 11, 788, 7830, 1620, 262, 1708, 4831, 25, 198, 198, 4550, 530, 3704, 286, 8234, 422, 428, 5509, 284, 534, 46530, 13, 220, 1002, 345, 2314, 11, 2245, 13, 198, 21774, 284, 262, 1306, 5509, 284, 262, 826, 286, 262, 1459, 5509, 13, 220, 1002, 612, 318, 645, 5509, 284, 262, 826, 11, 2245, 13, 198, 6425, 326, 345, 466, 407, 423, 597, 3572, 706, 262, 4238, 3572, 286, 3599, 5509, 25, 345, 1276, 1620, 2239, 352, 11, 788, 2239, 362, 11, 788, 736, 284, 2239, 352, 11, 788, 2239, 362, 11, 290, 523, 319, 1566, 345, 2245, 13, 198, 198, 1639, 423, 734, 46530, 11, 290, 1123, 7988, 460, 3283, 597, 12040, 286, 8234, 11, 475, 345, 765, 1123, 7988, 284, 691, 3283, 530, 2099, 286, 8234, 1123, 13, 198, 198, 2061, 318, 262, 2472, 2033, 286, 8234, 345, 460, 2824, 351, 428, 8771, 30, 628, 198, 198, 16281, 352, 25, 198, 198, 20560, 25, 685, 16, 11, 17, 11, 16, 60, 198, 26410, 25, 513, 198, 3109, 11578, 341, 25, 775, 460, 2824, 685, 16, 11, 17, 11, 16, 4083, 198, 16281, 362, 25, 198, 198, 20560, 25, 685, 15, 11, 16, 11, 17, 11, 17, 60, 198, 26410, 25, 513, 198, 3109, 11578, 341, 25, 775, 460, 2824, 685, 16, 11, 17, 11, 17, 4083, 198, 1532, 356, 2067, 379, 262, 717, 5509, 11, 356, 561, 691, 2824, 685, 15, 11, 352, 4083, 198, 16281, 513, 25, 198, 198, 20560, 25, 685, 16, 11, 17, 11, 18, 11, 17, 11, 17, 60, 198, 26410, 25, 604, 198, 3109, 11578, 341, 25, 775, 460, 2824, 685, 17, 11, 18, 11, 17, 11, 17, 4083, 198, 1532, 356, 2067, 379, 262, 717, 5509, 11, 356, 561, 691, 2824, 685, 16, 11, 362, 4083, 198, 16281, 604, 25, 198, 198, 20560, 25, 685, 18, 11, 18, 11, 18, 11, 16, 11, 17, 11, 16, 11, 16, 11, 17, 11, 18, 11, 18, 11, 19, 60, 198, 26410, 25, 642, 198, 3109, 11578, 341, 25, 775, 460, 2824, 685, 16, 11, 17, 11, 16, 11, 16, 11, 17, 4083, 198, 1532, 356, 2067, 379, 262, 717, 5509, 393, 262, 16974, 5509, 11, 356, 561, 691, 2824, 604, 15921, 13, 628, 198, 6425, 25, 198, 198, 16, 19841, 5509, 13, 13664, 19841, 604, 2388, 198, 15, 19841, 5509, 58, 72, 60, 1279, 5509, 13, 13664, 628, 198, 1532, 314, 923, 422, 257, 5509, 314, 460, 470, 2245, 290, 423, 284, 1234, 262, 8234, 287, 257, 7988, 11, 475, 314, 765, 7988, 284, 423, 691, 530, 2099, 286, 8234, 13, 632, 318, 407, 1598, 611, 530, 2476, 284, 2245, 706, 257, 513, 4372, 2099, 286, 8234, 318, 12956, 13, 198, 198, 6385, 546, 604, 22830, 612, 318, 379, 1551, 530, 1808, 326, 318, 7069, 284, 1833, 621, 284, 8494, 13, 1148, 340, 1165, 1327, 284, 423, 2130, 6617, 961, 340, 878, 10754, 30, 198, 37811, 628, 198, 82, 796, 28186, 3419, 198, 4798, 7, 82, 13, 23350, 37, 4872, 26933, 16, 11, 17, 11, 16, 60, 4008, 198, 4798, 7, 82, 13, 23350, 37, 4872, 26933, 15, 11, 16, 11, 17, 11, 17, 60, 4008, 198, 4798, 7, 82, 13, 23350, 37, 4872, 26933, 16, 11, 17, 11, 18, 11, 17, 11, 17, 60, 4008, 198, 4798, 7, 82, 13, 23350, 37, 4872, 26933, 18, 11, 18, 11, 18, 11, 16, 11, 17, 11, 16, 11, 16, 11, 17, 11, 18, 11, 18, 11, 19, 60, 4008, 198 ]
3.033003
606
import time import numpy as np import pytest from neuraxle.base import BaseStep, ExecutionContext from neuraxle.data_container import DataContainer, AbsentValuesNullObject from neuraxle.distributed.streaming import SequentialQueuedPipeline, ParallelQueuedFeatureUnion, QueueJoiner from neuraxle.hyperparams.space import HyperparameterSamples from neuraxle.pipeline import Pipeline from neuraxle.steps.loop import ForEachDataInput from neuraxle.steps.misc import FitTransformCallbackStep, Sleep from neuraxle.steps.numpy import MultiplyByN EXPECTED_OUTPUTS = np.array(range(100)) * 2 * 2 * 2 * 2 EXPECTED_OUTPUTS_PARALLEL = np.array((np.array(range(100)) * 2).tolist() * 4)
[ 11748, 640, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 9288, 198, 198, 6738, 11943, 897, 293, 13, 8692, 1330, 7308, 8600, 11, 37497, 21947, 198, 6738, 11943, 897, 293, 13, 7890, 62, 34924, 1330, 6060, 29869, 11, 49274, 40161, 35067, 10267, 198, 6738, 11943, 897, 293, 13, 17080, 6169, 13, 5532, 278, 1330, 24604, 1843, 15681, 1739, 47, 541, 4470, 11, 42945, 15681, 1739, 38816, 38176, 11, 4670, 518, 9908, 7274, 198, 6738, 11943, 897, 293, 13, 49229, 37266, 13, 13200, 1330, 15079, 17143, 2357, 50, 12629, 198, 6738, 11943, 897, 293, 13, 79, 541, 4470, 1330, 37709, 198, 6738, 11943, 897, 293, 13, 20214, 13, 26268, 1330, 1114, 10871, 6601, 20560, 198, 6738, 11943, 897, 293, 13, 20214, 13, 44374, 1330, 25048, 41762, 47258, 8600, 11, 17376, 198, 6738, 11943, 897, 293, 13, 20214, 13, 77, 32152, 1330, 7854, 541, 306, 3886, 45, 198, 198, 49864, 9782, 1961, 62, 2606, 7250, 3843, 50, 796, 45941, 13, 18747, 7, 9521, 7, 3064, 4008, 1635, 362, 1635, 362, 1635, 362, 1635, 362, 198, 49864, 9782, 1961, 62, 2606, 7250, 3843, 50, 62, 27082, 1847, 2538, 43, 796, 45941, 13, 18747, 19510, 37659, 13, 18747, 7, 9521, 7, 3064, 4008, 1635, 362, 737, 83, 349, 396, 3419, 1635, 604, 8, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198 ]
3.135135
222
import string cipheren = dict(zip(list(string.ascii_lowercase), string.ascii_lowercase[::-1])) cipherde = dict(zip(string.ascii_lowercase[::-1], list(string.ascii_lowercase)))
[ 11748, 4731, 198, 66, 541, 258, 918, 796, 8633, 7, 13344, 7, 4868, 7, 8841, 13, 292, 979, 72, 62, 21037, 7442, 828, 4731, 13, 292, 979, 72, 62, 21037, 7442, 58, 3712, 12, 16, 60, 4008, 198, 66, 10803, 2934, 796, 8633, 7, 13344, 7, 8841, 13, 292, 979, 72, 62, 21037, 7442, 58, 3712, 12, 16, 4357, 1351, 7, 8841, 13, 292, 979, 72, 62, 21037, 7442, 22305, 198 ]
2.478873
71
from dolfin import * import matplotlib.pyplot as plt import numpy as np import scipy.interpolate as s eps = 0.3 g = 0.0 w0 = 0.8 dt = 1e-5 gamma = 1.0 file = File('./test.pvd') eps = 0.3 g = 0.0 w0 = 0.8 dt = 0.01 gamma = 1.0 img = plt.imread("./img/newton.jpeg")/256 (Nx, Ny) = img.shape print(img) L = 100 x = np.linspace(0, L, Nx) y = np.linspace(0, L, Ny) f = s.interp2d(x, y, img) mesh = RectangleMesh(Point((0, 0)), Point(L, L), Nx-1, Ny-1) X = FunctionSpace(mesh, 'CG', 1) rho = Function(X) field = Field() rho.interpolate(field) Vh = FiniteElement('CG', mesh.ufl_cell(), 2) ME = FunctionSpace(mesh, Vh*Vh) X = VectorFunctionSpace(mesh, 'CG', 1) Y = FunctionSpace(mesh, 'CG', 1) R = FunctionSpace(refine(mesh), 'CG', 1) theta = Function(X) vectorField = VectorField() theta.interpolate(vectorField) k = sqrt((np.pi*rho/w0)**2 - rho**2*gamma**2) Uh = Function(ME) Uh_0 = Function(ME) U = TrialFunction(ME) phi, psi = TestFunctions(ME) initial = GaussianRandomField() Uh.interpolate(initial) Uh_0.interpolate(initial) uh, qh = split(Uh) uh_0, qh_0 = split(Uh_0) qh_mid = 0.5*qh + 0.5*qh_0 dPhi = G1(uh, uh_0)*uh + G2(uh_0) L0 = (uh-uh_0)*phi*dx + dt*A(qh_mid, phi, k) - dt*B(uh, phi, theta, gamma) + dt*dPhi*phi*dx L1 = qh*psi*dx - A(uh, psi, k) L = L0 + L1 a = derivative(L, Uh, U) SH_problem = Problem(a, L) solver = CustomSolver() t = 0 T = 5 file = File('./result/newton.pvd') while (t < T): print('time: {}'.format(t)) t += dt Uh_0.vector()[:] = Uh.vector() solver.solve(SH_problem, Uh.vector()) sol_c = project(Uh.split()[0], Y) sol_r = Function(R) LagrangeInterpolator.interpolate(sol_r, sol_c) sol_r.rename('field', 'label') file << (sol_r, t)
[ 6738, 288, 4024, 259, 1330, 1635, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 3849, 16104, 378, 355, 264, 198, 198, 25386, 796, 657, 13, 18, 198, 70, 796, 657, 13, 15, 198, 86, 15, 796, 657, 13, 23, 198, 28664, 796, 352, 68, 12, 20, 198, 28483, 2611, 796, 352, 13, 15, 198, 198, 7753, 796, 9220, 7, 4458, 14, 9288, 13, 79, 20306, 11537, 198, 198, 25386, 796, 657, 13, 18, 198, 70, 796, 657, 13, 15, 198, 86, 15, 796, 657, 13, 23, 198, 28664, 796, 657, 13, 486, 198, 28483, 2611, 796, 352, 13, 15, 198, 198, 9600, 796, 458, 83, 13, 320, 961, 7, 1911, 14, 9600, 14, 3605, 1122, 13, 73, 22071, 4943, 14, 11645, 198, 7, 45, 87, 11, 17735, 8, 796, 33705, 13, 43358, 198, 4798, 7, 9600, 8, 198, 43, 796, 1802, 198, 87, 796, 45941, 13, 21602, 10223, 7, 15, 11, 406, 11, 399, 87, 8, 198, 88, 796, 45941, 13, 21602, 10223, 7, 15, 11, 406, 11, 17735, 8, 198, 69, 796, 264, 13, 3849, 79, 17, 67, 7, 87, 11, 331, 11, 33705, 8, 198, 198, 76, 5069, 796, 48599, 9248, 37031, 7, 12727, 19510, 15, 11, 657, 36911, 6252, 7, 43, 11, 406, 828, 399, 87, 12, 16, 11, 17735, 12, 16, 8, 198, 198, 55, 796, 15553, 14106, 7, 76, 5069, 11, 705, 39816, 3256, 352, 8, 198, 81, 8873, 796, 15553, 7, 55, 8, 198, 3245, 796, 7663, 3419, 198, 81, 8873, 13, 3849, 16104, 378, 7, 3245, 8, 198, 198, 53, 71, 796, 4463, 578, 20180, 10786, 39816, 3256, 19609, 13, 84, 2704, 62, 3846, 22784, 362, 8, 198, 11682, 796, 15553, 14106, 7, 76, 5069, 11, 569, 71, 9, 53, 71, 8, 198, 55, 796, 20650, 22203, 14106, 7, 76, 5069, 11, 705, 39816, 3256, 352, 8, 198, 56, 796, 15553, 14106, 7, 76, 5069, 11, 705, 39816, 3256, 352, 8, 198, 49, 796, 15553, 14106, 7, 5420, 500, 7, 76, 5069, 828, 705, 39816, 3256, 352, 8, 198, 198, 1169, 8326, 796, 15553, 7, 55, 8, 198, 31364, 15878, 796, 20650, 15878, 3419, 198, 1169, 8326, 13, 3849, 16104, 378, 7, 31364, 15878, 8, 198, 74, 796, 19862, 17034, 19510, 37659, 13, 14415, 9, 81, 8873, 14, 86, 15, 8, 1174, 17, 532, 374, 8873, 1174, 17, 9, 28483, 2611, 1174, 17, 8, 198, 198, 34653, 796, 15553, 7, 11682, 8, 198, 34653, 62, 15, 796, 15553, 7, 11682, 8, 198, 52, 796, 21960, 22203, 7, 11682, 8, 198, 34846, 11, 46231, 796, 6208, 24629, 2733, 7, 11682, 8, 198, 198, 36733, 796, 12822, 31562, 29531, 15878, 3419, 198, 34653, 13, 3849, 16104, 378, 7, 36733, 8, 198, 34653, 62, 15, 13, 3849, 16104, 378, 7, 36733, 8, 198, 198, 7456, 11, 10662, 71, 796, 6626, 7, 34653, 8, 198, 7456, 62, 15, 11, 10662, 71, 62, 15, 796, 6626, 7, 34653, 62, 15, 8, 198, 198, 80, 71, 62, 13602, 796, 657, 13, 20, 9, 80, 71, 1343, 657, 13, 20, 9, 80, 71, 62, 15, 198, 67, 2725, 72, 796, 402, 16, 7, 7456, 11, 21480, 62, 15, 27493, 7456, 1343, 402, 17, 7, 7456, 62, 15, 8, 198, 198, 43, 15, 796, 357, 7456, 12, 7456, 62, 15, 27493, 34846, 9, 34350, 1343, 288, 83, 9, 32, 7, 80, 71, 62, 13602, 11, 872, 72, 11, 479, 8, 532, 288, 83, 9, 33, 7, 7456, 11, 872, 72, 11, 262, 8326, 11, 34236, 8, 1343, 288, 83, 9, 67, 2725, 72, 9, 34846, 9, 34350, 198, 43, 16, 796, 10662, 71, 9, 862, 72, 9, 34350, 532, 317, 7, 7456, 11, 46231, 11, 479, 8, 198, 198, 43, 796, 406, 15, 1343, 406, 16, 198, 64, 796, 27255, 7, 43, 11, 28574, 11, 471, 8, 198, 198, 9693, 62, 45573, 796, 20647, 7, 64, 11, 406, 8, 198, 82, 14375, 796, 8562, 50, 14375, 3419, 198, 198, 83, 796, 657, 198, 51, 796, 642, 198, 198, 7753, 796, 9220, 7, 4458, 14, 20274, 14, 3605, 1122, 13, 79, 20306, 11537, 198, 4514, 357, 83, 1279, 309, 2599, 198, 220, 220, 220, 3601, 10786, 2435, 25, 23884, 4458, 18982, 7, 83, 4008, 198, 220, 220, 220, 256, 15853, 288, 83, 198, 220, 220, 220, 28574, 62, 15, 13, 31364, 3419, 58, 47715, 796, 28574, 13, 31364, 3419, 198, 220, 220, 220, 1540, 332, 13, 82, 6442, 7, 9693, 62, 45573, 11, 28574, 13, 31364, 28955, 198, 220, 220, 220, 1540, 62, 66, 796, 1628, 7, 34653, 13, 35312, 3419, 58, 15, 4357, 575, 8, 198, 220, 220, 220, 1540, 62, 81, 796, 15553, 7, 49, 8, 198, 220, 220, 220, 21003, 9521, 9492, 16104, 1352, 13, 3849, 16104, 378, 7, 34453, 62, 81, 11, 1540, 62, 66, 8, 198, 220, 220, 220, 1540, 62, 81, 13, 918, 480, 10786, 3245, 3256, 705, 18242, 11537, 198, 220, 220, 220, 2393, 9959, 357, 34453, 62, 81, 11, 256, 8 ]
2.054087
832
from kw6.reader import Reader from pkg_resources import get_distribution, DistributionNotFound try: __version__ = get_distribution("kw6").version except DistributionNotFound: pass
[ 6738, 479, 86, 21, 13, 46862, 1330, 25342, 198, 198, 6738, 279, 10025, 62, 37540, 1330, 651, 62, 17080, 3890, 11, 27484, 3673, 21077, 198, 28311, 25, 198, 220, 220, 220, 11593, 9641, 834, 796, 651, 62, 17080, 3890, 7203, 46265, 21, 11074, 9641, 198, 16341, 27484, 3673, 21077, 25, 198, 220, 220, 220, 1208, 198 ]
3.375
56
from __future__ import division from matplotlib import pyplot as plt import numpy as np na = np.newaxis from scipy.interpolate import griddata import simplex, dirichlet, sampling, tests, density, timing allfigfuncs = [] SAVING = True # plt.interactive(False) ################################# # Figure-Generating Functions # ################################# allfigfuncs.append(prior_posterior_2D) allfigfuncs.append(aux_posterior_2D) allfigfuncs.append(Rhatp) allfigfuncs.append(autocorrelation) allfigfuncs.append(statistic_convergence) ############### # Utilities # ############### import os def scoreatpercentile(data,per,axis): ''' like the function in scipy.stats but with an axis argument, and works on arrays. ''' a = np.sort(data,axis=axis) idx = per/100. * (data.shape[axis]-1) if (idx % 1 == 0): return a[[slice(None) if ii != axis else idx for ii in range(a.ndim)]] else: lowerweight = 1-(idx % 1) upperweight = (idx % 1) idx = int(np.floor(idx)) return lowerweight * a[[slice(None) if ii != axis else idx for ii in range(a.ndim)]] \ + upperweight * a[[slice(None) if ii != axis else idx+1 for ii in range(a.ndim)]] ########################## # Generate All Figures # ########################## if __name__ == '__main__': main()
[ 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 2616, 796, 45941, 13, 3605, 22704, 198, 6738, 629, 541, 88, 13, 3849, 16104, 378, 1330, 1036, 1638, 1045, 198, 198, 11748, 2829, 87, 11, 26672, 488, 1616, 11, 19232, 11, 5254, 11, 12109, 11, 10576, 198, 198, 439, 5647, 12543, 6359, 796, 17635, 198, 4090, 53, 2751, 796, 6407, 198, 2, 458, 83, 13, 3849, 5275, 7, 25101, 8, 198, 198, 29113, 2, 198, 2, 220, 11291, 12, 8645, 803, 40480, 220, 1303, 198, 29113, 2, 198, 198, 439, 5647, 12543, 6359, 13, 33295, 7, 3448, 273, 62, 79, 6197, 1504, 62, 17, 35, 8, 198, 198, 439, 5647, 12543, 6359, 13, 33295, 7, 14644, 62, 79, 6197, 1504, 62, 17, 35, 8, 198, 198, 439, 5647, 12543, 6359, 13, 33295, 7, 49, 5183, 79, 8, 198, 198, 439, 5647, 12543, 6359, 13, 33295, 7, 2306, 420, 273, 49501, 8, 198, 198, 439, 5647, 12543, 6359, 13, 33295, 7, 14269, 2569, 62, 1102, 332, 12745, 8, 198, 198, 7804, 4242, 21017, 198, 2, 220, 41086, 220, 1303, 198, 7804, 4242, 21017, 198, 198, 11748, 28686, 198, 198, 4299, 4776, 265, 25067, 576, 7, 7890, 11, 525, 11, 22704, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 588, 262, 2163, 287, 629, 541, 88, 13, 34242, 475, 351, 281, 16488, 4578, 11, 290, 2499, 319, 198, 220, 220, 220, 26515, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 257, 796, 45941, 13, 30619, 7, 7890, 11, 22704, 28, 22704, 8, 198, 220, 220, 220, 4686, 87, 796, 583, 14, 3064, 13, 1635, 357, 7890, 13, 43358, 58, 22704, 45297, 16, 8, 628, 220, 220, 220, 611, 357, 312, 87, 4064, 352, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 257, 30109, 48369, 7, 14202, 8, 611, 21065, 14512, 16488, 2073, 4686, 87, 329, 21065, 287, 2837, 7, 64, 13, 358, 320, 8, 11907, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2793, 6551, 796, 352, 30420, 312, 87, 4064, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6727, 6551, 796, 357, 312, 87, 4064, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 493, 7, 37659, 13, 28300, 7, 312, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2793, 6551, 1635, 257, 30109, 48369, 7, 14202, 8, 611, 21065, 14512, 16488, 2073, 4686, 87, 329, 21065, 287, 2837, 7, 64, 13, 358, 320, 8, 11907, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 6727, 6551, 1635, 257, 30109, 48369, 7, 14202, 8, 611, 21065, 14512, 16488, 2073, 4686, 87, 10, 16, 329, 21065, 287, 2837, 7, 64, 13, 358, 320, 8, 11907, 198, 198, 14468, 7804, 2235, 198, 2, 220, 2980, 378, 1439, 36574, 220, 1303, 198, 14468, 7804, 2235, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.611969
518
""" * Project Name: NAD-Logging-Service * File Name: exception_test.py * Programmer: Kai Prince * Date: Sun, Nov 15, 2020 * Description: This file contains exception tests for the Logger app. """ import pytest from .sample_data import exception_logs as sample_logs @pytest.mark.parametrize("data", sample_logs) def test_all_bad_tests_fail(client, data): """ All these tests should fail """ # Arrange # Act response = client.post( "/logger/log", content_type="application/json", json=data, headers={"x-access-token": data["authToken"]}, ) # Assert assert response.status_code != 200
[ 37811, 198, 1635, 4935, 6530, 25, 49204, 12, 11187, 2667, 12, 16177, 198, 1635, 9220, 6530, 25, 6631, 62, 9288, 13, 9078, 198, 1635, 6118, 647, 25, 22091, 9005, 198, 1635, 7536, 25, 3825, 11, 5267, 1315, 11, 12131, 198, 1635, 12489, 25, 770, 2393, 4909, 6631, 5254, 329, 262, 5972, 1362, 598, 13, 198, 37811, 628, 198, 11748, 12972, 9288, 198, 198, 6738, 764, 39873, 62, 7890, 1330, 6631, 62, 6404, 82, 355, 6291, 62, 6404, 82, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 7890, 1600, 6291, 62, 6404, 82, 8, 198, 4299, 1332, 62, 439, 62, 14774, 62, 41989, 62, 32165, 7, 16366, 11, 1366, 2599, 198, 220, 220, 220, 37227, 1439, 777, 5254, 815, 2038, 37227, 628, 220, 220, 220, 1303, 943, 9521, 628, 220, 220, 220, 1303, 2191, 198, 220, 220, 220, 2882, 796, 5456, 13, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 6404, 1362, 14, 6404, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 62, 4906, 2625, 31438, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 28, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 4895, 87, 12, 15526, 12, 30001, 1298, 1366, 14692, 18439, 30642, 8973, 5512, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 2195, 861, 198, 220, 220, 220, 6818, 2882, 13, 13376, 62, 8189, 14512, 939, 198 ]
2.752101
238
from typing import Optional, Dict, Any from pyoembed import oEmbed, PyOembedException import json
[ 6738, 19720, 1330, 32233, 11, 360, 713, 11, 4377, 198, 6738, 279, 8226, 20521, 1330, 267, 31567, 276, 11, 9485, 46, 20521, 16922, 198, 11748, 33918, 198 ]
3.62963
27
# Copyright 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import utility.hex_utils as hex_utils from Cryptodome.PublicKey import RSA from Cryptodome.Cipher import PKCS1_OAEP from Cryptodome.Cipher import AES from Cryptodome.Random import get_random_bytes from Cryptodome.Hash import SHA256 from ecdsa import SigningKey, SECP256k1 import logging # 96 bits of randomness is recommended to prevent birthday attacks IV_SIZE = 12 # Key size for authenticated encryption is 256 bits and tag size is 128 bits KEY_SIZE = 32 TAG_SIZE = 16 logger = logging.getLogger(__name__) # ----------------------------------------------------------------------------- def generate_signing_keys(): """ Function to generate private key object """ return SigningKey.generate(curve=SECP256k1) # ----------------------------------------------------------------------------- def get_verifying_key(private_key): """ Function to return serialized verifying key from the private key """ return private_key.get_verifying_key().to_pem().decode('ascii') # ----------------------------------------------------------------- def generate_iv(): """ Function to generate random initialization vector """ return get_random_bytes(IV_SIZE) # ----------------------------------------------------------------- def generate_encrypted_key(key, encryption_key): """ Function to generate session key for the client Parameters: - encryption_key is a one-time encryption used to encrypt the passed key - key that needs to be encrypted """ pub_enc_key = RSA.importKey(encryption_key) # RSA encryption protocol according to PKCS#1 OAEP cipher = PKCS1_OAEP.new(pub_enc_key) return cipher.encrypt(key) # ----------------------------------------------------------------- def generate_key(): """ Function to generate symmetric key """ return get_random_bytes(KEY_SIZE) # ----------------------------------------------------------------- def compute_data_hash(data): ''' Computes SHA-256 hash of data ''' data_hash = compute_message_hash(data.encode("UTF-8")) return data_hash # ----------------------------------------------------------------- def encrypt_data(data, encryption_key, iv=None): """ Function to encrypt data based on encryption key and iv Parameters: - data is each item in inData or outData part of workorder request as per Trusted Compute EEA API 6.1.7 Work Order Data Formats - encryption_key is the key used to encrypt the data - iv is an initialization vector if required by the data encryption algorithm. The default is all zeros.iv must be a unique random number for every encryption operation. """ # Generate a random iv if iv is None: iv = get_random_bytes(IV_SIZE) generate_iv = True iv_length = IV_SIZE else: generate_iv = False iv_length = len(iv) cipher = AES.new(encryption_key, AES.MODE_GCM, iv) ciphered_data, tag = cipher.encrypt_and_digest(bytes(data)) if generate_iv: # if iv passed by user is None, random iv generated # above is prepended in encrypted data # iv + Cipher + Tag result = iv + ciphered_data + tag else: # Cipher + Tag result = ciphered_data + tag return result # ----------------------------------------------------------------- def decrypt_data(encryption_key, data, iv=None): """ Function to decrypt the outData in the result Parameters: - encryption_key is the key used to decrypt the encrypted data of the response. - iv is an initialization vector if required by the data encryption algorithm. The default is all zeros. - data is the parameter data in outData part of workorder request as per Trusted Compute EEA API 6.1.7 Work Order Data Formats. Returns decrypted data as a string """ if not data: logger.debug("Outdata is empty, nothing to decrypt") return data # if iv is None the it's assumed that 12 bytes iv is # prepended in encrypted data data_byte = base64_to_byte_array(data) if iv is None: iv_length = IV_SIZE iv = data_byte[:iv_length] data_contains_iv = True else: iv_length = len(iv) data_contains_iv = False cipher = AES.new(encryption_key, AES.MODE_GCM, iv) # Split data into iv, tag and ciphered data if data_contains_iv: ciphertext_len = len(data_byte) - iv_length - TAG_SIZE ciphered_data = data_byte[iv_length: iv_length + ciphertext_len] tag = data_byte[-TAG_SIZE:] else: ciphertext_len = len(data_byte) - TAG_SIZE ciphered_data = data_byte[: ciphertext_len] tag = data_byte[-TAG_SIZE:] result = cipher.decrypt_and_verify(ciphered_data, tag).decode("utf-8") logger.info("Decryption result at client - %s", result) return result # ----------------------------------------------------------------------------- def decrypted_response(input_json, session_key, session_iv, data_key=None, data_iv=None): """ Function iterate through the out data items and decrypt the data using encryptedDataEncryptionKey and returns json object. Parameters: - input_json is a dictionary object containing the work order response payload as per Trusted Compute EEA API 6.1.2 - session_key is the key used to decrypt the encrypted data of the response. - session_iv is an initialization vector corresponding to session_key. - data_key is a one time key generated by participant used to encrypt work order indata - data_iv is an initialization vector used along with data_key. Default is all zeros. returns out data json object in response after decrypting output data """ i = 0 do_decrypt = True data_objects = input_json['outData'] for item in data_objects: data = item['data'].encode('UTF-8') iv = item['iv'].encode('UTF-8') e_key = item['encryptedDataEncryptionKey'].encode('UTF-8') if not e_key or (e_key == "null".encode('UTF-8')): data_encryption_key_byte = session_key iv = session_iv elif e_key == "-".encode('UTF-8'): do_decrypt = False else: data_encryption_key_byte = data_key iv = data_iv if not do_decrypt: input_json['outData'][i]['data'] = data logger.info( "Work order response data not encrypted, data in plain - %s", base64.b64decode(data).decode('UTF-8')) else: logger.debug("encrypted_key: %s", data_encryption_key_byte) # Decrypt output data data_in_plain = decrypt_data( data_encryption_key_byte, item['data'], iv) input_json['outData'][i]['data'] = data_in_plain i = i + 1 return input_json['outData'] # ----------------------------------------------------------------------------- def verify_data_hash(msg, data_hash): ''' Function to verify data hash msg - Input text data_hash - hash of the data in hex format ''' verify_success = True msg_hash = compute_data_hash(msg) # Convert both hash hex string values to upper case msg_hash_hex = hex_utils.byte_array_to_hex_str(msg_hash).upper() data_hash = data_hash.upper() if msg_hash_hex == data_hash: logger.info("Computed hash of message matched with data hash") else: logger.error("Computed hash of message does not match with data hash") verify_success = False return verify_success # ----------------------------------------------------------------------------- def strip_begin_end_public_key(key): """ Strips off newline chars, BEGIN PUBLIC KEY and END PUBLIC KEY. """ return key.replace("\n", "")\ .replace("-----BEGIN PUBLIC KEY-----", "").replace( "-----END PUBLIC KEY-----", "") # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
[ 2, 15069, 12131, 8180, 10501, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 2779, 2414, 198, 11748, 10361, 13, 33095, 62, 26791, 355, 17910, 62, 26791, 198, 6738, 15126, 375, 462, 13, 15202, 9218, 1330, 42319, 198, 6738, 15126, 375, 462, 13, 34, 10803, 1330, 29673, 7902, 16, 62, 23621, 8905, 198, 6738, 15126, 375, 462, 13, 34, 10803, 1330, 34329, 198, 6738, 15126, 375, 462, 13, 29531, 1330, 651, 62, 25120, 62, 33661, 198, 6738, 15126, 375, 462, 13, 26257, 1330, 25630, 11645, 198, 6738, 9940, 9310, 64, 1330, 5865, 278, 9218, 11, 10729, 47, 11645, 74, 16, 198, 198, 11748, 18931, 198, 198, 2, 9907, 10340, 286, 4738, 1108, 318, 7151, 284, 2948, 10955, 3434, 198, 3824, 62, 33489, 796, 1105, 198, 2, 7383, 2546, 329, 44529, 15835, 318, 17759, 10340, 290, 7621, 2546, 318, 13108, 10340, 198, 20373, 62, 33489, 796, 3933, 198, 42197, 62, 33489, 796, 1467, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 2, 16529, 32501, 198, 4299, 7716, 62, 12683, 278, 62, 13083, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 7716, 2839, 1994, 2134, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 5865, 278, 9218, 13, 8612, 378, 7, 22019, 303, 28, 23683, 47, 11645, 74, 16, 8, 628, 198, 2, 16529, 32501, 198, 4299, 651, 62, 332, 4035, 62, 2539, 7, 19734, 62, 2539, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 1441, 11389, 1143, 45505, 1994, 422, 262, 2839, 1994, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2839, 62, 2539, 13, 1136, 62, 332, 4035, 62, 2539, 22446, 1462, 62, 79, 368, 22446, 12501, 1098, 10786, 292, 979, 72, 11537, 628, 198, 2, 16529, 12, 198, 4299, 7716, 62, 452, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 7716, 4738, 37588, 15879, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 651, 62, 25120, 62, 33661, 7, 3824, 62, 33489, 8, 628, 198, 2, 16529, 12, 198, 4299, 7716, 62, 43628, 62, 2539, 7, 2539, 11, 15835, 62, 2539, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 7716, 6246, 1994, 329, 262, 5456, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 532, 15835, 62, 2539, 318, 257, 530, 12, 2435, 15835, 973, 284, 34117, 262, 3804, 1994, 198, 220, 220, 220, 532, 1994, 326, 2476, 284, 307, 19365, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2240, 62, 12685, 62, 2539, 796, 42319, 13, 11748, 9218, 7, 12685, 13168, 62, 2539, 8, 198, 220, 220, 220, 1303, 42319, 15835, 8435, 1864, 284, 29673, 7902, 2, 16, 440, 32, 8905, 198, 220, 220, 220, 38012, 796, 29673, 7902, 16, 62, 23621, 8905, 13, 3605, 7, 12984, 62, 12685, 62, 2539, 8, 198, 220, 220, 220, 1441, 38012, 13, 12685, 6012, 7, 2539, 8, 628, 198, 2, 16529, 12, 198, 4299, 7716, 62, 2539, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 7716, 23606, 19482, 1994, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 651, 62, 25120, 62, 33661, 7, 20373, 62, 33489, 8, 628, 198, 2, 16529, 12, 198, 4299, 24061, 62, 7890, 62, 17831, 7, 7890, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3082, 1769, 25630, 12, 11645, 12234, 286, 1366, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1366, 62, 17831, 796, 24061, 62, 20500, 62, 17831, 7, 7890, 13, 268, 8189, 7203, 48504, 12, 23, 48774, 198, 220, 220, 220, 1441, 1366, 62, 17831, 628, 198, 2, 16529, 12, 198, 4299, 34117, 62, 7890, 7, 7890, 11, 15835, 62, 2539, 11, 21628, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 34117, 1366, 1912, 319, 15835, 1994, 290, 21628, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1366, 318, 1123, 2378, 287, 287, 6601, 393, 503, 6601, 636, 286, 670, 2875, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 583, 833, 8459, 3082, 1133, 412, 16412, 7824, 718, 13, 16, 13, 22, 5521, 8284, 6060, 5178, 1381, 198, 220, 220, 220, 220, 220, 220, 220, 532, 15835, 62, 2539, 318, 262, 1994, 973, 284, 34117, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 532, 21628, 318, 281, 37588, 15879, 611, 2672, 416, 262, 1366, 15835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11862, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 318, 477, 1976, 27498, 13, 452, 1276, 307, 257, 3748, 4738, 1271, 329, 790, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15835, 4905, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2980, 378, 257, 4738, 21628, 198, 220, 220, 220, 611, 21628, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21628, 796, 651, 62, 25120, 62, 33661, 7, 3824, 62, 33489, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 452, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 21628, 62, 13664, 796, 8363, 62, 33489, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 452, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 21628, 62, 13664, 796, 18896, 7, 452, 8, 198, 220, 220, 220, 38012, 796, 34329, 13, 3605, 7, 12685, 13168, 62, 2539, 11, 34329, 13, 49058, 62, 15916, 44, 11, 21628, 8, 198, 220, 220, 220, 269, 541, 6083, 62, 7890, 11, 7621, 796, 38012, 13, 12685, 6012, 62, 392, 62, 12894, 395, 7, 33661, 7, 7890, 4008, 198, 220, 220, 220, 611, 7716, 62, 452, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 21628, 3804, 416, 2836, 318, 6045, 11, 4738, 21628, 7560, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2029, 318, 3143, 1631, 287, 19365, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21628, 1343, 44334, 1343, 17467, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 21628, 1343, 269, 541, 6083, 62, 7890, 1343, 7621, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 44334, 1343, 17467, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 541, 6083, 62, 7890, 1343, 7621, 198, 220, 220, 220, 1441, 1255, 628, 198, 2, 16529, 12, 198, 4299, 42797, 62, 7890, 7, 12685, 13168, 62, 2539, 11, 1366, 11, 21628, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 42797, 262, 503, 6601, 287, 262, 1255, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 15835, 62, 2539, 318, 262, 1994, 973, 284, 42797, 262, 19365, 1366, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 21628, 318, 281, 37588, 15879, 611, 2672, 416, 262, 1366, 15835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11862, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 318, 477, 1976, 27498, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1366, 318, 262, 11507, 1366, 287, 503, 6601, 636, 286, 670, 2875, 2581, 355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 583, 833, 8459, 3082, 1133, 412, 16412, 7824, 718, 13, 16, 13, 22, 5521, 8284, 6060, 5178, 1381, 13, 198, 220, 220, 220, 16409, 875, 15109, 1366, 355, 257, 4731, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 7975, 7890, 318, 6565, 11, 2147, 284, 42797, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 198, 220, 220, 220, 1303, 611, 21628, 318, 6045, 262, 340, 338, 9672, 326, 1105, 9881, 21628, 318, 198, 220, 220, 220, 1303, 3143, 1631, 287, 19365, 1366, 198, 220, 220, 220, 1366, 62, 26327, 796, 2779, 2414, 62, 1462, 62, 26327, 62, 18747, 7, 7890, 8, 198, 220, 220, 220, 611, 21628, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21628, 62, 13664, 796, 8363, 62, 33489, 198, 220, 220, 220, 220, 220, 220, 220, 21628, 796, 1366, 62, 26327, 58, 25, 452, 62, 13664, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 3642, 1299, 62, 452, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21628, 62, 13664, 796, 18896, 7, 452, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 3642, 1299, 62, 452, 796, 10352, 628, 220, 220, 220, 38012, 796, 34329, 13, 3605, 7, 12685, 13168, 62, 2539, 11, 34329, 13, 49058, 62, 15916, 44, 11, 21628, 8, 198, 220, 220, 220, 1303, 27758, 1366, 656, 21628, 11, 7621, 290, 269, 541, 6083, 1366, 198, 220, 220, 220, 611, 1366, 62, 3642, 1299, 62, 452, 25, 198, 220, 220, 220, 220, 220, 220, 220, 38012, 5239, 62, 11925, 796, 18896, 7, 7890, 62, 26327, 8, 532, 21628, 62, 13664, 532, 37801, 62, 33489, 198, 220, 220, 220, 220, 220, 220, 220, 269, 541, 6083, 62, 7890, 796, 1366, 62, 26327, 58, 452, 62, 13664, 25, 21628, 62, 13664, 1343, 38012, 5239, 62, 11925, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 1366, 62, 26327, 58, 12, 42197, 62, 33489, 47715, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 38012, 5239, 62, 11925, 796, 18896, 7, 7890, 62, 26327, 8, 532, 37801, 62, 33489, 198, 220, 220, 220, 220, 220, 220, 220, 269, 541, 6083, 62, 7890, 796, 1366, 62, 26327, 58, 25, 38012, 5239, 62, 11925, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 1366, 62, 26327, 58, 12, 42197, 62, 33489, 47715, 628, 220, 220, 220, 1255, 796, 38012, 13, 12501, 6012, 62, 392, 62, 332, 1958, 7, 66, 541, 6083, 62, 7890, 11, 7621, 737, 12501, 1098, 7203, 40477, 12, 23, 4943, 198, 220, 220, 220, 49706, 13, 10951, 7203, 10707, 13168, 1255, 379, 5456, 532, 4064, 82, 1600, 1255, 8, 198, 220, 220, 220, 1441, 1255, 628, 198, 2, 16529, 32501, 198, 4299, 875, 15109, 62, 26209, 7, 15414, 62, 17752, 11, 6246, 62, 2539, 11, 6246, 62, 452, 11, 1366, 62, 2539, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 452, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 11629, 378, 832, 262, 503, 1366, 3709, 290, 42797, 262, 1366, 1262, 198, 220, 220, 220, 19365, 6601, 27195, 13168, 9218, 290, 5860, 33918, 2134, 13, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5128, 62, 17752, 318, 257, 22155, 2134, 7268, 262, 670, 1502, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 583, 833, 8459, 3082, 1133, 412, 16412, 7824, 718, 13, 16, 13, 17, 198, 220, 220, 220, 220, 220, 220, 220, 532, 6246, 62, 2539, 318, 262, 1994, 973, 284, 42797, 262, 19365, 1366, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 6246, 62, 452, 318, 281, 37588, 15879, 11188, 284, 6246, 62, 2539, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1366, 62, 2539, 318, 257, 530, 640, 1994, 7560, 416, 18399, 973, 284, 34117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 670, 1502, 773, 1045, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1366, 62, 452, 318, 281, 37588, 15879, 973, 1863, 351, 1366, 62, 2539, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 318, 477, 1976, 27498, 13, 198, 220, 220, 220, 5860, 503, 1366, 33918, 2134, 287, 2882, 706, 42797, 278, 5072, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 466, 62, 12501, 6012, 796, 6407, 198, 220, 220, 220, 1366, 62, 48205, 796, 5128, 62, 17752, 17816, 448, 6601, 20520, 198, 220, 220, 220, 329, 2378, 287, 1366, 62, 48205, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2378, 17816, 7890, 6, 4083, 268, 8189, 10786, 48504, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 21628, 796, 2378, 17816, 452, 6, 4083, 268, 8189, 10786, 48504, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 304, 62, 2539, 796, 2378, 17816, 43628, 6601, 27195, 13168, 9218, 6, 4083, 268, 8189, 10786, 48504, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 304, 62, 2539, 393, 357, 68, 62, 2539, 6624, 366, 8423, 1911, 268, 8189, 10786, 48504, 12, 23, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 12685, 13168, 62, 2539, 62, 26327, 796, 6246, 62, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21628, 796, 6246, 62, 452, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 304, 62, 2539, 6624, 27444, 1911, 268, 8189, 10786, 48504, 12, 23, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 466, 62, 12501, 6012, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 12685, 13168, 62, 2539, 62, 26327, 796, 1366, 62, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21628, 796, 1366, 62, 452, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 466, 62, 12501, 6012, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 17752, 17816, 448, 6601, 6, 7131, 72, 7131, 6, 7890, 20520, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12468, 1502, 2882, 1366, 407, 19365, 11, 1366, 287, 8631, 532, 4064, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 2414, 13, 65, 2414, 12501, 1098, 7, 7890, 737, 12501, 1098, 10786, 48504, 12, 23, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 43628, 62, 2539, 25, 4064, 82, 1600, 1366, 62, 12685, 13168, 62, 2539, 62, 26327, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4280, 6012, 5072, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 259, 62, 25638, 796, 42797, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 12685, 13168, 62, 2539, 62, 26327, 11, 2378, 17816, 7890, 6, 4357, 21628, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 17752, 17816, 448, 6601, 6, 7131, 72, 7131, 6, 7890, 20520, 796, 1366, 62, 259, 62, 25638, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 1343, 352, 198, 220, 220, 220, 1441, 5128, 62, 17752, 17816, 448, 6601, 20520, 628, 198, 2, 16529, 32501, 198, 4299, 11767, 62, 7890, 62, 17831, 7, 19662, 11, 1366, 62, 17831, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 15553, 284, 11767, 1366, 12234, 198, 220, 220, 220, 31456, 532, 23412, 2420, 198, 220, 220, 220, 1366, 62, 17831, 532, 12234, 286, 262, 1366, 287, 17910, 5794, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 11767, 62, 13138, 796, 6407, 198, 220, 220, 220, 31456, 62, 17831, 796, 24061, 62, 7890, 62, 17831, 7, 19662, 8, 198, 220, 220, 220, 1303, 38240, 1111, 12234, 17910, 4731, 3815, 284, 6727, 1339, 198, 220, 220, 220, 31456, 62, 17831, 62, 33095, 796, 17910, 62, 26791, 13, 26327, 62, 18747, 62, 1462, 62, 33095, 62, 2536, 7, 19662, 62, 17831, 737, 45828, 3419, 198, 220, 220, 220, 1366, 62, 17831, 796, 1366, 62, 17831, 13, 45828, 3419, 198, 220, 220, 220, 611, 31456, 62, 17831, 62, 33095, 6624, 1366, 62, 17831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 5377, 17128, 12234, 286, 3275, 14451, 351, 1366, 12234, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 5377, 17128, 12234, 286, 3275, 857, 407, 2872, 351, 1366, 12234, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 11767, 62, 13138, 796, 10352, 198, 220, 220, 220, 1441, 11767, 62, 13138, 628, 198, 2, 16529, 32501, 198, 4299, 10283, 62, 27471, 62, 437, 62, 11377, 62, 2539, 7, 2539, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26137, 862, 572, 649, 1370, 34534, 11, 347, 43312, 44731, 35374, 290, 23578, 44731, 35374, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1994, 13, 33491, 7203, 59, 77, 1600, 366, 4943, 59, 198, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7203, 30934, 33, 43312, 44731, 35374, 30934, 1600, 366, 11074, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30934, 10619, 44731, 35374, 30934, 1600, 366, 4943, 628, 198, 2, 16529, 32501, 628, 198, 2, 16529, 32501, 628, 198, 2, 16529, 32501, 628, 198, 2, 16529, 32501, 198 ]
2.927438
3,087
from django.db import models from addons.models import Category import amo import mkt from mkt.webapps.models import Webapp
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 6738, 751, 684, 13, 27530, 1330, 21743, 198, 198, 11748, 716, 78, 198, 198, 11748, 285, 21841, 198, 6738, 285, 21841, 13, 12384, 18211, 13, 27530, 1330, 5313, 1324, 628, 628 ]
3.25
40
import pyqrcode import png from pyqrcode import QRCode # Text which is to be converted to QR code print("Enter text to convert") s = input(": ") # Name of QR code png file print("Enter image name to save") n = input(": ") # Adding extension as .pnf d = n + ".png" # Creating QR code url = pyqrcode.create(s) # Saving QR code as a png file url.show() url.png(d, scale=6)
[ 11748, 12972, 80, 6015, 1098, 198, 11748, 279, 782, 198, 6738, 12972, 80, 6015, 1098, 1330, 1195, 7397, 1098, 198, 198, 2, 8255, 543, 318, 284, 307, 11513, 284, 42137, 2438, 198, 4798, 7203, 17469, 2420, 284, 10385, 4943, 198, 82, 796, 5128, 7, 1298, 366, 8, 198, 2, 6530, 286, 42137, 2438, 279, 782, 2393, 198, 4798, 7203, 17469, 2939, 1438, 284, 3613, 4943, 198, 77, 796, 5128, 7, 1298, 366, 8, 198, 2, 18247, 7552, 355, 764, 21999, 69, 198, 67, 796, 299, 1343, 27071, 11134, 1, 198, 2, 30481, 42137, 2438, 198, 6371, 796, 12972, 80, 6015, 1098, 13, 17953, 7, 82, 8, 198, 2, 34689, 42137, 2438, 355, 220, 257, 279, 782, 2393, 198, 6371, 13, 12860, 3419, 198, 6371, 13, 11134, 7, 67, 11, 5046, 28, 21, 8, 198 ]
2.776119
134
def log(funct): """ Logs the function. """ return wrapper @log # decorator if __name__ == '__main__': f = log(multiply) # process and return `multipy` function. print(f(2,5)) print(add(10, 7))
[ 4299, 2604, 7, 12543, 310, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5972, 82, 262, 2163, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 29908, 198, 198, 31, 6404, 220, 220, 220, 1303, 11705, 1352, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 277, 796, 2604, 7, 16680, 541, 306, 8, 220, 220, 220, 1303, 1429, 290, 1441, 4600, 16680, 541, 88, 63, 2163, 13, 628, 220, 220, 220, 3601, 7, 69, 7, 17, 11, 20, 4008, 198, 220, 220, 220, 3601, 7, 2860, 7, 940, 11, 767, 4008, 198 ]
2.230769
104
from _rawffi import alt as _ffi import _rawffi import weakref import sys SIMPLE_TYPE_CHARS = "cbBhHiIlLdfguzZqQPXOv?" from _ctypes.basics import ( _CData, _CDataMeta, cdata_from_address, CArgObject, sizeof) from _ctypes.builtin import ConvMode from _ctypes.array import Array, byteorder from _ctypes.pointer import _Pointer, as_ffi_pointer NULL = NULL() TP_TO_DEFAULT = { 'c': 0, 'u': 0, 'b': 0, 'B': 0, 'h': 0, 'H': 0, 'i': 0, 'I': 0, 'l': 0, 'L': 0, 'q': 0, 'Q': 0, 'f': 0.0, 'd': 0.0, 'g': 0.0, 'P': None, # not part of struct 'O': NULL, 'z': None, 'Z': None, '?': False, 'v': 0, } if sys.platform == 'win32': TP_TO_DEFAULT['X'] = NULL DEFAULT_VALUE = object() pyobj_container = GlobalPyobjContainer() def from_param_char_p(cls, value): "used by c_char_p and c_wchar_p subclasses" res = generic_xxx_p_from_param(cls, value) if res is not None: return res if isinstance(value, (Array, _Pointer)): from ctypes import c_char, c_byte, c_wchar if type(value)._type_ in [c_char, c_byte, c_wchar]: return value def from_param_void_p(cls, value): "used by c_void_p subclasses" from _ctypes.function import CFuncPtr res = generic_xxx_p_from_param(cls, value) if res is not None: return res if isinstance(value, Array): return value if isinstance(value, (_Pointer, CFuncPtr)): return cls.from_address(value._buffer.buffer) if isinstance(value, int): return cls(value) FROM_PARAM_BY_TYPE = { 'z': from_param_char_p, 'Z': from_param_char_p, 'P': from_param_void_p, } CTYPES_TO_PEP3118_TABLE = { 'i': {2: 'h', 4: 'i', 8: 'q'}, 'I': {2: 'H', 4: 'I', 8: 'Q'}, 'l': {4: 'l', 8: 'q'}, 'L': {4: 'L', 8: 'Q'}, '?': {1: '?', 2: 'h', 4: 'l', 8: 'q'}, }
[ 6738, 4808, 1831, 487, 72, 1330, 5988, 355, 4808, 487, 72, 198, 11748, 4808, 1831, 487, 72, 198, 11748, 4939, 5420, 198, 11748, 25064, 198, 198, 48913, 16437, 62, 25216, 62, 3398, 27415, 796, 366, 21101, 33, 71, 17250, 33666, 43, 7568, 5162, 89, 57, 80, 48, 47, 55, 46, 85, 1701, 198, 198, 6738, 4808, 310, 9497, 13, 12093, 873, 1330, 357, 198, 220, 220, 220, 4808, 34, 6601, 11, 4808, 34, 6601, 48526, 11, 269, 7890, 62, 6738, 62, 21975, 11, 327, 28100, 10267, 11, 39364, 8, 198, 6738, 4808, 310, 9497, 13, 18780, 259, 1330, 34872, 19076, 198, 6738, 4808, 310, 9497, 13, 18747, 1330, 15690, 11, 18022, 2875, 198, 6738, 4808, 310, 9497, 13, 29536, 1330, 4808, 18833, 3849, 11, 355, 62, 487, 72, 62, 29536, 198, 33991, 796, 15697, 3419, 198, 198, 7250, 62, 10468, 62, 7206, 38865, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 84, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 71, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 72, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 75, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 43, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 80, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 48, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 10354, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 67, 10354, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 70, 10354, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 636, 286, 2878, 198, 220, 220, 220, 220, 220, 220, 220, 705, 46, 10354, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 89, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 57, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8348, 25, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 85, 10354, 657, 11, 198, 92, 198, 198, 361, 25064, 13, 24254, 6624, 705, 5404, 2624, 10354, 198, 220, 220, 220, 24525, 62, 10468, 62, 7206, 38865, 17816, 55, 20520, 796, 15697, 198, 198, 7206, 38865, 62, 39488, 796, 2134, 3419, 198, 198, 9078, 26801, 62, 34924, 796, 8060, 20519, 26801, 29869, 3419, 198, 198, 4299, 422, 62, 17143, 62, 10641, 62, 79, 7, 565, 82, 11, 1988, 2599, 198, 220, 220, 220, 366, 1484, 416, 269, 62, 10641, 62, 79, 290, 269, 62, 86, 10641, 62, 79, 850, 37724, 1, 198, 220, 220, 220, 581, 796, 14276, 62, 31811, 62, 79, 62, 6738, 62, 17143, 7, 565, 82, 11, 1988, 8, 198, 220, 220, 220, 611, 581, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 357, 19182, 11, 4808, 18833, 3849, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 422, 269, 19199, 1330, 269, 62, 10641, 11, 269, 62, 26327, 11, 269, 62, 86, 10641, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 8367, 737, 62, 4906, 62, 287, 685, 66, 62, 10641, 11, 269, 62, 26327, 11, 269, 62, 86, 10641, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 198, 198, 4299, 422, 62, 17143, 62, 19382, 62, 79, 7, 565, 82, 11, 1988, 2599, 198, 220, 220, 220, 366, 1484, 416, 269, 62, 19382, 62, 79, 850, 37724, 1, 198, 220, 220, 220, 422, 4808, 310, 9497, 13, 8818, 1330, 18551, 19524, 46745, 198, 220, 220, 220, 581, 796, 14276, 62, 31811, 62, 79, 62, 6738, 62, 17143, 7, 565, 82, 11, 1988, 8, 198, 220, 220, 220, 611, 581, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 15690, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 198, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 44104, 18833, 3849, 11, 18551, 19524, 46745, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13, 6738, 62, 21975, 7, 8367, 13557, 22252, 13, 22252, 8, 198, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 8367, 8, 198, 198, 10913, 2662, 62, 27082, 2390, 62, 17513, 62, 25216, 796, 1391, 198, 220, 220, 220, 705, 89, 10354, 422, 62, 17143, 62, 10641, 62, 79, 11, 198, 220, 220, 220, 705, 57, 10354, 422, 62, 17143, 62, 10641, 62, 79, 11, 198, 220, 220, 220, 705, 47, 10354, 422, 62, 17143, 62, 19382, 62, 79, 11, 198, 220, 220, 220, 1782, 198, 198, 4177, 48232, 1546, 62, 10468, 62, 47, 8905, 18, 16817, 62, 38148, 796, 1391, 198, 220, 220, 220, 705, 72, 10354, 1391, 17, 25, 705, 71, 3256, 604, 25, 705, 72, 3256, 807, 25, 705, 80, 6, 5512, 198, 220, 220, 220, 705, 40, 10354, 1391, 17, 25, 705, 39, 3256, 604, 25, 705, 40, 3256, 807, 25, 705, 48, 6, 5512, 198, 220, 220, 220, 705, 75, 10354, 1391, 19, 25, 705, 75, 3256, 807, 25, 705, 80, 6, 5512, 198, 220, 220, 220, 705, 43, 10354, 1391, 19, 25, 705, 43, 3256, 807, 25, 705, 48, 6, 5512, 198, 220, 220, 220, 705, 8348, 25, 1391, 16, 25, 705, 30, 3256, 362, 25, 705, 71, 3256, 604, 25, 705, 75, 3256, 807, 25, 705, 80, 6, 5512, 198, 92, 198 ]
1.930664
1,024
# -*- coding: utf-8 -*- import os import sys import signal import cassandra.cluster as cassandra_cluster import tempfile import testing.cassandra3 from mock import patch from time import sleep from shutil import rmtree if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 6737, 198, 11748, 30606, 15918, 13, 565, 5819, 355, 30606, 15918, 62, 565, 5819, 198, 11748, 20218, 7753, 198, 11748, 4856, 13, 66, 562, 15918, 18, 198, 6738, 15290, 1330, 8529, 198, 6738, 640, 1330, 3993, 198, 6738, 4423, 346, 1330, 374, 16762, 631, 198, 198, 361, 25064, 13, 9641, 62, 10951, 1279, 357, 17, 11, 767, 2599, 198, 220, 220, 220, 1330, 555, 715, 395, 17, 355, 555, 715, 395, 198, 17772, 25, 198, 220, 220, 220, 1330, 555, 715, 395, 628 ]
2.961905
105
from typing import Union, Tuple, List, Dict, Any from easydict import EasyDict import random import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from ding.utils import SequenceType, REWARD_MODEL_REGISTRY from ding.model import FCEncoder, ConvEncoder from .base_reward_model import BaseRewardModel from ding.utils import RunningMeanStd from ding.torch_utils.data_helper import to_tensor import copy @REWARD_MODEL_REGISTRY.register('rnd')
[ 6738, 19720, 1330, 4479, 11, 309, 29291, 11, 7343, 11, 360, 713, 11, 4377, 198, 6738, 2562, 11600, 1330, 16789, 35, 713, 198, 198, 11748, 4738, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 6738, 44852, 13, 26791, 1330, 45835, 6030, 11, 4526, 39743, 62, 33365, 3698, 62, 31553, 1797, 40405, 198, 6738, 44852, 13, 19849, 1330, 10029, 27195, 12342, 11, 34872, 27195, 12342, 198, 6738, 764, 8692, 62, 260, 904, 62, 19849, 1330, 7308, 48123, 17633, 198, 6738, 44852, 13, 26791, 1330, 18162, 5308, 272, 1273, 67, 198, 6738, 44852, 13, 13165, 354, 62, 26791, 13, 7890, 62, 2978, 525, 1330, 284, 62, 83, 22854, 198, 11748, 4866, 628, 628, 198, 31, 2200, 39743, 62, 33365, 3698, 62, 31553, 1797, 40405, 13, 30238, 10786, 81, 358, 11537, 198 ]
3.24
150
# =============================================================================== # Copyright 2015 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import from traits.api import Instance, Button, Str from traitsui.api import View, UItem, HGroup, VGroup from traitsui.handler import Handler from pychron.classifier.isotope_classifier import IsotopeClassifier # ============= standard library imports ======================== # ============= local library imports ========================== from pychron.graph.stacked_regression_graph import StackedRegressionGraph from pychron.loggable import Loggable UUIDS = () if __name__ == "__main__": t = IsotopeTrainer() t.configure_traits(view=View("test")) # ============= EOF =============================================
[ 2, 38093, 25609, 855, 198, 2, 15069, 1853, 14757, 9847, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 855, 198, 2, 796, 25609, 920, 71, 2917, 5888, 17944, 36658, 50155, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 6738, 12796, 13, 15042, 1330, 2262, 590, 11, 20969, 11, 4285, 198, 6738, 12796, 9019, 13, 15042, 1330, 3582, 11, 471, 7449, 11, 367, 13247, 11, 569, 13247, 198, 6738, 12796, 9019, 13, 30281, 1330, 32412, 198, 198, 6738, 12972, 11413, 13, 4871, 7483, 13, 271, 313, 3008, 62, 4871, 7483, 1330, 1148, 313, 3008, 9487, 7483, 198, 198, 2, 796, 25609, 3210, 5888, 17944, 36658, 1421, 18604, 198, 2, 796, 25609, 1957, 5888, 17944, 220, 36658, 2559, 28, 198, 6738, 12972, 11413, 13, 34960, 13, 301, 6021, 62, 2301, 2234, 62, 34960, 1330, 520, 6021, 8081, 2234, 37065, 198, 6738, 12972, 11413, 13, 6404, 70, 540, 1330, 5972, 70, 540, 198, 198, 30100, 14255, 796, 7499, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 256, 796, 1148, 313, 3008, 2898, 10613, 3419, 198, 220, 220, 220, 256, 13, 11250, 495, 62, 9535, 896, 7, 1177, 28, 7680, 7203, 9288, 48774, 198, 198, 2, 796, 25609, 412, 19238, 46111, 25609, 198 ]
4.246377
345
from operator import attrgetter from PyQt5.QtCore import Qt, QRectF, QAbstractAnimation, QPropertyAnimation, QEasingCurve from PyQt5.QtGui import QPen, QBrush, QColor, QPainter, QFont, QFontMetricsF, QTransform from PyQt5.QtWidgets import QGraphicsObject, QGraphicsView, QSizePolicy, QGraphicsScene from marker_mixin import MarkerMixin
[ 6738, 10088, 1330, 708, 81, 1136, 353, 198, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 33734, 11, 42137, 478, 37, 11, 1195, 23839, 39520, 11, 1195, 21746, 39520, 11, 1195, 36, 2313, 26628, 303, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1195, 25553, 11, 1195, 9414, 1530, 11, 1195, 10258, 11, 1195, 38490, 353, 11, 1195, 23252, 11, 1195, 23252, 9171, 10466, 37, 11, 1195, 41762, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 18172, 10267, 11, 1195, 18172, 7680, 11, 1195, 10699, 36727, 11, 1195, 18172, 36542, 198, 198, 6738, 18364, 62, 19816, 259, 1330, 2940, 263, 35608, 259, 628, 198 ]
2.905983
117
#!/usr/bin/env python3 ''' dataedit.py menu password edit for passworddongle.py ''' import time import random import getpass import json # all printable ascii chars, plus space, except double quote, tab, backslash mychars="`aZ0+nM<bY1!oL>cX2@pK;dW3#qJ:eV4$rI'fU5%sH[gT6^tG]hS7&uF{iR8*vE}jQ9(wD-kP,)xC=lO.~yB_mN/ zA" mylen=len(mychars) # direction values ENCRYPT=+1 DECRYPT=-1 def dataedit(data, key, level=0): '''update data based on key and input''' if type(data) == type([]): if len(data) == 0: print("ERROR - empty list",data) elif (len(data) % 2) == 1: print("ERROR - not even number of list members",data) else: for i,v in enumerate(data): if (i % 2) == 0: '''even items are labels''' if type(v) == type([]): print("ERROR? list as odd element in list?",json.dumps(data)) elif type(v) == type('string'): print(v) label=v else: if type(v) == type([]): print('level:',level,'menu: ',label) dataedit(v,key, level + 1) elif type(v) == type('string'): if label == 'back' and v == '': print('back') else: while True: '''password''' x=input('password - encoded/decoded/input/next:') if x == 'e': print(v) elif x == 'd': print(tinydecrypt(v,key)) elif x == 'i': plain=getpass.getpass() v=tinyencrypt(plain,key) data[i]=v elif x == 'n': break # out of while True else: print("ERROR - not a list",data) print(data) if __name__ == '__main__': datafile=input('data file name:') print('file:',datafile) with open(datafile) as f: dataraw=f.read() if dataraw[0:5] == 'data=': mylist=dataraw[5:] data = json.loads(mylist) orig=list(data) print(data) key=getpass.getpass(prompt='Password key: ') dataedit(data,key) print(data) if data != orig: print("changed") if True: outfile=input('data file to write:') if outfile: with open(outfile,'w') as fw: dataraw="data=" + json.dumps(data,indent=4) + '\n' fw.write(dataraw)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 7061, 6, 198, 7890, 19312, 13, 9078, 198, 26272, 9206, 4370, 329, 9206, 67, 506, 293, 13, 9078, 198, 7061, 6, 198, 198, 11748, 640, 198, 11748, 4738, 198, 11748, 651, 6603, 198, 11748, 33918, 198, 198, 2, 477, 3601, 540, 355, 979, 72, 34534, 11, 5556, 2272, 11, 2845, 4274, 9577, 11, 7400, 11, 736, 6649, 1077, 198, 1820, 354, 945, 2625, 63, 64, 57, 15, 10, 77, 44, 27, 65, 56, 16, 0, 78, 43, 29, 66, 55, 17, 31, 79, 42, 26, 67, 54, 18, 2, 80, 41, 25, 68, 53, 19, 3, 81, 40, 6, 69, 52, 20, 4, 82, 39, 58, 70, 51, 21, 61, 83, 38, 60, 71, 50, 22, 5, 84, 37, 90, 72, 49, 23, 9, 85, 36, 92, 73, 48, 24, 7, 86, 35, 12, 74, 47, 35751, 87, 34, 28, 75, 46, 13, 93, 88, 33, 62, 76, 45, 14, 1976, 32, 1, 198, 1820, 11925, 28, 11925, 7, 1820, 354, 945, 8, 198, 2, 4571, 3815, 198, 1677, 9419, 56, 11571, 28, 10, 16, 198, 41374, 18276, 11571, 10779, 16, 198, 198, 4299, 1366, 19312, 7, 7890, 11, 1994, 11, 1241, 28, 15, 2599, 198, 220, 220, 220, 705, 7061, 19119, 1366, 1912, 319, 1994, 290, 5128, 7061, 6, 198, 220, 220, 220, 611, 2099, 7, 7890, 8, 6624, 2099, 7, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7890, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24908, 532, 6565, 1351, 1600, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 357, 11925, 7, 7890, 8, 4064, 362, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24908, 532, 407, 772, 1271, 286, 1351, 1866, 1600, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 85, 287, 27056, 378, 7, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 72, 4064, 362, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 10197, 3709, 389, 14722, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 85, 8, 6624, 2099, 7, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24908, 30, 1351, 355, 5629, 5002, 287, 1351, 35379, 17752, 13, 67, 8142, 7, 7890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 85, 8, 6624, 2099, 10786, 8841, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 85, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 85, 8, 6624, 2099, 7, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 5715, 25, 3256, 5715, 4032, 26272, 25, 46083, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 19312, 7, 85, 11, 2539, 11, 1241, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 85, 8, 6624, 2099, 10786, 8841, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6167, 6624, 705, 1891, 6, 290, 410, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1891, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 28712, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 15414, 10786, 28712, 532, 30240, 14, 12501, 9043, 14, 15414, 14, 19545, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 6624, 705, 68, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 6624, 705, 67, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 44152, 12501, 6012, 7, 85, 11, 2539, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 6624, 705, 72, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8631, 28, 1136, 6603, 13, 1136, 6603, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 28, 44152, 12685, 6012, 7, 25638, 11, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 72, 22241, 85, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 6624, 705, 77, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 220, 220, 1303, 503, 286, 981, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24908, 532, 407, 257, 1351, 1600, 7890, 8, 198, 220, 220, 220, 3601, 7, 7890, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1366, 7753, 28, 15414, 10786, 7890, 2393, 1438, 25, 11537, 198, 220, 220, 220, 3601, 10786, 7753, 25, 3256, 7890, 7753, 8, 198, 220, 220, 220, 351, 1280, 7, 7890, 7753, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 283, 707, 28, 69, 13, 961, 3419, 198, 220, 220, 220, 611, 4818, 283, 707, 58, 15, 25, 20, 60, 6624, 705, 7890, 28, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 616, 4868, 28, 67, 9459, 707, 58, 20, 47715, 198, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 1820, 4868, 8, 198, 220, 220, 220, 1796, 28, 4868, 7, 7890, 8, 198, 220, 220, 220, 3601, 7, 7890, 8, 198, 220, 220, 220, 1994, 28, 1136, 6603, 13, 1136, 6603, 7, 16963, 457, 11639, 35215, 1994, 25, 705, 8, 198, 220, 220, 220, 1366, 19312, 7, 7890, 11, 2539, 8, 198, 220, 220, 220, 3601, 7, 7890, 8, 198, 220, 220, 220, 611, 1366, 14512, 1796, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 40985, 4943, 198, 220, 220, 220, 611, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 28, 15414, 10786, 7890, 2393, 284, 3551, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 448, 7753, 4032, 86, 11537, 355, 277, 86, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 283, 707, 2625, 7890, 2625, 1343, 33918, 13, 67, 8142, 7, 7890, 11, 521, 298, 28, 19, 8, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 86, 13, 13564, 7, 67, 9459, 707, 8, 198 ]
1.651479
1,690
import unittest if __name__ == "__main__": unittest.main()
[ 198, 198, 11748, 555, 715, 395, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419 ]
2.310345
29
end print factorial(5) # should output 120
[ 437, 198, 198, 4798, 1109, 5132, 7, 20, 8, 220, 220, 1303, 815, 5072, 7982, 198 ]
2.875
16
from __future__ import annotations import signal import subprocess from time import sleep from typing import Optional, Union, Tuple from PIL.Image import Image from pyautogui import hotkey from sleuthdeck.deck import Action from sleuthdeck.deck import ClickType from sleuthdeck.deck import Key from sleuthdeck.deck import KeyScene from sleuthdeck.deck import Scene from sleuthdeck.keys import IconKey from sleuthdeck.windows import get_window, By
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 11748, 6737, 198, 11748, 850, 14681, 198, 6738, 640, 1330, 3993, 198, 6738, 19720, 1330, 32233, 11, 4479, 11, 309, 29291, 198, 198, 6738, 350, 4146, 13, 5159, 1330, 7412, 198, 6738, 12972, 2306, 519, 9019, 1330, 3024, 2539, 198, 198, 6738, 3133, 1071, 35875, 13, 35875, 1330, 7561, 198, 6738, 3133, 1071, 35875, 13, 35875, 1330, 6914, 6030, 198, 6738, 3133, 1071, 35875, 13, 35875, 1330, 7383, 198, 6738, 3133, 1071, 35875, 13, 35875, 1330, 7383, 36542, 198, 6738, 3133, 1071, 35875, 13, 35875, 1330, 28315, 198, 6738, 3133, 1071, 35875, 13, 13083, 1330, 26544, 9218, 198, 6738, 3133, 1071, 35875, 13, 28457, 1330, 651, 62, 17497, 11, 2750, 628, 628, 628, 628, 628, 628, 628 ]
3.725806
124
# Imports from 3rd party libraries import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output # Imports from this application from app import app # 1 column layout # https://dash-bootstrap-components.opensource.faculty.ai/l/components/layout column1 = dbc.Col( [ dcc.Markdown( """ ## Insights Overall I'm happy with my tree-based model's performance. The precision and recall of my model are both equal at a score of 0.78 respectively. It also has a validation accuracy score of 0.76. The linear model did not perform as well, with precision at 0.67 and recall at 0.42. It also has a validation accuracy of 0.53. This is not an acceptable model as just guessing 'FALSE POSITIVE', the majority class, you will have an accuracy score of 0.51. As we continue to make new observations about the planets in our galaxy and continue to collect data from deep space, it's important to have models like this one to make sense of the data and label that observation correctly. """ ), ], ) column2 = dbc.Col( [ html.Img(src='../assets/kpe_class_report.png', style={'height': '45%', 'width': '65%'}), html.Br(), html.Img(src='../assets/confusion_matrix.png', style={'height': '45%', 'width': '65%'}) ], ) layout = dbc.Row([column1, column2])
[ 2, 1846, 3742, 422, 513, 4372, 2151, 12782, 198, 11748, 14470, 198, 11748, 14470, 62, 18769, 26418, 62, 5589, 3906, 355, 288, 15630, 198, 11748, 14470, 62, 7295, 62, 5589, 3906, 355, 288, 535, 198, 11748, 14470, 62, 6494, 62, 5589, 3906, 355, 27711, 198, 6738, 14470, 13, 45841, 3976, 1330, 23412, 11, 25235, 198, 198, 2, 1846, 3742, 422, 428, 3586, 198, 6738, 598, 1330, 598, 198, 198, 2, 352, 5721, 12461, 198, 2, 3740, 1378, 42460, 12, 18769, 26418, 12, 5589, 3906, 13, 44813, 1668, 13, 38942, 10672, 13, 1872, 14, 75, 14, 5589, 3906, 14, 39786, 198, 28665, 16, 796, 288, 15630, 13, 5216, 7, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 9704, 2902, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 7088, 2337, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14674, 314, 1101, 3772, 351, 616, 5509, 12, 3106, 2746, 338, 2854, 13, 383, 15440, 290, 10014, 286, 616, 2746, 389, 1111, 4961, 379, 257, 4776, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 657, 13, 3695, 8148, 13, 632, 635, 468, 257, 21201, 9922, 4776, 286, 657, 13, 4304, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 14174, 2746, 750, 407, 1620, 355, 880, 11, 351, 15440, 379, 657, 13, 3134, 290, 10014, 379, 657, 13, 3682, 13, 632, 635, 468, 257, 21201, 9922, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 657, 13, 4310, 13, 770, 318, 407, 281, 10909, 2746, 355, 655, 25260, 705, 37, 23719, 28069, 2043, 9306, 3256, 262, 3741, 1398, 11, 345, 481, 423, 281, 9922, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 286, 657, 13, 4349, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1081, 356, 2555, 284, 787, 649, 13050, 546, 262, 14705, 287, 674, 16161, 290, 2555, 284, 2824, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 422, 2769, 2272, 11, 340, 338, 1593, 284, 423, 4981, 588, 428, 530, 284, 787, 2565, 286, 262, 1366, 290, 6167, 326, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13432, 9380, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 16589, 198, 8, 198, 198, 28665, 17, 796, 288, 15630, 13, 5216, 7, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 13, 3546, 70, 7, 10677, 11639, 40720, 19668, 14, 74, 431, 62, 4871, 62, 13116, 13, 11134, 3256, 3918, 34758, 6, 17015, 10354, 705, 2231, 4, 3256, 705, 10394, 10354, 705, 2996, 4, 6, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 13, 9414, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 13, 3546, 70, 7, 10677, 11639, 40720, 19668, 14, 10414, 4241, 62, 6759, 8609, 13, 11134, 3256, 3918, 34758, 6, 17015, 10354, 705, 2231, 4, 3256, 705, 10394, 10354, 705, 2996, 4, 6, 30072, 198, 220, 220, 220, 16589, 198, 8, 198, 39786, 796, 288, 15630, 13, 25166, 26933, 28665, 16, 11, 5721, 17, 12962 ]
2.551613
620
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path data=pd.read_csv(path).rename(columns={'Total':'Total_Medals'}) data.head(10) #Code starts here # -------------- #Code starts here data['Better_Event']=np.where(data['Total_Summer'] == data['Total_Winter'] , 'Both' , (np.where(data['Total_Summer'] > data['Total_Winter'] , 'Summer','Winter'))) better_event= data['Better_Event'].value_counts().idxmax() # -------------- #Code starts here top_countries = data[['Country_Name','Total_Summer', 'Total_Winter','Total_Medals']] top_countries=top_countries[:-1] top_10_summer= top_ten(top_countries,'Total_Summer') print(top_10_summer) top_10_winter= top_ten(top_countries,'Total_Winter') print(top_10_winter) top_10= top_ten(top_countries,'Total_Medals') print(top_10) common=list(set(top_10_summer) & set(top_10_winter) & set(top_10)) print(common) # -------------- #Code starts here summer_df=data[data['Country_Name'].isin(top_10_summer)] winter_df =data[data['Country_Name'].isin(top_10_winter)] top_df=data[data['Country_Name'].isin(top_10)] # -------------- #Code starts here summer_df['Golden_Ratio']= summer_df['Gold_Summer']/summer_df['Total_Summer'] summer_max_ratio = (summer_df['Golden_Ratio']).max() summer_country_gold=summer_df.loc[summer_df['Golden_Ratio'].idxmax(),'Country_Name'] winter_df['Golden_Ratio']= winter_df['Gold_Winter']/winter_df['Total_Winter'] winter_max_ratio = (winter_df['Golden_Ratio']).max() winter_country_gold=winter_df.loc[winter_df['Golden_Ratio'].idxmax(),'Country_Name'] top_df['Golden_Ratio']= top_df['Gold_Total']/top_df['Total_Medals'] top_max_ratio = (top_df['Golden_Ratio']).max() top_country_gold=top_df.loc[top_df['Golden_Ratio'].idxmax(),'Country_Name'] # -------------- #Code starts here data_1= data[:-1] data_1['Total_Points']= data_1['Gold_Total']*3 +data_1['Silver_Total']*2 +data_1['Bronze_Total'] most_points=max(data_1['Total_Points']) best_country=data_1.loc[data_1['Total_Points'].idxmax(),'Country_Name'] # -------------- #Code starts here best=data[data['Country_Name']==best_country] best=best[['Gold_Total','Silver_Total','Bronze_Total']] best.plot.bar() plt.xlabel('United States') plt.ylabel('Medals Tally') plt.xticks(rotation=45)
[ 2, 220, 26171, 198, 2, 20939, 278, 13639, 3696, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 201, 198, 2, 15235, 286, 262, 2393, 201, 198, 6978, 201, 198, 7890, 28, 30094, 13, 961, 62, 40664, 7, 6978, 737, 918, 480, 7, 28665, 82, 34758, 6, 14957, 10354, 6, 14957, 62, 9921, 874, 6, 30072, 201, 198, 201, 198, 7890, 13, 2256, 7, 940, 8, 201, 198, 2, 10669, 4940, 994, 201, 628, 198, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 7890, 17816, 28971, 62, 9237, 20520, 28, 37659, 13, 3003, 7, 7890, 17816, 14957, 62, 33560, 20520, 6624, 1366, 17816, 14957, 62, 35376, 20520, 837, 705, 10265, 6, 837, 357, 37659, 13, 3003, 7, 7890, 17816, 14957, 62, 33560, 20520, 1875, 1366, 17816, 14957, 62, 35376, 20520, 837, 705, 33560, 41707, 35376, 6, 22305, 201, 198, 201, 198, 27903, 62, 15596, 28, 1366, 17816, 28971, 62, 9237, 6, 4083, 8367, 62, 9127, 82, 22446, 312, 87, 9806, 3419, 628, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 4852, 62, 9127, 1678, 796, 1366, 58, 17816, 33921, 62, 5376, 41707, 14957, 62, 33560, 3256, 705, 14957, 62, 35376, 41707, 14957, 62, 9921, 874, 6, 11907, 201, 198, 201, 198, 4852, 62, 9127, 1678, 28, 4852, 62, 9127, 1678, 58, 21912, 16, 60, 201, 198, 201, 198, 201, 198, 4852, 62, 940, 62, 16345, 647, 28, 1353, 62, 1452, 7, 4852, 62, 9127, 1678, 4032, 14957, 62, 33560, 11537, 201, 198, 4798, 7, 4852, 62, 940, 62, 16345, 647, 8, 201, 198, 4852, 62, 940, 62, 40078, 28, 1353, 62, 1452, 7, 4852, 62, 9127, 1678, 4032, 14957, 62, 35376, 11537, 201, 198, 4798, 7, 4852, 62, 940, 62, 40078, 8, 201, 198, 4852, 62, 940, 28, 1353, 62, 1452, 7, 4852, 62, 9127, 1678, 4032, 14957, 62, 9921, 874, 11537, 201, 198, 4798, 7, 4852, 62, 940, 8, 201, 198, 201, 198, 11321, 28, 4868, 7, 2617, 7, 4852, 62, 940, 62, 16345, 647, 8, 1222, 220, 900, 7, 4852, 62, 940, 62, 40078, 8, 1222, 900, 7, 4852, 62, 940, 4008, 201, 198, 201, 198, 4798, 7, 11321, 8, 628, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 16345, 647, 62, 7568, 28, 7890, 58, 7890, 17816, 33921, 62, 5376, 6, 4083, 45763, 7, 4852, 62, 940, 62, 16345, 647, 15437, 201, 198, 201, 198, 40078, 62, 7568, 796, 7890, 58, 7890, 17816, 33921, 62, 5376, 6, 4083, 45763, 7, 4852, 62, 940, 62, 40078, 15437, 201, 198, 201, 198, 4852, 62, 7568, 28, 7890, 58, 7890, 17816, 33921, 62, 5376, 6, 4083, 45763, 7, 4852, 62, 940, 15437, 628, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 201, 198, 16345, 647, 62, 7568, 17816, 32378, 62, 29665, 952, 20520, 28, 3931, 62, 7568, 17816, 13306, 62, 33560, 20520, 14, 16345, 647, 62, 7568, 17816, 14957, 62, 33560, 20520, 201, 198, 201, 198, 201, 198, 16345, 647, 62, 9806, 62, 10366, 952, 796, 357, 16345, 647, 62, 7568, 17816, 32378, 62, 29665, 952, 20520, 737, 9806, 3419, 201, 198, 201, 198, 201, 198, 16345, 647, 62, 19315, 62, 24267, 28, 16345, 647, 62, 7568, 13, 17946, 58, 16345, 647, 62, 7568, 17816, 32378, 62, 29665, 952, 6, 4083, 312, 87, 9806, 22784, 6, 33921, 62, 5376, 20520, 201, 198, 201, 198, 40078, 62, 7568, 17816, 32378, 62, 29665, 952, 20520, 28, 7374, 62, 7568, 17816, 13306, 62, 35376, 20520, 14, 40078, 62, 7568, 17816, 14957, 62, 35376, 20520, 201, 198, 40078, 62, 9806, 62, 10366, 952, 796, 357, 40078, 62, 7568, 17816, 32378, 62, 29665, 952, 20520, 737, 9806, 3419, 201, 198, 40078, 62, 19315, 62, 24267, 28, 40078, 62, 7568, 13, 17946, 58, 40078, 62, 7568, 17816, 32378, 62, 29665, 952, 6, 4083, 312, 87, 9806, 22784, 6, 33921, 62, 5376, 20520, 201, 198, 201, 198, 4852, 62, 7568, 17816, 32378, 62, 29665, 952, 20520, 28, 1353, 62, 7568, 17816, 13306, 62, 14957, 20520, 14, 4852, 62, 7568, 17816, 14957, 62, 9921, 874, 20520, 201, 198, 4852, 62, 9806, 62, 10366, 952, 796, 357, 4852, 62, 7568, 17816, 32378, 62, 29665, 952, 20520, 737, 9806, 3419, 201, 198, 4852, 62, 19315, 62, 24267, 28, 4852, 62, 7568, 13, 17946, 58, 4852, 62, 7568, 17816, 32378, 62, 29665, 952, 6, 4083, 312, 87, 9806, 22784, 6, 33921, 62, 5376, 20520, 201, 628, 198, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 7890, 62, 16, 28, 1366, 58, 21912, 16, 60, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 7890, 62, 16, 17816, 14957, 62, 40710, 20520, 28, 1366, 62, 16, 17816, 13306, 62, 14957, 20520, 9, 18, 1343, 7890, 62, 16, 17816, 26766, 62, 14957, 20520, 9, 17, 1343, 7890, 62, 16, 17816, 18760, 2736, 62, 14957, 20520, 201, 198, 201, 198, 1712, 62, 13033, 28, 9806, 7, 7890, 62, 16, 17816, 14957, 62, 40710, 6, 12962, 220, 201, 198, 13466, 62, 19315, 28, 7890, 62, 16, 13, 17946, 58, 7890, 62, 16, 17816, 14957, 62, 40710, 6, 4083, 312, 87, 9806, 22784, 6, 33921, 62, 5376, 20520, 628, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 201, 198, 13466, 28, 7890, 58, 7890, 17816, 33921, 62, 5376, 20520, 855, 13466, 62, 19315, 60, 201, 198, 13466, 28, 13466, 58, 17816, 13306, 62, 14957, 41707, 26766, 62, 14957, 41707, 18760, 2736, 62, 14957, 6, 11907, 201, 198, 201, 198, 13466, 13, 29487, 13, 5657, 3419, 201, 198, 489, 83, 13, 87, 18242, 10786, 17013, 1829, 11537, 201, 198, 489, 83, 13, 2645, 9608, 10786, 9921, 874, 309, 453, 11537, 201, 198, 489, 83, 13, 742, 3378, 7, 10599, 341, 28, 2231, 8, 628, 198 ]
2.432024
993
import random print(random.randint(1, 100))
[ 11748, 4738, 201, 198, 201, 198, 4798, 7, 25120, 13, 25192, 600, 7, 16, 11, 1802, 4008, 201, 198 ]
2.526316
19
# -*- coding: utf-8 -*- """Create an application instance.""" from flask.helpers import get_debug_flag from web.app import create_app from web.settings import DevConfig, ProdConfig #CONFIG = DevConfig if get_debug_flag() else ProdConfig CONFIG = DevConfig app = create_app(CONFIG)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 16447, 281, 3586, 4554, 526, 15931, 198, 6738, 42903, 13, 16794, 364, 1330, 651, 62, 24442, 62, 32109, 198, 198, 6738, 3992, 13, 1324, 1330, 2251, 62, 1324, 198, 6738, 3992, 13, 33692, 1330, 6245, 16934, 11, 1041, 67, 16934, 198, 198, 2, 10943, 16254, 796, 6245, 16934, 611, 651, 62, 24442, 62, 32109, 3419, 2073, 1041, 67, 16934, 198, 10943, 16254, 796, 6245, 16934, 198, 1324, 796, 2251, 62, 1324, 7, 10943, 16254, 8, 198 ]
3.10989
91
from tracking.abstract import AbstractTracker
[ 6738, 9646, 13, 397, 8709, 1330, 27741, 35694, 628 ]
5.222222
9
# https://www.hackerrank.com/challenges/30-dictionaries-and-maps/problem # Enter your code here. Read input from STDIN. Print output to STDOUT n = int(input()) book = {} for x in range(0,n): line = input().split() book[line[0]] = line[1] while True: try: line = input().split() name = line[0] if name in book: entry = book[name] print("{0}={1}".format(name, entry)) else: print("Not found") except EOFError: break
[ 2, 3740, 1378, 2503, 13, 31153, 8056, 962, 13, 785, 14, 36747, 34120, 14, 1270, 12, 67, 2867, 3166, 12, 392, 12, 31803, 14, 45573, 198, 198, 2, 6062, 534, 2438, 994, 13, 4149, 5128, 422, 48571, 1268, 13, 12578, 5072, 284, 48571, 12425, 198, 198, 77, 796, 493, 7, 15414, 28955, 198, 2070, 796, 23884, 198, 198, 1640, 2124, 287, 2837, 7, 15, 11, 77, 2599, 198, 220, 220, 220, 1627, 796, 5128, 22446, 35312, 3419, 198, 220, 220, 220, 1492, 58, 1370, 58, 15, 11907, 796, 1627, 58, 16, 60, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 5128, 22446, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 1627, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 287, 1492, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 796, 1492, 58, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 15, 92, 34758, 16, 92, 1911, 18982, 7, 3672, 11, 5726, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3673, 1043, 4943, 198, 220, 220, 220, 2845, 412, 19238, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198 ]
2.170213
235
import os import sys import torch import random import numpy as np from torch import nn from torch import optim from tqdm import trange, tqdm from collections import Counter from datetime import datetime from tensorboardX import SummaryWriter from torch.utils.data import Dataset, DataLoader import matplotlib matplotlib.use("Agg") # this needs to come before other matplotlib imports import matplotlib.pyplot as plt plt.style.use("ggplot") # ========================= models class Lorentz(nn.Module): """ This will embed `n_items` in a `dim` dimensional lorentz space. """ def forward(self, I, Ks): """ Using the pairwise similarity matrix, generate the following inputs and provide to this function. Inputs: - I : - long tensor - size (B,) - This denotes the `i` used in all equations. - Ks : - long tensor - size (B, N) - This denotes at max `N` documents which come from the nearest neighbor sample. - The `j` document must be the first of the N indices. This is used to calculate the losses Return: - size (B,) - Ranking loss calculated using document to the given `i` document. """ n_ks = Ks.size()[1] ui = torch.stack([self.table(I)] * n_ks, dim=1) uks = self.table(Ks) # ---------- reshape for calculation B, N, D = ui.size() ui = ui.reshape(B * N, D) uks = uks.reshape(B * N, D) dists = -lorentz_scalar_product(ui, uks) dists = torch.where(dists <= 1, torch.ones_like(dists) + 1e-6, dists) # sometimes 2 embedding can come very close in R^D. # when calculating the lorenrz inner product, # -1 can become -0.99(no idea!), then arcosh will become nan dists = -arcosh(dists) # print(dists) # ---------- turn back to per-sample shape dists = dists.reshape(B, N) loss = -(dists[:, 0] - torch.log(torch.exp(dists).sum(dim=1) + 1e-6)) return loss def recon(table, pair_mat): "Reconstruction accuracy" count = 0 table = torch.tensor(table[1:]) for i in range(1, len(pair_mat)): # 0 padding, 1 root, we leave those two x = table[i].repeat(len(table)).reshape([len(table), len(table[i])]) # N, D mask = torch.tensor([0.0] * len(table)) mask[i] = 1 mask = mask * -10000.0 dists = lorentz_scalar_product(x, table) + mask dists = ( dists.numpy() ) # arccosh is monotonically increasing, so no need of that here # and no -dist also, as acosh in m i, -acosh(-l(x,y)) is nothing but l(x,y) # print(dists) predicted_parent = np.argmax(dists) actual_parent = np.argmax(pair_mat[:, i]) # print(predicted_parent, actual_parent, i, end="\n\n") count += actual_parent == predicted_parent count = count / (len(pair_mat) - 1) * 100 return count _moon_count = 0 if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("dataset", help="File:pairwise_matrix") parser.add_argument( "-sample_size", help="How many samples in the N matrix", default=5, type=int ) parser.add_argument( "-batch_size", help="How many samples in the batch", default=32, type=int ) parser.add_argument( "-burn_c", help="Divide learning rate by this for the burn epochs", default=10, type=int, ) parser.add_argument( "-burn_epochs", help="How many epochs to run the burn phase for?", default=100, type=int, ) parser.add_argument( "-plot", help="Plot the embeddings", default=False, action="store_true" ) parser.add_argument("-plot_size", help="Size of the plot", default=3, type=int) parser.add_argument( "-plot_graph", help="Plot the Graph associated with the embeddings", default=False, action="store_true", ) parser.add_argument( "-overwrite_plots", help="Overwrite the plots?", default=False, action="store_true", ) parser.add_argument( "-ckpt", help="Which checkpoint to use?", default=None, type=str ) parser.add_argument( "-shuffle", help="Shuffle within batch while learning?", default=True, type=bool ) parser.add_argument( "-epochs", help="How many epochs to optimize for?", default=1_000_000, type=int ) parser.add_argument( "-poincare_dim", help="Poincare projection time. Lorentz will be + 1", default=2, type=int, ) parser.add_argument( "-n_items", help="How many items to embed?", default=None, type=int ) parser.add_argument( "-learning_rate", help="RSGD learning rate", default=0.1, type=float ) parser.add_argument( "-log_step", help="Log at what multiple of epochs?", default=1, type=int ) parser.add_argument( "-logdir", help="What folder to put logs in", default="runs", type=str ) parser.add_argument( "-save_step", help="Save at what multiple of epochs?", default=100, type=int ) parser.add_argument( "-savedir", help="What folder to put checkpoints in", default="ckpt", type=str ) parser.add_argument( "-loader_workers", help="How many workers to generate tensors", default=4, type=int, ) args = parser.parse_args() # ----------------------------------- get the correct matrix if not os.path.exists(args.logdir): os.mkdir(args.logdir) if not os.path.exists(args.savedir): os.mkdir(args.savedir) exec(f"from datasets import {args.dataset} as pairwise") pairwise = pairwise[: args.n_items, : args.n_items] args.n_items = len(pairwise) if args.n_items is None else args.n_items print(f"{args.n_items} being embedded") # ---------------------------------- Generate the proper objects net = Lorentz( args.n_items, args.poincare_dim + 1 ) # as the paper follows R^(n+1) for this space if args.plot: if args.poincare_dim != 2: print("Only embeddings with `-poincare_dim` = 2 are supported for now.") sys.exit(1) if args.ckpt is None: print("Please provide `-ckpt` when using `-plot`") sys.exit(1) if os.path.isdir(args.ckpt): paths = [ os.path.join(args.ckpt, c) for c in os.listdir(args.ckpt) if c.endswith("ckpt") ] else: paths = [args.ckpt] paths = list(sorted(paths)) edges = [ tuple(edge) for edge in set( [ frozenset((a + 1, b + 1)) for a, row in enumerate(pairwise > 0) for b, is_non_zero in enumerate(row) if is_non_zero ] ) ] print(len(edges), "nodes") internal_nodes = set( node for node, count in Counter( [node for edge in edges for node in edge] ).items() if count > 1 ) edges = np.array([edge for edge in edges if edge[1] in internal_nodes]) print(len(edges), "internal nodes") for path in tqdm(paths, desc="Plotting"): save_path = f"{path}.svg" if os.path.exists(save_path) and not args.overwrite_plots: continue net.load_state_dict(torch.load(path)) table = net.lorentz_to_poincare() # skip padding. plot x y plt.figure(figsize=(7, 7)) if args.plot_graph: for edge in edges: plt.plot( table[edge, 0], table[edge, 1], color="black", marker="o", alpha=0.5, ) else: plt.scatter(table[1:, 0], table[1:, 1]) plt.title(path) plt.gca().set_xlim(-1, 1) plt.gca().set_ylim(-1, 1) plt.gca().add_artist(plt.Circle((0, 0), 1, fill=False, edgecolor="black")) plt.savefig(save_path) plt.close() sys.exit(0) dataloader = DataLoader( Graph(pairwise, args.sample_size), shuffle=args.shuffle, batch_size=args.batch_size, num_workers=args.loader_workers, ) rsgd = RSGD(net.parameters(), learning_rate=args.learning_rate) name = f"{args.dataset} {datetime.utcnow()}" writer = SummaryWriter(f"{args.logdir}/{name}") with tqdm(ncols=80, mininterval=0.2) as epoch_bar: for epoch in range(args.epochs): rsgd.learning_rate = ( args.learning_rate / args.burn_c if epoch < args.burn_epochs else args.learning_rate ) for I, Ks in dataloader: rsgd.zero_grad() loss = net(I, Ks).mean() loss.backward() rsgd.step() writer.add_scalar("loss", loss, epoch) writer.add_scalar( "recon_preform", recon(net.get_lorentz_table(), pairwise), epoch ) writer.add_scalar("table_test", net._test_table(), epoch) if epoch % args.save_step == 0: torch.save(net.state_dict(), f"{args.savedir}/{epoch} {name}.ckpt") epoch_bar.set_description( f"🔥 Burn phase loss: {float(loss)}" if epoch < args.burn_epochs else _moon(loss) ) epoch_bar.update(1)
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 28034, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 28034, 1330, 299, 77, 198, 6738, 28034, 1330, 6436, 198, 6738, 256, 80, 36020, 1330, 491, 858, 11, 256, 80, 36020, 198, 6738, 17268, 1330, 15034, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 11192, 273, 3526, 55, 1330, 21293, 34379, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 11, 6060, 17401, 198, 198, 11748, 2603, 29487, 8019, 198, 198, 6759, 29487, 8019, 13, 1904, 7203, 46384, 4943, 220, 1303, 428, 2476, 284, 1282, 878, 584, 2603, 29487, 8019, 17944, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 489, 83, 13, 7635, 13, 1904, 7203, 1130, 29487, 4943, 628, 628, 628, 198, 198, 2, 36658, 2559, 4981, 628, 198, 198, 4871, 15639, 429, 89, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 481, 11525, 4600, 77, 62, 23814, 63, 287, 257, 4600, 27740, 63, 38517, 24044, 429, 89, 2272, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 314, 11, 509, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8554, 262, 5166, 3083, 26789, 17593, 11, 7716, 262, 1708, 17311, 290, 198, 220, 220, 220, 220, 220, 220, 220, 2148, 284, 428, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 314, 220, 220, 220, 220, 1058, 220, 220, 532, 890, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2546, 357, 33, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 770, 43397, 262, 4600, 72, 63, 973, 287, 477, 27490, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 509, 82, 220, 220, 220, 1058, 220, 220, 532, 890, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2546, 357, 33, 11, 399, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 770, 43397, 379, 3509, 4600, 45, 63, 4963, 543, 1282, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16936, 4780, 6291, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 4600, 73, 63, 3188, 1276, 307, 262, 717, 286, 262, 399, 36525, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 318, 973, 284, 15284, 262, 9089, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2546, 357, 33, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 45407, 2994, 10488, 1262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3188, 284, 262, 1813, 4600, 72, 63, 3188, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 591, 796, 509, 82, 13, 7857, 3419, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 334, 72, 796, 28034, 13, 25558, 26933, 944, 13, 11487, 7, 40, 15437, 1635, 299, 62, 591, 11, 5391, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 334, 591, 796, 2116, 13, 11487, 7, 42, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24200, 438, 27179, 1758, 329, 17952, 198, 220, 220, 220, 220, 220, 220, 220, 347, 11, 399, 11, 360, 796, 334, 72, 13, 7857, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 334, 72, 796, 334, 72, 13, 3447, 1758, 7, 33, 1635, 399, 11, 360, 8, 198, 220, 220, 220, 220, 220, 220, 220, 334, 591, 796, 334, 591, 13, 3447, 1758, 7, 33, 1635, 399, 11, 360, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 1023, 796, 532, 31131, 429, 89, 62, 1416, 282, 283, 62, 11167, 7, 9019, 11, 334, 591, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 1023, 796, 28034, 13, 3003, 7, 67, 1023, 19841, 352, 11, 28034, 13, 1952, 62, 2339, 7, 67, 1023, 8, 1343, 352, 68, 12, 21, 11, 288, 1023, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3360, 362, 11525, 12083, 460, 1282, 845, 1969, 287, 371, 61, 35, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 618, 26019, 262, 24044, 48624, 89, 8434, 1720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 532, 16, 460, 1716, 532, 15, 13, 2079, 7, 3919, 2126, 26290, 788, 10389, 3768, 481, 1716, 15709, 198, 220, 220, 220, 220, 220, 220, 220, 288, 1023, 796, 532, 5605, 3768, 7, 67, 1023, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 67, 1023, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24200, 438, 1210, 736, 284, 583, 12, 39873, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 288, 1023, 796, 288, 1023, 13, 3447, 1758, 7, 33, 11, 399, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 532, 7, 67, 1023, 58, 45299, 657, 60, 532, 28034, 13, 6404, 7, 13165, 354, 13, 11201, 7, 67, 1023, 737, 16345, 7, 27740, 28, 16, 8, 1343, 352, 68, 12, 21, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2994, 628, 198, 198, 4299, 8195, 7, 11487, 11, 5166, 62, 6759, 2599, 198, 220, 220, 220, 366, 6690, 261, 15019, 9922, 1, 198, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 3084, 796, 28034, 13, 83, 22854, 7, 11487, 58, 16, 25, 12962, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 18896, 7, 24874, 62, 6759, 8, 2599, 220, 1303, 657, 24511, 11, 352, 6808, 11, 356, 2666, 883, 734, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 3084, 58, 72, 4083, 44754, 7, 11925, 7, 11487, 29720, 3447, 1758, 26933, 11925, 7, 11487, 828, 18896, 7, 11487, 58, 72, 12962, 12962, 220, 1303, 399, 11, 360, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 28034, 13, 83, 22854, 26933, 15, 13, 15, 60, 1635, 18896, 7, 11487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 58, 72, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 9335, 1635, 532, 49388, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 288, 1023, 796, 24044, 429, 89, 62, 1416, 282, 283, 62, 11167, 7, 87, 11, 3084, 8, 1343, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 288, 1023, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 1023, 13, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 220, 1303, 610, 535, 3768, 318, 937, 18970, 1146, 3649, 11, 523, 645, 761, 286, 326, 994, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 645, 532, 17080, 635, 11, 355, 936, 3768, 287, 285, 1312, 11, 532, 330, 3768, 32590, 75, 7, 87, 11, 88, 4008, 318, 2147, 475, 300, 7, 87, 11, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 67, 1023, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11001, 62, 8000, 796, 45941, 13, 853, 9806, 7, 67, 1023, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4036, 62, 8000, 796, 45941, 13, 853, 9806, 7, 24874, 62, 6759, 58, 45299, 1312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 28764, 5722, 62, 8000, 11, 4036, 62, 8000, 11, 1312, 11, 886, 2625, 59, 77, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 4036, 62, 8000, 6624, 11001, 62, 8000, 198, 220, 220, 220, 954, 796, 954, 1220, 357, 11925, 7, 24874, 62, 6759, 8, 532, 352, 8, 1635, 1802, 198, 220, 220, 220, 1441, 954, 628, 198, 62, 22977, 62, 9127, 796, 657, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 1822, 29572, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 19608, 292, 316, 1600, 1037, 2625, 8979, 25, 24874, 3083, 62, 6759, 8609, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 39873, 62, 7857, 1600, 1037, 2625, 2437, 867, 8405, 287, 262, 399, 17593, 1600, 4277, 28, 20, 11, 2099, 28, 600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 43501, 62, 7857, 1600, 1037, 2625, 2437, 867, 8405, 287, 262, 15458, 1600, 4277, 28, 2624, 11, 2099, 28, 600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 10899, 62, 66, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 24095, 485, 4673, 2494, 416, 428, 329, 262, 4245, 36835, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 10899, 62, 538, 5374, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 2437, 867, 36835, 82, 284, 1057, 262, 4245, 7108, 329, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 29487, 1600, 1037, 2625, 43328, 262, 11525, 67, 654, 1600, 4277, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 29487, 62, 7857, 1600, 1037, 2625, 10699, 286, 262, 7110, 1600, 4277, 28, 18, 11, 2099, 28, 600, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 29487, 62, 34960, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 43328, 262, 29681, 3917, 351, 262, 11525, 67, 654, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 2502, 13564, 62, 489, 1747, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 5886, 13564, 262, 21528, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 694, 457, 1600, 1037, 2625, 13828, 26954, 284, 779, 35379, 4277, 28, 14202, 11, 2099, 28, 2536, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 1477, 18137, 1600, 1037, 2625, 2484, 18137, 1626, 15458, 981, 4673, 35379, 4277, 28, 17821, 11, 2099, 28, 30388, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 538, 5374, 82, 1600, 1037, 2625, 2437, 867, 36835, 82, 284, 27183, 329, 35379, 4277, 28, 16, 62, 830, 62, 830, 11, 2099, 28, 600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 7501, 1939, 533, 62, 27740, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 18833, 1939, 533, 20128, 640, 13, 15639, 429, 89, 481, 307, 1343, 352, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 77, 62, 23814, 1600, 1037, 2625, 2437, 867, 3709, 284, 11525, 35379, 4277, 28, 14202, 11, 2099, 28, 600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 40684, 62, 4873, 1600, 1037, 2625, 6998, 45113, 4673, 2494, 1600, 4277, 28, 15, 13, 16, 11, 2099, 28, 22468, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 6404, 62, 9662, 1600, 1037, 2625, 11187, 379, 644, 3294, 286, 36835, 82, 35379, 4277, 28, 16, 11, 2099, 28, 600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 6404, 15908, 1600, 1037, 2625, 2061, 9483, 284, 1234, 17259, 287, 1600, 4277, 2625, 48381, 1600, 2099, 28, 2536, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 21928, 62, 9662, 1600, 1037, 2625, 16928, 379, 644, 3294, 286, 36835, 82, 35379, 4277, 28, 3064, 11, 2099, 28, 600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 82, 9586, 343, 1600, 1037, 2625, 2061, 9483, 284, 1234, 36628, 287, 1600, 4277, 2625, 694, 457, 1600, 2099, 28, 2536, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 29356, 62, 22896, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 2437, 867, 3259, 284, 7716, 11192, 669, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1303, 20368, 6329, 651, 262, 3376, 17593, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 22046, 13, 6404, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 22046, 13, 6404, 15908, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 22046, 13, 82, 9586, 343, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 22046, 13, 82, 9586, 343, 8, 628, 220, 220, 220, 2452, 7, 69, 1, 6738, 40522, 1330, 1391, 22046, 13, 19608, 292, 316, 92, 355, 5166, 3083, 4943, 198, 220, 220, 220, 5166, 3083, 796, 5166, 3083, 58, 25, 26498, 13, 77, 62, 23814, 11, 1058, 26498, 13, 77, 62, 23814, 60, 198, 220, 220, 220, 26498, 13, 77, 62, 23814, 796, 18896, 7, 24874, 3083, 8, 611, 26498, 13, 77, 62, 23814, 318, 6045, 2073, 26498, 13, 77, 62, 23814, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 22046, 13, 77, 62, 23814, 92, 852, 14553, 4943, 628, 220, 220, 220, 1303, 20368, 438, 2980, 378, 262, 1774, 5563, 198, 220, 220, 220, 2010, 796, 15639, 429, 89, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 77, 62, 23814, 11, 26498, 13, 7501, 1939, 533, 62, 27740, 1343, 352, 198, 220, 220, 220, 1267, 220, 1303, 355, 262, 3348, 5679, 371, 61, 7, 77, 10, 16, 8, 329, 428, 2272, 198, 220, 220, 220, 611, 26498, 13, 29487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 7501, 1939, 533, 62, 27740, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10049, 11525, 67, 654, 351, 4600, 12, 7501, 1939, 533, 62, 27740, 63, 796, 362, 389, 4855, 329, 783, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 694, 457, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5492, 2148, 4600, 12, 694, 457, 63, 618, 1262, 4600, 12, 29487, 63, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 22046, 13, 694, 457, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 694, 457, 11, 269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 28686, 13, 4868, 15908, 7, 22046, 13, 694, 457, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 13, 437, 2032, 342, 7203, 694, 457, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 796, 685, 22046, 13, 694, 457, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13532, 796, 1351, 7, 82, 9741, 7, 6978, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13015, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46545, 7, 14907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5743, 287, 900, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8400, 8247, 316, 19510, 64, 1343, 352, 11, 275, 1343, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 257, 11, 5752, 287, 27056, 378, 7, 24874, 3083, 1875, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 275, 11, 318, 62, 13159, 62, 22570, 287, 27056, 378, 7, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 13159, 62, 22570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 11925, 7, 276, 3212, 828, 366, 77, 4147, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5387, 62, 77, 4147, 796, 900, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 11, 954, 287, 15034, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 17440, 329, 5743, 287, 13015, 329, 10139, 287, 5743, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 1875, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 13015, 796, 45941, 13, 18747, 26933, 14907, 329, 5743, 287, 13015, 611, 5743, 58, 16, 60, 287, 5387, 62, 77, 4147, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 11925, 7, 276, 3212, 828, 366, 32538, 13760, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3108, 287, 256, 80, 36020, 7, 6978, 82, 11, 1715, 2625, 43328, 889, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 6978, 796, 277, 1, 90, 6978, 27422, 21370, 70, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 21928, 62, 6978, 8, 290, 407, 26498, 13, 2502, 13564, 62, 489, 1747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 2010, 13, 31131, 429, 89, 62, 1462, 62, 7501, 1939, 533, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 24511, 13, 7110, 2124, 331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 22, 11, 767, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 29487, 62, 34960, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5743, 287, 13015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 58, 14907, 11, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 58, 14907, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 2625, 13424, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 2625, 78, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 1416, 1436, 7, 11487, 58, 16, 45299, 657, 4357, 3084, 58, 16, 45299, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7839, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 70, 6888, 22446, 2617, 62, 87, 2475, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 70, 6888, 22446, 2617, 62, 88, 2475, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 70, 6888, 22446, 2860, 62, 49016, 7, 489, 83, 13, 31560, 293, 19510, 15, 11, 657, 828, 352, 11, 6070, 28, 25101, 11, 5743, 8043, 2625, 13424, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 21928, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 628, 220, 220, 220, 4818, 282, 1170, 263, 796, 6060, 17401, 7, 198, 220, 220, 220, 220, 220, 220, 220, 29681, 7, 24874, 3083, 11, 26498, 13, 39873, 62, 7857, 828, 198, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 22046, 13, 1477, 18137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 22046, 13, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22896, 28, 22046, 13, 29356, 62, 22896, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 44608, 21287, 796, 19340, 45113, 7, 3262, 13, 17143, 7307, 22784, 4673, 62, 4873, 28, 22046, 13, 40684, 62, 4873, 8, 628, 220, 220, 220, 1438, 796, 277, 1, 90, 22046, 13, 19608, 292, 316, 92, 220, 1391, 19608, 8079, 13, 315, 66, 2197, 3419, 36786, 198, 220, 220, 220, 6260, 796, 21293, 34379, 7, 69, 1, 90, 22046, 13, 6404, 15908, 92, 14, 90, 3672, 92, 4943, 628, 220, 220, 220, 351, 256, 80, 36020, 7, 77, 4033, 82, 28, 1795, 11, 949, 3849, 2100, 28, 15, 13, 17, 8, 355, 36835, 62, 5657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 36835, 287, 2837, 7, 22046, 13, 538, 5374, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44608, 21287, 13, 40684, 62, 4873, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 40684, 62, 4873, 1220, 26498, 13, 10899, 62, 66, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36835, 1279, 26498, 13, 10899, 62, 538, 5374, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26498, 13, 40684, 62, 4873, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 314, 11, 509, 82, 287, 4818, 282, 1170, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44608, 21287, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 2010, 7, 40, 11, 509, 82, 737, 32604, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44608, 21287, 13, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 1416, 282, 283, 7203, 22462, 1600, 2994, 11, 36835, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 1416, 282, 283, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 260, 1102, 62, 3866, 687, 1600, 8195, 7, 3262, 13, 1136, 62, 31131, 429, 89, 62, 11487, 22784, 5166, 3083, 828, 36835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 1416, 282, 283, 7203, 11487, 62, 9288, 1600, 2010, 13557, 9288, 62, 11487, 22784, 36835, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36835, 4064, 26498, 13, 21928, 62, 9662, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 7, 3262, 13, 5219, 62, 11600, 22784, 277, 1, 90, 22046, 13, 82, 9586, 343, 92, 14, 90, 538, 5374, 92, 1391, 3672, 27422, 694, 457, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 62, 5657, 13, 2617, 62, 11213, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 8582, 242, 98, 8942, 7108, 2994, 25, 1391, 22468, 7, 22462, 8, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36835, 1279, 26498, 13, 10899, 62, 538, 5374, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 4808, 22977, 7, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 62, 5657, 13, 19119, 7, 16, 8, 198 ]
2.043123
4,893
# coding: utf-8 # # Pythonでの正規表現サンプル # # Update: 2018/3/21 # import re # 検索対象のテキスト textdata = ''' Welcome to Infra workshop! Kusotsui Hikariare Misogi Misogi999 Misogi9999 '''.strip() # print m.groups(0) # メインルーチン if __name__ == "__main__": main()
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 198, 2, 11361, 30640, 27032, 255, 96, 17358, 237, 26193, 101, 163, 237, 122, 26503, 6527, 30965, 9202, 198, 2, 198, 2, 10133, 25, 2864, 14, 18, 14, 2481, 198, 2, 198, 198, 11748, 302, 198, 198, 2, 10545, 97, 250, 163, 112, 95, 43380, 122, 164, 109, 94, 5641, 24336, 25084, 43302, 198, 5239, 7890, 796, 705, 7061, 198, 14618, 284, 4806, 430, 20243, 0, 198, 42, 385, 1747, 9019, 198, 39, 1134, 2743, 533, 198, 31281, 44381, 198, 31281, 44381, 17032, 198, 31281, 44381, 24214, 198, 7061, 4458, 36311, 3419, 198, 2, 197, 197, 4798, 285, 13, 24432, 7, 15, 8, 198, 197, 198, 198, 2, 14524, 94, 11482, 6527, 9202, 12045, 223, 6527, 198, 197, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 12417, 3419, 198, 197 ]
1.791667
144
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
""" Caching --------------------------- """ import functools from df_engine.core import Actor, Context from df_engine.core.types import ActorStage class OneTurnCache: """ Class that caches the information from the last turn. """
[ 37811, 198, 34, 8103, 198, 22369, 6329, 198, 198, 37811, 198, 11748, 1257, 310, 10141, 198, 198, 6738, 47764, 62, 18392, 13, 7295, 1330, 27274, 11, 30532, 198, 6738, 47764, 62, 18392, 13, 7295, 13, 19199, 1330, 27274, 29391, 628, 198, 4871, 1881, 17278, 30562, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 326, 50177, 262, 1321, 422, 262, 938, 1210, 13, 198, 220, 220, 220, 37227, 198 ]
3.450704
71
import numpy as np import elephant.spade as spade import argparse import yaml from yaml import Loader # Function to filter patterns when the output format of spade function # is 'patterns' def _pattern_spectrum_filter(patterns, ns_signature, spectrum, winlen): """ Filter to select concept which signature is significant """ if spectrum == '3d#': keep_concept = patterns['signature'] + tuple([max( np.abs(np.diff(np.array(patterns['lags']) % winlen)))]) \ not in ns_signature else: keep_concept = patterns['signature'] not in ns_signature return keep_concept if __name__ == '__main__': # Load parameters dictionary param_dict = np.load('../data/art_data.npy', encoding='latin1').item()['params'] lengths = param_dict['lengths'] binsize = param_dict['binsize'] winlens = [int(l/binsize)+1 for l in lengths] print(winlens) # Filtering parameters # Load general parameters with open("configfile.yaml", 'r') as stream: config = yaml.load(stream, Loader=Loader) alpha = config['alpha'] psr_param = config['psr_param'] correction = config['correction'] min_occ = config['min_occ'] # Passing spectrum parameter parser = argparse.ArgumentParser(description='Compute spade on artificial data' ' for the given winlen and ' 'spectrum parameters') parser.add_argument('spectrum', metavar='spectrum', type=str, help='spectrum parameter of the spade function') parser.add_argument('winlen', metavar='winlen', type=int, help='winlen parameter of the spade function') args = parser.parse_args() spectrum = args.spectrum winlen = args.winlen # Filtering parameters for the different window length # Loading result res_spade, params = \ np.load('../results/{}/winlen{}/art_data_results.npy'.format(spectrum, winlen), encoding='latin1') concepts = res_spade['patterns'] pval_spectrum = res_spade['pvalue_spectrum'] # SPADE parameters spectrum = params['spectrum'] min_spikes = params['min_spikes'] n_surr = params['n_surr'] # PSF filtering if len(pval_spectrum) == 0: ns_sgnt = [] else: # Computing non-significant entries of the spectrum applying # the statistical correction ns_sgnt = spade.test_signature_significance( pval_spectrum, alpha, corr=correction, report='e', spectrum=spectrum) concepts_psf = list(filter( lambda c: spade._pattern_spectrum_filter( c, ns_sgnt, spectrum, winlen), concepts)) print('Winlen:', winlen) print('Non significant signatures:', sorted(ns_sgnt)) print('Number of significant patterns before psr:', len(concepts_psf)) # PSR filtering # Decide whether filter the concepts using psr if psr_param is not None: # Filter using conditional tests (psr) if 0 < alpha < 1 and n_surr > 0: concepts_psr = spade.pattern_set_reduction(concepts_psf, ns_sgnt, winlen=winlen, h=psr_param[0], k=psr_param[1], l=psr_param[2], min_spikes=min_spikes, min_occ=min_occ) else: concepts_psr = spade.pattern_set_reduction(concepts_psf, [], winlen=winlen, h=psr_param[0], k=psr_param[1], l=psr_param[2], min_spikes=min_spikes, min_occ=min_occ) patterns = spade.concept_output_to_patterns( concepts_psr, winlen, binsize, pval_spectrum) else: patterns = spade.concept_output_to_patterns( concepts_psf, winlen, binsize, pval_spectrum) print('Number of significant patterns after psr:', len(concepts_psf)) # Storing filtered results params['alpha'] = alpha params['psr_param'] = psr_param params['correction'] = correction params['min_occ'] = min_occ np.save( '../results/{}/winlen{}/filtered_patterns.npy'.format( spectrum, winlen), [patterns, pval_spectrum, ns_sgnt, params])
[ 11748, 299, 32152, 355, 45941, 198, 11748, 20950, 13, 2777, 671, 355, 599, 671, 198, 11748, 1822, 29572, 198, 11748, 331, 43695, 198, 6738, 331, 43695, 1330, 8778, 263, 628, 198, 2, 15553, 284, 8106, 7572, 618, 262, 5072, 5794, 286, 599, 671, 2163, 198, 2, 318, 705, 33279, 82, 6, 198, 4299, 4808, 33279, 62, 4443, 6582, 62, 24455, 7, 33279, 82, 11, 36545, 62, 12683, 1300, 11, 10958, 11, 1592, 11925, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25853, 284, 2922, 3721, 543, 9877, 318, 2383, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 10958, 6624, 705, 18, 67, 2, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 43169, 796, 7572, 17816, 12683, 1300, 20520, 1343, 46545, 26933, 9806, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 8937, 7, 37659, 13, 26069, 7, 37659, 13, 18747, 7, 33279, 82, 17816, 75, 3775, 6, 12962, 4064, 1592, 11925, 22305, 12962, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 287, 36545, 62, 12683, 1300, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 43169, 796, 7572, 17816, 12683, 1300, 20520, 407, 287, 36545, 62, 12683, 1300, 628, 220, 220, 220, 1441, 1394, 62, 43169, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 8778, 10007, 22155, 198, 220, 220, 220, 5772, 62, 11600, 796, 45941, 13, 2220, 10786, 40720, 7890, 14, 433, 62, 7890, 13, 77, 9078, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 11639, 75, 10680, 16, 27691, 9186, 3419, 17816, 37266, 20520, 198, 220, 220, 220, 20428, 796, 5772, 62, 11600, 17816, 13664, 82, 20520, 198, 220, 220, 220, 41701, 1096, 796, 5772, 62, 11600, 17816, 65, 1040, 1096, 20520, 198, 220, 220, 220, 1592, 75, 641, 796, 685, 600, 7, 75, 14, 65, 1040, 1096, 47762, 16, 329, 300, 287, 20428, 60, 198, 220, 220, 220, 3601, 7, 5404, 75, 641, 8, 198, 220, 220, 220, 1303, 7066, 20212, 10007, 198, 220, 220, 220, 1303, 8778, 2276, 10007, 198, 220, 220, 220, 351, 1280, 7203, 11250, 7753, 13, 88, 43695, 1600, 705, 81, 11537, 355, 4269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 331, 43695, 13, 2220, 7, 5532, 11, 8778, 263, 28, 17401, 8, 198, 220, 220, 220, 17130, 796, 4566, 17816, 26591, 20520, 198, 220, 220, 220, 26692, 81, 62, 17143, 796, 4566, 17816, 862, 81, 62, 17143, 20520, 198, 220, 220, 220, 17137, 796, 4566, 17816, 10215, 8243, 20520, 198, 220, 220, 220, 949, 62, 13966, 796, 4566, 17816, 1084, 62, 13966, 20520, 198, 220, 220, 220, 1303, 46389, 10958, 11507, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 7293, 1133, 599, 671, 319, 11666, 1366, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 329, 262, 1813, 1592, 11925, 290, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4443, 6582, 10007, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 4443, 6582, 3256, 1138, 615, 283, 11639, 4443, 6582, 3256, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 4443, 6582, 11507, 286, 262, 599, 671, 2163, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 5404, 11925, 3256, 1138, 615, 283, 11639, 5404, 11925, 3256, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5404, 11925, 11507, 286, 262, 599, 671, 2163, 11537, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 10958, 796, 26498, 13, 4443, 6582, 198, 220, 220, 220, 1592, 11925, 796, 26498, 13, 5404, 11925, 198, 220, 220, 220, 1303, 7066, 20212, 10007, 329, 262, 1180, 4324, 4129, 198, 220, 220, 220, 1303, 12320, 1255, 198, 220, 220, 220, 581, 62, 2777, 671, 11, 42287, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 2220, 10786, 40720, 43420, 14, 90, 92, 14, 5404, 11925, 90, 92, 14, 433, 62, 7890, 62, 43420, 13, 77, 9078, 4458, 18982, 7, 4443, 6582, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 11925, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 11639, 75, 10680, 16, 11537, 198, 220, 220, 220, 10838, 796, 581, 62, 2777, 671, 17816, 33279, 82, 20520, 198, 220, 220, 220, 279, 2100, 62, 4443, 6582, 220, 796, 581, 62, 2777, 671, 17816, 79, 8367, 62, 4443, 6582, 20520, 198, 220, 220, 220, 1303, 6226, 19266, 10007, 198, 220, 220, 220, 10958, 796, 42287, 17816, 4443, 6582, 20520, 198, 220, 220, 220, 949, 62, 2777, 7938, 796, 42287, 17816, 1084, 62, 2777, 7938, 20520, 198, 220, 220, 220, 299, 62, 11793, 81, 796, 42287, 17816, 77, 62, 11793, 81, 20520, 198, 220, 220, 220, 1303, 6599, 37, 25431, 198, 220, 220, 220, 611, 18896, 7, 79, 2100, 62, 4443, 6582, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 36545, 62, 45213, 429, 796, 17635, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38589, 1729, 12, 36591, 12784, 286, 262, 10958, 11524, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 13905, 17137, 198, 220, 220, 220, 220, 220, 220, 220, 36545, 62, 45213, 429, 796, 599, 671, 13, 9288, 62, 12683, 1300, 62, 12683, 811, 590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 2100, 62, 4443, 6582, 11, 17130, 11, 1162, 81, 28, 10215, 8243, 11, 989, 11639, 68, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10958, 28, 4443, 6582, 8, 198, 220, 220, 220, 10838, 62, 862, 69, 796, 1351, 7, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 269, 25, 599, 671, 13557, 33279, 62, 4443, 6582, 62, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 11, 36545, 62, 45213, 429, 11, 10958, 11, 1592, 11925, 828, 10838, 4008, 198, 220, 220, 220, 3601, 10786, 16643, 11925, 25, 3256, 1592, 11925, 8, 198, 220, 220, 220, 3601, 10786, 15419, 2383, 17239, 25, 3256, 23243, 7, 5907, 62, 45213, 429, 4008, 198, 220, 220, 220, 3601, 10786, 15057, 286, 2383, 7572, 878, 26692, 81, 25, 3256, 18896, 7, 43169, 82, 62, 862, 69, 4008, 198, 220, 220, 220, 1303, 6599, 49, 25431, 198, 220, 220, 220, 1303, 4280, 485, 1771, 8106, 262, 10838, 1262, 26692, 81, 198, 220, 220, 220, 611, 26692, 81, 62, 17143, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25853, 1262, 26340, 5254, 357, 862, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 657, 1279, 17130, 1279, 352, 290, 299, 62, 11793, 81, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10838, 62, 862, 81, 796, 599, 671, 13, 33279, 62, 2617, 62, 445, 8110, 7, 43169, 82, 62, 862, 69, 11, 36545, 62, 45213, 429, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 11925, 28, 5404, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 28, 862, 81, 62, 17143, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 28, 862, 81, 62, 17143, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 28, 862, 81, 62, 17143, 58, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2777, 7938, 28, 1084, 62, 2777, 7938, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 13966, 28, 1084, 62, 13966, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10838, 62, 862, 81, 796, 599, 671, 13, 33279, 62, 2617, 62, 445, 8110, 7, 43169, 82, 62, 862, 69, 11, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 11925, 28, 5404, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 28, 862, 81, 62, 17143, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 28, 862, 81, 62, 17143, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 28, 862, 81, 62, 17143, 58, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2777, 7938, 28, 1084, 62, 2777, 7938, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 13966, 28, 1084, 62, 13966, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7572, 796, 599, 671, 13, 43169, 62, 22915, 62, 1462, 62, 33279, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10838, 62, 862, 81, 11, 1592, 11925, 11, 41701, 1096, 11, 279, 2100, 62, 4443, 6582, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7572, 796, 599, 671, 13, 43169, 62, 22915, 62, 1462, 62, 33279, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10838, 62, 862, 69, 11, 1592, 11925, 11, 41701, 1096, 11, 279, 2100, 62, 4443, 6582, 8, 198, 220, 220, 220, 3601, 10786, 15057, 286, 2383, 7572, 706, 26692, 81, 25, 3256, 18896, 7, 43169, 82, 62, 862, 69, 4008, 628, 220, 220, 220, 1303, 520, 3255, 29083, 2482, 198, 220, 220, 220, 42287, 17816, 26591, 20520, 796, 17130, 198, 220, 220, 220, 42287, 17816, 862, 81, 62, 17143, 20520, 796, 26692, 81, 62, 17143, 198, 220, 220, 220, 42287, 17816, 10215, 8243, 20520, 796, 17137, 198, 220, 220, 220, 42287, 17816, 1084, 62, 13966, 20520, 796, 949, 62, 13966, 198, 220, 220, 220, 45941, 13, 21928, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40720, 43420, 14, 90, 92, 14, 5404, 11925, 90, 92, 14, 10379, 4400, 62, 33279, 82, 13, 77, 9078, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10958, 11, 1592, 11925, 828, 685, 33279, 82, 11, 279, 2100, 62, 4443, 6582, 11, 36545, 62, 45213, 429, 11, 42287, 12962, 198 ]
1.965978
2,469
""" Parser handles reading and interpreting the OA logfile """ from player import Player
[ 37811, 198, 46677, 17105, 3555, 290, 35391, 262, 440, 32, 2604, 7753, 198, 37811, 198, 198, 6738, 2137, 1330, 7853 ]
4.45
20
# coding=utf-8 from __future__ import unicode_literals from django.db import models, migrations
[ 2, 19617, 28, 40477, 12, 23, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 11, 15720, 602, 628 ]
3.266667
30
# -*-coding:utf-8 -*- ''' @File : internet_search_demo.py @Author : HW Shen @Date : 2020/5/26 @Desc : ''' from ServiceOrientedChatbot.search_dialog import SearchEngine from ServiceOrientedChatbot.utils import logger if __name__ == '__main__': engine = SearchEngine() logger.debug(engine.search("北京今天天气如何?")) logger.debug(engine.search("上海呢?")) # logger.debug(engine.search("武汉呢?")) # logger.debug(engine.search("武汉明天呢?")) # # ans = engine.search("貂蝉是谁") # logger.debug(ans) # ans = engine.search("西施是谁") # logger.debug(ans) # ans = engine.search("你知道我是谁") # logger.debug(ans) context = engine.contents print(context)
[ 2, 532, 9, 12, 66, 7656, 25, 40477, 12, 23, 532, 9, 12, 198, 198, 7061, 6, 198, 31, 8979, 220, 220, 220, 220, 220, 220, 1058, 5230, 62, 12947, 62, 9536, 78, 13, 9078, 198, 31, 13838, 220, 220, 220, 220, 1058, 44884, 22323, 198, 31, 10430, 220, 220, 220, 220, 220, 220, 1058, 12131, 14, 20, 14, 2075, 198, 31, 24564, 220, 220, 220, 220, 220, 220, 1058, 198, 7061, 6, 198, 198, 6738, 4809, 46, 380, 4714, 30820, 13645, 13, 12947, 62, 38969, 519, 1330, 11140, 13798, 198, 6738, 4809, 46, 380, 4714, 30820, 13645, 13, 26791, 1330, 49706, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 3113, 796, 11140, 13798, 3419, 628, 220, 220, 220, 49706, 13, 24442, 7, 18392, 13, 12947, 7203, 44293, 245, 12859, 105, 20015, 232, 25465, 25465, 36365, 242, 36685, 224, 19526, 243, 171, 120, 253, 48774, 198, 220, 220, 220, 49706, 13, 24442, 7, 18392, 13, 12947, 7203, 41468, 38184, 115, 37772, 95, 171, 120, 253, 48774, 198, 220, 220, 220, 1303, 49706, 13, 24442, 7, 18392, 13, 12947, 7203, 49476, 162, 109, 231, 37772, 95, 171, 120, 253, 48774, 198, 220, 220, 220, 1303, 49706, 13, 24442, 7, 18392, 13, 12947, 7203, 49476, 162, 109, 231, 23626, 236, 25465, 37772, 95, 171, 120, 253, 48774, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 9093, 796, 3113, 13, 12947, 7203, 164, 110, 224, 164, 251, 231, 42468, 164, 108, 223, 4943, 198, 220, 220, 220, 1303, 49706, 13, 24442, 7, 504, 8, 198, 220, 220, 220, 1303, 9093, 796, 3113, 13, 12947, 7203, 164, 98, 123, 23877, 121, 42468, 164, 108, 223, 4943, 198, 220, 220, 220, 1303, 49706, 13, 24442, 7, 504, 8, 198, 220, 220, 220, 1303, 9093, 796, 3113, 13, 12947, 7203, 19526, 254, 163, 253, 98, 34402, 241, 22755, 239, 42468, 164, 108, 223, 4943, 198, 220, 220, 220, 1303, 49706, 13, 24442, 7, 504, 8, 628, 220, 220, 220, 4732, 796, 3113, 13, 3642, 658, 198, 220, 220, 220, 3601, 7, 22866, 8, 198 ]
2.017241
348
from __future__ import print_function import os import sys import ast from inspect import getmembers from fnmatch import fnmatchcase from collections import defaultdict from openmdao.core.system import System from openmdao.core.problem import Problem from openmdao.core.driver import Driver from openmdao.solvers.solver import Solver from openmdao.jacobians.jacobian import Jacobian from openmdao.matrices.matrix import Matrix from openmdao.vectors.vector import Vector, Transfer class FunctionFinder(ast.NodeVisitor): """ This class locates all of the functions and methods in a file and associates any method with its corresponding class. """ def find_qualified_name(filename, line, cache, full=True): """ Determine full function name (class.method) or function for unbound functions. Parameters ---------- filename : str Name of file containing source code. line : int Line number within the give file. cache : dict A dictionary containing infomation by filename. full : bool If True, assemble the full name else return the parts Returns ------- str or None Fully qualified function/method name or None. """ if filename not in cache: fcache = {} with open(filename, 'Ur') as f: contents = f.read() if len(contents) > 0 and contents[-1] != '\n': contents += '\n' FunctionFinder(filename, fcache).visit(ast.parse(contents, filename)) cache[filename] = fcache if full: parts = cache[filename][line] if parts[0]: return '.'.join((parts[0], parts[2])) else: return '.'.join((parts[1], parts[2])) return cache[filename][line] # This maps a simple identifier to a group of classes and corresponding # glob patterns for each class. func_group = { 'openmdao': [ ("*", (System, Jacobian, Matrix, Solver, Driver, Problem)), ], 'openmdao_all': [ ("*", (System, Vector, Transfer, Jacobian, Matrix, Solver, Driver, Problem)), ], 'setup': [ ("*setup*", (System, Solver, Driver, Problem)), ], 'dataflow': [ ('*compute*', (System,)), ('*linear*', (System,)), ('*', (Transfer,)), ], 'linear': [ ('*linear*', (System,)), ('*solve*', (Solver,)), ] } try: from mpi4py import MPI from petsc4py import PETSc from openmdao.vectors.petsc_vector import PETScVector, PETScTransfer #TODO: this needs work. Still lots of MPI calls not covered here... func_group['mpi'] = [ ('*', (PETScTransfer,)), ('get_norm', (PETScVector,)), ('_initialize_data', (PETScVector,)) ] except ImportError: pass def _collect_methods(method_patterns): """ Iterate over a dict of method name patterns mapped to classes. Search through the classes for anything that matches and return a dict of exact name matches and their corresponding classes. Parameters ---------- method_patterns : [(pattern1, (class1, class2, ... class_n)), ... (pattern_n, (class_n1, class_n2, ...)] List of tuples of glob patterns and lists of classes used for isinstance checks Returns ------- defaultdict Dict of method names and tuples of all classes that matched for that method. Default value of the dict is a class that matches nothing """ matches = defaultdict(list) # TODO: update this to also work with stand-alone functions for pattern, classes in method_patterns: for class_ in classes: for name, obj in getmembers(class_): if callable(obj) and (pattern == '*' or fnmatchcase(name, pattern)): matches[name].append(class_) # convert values to tuples so we can use in isinstance call for name in matches: lst = matches[name] if len(lst) == 1: matches[name] = lst[0] else: matches[name] = tuple(matches[name]) return matches def _create_profile_callback(stack, matches, do_call=None, do_ret=None, context=None): """ The wrapped function returned from here handles identification of matching calls when called as a setprofile callback. """ return _wrapped
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 6468, 198, 198, 6738, 10104, 1330, 651, 30814, 198, 6738, 24714, 15699, 1330, 24714, 15699, 7442, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 6738, 1280, 9132, 5488, 13, 7295, 13, 10057, 1330, 4482, 198, 6738, 1280, 9132, 5488, 13, 7295, 13, 45573, 1330, 20647, 198, 6738, 1280, 9132, 5488, 13, 7295, 13, 26230, 1330, 12434, 198, 6738, 1280, 9132, 5488, 13, 34453, 690, 13, 82, 14375, 1330, 4294, 332, 198, 6738, 1280, 9132, 5488, 13, 30482, 672, 1547, 13, 30482, 672, 666, 1330, 12806, 666, 198, 6738, 1280, 9132, 5488, 13, 6759, 45977, 13, 6759, 8609, 1330, 24936, 198, 6738, 1280, 9132, 5488, 13, 303, 5217, 13, 31364, 1330, 20650, 11, 20558, 628, 198, 4871, 15553, 37, 5540, 7, 459, 13, 19667, 15854, 2072, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 1179, 689, 477, 286, 262, 5499, 290, 5050, 287, 257, 2393, 290, 20093, 597, 198, 220, 220, 220, 2446, 351, 663, 11188, 1398, 13, 198, 220, 220, 220, 37227, 628, 198, 4299, 1064, 62, 22557, 62, 3672, 7, 34345, 11, 1627, 11, 12940, 11, 1336, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45559, 3810, 1336, 2163, 1438, 357, 4871, 13, 24396, 8, 393, 2163, 329, 555, 7784, 5499, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 29472, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 2393, 7268, 2723, 2438, 13, 198, 220, 220, 220, 1627, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 6910, 1271, 1626, 262, 1577, 2393, 13, 198, 220, 220, 220, 12940, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 317, 22155, 7268, 1167, 296, 341, 416, 29472, 13, 198, 220, 220, 220, 1336, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 25432, 262, 1336, 1438, 2073, 1441, 262, 3354, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 965, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 40234, 10617, 2163, 14, 24396, 1438, 393, 6045, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 29472, 407, 287, 12940, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 23870, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 34345, 11, 705, 16692, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 277, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 3642, 658, 8, 1875, 657, 290, 10154, 58, 12, 16, 60, 14512, 705, 59, 77, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 15853, 705, 59, 77, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15553, 37, 5540, 7, 34345, 11, 277, 23870, 737, 4703, 270, 7, 459, 13, 29572, 7, 3642, 658, 11, 29472, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 12940, 58, 34345, 60, 796, 277, 23870, 628, 220, 220, 220, 611, 1336, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 12940, 58, 34345, 7131, 1370, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3354, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 2637, 13, 22179, 19510, 42632, 58, 15, 4357, 3354, 58, 17, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 2637, 13, 22179, 19510, 42632, 58, 16, 4357, 3354, 58, 17, 60, 4008, 628, 220, 220, 220, 1441, 12940, 58, 34345, 7131, 1370, 60, 628, 198, 2, 770, 8739, 257, 2829, 27421, 284, 257, 1448, 286, 6097, 290, 11188, 198, 2, 15095, 7572, 329, 1123, 1398, 13, 198, 20786, 62, 8094, 796, 1391, 198, 220, 220, 220, 705, 9654, 9132, 5488, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 9, 1600, 357, 11964, 11, 12806, 666, 11, 24936, 11, 4294, 332, 11, 12434, 11, 20647, 36911, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 705, 9654, 9132, 5488, 62, 439, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 9, 1600, 357, 11964, 11, 20650, 11, 20558, 11, 12806, 666, 11, 24936, 11, 4294, 332, 11, 12434, 11, 20647, 36911, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 705, 40406, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 9, 40406, 9, 1600, 357, 11964, 11, 4294, 332, 11, 12434, 11, 20647, 36911, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 705, 7890, 11125, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 9, 5589, 1133, 9, 3256, 357, 11964, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 9, 29127, 9, 3256, 357, 11964, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 9, 3256, 357, 43260, 35751, 828, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 705, 29127, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 9, 29127, 9, 3256, 357, 11964, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 9, 82, 6442, 9, 3256, 357, 50, 14375, 35751, 828, 198, 220, 220, 220, 2361, 198, 92, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 285, 14415, 19, 9078, 1330, 4904, 40, 198, 220, 220, 220, 422, 17252, 66, 19, 9078, 1330, 32043, 3351, 198, 220, 220, 220, 422, 1280, 9132, 5488, 13, 303, 5217, 13, 79, 1039, 66, 62, 31364, 1330, 32043, 3351, 38469, 11, 32043, 3351, 43260, 628, 220, 220, 220, 1303, 51, 3727, 46, 25, 428, 2476, 670, 13, 220, 7831, 6041, 286, 4904, 40, 3848, 407, 5017, 994, 986, 198, 220, 220, 220, 25439, 62, 8094, 17816, 3149, 72, 20520, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 9, 3256, 357, 47731, 3351, 43260, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 1136, 62, 27237, 3256, 357, 47731, 3351, 38469, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 62, 36733, 1096, 62, 7890, 3256, 357, 47731, 3351, 38469, 11, 4008, 198, 220, 220, 220, 2361, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 628, 198, 4299, 4808, 33327, 62, 24396, 82, 7, 24396, 62, 33279, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40806, 378, 625, 257, 8633, 286, 2446, 1438, 7572, 27661, 284, 6097, 13, 220, 11140, 198, 220, 220, 220, 832, 262, 6097, 329, 1997, 326, 7466, 290, 1441, 257, 8633, 286, 198, 220, 220, 220, 2748, 1438, 7466, 290, 511, 11188, 6097, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2446, 62, 33279, 82, 1058, 47527, 33279, 16, 11, 357, 4871, 16, 11, 1398, 17, 11, 2644, 1398, 62, 77, 36911, 2644, 357, 33279, 62, 77, 11, 357, 4871, 62, 77, 16, 11, 1398, 62, 77, 17, 11, 2644, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 12777, 2374, 286, 15095, 7572, 290, 8341, 286, 6097, 973, 329, 318, 39098, 8794, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4277, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 360, 713, 286, 2446, 3891, 290, 12777, 2374, 286, 477, 6097, 326, 14451, 329, 326, 2446, 13, 15161, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 8633, 318, 257, 1398, 326, 7466, 2147, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7466, 796, 4277, 11600, 7, 4868, 8, 628, 220, 220, 220, 1303, 16926, 46, 25, 4296, 428, 284, 635, 670, 351, 1302, 12, 17749, 5499, 198, 220, 220, 220, 329, 3912, 11, 6097, 287, 2446, 62, 33279, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1398, 62, 287, 6097, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 26181, 287, 651, 30814, 7, 4871, 62, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 869, 540, 7, 26801, 8, 290, 357, 33279, 6624, 705, 9, 6, 393, 24714, 15699, 7442, 7, 3672, 11, 3912, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7466, 58, 3672, 4083, 33295, 7, 4871, 62, 8, 628, 220, 220, 220, 1303, 10385, 3815, 284, 12777, 2374, 523, 356, 460, 779, 287, 318, 39098, 869, 198, 220, 220, 220, 329, 1438, 287, 7466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 796, 7466, 58, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 75, 301, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7466, 58, 3672, 60, 796, 300, 301, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7466, 58, 3672, 60, 796, 46545, 7, 6759, 2052, 58, 3672, 12962, 628, 220, 220, 220, 1441, 7466, 628, 198, 4299, 4808, 17953, 62, 13317, 62, 47423, 7, 25558, 11, 7466, 11, 466, 62, 13345, 28, 14202, 11, 466, 62, 1186, 28, 14202, 11, 4732, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 12908, 2163, 4504, 422, 994, 17105, 11795, 286, 12336, 3848, 618, 1444, 198, 220, 220, 220, 355, 257, 900, 13317, 23838, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 4808, 29988, 1496, 198 ]
2.660319
1,628
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from absl.testing import absltest import jax import jax._src.lib.xla_bridge from jax.config import config import jax.test_util as jtu config.parse_flags_with_absl() # These tests simply test that the heap profiler API does not crash; they do # not check functional correctness. if __name__ == "__main__": absltest.main(testLoader=jtu.JaxTestLoader())
[ 2, 15069, 33448, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 555, 715, 395, 198, 6738, 2352, 75, 13, 33407, 1330, 2352, 2528, 395, 198, 198, 11748, 474, 897, 198, 11748, 474, 897, 13557, 10677, 13, 8019, 13, 87, 5031, 62, 9458, 198, 6738, 474, 897, 13, 11250, 1330, 4566, 198, 11748, 474, 897, 13, 9288, 62, 22602, 355, 474, 28047, 628, 198, 11250, 13, 29572, 62, 33152, 62, 4480, 62, 397, 6649, 3419, 628, 220, 1303, 2312, 5254, 2391, 1332, 326, 262, 24575, 1534, 5329, 7824, 857, 407, 7014, 26, 484, 466, 198, 220, 1303, 407, 2198, 10345, 29409, 13, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 2352, 2528, 395, 13, 12417, 7, 9288, 17401, 28, 73, 28047, 13, 41, 897, 14402, 17401, 28955, 198 ]
3.507353
272
''' Author: MJ.XU Date: 2021-11-29 17:16:33 LastEditTime: 2021-12-18 23:28:25 LastEditors: MJ.XU Description: Tech4better FilePath: \Tutorial-HandWriting-Cls-master\model.py Personal URL: https://www.squirrelled.cn/ ''' # pytorch related packages import torch import torch.nn as nn import torch.nn.functional as F # Model Definition
[ 7061, 6, 198, 13838, 25, 33974, 13, 55, 52, 198, 10430, 25, 33448, 12, 1157, 12, 1959, 1596, 25, 1433, 25, 2091, 198, 5956, 18378, 7575, 25, 33448, 12, 1065, 12, 1507, 2242, 25, 2078, 25, 1495, 198, 5956, 18378, 669, 25, 33974, 13, 55, 52, 198, 11828, 25, 9634, 19, 27903, 198, 8979, 15235, 25, 3467, 51, 44917, 12, 12885, 33874, 12, 2601, 82, 12, 9866, 59, 19849, 13, 9078, 198, 30228, 10289, 25, 3740, 1378, 2503, 13, 16485, 343, 260, 3353, 13, 31522, 14, 198, 7061, 6, 198, 2, 12972, 13165, 354, 3519, 10392, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 628, 198, 2, 9104, 30396, 198 ]
2.745902
122
import pandas as pd import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from data.utils import get_Data, calculate_max_len, get_tokenized from transformers import AutoTokenizer from config import cfg, BertConfig
[ 11748, 19798, 292, 355, 279, 67, 201, 198, 201, 198, 11748, 28034, 201, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 309, 22854, 27354, 292, 316, 11, 6060, 17401, 11, 14534, 16305, 20053, 11, 24604, 1843, 16305, 20053, 201, 198, 201, 198, 6738, 1366, 13, 26791, 1330, 651, 62, 6601, 11, 15284, 62, 9806, 62, 11925, 11, 651, 62, 30001, 1143, 201, 198, 201, 198, 6738, 6121, 364, 1330, 11160, 30642, 7509, 201, 198, 201, 198, 6738, 4566, 1330, 30218, 70, 11, 22108, 16934, 201 ]
3.235294
85
import os import time import unittest from solr_instance import SolrInstance from solrcloudpy import SolrCollection, SolrConnection solrprocess = None if __name__ == "__main__": unittest.main()
[ 11748, 28686, 198, 11748, 640, 198, 11748, 555, 715, 395, 198, 198, 6738, 1540, 81, 62, 39098, 1330, 4294, 81, 33384, 198, 6738, 1540, 81, 17721, 9078, 1330, 4294, 81, 36307, 11, 4294, 81, 32048, 198, 198, 34453, 81, 14681, 796, 6045, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.059701
67
# -*- coding: utf-8 -*- # # pyvinecopulib documentation build configuration file # Sphinx extension modules from pkg_resources import get_distribution # -- General configuration ------------------------------------------------ extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.githubpages', 'sphinx.ext.mathjax', 'sphinx_rtd_theme', 'sphinx.ext.autosummary', 'sphinx.ext.napoleon', ] napoleon_include_init_with_doc = True autosummary_generate = True # The suffix(es) of source filenames. source_suffix = '.rst' # For the templates. templates_path = ['_templates'] # The master toctree document. master_doc = 'index' # General information about the project. project = u'pyvinecopulib' copyright = u'2019, Thomas Nagler and Thibault Vatter' author = u'Thomas Nagler and Thibault Vatter' # The version info. release = get_distribution('pyvinecopulib').version version = '.'.join(release.split('.')[:2]) # -- Options for HTML output ------------------------------------------------- html_theme = 'sphinx_rtd_theme' html_static_path = ['_static'] html_copy_source = False html_show_copyright = False html_show_sphinx = False add_module_names = False pygments_style = 'sphinx' html_logo = '_static/pyvinecopulib.png'
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 12972, 26818, 22163, 377, 571, 10314, 1382, 8398, 2393, 198, 198, 2, 45368, 28413, 7552, 13103, 198, 6738, 279, 10025, 62, 37540, 1330, 651, 62, 17080, 3890, 198, 198, 2, 1377, 3611, 8398, 20368, 1783, 198, 198, 2302, 5736, 796, 685, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 2306, 375, 420, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 12567, 31126, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 11018, 73, 897, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 62, 81, 8671, 62, 43810, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 2306, 418, 388, 6874, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 77, 499, 25637, 3256, 198, 60, 198, 198, 77, 499, 25637, 62, 17256, 62, 15003, 62, 4480, 62, 15390, 796, 6407, 198, 2306, 418, 388, 6874, 62, 8612, 378, 796, 6407, 198, 198, 2, 383, 35488, 7, 274, 8, 286, 2723, 1226, 268, 1047, 13, 198, 10459, 62, 37333, 844, 796, 45302, 81, 301, 6, 198, 198, 2, 1114, 262, 24019, 13, 198, 11498, 17041, 62, 6978, 796, 37250, 62, 11498, 17041, 20520, 198, 198, 2, 383, 4958, 284, 310, 631, 3188, 13, 198, 9866, 62, 15390, 796, 705, 9630, 6, 198, 198, 2, 3611, 1321, 546, 262, 1628, 13, 198, 16302, 796, 334, 6, 9078, 26818, 22163, 377, 571, 6, 198, 22163, 4766, 796, 334, 6, 23344, 11, 5658, 15196, 1754, 290, 49486, 1721, 569, 1436, 6, 198, 9800, 796, 334, 6, 22405, 15196, 1754, 290, 49486, 1721, 569, 1436, 6, 198, 198, 2, 383, 2196, 7508, 13, 198, 20979, 796, 651, 62, 17080, 3890, 10786, 9078, 26818, 22163, 377, 571, 27691, 9641, 198, 9641, 796, 705, 2637, 13, 22179, 7, 20979, 13, 35312, 10786, 2637, 38381, 25, 17, 12962, 198, 198, 2, 1377, 18634, 329, 11532, 5072, 20368, 1783, 12, 198, 198, 6494, 62, 43810, 796, 705, 82, 746, 28413, 62, 81, 8671, 62, 43810, 6, 198, 198, 6494, 62, 12708, 62, 6978, 796, 37250, 62, 12708, 20520, 198, 198, 6494, 62, 30073, 62, 10459, 796, 10352, 198, 198, 6494, 62, 12860, 62, 22163, 4766, 796, 10352, 198, 198, 6494, 62, 12860, 62, 82, 746, 28413, 796, 10352, 198, 198, 2860, 62, 21412, 62, 14933, 796, 10352, 198, 198, 9078, 11726, 62, 7635, 796, 705, 82, 746, 28413, 6, 198, 198, 6494, 62, 6404, 78, 796, 705, 62, 12708, 14, 9078, 26818, 22163, 377, 571, 13, 11134, 6, 198 ]
2.884793
434
""" Copyright (c) 2018, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause Experiment Hyperparameters. """ import argparse import os parser = argparse.ArgumentParser( description="Multi-Hop Knowledge Graph Reasoning with Reward Shaping" ) # Experiment control parser.add_argument( "--process_data", action="store_true", help="process knowledge graph (default: False)", ) parser.add_argument( "--train", action="store_true", help="run path selection set_policy training (default: False)", ) parser.add_argument( "--inference", action="store_true", help="run knowledge graph inference (default: False)", ) parser.add_argument( "--search_random_seed", action="store_true", help="run experiments with multiple random initializations and compute the result statistics " "(default: False)", ) parser.add_argument( "--eval", action="store_true", help="compute evaluation metrics (default: False)" ) parser.add_argument( "--eval_by_relation_type", action="store_true", help="compute evaluation metrics for to-M and to-1 relations separately (default: False)", ) parser.add_argument( "--eval_by_seen_queries", action="store_true", help="compute evaluation metrics for seen queries and unseen queries separately (default: False)", ) parser.add_argument( "--run_ablation_studies", action="store_true", help="run ablation studies" ) parser.add_argument( "--run_analysis", action="store_true", help="run algorithm analysis and print intermediate results (default: False)", ) parser.add_argument( "--data_dir", type=str, default=os.path.join(os.path.dirname(os.path.dirname(__file__)), "data"), help="directory where the knowledge graph data is stored (default: None)", ) parser.add_argument( "--model_root_dir", type=str, default=os.path.join(os.path.dirname(os.path.dirname(__file__)), "model"), help="root directory where the model parameters are stored (default: None)", ) parser.add_argument( "--model_dir", type=str, default=os.path.join(os.path.dirname(os.path.dirname(__file__)), "model"), help="directory where the model parameters are stored (default: None)", ) parser.add_argument("--gpu", type=int, default=0, help="gpu device (default: 0)") parser.add_argument( "--checkpoint_path", type=str, default=None, help="path to a pretrained checkpoint" ) # Data parser.add_argument( "--test", action="store_true", help="perform inference on the test set (default: False)", ) parser.add_argument( "--group_examples_by_query", action="store_true", help="group examples by topic entity + query relation (default: False)", ) # Network Architecture parser.add_argument( "--model", type=str, default="point", help="knowledge graph QA model (default: point)", ) parser.add_argument( "--entity_dim", type=int, default=200, metavar="E", help="entity embedding dimension (default: 200)", ) parser.add_argument( "--relation_dim", type=int, default=200, metavar="R", help="relation embedding dimension (default: 200)", ) parser.add_argument( "--history_dim", type=int, default=400, metavar="H", help="action history encoding LSTM hidden states dimension (default: 400)", ) parser.add_argument( "--history_num_layers", type=int, default=3, metavar="L", help="action history encoding LSTM number of layers (default: 1)", ) parser.add_argument( "--use_action_space_bucketing", action="store_true", help="bucket adjacency list by outgoing degree to avoid memory blow-up (default: False)", ) parser.add_argument( "--bucket_interval", type=int, default=10, help="adjacency list bucket size (default: 32)", ) parser.add_argument( "--type_only", action="store_true", help="use denote knowledge graph node by entity types only (default: False)", ) parser.add_argument( "--relation_only", action="store_true", help="search with relation information only, ignoring entity representation (default: False)", ) parser.add_argument( "--relation_only_in_path", action="store_true", help="include intermediate entities in path (default: False)", ) # Knowledge Graph parser.add_argument( "--num_graph_convolution_layers", type=int, default=0, help="number of graph convolution layers to use (default: 0, no GC is used)", ) parser.add_argument( "--graph_convolution_rank", type=int, default=10, help="number of ranks " ) parser.add_argument( "--add_reverse_relations", type=bool, default=True, help="add reverse relations to KB (default: True)", ) parser.add_argument( "--add_reversed_training_edges", action="store_true", help="add reversed edges to extend training set (default: False)", ) parser.add_argument( "--train_entire_graph", type=bool, default=False, help="add all edges in the graph to extend training set (default: False)", ) parser.add_argument( "--emb_dropout_rate", type=float, default=0.3, help="Knowledge graph embedding dropout rate (default: 0.3)", ) parser.add_argument( "--zero_entity_initialization", type=bool, default=False, help="Initialize all entities to zero (default: False)", ) parser.add_argument( "--uniform_entity_initialization", type=bool, default=False, help="Initialize all entities with the same random embedding (default: False)", ) # Optimization parser.add_argument( "--num_epochs", type=int, default=200, help="maximum number of pass over the entire training set (default: 20)", ) parser.add_argument( "--num_wait_epochs", type=int, default=5, help="number of epochs to wait before stopping training if dev set performance drops", ) parser.add_argument( "--num_peek_epochs", type=int, default=2, help="number of epochs to wait for next dev set result check (default: 2)", ) parser.add_argument( "--start_epoch", type=int, default=0, help="epoch from which the training should start (default: 0)", ) parser.add_argument( "--batch_size", type=int, default=256, help="mini-batch size (default: 256)" ) parser.add_argument( "--train_batch_size", type=int, default=256, help="mini-batch size during training (default: 256)", ) parser.add_argument( "--dev_batch_size", type=int, default=64, help="mini-batch size during inferece (default: 64)", ) parser.add_argument( "--margin", type=float, default=0, help="margin used for base MAMES training (default: 0)", ) parser.add_argument( "--learning_rate", type=float, default=0.0001, help="learning rate (default: 0.0001)", ) parser.add_argument( "--learning_rate_decay", type=float, default=1.0, help="learning rate decay factor for the Adam optimizer (default: 1)", ) parser.add_argument( "--adam_beta1", type=float, default=0.9, help="Adam: decay rates for the first movement estimate (default: 0.9)", ) parser.add_argument( "--adam_beta2", type=float, default=0.999, help="Adam: decay rates for the second raw movement estimate (default: 0.999)", ) parser.add_argument( "--grad_norm", type=float, default=10000, help="norm threshold for gradient clipping (default 10000)", ) parser.add_argument( "--xavier_initialization", type=bool, default=True, help="Initialize all model parameters using xavier initialization (default: True)", ) parser.add_argument( "--random_parameters", type=bool, default=False, help="Inference with random parameters (default: False)", ) # Fact Network parser.add_argument( "--label_smoothing_epsilon", type=float, default=0.1, help="epsilon used for label smoothing", ) parser.add_argument( "--hidden_dropout_rate", type=float, default=0.3, help="ConvE hidden layer dropout rate (default: 0.3)", ) parser.add_argument( "--feat_dropout_rate", type=float, default=0.2, help="ConvE feature dropout rate (default: 0.2)", ) parser.add_argument( "--emb_2D_d1", type=int, default=10, help="ConvE embedding 2D shape dimension 1 (default: 10)", ) parser.add_argument( "--emb_2D_d2", type=int, default=20, help="ConvE embedding 2D shape dimension 2 (default: 20)", ) parser.add_argument( "--num_out_channels", type=int, default=32, help="ConvE number of output channels of the convolution layer (default: 32)", ) parser.add_argument( "--kernel_size", type=int, default=3, help="ConvE kernel size (default: 3)" ) parser.add_argument( "--distmult_state_dict_path", type=str, default="", help="Path to the DistMult network state_dict (default: " ")", ) parser.add_argument( "--complex_state_dict_path", type=str, default="", help="Path to the ComplEx network state dict (default: " ")", ) parser.add_argument( "--conve_state_dict_path", type=str, default="", help="Path to the ConvE network state dict (default: " ")", ) # Policy Network parser.add_argument( "--ff_dropout_rate", type=float, default=0.1, help="Feed-forward layer dropout rate (default: 0.1)", ) parser.add_argument( "--rnn_dropout_rate", type=float, default=0.0, help="RNN Variational Dropout Rate (default: 0.0)", ) parser.add_argument( "--action_dropout_rate", type=float, default=0.1, help="Dropout rate for randomly masking out knowledge graph edges (default: 0.1)", ) parser.add_argument( "--action_dropout_anneal_factor", type=float, default=0.95, help="Decrease the action dropout rate once the dev set results stopped increase (default: 0.95)", ) parser.add_argument( "--action_dropout_anneal_interval", type=int, default=1000, help="Number of epochs to wait before decreasing the action dropout rate (default: 1000. Action " "dropout annealing is not used when the value is >= 1000.)", ) parser.add_argument( "--num_negative_samples", type=int, default=10, help="Number of negative samples to use for embedding-based methods", ) # Reward Shaping parser.add_argument( "--fn_state_dict_path", type=str, default="", help="(Aborted) Path to the saved fact network model", ) parser.add_argument( "--fn_kg_state_dict_path", type=str, default="", help="(Aborted) Path to the saved knowledge graph embeddings used by a fact network", ) parser.add_argument( "--reward_shaping_threshold", type=float, default=0, help="Threshold cut off of reward shaping scores (default: 0)", ) parser.add_argument( "--mu", type=float, default=1.0, help="Weight over the estimated reward (default: 1.0)", ) # Graph Completion parser.add_argument( "--theta", type=float, default=0.2, help="Threshold for sifting high-confidence facts (default: 0.2)", ) # Reinforcement Learning parser.add_argument( "--num_rollouts", type=int, default=20, help="number of rollouts (default: 20)" ) parser.add_argument( "--num_rollout_steps", type=int, default=3, help="maximum path length (default: 3)" ) parser.add_argument( "--bandwidth", type=int, default=300, help="maximum number of outgoing edges to explore at each step (default: 300)", ) parser.add_argument( "--r_bandwidth", type=int, default=10, help="maximum number of unique relation types connecting a pair of entities (default: 10)", ) parser.add_argument( "--num_paths_per_entity", type=int, default=3, help="number of paths used to calculate entity potential (default: 3)", ) parser.add_argument( "--beta", type=float, default=0.0, help="entropy regularization weight (default: 0.0)", ) parser.add_argument( "--gamma", type=float, default=1, help="moving average weight (default: 1)" ) # Policy Gradient parser.add_argument( "--baseline", type=str, default="n/a", help="baseline used by the policy gradient algorithm (default: n/a)", ) parser.add_argument( "--seed", type=int, default=543, metavar="S", help="random seed (default: 543)" ) # Search Decoding parser.add_argument( "--beam_size", type=int, default=100, help="size of beam used in beam search inference (default: 100)", ) parser.add_argument( "--mask_test_false_negatives", type=bool, default=False, help="mask false negative examples in the dev/test set during decoding (default: False. This flag " "was implemented for sanity checking and was not used in any experiment.)", ) parser.add_argument( "--visualize_paths", action="store_true", help="generate path visualizations during inference (default: False)", ) parser.add_argument( "--save_beam_search_paths", action="store_true", help="save the decoded path into a CSV file (default: False)", ) # Separate Experiments parser.add_argument( "--export_to_embedding_projector", action="store_true", help="export model embeddings to the Tensorflow Embedding Projector format (default: False)", ) parser.add_argument( "--export_reward_shaping_parameters", action="store_true", help="export KG embeddings and fact network parameters for reward shaping models (default: False)", ) parser.add_argument( "--compute_fact_scores", action="store_true", help="[Debugging Option] compute embedding based model scores (default: False)", ) parser.add_argument( "--export_fuzzy_facts", action="store_true", help="export the facts recovered by embedding based method (default: False)", ) parser.add_argument( "--export_error_cases", action="store_true", help="export the error cases of a model", ) parser.add_argument( "--compute_map", action="store_true", help="compute the Mean Average Precision evaluation metrics (default: False)", ) # Hyperparameter Search parser.add_argument( "--tune", type=str, default="", help="Specify the hyperparameters to tune during the search, separated by commas (default: None)", ) parser.add_argument( "--grid_search", action="store_true", help="Conduct grid search of hyperparameters" ) default_args,_ = parser.parse_known_args()
[ 37811, 198, 15069, 357, 66, 8, 2864, 11, 4200, 3174, 13, 785, 11, 753, 13, 198, 1439, 2489, 10395, 13, 198, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 18, 12, 2601, 682, 198, 1114, 1336, 5964, 2420, 11, 766, 262, 38559, 24290, 2393, 287, 262, 29924, 6808, 393, 3740, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 21800, 12, 18, 12, 2601, 682, 198, 220, 198, 29544, 15079, 17143, 7307, 13, 198, 37811, 198, 198, 11748, 1822, 29572, 198, 11748, 28686, 628, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 6764, 2625, 29800, 12, 23483, 20414, 29681, 23219, 278, 351, 32307, 911, 9269, 1, 198, 8, 198, 198, 2, 29544, 1630, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 14681, 62, 7890, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 14681, 3725, 4823, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 27432, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 5143, 3108, 6356, 900, 62, 30586, 3047, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 259, 4288, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 5143, 3725, 4823, 32278, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 12947, 62, 25120, 62, 28826, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 5143, 10256, 351, 3294, 4738, 4238, 4582, 290, 24061, 262, 1255, 7869, 366, 198, 220, 220, 220, 30629, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 18206, 1600, 2223, 2625, 8095, 62, 7942, 1600, 1037, 2625, 5589, 1133, 12660, 20731, 357, 12286, 25, 10352, 16725, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 18206, 62, 1525, 62, 49501, 62, 4906, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 5589, 1133, 12660, 20731, 329, 284, 12, 44, 290, 284, 12, 16, 2316, 13869, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 18206, 62, 1525, 62, 15898, 62, 421, 10640, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 5589, 1133, 12660, 20731, 329, 1775, 20743, 290, 29587, 20743, 13869, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 5143, 62, 397, 7592, 62, 19149, 444, 1600, 2223, 2625, 8095, 62, 7942, 1600, 1037, 2625, 5143, 450, 7592, 3640, 1, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 5143, 62, 20930, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 5143, 11862, 3781, 290, 3601, 19898, 2482, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 7890, 62, 15908, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 28, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 366, 7890, 12340, 198, 220, 220, 220, 1037, 2625, 34945, 810, 262, 3725, 4823, 1366, 318, 8574, 357, 12286, 25, 6045, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 19849, 62, 15763, 62, 15908, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 28, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 366, 19849, 12340, 198, 220, 220, 220, 1037, 2625, 15763, 8619, 810, 262, 2746, 10007, 389, 8574, 357, 12286, 25, 6045, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 19849, 62, 15908, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 28, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 366, 19849, 12340, 198, 220, 220, 220, 1037, 2625, 34945, 810, 262, 2746, 10007, 389, 8574, 357, 12286, 25, 6045, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 46999, 1600, 2099, 28, 600, 11, 4277, 28, 15, 11, 1037, 2625, 46999, 3335, 357, 12286, 25, 657, 8, 4943, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 9122, 4122, 62, 6978, 1600, 2099, 28, 2536, 11, 4277, 28, 14202, 11, 1037, 2625, 6978, 284, 257, 2181, 13363, 26954, 1, 198, 8, 198, 198, 2, 6060, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 9288, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 525, 687, 32278, 319, 262, 1332, 900, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 8094, 62, 1069, 12629, 62, 1525, 62, 22766, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 8094, 6096, 416, 7243, 9312, 1343, 12405, 8695, 357, 12286, 25, 10352, 42501, 198, 8, 198, 198, 2, 7311, 29778, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 19849, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 2625, 4122, 1600, 198, 220, 220, 220, 1037, 2625, 45066, 4823, 1195, 32, 2746, 357, 12286, 25, 966, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 26858, 62, 27740, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 2167, 11, 198, 220, 220, 220, 1138, 615, 283, 2625, 36, 1600, 198, 220, 220, 220, 1037, 2625, 26858, 11525, 12083, 15793, 357, 12286, 25, 939, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 49501, 62, 27740, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 2167, 11, 198, 220, 220, 220, 1138, 615, 283, 2625, 49, 1600, 198, 220, 220, 220, 1037, 2625, 49501, 11525, 12083, 15793, 357, 12286, 25, 939, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 23569, 62, 27740, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 7029, 11, 198, 220, 220, 220, 1138, 615, 283, 2625, 39, 1600, 198, 220, 220, 220, 1037, 2625, 2673, 2106, 21004, 406, 2257, 44, 7104, 2585, 15793, 357, 12286, 25, 7337, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 23569, 62, 22510, 62, 75, 6962, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 18, 11, 198, 220, 220, 220, 1138, 615, 283, 2625, 43, 1600, 198, 220, 220, 220, 1037, 2625, 2673, 2106, 21004, 406, 2257, 44, 1271, 286, 11685, 357, 12286, 25, 352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 1904, 62, 2673, 62, 13200, 62, 27041, 13629, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 27041, 316, 9224, 330, 1387, 1351, 416, 28181, 4922, 284, 3368, 4088, 6611, 12, 929, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 27041, 316, 62, 3849, 2100, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 940, 11, 198, 220, 220, 220, 1037, 2625, 324, 30482, 1387, 1351, 19236, 2546, 357, 12286, 25, 3933, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 4906, 62, 8807, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 1904, 42685, 3725, 4823, 10139, 416, 9312, 3858, 691, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 49501, 62, 8807, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 12947, 351, 8695, 1321, 691, 11, 15482, 9312, 10552, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 49501, 62, 8807, 62, 259, 62, 6978, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 17256, 19898, 12066, 287, 3108, 357, 12286, 25, 10352, 42501, 198, 8, 198, 198, 2, 20414, 29681, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 34960, 62, 42946, 2122, 62, 75, 6962, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 15, 11, 198, 220, 220, 220, 1037, 2625, 17618, 286, 4823, 3063, 2122, 11685, 284, 779, 357, 12286, 25, 657, 11, 645, 20145, 318, 973, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 34960, 62, 42946, 2122, 62, 43027, 1600, 2099, 28, 600, 11, 4277, 28, 940, 11, 1037, 2625, 17618, 286, 9803, 366, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 2860, 62, 50188, 62, 39468, 1600, 198, 220, 220, 220, 2099, 28, 30388, 11, 198, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 2860, 9575, 2316, 284, 14204, 357, 12286, 25, 6407, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 2860, 62, 260, 690, 276, 62, 34409, 62, 276, 3212, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 2860, 17687, 13015, 284, 9117, 3047, 900, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 27432, 62, 298, 557, 62, 34960, 1600, 198, 220, 220, 220, 2099, 28, 30388, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 2860, 477, 13015, 287, 262, 4823, 284, 9117, 3047, 900, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 24419, 62, 14781, 448, 62, 4873, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 18, 11, 198, 220, 220, 220, 1037, 2625, 23812, 2965, 4823, 11525, 12083, 4268, 448, 2494, 357, 12286, 25, 657, 13, 18, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22570, 62, 26858, 62, 36733, 1634, 1600, 198, 220, 220, 220, 2099, 28, 30388, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 24243, 1096, 477, 12066, 284, 6632, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 403, 6933, 62, 26858, 62, 36733, 1634, 1600, 198, 220, 220, 220, 2099, 28, 30388, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 24243, 1096, 477, 12066, 351, 262, 976, 4738, 11525, 12083, 357, 12286, 25, 10352, 42501, 198, 8, 198, 198, 2, 30011, 1634, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 538, 5374, 82, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 2167, 11, 198, 220, 220, 220, 1037, 2625, 47033, 1271, 286, 1208, 625, 262, 2104, 3047, 900, 357, 12286, 25, 1160, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 17077, 62, 538, 5374, 82, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 20, 11, 198, 220, 220, 220, 1037, 2625, 17618, 286, 36835, 82, 284, 4043, 878, 12225, 3047, 611, 1614, 900, 2854, 10532, 1600, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 431, 988, 62, 538, 5374, 82, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 17, 11, 198, 220, 220, 220, 1037, 2625, 17618, 286, 36835, 82, 284, 4043, 329, 1306, 1614, 900, 1255, 2198, 357, 12286, 25, 362, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 9688, 62, 538, 5374, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 15, 11, 198, 220, 220, 220, 1037, 2625, 538, 5374, 422, 543, 262, 3047, 815, 923, 357, 12286, 25, 657, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 43501, 62, 7857, 1600, 2099, 28, 600, 11, 4277, 28, 11645, 11, 1037, 2625, 45313, 12, 43501, 2546, 357, 12286, 25, 17759, 16725, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 27432, 62, 43501, 62, 7857, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 11645, 11, 198, 220, 220, 220, 1037, 2625, 45313, 12, 43501, 2546, 1141, 3047, 357, 12286, 25, 17759, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 7959, 62, 43501, 62, 7857, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 2414, 11, 198, 220, 220, 220, 1037, 2625, 45313, 12, 43501, 2546, 1141, 1167, 567, 344, 357, 12286, 25, 5598, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 36153, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 11, 198, 220, 220, 220, 1037, 2625, 36153, 973, 329, 2779, 337, 29559, 3047, 357, 12286, 25, 657, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 40684, 62, 4873, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 18005, 11, 198, 220, 220, 220, 1037, 2625, 40684, 2494, 357, 12286, 25, 657, 13, 18005, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 40684, 62, 4873, 62, 12501, 323, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 16, 13, 15, 11, 198, 220, 220, 220, 1037, 2625, 40684, 2494, 22119, 5766, 329, 262, 7244, 6436, 7509, 357, 12286, 25, 352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 324, 321, 62, 31361, 16, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 24, 11, 198, 220, 220, 220, 1037, 2625, 23159, 25, 22119, 3965, 329, 262, 717, 3356, 8636, 357, 12286, 25, 657, 13, 24, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 324, 321, 62, 31361, 17, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 17032, 11, 198, 220, 220, 220, 1037, 2625, 23159, 25, 22119, 3965, 329, 262, 1218, 8246, 3356, 8636, 357, 12286, 25, 657, 13, 17032, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 9744, 62, 27237, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 49388, 11, 198, 220, 220, 220, 1037, 2625, 27237, 11387, 329, 31312, 45013, 357, 12286, 33028, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 87, 19492, 62, 36733, 1634, 1600, 198, 220, 220, 220, 2099, 28, 30388, 11, 198, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 24243, 1096, 477, 2746, 10007, 1262, 2124, 19492, 37588, 357, 12286, 25, 6407, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 25120, 62, 17143, 7307, 1600, 198, 220, 220, 220, 2099, 28, 30388, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 818, 4288, 351, 4738, 10007, 357, 12286, 25, 10352, 42501, 198, 8, 198, 198, 2, 19020, 7311, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 18242, 62, 5796, 1025, 722, 62, 538, 18217, 261, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 16, 11, 198, 220, 220, 220, 1037, 2625, 538, 18217, 261, 973, 329, 6167, 32746, 722, 1600, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 30342, 62, 14781, 448, 62, 4873, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 18, 11, 198, 220, 220, 220, 1037, 2625, 3103, 85, 36, 7104, 7679, 4268, 448, 2494, 357, 12286, 25, 657, 13, 18, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 27594, 62, 14781, 448, 62, 4873, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 17, 11, 198, 220, 220, 220, 1037, 2625, 3103, 85, 36, 3895, 4268, 448, 2494, 357, 12286, 25, 657, 13, 17, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 24419, 62, 17, 35, 62, 67, 16, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 940, 11, 198, 220, 220, 220, 1037, 2625, 3103, 85, 36, 11525, 12083, 362, 35, 5485, 15793, 352, 357, 12286, 25, 838, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 24419, 62, 17, 35, 62, 67, 17, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 1238, 11, 198, 220, 220, 220, 1037, 2625, 3103, 85, 36, 11525, 12083, 362, 35, 5485, 15793, 362, 357, 12286, 25, 1160, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 448, 62, 354, 8961, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 2624, 11, 198, 220, 220, 220, 1037, 2625, 3103, 85, 36, 1271, 286, 5072, 9619, 286, 262, 3063, 2122, 7679, 357, 12286, 25, 3933, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 33885, 62, 7857, 1600, 2099, 28, 600, 11, 4277, 28, 18, 11, 1037, 2625, 3103, 85, 36, 9720, 2546, 357, 12286, 25, 513, 16725, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 17080, 16680, 62, 5219, 62, 11600, 62, 6978, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 1037, 2625, 15235, 284, 262, 4307, 15205, 3127, 1181, 62, 11600, 357, 12286, 25, 366, 366, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 41887, 62, 5219, 62, 11600, 62, 6978, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 1037, 2625, 15235, 284, 262, 20011, 3109, 3127, 1181, 8633, 357, 12286, 25, 366, 366, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 1102, 303, 62, 5219, 62, 11600, 62, 6978, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 1037, 2625, 15235, 284, 262, 34872, 36, 3127, 1181, 8633, 357, 12286, 25, 366, 366, 42501, 198, 8, 198, 198, 2, 7820, 7311, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 487, 62, 14781, 448, 62, 4873, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 16, 11, 198, 220, 220, 220, 1037, 2625, 18332, 12, 11813, 7679, 4268, 448, 2494, 357, 12286, 25, 657, 13, 16, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 81, 20471, 62, 14781, 448, 62, 4873, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 15, 11, 198, 220, 220, 220, 1037, 2625, 49, 6144, 15965, 864, 14258, 448, 14806, 357, 12286, 25, 657, 13, 15, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 2673, 62, 14781, 448, 62, 4873, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 16, 11, 198, 220, 220, 220, 1037, 2625, 26932, 448, 2494, 329, 15456, 9335, 278, 503, 3725, 4823, 13015, 357, 12286, 25, 657, 13, 16, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 2673, 62, 14781, 448, 62, 21952, 282, 62, 31412, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 3865, 11, 198, 220, 220, 220, 1037, 2625, 43198, 589, 262, 2223, 4268, 448, 2494, 1752, 262, 1614, 900, 2482, 5025, 2620, 357, 12286, 25, 657, 13, 3865, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 2673, 62, 14781, 448, 62, 21952, 282, 62, 3849, 2100, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 12825, 11, 198, 220, 220, 220, 1037, 2625, 15057, 286, 36835, 82, 284, 4043, 878, 24030, 262, 2223, 4268, 448, 2494, 357, 12286, 25, 8576, 13, 7561, 366, 198, 220, 220, 220, 366, 14781, 448, 281, 710, 4272, 318, 407, 973, 618, 262, 1988, 318, 18189, 8576, 2014, 1600, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 31591, 62, 82, 12629, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 940, 11, 198, 220, 220, 220, 1037, 2625, 15057, 286, 4633, 8405, 284, 779, 329, 11525, 12083, 12, 3106, 5050, 1600, 198, 8, 198, 198, 2, 32307, 911, 9269, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22184, 62, 5219, 62, 11600, 62, 6978, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 1037, 2625, 7, 4826, 9741, 8, 10644, 284, 262, 7448, 1109, 3127, 2746, 1600, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22184, 62, 10025, 62, 5219, 62, 11600, 62, 6978, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 1037, 2625, 7, 4826, 9741, 8, 10644, 284, 262, 7448, 3725, 4823, 11525, 67, 654, 973, 416, 257, 1109, 3127, 1600, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 260, 904, 62, 1477, 9269, 62, 400, 10126, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 11, 198, 220, 220, 220, 1037, 2625, 817, 10126, 2005, 572, 286, 6721, 23610, 8198, 357, 12286, 25, 657, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 30300, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 16, 13, 15, 11, 198, 220, 220, 220, 1037, 2625, 25844, 625, 262, 6108, 6721, 357, 12286, 25, 352, 13, 15, 42501, 198, 8, 198, 198, 2, 29681, 955, 24547, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 1169, 8326, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 17, 11, 198, 220, 220, 220, 1037, 2625, 817, 10126, 329, 264, 13309, 1029, 12, 39745, 6419, 357, 12286, 25, 657, 13, 17, 42501, 198, 8, 198, 198, 2, 22299, 13442, 18252, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 2487, 5269, 1600, 2099, 28, 600, 11, 4277, 28, 1238, 11, 1037, 2625, 17618, 286, 4836, 5269, 357, 12286, 25, 1160, 16725, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 2487, 448, 62, 20214, 1600, 2099, 28, 600, 11, 4277, 28, 18, 11, 1037, 2625, 47033, 3108, 4129, 357, 12286, 25, 513, 16725, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 3903, 10394, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 6200, 11, 198, 220, 220, 220, 1037, 2625, 47033, 1271, 286, 28181, 13015, 284, 7301, 379, 1123, 2239, 357, 12286, 25, 5867, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 81, 62, 3903, 10394, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 940, 11, 198, 220, 220, 220, 1037, 2625, 47033, 1271, 286, 3748, 8695, 3858, 14320, 257, 5166, 286, 12066, 357, 12286, 25, 838, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 22510, 62, 6978, 82, 62, 525, 62, 26858, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 18, 11, 198, 220, 220, 220, 1037, 2625, 17618, 286, 13532, 973, 284, 15284, 9312, 2785, 357, 12286, 25, 513, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 31361, 1600, 198, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 4277, 28, 15, 13, 15, 11, 198, 220, 220, 220, 1037, 2625, 298, 28338, 3218, 1634, 3463, 357, 12286, 25, 657, 13, 15, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 28483, 2611, 1600, 2099, 28, 22468, 11, 4277, 28, 16, 11, 1037, 2625, 31462, 2811, 3463, 357, 12286, 25, 352, 16725, 198, 8, 198, 198, 2, 7820, 17701, 1153, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 12093, 4470, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 2625, 77, 14, 64, 1600, 198, 220, 220, 220, 1037, 2625, 12093, 4470, 973, 416, 262, 2450, 31312, 11862, 357, 12286, 25, 299, 14, 64, 42501, 198, 8, 198, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 28826, 1600, 2099, 28, 600, 11, 4277, 28, 20, 3559, 11, 1138, 615, 283, 2625, 50, 1600, 1037, 2625, 25120, 9403, 357, 12286, 25, 642, 3559, 16725, 198, 8, 198, 198, 2, 11140, 4280, 7656, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 40045, 62, 7857, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 3064, 11, 198, 220, 220, 220, 1037, 2625, 7857, 286, 15584, 973, 287, 15584, 2989, 32278, 357, 12286, 25, 1802, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 27932, 62, 9288, 62, 9562, 62, 12480, 2929, 1600, 198, 220, 220, 220, 2099, 28, 30388, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 27932, 3991, 4633, 6096, 287, 262, 1614, 14, 9288, 900, 1141, 39938, 357, 12286, 25, 10352, 13, 770, 6056, 366, 198, 220, 220, 220, 366, 9776, 9177, 329, 34182, 10627, 290, 373, 407, 973, 287, 597, 6306, 2014, 1600, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 41464, 1096, 62, 6978, 82, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 8612, 378, 3108, 5874, 4582, 1141, 32278, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 21928, 62, 40045, 62, 12947, 62, 6978, 82, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 21928, 262, 875, 9043, 3108, 656, 257, 44189, 2393, 357, 12286, 25, 10352, 42501, 198, 8, 198, 198, 2, 8621, 30748, 8170, 6800, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 39344, 62, 1462, 62, 20521, 12083, 62, 16302, 273, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 39344, 2746, 11525, 67, 654, 284, 262, 309, 22854, 11125, 13302, 6048, 278, 4935, 273, 5794, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 39344, 62, 260, 904, 62, 1477, 9269, 62, 17143, 7307, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 39344, 509, 38, 11525, 67, 654, 290, 1109, 3127, 10007, 329, 6721, 23610, 4981, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 5589, 1133, 62, 22584, 62, 1416, 2850, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 58, 27509, 2667, 16018, 60, 24061, 11525, 12083, 1912, 2746, 8198, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 39344, 62, 69, 4715, 88, 62, 37473, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 39344, 262, 6419, 11911, 416, 11525, 12083, 1912, 2446, 357, 12286, 25, 10352, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 39344, 62, 18224, 62, 33964, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 39344, 262, 4049, 2663, 286, 257, 2746, 1600, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 5589, 1133, 62, 8899, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 5589, 1133, 262, 22728, 13475, 39281, 12660, 20731, 357, 12286, 25, 10352, 42501, 198, 8, 198, 198, 2, 15079, 17143, 2357, 11140, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 83, 1726, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 1037, 2625, 22882, 1958, 262, 8718, 17143, 7307, 284, 14009, 1141, 262, 2989, 11, 11266, 416, 725, 292, 357, 12286, 25, 6045, 42501, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 366, 438, 25928, 62, 12947, 1600, 2223, 2625, 8095, 62, 7942, 1600, 1037, 2625, 34, 12920, 10706, 2989, 286, 8718, 17143, 7307, 1, 198, 8, 198, 198, 12286, 62, 22046, 11, 62, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 3419, 198 ]
2.75606
5,239
from pymongo import MongoClient
[ 6738, 279, 4948, 25162, 1330, 42591, 11792 ]
4.428571
7
import pytest from django.core.management import call_command from ....models import ( Plan, PlanSlug, Product, ProductCategory, ProductSlug, Step, Version, ) @pytest.mark.django_db
[ 11748, 12972, 9288, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 1330, 869, 62, 21812, 198, 198, 6738, 19424, 27530, 1330, 357, 198, 220, 220, 220, 5224, 11, 198, 220, 220, 220, 5224, 11122, 1018, 11, 198, 220, 220, 220, 8721, 11, 198, 220, 220, 220, 8721, 27313, 11, 198, 220, 220, 220, 8721, 11122, 1018, 11, 198, 220, 220, 220, 5012, 11, 198, 220, 220, 220, 10628, 11, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 198 ]
2.535714
84
s = "11000010001" n = 11 print(findLength(s, n))
[ 198, 198, 82, 796, 366, 1157, 2388, 3064, 486, 1, 198, 77, 796, 1367, 198, 4798, 7, 19796, 24539, 7, 82, 11, 299, 4008, 198 ]
2.04
25
# (doesn't seem to be any official Enum support in Circuitpython) Schedule = 1 ScoreBoard = 2
[ 2, 357, 45084, 470, 1283, 284, 307, 597, 1743, 2039, 388, 1104, 287, 13588, 29412, 8, 198, 198, 27054, 5950, 796, 352, 198, 26595, 29828, 796, 362 ]
3.481481
27
import m3u8 from typing import Tuple # Rate variant stream by resolution, average bandwidth, and bandwidth. # Select the best variant stream (best effort). # # Assumption: m3u8 object has one or more variants.
[ 11748, 285, 18, 84, 23, 198, 198, 6738, 19720, 1330, 309, 29291, 628, 198, 2, 14806, 15304, 4269, 416, 6323, 11, 2811, 19484, 11, 290, 19484, 13, 628, 198, 2, 9683, 262, 1266, 15304, 4269, 357, 13466, 3626, 737, 198, 2, 198, 2, 2195, 24098, 25, 285, 18, 84, 23, 2134, 468, 530, 393, 517, 17670, 13, 198 ]
3.706897
58
from big_ol_pile_of_manim_imports import *
[ 6738, 1263, 62, 349, 62, 79, 576, 62, 1659, 62, 805, 320, 62, 320, 3742, 1330, 1635, 628, 198 ]
2.368421
19
import os import logging basedir = os.path.abspath(os.path.dirname(__file__))
[ 11748, 28686, 198, 11748, 18931, 198, 198, 3106, 343, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 628, 628 ]
2.645161
31
# -*- coding: utf-8 -*- """ validate.py - Trivial data validater Created on December 24, 2019 @author: c0redumb """ # To make print working for Python2/3 from __future__ import print_function def validate(ticker, data, begindate='1920-01-01', verbose=0): ''' This function perform a query and extract the matching cookie and crumb. ''' new_data = [] last_date = None for line in data: # Filename lines, usually the first line # Zero length lines, usually the last line if len(line) == 0 or line.startswith('Date'): new_data.append(line) continue # Extract all the fields try: field = line.split(',') d = field[0] o = float(field[1]) h = float(field[2]) l = float(field[3]) c = float(field[4]) adj_c = float(field[5]) except: #print("Failed to parse:", line) continue # This is a wierd quirk we need to check invalid_date = False if last_date is None: if d < begindate: invalid_date = True last_date = d else: if d <= last_date: invalid_date = True else: last_date = d if invalid_date: if verbose > 0: print("!!! {}: Invalid date {} in data".format( ticker, field[0])) continue # Verify that the open/close is within the high/low range mid = (h + l) / 2 corrected = False if o > h * 1.0001 or o < l * 0.9999: o = mid corrected = True if verbose > 0: print("!!! {}: Open is out of range on {}".format( ticker, field[0])) if c > h * 1.0001 or c < l * 0.9999: if c != 0.0: adj_c *= mid / c else: adj_c = mid c = mid corrected = True if verbose > 0: print("!!! {}: Close is out of range on {}".format( ticker, field[0])) if corrected: if verbose > 5: print(line) line = "{},{},{},{},{},{},{}".format( field[0], o, h, l, c, adj_c, field[6]) if verbose > 5: print(line) new_data.append(line) return new_data
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 12102, 378, 13, 9078, 532, 7563, 85, 498, 1366, 4938, 729, 198, 41972, 319, 3426, 1987, 11, 13130, 198, 31, 9800, 25, 269, 15, 445, 2178, 198, 37811, 198, 198, 2, 1675, 787, 3601, 1762, 329, 11361, 17, 14, 18, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 628, 198, 4299, 26571, 7, 83, 15799, 11, 1366, 11, 4123, 521, 378, 11639, 40454, 12, 486, 12, 486, 3256, 15942, 577, 28, 15, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 770, 2163, 1620, 257, 12405, 290, 7925, 262, 12336, 19751, 290, 1067, 2178, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 649, 62, 7890, 796, 17635, 198, 220, 220, 220, 938, 62, 4475, 796, 6045, 198, 220, 220, 220, 329, 1627, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7066, 12453, 3951, 11, 3221, 262, 717, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12169, 4129, 3951, 11, 3221, 262, 938, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1370, 8, 6624, 657, 393, 1627, 13, 9688, 2032, 342, 10786, 10430, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7890, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29677, 477, 262, 7032, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 796, 1627, 13, 35312, 7, 3256, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 2214, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 796, 12178, 7, 3245, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 12178, 7, 3245, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 796, 12178, 7, 3245, 58, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 12178, 7, 3245, 58, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 66, 796, 12178, 7, 3245, 58, 20, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 37, 6255, 284, 21136, 25, 1600, 1627, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 257, 266, 959, 67, 627, 14232, 356, 761, 284, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 12515, 62, 4475, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 938, 62, 4475, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 1279, 4123, 521, 378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12515, 62, 4475, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 4475, 796, 288, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 19841, 938, 62, 4475, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12515, 62, 4475, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 4475, 796, 288, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12515, 62, 4475, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10185, 23884, 25, 17665, 3128, 23884, 287, 1366, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 263, 11, 2214, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 49899, 326, 262, 1280, 14, 19836, 318, 1626, 262, 1029, 14, 9319, 2837, 198, 220, 220, 220, 220, 220, 220, 220, 3095, 796, 357, 71, 1343, 300, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 19267, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 267, 1875, 289, 1635, 352, 13, 18005, 393, 267, 1279, 300, 1635, 657, 13, 24214, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 796, 3095, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19267, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10185, 23884, 25, 4946, 318, 503, 286, 2837, 319, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 263, 11, 2214, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 269, 1875, 289, 1635, 352, 13, 18005, 393, 269, 1279, 300, 1635, 657, 13, 24214, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 14512, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 66, 1635, 28, 3095, 1220, 269, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 66, 796, 3095, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 3095, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19267, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10185, 23884, 25, 13872, 318, 503, 286, 2837, 319, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 263, 11, 2214, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 19267, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 1875, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 45144, 5512, 90, 5512, 90, 5512, 90, 5512, 90, 5512, 90, 5512, 90, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 58, 15, 4357, 267, 11, 289, 11, 300, 11, 269, 11, 9224, 62, 66, 11, 2214, 58, 21, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 1875, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7890, 13, 33295, 7, 1370, 8, 628, 220, 220, 220, 1441, 649, 62, 7890, 198 ]
1.869202
1,315