content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import sys from django.apps import AppConfig from django.db.models.signals import post_save
[ 11748, 25064, 198, 198, 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 12683, 874, 1330, 1281, 62, 21928, 628 ]
3.357143
28
from dataclasses import dataclass from typing import overload from .words import Word @overload @overload @dataclass @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass(repr=False) @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 31754, 198, 6738, 764, 10879, 1330, 9678, 198, 198, 31, 2502, 2220, 198, 31, 2502, 2220, 628, 628, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 628, 198, 31, 19608, 330, 31172, 198 ]
2.356322
174
# # PySNMP MIB module SYMME1T1 (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/neermitt/Dev/kusanagi/mibs.snmplabs.com/asn1/SYMME1T1 # Produced by pysmi-0.3.4 at Tue Jul 30 11:34:59 2019 # On host NEERMITT-M-J0NV platform Darwin version 18.6.0 by user neermitt # Using Python version 3.7.4 (default, Jul 9 2019, 18:13:23) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint") entPhysicalIndex, = mibBuilder.importSymbols("ENTITY-MIB", "entPhysicalIndex") ifNumber, ifIndex = mibBuilder.importSymbols("IF-MIB", "ifNumber", "ifIndex") NotificationGroup, ObjectGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ObjectGroup", "ModuleCompliance") NotificationType, Unsigned32, Bits, iso, Counter32, MibIdentifier, ModuleIdentity, TimeTicks, IpAddress, Integer32, Gauge32, ObjectIdentity, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "NotificationType", "Unsigned32", "Bits", "iso", "Counter32", "MibIdentifier", "ModuleIdentity", "TimeTicks", "IpAddress", "Integer32", "Gauge32", "ObjectIdentity", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") EnableValue, symmPhysicalSignal, ONVALUETYPE = mibBuilder.importSymbols("SYMM-COMMON-SMI", "EnableValue", "symmPhysicalSignal", "ONVALUETYPE") symmE1T1 = ModuleIdentity((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2)) symmE1T1.setRevisions(('2011-03-18 17:06',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: symmE1T1.setRevisionsDescriptions(('Revision 1.0',)) if mibBuilder.loadTexts: symmE1T1.setLastUpdated('201103181705Z') if mibBuilder.loadTexts: symmE1T1.setOrganization('Symmetricom.') if mibBuilder.loadTexts: symmE1T1.setContactInfo('Symmetricom Technical Support 1-888-367-7966 toll free USA 1-408-428-7907 worldwide [email protected]') if mibBuilder.loadTexts: symmE1T1.setDescription('This is the Symmetricom Common MIB for the configuration and status monitoring of E1/T1 ports in the system. It is one of the MIBs under the symmPhysicalSignal node. This MIB is organized into two main nodes: input and output. Each node is further has two tables, one for status and one for configuration.') e1T1input = MibIdentifier((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1)) inputE1T1Status = MibIdentifier((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 1)) e1T1InputStatusTable = MibTable((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 1, 1), ) if mibBuilder.loadTexts: e1T1InputStatusTable.setStatus('current') if mibBuilder.loadTexts: e1T1InputStatusTable.setDescription('This table contains status information for each E1/T1 input port.') e1T1InputStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "SYMME1T1", "e1T1InputStatusIndex")) if mibBuilder.loadTexts: e1T1InputStatusEntry.setStatus('current') if mibBuilder.loadTexts: e1T1InputStatusEntry.setDescription('An entry of the e1T1InputStatusTable. Table index is ifIndex (port/interface index). Each entry has three parameters for the specified E1/T1 input port: 1. Port enable status (enable or disable) 2. Current value of the incoming SSM 3. Port status ') e1T1InputStatusIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 1000))) if mibBuilder.loadTexts: e1T1InputStatusIndex.setStatus('current') if mibBuilder.loadTexts: e1T1InputStatusIndex.setDescription('Local index of the E1/T1 input status table.') e1T1InputPQLCurValueV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 1, 1, 1, 3), TP5000PQLVALUE()).setMaxAccess("readonly") if mibBuilder.loadTexts: e1T1InputPQLCurValueV1.setStatus('current') if mibBuilder.loadTexts: e1T1InputPQLCurValueV1.setDescription('The current PQL value of the incoming SSM on this input port.') e1T1InputPortStatusV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 1, 1, 1, 4), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: e1T1InputPortStatusV1.setStatus('current') if mibBuilder.loadTexts: e1T1InputPortStatusV1.setDescription('The port status of the specified input E1/T1 input port. Possible values are On (1) and Off (2). When the input port state is enabled, port status becomes on. When input port state is disabled, input port status is off.') e1T1InputConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2)) e1T1InputConfigTable = MibTable((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1), ) if mibBuilder.loadTexts: e1T1InputConfigTable.setStatus('current') if mibBuilder.loadTexts: e1T1InputConfigTable.setDescription('Configuration Table for E1/T1 input ports') e1T1InputConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "SYMME1T1", "e1T1InputConfigIndex")) if mibBuilder.loadTexts: e1T1InputConfigEntry.setStatus('current') if mibBuilder.loadTexts: e1T1InputConfigEntry.setDescription('An entry of the E1/T1 input configuration table. Table index is ifIndex (port/interface). Each entry has the following configuration parameters for the selected input port: 1. Frame type 2. CRC enable state 3. SSM enable state 4. SSM bit position 5. Default PQL value that can be used to override the input SSM value 6. Zero suppression state ') e1T1InputConfigIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 1000))) if mibBuilder.loadTexts: e1T1InputConfigIndex.setStatus('current') if mibBuilder.loadTexts: e1T1InputConfigIndex.setDescription('Local index of the E1/T1 input configuration table.') e1T1InputFrameTypeV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1, 1, 2), INPUTE1T1FRAMETYPE()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1InputFrameTypeV1.setStatus('current') if mibBuilder.loadTexts: e1T1InputFrameTypeV1.setDescription('E1 or T1 input frame type. Supported frame types include: 1. Freq1544khz (1) 2. Freq2048khz (2) 3. CCS (3) 4. CAS (4) 5. D4 (5) 6. ESF (6) Default frame type is 2048 kHz ') e1T1InputCRCStateV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1, 1, 3), EnableValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1InputCRCStateV1.setStatus('current') if mibBuilder.loadTexts: e1T1InputCRCStateV1.setDescription('CRC enable state can be Enable (1) or Disable (2). Disabling the CRC means the CRC in the SSM is not used.') e1T1InputSSMStateV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1, 1, 4), EnableValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1InputSSMStateV1.setStatus('current') if mibBuilder.loadTexts: e1T1InputSSMStateV1.setDescription("SSM enable state. It can be Enable (1) or Disable (2). Disabling the SSM means the incoming SSM is not used, and the forced (default) PQL value for this input port will be used during the reference selection. SSM is supported for only three frame types: EFS, CAS with CRC4, and CCA with CRC4. SSM should not be enabled for other frame types. If SSM is enabled for an input port, but the frame type does not support SSM or is not sending a valid SSM, then this input will be disqualified and the input PQL will be set to 'invalid.' The system will go into holdover no other qualified reference is available. ") e1T1InputSSMBitV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(4, 8))).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1InputSSMBitV1.setStatus('current') if mibBuilder.loadTexts: e1T1InputSSMBitV1.setDescription('SSM Bit position. The value range is 4 to 8. This parameter is only used for frame types ESF, CCS, or CAS.') e1T1InputPQLValueV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1, 1, 6), TP5000PQLVALUE()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1InputPQLValueV1.setStatus('current') if mibBuilder.loadTexts: e1T1InputPQLValueV1.setDescription('The user assigned PQL value for the specified input. This PQL value is used when the SSM state is disabled. The range for the user assigned PQL value is 1 to 9. ') eT1InputZeroSupprV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 1, 2, 1, 1, 7), ONVALUETYPE()).setMaxAccess("readwrite") if mibBuilder.loadTexts: eT1InputZeroSupprV1.setStatus('current') if mibBuilder.loadTexts: eT1InputZeroSupprV1.setDescription('The number indicates whether zero suppression (ZS) on the input port is enabled or disabled. Valid values are On (1) or Off (2). ') e1T1Output = MibIdentifier((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2)) e1T1OutputStatus = MibIdentifier((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 1)) e1T1OutputStatusTable = MibTable((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 1, 1), ) if mibBuilder.loadTexts: e1T1OutputStatusTable.setStatus('current') if mibBuilder.loadTexts: e1T1OutputStatusTable.setDescription('This table contains status information for each E1/T1 output port.') e1T1OutputStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "SYMME1T1", "e1T1OutputStatusIndex")) if mibBuilder.loadTexts: e1T1OutputStatusEntry.setStatus('current') if mibBuilder.loadTexts: e1T1OutputStatusEntry.setDescription('An entry of the e1T1OutputStatusTable. Table index is ifIndex (port/interface index). Each entry has two parameters for the specified E1/T1 input port: 1. Port status 2. Outgoing SSM value ') e1T1OutputStatusIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 1000))) if mibBuilder.loadTexts: e1T1OutputStatusIndex.setStatus('current') if mibBuilder.loadTexts: e1T1OutputStatusIndex.setDescription('Local index of the E1/T1 output status table.') e1T1OutputPortStatusV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 1, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: e1T1OutputPortStatusV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputPortStatusV1.setDescription("The port status of the specified E1/T1 output port. Possible values are On (1) and Off (2). 'On' means there is signal on the port. For E1/T1 output port it means the system is in normal tracking mode. 'Off' means there is no signal on the port. For E1/T1 output port it means the output is squelched during some clock states.") e1T1OutputPQLValueV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 1, 1, 1, 3), TP5000PQLVALUE()).setMaxAccess("readonly") if mibBuilder.loadTexts: e1T1OutputPQLValueV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputPQLValueV1.setDescription('The PQL value for the specified E1/T1 output port.') e1T1OutputConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2)) e1T1OutputConfigTable = MibTable((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1), ) if mibBuilder.loadTexts: e1T1OutputConfigTable.setStatus('current') if mibBuilder.loadTexts: e1T1OutputConfigTable.setDescription('This table contains configuration information for each E1/T1 output port.') e1T1OutputConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "SYMME1T1", "e1T1OutputConfigIndex")) if mibBuilder.loadTexts: e1T1OutputConfigEntry.setStatus('current') if mibBuilder.loadTexts: e1T1OutputConfigEntry.setDescription('An entry of the e1T1OutputConfigTable. Table index is ifIndex (port/interface index). Each entry has the configuration parameters for the specified E1/T1 output port: 1. Port enable state 2. Frame type 3. CRC enable state 4. SSM enable state 5. SSM bit position 6. Zero suppression on/off state 7. Output port cable length ') e1T1OutputConfigIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 1000))) if mibBuilder.loadTexts: e1T1OutputConfigIndex.setStatus('current') if mibBuilder.loadTexts: e1T1OutputConfigIndex.setDescription('Local index of the E1/T1 output configuration table.') e1T1OutputStateV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1, 2), PORTSTATETYPE()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1OutputStateV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputStateV1.setDescription('E1/T1 output port enable state. Its value can be Enable (1) or Disable (2). Disabling an output port means no output is generated for that port.') e1T1OutputFrameTypeV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1, 3), OUTPUTE1T1FRAMETYPE()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1OutputFrameTypeV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputFrameTypeV1.setDescription('E1 or T1 output frame type. Supported frame types include: 1. Freq1544khz (1) 2. Freq2048khz (2) 3. CCS (3) 4. CAS (4) 5. D4 (5) 6. ESF (6) Default frame type is 2048 kHz. ') e1T1OutputCRCStateV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1, 4), EnableValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1OutputCRCStateV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputCRCStateV1.setDescription('CRC enable state can be Enable (1) or Disable (2). Disabling the CRC means that no CRC is generated for the SSM.') e1T1OutputSSMStateV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1, 5), EnableValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1OutputSSMStateV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputSSMStateV1.setDescription('SSM enable state. It can be Enable (1) or Disable (2). Disabling the output SSM means that no SSM is generated for the specified output port.') e1T1OutputSSMBitV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(4, 8))).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1OutputSSMBitV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputSSMBitV1.setDescription('SSM Bit position. The value range is 4 to 8. This parameter is only used for frame types ESF, CCS, or CAS.') e1T1OutputZeroSupprV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1, 7), ONVALUETYPE()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1OutputZeroSupprV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputZeroSupprV1.setDescription('The number indicates whether zero suppression (ZS) on the output port is enabled or disabled. Valid values are On (1) or Off (2). ') e1T1OutputLengthV1 = MibTableColumn((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 2, 2, 1, 1, 8), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: e1T1OutputLengthV1.setStatus('current') if mibBuilder.loadTexts: e1T1OutputLengthV1.setDescription('Output cable length. ') e1T1Conformance = ObjectIdentity((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 3)) if mibBuilder.loadTexts: e1T1Conformance.setStatus('current') if mibBuilder.loadTexts: e1T1Conformance.setDescription('This node contains conformance statement for the symmE1T1 MIB module. ') e1T1Compliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 3, 1)) e1T1BasicCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 3, 1, 1)).setObjects(("SYMME1T1", "e1T1InputStatusGroup"), ("SYMME1T1", "e11T1InputConfigGroup"), ("SYMME1T1", "e11T1OutputStatusGroup"), ("SYMME1T1", "e11T1OutputConfigGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): e1T1BasicCompliance = e1T1BasicCompliance.setStatus('current') if mibBuilder.loadTexts: e1T1BasicCompliance.setDescription('The compliance statement for SNMP entities which have E1/T1 input/output.') e1T1UocGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 3, 2)) e1T1InputStatusGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 3, 2, 1)).setObjects(("SYMME1T1", "e1T1InputPortStatusV1"), ("SYMME1T1", "e1T1InputPQLCurValueV1")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): e1T1InputStatusGroup = e1T1InputStatusGroup.setStatus('current') if mibBuilder.loadTexts: e1T1InputStatusGroup.setDescription('A collection of objects providing information applicable to E1/T1 input status group.') e11T1InputConfigGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 3, 2, 2)).setObjects(("SYMME1T1", "e1T1InputFrameTypeV1"), ("SYMME1T1", "e1T1InputCRCStateV1"), ("SYMME1T1", "e1T1InputSSMStateV1"), ("SYMME1T1", "e1T1InputSSMBitV1"), ("SYMME1T1", "e1T1InputPQLValueV1"), ("SYMME1T1", "eT1InputZeroSupprV1")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): e11T1InputConfigGroup = e11T1InputConfigGroup.setStatus('current') if mibBuilder.loadTexts: e11T1InputConfigGroup.setDescription('A collection of objects providing information applicable to E1/T1 input configuration group.') e11T1OutputStatusGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 3, 2, 3)).setObjects(("SYMME1T1", "e1T1OutputPortStatusV1"), ("SYMME1T1", "e1T1OutputPQLValueV1")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): e11T1OutputStatusGroup = e11T1OutputStatusGroup.setStatus('current') if mibBuilder.loadTexts: e11T1OutputStatusGroup.setDescription('A collection of objects providing information applicable to E1/T1 output status group.') e11T1OutputConfigGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9070, 1, 2, 5, 2, 2, 3, 2, 4)).setObjects(("SYMME1T1", "e1T1OutputStateV1"), ("SYMME1T1", "e1T1OutputFrameTypeV1"), ("SYMME1T1", "e1T1OutputCRCStateV1"), ("SYMME1T1", "e1T1OutputSSMStateV1"), ("SYMME1T1", "e1T1OutputSSMBitV1"), ("SYMME1T1", "e1T1OutputLengthV1"), ("SYMME1T1", "e1T1OutputZeroSupprV1")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): e11T1OutputConfigGroup = e11T1OutputConfigGroup.setStatus('current') if mibBuilder.loadTexts: e11T1OutputConfigGroup.setDescription('A collection of objects providing information applicable to E1/T1 output configuration group.') mibBuilder.exportSymbols("SYMME1T1", TLocalTimeOffset=TLocalTimeOffset, TLatAndLon=TLatAndLon, e1T1InputCRCStateV1=e1T1InputCRCStateV1, e1T1InputFrameTypeV1=e1T1InputFrameTypeV1, e11T1InputConfigGroup=e11T1InputConfigGroup, e1T1InputConfigTable=e1T1InputConfigTable, e11T1OutputConfigGroup=e11T1OutputConfigGroup, e1T1InputStatusGroup=e1T1InputStatusGroup, e1T1OutputStatusEntry=e1T1OutputStatusEntry, OUTPUTE1T1FRAMETYPE=OUTPUTE1T1FRAMETYPE, e1T1OutputLengthV1=e1T1OutputLengthV1, e1T1InputSSMStateV1=e1T1InputSSMStateV1, e1T1BasicCompliance=e1T1BasicCompliance, e1T1OutputStatusIndex=e1T1OutputStatusIndex, e1T1OutputStateV1=e1T1OutputStateV1, e1T1InputPortStatusV1=e1T1InputPortStatusV1, e1T1Output=e1T1Output, e1T1UocGroups=e1T1UocGroups, e1T1InputPQLValueV1=e1T1InputPQLValueV1, TSsm=TSsm, e1T1OutputStatus=e1T1OutputStatus, e11T1OutputStatusGroup=e11T1OutputStatusGroup, e1T1InputStatusIndex=e1T1InputStatusIndex, e1T1OutputFrameTypeV1=e1T1OutputFrameTypeV1, e1T1OutputStatusTable=e1T1OutputStatusTable, PYSNMP_MODULE_ID=symmE1T1, PORTSTATETYPE=PORTSTATETYPE, e1T1OutputSSMStateV1=e1T1OutputSSMStateV1, e1T1OutputPortStatusV1=e1T1OutputPortStatusV1, symmE1T1=symmE1T1, e1T1InputConfigEntry=e1T1InputConfigEntry, e1T1input=e1T1input, e1T1OutputPQLValueV1=e1T1OutputPQLValueV1, e1T1Compliances=e1T1Compliances, TAntHeight=TAntHeight, DateAndTime=DateAndTime, e1T1InputStatusEntry=e1T1InputStatusEntry, INPUTE1T1FRAMETYPE=INPUTE1T1FRAMETYPE, TP5000PQLVALUE=TP5000PQLVALUE, e1T1InputPQLCurValueV1=e1T1InputPQLCurValueV1, e1T1InputStatusTable=e1T1InputStatusTable, e1T1OutputConfigEntry=e1T1OutputConfigEntry, e1T1InputSSMBitV1=e1T1InputSSMBitV1, inputE1T1Status=inputE1T1Status, e1T1InputConfigIndex=e1T1InputConfigIndex, e1T1OutputCRCStateV1=e1T1OutputCRCStateV1, e1T1OutputConfigTable=e1T1OutputConfigTable, e1T1OutputZeroSupprV1=e1T1OutputZeroSupprV1, e1T1OutputConfig=e1T1OutputConfig, e1T1OutputConfigIndex=e1T1OutputConfigIndex, eT1InputZeroSupprV1=eT1InputZeroSupprV1, e1T1OutputSSMBitV1=e1T1OutputSSMBitV1, e1T1InputConfig=e1T1InputConfig, e1T1Conformance=e1T1Conformance)
[ 2, 198, 2, 9485, 15571, 7378, 337, 9865, 8265, 19704, 44, 11682, 16, 51, 16, 357, 4023, 1378, 16184, 76, 489, 8937, 13, 785, 14, 79, 893, 11632, 8, 198, 2, 7054, 45, 13, 16, 2723, 2393, 1378, 14, 14490, 14, 710, 7780, 715, 14, 13603, 14, 45614, 272, 18013, 14, 76, 571, 82, 13, 16184, 76, 489, 8937, 13, 785, 14, 292, 77, 16, 14, 23060, 44, 11682, 16, 51, 16, 198, 2, 21522, 771, 416, 279, 893, 11632, 12, 15, 13, 18, 13, 19, 379, 30030, 5979, 1542, 1367, 25, 2682, 25, 3270, 13130, 198, 2, 1550, 2583, 10635, 1137, 44, 22470, 12, 44, 12, 41, 15, 27159, 3859, 21450, 2196, 1248, 13, 21, 13, 15, 416, 2836, 497, 7780, 715, 198, 2, 8554, 11361, 2196, 513, 13, 22, 13, 19, 357, 12286, 11, 5979, 220, 860, 13130, 11, 1248, 25, 1485, 25, 1954, 8, 220, 198, 2, 198, 10267, 33234, 7483, 11, 34142, 11, 2556, 316, 10100, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 1600, 366, 10267, 33234, 7483, 1600, 366, 46541, 1600, 366, 12349, 316, 10100, 4943, 198, 45, 2434, 40161, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 1677, 5883, 1137, 6234, 1600, 366, 45, 2434, 40161, 4943, 198, 3103, 2536, 6003, 38176, 11, 11052, 10699, 3103, 2536, 2913, 11, 1482, 2536, 6003, 9492, 5458, 11, 11052, 17257, 3103, 2536, 2913, 11, 14206, 11395, 3103, 2536, 2913, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 2200, 20032, 12529, 1600, 366, 3103, 2536, 6003, 38176, 1600, 366, 11395, 10699, 3103, 2536, 2913, 1600, 366, 3103, 2536, 6003, 9492, 5458, 1600, 366, 11395, 17257, 3103, 2536, 2913, 1600, 366, 28008, 11395, 3103, 2536, 2913, 4943, 198, 298, 31611, 15732, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 3525, 9050, 12, 8895, 33, 1600, 366, 298, 31611, 15732, 4943, 198, 361, 15057, 11, 611, 15732, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 5064, 12, 8895, 33, 1600, 366, 361, 15057, 1600, 366, 361, 15732, 4943, 198, 3673, 2649, 13247, 11, 9515, 13247, 11, 19937, 38143, 3610, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 10943, 37, 1600, 366, 3673, 2649, 13247, 1600, 366, 10267, 13247, 1600, 366, 26796, 38143, 3610, 4943, 198, 3673, 2649, 6030, 11, 791, 32696, 2624, 11, 44733, 11, 47279, 11, 15034, 2624, 11, 337, 571, 33234, 7483, 11, 19937, 7390, 26858, 11, 3862, 51, 3378, 11, 314, 79, 20231, 11, 34142, 2624, 11, 35094, 469, 2624, 11, 9515, 7390, 26858, 11, 15034, 2414, 11, 337, 571, 3351, 282, 283, 11, 337, 571, 10962, 11, 337, 571, 10962, 25166, 11, 337, 571, 10962, 39470, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 50, 8895, 1600, 366, 3673, 2649, 6030, 1600, 366, 3118, 32696, 2624, 1600, 366, 33, 896, 1600, 366, 26786, 1600, 366, 31694, 2624, 1600, 366, 44, 571, 33234, 7483, 1600, 366, 26796, 7390, 26858, 1600, 366, 7575, 51, 3378, 1600, 366, 40, 79, 20231, 1600, 366, 46541, 2624, 1600, 366, 38, 559, 469, 2624, 1600, 366, 10267, 7390, 26858, 1600, 366, 31694, 2414, 1600, 366, 44, 571, 3351, 282, 283, 1600, 366, 44, 571, 10962, 1600, 366, 44, 571, 10962, 25166, 1600, 366, 44, 571, 10962, 39470, 4943, 198, 8206, 723, 3103, 4018, 11, 16531, 10100, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 4825, 1600, 366, 8206, 723, 3103, 4018, 1600, 366, 23114, 10100, 4943, 198, 36695, 11395, 11, 23606, 31611, 11712, 282, 11, 6177, 23428, 52, 2767, 56, 11401, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 23060, 12038, 12, 9858, 27857, 12, 50, 8895, 1600, 366, 36695, 11395, 1600, 366, 1837, 3020, 31611, 11712, 282, 1600, 366, 1340, 23428, 52, 2767, 56, 11401, 4943, 198, 1837, 3020, 36, 16, 51, 16, 796, 19937, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 4008, 198, 1837, 3020, 36, 16, 51, 16, 13, 2617, 18009, 3279, 7, 10786, 9804, 12, 3070, 12, 1507, 1596, 25, 3312, 3256, 4008, 198, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 611, 285, 571, 32875, 13, 2220, 8206, 82, 25, 23606, 36, 16, 51, 16, 13, 2617, 18009, 3279, 24564, 1968, 507, 7, 10786, 18009, 1166, 352, 13, 15, 3256, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 23606, 36, 16, 51, 16, 13, 2617, 5956, 17354, 10786, 1264, 15197, 1507, 1558, 2713, 57, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 23606, 36, 16, 51, 16, 13, 2617, 26121, 1634, 10786, 13940, 3020, 19482, 296, 2637, 8, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 23606, 36, 16, 51, 16, 13, 2617, 17829, 12360, 10786, 13940, 3020, 19482, 296, 20671, 7929, 352, 12, 28011, 12, 27824, 12, 3720, 2791, 13592, 1479, 4916, 352, 12, 26200, 12, 40173, 12, 3720, 2998, 8688, 7929, 31, 1837, 3020, 19482, 296, 13, 785, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 23606, 36, 16, 51, 16, 13, 2617, 11828, 10786, 1212, 318, 262, 1632, 3020, 19482, 296, 8070, 337, 9865, 329, 262, 8398, 290, 3722, 9904, 286, 412, 16, 14, 51, 16, 14090, 287, 262, 1080, 13, 632, 318, 530, 286, 262, 337, 9865, 82, 739, 262, 23606, 31611, 11712, 282, 10139, 13, 770, 337, 9865, 318, 8389, 656, 734, 1388, 13760, 25, 5128, 290, 5072, 13, 5501, 10139, 318, 2252, 468, 734, 8893, 11, 530, 329, 3722, 290, 530, 329, 8398, 2637, 8, 198, 198, 68, 16, 51, 16, 15414, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 4008, 198, 15414, 36, 16, 51, 16, 19580, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 352, 4008, 198, 68, 16, 51, 16, 20560, 19580, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19580, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19580, 10962, 13, 2617, 11828, 10786, 1212, 3084, 4909, 3722, 1321, 329, 1123, 412, 16, 14, 51, 16, 5128, 2493, 2637, 8, 198, 68, 16, 51, 16, 20560, 19580, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 5064, 12, 8895, 33, 1600, 366, 361, 15732, 12340, 357, 15, 11, 366, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 19580, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19580, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19580, 30150, 13, 2617, 11828, 10786, 2025, 5726, 286, 262, 304, 16, 51, 16, 20560, 19580, 10962, 13, 8655, 6376, 318, 611, 15732, 357, 634, 14, 39994, 6376, 737, 5501, 5726, 468, 1115, 10007, 329, 262, 7368, 412, 16, 14, 51, 16, 5128, 2493, 25, 352, 13, 4347, 7139, 3722, 357, 21633, 393, 15560, 8, 362, 13, 9236, 1988, 286, 262, 15619, 6723, 44, 513, 13, 4347, 3722, 705, 8, 198, 68, 16, 51, 16, 20560, 19580, 15732, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 17257, 3103, 2536, 2913, 7, 16, 11, 8576, 22305, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19580, 15732, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19580, 15732, 13, 2617, 11828, 10786, 14565, 6376, 286, 262, 412, 16, 14, 51, 16, 5128, 3722, 3084, 2637, 8, 198, 68, 16, 51, 16, 20560, 47, 48, 5639, 333, 11395, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 11, 352, 11, 513, 828, 24525, 27641, 47, 9711, 39488, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 47, 48, 5639, 333, 11395, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 47, 48, 5639, 333, 11395, 53, 16, 13, 2617, 11828, 10786, 464, 1459, 350, 9711, 1988, 286, 262, 15619, 6723, 44, 319, 428, 5128, 2493, 2637, 8, 198, 68, 16, 51, 16, 20560, 13924, 19580, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 11, 352, 11, 604, 828, 16531, 10100, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 13924, 19580, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 13924, 19580, 53, 16, 13, 2617, 11828, 10786, 464, 2493, 3722, 286, 262, 7368, 5128, 412, 16, 14, 51, 16, 5128, 2493, 13, 33671, 3815, 389, 1550, 357, 16, 8, 290, 3242, 357, 17, 737, 1649, 262, 5128, 2493, 1181, 318, 9343, 11, 2493, 3722, 4329, 319, 13, 1649, 5128, 2493, 1181, 318, 10058, 11, 5128, 2493, 3722, 318, 572, 2637, 8, 198, 68, 16, 51, 16, 20560, 16934, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 4008, 198, 68, 16, 51, 16, 20560, 16934, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 16934, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 16934, 10962, 13, 2617, 11828, 10786, 38149, 8655, 329, 412, 16, 14, 51, 16, 5128, 14090, 11537, 198, 68, 16, 51, 16, 20560, 16934, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 5064, 12, 8895, 33, 1600, 366, 361, 15732, 12340, 357, 15, 11, 366, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 16934, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 16934, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 16934, 30150, 13, 2617, 11828, 10786, 2025, 5726, 286, 262, 412, 16, 14, 51, 16, 5128, 8398, 3084, 13, 8655, 6376, 318, 611, 15732, 357, 634, 14, 39994, 737, 5501, 5726, 468, 262, 1708, 8398, 10007, 329, 262, 6163, 5128, 2493, 25, 352, 13, 25184, 2099, 362, 13, 45623, 7139, 1181, 513, 13, 6723, 44, 7139, 1181, 604, 13, 6723, 44, 1643, 2292, 642, 13, 15161, 350, 9711, 1988, 326, 460, 307, 973, 284, 20957, 262, 5128, 6723, 44, 1988, 718, 13, 12169, 22711, 1181, 705, 8, 198, 68, 16, 51, 16, 20560, 16934, 15732, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 11, 352, 11, 352, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 17257, 3103, 2536, 2913, 7, 16, 11, 8576, 22305, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 16934, 15732, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 16934, 15732, 13, 2617, 11828, 10786, 14565, 6376, 286, 262, 412, 16, 14, 51, 16, 5128, 8398, 3084, 2637, 8, 198, 68, 16, 51, 16, 20560, 19778, 6030, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 11, 352, 11, 362, 828, 3268, 30076, 36, 16, 51, 16, 10913, 2390, 2767, 56, 11401, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19778, 6030, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19778, 6030, 53, 16, 13, 2617, 11828, 10786, 36, 16, 393, 309, 16, 5128, 5739, 2099, 13, 36848, 5739, 3858, 2291, 25, 352, 13, 4848, 80, 1314, 2598, 14636, 89, 357, 16, 8, 362, 13, 4848, 80, 1238, 2780, 14636, 89, 357, 17, 8, 513, 13, 327, 7902, 357, 18, 8, 604, 13, 35106, 357, 19, 8, 642, 13, 360, 19, 357, 20, 8, 718, 13, 13380, 37, 357, 21, 8, 15161, 5739, 2099, 318, 36117, 37597, 705, 8, 198, 68, 16, 51, 16, 20560, 34, 7397, 9012, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 11, 352, 11, 513, 828, 27882, 11395, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 34, 7397, 9012, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 34, 7397, 9012, 53, 16, 13, 2617, 11828, 10786, 34, 7397, 7139, 1181, 460, 307, 27882, 357, 16, 8, 393, 31529, 357, 17, 737, 3167, 11716, 262, 45623, 1724, 262, 45623, 287, 262, 6723, 44, 318, 407, 973, 2637, 8, 198, 68, 16, 51, 16, 20560, 5432, 44, 9012, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 11, 352, 11, 604, 828, 27882, 11395, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 5432, 44, 9012, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 5432, 44, 9012, 53, 16, 13, 2617, 11828, 7203, 5432, 44, 7139, 1181, 13, 632, 460, 307, 27882, 357, 16, 8, 393, 31529, 357, 17, 737, 3167, 11716, 262, 6723, 44, 1724, 262, 15619, 6723, 44, 318, 407, 973, 11, 290, 262, 4137, 357, 12286, 8, 350, 9711, 1988, 329, 428, 5128, 2493, 481, 307, 973, 1141, 262, 4941, 6356, 13, 6723, 44, 318, 4855, 329, 691, 1115, 5739, 3858, 25, 412, 10652, 11, 35106, 351, 45623, 19, 11, 290, 327, 8141, 351, 45623, 19, 13, 6723, 44, 815, 407, 307, 9343, 329, 584, 5739, 3858, 13, 1002, 6723, 44, 318, 9343, 329, 281, 5128, 2493, 11, 475, 262, 5739, 2099, 857, 407, 1104, 6723, 44, 393, 318, 407, 7216, 257, 4938, 6723, 44, 11, 788, 428, 5128, 481, 307, 40650, 290, 262, 5128, 350, 9711, 481, 307, 900, 284, 705, 259, 12102, 2637, 383, 1080, 481, 467, 656, 1745, 2502, 645, 584, 10617, 4941, 318, 1695, 13, 366, 8, 198, 68, 16, 51, 16, 20560, 5432, 10744, 270, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 11, 352, 11, 642, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 17257, 3103, 2536, 2913, 7, 19, 11, 807, 4008, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 5432, 10744, 270, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 5432, 10744, 270, 53, 16, 13, 2617, 11828, 10786, 5432, 44, 4722, 2292, 13, 383, 1988, 2837, 318, 604, 284, 807, 13, 770, 11507, 318, 691, 973, 329, 5739, 3858, 13380, 37, 11, 327, 7902, 11, 393, 35106, 2637, 8, 198, 68, 16, 51, 16, 20560, 47, 9711, 11395, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 11, 352, 11, 718, 828, 24525, 27641, 47, 9711, 39488, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 47, 9711, 11395, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 47, 9711, 11395, 53, 16, 13, 2617, 11828, 10786, 464, 2836, 8686, 350, 9711, 1988, 329, 262, 7368, 5128, 13, 770, 350, 9711, 1988, 318, 973, 618, 262, 6723, 44, 1181, 318, 10058, 13, 383, 2837, 329, 262, 2836, 8686, 350, 9711, 1988, 318, 352, 284, 860, 13, 705, 8, 198, 68, 51, 16, 20560, 28667, 15979, 81, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 352, 11, 362, 11, 352, 11, 352, 11, 767, 828, 6177, 23428, 52, 2767, 56, 11401, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 51, 16, 20560, 28667, 15979, 81, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 51, 16, 20560, 28667, 15979, 81, 53, 16, 13, 2617, 11828, 10786, 464, 1271, 9217, 1771, 6632, 22711, 357, 57, 50, 8, 319, 262, 5128, 2493, 318, 9343, 393, 10058, 13, 48951, 3815, 389, 1550, 357, 16, 8, 393, 3242, 357, 17, 737, 705, 8, 198, 68, 16, 51, 16, 26410, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 4008, 198, 68, 16, 51, 16, 26410, 19580, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 352, 4008, 198, 68, 16, 51, 16, 26410, 19580, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 19580, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 19580, 10962, 13, 2617, 11828, 10786, 1212, 3084, 4909, 3722, 1321, 329, 1123, 412, 16, 14, 51, 16, 5072, 2493, 2637, 8, 198, 68, 16, 51, 16, 26410, 19580, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 5064, 12, 8895, 33, 1600, 366, 361, 15732, 12340, 357, 15, 11, 366, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 19580, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 19580, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 19580, 30150, 13, 2617, 11828, 10786, 2025, 5726, 286, 262, 304, 16, 51, 16, 26410, 19580, 10962, 13, 8655, 6376, 318, 611, 15732, 357, 634, 14, 39994, 6376, 737, 5501, 5726, 468, 734, 10007, 329, 262, 7368, 412, 16, 14, 51, 16, 5128, 2493, 25, 352, 13, 4347, 3722, 362, 13, 3806, 5146, 6723, 44, 1988, 705, 8, 198, 68, 16, 51, 16, 26410, 19580, 15732, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 11, 352, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 17257, 3103, 2536, 2913, 7, 16, 11, 8576, 22305, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 19580, 15732, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 19580, 15732, 13, 2617, 11828, 10786, 14565, 6376, 286, 262, 412, 16, 14, 51, 16, 5072, 3722, 3084, 2637, 8, 198, 68, 16, 51, 16, 26410, 13924, 19580, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 11, 362, 828, 16531, 10100, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 13924, 19580, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 13924, 19580, 53, 16, 13, 2617, 11828, 7203, 464, 2493, 3722, 286, 262, 7368, 412, 16, 14, 51, 16, 5072, 2493, 13, 33671, 3815, 389, 1550, 357, 16, 8, 290, 3242, 357, 17, 737, 705, 2202, 6, 1724, 612, 318, 6737, 319, 262, 2493, 13, 1114, 412, 16, 14, 51, 16, 5072, 2493, 340, 1724, 262, 1080, 318, 287, 3487, 9646, 4235, 13, 705, 9362, 6, 1724, 612, 318, 645, 6737, 319, 262, 2493, 13, 1114, 412, 16, 14, 51, 16, 5072, 2493, 340, 1724, 262, 5072, 318, 2809, 417, 1740, 1141, 617, 8801, 2585, 19570, 198, 68, 16, 51, 16, 26410, 47, 9711, 11395, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 11, 513, 828, 24525, 27641, 47, 9711, 39488, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 47, 9711, 11395, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 47, 9711, 11395, 53, 16, 13, 2617, 11828, 10786, 464, 350, 9711, 1988, 329, 262, 7368, 412, 16, 14, 51, 16, 5072, 2493, 2637, 8, 198, 68, 16, 51, 16, 26410, 16934, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 4008, 198, 68, 16, 51, 16, 26410, 16934, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 16934, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 16934, 10962, 13, 2617, 11828, 10786, 1212, 3084, 4909, 8398, 1321, 329, 1123, 412, 16, 14, 51, 16, 5072, 2493, 2637, 8, 198, 68, 16, 51, 16, 26410, 16934, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 5064, 12, 8895, 33, 1600, 366, 361, 15732, 12340, 357, 15, 11, 366, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 16934, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 16934, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 16934, 30150, 13, 2617, 11828, 10786, 2025, 5726, 286, 262, 304, 16, 51, 16, 26410, 16934, 10962, 13, 8655, 6376, 318, 611, 15732, 357, 634, 14, 39994, 6376, 737, 5501, 5726, 468, 262, 8398, 10007, 329, 262, 7368, 412, 16, 14, 51, 16, 5072, 2493, 25, 352, 13, 4347, 7139, 1181, 362, 13, 25184, 2099, 513, 13, 45623, 7139, 1181, 604, 13, 6723, 44, 7139, 1181, 642, 13, 6723, 44, 1643, 2292, 718, 13, 12169, 22711, 319, 14, 2364, 1181, 767, 13, 25235, 2493, 7862, 4129, 705, 8, 198, 68, 16, 51, 16, 26410, 16934, 15732, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 352, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 17257, 3103, 2536, 2913, 7, 16, 11, 8576, 22305, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 16934, 15732, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 16934, 15732, 13, 2617, 11828, 10786, 14565, 6376, 286, 262, 412, 16, 14, 51, 16, 5072, 8398, 3084, 2637, 8, 198, 68, 16, 51, 16, 26410, 9012, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 362, 828, 350, 9863, 35744, 2767, 56, 11401, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 9012, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 9012, 53, 16, 13, 2617, 11828, 10786, 36, 16, 14, 51, 16, 5072, 2493, 7139, 1181, 13, 6363, 1988, 460, 307, 27882, 357, 16, 8, 393, 31529, 357, 17, 737, 3167, 11716, 281, 5072, 2493, 1724, 645, 5072, 318, 7560, 329, 326, 2493, 2637, 8, 198, 68, 16, 51, 16, 26410, 19778, 6030, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 513, 828, 16289, 30076, 36, 16, 51, 16, 10913, 2390, 2767, 56, 11401, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 19778, 6030, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 19778, 6030, 53, 16, 13, 2617, 11828, 10786, 36, 16, 393, 309, 16, 5072, 5739, 2099, 13, 36848, 5739, 3858, 2291, 25, 352, 13, 4848, 80, 1314, 2598, 14636, 89, 357, 16, 8, 362, 13, 4848, 80, 1238, 2780, 14636, 89, 357, 17, 8, 513, 13, 327, 7902, 357, 18, 8, 604, 13, 35106, 357, 19, 8, 642, 13, 360, 19, 357, 20, 8, 718, 13, 13380, 37, 357, 21, 8, 15161, 5739, 2099, 318, 36117, 37597, 13, 705, 8, 198, 68, 16, 51, 16, 26410, 34, 7397, 9012, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 604, 828, 27882, 11395, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 34, 7397, 9012, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 34, 7397, 9012, 53, 16, 13, 2617, 11828, 10786, 34, 7397, 7139, 1181, 460, 307, 27882, 357, 16, 8, 393, 31529, 357, 17, 737, 3167, 11716, 262, 45623, 1724, 326, 645, 45623, 318, 7560, 329, 262, 6723, 44, 2637, 8, 198, 68, 16, 51, 16, 26410, 5432, 44, 9012, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 642, 828, 27882, 11395, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 5432, 44, 9012, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 5432, 44, 9012, 53, 16, 13, 2617, 11828, 10786, 5432, 44, 7139, 1181, 13, 632, 460, 307, 27882, 357, 16, 8, 393, 31529, 357, 17, 737, 3167, 11716, 262, 5072, 6723, 44, 1724, 326, 645, 6723, 44, 318, 7560, 329, 262, 7368, 5072, 2493, 2637, 8, 198, 68, 16, 51, 16, 26410, 5432, 10744, 270, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 718, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 17257, 3103, 2536, 2913, 7, 19, 11, 807, 4008, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 5432, 10744, 270, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 5432, 10744, 270, 53, 16, 13, 2617, 11828, 10786, 5432, 44, 4722, 2292, 13, 383, 1988, 2837, 318, 604, 284, 807, 13, 770, 11507, 318, 691, 973, 329, 5739, 3858, 13380, 37, 11, 327, 7902, 11, 393, 35106, 2637, 8, 198, 68, 16, 51, 16, 26410, 28667, 15979, 81, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 767, 828, 6177, 23428, 52, 2767, 56, 11401, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 28667, 15979, 81, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 28667, 15979, 81, 53, 16, 13, 2617, 11828, 10786, 464, 1271, 9217, 1771, 6632, 22711, 357, 57, 50, 8, 319, 262, 5072, 2493, 318, 9343, 393, 10058, 13, 48951, 3815, 389, 1550, 357, 16, 8, 393, 3242, 357, 17, 737, 705, 8, 198, 68, 16, 51, 16, 26410, 24539, 53, 16, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 362, 11, 362, 11, 352, 11, 352, 11, 807, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 24539, 53, 16, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26410, 24539, 53, 16, 13, 2617, 11828, 10786, 26410, 7862, 4129, 13, 705, 8, 198, 68, 16, 51, 16, 3103, 10367, 796, 9515, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 513, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 3103, 10367, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 3103, 10367, 13, 2617, 11828, 10786, 1212, 10139, 4909, 369, 10367, 2643, 329, 262, 23606, 36, 16, 51, 16, 337, 9865, 8265, 13, 705, 8, 198, 68, 16, 51, 16, 38143, 16097, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 513, 11, 352, 4008, 198, 68, 16, 51, 16, 26416, 38143, 3610, 796, 19937, 38143, 3610, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 513, 11, 352, 11, 352, 29720, 2617, 10267, 82, 7, 7203, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 19580, 13247, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 1157, 51, 16, 20560, 16934, 13247, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 1157, 51, 16, 26410, 19580, 13247, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 1157, 51, 16, 26410, 16934, 13247, 48774, 198, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 304, 16, 51, 16, 26416, 38143, 3610, 796, 304, 16, 51, 16, 26416, 38143, 3610, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 26416, 38143, 3610, 13, 2617, 11828, 10786, 464, 11846, 2643, 329, 11346, 7378, 12066, 543, 423, 412, 16, 14, 51, 16, 5128, 14, 22915, 2637, 8, 198, 68, 16, 51, 16, 52, 420, 38, 14459, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 513, 11, 362, 4008, 198, 68, 16, 51, 16, 20560, 19580, 13247, 796, 9515, 13247, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 513, 11, 362, 11, 352, 29720, 2617, 10267, 82, 7, 7203, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 13924, 19580, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 47, 48, 5639, 333, 11395, 53, 16, 48774, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 304, 16, 51, 16, 20560, 19580, 13247, 796, 304, 16, 51, 16, 20560, 19580, 13247, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 16, 51, 16, 20560, 19580, 13247, 13, 2617, 11828, 10786, 32, 4947, 286, 5563, 4955, 1321, 9723, 284, 412, 16, 14, 51, 16, 5128, 3722, 1448, 2637, 8, 198, 68, 1157, 51, 16, 20560, 16934, 13247, 796, 9515, 13247, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 513, 11, 362, 11, 362, 29720, 2617, 10267, 82, 7, 7203, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 19778, 6030, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 34, 7397, 9012, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 5432, 44, 9012, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 5432, 10744, 270, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 20560, 47, 9711, 11395, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 51, 16, 20560, 28667, 15979, 81, 53, 16, 48774, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 304, 1157, 51, 16, 20560, 16934, 13247, 796, 304, 1157, 51, 16, 20560, 16934, 13247, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 1157, 51, 16, 20560, 16934, 13247, 13, 2617, 11828, 10786, 32, 4947, 286, 5563, 4955, 1321, 9723, 284, 412, 16, 14, 51, 16, 5128, 8398, 1448, 2637, 8, 198, 68, 1157, 51, 16, 26410, 19580, 13247, 796, 9515, 13247, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 513, 11, 362, 11, 513, 29720, 2617, 10267, 82, 7, 7203, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 13924, 19580, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 47, 9711, 11395, 53, 16, 48774, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 304, 1157, 51, 16, 26410, 19580, 13247, 796, 304, 1157, 51, 16, 26410, 19580, 13247, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 1157, 51, 16, 26410, 19580, 13247, 13, 2617, 11828, 10786, 32, 4947, 286, 5563, 4955, 1321, 9723, 284, 412, 16, 14, 51, 16, 5072, 3722, 1448, 2637, 8, 198, 68, 1157, 51, 16, 26410, 16934, 13247, 796, 9515, 13247, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 4101, 2154, 11, 352, 11, 362, 11, 642, 11, 362, 11, 362, 11, 513, 11, 362, 11, 604, 29720, 2617, 10267, 82, 7, 7203, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 9012, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 19778, 6030, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 34, 7397, 9012, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 5432, 44, 9012, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 5432, 10744, 270, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 24539, 53, 16, 12340, 5855, 23060, 44, 11682, 16, 51, 16, 1600, 366, 68, 16, 51, 16, 26410, 28667, 15979, 81, 53, 16, 48774, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 304, 1157, 51, 16, 26410, 16934, 13247, 796, 304, 1157, 51, 16, 26410, 16934, 13247, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 304, 1157, 51, 16, 26410, 16934, 13247, 13, 2617, 11828, 10786, 32, 4947, 286, 5563, 4955, 1321, 9723, 284, 412, 16, 14, 51, 16, 5072, 8398, 1448, 2637, 8, 198, 76, 571, 32875, 13, 39344, 13940, 2022, 10220, 7203, 23060, 44, 11682, 16, 51, 16, 1600, 309, 14565, 7575, 34519, 28, 51, 14565, 7575, 34519, 11, 309, 24220, 1870, 43, 261, 28, 14990, 265, 1870, 43, 261, 11, 304, 16, 51, 16, 20560, 34, 7397, 9012, 53, 16, 28, 68, 16, 51, 16, 20560, 34, 7397, 9012, 53, 16, 11, 304, 16, 51, 16, 20560, 19778, 6030, 53, 16, 28, 68, 16, 51, 16, 20560, 19778, 6030, 53, 16, 11, 304, 1157, 51, 16, 20560, 16934, 13247, 28, 68, 1157, 51, 16, 20560, 16934, 13247, 11, 304, 16, 51, 16, 20560, 16934, 10962, 28, 68, 16, 51, 16, 20560, 16934, 10962, 11, 304, 1157, 51, 16, 26410, 16934, 13247, 28, 68, 1157, 51, 16, 26410, 16934, 13247, 11, 304, 16, 51, 16, 20560, 19580, 13247, 28, 68, 16, 51, 16, 20560, 19580, 13247, 11, 304, 16, 51, 16, 26410, 19580, 30150, 28, 68, 16, 51, 16, 26410, 19580, 30150, 11, 16289, 30076, 36, 16, 51, 16, 10913, 2390, 2767, 56, 11401, 28, 2606, 7250, 37780, 16, 51, 16, 10913, 2390, 2767, 56, 11401, 11, 304, 16, 51, 16, 26410, 24539, 53, 16, 28, 68, 16, 51, 16, 26410, 24539, 53, 16, 11, 304, 16, 51, 16, 20560, 5432, 44, 9012, 53, 16, 28, 68, 16, 51, 16, 20560, 5432, 44, 9012, 53, 16, 11, 304, 16, 51, 16, 26416, 38143, 3610, 28, 68, 16, 51, 16, 26416, 38143, 3610, 11, 304, 16, 51, 16, 26410, 19580, 15732, 28, 68, 16, 51, 16, 26410, 19580, 15732, 11, 304, 16, 51, 16, 26410, 9012, 53, 16, 28, 68, 16, 51, 16, 26410, 9012, 53, 16, 11, 304, 16, 51, 16, 20560, 13924, 19580, 53, 16, 28, 68, 16, 51, 16, 20560, 13924, 19580, 53, 16, 11, 304, 16, 51, 16, 26410, 28, 68, 16, 51, 16, 26410, 11, 304, 16, 51, 16, 52, 420, 38, 14459, 28, 68, 16, 51, 16, 52, 420, 38, 14459, 11, 304, 16, 51, 16, 20560, 47, 9711, 11395, 53, 16, 28, 68, 16, 51, 16, 20560, 47, 9711, 11395, 53, 16, 11, 26136, 5796, 28, 4694, 5796, 11, 304, 16, 51, 16, 26410, 19580, 28, 68, 16, 51, 16, 26410, 19580, 11, 304, 1157, 51, 16, 26410, 19580, 13247, 28, 68, 1157, 51, 16, 26410, 19580, 13247, 11, 304, 16, 51, 16, 20560, 19580, 15732, 28, 68, 16, 51, 16, 20560, 19580, 15732, 11, 304, 16, 51, 16, 26410, 19778, 6030, 53, 16, 28, 68, 16, 51, 16, 26410, 19778, 6030, 53, 16, 11, 304, 16, 51, 16, 26410, 19580, 10962, 28, 68, 16, 51, 16, 26410, 19580, 10962, 11, 350, 56, 15571, 7378, 62, 33365, 24212, 62, 2389, 28, 1837, 3020, 36, 16, 51, 16, 11, 350, 9863, 35744, 2767, 56, 11401, 28, 15490, 35744, 2767, 56, 11401, 11, 304, 16, 51, 16, 26410, 5432, 44, 9012, 53, 16, 28, 68, 16, 51, 16, 26410, 5432, 44, 9012, 53, 16, 11, 304, 16, 51, 16, 26410, 13924, 19580, 53, 16, 28, 68, 16, 51, 16, 26410, 13924, 19580, 53, 16, 11, 23606, 36, 16, 51, 16, 28, 1837, 3020, 36, 16, 51, 16, 11, 304, 16, 51, 16, 20560, 16934, 30150, 28, 68, 16, 51, 16, 20560, 16934, 30150, 11, 304, 16, 51, 16, 15414, 28, 68, 16, 51, 16, 15414, 11, 304, 16, 51, 16, 26410, 47, 9711, 11395, 53, 16, 28, 68, 16, 51, 16, 26410, 47, 9711, 11395, 53, 16, 11, 304, 16, 51, 16, 38143, 16097, 28, 68, 16, 51, 16, 38143, 16097, 11, 309, 13217, 23106, 28, 5603, 429, 23106, 11, 7536, 1870, 7575, 28, 10430, 1870, 7575, 11, 304, 16, 51, 16, 20560, 19580, 30150, 28, 68, 16, 51, 16, 20560, 19580, 30150, 11, 3268, 30076, 36, 16, 51, 16, 10913, 2390, 2767, 56, 11401, 28, 1268, 30076, 36, 16, 51, 16, 10913, 2390, 2767, 56, 11401, 11, 24525, 27641, 47, 9711, 39488, 28, 7250, 27641, 47, 9711, 39488, 11, 304, 16, 51, 16, 20560, 47, 48, 5639, 333, 11395, 53, 16, 28, 68, 16, 51, 16, 20560, 47, 48, 5639, 333, 11395, 53, 16, 11, 304, 16, 51, 16, 20560, 19580, 10962, 28, 68, 16, 51, 16, 20560, 19580, 10962, 11, 304, 16, 51, 16, 26410, 16934, 30150, 28, 68, 16, 51, 16, 26410, 16934, 30150, 11, 304, 16, 51, 16, 20560, 5432, 10744, 270, 53, 16, 28, 68, 16, 51, 16, 20560, 5432, 10744, 270, 53, 16, 11, 5128, 36, 16, 51, 16, 19580, 28, 15414, 36, 16, 51, 16, 19580, 11, 304, 16, 51, 16, 20560, 16934, 15732, 28, 68, 16, 51, 16, 20560, 16934, 15732, 11, 304, 16, 51, 16, 26410, 34, 7397, 9012, 53, 16, 28, 68, 16, 51, 16, 26410, 34, 7397, 9012, 53, 16, 11, 304, 16, 51, 16, 26410, 16934, 10962, 28, 68, 16, 51, 16, 26410, 16934, 10962, 11, 304, 16, 51, 16, 26410, 28667, 15979, 81, 53, 16, 28, 68, 16, 51, 16, 26410, 28667, 15979, 81, 53, 16, 11, 304, 16, 51, 16, 26410, 16934, 28, 68, 16, 51, 16, 26410, 16934, 11, 304, 16, 51, 16, 26410, 16934, 15732, 28, 68, 16, 51, 16, 26410, 16934, 15732, 11, 304, 51, 16, 20560, 28667, 15979, 81, 53, 16, 28, 68, 51, 16, 20560, 28667, 15979, 81, 53, 16, 11, 304, 16, 51, 16, 26410, 5432, 10744, 270, 53, 16, 28, 68, 16, 51, 16, 26410, 5432, 10744, 270, 53, 16, 11, 304, 16, 51, 16, 20560, 16934, 28, 68, 16, 51, 16, 20560, 16934, 11, 304, 16, 51, 16, 3103, 10367, 28, 68, 16, 51, 16, 3103, 10367, 8, 198 ]
2.608591
7,892
from google.cloud import datastore import os import json client = datastore.Client()
[ 6738, 23645, 13, 17721, 1330, 4818, 459, 382, 198, 11748, 28686, 198, 11748, 33918, 198, 198, 16366, 796, 4818, 459, 382, 13, 11792, 3419, 198 ]
3.44
25
# http://adventofcode.com/2017/day/2 code = """5048 177 5280 5058 4504 3805 5735 220 4362 1809 1521 230 772 1088 178 1794 6629 3839 258 4473 5961 6539 6870 4140 4638 387 7464 229 4173 5706 185 271 5149 2892 5854 2000 256 3995 5250 249 3916 184 2497 210 4601 3955 1110 5340 153 468 550 126 495 142 385 144 165 188 609 182 439 545 608 319 1123 104 567 1098 286 665 1261 107 227 942 1222 128 1001 122 69 139 111 1998 1148 91 1355 90 202 1522 1496 1362 1728 109 2287 918 2217 1138 426 372 489 226 344 431 67 124 120 386 348 153 242 133 112 369 1574 265 144 2490 163 749 3409 3086 154 151 133 990 1002 3168 588 2998 173 192 2269 760 1630 215 966 2692 3855 3550 468 4098 3071 162 329 3648 1984 300 163 5616 4862 586 4884 239 1839 169 5514 4226 5551 3700 216 5912 1749 2062 194 1045 2685 156 3257 1319 3199 2775 211 213 1221 198 2864 2982 273 977 89 198 85 1025 1157 1125 69 94 919 103 1299 998 809 478 1965 6989 230 2025 6290 2901 192 215 4782 6041 6672 7070 7104 207 7451 5071 1261 77 1417 1053 2072 641 74 86 91 1878 1944 2292 1446 689 2315 1379 296 306 1953 3538 248 1579 4326 2178 5021 2529 794 5391 4712 3734 261 4362 2426 192 1764 288 4431 2396 2336 854 2157 216 4392 3972 229 244 4289 1902""" print(checksum_1(code)) print(checksum_2(code))
[ 2, 2638, 1378, 324, 1151, 1659, 8189, 13, 785, 14, 5539, 14, 820, 14, 17, 628, 628, 198, 8189, 796, 37227, 1120, 2780, 197, 22413, 197, 4309, 1795, 197, 1120, 3365, 197, 17885, 19, 197, 23734, 20, 197, 3553, 2327, 197, 17572, 197, 19, 35667, 197, 1507, 2931, 197, 1314, 2481, 197, 19214, 197, 43571, 197, 940, 3459, 197, 23188, 197, 1558, 5824, 198, 2791, 1959, 197, 2548, 2670, 197, 25600, 197, 2598, 4790, 197, 3270, 5333, 197, 2996, 2670, 197, 3104, 2154, 197, 19, 15187, 197, 3510, 2548, 197, 32220, 197, 4524, 2414, 197, 23539, 197, 19, 25399, 197, 20, 35402, 197, 21652, 197, 28977, 198, 20, 19442, 197, 2078, 5892, 197, 3365, 4051, 197, 11024, 197, 11645, 197, 28771, 20, 197, 4309, 1120, 197, 21626, 197, 2670, 1433, 197, 22883, 197, 1731, 5607, 197, 21536, 197, 3510, 486, 197, 2670, 2816, 197, 1157, 940, 197, 4310, 1821, 198, 21395, 197, 38472, 197, 22730, 197, 19420, 197, 33781, 197, 23726, 197, 27203, 197, 18444, 197, 20986, 197, 20356, 197, 31751, 197, 24294, 197, 47106, 197, 45326, 197, 28688, 197, 35175, 198, 16, 10163, 197, 13464, 197, 20, 3134, 197, 940, 4089, 197, 27033, 197, 36879, 197, 1065, 5333, 197, 15982, 197, 24403, 197, 24, 3682, 197, 1065, 1828, 197, 12762, 197, 47705, 197, 18376, 197, 3388, 197, 20219, 198, 16243, 197, 21113, 197, 1157, 2780, 197, 6420, 197, 1485, 2816, 197, 3829, 197, 19004, 197, 1314, 1828, 197, 1415, 4846, 197, 1485, 5237, 197, 1558, 2078, 197, 14454, 197, 1828, 5774, 197, 24, 1507, 197, 1828, 1558, 197, 1157, 2548, 198, 42780, 197, 36720, 197, 35890, 197, 24909, 197, 33535, 197, 50080, 197, 3134, 197, 17464, 197, 10232, 197, 21734, 197, 28978, 197, 21395, 197, 27877, 197, 16945, 197, 14686, 197, 30803, 198, 1314, 4524, 197, 22980, 197, 18444, 197, 1731, 3829, 197, 24136, 197, 22, 2920, 197, 23601, 24, 197, 1270, 4521, 197, 21526, 197, 24309, 197, 16945, 197, 34155, 197, 3064, 17, 197, 18, 14656, 197, 39118, 197, 1959, 4089, 198, 25399, 197, 17477, 197, 1828, 3388, 197, 40761, 197, 1433, 1270, 197, 23349, 197, 24, 2791, 197, 2075, 5892, 197, 2548, 2816, 197, 2327, 1120, 197, 38472, 197, 1821, 4089, 197, 1270, 4869, 197, 25061, 197, 37967, 197, 26780, 23, 198, 28296, 197, 6200, 197, 24136, 197, 3980, 1433, 197, 2780, 5237, 197, 29796, 197, 2780, 5705, 197, 23516, 197, 1507, 2670, 197, 22172, 197, 2816, 1415, 197, 19, 24909, 197, 2816, 4349, 197, 2718, 405, 197, 20666, 197, 3270, 1065, 198, 1558, 2920, 197, 1238, 5237, 197, 22913, 197, 940, 2231, 197, 2075, 5332, 197, 21599, 197, 26582, 22, 197, 1485, 1129, 197, 18, 19104, 197, 1983, 2425, 197, 21895, 197, 26427, 197, 1065, 2481, 197, 22337, 197, 2078, 2414, 197, 1959, 6469, 198, 27367, 197, 24, 3324, 197, 4531, 197, 22337, 197, 5332, 197, 940, 1495, 197, 1157, 3553, 197, 16, 11623, 197, 3388, 197, 5824, 197, 24, 1129, 197, 15197, 197, 1065, 2079, 197, 34808, 197, 34583, 197, 29059, 198, 45271, 197, 3388, 4531, 197, 19214, 197, 1238, 1495, 197, 21, 24369, 197, 1959, 486, 197, 17477, 197, 23349, 197, 2857, 6469, 197, 1899, 3901, 197, 2791, 4761, 197, 2154, 2154, 197, 22, 13464, 197, 22745, 197, 22, 36330, 197, 1120, 4869, 198, 1065, 5333, 197, 3324, 197, 1415, 1558, 197, 940, 4310, 197, 1238, 4761, 197, 42759, 197, 4524, 197, 4521, 197, 6420, 197, 1507, 3695, 197, 1129, 2598, 197, 1828, 5892, 197, 1415, 3510, 197, 40523, 197, 1954, 1314, 197, 1485, 3720, 198, 27137, 197, 20548, 197, 1129, 4310, 197, 2327, 2548, 197, 23045, 197, 1314, 3720, 197, 3559, 2075, 197, 17, 23188, 197, 1120, 2481, 197, 1495, 1959, 197, 50242, 197, 20, 37710, 197, 2857, 1065, 197, 2718, 2682, 197, 30057, 197, 19, 35667, 198, 1731, 2075, 197, 17477, 197, 1558, 2414, 197, 25270, 197, 2598, 3132, 197, 1954, 4846, 197, 1954, 2623, 197, 23, 4051, 197, 17, 18458, 197, 20666, 197, 19, 32321, 197, 2670, 4761, 197, 23539, 197, 25707, 197, 19, 27693, 197, 1129, 2999, 37811, 198, 198, 4798, 7, 42116, 388, 62, 16, 7, 8189, 4008, 198, 4798, 7, 42116, 388, 62, 17, 7, 8189, 4008 ]
1.808418
689
import logging from Tensile.SolutionStructs import Convolution from YamlBuilder.YamlBuilder import YamlBuilder log =logging.getLogger("testlog")
[ 11748, 18931, 198, 6738, 40280, 576, 13, 46344, 44909, 82, 1330, 34872, 2122, 198, 6738, 14063, 75, 32875, 13, 56, 43695, 32875, 1330, 14063, 75, 32875, 198, 198, 6404, 796, 6404, 2667, 13, 1136, 11187, 1362, 7203, 9288, 6404, 4943, 198 ]
3.560976
41
""" This module will Help You to Search on Different Websites like Google,Youtube,etc. You can search on more than 25 websites very easily by just 2 lines of code. Websites Supported:- 1.Google -google_search("Python") 2.Youtube -youtube_search("Python") 3.Bing -bing_search("Python") 4.Quora -quora_search("5 Python Projects") 5.Python -python_search("Input in Python") 6.Twitter -twitter_search("Python") 7.Facebook -facebook_search("Python") 8.Pinterest -pinterest_search("Python images") 9.Wikipedia -wikipedia_search("Python_(programming_language)") 10.Amazon -amazon_search("Python Books") 11.Reddit -reddit_search("Python") 12.Imdb -imdb_search("python") 13.TripAdvisor -tripadvisor_search("London") 14.Walmart -walmart_search("python Books") 15.Craigslist -craigslist_search("Python") 16.Ebay -ebay_search("Python books") 17.LinkedIn-Job Search, People Search, Learning 18.Playstore -playstore_search("python") 19.Headline -headline_search("python") 20.Esty -esty_search("python") 21.Indeed -indeed_search("Python Developer","USA") 22.Apple -apple_search("Mac Book Pro") 23.ESPN -espn_search("Cricket") 24.Webmd -webmd_search("Python") 25.New York Times -nytimes_search("Covid-19") 26.CNN -cnn_search("Us elections 2020") 27.Best Buy- `bestbuy_search("Python")` 28.Britanica-`britannica_search("Anything")` 29.Bussiness Insider- `businessinsider__search("News")` 30.Dictionary- `dictionary_search("graphics")` 31.Gamepedia- `gamepedia_search("Minecraft")` 32.Github- `github_search("ankitsinghprograms")` 33.Home depot- `homedepot_search("News")` 34.MapQuest- `mapquest_search("California,USA")` 35.Mayo clinic- `mayoclinic_search("What to do during Fever")` 36.Medical News Today- `medicalnewstoday_search("COVID-19")` 37.Merriam Webster- `merriam_webster_search("News")` 38.Microsoft- `microsoft_search("Mac Book Pro")` 39.NIH- `nih_search("Usa News")` 40.Quizlet- `quizlet_search("Std 8")` 41.Rotten Tomatoes- `rottentomatoes_search("Water Bottle")` 42.Target- `target_search("Anything")` 43.Urban Dictionary- `urban_dictionary_search("LOL meaing in urban dictionary")` 44.USA Today- `usatoday_search("USA election")` 45.Yahoo- `yahoo_search("C++")` 46.Zillow- `zillow_search("News")` ========== Example =========== Code is to simple Just 2 lines of Code. ------------------------------------ from pysearch import * google_search("How to Search via pysearch module Python") ------------------------------------ ============================= =========== Version =========== ++ 0.1.3 (19/01/2021)+++++++++ ~~ Bug Fixes ++++++++++++++++++++++++++++ ============================= ======== Getting Errors??======== If You get error then contact me at [email protected] ============================= =========== Author ========== Name-Ankit Singh [email protected] Github-https://github.com/Ankitsinghprograms Country-India ============================ """ import webbrowser def open(link): """ Opening Webpage Through webbrowser module """ try: webbrowser.open(link) except: print("EROOR UNABLE TO OPEN WEBSITE") print("Common Errors:-\n\ ~ webbrowser module error \ ~ Your system doesn't have Any Webrowser \ -Try Installing modules liks Chrome,Firefox,etc.\ ~ Contact to Author via email '[email protected]'") def google_search(text): """ Search on Google (https://www.google.com) Parameters ----------- text:- The query which you want to search about (str) """ google=f"https://www.google.com/search?q={text}&oq={text}" open(google) def youtube_search(text): """ Search on Youtube (https://www.youtube.com) Parameters ----------- text:- The query which you want to search about (str) """ youtube=f"https://www.youtube.com/results?search_query={text}" open(youtube) def bing_search(text): """ Search on Bing (www.bing.com) Parameters ----------- text:- The query which you want to search about (str) """ bing=f"https://www.bing.com/search?q={text}" open(bing) def quora_search(text): """ Search on Quora (www.quora.com) Parameters ----------- text:- The query which you want to search about (str) """ quora=f"https://www.quora.com/search?q={text}" open(quora) def python_search(text): """ Search on Python.org (www.python.org) Parameters ----------- text:- The query which you want to search about (str) """ python_org=f"https://www.python.org/search/?q={text}" open(python_org) def twitter_search(text): """ Search on twitter (https://twitter.com) Parameters ----------- text:- The query which you want to search about (str) """ twitter=f"https://twitter.com/search?q={text}" open(twitter) def facebook_search(text): """ Search on Facebook (https://facebook.com) Parameters ----------- text:- The query which you want to search about (str) """ facebook=f"https://facebook.com/search/top/?q={text}" open(facebook) def pinterest_search(text): """ Search on Pinterest (https://in.pinterest.com) Parameters ----------- text:- The query which you want to search about (str) """ pinterest=f"https://in.pinterest.com/search/pins/?q={text}" open(pinterest) def wikipedia_search(text): """ Search on Wikipedia (https://en.m.wikipedia.org) Parameters ----------- text:- The query which you want to search about (str) """ wikipedia=f"https://en.m.wikipedia.org/wiki/{text}" open(wikipedia) def amazon_search(text): """ Search on amazon (https://www.amazon.com) Parameters ----------- text:- The query which you want to search about (str) """ amazon=f"https://www.amazon.com/s?k={text}" open(amazon) def reddit_search(text): """ Search on Reddit (https://www.reddit.com) Parameters ----------- text:- The query which you want to search about (str) """ reddit=f"https://www.reddit.com/search?q={text}" open(reddit) def imdb_search(text): """ Search on imdb (https://www.imdb.com) Parameters ----------- text:- The query which you want to search about (str) """ imdb=f"https://www.imdb.com/find?q={text}" open(imdb) def tripadvisor_search(text): """ Search on Tripadvisor (https://www.tripadvisor.com) Parameters ----------- text:- The query which you want to search about (str) """ tripadvisor=f"https://www.tripadvisor.com/Search?q={text}" open(tripadvisor) def walmart_search(text): """ Search on Walmart (https://www.walmart.com) Parameters ----------- text:- The query which you want to search about (str) """ walmart=f'https://www.walmart.com/search/?query={text}' open(walmart) def craigslist_search(text): """ Search on craigslist (https://kolkata.craigslist.org) Parameters ----------- text:- The query which you want to search about (str) """ craigslist=f'https://kolkata.craigslist.org/d/services/search/bbb?query={text}' open(craigslist) def ebay_search(text): """ Search on Ebay (https://www.ebay.com) Parameters ----------- text:- The query which you want to search about (str) """ ebay=f"https://www.ebay.com/sch/i.html?_nkw={text}" open(ebay) def linkedin_job_search(text): """ Search on Linkedin (https://www.linkedin.com/jobs) Parameters ----------- text:- The query which you want to search about (str) """ linkedin_job=f"https://www.linkedin.com/jobs/search?keywords={text}" open(linkedin_job) def linkedin_people_search(first_name,last_name): """ Search on Linkedin (https://www.linkedin.com/people-guest/pub) Parameters ----------- first_name:- First Name of the person (str) last_name:- Last Name of the person (str) """ linkedin_people=f"https://www.linkedin.com/people-guest/pub/dir?firstName={first_name}&lastName={last_name}" open(linkedin_people) def linkedin_learning_search(text): """ Search on Linkedin (https://www.linkedin.com/learning) Parameters ----------- text:- The query which you want to search about (str) """ linkedin_learning=f"https://www.linkedin.com/learning/search?keywords={text}" open(linkedin_learning) def playstore_search(text): """ Search on Play Store (https://play.google.com/store) Parameters ----------- text:- The query which you want to search about (str) """ play_store=f"https://play.google.com/store/search?q={text}" open(play_store) def headline_search(text): """ Search on Headline (https://www.healthline.com) Parameters ----------- text:- The query which you want to search about (str) """ headline=f'https://www.healthline.com/search?q1={text}' open(headline) def esty_search(text): """ Search on Esty (https://www.etsy.c:om/in-en) Parameters ----------- text:- The query which you want to search about (str) """ esty=f'https://www.etsy.com/in-en/search?q={text}' open(esty) def indeed_search(job_title,location): """ Search on Indeed (https://in.indeed.com/m/jobs) Parameters ----------- job_title:- Name of the Job (str) location:- Location (str) """ indeed=f'https://in.indeed.com/m/jobs?q={job_title}&l={location}' open(indeed) def apple_search(text): """ Search on Apple (https://www.apple.com/us) Parameters ----------- text:- The query which you want to search about (str) """ apple=f"https://www.apple.com/us/search/{text}" open(apple) def espn_search(text): """ Search on Espn (https://www.espn.in) Parameters ----------- text:- The query which you want to search about (str) """ espn=f'https://www.espn.in/search/_/q/{text}' open(espn) def webmd_search(text): """ Search on Webmd (https://www.webmd.com) Parameters ----------- text:- The query which you want to search about (str) """ webmd=f'https://www.webmd.com/search/search_results/default.aspx?query={text}' open(webmd) def nytimes_search(text): """ Search on New York Times (https://www.nytimes.com) Parameters ----------- text:- The query which you want to search about (str) """ nytimes=f'https://www.nytimes.com/search?query={text}' open(nytimes) def cnn_search(text): """ Search on CNN (https://edition.cnn.com) Parameters ----------- text:- The query which you want to search about (str) """ cnn=f'https://edition.cnn.com/search?q={text}' open(cnn) # Functions Added in Version- 0.1.2 (19/01/2021) are below:- def github_search(text): """ Search on github (https://github.com) Parameters ----------- text:- The query which you want to search about (str) """ github="https://github.com/search?q={text}" open(github) def merriam_webster_search(text): """ Search on merriam_webster (https://www.merriam-webster.com/dictionary/) Parameters ----------- text:- The query which you want to search about (str) """ merriam_webster=f"https://www.merriam-webster.com/dictionary/{text}" open(merriam_webster) def gamepedia_search(text): """ Search on gamepedia (https://www.gamepedia.com) Parameters ----------- text:- The query which you want to search about (str) """ gamepedia=f'https://www.gamepedia.com/search?search={text}' open(gamepedia) def microsoft_search(text): """ Search on Microsoft (https://www.microsoft.com/en-in/) Parameters ----------- text:- The query which you want to search about (str) """ microsoft=f"https://www.microsoft.com/en-in/search/result.aspx?{text}" open(microsoft) def target_search(text): """ Search on target (https://www.target.com) Parameters ----------- text:- The query which you want to search about (str) """ target=f'https://www.target.com/s?searchTerm={text}' open(target) def homedepot_search(text): """ Search on homedepot (https://www.homedepot.com) Parameters ----------- text:- The query which you want to search about (str) """ homedepot=f"https://www.homedepot.com/s/{text}" open(homedepot) def nih_search(text): """ Search on NIH (https://search.nih.gov) Parameters ----------- text:- The query which you want to search about (str) """ nih=f"https://search.nih.gov/search?utf8=%E2%9C%93&affiliate=nih&query={text}&commit=Search" open(nih) def rottentomatoes_search(text): """ Search on Rotten Tomatoes (https://www.rottentomatoes.com) Parameters ----------- text:- The query which you want to search about (str) """ rottentomatoes=f"https://www.rottentomatoes.com/search?search={text}" open(rottentomatoes) def quizlet_search(text): """ Search on Quizlet (https://quizlet.com) Parameters ----------- text:- The query which you want to search about (str) """ quizlet=f"https://quizlet.com/subject/{text}/" open(quizlet) def mapquest_search(text): """ Search on Mapquest (https://www.mapquest.com) Parameters ----------- text:- The query which you want to search about (str) """ mapquest=f"https://www.mapquest.com/search/results?query={text}" open(mapquest) def britannica_search(text): """ Search on Britannica (https://www.britannica.com) Parameters ----------- text:- The query which you want to search about (str) """ britannica=f"https://www.britannica.com/search?query={text}" open(britannica) def businessinsider_search(text): """ Search on Business Insider (https://www.businessinsider.in) Parameters ----------- text:- The query which you want to search about (str) """ businessinsider=f"https://www.businessinsider.in/searchresult.cms?query={text}" open(businessinsider) def dictionary_search(text): """ Search on Dictionary (https://www.dictionary.com) Parameters ----------- text:- The query which you want to search about (str) """ dictionary=f"https://www.dictionary.com/browse/{text}/s=t" open(dictionary) def zillow_search(text): """ Search on Zillow (https://www.zillow.com) Parameters ----------- text:- The query which you want to search about (str) """ zillow=f"https://www.zillow.com/homes/{text}/" open(zillow) def mayoclinic_search(text): """ Search on Mayoclinic (https://www.mayoclinic.org) Parameters ----------- text:- The query which you want to search about (str) """ mayoclinic=f'https://www.mayoclinic.org/search/search-results?q={text}' open(mayoclinic) def bestbuy_search(text): """ Search on Bestbuy (https://www.bestbuy.com) Parameters ----------- text:- The query which you want to search about (str) """ bestbuy=f"https://www.bestbuy.com/site/searchpage.jsp?st={text}" open(bestbuy) def yahoo_search(text): """ Search on Yahoo (https://in.search.yahoo.com) Parameters ----------- text:- The query which you want to search about (str) """ yahoo=f"https://in.search.yahoo.com/search?p={text}" open(yahoo) def usatoday_search(text): """ Search on USA Today (https://www.usatoday.com) Parameters ----------- text:- The query which you want to search about (str) """ usatoday=f"https://www.usatoday.com/search/?q={text}" open(usatoday) def medicalnewstoday_search(text): """ Search on Medical News Today (https://www.medicalnewstoday.com) Parameters ----------- text:- The query which you want to search about (str) """ medicalnewstoday=f"https://www.medicalnewstoday.com/search?q={text}" open(medicalnewstoday) def urban_dictionary_search(text): """ Search on Urban Dictionary (https://www.urbandictionary.com) Parameters ----------- text:- The query which you want to search about (str) """ urban_dictionary="https://www.urbandictionary.com/define.php?term={text}" open(urban_dictionary) def usatoday_search(text): """ Search on USA Today (https://www.usnews.com) Parameters ----------- text:- The query which you want to search about (str) """ usanews=f"https://www.usnews.com/search?q={text}" open(usanews)
[ 37811, 198, 1212, 8265, 481, 10478, 921, 284, 11140, 319, 20615, 47736, 2737, 588, 3012, 11, 56, 9762, 11, 14784, 13, 628, 198, 1639, 460, 2989, 319, 517, 621, 1679, 9293, 845, 3538, 416, 655, 362, 3951, 286, 2438, 13, 628, 198, 1135, 1443, 2737, 36848, 21912, 628, 197, 16, 13, 11708, 532, 13297, 62, 12947, 7203, 37906, 4943, 198, 197, 17, 13, 56, 9762, 532, 11604, 62, 12947, 7203, 37906, 4943, 198, 197, 18, 13, 33, 278, 532, 4623, 62, 12947, 7203, 37906, 4943, 198, 197, 19, 13, 4507, 5799, 532, 421, 5799, 62, 12947, 7203, 20, 11361, 29898, 4943, 198, 197, 20, 13, 37906, 532, 29412, 62, 12947, 7203, 20560, 287, 11361, 4943, 198, 197, 21, 13, 14254, 532, 6956, 62, 12947, 7203, 37906, 4943, 198, 197, 22, 13, 12025, 532, 19024, 62, 12947, 7203, 37906, 4943, 198, 197, 23, 13, 35767, 532, 79, 9446, 62, 12947, 7203, 37906, 4263, 4943, 198, 197, 24, 13, 48845, 532, 31266, 62, 12947, 7203, 37906, 41052, 23065, 2229, 62, 16129, 8, 4943, 198, 197, 940, 13, 24888, 532, 33103, 62, 12947, 7203, 37906, 13661, 4943, 198, 197, 1157, 13, 22367, 532, 10748, 62, 12947, 7203, 37906, 4943, 198, 197, 1065, 13, 3546, 9945, 532, 320, 9945, 62, 12947, 7203, 29412, 4943, 198, 197, 1485, 13, 51, 5528, 2782, 13131, 532, 39813, 324, 13131, 62, 12947, 7203, 23421, 4943, 198, 197, 1415, 13, 21902, 13822, 532, 16783, 13822, 62, 12947, 7203, 29412, 13661, 4943, 198, 197, 1314, 13, 33800, 40704, 532, 66, 430, 40704, 62, 12947, 7203, 37906, 4943, 198, 197, 1433, 13, 36, 24406, 532, 1765, 323, 62, 12947, 7203, 37906, 3835, 4943, 198, 197, 1558, 13, 40574, 12, 33308, 11140, 11, 4380, 11140, 11, 18252, 198, 197, 1507, 13, 11002, 8095, 532, 1759, 8095, 62, 12947, 7203, 29412, 4943, 198, 197, 1129, 13, 13847, 1370, 532, 2256, 1370, 62, 12947, 7203, 29412, 4943, 198, 197, 1238, 13, 22362, 88, 532, 9673, 62, 12947, 7203, 29412, 4943, 198, 197, 2481, 13, 17854, 532, 521, 2308, 62, 12947, 7203, 37906, 23836, 2430, 14053, 4943, 198, 197, 1828, 13, 16108, 532, 18040, 62, 12947, 7203, 14155, 4897, 1041, 4943, 198, 197, 1954, 13, 31730, 532, 9774, 77, 62, 12947, 7203, 34, 5557, 316, 4943, 198, 197, 1731, 13, 13908, 9132, 532, 12384, 9132, 62, 12947, 7203, 37906, 4943, 198, 197, 1495, 13, 3791, 1971, 3782, 532, 3281, 22355, 62, 12947, 7203, 34, 709, 312, 12, 1129, 4943, 198, 197, 2075, 13, 18474, 532, 66, 20471, 62, 12947, 7203, 5842, 7024, 12131, 4943, 198, 197, 1983, 13, 13014, 11763, 12, 4600, 13466, 17846, 62, 12947, 7203, 37906, 4943, 63, 198, 197, 2078, 13, 17959, 272, 3970, 12, 63, 65, 799, 1236, 3970, 62, 12947, 7203, 40028, 4943, 63, 198, 197, 1959, 13, 33, 1046, 1272, 22167, 12, 4600, 22680, 1040, 1304, 834, 12947, 7203, 9980, 4943, 63, 198, 197, 1270, 13, 35, 14188, 12, 4600, 67, 14188, 62, 12947, 7203, 70, 11549, 4943, 63, 198, 197, 3132, 13, 8777, 50235, 12, 4600, 6057, 50235, 62, 12947, 7203, 39194, 4943, 63, 198, 197, 2624, 13, 38, 10060, 12, 4600, 12567, 62, 12947, 7203, 962, 896, 278, 71, 23065, 82, 4943, 63, 198, 197, 2091, 13, 16060, 43369, 12, 4600, 71, 12657, 538, 313, 62, 12947, 7203, 9980, 4943, 63, 198, 197, 2682, 13, 13912, 12166, 12, 4600, 8899, 6138, 62, 12947, 7203, 25284, 11, 14053, 4943, 63, 198, 197, 2327, 13, 6747, 78, 15760, 12, 4600, 11261, 420, 2815, 291, 62, 12947, 7203, 2061, 284, 466, 1141, 41951, 4943, 63, 198, 197, 2623, 13, 37158, 3000, 6288, 12, 4600, 41693, 3605, 301, 4348, 62, 12947, 7203, 8220, 11008, 12, 1129, 4943, 63, 198, 197, 2718, 13, 13102, 380, 321, 31890, 12, 4600, 647, 380, 321, 62, 12384, 1706, 62, 12947, 7203, 9980, 4943, 63, 198, 197, 2548, 13, 15905, 12, 4600, 40485, 62, 12947, 7203, 14155, 4897, 1041, 4943, 63, 198, 197, 2670, 13, 22125, 39, 12, 4600, 37373, 62, 12947, 7203, 5842, 64, 3000, 4943, 63, 198, 197, 1821, 13, 4507, 528, 1616, 12, 4600, 421, 528, 1616, 62, 12947, 7203, 1273, 67, 807, 4943, 63, 198, 197, 3901, 13, 49, 4728, 4186, 15048, 12, 4600, 305, 926, 298, 296, 15048, 62, 12947, 7203, 19184, 33608, 4943, 63, 198, 197, 3682, 13, 21745, 12, 4600, 16793, 62, 12947, 7203, 40028, 4943, 63, 198, 197, 3559, 13, 46667, 28261, 12, 4600, 32679, 62, 67, 14188, 62, 12947, 7203, 43, 3535, 502, 64, 278, 287, 7876, 22155, 4943, 63, 198, 197, 2598, 13, 14053, 6288, 12, 4600, 37937, 4348, 62, 12947, 7203, 14053, 3071, 4943, 63, 198, 197, 2231, 13, 56, 12992, 12, 4600, 40774, 62, 12947, 7203, 34, 4880, 4943, 63, 198, 197, 3510, 13, 57, 359, 322, 12, 4600, 89, 359, 322, 62, 12947, 7203, 9980, 4943, 63, 628, 628, 198, 2559, 855, 17934, 796, 2559, 855, 198, 198, 10669, 318, 284, 2829, 2329, 362, 3951, 286, 6127, 13, 198, 198, 3880, 650, 198, 6738, 12972, 12947, 1330, 1635, 198, 13297, 62, 12947, 7203, 2437, 284, 11140, 2884, 12972, 12947, 8265, 11361, 4943, 198, 3880, 650, 198, 198, 4770, 25609, 28, 628, 198, 2559, 18604, 10628, 796, 2559, 855, 198, 198, 4880, 657, 13, 16, 13, 18, 357, 1129, 14, 486, 14, 1238, 2481, 8, 25128, 10, 198, 198, 4907, 15217, 34258, 198, 198, 44627, 25128, 14030, 198, 198, 4770, 25609, 28, 628, 198, 2559, 18067, 44225, 3548, 2559, 628, 220, 220, 220, 1002, 921, 651, 4049, 788, 2800, 502, 379, 16553, 896, 278, 71, 6200, 22996, 31, 14816, 13, 785, 628, 220, 220, 220, 36658, 25609, 628, 198, 2559, 18604, 6434, 796, 2559, 28, 198, 198, 5376, 12, 2025, 15813, 14403, 198, 15333, 12, 962, 896, 278, 71, 6200, 22996, 31, 14816, 13, 785, 198, 38, 10060, 12, 5450, 1378, 12567, 13, 785, 14, 2025, 74, 896, 278, 71, 23065, 82, 198, 33921, 12, 21569, 198, 198, 4770, 25609, 628, 198, 198, 37811, 628, 198, 198, 11748, 3992, 40259, 628, 628, 198, 4299, 1280, 7, 8726, 2599, 198, 197, 198, 197, 37811, 198, 197, 43093, 5313, 7700, 9561, 3992, 40259, 8265, 198, 197, 37811, 198, 197, 198, 197, 28311, 25, 198, 197, 197, 198, 197, 197, 732, 11848, 808, 2655, 13, 9654, 7, 8726, 8, 198, 197, 197, 198, 197, 16341, 25, 198, 197, 197, 198, 197, 197, 3601, 7203, 34812, 1581, 471, 4535, 19146, 5390, 38303, 12887, 4462, 12709, 4943, 198, 197, 197, 3601, 7203, 17227, 44225, 21912, 59, 77, 59, 198, 197, 197, 5299, 3992, 40259, 8265, 4049, 3467, 198, 197, 197, 5299, 3406, 1080, 1595, 470, 423, 4377, 5313, 808, 2655, 3467, 198, 197, 197, 220, 197, 12, 23433, 2262, 9221, 13103, 7649, 591, 13282, 11, 13543, 12792, 11, 14784, 13, 59, 198, 197, 197, 5299, 14039, 284, 6434, 2884, 3053, 705, 962, 896, 278, 71, 6200, 22996, 31, 14816, 13, 785, 6, 4943, 628, 628, 198, 198, 4299, 23645, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 3012, 357, 5450, 1378, 2503, 13, 13297, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 628, 197, 13297, 28, 69, 1, 5450, 1378, 2503, 13, 13297, 13, 785, 14, 12947, 30, 80, 34758, 5239, 92, 5, 78, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 13297, 8, 198, 197, 198, 197, 198, 197, 198, 197, 198, 197, 198, 4299, 35116, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 27431, 357, 5450, 1378, 2503, 13, 11604, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 628, 197, 11604, 28, 69, 1, 5450, 1378, 2503, 13, 11604, 13, 785, 14, 43420, 30, 12947, 62, 22766, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 11604, 8, 628, 198, 198, 4299, 275, 278, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 21631, 357, 2503, 13, 4623, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 628, 197, 4623, 28, 69, 1, 5450, 1378, 2503, 13, 4623, 13, 785, 14, 12947, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 4623, 8, 628, 198, 4299, 627, 5799, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 2264, 5799, 357, 2503, 13, 421, 5799, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 628, 197, 421, 5799, 28, 69, 1, 5450, 1378, 2503, 13, 421, 5799, 13, 785, 14, 12947, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 421, 5799, 8, 198, 197, 198, 197, 198, 198, 4299, 21015, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 11361, 13, 2398, 357, 2503, 13, 29412, 13, 2398, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 29412, 62, 2398, 28, 69, 1, 5450, 1378, 2503, 13, 29412, 13, 2398, 14, 12947, 20924, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 29412, 62, 2398, 8, 198, 197, 198, 197, 198, 197, 198, 198, 4299, 17044, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 17044, 357, 5450, 1378, 6956, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 6956, 28, 69, 1, 5450, 1378, 6956, 13, 785, 14, 12947, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 6956, 8, 198, 197, 198, 197, 198, 197, 198, 198, 4299, 23960, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 3203, 357, 5450, 1378, 19024, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 19024, 28, 69, 1, 5450, 1378, 19024, 13, 785, 14, 12947, 14, 4852, 20924, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 19024, 8, 198, 197, 198, 197, 198, 197, 198, 198, 4299, 279, 9446, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 17334, 357, 5450, 1378, 259, 13, 79, 9446, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 79, 9446, 28, 69, 1, 5450, 1378, 259, 13, 79, 9446, 13, 785, 14, 12947, 14, 49556, 20924, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 79, 9446, 8, 198, 197, 198, 197, 198, 197, 198, 198, 4299, 47145, 11151, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 15312, 357, 5450, 1378, 268, 13, 76, 13, 31266, 13, 2398, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 31266, 28, 69, 1, 5450, 1378, 268, 13, 76, 13, 31266, 13, 2398, 14, 15466, 14, 90, 5239, 36786, 198, 197, 198, 197, 9654, 7, 31266, 8, 628, 198, 198, 4299, 716, 5168, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 716, 5168, 357, 5450, 1378, 2503, 13, 33103, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 33103, 28, 69, 1, 5450, 1378, 2503, 13, 33103, 13, 785, 14, 82, 30, 74, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 33103, 8, 198, 197, 198, 197, 198, 197, 198, 197, 198, 197, 198, 4299, 18374, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 10750, 357, 5450, 1378, 2503, 13, 10748, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 10748, 28, 69, 1, 5450, 1378, 2503, 13, 10748, 13, 785, 14, 12947, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 10748, 8, 628, 628, 198, 4299, 545, 9945, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 545, 9945, 357, 5450, 1378, 2503, 13, 320, 9945, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 320, 9945, 28, 69, 1, 5450, 1378, 2503, 13, 320, 9945, 13, 785, 14, 19796, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 320, 9945, 8, 628, 628, 198, 4299, 5296, 324, 13131, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 18383, 324, 13131, 357, 5450, 1378, 2503, 13, 39813, 324, 13131, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 39813, 324, 13131, 28, 69, 1, 5450, 1378, 2503, 13, 39813, 324, 13131, 13, 785, 14, 18243, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 39813, 324, 13131, 8, 628, 628, 198, 198, 4299, 6514, 13822, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 20355, 357, 5450, 1378, 2503, 13, 16783, 13822, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 16783, 13822, 28, 69, 6, 5450, 1378, 2503, 13, 16783, 13822, 13, 785, 14, 12947, 20924, 22766, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 16783, 13822, 8, 628, 628, 198, 198, 4299, 15671, 40704, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 15671, 40704, 357, 5450, 1378, 74, 13597, 1045, 13, 66, 430, 40704, 13, 2398, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 66, 430, 40704, 28, 69, 6, 5450, 1378, 74, 13597, 1045, 13, 66, 430, 40704, 13, 2398, 14, 67, 14, 30416, 14, 12947, 14, 11848, 65, 30, 22766, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 66, 430, 40704, 8, 628, 628, 198, 198, 4299, 304, 24406, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 12119, 323, 357, 5450, 1378, 2503, 13, 1765, 323, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 1765, 323, 28, 69, 1, 5450, 1378, 2503, 13, 1765, 323, 13, 785, 14, 20601, 14, 72, 13, 6494, 30, 62, 77, 46265, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 1765, 323, 8, 628, 628, 198, 198, 4299, 6692, 259, 62, 21858, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 7502, 27152, 357, 5450, 1378, 2503, 13, 25614, 259, 13, 785, 14, 43863, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 25614, 259, 62, 21858, 28, 69, 1, 5450, 1378, 2503, 13, 25614, 259, 13, 785, 14, 43863, 14, 12947, 30, 2539, 10879, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 25614, 259, 62, 21858, 8, 628, 628, 198, 198, 4299, 6692, 259, 62, 15332, 62, 12947, 7, 11085, 62, 3672, 11, 12957, 62, 3672, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 7502, 27152, 357, 5450, 1378, 2503, 13, 25614, 259, 13, 785, 14, 15332, 12, 5162, 395, 14, 12984, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 11085, 62, 3672, 21912, 3274, 6530, 286, 262, 1048, 357, 2536, 8, 198, 197, 198, 197, 12957, 62, 3672, 21912, 4586, 6530, 286, 262, 1048, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 25614, 259, 62, 15332, 28, 69, 1, 5450, 1378, 2503, 13, 25614, 259, 13, 785, 14, 15332, 12, 5162, 395, 14, 12984, 14, 15908, 30, 11085, 5376, 34758, 11085, 62, 3672, 92, 5, 12957, 5376, 34758, 12957, 62, 3672, 36786, 198, 197, 198, 197, 9654, 7, 25614, 259, 62, 15332, 8, 628, 628, 198, 198, 4299, 6692, 259, 62, 40684, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 7502, 27152, 357, 5450, 1378, 2503, 13, 25614, 259, 13, 785, 14, 40684, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 25614, 259, 62, 40684, 28, 69, 1, 5450, 1378, 2503, 13, 25614, 259, 13, 785, 14, 40684, 14, 12947, 30, 2539, 10879, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 25614, 259, 62, 40684, 8, 628, 628, 198, 198, 4299, 711, 8095, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 3811, 9363, 357, 5450, 1378, 1759, 13, 13297, 13, 785, 14, 8095, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 1759, 62, 8095, 28, 69, 1, 5450, 1378, 1759, 13, 13297, 13, 785, 14, 8095, 14, 12947, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 1759, 62, 8095, 8, 628, 628, 198, 198, 4299, 16534, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 7123, 1370, 357, 5450, 1378, 2503, 13, 13948, 1370, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 2256, 1370, 28, 69, 6, 5450, 1378, 2503, 13, 13948, 1370, 13, 785, 14, 12947, 30, 80, 16, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 2256, 1370, 8, 628, 628, 198, 198, 4299, 1556, 88, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 10062, 88, 357, 5450, 1378, 2503, 13, 34877, 13, 66, 25, 296, 14, 259, 12, 268, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 9673, 28, 69, 6, 5450, 1378, 2503, 13, 34877, 13, 785, 14, 259, 12, 268, 14, 12947, 30, 80, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 9673, 8, 628, 628, 198, 198, 4299, 5600, 62, 12947, 7, 21858, 62, 7839, 11, 24886, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 9676, 357, 5450, 1378, 259, 13, 521, 2308, 13, 785, 14, 76, 14, 43863, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 21858, 62, 7839, 21912, 6530, 286, 262, 15768, 357, 2536, 8, 198, 197, 198, 197, 24886, 21912, 13397, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 521, 2308, 28, 69, 6, 5450, 1378, 259, 13, 521, 2308, 13, 785, 14, 76, 14, 43863, 30, 80, 34758, 21858, 62, 7839, 92, 5, 75, 34758, 24886, 92, 6, 198, 197, 198, 197, 9654, 7, 521, 2308, 8, 628, 628, 198, 198, 4299, 17180, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 4196, 357, 5450, 1378, 2503, 13, 18040, 13, 785, 14, 385, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 18040, 28, 69, 1, 5450, 1378, 2503, 13, 18040, 13, 785, 14, 385, 14, 12947, 14, 90, 5239, 36786, 198, 197, 198, 197, 9654, 7, 18040, 8, 628, 628, 198, 198, 4299, 15024, 77, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 20386, 77, 357, 5450, 1378, 2503, 13, 9774, 77, 13, 259, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 9774, 77, 28, 69, 6, 5450, 1378, 2503, 13, 9774, 77, 13, 259, 14, 12947, 47835, 14, 80, 14, 90, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 9774, 77, 8, 628, 628, 198, 198, 4299, 3992, 9132, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 5313, 9132, 357, 5450, 1378, 2503, 13, 12384, 9132, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 12384, 9132, 28, 69, 6, 5450, 1378, 2503, 13, 12384, 9132, 13, 785, 14, 12947, 14, 12947, 62, 43420, 14, 12286, 13, 31740, 30, 22766, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 12384, 9132, 8, 628, 628, 198, 198, 4299, 299, 20760, 999, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 968, 1971, 3782, 357, 5450, 1378, 2503, 13, 3281, 22355, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 3281, 22355, 28, 69, 6, 5450, 1378, 2503, 13, 3281, 22355, 13, 785, 14, 12947, 30, 22766, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 3281, 22355, 8, 628, 628, 198, 198, 4299, 269, 20471, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 8100, 357, 5450, 1378, 28736, 13, 66, 20471, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 66, 20471, 28, 69, 6, 5450, 1378, 28736, 13, 66, 20471, 13, 785, 14, 12947, 30, 80, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 66, 20471, 8, 198, 197, 198, 197, 628, 198, 2, 40480, 10687, 287, 10628, 12, 657, 13, 16, 13, 17, 357, 1129, 14, 486, 14, 1238, 2481, 8, 389, 2174, 21912, 628, 198, 4299, 33084, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 33084, 357, 5450, 1378, 12567, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 12567, 2625, 5450, 1378, 12567, 13, 785, 14, 12947, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 12567, 8, 628, 628, 198, 198, 4299, 4017, 380, 321, 62, 12384, 1706, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 4017, 380, 321, 62, 12384, 1706, 357, 5450, 1378, 2503, 13, 647, 380, 321, 12, 12384, 1706, 13, 785, 14, 67, 14188, 34729, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 647, 380, 321, 62, 12384, 1706, 28, 69, 1, 5450, 1378, 2503, 13, 647, 380, 321, 12, 12384, 1706, 13, 785, 14, 67, 14188, 14, 90, 5239, 36786, 198, 197, 198, 197, 9654, 7, 647, 380, 321, 62, 12384, 1706, 8, 628, 628, 198, 198, 4299, 983, 50235, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 983, 50235, 357, 5450, 1378, 2503, 13, 6057, 50235, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 6057, 50235, 28, 69, 6, 5450, 1378, 2503, 13, 6057, 50235, 13, 785, 14, 12947, 30, 12947, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 6057, 50235, 8, 628, 628, 198, 198, 4299, 4580, 4215, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 5413, 357, 5450, 1378, 2503, 13, 40485, 13, 785, 14, 268, 12, 259, 34729, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 40485, 28, 69, 1, 5450, 1378, 2503, 13, 40485, 13, 785, 14, 268, 12, 259, 14, 12947, 14, 20274, 13, 31740, 30, 90, 5239, 36786, 198, 197, 198, 197, 9654, 7, 40485, 8, 628, 628, 198, 198, 4299, 2496, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 2496, 357, 5450, 1378, 2503, 13, 16793, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 16793, 28, 69, 6, 5450, 1378, 2503, 13, 16793, 13, 785, 14, 82, 30, 12947, 40596, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 16793, 8, 628, 628, 198, 198, 4299, 3488, 276, 538, 313, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 3488, 276, 538, 313, 357, 5450, 1378, 2503, 13, 71, 12657, 538, 313, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 71, 12657, 538, 313, 28, 69, 1, 5450, 1378, 2503, 13, 71, 12657, 538, 313, 13, 785, 14, 82, 14, 90, 5239, 36786, 198, 197, 198, 197, 9654, 7, 71, 12657, 538, 313, 8, 628, 628, 198, 198, 4299, 299, 4449, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 37483, 357, 5450, 1378, 12947, 13, 37373, 13, 9567, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 37373, 28, 69, 1, 5450, 1378, 12947, 13, 37373, 13, 9567, 14, 12947, 30, 40477, 23, 28, 4, 36, 17, 4, 24, 34, 4, 6052, 5, 2001, 49826, 28, 37373, 5, 22766, 34758, 5239, 92, 5, 41509, 28, 18243, 1, 198, 197, 198, 197, 9654, 7, 37373, 8, 628, 628, 198, 198, 4299, 686, 926, 298, 296, 15048, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 371, 4728, 4186, 15048, 357, 5450, 1378, 2503, 13, 305, 926, 298, 296, 15048, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 305, 926, 298, 296, 15048, 28, 69, 1, 5450, 1378, 2503, 13, 305, 926, 298, 296, 15048, 13, 785, 14, 12947, 30, 12947, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 305, 926, 298, 296, 15048, 8, 628, 628, 198, 198, 4299, 38964, 1616, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 2264, 528, 1616, 357, 5450, 1378, 421, 528, 1616, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 421, 528, 1616, 28, 69, 1, 5450, 1378, 421, 528, 1616, 13, 785, 14, 32796, 14, 90, 5239, 92, 30487, 198, 197, 198, 197, 9654, 7, 421, 528, 1616, 8, 628, 628, 198, 198, 4299, 3975, 6138, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 9347, 6138, 357, 5450, 1378, 2503, 13, 8899, 6138, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 8899, 6138, 28, 69, 1, 5450, 1378, 2503, 13, 8899, 6138, 13, 785, 14, 12947, 14, 43420, 30, 22766, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 8899, 6138, 8, 628, 628, 198, 198, 4299, 275, 799, 1236, 3970, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 46693, 3970, 357, 5450, 1378, 2503, 13, 65, 799, 1236, 3970, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 65, 799, 1236, 3970, 28, 69, 1, 5450, 1378, 2503, 13, 65, 799, 1236, 3970, 13, 785, 14, 12947, 30, 22766, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 65, 799, 1236, 3970, 8, 628, 628, 198, 198, 4299, 1597, 1040, 1304, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 7320, 22167, 357, 5450, 1378, 2503, 13, 22680, 1040, 1304, 13, 259, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 22680, 1040, 1304, 28, 69, 1, 5450, 1378, 2503, 13, 22680, 1040, 1304, 13, 259, 14, 12947, 20274, 13, 46406, 30, 22766, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 22680, 1040, 1304, 8, 628, 628, 198, 198, 4299, 22155, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 28261, 357, 5450, 1378, 2503, 13, 67, 14188, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 67, 14188, 28, 69, 1, 5450, 1378, 2503, 13, 67, 14188, 13, 785, 14, 25367, 325, 14, 90, 5239, 92, 14, 82, 28, 83, 1, 198, 197, 198, 197, 9654, 7, 67, 14188, 8, 628, 628, 198, 198, 4299, 1976, 359, 322, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 1168, 359, 322, 357, 5450, 1378, 2503, 13, 89, 359, 322, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 89, 359, 322, 28, 69, 1, 5450, 1378, 2503, 13, 89, 359, 322, 13, 785, 14, 71, 2586, 14, 90, 5239, 92, 30487, 198, 197, 198, 197, 9654, 7, 89, 359, 322, 8, 628, 628, 198, 198, 4299, 743, 420, 2815, 291, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 1737, 420, 2815, 291, 357, 5450, 1378, 2503, 13, 11261, 420, 2815, 291, 13, 2398, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 11261, 420, 2815, 291, 28, 69, 6, 5450, 1378, 2503, 13, 11261, 420, 2815, 291, 13, 2398, 14, 12947, 14, 12947, 12, 43420, 30, 80, 34758, 5239, 92, 6, 198, 197, 198, 197, 9654, 7, 11261, 420, 2815, 291, 8, 628, 628, 198, 198, 4299, 1266, 17846, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 6705, 17846, 357, 5450, 1378, 2503, 13, 13466, 17846, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 13466, 17846, 28, 69, 1, 5450, 1378, 2503, 13, 13466, 17846, 13, 785, 14, 15654, 14, 12947, 7700, 13, 73, 2777, 30, 301, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 13466, 17846, 8, 628, 628, 198, 198, 4299, 331, 12992, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 16551, 357, 5450, 1378, 259, 13, 12947, 13, 40774, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 40774, 28, 69, 1, 5450, 1378, 259, 13, 12947, 13, 40774, 13, 785, 14, 12947, 30, 79, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 40774, 8, 628, 628, 198, 198, 4299, 514, 265, 4348, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 4916, 6288, 357, 5450, 1378, 2503, 13, 37937, 4348, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 37937, 4348, 28, 69, 1, 5450, 1378, 2503, 13, 37937, 4348, 13, 785, 14, 12947, 20924, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 37937, 4348, 8, 628, 628, 198, 198, 4299, 3315, 3605, 301, 4348, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 8366, 3000, 6288, 357, 5450, 1378, 2503, 13, 41693, 3605, 301, 4348, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 41693, 3605, 301, 4348, 28, 69, 1, 5450, 1378, 2503, 13, 41693, 3605, 301, 4348, 13, 785, 14, 12947, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 41693, 3605, 301, 4348, 8, 628, 628, 198, 198, 4299, 7876, 62, 67, 14188, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 14665, 28261, 357, 5450, 1378, 2503, 13, 333, 3903, 14188, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 32679, 62, 67, 14188, 2625, 5450, 1378, 2503, 13, 333, 3903, 14188, 13, 785, 14, 13086, 13, 10121, 30, 4354, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 32679, 62, 67, 14188, 8, 628, 628, 198, 198, 4299, 514, 265, 4348, 62, 12947, 7, 5239, 2599, 198, 197, 198, 197, 198, 197, 37811, 198, 197, 18243, 319, 4916, 6288, 357, 5450, 1378, 2503, 13, 385, 10827, 13, 785, 8, 198, 197, 198, 197, 48944, 198, 197, 32284, 198, 197, 198, 197, 5239, 21912, 383, 12405, 543, 345, 765, 284, 2989, 546, 357, 2536, 8, 198, 197, 198, 197, 37811, 198, 197, 198, 197, 385, 272, 15515, 28, 69, 1, 5450, 1378, 2503, 13, 385, 10827, 13, 785, 14, 12947, 30, 80, 34758, 5239, 36786, 198, 197, 198, 197, 9654, 7, 385, 272, 15515, 8, 628, 628, 628, 628, 198 ]
2.624035
6,216
import os, sys, shutil import hashlib sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) from common.vars import * from common.MIME import * def get_file_size(file_name: str, human_readable: bool = True): """ Get file in size in given unit like KB, MB or GB :param file_name: :param human_readable: :return: """ size = os.path.getsize(file_name) if human_readable is False: return size elif size > (1024*1024*1024): return '{:.2f} Gb'.format(size/(1024*1024*1024)) elif size > (1024*1024): return '{:.2f} Mb'.format(size/(1024*1024)) elif size > 1024: return '{:.2f} Kb'.format(size/1024) else: return '{} bytes'.format(size) def list_directory(directory_path: str, expected_extension: str = None): """ Recursive function for listing files in a folder and his sub folders :param directory_path: path of the parsed dir :param expected_extension: list of extension separated by | :return: list(str) """ file_list = list() for root, directories, files in os.walk(directory_path, topdown=False): for name in files: full_path = os.path.join(root, name) if expected_extension is not None: if re.search("\\.({})$".format(expected_extension), name) is None: continue file_list.append(full_path) if expected_extension is None: for name in directories: file_list.append(os.path.join(root, name)) return file_list
[ 11748, 28686, 11, 25064, 11, 4423, 346, 198, 11748, 12234, 8019, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 35514, 198, 6738, 2219, 13, 85, 945, 1330, 1635, 198, 6738, 2219, 13, 44, 12789, 1330, 1635, 628, 198, 4299, 651, 62, 7753, 62, 7857, 7, 7753, 62, 3672, 25, 965, 11, 1692, 62, 46155, 25, 20512, 796, 6407, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 2393, 287, 2546, 287, 1813, 4326, 588, 14204, 11, 10771, 393, 13124, 628, 220, 220, 220, 1058, 17143, 2393, 62, 3672, 25, 198, 220, 220, 220, 1058, 17143, 1692, 62, 46155, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2546, 796, 28686, 13, 6978, 13, 11407, 1096, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 611, 1692, 62, 46155, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2546, 198, 220, 220, 220, 1288, 361, 2546, 1875, 357, 35500, 9, 35500, 9, 35500, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 90, 25, 13, 17, 69, 92, 402, 65, 4458, 18982, 7, 7857, 29006, 35500, 9, 35500, 9, 35500, 4008, 198, 220, 220, 220, 1288, 361, 2546, 1875, 357, 35500, 9, 35500, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 90, 25, 13, 17, 69, 92, 40001, 4458, 18982, 7, 7857, 29006, 35500, 9, 35500, 4008, 198, 220, 220, 220, 1288, 361, 2546, 1875, 28119, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 90, 25, 13, 17, 69, 92, 509, 65, 4458, 18982, 7, 7857, 14, 35500, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 90, 92, 9881, 4458, 18982, 7, 7857, 8, 628, 198, 198, 4299, 1351, 62, 34945, 7, 34945, 62, 6978, 25, 965, 11, 2938, 62, 2302, 3004, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3311, 30753, 2163, 329, 13487, 3696, 287, 257, 9483, 290, 465, 850, 24512, 628, 220, 220, 220, 1058, 17143, 8619, 62, 6978, 25, 3108, 286, 262, 44267, 26672, 198, 220, 220, 220, 1058, 17143, 2938, 62, 2302, 3004, 25, 1351, 286, 7552, 11266, 416, 930, 198, 220, 220, 220, 1058, 7783, 25, 1351, 7, 2536, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2393, 62, 4868, 796, 1351, 3419, 198, 220, 220, 220, 329, 6808, 11, 29196, 11, 3696, 287, 28686, 13, 11152, 7, 34945, 62, 6978, 11, 1353, 2902, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2938, 62, 2302, 3004, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 302, 13, 12947, 7203, 6852, 12195, 90, 30072, 3, 1911, 18982, 7, 40319, 62, 2302, 3004, 828, 1438, 8, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 13, 33295, 7, 12853, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2938, 62, 2302, 3004, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 29196, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 1438, 4008, 198, 220, 220, 220, 1441, 2393, 62, 4868, 628, 628, 628, 628, 628 ]
2.387387
666
import numpy as np import os, sys import argparse from tqdm import tqdm import paddle.nn as nn import paddle from x2paddle.torch2paddle import DataLoader import paddle.nn.functional as F sys.path.append('/home/aistudio') import scipy.io as sio from utils.loader import get_validation_data, get_testA_data import utils from model import UNet from model import Uformer from model import Uformer_Cross from model import Uformer_CatCross use_gpu = True paddle.set_device('gpu:0') if use_gpu else paddle.get_device('cpu') # from skimage import img_as_float32 # from skimage import img_as_ubyte # from skimage.metrics import peak_signal_noise_ratio as psnr_loss # from skimage.metrics import structural_similarity as ssim_loss parser = argparse.ArgumentParser(description=\ 'RGB denoising evaluation on the validation set of SIDD') parser.add_argument('--input_dir', default=\ '/home/aistudio/demoire', type=str, help=\ 'Directory of validation images') parser.add_argument('--result_dir', default='uformer/result_B', type=str, help='Directory for results') parser.add_argument('--weights', default= '/home/aistudio/uformer/log/Uformer_/model_B/model_best.pdiparams', type=str, help=\ 'Path to weights') parser.add_argument('--gpus', default='0', type=str, help=\ 'CUDA_VISIBLE_DEVICES') parser.add_argument('--arch', default='Uformer', type=str, help='arch') parser.add_argument('--batch_size', default=1, type=int, help=\ 'Batch size for dataloader') parser.add_argument('--save_images', action='store_true', help=\ 'Save denoised images in result directory', default=True) parser.add_argument('--embed_dim', type=int, default=32, help=\ 'number of data loading workers') parser.add_argument('--win_size', type=int, default=8, help=\ 'number of data loading workers') parser.add_argument('--token_projection', type=str, default='linear', help=\ 'linear/conv token projection') parser.add_argument('--token_mlp', type=str, default='leff', help=\ 'ffn/leff token mlp') parser.add_argument('--vit_dim', type=int, default=256, help='vit hidden_dim') parser.add_argument('--vit_depth', type=int, default=12, help='vit depth') parser.add_argument('--vit_nheads', type=int, default=8, help='vit hidden_dim') parser.add_argument('--vit_mlp_dim', type=int, default=512, help='vit mlp_dim') parser.add_argument('--vit_patch_size', type=int, default=16, help=\ 'vit patch_size') parser.add_argument('--global_skip', action='store_true', default=False, help='global skip connection') parser.add_argument('--local_skip', action='store_true', default=False, help='local skip connection') parser.add_argument('--vit_share', action='store_true', default=False, help ='share vit module') parser.add_argument('--train_ps', type=int, default=256, help=\ 'patch size of training sample') args = parser.parse_args() os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus utils.mkdir(args.result_dir) testA_dataset = get_testA_data(args.input_dir) testA_loader = DataLoader(dataset=testA_dataset, batch_size=1, shuffle=False, num_workers=0, drop_last=False) model_restoration= utils.get_arch(args) # model_restoration = torch.nn.DataParallel(model_restoration) utils.load_checkpoint(model_restoration,args.weights) print("===>Testing using weights: ", args.weights) model_restoration.cuda() model_restoration.eval() with paddle.no_grad(): psnr_val_rgb = [] ssim_val_rgb = [] for ii, data_test in enumerate(tqdm(testA_loader), 0): rgb_noisy = data_test[0] filenames = data_test[1] # print(filenames) h, w = rgb_noisy.shape[2], rgb_noisy.shape[3] rgb_restored = model_restoration(rgb_noisy) # print(rgb_restored) rgb_restored = rgb_restored * 255 rgb_restored = paddle.clip(rgb_restored,0,255).cpu().numpy().squeeze().transpose((1,2,0)) if args.save_images: utils.save_img(os.path.join(args.result_dir,filenames[0]), rgb_restored)
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 11, 25064, 198, 11748, 1822, 29572, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 39517, 13, 20471, 355, 299, 77, 198, 11748, 39517, 198, 6738, 2124, 17, 79, 37382, 13, 13165, 354, 17, 79, 37382, 1330, 6060, 17401, 198, 11748, 39517, 13, 20471, 13, 45124, 355, 376, 198, 17597, 13, 6978, 13, 33295, 10786, 14, 11195, 14, 64, 396, 463, 952, 11537, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 198, 6738, 3384, 4487, 13, 29356, 1330, 651, 62, 12102, 341, 62, 7890, 11, 651, 62, 9288, 32, 62, 7890, 198, 11748, 3384, 4487, 198, 6738, 2746, 1330, 4725, 316, 198, 6738, 2746, 1330, 471, 16354, 198, 6738, 2746, 1330, 471, 16354, 62, 21544, 198, 6738, 2746, 1330, 471, 16354, 62, 21979, 21544, 198, 1904, 62, 46999, 796, 6407, 198, 79, 37382, 13, 2617, 62, 25202, 10786, 46999, 25, 15, 11537, 611, 779, 62, 46999, 2073, 39517, 13, 1136, 62, 25202, 10786, 36166, 11537, 198, 198, 2, 422, 1341, 9060, 1330, 33705, 62, 292, 62, 22468, 2624, 198, 2, 422, 1341, 9060, 1330, 33705, 62, 292, 62, 549, 88, 660, 198, 2, 422, 1341, 9060, 13, 4164, 10466, 1330, 9103, 62, 12683, 282, 62, 3919, 786, 62, 10366, 952, 355, 279, 16184, 81, 62, 22462, 198, 2, 422, 1341, 9060, 13, 4164, 10466, 1330, 13204, 62, 38610, 414, 355, 264, 14323, 62, 22462, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 28, 59, 198, 220, 220, 220, 705, 36982, 2853, 78, 1710, 12660, 319, 262, 21201, 900, 286, 311, 2389, 35, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 15414, 62, 15908, 3256, 4277, 28, 59, 198, 220, 220, 220, 31051, 11195, 14, 64, 396, 463, 952, 14, 9536, 32177, 3256, 2099, 28, 2536, 11, 1037, 28, 59, 198, 220, 220, 220, 705, 43055, 286, 21201, 4263, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 20274, 62, 15908, 3256, 4277, 11639, 84, 16354, 14, 20274, 62, 33, 3256, 198, 220, 220, 220, 2099, 28, 2536, 11, 1037, 11639, 43055, 329, 2482, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 43775, 3256, 4277, 28, 198, 220, 220, 220, 31051, 11195, 14, 64, 396, 463, 952, 14, 84, 16354, 14, 6404, 14, 52, 16354, 62, 14, 19849, 62, 33, 14, 19849, 62, 13466, 13, 30094, 541, 283, 4105, 3256, 2099, 28, 2536, 11, 1037, 28, 59, 198, 220, 220, 220, 705, 15235, 284, 19590, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 31197, 385, 3256, 4277, 11639, 15, 3256, 2099, 28, 2536, 11, 1037, 28, 59, 198, 220, 220, 220, 705, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 998, 3256, 4277, 11639, 52, 16354, 3256, 2099, 28, 2536, 11, 1037, 11639, 998, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 43501, 62, 7857, 3256, 4277, 28, 16, 11, 2099, 28, 600, 11, 1037, 28, 59, 198, 220, 220, 220, 705, 33, 963, 2546, 329, 4818, 282, 1170, 263, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 21928, 62, 17566, 3256, 2223, 11639, 8095, 62, 7942, 3256, 1037, 28, 59, 198, 220, 220, 220, 705, 16928, 2853, 78, 1417, 4263, 287, 1255, 8619, 3256, 4277, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 20521, 62, 27740, 3256, 2099, 28, 600, 11, 4277, 28, 2624, 11, 1037, 28, 59, 198, 220, 220, 220, 705, 17618, 286, 1366, 11046, 3259, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 5404, 62, 7857, 3256, 2099, 28, 600, 11, 4277, 28, 23, 11, 1037, 28, 59, 198, 220, 220, 220, 705, 17618, 286, 1366, 11046, 3259, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 30001, 62, 16302, 295, 3256, 2099, 28, 2536, 11, 4277, 11639, 29127, 3256, 1037, 28, 59, 198, 220, 220, 220, 705, 29127, 14, 42946, 11241, 20128, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 30001, 62, 4029, 79, 3256, 2099, 28, 2536, 11, 4277, 11639, 293, 487, 3256, 1037, 28, 59, 198, 220, 220, 220, 705, 487, 77, 14, 293, 487, 11241, 25962, 79, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 85, 270, 62, 27740, 3256, 2099, 28, 600, 11, 4277, 28, 11645, 11, 1037, 11639, 85, 270, 7104, 62, 27740, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 85, 270, 62, 18053, 3256, 2099, 28, 600, 11, 4277, 28, 1065, 11, 1037, 11639, 85, 270, 6795, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 85, 270, 62, 77, 16600, 3256, 2099, 28, 600, 11, 4277, 28, 23, 11, 1037, 11639, 85, 270, 7104, 62, 27740, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 85, 270, 62, 4029, 79, 62, 27740, 3256, 2099, 28, 600, 11, 4277, 28, 25836, 11, 1037, 11639, 85, 270, 25962, 79, 62, 27740, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 85, 270, 62, 17147, 62, 7857, 3256, 2099, 28, 600, 11, 4277, 28, 1433, 11, 1037, 28, 59, 198, 220, 220, 220, 705, 85, 270, 8529, 62, 7857, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 20541, 62, 48267, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 11639, 20541, 14267, 4637, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 12001, 62, 48267, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 11639, 12001, 14267, 4637, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 85, 270, 62, 20077, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 1037, 198, 220, 220, 220, 796, 6, 20077, 9090, 8265, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 27432, 62, 862, 3256, 2099, 28, 600, 11, 4277, 28, 11645, 11, 1037, 28, 59, 198, 220, 220, 220, 705, 17147, 2546, 286, 3047, 6291, 11537, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 418, 13, 268, 2268, 17816, 43633, 5631, 62, 7206, 27389, 62, 12532, 1137, 20520, 796, 705, 5662, 40, 62, 45346, 62, 2389, 6, 198, 418, 13, 268, 2268, 17816, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 20520, 796, 26498, 13, 31197, 385, 198, 26791, 13, 28015, 15908, 7, 22046, 13, 20274, 62, 15908, 8, 198, 198, 9288, 32, 62, 19608, 292, 316, 796, 651, 62, 9288, 32, 62, 7890, 7, 22046, 13, 15414, 62, 15908, 8, 198, 9288, 32, 62, 29356, 796, 6060, 17401, 7, 19608, 292, 316, 28, 9288, 32, 62, 19608, 292, 316, 11, 15458, 62, 7857, 28, 16, 11, 36273, 28, 25101, 11, 997, 62, 22896, 28, 15, 11, 4268, 62, 12957, 28, 25101, 8, 198, 198, 19849, 62, 2118, 6944, 28, 3384, 4487, 13, 1136, 62, 998, 7, 22046, 8, 198, 2, 2746, 62, 2118, 6944, 796, 28034, 13, 20471, 13, 6601, 10044, 29363, 7, 19849, 62, 2118, 6944, 8, 198, 198, 26791, 13, 2220, 62, 9122, 4122, 7, 19849, 62, 2118, 6944, 11, 22046, 13, 43775, 8, 198, 4798, 7203, 855, 14804, 44154, 1262, 19590, 25, 33172, 26498, 13, 43775, 8, 198, 198, 19849, 62, 2118, 6944, 13, 66, 15339, 3419, 198, 19849, 62, 2118, 6944, 13, 18206, 3419, 198, 4480, 39517, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 279, 16184, 81, 62, 2100, 62, 81, 22296, 796, 17635, 198, 220, 220, 220, 264, 14323, 62, 2100, 62, 81, 22296, 796, 17635, 198, 220, 220, 220, 329, 21065, 11, 1366, 62, 9288, 287, 27056, 378, 7, 83, 80, 36020, 7, 9288, 32, 62, 29356, 828, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 3919, 13560, 796, 1366, 62, 9288, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1226, 268, 1047, 796, 1366, 62, 9288, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 10379, 268, 1047, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 11, 266, 796, 46140, 62, 3919, 13560, 13, 43358, 58, 17, 4357, 46140, 62, 3919, 13560, 13, 43358, 58, 18, 60, 628, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 2118, 1850, 796, 2746, 62, 2118, 6944, 7, 81, 22296, 62, 3919, 13560, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 81, 22296, 62, 2118, 1850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 2118, 1850, 796, 46140, 62, 2118, 1850, 1635, 14280, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 2118, 1850, 796, 39517, 13, 15036, 7, 81, 22296, 62, 2118, 1850, 11, 15, 11, 13381, 737, 36166, 22446, 77, 32152, 22446, 16485, 1453, 2736, 22446, 7645, 3455, 19510, 16, 11, 17, 11, 15, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21928, 62, 17566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 21928, 62, 9600, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 20274, 62, 15908, 11, 10379, 268, 1047, 58, 15, 46570, 46140, 62, 2118, 1850, 8, 198 ]
2.683367
1,497
#!/usr/bin/env python3 import argparse import os import time os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" import connexion import logging # import umap from flask import send_from_directory, redirect, json import numpy as np from sklearn.decomposition import PCA from sklearn.manifold import MDS, TSNE from copy import deepcopy from s2s.lru import LRU from s2s.project import S2SProject from index.annoyVectorIndex import AnnoyVectorIndex __author__ = 'Hendrik Strobelt, Sebastian Gehrmann, Alexander M. Rush' CONFIG_FILE_NAME = 's2s.yaml' projects = {} cache_translate = LRU(50) # cache_neighbors = LRU(20) cache_compare = LRU(50) pre_cached = [] logging.basicConfig(level=logging.INFO) app = connexion.App(__name__) parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--debug", action='store_true', help=' Debug mode') parser.add_argument("--port", default="8080", help="Port to run the app. ") # parser.add_argument("--nocache", default=False) parser.add_argument("--preload", action='store_true', help="Preload indices.") parser.add_argument("--cache", type=str, default='', help="Preload cache from dir") parser.add_argument("--dir", type=str, default=os.path.abspath('data'), help='Path to project') # parser.add_argument('-api', type=str, default='pytorch', # choices=['pytorch', 'lua'], # help="""The API to use.""") args = parser.parse_args() print(args) # global model # if args.api == "pytorch": # # model = ONMTmodelAPI("model_api/data/ende_acc_15.72_ppl_912.74_e9.pt") # model = ONMTmodelAPI("model_api/data/ende_acc_46.86_ppl_21.19_e12.pt") # else: # model = ONMTLuaModelAPI() # just a simple flask route @app.route('/') # send everything from client as static content @app.route('/client/<path:path>') def send_static_client(path): """ serves all files from ./client/ to ``/client/<path:path>`` :param path: path from api call """ return send_from_directory('client_dist/', path) # noinspection SpellCheckingInspection # ------ API routing as defined in swagger.yaml (connexion) # def compare_translation(**request): # pivot = request["in"] # compare = request["compare"] # neighbors = request.get('neighbors', []) # # current_project = list(projects.values())[0] # model = current_project.model # # # trans_all = model.translate(in_text=[pivot]+compare) # # pivot_res = translate(current_project, [pivot])[0] # pivot_attn = extract_attn(pivot_res) # pivot_attn_l = pivot_attn.shape[0] # # # compare.append(pivot) # compare_t = translate(current_project, compare) # # res = [] # index_orig = 0 # for cc_t_key in compare_t: # # cc_t = model.translate(in_text=[cc])[0] # cc_t = compare_t[cc_t_key] # cc_attn = extract_attn(cc_t) # dist = 10 # if cc_attn.shape[0] > 0: # max_0 = max(cc_attn.shape[0], pivot_attn.shape[0]) # max_1 = max(cc_attn.shape[1], pivot_attn.shape[1]) # # cc__a = np.zeros(shape=(max_0, max_1)) # cc__a[:cc_attn.shape[0], :cc_attn.shape[1]] = cc_attn # # cc__b = np.zeros(shape=(max_0, max_1)) # cc__b[:pivot_attn.shape[0], :pivot_attn.shape[1]] = pivot_attn # # dist = np.linalg.norm(cc__a - cc__b) # # res.append({ # "sentence": extract_sentence(cc_t), # "attn": extract_attn(cc_t).tolist(), # "attn_padding": (cc__a - cc__b).tolist(), # "orig": compare[index_orig], # "dist": dist # }) # index_orig += 1 # # return {"compare": res, "pivot": extract_sentence(pivot_res)} P_METHODS = { "pca": PCA(n_components=2, ), "mds": MDS(), "tsne": TSNE(init='pca'), # 'umap': umap.UMAP(metric='cosine'), "none": lambda x: x } def find_and_load_project(directory): """ searches for CONFIG_FILE_NAME in all subdirectories of directory and creates data handlers for all of them :param directory: scan directory :return: null """ project_dirs = [] for root, dirs, files in os.walk(directory): if CONFIG_FILE_NAME in files: project_dirs.append(os.path.abspath(root)) i = 0 for p_dir in project_dirs: dh_id = os.path.split(p_dir)[1] cf = os.path.join(p_dir, CONFIG_FILE_NAME) p = S2SProject(directory=p_dir, config_file=cf) if args.preload: p.preload_indices(['encoder', 'decoder']) projects[dh_id] = p i += 1 app.add_api('swagger.yaml') if __name__ == '__main__': args = parser.parse_args() app.run(port=int(args.port), debug=args.debug, host="0.0.0.0") else: args, _ = parser.parse_known_args() find_and_load_project(args.dir) preload_cache(args.cache)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 640, 198, 198, 418, 13, 268, 2268, 14692, 42, 7378, 62, 35, 52, 31484, 6158, 62, 40347, 62, 11380, 8973, 796, 366, 5446, 8924, 1, 198, 11748, 369, 12413, 295, 198, 11748, 18931, 198, 198, 2, 1330, 334, 8899, 198, 6738, 42903, 1330, 3758, 62, 6738, 62, 34945, 11, 18941, 11, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 12501, 296, 9150, 1330, 4217, 32, 198, 6738, 1341, 35720, 13, 805, 361, 727, 1330, 337, 5258, 11, 26136, 12161, 198, 198, 6738, 4866, 1330, 2769, 30073, 198, 198, 6738, 264, 17, 82, 13, 75, 622, 1330, 37491, 52, 198, 6738, 264, 17, 82, 13, 16302, 1330, 311, 17, 50, 16775, 198, 6738, 6376, 13, 1236, 726, 38469, 15732, 1330, 5506, 726, 38469, 15732, 198, 198, 834, 9800, 834, 796, 705, 39, 437, 12602, 520, 22609, 2120, 11, 26190, 2269, 11840, 9038, 11, 10009, 337, 13, 13063, 6, 198, 10943, 16254, 62, 25664, 62, 20608, 796, 705, 82, 17, 82, 13, 88, 43695, 6, 198, 42068, 796, 23884, 198, 23870, 62, 7645, 17660, 796, 37491, 52, 7, 1120, 8, 198, 2, 12940, 62, 710, 394, 32289, 796, 37491, 52, 7, 1238, 8, 198, 23870, 62, 5589, 533, 796, 37491, 52, 7, 1120, 8, 198, 3866, 62, 66, 2317, 796, 17635, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 8, 198, 1324, 796, 369, 12413, 295, 13, 4677, 7, 834, 3672, 834, 8, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 1296, 1436, 62, 4871, 28, 853, 29572, 13, 28100, 1713, 7469, 13185, 22087, 8479, 1436, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 24442, 1600, 2223, 11639, 8095, 62, 7942, 3256, 1037, 11639, 31687, 4235, 11537, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 634, 1600, 4277, 2625, 1795, 1795, 1600, 1037, 2625, 13924, 284, 1057, 262, 598, 13, 366, 8, 198, 2, 30751, 13, 2860, 62, 49140, 7203, 438, 77, 420, 4891, 1600, 4277, 28, 25101, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 3866, 2220, 1600, 2223, 11639, 8095, 62, 7942, 3256, 1037, 2625, 6719, 2220, 36525, 19570, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 23870, 1600, 2099, 28, 2536, 11, 4277, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 6719, 2220, 12940, 422, 26672, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 15908, 1600, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 418, 13, 6978, 13, 397, 2777, 776, 10786, 7890, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15235, 284, 1628, 11537, 198, 198, 2, 30751, 13, 2860, 62, 49140, 10786, 12, 15042, 3256, 2099, 28, 2536, 11, 4277, 11639, 9078, 13165, 354, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 17816, 9078, 13165, 354, 3256, 705, 40211, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 464, 7824, 284, 779, 32203, 4943, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 4798, 7, 22046, 8, 628, 198, 2, 3298, 2746, 198, 2, 611, 26498, 13, 15042, 6624, 366, 9078, 13165, 354, 1298, 198, 2, 220, 220, 220, 220, 1303, 2746, 796, 6177, 13752, 19849, 17614, 7203, 19849, 62, 15042, 14, 7890, 14, 38396, 62, 4134, 62, 1314, 13, 4761, 62, 381, 75, 62, 24, 1065, 13, 4524, 62, 68, 24, 13, 457, 4943, 198, 2, 220, 220, 220, 220, 2746, 796, 6177, 13752, 19849, 17614, 7203, 19849, 62, 15042, 14, 7890, 14, 38396, 62, 4134, 62, 3510, 13, 4521, 62, 381, 75, 62, 2481, 13, 1129, 62, 68, 1065, 13, 457, 4943, 198, 2, 2073, 25, 198, 2, 220, 220, 220, 220, 2746, 796, 6177, 13752, 36127, 17633, 17614, 3419, 628, 198, 2, 655, 257, 2829, 42903, 6339, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 2, 3758, 2279, 422, 5456, 355, 9037, 2695, 198, 31, 1324, 13, 38629, 10786, 14, 16366, 14, 27, 6978, 25, 6978, 29, 11537, 198, 4299, 3758, 62, 12708, 62, 16366, 7, 6978, 2599, 198, 220, 220, 220, 37227, 9179, 477, 3696, 422, 24457, 16366, 14, 284, 7559, 14, 16366, 14, 27, 6978, 25, 6978, 29, 15506, 628, 220, 220, 220, 1058, 17143, 3108, 25, 3108, 422, 40391, 869, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 3758, 62, 6738, 62, 34945, 10786, 16366, 62, 17080, 14, 3256, 3108, 8, 628, 198, 198, 2, 645, 1040, 14978, 11988, 9787, 278, 818, 31308, 628, 628, 198, 198, 2, 40103, 7824, 28166, 355, 5447, 287, 1509, 7928, 13, 88, 43695, 357, 1102, 12413, 295, 8, 628, 628, 198, 198, 2, 825, 8996, 62, 41519, 7, 1174, 25927, 2599, 198, 2, 220, 220, 220, 220, 30355, 796, 2581, 14692, 259, 8973, 198, 2, 220, 220, 220, 220, 8996, 796, 2581, 14692, 5589, 533, 8973, 198, 2, 220, 220, 220, 220, 12020, 796, 2581, 13, 1136, 10786, 710, 394, 32289, 3256, 685, 12962, 198, 2, 198, 2, 220, 220, 220, 220, 1459, 62, 16302, 796, 1351, 7, 42068, 13, 27160, 28955, 58, 15, 60, 198, 2, 220, 220, 220, 220, 2746, 796, 1459, 62, 16302, 13, 19849, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 1007, 62, 439, 796, 2746, 13, 7645, 17660, 7, 259, 62, 5239, 41888, 79, 45785, 48688, 5589, 533, 8, 198, 2, 198, 2, 220, 220, 220, 220, 30355, 62, 411, 796, 15772, 7, 14421, 62, 16302, 11, 685, 79, 45785, 12962, 58, 15, 60, 198, 2, 220, 220, 220, 220, 30355, 62, 1078, 77, 796, 7925, 62, 1078, 77, 7, 79, 45785, 62, 411, 8, 198, 2, 220, 220, 220, 220, 30355, 62, 1078, 77, 62, 75, 796, 30355, 62, 1078, 77, 13, 43358, 58, 15, 60, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 8996, 13, 33295, 7, 79, 45785, 8, 198, 2, 220, 220, 220, 220, 8996, 62, 83, 796, 15772, 7, 14421, 62, 16302, 11, 8996, 8, 198, 2, 198, 2, 220, 220, 220, 220, 581, 796, 17635, 198, 2, 220, 220, 220, 220, 6376, 62, 11612, 796, 657, 198, 2, 220, 220, 220, 220, 329, 36624, 62, 83, 62, 2539, 287, 8996, 62, 83, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 36624, 62, 83, 796, 2746, 13, 7645, 17660, 7, 259, 62, 5239, 41888, 535, 12962, 58, 15, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 36624, 62, 83, 796, 8996, 62, 83, 58, 535, 62, 83, 62, 2539, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 36624, 62, 1078, 77, 796, 7925, 62, 1078, 77, 7, 535, 62, 83, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 838, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36624, 62, 1078, 77, 13, 43358, 58, 15, 60, 1875, 657, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 15, 796, 3509, 7, 535, 62, 1078, 77, 13, 43358, 58, 15, 4357, 30355, 62, 1078, 77, 13, 43358, 58, 15, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 16, 796, 3509, 7, 535, 62, 1078, 77, 13, 43358, 58, 16, 4357, 30355, 62, 1078, 77, 13, 43358, 58, 16, 12962, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36624, 834, 64, 796, 45941, 13, 9107, 418, 7, 43358, 16193, 9806, 62, 15, 11, 3509, 62, 16, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36624, 834, 64, 58, 25, 535, 62, 1078, 77, 13, 43358, 58, 15, 4357, 1058, 535, 62, 1078, 77, 13, 43358, 58, 16, 11907, 796, 36624, 62, 1078, 77, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36624, 834, 65, 796, 45941, 13, 9107, 418, 7, 43358, 16193, 9806, 62, 15, 11, 3509, 62, 16, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36624, 834, 65, 58, 25, 79, 45785, 62, 1078, 77, 13, 43358, 58, 15, 4357, 1058, 79, 45785, 62, 1078, 77, 13, 43358, 58, 16, 11907, 796, 30355, 62, 1078, 77, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 535, 834, 64, 532, 36624, 834, 65, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 581, 13, 33295, 15090, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 594, 1298, 7925, 62, 34086, 594, 7, 535, 62, 83, 828, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1078, 77, 1298, 7925, 62, 1078, 77, 7, 535, 62, 83, 737, 83, 349, 396, 22784, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1078, 77, 62, 39231, 1298, 357, 535, 834, 64, 532, 36624, 834, 65, 737, 83, 349, 396, 22784, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11612, 1298, 8996, 58, 9630, 62, 11612, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17080, 1298, 1233, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 11612, 15853, 352, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 19779, 5589, 533, 1298, 581, 11, 366, 79, 45785, 1298, 7925, 62, 34086, 594, 7, 79, 45785, 62, 411, 38165, 628, 198, 47, 62, 49273, 50, 796, 1391, 198, 220, 220, 220, 366, 79, 6888, 1298, 4217, 32, 7, 77, 62, 5589, 3906, 28, 17, 11, 10612, 198, 220, 220, 220, 366, 9132, 82, 1298, 337, 5258, 22784, 198, 220, 220, 220, 366, 912, 710, 1298, 26136, 12161, 7, 15003, 11639, 79, 6888, 33809, 198, 220, 220, 220, 1303, 705, 388, 499, 10354, 334, 8899, 13, 5883, 2969, 7, 4164, 1173, 11639, 6966, 500, 33809, 198, 220, 220, 220, 366, 23108, 1298, 37456, 2124, 25, 2124, 198, 92, 628, 628, 628, 198, 198, 4299, 1064, 62, 392, 62, 2220, 62, 16302, 7, 34945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15455, 329, 25626, 62, 25664, 62, 20608, 287, 477, 850, 12942, 1749, 286, 8619, 198, 220, 220, 220, 290, 8075, 1366, 32847, 329, 477, 286, 606, 628, 220, 220, 220, 1058, 17143, 8619, 25, 9367, 8619, 198, 220, 220, 220, 1058, 7783, 25, 9242, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1628, 62, 15908, 82, 796, 17635, 198, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25626, 62, 25664, 62, 20608, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1628, 62, 15908, 82, 13, 33295, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 15763, 4008, 628, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 329, 279, 62, 15908, 287, 1628, 62, 15908, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 34590, 62, 312, 796, 28686, 13, 6978, 13, 35312, 7, 79, 62, 15908, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 30218, 796, 28686, 13, 6978, 13, 22179, 7, 79, 62, 15908, 11, 25626, 62, 25664, 62, 20608, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 311, 17, 50, 16775, 7, 34945, 28, 79, 62, 15908, 11, 4566, 62, 7753, 28, 12993, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 3866, 2220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 3866, 2220, 62, 521, 1063, 7, 17816, 12685, 12342, 3256, 705, 12501, 12342, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4493, 58, 34985, 62, 312, 60, 796, 279, 628, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 628, 198, 1324, 13, 2860, 62, 15042, 10786, 2032, 7928, 13, 88, 43695, 11537, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 598, 13, 5143, 7, 634, 28, 600, 7, 22046, 13, 634, 828, 14257, 28, 22046, 13, 24442, 11, 2583, 2625, 15, 13, 15, 13, 15, 13, 15, 4943, 198, 17772, 25, 198, 220, 220, 220, 26498, 11, 4808, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 3419, 198, 220, 220, 220, 1064, 62, 392, 62, 2220, 62, 16302, 7, 22046, 13, 15908, 8, 198, 220, 220, 220, 662, 2220, 62, 23870, 7, 22046, 13, 23870, 8, 198 ]
2.226577
2,220
#imports import pandas as pd import os import ast import sklearn as skl import sklearn.utils, sklearn.preprocessing, sklearn.decomposition, sklearn.svm import matplotlib.pyplot as plt import numpy as np import pylab import librosa import ffmpeg import audioread import sklearn import librosa.display import datetime import time import keras from keras.models import Model, Sequential from keras.layers import Input, Dense, Bidirectional, LSTM, Activation, GRU, Conv2D, concatenate, MaxPooling2D, Flatten, Embedding, Lambda, Reshape from keras.optimizers import Adam, RMSprop from keras import backend as K #plot_file(path) #function to plot spectrograms #Load and trim datasets to shread out useless info filePath = 'D:\\fma_metadata\\tracks.csv' df_tracks = pd.read_csv(filePath, index_col=0, header=[0, 1]) print(list(df_tracks)) filter = [('set', 'split'), ('set', 'subset') , ('track', 'genre_top')] df_sel = df_tracks[filter] df_sel = df_sel[df_sel[filter[1]]=='small'] df_sel['track_id'] = df_sel.index df_test = df_sel[df_sel[filter[0]]=='test'] df_valid = df_sel[df_sel[filter[0]]=='validation'] df_train = df_sel[df_sel[filter[0]]=='training'] print(df_sel.tail()) print(df_test.shape) print(df_test.head()) print( df_train.shape) print(df_train.head()) print(df_valid.shape) print(df_valid.head()) print(df_sel[filter[2]].value_counts()) #Build and train the model #creates training, testing and validation datasets. #concatenates fragmented datasets. # concatenate_datasets() #concatinate fragmented datasets build_and_train_model() # create_separate_datasets() #create training, testing and validation datasets
[ 2, 320, 3742, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 11748, 6468, 198, 198, 11748, 1341, 35720, 355, 1341, 75, 198, 11748, 1341, 35720, 13, 26791, 11, 1341, 35720, 13, 3866, 36948, 11, 1341, 35720, 13, 12501, 296, 9150, 11, 1341, 35720, 13, 82, 14761, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 279, 2645, 397, 198, 198, 11748, 9195, 4951, 64, 198, 198, 11748, 31246, 43913, 198, 11748, 40504, 382, 324, 198, 11748, 1341, 35720, 198, 11748, 9195, 4951, 64, 13, 13812, 198, 11748, 4818, 8079, 198, 11748, 640, 198, 198, 11748, 41927, 292, 198, 6738, 41927, 292, 13, 27530, 1330, 9104, 11, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 23412, 11, 360, 1072, 11, 43484, 4154, 282, 11, 406, 2257, 44, 11, 13144, 341, 11, 10863, 52, 11, 34872, 17, 35, 11, 1673, 36686, 378, 11, 5436, 27201, 278, 17, 35, 11, 1610, 41769, 11, 13302, 6048, 278, 11, 21114, 6814, 11, 1874, 71, 1758, 198, 198, 6738, 41927, 292, 13, 40085, 11341, 1330, 7244, 11, 371, 5653, 22930, 198, 6738, 41927, 292, 1330, 30203, 355, 509, 198, 198, 2, 29487, 62, 7753, 7, 6978, 8, 198, 2, 8818, 284, 7110, 5444, 3828, 9474, 628, 198, 198, 2, 8912, 290, 15797, 40522, 284, 427, 961, 503, 13894, 7508, 198, 7753, 15235, 796, 705, 35, 25, 6852, 69, 2611, 62, 38993, 6852, 46074, 13, 40664, 6, 198, 7568, 62, 46074, 796, 279, 67, 13, 961, 62, 40664, 7, 7753, 15235, 11, 6376, 62, 4033, 28, 15, 11, 13639, 41888, 15, 11, 352, 12962, 198, 4798, 7, 4868, 7, 7568, 62, 46074, 4008, 198, 24455, 796, 685, 10786, 2617, 3256, 705, 35312, 33809, 19203, 2617, 3256, 705, 7266, 2617, 11537, 837, 19203, 11659, 3256, 705, 35850, 62, 4852, 11537, 60, 198, 7568, 62, 741, 796, 47764, 62, 46074, 58, 24455, 60, 198, 7568, 62, 741, 796, 47764, 62, 741, 58, 7568, 62, 741, 58, 24455, 58, 16, 11907, 855, 6, 17470, 20520, 198, 7568, 62, 741, 17816, 11659, 62, 312, 20520, 796, 47764, 62, 741, 13, 9630, 198, 7568, 62, 9288, 796, 47764, 62, 741, 58, 7568, 62, 741, 58, 24455, 58, 15, 11907, 855, 6, 9288, 20520, 198, 7568, 62, 12102, 796, 47764, 62, 741, 58, 7568, 62, 741, 58, 24455, 58, 15, 11907, 855, 6, 12102, 341, 20520, 198, 7568, 62, 27432, 796, 47764, 62, 741, 58, 7568, 62, 741, 58, 24455, 58, 15, 11907, 855, 6, 34409, 20520, 198, 198, 4798, 7, 7568, 62, 741, 13, 13199, 28955, 198, 4798, 7, 7568, 62, 9288, 13, 43358, 8, 198, 4798, 7, 7568, 62, 9288, 13, 2256, 28955, 198, 4798, 7, 47764, 62, 27432, 13, 43358, 8, 198, 4798, 7, 7568, 62, 27432, 13, 2256, 28955, 198, 4798, 7, 7568, 62, 12102, 13, 43358, 8, 198, 4798, 7, 7568, 62, 12102, 13, 2256, 28955, 198, 4798, 7, 7568, 62, 741, 58, 24455, 58, 17, 60, 4083, 8367, 62, 9127, 82, 28955, 628, 198, 198, 2, 15580, 290, 4512, 262, 2746, 628, 628, 628, 198, 2, 20123, 274, 3047, 11, 4856, 290, 21201, 40522, 13, 198, 198, 2, 1102, 9246, 268, 689, 41630, 40522, 13, 628, 628, 198, 2, 1673, 36686, 378, 62, 19608, 292, 1039, 3419, 220, 1303, 1102, 9246, 4559, 41630, 40522, 198, 11249, 62, 392, 62, 27432, 62, 19849, 3419, 198, 2, 2251, 62, 25512, 378, 62, 19608, 292, 1039, 3419, 220, 220, 220, 1303, 17953, 3047, 11, 4856, 290, 21201, 40522, 628, 628, 628 ]
2.822828
587
#!/usr/bin/env python3 import numpy as np import pandas as pd import re regex = re.compile('[^A-Za-zÀ-ÿ]') def extract_mean_word_vectors(data, vocabulary, embeddings): ''' extracts mean of word vectors for each tweet ''' print('> extracting mean of word vectors') # get vocab equivalence to tweet words idx_data = [[vocabulary.get((regex.sub(' ', ' '.join(regex.sub(' ', t).split()))), -1) for t in line.strip().split()] for line in data] idx_data = [[t for t in tokens if t>=0] for tokens in idx_data] # get dense vector equivalence to tweet words data_tweets_word_vector = [[embeddings[wd2voc][:] for wd2voc in tweet_words] for tweet_words in idx_data] # get mean word vector of each tweet data_tweets_mean_vector = [np.mean(wordvectors,axis=0) for wordvectors in data_tweets_word_vector] return idx_data, data_tweets_word_vector, data_tweets_mean_vector def process_train_ML(pos, neg, vocabulary, embeddings, dim_emb): ''' given the positive and negative tweets data, the vocabulary, the word embeddings and the embedding dimension, extracts mean of word vectors per tweets, and outputs a dataframe containing all pos and neg tweets, their labels (1 for pos/ -1 for neg) and their mean word vectors, then shuffles the rows and also outputs the X matrix containing mean word vectors and the vector y containinf the labels, ready to be used into ML algorithms ''' print('> process pos and neg datas to get X and y to perform ML') # seperate list of tweets in lines #pos = [x.strip() for x in pos[0].split(',')] #neg = [x.strip() for x in neg[0].split(',')] # extract mean word embeddings idx_pos_tweets, pos_tweets_word_vector, pos_tweets_mean_vector = extract_mean_word_vectors(pos, vocabulary, embeddings) idx_neg_tweets, neg_tweets_word_vector, neg_tweets_mean_vector = extract_mean_word_vectors(neg, vocabulary, embeddings) # create labels label_pos = [1] * len(pos) #create a df pos_df = pd.DataFrame(list(zip(label_pos, pos, idx_pos_tweets, pos_tweets_word_vector, pos_tweets_mean_vector)),\ columns=["Sentiment","Tweet","Token_idx","Words_Vectors","Mean_Word_Vector"]) del label_pos # create labels label_neg = [-1] * len(neg) # create a df neg_df = pd.DataFrame(list(zip(label_neg, neg, idx_neg_tweets, neg_tweets_word_vector, neg_tweets_mean_vector)),\ columns=["Sentiment","Tweet","Token_idx","Words_Vectors","Mean_Word_Vector"]) #create a df del label_neg # regroup the dfs, ignore index in order to get new ones (->no duplicate) full_df = pd.concat([pos_df,neg_df],ignore_index=True) #regroup the dfs, ignore index in order to get new ones (->no duplicate) # shuffle the rows full_df = full_df.sample(frac=1) print('> X and y informations:') # get X matrix X = full_df['Mean_Word_Vector'].to_numpy() X = [x if not np.isnan(x).any() else np.zeros((dim_emb,)) for x in X] X = np.concatenate(X, axis=0).reshape((full_df.shape[0], dim_emb)) print('X shape:', X.shape) # get y y = full_df['Sentiment'].to_numpy() print('y shape:', y.shape) return full_df, X, y def process_test_ML(test, vocabulary, embeddings, dim_emb): ''' given test set, the vocabulary, the word embeddings and the embedding dimension, extracts mean of word vectors per tweets, and outputs a dataframe containing all tweets, their labels (1 for pos/ -1 for neg) and their mean word vectors, and also outputs the testx matrix containing mean word vectors and ready to be put in ML algorithms ''' print('> process test data to get X_test and perform ML') # extract mean word embeddings idx_test_tweets,test_tweets_word_vector,test_tweets_mean_vector = extract_mean_word_vectors(test, vocabulary, embeddings) # create labels test_ids = np.linspace(1,10000,10000, dtype=int) # create a df test_df = pd.DataFrame(list(zip(test_ids, test, idx_test_tweets,test_tweets_word_vector,test_tweets_mean_vector)),\ columns=["Tweet_submission_id","Tweet","Token_idx","Words_Vectors","Mean_Word_Vector"]) del test_ids print('> X_test informations:') # get X_test matrix X_test = test_df['Mean_Word_Vector'].to_numpy() X_test = [x if not np.isnan(x).any() else np.zeros((dim_emb,)) for x in X_test] X_test = np.concatenate(X_test, axis=0).reshape((test_df.shape[0], dim_emb)) print('X_test shape:', X_test.shape) return test_df, X_test
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 302, 198, 260, 25636, 796, 302, 13, 5589, 576, 10786, 58, 61, 32, 12, 57, 64, 12, 89, 127, 222, 12, 127, 123, 60, 11537, 198, 198, 4299, 7925, 62, 32604, 62, 4775, 62, 303, 5217, 7, 7890, 11, 25818, 11, 11525, 67, 654, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 32139, 1612, 286, 1573, 30104, 329, 1123, 6126, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3601, 10786, 29, 37895, 1612, 286, 1573, 30104, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 651, 12776, 397, 6854, 594, 284, 6126, 2456, 198, 220, 220, 220, 4686, 87, 62, 7890, 796, 16410, 18893, 22528, 13, 1136, 19510, 260, 25636, 13, 7266, 10786, 46083, 705, 45302, 22179, 7, 260, 25636, 13, 7266, 10786, 46083, 256, 737, 35312, 3419, 4008, 828, 532, 16, 8, 329, 256, 287, 1627, 13, 36311, 22446, 35312, 3419, 60, 329, 1627, 287, 1366, 60, 198, 220, 220, 220, 4686, 87, 62, 7890, 796, 16410, 83, 329, 256, 287, 16326, 611, 256, 29, 28, 15, 60, 329, 16326, 287, 4686, 87, 62, 7890, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 651, 15715, 15879, 6854, 594, 284, 6126, 2456, 198, 220, 220, 220, 1366, 62, 83, 732, 1039, 62, 4775, 62, 31364, 796, 16410, 20521, 67, 654, 58, 16993, 17, 18893, 7131, 47715, 329, 266, 67, 17, 18893, 287, 6126, 62, 10879, 60, 329, 6126, 62, 10879, 287, 4686, 87, 62, 7890, 60, 628, 220, 220, 220, 1303, 651, 1612, 1573, 15879, 286, 1123, 6126, 198, 220, 220, 220, 1366, 62, 83, 732, 1039, 62, 32604, 62, 31364, 796, 685, 37659, 13, 32604, 7, 4775, 303, 5217, 11, 22704, 28, 15, 8, 329, 1573, 303, 5217, 287, 1366, 62, 83, 732, 1039, 62, 4775, 62, 31364, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 4686, 87, 62, 7890, 11, 1366, 62, 83, 732, 1039, 62, 4775, 62, 31364, 11, 1366, 62, 83, 732, 1039, 62, 32604, 62, 31364, 198, 198, 4299, 1429, 62, 27432, 62, 5805, 7, 1930, 11, 2469, 11, 25818, 11, 11525, 67, 654, 11, 5391, 62, 24419, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1813, 262, 3967, 290, 4633, 12665, 1366, 11, 262, 25818, 11, 262, 1573, 11525, 67, 654, 220, 198, 220, 220, 220, 290, 262, 11525, 12083, 15793, 11, 32139, 1612, 286, 1573, 30104, 583, 12665, 11, 290, 23862, 198, 220, 220, 220, 257, 1366, 14535, 7268, 477, 1426, 290, 2469, 12665, 11, 511, 14722, 357, 16, 329, 1426, 14, 532, 16, 329, 2469, 8, 220, 198, 220, 220, 220, 290, 511, 1612, 1573, 30104, 11, 788, 32299, 829, 262, 15274, 290, 635, 23862, 262, 1395, 17593, 220, 198, 220, 220, 220, 7268, 1612, 1573, 30104, 290, 262, 15879, 331, 3994, 10745, 262, 14722, 11, 3492, 284, 307, 220, 198, 220, 220, 220, 973, 656, 10373, 16113, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3601, 10786, 29, 1429, 1426, 290, 2469, 19395, 284, 651, 1395, 290, 331, 284, 1620, 10373, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 384, 30052, 1351, 286, 12665, 287, 3951, 198, 220, 220, 220, 1303, 1930, 796, 685, 87, 13, 36311, 3419, 329, 2124, 287, 1426, 58, 15, 4083, 35312, 7, 3256, 11537, 60, 198, 220, 220, 220, 1303, 12480, 796, 685, 87, 13, 36311, 3419, 329, 2124, 287, 2469, 58, 15, 4083, 35312, 7, 3256, 11537, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 7925, 1612, 1573, 11525, 67, 654, 198, 220, 220, 220, 4686, 87, 62, 1930, 62, 83, 732, 1039, 11, 1426, 62, 83, 732, 1039, 62, 4775, 62, 31364, 11, 1426, 62, 83, 732, 1039, 62, 32604, 62, 31364, 796, 7925, 62, 32604, 62, 4775, 62, 303, 5217, 7, 1930, 11, 25818, 11, 11525, 67, 654, 8, 198, 220, 220, 220, 4686, 87, 62, 12480, 62, 83, 732, 1039, 11, 2469, 62, 83, 732, 1039, 62, 4775, 62, 31364, 11, 2469, 62, 83, 732, 1039, 62, 32604, 62, 31364, 796, 7925, 62, 32604, 62, 4775, 62, 303, 5217, 7, 12480, 11, 25818, 11, 11525, 67, 654, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2251, 14722, 198, 220, 220, 220, 6167, 62, 1930, 796, 685, 16, 60, 1635, 18896, 7, 1930, 8, 198, 220, 220, 220, 1303, 17953, 257, 47764, 198, 220, 220, 220, 1426, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 4868, 7, 13344, 7, 18242, 62, 1930, 11, 1426, 11, 4686, 87, 62, 1930, 62, 83, 732, 1039, 11, 1426, 62, 83, 732, 1039, 62, 4775, 62, 31364, 11, 1426, 62, 83, 732, 1039, 62, 32604, 62, 31364, 36911, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 14692, 31837, 3681, 2430, 47845, 2430, 30642, 62, 312, 87, 2430, 37117, 62, 53, 478, 669, 2430, 5308, 272, 62, 26449, 62, 38469, 8973, 8, 220, 198, 220, 220, 220, 1619, 6167, 62, 1930, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2251, 14722, 198, 220, 220, 220, 6167, 62, 12480, 796, 25915, 16, 60, 1635, 18896, 7, 12480, 8, 198, 220, 220, 220, 1303, 2251, 257, 47764, 198, 220, 220, 220, 2469, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 4868, 7, 13344, 7, 18242, 62, 12480, 11, 2469, 11, 4686, 87, 62, 12480, 62, 83, 732, 1039, 11, 2469, 62, 83, 732, 1039, 62, 4775, 62, 31364, 11, 2469, 62, 83, 732, 1039, 62, 32604, 62, 31364, 36911, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 14692, 31837, 3681, 2430, 47845, 2430, 30642, 62, 312, 87, 2430, 37117, 62, 53, 478, 669, 2430, 5308, 272, 62, 26449, 62, 38469, 8973, 8, 1303, 17953, 257, 47764, 198, 220, 220, 220, 1619, 6167, 62, 12480, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 842, 3233, 262, 288, 9501, 11, 8856, 6376, 287, 1502, 284, 651, 649, 3392, 357, 3784, 3919, 23418, 8, 198, 220, 220, 220, 1336, 62, 7568, 796, 279, 67, 13, 1102, 9246, 26933, 1930, 62, 7568, 11, 12480, 62, 7568, 4357, 46430, 62, 9630, 28, 17821, 8, 1303, 2301, 3233, 262, 288, 9501, 11, 8856, 6376, 287, 1502, 284, 651, 649, 3392, 357, 3784, 3919, 23418, 8, 628, 220, 220, 220, 1303, 36273, 262, 15274, 198, 220, 220, 220, 1336, 62, 7568, 796, 1336, 62, 7568, 13, 39873, 7, 31944, 28, 16, 8, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 10786, 29, 1395, 290, 331, 4175, 602, 25, 11537, 198, 220, 220, 220, 1303, 651, 1395, 17593, 198, 220, 220, 220, 1395, 796, 1336, 62, 7568, 17816, 5308, 272, 62, 26449, 62, 38469, 6, 4083, 1462, 62, 77, 32152, 3419, 198, 220, 220, 220, 1395, 796, 685, 87, 611, 407, 45941, 13, 271, 12647, 7, 87, 737, 1092, 3419, 2073, 45941, 13, 9107, 418, 19510, 27740, 62, 24419, 11, 4008, 329, 2124, 287, 1395, 60, 198, 220, 220, 220, 1395, 796, 45941, 13, 1102, 9246, 268, 378, 7, 55, 11, 16488, 28, 15, 737, 3447, 1758, 19510, 12853, 62, 7568, 13, 43358, 58, 15, 4357, 5391, 62, 24419, 4008, 198, 220, 220, 220, 3601, 10786, 55, 5485, 25, 3256, 1395, 13, 43358, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 651, 331, 198, 220, 220, 220, 331, 796, 1336, 62, 7568, 17816, 31837, 3681, 6, 4083, 1462, 62, 77, 32152, 3419, 198, 220, 220, 220, 3601, 10786, 88, 5485, 25, 3256, 331, 13, 43358, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1336, 62, 7568, 11, 1395, 11, 331, 198, 198, 4299, 1429, 62, 9288, 62, 5805, 7, 9288, 11, 25818, 11, 11525, 67, 654, 11, 5391, 62, 24419, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1813, 1332, 900, 11, 262, 25818, 11, 262, 1573, 11525, 67, 654, 290, 262, 11525, 12083, 15793, 11, 220, 198, 220, 220, 220, 32139, 1612, 286, 1573, 30104, 583, 12665, 11, 290, 23862, 257, 1366, 14535, 7268, 477, 12665, 11, 220, 198, 220, 220, 220, 511, 14722, 357, 16, 329, 1426, 14, 532, 16, 329, 2469, 8, 290, 511, 1612, 1573, 30104, 11, 290, 635, 23862, 220, 198, 220, 220, 220, 262, 1332, 87, 17593, 7268, 1612, 1573, 30104, 290, 3492, 284, 307, 1234, 287, 10373, 16113, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3601, 10786, 29, 1429, 1332, 1366, 284, 651, 1395, 62, 9288, 290, 1620, 10373, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 7925, 1612, 1573, 11525, 67, 654, 198, 220, 220, 220, 4686, 87, 62, 9288, 62, 83, 732, 1039, 11, 9288, 62, 83, 732, 1039, 62, 4775, 62, 31364, 11, 9288, 62, 83, 732, 1039, 62, 32604, 62, 31364, 796, 7925, 62, 32604, 62, 4775, 62, 303, 5217, 7, 9288, 11, 25818, 11, 11525, 67, 654, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2251, 14722, 198, 220, 220, 220, 1332, 62, 2340, 796, 45941, 13, 21602, 10223, 7, 16, 11, 49388, 11, 49388, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 1303, 2251, 257, 47764, 198, 220, 220, 220, 1332, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 4868, 7, 13344, 7, 9288, 62, 2340, 11, 1332, 11, 4686, 87, 62, 9288, 62, 83, 732, 1039, 11, 9288, 62, 83, 732, 1039, 62, 4775, 62, 31364, 11, 9288, 62, 83, 732, 1039, 62, 32604, 62, 31364, 36911, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 14692, 47845, 62, 7266, 3411, 62, 312, 2430, 47845, 2430, 30642, 62, 312, 87, 2430, 37117, 62, 53, 478, 669, 2430, 5308, 272, 62, 26449, 62, 38469, 8973, 8, 220, 198, 220, 220, 220, 1619, 1332, 62, 2340, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 10786, 29, 1395, 62, 9288, 4175, 602, 25, 11537, 198, 220, 220, 220, 1303, 651, 1395, 62, 9288, 17593, 198, 220, 220, 220, 1395, 62, 9288, 796, 1332, 62, 7568, 17816, 5308, 272, 62, 26449, 62, 38469, 6, 4083, 1462, 62, 77, 32152, 3419, 198, 220, 220, 220, 1395, 62, 9288, 796, 685, 87, 611, 407, 45941, 13, 271, 12647, 7, 87, 737, 1092, 3419, 2073, 45941, 13, 9107, 418, 19510, 27740, 62, 24419, 11, 4008, 329, 2124, 287, 1395, 62, 9288, 60, 198, 220, 220, 220, 1395, 62, 9288, 796, 45941, 13, 1102, 9246, 268, 378, 7, 55, 62, 9288, 11, 16488, 28, 15, 737, 3447, 1758, 19510, 9288, 62, 7568, 13, 43358, 58, 15, 4357, 5391, 62, 24419, 4008, 198, 220, 220, 220, 3601, 10786, 55, 62, 9288, 5485, 25, 3256, 1395, 62, 9288, 13, 43358, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1332, 62, 7568, 11, 1395, 62, 9288, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 628, 628 ]
2.495722
1,870
import sys from inspect import Signature from types import CodeType, FunctionType from typing import Any, Tuple if sys.version_info >= (3, 8): copy_code = CodeType.replace else: PY_36_37_CODE_ARGS: Tuple[str, ...] = ( "co_argcount", "co_kwonlyargcount", "co_nlocals", "co_stacksize", "co_flags", "co_code", "co_consts", "co_names", "co_varnames", "co_filename", "co_name", "co_firstlineno", "co_lnotab", "co_freevars", "co_cellvars", ) def copy_code(code: CodeType, **update: Any) -> CodeType: """ Create a copy of code object with changed attributes """ new_args = [update.pop(arg, getattr(code, arg)) for arg in PY_36_37_CODE_ARGS] if update: raise TypeError(f"Unexpected code attribute(s): {update}") return CodeType(*new_args) def copy_func(f: FunctionType, name, defaults, signature: Signature): """ Makes exact copy of a function object with given name and defaults """ new_defaults = [] kw_only_defaults = f.__kwdefaults__.copy() if f.__kwdefaults__ else {} for key, param in signature.parameters.items(): if param.kind is param.KEYWORD_ONLY: if key in defaults: kw_only_defaults[key] = defaults.pop(key) elif key in defaults: new_defaults.append(defaults.pop(key)) elif param.default is not param.empty: new_defaults.append(param.default) new_func = FunctionType( code=copy_code(f.__code__, co_name=name), globals=f.__globals__, name=name, argdefs=tuple(new_defaults), closure=f.__closure__, ) new_func.__kwdefaults__ = kw_only_defaults new_func.__dict__.update(f.__dict__) return new_func
[ 11748, 25064, 198, 6738, 10104, 1330, 34894, 198, 6738, 3858, 1330, 6127, 6030, 11, 15553, 6030, 198, 6738, 19720, 1330, 4377, 11, 309, 29291, 628, 198, 361, 25064, 13, 9641, 62, 10951, 18189, 357, 18, 11, 807, 2599, 198, 220, 220, 220, 4866, 62, 8189, 796, 6127, 6030, 13, 33491, 198, 17772, 25, 198, 220, 220, 220, 350, 56, 62, 2623, 62, 2718, 62, 34, 16820, 62, 1503, 14313, 25, 309, 29291, 58, 2536, 11, 2644, 60, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 853, 9127, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 46265, 8807, 853, 9127, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 77, 17946, 874, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 301, 4595, 1096, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 8189, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 1102, 6448, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 14933, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 85, 1501, 1047, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 34345, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 11085, 2815, 23397, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 75, 1662, 397, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 5787, 85, 945, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1073, 62, 3846, 85, 945, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4866, 62, 8189, 7, 8189, 25, 6127, 6030, 11, 12429, 19119, 25, 4377, 8, 4613, 6127, 6030, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 4866, 286, 2438, 2134, 351, 3421, 12608, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 22046, 796, 685, 19119, 13, 12924, 7, 853, 11, 651, 35226, 7, 8189, 11, 1822, 4008, 329, 1822, 287, 350, 56, 62, 2623, 62, 2718, 62, 34, 16820, 62, 1503, 14313, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4296, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 69, 1, 52, 42072, 2438, 11688, 7, 82, 2599, 1391, 19119, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6127, 6030, 46491, 3605, 62, 22046, 8, 628, 198, 4299, 4866, 62, 20786, 7, 69, 25, 15553, 6030, 11, 1438, 11, 26235, 11, 9877, 25, 34894, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27433, 2748, 4866, 286, 257, 2163, 2134, 351, 1813, 1438, 290, 26235, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 649, 62, 12286, 82, 796, 17635, 198, 220, 220, 220, 479, 86, 62, 8807, 62, 12286, 82, 796, 277, 13, 834, 46265, 12286, 82, 834, 13, 30073, 3419, 611, 277, 13, 834, 46265, 12286, 82, 834, 2073, 23884, 628, 220, 220, 220, 329, 1994, 11, 5772, 287, 9877, 13, 17143, 7307, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5772, 13, 11031, 318, 5772, 13, 20373, 54, 12532, 62, 1340, 11319, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 26235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 62, 8807, 62, 12286, 82, 58, 2539, 60, 796, 26235, 13, 12924, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 287, 26235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 12286, 82, 13, 33295, 7, 12286, 82, 13, 12924, 7, 2539, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 13, 12286, 318, 407, 5772, 13, 28920, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 12286, 82, 13, 33295, 7, 17143, 13, 12286, 8, 628, 220, 220, 220, 649, 62, 20786, 796, 15553, 6030, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2438, 28, 30073, 62, 8189, 7, 69, 13, 834, 8189, 834, 11, 763, 62, 3672, 28, 3672, 828, 198, 220, 220, 220, 220, 220, 220, 220, 15095, 874, 28, 69, 13, 834, 4743, 672, 874, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 4299, 82, 28, 83, 29291, 7, 3605, 62, 12286, 82, 828, 198, 220, 220, 220, 220, 220, 220, 220, 16512, 28, 69, 13, 834, 17966, 834, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 649, 62, 20786, 13, 834, 46265, 12286, 82, 834, 796, 479, 86, 62, 8807, 62, 12286, 82, 198, 220, 220, 220, 649, 62, 20786, 13, 834, 11600, 834, 13, 19119, 7, 69, 13, 834, 11600, 834, 8, 198, 220, 220, 220, 1441, 649, 62, 20786, 198 ]
2.136625
871
from .forms import NewProductForm from django.db import models from django.shortcuts import render, resolve_url from django.http.response import JsonResponse from quote.models import Product, Brand, User # ! INVENTORY VIEWS
[ 6738, 764, 23914, 1330, 968, 15667, 8479, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 10568, 62, 6371, 198, 6738, 42625, 14208, 13, 4023, 13, 26209, 1330, 449, 1559, 31077, 198, 6738, 9577, 13, 27530, 1330, 8721, 11, 13512, 11, 11787, 198, 198, 2, 5145, 34899, 3525, 15513, 49880, 50, 628, 198 ]
3.66129
62
from osgeo import gdal import glob import os import numpy as np
[ 6738, 28686, 469, 78, 1330, 308, 31748, 198, 11748, 15095, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 628, 628, 628, 628, 198 ]
3
24
NAME = ['DLRModel'] VERSION = "1.9.1"
[ 20608, 796, 37250, 19260, 49, 17633, 20520, 198, 198, 43717, 796, 366, 16, 13, 24, 13, 16, 1, 198 ]
2.052632
19
import pytest from sqlalchemy import func from sqlalchemy.future import select from app.models import ExampleModel from app.tasks import example_task pytestmark = pytest.mark.asyncio
[ 11748, 12972, 9288, 198, 6738, 44161, 282, 26599, 1330, 25439, 198, 6738, 44161, 282, 26599, 13, 37443, 1330, 2922, 198, 198, 6738, 598, 13, 27530, 1330, 17934, 17633, 198, 6738, 598, 13, 83, 6791, 1330, 1672, 62, 35943, 198, 198, 9078, 9288, 4102, 796, 12972, 9288, 13, 4102, 13, 292, 13361, 952, 628, 198 ]
3.462963
54
from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Optional import pandas as pd if TYPE_CHECKING: from sklearn.base import TransformerMixin
[ 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 11, 32233, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 1341, 35720, 13, 8692, 1330, 3602, 16354, 35608, 259, 198 ]
3.367347
49
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: plugin_tools :platform: Unix :synopsis: Plugin tools .. moduleauthor:: Jessica Verschoyle <[email protected]> """ import os import copy import json import logging from colorama import Fore from collections import OrderedDict import savu.plugins.utils as pu from savu.data.meta_data import MetaData import savu.plugins.docstring_parser as doc import scripts.config_generator.parameter_utils as param_u from savu.data.plugin_list import CitationInformation logger = logging.getLogger("documentationLog") class PluginParameters(object): """Save the parameters for the plugin and base classes to a dictionary. The parameters are in yaml format inside the define_parameter function. These are read and checked for problems. """ def populate_parameters(self, tools_list): """ Set parameter definitions and default parameter values """ # set the parameter definitions # populates the dictionary returned by self.get_param_definitions() list(map(lambda tool_class: self._set_parameter_definitions(tool_class), tools_list)) # set the default parameter values # populates the dictionary returned by self.get_param_values() self._populate_default_parameters() def _populate_default_parameters(self): """ This method should populate all the required parameters with default values. It is used for checking to see if parameter values are appropriate """ p_defs = self.get_param_definitions() self.set_docstring(self.get_doc()) self.parameters = \ OrderedDict([(k, v['default']) for k, v in p_defs.items()]) # parameters holds current values, this is edited outside of the # tools class so default and dependency display values are updated here self.update_dependent_defaults() self.check_dependencies(self.parameters) self._get_plugin().set_parameters(self.parameters) def _set_parameters_this_instance(self, indices): """ Determines the parameters for this instance of the plugin, in the case of parameter tuning. param np.ndarray indices: the index of the current value in the parameter tuning list. """ dims = set(self.multi_params_dict.keys()) count = 0 for dim in dims: info = self.multi_params_dict[dim] name = info['label'].split('_param')[0] self.parameters[name] = info['values'][indices[count]] count += 1 def _set_parameter_definitions(self, tool_class): """Load the parameters for each base class, c, check the dataset visibility, check data types, set dictionary values. """ param_info_dict = self._load_param_from_doc(tool_class) if param_info_dict: for p_name, p_value in param_info_dict.items(): if p_name in self.param.get_dictionary(): for k,v in p_value.items(): self.param[p_name][k] = v else: self.param.set(p_name, p_value) self._check_param_defs(tool_class) def _check_param_defs(self, tool_class): """Check the parameter definitions for errors :param tool_class: tool_class to use for error message """ pdefs = self.param.get_dictionary() # Remove ignored parameters self._remove_ignored_params(pdefs) # Check if the required keys are included self._check_required_keys(pdefs, tool_class) # Check that option values are valid self._check_options(pdefs, tool_class) # Check that the visibility is valid self._check_visibility(pdefs, tool_class) # Check that the dtype is valid self._check_dtype(pdefs, tool_class) # Use a display option to apply to dependent parameters later. self._set_display(pdefs) for k,v in pdefs.items(): # Change empty OrderedDict to dict (due to yaml loader) if isinstance(v['default'], OrderedDict): v['default'] = json.loads(json.dumps(v['default'])) # Change the string to an integer, float, list, str, dict if not self.default_dependency_dict_exists(v): v['default'] = pu._dumps(v['default']) def _load_param_from_doc(self, tool_class): """Find the parameter information from the method docstring. This is provided in a yaml format. """ # *** TO DO turn the dtype entry into a string param_info_dict = None if hasattr(tool_class, "define_parameters"): yaml_text = tool_class.define_parameters.__doc__ if yaml_text and yaml_text.strip(): # If yaml_text is not None and not empty or consisting of spaces param_info_dict = doc.load_yaml_doc(yaml_text) if param_info_dict: if not isinstance(param_info_dict, OrderedDict): error_msg = ( f"The parameters have not been read " f"in correctly for {tool_class.__name__}" ) raise Exception(error_msg) return param_info_dict def check_for_default(self, mod_param, mod_value): """If the value is changed to be 'default', then set the original default value. If the default contains a dictionary, then search for the correct value """ param_info_dict = self.param.get_dictionary() if str(mod_value) == "default": if self.default_dependency_dict_exists(param_info_dict[mod_param]): mod_value = self.get_dependent_default(param_info_dict[mod_param]) else: mod_value = param_info_dict[mod_param]["default"] return mod_value def _check_required_keys(self, param_info_dict, tool_class): """Check the four keys ['dtype', 'description', 'visibility', 'default'] are included inside the dictionary given for each parameter. """ required_keys = ["dtype", "description", "visibility", "default"] missing_keys = False missing_key_dict = {} for p_key, p in param_info_dict.items(): all_keys = p.keys() if p.get("visibility"): if p.get("visibility") == "hidden": # For hidden keys, only require a default value key required_keys = ["default"] else: required_keys = ["visibility"] if not all(d in all_keys for d in required_keys): missing_key_dict[p_key] = set(required_keys) - set(all_keys) missing_keys = True if missing_keys: print( f"{tool_class.__name__} doesn't contain all of the " f"required keys." ) for param, missing_values in missing_key_dict.items(): print(f"The missing required keys for '{param}' are:") print(*missing_values, sep=", ") logger.error(f"ERROR: Missing keys inside {tool_class.__name__}") raise Exception(f"Please edit {tool_class.__name__}") def _check_dtype(self, param_info_dict, tool_class): """ Make sure that the dtype input is valid and that the default value is compatible """ plugin_error_str = f"There was an error with {tool_class.__name__}" for p_key, p_dict in param_info_dict.items(): dtype = p_dict.get("dtype") if dtype: dtype = dtype.replace(" ", "") try: pvalid, error_str = param_u.is_valid_dtype(dtype) if not pvalid: raise Exception("Invalid parameter definition %s:\n %s" % (p_key, error_str)) except IndexError: print(plugin_error_str) if not self.default_dependency_dict_exists(p_dict): default_value = pu._dumps(p_dict["default"]) pvalid, error_str = param_u.is_valid(p_key, default_value, p_dict, check=True) if not pvalid: raise Exception(f"{plugin_error_str}: {error_str}") def _check_visibility(self, param_info_dict, tool_class): """Make sure that the visibility choice is valid""" visibility_levels = [ "basic", "intermediate", "advanced", "datasets", "hidden", ] visibility_valid = True for p_key, p in param_info_dict.items(): # Check dataset visibility level is correct self._check_data_keys(p_key, p) # Check that the data types are valid choices if p["visibility"] not in visibility_levels: print( f"Inside {tool_class.__name__} the {p_key}" f" parameter is assigned an invalid visibility " f"level '{p['visibility']}'" ) print("Valid choices are:") print(*visibility_levels, sep=", ") visibility_valid = False if not visibility_valid: raise Exception( f"Please change the file for {tool_class.__name__}" ) def _check_data_keys(self, p_key, p): """Make sure that the visibility of dataset parameters is 'datasets' so that the display order is unchanged. """ datasets = ["in_datasets", "out_datasets"] exceptions = ["hidden"] if p_key in datasets: if p["visibility"] != "datasets" \ and p["visibility"] not in exceptions: p["visibility"] = "datasets" def _check_options(self, param_info_dict, tool_class): """Make sure that option verbose descriptions match the actual options """ options_valid = True for p_key, p in param_info_dict.items(): desc = param_info_dict[p_key].get("description") # desc not present for hidden keys if desc and isinstance(desc, dict): options = param_info_dict[p_key].get("options") option_desc = desc.get("options") if options and option_desc: # Check that there is not an invalid option description # inside the option list. invalid_option = [ opt for opt in option_desc if opt not in options ] if invalid_option: options_valid = False break if options_valid is False: raise Exception( f"Please check the parameter options for {tool_class.__name__}" ) def _remove_ignored_params(self, param_info_dict): """Remove any parameters with visibility = ignore""" p_dict_copy = param_info_dict.copy() for p_key, p in p_dict_copy.items(): visibility = param_info_dict[p_key].get("visibility") if visibility == "ignore": del param_info_dict[p_key] def _set_display(self, param_info_dict): """Initially, set all of the parameters to display 'on' This is later altered when dependent parameters need to be shown or hidden """ for k, v in param_info_dict.items(): v["display"] = "on" def update_dependent_defaults(self): """ Fix default values for parameters that have a dependency on the value of another parameter, and are in dictionary form. """ for name, pdict in self.get_param_definitions().items(): if self.default_dependency_dict_exists(pdict): self.parameters[name] = self.get_dependent_default(pdict) def default_dependency_dict_exists(self, pdict): """ Check that the parameter default value is in a format with the parent parameter string and the dependent value e.g. default: algorithm: FGP and not an actual default value to be set e.g. default: {'2':5} :param pdict: The parameter definition dictionary :return: True if the default dictionary contains the correct format """ if pdict["default"] and isinstance(pdict["default"], dict): if "dict" not in pdict["dtype"]: return True else: parent_name = list(pdict['default'].keys())[0] if parent_name in self.get_param_definitions(): return True return False def get_dependent_default(self, child): """ Recursive function to replace a dictionary of default parameters with a single value. Parameters ---------- child : dict The parameter definition dictionary of the dependent parameter. Returns1 ------- value The correct default value based on the current value of the dependency, or parent, parameter. """ pdefs = self.get_param_definitions() parent_name = list(child['default'].keys())[0] parent = self.does_exist(parent_name, pdefs) # if the parent default is a dictionary then apply the function # recursively if isinstance(parent['default'], dict): self.parameters[parent_name] = \ self.get_dependent_default(parent['default']) return child['default'][parent_name][self.parameters[parent_name]] def warn_dependents(self, mod_param, mod_value): """ Find dependents of a modified parameter # complete the docstring """ # find dependents for name, pdict in self.get_param_definitions().items(): if self.default_dependency_dict_exists(pdict): default = pdict['default'] parent_name = list(default.keys())[0] if parent_name == mod_param: if mod_value in default[parent_name].keys(): value = default[parent_name][mod_value] desc = pdict['description'] self.make_recommendation( name, desc, parent_name, value) def check_dependencies(self, parameters): """Determine which parameter values are dependent on a parent value and whether they should be hidden or shown """ param_info_dict = self.param.get_dictionary() dep_list = { k: v["dependency"] for k, v in param_info_dict.items() if "dependency" in v } for p_name, dependency in dep_list.items(): if isinstance(dependency, OrderedDict): # There is a dictionary of dependency values parent_param_name = list(dependency.keys())[0] # The choices which must be in the parent value parent_choice_list = dependency[parent_param_name] if parent_param_name in parameters: """Check that the parameter is in the current plug in This is relevant for base classes which have several dependent classes """ parent_value = parameters[parent_param_name] if str(parent_value) in parent_choice_list: param_info_dict[p_name]["display"] = "on" else: param_info_dict[p_name]["display"] = "off" else: if dependency in parameters: parent_value = parameters[dependency] if parent_value is None or str(parent_value) == "None": param_info_dict[p_name]["display"] = "off" else: param_info_dict[p_name]["display"] = "on" def set_plugin_list_parameters(self, input_parameters): """ This method is called after the plugin has been created by the pipeline framework. It replaces ``self.parameters`` default values with those given in the input process list. It checks for multi parameter strings, eg. 57;68;56; :param dict input_parameters: A dictionary of the input parameters for this plugin, or None if no customisation is required. """ for key in input_parameters.keys(): if key in self.parameters.keys(): new_value = input_parameters[key] self.__check_multi_params( self.parameters, new_value, key ) else: error = ( f"Parameter '{key}' is not valid for plugin " f"{self.plugin_class.name}. \nTry opening and re-saving " f"the process list in the configurator to auto remove " f"\nobsolete parameters." ) raise ValueError(error) def __check_multi_params(self, parameters, value, key): """ Convert parameter value to a list if it uses parameter tuning and set associated parameters, so the framework knows the new size of the data and which plugins to re-run. :param parameters: Dictionary of parameters and current values :param value: Value to set parameter to :param key: Parameter name :return: """ if param_u.is_multi_param(key, value): value, error_str = pu.convert_multi_params(key, value) if not error_str: parameters[key] = value label = key + "_params." + type(value[0]).__name__ self.alter_multi_params_dict( len(self.get_multi_params_dict()), {"label": label, "values": value}, ) self.append_extra_dims(len(value)) else: parameters[key] = value def _get_expand_dict(self, preview, expand_dim): """Create dict for expand syntax :param preview: Preview parameter value :param expand_dim: Number of dimensions to return dict for :return: dict """ expand_dict = {} preview_val = pu._dumps(preview) if not preview_val: # In the case that there is an empty dict, display the default preview_val = [] if isinstance( preview_val, dict): for key, prev_list in preview_val.items(): expand_dict[key] = self._get_expand_dict(prev_list, expand_dim) return expand_dict elif isinstance(preview_val, list): if expand_dim == "all": expand_dict = \ self._output_all_dimensions(preview_val, self._get_dimensions(preview_val)) else: pu.check_valid_dimension(expand_dim, preview_val) dim_key = f"dim{expand_dim}" expand_dict[dim_key] = \ self._dim_slice_output(preview_val, expand_dim) else: raise ValueError("This preview value was not a recognised list " "or dictionary. This expand command currenty " "only works with those two data type.") return expand_dict def _get_dimensions(self, preview_list): """ :param preview_list: The preview parameter list :return: Dimensions to display """ return 1 if not preview_list else len(preview_list) def _output_all_dimensions(self, preview_list, dims): """Compile output string lines for all dimensions :param preview_list: The preview parameter list :param dims: Number of dimensions to display :return: dict """ prev_dict = {} for dim in range(1, dims + 1): dim_key = f"dim{dim}" prev_dict[dim_key] = self._dim_slice_output(preview_list, dim) return prev_dict def _dim_slice_output(self, preview_list, dim): """If there are multiple values in list format Only save the values for the dimensions chosen :param preview_list: The preview parameter list :param dim: dimension to return the slice notation dictionary for :return slice notation dictionary """ if not preview_list: # If empty preview_display_value = ":" else: preview_display_value = preview_list[dim - 1] prev_val = self._set_all_syntax(preview_display_value) return self._get_slice_notation_dict(prev_val) def _get_slice_notation_dict(self, val): """Create a dict for slice notation information, start:stop:step (and chunk if provided) :param val: The list value in slice notation :return: dictionary of slice notation """ import itertools basic_slice_keys = ["start", "stop", "step"] all_slice_keys = [*basic_slice_keys, "chunk"] slice_dict = {} if pu.is_slice_notation(val): val_list = val.split(":") if len(val_list) < 3: # Make sure the start stop step slice keys are always shown, # even when blank val_list.append("") for slice_name, v in zip(all_slice_keys, val_list): # Only print up to the shortest list. # (Only show the chunk value if it is in val_list) slice_dict[slice_name] = v else: val_list = [val] for slice_name, v in itertools.zip_longest( basic_slice_keys, val_list, fillvalue="" ): slice_dict[slice_name] = v return slice_dict def _set_all_syntax(self, val, replacement_str=""): """Remove additional spaces from val, replace colon when 'all' data is selected :param val: Slice notation value :param replacement_str: String to replace ':' with :return: """ if isinstance(val, str): if pu.is_slice_notation(val): if val == ":": val = replacement_str else: val = val.strip() else: val = val.strip() return val def get_multi_params_dict(self): """ Get the multi parameter dictionary. """ return self.multi_params_dict def get_extra_dims(self): """ Get the extra dimensions. """ return self.extra_dims """ @dataclass class Parameter: ''' Descriptor of Parameter Information for plugins ''' visibility: int datatype: specific_type description: str default: int Options: Optional[[str]] dependency: Optional[] def _get_param(self): param_dict = {} param_dict['visibility'] = self.visibility param_dict['type'] = self.dtype param_dict['description'] = self.description # and the remaining keys return param_dict """ class PluginCitations(object): """Get this citation dictionary so get_dictionary of the metadata type should return a dictionary of all the citation info as taken from docstring """ def set_cite(self, tools_list): """Set the citations for each of the tools classes :param tools_list: List containing tool classes of parent plugins """ list( map( lambda tool_class: self._set_plugin_citations(tool_class), tools_list ) ) def _set_plugin_citations(self, tool_class): """ Load the parameters for each base class and set values""" citations = self._load_cite_from_doc(tool_class) if citations: for citation in citations.values(): if self._citation_keys_valid(citation, tool_class): new_citation = CitationInformation(**citation) self.cite.set(new_citation.name, new_citation) else: print(f"The citation for {tool_class.__name__} " f"was not saved.") def _citation_keys_valid(self, new_citation, tool_class): """Check that required citation keys are present. Return false if required keys are missing """ required_keys = ["description"] # Inside the fresnel filter there is only a description citation_keys = [k for k in new_citation.keys()] # Check that all of the required keys are contained inside the # citation definition check_keys = all(item in citation_keys for item in required_keys) citation_keys_valid = False if check_keys is False else True all_keys = [ "short_name_article", "description", "bibtex", "endnote", "doi", "dependency", ] # Keys which are not used additional_keys = [k for k in citation_keys if k not in all_keys] if additional_keys: print(f"Please only use the following keys inside the citation" f" definition for {tool_class.__name__}:") print(*all_keys, sep=", ") print("The incorrect keys used:", additional_keys) return citation_keys_valid def _load_cite_from_doc(self, tool_class): """Find the citation information from the method docstring. This is provided in a yaml format. :param tool_class: Tool to retrieve citation docstring from :return: All citations from this tool class """ all_c = OrderedDict() # Seperate the citation methods. __dict__ returns instance attributes. citation_methods = {key: value for key, value in tool_class.__dict__.items() if key.startswith('citation')} for c_method_name, c_method in citation_methods.items(): yaml_text = c_method.__doc__ if yaml_text is not None: yaml_text = self.seperate_description(yaml_text) current_citation = doc.load_yaml_doc(yaml_text) if not isinstance(current_citation, OrderedDict): print(f"The citation information has not been read in " f"correctly for {tool_class.__name__}.") else: all_c[c_method_name] = current_citation return all_c def seperate_description(self, yaml_text): """Change the format of the docstring to retain new lines for the endnote and bibtex and create a key for the description so that it be read as a yaml file :param yaml_text: :return: Reformatted yaml text """ description = doc.remove_new_lines(yaml_text.partition("bibtex:")[0]) desc_str = " description:" + description bibtex_text = \ yaml_text.partition("bibtex:")[2].partition("endnote:")[0] end_text = \ yaml_text.partition("bibtex:")[2].partition("endnote:")[2] if bibtex_text and end_text: final_str = desc_str + '\n bibtex: |' + bibtex_text \ + 'endnote: |' + end_text elif end_text: final_str = desc_str + '\n endnote: |' + end_text elif bibtex_text: final_str = desc_str + '\n bibtex: |' + bibtex_text else: final_str = desc_str return final_str class PluginDocumentation(object): """Get this documentation dictionary so get_dictionary of the metadata type should return a dictionary of all the documentation details taken from docstring """ def set_warn(self, tools_list): """Remove new lines and save config warnings for the child tools class only. """ config_str = tools_list[-1].config_warn.__doc__ if config_str and "\n\n" in config_str: # Separate multiple warnings with two new lines \n\n config_warn_list = [doc.remove_new_lines(l) for l in config_str.split("\n\n")] config_str = '\n'.join(config_warn_list) return config_str def set_doc_link(self): """If there is a restructured text documentation file inside the doc/source/documentation folder, then save the link to the page. """ # determine Savu base path savu_base_path = \ os.path.dirname(os.path.realpath(__file__)).split("savu")[0] # Locate documentation file doc_folder = savu_base_path + "doc/source/documentation" module_path = \ self.plugin_class.__module__.replace(".", "/").replace("savu", "") file_ = module_path + "_doc" file_name = file_ + ".rst" file_path = doc_folder + file_name sphinx_link = 'https://savu.readthedocs.io/en/latest/' \ 'documentation' + file_ if os.path.isfile(file_path): self.doc.set("documentation_link", sphinx_link) class PluginTools(PluginParameters, PluginCitations, PluginDocumentation): """Holds all of the parameter, citation and documentation information for one plugin class - cls""" def _find_tools(self): """Using the method resolution order, find base class tools""" tool_list = [] for tool_class in self.plugin_class.__class__.__mro__[::-1]: plugin_tools_id = tool_class.__module__ + "_tools" p_tools = pu.get_tools_class(plugin_tools_id) if p_tools: tool_list.append(p_tools) return tool_list def _set_tools_data(self): """Populate the parameters, citations and documentation with information from all of the tools classes """ self.populate_parameters(self.tools_list) self.set_cite(self.tools_list) self.set_doc(self.tools_list) def get_param_definitions(self): """ Returns ------- dict Original parameter definitions read from tools file. """ return self.param.get_dictionary() def get_param_values(self): """ Returns ------- dict Plugin parameter values for this instance. """ return self.parameters
[ 2, 15069, 1946, 13566, 4401, 8090, 12052, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 492, 8265, 3712, 13877, 62, 31391, 198, 220, 220, 1058, 24254, 25, 33501, 198, 220, 220, 1058, 28869, 24608, 25, 42636, 4899, 198, 198, 492, 8265, 9800, 3712, 17352, 18535, 354, 19802, 1279, 41355, 43776, 31, 67, 8446, 13, 330, 13, 2724, 29, 198, 198, 37811, 198, 11748, 28686, 198, 11748, 4866, 198, 11748, 33918, 198, 11748, 18931, 198, 198, 6738, 3124, 1689, 1330, 4558, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 11748, 6799, 84, 13, 37390, 13, 26791, 355, 47574, 198, 6738, 6799, 84, 13, 7890, 13, 28961, 62, 7890, 1330, 30277, 6601, 198, 11748, 6799, 84, 13, 37390, 13, 15390, 8841, 62, 48610, 355, 2205, 198, 11748, 14750, 13, 11250, 62, 8612, 1352, 13, 17143, 2357, 62, 26791, 355, 5772, 62, 84, 198, 6738, 6799, 84, 13, 7890, 13, 33803, 62, 4868, 1330, 42317, 21918, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 22897, 341, 11187, 4943, 628, 198, 4871, 42636, 48944, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16928, 262, 10007, 329, 262, 13877, 290, 2779, 6097, 284, 257, 198, 220, 220, 220, 22155, 13, 383, 10007, 389, 287, 331, 43695, 5794, 2641, 262, 198, 220, 220, 220, 8160, 62, 17143, 2357, 2163, 13, 2312, 389, 1100, 290, 10667, 329, 2761, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 48040, 62, 17143, 7307, 7, 944, 11, 4899, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5345, 11507, 17336, 290, 4277, 11507, 3815, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 262, 11507, 17336, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1461, 15968, 262, 22155, 4504, 416, 2116, 13, 1136, 62, 17143, 62, 4299, 50101, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 7, 8899, 7, 50033, 2891, 62, 4871, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2617, 62, 17143, 2357, 62, 4299, 50101, 7, 25981, 62, 4871, 828, 4899, 62, 4868, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 262, 4277, 11507, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1461, 15968, 262, 22155, 4504, 416, 2116, 13, 1136, 62, 17143, 62, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12924, 5039, 62, 12286, 62, 17143, 7307, 3419, 628, 220, 220, 220, 825, 4808, 12924, 5039, 62, 12286, 62, 17143, 7307, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 815, 48040, 477, 262, 2672, 10007, 351, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 3815, 13, 632, 318, 973, 329, 10627, 284, 766, 611, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 5035, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 4299, 82, 796, 2116, 13, 1136, 62, 17143, 62, 4299, 50101, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 15390, 8841, 7, 944, 13, 1136, 62, 15390, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17143, 7307, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14230, 1068, 35, 713, 26933, 7, 74, 11, 410, 17816, 12286, 6, 12962, 329, 479, 11, 410, 287, 279, 62, 4299, 82, 13, 23814, 3419, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10007, 6622, 1459, 3815, 11, 428, 318, 13012, 2354, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4899, 1398, 523, 4277, 290, 20203, 3359, 3815, 389, 6153, 994, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 62, 21186, 62, 12286, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 45841, 3976, 7, 944, 13, 17143, 7307, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 33803, 22446, 2617, 62, 17143, 7307, 7, 944, 13, 17143, 7307, 8, 628, 220, 220, 220, 825, 4808, 2617, 62, 17143, 7307, 62, 5661, 62, 39098, 7, 944, 11, 36525, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 360, 13221, 274, 262, 10007, 329, 428, 4554, 286, 262, 13877, 11, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1339, 286, 11507, 24549, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5772, 45941, 13, 358, 18747, 36525, 25, 262, 6376, 286, 262, 1459, 1988, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 24549, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 82, 796, 900, 7, 944, 13, 41684, 62, 37266, 62, 11600, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5391, 287, 5391, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 2116, 13, 41684, 62, 37266, 62, 11600, 58, 27740, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 7508, 17816, 18242, 6, 4083, 35312, 10786, 62, 17143, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17143, 7307, 58, 3672, 60, 796, 7508, 17816, 27160, 6, 7131, 521, 1063, 58, 9127, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 628, 220, 220, 220, 825, 4808, 2617, 62, 17143, 2357, 62, 4299, 50101, 7, 944, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 262, 10007, 329, 1123, 2779, 1398, 11, 269, 11, 2198, 262, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 20742, 11, 2198, 1366, 3858, 11, 900, 22155, 3815, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 796, 2116, 13557, 2220, 62, 17143, 62, 6738, 62, 15390, 7, 25981, 62, 4871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5772, 62, 10951, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 62, 3672, 11, 279, 62, 8367, 287, 5772, 62, 10951, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 62, 3672, 287, 2116, 13, 17143, 13, 1136, 62, 67, 14188, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 85, 287, 279, 62, 8367, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17143, 58, 79, 62, 3672, 7131, 74, 60, 796, 410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17143, 13, 2617, 7, 79, 62, 3672, 11, 279, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 17143, 62, 4299, 82, 7, 25981, 62, 4871, 8, 628, 220, 220, 220, 825, 4808, 9122, 62, 17143, 62, 4299, 82, 7, 944, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 262, 11507, 17336, 329, 8563, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2891, 62, 4871, 25, 2891, 62, 4871, 284, 779, 329, 4049, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 279, 4299, 82, 796, 2116, 13, 17143, 13, 1136, 62, 67, 14188, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 9514, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 28956, 62, 570, 1850, 62, 37266, 7, 79, 4299, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 262, 2672, 8251, 389, 3017, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 35827, 62, 13083, 7, 79, 4299, 82, 11, 2891, 62, 4871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 3038, 3815, 389, 4938, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 25811, 7, 79, 4299, 82, 11, 2891, 62, 4871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 262, 20742, 318, 4938, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 4703, 2247, 7, 79, 4299, 82, 11, 2891, 62, 4871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 262, 288, 4906, 318, 4938, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 67, 4906, 7, 79, 4299, 82, 11, 2891, 62, 4871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 257, 3359, 3038, 284, 4174, 284, 10795, 10007, 1568, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2617, 62, 13812, 7, 79, 4299, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 85, 287, 279, 4299, 82, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9794, 6565, 14230, 1068, 35, 713, 284, 8633, 357, 23301, 284, 331, 43695, 40213, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 85, 17816, 12286, 6, 4357, 14230, 1068, 35, 713, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 17816, 12286, 20520, 796, 33918, 13, 46030, 7, 17752, 13, 67, 8142, 7, 85, 17816, 12286, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9794, 262, 4731, 284, 281, 18253, 11, 12178, 11, 1351, 11, 965, 11, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 12286, 62, 45841, 1387, 62, 11600, 62, 1069, 1023, 7, 85, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 17816, 12286, 20520, 796, 47574, 13557, 67, 8142, 7, 85, 17816, 12286, 6, 12962, 628, 220, 220, 220, 825, 4808, 2220, 62, 17143, 62, 6738, 62, 15390, 7, 944, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16742, 262, 11507, 1321, 422, 262, 2446, 2205, 8841, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 2810, 287, 257, 331, 43695, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17202, 5390, 8410, 1210, 262, 288, 4906, 5726, 656, 257, 4731, 628, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 25981, 62, 4871, 11, 366, 13086, 62, 17143, 7307, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 43695, 62, 5239, 796, 2891, 62, 4871, 13, 13086, 62, 17143, 7307, 13, 834, 15390, 834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 43695, 62, 5239, 290, 331, 43695, 62, 5239, 13, 36311, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 331, 43695, 62, 5239, 318, 407, 6045, 290, 407, 6565, 393, 17747, 286, 9029, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 796, 2205, 13, 2220, 62, 88, 43695, 62, 15390, 7, 88, 43695, 62, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5772, 62, 10951, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 17143, 62, 10951, 62, 11600, 11, 14230, 1068, 35, 713, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 19662, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 464, 10007, 423, 407, 587, 1100, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 259, 9380, 329, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 18224, 62, 19662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5772, 62, 10951, 62, 11600, 628, 220, 220, 220, 825, 2198, 62, 1640, 62, 12286, 7, 944, 11, 953, 62, 17143, 11, 953, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1532, 262, 1988, 318, 3421, 284, 307, 705, 12286, 3256, 788, 900, 262, 2656, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 1988, 13, 1002, 262, 4277, 4909, 257, 22155, 11, 788, 2989, 198, 220, 220, 220, 220, 220, 220, 220, 329, 262, 3376, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 796, 2116, 13, 17143, 13, 1136, 62, 67, 14188, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 965, 7, 4666, 62, 8367, 8, 6624, 366, 12286, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 12286, 62, 45841, 1387, 62, 11600, 62, 1069, 1023, 7, 17143, 62, 10951, 62, 11600, 58, 4666, 62, 17143, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 62, 8367, 796, 2116, 13, 1136, 62, 21186, 62, 12286, 7, 17143, 62, 10951, 62, 11600, 58, 4666, 62, 17143, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 62, 8367, 796, 5772, 62, 10951, 62, 11600, 58, 4666, 62, 17143, 7131, 1, 12286, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 953, 62, 8367, 628, 220, 220, 220, 825, 4808, 9122, 62, 35827, 62, 13083, 7, 944, 11, 5772, 62, 10951, 62, 11600, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 262, 1440, 8251, 37250, 67, 4906, 3256, 705, 11213, 3256, 705, 4703, 2247, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 20520, 389, 3017, 2641, 262, 22155, 1813, 329, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 62, 13083, 796, 14631, 67, 4906, 1600, 366, 11213, 1600, 366, 4703, 2247, 1600, 366, 12286, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 13083, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 2539, 62, 11600, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 279, 62, 2539, 11, 279, 287, 5772, 62, 10951, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 13083, 796, 279, 13, 13083, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 13, 1136, 7203, 4703, 2247, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 13, 1136, 7203, 4703, 2247, 4943, 6624, 366, 30342, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 7104, 8251, 11, 691, 2421, 257, 4277, 1988, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 62, 13083, 796, 14631, 12286, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 62, 13083, 796, 14631, 4703, 2247, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 477, 7, 67, 287, 477, 62, 13083, 329, 288, 287, 2672, 62, 13083, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 2539, 62, 11600, 58, 79, 62, 2539, 60, 796, 900, 7, 35827, 62, 13083, 8, 532, 900, 7, 439, 62, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 13083, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4814, 62, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 25981, 62, 4871, 13, 834, 3672, 834, 92, 1595, 470, 3994, 477, 286, 262, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 35827, 8251, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5772, 11, 4814, 62, 27160, 287, 4814, 62, 2539, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 464, 4814, 2672, 8251, 329, 705, 90, 17143, 92, 6, 389, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 46491, 45688, 62, 27160, 11, 41767, 28, 1600, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 24908, 25, 25639, 8251, 2641, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 69, 1, 5492, 4370, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 92, 4943, 628, 220, 220, 220, 825, 4808, 9122, 62, 67, 4906, 7, 944, 11, 5772, 62, 10951, 62, 11600, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6889, 1654, 326, 262, 288, 4906, 5128, 318, 4938, 290, 326, 262, 4277, 1988, 318, 198, 220, 220, 220, 220, 220, 220, 220, 11670, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13877, 62, 18224, 62, 2536, 796, 277, 1, 1858, 373, 281, 4049, 351, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 62, 2539, 11, 279, 62, 11600, 287, 5772, 62, 10951, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 279, 62, 11600, 13, 1136, 7203, 67, 4906, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 288, 4906, 13, 33491, 7203, 33172, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 12102, 11, 4049, 62, 2536, 796, 5772, 62, 84, 13, 271, 62, 12102, 62, 67, 4906, 7, 67, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 279, 12102, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 44651, 11507, 6770, 4064, 82, 7479, 77, 4064, 82, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 79, 62, 2539, 11, 4049, 62, 2536, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 33803, 62, 18224, 62, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 12286, 62, 45841, 1387, 62, 11600, 62, 1069, 1023, 7, 79, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 8367, 796, 47574, 13557, 67, 8142, 7, 79, 62, 11600, 14692, 12286, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 12102, 11, 4049, 62, 2536, 796, 5772, 62, 84, 13, 271, 62, 12102, 7, 79, 62, 2539, 11, 4277, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 11600, 11, 2198, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 279, 12102, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 69, 1, 90, 33803, 62, 18224, 62, 2536, 38362, 1391, 18224, 62, 2536, 92, 4943, 628, 220, 220, 220, 825, 4808, 9122, 62, 4703, 2247, 7, 944, 11, 5772, 62, 10951, 62, 11600, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 1654, 326, 262, 20742, 3572, 318, 4938, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 20742, 62, 46170, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35487, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3849, 13857, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32225, 2903, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19608, 292, 1039, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30342, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 20742, 62, 12102, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 62, 2539, 11, 279, 287, 5772, 62, 10951, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 27039, 20742, 1241, 318, 3376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 7890, 62, 13083, 7, 79, 62, 2539, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 262, 1366, 3858, 389, 4938, 7747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 14692, 4703, 2247, 8973, 407, 287, 20742, 62, 46170, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 24441, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 92, 262, 1391, 79, 62, 2539, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 11507, 318, 8686, 281, 12515, 20742, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 5715, 705, 90, 79, 17816, 4703, 2247, 20520, 92, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 47139, 7747, 389, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 46491, 4703, 2247, 62, 46170, 11, 41767, 28, 1600, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20742, 62, 12102, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 20742, 62, 12102, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 5492, 1487, 262, 2393, 329, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 9122, 62, 7890, 62, 13083, 7, 944, 11, 279, 62, 2539, 11, 279, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 1654, 326, 262, 20742, 286, 27039, 10007, 318, 705, 19608, 292, 1039, 6, 198, 220, 220, 220, 220, 220, 220, 220, 523, 326, 262, 3359, 1502, 318, 21588, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40522, 796, 14631, 259, 62, 19608, 292, 1039, 1600, 366, 448, 62, 19608, 292, 1039, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 13269, 796, 14631, 30342, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 62, 2539, 287, 40522, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 14692, 4703, 2247, 8973, 14512, 366, 19608, 292, 1039, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 279, 14692, 4703, 2247, 8973, 407, 287, 13269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 14692, 4703, 2247, 8973, 796, 366, 19608, 292, 1039, 1, 628, 220, 220, 220, 825, 4808, 9122, 62, 25811, 7, 944, 11, 5772, 62, 10951, 62, 11600, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 1654, 326, 3038, 15942, 577, 16969, 2872, 262, 4036, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 62, 12102, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 62, 2539, 11, 279, 287, 5772, 62, 10951, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1715, 796, 5772, 62, 10951, 62, 11600, 58, 79, 62, 2539, 4083, 1136, 7203, 11213, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1715, 407, 1944, 329, 7104, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1715, 290, 318, 39098, 7, 20147, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 796, 5772, 62, 10951, 62, 11600, 58, 79, 62, 2539, 4083, 1136, 7203, 25811, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 20147, 796, 1715, 13, 1136, 7203, 25811, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 290, 3038, 62, 20147, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 612, 318, 407, 281, 12515, 3038, 6764, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2641, 262, 3038, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12515, 62, 18076, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 329, 2172, 287, 3038, 62, 20147, 611, 2172, 407, 287, 3689, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12515, 62, 18076, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 62, 12102, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 62, 12102, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 5492, 2198, 262, 11507, 3689, 329, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 28956, 62, 570, 1850, 62, 37266, 7, 944, 11, 5772, 62, 10951, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27914, 597, 10007, 351, 20742, 796, 8856, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 11600, 62, 30073, 796, 5772, 62, 10951, 62, 11600, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 62, 2539, 11, 279, 287, 279, 62, 11600, 62, 30073, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20742, 796, 5772, 62, 10951, 62, 11600, 58, 79, 62, 2539, 4083, 1136, 7203, 4703, 2247, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20742, 6624, 366, 46430, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 5772, 62, 10951, 62, 11600, 58, 79, 62, 2539, 60, 628, 220, 220, 220, 825, 4808, 2617, 62, 13812, 7, 944, 11, 5772, 62, 10951, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40443, 11, 900, 477, 286, 262, 10007, 284, 3359, 705, 261, 6, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 1568, 14294, 618, 10795, 10007, 761, 284, 307, 3402, 198, 220, 220, 220, 220, 220, 220, 220, 393, 7104, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 5772, 62, 10951, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 14692, 13812, 8973, 796, 366, 261, 1, 628, 220, 220, 220, 825, 4296, 62, 21186, 62, 12286, 82, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13268, 4277, 3815, 329, 10007, 326, 423, 257, 20203, 319, 262, 1988, 220, 198, 220, 220, 220, 220, 220, 220, 220, 286, 1194, 11507, 11, 290, 389, 287, 22155, 1296, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 279, 11600, 287, 2116, 13, 1136, 62, 17143, 62, 4299, 50101, 22446, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 12286, 62, 45841, 1387, 62, 11600, 62, 1069, 1023, 7, 79, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17143, 7307, 58, 3672, 60, 796, 2116, 13, 1136, 62, 21186, 62, 12286, 7, 79, 11600, 8, 628, 220, 220, 220, 825, 4277, 62, 45841, 1387, 62, 11600, 62, 1069, 1023, 7, 944, 11, 279, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 262, 11507, 4277, 1988, 318, 287, 257, 5794, 351, 198, 220, 220, 220, 220, 220, 220, 220, 262, 2560, 11507, 4731, 290, 262, 10795, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 13, 4277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11862, 25, 376, 16960, 198, 220, 220, 220, 220, 220, 220, 220, 290, 407, 281, 4036, 4277, 1988, 284, 307, 900, 198, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 13, 4277, 25, 1391, 6, 17, 10354, 20, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 279, 11600, 25, 383, 11507, 6770, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6407, 611, 262, 4277, 22155, 4909, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3376, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 11600, 14692, 12286, 8973, 290, 318, 39098, 7, 79, 11600, 14692, 12286, 33116, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 11600, 1, 407, 287, 279, 11600, 14692, 67, 4906, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 3672, 796, 1351, 7, 79, 11600, 17816, 12286, 6, 4083, 13083, 28955, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2560, 62, 3672, 287, 2116, 13, 1136, 62, 17143, 62, 4299, 50101, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 651, 62, 21186, 62, 12286, 7, 944, 11, 1200, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3311, 30753, 2163, 284, 6330, 257, 22155, 286, 4277, 10007, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2060, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 11507, 6770, 22155, 286, 262, 10795, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 16, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3376, 4277, 1988, 1912, 319, 262, 1459, 1988, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 11, 393, 2560, 11, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 279, 4299, 82, 796, 2116, 13, 1136, 62, 17143, 62, 4299, 50101, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 3672, 796, 1351, 7, 9410, 17816, 12286, 6, 4083, 13083, 28955, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 796, 2116, 13, 22437, 62, 38476, 7, 8000, 62, 3672, 11, 279, 4299, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 262, 2560, 4277, 318, 257, 22155, 788, 4174, 262, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 664, 1834, 2280, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8000, 17816, 12286, 6, 4357, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17143, 7307, 58, 8000, 62, 3672, 60, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 21186, 62, 12286, 7, 8000, 17816, 12286, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1200, 17816, 12286, 6, 7131, 8000, 62, 3672, 7131, 944, 13, 17143, 7307, 58, 8000, 62, 3672, 11907, 628, 220, 220, 220, 825, 9828, 62, 45841, 658, 7, 944, 11, 953, 62, 17143, 11, 953, 62, 8367, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9938, 4745, 658, 286, 257, 9518, 11507, 1303, 1844, 262, 2205, 8841, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1064, 4745, 658, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 279, 11600, 287, 2116, 13, 1136, 62, 17143, 62, 4299, 50101, 22446, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 12286, 62, 45841, 1387, 62, 11600, 62, 1069, 1023, 7, 79, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 279, 11600, 17816, 12286, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 3672, 796, 1351, 7, 12286, 13, 13083, 28955, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2560, 62, 3672, 6624, 953, 62, 17143, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 953, 62, 8367, 287, 4277, 58, 8000, 62, 3672, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4277, 58, 8000, 62, 3672, 7131, 4666, 62, 8367, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1715, 796, 279, 11600, 17816, 11213, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15883, 62, 47335, 437, 341, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 1715, 11, 2560, 62, 3672, 11, 1988, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 2198, 62, 45841, 3976, 7, 944, 11, 10007, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35, 2357, 3810, 543, 11507, 3815, 389, 10795, 319, 257, 2560, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 290, 1771, 484, 815, 307, 7104, 393, 3402, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 796, 2116, 13, 17143, 13, 1136, 62, 67, 14188, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1207, 62, 4868, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 25, 410, 14692, 45841, 1387, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 5772, 62, 10951, 62, 11600, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 45841, 1387, 1, 287, 410, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 62, 3672, 11, 20203, 287, 1207, 62, 4868, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 45841, 1387, 11, 14230, 1068, 35, 713, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1318, 318, 257, 22155, 286, 20203, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 17143, 62, 3672, 796, 1351, 7, 45841, 1387, 13, 13083, 28955, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 7747, 543, 1276, 307, 287, 262, 2560, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 25541, 62, 4868, 796, 20203, 58, 8000, 62, 17143, 62, 3672, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2560, 62, 17143, 62, 3672, 287, 10007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 262, 11507, 318, 287, 262, 1459, 6107, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 318, 5981, 329, 2779, 6097, 543, 423, 1811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10795, 6097, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 8367, 796, 10007, 58, 8000, 62, 17143, 62, 3672, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 965, 7, 8000, 62, 8367, 8, 287, 2560, 62, 25541, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 58, 79, 62, 3672, 7131, 1, 13812, 8973, 796, 366, 261, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 58, 79, 62, 3672, 7131, 1, 13812, 8973, 796, 366, 2364, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20203, 287, 10007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 8367, 796, 10007, 58, 45841, 1387, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2560, 62, 8367, 318, 6045, 393, 965, 7, 8000, 62, 8367, 8, 6624, 366, 14202, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 58, 79, 62, 3672, 7131, 1, 13812, 8973, 796, 366, 2364, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 10951, 62, 11600, 58, 79, 62, 3672, 7131, 1, 13812, 8973, 796, 366, 261, 1, 628, 198, 220, 220, 220, 825, 900, 62, 33803, 62, 4868, 62, 17143, 7307, 7, 944, 11, 5128, 62, 17143, 7307, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 318, 1444, 706, 262, 13877, 468, 587, 2727, 416, 262, 198, 220, 220, 220, 220, 220, 220, 220, 11523, 9355, 13, 220, 632, 24020, 7559, 944, 13, 17143, 7307, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 3815, 351, 883, 1813, 287, 262, 5128, 1429, 1351, 13, 632, 198, 220, 220, 220, 220, 220, 220, 220, 8794, 329, 5021, 11507, 13042, 11, 29206, 13, 7632, 26, 3104, 26, 3980, 26, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8633, 5128, 62, 17143, 7307, 25, 317, 22155, 286, 262, 5128, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 329, 428, 13877, 11, 393, 6045, 611, 645, 2183, 5612, 318, 2672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 5128, 62, 17143, 7307, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 2116, 13, 17143, 7307, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 8367, 796, 5128, 62, 17143, 7307, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 9122, 62, 41684, 62, 37266, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17143, 7307, 11, 649, 62, 8367, 11, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 36301, 705, 90, 2539, 92, 6, 318, 407, 4938, 329, 13877, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 944, 13, 33803, 62, 4871, 13, 3672, 27422, 3467, 77, 23433, 4756, 290, 302, 12, 29336, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 1169, 1429, 1351, 287, 262, 4566, 333, 1352, 284, 8295, 4781, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 59, 34952, 23869, 10007, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 18224, 8, 628, 220, 220, 220, 825, 11593, 9122, 62, 41684, 62, 37266, 7, 944, 11, 10007, 11, 1988, 11, 1994, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 11507, 1988, 284, 257, 1351, 611, 340, 3544, 11507, 24549, 198, 220, 220, 220, 220, 220, 220, 220, 290, 900, 3917, 10007, 11, 523, 262, 9355, 4206, 262, 649, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 1366, 290, 543, 20652, 284, 302, 12, 5143, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10007, 25, 28261, 286, 10007, 290, 1459, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1988, 25, 11052, 284, 900, 11507, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1994, 25, 25139, 2357, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5772, 62, 84, 13, 271, 62, 41684, 62, 17143, 7, 2539, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 11, 4049, 62, 2536, 796, 47574, 13, 1102, 1851, 62, 41684, 62, 37266, 7, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4049, 62, 2536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 58, 2539, 60, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 1994, 1343, 45434, 37266, 526, 1343, 2099, 7, 8367, 58, 15, 35944, 834, 3672, 834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47653, 62, 41684, 62, 37266, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 944, 13, 1136, 62, 41684, 62, 37266, 62, 11600, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 18242, 1298, 6167, 11, 366, 27160, 1298, 1988, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33295, 62, 26086, 62, 67, 12078, 7, 11925, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 58, 2539, 60, 796, 1988, 628, 220, 220, 220, 825, 4808, 1136, 62, 11201, 392, 62, 11600, 7, 944, 11, 12714, 11, 4292, 62, 27740, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 8633, 329, 4292, 15582, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 12714, 25, 22217, 11507, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4292, 62, 27740, 25, 7913, 286, 15225, 284, 1441, 8633, 329, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4292, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 12714, 62, 2100, 796, 47574, 13557, 67, 8142, 7, 3866, 1177, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 12714, 62, 2100, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 262, 1339, 326, 612, 318, 281, 6565, 8633, 11, 3359, 262, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12714, 62, 2100, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 12714, 62, 2100, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 8654, 62, 4868, 287, 12714, 62, 2100, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4292, 62, 11600, 58, 2539, 60, 796, 2116, 13557, 1136, 62, 11201, 392, 62, 11600, 7, 47050, 62, 4868, 11, 4292, 62, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4292, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 3866, 1177, 62, 2100, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4292, 62, 27740, 6624, 366, 439, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4292, 62, 11600, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22915, 62, 439, 62, 27740, 5736, 7, 3866, 1177, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 27740, 5736, 7, 3866, 1177, 62, 2100, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47574, 13, 9122, 62, 12102, 62, 46156, 7, 11201, 392, 62, 27740, 11, 12714, 62, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 62, 2539, 796, 277, 1, 27740, 90, 11201, 392, 62, 27740, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4292, 62, 11600, 58, 27740, 62, 2539, 60, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 27740, 62, 48369, 62, 22915, 7, 3866, 1177, 62, 2100, 11, 4292, 62, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 1212, 12714, 1988, 373, 407, 257, 20915, 1351, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 273, 22155, 13, 770, 4292, 3141, 1459, 88, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8807, 2499, 351, 883, 734, 1366, 2099, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4292, 62, 11600, 628, 220, 220, 220, 825, 4808, 1136, 62, 27740, 5736, 7, 944, 11, 12714, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 12714, 62, 4868, 25, 383, 12714, 11507, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 41265, 284, 3359, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 611, 407, 12714, 62, 4868, 2073, 18896, 7, 3866, 1177, 62, 4868, 8, 628, 220, 220, 220, 825, 4808, 22915, 62, 439, 62, 27740, 5736, 7, 944, 11, 12714, 62, 4868, 11, 5391, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7293, 576, 5072, 4731, 3951, 329, 477, 15225, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 12714, 62, 4868, 25, 383, 12714, 11507, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5391, 82, 25, 7913, 286, 15225, 284, 3359, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5391, 287, 2837, 7, 16, 11, 5391, 82, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 62, 2539, 796, 277, 1, 27740, 90, 27740, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 11600, 58, 27740, 62, 2539, 60, 796, 2116, 13557, 27740, 62, 48369, 62, 22915, 7, 3866, 1177, 62, 4868, 11, 5391, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8654, 62, 11600, 628, 220, 220, 220, 825, 4808, 27740, 62, 48369, 62, 22915, 7, 944, 11, 12714, 62, 4868, 11, 5391, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1532, 612, 389, 3294, 3815, 287, 1351, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 5514, 3613, 262, 3815, 329, 262, 15225, 7147, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 12714, 62, 4868, 25, 383, 12714, 11507, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5391, 25, 15793, 284, 1441, 262, 16416, 33274, 22155, 329, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 16416, 33274, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 12714, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12714, 62, 13812, 62, 8367, 796, 366, 11097, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12714, 62, 13812, 62, 8367, 796, 12714, 62, 4868, 58, 27740, 532, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 2100, 796, 2116, 13557, 2617, 62, 439, 62, 1837, 41641, 7, 3866, 1177, 62, 13812, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 48369, 62, 38983, 62, 11600, 7, 47050, 62, 2100, 8, 628, 220, 220, 220, 825, 4808, 1136, 62, 48369, 62, 38983, 62, 11600, 7, 944, 11, 1188, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 8633, 329, 16416, 33274, 1321, 11, 198, 220, 220, 220, 220, 220, 220, 220, 923, 25, 11338, 25, 9662, 357, 392, 16058, 611, 2810, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1188, 25, 383, 1351, 1988, 287, 16416, 33274, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 22155, 286, 16416, 33274, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 340, 861, 10141, 628, 220, 220, 220, 220, 220, 220, 220, 4096, 62, 48369, 62, 13083, 796, 14631, 9688, 1600, 366, 11338, 1600, 366, 9662, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 48369, 62, 13083, 796, 30138, 35487, 62, 48369, 62, 13083, 11, 366, 354, 2954, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 16416, 62, 11600, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 611, 47574, 13, 271, 62, 48369, 62, 38983, 7, 2100, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 4868, 796, 1188, 13, 35312, 7, 2404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2100, 62, 4868, 8, 1279, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 1654, 262, 923, 2245, 2239, 16416, 8251, 389, 1464, 3402, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 772, 618, 9178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 4868, 13, 33295, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16416, 62, 3672, 11, 410, 287, 19974, 7, 439, 62, 48369, 62, 13083, 11, 1188, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5514, 3601, 510, 284, 262, 35581, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 10049, 905, 262, 16058, 1988, 611, 340, 318, 287, 1188, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16416, 62, 11600, 58, 48369, 62, 3672, 60, 796, 410, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 4868, 796, 685, 2100, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16416, 62, 3672, 11, 410, 287, 340, 861, 10141, 13, 13344, 62, 6511, 395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4096, 62, 48369, 62, 13083, 11, 1188, 62, 4868, 11, 6070, 8367, 33151, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16416, 62, 11600, 58, 48369, 62, 3672, 60, 796, 410, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 16416, 62, 11600, 628, 220, 220, 220, 825, 4808, 2617, 62, 439, 62, 1837, 41641, 7, 944, 11, 1188, 11, 9014, 62, 2536, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27914, 3224, 9029, 422, 1188, 11, 6330, 7633, 618, 705, 439, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 318, 6163, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1188, 25, 3454, 501, 33274, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9014, 62, 2536, 25, 10903, 284, 6330, 705, 32105, 351, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 2100, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 47574, 13, 271, 62, 48369, 62, 38983, 7, 2100, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1188, 6624, 366, 25, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 9014, 62, 2536, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 1188, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 1188, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1188, 628, 220, 220, 220, 825, 651, 62, 41684, 62, 37266, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3497, 262, 5021, 11507, 22155, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 41684, 62, 37266, 62, 11600, 628, 220, 220, 220, 825, 651, 62, 26086, 62, 67, 12078, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3497, 262, 3131, 15225, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 26086, 62, 67, 12078, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 19608, 330, 31172, 198, 220, 220, 220, 1398, 25139, 2357, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 2935, 6519, 273, 286, 25139, 2357, 6188, 329, 20652, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 20742, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 265, 2981, 25, 2176, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 18634, 25, 32233, 30109, 2536, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 20203, 25, 32233, 21737, 628, 220, 220, 220, 220, 220, 220, 220, 825, 4808, 1136, 62, 17143, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 11600, 17816, 4703, 2247, 20520, 796, 2116, 13, 4703, 2247, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 11600, 17816, 4906, 20520, 796, 2116, 13, 67, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 11600, 17816, 11213, 20520, 796, 2116, 13, 11213, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 262, 5637, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5772, 62, 11600, 198, 220, 220, 220, 37227, 628, 198, 4871, 42636, 34, 20597, 7, 15252, 2599, 198, 220, 220, 220, 37227, 3855, 428, 27860, 22155, 523, 651, 62, 67, 14188, 286, 262, 20150, 2099, 198, 220, 220, 220, 815, 1441, 257, 22155, 286, 477, 262, 27860, 7508, 355, 2077, 422, 198, 220, 220, 220, 2205, 8841, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 62, 66, 578, 7, 944, 11, 4899, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 262, 33499, 329, 1123, 286, 262, 4899, 6097, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4899, 62, 4868, 25, 7343, 7268, 2891, 6097, 286, 2560, 20652, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2891, 62, 4871, 25, 2116, 13557, 2617, 62, 33803, 62, 66, 20597, 7, 25981, 62, 4871, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4899, 62, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 2617, 62, 33803, 62, 66, 20597, 7, 944, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8778, 262, 10007, 329, 1123, 2779, 1398, 290, 900, 3815, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 33499, 796, 2116, 13557, 2220, 62, 66, 578, 62, 6738, 62, 15390, 7, 25981, 62, 4871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 33499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 27860, 287, 33499, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 66, 3780, 62, 13083, 62, 12102, 7, 66, 3780, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 66, 3780, 796, 42317, 21918, 7, 1174, 66, 3780, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 578, 13, 2617, 7, 3605, 62, 66, 3780, 13, 3672, 11, 649, 62, 66, 3780, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 464, 27860, 329, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 92, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 9776, 407, 7448, 19570, 628, 220, 220, 220, 825, 4808, 66, 3780, 62, 13083, 62, 12102, 7, 944, 11, 649, 62, 66, 3780, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 2672, 27860, 8251, 389, 1944, 13, 8229, 3991, 611, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 8251, 389, 4814, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 62, 13083, 796, 14631, 11213, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14384, 262, 34093, 4954, 8106, 612, 318, 691, 257, 6764, 198, 220, 220, 220, 220, 220, 220, 220, 27860, 62, 13083, 796, 685, 74, 329, 479, 287, 649, 62, 66, 3780, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 477, 286, 262, 2672, 8251, 389, 7763, 2641, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27860, 6770, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 13083, 796, 477, 7, 9186, 287, 27860, 62, 13083, 329, 2378, 287, 2672, 62, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27860, 62, 13083, 62, 12102, 796, 10352, 611, 2198, 62, 13083, 318, 10352, 2073, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 13083, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19509, 62, 3672, 62, 20205, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 571, 16886, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 437, 11295, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34023, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45841, 1387, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26363, 543, 389, 407, 973, 198, 220, 220, 220, 220, 220, 220, 220, 3224, 62, 13083, 796, 685, 74, 329, 479, 287, 27860, 62, 13083, 611, 479, 407, 287, 477, 62, 13083, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3224, 62, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 5492, 691, 779, 262, 1708, 8251, 2641, 262, 27860, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 6770, 329, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 38362, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 46491, 439, 62, 13083, 11, 41767, 28, 1600, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 464, 11491, 8251, 973, 25, 1600, 3224, 62, 13083, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 27860, 62, 13083, 62, 12102, 628, 220, 220, 220, 825, 4808, 2220, 62, 66, 578, 62, 6738, 62, 15390, 7, 944, 11, 2891, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16742, 262, 27860, 1321, 422, 262, 2446, 2205, 8841, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 2810, 287, 257, 331, 43695, 5794, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2891, 62, 4871, 25, 16984, 284, 19818, 27860, 2205, 8841, 422, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1439, 33499, 422, 428, 2891, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 66, 796, 14230, 1068, 35, 713, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1001, 30052, 262, 27860, 5050, 13, 11593, 11600, 834, 5860, 4554, 12608, 13, 198, 220, 220, 220, 220, 220, 220, 220, 27860, 62, 24396, 82, 796, 1391, 2539, 25, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 2891, 62, 4871, 13, 834, 11600, 834, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 13, 9688, 2032, 342, 10786, 66, 3780, 11537, 92, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 62, 24396, 62, 3672, 11, 269, 62, 24396, 287, 27860, 62, 24396, 82, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 43695, 62, 5239, 796, 269, 62, 24396, 13, 834, 15390, 834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 43695, 62, 5239, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 43695, 62, 5239, 796, 2116, 13, 325, 30052, 62, 11213, 7, 88, 43695, 62, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 66, 3780, 796, 2205, 13, 2220, 62, 88, 43695, 62, 15390, 7, 88, 43695, 62, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 14421, 62, 66, 3780, 11, 14230, 1068, 35, 713, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 464, 27860, 1321, 468, 407, 587, 1100, 287, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 30283, 306, 329, 1391, 25981, 62, 4871, 13, 834, 3672, 834, 92, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 66, 58, 66, 62, 24396, 62, 3672, 60, 796, 1459, 62, 66, 3780, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 477, 62, 66, 628, 220, 220, 220, 825, 384, 30052, 62, 11213, 7, 944, 11, 331, 43695, 62, 5239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19400, 262, 5794, 286, 262, 2205, 8841, 284, 12377, 649, 3951, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 886, 11295, 290, 275, 571, 16886, 290, 2251, 257, 1994, 329, 262, 6764, 523, 326, 198, 220, 220, 220, 220, 220, 220, 220, 340, 307, 1100, 355, 257, 331, 43695, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 331, 43695, 62, 5239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 17893, 16898, 331, 43695, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 796, 2205, 13, 28956, 62, 3605, 62, 6615, 7, 88, 43695, 62, 5239, 13, 3911, 653, 7203, 65, 571, 16886, 25, 4943, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 62, 2536, 796, 366, 220, 220, 220, 220, 220, 220, 220, 6764, 11097, 1343, 6764, 628, 220, 220, 220, 220, 220, 220, 220, 275, 571, 16886, 62, 5239, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 43695, 62, 5239, 13, 3911, 653, 7203, 65, 571, 16886, 25, 4943, 58, 17, 4083, 3911, 653, 7203, 437, 11295, 25, 4943, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 5239, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 43695, 62, 5239, 13, 3911, 653, 7203, 65, 571, 16886, 25, 4943, 58, 17, 4083, 3911, 653, 7203, 437, 11295, 25, 4943, 58, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 275, 571, 16886, 62, 5239, 290, 886, 62, 5239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 2536, 796, 1715, 62, 2536, 1343, 705, 59, 77, 220, 220, 220, 220, 220, 220, 220, 275, 571, 16886, 25, 930, 6, 1343, 275, 571, 16886, 62, 5239, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 705, 437, 11295, 25, 930, 6, 1343, 886, 62, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 886, 62, 5239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 2536, 796, 1715, 62, 2536, 1343, 705, 59, 77, 220, 220, 220, 220, 220, 220, 220, 886, 11295, 25, 930, 6, 1343, 886, 62, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 275, 571, 16886, 62, 5239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 2536, 796, 1715, 62, 2536, 1343, 705, 59, 77, 220, 220, 220, 220, 220, 220, 220, 275, 571, 16886, 25, 930, 6, 1343, 275, 571, 16886, 62, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 2536, 796, 1715, 62, 2536, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2457, 62, 2536, 628, 198, 4871, 42636, 24941, 341, 7, 15252, 2599, 198, 220, 220, 220, 37227, 3855, 428, 10314, 22155, 523, 651, 62, 67, 14188, 286, 198, 220, 220, 220, 262, 20150, 2099, 815, 1441, 257, 22155, 286, 477, 262, 198, 220, 220, 220, 10314, 3307, 2077, 422, 2205, 8841, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 62, 40539, 7, 944, 11, 4899, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27914, 649, 3951, 290, 3613, 4566, 14601, 329, 262, 1200, 4899, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 691, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 2536, 796, 4899, 62, 4868, 58, 12, 16, 4083, 11250, 62, 40539, 13, 834, 15390, 834, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4566, 62, 2536, 290, 37082, 77, 59, 77, 1, 287, 4566, 62, 2536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8621, 30748, 3294, 14601, 351, 734, 649, 3951, 3467, 77, 59, 77, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 40539, 62, 4868, 796, 685, 15390, 13, 28956, 62, 3605, 62, 6615, 7, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 300, 287, 4566, 62, 2536, 13, 35312, 7203, 59, 77, 59, 77, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 2536, 796, 705, 59, 77, 4458, 22179, 7, 11250, 62, 40539, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4566, 62, 2536, 628, 220, 220, 220, 825, 900, 62, 15390, 62, 8726, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1532, 612, 318, 257, 27596, 1522, 2420, 10314, 2393, 2641, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 14, 10459, 14, 22897, 341, 9483, 11, 788, 3613, 262, 2792, 284, 262, 2443, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5004, 8858, 84, 2779, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 6799, 84, 62, 8692, 62, 6978, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 29720, 35312, 7203, 39308, 84, 4943, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 406, 13369, 10314, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 62, 43551, 796, 6799, 84, 62, 8692, 62, 6978, 1343, 366, 15390, 14, 10459, 14, 22897, 341, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 62, 6978, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33803, 62, 4871, 13, 834, 21412, 834, 13, 33491, 7203, 33283, 12813, 11074, 33491, 7203, 39308, 84, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 796, 8265, 62, 6978, 1343, 45434, 15390, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 2393, 62, 1343, 27071, 81, 301, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 796, 2205, 62, 43551, 1343, 2393, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 599, 20079, 87, 62, 8726, 796, 705, 5450, 1378, 39308, 84, 13, 961, 83, 704, 420, 82, 13, 952, 14, 268, 14, 42861, 14, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22897, 341, 6, 1343, 2393, 62, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 7753, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15390, 13, 2617, 7203, 22897, 341, 62, 8726, 1600, 599, 20079, 87, 62, 8726, 8, 628, 198, 4871, 42636, 33637, 7, 37233, 48944, 11, 42636, 34, 20597, 11, 42636, 24941, 341, 2599, 198, 220, 220, 220, 37227, 39, 10119, 477, 286, 262, 11507, 11, 27860, 290, 10314, 1321, 198, 220, 220, 220, 329, 530, 13877, 1398, 532, 537, 82, 37811, 628, 220, 220, 220, 825, 4808, 19796, 62, 31391, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12814, 262, 2446, 6323, 1502, 11, 1064, 2779, 1398, 4899, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2891, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2891, 62, 4871, 287, 2116, 13, 33803, 62, 4871, 13, 834, 4871, 834, 13, 834, 76, 305, 834, 58, 3712, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13877, 62, 31391, 62, 312, 796, 2891, 62, 4871, 13, 834, 21412, 834, 1343, 45434, 31391, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 31391, 796, 47574, 13, 1136, 62, 31391, 62, 4871, 7, 33803, 62, 31391, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 62, 31391, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2891, 62, 4868, 13, 33295, 7, 79, 62, 31391, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2891, 62, 4868, 628, 220, 220, 220, 825, 4808, 2617, 62, 31391, 62, 7890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16979, 5039, 262, 10007, 11, 33499, 290, 10314, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1321, 422, 477, 286, 262, 4899, 6097, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12924, 5039, 62, 17143, 7307, 7, 944, 13, 31391, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 66, 578, 7, 944, 13, 31391, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 15390, 7, 944, 13, 31391, 62, 4868, 8, 628, 220, 220, 220, 825, 651, 62, 17143, 62, 4299, 50101, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13745, 11507, 17336, 1100, 422, 4899, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17143, 13, 1136, 62, 67, 14188, 3419, 628, 220, 220, 220, 825, 651, 62, 17143, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42636, 11507, 3815, 329, 428, 4554, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17143, 7307, 198 ]
2.208371
14,311
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals import re import six LIGHT = 0o10 ansi_CSI = '\x1b[' ansi_seq = re.compile(re.escape(ansi_CSI) + r'(?P<params>[\x20-\x3f]*)(?P<final>[\x40-\x7e])') ansi_cmd_SGR = 'm' # set graphics rendition color_defs = ( (000, 'k', 'black'), (0o01, 'r', 'dark red'), (0o02, 'g', 'dark green'), (0o03, 'w', 'brown', 'dark yellow'), (0o04, 'b', 'dark blue'), (0o05, 'm', 'dark magenta', 'dark purple'), (0o06, 'c', 'dark cyan'), (0o07, 'n', 'light grey', 'light gray', 'neutral', 'dark white'), (0o10, 'B', 'dark grey', 'dark gray', 'light black'), (0o11, 'R', 'red', 'light red'), (0o12, 'G', 'green', 'light green'), (0o13, 'Y', 'yellow', 'light yellow'), (0o14, 'B', 'blue', 'light blue'), (0o15, 'M', 'magenta', 'purple', 'light magenta', 'light purple'), (0o16, 'C', 'cyan', 'light cyan'), (0o17, 'W', 'white', 'light white'), ) colors_by_num = {} colors_by_letter = {} colors_by_name = {} letters_by_num = {} for colordef in color_defs: colorcode = colordef[0] colorletter = colordef[1] colors_by_num[colorcode] = nameset = set(colordef[2:]) colors_by_letter[colorletter] = colorcode letters_by_num[colorcode] = colorletter for c in list(nameset): # equivalent names without spaces nameset.add(c.replace(' ', '')) for c in list(nameset): # with "bright" being an alias for "light" nameset.add(c.replace('light', 'bright')) for c in nameset: colors_by_name[c] = colorcode
[ 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 201, 198, 2, 393, 517, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 201, 198, 2, 9387, 351, 428, 670, 329, 3224, 1321, 201, 198, 2, 5115, 6634, 9238, 13, 220, 383, 7054, 37, 16625, 428, 2393, 201, 198, 2, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 201, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 201, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 201, 198, 2, 201, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 201, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 201, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 201, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 201, 198, 2, 11247, 739, 262, 13789, 13, 201, 198, 201, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 201, 198, 201, 198, 11748, 302, 201, 198, 11748, 2237, 201, 198, 201, 198, 43, 9947, 796, 657, 78, 940, 201, 198, 201, 198, 201, 198, 504, 72, 62, 7902, 40, 796, 705, 59, 87, 16, 65, 17816, 201, 198, 504, 72, 62, 41068, 796, 302, 13, 5589, 576, 7, 260, 13, 41915, 7, 504, 72, 62, 7902, 40, 8, 1343, 374, 6, 7, 30, 47, 27, 37266, 36937, 59, 87, 1238, 12, 59, 87, 18, 69, 60, 9, 5769, 30, 47, 27, 20311, 36937, 59, 87, 1821, 12, 59, 87, 22, 68, 12962, 11537, 201, 198, 504, 72, 62, 28758, 62, 50, 10761, 796, 705, 76, 6, 220, 1303, 900, 9382, 40570, 201, 198, 201, 198, 8043, 62, 4299, 82, 796, 357, 201, 198, 220, 220, 220, 357, 830, 11, 705, 74, 3256, 705, 13424, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 486, 11, 705, 81, 3256, 705, 21953, 2266, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 2999, 11, 705, 70, 3256, 705, 21953, 4077, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 3070, 11, 705, 86, 3256, 705, 33282, 3256, 705, 21953, 7872, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 3023, 11, 705, 65, 3256, 705, 21953, 4171, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 2713, 11, 705, 76, 3256, 705, 21953, 2153, 29188, 3256, 705, 21953, 14032, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 3312, 11, 705, 66, 3256, 705, 21953, 36818, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 2998, 11, 705, 77, 3256, 705, 2971, 13791, 3256, 705, 2971, 12768, 3256, 705, 29797, 3256, 705, 21953, 2330, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 940, 11, 705, 33, 3256, 705, 21953, 13791, 3256, 705, 21953, 12768, 3256, 705, 2971, 2042, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 1157, 11, 705, 49, 3256, 705, 445, 3256, 705, 2971, 2266, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 1065, 11, 705, 38, 3256, 705, 14809, 3256, 705, 2971, 4077, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 1485, 11, 705, 56, 3256, 705, 36022, 3256, 705, 2971, 7872, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 1415, 11, 705, 33, 3256, 705, 17585, 3256, 705, 2971, 4171, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 1314, 11, 705, 44, 3256, 705, 19726, 29188, 3256, 705, 14225, 1154, 3256, 705, 2971, 2153, 29188, 3256, 705, 2971, 14032, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 1433, 11, 705, 34, 3256, 705, 948, 272, 3256, 705, 2971, 36818, 33809, 201, 198, 220, 220, 220, 357, 15, 78, 1558, 11, 705, 54, 3256, 705, 11186, 3256, 705, 2971, 2330, 33809, 201, 198, 8, 201, 198, 201, 198, 4033, 669, 62, 1525, 62, 22510, 796, 23884, 201, 198, 4033, 669, 62, 1525, 62, 9291, 796, 23884, 201, 198, 4033, 669, 62, 1525, 62, 3672, 796, 23884, 201, 198, 15653, 62, 1525, 62, 22510, 796, 23884, 201, 198, 201, 198, 1640, 951, 585, 891, 287, 3124, 62, 4299, 82, 25, 201, 198, 220, 220, 220, 3124, 8189, 796, 951, 585, 891, 58, 15, 60, 201, 198, 220, 220, 220, 3124, 9291, 796, 951, 585, 891, 58, 16, 60, 201, 198, 220, 220, 220, 7577, 62, 1525, 62, 22510, 58, 8043, 8189, 60, 796, 3891, 316, 796, 900, 7, 4033, 585, 891, 58, 17, 25, 12962, 201, 198, 220, 220, 220, 7577, 62, 1525, 62, 9291, 58, 8043, 9291, 60, 796, 3124, 8189, 201, 198, 220, 220, 220, 7475, 62, 1525, 62, 22510, 58, 8043, 8189, 60, 796, 3124, 9291, 201, 198, 220, 220, 220, 329, 269, 287, 1351, 7, 14933, 316, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7548, 3891, 1231, 9029, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 316, 13, 2860, 7, 66, 13, 33491, 10786, 46083, 10148, 4008, 201, 198, 220, 220, 220, 329, 269, 287, 1351, 7, 14933, 316, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 351, 366, 29199, 1, 852, 281, 16144, 329, 366, 2971, 1, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 316, 13, 2860, 7, 66, 13, 33491, 10786, 2971, 3256, 705, 29199, 6, 4008, 201, 198, 220, 220, 220, 329, 269, 287, 3891, 316, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7577, 62, 1525, 62, 3672, 58, 66, 60, 796, 3124, 8189, 201, 198 ]
2.508901
955
import os import numpy as np from cv2 import cv2 from PIL import Image import matplotlib.pyplot as plt from tensorflow import keras from keras.preprocessing.image import array_to_img, img_to_array, load_img PATH = os.getcwd() ## ----- LOAD DATA ------ ## ----- IMAGE AUGMENTATION -----
[ 11748, 28686, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 269, 85, 17, 1330, 269, 85, 17, 201, 198, 6738, 350, 4146, 1330, 7412, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 201, 198, 6738, 11192, 273, 11125, 1330, 41927, 292, 201, 198, 6738, 41927, 292, 13, 3866, 36948, 13, 9060, 1330, 7177, 62, 1462, 62, 9600, 11, 33705, 62, 1462, 62, 18747, 11, 3440, 62, 9600, 201, 198, 201, 198, 34219, 796, 28686, 13, 1136, 66, 16993, 3419, 201, 198, 201, 198, 2235, 37404, 17579, 2885, 42865, 40103, 201, 198, 201, 198, 201, 198, 2235, 37404, 8959, 11879, 317, 7340, 10979, 6234, 37404, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.6
120
# -*- coding: utf-8 -*- import scrapy import json from jsonpath import jsonpath import re from ..items import TaobaoSpiderItem from ..settings import cookies from urllib import parse error_num = 0
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 15881, 88, 198, 11748, 33918, 198, 6738, 33918, 6978, 1330, 33918, 6978, 198, 11748, 302, 198, 6738, 11485, 23814, 1330, 11940, 672, 5488, 41294, 7449, 198, 6738, 11485, 33692, 1330, 14746, 198, 6738, 2956, 297, 571, 1330, 21136, 198, 198, 18224, 62, 22510, 796, 657, 198 ]
3.245902
61
from django.db.models.signals import ModelSignal cb_pre_save = ModelSignal(providing_args=["instance"], use_caching=True) cb_post_save = ModelSignal(providing_args=["instance", "created"], use_caching=True) cb_pre_delete = ModelSignal(providing_args=["instance"], use_caching=True) cb_post_delete = ModelSignal(providing_args=["instance"], use_caching=True)
[ 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 12683, 874, 1330, 9104, 11712, 282, 198, 198, 21101, 62, 3866, 62, 21928, 796, 9104, 11712, 282, 7, 15234, 2530, 62, 22046, 28, 14692, 39098, 33116, 779, 62, 66, 8103, 28, 17821, 8, 198, 21101, 62, 7353, 62, 21928, 796, 9104, 11712, 282, 7, 15234, 2530, 62, 22046, 28, 14692, 39098, 1600, 366, 25598, 33116, 779, 62, 66, 8103, 28, 17821, 8, 198, 198, 21101, 62, 3866, 62, 33678, 796, 9104, 11712, 282, 7, 15234, 2530, 62, 22046, 28, 14692, 39098, 33116, 779, 62, 66, 8103, 28, 17821, 8, 198, 21101, 62, 7353, 62, 33678, 796, 9104, 11712, 282, 7, 15234, 2530, 62, 22046, 28, 14692, 39098, 33116, 779, 62, 66, 8103, 28, 17821, 8, 198 ]
2.903226
124
from flask import render_template,redirect,url_for, flash,request from flask_login import login_user,logout_user,login_required from . import auth from ..models import User from .forms import LoginForm,RegistrationForm from .. import db from ..email import mail_message from flask_http_response import success, result, error @auth.route('/login', methods=['GET', 'POST']) @auth.route('/logout') @login_required @auth.route('api/register', methods=["POST"])
[ 6738, 42903, 1330, 8543, 62, 28243, 11, 445, 1060, 11, 6371, 62, 1640, 11, 7644, 11, 25927, 198, 6738, 42903, 62, 38235, 1330, 17594, 62, 7220, 11, 6404, 448, 62, 7220, 11, 38235, 62, 35827, 198, 6738, 764, 1330, 6284, 198, 6738, 11485, 27530, 1330, 11787, 198, 6738, 764, 23914, 1330, 220, 23093, 8479, 11, 47133, 8479, 198, 6738, 11485, 1330, 20613, 198, 6738, 11485, 12888, 1330, 6920, 62, 20500, 198, 6738, 42903, 62, 4023, 62, 26209, 1330, 1943, 11, 1255, 11, 4049, 628, 198, 31, 18439, 13, 38629, 10786, 14, 38235, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 198, 31, 18439, 13, 38629, 10786, 14, 6404, 448, 11537, 198, 31, 38235, 62, 35827, 198, 220, 220, 220, 220, 198, 31, 18439, 13, 38629, 10786, 15042, 14, 30238, 3256, 5050, 28, 14692, 32782, 8973, 8, 198 ]
3.328571
140
from django.urls import ( path, ) from .views import ( proxy_document, proxy_pdf, ) app_name = 'django_simple_file_handler' urlpatterns = [ path( 'documents/<proxy_slug>', proxy_document, name='proxy_document', ), path( 'pdf/<proxy_slug>', proxy_pdf, name='proxy_pdf', ), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 357, 198, 220, 220, 220, 3108, 11, 198, 8, 628, 198, 6738, 764, 33571, 1330, 357, 198, 220, 220, 220, 15741, 62, 22897, 11, 198, 220, 220, 220, 15741, 62, 12315, 11, 198, 8, 628, 198, 1324, 62, 3672, 796, 705, 28241, 14208, 62, 36439, 62, 7753, 62, 30281, 6, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15390, 2886, 14, 27, 36436, 62, 6649, 1018, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 15741, 62, 22897, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 36436, 62, 22897, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12315, 14, 27, 36436, 62, 6649, 1018, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 15741, 62, 12315, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 36436, 62, 12315, 3256, 198, 220, 220, 220, 10612, 198, 60, 198 ]
2
178
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import datetime import io import json import logging import os import copy from builtins import object from builtins import str from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Text import mynlu from mynlu import pipeline from mynlu.config.mynluconfig import MyNLUConfig from mynlu.pipeline import MissingArgumentError from mynlu.trainers import TrainingData, Message from mynlu.utils import create_dir from mynlu.pipeline.plugin import Plugin, PluginFactory from mynlu import pipeline
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 4818, 8079, 198, 11748, 33245, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 198, 11748, 4866, 198, 6738, 3170, 1040, 1330, 2134, 198, 6738, 3170, 1040, 1330, 965, 198, 6738, 19720, 1330, 4377, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 19720, 1330, 7343, 198, 6738, 19720, 1330, 32233, 198, 6738, 19720, 1330, 8255, 198, 198, 11748, 616, 77, 2290, 198, 6738, 616, 77, 2290, 1330, 11523, 198, 6738, 616, 77, 2290, 13, 11250, 13, 1820, 77, 2290, 11250, 1330, 2011, 32572, 52, 16934, 198, 6738, 616, 77, 2290, 13, 79, 541, 4470, 1330, 25639, 28100, 1713, 12331, 198, 6738, 616, 77, 2290, 13, 27432, 364, 1330, 13614, 6601, 11, 16000, 198, 6738, 616, 77, 2290, 13, 26791, 1330, 2251, 62, 15908, 198, 6738, 616, 77, 2290, 13, 79, 541, 4470, 13, 33803, 1330, 42636, 11, 42636, 22810, 198, 6738, 616, 77, 2290, 1330, 11523, 198 ]
3.801075
186
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ # This suite consists of all test cases that are passing and have been verified. import pytest import os import sys from .FileManagement import FileManagement as fm from ly_test_tools import LAUNCHERS sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../automatedtesting_shared') from base import TestAutomationBase revert_physics_config = fm.file_revert_list(['physxdebugconfiguration.setreg', 'physxdefaultsceneconfiguration.setreg', 'physxsystemconfiguration.setreg'], 'AutomatedTesting/Registry') @pytest.mark.SUITE_main @pytest.mark.parametrize("launcher_platform", ['windows_editor']) @pytest.mark.parametrize("project", ["AutomatedTesting"])
[ 37811, 198, 15269, 357, 66, 8, 25767, 669, 284, 262, 4946, 513, 35, 7117, 4935, 13, 1114, 1844, 6634, 290, 5964, 2846, 3387, 766, 262, 38559, 24290, 379, 262, 6808, 286, 428, 6082, 13, 198, 198, 4303, 36227, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 6375, 17168, 198, 198, 37811, 198, 198, 2, 770, 18389, 10874, 286, 477, 1332, 2663, 326, 389, 6427, 290, 423, 587, 19000, 13, 198, 198, 11748, 12972, 9288, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 764, 8979, 48032, 1330, 9220, 48032, 355, 277, 76, 198, 6738, 22404, 62, 9288, 62, 31391, 1330, 9131, 47461, 4877, 198, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 1343, 31051, 40720, 2306, 296, 515, 33407, 62, 28710, 11537, 198, 198, 6738, 2779, 1330, 6208, 38062, 341, 14881, 628, 198, 260, 1851, 62, 746, 23154, 62, 11250, 796, 277, 76, 13, 7753, 62, 260, 1851, 62, 4868, 7, 17816, 34411, 87, 24442, 11250, 3924, 13, 2617, 2301, 3256, 705, 34411, 87, 12286, 1416, 268, 721, 261, 5647, 3924, 13, 2617, 2301, 3256, 705, 34411, 87, 10057, 11250, 3924, 13, 2617, 2301, 6, 4357, 705, 38062, 515, 44154, 14, 8081, 4592, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 12564, 12709, 62, 12417, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 38722, 2044, 62, 24254, 1600, 37250, 28457, 62, 35352, 6, 12962, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 16302, 1600, 14631, 38062, 515, 44154, 8973, 8 ]
3.255556
270
from unittest import TestCase from tt.dataaccess.utils import *
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 256, 83, 13, 7890, 15526, 13, 26791, 1330, 1635, 628 ]
3.421053
19
import quark_hash import weakref import binascii import StringIO from binascii import unhexlify teststart = '700000005d385ba114d079970b29a9418fd0549e7d68a95c7f168621a314201000000000578586d149fd07b22f3a8a347c516de7052f034d2b76ff68e0d6ecff9b77a45489e3fd511732011df0731000'; testbin = unhexlify(teststart) hash_bin = quark_hash.getPoWHash(testbin)
[ 11748, 627, 668, 62, 17831, 198, 11748, 4939, 5420, 198, 11748, 9874, 292, 979, 72, 198, 11748, 10903, 9399, 198, 198, 6738, 9874, 292, 979, 72, 1330, 555, 33095, 75, 1958, 198, 198, 9288, 9688, 796, 705, 22, 24598, 20, 67, 27203, 7012, 16562, 67, 2998, 2079, 2154, 65, 1959, 64, 5824, 1507, 16344, 2713, 2920, 68, 22, 67, 3104, 64, 3865, 66, 22, 69, 1433, 4521, 2481, 64, 33638, 1264, 10535, 830, 38907, 29796, 67, 19442, 16344, 2998, 65, 1828, 69, 18, 64, 23, 64, 30995, 66, 47493, 2934, 2154, 4309, 69, 49841, 67, 17, 65, 4304, 487, 3104, 68, 15, 67, 21, 721, 487, 24, 65, 3324, 64, 2231, 35890, 68, 18, 16344, 41647, 4790, 9804, 7568, 2998, 3132, 830, 17020, 198, 9288, 8800, 796, 555, 33095, 75, 1958, 7, 9288, 9688, 8, 198, 17831, 62, 8800, 796, 627, 668, 62, 17831, 13, 1136, 18833, 12418, 1077, 7, 9288, 8800, 8 ]
2.261438
153
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 责任链模式 """ if __name__ == '__main__': hb = ConcreteHandlerB(Level(2)) ha = ConcreteHandlerA(Level(1), hb) req = Request(Level(2), "Request with Level 2") ha.handle_request(req)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 220, 220, 220, 5525, 112, 96, 20015, 119, 165, 241, 122, 162, 101, 94, 28156, 237, 198, 37811, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 289, 65, 796, 1482, 38669, 25060, 33, 7, 4971, 7, 17, 4008, 628, 220, 220, 220, 387, 796, 1482, 38669, 25060, 32, 7, 4971, 7, 16, 828, 289, 65, 8, 628, 220, 220, 220, 43089, 796, 19390, 7, 4971, 7, 17, 828, 366, 18453, 351, 5684, 362, 4943, 628, 220, 220, 220, 387, 13, 28144, 62, 25927, 7, 42180, 8, 198 ]
2.08
125
""" This CASA script (optionally) reduces an available (concatenated) MS by time-averaging and sub-selecting a given velocity range. It is called inside csalt.synthesize.make_data(), or can be used as a standalone script for a real dataset as casa -c format_data.py configs/gen_<cfg_file> <arg1> where <cfg_file> is the relevant part of the configuration input filename and <arg1> is an *optional* argument that contains a (string) filename extension (usually "pure" or "noisy" in the csalt.synthesize framework). (This *will* change when we update to full CASA v6.x.) This script will output ... """ import os, sys import numpy as np import scipy.constants as sc import h5py """ Parse inputs and load relevant information. """ # Ingest input arguments bounds_ingest = False if len(sys.argv) == 3: cfg_file = sys.argv[-1] _ext = '' elif len(sys.argv) == 6: cfg_file = sys.argv[-4] _ext = '_'+sys.argv[-3] Vbounds_lo = np.float(sys.argv[-2]) Vbounds_hi = np.float(sys.argv[-1]) bounds_ingest = True else: cfg_file = sys.argv[-2] _ext = '_'+sys.argv[-1] # Make sure the configuration file exists if os.path.exists(cfg_file+'.py'): execfile(cfg_file+'.py') else: print('Could not find input configuration file!') sys.exit() if bounds_ingest: V_bounds = np.array([Vbounds_lo, Vbounds_hi]) print(' ') print(V_bounds) print(' ') # Make sure outdir exists if reduced_dir[-1] != '/': reduced_dir += '/' outdir = reduced_dir+basename+'/' if not os.path.exists(outdir): os.system('mkdir '+outdir) # Load the "raw" MS datafile contents in_MS += _ext if not os.path.exists(in_MS+'.ms'): print('Could not find the input "raw" MS file!') print('"'+in_MS+'"'+' does not seem to exist.') sys.exit() tb.open(in_MS+'.ms') spw_col = tb.getcol('DATA_DESC_ID') obs_col = tb.getcol('OBSERVATION_ID') field_col = tb.getcol('FIELD_ID') tb.close() # Identify the unique EBs inside the MS datafile obs_ids = np.unique(obs_col) nEB = len(obs_ids) """ Separate the individual EBs and time-average as specified by user. The individual MS files are only stored temporarily during manipulations. """ for EB in range(nEB): spws = np.unique(spw_col[np.where(obs_col == obs_ids[EB])]) if len(spws) == 1: spw_str = str(spws[0]) else: spw_str = "%d~%d" % (spws[0], spws[-1]) fields = np.unique(field_col[np.where(obs_col == obs_ids[EB])]) if len(fields) == 1: field_str = str(fields[0]) else: field_str = "%d~%d" % (fields[0], fields[-1]) os.system('rm -rf '+dataname+'_tmp'+str(EB)+'.ms*') split(vis=in_MS+'.ms', outputvis=dataname+'_tmp'+str(EB)+'.ms', spw=spw_str, field=field_str, datacolumn='data', timebin=tavg[EB], keepflags=False) # Create an HDF5 file, and populate the top-level group with basic info os.system('rm -rf '+dataname+_ext+'.DATA.h5') f = h5py.File(dataname+_ext+'.DATA.h5', "w") f.attrs["nobs"] = nEB f.attrs["original_MS"] = in_MS+'.ms' f.attrs["V_bounds"] = V_bounds f.attrs["tavg"] = tavg f.close() # Loop through each EB concat_files = [] for EB in range(nEB): # Get data tb.open(dataname+'_tmp'+str(EB)+'.ms') data_all = np.squeeze(tb.getcol('DATA')) u, v = tb.getcol('UVW')[0,:], tb.getcol('UVW')[1,:] wgt_all = tb.getcol('WEIGHT') times = tb.getcol('TIME') tb.close() # Parse timestamps tstamps = np.unique(times) tstamp_ID = np.empty_like(times) for istamp in range(len(tstamps)): tstamp_ID[times == tstamps[istamp]] = istamp # Get TOPO frequencies tb.open(dataname+'_tmp'+str(EB)+'.ms/SPECTRAL_WINDOW') nu_TOPO_all = np.squeeze(tb.getcol('CHAN_FREQ')) tb.close() # Calculate LSRK frequencies for each timestamp nu_LSRK_all = np.empty((len(tstamps), len(nu_TOPO_all))) ms.open(dataname+'_tmp'+str(EB)+'.ms') for istamp in range(len(tstamps)): nu_LSRK_all[istamp,:] = ms.cvelfreqs(mode='channel', outframe='LSRK', obstime=str(tstamps[istamp])+'s') ms.close() # Identify channel boundaries for the requested LSRK range V_LSRK_all = sc.c * (1 - nu_LSRK_all / nu_rest) chslo = np.argmin(np.abs(V_LSRK_all - V_bounds[0]), axis=1) chshi = np.argmin(np.abs(V_LSRK_all - V_bounds[1]), axis=1) if np.diff(nu_TOPO_all)[0] < 0: chlo, chhi = chslo.min(), chshi.max() else: chlo, chhi = chshi.min(), chslo.max() print(' ') # Set channel pads around data of interest bp_def = 3 lo_bp, hi_bp = chlo - bp_def, len(nu_TOPO_all) - chhi - bp_def - 1 if np.logical_and((lo_bp >= bp_def), (hi_bp >= bp_def)): bounds_pad = bp_def elif np.logical_or((lo_bp <= 0), (hi_bp <= 0)): bounds_pad = 0 else: bounds_pad = np.min([lo_bp, hi_bp]) # Slice out the data of interest nu_TOPO = nu_TOPO_all[chlo-bounds_pad:chhi+bounds_pad+1] nu_LSRK = nu_LSRK_all[:,chlo-bounds_pad:chhi+bounds_pad+1] data = data_all[:,chlo-bounds_pad:chhi+bounds_pad+1,:] if wgt_all.shape == data_all.shape: wgt = wgt_all[:,chlo-bounds_pad:chhi+bounds_pad+1,:] else: wgt = wgt_all # Pack the data into the HDF5 output file f = h5py.File(dataname+_ext+'.DATA.h5', "a") f.create_dataset('EB'+str(EB)+'/um', data=u) f.create_dataset('EB'+str(EB)+'/vm', data=v) f.create_dataset('EB'+str(EB)+'/vis_real', data=data.real) f.create_dataset('EB'+str(EB)+'/vis_imag', data=data.imag) f.create_dataset('EB'+str(EB)+'/weights', data=wgt) f.create_dataset('EB'+str(EB)+'/nu_TOPO', data=nu_TOPO) f.create_dataset('EB'+str(EB)+'/nu_LSRK', data=nu_LSRK) f.create_dataset('EB'+str(EB)+'/tstamp_ID', data=tstamp_ID) f.close() # Split off a MS with the "reduced" data from this EB if not os.path.exists(reduced_dir+basename+'/subMS'): os.system('mkdir '+reduced_dir+basename+'/subMS') sub_ = reduced_dir+basename+'/subMS/'+basename+_ext+'_EB'+str(EB)+'.DATA.ms' os.system('rm -rf '+sub_) spwtag = '0:'+str(chlo-bounds_pad)+'~'+str(chhi+bounds_pad) split(vis=dataname+'_tmp'+str(EB)+'.ms', outputvis=sub_, datacolumn='data', spw=spwtag) concat_files += [sub_] # Concatenate the MS files os.system('rm -rf '+dataname+_ext+'.DATA.ms') if len(concat_files) > 1: concat(vis=concat_files, concatvis=dataname+_ext+'.DATA.ms', dirtol='0.1arcsec', copypointing=False) else: os.system('cp -r '+concat_files[0]+' '+dataname+_ext+'.DATA.ms') # Cleanup os.system('rm -rf '+dataname+'_tmp*.ms*') os.system('rm -rf *.last')
[ 37811, 198, 220, 220, 220, 770, 35106, 32, 4226, 357, 18076, 453, 8, 12850, 281, 1695, 357, 1102, 9246, 268, 515, 8, 6579, 416, 220, 198, 220, 220, 220, 640, 12, 8770, 3039, 290, 850, 12, 19738, 278, 257, 1813, 15432, 2837, 13, 220, 632, 318, 1444, 220, 198, 220, 220, 220, 2641, 50115, 2501, 13, 1837, 429, 956, 1096, 13, 15883, 62, 7890, 22784, 393, 460, 307, 973, 355, 257, 27669, 4226, 220, 198, 220, 220, 220, 329, 257, 1103, 27039, 355, 628, 220, 220, 220, 220, 220, 220, 220, 6124, 64, 532, 66, 5794, 62, 7890, 13, 9078, 4566, 82, 14, 5235, 62, 27, 37581, 62, 7753, 29, 1279, 853, 16, 29, 628, 220, 220, 220, 810, 1279, 37581, 62, 7753, 29, 318, 262, 5981, 636, 286, 262, 8398, 5128, 29472, 220, 198, 220, 220, 220, 290, 1279, 853, 16, 29, 318, 281, 1635, 25968, 9, 4578, 326, 4909, 257, 357, 8841, 8, 29472, 220, 198, 220, 220, 220, 7552, 357, 23073, 366, 37424, 1, 393, 366, 3919, 13560, 1, 287, 262, 50115, 2501, 13, 1837, 429, 956, 1096, 9355, 737, 220, 220, 198, 220, 220, 220, 357, 1212, 1635, 10594, 9, 1487, 618, 356, 4296, 284, 1336, 35106, 32, 410, 21, 13, 87, 2014, 628, 220, 220, 220, 770, 4226, 481, 5072, 2644, 198, 198, 37811, 198, 198, 11748, 28686, 11, 25064, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 9979, 1187, 355, 629, 198, 11748, 289, 20, 9078, 628, 198, 37811, 198, 220, 220, 220, 2547, 325, 17311, 290, 3440, 5981, 1321, 13, 198, 37811, 198, 2, 554, 3495, 5128, 7159, 198, 65, 3733, 62, 278, 395, 796, 10352, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 6624, 513, 25, 198, 220, 220, 220, 30218, 70, 62, 7753, 796, 25064, 13, 853, 85, 58, 12, 16, 60, 198, 220, 220, 220, 4808, 2302, 796, 10148, 198, 417, 361, 18896, 7, 17597, 13, 853, 85, 8, 6624, 718, 25, 198, 220, 220, 220, 30218, 70, 62, 7753, 796, 25064, 13, 853, 85, 58, 12, 19, 60, 198, 220, 220, 220, 4808, 2302, 796, 705, 62, 6, 10, 17597, 13, 853, 85, 58, 12, 18, 60, 198, 220, 220, 220, 569, 65, 3733, 62, 5439, 796, 45941, 13, 22468, 7, 17597, 13, 853, 85, 58, 12, 17, 12962, 198, 220, 220, 220, 569, 65, 3733, 62, 5303, 796, 45941, 13, 22468, 7, 17597, 13, 853, 85, 58, 12, 16, 12962, 198, 220, 220, 220, 22303, 62, 278, 395, 796, 6407, 198, 17772, 25, 198, 220, 220, 220, 30218, 70, 62, 7753, 796, 25064, 13, 853, 85, 58, 12, 17, 60, 198, 220, 220, 220, 4808, 2302, 796, 705, 62, 6, 10, 17597, 13, 853, 85, 58, 12, 16, 60, 198, 198, 2, 6889, 1654, 262, 8398, 2393, 7160, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 7, 37581, 62, 7753, 10, 4458, 9078, 6, 2599, 198, 220, 220, 220, 2452, 7753, 7, 37581, 62, 7753, 10, 4458, 9078, 11537, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 23722, 407, 1064, 5128, 8398, 2393, 0, 11537, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 361, 22303, 62, 278, 395, 25, 198, 220, 220, 220, 569, 62, 65, 3733, 796, 45941, 13, 18747, 26933, 53, 65, 3733, 62, 5439, 11, 569, 65, 3733, 62, 5303, 12962, 198, 4798, 10786, 705, 8, 198, 4798, 7, 53, 62, 65, 3733, 8, 198, 4798, 10786, 705, 8, 198, 198, 2, 6889, 1654, 503, 15908, 7160, 198, 361, 5322, 62, 15908, 58, 12, 16, 60, 14512, 31051, 10354, 5322, 62, 15908, 15853, 31051, 6, 198, 448, 15908, 796, 5322, 62, 15908, 10, 12093, 12453, 10, 26488, 6, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 15908, 2599, 198, 220, 220, 220, 28686, 13, 10057, 10786, 28015, 15908, 705, 10, 448, 15908, 8, 198, 198, 2, 8778, 262, 366, 1831, 1, 6579, 1366, 7753, 10154, 198, 259, 62, 5653, 15853, 4808, 2302, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 259, 62, 5653, 10, 4458, 907, 6, 2599, 198, 220, 220, 220, 3601, 10786, 23722, 407, 1064, 262, 5128, 366, 1831, 1, 6579, 2393, 0, 11537, 198, 220, 220, 220, 3601, 10786, 30543, 10, 259, 62, 5653, 10, 29653, 6, 10, 6, 857, 407, 1283, 284, 2152, 2637, 8, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 83, 65, 13, 9654, 7, 259, 62, 5653, 10, 4458, 907, 11537, 198, 2777, 86, 62, 4033, 796, 256, 65, 13, 1136, 4033, 10786, 26947, 62, 30910, 34, 62, 2389, 11537, 198, 8158, 62, 4033, 796, 256, 65, 13, 1136, 4033, 10786, 46, 4462, 1137, 53, 6234, 62, 2389, 11537, 198, 3245, 62, 4033, 796, 256, 65, 13, 1136, 4033, 10786, 44603, 62, 2389, 11537, 198, 83, 65, 13, 19836, 3419, 198, 198, 2, 11440, 1958, 262, 3748, 412, 37000, 2641, 262, 6579, 1366, 7753, 198, 8158, 62, 2340, 796, 45941, 13, 34642, 7, 8158, 62, 4033, 8, 198, 77, 30195, 796, 18896, 7, 8158, 62, 2340, 8, 628, 198, 37811, 198, 220, 220, 220, 8621, 30748, 262, 1981, 412, 37000, 290, 640, 12, 23913, 355, 7368, 416, 2836, 13, 198, 220, 220, 220, 383, 1981, 6579, 3696, 389, 691, 8574, 13413, 1141, 7704, 5768, 13, 198, 37811, 198, 1640, 43374, 287, 2837, 7, 77, 30195, 2599, 198, 220, 220, 220, 599, 18504, 796, 45941, 13, 34642, 7, 2777, 86, 62, 4033, 58, 37659, 13, 3003, 7, 8158, 62, 4033, 6624, 10201, 62, 2340, 58, 30195, 12962, 12962, 198, 220, 220, 220, 611, 18896, 7, 2777, 18504, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 599, 86, 62, 2536, 796, 965, 7, 2777, 18504, 58, 15, 12962, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 599, 86, 62, 2536, 796, 36521, 67, 93, 4, 67, 1, 4064, 357, 2777, 18504, 58, 15, 4357, 599, 18504, 58, 12, 16, 12962, 628, 220, 220, 220, 7032, 796, 45941, 13, 34642, 7, 3245, 62, 4033, 58, 37659, 13, 3003, 7, 8158, 62, 4033, 6624, 10201, 62, 2340, 58, 30195, 12962, 12962, 220, 198, 220, 220, 220, 611, 18896, 7, 25747, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 2536, 796, 965, 7, 25747, 58, 15, 12962, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 2536, 796, 36521, 67, 93, 4, 67, 1, 4064, 357, 25747, 58, 15, 4357, 7032, 58, 12, 16, 12962, 628, 220, 220, 220, 28686, 13, 10057, 10786, 26224, 532, 41871, 705, 10, 19608, 272, 480, 10, 6, 62, 22065, 6, 10, 2536, 7, 30195, 47762, 4458, 907, 9, 11537, 198, 220, 220, 220, 6626, 7, 4703, 28, 259, 62, 5653, 10, 4458, 907, 3256, 5072, 4703, 28, 19608, 272, 480, 10, 6, 62, 22065, 6, 10, 2536, 7, 30195, 47762, 4458, 907, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 599, 86, 28, 2777, 86, 62, 2536, 11, 2214, 28, 3245, 62, 2536, 11, 4818, 330, 349, 4182, 11639, 7890, 3256, 640, 8800, 28, 83, 615, 70, 58, 30195, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 33152, 28, 25101, 8, 628, 198, 2, 13610, 281, 5572, 37, 20, 2393, 11, 290, 48040, 262, 1353, 12, 5715, 1448, 351, 4096, 7508, 198, 418, 13, 10057, 10786, 26224, 532, 41871, 705, 10, 19608, 272, 480, 10, 62, 2302, 10, 4458, 26947, 13, 71, 20, 11537, 198, 69, 796, 289, 20, 9078, 13, 8979, 7, 19608, 272, 480, 10, 62, 2302, 10, 4458, 26947, 13, 71, 20, 3256, 366, 86, 4943, 198, 69, 13, 1078, 3808, 14692, 77, 8158, 8973, 796, 299, 30195, 198, 69, 13, 1078, 3808, 14692, 14986, 62, 5653, 8973, 796, 287, 62, 5653, 10, 4458, 907, 6, 198, 69, 13, 1078, 3808, 14692, 53, 62, 65, 3733, 8973, 796, 569, 62, 65, 3733, 198, 69, 13, 1078, 3808, 14692, 83, 615, 70, 8973, 796, 256, 615, 70, 198, 69, 13, 19836, 3419, 628, 198, 2, 26304, 832, 1123, 43374, 198, 1102, 9246, 62, 16624, 796, 17635, 198, 1640, 43374, 287, 2837, 7, 77, 30195, 2599, 628, 220, 220, 220, 1303, 3497, 1366, 198, 220, 220, 220, 256, 65, 13, 9654, 7, 19608, 272, 480, 10, 6, 62, 22065, 6, 10, 2536, 7, 30195, 47762, 4458, 907, 11537, 198, 220, 220, 220, 1366, 62, 439, 796, 45941, 13, 16485, 1453, 2736, 7, 83, 65, 13, 1136, 4033, 10786, 26947, 6, 4008, 198, 220, 220, 220, 334, 11, 410, 796, 256, 65, 13, 1136, 4033, 10786, 52, 30133, 11537, 58, 15, 11, 25, 4357, 256, 65, 13, 1136, 4033, 10786, 52, 30133, 11537, 58, 16, 11, 47715, 198, 220, 220, 220, 266, 13655, 62, 439, 796, 256, 65, 13, 1136, 4033, 10786, 8845, 9947, 11537, 198, 220, 220, 220, 1661, 796, 256, 65, 13, 1136, 4033, 10786, 34694, 11537, 198, 220, 220, 220, 256, 65, 13, 19836, 3419, 628, 220, 220, 220, 1303, 2547, 325, 4628, 395, 9430, 198, 220, 220, 220, 256, 301, 9430, 796, 45941, 13, 34642, 7, 22355, 8, 198, 220, 220, 220, 256, 301, 696, 62, 2389, 796, 45941, 13, 28920, 62, 2339, 7, 22355, 8, 198, 220, 220, 220, 329, 318, 83, 696, 287, 2837, 7, 11925, 7, 83, 301, 9430, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 256, 301, 696, 62, 2389, 58, 22355, 6624, 256, 301, 9430, 58, 396, 696, 11907, 796, 318, 83, 696, 628, 220, 220, 220, 1303, 3497, 28662, 46, 19998, 198, 220, 220, 220, 256, 65, 13, 9654, 7, 19608, 272, 480, 10, 6, 62, 22065, 6, 10, 2536, 7, 30195, 47762, 4458, 907, 14, 48451, 5446, 1847, 62, 28929, 3913, 11537, 198, 220, 220, 220, 14364, 62, 35222, 46, 62, 439, 796, 45941, 13, 16485, 1453, 2736, 7, 83, 65, 13, 1136, 4033, 10786, 3398, 1565, 62, 37, 2200, 48, 6, 4008, 198, 220, 220, 220, 256, 65, 13, 19836, 3419, 628, 220, 220, 220, 1303, 27131, 378, 406, 12562, 42, 19998, 329, 1123, 41033, 198, 220, 220, 220, 14364, 62, 6561, 49, 42, 62, 439, 796, 45941, 13, 28920, 19510, 11925, 7, 83, 301, 9430, 828, 18896, 7, 28803, 62, 35222, 46, 62, 439, 22305, 198, 220, 220, 220, 13845, 13, 9654, 7, 19608, 272, 480, 10, 6, 62, 22065, 6, 10, 2536, 7, 30195, 47762, 4458, 907, 11537, 198, 220, 220, 220, 329, 318, 83, 696, 287, 2837, 7, 11925, 7, 83, 301, 9430, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 14364, 62, 6561, 49, 42, 62, 439, 58, 396, 696, 11, 47715, 796, 13845, 13, 66, 626, 19503, 48382, 7, 14171, 11639, 17620, 3256, 503, 14535, 11639, 6561, 49, 42, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9710, 524, 28, 2536, 7, 83, 301, 9430, 58, 396, 696, 12962, 10, 6, 82, 11537, 198, 220, 220, 220, 13845, 13, 19836, 3419, 628, 220, 220, 220, 1303, 11440, 1958, 6518, 13215, 329, 262, 9167, 406, 12562, 42, 2837, 198, 220, 220, 220, 569, 62, 6561, 49, 42, 62, 439, 796, 629, 13, 66, 1635, 357, 16, 532, 14364, 62, 6561, 49, 42, 62, 439, 1220, 14364, 62, 2118, 8, 198, 220, 220, 220, 442, 82, 5439, 796, 45941, 13, 853, 1084, 7, 37659, 13, 8937, 7, 53, 62, 6561, 49, 42, 62, 439, 532, 569, 62, 65, 3733, 58, 15, 46570, 16488, 28, 16, 8, 198, 220, 220, 220, 442, 44019, 796, 45941, 13, 853, 1084, 7, 37659, 13, 8937, 7, 53, 62, 6561, 49, 42, 62, 439, 532, 569, 62, 65, 3733, 58, 16, 46570, 16488, 28, 16, 8, 198, 220, 220, 220, 611, 45941, 13, 26069, 7, 28803, 62, 35222, 46, 62, 439, 38381, 15, 60, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 442, 5439, 11, 442, 5303, 796, 442, 82, 5439, 13, 1084, 22784, 442, 44019, 13, 9806, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 442, 5439, 11, 442, 5303, 796, 442, 44019, 13, 1084, 22784, 442, 82, 5439, 13, 9806, 3419, 197, 628, 198, 220, 220, 220, 3601, 10786, 705, 8, 628, 220, 220, 220, 1303, 5345, 6518, 21226, 1088, 1366, 286, 1393, 198, 220, 220, 220, 275, 79, 62, 4299, 796, 513, 198, 220, 220, 220, 2376, 62, 46583, 11, 23105, 62, 46583, 796, 442, 5439, 532, 275, 79, 62, 4299, 11, 18896, 7, 28803, 62, 35222, 46, 62, 439, 8, 532, 442, 5303, 532, 275, 79, 62, 4299, 532, 352, 198, 220, 220, 220, 611, 45941, 13, 6404, 605, 62, 392, 19510, 5439, 62, 46583, 18189, 275, 79, 62, 4299, 828, 357, 5303, 62, 46583, 18189, 275, 79, 62, 4299, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 22303, 62, 15636, 796, 275, 79, 62, 4299, 198, 220, 220, 220, 1288, 361, 45941, 13, 6404, 605, 62, 273, 19510, 5439, 62, 46583, 19841, 657, 828, 357, 5303, 62, 46583, 19841, 657, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 22303, 62, 15636, 796, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 22303, 62, 15636, 796, 45941, 13, 1084, 26933, 5439, 62, 46583, 11, 23105, 62, 46583, 12962, 628, 220, 220, 220, 1303, 3454, 501, 503, 262, 1366, 286, 1393, 198, 220, 220, 220, 14364, 62, 35222, 46, 796, 14364, 62, 35222, 46, 62, 439, 58, 354, 5439, 12, 65, 3733, 62, 15636, 25, 354, 5303, 10, 65, 3733, 62, 15636, 10, 16, 60, 198, 220, 220, 220, 14364, 62, 6561, 49, 42, 796, 14364, 62, 6561, 49, 42, 62, 439, 58, 45299, 354, 5439, 12, 65, 3733, 62, 15636, 25, 354, 5303, 10, 65, 3733, 62, 15636, 10, 16, 60, 198, 220, 220, 220, 1366, 796, 1366, 62, 439, 58, 45299, 354, 5439, 12, 65, 3733, 62, 15636, 25, 354, 5303, 10, 65, 3733, 62, 15636, 10, 16, 11, 47715, 198, 220, 220, 220, 611, 266, 13655, 62, 439, 13, 43358, 6624, 1366, 62, 439, 13, 43358, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 266, 13655, 796, 266, 13655, 62, 439, 58, 45299, 354, 5439, 12, 65, 3733, 62, 15636, 25, 354, 5303, 10, 65, 3733, 62, 15636, 10, 16, 11, 47715, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 266, 13655, 796, 266, 13655, 62, 439, 628, 220, 220, 220, 1303, 6400, 262, 1366, 656, 262, 5572, 37, 20, 5072, 2393, 198, 220, 220, 220, 277, 796, 289, 20, 9078, 13, 8979, 7, 19608, 272, 480, 10, 62, 2302, 10, 4458, 26947, 13, 71, 20, 3256, 366, 64, 4943, 198, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 10786, 30195, 6, 10, 2536, 7, 30195, 47762, 26488, 388, 3256, 1366, 28, 84, 8, 198, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 10786, 30195, 6, 10, 2536, 7, 30195, 47762, 26488, 14761, 3256, 1366, 28, 85, 8, 198, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 10786, 30195, 6, 10, 2536, 7, 30195, 47762, 26488, 4703, 62, 5305, 3256, 1366, 28, 7890, 13, 5305, 8, 198, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 10786, 30195, 6, 10, 2536, 7, 30195, 47762, 26488, 4703, 62, 48466, 3256, 1366, 28, 7890, 13, 48466, 8, 198, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 10786, 30195, 6, 10, 2536, 7, 30195, 47762, 26488, 43775, 3256, 1366, 28, 86, 13655, 8, 198, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 10786, 30195, 6, 10, 2536, 7, 30195, 47762, 26488, 28803, 62, 35222, 46, 3256, 1366, 28, 28803, 62, 35222, 46, 8, 198, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 10786, 30195, 6, 10, 2536, 7, 30195, 47762, 26488, 28803, 62, 6561, 49, 42, 3256, 1366, 28, 28803, 62, 6561, 49, 42, 8, 198, 220, 220, 220, 277, 13, 17953, 62, 19608, 292, 316, 10786, 30195, 6, 10, 2536, 7, 30195, 47762, 26488, 83, 301, 696, 62, 2389, 3256, 1366, 28, 83, 301, 696, 62, 2389, 8, 198, 220, 220, 220, 277, 13, 19836, 3419, 628, 220, 220, 220, 1303, 27758, 572, 257, 6579, 351, 262, 366, 445, 19513, 1, 1366, 422, 428, 43374, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 445, 19513, 62, 15908, 10, 12093, 12453, 10, 26488, 7266, 5653, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 10786, 28015, 15908, 705, 10, 445, 19513, 62, 15908, 10, 12093, 12453, 10, 26488, 7266, 5653, 11537, 198, 220, 220, 220, 850, 62, 796, 5322, 62, 15908, 10, 12093, 12453, 10, 26488, 7266, 5653, 14, 6, 10, 12093, 12453, 10, 62, 2302, 10, 6, 62, 30195, 6, 10, 2536, 7, 30195, 47762, 4458, 26947, 13, 907, 6, 198, 220, 220, 220, 28686, 13, 10057, 10786, 26224, 532, 41871, 705, 10, 7266, 62, 8, 198, 220, 220, 220, 599, 86, 12985, 796, 705, 15, 32105, 10, 2536, 7, 354, 5439, 12, 65, 3733, 62, 15636, 47762, 6, 93, 6, 10, 2536, 7, 354, 5303, 10, 65, 3733, 62, 15636, 8, 198, 220, 220, 220, 6626, 7, 4703, 28, 19608, 272, 480, 10, 6, 62, 22065, 6, 10, 2536, 7, 30195, 47762, 4458, 907, 3256, 5072, 4703, 28, 7266, 62, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 330, 349, 4182, 11639, 7890, 3256, 599, 86, 28, 2777, 86, 12985, 8, 198, 220, 220, 220, 1673, 265, 62, 16624, 15853, 685, 7266, 62, 60, 628, 198, 2, 1482, 9246, 268, 378, 262, 6579, 3696, 198, 418, 13, 10057, 10786, 26224, 532, 41871, 705, 10, 19608, 272, 480, 10, 62, 2302, 10, 4458, 26947, 13, 907, 11537, 198, 361, 18896, 7, 1102, 9246, 62, 16624, 8, 1875, 352, 25, 198, 220, 220, 220, 1673, 265, 7, 4703, 28, 1102, 9246, 62, 16624, 11, 1673, 265, 4703, 28, 19608, 272, 480, 10, 62, 2302, 10, 4458, 26947, 13, 907, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13647, 349, 11639, 15, 13, 16, 5605, 2363, 3256, 4866, 4122, 278, 28, 25101, 8, 198, 17772, 25, 198, 220, 220, 220, 28686, 13, 10057, 10786, 13155, 532, 81, 705, 10, 1102, 9246, 62, 16624, 58, 15, 48688, 6, 705, 10, 19608, 272, 480, 10, 62, 2302, 10, 4458, 26947, 13, 907, 11537, 628, 198, 2, 5985, 929, 198, 418, 13, 10057, 10786, 26224, 532, 41871, 705, 10, 19608, 272, 480, 10, 6, 62, 22065, 24620, 907, 9, 11537, 198, 418, 13, 10057, 10786, 26224, 532, 41871, 46866, 12957, 11537, 198 ]
2.136087
3,123
# Example: printing the list of builtin layouts import json from nicetable.nicetable import NiceTable # from __future__ import annotations # only for Python 3.7 and up? out = NiceTable(['Layout', 'Description']) for layout in NiceTable.builtin_layouts(): out.append(layout) print(out) # Example: printing the sample JSON in two layouts out = NiceTable(['Name', 'Type', 'Height(cm)', ' Weight(kg)'], layout='default') for pokemon in json.loads(NiceTable.SAMPLE_JSON): out.append([pokemon['name'], pokemon['type'], pokemon['height'], pokemon['weight']]) print('-- default format --\n') print(out) out.layout = 'csv' out.sep_vertical = '|' print('-- CSV with a pipe separator --\n') print(out) # Example: printing all the formatting settings in md layout out = NiceTable(['Setting', 'Type', 'Default', 'Description'], layout='md') for setting in NiceTable.FORMATTING_SETTINGS: out.append(setting) print(out) # Example: custom layout out = MyNiceTable(['Layout', 'Description'], layout='winter_columns') for layout in MyNiceTable.builtin_layouts(): out.append(layout) print(out) # Example: setting column-level options out = NiceTable(['Name', 'Type', 'Height(cm)', ' Weight(kg)']) for pokemon in json.loads(NiceTable.SAMPLE_JSON): out.append([pokemon['name'], pokemon['type'], pokemon['height'], pokemon['weight']]) # set column options by position out.set_col_options(0, adjust='center') # set column options by column name out.set_col_options('Type', func=lambda x: x.lower() if x != 'Electric' else None, none_string='N/A') # Example: different numeric alignments out = NiceTable(['standard left', 'standard center', 'standard right', 'strict_left', 'strict_center', 'strict_right']) n_list = [6.901, 6.1, 122] [out.append([n] * 6) for n in n_list] out.col_adjust = ['left', 'center', 'right', 'strict_left', 'strict_center', 'strict_right'] print(out) # Example: long text out = NiceTable(['Code', 'Product Description(Long)']) out.append([1, 'Boeing 777. Batteries not included. May contain nuts.']) out.append([2, 'Sack of sand']) print(out) out.value_max_len = 19 print(out) out.value_too_long_policy = 'truncate' print(out) # Example: newlines out = NiceTable(['Code', 'Product Description\n(Long)']) \ .append([1, 'Boeing 777\nBatteries not included.\nMay contain nuts.']) \ .append([2, 'Sack of sand']) print(out) out.value_newline_replace = '\\n' print(out)
[ 2, 17934, 25, 13570, 262, 1351, 286, 3170, 259, 38489, 201, 198, 11748, 33918, 201, 198, 6738, 9200, 316, 540, 13, 6988, 316, 540, 1330, 18460, 10962, 201, 198, 2, 422, 11593, 37443, 834, 1330, 37647, 220, 220, 1303, 691, 329, 11361, 513, 13, 22, 290, 510, 30, 201, 198, 201, 198, 448, 796, 18460, 10962, 7, 17816, 32517, 3256, 705, 11828, 6, 12962, 201, 198, 1640, 12461, 287, 18460, 10962, 13, 18780, 259, 62, 10724, 5269, 33529, 201, 198, 220, 220, 220, 503, 13, 33295, 7, 39786, 8, 201, 198, 4798, 7, 448, 8, 201, 198, 201, 198, 2, 17934, 25, 13570, 262, 6291, 19449, 287, 734, 38489, 201, 198, 448, 796, 18460, 10962, 7, 17816, 5376, 3256, 705, 6030, 3256, 705, 23106, 7, 11215, 8, 3256, 705, 14331, 7, 10025, 33047, 4357, 12461, 11639, 12286, 11537, 201, 198, 1640, 43962, 287, 33918, 13, 46030, 7, 35284, 10962, 13, 49302, 16437, 62, 40386, 2599, 201, 198, 220, 220, 220, 503, 13, 33295, 26933, 79, 12717, 17816, 3672, 6, 4357, 43962, 17816, 4906, 6, 4357, 43962, 17816, 17015, 6, 4357, 43962, 17816, 6551, 6, 11907, 8, 201, 198, 4798, 10786, 438, 4277, 5794, 1377, 59, 77, 11537, 201, 198, 4798, 7, 448, 8, 201, 198, 448, 13, 39786, 796, 705, 40664, 6, 201, 198, 448, 13, 325, 79, 62, 1851, 605, 796, 705, 91, 6, 201, 198, 4798, 10786, 438, 44189, 351, 257, 12656, 2880, 1352, 1377, 59, 77, 11537, 201, 198, 4798, 7, 448, 8, 201, 198, 201, 198, 2, 17934, 25, 13570, 477, 262, 33313, 6460, 287, 45243, 12461, 201, 198, 448, 796, 18460, 10962, 7, 17816, 34149, 3256, 705, 6030, 3256, 705, 19463, 3256, 705, 11828, 6, 4357, 12461, 11639, 9132, 11537, 201, 198, 1640, 4634, 287, 18460, 10962, 13, 21389, 17139, 2751, 62, 28480, 51, 20754, 25, 201, 198, 220, 220, 220, 503, 13, 33295, 7, 33990, 8, 201, 198, 4798, 7, 448, 8, 201, 198, 201, 198, 201, 198, 2, 17934, 25, 2183, 12461, 201, 198, 201, 198, 201, 198, 448, 796, 2011, 35284, 10962, 7, 17816, 32517, 3256, 705, 11828, 6, 4357, 12461, 11639, 40078, 62, 28665, 82, 11537, 201, 198, 1640, 12461, 287, 2011, 35284, 10962, 13, 18780, 259, 62, 10724, 5269, 33529, 201, 198, 220, 220, 220, 503, 13, 33295, 7, 39786, 8, 201, 198, 4798, 7, 448, 8, 201, 198, 201, 198, 2, 17934, 25, 4634, 5721, 12, 5715, 3689, 201, 198, 448, 796, 18460, 10962, 7, 17816, 5376, 3256, 705, 6030, 3256, 705, 23106, 7, 11215, 8, 3256, 705, 14331, 7, 10025, 33047, 12962, 201, 198, 1640, 43962, 287, 33918, 13, 46030, 7, 35284, 10962, 13, 49302, 16437, 62, 40386, 2599, 201, 198, 220, 220, 220, 503, 13, 33295, 26933, 79, 12717, 17816, 3672, 6, 4357, 43962, 17816, 4906, 6, 4357, 43962, 17816, 17015, 6, 4357, 43962, 17816, 6551, 6, 11907, 8, 201, 198, 201, 198, 2, 900, 5721, 3689, 416, 2292, 201, 198, 448, 13, 2617, 62, 4033, 62, 25811, 7, 15, 11, 4532, 11639, 16159, 11537, 201, 198, 2, 900, 5721, 3689, 416, 5721, 1438, 201, 198, 448, 13, 2617, 62, 4033, 62, 25811, 10786, 6030, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 28, 50033, 2124, 25, 2124, 13, 21037, 3419, 611, 2124, 14512, 705, 44132, 6, 2073, 6045, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4844, 62, 8841, 11639, 45, 14, 32, 11537, 201, 198, 201, 198, 2, 17934, 25, 1180, 35575, 10548, 902, 201, 198, 448, 796, 18460, 10962, 7, 17816, 20307, 1364, 3256, 705, 20307, 3641, 3256, 705, 20307, 826, 3256, 705, 301, 2012, 62, 9464, 3256, 705, 301, 2012, 62, 16159, 3256, 705, 301, 2012, 62, 3506, 6, 12962, 201, 198, 77, 62, 4868, 796, 685, 21, 13, 46815, 11, 718, 13, 16, 11, 19409, 60, 201, 198, 58, 448, 13, 33295, 26933, 77, 60, 1635, 718, 8, 329, 299, 287, 299, 62, 4868, 60, 201, 198, 448, 13, 4033, 62, 23032, 796, 37250, 9464, 3256, 705, 16159, 3256, 705, 3506, 3256, 705, 301, 2012, 62, 9464, 3256, 705, 301, 2012, 62, 16159, 3256, 705, 301, 2012, 62, 3506, 20520, 201, 198, 4798, 7, 448, 8, 201, 198, 201, 198, 2, 17934, 25, 890, 2420, 201, 198, 448, 796, 18460, 10962, 7, 17816, 10669, 3256, 705, 15667, 12489, 7, 14617, 33047, 12962, 201, 198, 448, 13, 33295, 26933, 16, 11, 705, 33, 2577, 278, 35534, 13, 347, 1436, 444, 407, 3017, 13, 1737, 3994, 14380, 2637, 12962, 201, 198, 448, 13, 33295, 26933, 17, 11, 705, 50, 441, 286, 6450, 6, 12962, 201, 198, 4798, 7, 448, 8, 201, 198, 448, 13, 8367, 62, 9806, 62, 11925, 796, 678, 201, 198, 4798, 7, 448, 8, 201, 198, 448, 13, 8367, 62, 18820, 62, 6511, 62, 30586, 796, 705, 2213, 19524, 378, 6, 201, 198, 4798, 7, 448, 8, 201, 198, 201, 198, 2, 17934, 25, 649, 6615, 201, 198, 448, 796, 18460, 10962, 7, 17816, 10669, 3256, 705, 15667, 12489, 59, 77, 7, 14617, 33047, 12962, 3467, 201, 198, 220, 220, 220, 764, 33295, 26933, 16, 11, 705, 33, 2577, 278, 35534, 59, 77, 33, 1436, 444, 407, 3017, 13, 59, 77, 6747, 3994, 14380, 2637, 12962, 3467, 201, 198, 220, 220, 220, 764, 33295, 26933, 17, 11, 705, 50, 441, 286, 6450, 6, 12962, 201, 198, 4798, 7, 448, 8, 201, 198, 448, 13, 8367, 62, 3605, 1370, 62, 33491, 796, 705, 6852, 77, 6, 201, 198, 4798, 7, 448, 8, 201, 198, 201, 198, 201, 198 ]
2.699465
935
import logging from vkbottle import User from forwarding_bot.vk._middleware import middleware_bp from ._blueprint import bot_bp logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 198, 6738, 410, 74, 10985, 293, 1330, 11787, 198, 198, 6738, 43448, 62, 13645, 13, 85, 74, 13557, 27171, 1574, 1330, 3504, 1574, 62, 46583, 198, 6738, 47540, 17585, 4798, 1330, 10214, 62, 46583, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.188679
53
# coding: utf-8 from __future__ import absolute_import, unicode_literals from django.core import checks from django.db import models from django.utils.translation import gettext_lazy as _ try: from django.utils.module_loading import import_string except ImportError: # pragma: no cover, Django 1.6 compat from django.utils.module_loading import import_by_path as import_string import six from .compat import Creator from ..enums import ChoicesEnum
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 7295, 1330, 8794, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 651, 5239, 62, 75, 12582, 355, 4808, 198, 28311, 25, 198, 220, 220, 220, 422, 42625, 14208, 13, 26791, 13, 21412, 62, 25138, 1330, 1330, 62, 8841, 198, 16341, 17267, 12331, 25, 220, 1303, 23864, 2611, 25, 645, 3002, 11, 37770, 352, 13, 21, 8330, 198, 220, 220, 220, 422, 42625, 14208, 13, 26791, 13, 21412, 62, 25138, 1330, 1330, 62, 1525, 62, 6978, 355, 1330, 62, 8841, 198, 198, 11748, 2237, 198, 198, 6738, 764, 5589, 265, 1330, 21038, 198, 6738, 11485, 268, 5700, 1330, 10031, 1063, 4834, 388, 628, 628, 628 ]
3.28169
142
import pathlib import sys sys.path.append(str(pathlib.Path(__file__).parent))
[ 11748, 3108, 8019, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 13, 33295, 7, 2536, 7, 6978, 8019, 13, 15235, 7, 834, 7753, 834, 737, 8000, 4008, 198 ]
2.821429
28
# SPDX-FileCopyrightText: 2022-present Ofek Lev <[email protected]> # # SPDX-License-Identifier: MIT from hatchling.version.source.plugin.interface import VersionSourceInterface
[ 2, 30628, 55, 12, 8979, 15269, 8206, 25, 33160, 12, 25579, 3226, 988, 16042, 1279, 793, 31, 1659, 988, 13, 7959, 29, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 17168, 198, 6738, 25834, 1359, 13, 9641, 13, 10459, 13, 33803, 13, 39994, 1330, 10628, 7416, 39317, 628 ]
3.346154
52
#!/usr/bin/env python import rospy from geodesy.utm import gridZone def main(): """ Simple utility script to find the UTM zone of WGS84 coords """ TAG = "[find_zone.main] " lat = rospy.get_param('~lat', None) lon = rospy.get_param('~lon', None) # Check that at least lat and lon are provided missing_args = [] if not lat: missing_args.append('lat (double) ') if not lon: missing_args.append('lon (double) ') # If missing, report and exit if missing_args: msg = ('Missing params: ') for arg in missing_args: msg = msg + arg rospy.logerr(TAG + msg) rospy.loginfo('exiting...') return try: lat = float(lat) lon = float(lon) rospy.loginfo(TAG + '\n' + '\tLatitude: {}\n'.format(lat) + '\tLongitude: {}\n'.format(lon)) zone, band = gridZone(lat, lon) rospy.loginfo(TAG + 'UTM zone of given coords:\n\n' + '\t{}{}\n'.format(zone, band)) except Error as e: rospy.logerr(TAG + 'Encountered error: {}'.format(e)) rospy.loginfo('exiting...') return if __name__ == '__main__': rospy.init_node('zone_finder') main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 686, 2777, 88, 198, 6738, 4903, 4147, 88, 13, 26841, 1330, 10706, 26961, 198, 198, 4299, 1388, 33529, 198, 197, 37811, 198, 197, 26437, 10361, 4226, 284, 1064, 262, 471, 15972, 6516, 286, 370, 14313, 5705, 763, 3669, 220, 198, 197, 37811, 628, 197, 42197, 796, 12878, 19796, 62, 11340, 13, 12417, 60, 366, 628, 197, 15460, 796, 686, 2777, 88, 13, 1136, 62, 17143, 10786, 93, 15460, 3256, 6045, 8, 198, 197, 14995, 796, 686, 2777, 88, 13, 1136, 62, 17143, 10786, 93, 14995, 3256, 6045, 8, 628, 197, 2, 6822, 326, 379, 1551, 3042, 290, 300, 261, 389, 2810, 198, 197, 45688, 62, 22046, 796, 17635, 198, 197, 361, 407, 3042, 25, 198, 197, 197, 45688, 62, 22046, 13, 33295, 10786, 15460, 357, 23352, 8, 705, 8, 198, 197, 361, 407, 300, 261, 25, 198, 197, 197, 45688, 62, 22046, 13, 33295, 10786, 14995, 357, 23352, 8, 705, 8, 628, 197, 2, 1002, 4814, 11, 989, 290, 8420, 198, 197, 361, 4814, 62, 22046, 25, 198, 197, 197, 19662, 796, 19203, 43730, 42287, 25, 705, 8, 198, 197, 197, 1640, 1822, 287, 4814, 62, 22046, 25, 198, 197, 197, 197, 19662, 796, 31456, 1343, 1822, 198, 197, 197, 305, 2777, 88, 13, 6404, 8056, 7, 42197, 1343, 31456, 8, 198, 197, 197, 305, 2777, 88, 13, 6404, 10951, 10786, 1069, 1780, 986, 11537, 198, 197, 197, 7783, 628, 197, 28311, 25, 198, 197, 197, 15460, 796, 12178, 7, 15460, 8, 198, 197, 197, 14995, 796, 12178, 7, 14995, 8, 628, 197, 197, 305, 2777, 88, 13, 6404, 10951, 7, 42197, 1343, 705, 59, 77, 6, 1343, 198, 197, 197, 197, 197, 197, 220, 705, 59, 83, 24220, 3984, 25, 220, 23884, 59, 77, 4458, 18982, 7, 15460, 8, 1343, 198, 197, 197, 197, 197, 197, 220, 705, 59, 83, 14617, 3984, 25, 23884, 59, 77, 4458, 18982, 7, 14995, 4008, 628, 197, 197, 11340, 11, 4097, 796, 10706, 26961, 7, 15460, 11, 300, 261, 8, 198, 197, 197, 305, 2777, 88, 13, 6404, 10951, 7, 42197, 1343, 705, 3843, 44, 6516, 286, 1813, 763, 3669, 7479, 77, 59, 77, 6, 1343, 198, 197, 197, 197, 197, 197, 220, 705, 59, 83, 90, 18477, 32239, 77, 4458, 18982, 7, 11340, 11, 4097, 4008, 628, 197, 16341, 13047, 355, 304, 25, 198, 197, 197, 305, 2777, 88, 13, 6404, 8056, 7, 42197, 1343, 705, 4834, 9127, 1068, 4049, 25, 23884, 4458, 18982, 7, 68, 4008, 198, 197, 197, 305, 2777, 88, 13, 6404, 10951, 10786, 1069, 1780, 986, 11537, 198, 197, 197, 7783, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 305, 2777, 88, 13, 15003, 62, 17440, 10786, 11340, 62, 22805, 11537, 198, 197, 12417, 3419, 198 ]
2.337634
465
"""set of filter functions""" import datetime import uuid def choose_current_date_partition(): """gets the parition for current date""" return datetime.date.today().strftime('$%Y%m%d') def add_bigquery_insert_uuid(row): """formats output_row and adds a uuid to be inserted""" output_row = dict() output_row["insertId"] = str(uuid.uuid1()) output_row["json"] = row return output_row
[ 37811, 2617, 286, 8106, 5499, 37811, 198, 198, 11748, 4818, 8079, 198, 11748, 334, 27112, 198, 198, 4299, 3853, 62, 14421, 62, 4475, 62, 3911, 653, 33529, 198, 220, 220, 220, 37227, 11407, 262, 1582, 653, 329, 1459, 3128, 37811, 628, 220, 220, 220, 1441, 4818, 8079, 13, 4475, 13, 40838, 22446, 2536, 31387, 10786, 3, 4, 56, 4, 76, 4, 67, 11537, 198, 198, 4299, 751, 62, 14261, 22766, 62, 28463, 62, 12303, 312, 7, 808, 2599, 198, 220, 220, 220, 37227, 687, 1381, 5072, 62, 808, 290, 6673, 257, 334, 27112, 284, 307, 18846, 37811, 628, 220, 220, 220, 5072, 62, 808, 796, 8633, 3419, 628, 220, 220, 220, 5072, 62, 808, 14692, 28463, 7390, 8973, 796, 965, 7, 12303, 312, 13, 12303, 312, 16, 28955, 198, 220, 220, 220, 5072, 62, 808, 14692, 17752, 8973, 796, 5752, 628, 220, 220, 220, 1441, 5072, 62, 808, 198 ]
2.798658
149
import tensorflow as tf import numpy as np import pytesseract import cv2 import json import time from tensorflow import keras pytesseract.pytesseract.tesseract_cmd = r'C:/Program Files/Tesseract-OCR/tesseract.exe' img_height = 180 img_width = 180 image_name = 'test1.jpg' model_name = '1627062415' class_names = ['drawing', 'paper', 'problem'] model_path = 'C:/Users/jun09/OneDrive/Desktop/s-class_system_version/s-class_version-3/server/problem_server/model/cnn_model/' + model_name image_path = 'C:/Users/jun09/OneDrive/desktop/s-class_system_version/s-class_version-3/server/problem_server/test_image/' + image_name accuracy, score_class_name = accuracy_calculation() if score_class_name == 'problem' and accuracy > 70.0: print('Extracting text...') ocr_problem_text = ocr_image(image_path) json_data = create_json(ocr_problem_text) response_msg = response_json(json_data) print(response_msg) elif score_class_name == 'problem' and accuracy < 70.0: print( "The image was not accurately recognized. Please select another image or re-recognize it. Current measured accuracy: {:.2f}".format(accuracy) ) else: print( "Failed to extract text, less than 70% accuracy or not problematic. Measured Results : {}, result accuracy : {:.2f}%" .format(score_class_name, accuracy) )
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 83, 408, 263, 529, 198, 11748, 269, 85, 17, 198, 11748, 33918, 198, 11748, 640, 198, 6738, 11192, 273, 11125, 1330, 41927, 292, 198, 198, 9078, 83, 408, 263, 529, 13, 9078, 83, 408, 263, 529, 13, 83, 408, 263, 529, 62, 28758, 796, 374, 6, 34, 14079, 15167, 13283, 14, 51, 408, 263, 529, 12, 4503, 49, 14, 83, 408, 263, 529, 13, 13499, 6, 198, 198, 9600, 62, 17015, 796, 11546, 198, 9600, 62, 10394, 796, 11546, 198, 198, 9060, 62, 3672, 796, 705, 9288, 16, 13, 9479, 6, 198, 19849, 62, 3672, 796, 705, 1433, 1983, 3312, 1731, 1314, 6, 198, 198, 4871, 62, 14933, 796, 37250, 19334, 278, 3256, 705, 20189, 3256, 705, 45573, 20520, 198, 198, 19849, 62, 6978, 796, 705, 34, 14079, 14490, 14, 29741, 2931, 14, 3198, 24825, 14, 36881, 14, 82, 12, 4871, 62, 10057, 62, 9641, 14, 82, 12, 4871, 62, 9641, 12, 18, 14, 15388, 14, 45573, 62, 15388, 14, 19849, 14, 66, 20471, 62, 19849, 14, 6, 1343, 2746, 62, 3672, 198, 198, 9060, 62, 6978, 796, 705, 34, 14079, 14490, 14, 29741, 2931, 14, 3198, 24825, 14, 41375, 14, 82, 12, 4871, 62, 10057, 62, 9641, 14, 82, 12, 4871, 62, 9641, 12, 18, 14, 15388, 14, 45573, 62, 15388, 14, 9288, 62, 9060, 14, 6, 1343, 2939, 62, 3672, 198, 220, 220, 220, 220, 198, 198, 4134, 23843, 11, 4776, 62, 4871, 62, 3672, 796, 9922, 62, 9948, 14902, 3419, 198, 198, 361, 4776, 62, 4871, 62, 3672, 6624, 705, 45573, 6, 290, 9922, 1875, 4317, 13, 15, 25, 198, 220, 220, 220, 3601, 10786, 11627, 974, 278, 2420, 986, 11537, 198, 220, 220, 220, 267, 6098, 62, 45573, 62, 5239, 796, 267, 6098, 62, 9060, 7, 9060, 62, 6978, 8, 198, 220, 220, 220, 33918, 62, 7890, 796, 2251, 62, 17752, 7, 1696, 62, 45573, 62, 5239, 8, 198, 220, 220, 220, 2882, 62, 19662, 796, 2882, 62, 17752, 7, 17752, 62, 7890, 8, 198, 220, 220, 220, 3601, 7, 26209, 62, 19662, 8, 198, 417, 361, 4776, 62, 4871, 62, 3672, 6624, 705, 45573, 6, 290, 9922, 1279, 4317, 13, 15, 25, 198, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 464, 2939, 373, 407, 14351, 8018, 13, 4222, 2922, 1194, 2939, 393, 302, 12, 26243, 1096, 340, 13, 9236, 8630, 9922, 25, 46110, 13, 17, 69, 92, 1911, 18982, 7, 4134, 23843, 8, 198, 220, 220, 220, 1267, 198, 17772, 25, 198, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37, 6255, 284, 7925, 2420, 11, 1342, 621, 4317, 4, 9922, 393, 407, 15833, 13, 2185, 34006, 15691, 1058, 1391, 5512, 1255, 9922, 1058, 46110, 13, 17, 69, 92, 39658, 198, 220, 220, 220, 220, 220, 220, 220, 764, 18982, 7, 26675, 62, 4871, 62, 3672, 11, 9922, 8, 198, 220, 220, 220, 1267 ]
2.704225
497
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2011, 2012 Pablo A. Costesich <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the Dev Team nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from spy.core import Instruction, Bytecode from spy.optimizations import register_relocation, dce import re from StringIO import StringIO # This is a hand-crafted top-down parser (it's not recursive). # Although ad-hoc, it's good enough for this project (no external dependencies) NOP, TAG, KWORD, IDENTIFIER, NUMBER, ARROW, NEQ, OP, LB, RB, NL = range(11) TOKEN_NAMES = "NOP TAG KWORD IDENTIFIER NUMBER ARROW NEQ OP LB RB NL".split() _PATTERNS = ( (re.compile(r"[ \t\f]"), NOP), (re.compile(r"\n"), NL), (re.compile(r"\["), LB), (re.compile(r"\]"), RB), (re.compile(r"[a-eA-E]([1-9][0-9]*)?"), TAG), (re.compile(r"[yY]|([xXzZ]([1-9][0-9]*)?)"), IDENTIFIER), (re.compile("#.*"), NOP), (re.compile("<-"), ARROW), (re.compile(r"\+|-"), OP), (re.compile("!="), NEQ), (re.compile(r"[0-9]+"), NUMBER), (re.compile(r"\w+"), KWORD), ) def _match_some(regexes, line, n_line, n_col): """Match patterns in order. Returns a tuple of match and token type or raises SyntaxError.""" for regex, token in regexes: match = regex.match(line, n_col) if match is not None: return match, token error = "No rules to match input (does not conform this grammar) \n" error += "At line %d, column %d" % (n_line, n_col) error += "\n\t%s" % line error += "\n" if line[-1] != "\n" else "" error += "\t" + "_" * (n_col - 1) + "/\\" + "_" * (len(line) - n_col - 2) raise SyntaxError(error) def tokenize(input_file): """Tokenizes a file and yields matches in a format similar to generate_tokens in the stdlib module tokenize""" n_line = 1 for line in input_file.readlines(): n_col, n_stop = 0, 0 maxcol = len(line) while n_col < maxcol and maxcol > 1: match, token = _match_some(_PATTERNS, line, n_line, n_col) n_col, n_stop = match.span() matchline = match.string[n_col : n_stop] t_start, t_stop = (n_line, n_col), (n_line, n_stop) n_col = n_stop if token == NOP: continue yield token, t_start, t_stop, matchline n_line += 1 class Matcher(object): "Stateful matcher that keeps the lookahead and matching info" @property @property @property def match(self, *expect, **kwargs): """Matches a series of tokens (and epsilon-productions) and advances the token stream. *expect: list of expected tokens. None is the epsilon-production. **kwargs: - test: runs a test function and raises SyntaxError on false. Raises SyntaxError on EOF, failed tests """ try: self.lookahead = self.tokens.next() except StopIteration: if None not in expect: raise SyntaxError("Unexpected end of file") self.lookahead = None return self if not expect: return self for tok in expect: if tok == self.lookahead[0]: if callable(kwargs.get('test')): if not kwargs['test'](self.lookahead): raise SyntaxError("Failed test.") return self raise SyntaxError("Token '%s'(%s) does not match %s" % (self.symbol, TOKEN_NAMES[self.token], list(TOKEN_NAMES[i] for i in expect))) def parse(tokens): "Parse a stream of tokens generated by tokenize" matcher = Matcher(tokens) while matcher.lookahead != None: if matcher.token == LB: yield _match_LB(matcher) elif matcher.token == KWORD: yield _match_KWORD(matcher) elif matcher.token == IDENTIFIER: yield _match_IDEN(matcher) elif matcher.token == NL: matcher.match(NL, LB, IDENTIFIER, KWORD, None) else: raise SyntaxError("Unexpected symbol '%s': line %d, column %d" % ((matcher.symbol,) + matcher.span))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 220, 220, 220, 220, 220, 220, 15069, 2813, 11, 2321, 33185, 317, 13, 6446, 274, 488, 1279, 14751, 455, 46551, 31, 282, 84, 13, 270, 7012, 13, 15532, 13, 283, 29, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 220, 220, 220, 220, 220, 220, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 198, 2, 220, 220, 220, 220, 220, 220, 1138, 25, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 220, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6634, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 13, 198, 2, 220, 220, 220, 220, 220, 220, 1635, 16126, 262, 1438, 286, 262, 6245, 4816, 4249, 262, 3891, 286, 663, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 198, 2, 220, 220, 220, 220, 220, 220, 366, 1921, 3180, 1, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 198, 2, 220, 220, 220, 220, 220, 220, 40880, 5390, 11, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 198, 2, 220, 220, 220, 220, 220, 220, 317, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 198, 2, 220, 220, 220, 220, 220, 220, 47210, 21479, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 198, 2, 220, 220, 220, 220, 220, 220, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 198, 2, 220, 220, 220, 220, 220, 220, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 198, 2, 220, 220, 220, 220, 220, 220, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 198, 2, 220, 220, 220, 220, 220, 220, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 198, 2, 220, 220, 220, 220, 220, 220, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 198, 2, 220, 220, 220, 220, 220, 220, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 6738, 13997, 13, 7295, 1330, 46486, 11, 30589, 8189, 198, 6738, 13997, 13, 40085, 4582, 1330, 7881, 62, 2411, 5040, 11, 288, 344, 198, 11748, 302, 198, 6738, 10903, 9399, 1330, 10903, 9399, 628, 198, 2, 770, 318, 257, 1021, 12, 39160, 1353, 12, 2902, 30751, 357, 270, 338, 407, 45115, 737, 198, 2, 4900, 512, 12, 71, 420, 11, 340, 338, 922, 1576, 329, 428, 1628, 357, 3919, 7097, 20086, 8, 220, 198, 45, 3185, 11, 37801, 11, 509, 54, 12532, 11, 4522, 3525, 5064, 38311, 11, 36871, 13246, 11, 5923, 49, 3913, 11, 10635, 48, 11, 13349, 11, 22199, 11, 17986, 11, 22879, 796, 2837, 7, 1157, 8, 198, 10468, 43959, 62, 45, 29559, 796, 366, 45, 3185, 37801, 509, 54, 12532, 4522, 3525, 5064, 38311, 36871, 13246, 5923, 49, 3913, 10635, 48, 13349, 22199, 17986, 22879, 1911, 35312, 3419, 198, 62, 47, 1404, 5781, 8035, 796, 357, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 17912, 3467, 83, 59, 69, 60, 12340, 399, 3185, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 1, 59, 77, 12340, 22879, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 1, 59, 58, 12340, 22199, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 1, 59, 60, 12340, 17986, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 17912, 64, 12, 68, 32, 12, 36, 16151, 58, 16, 12, 24, 7131, 15, 12, 24, 60, 28104, 1701, 828, 37801, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 17912, 88, 56, 60, 91, 26933, 87, 55, 89, 57, 16151, 58, 16, 12, 24, 7131, 15, 12, 24, 60, 28104, 10091, 12340, 4522, 3525, 5064, 38311, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7203, 2, 15885, 12340, 399, 3185, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7203, 27, 12, 12340, 5923, 49, 3913, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 1, 59, 10, 91, 12, 12340, 13349, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7203, 0, 2625, 828, 10635, 48, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 17912, 15, 12, 24, 48688, 12340, 36871, 13246, 828, 198, 220, 220, 220, 357, 260, 13, 5589, 576, 7, 81, 1, 59, 86, 10, 12340, 509, 54, 12532, 828, 198, 8, 198, 198, 4299, 4808, 15699, 62, 11246, 7, 260, 25636, 274, 11, 1627, 11, 299, 62, 1370, 11, 299, 62, 4033, 2599, 198, 220, 220, 220, 37227, 23850, 7572, 287, 1502, 13, 16409, 257, 46545, 286, 2872, 290, 11241, 2099, 393, 198, 220, 220, 220, 12073, 26375, 897, 12331, 526, 15931, 198, 220, 220, 220, 329, 40364, 11, 11241, 287, 40364, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 40364, 13, 15699, 7, 1370, 11, 299, 62, 4033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2872, 11, 11241, 198, 220, 220, 220, 4049, 796, 366, 2949, 3173, 284, 2872, 5128, 357, 22437, 407, 17216, 428, 23491, 8, 3467, 77, 1, 198, 220, 220, 220, 4049, 15853, 366, 2953, 1627, 4064, 67, 11, 5721, 4064, 67, 1, 4064, 357, 77, 62, 1370, 11, 299, 62, 4033, 8, 198, 220, 220, 220, 4049, 15853, 37082, 77, 59, 83, 4, 82, 1, 4064, 1627, 198, 220, 220, 220, 4049, 15853, 37082, 77, 1, 611, 1627, 58, 12, 16, 60, 14512, 37082, 77, 1, 2073, 13538, 198, 220, 220, 220, 4049, 15853, 37082, 83, 1, 1343, 45434, 1, 1635, 357, 77, 62, 4033, 532, 352, 8, 1343, 12813, 6852, 1, 1343, 45434, 1, 1635, 357, 11925, 7, 1370, 8, 532, 299, 62, 4033, 532, 362, 8, 198, 220, 220, 220, 5298, 26375, 897, 12331, 7, 18224, 8, 198, 198, 4299, 11241, 1096, 7, 15414, 62, 7753, 2599, 198, 220, 220, 220, 37227, 30642, 4340, 257, 2393, 290, 19299, 7466, 287, 257, 5794, 2092, 284, 198, 220, 220, 220, 7716, 62, 83, 482, 641, 287, 262, 14367, 8019, 8265, 11241, 1096, 37811, 198, 220, 220, 220, 299, 62, 1370, 796, 352, 198, 220, 220, 220, 329, 1627, 287, 5128, 62, 7753, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 4033, 11, 299, 62, 11338, 796, 657, 11, 657, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 4033, 796, 18896, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 981, 299, 62, 4033, 1279, 3509, 4033, 290, 3509, 4033, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 11, 11241, 796, 4808, 15699, 62, 11246, 28264, 47, 1404, 5781, 8035, 11, 1627, 11, 299, 62, 1370, 11, 299, 62, 4033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 4033, 11, 299, 62, 11338, 220, 796, 2872, 13, 12626, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 1370, 796, 2872, 13, 8841, 58, 77, 62, 4033, 1058, 299, 62, 11338, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 9688, 11, 256, 62, 11338, 796, 357, 77, 62, 1370, 11, 299, 62, 4033, 828, 357, 77, 62, 1370, 11, 299, 62, 11338, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 4033, 796, 299, 62, 11338, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11241, 6624, 399, 3185, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 11241, 11, 256, 62, 9688, 11, 256, 62, 11338, 11, 2872, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 1370, 15853, 352, 628, 198, 4871, 6550, 2044, 7, 15252, 2599, 198, 220, 220, 220, 366, 9012, 913, 2603, 2044, 326, 7622, 262, 804, 38204, 290, 12336, 7508, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 2872, 7, 944, 11, 1635, 1069, 806, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19044, 2052, 257, 2168, 286, 16326, 357, 392, 304, 862, 33576, 12, 11167, 507, 8, 290, 14901, 198, 220, 220, 220, 220, 220, 220, 220, 262, 11241, 4269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1069, 806, 25, 1351, 286, 2938, 16326, 13, 6045, 318, 262, 304, 862, 33576, 12, 25493, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1332, 25, 4539, 257, 1332, 2163, 290, 12073, 26375, 897, 12331, 319, 3991, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 26375, 897, 12331, 319, 412, 19238, 11, 4054, 5254, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5460, 38204, 796, 2116, 13, 83, 482, 641, 13, 19545, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 13707, 29993, 341, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6045, 407, 287, 1607, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 26375, 897, 12331, 7203, 52, 42072, 886, 286, 2393, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5460, 38204, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1607, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 284, 74, 287, 1607, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 284, 74, 6624, 2116, 13, 5460, 38204, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 869, 540, 7, 46265, 22046, 13, 1136, 10786, 9288, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 479, 86, 22046, 17816, 9288, 6, 16151, 944, 13, 5460, 38204, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 26375, 897, 12331, 7203, 37, 6255, 1332, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26375, 897, 12331, 7203, 30642, 705, 4, 82, 6, 7, 4, 82, 8, 857, 407, 2872, 4064, 82, 1, 4064, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 1837, 23650, 11, 5390, 43959, 62, 45, 29559, 58, 944, 13, 30001, 4357, 1351, 7, 10468, 43959, 62, 45, 29559, 58, 72, 60, 329, 1312, 287, 1607, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4299, 21136, 7, 83, 482, 641, 2599, 198, 220, 220, 220, 366, 10044, 325, 257, 4269, 286, 16326, 7560, 416, 11241, 1096, 1, 198, 220, 220, 220, 2603, 2044, 796, 6550, 2044, 7, 83, 482, 641, 8, 198, 220, 220, 220, 981, 2603, 2044, 13, 5460, 38204, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2603, 2044, 13, 30001, 6624, 22199, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 4808, 15699, 62, 30501, 7, 6759, 2044, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2603, 2044, 13, 30001, 6624, 509, 54, 12532, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 4808, 15699, 62, 42, 54, 12532, 7, 6759, 2044, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2603, 2044, 13, 30001, 6624, 4522, 3525, 5064, 38311, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 4808, 15699, 62, 2389, 1677, 7, 6759, 2044, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2603, 2044, 13, 30001, 6624, 22879, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 2044, 13, 15699, 7, 32572, 11, 22199, 11, 4522, 3525, 5064, 38311, 11, 509, 54, 12532, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 26375, 897, 12331, 7203, 52, 42072, 6194, 705, 4, 82, 10354, 1627, 4064, 67, 11, 5721, 4064, 67, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14808, 6759, 2044, 13, 1837, 23650, 35751, 1343, 2603, 2044, 13, 12626, 4008, 220, 628 ]
2.27501
2,549
import timeit # from datetime import datetime from medocControl import * from psychopy import core import random while True: # startTime = timeit.default_timer() # poll_for_change('IDLE') # core.wait(5) # command = random.randint(101,171) command = 117 if poll_for_change('IDLE', poll_max=-1): # startTime = datetime.now() startTime = timeit.default_timer() print("Running " + str(command)) sendCommand('select_tp', command) # print("start time: " + str(startTime)) # if poll_for_change('READY'): sendCommand('start'); print("First start command took: " + str(timeit.default_timer() - startTime) + "s past polling") # startTime2 = timeit.default_timer() # if poll_for_change('RUNNING'): sendCommand('start'); print("Second start command took " + str(timeit.default_timer() - startTime2) + "s past polling") # print("Selected TP at: " + str(timeit.default_timer()-startTime)) if poll_for_change('RUNNING'): sendCommand('trigger') # print("end polling time: {}".format(datetime.now() - startTime)) print("Stim started " + str(timeit.default_timer() - startTime) + "s past polling") # print("Stim started " + str(timeit.default_timer()-startTime) + " past polling") # core.wait(5) # print("Polling prior to first trigger: " + str(timeit.default_timer()-startTime)) startTime2 = timeit.default_timer() # startTime2 = datetime.now() # jitter = random.randint(1,5) # core.wait(jitter) # core.wait(jitter + 13) # poll_for_change('IDLE') # startTime3 = timeit.default_timer() command = random.randint(101,171) command = 170 if poll_for_change('IDLE', poll_max=-1): # print("Post-trigger selection latency: " + str(timeit.default_timer()-startTime2)); # print("stimclock: " + str(timeit.default_timer())) print("Post-stimulation selection latency: " + str(timeit.default_timer()-startTime2)); # print("stimclock: {}".format(datetime.now() - startTime)) # print("Post-stimulation selection latency {}".format(datetime.now() - startTime2) + " past polling") # print("Running " + str(command)); sendCommand('select_tp', command) # if poll_for_change('READY'): sendCommand('start') # if poll_for_change('RUNNING'): sendCommand('start') # print("stimclock: " + str(timeit.default_timer())) print("Second stimulation begins at : " + str(timeit.default_timer()-startTime)) # print("end time: {}".format(datetime.now() - startTime)) # print("Second stimulation started {}".format(datetime.now() - startTime) + " past polling") # core.wait(5) # if poll_for_change('RUNNING'): # print("Post-trigger trigger latency: " + str(timeit.default_timer()-startTime2) + ' (it took ' + str(timeit.default_timer()-startTime3) + ' )') # sendCommand('trigger') # print("Second Stim Trigger: " + str(timeit.default_timer()-startTime)) # core.wait(13)
[ 11748, 640, 270, 198, 198, 2, 422, 4818, 8079, 1330, 4818, 8079, 198, 6738, 1117, 420, 15988, 1330, 1635, 198, 6738, 3795, 11081, 1330, 4755, 198, 11748, 4738, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 1303, 923, 7575, 796, 640, 270, 13, 12286, 62, 45016, 3419, 198, 220, 220, 220, 1303, 3278, 62, 1640, 62, 3803, 10786, 2389, 2538, 11537, 198, 220, 220, 220, 1303, 4755, 13, 17077, 7, 20, 8, 198, 220, 220, 220, 1303, 3141, 796, 4738, 13, 25192, 600, 7, 8784, 11, 27192, 8, 198, 220, 220, 220, 3141, 796, 19048, 198, 220, 220, 220, 611, 3278, 62, 1640, 62, 3803, 10786, 2389, 2538, 3256, 3278, 62, 9806, 10779, 16, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 923, 7575, 796, 4818, 8079, 13, 2197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 923, 7575, 796, 640, 270, 13, 12286, 62, 45016, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 28768, 366, 1343, 965, 7, 21812, 4008, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3758, 21575, 10786, 19738, 62, 34788, 3256, 3141, 8, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3601, 7203, 9688, 640, 25, 366, 1343, 965, 7, 9688, 7575, 4008, 198, 220, 220, 220, 1303, 611, 3278, 62, 1640, 62, 3803, 10786, 15675, 56, 6, 2599, 3758, 21575, 10786, 9688, 24036, 3601, 7203, 5962, 923, 3141, 1718, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 532, 923, 7575, 8, 1343, 366, 82, 1613, 13985, 4943, 198, 220, 220, 220, 1303, 923, 7575, 17, 796, 640, 270, 13, 12286, 62, 45016, 3419, 198, 220, 220, 220, 1303, 611, 3278, 62, 1640, 62, 3803, 10786, 49, 4944, 15871, 6, 2599, 3758, 21575, 10786, 9688, 24036, 3601, 7203, 12211, 923, 3141, 1718, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 532, 923, 7575, 17, 8, 1343, 366, 82, 1613, 13985, 4943, 198, 220, 220, 220, 1303, 3601, 7203, 4653, 12609, 24525, 379, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 4008, 198, 220, 220, 220, 611, 3278, 62, 1640, 62, 3803, 10786, 49, 4944, 15871, 6, 2599, 3758, 21575, 10786, 46284, 11537, 198, 220, 220, 220, 1303, 3601, 7203, 437, 13985, 640, 25, 23884, 1911, 18982, 7, 19608, 8079, 13, 2197, 3419, 532, 923, 7575, 4008, 198, 220, 220, 220, 3601, 7203, 1273, 320, 2067, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 532, 923, 7575, 8, 1343, 366, 82, 1613, 13985, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3601, 7203, 1273, 320, 2067, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 8, 1343, 366, 1613, 13985, 4943, 628, 220, 220, 220, 1303, 4755, 13, 17077, 7, 20, 8, 198, 220, 220, 220, 1303, 3601, 7203, 39176, 278, 3161, 284, 717, 7616, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 4008, 198, 220, 220, 220, 923, 7575, 17, 796, 640, 270, 13, 12286, 62, 45016, 3419, 198, 220, 220, 220, 1303, 923, 7575, 17, 796, 4818, 8079, 13, 2197, 3419, 198, 220, 220, 220, 1303, 474, 1967, 796, 4738, 13, 25192, 600, 7, 16, 11, 20, 8, 198, 220, 220, 220, 1303, 4755, 13, 17077, 7, 73, 1967, 8, 198, 220, 220, 220, 1303, 4755, 13, 17077, 7, 73, 1967, 1343, 1511, 8, 198, 220, 220, 220, 1303, 3278, 62, 1640, 62, 3803, 10786, 2389, 2538, 11537, 198, 220, 220, 220, 1303, 923, 7575, 18, 796, 640, 270, 13, 12286, 62, 45016, 3419, 198, 220, 220, 220, 3141, 796, 4738, 13, 25192, 600, 7, 8784, 11, 27192, 8, 198, 220, 220, 220, 3141, 796, 16677, 198, 220, 220, 220, 611, 3278, 62, 1640, 62, 3803, 10786, 2389, 2538, 3256, 3278, 62, 9806, 10779, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 6307, 12, 46284, 6356, 24812, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 17, 18125, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 42003, 15750, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 4008, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6307, 12, 42003, 1741, 6356, 24812, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 17, 18125, 220, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 42003, 15750, 25, 23884, 1911, 18982, 7, 19608, 8079, 13, 2197, 3419, 532, 923, 7575, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 6307, 12, 42003, 1741, 6356, 24812, 23884, 1911, 18982, 7, 19608, 8079, 13, 2197, 3419, 532, 923, 7575, 17, 8, 1343, 366, 1613, 13985, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 28768, 366, 1343, 965, 7, 21812, 18125, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3758, 21575, 10786, 19738, 62, 34788, 3256, 3141, 8, 198, 220, 220, 220, 1303, 611, 3278, 62, 1640, 62, 3803, 10786, 15675, 56, 6, 2599, 3758, 21575, 10786, 9688, 11537, 198, 220, 220, 220, 1303, 611, 3278, 62, 1640, 62, 3803, 10786, 49, 4944, 15871, 6, 2599, 3758, 21575, 10786, 9688, 11537, 198, 220, 220, 220, 1303, 3601, 7203, 42003, 15750, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 4008, 198, 220, 220, 220, 3601, 7203, 12211, 20087, 6140, 379, 1058, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 4008, 628, 220, 220, 220, 1303, 3601, 7203, 437, 640, 25, 23884, 1911, 18982, 7, 19608, 8079, 13, 2197, 3419, 532, 923, 7575, 4008, 198, 220, 220, 220, 1303, 3601, 7203, 12211, 20087, 2067, 23884, 1911, 18982, 7, 19608, 8079, 13, 2197, 3419, 532, 923, 7575, 8, 1343, 366, 1613, 13985, 4943, 198, 220, 220, 220, 1303, 4755, 13, 17077, 7, 20, 8, 198, 220, 220, 220, 1303, 611, 3278, 62, 1640, 62, 3803, 10786, 49, 4944, 15871, 6, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7203, 6307, 12, 46284, 7616, 24812, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 17, 8, 1343, 705, 357, 270, 1718, 705, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 18, 8, 1343, 705, 1267, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3758, 21575, 10786, 46284, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7203, 12211, 41669, 24593, 25, 366, 1343, 965, 7, 2435, 270, 13, 12286, 62, 45016, 3419, 12, 9688, 7575, 4008, 198, 220, 220, 220, 1303, 4755, 13, 17077, 7, 1485, 8 ]
2.655172
1,131
from __future__ import absolute_import, unicode_literals from saefportal.settings import COMPARISON_PROFILE_THRESHOLD from .analyzer import Analyzer from analyzer.models import ActualColumnProfile, ExpectedColumnProfile from analyzer.enums import Column
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 473, 891, 634, 282, 13, 33692, 1330, 24301, 1503, 39960, 62, 31190, 25664, 62, 4221, 19535, 39, 15173, 198, 6738, 764, 38200, 9107, 1330, 16213, 9107, 198, 6738, 4284, 9107, 13, 27530, 1330, 33520, 39470, 37046, 11, 1475, 7254, 39470, 37046, 198, 6738, 4284, 9107, 13, 268, 5700, 1330, 29201, 628, 628, 628, 628 ]
3.690141
71
import numpy as np import tensorflow as tf from utils.xer import wer from utils.tools import bytes_to_string class ErrorRate(tf.keras.metrics.Metric): """ Metric for WER and CER """
[ 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 11192, 273, 11125, 355, 48700, 201, 198, 6738, 3384, 4487, 13, 87, 263, 1330, 266, 263, 201, 198, 6738, 3384, 4487, 13, 31391, 1330, 9881, 62, 1462, 62, 8841, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 4871, 13047, 32184, 7, 27110, 13, 6122, 292, 13, 4164, 10466, 13, 9171, 1173, 2599, 201, 198, 220, 220, 220, 37227, 3395, 1173, 329, 370, 1137, 290, 327, 1137, 37227, 201, 198 ]
2.493827
81
from unittest import TestCase from rest_framework import status from rest_framework.test import APIClient from environments.models import Environment, Identity from features.models import Feature, FeatureState from organisations.models import Organisation from projects.models import Project from tests.utils import Helper
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2149, 75, 1153, 198, 198, 6738, 12493, 13, 27530, 1330, 9344, 11, 27207, 198, 6738, 3033, 13, 27530, 1330, 27018, 11, 27018, 9012, 198, 6738, 16435, 13, 27530, 1330, 30801, 198, 6738, 4493, 13, 27530, 1330, 4935, 198, 6738, 5254, 13, 26791, 1330, 5053, 525, 628 ]
4.657143
70
# -*- coding:utf-8 -*- # @Time : 2020/06/10 # @Author : Wu Wen Jie([email protected]) # @FileName : mpython_conn.py # @Description : A transfer protocol between mPython board and PC python # @Version : 0.3.2 from serial.tools.list_ports import comports as list_serial_ports from serial import Serial import threading import time import atexit import unicodedata import inspect import ctypes import sys def _async_raise(tid, exctype): """raises the exception, performs cleanup if needed""" tid = ctypes.c_long(tid) if not inspect.isclass(exctype): exctype = type(exctype) res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype)) if res == 0: raise ValueError("invalid thread id") elif res != 1: # """if it returns a number greater than one, you're in trouble, # and you should call it again with exc=NULL to revert the effect""" ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None) raise SystemError("PyThreadState_SetAsyncExc failed") @atexit.register
[ 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 220, 220, 220, 1058, 12131, 14, 3312, 14, 940, 198, 2, 2488, 13838, 220, 220, 1058, 18027, 31164, 449, 494, 7, 36657, 1983, 4304, 31, 38227, 13, 785, 8, 198, 2, 2488, 8979, 5376, 1058, 29034, 7535, 62, 37043, 13, 9078, 198, 2, 2488, 11828, 1058, 317, 4351, 8435, 1022, 285, 37906, 3096, 290, 4217, 21015, 198, 2, 2488, 14815, 220, 1058, 657, 13, 18, 13, 17, 198, 6738, 11389, 13, 31391, 13, 4868, 62, 3742, 1330, 552, 2096, 355, 1351, 62, 46911, 62, 3742, 198, 6738, 11389, 1330, 23283, 198, 11748, 4704, 278, 198, 11748, 640, 198, 11748, 379, 37023, 198, 11748, 28000, 9043, 1045, 198, 11748, 10104, 198, 11748, 269, 19199, 198, 11748, 25064, 628, 198, 4299, 4808, 292, 13361, 62, 40225, 7, 83, 312, 11, 409, 310, 2981, 2599, 198, 220, 220, 220, 37227, 430, 2696, 262, 6631, 11, 17706, 27425, 611, 2622, 37811, 198, 220, 220, 220, 29770, 796, 269, 19199, 13, 66, 62, 6511, 7, 83, 312, 8, 198, 220, 220, 220, 611, 407, 10104, 13, 271, 4871, 7, 1069, 310, 2981, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 409, 310, 2981, 796, 2099, 7, 1069, 310, 2981, 8, 198, 220, 220, 220, 581, 796, 269, 19199, 13, 29412, 15042, 13, 20519, 16818, 9012, 62, 7248, 42367, 40127, 7, 83, 312, 11, 269, 19199, 13, 9078, 62, 15252, 7, 1069, 310, 2981, 4008, 198, 220, 220, 220, 611, 581, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 259, 12102, 4704, 4686, 4943, 198, 220, 220, 220, 1288, 361, 581, 14512, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 37227, 361, 340, 5860, 257, 1271, 3744, 621, 530, 11, 345, 821, 287, 5876, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 345, 815, 869, 340, 757, 351, 2859, 28, 33991, 284, 34052, 262, 1245, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 29412, 15042, 13, 20519, 16818, 9012, 62, 7248, 42367, 40127, 7, 83, 312, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 4482, 12331, 7203, 20519, 16818, 9012, 62, 7248, 42367, 40127, 4054, 4943, 198, 220, 628, 198, 198, 31, 378, 10198, 13, 30238, 198 ]
2.717949
390
import torchlib from torch.utils.data import DataLoader, Dataset from torchvision import datasets, transforms # ============================================================================== # = custom dataset = # ============================================================================== # ============================================================================== # = debug = # ============================================================================== # import imlib as im # import numpy as np # import pylib as py # data_loader, _ = make_celeba_dataset(py.glob('data/img_align_celeba', '*.jpg'), batch_size=64) # for img_batch in data_loader: # for img in img_batch.numpy(): # img = np.transpose(img, (1, 2, 0)) # im.imshow(img) # im.show()
[ 11748, 28034, 8019, 198, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 11, 16092, 292, 316, 198, 6738, 28034, 10178, 1330, 40522, 11, 31408, 628, 628, 628, 198, 2, 38093, 25609, 28, 198, 2, 796, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2183, 27039, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 198, 2, 38093, 25609, 28, 628, 198, 2, 38093, 25609, 28, 198, 2, 796, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 198, 2, 38093, 25609, 28, 198, 198, 2, 1330, 545, 8019, 355, 545, 198, 2, 1330, 299, 32152, 355, 45941, 198, 2, 1330, 279, 2645, 571, 355, 12972, 198, 198, 2, 1366, 62, 29356, 11, 4808, 796, 787, 62, 49840, 7012, 62, 19608, 292, 316, 7, 9078, 13, 4743, 672, 10786, 7890, 14, 9600, 62, 31494, 62, 49840, 7012, 3256, 705, 24620, 9479, 33809, 15458, 62, 7857, 28, 2414, 8, 198, 198, 2, 329, 33705, 62, 43501, 287, 1366, 62, 29356, 25, 198, 2, 220, 220, 220, 220, 329, 33705, 287, 33705, 62, 43501, 13, 77, 32152, 33529, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 45941, 13, 7645, 3455, 7, 9600, 11, 357, 16, 11, 362, 11, 657, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 545, 13, 320, 12860, 7, 9600, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 545, 13, 12860, 3419, 198 ]
2.715543
341
# a pretty straightforward Muenchian grouping test from Xml.Xslt import test_harness sheet_1 = """<?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="html" indent="yes"/> <xsl:key name="skills-by-mark" match="skill" use="@mark"/> <xsl:template match="skills"> <table> <!-- process a set consisting of the first skill element for each mark --> <xsl:for-each select="skill[count(.|key('skills-by-mark',@mark)[1])=1]"> <tr> <td><b><xsl:value-of select="concat(@mark,' skills:')"/></b></td> <td> <!-- process all skill elements having the current skill's mark --> <xsl:for-each select="key('skills-by-mark',@mark)"> <xsl:value-of select="@name"/> <xsl:if test="position()!=last()"><br/></xsl:if> </xsl:for-each> </td> </tr> </xsl:for-each> </table> </xsl:template> </xsl:stylesheet>""" source_1 = """<skills> <skill mark="excellent" name="excellentskill"/> <skill mark="excellent" name="excellent skill"/> <skill mark="good" name="goodskill"/> <skill mark="good" name="goodskill"/> <skill mark="basic" name="basicskill"/> <skill mark="basic" name="basicskill"/> <skill mark="excellent" name="excellentskill"/> <skill mark="good" name="goodskill"/> <skill mark="basic" name="basicskill"/> </skills>""" expected_1 = """<table> <tr> <td><b>excellent skills:</b></td> <td>excellentskill <br>excellent skill <br>excellentskill </td> </tr> <tr> <td><b>good skills:</b></td> <td>goodskill <br>goodskill <br>goodskill </td> </tr> <tr> <td><b>basic skills:</b></td> <td>basicskill <br>basicskill <br>basicskill </td> </tr> </table>"""
[ 2, 257, 2495, 15836, 8252, 24421, 666, 36115, 1332, 198, 198, 6738, 1395, 4029, 13, 55, 82, 2528, 1330, 1332, 62, 9869, 1108, 198, 198, 21760, 62, 16, 796, 37227, 47934, 19875, 2196, 2625, 16, 13, 15, 1, 21004, 2625, 40477, 12, 23, 13984, 29, 198, 27, 87, 6649, 25, 47720, 25473, 2196, 2625, 16, 13, 15, 1, 198, 220, 35555, 5907, 25, 87, 6649, 2625, 4023, 1378, 2503, 13, 86, 18, 13, 2398, 14, 18946, 14, 55, 8634, 14, 41762, 5320, 628, 220, 1279, 87, 6649, 25, 22915, 2446, 2625, 6494, 1, 33793, 2625, 8505, 26700, 628, 220, 1279, 87, 6649, 25, 2539, 1438, 2625, 8135, 2171, 12, 1525, 12, 4102, 1, 2872, 2625, 42401, 1, 779, 2625, 31, 4102, 26700, 198, 220, 1279, 87, 6649, 25, 28243, 2872, 2625, 8135, 2171, 5320, 198, 220, 220, 220, 1279, 11487, 29, 198, 220, 220, 220, 220, 220, 37922, 1429, 257, 900, 17747, 286, 262, 717, 5032, 5002, 329, 1123, 1317, 14610, 198, 220, 220, 220, 220, 220, 1279, 87, 6649, 25, 1640, 12, 27379, 2922, 2625, 42401, 58, 9127, 7, 13, 91, 2539, 10786, 8135, 2171, 12, 1525, 12, 4102, 3256, 31, 4102, 38381, 16, 12962, 28, 16, 60, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 2213, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 8671, 6927, 65, 6927, 87, 6649, 25, 8367, 12, 1659, 2922, 2625, 1102, 9246, 7, 31, 4102, 4032, 4678, 25, 11537, 1, 14, 12240, 65, 12240, 8671, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 8671, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37922, 1429, 477, 5032, 4847, 1719, 262, 1459, 5032, 338, 1317, 14610, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 87, 6649, 25, 1640, 12, 27379, 2922, 2625, 2539, 10786, 8135, 2171, 12, 1525, 12, 4102, 3256, 31, 4102, 8, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 87, 6649, 25, 8367, 12, 1659, 2922, 2625, 31, 3672, 26700, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 87, 6649, 25, 361, 1332, 2625, 9150, 3419, 0, 28, 12957, 3419, 22039, 1671, 14, 12240, 87, 6649, 25, 361, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7359, 87, 6649, 25, 1640, 12, 27379, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7359, 8671, 29, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 2213, 29, 198, 220, 220, 220, 220, 220, 7359, 87, 6649, 25, 1640, 12, 27379, 29, 198, 220, 220, 220, 7359, 11487, 29, 198, 220, 7359, 87, 6649, 25, 28243, 29, 198, 198, 3556, 87, 6649, 25, 47720, 25473, 29, 37811, 198, 198, 10459, 62, 16, 796, 37227, 27, 8135, 2171, 29, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 1069, 5666, 1, 1438, 2625, 1069, 3846, 658, 12728, 26700, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 1069, 5666, 1, 1438, 2625, 1069, 5666, 5032, 26700, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 11274, 1, 1438, 2625, 11274, 42401, 26700, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 11274, 1, 1438, 2625, 11274, 42401, 26700, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 35487, 1, 1438, 2625, 12093, 873, 12728, 26700, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 35487, 1, 1438, 2625, 12093, 873, 12728, 26700, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 1069, 5666, 1, 1438, 2625, 1069, 3846, 658, 12728, 26700, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 11274, 1, 1438, 2625, 11274, 42401, 26700, 198, 220, 220, 220, 1279, 42401, 1317, 2625, 35487, 1, 1438, 2625, 12093, 873, 12728, 26700, 198, 3556, 8135, 2171, 29, 37811, 198, 198, 40319, 62, 16, 796, 37227, 27, 11487, 29, 198, 220, 1279, 2213, 29, 198, 220, 220, 220, 1279, 8671, 6927, 65, 29, 1069, 5666, 4678, 25, 3556, 65, 12240, 8671, 29, 198, 220, 220, 220, 1279, 8671, 29, 1069, 3846, 658, 12728, 198, 220, 220, 220, 220, 220, 1279, 1671, 29, 1069, 5666, 5032, 198, 220, 220, 220, 220, 220, 1279, 1671, 29, 1069, 3846, 658, 12728, 198, 220, 220, 220, 7359, 8671, 29, 198, 220, 7359, 2213, 29, 198, 220, 1279, 2213, 29, 198, 220, 220, 220, 1279, 8671, 6927, 65, 29, 11274, 4678, 25, 3556, 65, 12240, 8671, 29, 198, 220, 220, 220, 1279, 8671, 29, 11274, 42401, 198, 220, 220, 220, 220, 220, 1279, 1671, 29, 11274, 42401, 198, 220, 220, 220, 220, 220, 1279, 1671, 29, 11274, 42401, 198, 220, 220, 220, 7359, 8671, 29, 198, 220, 7359, 2213, 29, 198, 220, 1279, 2213, 29, 198, 220, 220, 220, 1279, 8671, 6927, 65, 29, 35487, 4678, 25, 3556, 65, 12240, 8671, 29, 198, 220, 220, 220, 1279, 8671, 29, 12093, 873, 12728, 198, 220, 220, 220, 220, 220, 1279, 1671, 29, 12093, 873, 12728, 198, 220, 220, 220, 220, 220, 1279, 1671, 29, 12093, 873, 12728, 198, 220, 220, 220, 7359, 8671, 29, 198, 220, 7359, 2213, 29, 198, 3556, 11487, 29, 37811, 198 ]
2.216726
849
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from collections.abc import Iterable if __name__ == '__main__': # 字典 d = {'a': 1, 'b': 2, 'c': 3} for key in d: print(key,d[key]) # 字符串 for x in 'abc': print(x) # 对象是否客迭代 iter=isinstance(['a','b','c'], Iterable) print(iter) # 得到对应的下标,需要将可迭代对象加上emumerate for index,value in enumerate([1,3,52]): print('index: ',index, 'value: ',value) # 或者通过range for x in range(10): print(x) # 测试 if findMinAndMax([]) != (None, None): print('测试失败!') elif findMinAndMax([7]) != (7, 7): print('测试失败!') elif findMinAndMax([7, 1]) != (1, 7): print('测试失败!') elif findMinAndMax([7, 1, 3, 9, 5]) != (1, 9): print('测试失败!') else: print('测试成功!') # 迭代器 # list、tuple、dict、set、str # generator,包括生成器和带yield的generator function print(isinstance([],Iterable))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 17268, 13, 39305, 1330, 40806, 540, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 10263, 255, 245, 17739, 116, 198, 220, 220, 220, 288, 796, 1391, 6, 64, 10354, 352, 11, 705, 65, 10354, 362, 11, 705, 66, 10354, 513, 92, 198, 220, 220, 220, 329, 1994, 287, 288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2539, 11, 67, 58, 2539, 12962, 628, 220, 220, 220, 1303, 10263, 255, 245, 163, 105, 99, 10310, 110, 198, 220, 220, 220, 329, 2124, 287, 705, 39305, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 87, 8, 628, 220, 220, 220, 1303, 10263, 107, 117, 164, 109, 94, 42468, 28938, 99, 22522, 95, 32573, 255, 47987, 198, 220, 220, 220, 11629, 28, 271, 39098, 7, 17816, 64, 41707, 65, 41707, 66, 6, 4357, 40806, 540, 8, 198, 220, 220, 220, 3601, 7, 2676, 8, 198, 220, 220, 220, 1303, 10263, 122, 245, 26344, 108, 43380, 117, 41753, 242, 21410, 10310, 233, 43718, 229, 171, 120, 234, 165, 250, 222, 17358, 223, 49546, 20998, 107, 32573, 255, 47987, 43380, 117, 164, 109, 94, 27950, 254, 41468, 368, 6975, 378, 198, 220, 220, 220, 329, 6376, 11, 8367, 287, 27056, 378, 26933, 16, 11, 18, 11, 4309, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9630, 25, 46083, 9630, 11, 705, 8367, 25, 46083, 8367, 8, 198, 220, 220, 220, 1303, 10545, 230, 244, 38519, 34460, 248, 32573, 229, 9521, 198, 220, 220, 220, 329, 2124, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 87, 8, 198, 220, 220, 220, 1303, 10545, 113, 233, 46237, 243, 198, 220, 220, 220, 611, 1064, 9452, 1870, 11518, 26933, 12962, 14512, 357, 14202, 11, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 38184, 233, 46237, 243, 13783, 109, 164, 112, 98, 0, 11537, 198, 220, 220, 220, 1288, 361, 1064, 9452, 1870, 11518, 26933, 22, 12962, 14512, 357, 22, 11, 767, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 38184, 233, 46237, 243, 13783, 109, 164, 112, 98, 0, 11537, 198, 220, 220, 220, 1288, 361, 1064, 9452, 1870, 11518, 26933, 22, 11, 352, 12962, 14512, 357, 16, 11, 767, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 38184, 233, 46237, 243, 13783, 109, 164, 112, 98, 0, 11537, 198, 220, 220, 220, 1288, 361, 1064, 9452, 1870, 11518, 26933, 22, 11, 352, 11, 513, 11, 860, 11, 642, 12962, 14512, 357, 16, 11, 860, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 38184, 233, 46237, 243, 13783, 109, 164, 112, 98, 0, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 38184, 233, 46237, 243, 22755, 238, 27950, 253, 0, 11537, 628, 220, 220, 220, 1303, 5525, 123, 255, 47987, 161, 247, 101, 198, 220, 220, 220, 1303, 1351, 23513, 83, 29291, 23513, 11600, 23513, 2617, 23513, 2536, 198, 220, 220, 220, 1303, 17301, 11, 44293, 227, 162, 233, 105, 37955, 22755, 238, 161, 247, 101, 161, 240, 234, 30585, 99, 88, 1164, 21410, 8612, 1352, 2163, 198, 220, 220, 220, 3601, 7, 271, 39098, 26933, 4357, 29993, 540, 4008, 628, 628 ]
1.626943
579
#!/usr/bin/env python """Convert gzipped files on s3 biodata to xz compression format. This conversion is designed to save time and space for download. Some download utilities to speed things up: axel, aria2, lftp """ import os import sys import socket import subprocess import boto import fabric.api as fabric if __name__ == "__main__": bucket_name = "biodata" main(bucket_name)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 3103, 1851, 308, 89, 3949, 3696, 319, 264, 18, 32449, 1045, 284, 2124, 89, 19794, 5794, 13, 198, 198, 1212, 11315, 318, 3562, 284, 3613, 640, 290, 2272, 329, 4321, 13, 198, 198, 4366, 4321, 20081, 284, 2866, 1243, 510, 25, 198, 897, 417, 11, 257, 7496, 17, 11, 300, 701, 79, 198, 37811, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 17802, 198, 11748, 850, 14681, 198, 198, 11748, 275, 2069, 198, 11748, 9664, 13, 15042, 355, 9664, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 19236, 62, 3672, 796, 366, 65, 2101, 1045, 1, 198, 220, 220, 220, 1388, 7, 27041, 316, 62, 3672, 8, 198 ]
3.111111
126
from __future__ import annotations from datetime import datetime from typing import Optional, Sequence, Tuple, Union from wyze_sdk.models import datetime_to_epoch from .base import ExServiceClient, WyzeResponse class ScaleServiceClient(ExServiceClient): """ Scale service client is the wrapper on the requests to https://wyze-scale-service.wyzecam.com """ WYZE_API_URL = "https://wyze-scale-service.wyzecam.com" WYZE_APP_ID = "scap_41183d5d0bac498d" def get_device_setting(self, *, did: str, **kwargs) -> WyzeResponse: """ Get the settings for the scale. See: com.wyze.ihealth.d.a.m """ kwargs.update({'device_id': did}) return self.api_call('/plugin/scale/get_device_setting', http_verb="GET", params=kwargs) def get_device_member(self, *, did: str, **kwargs) -> WyzeResponse: """ Get the users associated with the scale. See: com.wyze.ihealth.d.a.j """ kwargs.update({'device_id': did}) return self.api_call('/plugin/scale/get_device_member', http_verb="GET", params=kwargs) def get_family_member(self, *, did: str, **kwargs) -> WyzeResponse: """ Get the users associated with the scale. See: com.wyze.ihealth.d.a.o """ kwargs.update({'device_id': did}) return self.api_call('/plugin/scale/get_family_member', http_verb="GET", params=kwargs) def get_user_preference(self, *, did: str, **kwargs) -> WyzeResponse: """ Get the scale-related preferences for the current user. See: com.wyze.ihealth.d.a.p """ kwargs.update({'device_id': did}) return self.api_call('/plugin/scale/get_user_preference', http_verb="GET", params=kwargs) def get_token(self, *, did: str, **kwargs) -> WyzeResponse: """ Get binding token for the scale. See: com.wyze.ihealth.d.a.c """ kwargs.update({'device_id': did}) return self.api_call('/plugin/scale/get_token', http_verb="GET", params=kwargs) def get_user_device_relation(self, *, did: str, user_id: str, **kwargs) -> WyzeResponse: """ Get the relationship of the users associated with the scale. See: com.wyze.ihealth.d.a.d """ kwargs.update({'device_id': did, 'user_id': user_id}) return self.api_call('/plugin/scale/get_user_device_relation', http_verb="GET", params=kwargs) def update_device_setting(self, *, did: str, model: str, firmware_ver: str, mac: str, unit: str, broadcast: int, **kwargs) -> WyzeResponse: """ Update the settings of scale. See: com.wyze.ihealth.d.a.f """ kwargs.update({'device_id': did, 'device_model': model, 'firmware_ver': firmware_ver, 'mac': mac, 'unit': unit, 'broadcast': broadcast}) return self.api_call('/plugin/scale/update_device_setting', json=kwargs) def get_user_profile(self): """ Get the scale-related data from the user's profile. See: com.wyze.ihealth.d.a.a and com.samsung.android.sdk.healthdata.HealthUserProfile """ return self.api_call('/app/v2/platform/get_user_profile', http_verb="GET") def update_user_profile(self, *, logo_url: str, nickname: str, gender: str, birth_date: str, height: str, height_unit: str, body_type: str, occupation: str, **kwargs) -> WyzeResponse: """ Set scale-related data to the user's profile. See: com.wyze.ihealth.d.a.l and com.samsung.android.sdk.healthdata.HealthUserProfile """ kwargs.update({'logo_url': logo_url, 'nickname': nickname, 'gender': gender, 'birthDate': birth_date, 'height': height, 'height_unit': height_unit, 'body_type': body_type, 'occupation': occupation}) return self.api_call('/app/v2/platform/update_user_profile', json=kwargs) def get_goal_weight(self, *, user_id: str, **kwargs) -> WyzeResponse: """ Get the goal weight from the user's profile. See: com.wyze.ihealth.d.b.v """ kwargs.update({'family_member_id': user_id}) return self.api_call('/plugin/scale/get_goal_weight', http_verb="GET", params=kwargs) def get_heart_rate_record_list(self, *, user_id: Optional[str] = None, record_number: Optional[int] = 1, measure_ts: Optional[int] = None, **kwargs) -> WyzeResponse: """ Get the heart rate records from the user's profile. See: com.wyze.ihealth.d.b.b """ if user_id: kwargs.update({'family_member_id': user_id}) kwargs.update({'record_number': str(record_number)}) if measure_ts: kwargs.update({'measure_ts': str(measure_ts)}) return self.api_call('/plugin/scale/get_heart_rate_record_list', http_verb="GET", params=kwargs) def get_latest_records(self, *, user_id: Optional[str] = None, **kwargs) -> WyzeResponse: """ Get the latest records from the user's profile. See: com.wyze.ihealth.d.b.t """ if user_id: kwargs.update({'family_member_id': user_id}) return self.api_call('/plugin/scale/get_latest_record', http_verb="GET", params=kwargs) def get_records(self, *, user_id: Optional[str] = None, start_time: datetime, end_time: datetime, **kwargs) -> WyzeResponse: """ Get a range of records from the user's profile. See: com.wyze.ihealth.d.b.i and com.samsung.android.sdk.healthdata.HealthConstants.SessionMeasurement """ if user_id: kwargs.update({'family_member_id': user_id}) kwargs.update({'start_time': str(0), 'end_time': str(datetime_to_epoch(end_time))}) return self.api_call('/plugin/scale/get_record_range', http_verb="GET", params=kwargs) def delete_goal_weight(self, *, user_id: Optional[str] = None, **kwargs) -> WyzeResponse: """ Removes the goal weight from the user's profile. See: com.wyze.ihealth.d.b.j """ if user_id: kwargs.update({'family_member_id': user_id}) return self.api_call('/plugin/scale/delete_goal_weight', http_verb="GET", params=kwargs) def add_heart_rate_record(self, *, did: str, user_id: str, measure_ts: int, heart_rate: int, **kwargs) -> WyzeResponse: """ Add a heart rate record to the user's profile. See: com.wyze.ihealth.d.b.p """ kwargs.update({'device_id': did, 'family_member_id': user_id, 'measure_ts': measure_ts, 'heart_rate': str(heart_rate)}) return self.api_call('/plugin/scale/get_latest_record', json=kwargs) def add_weight_record(self, *, did: str, mac: str, user_id: str, measure_ts: int, measure_type: int = 1, weight: float, **kwargs) -> WyzeResponse: """ Add a weight-only record to the user's profile. See: com.wyze.ihealth.d.b.k """ kwargs.update({'device_id': did, 'mac': mac, 'family_member_id': user_id, 'measure_ts': measure_ts, 'measure_type': measure_type, 'weight': weight}) return self.api_call('/plugin/scale/get_latest_record', json=kwargs) def delete_record(self, *, data_id=Union[int, Sequence[int]], **kwargs) -> WyzeResponse: """ Delete health records from the user's profile. See: com.wyze.ihealth.d.b.u """ if isinstance(data_id, (list, Tuple)): kwargs.update({"data_id_list": ",".join(data_id)}) else: kwargs.update({"data_id_list": [data_id]}) return self.api_call('/plugin/scale/delete_record', json=kwargs)
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 32233, 11, 45835, 11, 309, 29291, 11, 4479, 198, 198, 6738, 266, 88, 2736, 62, 21282, 74, 13, 27530, 1330, 4818, 8079, 62, 1462, 62, 538, 5374, 198, 198, 6738, 764, 8692, 1330, 1475, 16177, 11792, 11, 12958, 2736, 31077, 628, 198, 4871, 21589, 16177, 11792, 7, 3109, 16177, 11792, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21589, 2139, 5456, 318, 262, 29908, 319, 262, 7007, 284, 3740, 1378, 21768, 2736, 12, 9888, 12, 15271, 13, 21768, 89, 721, 321, 13, 785, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 370, 56, 21211, 62, 17614, 62, 21886, 796, 366, 5450, 1378, 21768, 2736, 12, 9888, 12, 15271, 13, 21768, 89, 721, 321, 13, 785, 1, 198, 220, 220, 220, 370, 56, 21211, 62, 24805, 62, 2389, 796, 366, 1416, 499, 62, 42224, 5999, 67, 20, 67, 15, 65, 330, 36260, 67, 1, 628, 220, 220, 220, 825, 651, 62, 25202, 62, 33990, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 6460, 329, 262, 5046, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 76, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 25202, 62, 33990, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 25202, 62, 19522, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 2985, 3917, 351, 262, 5046, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 73, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 25202, 62, 19522, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 17989, 62, 19522, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 2985, 3917, 351, 262, 5046, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 78, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 17989, 62, 19522, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 7220, 62, 3866, 4288, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 5046, 12, 5363, 15387, 329, 262, 1459, 2836, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 79, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 7220, 62, 3866, 4288, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 30001, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 12765, 11241, 329, 262, 5046, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 66, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 30001, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 7220, 62, 25202, 62, 49501, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 2836, 62, 312, 25, 965, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 2776, 286, 262, 2985, 3917, 351, 262, 5046, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 67, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 11, 705, 7220, 62, 312, 10354, 2836, 62, 312, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 7220, 62, 25202, 62, 49501, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 4296, 62, 25202, 62, 33990, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 2746, 25, 965, 11, 18779, 62, 332, 25, 965, 11, 8352, 25, 965, 11, 4326, 25, 965, 11, 7025, 25, 493, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10133, 262, 6460, 286, 5046, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 69, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 11, 705, 25202, 62, 19849, 10354, 2746, 11, 705, 69, 2533, 1574, 62, 332, 10354, 18779, 62, 332, 11, 705, 20285, 10354, 8352, 11, 705, 20850, 10354, 4326, 11, 705, 36654, 2701, 10354, 7025, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 19119, 62, 25202, 62, 33990, 3256, 33918, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 7220, 62, 13317, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 5046, 12, 5363, 1366, 422, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 64, 290, 401, 13, 82, 30136, 13, 19411, 13, 21282, 74, 13, 13948, 7890, 13, 18081, 12982, 37046, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 1324, 14, 85, 17, 14, 24254, 14, 1136, 62, 7220, 62, 13317, 3256, 2638, 62, 19011, 2625, 18851, 4943, 628, 220, 220, 220, 825, 4296, 62, 7220, 62, 13317, 7, 944, 11, 1635, 11, 11112, 62, 6371, 25, 965, 11, 21814, 25, 965, 11, 5279, 25, 965, 11, 4082, 62, 4475, 25, 965, 11, 6001, 25, 965, 11, 6001, 62, 20850, 25, 965, 11, 1767, 62, 4906, 25, 965, 11, 13755, 25, 965, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 5046, 12, 5363, 1366, 284, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 64, 13, 75, 290, 401, 13, 82, 30136, 13, 19411, 13, 21282, 74, 13, 13948, 7890, 13, 18081, 12982, 37046, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 6404, 78, 62, 6371, 10354, 11112, 62, 6371, 11, 705, 17172, 3672, 10354, 21814, 11, 705, 8388, 10354, 5279, 11, 705, 24280, 10430, 10354, 4082, 62, 4475, 11, 705, 17015, 10354, 6001, 11, 705, 17015, 62, 20850, 10354, 6001, 62, 20850, 11, 705, 2618, 62, 4906, 10354, 1767, 62, 4906, 11, 705, 19596, 341, 10354, 13755, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 1324, 14, 85, 17, 14, 24254, 14, 19119, 62, 7220, 62, 13317, 3256, 33918, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 35231, 62, 6551, 7, 944, 11, 1635, 11, 2836, 62, 312, 25, 965, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 3061, 3463, 422, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 65, 13, 85, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 17989, 62, 19522, 62, 312, 10354, 2836, 62, 312, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 35231, 62, 6551, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 11499, 62, 4873, 62, 22105, 62, 4868, 7, 944, 11, 1635, 11, 2836, 62, 312, 25, 32233, 58, 2536, 60, 796, 6045, 11, 1700, 62, 17618, 25, 32233, 58, 600, 60, 796, 352, 11, 3953, 62, 912, 25, 32233, 58, 600, 60, 796, 6045, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 2612, 2494, 4406, 422, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 65, 13, 65, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 17989, 62, 19522, 62, 312, 10354, 2836, 62, 312, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 22105, 62, 17618, 10354, 965, 7, 22105, 62, 17618, 8, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3953, 62, 912, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 1326, 5015, 62, 912, 10354, 965, 7, 1326, 5015, 62, 912, 8, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 11499, 62, 4873, 62, 22105, 62, 4868, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 42861, 62, 8344, 3669, 7, 944, 11, 1635, 11, 2836, 62, 312, 25, 32233, 58, 2536, 60, 796, 6045, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 3452, 4406, 422, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 65, 13, 83, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 17989, 62, 19522, 62, 312, 10354, 2836, 62, 312, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 42861, 62, 22105, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 8344, 3669, 7, 944, 11, 1635, 11, 2836, 62, 312, 25, 32233, 58, 2536, 60, 796, 6045, 11, 923, 62, 2435, 25, 4818, 8079, 11, 886, 62, 2435, 25, 4818, 8079, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 257, 2837, 286, 4406, 422, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 65, 13, 72, 290, 401, 13, 82, 30136, 13, 19411, 13, 21282, 74, 13, 13948, 7890, 13, 18081, 34184, 1187, 13, 36044, 47384, 434, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 17989, 62, 19522, 62, 312, 10354, 2836, 62, 312, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 9688, 62, 2435, 10354, 965, 7, 15, 828, 705, 437, 62, 2435, 10354, 965, 7, 19608, 8079, 62, 1462, 62, 538, 5374, 7, 437, 62, 2435, 4008, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 22105, 62, 9521, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 12233, 62, 35231, 62, 6551, 7, 944, 11, 1635, 11, 2836, 62, 312, 25, 32233, 58, 2536, 60, 796, 6045, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3982, 5241, 262, 3061, 3463, 422, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 65, 13, 73, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 17989, 62, 19522, 62, 312, 10354, 2836, 62, 312, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 33678, 62, 35231, 62, 6551, 3256, 2638, 62, 19011, 2625, 18851, 1600, 42287, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 751, 62, 11499, 62, 4873, 62, 22105, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 2836, 62, 312, 25, 965, 11, 3953, 62, 912, 25, 493, 11, 2612, 62, 4873, 25, 493, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 257, 2612, 2494, 1700, 284, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 65, 13, 79, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 11, 705, 17989, 62, 19522, 62, 312, 10354, 2836, 62, 312, 11, 705, 1326, 5015, 62, 912, 10354, 3953, 62, 912, 11, 705, 11499, 62, 4873, 10354, 965, 7, 11499, 62, 4873, 8, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 42861, 62, 22105, 3256, 33918, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 751, 62, 6551, 62, 22105, 7, 944, 11, 1635, 11, 750, 25, 965, 11, 8352, 25, 965, 11, 2836, 62, 312, 25, 965, 11, 3953, 62, 912, 25, 493, 11, 3953, 62, 4906, 25, 493, 796, 352, 11, 3463, 25, 12178, 11, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 257, 3463, 12, 8807, 1700, 284, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 65, 13, 74, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 15090, 6, 25202, 62, 312, 10354, 750, 11, 705, 20285, 10354, 8352, 11, 705, 17989, 62, 19522, 62, 312, 10354, 2836, 62, 312, 11, 705, 1326, 5015, 62, 912, 10354, 3953, 62, 912, 11, 705, 1326, 5015, 62, 4906, 10354, 3953, 62, 4906, 11, 705, 6551, 10354, 3463, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 1136, 62, 42861, 62, 22105, 3256, 33918, 28, 46265, 22046, 8, 628, 220, 220, 220, 825, 12233, 62, 22105, 7, 944, 11, 1635, 11, 1366, 62, 312, 28, 38176, 58, 600, 11, 45835, 58, 600, 60, 4357, 12429, 46265, 22046, 8, 4613, 12958, 2736, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23520, 1535, 4406, 422, 262, 2836, 338, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 25, 401, 13, 21768, 2736, 13, 72, 13948, 13, 67, 13, 65, 13, 84, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 7890, 62, 312, 11, 357, 4868, 11, 309, 29291, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 7, 4895, 7890, 62, 312, 62, 4868, 1298, 366, 553, 13, 22179, 7, 7890, 62, 312, 8, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 19119, 7, 4895, 7890, 62, 312, 62, 4868, 1298, 685, 7890, 62, 312, 60, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 13345, 10786, 14, 33803, 14, 9888, 14, 33678, 62, 22105, 3256, 33918, 28, 46265, 22046, 8, 198 ]
2.330979
3,257
# Generated by Django 2.0.7 on 2018-07-06 14:37 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 13, 22, 319, 2864, 12, 2998, 12, 3312, 1478, 25, 2718, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
from setuptools import setup, find_packages setup( name="pre_wigs_validation", version="0.1.0", description="Pre-WIG Validator for Linux", author="steno", author_email="[email protected]", packages=find_packages(exclude=["tests"]), include_package_data=True, install_requires=["requests", "dataclasses", "distro", "PrettyTable"] # Maybe include dev dependencies in a txt file )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 201, 198, 201, 198, 201, 198, 40406, 7, 201, 198, 220, 220, 220, 1438, 2625, 3866, 62, 86, 9235, 62, 12102, 341, 1600, 201, 198, 220, 220, 220, 2196, 2625, 15, 13, 16, 13, 15, 1600, 201, 198, 220, 220, 220, 6764, 2625, 6719, 12, 54, 3528, 48951, 1352, 329, 7020, 1600, 201, 198, 220, 220, 220, 1772, 2625, 301, 23397, 1600, 201, 198, 220, 220, 220, 1772, 62, 12888, 2625, 301, 23397, 31, 33103, 13, 785, 1600, 201, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 1069, 9152, 28, 14692, 41989, 8973, 828, 201, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 201, 198, 220, 220, 220, 2721, 62, 47911, 28, 14692, 8897, 3558, 1600, 366, 19608, 330, 28958, 1600, 366, 17080, 305, 1600, 366, 35700, 10962, 8973, 201, 198, 220, 220, 220, 1303, 6674, 2291, 1614, 20086, 287, 257, 256, 742, 2393, 201, 198, 8, 201, 198 ]
2.6
165
import pathlib import sys import tensorflow as tf import numpy as np from tensorflow.python.ops import init_ops from tensorflow.python.ops.rnn_cell_impl import _Linear, LSTMStateTuple from tensorflow.python.ops import variable_scope as vs from utils import * if __name__ == '__main__': batch_num = 1 hidden_num = 4 # step_num = 8 iteration = 30 ensemble_space = 10 learning_rate = 1e-3 multivariate = True partition = True save_model = False try: sys.argv[1] except IndexError: for n in range(1, 7): # file name parameter dataset = n if dataset == 1: file_name = './GD/data/Genesis_AnomalyLabels.csv' print(file_name) k_partition = 40 abnormal_data, abnormal_label = ReadGDDataset(file_name) elem_num = 18 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, cks = RunModel(splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 2.5) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) if dataset == 2: file_name = './HSS/data/HRSS_anomalous_standard.csv' print(file_name) k_partition = 80 abnormal_data, abnormal_label = ReadHSSDataset(file_name) elem_num = 18 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, cks = RunModel(splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) if dataset == 3: for root, dirs, _ in os.walk('./YAHOO/data'): for dir in dirs: k_partition = 10 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for _, _, files in os.walk(root + '/' + dir): for file in files: file_name = os.path.join(root, dir, file) print(file_name) abnormal_data, abnormal_label = ReadS5Dataset(file_name) elem_num = 1 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, pr_cks = RunModel(splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(final_p) s_recall.append(final_r) s_f1.append(final_f) s_roc_auc.append(final_average_roc_auc) s_pr_auc.append(final_average_precision) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') if dataset == 4: for root, dirs, _ in os.walk('./NAB/data'): for dir in dirs: k_partition = 10 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for _, _, files in os.walk(root + '/' + dir): for file in files: file_name = os.path.join(root, dir, file) print(file_name) abnormal_data, abnormal_label = ReadNABDataset(file_name) elem_num = 1 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, pr_cks = RunModel(splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(final_p) s_recall.append(final_r) s_f1.append(final_f) s_roc_auc.append(final_average_roc_auc) s_pr_auc.append(final_average_precision) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') if dataset == 5: for root, dirs, files in os.walk('./2D/test'): for dir in dirs: k_partition = 3 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for _, _, files in os.walk(root + '/' + dir): for file in files: file_name = os.path.join(root, dir, file) print(file_name) abnormal_data, abnormal_label = Read2DDataset(file_name) elem_num = 2 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, pr_cks = RunModel( splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve( abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(final_p) s_recall.append(final_r) s_f1.append(final_f) s_roc_auc.append(final_average_roc_auc) s_pr_auc.append(final_average_precision) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') if dataset == 6: k_partition = 2 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for root, dirs, _ in os.walk('./UAH/'): for dir in dirs: folder_name = os.path.join(root, dir) print(folder_name) abnormal_data, abnormal_label = ReadUAHDataset(folder_name) elem_num = 4 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, cks = RunModel( splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) print('########################################') precision, recall, f1 = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(precision, recall, f1) _, _, roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(roc_auc)) _, _, pr_auc = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(pr_auc)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) print('########################################') else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(precision) s_recall.append(recall) s_f1.append(f1) s_roc_auc.append(roc_auc) s_pr_auc.append(pr_auc) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') if dataset == 7: for root, dirs, files in os.walk('./ECG/'): for dir in dirs: k_partition = 3 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for _, _, files in os.walk(root + '/' + dir): for file in files: file_name = os.path.join(root, dir, file) print(file_name) abnormal_data, abnormal_label = ReadECGDataset(file_name) elem_num = 3 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, pr_cks = RunModel( splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve( abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(final_p) s_recall.append(final_r) s_f1.append(final_f) s_roc_auc.append(final_average_roc_auc) s_pr_auc.append(final_average_precision) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') else: # file name parameter dataset = int(sys.argv[1]) if dataset == 1: file_name = './GD/data/Genesis_AnomalyLabels.csv' print(file_name) k_partition = 40 abnormal_data, abnormal_label = ReadGDDataset(file_name) elem_num = 18 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, cks = RunModel(splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 2.5) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) if dataset == 2: file_name = './HSS/data/HRSS_anomalous_standard.csv' print(file_name) k_partition = 80 abnormal_data, abnormal_label = ReadHSSDataset(file_name) elem_num = 18 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, cks = RunModel(splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) if dataset == 3: for root, dirs, _ in os.walk('./YAHOO/data'): for dir in dirs: k_partition = 10 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for _, _, files in os.walk(root + '/' + dir): for file in files: file_name = os.path.join(root, dir, file) print(file_name) abnormal_data, abnormal_label = ReadS5Dataset(file_name) elem_num = 1 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, pr_cks = RunModel(splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(final_p) s_recall.append(final_r) s_f1.append(final_f) s_roc_auc.append(final_average_roc_auc) s_pr_auc.append(final_average_precision) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') if dataset == 4: for root, dirs, _ in os.walk('./NAB/data'): for dir in dirs: k_partition = 10 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for _, _, files in os.walk(root + '/' + dir): for file in files: file_name = os.path.join(root, dir, file) print(file_name) abnormal_data, abnormal_label = ReadNABDataset(file_name) elem_num = 1 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, pr_cks = RunModel(splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(final_p) s_recall.append(final_r) s_f1.append(final_f) s_roc_auc.append(final_average_roc_auc) s_pr_auc.append(final_average_precision) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') if dataset == 5: for root, dirs, files in os.walk('./2D/test'): for dir in dirs: k_partition = 3 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for _, _, files in os.walk(root + '/' + dir): for file in files: file_name = os.path.join(root, dir, file) print(file_name) abnormal_data, abnormal_label = Read2DDataset(file_name) elem_num = 2 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, pr_cks = RunModel( splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve( abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(final_p) s_recall.append(final_r) s_f1.append(final_f) s_roc_auc.append(final_average_roc_auc) s_pr_auc.append(final_average_precision) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') if dataset == 6: k_partition = 2 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for root, dirs, _ in os.walk('./UAH/'): for dir in dirs: folder_name = os.path.join(root, dir) print(folder_name) abnormal_data, abnormal_label = ReadUAHDataset(folder_name) elem_num = 4 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, cks = RunModel( splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) print('########################################') precision, recall, f1 = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(precision, recall, f1) _, _, roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(roc_auc)) _, _, pr_auc = CalculatePrecisionRecallCurve(abnormal_label, final_error) print('pr_auc=' + str(pr_auc)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) print('########################################') else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(precision) s_recall.append(recall) s_f1.append(f1) s_roc_auc.append(roc_auc) s_pr_auc.append(pr_auc) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################') if dataset == 7: for root, dirs, files in os.walk('./ECG/'): for dir in dirs: k_partition = 3 s_precision = [] s_recall = [] s_f1 = [] s_roc_auc = [] s_pr_auc = [] s_cks = [] for _, _, files in os.walk(root + '/' + dir): for file in files: file_name = os.path.join(root, dir, file) print(file_name) abnormal_data, abnormal_label = ReadECGDataset(file_name) elem_num = 3 if multivariate: abnormal_data = np.expand_dims(abnormal_data, axis=0) if partition: splitted_data, splitted_label = PartitionTimeSeriesKPart(abnormal_data, abnormal_label, _part_number=k_partition) final_error = [] for i in range(k_partition): error_partition, precision_partition, recall_partition, f1_partition, roc_auc_partition, pr_auc_partition, pr_cks = RunModel( splitted_data[i], splitted_label[i]) final_error.append(error_partition) # print('-----------------------------------------') final_error = np.concatenate(final_error).ravel() final_zscore = Z_Score(final_error) y_pred = CreateLabelBasedOnZscore(final_zscore, 3) final_p, final_r, final_f = CalculatePrecisionRecallF1Metrics(abnormal_label, y_pred) PrintPrecisionRecallF1Metrics(final_p, final_r, final_f) final_fpr, final_tpr, final_average_roc_auc = CalculateROCAUCMetrics(abnormal_label, final_error) print('roc_auc=' + str(final_average_roc_auc)) final_precision_curve, final_recall_curve, final_average_precision = CalculatePrecisionRecallCurve( abnormal_label, final_error) print('pr_auc=' + str(final_average_precision)) cks = CalculateCohenKappaMetrics(abnormal_label, y_pred) print('cohen_kappa=' + str(cks)) else: error, precision, recall, f1, roc_auc, pr_auc, cks = RunModel(abnormal_data, abnormal_label) s_precision.append(final_p) s_recall.append(final_r) s_f1.append(final_f) s_roc_auc.append(final_average_roc_auc) s_pr_auc.append(final_average_precision) s_cks.append(cks) print('########################################') avg_precision = CalculateAverageMetric(s_precision) print('avg_precision=' + str(avg_precision)) avg_recall = CalculateAverageMetric(s_recall) print('avg_recall=' + str(avg_recall)) avg_f1 = CalculateAverageMetric(s_f1) print('avg_f1=' + str(avg_f1)) avg_roc_auc = CalculateAverageMetric(s_roc_auc) print('avg_roc_auc=' + str(avg_roc_auc)) avg_pr_auc = CalculateAverageMetric(s_pr_auc) print('avg_pr_auc=' + str(avg_pr_auc)) avg_cks = CalculateAverageMetric(s_cks) print('avg_cks=' + str(avg_cks)) print('########################################')
[ 11748, 3108, 8019, 198, 11748, 25064, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 2315, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 13, 81, 20471, 62, 3846, 62, 23928, 1330, 4808, 14993, 451, 11, 406, 2257, 44, 9012, 51, 29291, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 7885, 62, 29982, 355, 3691, 198, 6738, 3384, 4487, 1330, 1635, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 15458, 62, 22510, 796, 352, 198, 220, 220, 220, 7104, 62, 22510, 796, 604, 198, 220, 220, 220, 1303, 2239, 62, 22510, 796, 807, 198, 220, 220, 220, 24415, 796, 1542, 198, 220, 220, 220, 34549, 62, 13200, 796, 838, 198, 220, 220, 220, 4673, 62, 4873, 796, 352, 68, 12, 18, 198, 220, 220, 220, 1963, 42524, 796, 6407, 628, 220, 220, 220, 18398, 796, 6407, 198, 220, 220, 220, 3613, 62, 19849, 796, 10352, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 16, 11, 767, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2393, 1438, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 299, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 705, 19571, 45113, 14, 7890, 14, 13746, 9339, 62, 2025, 24335, 17822, 1424, 13, 40664, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 2319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 38, 16458, 265, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 1248, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 269, 591, 796, 5660, 17633, 7, 22018, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 362, 13, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 705, 19571, 39, 5432, 14, 7890, 14, 17184, 5432, 62, 272, 18048, 516, 62, 20307, 13, 40664, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 4019, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 39, 5432, 27354, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 1248, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 269, 591, 796, 5660, 17633, 7, 22018, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 4808, 287, 28686, 13, 11152, 7, 4458, 14, 56, 18429, 6684, 14, 7890, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 4808, 11, 3696, 287, 28686, 13, 11152, 7, 15763, 1343, 31051, 6, 1343, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 50, 20, 27354, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 778, 62, 4657, 796, 5660, 17633, 7, 22018, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 20311, 62, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 20311, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 20311, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 4808, 287, 28686, 13, 11152, 7, 4458, 14, 4535, 33, 14, 7890, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 4808, 11, 3696, 287, 28686, 13, 11152, 7, 15763, 1343, 31051, 6, 1343, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 4535, 14529, 265, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 778, 62, 4657, 796, 5660, 17633, 7, 22018, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 20311, 62, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 20311, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 20311, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 4458, 14, 17, 35, 14, 9288, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 4808, 11, 3696, 287, 28686, 13, 11152, 7, 15763, 1343, 31051, 6, 1343, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 17, 16458, 265, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 778, 62, 4657, 796, 5660, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 20311, 62, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 20311, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 20311, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 718, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 4808, 287, 28686, 13, 11152, 7, 4458, 14, 52, 18429, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9483, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 43551, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 34970, 10227, 265, 292, 316, 7, 43551, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 269, 591, 796, 5660, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15440, 11, 10014, 11, 277, 16, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 3866, 16005, 11, 10014, 11, 277, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 4808, 11, 686, 66, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 4808, 11, 778, 62, 14272, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 4458, 14, 2943, 38, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 4808, 11, 3696, 287, 28686, 13, 11152, 7, 15763, 1343, 31051, 6, 1343, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 2943, 38, 27354, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 778, 62, 4657, 796, 5660, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 20311, 62, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 20311, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 20311, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2393, 1438, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 705, 19571, 45113, 14, 7890, 14, 13746, 9339, 62, 2025, 24335, 17822, 1424, 13, 40664, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 2319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 38, 16458, 265, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 1248, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 269, 591, 796, 5660, 17633, 7, 22018, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 362, 13, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 705, 19571, 39, 5432, 14, 7890, 14, 17184, 5432, 62, 272, 18048, 516, 62, 20307, 13, 40664, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 4019, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 39, 5432, 27354, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 1248, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 269, 591, 796, 5660, 17633, 7, 22018, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 4808, 287, 28686, 13, 11152, 7, 4458, 14, 56, 18429, 6684, 14, 7890, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 4808, 11, 3696, 287, 28686, 13, 11152, 7, 15763, 1343, 31051, 6, 1343, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 50, 20, 27354, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 778, 62, 4657, 796, 5660, 17633, 7, 22018, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 20311, 62, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 20311, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 20311, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 4808, 287, 28686, 13, 11152, 7, 4458, 14, 4535, 33, 14, 7890, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 4808, 11, 3696, 287, 28686, 13, 11152, 7, 15763, 1343, 31051, 6, 1343, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 4535, 14529, 265, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 778, 62, 4657, 796, 5660, 17633, 7, 22018, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 20311, 62, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 20311, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 20311, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 4458, 14, 17, 35, 14, 9288, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 4808, 11, 3696, 287, 28686, 13, 11152, 7, 15763, 1343, 31051, 6, 1343, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 17, 16458, 265, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 778, 62, 4657, 796, 5660, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 20311, 62, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 20311, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 20311, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 718, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 4808, 287, 28686, 13, 11152, 7, 4458, 14, 52, 18429, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9483, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 43551, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 34970, 10227, 265, 292, 316, 7, 43551, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 269, 591, 796, 5660, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15440, 11, 10014, 11, 277, 16, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 3866, 16005, 11, 10014, 11, 277, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 4808, 11, 686, 66, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 4808, 11, 778, 62, 14272, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 397, 11265, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 27039, 6624, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 4458, 14, 2943, 38, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 3911, 653, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 4808, 11, 3696, 287, 28686, 13, 11152, 7, 15763, 1343, 31051, 6, 1343, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 26672, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 11, 18801, 62, 18242, 796, 4149, 2943, 38, 27354, 292, 316, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 76, 62, 22510, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1963, 42524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 7890, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 397, 11265, 62, 7890, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18398, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 11, 4328, 2175, 62, 18242, 796, 2142, 653, 7575, 27996, 42, 7841, 7, 397, 11265, 62, 7890, 11, 18801, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3911, 62, 17618, 28, 74, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 3911, 653, 11, 15440, 62, 3911, 653, 11, 10014, 62, 3911, 653, 11, 277, 16, 62, 3911, 653, 11, 686, 66, 62, 14272, 62, 3911, 653, 11, 778, 62, 14272, 62, 3911, 653, 11, 778, 62, 4657, 796, 5660, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 2175, 62, 7890, 58, 72, 4357, 4328, 2175, 62, 18242, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 13, 33295, 7, 18224, 62, 3911, 653, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 3880, 45537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20311, 62, 18224, 737, 25843, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 89, 26675, 796, 1168, 62, 26595, 7, 20311, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 13610, 33986, 15001, 2202, 57, 26675, 7, 20311, 62, 89, 26675, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 796, 27131, 378, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 6719, 16005, 6690, 439, 37, 16, 9171, 10466, 7, 20311, 62, 79, 11, 2457, 62, 81, 11, 2457, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 69, 1050, 11, 2457, 62, 83, 1050, 11, 2457, 62, 23913, 62, 12204, 62, 14272, 796, 27131, 378, 49, 4503, 32, 9598, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12204, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 3866, 16005, 62, 22019, 303, 11, 2457, 62, 8344, 439, 62, 22019, 303, 11, 2457, 62, 23913, 62, 3866, 16005, 796, 27131, 378, 6719, 16005, 6690, 439, 26628, 303, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 18242, 11, 2457, 62, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1050, 62, 14272, 11639, 1343, 965, 7, 20311, 62, 23913, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 591, 796, 27131, 378, 7222, 831, 42, 20975, 9171, 10466, 7, 397, 11265, 62, 18242, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1073, 831, 62, 74, 20975, 11639, 1343, 965, 7, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 15440, 11, 10014, 11, 277, 16, 11, 686, 66, 62, 14272, 11, 778, 62, 14272, 11, 269, 591, 796, 5660, 17633, 7, 397, 11265, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18801, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 3866, 16005, 13, 33295, 7, 20311, 62, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 8344, 439, 13, 33295, 7, 20311, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 69, 16, 13, 33295, 7, 20311, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 12204, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 1050, 62, 14272, 13, 33295, 7, 20311, 62, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 4657, 13, 33295, 7, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 3866, 16005, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 3866, 16005, 11639, 1343, 965, 7, 615, 70, 62, 3866, 16005, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 8344, 439, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 8344, 439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 8344, 439, 11639, 1343, 965, 7, 615, 70, 62, 8344, 439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 69, 16, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 69, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 69, 16, 11639, 1343, 965, 7, 615, 70, 62, 69, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 12204, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 12204, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 12204, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 12204, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 1050, 62, 14272, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 1050, 62, 14272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 1050, 62, 14272, 11639, 1343, 965, 7, 615, 70, 62, 1050, 62, 14272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 4657, 796, 27131, 378, 26287, 9171, 1173, 7, 82, 62, 4657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 615, 70, 62, 4657, 11639, 1343, 965, 7, 615, 70, 62, 4657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29113, 7804, 11537, 628, 198 ]
1.674183
29,403
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for the Mozilla Firefox history database plugin.""" import collections import unittest from plaso.formatters import firefox as _ # pylint: disable=unused-import from plaso.lib import eventdata from plaso.lib import timelib from plaso.parsers import sqlite from plaso.parsers.sqlite_plugins import firefox from tests.parsers.sqlite_plugins import test_lib class FirefoxHistoryPluginTest(test_lib.SQLitePluginTestCase): """Tests for the Mozilla Firefox history database plugin.""" def setUp(self): """Sets up the needed objects used throughout the test.""" self._plugin = firefox.FirefoxHistoryPlugin() def testProcessPriorTo24(self): """Tests the Process function on a Firefox History database file.""" # This is probably version 23 but potentially an older version. test_file = self._GetTestFilePath([u'places.sqlite']) cache = sqlite.SQLiteCache() event_queue_consumer = self._ParseDatabaseFileWithPlugin( self._plugin, test_file, cache) event_objects = self._GetEventObjectsFromQueue(event_queue_consumer) # The places.sqlite file contains 205 events (1 page visit, # 2 x 91 bookmark records, 2 x 3 bookmark annotations, # 2 x 8 bookmark folders). # However there are three events that do not have a timestamp # so the test file will show 202 extracted events. self.assertEqual(len(event_objects), 202) # Check the first page visited event. event_object = event_objects[0] self.assertEqual(event_object.data_type, u'firefox:places:page_visited') self.assertEqual( event_object.timestamp_desc, eventdata.EventTimestamp.PAGE_VISITED) expected_timestamp = timelib.Timestamp.CopyFromString( u'2011-07-01 11:16:21.371935') self.assertEqual(event_object.timestamp, expected_timestamp) expected_url = u'http://news.google.com/' self.assertEqual(event_object.url, expected_url) expected_title = u'Google News' self.assertEqual(event_object.title, expected_title) expected_msg = ( u'{0:s} ({1:s}) [count: 1] Host: news.google.com ' u'(URL not typed directly) Transition: TYPED').format( expected_url, expected_title) expected_short = u'URL: {0:s}'.format(expected_url) self._TestGetMessageStrings(event_object, expected_msg, expected_short) # Check the first bookmark event. event_object = event_objects[1] self.assertEqual(event_object.data_type, u'firefox:places:bookmark') self.assertEqual( event_object.timestamp_desc, eventdata.EventTimestamp.ADDED_TIME) expected_timestamp = timelib.Timestamp.CopyFromString( u'2011-07-01 11:13:59.266344') self.assertEqual(event_object.timestamp, expected_timestamp) # Check the second bookmark event. event_object = event_objects[2] self.assertEqual(event_object.data_type, u'firefox:places:bookmark') self.assertEqual( event_object.timestamp_desc, eventdata.EventTimestamp.MODIFICATION_TIME) expected_timestamp = timelib.Timestamp.CopyFromString( u'2011-07-01 11:13:59.267198') self.assertEqual(event_object.timestamp, expected_timestamp) expected_url = ( u'place:folder=BOOKMARKS_MENU&folder=UNFILED_BOOKMARKS&folder=TOOLBAR&' u'sort=12&excludeQueries=1&excludeItemIfParentHasAnnotation=livemark%2F' u'feedURI&maxResults=10&queryType=1') self.assertEqual(event_object.url, expected_url) expected_title = u'Recently Bookmarked' self.assertEqual(event_object.title, expected_title) expected_msg = ( u'Bookmark URL {0:s} ({1:s}) [folder=BOOKMARKS_MENU&' u'folder=UNFILED_BOOKMARKS&folder=TOOLBAR&sort=12&excludeQueries=1&' u'excludeItemIfParentHasAnnotation=livemark%2FfeedURI&maxResults=10&' u'queryType=1] visit count 0').format( expected_title, expected_url) expected_short = ( u'Bookmarked Recently Bookmarked ' u'(place:folder=BOOKMARKS_MENU&folder=UNFILED_BO...') self._TestGetMessageStrings(event_object, expected_msg, expected_short) # Check the first bookmark annotation event. event_object = event_objects[183] self.assertEqual( event_object.data_type, u'firefox:places:bookmark_annotation') self.assertEqual( event_object.timestamp_desc, eventdata.EventTimestamp.CREATION_TIME) expected_timestamp = timelib.Timestamp.CopyFromString( u'2011-07-01 11:13:59.267146') self.assertEqual(event_object.timestamp, expected_timestamp) # Check another bookmark annotation event. event_object = event_objects[184] self.assertEqual( event_object.data_type, u'firefox:places:bookmark_annotation') self.assertEqual( event_object.timestamp_desc, eventdata.EventTimestamp.CREATION_TIME) expected_timestamp = timelib.Timestamp.CopyFromString( u'2011-07-01 11:13:59.267605') self.assertEqual(event_object.timestamp, expected_timestamp) expected_url = u'place:sort=14&type=6&maxResults=10&queryType=1' self.assertEqual(event_object.url, expected_url) expected_title = u'Recent Tags' self.assertEqual(event_object.title, expected_title) expected_msg = ( u'Bookmark Annotation: [RecentTags] to bookmark ' u'[{0:s}] ({1:s})').format( expected_title, expected_url) expected_short = u'Bookmark Annotation: Recent Tags' self._TestGetMessageStrings(event_object, expected_msg, expected_short) # Check the second last bookmark folder event. event_object = event_objects[200] self.assertEqual(event_object.data_type, u'firefox:places:bookmark_folder') self.assertEqual( event_object.timestamp_desc, eventdata.EventTimestamp.ADDED_TIME) expected_timestamp = timelib.Timestamp.CopyFromString( u'2011-03-21 10:05:01.553774') self.assertEqual(event_object.timestamp, expected_timestamp) # Check the last bookmark folder event. event_object = event_objects[201] self.assertEqual( event_object.data_type, u'firefox:places:bookmark_folder') self.assertEqual( event_object.timestamp_desc, eventdata.EventTimestamp.MODIFICATION_TIME) expected_timestamp = timelib.Timestamp.CopyFromString( u'2011-07-01 11:14:11.766851') self.assertEqual(event_object.timestamp, expected_timestamp) expected_title = u'Latest Headlines' self.assertEqual(event_object.title, expected_title) expected_msg = expected_title expected_short = expected_title self._TestGetMessageStrings(event_object, expected_msg, expected_short) def testProcessVersion25(self): """Tests the Process function on a Firefox History database file v 25.""" test_file = self._GetTestFilePath([u'places_new.sqlite']) cache = sqlite.SQLiteCache() event_queue_consumer = self._ParseDatabaseFileWithPlugin( self._plugin, test_file, cache) event_objects = self._GetEventObjectsFromQueue(event_queue_consumer) # The places.sqlite file contains 84 events: # 34 page visits. # 28 bookmarks # 14 bookmark folders # 8 annotations self.assertEqual(len(event_objects), 84) counter = collections.Counter() for event_object in event_objects: counter[event_object.data_type] += 1 self.assertEqual(counter[u'firefox:places:bookmark'], 28) self.assertEqual(counter[u'firefox:places:page_visited'], 34) self.assertEqual(counter[u'firefox:places:bookmark_folder'], 14) self.assertEqual(counter[u'firefox:places:bookmark_annotation'], 8) random_event = event_objects[10] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-10-30 21:57:11.281942') self.assertEqual(random_event.timestamp, expected_timestamp) expected_short = u'URL: http://code.google.com/p/plaso' expected_msg = ( u'http://code.google.com/p/plaso [count: 1] Host: code.google.com ' u'(URL not typed directly) Transition: TYPED') self._TestGetMessageStrings(random_event, expected_msg, expected_short) class FirefoxDownloadsPluginTest(test_lib.SQLitePluginTestCase): """Tests for the Mozilla Firefox downloads database plugin.""" def setUp(self): """Sets up the needed objects used throughout the test.""" self._plugin = firefox.FirefoxDownloadsPlugin() def testProcessVersion25(self): """Tests the Process function on a Firefox Downloads database file.""" test_file = self._GetTestFilePath([u'downloads.sqlite']) cache = sqlite.SQLiteCache() event_queue_consumer = self._ParseDatabaseFileWithPlugin( self._plugin, test_file, cache) event_objects = self._GetEventObjectsFromQueue(event_queue_consumer) # The downloads.sqlite file contains 2 events (1 download). self.assertEqual(len(event_objects), 2) # Check the first page visited event. event_object = event_objects[0] self.assertEqual(event_object.data_type, u'firefox:downloads:download') self.assertEqual( event_object.timestamp_desc, eventdata.EventTimestamp.START_TIME) expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-07-18 18:59:59.312000') self.assertEqual(event_object.timestamp, expected_timestamp) expected_url = ( u'https://plaso.googlecode.com/files/' u'plaso-static-1.0.1-win32-vs2008.zip') self.assertEqual(event_object.url, expected_url) expected_full_path = u'file:///D:/plaso-static-1.0.1-win32-vs2008.zip' self.assertEqual(event_object.full_path, expected_full_path) self.assertEqual(event_object.received_bytes, 15974599) self.assertEqual(event_object.total_bytes, 15974599) if __name__ == '__main__': unittest.main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 51, 3558, 329, 262, 29258, 16802, 2106, 6831, 13877, 526, 15931, 198, 198, 11748, 17268, 198, 11748, 555, 715, 395, 198, 198, 6738, 458, 292, 78, 13, 18982, 1010, 1330, 2046, 12792, 355, 4808, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 11748, 198, 6738, 458, 292, 78, 13, 8019, 1330, 1785, 7890, 198, 6738, 458, 292, 78, 13, 8019, 1330, 4628, 417, 571, 198, 6738, 458, 292, 78, 13, 79, 945, 364, 1330, 44161, 578, 198, 6738, 458, 292, 78, 13, 79, 945, 364, 13, 25410, 578, 62, 37390, 1330, 2046, 12792, 198, 198, 6738, 5254, 13, 79, 945, 364, 13, 25410, 578, 62, 37390, 1330, 1332, 62, 8019, 628, 198, 4871, 16802, 18122, 37233, 14402, 7, 9288, 62, 8019, 13, 17861, 578, 37233, 14402, 20448, 2599, 198, 220, 37227, 51, 3558, 329, 262, 29258, 16802, 2106, 6831, 13877, 526, 15931, 628, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 37227, 50, 1039, 510, 262, 2622, 5563, 973, 3690, 262, 1332, 526, 15931, 198, 220, 220, 220, 2116, 13557, 33803, 796, 2046, 12792, 13, 13543, 12792, 18122, 37233, 3419, 628, 220, 825, 1332, 18709, 22442, 2514, 1731, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 10854, 2163, 319, 257, 16802, 7443, 6831, 2393, 526, 15931, 198, 220, 220, 220, 1303, 770, 318, 2192, 2196, 2242, 475, 6196, 281, 4697, 2196, 13, 198, 220, 220, 220, 1332, 62, 7753, 796, 2116, 13557, 3855, 14402, 8979, 15235, 26933, 84, 6, 23625, 13, 25410, 578, 6, 12962, 198, 220, 220, 220, 12940, 796, 44161, 578, 13, 17861, 578, 30562, 3419, 198, 220, 220, 220, 1785, 62, 36560, 62, 49827, 796, 2116, 13557, 10044, 325, 38105, 8979, 3152, 37233, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 33803, 11, 1332, 62, 7753, 11, 12940, 8, 198, 220, 220, 220, 1785, 62, 48205, 796, 2116, 13557, 3855, 9237, 10267, 82, 4863, 34991, 7, 15596, 62, 36560, 62, 49827, 8, 628, 220, 220, 220, 1303, 383, 4113, 13, 25410, 578, 2393, 4909, 22538, 2995, 357, 16, 2443, 3187, 11, 198, 220, 220, 220, 1303, 362, 2124, 10495, 44007, 4406, 11, 362, 2124, 513, 44007, 37647, 11, 198, 220, 220, 220, 1303, 362, 2124, 807, 44007, 24512, 737, 198, 220, 220, 220, 1303, 2102, 612, 389, 1115, 2995, 326, 466, 407, 423, 257, 41033, 198, 220, 220, 220, 1303, 523, 262, 1332, 2393, 481, 905, 22131, 21242, 2995, 13, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 15596, 62, 48205, 828, 22131, 8, 628, 220, 220, 220, 1303, 6822, 262, 717, 2443, 8672, 1785, 13, 198, 220, 220, 220, 1785, 62, 15252, 796, 1785, 62, 48205, 58, 15, 60, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7890, 62, 4906, 11, 334, 6, 6495, 12792, 25, 23625, 25, 7700, 62, 4703, 863, 11537, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 16514, 27823, 62, 20147, 11, 1785, 7890, 13, 9237, 14967, 27823, 13, 4537, 8264, 62, 29817, 22061, 8, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 9804, 12, 2998, 12, 486, 1367, 25, 1433, 25, 2481, 13, 2718, 1129, 2327, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 628, 220, 220, 220, 2938, 62, 6371, 796, 334, 6, 4023, 1378, 10827, 13, 13297, 13, 785, 14, 6, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 6371, 11, 2938, 62, 6371, 8, 628, 220, 220, 220, 2938, 62, 7839, 796, 334, 6, 11708, 3000, 6, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7839, 11, 2938, 62, 7839, 8, 628, 220, 220, 220, 2938, 62, 19662, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 90, 15, 25, 82, 92, 37913, 16, 25, 82, 30072, 685, 9127, 25, 352, 60, 14504, 25, 1705, 13, 13297, 13, 785, 705, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 7, 21886, 407, 25683, 3264, 8, 40658, 25, 24412, 47, 1961, 27691, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6371, 11, 2938, 62, 7839, 8, 198, 220, 220, 220, 2938, 62, 19509, 796, 334, 6, 21886, 25, 1391, 15, 25, 82, 92, 4458, 18982, 7, 40319, 62, 6371, 8, 628, 220, 220, 220, 2116, 13557, 14402, 3855, 12837, 13290, 654, 7, 15596, 62, 15252, 11, 2938, 62, 19662, 11, 2938, 62, 19509, 8, 628, 220, 220, 220, 1303, 6822, 262, 717, 44007, 1785, 13, 198, 220, 220, 220, 1785, 62, 15252, 796, 1785, 62, 48205, 58, 16, 60, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7890, 62, 4906, 11, 334, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 11537, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 16514, 27823, 62, 20147, 11, 1785, 7890, 13, 9237, 14967, 27823, 13, 29266, 1961, 62, 34694, 8, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 9804, 12, 2998, 12, 486, 1367, 25, 1485, 25, 3270, 13, 2075, 5066, 2598, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 628, 220, 220, 220, 1303, 6822, 262, 1218, 44007, 1785, 13, 198, 220, 220, 220, 1785, 62, 15252, 796, 1785, 62, 48205, 58, 17, 60, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7890, 62, 4906, 11, 334, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 11537, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 16514, 27823, 62, 20147, 11, 1785, 7890, 13, 9237, 14967, 27823, 13, 33365, 30643, 6234, 62, 34694, 8, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 9804, 12, 2998, 12, 486, 1367, 25, 1485, 25, 3270, 13, 25674, 22337, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 628, 220, 220, 220, 2938, 62, 6371, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 5372, 25, 43551, 28, 39453, 44, 14175, 50, 62, 49275, 52, 5, 43551, 28, 4944, 46700, 1961, 62, 39453, 44, 14175, 50, 5, 43551, 28, 10468, 3535, 33, 1503, 5, 6, 198, 220, 220, 220, 220, 220, 220, 220, 334, 338, 419, 28, 1065, 5, 1069, 9152, 4507, 10640, 28, 16, 5, 1069, 9152, 7449, 1532, 24546, 19242, 2025, 38983, 28, 12583, 4102, 4, 17, 37, 6, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 12363, 47269, 5, 9806, 25468, 28, 940, 5, 22766, 6030, 28, 16, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 6371, 11, 2938, 62, 6371, 8, 628, 220, 220, 220, 2938, 62, 7839, 796, 334, 6, 24661, 4897, 23505, 6, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7839, 11, 2938, 62, 7839, 8, 628, 220, 220, 220, 2938, 62, 19662, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 10482, 4102, 10289, 1391, 15, 25, 82, 92, 37913, 16, 25, 82, 30072, 685, 43551, 28, 39453, 44, 14175, 50, 62, 49275, 52, 5, 6, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 43551, 28, 4944, 46700, 1961, 62, 39453, 44, 14175, 50, 5, 43551, 28, 10468, 3535, 33, 1503, 5, 30619, 28, 1065, 5, 1069, 9152, 4507, 10640, 28, 16, 5, 6, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 1069, 9152, 7449, 1532, 24546, 19242, 2025, 38983, 28, 12583, 4102, 4, 17, 37, 12363, 47269, 5, 9806, 25468, 28, 940, 5, 6, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 22766, 6030, 28, 16, 60, 3187, 954, 657, 27691, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 7839, 11, 2938, 62, 6371, 8, 198, 220, 220, 220, 2938, 62, 19509, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 10482, 23505, 23413, 4897, 23505, 705, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 7, 5372, 25, 43551, 28, 39453, 44, 14175, 50, 62, 49275, 52, 5, 43551, 28, 4944, 46700, 1961, 62, 8202, 986, 11537, 628, 220, 220, 220, 2116, 13557, 14402, 3855, 12837, 13290, 654, 7, 15596, 62, 15252, 11, 2938, 62, 19662, 11, 2938, 62, 19509, 8, 628, 220, 220, 220, 1303, 6822, 262, 717, 44007, 23025, 1785, 13, 198, 220, 220, 220, 1785, 62, 15252, 796, 1785, 62, 48205, 58, 24839, 60, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 7890, 62, 4906, 11, 334, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 62, 1236, 14221, 11537, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 16514, 27823, 62, 20147, 11, 1785, 7890, 13, 9237, 14967, 27823, 13, 43387, 6234, 62, 34694, 8, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 9804, 12, 2998, 12, 486, 1367, 25, 1485, 25, 3270, 13, 25674, 20964, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 628, 220, 220, 220, 1303, 6822, 1194, 44007, 23025, 1785, 13, 198, 220, 220, 220, 1785, 62, 15252, 796, 1785, 62, 48205, 58, 22883, 60, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 7890, 62, 4906, 11, 334, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 62, 1236, 14221, 11537, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 16514, 27823, 62, 20147, 11, 1785, 7890, 13, 9237, 14967, 27823, 13, 43387, 6234, 62, 34694, 8, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 9804, 12, 2998, 12, 486, 1367, 25, 1485, 25, 3270, 13, 25674, 32417, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 628, 220, 220, 220, 2938, 62, 6371, 796, 334, 6, 5372, 25, 30619, 28, 1415, 5, 4906, 28, 21, 5, 9806, 25468, 28, 940, 5, 22766, 6030, 28, 16, 6, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 6371, 11, 2938, 62, 6371, 8, 628, 220, 220, 220, 2938, 62, 7839, 796, 334, 6, 26446, 44789, 6, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7839, 11, 2938, 62, 7839, 8, 628, 220, 220, 220, 2938, 62, 19662, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 10482, 4102, 1052, 38983, 25, 685, 26446, 36142, 60, 284, 44007, 705, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 58, 90, 15, 25, 82, 92, 60, 37913, 16, 25, 82, 30072, 27691, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 7839, 11, 2938, 62, 6371, 8, 198, 220, 220, 220, 2938, 62, 19509, 796, 334, 6, 10482, 4102, 1052, 38983, 25, 22926, 44789, 6, 198, 220, 220, 220, 2116, 13557, 14402, 3855, 12837, 13290, 654, 7, 15596, 62, 15252, 11, 2938, 62, 19662, 11, 2938, 62, 19509, 8, 628, 220, 220, 220, 1303, 6822, 262, 1218, 938, 44007, 9483, 1785, 13, 198, 220, 220, 220, 1785, 62, 15252, 796, 1785, 62, 48205, 58, 2167, 60, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7890, 62, 4906, 11, 334, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 62, 43551, 11537, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 16514, 27823, 62, 20147, 11, 1785, 7890, 13, 9237, 14967, 27823, 13, 29266, 1961, 62, 34694, 8, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 9804, 12, 3070, 12, 2481, 838, 25, 2713, 25, 486, 13, 2816, 2718, 4524, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 198, 220, 220, 220, 1303, 6822, 262, 938, 44007, 9483, 1785, 13, 198, 220, 220, 220, 1785, 62, 15252, 796, 1785, 62, 48205, 58, 1264, 60, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 7890, 62, 4906, 11, 334, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 62, 43551, 11537, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 16514, 27823, 62, 20147, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 7890, 13, 9237, 14967, 27823, 13, 33365, 30643, 6234, 62, 34694, 8, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 9804, 12, 2998, 12, 486, 1367, 25, 1415, 25, 1157, 13, 22, 35809, 4349, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 628, 220, 220, 220, 2938, 62, 7839, 796, 334, 6, 39478, 7123, 6615, 6, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7839, 11, 2938, 62, 7839, 8, 628, 220, 220, 220, 2938, 62, 19662, 796, 2938, 62, 7839, 198, 220, 220, 220, 2938, 62, 19509, 796, 2938, 62, 7839, 198, 220, 220, 220, 2116, 13557, 14402, 3855, 12837, 13290, 654, 7, 15596, 62, 15252, 11, 2938, 62, 19662, 11, 2938, 62, 19509, 8, 628, 220, 825, 1332, 18709, 14815, 1495, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 10854, 2163, 319, 257, 16802, 7443, 6831, 2393, 410, 1679, 526, 15931, 198, 220, 220, 220, 1332, 62, 7753, 796, 2116, 13557, 3855, 14402, 8979, 15235, 26933, 84, 6, 23625, 62, 3605, 13, 25410, 578, 6, 12962, 198, 220, 220, 220, 12940, 796, 44161, 578, 13, 17861, 578, 30562, 3419, 198, 220, 220, 220, 1785, 62, 36560, 62, 49827, 796, 2116, 13557, 10044, 325, 38105, 8979, 3152, 37233, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 33803, 11, 1332, 62, 7753, 11, 12940, 8, 198, 220, 220, 220, 1785, 62, 48205, 796, 2116, 13557, 3855, 9237, 10267, 82, 4863, 34991, 7, 15596, 62, 36560, 62, 49827, 8, 628, 220, 220, 220, 1303, 383, 4113, 13, 25410, 578, 2393, 4909, 9508, 2995, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 4974, 2443, 11864, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2579, 1492, 14306, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1478, 44007, 24512, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 807, 37647, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 15596, 62, 48205, 828, 9508, 8, 198, 220, 220, 220, 3753, 796, 17268, 13, 31694, 3419, 198, 220, 220, 220, 329, 1785, 62, 15252, 287, 1785, 62, 48205, 25, 198, 220, 220, 220, 220, 220, 3753, 58, 15596, 62, 15252, 13, 7890, 62, 4906, 60, 15853, 352, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 24588, 58, 84, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 6, 4357, 2579, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 24588, 58, 84, 6, 6495, 12792, 25, 23625, 25, 7700, 62, 4703, 863, 6, 4357, 4974, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 24588, 58, 84, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 62, 43551, 6, 4357, 1478, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 24588, 58, 84, 6, 6495, 12792, 25, 23625, 25, 2070, 4102, 62, 1236, 14221, 6, 4357, 807, 8, 628, 220, 220, 220, 4738, 62, 15596, 796, 1785, 62, 48205, 58, 940, 60, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 6390, 12, 940, 12, 1270, 2310, 25, 3553, 25, 1157, 13, 2078, 1129, 3682, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 25120, 62, 15596, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 628, 220, 220, 220, 2938, 62, 19509, 796, 334, 6, 21886, 25, 2638, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 489, 292, 78, 6, 198, 220, 220, 220, 2938, 62, 19662, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 4023, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 489, 292, 78, 685, 9127, 25, 352, 60, 14504, 25, 2438, 13, 13297, 13, 785, 705, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 7, 21886, 407, 25683, 3264, 8, 40658, 25, 24412, 47, 1961, 11537, 628, 220, 220, 220, 2116, 13557, 14402, 3855, 12837, 13290, 654, 7, 25120, 62, 15596, 11, 2938, 62, 19662, 11, 2938, 62, 19509, 8, 628, 198, 4871, 16802, 10002, 82, 37233, 14402, 7, 9288, 62, 8019, 13, 17861, 578, 37233, 14402, 20448, 2599, 198, 220, 37227, 51, 3558, 329, 262, 29258, 16802, 21333, 6831, 13877, 526, 15931, 628, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 37227, 50, 1039, 510, 262, 2622, 5563, 973, 3690, 262, 1332, 526, 15931, 198, 220, 220, 220, 2116, 13557, 33803, 796, 2046, 12792, 13, 13543, 12792, 10002, 82, 37233, 3419, 628, 220, 825, 1332, 18709, 14815, 1495, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 10854, 2163, 319, 257, 16802, 50093, 6831, 2393, 526, 15931, 198, 220, 220, 220, 1332, 62, 7753, 796, 2116, 13557, 3855, 14402, 8979, 15235, 26933, 84, 1549, 593, 46030, 13, 25410, 578, 6, 12962, 198, 220, 220, 220, 12940, 796, 44161, 578, 13, 17861, 578, 30562, 3419, 198, 220, 220, 220, 1785, 62, 36560, 62, 49827, 796, 2116, 13557, 10044, 325, 38105, 8979, 3152, 37233, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 33803, 11, 1332, 62, 7753, 11, 12940, 8, 198, 220, 220, 220, 1785, 62, 48205, 796, 2116, 13557, 3855, 9237, 10267, 82, 4863, 34991, 7, 15596, 62, 36560, 62, 49827, 8, 628, 220, 220, 220, 1303, 383, 21333, 13, 25410, 578, 2393, 4909, 362, 2995, 357, 16, 4321, 737, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 15596, 62, 48205, 828, 362, 8, 628, 220, 220, 220, 1303, 6822, 262, 717, 2443, 8672, 1785, 13, 198, 220, 220, 220, 1785, 62, 15252, 796, 1785, 62, 48205, 58, 15, 60, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 7890, 62, 4906, 11, 334, 6, 6495, 12792, 25, 15002, 82, 25, 15002, 11537, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 15252, 13, 16514, 27823, 62, 20147, 11, 1785, 7890, 13, 9237, 14967, 27823, 13, 2257, 7227, 62, 34694, 8, 628, 220, 220, 220, 2938, 62, 16514, 27823, 796, 4628, 417, 571, 13, 14967, 27823, 13, 29881, 4863, 10100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 6390, 12, 2998, 12, 1507, 1248, 25, 3270, 25, 3270, 13, 27970, 830, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 16514, 27823, 11, 2938, 62, 16514, 27823, 8, 628, 220, 220, 220, 2938, 62, 6371, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 5450, 1378, 489, 292, 78, 13, 13297, 8189, 13, 785, 14, 16624, 14, 6, 198, 220, 220, 220, 220, 220, 220, 220, 334, 6, 489, 292, 78, 12, 12708, 12, 16, 13, 15, 13, 16, 12, 5404, 2624, 12, 14259, 11528, 13, 13344, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 6371, 11, 2938, 62, 6371, 8, 628, 220, 220, 220, 2938, 62, 12853, 62, 6978, 796, 334, 6, 7753, 1378, 14, 35, 14079, 489, 292, 78, 12, 12708, 12, 16, 13, 15, 13, 16, 12, 5404, 2624, 12, 14259, 11528, 13, 13344, 6, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 12853, 62, 6978, 11, 2938, 62, 12853, 62, 6978, 8, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 47844, 62, 33661, 11, 1315, 5607, 2231, 2079, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 15596, 62, 15252, 13, 23350, 62, 33661, 11, 1315, 5607, 2231, 2079, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.664297
3,658
"""Embedded Structures. Various structure can be embedded in the body, without an operation header. Saved Chapters: A saved chapter is a header structure embedded in the body. There is no command identifier, so the command type is actually the first field of the header - length/offset. Applying the `subheader` struct at this point will parse the embedded header. This section is a work in progress. """ from construct import (Array, Computed, Embedded, GreedyBytes, If, Int16ul, Int32ul, Padding, Peek, String, Struct, Switch) from mgz import subheader # pylint: disable=invalid-name # Embedded chat message chat = Struct( "subtype"/Computed("chat"), "data"/Struct( "length"/Computed(lambda ctx: ctx._._._.op), "text"/String(lambda ctx: ctx._._._.op, padchar=b'\x00', trimdir='right', encoding='latin1'), ) ) # Embedded header (aka saved chapter) header = Struct( "subtype"/Computed("savedchapter"), "data"/Struct( "header_length"/Computed(lambda ctx: ctx._._._.op - ctx._._._.start), Embedded(subheader) ) ) # Unknown embedded structure - looks like a partial action? other = Struct( "subtype"/Computed("unknown"), "data"/Struct( Padding(4), "num_ints"/Int32ul, If(lambda ctx: ctx.num_ints < 0xff, Array( lambda ctx: ctx.num_ints, Int32ul )), Padding(12) ) ) # Anything we don't recognize - just consume the remainder default = Struct( "subtype"/Computed("default"), GreedyBytes ) # Embedded structures identified by first byte (for now) embedded = "embedded"/Struct( "marker"/Peek(Int16ul), Embedded("data"/Switch(lambda ctx: ctx.marker, { 0: header, 9024: chat, 65535: other }, default=default)) )
[ 37811, 31567, 47238, 32112, 942, 13, 198, 198, 40009, 4645, 460, 307, 14553, 287, 262, 1767, 11, 1231, 281, 4905, 13639, 13, 198, 198, 50, 9586, 42448, 25, 198, 198, 32, 7448, 6843, 318, 257, 13639, 4645, 14553, 287, 262, 1767, 13, 198, 1858, 318, 645, 3141, 27421, 11, 523, 262, 3141, 2099, 318, 1682, 198, 1169, 717, 2214, 286, 262, 13639, 532, 4129, 14, 28968, 13, 2034, 3157, 262, 4600, 7266, 25677, 63, 198, 7249, 379, 428, 966, 481, 21136, 262, 14553, 13639, 13, 628, 198, 1212, 2665, 318, 257, 670, 287, 4371, 13, 198, 37811, 198, 198, 6738, 5678, 1330, 357, 19182, 11, 955, 17128, 11, 13302, 47238, 11, 11955, 4716, 45992, 11, 1002, 11, 2558, 1433, 377, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2558, 2624, 377, 11, 350, 26872, 11, 2631, 988, 11, 10903, 11, 32112, 11, 14645, 8, 198, 198, 6738, 10527, 89, 1330, 850, 25677, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 198, 2, 13302, 47238, 8537, 3275, 198, 17006, 796, 32112, 7, 198, 220, 220, 220, 366, 7266, 4906, 1, 14, 5377, 17128, 7203, 17006, 12340, 198, 220, 220, 220, 366, 7890, 1, 14, 44909, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13664, 1, 14, 5377, 17128, 7, 50033, 269, 17602, 25, 269, 17602, 13557, 13557, 13557, 13, 404, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1, 14, 10100, 7, 50033, 269, 17602, 25, 269, 17602, 13557, 13557, 13557, 13, 404, 11, 14841, 10641, 28, 65, 6, 59, 87, 405, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15797, 15908, 11639, 3506, 3256, 21004, 11639, 75, 10680, 16, 33809, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 2, 13302, 47238, 13639, 357, 8130, 7448, 6843, 8, 198, 25677, 796, 32112, 7, 198, 220, 220, 220, 366, 7266, 4906, 1, 14, 5377, 17128, 7203, 82, 9586, 43582, 12340, 198, 220, 220, 220, 366, 7890, 1, 14, 44909, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25677, 62, 13664, 1, 14, 5377, 17128, 7, 50033, 269, 17602, 25, 269, 17602, 13557, 13557, 13557, 13, 404, 532, 269, 17602, 13557, 13557, 13557, 13, 9688, 828, 198, 220, 220, 220, 220, 220, 220, 220, 13302, 47238, 7, 7266, 25677, 8, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 2, 16185, 14553, 4645, 532, 3073, 588, 257, 13027, 2223, 30, 198, 847, 796, 32112, 7, 198, 220, 220, 220, 366, 7266, 4906, 1, 14, 5377, 17128, 7203, 34680, 12340, 198, 220, 220, 220, 366, 7890, 1, 14, 44909, 7, 198, 220, 220, 220, 220, 220, 220, 220, 350, 26872, 7, 19, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 29503, 1, 14, 5317, 2624, 377, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 7, 50033, 269, 17602, 25, 269, 17602, 13, 22510, 62, 29503, 1279, 657, 47596, 11, 15690, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 269, 17602, 25, 269, 17602, 13, 22510, 62, 29503, 11, 2558, 2624, 377, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 828, 198, 220, 220, 220, 220, 220, 220, 220, 350, 26872, 7, 1065, 8, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 2, 21035, 356, 836, 470, 7564, 532, 655, 15000, 262, 17675, 198, 12286, 796, 32112, 7, 198, 220, 220, 220, 366, 7266, 4906, 1, 14, 5377, 17128, 7203, 12286, 12340, 198, 220, 220, 220, 11955, 4716, 45992, 198, 8, 628, 198, 2, 13302, 47238, 8573, 5174, 416, 717, 18022, 357, 1640, 783, 8, 198, 20521, 9395, 796, 366, 20521, 9395, 1, 14, 44909, 7, 198, 220, 220, 220, 366, 4102, 263, 1, 14, 6435, 988, 7, 5317, 1433, 377, 828, 198, 220, 220, 220, 13302, 47238, 7203, 7890, 1, 14, 38978, 7, 50033, 269, 17602, 25, 269, 17602, 13, 4102, 263, 11, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 657, 25, 13639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4101, 1731, 25, 8537, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45021, 2327, 25, 584, 198, 220, 220, 220, 8964, 4277, 28, 12286, 4008, 198, 8, 198 ]
2.508242
728
#p for row in range(13): for col in range(6): if (col==0 or row==0 and col!=5) or (row==1 and col==5)or (row==2 and col==5)or (row==3 and col==5)or (row==4 and col==5) or (row==5 and col!=5):#p print("*",end=" ") else: print(" ",end=" ") print()
[ 2, 79, 201, 198, 1640, 5752, 287, 2837, 7, 1485, 2599, 201, 198, 220, 220, 220, 329, 951, 287, 2837, 7, 21, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 4033, 855, 15, 393, 5752, 855, 15, 290, 951, 0, 28, 20, 8, 393, 357, 808, 855, 16, 290, 951, 855, 20, 8, 273, 357, 808, 855, 17, 290, 951, 855, 20, 8, 273, 357, 808, 855, 18, 290, 951, 855, 20, 8, 273, 357, 808, 855, 19, 290, 951, 855, 20, 8, 393, 357, 808, 855, 20, 290, 951, 0, 28, 20, 2599, 2, 79, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9, 1600, 437, 2625, 366, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33172, 437, 2625, 366, 8, 201, 198, 220, 220, 220, 3601, 3419, 201, 198 ]
1.875776
161
from mkdocs.config import config_options from mkdocs.plugins import BasePlugin from pdf_with_js.printer import Printer import random
[ 201, 198, 6738, 33480, 31628, 13, 11250, 1330, 4566, 62, 25811, 201, 198, 6738, 33480, 31628, 13, 37390, 1330, 7308, 37233, 201, 198, 201, 198, 6738, 37124, 62, 4480, 62, 8457, 13, 1050, 3849, 1330, 1736, 3849, 201, 198, 11748, 4738, 201, 198 ]
3.27907
43
from ..algorithms.classify import trained_model
[ 6738, 11485, 282, 7727, 907, 13, 4871, 1958, 1330, 8776, 62, 19849, 628, 628, 628 ]
3.533333
15
''' information masking section ''' import logging import timeit from . import encrypt_the_info from . import null_the_info def masking_method_selection(start_dataframe, mask_col, mask_method, save_to_file, masked_file, logger): ''' Basic check that all input is properly provided and filtering through the various options if no error occurs. Logging and timer handled here as well. Arguments: start_dataframe: the dataframe to mask mask_col(list): list of column numbers for the attributes to mask mask_method(str): the way the attributes should be masked save_to_file(bool): true to save the dataframe to temporary file masked_file(str): the file name for the output file logger: custom logging function Returns: dataframe with masked properties ''' total_mask_time_start = timeit.default_timer() logger.info('running masking method : ' + str(mask_method) + ' on columns : ' + str(mask_col)) logger.info('dataframe before masking : ' + str(start_dataframe.shape)) # should be a list with selection in the future if mask_method == 'encrypt': start_dataframe = encrypt_the_info.encrypt_the_proper_columns( start_dataframe, mask_col) elif mask_method == 'replace': start_dataframe = null_the_info.null_the_proper_columns( start_dataframe, mask_col) else: logger.info('improper masking method provided : '+str(mask_method)) return False # logging the outcome logger.info('dataframe after masking : '+str(start_dataframe.shape)) # saving to file if that option was set to True if save_to_file: start_dataframe.to_csv(masked_file, index=False, header=False) total_mask_time_stop = timeit.default_timer() # logging the excecution time logger.info(" Total masking time is:" + str(total_mask_time_stop-total_mask_time_start)) return start_dataframe
[ 7061, 6, 198, 17018, 9335, 278, 2665, 198, 7061, 6, 198, 11748, 18931, 198, 11748, 640, 270, 198, 6738, 764, 1330, 34117, 62, 1169, 62, 10951, 198, 6738, 764, 1330, 9242, 62, 1169, 62, 10951, 628, 198, 4299, 9335, 278, 62, 24396, 62, 49283, 7, 9688, 62, 7890, 14535, 11, 9335, 62, 4033, 11, 9335, 62, 24396, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 11, 29229, 62, 7753, 11, 49706, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 14392, 2198, 326, 477, 5128, 318, 6105, 2810, 290, 25431, 832, 262, 198, 220, 220, 220, 2972, 3689, 611, 645, 4049, 8833, 13, 5972, 2667, 290, 19781, 12118, 994, 355, 880, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 7890, 14535, 25, 262, 1366, 14535, 284, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 4033, 7, 4868, 2599, 1351, 286, 5721, 3146, 329, 262, 12608, 284, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 24396, 7, 2536, 2599, 262, 835, 262, 12608, 815, 307, 29229, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 30388, 2599, 2081, 284, 3613, 262, 1366, 14535, 284, 8584, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 29229, 62, 7753, 7, 2536, 2599, 262, 2393, 1438, 329, 262, 5072, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 25, 2183, 18931, 2163, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 351, 29229, 6608, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2472, 62, 27932, 62, 2435, 62, 9688, 796, 640, 270, 13, 12286, 62, 45016, 3419, 628, 220, 220, 220, 49706, 13, 10951, 10786, 20270, 9335, 278, 2446, 1058, 705, 1343, 965, 7, 27932, 62, 24396, 8, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 319, 15180, 1058, 705, 1343, 965, 7, 27932, 62, 4033, 4008, 198, 220, 220, 220, 49706, 13, 10951, 10786, 7890, 14535, 878, 9335, 278, 1058, 705, 1343, 965, 7, 9688, 62, 7890, 14535, 13, 43358, 4008, 198, 220, 220, 220, 1303, 815, 307, 257, 1351, 351, 6356, 287, 262, 2003, 198, 220, 220, 220, 611, 9335, 62, 24396, 6624, 705, 12685, 6012, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 7890, 14535, 796, 34117, 62, 1169, 62, 10951, 13, 12685, 6012, 62, 1169, 62, 1676, 525, 62, 28665, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 7890, 14535, 11, 9335, 62, 4033, 8, 198, 220, 220, 220, 1288, 361, 9335, 62, 24396, 6624, 705, 33491, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 7890, 14535, 796, 9242, 62, 1169, 62, 10951, 13, 8423, 62, 1169, 62, 1676, 525, 62, 28665, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 7890, 14535, 11, 9335, 62, 4033, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 32077, 525, 9335, 278, 2446, 2810, 1058, 705, 10, 2536, 7, 27932, 62, 24396, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1303, 18931, 262, 8055, 198, 220, 220, 220, 49706, 13, 10951, 10786, 7890, 14535, 706, 9335, 278, 1058, 705, 10, 2536, 7, 9688, 62, 7890, 14535, 13, 43358, 4008, 198, 220, 220, 220, 1303, 8914, 284, 2393, 611, 326, 3038, 373, 900, 284, 6407, 198, 220, 220, 220, 611, 3613, 62, 1462, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 7890, 14535, 13, 1462, 62, 40664, 7, 27932, 276, 62, 7753, 11, 6376, 28, 25101, 11, 13639, 28, 25101, 8, 198, 220, 220, 220, 2472, 62, 27932, 62, 2435, 62, 11338, 796, 640, 270, 13, 12286, 62, 45016, 3419, 198, 220, 220, 220, 1303, 18931, 262, 43748, 66, 1009, 640, 198, 220, 220, 220, 49706, 13, 10951, 7203, 7472, 9335, 278, 640, 318, 11097, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 23350, 62, 27932, 62, 2435, 62, 11338, 12, 23350, 62, 27932, 62, 2435, 62, 9688, 4008, 628, 220, 220, 220, 1441, 923, 62, 7890, 14535 ]
2.681758
751
__author__ = 'mason' from domain_orderFulfillment import * from timer import DURATION from state import state import numpy as np ''' Several objects to choose from, need to consider weights Same as problem 4 but only 1 robot ''' DURATION.TIME = { 'lookupDB': GetCostOfLookup, 'wrap': GetCostOfWrap, 'pickup': GetCostOfPickup, 'putdown': GetCostOfPutdown, 'loadMachine': GetCostOfLoad, 'moveRobot': GetCostOfMove, 'acquireRobot': 1, 'freeRobot': 1, 'wait': 5 } DURATION.COUNTER = { 'lookupDB': GetCostOfLookup, 'wrap': GetCostOfWrap, 'pickup': GetCostOfPickup, 'putdown': GetCostOfPutdown, 'loadMachine': GetCostOfLoad, 'moveRobot': GetCostOfMove, 'acquireRobot': 1, 'freeRobot': 1, 'wait': 5 } rv.LOCATIONS = [1, 2, 3, 4, 5, 6, 7] rv.FACTORY1 = frozenset({1, 2, 3, 4, 6, 7, 5}) rv.FACTORY_UNION = rv.FACTORY1 rv.SHIPPING_DOC = {rv.FACTORY1: 4} rv.GROUND_EDGES = {1: [2], 2: [1, 3], 3: [2, 4], 4: [3, 5], 5: [4, 6], 6: [5, 7], 7: [6]} rv.GROUND_WEIGHTS = {(1,2): 1, (2,3): 1, (3,4): 5, (4,5): 8, (5,6): 5, (6,7): 1} rv.ROBOTS = {'r1': rv.FACTORY1} rv.ROBOT_CAPACITY = {'r1': 10} rv.MACHINES = {'m1': rv.FACTORY1} rv.PALLETS = {'p1'} tasks = { 1: [['orderStart', ['type1', 'type2']]], 2: [['orderStart', ['type2', 'type1']]], } eventsEnv = { }
[ 834, 9800, 834, 796, 705, 76, 888, 6, 198, 198, 6738, 7386, 62, 2875, 37, 4754, 359, 434, 1330, 1635, 198, 6738, 19781, 1330, 360, 4261, 6234, 198, 6738, 1181, 1330, 1181, 198, 11748, 299, 32152, 355, 45941, 198, 198, 7061, 6, 198, 14945, 5563, 284, 3853, 422, 11, 761, 284, 2074, 19590, 198, 198, 30556, 355, 1917, 604, 475, 691, 352, 9379, 198, 7061, 6, 628, 628, 628, 628, 198, 35, 4261, 6234, 13, 34694, 796, 1391, 198, 220, 220, 220, 705, 5460, 929, 11012, 10354, 3497, 13729, 5189, 8567, 929, 11, 198, 220, 220, 220, 705, 37150, 10354, 3497, 13729, 5189, 54, 2416, 11, 198, 220, 220, 220, 705, 27729, 929, 10354, 3497, 13729, 5189, 31686, 929, 11, 198, 220, 220, 220, 705, 1996, 2902, 10354, 3497, 13729, 5189, 11588, 2902, 11, 198, 220, 220, 220, 705, 2220, 37573, 10354, 3497, 13729, 5189, 8912, 11, 198, 220, 220, 220, 705, 21084, 14350, 313, 10354, 3497, 13729, 5189, 21774, 11, 198, 220, 220, 220, 705, 330, 29782, 14350, 313, 10354, 352, 11, 198, 220, 220, 220, 705, 5787, 14350, 313, 10354, 352, 11, 198, 220, 220, 220, 705, 17077, 10354, 642, 198, 1782, 198, 198, 35, 4261, 6234, 13, 34, 19385, 5781, 796, 1391, 198, 220, 220, 220, 705, 5460, 929, 11012, 10354, 3497, 13729, 5189, 8567, 929, 11, 198, 220, 220, 220, 705, 37150, 10354, 3497, 13729, 5189, 54, 2416, 11, 198, 220, 220, 220, 705, 27729, 929, 10354, 3497, 13729, 5189, 31686, 929, 11, 198, 220, 220, 220, 705, 1996, 2902, 10354, 3497, 13729, 5189, 11588, 2902, 11, 198, 220, 220, 220, 705, 2220, 37573, 10354, 3497, 13729, 5189, 8912, 11, 198, 220, 220, 220, 705, 21084, 14350, 313, 10354, 3497, 13729, 5189, 21774, 11, 198, 220, 220, 220, 705, 330, 29782, 14350, 313, 10354, 352, 11, 198, 220, 220, 220, 705, 5787, 14350, 313, 10354, 352, 11, 198, 220, 220, 220, 705, 17077, 10354, 642, 198, 1782, 198, 198, 81, 85, 13, 29701, 18421, 796, 685, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 60, 198, 81, 85, 13, 37, 10659, 15513, 16, 796, 8400, 8247, 316, 15090, 16, 11, 362, 11, 513, 11, 604, 11, 718, 11, 767, 11, 642, 30072, 198, 81, 85, 13, 37, 10659, 15513, 62, 4944, 2849, 796, 374, 85, 13, 37, 10659, 15513, 16, 198, 81, 85, 13, 9693, 31444, 2751, 62, 38715, 796, 1391, 81, 85, 13, 37, 10659, 15513, 16, 25, 604, 92, 198, 198, 81, 85, 13, 46025, 62, 1961, 48075, 796, 1391, 16, 25, 685, 17, 4357, 362, 25, 685, 16, 11, 513, 4357, 513, 25, 685, 17, 11, 604, 4357, 604, 25, 685, 18, 11, 642, 4357, 642, 25, 685, 19, 11, 718, 4357, 718, 25, 685, 20, 11, 767, 4357, 767, 25, 685, 21, 48999, 198, 81, 85, 13, 46025, 62, 8845, 34874, 796, 1391, 7, 16, 11, 17, 2599, 352, 11, 357, 17, 11, 18, 2599, 352, 11, 357, 18, 11, 19, 2599, 642, 11, 357, 19, 11, 20, 2599, 807, 11, 357, 20, 11, 21, 2599, 642, 11, 357, 21, 11, 22, 2599, 352, 92, 198, 198, 81, 85, 13, 49, 9864, 33472, 796, 1391, 6, 81, 16, 10354, 374, 85, 13, 37, 10659, 15513, 16, 92, 198, 81, 85, 13, 49, 9864, 2394, 62, 33177, 2246, 9050, 796, 1391, 6, 81, 16, 10354, 838, 92, 198, 81, 85, 13, 44, 16219, 1268, 1546, 796, 1391, 6, 76, 16, 10354, 374, 85, 13, 37, 10659, 15513, 16, 92, 198, 198, 81, 85, 13, 47, 1847, 2538, 4694, 796, 1391, 6, 79, 16, 6, 92, 628, 628, 198, 83, 6791, 796, 1391, 198, 220, 220, 220, 352, 25, 16410, 6, 2875, 10434, 3256, 37250, 4906, 16, 3256, 705, 4906, 17, 6, 11907, 4357, 198, 220, 220, 220, 362, 25, 16410, 6, 2875, 10434, 3256, 37250, 4906, 17, 3256, 705, 4906, 16, 6, 11907, 4357, 198, 92, 198, 198, 31534, 4834, 85, 796, 1391, 198, 92 ]
2.045662
657
"""Track visualization""" from matplotlib import pyplot as plt def plot_trj( trj, coords=None, ax=None, scale=None, line_fmt="x:", line_color=None, line_label="Trajectory", line_width=None, marker_size=None, alpha=None, start_end=(True, True), ): """[summary] Args: trj (pandas.DataFrame): tracks to plot coords (list): The names of the x/y coodrinate column names ax (optional): matplotlib axes to plot in. Defaults to None. scale (int, optional): length of scale bar. Defaults to 10. line_fmt (str, optional): Defaults to "x:". line_color (str, optional): Defaults to "gray". line_label (str, optional): Defaults to "Trajectory". line_width ([type], optional): Defaults to None. marker_size ([type], optional): Defaults to None. alpha ([type], optional): Defaults to None. start_end (tuple, optional): Show marker for start/end of track. Defaults to (True, True). """ if not ax: ax = plt.gca() if not coords: coords = trj.coords ax.plot( *(trj[coords].values.T), line_fmt, color=line_color, label=line_label, lw=line_width, markersize=marker_size, alpha=alpha ) if start_end[0]: ax.plot(*trj[coords].iloc[0].T, "o", color="lightgreen") if start_end[1]: ax.plot(*trj[coords].iloc[-1].T, "o", color="red") ax.axis("off") if scale is not None: ax.plot( [trj[coords[0]].mean() - scale / 2, trj[coords[0]].mean() + scale / 2], [trj[coords[1]].min() - 3, trj[coords[1]].min() - 3], "k-", lw=3, ) ax.set_aspect(1.0)
[ 37811, 24802, 32704, 37811, 198, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 628, 198, 4299, 7110, 62, 2213, 73, 7, 198, 220, 220, 220, 491, 73, 11, 198, 220, 220, 220, 763, 3669, 28, 14202, 11, 198, 220, 220, 220, 7877, 28, 14202, 11, 198, 220, 220, 220, 5046, 28, 14202, 11, 198, 220, 220, 220, 1627, 62, 69, 16762, 2625, 87, 25, 1600, 198, 220, 220, 220, 1627, 62, 8043, 28, 14202, 11, 198, 220, 220, 220, 1627, 62, 18242, 2625, 15721, 752, 652, 1600, 198, 220, 220, 220, 1627, 62, 10394, 28, 14202, 11, 198, 220, 220, 220, 18364, 62, 7857, 28, 14202, 11, 198, 220, 220, 220, 17130, 28, 14202, 11, 198, 220, 220, 220, 923, 62, 437, 16193, 17821, 11, 6407, 828, 198, 2599, 198, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 491, 73, 357, 79, 392, 292, 13, 6601, 19778, 2599, 8339, 284, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 357, 4868, 2599, 383, 3891, 286, 262, 2124, 14, 88, 269, 702, 81, 4559, 5721, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 357, 25968, 2599, 2603, 29487, 8019, 34197, 284, 7110, 287, 13, 2896, 13185, 284, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 357, 600, 11, 11902, 2599, 4129, 286, 5046, 2318, 13, 2896, 13185, 284, 838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 69, 16762, 357, 2536, 11, 11902, 2599, 2896, 13185, 284, 366, 87, 25, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 8043, 357, 2536, 11, 11902, 2599, 2896, 13185, 284, 366, 44605, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 18242, 357, 2536, 11, 11902, 2599, 2896, 13185, 284, 366, 15721, 752, 652, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 10394, 29565, 4906, 4357, 11902, 2599, 2896, 13185, 284, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 18364, 62, 7857, 29565, 4906, 4357, 11902, 2599, 2896, 13185, 284, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 29565, 4906, 4357, 11902, 2599, 2896, 13185, 284, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 437, 357, 83, 29291, 11, 11902, 2599, 5438, 18364, 329, 923, 14, 437, 286, 2610, 13, 2896, 13185, 284, 357, 17821, 11, 6407, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 7877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 70, 6888, 3419, 628, 220, 220, 220, 611, 407, 763, 3669, 25, 198, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 796, 491, 73, 13, 1073, 3669, 628, 220, 220, 220, 7877, 13, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7, 2213, 73, 58, 1073, 3669, 4083, 27160, 13, 51, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 69, 16762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 1370, 62, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 1370, 62, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 300, 86, 28, 1370, 62, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19736, 1096, 28, 4102, 263, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 611, 923, 62, 437, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 46491, 2213, 73, 58, 1073, 3669, 4083, 346, 420, 58, 15, 4083, 51, 11, 366, 78, 1600, 3124, 2625, 2971, 14809, 4943, 628, 220, 220, 220, 611, 923, 62, 437, 58, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 46491, 2213, 73, 58, 1073, 3669, 4083, 346, 420, 58, 12, 16, 4083, 51, 11, 366, 78, 1600, 3124, 2625, 445, 4943, 628, 220, 220, 220, 7877, 13, 22704, 7203, 2364, 4943, 628, 220, 220, 220, 611, 5046, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2213, 73, 58, 1073, 3669, 58, 15, 60, 4083, 32604, 3419, 532, 5046, 1220, 362, 11, 491, 73, 58, 1073, 3669, 58, 15, 60, 4083, 32604, 3419, 1343, 5046, 1220, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2213, 73, 58, 1073, 3669, 58, 16, 60, 4083, 1084, 3419, 532, 513, 11, 491, 73, 58, 1073, 3669, 58, 16, 60, 4083, 1084, 3419, 532, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 74, 12, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 86, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 7877, 13, 2617, 62, 292, 806, 7, 16, 13, 15, 8, 198 ]
2.083135
842
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # Standard library imports from typing import Iterator # Third-party imports import numpy as np # First-party imports from gluonts.core.component import validated from gluonts.dataset.common import Dataset from gluonts.model.estimator import Estimator from gluonts.model.forecast import Forecast, SampleForecast from gluonts.model.predictor import RepresentablePredictor class IdentityPredictor(RepresentablePredictor): """ A `Predictor` that uses the last `prediction_length` observations to predict the future. Parameters ---------- prediction_length Prediction horizon. freq Frequency of the predicted data. num_samples Number of samples to include in the forecasts. Not that the samples produced by this predictor will all be identical. """ @validated() class ConstantPredictor(RepresentablePredictor): """ A `Predictor` that always produces the same forecast. Parameters ---------- samples Samples to use to construct SampleForecast objects for every prediction. freq Frequency of the predicted data. """ @validated() class MeanPredictor(RepresentablePredictor): """ A :class:`Predictor` that predicts the mean of the last `context_length` elements of the input target. Parameters ---------- context_length Length of the target context used to condition the predictions. prediction_length Length of the prediction horizon. num_eval_samples Number of samples to use to construct :class:`SampleForecast` objects for every prediction. freq Frequency of the predicted data. """ @validated() class MeanEstimator(Estimator): """ An `Estimator` that computes the mean targets in the training data, in the trailing `prediction_length` observations, and produces a `ConstantPredictor` that always predicts such mean value. Parameters ---------- prediction_length Prediction horizon. freq Frequency of the predicted data. num_samples Number of samples to include in the forecasts. Not that the samples produced by this predictor will all be identical. """ @validated()
[ 2, 15069, 2864, 6186, 13, 785, 11, 3457, 13, 393, 663, 29116, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 11074, 198, 2, 921, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 317, 4866, 286, 262, 13789, 318, 5140, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 393, 287, 262, 366, 43085, 1, 2393, 19249, 428, 2393, 13, 770, 2393, 318, 9387, 198, 2, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 198, 2, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 198, 2, 21627, 290, 11247, 739, 262, 13789, 13, 198, 198, 2, 8997, 5888, 17944, 198, 6738, 19720, 1330, 40806, 1352, 198, 198, 2, 10467, 12, 10608, 17944, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 3274, 12, 10608, 17944, 198, 6738, 1278, 84, 756, 82, 13, 7295, 13, 42895, 1330, 31031, 198, 6738, 1278, 84, 756, 82, 13, 19608, 292, 316, 13, 11321, 1330, 16092, 292, 316, 198, 6738, 1278, 84, 756, 82, 13, 19849, 13, 395, 320, 1352, 1330, 10062, 320, 1352, 198, 6738, 1278, 84, 756, 82, 13, 19849, 13, 754, 2701, 1330, 4558, 2701, 11, 27565, 16351, 2701, 198, 6738, 1278, 84, 756, 82, 13, 19849, 13, 79, 17407, 273, 1330, 10858, 540, 47, 17407, 273, 628, 198, 4871, 27207, 47, 17407, 273, 7, 40171, 540, 47, 17407, 273, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4600, 47, 17407, 273, 63, 326, 3544, 262, 938, 4600, 28764, 2867, 62, 13664, 63, 13050, 198, 220, 220, 220, 284, 4331, 262, 2003, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 17724, 62, 13664, 198, 220, 220, 220, 220, 220, 220, 220, 46690, 17810, 13, 198, 220, 220, 220, 2030, 80, 198, 220, 220, 220, 220, 220, 220, 220, 31902, 286, 262, 11001, 1366, 13, 198, 220, 220, 220, 997, 62, 82, 12629, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 8405, 284, 2291, 287, 262, 26119, 13, 1892, 326, 262, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 4635, 416, 428, 41568, 481, 477, 307, 10411, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12102, 515, 3419, 628, 198, 4871, 20217, 47, 17407, 273, 7, 40171, 540, 47, 17407, 273, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4600, 47, 17407, 273, 63, 326, 1464, 11073, 262, 976, 11092, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 2374, 284, 779, 284, 5678, 27565, 16351, 2701, 5563, 329, 790, 198, 220, 220, 220, 220, 220, 220, 220, 17724, 13, 198, 220, 220, 220, 2030, 80, 198, 220, 220, 220, 220, 220, 220, 220, 31902, 286, 262, 11001, 1366, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12102, 515, 3419, 628, 198, 4871, 22728, 47, 17407, 273, 7, 40171, 540, 47, 17407, 273, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1058, 4871, 25, 63, 47, 17407, 273, 63, 326, 26334, 262, 1612, 286, 262, 938, 4600, 22866, 62, 13664, 63, 198, 220, 220, 220, 4847, 286, 262, 5128, 2496, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4732, 62, 13664, 198, 220, 220, 220, 220, 220, 220, 220, 22313, 286, 262, 2496, 4732, 973, 284, 4006, 262, 16277, 13, 198, 220, 220, 220, 17724, 62, 13664, 198, 220, 220, 220, 220, 220, 220, 220, 22313, 286, 262, 17724, 17810, 13, 198, 220, 220, 220, 997, 62, 18206, 62, 82, 12629, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 8405, 284, 779, 284, 5678, 1058, 4871, 25, 63, 36674, 16351, 2701, 63, 5563, 198, 220, 220, 220, 220, 220, 220, 220, 329, 790, 17724, 13, 198, 220, 220, 220, 2030, 80, 198, 220, 220, 220, 220, 220, 220, 220, 31902, 286, 262, 11001, 1366, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12102, 515, 3419, 628, 198, 4871, 22728, 22362, 320, 1352, 7, 22362, 320, 1352, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 4600, 22362, 320, 1352, 63, 326, 552, 1769, 262, 1612, 6670, 287, 262, 3047, 1366, 11, 198, 220, 220, 220, 287, 262, 25462, 4600, 28764, 2867, 62, 13664, 63, 13050, 11, 290, 11073, 198, 220, 220, 220, 257, 4600, 3103, 18797, 47, 17407, 273, 63, 326, 1464, 26334, 884, 1612, 1988, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 17724, 62, 13664, 198, 220, 220, 220, 220, 220, 220, 220, 46690, 17810, 13, 198, 220, 220, 220, 2030, 80, 198, 220, 220, 220, 220, 220, 220, 220, 31902, 286, 262, 11001, 1366, 13, 198, 220, 220, 220, 997, 62, 82, 12629, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 8405, 284, 2291, 287, 262, 26119, 13, 1892, 326, 262, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 4635, 416, 428, 41568, 481, 477, 307, 10411, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12102, 515, 3419, 198 ]
3.12404
911
import pyfoursquare as foursquare # == OAuth2 Authentication == # # This mode of authentication is the required one for Foursquare # The client id and client secret can be found on your application's Details # page located at https://foursquare.com/oauth/ client_id = "E50NJYAFUAPXPAKU5XQNBTXPGKRRSNUGAYWTUUH3RKJ22HH4" client_secret = "3LQHT1LGX2MVUXKRNLY0ZFKNWIXKNNQDTLYD5UFX4WPAF0GM" callback = 'http://127.0.0.1:8000/' auth = foursquare.OauthHandler(client_id, client_secret, callback) #First Redirect the user who wish to authenticate to. #It will be create the authorization url for your app auth_url = auth.get_authorization_url() print 'Please authorize: ' + auth_url #If the user accepts, it will be redirected back #to your registered REDIRECT_URI. #It will give you a code as #https://YOUR_REGISTERED_REDIRECT_URI/?code=CODE code = raw_input('The code: ').strip() #Now your server will make a request for #the access token. You can save this #for future access for your app for this user access_token = auth.get_access_token(code) print 'Your access token is ' + access_token #Now let's create an API api = foursquare.API(auth) #Now you can access the Foursquare API! result = api.venues_search(query='Burburinho', ll='-8.063542,-34.872891') #You can acess as a Model print dir(result[0]) #Access all its attributes print result[0].name """ If you already have the access token for this user you can go until lines 1- 13, and then get at your database the access token for this user and set the access token. auth.set_access_token('ACCESS_TOKEN') Now you can go on by the line 33. """
[ 11748, 12972, 69, 4662, 421, 533, 355, 1440, 23415, 198, 198, 2, 6624, 440, 30515, 17, 48191, 6624, 198, 2, 198, 2, 770, 4235, 286, 18239, 318, 262, 2672, 530, 329, 376, 4662, 421, 533, 198, 198, 2, 383, 5456, 4686, 290, 5456, 3200, 460, 307, 1043, 319, 534, 3586, 338, 14890, 198, 2, 2443, 5140, 379, 3740, 1378, 69, 4662, 421, 533, 13, 785, 14, 12162, 1071, 14, 198, 16366, 62, 312, 796, 366, 36, 1120, 41074, 56, 8579, 52, 2969, 55, 4537, 42, 52, 20, 55, 48, 45, 19313, 55, 6968, 30758, 6998, 45, 7340, 4792, 39386, 30100, 39, 18, 49, 42, 41, 1828, 16768, 19, 1, 198, 16366, 62, 21078, 796, 366, 18, 43, 48, 6535, 16, 41257, 55, 17, 44, 53, 31235, 30758, 45, 11319, 15, 57, 26236, 27605, 10426, 42, 6144, 48, 24544, 11319, 35, 20, 52, 17213, 19, 54, 4537, 37, 15, 15548, 1, 198, 47423, 796, 705, 4023, 1378, 16799, 13, 15, 13, 15, 13, 16, 25, 33942, 14, 6, 198, 198, 18439, 796, 1440, 23415, 13, 46, 18439, 25060, 7, 16366, 62, 312, 11, 5456, 62, 21078, 11, 23838, 8, 198, 198, 2, 5962, 2297, 1060, 262, 2836, 508, 4601, 284, 8323, 5344, 284, 13, 198, 2, 1026, 481, 307, 2251, 262, 19601, 19016, 329, 534, 598, 198, 18439, 62, 6371, 796, 6284, 13, 1136, 62, 9800, 1634, 62, 6371, 3419, 198, 4798, 705, 5492, 29145, 25, 705, 1343, 6284, 62, 6371, 198, 198, 2, 1532, 262, 2836, 18178, 11, 340, 481, 307, 45158, 736, 198, 2, 1462, 534, 6823, 23848, 40, 23988, 62, 47269, 13, 198, 2, 1026, 481, 1577, 345, 257, 2438, 355, 198, 2, 5450, 1378, 56, 11698, 62, 31553, 41517, 1961, 62, 22083, 40, 23988, 62, 47269, 20924, 8189, 28, 34, 16820, 198, 8189, 796, 8246, 62, 15414, 10786, 464, 2438, 25, 705, 737, 36311, 3419, 198, 198, 2, 3844, 534, 4382, 481, 787, 257, 2581, 329, 198, 2, 1169, 1895, 11241, 13, 921, 460, 3613, 428, 198, 2, 1640, 2003, 1895, 329, 534, 598, 329, 428, 2836, 198, 15526, 62, 30001, 796, 6284, 13, 1136, 62, 15526, 62, 30001, 7, 8189, 8, 198, 4798, 705, 7120, 1895, 11241, 318, 705, 1343, 1895, 62, 30001, 198, 198, 2, 3844, 1309, 338, 2251, 281, 7824, 198, 15042, 796, 1440, 23415, 13, 17614, 7, 18439, 8, 198, 198, 2, 3844, 345, 460, 1895, 262, 376, 4662, 421, 533, 7824, 0, 198, 20274, 796, 40391, 13, 574, 947, 62, 12947, 7, 22766, 11639, 33, 5945, 333, 20327, 3256, 32660, 11639, 12, 23, 13, 3312, 2327, 3682, 12095, 2682, 13, 5774, 2078, 6420, 11537, 198, 198, 2, 1639, 460, 257, 919, 355, 257, 9104, 198, 4798, 26672, 7, 20274, 58, 15, 12962, 198, 198, 2, 15457, 477, 663, 12608, 198, 4798, 1255, 58, 15, 4083, 3672, 198, 198, 37811, 198, 1532, 345, 1541, 423, 262, 1895, 11241, 329, 428, 2836, 198, 5832, 460, 467, 1566, 3951, 220, 352, 12, 1511, 11, 290, 788, 651, 379, 198, 14108, 6831, 262, 1895, 11241, 329, 428, 2836, 290, 198, 2617, 262, 1895, 11241, 13, 198, 198, 18439, 13, 2617, 62, 15526, 62, 30001, 10786, 26861, 7597, 62, 10468, 43959, 11537, 198, 198, 3844, 345, 460, 467, 319, 416, 262, 1627, 4747, 13, 198, 198, 37811, 198 ]
2.97597
541
import numpy as np import matplotlib.pyplot as plt mg = 10 xlist = np.linspace(0,np.pi/2,100) f1 = 3*mg/2*(np.sin(xlist)*np.cos(xlist)*3/2-np.cos(xlist)) f2 = 3*mg/2*(-np.sin(xlist)+(3*np.sin(xlist)**2-1)/2) + mg plt.plot(xlist, f1, '-', markersize=1, label = r"$F_x$") plt.plot(xlist, f2, '-', markersize=1, label = r"$F_y$") plt.title("Constraint forces") plt.xlabel(r"$\varphi$") plt.ylabel("mg") plt.grid() plt.legend() plt.show()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11296, 796, 838, 198, 198, 87, 4868, 796, 45941, 13, 21602, 10223, 7, 15, 11, 37659, 13, 14415, 14, 17, 11, 3064, 8, 198, 69, 16, 796, 513, 9, 11296, 14, 17, 9, 7, 37659, 13, 31369, 7, 87, 4868, 27493, 37659, 13, 6966, 7, 87, 4868, 27493, 18, 14, 17, 12, 37659, 13, 6966, 7, 87, 4868, 4008, 198, 69, 17, 796, 513, 9, 11296, 14, 17, 9, 32590, 37659, 13, 31369, 7, 87, 4868, 8, 33747, 18, 9, 37659, 13, 31369, 7, 87, 4868, 8, 1174, 17, 12, 16, 20679, 17, 8, 1343, 10527, 198, 198, 489, 83, 13, 29487, 7, 87, 4868, 11, 277, 16, 11, 705, 12, 3256, 19736, 1096, 28, 16, 11, 6167, 796, 374, 1, 3, 37, 62, 87, 3, 4943, 198, 489, 83, 13, 29487, 7, 87, 4868, 11, 277, 17, 11, 705, 12, 3256, 19736, 1096, 28, 16, 11, 6167, 796, 374, 1, 3, 37, 62, 88, 3, 4943, 198, 489, 83, 13, 7839, 7203, 3103, 2536, 2913, 3386, 4943, 198, 489, 83, 13, 87, 18242, 7, 81, 1, 3, 59, 7785, 34846, 3, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 11296, 4943, 198, 489, 83, 13, 25928, 3419, 198, 489, 83, 13, 1455, 437, 3419, 198, 489, 83, 13, 12860, 3419, 198 ]
1.904348
230
from graphs import __version__ from graphs.graph import Vertix ,Edge,Graph graph = Graph()
[ 6738, 28770, 1330, 11593, 9641, 834, 198, 6738, 28770, 13, 34960, 1330, 24417, 844, 837, 37021, 11, 37065, 628, 198, 198, 34960, 796, 29681, 3419, 628, 198 ]
3.555556
27
import torch.utils.data import torch.nn as nn def test(model, data_loader, device, loggi, flag): """Evaluate model for dataset.""" # set eval state for Dropout and BN layers model.eval() # init loss and accuracy loss_ = 0.0 acc_ = 0.0 acc_domain_ = 0.0 n_total = 0 # set loss function criterion = nn.CrossEntropyLoss() # evaluate network for (images, labels) in data_loader: images = images.to(device) labels = labels.to(device) #labels = labels.squeeze(1) size = len(labels) if flag == 'target': labels_domain = torch.ones(size).long().to(device) else: labels_domain = torch.zeros(size).long().to(device) preds, domain = model(images, alpha=0) loss_ += criterion(preds, labels).item() pred_cls = preds.data.max(1)[1] pred_domain = domain.data.max(1)[1] acc_ += pred_cls.eq(labels.data).sum().item() acc_domain_ += pred_domain.eq(labels_domain.data).sum().item() n_total += size loss = loss_ / n_total acc = acc_ / n_total acc_domain = acc_domain_ / n_total loggi.info("{}: Avg Loss = {:.6f}, Avg Accuracy = {:.2%}, {}/{}, Avg Domain Accuracy = {:2%}".format(flag, loss, acc, acc_, n_total, acc_domain)) return loss, acc, acc_domain
[ 11748, 28034, 13, 26791, 13, 7890, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 198, 4299, 1332, 7, 19849, 11, 1366, 62, 29356, 11, 3335, 11, 2604, 12397, 11, 6056, 2599, 198, 220, 220, 220, 37227, 36, 2100, 4985, 2746, 329, 27039, 526, 15931, 198, 220, 220, 220, 1303, 900, 5418, 1181, 329, 14258, 448, 290, 347, 45, 11685, 198, 220, 220, 220, 2746, 13, 18206, 3419, 628, 220, 220, 220, 1303, 2315, 2994, 290, 9922, 198, 220, 220, 220, 2994, 62, 796, 657, 13, 15, 198, 220, 220, 220, 697, 62, 796, 657, 13, 15, 198, 220, 220, 220, 697, 62, 27830, 62, 796, 657, 13, 15, 198, 220, 220, 220, 299, 62, 23350, 796, 657, 628, 220, 220, 220, 1303, 900, 2994, 2163, 198, 220, 220, 220, 34054, 796, 299, 77, 13, 21544, 14539, 28338, 43, 793, 3419, 628, 220, 220, 220, 1303, 13446, 3127, 198, 220, 220, 220, 329, 357, 17566, 11, 14722, 8, 287, 1366, 62, 29356, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 4263, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 14722, 13, 1462, 7, 25202, 8, 220, 1303, 23912, 1424, 796, 14722, 13, 16485, 1453, 2736, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 18896, 7, 23912, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6056, 6624, 705, 16793, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 27830, 796, 28034, 13, 1952, 7, 7857, 737, 6511, 22446, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 27830, 796, 28034, 13, 9107, 418, 7, 7857, 737, 6511, 22446, 1462, 7, 25202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 11, 7386, 796, 2746, 7, 17566, 11, 17130, 28, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 15853, 34054, 7, 28764, 82, 11, 14722, 737, 9186, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 565, 82, 796, 2747, 82, 13, 7890, 13, 9806, 7, 16, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 27830, 796, 7386, 13, 7890, 13, 9806, 7, 16, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 697, 62, 15853, 2747, 62, 565, 82, 13, 27363, 7, 23912, 1424, 13, 7890, 737, 16345, 22446, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 697, 62, 27830, 62, 15853, 2747, 62, 27830, 13, 27363, 7, 23912, 1424, 62, 27830, 13, 7890, 737, 16345, 22446, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 23350, 15853, 2546, 628, 220, 220, 220, 2994, 796, 2994, 62, 1220, 299, 62, 23350, 198, 220, 220, 220, 697, 796, 697, 62, 1220, 299, 62, 23350, 198, 220, 220, 220, 697, 62, 27830, 796, 697, 62, 27830, 62, 1220, 299, 62, 23350, 628, 220, 220, 220, 2604, 12397, 13, 10951, 7203, 90, 38362, 33455, 22014, 796, 46110, 13, 21, 69, 5512, 33455, 33222, 796, 46110, 13, 17, 4, 5512, 23884, 14, 90, 5512, 33455, 20021, 33222, 796, 46110, 17, 4, 92, 1911, 18982, 7, 32109, 11, 2994, 11, 697, 11, 697, 62, 11, 299, 62, 23350, 11, 697, 62, 27830, 4008, 628, 220, 220, 220, 1441, 2994, 11, 697, 11, 697, 62, 27830, 198 ]
2.324607
573
# -*- coding: utf-8 -*- # Copyright (c) 2019, Brandon Nielsen # All rights reserved. # # This software may be modified and distributed under the terms # of the BSD license. See the LICENSE file for details. from aniso8601.builders import TupleBuilder from aniso8601.builders.python import PythonTimeBuilder from aniso8601.date import parse_date from aniso8601.duration import parse_duration from aniso8601.exceptions import ISOFormatError from aniso8601.time import parse_datetime
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 357, 66, 8, 13130, 11, 14328, 31154, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 770, 3788, 743, 307, 9518, 290, 9387, 739, 262, 2846, 198, 2, 286, 262, 347, 10305, 5964, 13, 220, 4091, 262, 38559, 24290, 2393, 329, 3307, 13, 198, 198, 6738, 281, 26786, 4521, 486, 13, 50034, 1330, 309, 29291, 32875, 198, 6738, 281, 26786, 4521, 486, 13, 50034, 13, 29412, 1330, 11361, 7575, 32875, 198, 6738, 281, 26786, 4521, 486, 13, 4475, 1330, 21136, 62, 4475, 198, 6738, 281, 26786, 4521, 486, 13, 32257, 1330, 21136, 62, 32257, 198, 6738, 281, 26786, 4521, 486, 13, 1069, 11755, 1330, 19694, 26227, 12331, 198, 6738, 281, 26786, 4521, 486, 13, 2435, 1330, 21136, 62, 19608, 8079, 198 ]
3.482014
139
import argparse from jiant.proj.simple import runscript as run import jiant.scripts.download_data.runscript as downloader if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-t", "--task_name") parser.add_argument("-d", "--data_dir") parser.add_argument("-e", "--exp_dir") parser.add_argument("-m", "--model_name_or_path") parser.add_argument("-c", "--compression_type") parser.add_argument("-cc", "--compression_config") parser.add_argument("-lr", "--learning_rate", default=1e-5, type=float) parser.add_argument("-s", "--seed", default=42, type=int) args = parser.parse_args() main( args.task_name, args.data_dir, args.exp_dir, args.model_name_or_path, args.compression_type, args.compression_config, args.learning_rate, args.seed, )
[ 11748, 1822, 29572, 198, 198, 6738, 474, 3014, 13, 1676, 73, 13, 36439, 1330, 1057, 12048, 355, 1057, 198, 11748, 474, 3014, 13, 46521, 13, 15002, 62, 7890, 13, 5143, 12048, 355, 4321, 263, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 83, 1600, 366, 438, 35943, 62, 3672, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 67, 1600, 366, 438, 7890, 62, 15908, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 68, 1600, 366, 438, 11201, 62, 15908, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 76, 1600, 366, 438, 19849, 62, 3672, 62, 273, 62, 6978, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 66, 1600, 366, 438, 5589, 2234, 62, 4906, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 535, 1600, 366, 438, 5589, 2234, 62, 11250, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 14050, 1600, 366, 438, 40684, 62, 4873, 1600, 4277, 28, 16, 68, 12, 20, 11, 2099, 28, 22468, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 82, 1600, 366, 438, 28826, 1600, 4277, 28, 3682, 11, 2099, 28, 600, 8, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 1388, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 7890, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 11201, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19849, 62, 3672, 62, 273, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 5589, 2234, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 5589, 2234, 62, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 40684, 62, 4873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 28826, 11, 198, 220, 220, 220, 1267, 198 ]
2.362667
375
from django.contrib import messages from django.contrib.auth import authenticate, login as dj_login, logout as dj_logout from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import ( AuthenticationForm, PasswordChangeForm, PasswordResetForm, SetPasswordForm, ) from django.contrib.auth.models import User from django.contrib.auth.tokens import default_token_generator from django.http import HttpResponseRedirect, JsonResponse from django.shortcuts import redirect, render from django.utils.http import urlsafe_base64_decode from django.views.decorators.http import ( require_http_methods, require_POST, require_safe, ) from main import forms, models from oscarator import settings INTERNAL_RESET_URL_TOKEN = "confirmation" INTERNAL_RESET_SESSION_TOKEN = "_password_reset_token" @require_safe @require_safe @require_POST @require_safe @require_POST @require_http_methods(["HEAD", "GET", "POST"]) @require_http_methods(["HEAD", "GET", "POST"]) @require_http_methods(["HEAD", "GET", "POST"]) @login_required @require_http_methods(["HEAD", "GET", "POST"]) @login_required
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 8323, 5344, 11, 17594, 355, 42625, 62, 38235, 11, 2604, 448, 355, 42625, 62, 6404, 448, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 23914, 1330, 357, 198, 220, 220, 220, 48191, 8479, 11, 198, 220, 220, 220, 30275, 19400, 8479, 11, 198, 220, 220, 220, 30275, 4965, 316, 8479, 11, 198, 220, 220, 220, 5345, 35215, 8479, 11, 198, 8, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 83, 482, 641, 1330, 4277, 62, 30001, 62, 8612, 1352, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 7738, 1060, 11, 449, 1559, 31077, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 18941, 11, 8543, 198, 6738, 42625, 14208, 13, 26791, 13, 4023, 1330, 2956, 7278, 8635, 62, 8692, 2414, 62, 12501, 1098, 198, 6738, 42625, 14208, 13, 33571, 13, 12501, 273, 2024, 13, 4023, 1330, 357, 198, 220, 220, 220, 2421, 62, 4023, 62, 24396, 82, 11, 198, 220, 220, 220, 2421, 62, 32782, 11, 198, 220, 220, 220, 2421, 62, 21230, 11, 198, 8, 198, 198, 6738, 1388, 1330, 5107, 11, 4981, 198, 6738, 267, 13034, 1352, 1330, 6460, 198, 198, 1268, 31800, 1847, 62, 19535, 2767, 62, 21886, 62, 10468, 43959, 796, 366, 10414, 36241, 1, 198, 1268, 31800, 1847, 62, 19535, 2767, 62, 50, 47621, 62, 10468, 43959, 796, 45434, 28712, 62, 42503, 62, 30001, 1, 628, 198, 31, 46115, 62, 21230, 628, 198, 31, 46115, 62, 21230, 628, 198, 31, 46115, 62, 32782, 628, 198, 31, 46115, 62, 21230, 628, 198, 31, 46115, 62, 32782, 628, 198, 31, 46115, 62, 4023, 62, 24396, 82, 7, 14692, 37682, 1600, 366, 18851, 1600, 366, 32782, 8973, 8, 628, 198, 31, 46115, 62, 4023, 62, 24396, 82, 7, 14692, 37682, 1600, 366, 18851, 1600, 366, 32782, 8973, 8, 628, 198, 31, 46115, 62, 4023, 62, 24396, 82, 7, 14692, 37682, 1600, 366, 18851, 1600, 366, 32782, 8973, 8, 198, 31, 38235, 62, 35827, 628, 198, 31, 46115, 62, 4023, 62, 24396, 82, 7, 14692, 37682, 1600, 366, 18851, 1600, 366, 32782, 8973, 8, 198, 31, 38235, 62, 35827, 198 ]
2.926396
394
# -*- coding: utf-8 -*- """Command line tool tester (CLIToolTester).""" __version__ = '20191217'
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 21575, 1627, 2891, 256, 7834, 357, 5097, 2043, 970, 51, 7834, 21387, 15931, 198, 198, 834, 9641, 834, 796, 705, 23344, 1065, 1558, 6, 198 ]
2.45
40
# Generated by Django 3.2.9 on 2021-12-20 20:36 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 24, 319, 33448, 12, 1065, 12, 1238, 1160, 25, 2623, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.766667
30
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import requests import sys import time from functools import wraps from multiprocessing import Pool from dci_downloader.fs import create_parent_dir from dciclient.v1.api.context import build_signature_context from dciclient.v1.api import component as dci_component from dciclient.v1.api import topic as dci_topic from dciclient.v1.api import remoteci as dci_remoteci FIVE_SECONDS = 5 TEN_SECONDS = 10 # We'll allow 5 seconds to connect & 10 seconds to get an answer REQUESTS_TIMEOUT = (FIVE_SECONDS, TEN_SECONDS) @retry() @retry() @retry()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 28686, 198, 11748, 7007, 198, 11748, 25064, 198, 11748, 640, 198, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 198, 6738, 288, 979, 62, 15002, 263, 13, 9501, 1330, 2251, 62, 8000, 62, 15908, 198, 6738, 30736, 291, 75, 1153, 13, 85, 16, 13, 15042, 13, 22866, 1330, 1382, 62, 12683, 1300, 62, 22866, 198, 6738, 30736, 291, 75, 1153, 13, 85, 16, 13, 15042, 1330, 7515, 355, 288, 979, 62, 42895, 198, 6738, 30736, 291, 75, 1153, 13, 85, 16, 13, 15042, 1330, 7243, 355, 288, 979, 62, 26652, 198, 6738, 30736, 291, 75, 1153, 13, 85, 16, 13, 15042, 1330, 816, 313, 721, 72, 355, 288, 979, 62, 2787, 313, 721, 72, 198, 198, 37, 9306, 62, 23683, 1340, 5258, 796, 642, 198, 51, 1677, 62, 23683, 1340, 5258, 796, 838, 198, 2, 775, 1183, 1249, 642, 4201, 284, 2018, 1222, 838, 4201, 284, 651, 281, 3280, 198, 2200, 10917, 1546, 4694, 62, 34694, 12425, 796, 357, 37, 9306, 62, 23683, 1340, 5258, 11, 309, 1677, 62, 23683, 1340, 5258, 8, 628, 628, 628, 628, 628, 628, 198, 31, 1186, 563, 3419, 628, 198, 31, 1186, 563, 3419, 628, 198, 31, 1186, 563, 3419, 628, 198 ]
2.682609
230
default_app_config = 'categories.apps.CategoriesConfig'
[ 12286, 62, 1324, 62, 11250, 796, 705, 66, 26129, 13, 18211, 13, 34, 26129, 16934, 6, 198 ]
3.294118
17
# flake8: noqa from .rbcz import ( read_statement, read_statements, read_statements_from_imap )
[ 2, 781, 539, 23, 25, 645, 20402, 198, 6738, 764, 81, 15630, 89, 1330, 357, 198, 220, 220, 220, 1100, 62, 26090, 11, 198, 220, 220, 220, 1100, 62, 14269, 3196, 11, 198, 220, 220, 220, 1100, 62, 14269, 3196, 62, 6738, 62, 320, 499, 198, 8, 198 ]
2.25
48
# 1017. 负二进制转换 # # 20200801 # huao # 观察奇数位上的1,如果该位置为1,那么使用负二进制表示时,会比实际二进制时少2**(i+1) # 把这个差值加进去,并进行处理加完以后的值 # 处理完以后,得到的数字的二进制表示就是原数的负二进制表示 sol = Solution() print(sol.baseNeg2(4))
[ 2, 8949, 22, 13, 5525, 112, 253, 12859, 234, 32573, 249, 26344, 114, 164, 121, 105, 162, 235, 95, 198, 2, 198, 2, 1160, 11528, 486, 198, 2, 289, 84, 5488, 198, 2, 5525, 100, 224, 43380, 253, 25001, 229, 46763, 108, 19526, 235, 41468, 21410, 16, 171, 120, 234, 36685, 224, 162, 252, 250, 46237, 98, 19526, 235, 163, 121, 106, 10310, 118, 16, 171, 120, 234, 165, 224, 96, 20046, 230, 45635, 18796, 101, 164, 112, 253, 12859, 234, 32573, 249, 26344, 114, 26193, 101, 163, 97, 118, 33768, 114, 171, 120, 234, 27670, 248, 162, 107, 242, 22522, 252, 165, 247, 227, 12859, 234, 32573, 249, 26344, 114, 33768, 114, 22887, 239, 17, 1174, 7, 72, 10, 16, 8, 198, 2, 10545, 232, 232, 32573, 247, 10310, 103, 32432, 106, 161, 222, 120, 27950, 254, 32573, 249, 43889, 119, 171, 120, 234, 33176, 114, 32573, 249, 26193, 234, 13783, 226, 49426, 228, 27950, 254, 22522, 234, 20015, 98, 28938, 236, 21410, 161, 222, 120, 198, 2, 36469, 226, 49426, 228, 22522, 234, 20015, 98, 28938, 236, 171, 120, 234, 36181, 245, 26344, 108, 21410, 46763, 108, 27764, 245, 21410, 12859, 234, 32573, 249, 26344, 114, 26193, 101, 163, 97, 118, 22887, 109, 42468, 43889, 253, 46763, 108, 21410, 164, 112, 253, 12859, 234, 32573, 249, 26344, 114, 26193, 101, 163, 97, 118, 628, 198, 34453, 796, 28186, 3419, 198, 4798, 7, 34453, 13, 8692, 32863, 17, 7, 19, 4008, 198 ]
0.740741
243
import typing from dataclasses import dataclass from utils.mixins import DataMixin @dataclass()
[ 11748, 19720, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 198, 6738, 3384, 4487, 13, 19816, 1040, 1330, 6060, 35608, 259, 628, 198, 31, 19608, 330, 31172, 3419, 198 ]
3.193548
31
import configparser import jira class JiraConfig(object): """ PolarionConfig represents data that must be provided through config (ini) file (to enable communication with the polarion importer APIs) """ KEY_SECTION = 'jira' KEY_PROJECT = 'project' KEY_URL = 'url' KEY_USERNAME = 'username' KEY_PASSWORD = 'password' KEY_TC_WI = "testcase_work_item" KEY_QE_TC = "qe_test_coverage" KEY_VER_IR = "verified_in_release" @property def project(self) -> str: """ Returns the parsed jira project name :return: """ return self.config[JiraConfig.KEY_SECTION][JiraConfig.KEY_PROJECT] @property def url(self) -> str: """ Returns the parsed jira project url :return: """ return self.config[JiraConfig.KEY_SECTION][JiraConfig.KEY_URL] @property def username(self) -> str: """ Returns the parsed jira username :return: """ return self.config[JiraConfig.KEY_SECTION][JiraConfig.KEY_USERNAME] @property def password(self) -> str: """ Returns the parsed jira password :return: """ return self.config[JiraConfig.KEY_SECTION][JiraConfig.KEY_PASSWORD] @property def test_case_work_item_custom_field(self) -> str: """ Returns the parsed jira custom field for test case work item :return: """ return self.config[JiraConfig.KEY_SECTION][JiraConfig.KEY_TC_WI] @property def qe_test_coverage_custom_field(self) -> str: """ Returns the parsed jira custom field for qe test coverage :return: """ return self.config[JiraConfig.KEY_SECTION][JiraConfig.KEY_QE_TC] @property def verified_release_custom_field(self) -> str: """ Returns the parsed jira custom field for verified in release :return: """ return self.config[JiraConfig.KEY_SECTION][JiraConfig.KEY_VER_IR] or None
[ 11748, 4566, 48610, 198, 11748, 474, 8704, 628, 198, 4871, 449, 8704, 16934, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 32909, 295, 16934, 6870, 1366, 326, 1276, 307, 2810, 832, 198, 220, 220, 4566, 357, 5362, 8, 2393, 357, 1462, 7139, 6946, 351, 262, 13559, 295, 848, 4337, 23113, 8, 198, 220, 220, 37227, 628, 220, 220, 220, 35374, 62, 50, 24565, 796, 705, 73, 8704, 6, 198, 220, 220, 220, 35374, 62, 31190, 23680, 796, 705, 16302, 6, 198, 220, 220, 220, 35374, 62, 21886, 796, 705, 6371, 6, 198, 220, 220, 220, 35374, 62, 29904, 20608, 796, 705, 29460, 6, 198, 220, 220, 220, 35374, 62, 47924, 54, 12532, 796, 705, 28712, 6, 198, 220, 220, 220, 35374, 62, 4825, 62, 36326, 796, 366, 9288, 7442, 62, 1818, 62, 9186, 1, 198, 220, 220, 220, 35374, 62, 48, 36, 62, 4825, 796, 366, 80, 68, 62, 9288, 62, 1073, 1857, 1, 198, 220, 220, 220, 35374, 62, 5959, 62, 4663, 796, 366, 47684, 62, 259, 62, 20979, 1, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1628, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 44267, 474, 8704, 1628, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 11250, 58, 41, 8704, 16934, 13, 20373, 62, 50, 24565, 7131, 41, 8704, 16934, 13, 20373, 62, 31190, 23680, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 19016, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 44267, 474, 8704, 1628, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 11250, 58, 41, 8704, 16934, 13, 20373, 62, 50, 24565, 7131, 41, 8704, 16934, 13, 20373, 62, 21886, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 20579, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 44267, 474, 8704, 20579, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 11250, 58, 41, 8704, 16934, 13, 20373, 62, 50, 24565, 7131, 41, 8704, 16934, 13, 20373, 62, 29904, 20608, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9206, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 44267, 474, 8704, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 11250, 58, 41, 8704, 16934, 13, 20373, 62, 50, 24565, 7131, 41, 8704, 16934, 13, 20373, 62, 47924, 54, 12532, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1332, 62, 7442, 62, 1818, 62, 9186, 62, 23144, 62, 3245, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 44267, 474, 8704, 2183, 2214, 329, 1332, 1339, 670, 2378, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 11250, 58, 41, 8704, 16934, 13, 20373, 62, 50, 24565, 7131, 41, 8704, 16934, 13, 20373, 62, 4825, 62, 36326, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 10662, 68, 62, 9288, 62, 1073, 1857, 62, 23144, 62, 3245, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 44267, 474, 8704, 2183, 2214, 329, 10662, 68, 1332, 5197, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 11250, 58, 41, 8704, 16934, 13, 20373, 62, 50, 24565, 7131, 41, 8704, 16934, 13, 20373, 62, 48, 36, 62, 4825, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 19000, 62, 20979, 62, 23144, 62, 3245, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 44267, 474, 8704, 2183, 2214, 329, 19000, 287, 2650, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 11250, 58, 41, 8704, 16934, 13, 20373, 62, 50, 24565, 7131, 41, 8704, 16934, 13, 20373, 62, 5959, 62, 4663, 60, 393, 6045, 628 ]
2.337931
870
import ensurepip if __name__ == "__main__": ensurepip._main()
[ 11748, 4155, 79, 541, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 4155, 79, 541, 13557, 12417, 3419, 198 ]
2.481481
27
# -*- coding: utf-8 -*- from trytond.model import fields from trytond.pool import PoolMeta __metaclass__ = PoolMeta __all__ = ['SaleConfiguration']
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 1949, 83, 623, 13, 19849, 1330, 7032, 198, 6738, 1949, 83, 623, 13, 7742, 1330, 19850, 48526, 198, 198, 834, 4164, 330, 31172, 834, 796, 19850, 48526, 198, 834, 439, 834, 796, 37250, 50, 1000, 38149, 20520, 628 ]
2.830189
53
import cv2 import numpy as np import pycocotools.mask as mask_util from matplotlib.pyplot import contour __all__ = [ "mask_to_polygon", "polygons_to_mask", "area", "bbox", "coco_poygons_to_mask", ] def mask_to_polygon( mask, min_score: float = 0.5, approx: float = 0.0, relative: bool = True ): """generate polygons from masks Args: mask (np.ndarray): a binary mask min_score (float, optional): [description]. Defaults to 0.5. approx (float, optional): it approximate the polygons to reduce the number of points. Defaults to 0.0 relative (bool, optional): it the value of the approximation is computed on the relative amount of point or with respect to all the points Returns: [type]: [description] """ mask = (mask > min_score).astype(np.uint8) mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) contours, hierarchy = cv2.findContours( mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE, offset=(-1, -1) ) polygons = [] for cnt in contours: if approx > 0: if relative: epsilon = approx * cv2.arcLength(cnt, True) else: epsilon = approx approx_poly = cv2.approxPolyDP(cnt, epsilon, True) else: approx_poly = cnt # we need to draw a least a box if len(approx_poly) >= 4: approx_flattened = approx_poly.flatten().tolist() polygons.append(approx_flattened) return polygons def polygons_to_mask(polygons, height, width): """convert polygons to mask. Filter all the polygons with less than 4 points Args: polygons ([type]): [description] height ([type]): [description] width ([type]): [description] Returns: [type]: a mask of format num_classes, heigth, width """ polygons = [polygon for polygon in polygons if len(polygon) >= 8] if len(polygons) == 0: return np.zeros((height, width), np.uint8) rle = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rle) return mask_util.decode(rle)[:, :] def bbox_from_mask(mask): """return the bounding box from the given mask Args: mask ([type]): [description] Returns: List: a list of format [x_min, y_min, w, h] """ pairs = np.argwhere(mask == True) if len(pairs) == 0: return None, None, None, None min_row = min(pairs[:, 0]) max_row = max(pairs[:, 0]) min_col = min(pairs[:, 1]) max_col = max(pairs[:, 1]) w = max_col - min_col h = max_row - min_row return [float(min_col), float(min_row), float(w), float(h)]
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 66, 420, 313, 10141, 13, 27932, 355, 9335, 62, 22602, 198, 6738, 2603, 29487, 8019, 13, 9078, 29487, 1330, 542, 454, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 27932, 62, 1462, 62, 35428, 14520, 1600, 198, 220, 220, 220, 366, 35428, 70, 684, 62, 1462, 62, 27932, 1600, 198, 220, 220, 220, 366, 20337, 1600, 198, 220, 220, 220, 366, 65, 3524, 1600, 198, 220, 220, 220, 366, 66, 25634, 62, 79, 726, 70, 684, 62, 1462, 62, 27932, 1600, 198, 60, 628, 198, 4299, 9335, 62, 1462, 62, 35428, 14520, 7, 198, 220, 220, 220, 9335, 11, 949, 62, 26675, 25, 12178, 796, 657, 13, 20, 11, 5561, 25, 12178, 796, 657, 13, 15, 11, 3585, 25, 20512, 796, 6407, 198, 2599, 198, 220, 220, 220, 37227, 8612, 378, 25052, 684, 422, 20680, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 357, 37659, 13, 358, 18747, 2599, 257, 13934, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 26675, 357, 22468, 11, 11902, 2599, 685, 11213, 4083, 2896, 13185, 284, 657, 13, 20, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5561, 357, 22468, 11, 11902, 2599, 340, 27665, 262, 25052, 684, 284, 4646, 262, 1271, 286, 2173, 13, 2896, 13185, 284, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 3585, 357, 30388, 11, 11902, 2599, 340, 262, 1988, 286, 262, 40874, 318, 29231, 319, 262, 3585, 2033, 286, 966, 393, 351, 2461, 284, 477, 262, 2173, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 685, 4906, 5974, 685, 11213, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9335, 796, 357, 27932, 1875, 949, 62, 26675, 737, 459, 2981, 7, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 9335, 796, 269, 85, 17, 13, 30073, 12050, 34189, 7, 27932, 11, 352, 11, 352, 11, 352, 11, 352, 11, 269, 85, 17, 13, 33, 12532, 1137, 62, 10943, 2257, 8643, 11, 1988, 28, 15, 8, 198, 220, 220, 220, 542, 4662, 11, 18911, 796, 269, 85, 17, 13, 19796, 4264, 4662, 7, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 11, 269, 85, 17, 13, 2200, 5446, 62, 45849, 11, 269, 85, 17, 13, 3398, 29833, 62, 2969, 31190, 55, 62, 45, 11651, 11, 11677, 16193, 12, 16, 11, 532, 16, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 25052, 684, 796, 17635, 198, 220, 220, 220, 329, 269, 429, 287, 542, 4662, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5561, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3585, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 862, 33576, 796, 5561, 1635, 269, 85, 17, 13, 5605, 24539, 7, 66, 429, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 862, 33576, 796, 5561, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5561, 62, 35428, 796, 269, 85, 17, 13, 1324, 13907, 34220, 6322, 7, 66, 429, 11, 304, 862, 33576, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5561, 62, 35428, 796, 269, 429, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 761, 284, 3197, 257, 1551, 257, 3091, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1324, 13907, 62, 35428, 8, 18189, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5561, 62, 2704, 1078, 2945, 796, 5561, 62, 35428, 13, 2704, 41769, 22446, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25052, 684, 13, 33295, 7, 1324, 13907, 62, 2704, 1078, 2945, 8, 198, 220, 220, 220, 1441, 25052, 684, 628, 198, 4299, 25052, 684, 62, 1462, 62, 27932, 7, 35428, 70, 684, 11, 6001, 11, 9647, 2599, 198, 220, 220, 220, 37227, 1102, 1851, 25052, 684, 284, 9335, 13, 25853, 477, 262, 25052, 684, 351, 1342, 621, 604, 2173, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25052, 684, 29565, 4906, 60, 2599, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6001, 29565, 4906, 60, 2599, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 29565, 4906, 60, 2599, 685, 11213, 60, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 685, 4906, 5974, 257, 9335, 286, 5794, 997, 62, 37724, 11, 339, 328, 400, 11, 9647, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25052, 684, 796, 685, 35428, 14520, 329, 7514, 14520, 287, 25052, 684, 611, 18896, 7, 35428, 14520, 8, 18189, 807, 60, 628, 220, 220, 220, 611, 18896, 7, 35428, 70, 684, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 9107, 418, 19510, 17015, 11, 9647, 828, 45941, 13, 28611, 23, 8, 628, 220, 220, 220, 374, 293, 796, 9335, 62, 22602, 13, 8310, 20519, 10267, 82, 7, 35428, 70, 684, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 374, 293, 796, 9335, 62, 22602, 13, 647, 469, 7, 81, 293, 8, 198, 220, 220, 220, 1441, 9335, 62, 22602, 13, 12501, 1098, 7, 81, 293, 38381, 45299, 1058, 60, 628, 628, 198, 4299, 275, 3524, 62, 6738, 62, 27932, 7, 27932, 2599, 198, 220, 220, 220, 37227, 7783, 262, 5421, 278, 3091, 422, 262, 1813, 9335, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 29565, 4906, 60, 2599, 685, 11213, 60, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 25, 257, 1351, 286, 5794, 685, 87, 62, 1084, 11, 331, 62, 1084, 11, 266, 11, 289, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14729, 796, 45941, 13, 853, 3003, 7, 27932, 6624, 6407, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 3468, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 11, 6045, 11, 6045, 11, 6045, 198, 220, 220, 220, 949, 62, 808, 796, 949, 7, 79, 3468, 58, 45299, 657, 12962, 198, 220, 220, 220, 3509, 62, 808, 796, 3509, 7, 79, 3468, 58, 45299, 657, 12962, 198, 220, 220, 220, 949, 62, 4033, 796, 949, 7, 79, 3468, 58, 45299, 352, 12962, 198, 220, 220, 220, 3509, 62, 4033, 796, 3509, 7, 79, 3468, 58, 45299, 352, 12962, 198, 220, 220, 220, 266, 796, 3509, 62, 4033, 532, 949, 62, 4033, 198, 220, 220, 220, 289, 796, 3509, 62, 808, 532, 949, 62, 808, 198, 220, 220, 220, 1441, 685, 22468, 7, 1084, 62, 4033, 828, 12178, 7, 1084, 62, 808, 828, 12178, 7, 86, 828, 12178, 7, 71, 15437, 628 ]
2.264657
1,194
MOUNT_PATH = "" # in case you are mounting data storage externally SPLIT = 'training' KITTI_WORK_DIR = "./" KITTI_DATA_DIR = "../input/kitti-3d-object-detection-dataset" NUSCENES_WORK_DIR = MOUNT_PATH + "/storage/slurm/kimal/eagermot_workspace/nuscenes" NUSCENES_DATA_DIR = MOUNT_PATH + "/storage/slurm/kimal/datasets_original/nuscenes"
[ 44, 28270, 62, 34219, 796, 13538, 220, 1303, 287, 1339, 345, 389, 17260, 1366, 6143, 45107, 198, 4303, 43, 2043, 796, 705, 34409, 6, 198, 198, 42, 22470, 40, 62, 33249, 62, 34720, 796, 366, 19571, 1, 198, 42, 22470, 40, 62, 26947, 62, 34720, 796, 366, 40720, 15414, 14, 74, 715, 72, 12, 18, 67, 12, 15252, 12, 15255, 3213, 12, 19608, 292, 316, 1, 198, 198, 45, 2937, 34, 1677, 1546, 62, 33249, 62, 34720, 796, 337, 28270, 62, 34219, 1343, 12813, 35350, 14, 6649, 333, 76, 14, 74, 4402, 14, 68, 3536, 27926, 62, 5225, 10223, 14, 77, 16241, 18719, 1, 198, 45, 2937, 34, 1677, 1546, 62, 26947, 62, 34720, 796, 337, 28270, 62, 34219, 1343, 12813, 35350, 14, 6649, 333, 76, 14, 74, 4402, 14, 19608, 292, 1039, 62, 14986, 14, 77, 16241, 18719, 1, 198 ]
2.411348
141
"""Functions which help end users define customize node_match and edge_match functions to use during isomorphism checks. """ from itertools import permutations import types import networkx as nx __all__ = ['categorical_node_match', 'categorical_edge_match', 'categorical_multiedge_match', 'numerical_node_match', 'numerical_edge_match', 'numerical_multiedge_match', 'generic_node_match', 'generic_edge_match', 'generic_multiedge_match', ] def copyfunc(f, name=None): """Returns a deepcopy of a function.""" try: return types.FunctionType(f.func_code, f.func_globals, name or f.name, f.func_defaults, f.func_closure) except AttributeError: return types.FunctionType(f.__code__, f.__globals__, name or f.name, f.__defaults__, f.__closure__) def allclose(x, y, rtol=1.0000000000000001e-05, atol=1e-08): """Returns True if x and y are sufficiently close, elementwise. Parameters ---------- rtol : float The relative error tolerance. atol : float The absolute error tolerance. """ # assume finite weights, see numpy.allclose() for reference for xi, yi in zip(x,y): if not ( abs(xi-yi) <= atol + rtol * abs(yi) ): return False return True def close(x, y, rtol=1.0000000000000001e-05, atol=1e-08): """Returns True if x and y are sufficiently close. Parameters ---------- rtol : float The relative error tolerance. atol : float The absolute error tolerance. """ # assume finite weights, see numpy.allclose() for reference return abs(x-y) <= atol + rtol * abs(y) categorical_doc = """ Returns a comparison function for a categorical node attribute. The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True. Parameters ---------- attr : string | list The categorical node attribute to compare, or a list of categorical node attributes to compare. default : value | list The default value for the categorical node attribute, or a list of default values for the categorical node attributes. Returns ------- match : function The customized, categorical `node_match` function. Examples -------- >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.categorical_node_match('size', 1) >>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2]) """ categorical_edge_match = copyfunc(categorical_node_match, 'categorical_edge_match') # Docstrings for categorical functions. categorical_node_match.__doc__ = categorical_doc categorical_edge_match.__doc__ = categorical_doc.replace('node', 'edge') tmpdoc = categorical_doc.replace('node', 'edge') tmpdoc = tmpdoc.replace('categorical_edge_match', 'categorical_multiedge_match') categorical_multiedge_match.__doc__ = tmpdoc numerical_doc = """ Returns a comparison function for a numerical node attribute. The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True. Parameters ---------- attr : string | list The numerical node attribute to compare, or a list of numerical node attributes to compare. default : value | list The default value for the numerical node attribute, or a list of default values for the numerical node attributes. rtol : float The relative error tolerance. atol : float The absolute error tolerance. Returns ------- match : function The customized, numerical `node_match` function. Examples -------- >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.numerical_node_match('weight', 1.0) >>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5]) """ numerical_edge_match = copyfunc(numerical_node_match, 'numerical_edge_match') # Docstrings for numerical functions. numerical_node_match.__doc__ = numerical_doc numerical_edge_match.__doc__ = numerical_doc.replace('node', 'edge') tmpdoc = numerical_doc.replace('node', 'edge') tmpdoc = tmpdoc.replace('numerical_edge_match', 'numerical_multiedge_match') numerical_multiedge_match.__doc__ = tmpdoc generic_doc = """ Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Parameters ---------- attr : string | list The node attribute to compare, or a list of node attributes to compare. default : value | list The default value for the node attribute, or a list of default values for the node attributes. op : callable | list The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. Returns ------- match : function The customized, generic `node_match` function. Examples -------- >>> from operator import eq >>> from networkx.algorithms.isomorphism.matchhelpers import close >>> from networkx.algorithms.isomorphism import generic_node_match >>> nm = generic_node_match('weight', 1.0, close) >>> nm = generic_node_match('color', 'red', eq) >>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq]) """ generic_edge_match = copyfunc(generic_node_match, 'generic_edge_match') def generic_multiedge_match(attr, default, op): """Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Potentially, the constructed edge_match function can be slow since it must verify that no isomorphism exists between the multiedges before it returns False. Parameters ---------- attr : string | list The edge attribute to compare, or a list of node attributes to compare. default : value | list The default value for the edge attribute, or a list of default values for the dgeattributes. op : callable | list The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. Returns ------- match : function The customized, generic `edge_match` function. Examples -------- >>> from operator import eq >>> from networkx.algorithms.isomorphism.matchhelpers import close >>> from networkx.algorithms.isomorphism import generic_node_match >>> nm = generic_node_match('weight', 1.0, close) >>> nm = generic_node_match('color', 'red', eq) >>> nm = generic_node_match(['weight', 'color'], ... [1.0, 'red'], ... [close, eq]) ... """ # This is slow, but generic. # We must test every possible isomorphism between the edges. if nx.utils.is_string_like(attr): else: attrs = list(zip(attr, default)) # Python 3 return match # Docstrings for numerical functions. generic_node_match.__doc__ = generic_doc generic_edge_match.__doc__ = generic_doc.replace('node', 'edge')
[ 37811, 24629, 2733, 543, 1037, 886, 2985, 8160, 24184, 10139, 62, 15699, 290, 201, 198, 14907, 62, 15699, 5499, 284, 779, 1141, 318, 25831, 1042, 8794, 13, 201, 198, 37811, 201, 198, 6738, 340, 861, 10141, 1330, 9943, 32855, 201, 198, 11748, 3858, 201, 198, 11748, 3127, 87, 355, 299, 87, 201, 198, 201, 198, 834, 439, 834, 796, 37250, 66, 2397, 12409, 62, 17440, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 2397, 12409, 62, 14907, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 2397, 12409, 62, 16680, 798, 469, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 6975, 605, 62, 17440, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 6975, 605, 62, 14907, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 6975, 605, 62, 16680, 798, 469, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41357, 62, 17440, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41357, 62, 14907, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41357, 62, 16680, 798, 469, 62, 15699, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 201, 198, 201, 198, 201, 198, 4299, 4866, 20786, 7, 69, 11, 1438, 28, 14202, 2599, 201, 198, 220, 220, 220, 37227, 35561, 257, 2769, 30073, 286, 257, 2163, 526, 15931, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3858, 13, 22203, 6030, 7, 69, 13, 20786, 62, 8189, 11, 277, 13, 20786, 62, 4743, 672, 874, 11, 1438, 393, 277, 13, 3672, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 20786, 62, 12286, 82, 11, 277, 13, 20786, 62, 17966, 8, 201, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3858, 13, 22203, 6030, 7, 69, 13, 834, 8189, 834, 11, 277, 13, 834, 4743, 672, 874, 834, 11, 1438, 393, 277, 13, 3672, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 834, 12286, 82, 834, 11, 277, 13, 834, 17966, 834, 8, 201, 198, 201, 198, 4299, 477, 19836, 7, 87, 11, 331, 11, 374, 83, 349, 28, 16, 13, 8269, 10535, 486, 68, 12, 2713, 11, 379, 349, 28, 16, 68, 12, 2919, 2599, 201, 198, 220, 220, 220, 37227, 35561, 6407, 611, 2124, 290, 331, 389, 17338, 1969, 11, 5002, 3083, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 374, 83, 349, 1058, 12178, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3585, 4049, 15621, 13, 201, 198, 220, 220, 220, 379, 349, 1058, 12178, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4112, 4049, 15621, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1303, 7048, 27454, 19590, 11, 766, 299, 32152, 13, 439, 19836, 3419, 329, 4941, 201, 198, 220, 220, 220, 329, 2124, 72, 11, 331, 72, 287, 19974, 7, 87, 11, 88, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 2352, 7, 29992, 12, 48111, 8, 19841, 379, 349, 1343, 374, 83, 349, 1635, 2352, 7, 48111, 8, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 201, 198, 220, 220, 220, 1441, 6407, 201, 198, 201, 198, 201, 198, 4299, 1969, 7, 87, 11, 331, 11, 374, 83, 349, 28, 16, 13, 8269, 10535, 486, 68, 12, 2713, 11, 379, 349, 28, 16, 68, 12, 2919, 2599, 201, 198, 220, 220, 220, 37227, 35561, 6407, 611, 2124, 290, 331, 389, 17338, 1969, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 374, 83, 349, 1058, 12178, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3585, 4049, 15621, 13, 201, 198, 220, 220, 220, 379, 349, 1058, 12178, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4112, 4049, 15621, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1303, 7048, 27454, 19590, 11, 766, 299, 32152, 13, 439, 19836, 3419, 329, 4941, 201, 198, 220, 220, 220, 1441, 2352, 7, 87, 12, 88, 8, 19841, 379, 349, 1343, 374, 83, 349, 1635, 2352, 7, 88, 8, 201, 198, 201, 198, 201, 198, 66, 2397, 12409, 62, 15390, 796, 37227, 201, 198, 35561, 257, 7208, 2163, 329, 257, 4253, 12409, 10139, 11688, 13, 201, 198, 201, 198, 464, 1988, 7, 82, 8, 286, 262, 708, 81, 7, 82, 8, 1276, 307, 12234, 540, 290, 13975, 2884, 262, 6624, 201, 198, 46616, 1201, 484, 389, 4624, 656, 257, 900, 26933, 12962, 2134, 13, 220, 1002, 262, 5621, 422, 201, 198, 38, 16, 290, 402, 17, 389, 262, 976, 11, 788, 262, 12006, 2163, 5860, 6407, 13, 201, 198, 201, 198, 48944, 201, 198, 35937, 201, 198, 35226, 1058, 4731, 930, 1351, 201, 198, 220, 220, 220, 383, 4253, 12409, 10139, 11688, 284, 8996, 11, 393, 257, 1351, 286, 4253, 12409, 201, 198, 220, 220, 220, 10139, 12608, 284, 8996, 13, 201, 198, 12286, 1058, 1988, 930, 1351, 201, 198, 220, 220, 220, 383, 4277, 1988, 329, 262, 4253, 12409, 10139, 11688, 11, 393, 257, 1351, 286, 201, 198, 220, 220, 220, 4277, 3815, 329, 262, 4253, 12409, 10139, 12608, 13, 201, 198, 201, 198, 35561, 201, 198, 26866, 201, 198, 15699, 1058, 2163, 201, 198, 220, 220, 220, 383, 27658, 11, 4253, 12409, 4600, 17440, 62, 15699, 63, 2163, 13, 201, 198, 201, 198, 27730, 201, 198, 982, 201, 198, 33409, 1330, 3127, 87, 13, 282, 7727, 907, 13, 271, 25831, 1042, 355, 47279, 201, 198, 33409, 28642, 796, 47279, 13, 66, 2397, 12409, 62, 17440, 62, 15699, 10786, 7857, 3256, 352, 8, 201, 198, 33409, 28642, 796, 47279, 13, 66, 2397, 12409, 62, 17440, 62, 15699, 7, 17816, 8043, 3256, 705, 7857, 6, 4357, 37250, 445, 3256, 362, 12962, 201, 198, 201, 198, 37811, 201, 198, 201, 198, 66, 2397, 12409, 62, 14907, 62, 15699, 796, 4866, 20786, 7, 66, 2397, 12409, 62, 17440, 62, 15699, 11, 705, 66, 2397, 12409, 62, 14907, 62, 15699, 11537, 201, 198, 201, 198, 2, 14432, 37336, 329, 4253, 12409, 5499, 13, 201, 198, 66, 2397, 12409, 62, 17440, 62, 15699, 13, 834, 15390, 834, 796, 4253, 12409, 62, 15390, 201, 198, 66, 2397, 12409, 62, 14907, 62, 15699, 13, 834, 15390, 834, 796, 4253, 12409, 62, 15390, 13, 33491, 10786, 17440, 3256, 705, 14907, 11537, 201, 198, 22065, 15390, 796, 4253, 12409, 62, 15390, 13, 33491, 10786, 17440, 3256, 705, 14907, 11537, 201, 198, 22065, 15390, 796, 45218, 15390, 13, 33491, 10786, 66, 2397, 12409, 62, 14907, 62, 15699, 3256, 705, 66, 2397, 12409, 62, 16680, 798, 469, 62, 15699, 11537, 201, 198, 66, 2397, 12409, 62, 16680, 798, 469, 62, 15699, 13, 834, 15390, 834, 796, 45218, 15390, 201, 198, 201, 198, 201, 198, 77, 6975, 605, 62, 15390, 796, 37227, 201, 198, 35561, 257, 7208, 2163, 329, 257, 29052, 10139, 11688, 13, 201, 198, 201, 198, 464, 1988, 7, 82, 8, 286, 262, 708, 81, 7, 82, 8, 1276, 307, 29052, 290, 3297, 540, 13, 220, 1002, 262, 201, 198, 82, 9741, 1351, 286, 3815, 422, 402, 16, 290, 402, 17, 389, 262, 976, 1626, 617, 201, 198, 83, 37668, 11, 788, 262, 12006, 2163, 5860, 6407, 13, 201, 198, 201, 198, 48944, 201, 198, 35937, 201, 198, 35226, 1058, 4731, 930, 1351, 201, 198, 220, 220, 220, 383, 29052, 10139, 11688, 284, 8996, 11, 393, 257, 1351, 286, 29052, 201, 198, 220, 220, 220, 10139, 12608, 284, 8996, 13, 201, 198, 12286, 1058, 1988, 930, 1351, 201, 198, 220, 220, 220, 383, 4277, 1988, 329, 262, 29052, 10139, 11688, 11, 393, 257, 1351, 286, 201, 198, 220, 220, 220, 4277, 3815, 329, 262, 29052, 10139, 12608, 13, 201, 198, 17034, 349, 1058, 12178, 201, 198, 220, 220, 220, 383, 3585, 4049, 15621, 13, 201, 198, 265, 349, 1058, 12178, 201, 198, 220, 220, 220, 383, 4112, 4049, 15621, 13, 201, 198, 201, 198, 35561, 201, 198, 26866, 201, 198, 15699, 1058, 2163, 201, 198, 220, 220, 220, 383, 27658, 11, 29052, 4600, 17440, 62, 15699, 63, 2163, 13, 201, 198, 201, 198, 27730, 201, 198, 982, 201, 198, 33409, 1330, 3127, 87, 13, 282, 7727, 907, 13, 271, 25831, 1042, 355, 47279, 201, 198, 33409, 28642, 796, 47279, 13, 77, 6975, 605, 62, 17440, 62, 15699, 10786, 6551, 3256, 352, 13, 15, 8, 201, 198, 33409, 28642, 796, 47279, 13, 77, 6975, 605, 62, 17440, 62, 15699, 7, 17816, 6551, 3256, 705, 2815, 413, 5649, 6, 4357, 685, 13, 1495, 11, 764, 20, 12962, 201, 198, 201, 198, 37811, 201, 198, 201, 198, 77, 6975, 605, 62, 14907, 62, 15699, 796, 4866, 20786, 7, 77, 6975, 605, 62, 17440, 62, 15699, 11, 705, 77, 6975, 605, 62, 14907, 62, 15699, 11537, 201, 198, 201, 198, 2, 14432, 37336, 329, 29052, 5499, 13, 201, 198, 77, 6975, 605, 62, 17440, 62, 15699, 13, 834, 15390, 834, 796, 29052, 62, 15390, 201, 198, 77, 6975, 605, 62, 14907, 62, 15699, 13, 834, 15390, 834, 796, 29052, 62, 15390, 13, 33491, 10786, 17440, 3256, 705, 14907, 11537, 201, 198, 22065, 15390, 796, 29052, 62, 15390, 13, 33491, 10786, 17440, 3256, 705, 14907, 11537, 201, 198, 22065, 15390, 796, 45218, 15390, 13, 33491, 10786, 77, 6975, 605, 62, 14907, 62, 15699, 3256, 705, 77, 6975, 605, 62, 16680, 798, 469, 62, 15699, 11537, 201, 198, 77, 6975, 605, 62, 16680, 798, 469, 62, 15699, 13, 834, 15390, 834, 796, 45218, 15390, 201, 198, 201, 198, 201, 198, 41357, 62, 15390, 796, 37227, 201, 198, 35561, 257, 7208, 2163, 329, 257, 14276, 11688, 13, 201, 198, 201, 198, 464, 1988, 7, 82, 8, 286, 262, 708, 81, 7, 82, 8, 389, 3688, 1262, 262, 7368, 201, 198, 3575, 2024, 13, 1002, 477, 262, 12608, 389, 4961, 11, 788, 262, 12006, 201, 198, 8818, 5860, 6407, 13, 201, 198, 201, 198, 48944, 201, 198, 35937, 201, 198, 35226, 1058, 4731, 930, 1351, 201, 198, 220, 220, 220, 383, 10139, 11688, 284, 8996, 11, 393, 257, 1351, 286, 10139, 12608, 201, 198, 220, 220, 220, 284, 8996, 13, 201, 198, 12286, 1058, 1988, 930, 1351, 201, 198, 220, 220, 220, 383, 4277, 1988, 329, 262, 10139, 11688, 11, 393, 257, 1351, 286, 201, 198, 220, 220, 220, 4277, 3815, 329, 262, 10139, 12608, 13, 201, 198, 404, 1058, 869, 540, 930, 1351, 201, 198, 220, 220, 220, 383, 10088, 284, 779, 618, 14176, 11688, 3815, 11, 393, 257, 1351, 201, 198, 220, 220, 220, 286, 12879, 284, 779, 618, 14176, 3815, 329, 1123, 11688, 13, 201, 198, 201, 198, 35561, 201, 198, 26866, 201, 198, 15699, 1058, 2163, 201, 198, 220, 220, 220, 383, 27658, 11, 14276, 4600, 17440, 62, 15699, 63, 2163, 13, 201, 198, 201, 198, 27730, 201, 198, 982, 201, 198, 33409, 422, 10088, 1330, 37430, 201, 198, 33409, 422, 3127, 87, 13, 282, 7727, 907, 13, 271, 25831, 1042, 13, 15699, 16794, 364, 1330, 1969, 201, 198, 33409, 422, 3127, 87, 13, 282, 7727, 907, 13, 271, 25831, 1042, 1330, 14276, 62, 17440, 62, 15699, 201, 198, 33409, 28642, 796, 14276, 62, 17440, 62, 15699, 10786, 6551, 3256, 352, 13, 15, 11, 1969, 8, 201, 198, 33409, 28642, 796, 14276, 62, 17440, 62, 15699, 10786, 8043, 3256, 705, 445, 3256, 37430, 8, 201, 198, 33409, 28642, 796, 14276, 62, 17440, 62, 15699, 7, 17816, 6551, 3256, 705, 8043, 6, 4357, 685, 16, 13, 15, 11, 705, 445, 6, 4357, 685, 19836, 11, 37430, 12962, 201, 198, 201, 198, 37811, 201, 198, 201, 198, 41357, 62, 14907, 62, 15699, 796, 4866, 20786, 7, 41357, 62, 17440, 62, 15699, 11, 705, 41357, 62, 14907, 62, 15699, 11537, 201, 198, 201, 198, 4299, 14276, 62, 16680, 798, 469, 62, 15699, 7, 35226, 11, 4277, 11, 1034, 2599, 201, 198, 220, 220, 220, 37227, 35561, 257, 7208, 2163, 329, 257, 14276, 11688, 13, 201, 198, 201, 198, 220, 220, 220, 383, 1988, 7, 82, 8, 286, 262, 708, 81, 7, 82, 8, 389, 3688, 1262, 262, 7368, 201, 198, 220, 220, 220, 12879, 13, 1002, 477, 262, 12608, 389, 4961, 11, 788, 262, 12006, 201, 198, 220, 220, 220, 2163, 5860, 6407, 13, 6902, 3746, 11, 262, 12006, 5743, 62, 15699, 201, 198, 220, 220, 220, 2163, 460, 307, 3105, 1201, 340, 1276, 11767, 326, 645, 318, 25831, 1042, 201, 198, 220, 220, 220, 7160, 1022, 262, 1963, 798, 3212, 878, 340, 5860, 10352, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 708, 81, 1058, 4731, 930, 1351, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5743, 11688, 284, 8996, 11, 393, 257, 1351, 286, 10139, 12608, 201, 198, 220, 220, 220, 220, 220, 220, 220, 284, 8996, 13, 201, 198, 220, 220, 220, 4277, 1058, 1988, 930, 1351, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 1988, 329, 262, 5743, 11688, 11, 393, 257, 1351, 286, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 3815, 329, 262, 288, 469, 1078, 7657, 13, 201, 198, 220, 220, 220, 1034, 1058, 869, 540, 930, 1351, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 10088, 284, 779, 618, 14176, 11688, 3815, 11, 393, 257, 1351, 201, 198, 220, 220, 220, 220, 220, 220, 220, 286, 12879, 284, 779, 618, 14176, 3815, 329, 1123, 11688, 13, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 2872, 1058, 2163, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 27658, 11, 14276, 4600, 14907, 62, 15699, 63, 2163, 13, 201, 198, 201, 198, 220, 220, 220, 21066, 201, 198, 220, 220, 220, 24200, 201, 198, 220, 220, 220, 13163, 422, 10088, 1330, 37430, 201, 198, 220, 220, 220, 13163, 422, 3127, 87, 13, 282, 7727, 907, 13, 271, 25831, 1042, 13, 15699, 16794, 364, 1330, 1969, 201, 198, 220, 220, 220, 13163, 422, 3127, 87, 13, 282, 7727, 907, 13, 271, 25831, 1042, 1330, 14276, 62, 17440, 62, 15699, 201, 198, 220, 220, 220, 13163, 28642, 796, 14276, 62, 17440, 62, 15699, 10786, 6551, 3256, 352, 13, 15, 11, 1969, 8, 201, 198, 220, 220, 220, 13163, 28642, 796, 14276, 62, 17440, 62, 15699, 10786, 8043, 3256, 705, 445, 3256, 37430, 8, 201, 198, 220, 220, 220, 13163, 28642, 796, 14276, 62, 17440, 62, 15699, 7, 17816, 6551, 3256, 705, 8043, 6, 4357, 201, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 13, 15, 11, 705, 445, 6, 4357, 201, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19836, 11, 37430, 12962, 201, 198, 220, 220, 220, 2644, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 1303, 770, 318, 3105, 11, 475, 14276, 13, 201, 198, 220, 220, 220, 1303, 775, 1276, 1332, 790, 1744, 318, 25831, 1042, 1022, 262, 13015, 13, 201, 198, 220, 220, 220, 611, 299, 87, 13, 26791, 13, 271, 62, 8841, 62, 2339, 7, 35226, 2599, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 708, 3808, 796, 1351, 7, 13344, 7, 35226, 11, 4277, 4008, 1303, 11361, 513, 201, 198, 220, 220, 220, 1441, 2872, 201, 198, 201, 198, 2, 14432, 37336, 329, 29052, 5499, 13, 201, 198, 41357, 62, 17440, 62, 15699, 13, 834, 15390, 834, 796, 14276, 62, 15390, 201, 198, 41357, 62, 14907, 62, 15699, 13, 834, 15390, 834, 796, 14276, 62, 15390, 13, 33491, 10786, 17440, 3256, 705, 14907, 11537, 201, 198, 201, 198 ]
2.740447
2,774
# Copyright (C) 2019-2020 HERE Europe B.V. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # License-Filename: LICENSE """This module defines API exceptions.""" class AuthenticationError(Exception): """Exception raised when authentication fails.""" pass class ApiError(Exception): """Exception raised for API HTTP response status codes not in [200...300). The exception value will be the response object returned by :mod:`requests` which provides access to all its attributes, eg. :attr:`status_code`, :attr:`reason` and :attr:`text`, etc. Example: >>> try: >>> api = HubApi(credentials="MY-XYZ-TOKEN") >>> api.get("/hub/nope").json() >>> except ApiError as e: >>> resp = e.value.args[0] >>> if resp.status_code == 404 and resp.reason == "Not Found": >>> ... """ def __str__(self): """Return a string from the HTTP response causing the exception. The string simply lists the repsonse's status code, reason and text content, separated with commas. """ resp = self.args[0] return f"{resp.status_code}, {resp.reason}, {resp.text}" class TooManyRequestsException(Exception): """Exception raised for API HTTP response status code 429. This is a dedicated exception to be used with the `backoff` package, because it requires a specific exception class. The exception value will be the response object returned by :mod:`requests` which provides access to all its attributes, eg. :attr:`status_code`, :attr:`reason` and :attr:`text`, etc. """ def __str__(self): """Return a string from the HTTP response causing the exception. The string simply lists the repsonse's status code, reason and text content, separated with commas. """ resp = self.args[0] return f"{resp.status_code}, {resp.reason}, {resp.text}"
[ 2, 15069, 357, 34, 8, 13130, 12, 42334, 15698, 2031, 347, 13, 53, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 198, 2, 13789, 12, 35063, 25, 38559, 24290, 198, 198, 37811, 1212, 8265, 15738, 7824, 13269, 526, 15931, 628, 198, 4871, 48191, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 16922, 4376, 618, 18239, 10143, 526, 15931, 628, 220, 220, 220, 1208, 628, 198, 4871, 5949, 72, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 16922, 4376, 329, 7824, 14626, 2882, 3722, 12416, 407, 287, 685, 2167, 986, 6200, 737, 628, 220, 220, 220, 383, 6631, 1988, 481, 307, 262, 2882, 2134, 4504, 416, 1058, 4666, 25, 63, 8897, 3558, 63, 198, 220, 220, 220, 543, 3769, 1895, 284, 477, 663, 12608, 11, 29206, 13, 1058, 35226, 25, 63, 13376, 62, 8189, 47671, 198, 220, 220, 220, 1058, 35226, 25, 63, 41181, 63, 290, 1058, 35226, 25, 63, 5239, 47671, 3503, 13, 628, 220, 220, 220, 17934, 25, 628, 220, 220, 220, 13163, 1949, 25, 198, 220, 220, 220, 13163, 220, 220, 220, 220, 40391, 796, 14699, 32, 14415, 7, 66, 445, 14817, 2625, 26708, 12, 34278, 57, 12, 10468, 43959, 4943, 198, 220, 220, 220, 13163, 220, 220, 220, 220, 40391, 13, 1136, 7203, 14, 40140, 14, 77, 3008, 11074, 17752, 3419, 198, 220, 220, 220, 13163, 2845, 5949, 72, 12331, 355, 304, 25, 198, 220, 220, 220, 13163, 220, 220, 220, 220, 1217, 796, 304, 13, 8367, 13, 22046, 58, 15, 60, 198, 220, 220, 220, 13163, 220, 220, 220, 220, 611, 1217, 13, 13376, 62, 8189, 6624, 32320, 290, 1217, 13, 41181, 6624, 366, 3673, 4062, 1298, 198, 220, 220, 220, 13163, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 4731, 422, 262, 14626, 2882, 6666, 262, 6631, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4731, 2391, 8341, 262, 20982, 2591, 338, 3722, 2438, 11, 1738, 290, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 11, 11266, 351, 725, 292, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13, 22046, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 1, 90, 4363, 13, 13376, 62, 8189, 5512, 1391, 4363, 13, 41181, 5512, 1391, 4363, 13, 5239, 36786, 628, 198, 4871, 14190, 7085, 16844, 3558, 16922, 7, 16922, 2599, 198, 220, 220, 220, 37227, 16922, 4376, 329, 7824, 14626, 2882, 3722, 2438, 42313, 13, 628, 220, 220, 220, 770, 318, 257, 7256, 6631, 284, 307, 973, 351, 262, 4600, 1891, 2364, 63, 5301, 11, 780, 198, 220, 220, 220, 340, 4433, 257, 2176, 6631, 1398, 13, 628, 220, 220, 220, 383, 6631, 1988, 481, 307, 262, 2882, 2134, 4504, 416, 1058, 4666, 25, 63, 8897, 3558, 63, 198, 220, 220, 220, 543, 3769, 1895, 284, 477, 663, 12608, 11, 29206, 13, 1058, 35226, 25, 63, 13376, 62, 8189, 47671, 198, 220, 220, 220, 1058, 35226, 25, 63, 41181, 63, 290, 1058, 35226, 25, 63, 5239, 47671, 3503, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 4731, 422, 262, 14626, 2882, 6666, 262, 6631, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4731, 2391, 8341, 262, 20982, 2591, 338, 3722, 2438, 11, 1738, 290, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 11, 11266, 351, 725, 292, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13, 22046, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 1, 90, 4363, 13, 13376, 62, 8189, 5512, 1391, 4363, 13, 41181, 5512, 1391, 4363, 13, 5239, 36786, 198 ]
3.043103
812
import configargparse import logging import os class StoreLoggingLevelAction(configargparse.Action): """This class converts string into logging level """ LEVELS = { 'CRITICAL': logging.CRITICAL, 'ERROR': logging.ERROR, 'WARNING': logging.WARNING, 'INFO': logging.INFO, 'DEBUG': logging.DEBUG, 'NOTSET': logging.NOTSET } CHOICES = list(LEVELS.keys()) + [str(_) for _ in LEVELS.values()] def __call__(self, parser, namespace, value, option_string=None): """This function gets the key 'value' in the LEVELS, or just uses value """ level = StoreLoggingLevelAction.LEVELS.get(value, value) setattr(namespace, self.dest, level) class CheckPathAction(configargparse.Action): """This class checks file path, if not exits, then create dir(file) """ def __call__(self, parser, namespace, value, option_string=None): """This function checks file path, if not exits, then create dir(file) """ parent_path = os.path.dirname(value) if not os.path.exists(parent_path): os.makedirs(parent_path) setattr(namespace, self.dest, value)
[ 11748, 4566, 853, 29572, 198, 11748, 18931, 198, 11748, 28686, 628, 198, 4871, 9363, 11187, 2667, 4971, 12502, 7, 11250, 853, 29572, 13, 12502, 2599, 198, 220, 220, 220, 37227, 1212, 1398, 26161, 4731, 656, 18931, 1241, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 49277, 50, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 2043, 20151, 10354, 18931, 13, 9419, 2043, 20151, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24908, 10354, 18931, 13, 24908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31502, 10354, 18931, 13, 31502, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 10778, 10354, 18931, 13, 10778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30531, 10354, 18931, 13, 30531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11929, 28480, 10354, 18931, 13, 11929, 28480, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 49143, 34444, 796, 1351, 7, 2538, 18697, 50, 13, 13083, 28955, 1343, 685, 2536, 28264, 8, 329, 4808, 287, 49277, 50, 13, 27160, 3419, 60, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 30751, 11, 25745, 11, 1988, 11, 3038, 62, 8841, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2163, 3011, 262, 1994, 705, 8367, 6, 287, 262, 49277, 50, 11, 393, 655, 3544, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 796, 9363, 11187, 2667, 4971, 12502, 13, 2538, 18697, 50, 13, 1136, 7, 8367, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 14933, 10223, 11, 2116, 13, 16520, 11, 1241, 8, 628, 198, 4871, 6822, 15235, 12502, 7, 11250, 853, 29572, 13, 12502, 2599, 198, 220, 220, 220, 37227, 1212, 1398, 8794, 2393, 3108, 11, 611, 407, 30151, 11, 788, 2251, 26672, 7, 7753, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 30751, 11, 25745, 11, 1988, 11, 3038, 62, 8841, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2163, 8794, 2393, 3108, 11, 611, 407, 30151, 11, 788, 2251, 26672, 7, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 8000, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 8000, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 14933, 10223, 11, 2116, 13, 16520, 11, 1988, 8, 198 ]
2.510373
482
# Copyright 2015, eBay Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.utils.translation import ugettext as _ from neutron_lbaas_dashboard import api from create_lb import * # noqa INDEX_URL = "horizon:projects:loadbalancersv2:index" READ_ONLY = {'readonly': 'readonly'}
[ 2, 220, 220, 220, 15069, 1853, 11, 21698, 3457, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 355, 4808, 198, 6738, 49810, 62, 75, 7012, 292, 62, 42460, 3526, 1330, 40391, 198, 6738, 2251, 62, 23160, 1330, 1635, 220, 1303, 645, 20402, 198, 198, 12115, 6369, 62, 21886, 796, 366, 17899, 8637, 25, 42068, 25, 2220, 6893, 20811, 85, 17, 25, 9630, 1, 628, 198, 15675, 62, 1340, 11319, 796, 1391, 6, 961, 8807, 10354, 705, 961, 8807, 6, 92, 628, 628, 628, 628 ]
3.188462
260
## @ CfgDataTool.py # # Copyright (c) 2017 - 2020, Intel Corporation. All rights reserved.<BR> # SPDX-License-Identifier: BSD-2-Clause-Patent # ## import sys import collections sys.dont_write_bytecode = True from IfwiUtility import * from CommonUtility import * CFGDATA_INT_GUID = b'\xD0\x6C\x6E\x01\x34\x48\x7E\x4C\xBC\xFE\x41\xDF\xB8\x8A\x6A\x6D' if __name__ == '__main__': sys.exit(Main())
[ 2235, 2488, 327, 40616, 6601, 25391, 13, 9078, 198, 2, 198, 2, 15069, 357, 66, 8, 2177, 532, 12131, 11, 8180, 10501, 13, 1439, 2489, 10395, 29847, 11473, 29, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 17, 12, 2601, 682, 12, 12130, 298, 198, 2, 198, 2235, 198, 11748, 25064, 198, 11748, 17268, 198, 198, 17597, 13, 67, 756, 62, 13564, 62, 26327, 8189, 796, 6407, 198, 6738, 220, 220, 1002, 37686, 18274, 879, 1330, 1635, 198, 6738, 220, 220, 8070, 18274, 879, 1330, 1635, 198, 198, 22495, 38, 26947, 62, 12394, 62, 38, 27586, 796, 275, 6, 59, 87, 35, 15, 59, 87, 21, 34, 59, 87, 21, 36, 59, 87, 486, 59, 87, 2682, 59, 87, 2780, 59, 87, 22, 36, 59, 87, 19, 34, 59, 87, 2749, 59, 87, 15112, 59, 87, 3901, 59, 87, 8068, 59, 87, 33, 23, 59, 87, 23, 32, 59, 87, 21, 32, 59, 87, 21, 35, 6, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 13383, 28955, 198 ]
2.188172
186
import win32serviceutil import win32service import win32event import servicemanager from eve_service import EveService if __name__ == '__main__': win32serviceutil.HandleCommandLine(EveWindowsService)
[ 11748, 1592, 2624, 15271, 22602, 198, 11748, 1592, 2624, 15271, 198, 11748, 1592, 2624, 15596, 198, 11748, 37756, 8463, 3536, 198, 198, 6738, 28001, 62, 15271, 1330, 12882, 16177, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1592, 2624, 15271, 22602, 13, 37508, 21575, 13949, 7, 36, 303, 11209, 16177, 8, 198 ]
3.409836
61
# Copyright (c) 2020 Marco Mangan <[email protected]> # License: BSD 3 clause from dyrapy.datasets import load_ouvidoria
[ 2, 15069, 357, 66, 8, 12131, 16556, 27609, 272, 1279, 3876, 1073, 13, 76, 37089, 31, 14816, 13, 785, 29, 198, 2, 13789, 25, 347, 10305, 513, 13444, 198, 198, 6738, 20268, 2416, 88, 13, 19608, 292, 1039, 1330, 3440, 62, 280, 16921, 7661, 628 ]
2.844444
45
import os import glob import json import tflit import pytest import numpy as np model_dir = os.path.join(os.path.dirname(__file__), 'models') model_file = os.path.join(model_dir, '{}.tflite') model_info_file = os.path.join(model_dir, '{}.json') @pytest.mark.parametrize('name', [ os.path.splitext(os.path.basename(f))[0] for f in glob.glob(model_file.format('*')) ]) # Utilities
[ 11748, 28686, 198, 11748, 15095, 198, 11748, 33918, 198, 11748, 256, 2704, 270, 198, 11748, 12972, 9288, 198, 11748, 299, 32152, 355, 45941, 628, 198, 19849, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 27530, 11537, 198, 19849, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 19849, 62, 15908, 11, 705, 90, 27422, 83, 2704, 578, 11537, 198, 19849, 62, 10951, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 19849, 62, 15908, 11, 705, 90, 27422, 17752, 11537, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 3672, 3256, 685, 198, 220, 220, 220, 28686, 13, 6978, 13, 22018, 578, 742, 7, 418, 13, 6978, 13, 12093, 12453, 7, 69, 4008, 58, 15, 60, 198, 220, 220, 220, 329, 277, 287, 15095, 13, 4743, 672, 7, 19849, 62, 7753, 13, 18982, 10786, 9, 6, 4008, 198, 12962, 628, 628, 198, 198, 2, 41086, 628, 198 ]
2.418182
165
import argparse from core.game_looper import GameLooper if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run the Adversarial Game Server.") parser.add_argument('--port', '--p', type=int, default=8080, help='Port to run the server on') parser.add_argument('--game-file', default='sample/advshort.txt', help='The game layout file to be loaded.') args = parser.parse_args() game = GameLooper('', args.port, args.game_file) game.run_game_loop()
[ 11748, 1822, 29572, 198, 198, 6738, 4755, 13, 6057, 62, 5439, 3575, 1330, 3776, 27654, 3575, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 10987, 262, 1215, 690, 36098, 3776, 9652, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 634, 3256, 705, 438, 79, 3256, 2099, 28, 600, 11, 4277, 28, 1795, 1795, 11, 1037, 11639, 13924, 284, 1057, 262, 4382, 319, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 6057, 12, 7753, 3256, 4277, 11639, 39873, 14, 32225, 19509, 13, 14116, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 464, 983, 12461, 2393, 284, 307, 9639, 2637, 8, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 983, 796, 3776, 27654, 3575, 10786, 3256, 26498, 13, 634, 11, 26498, 13, 6057, 62, 7753, 8, 198, 220, 220, 220, 983, 13, 5143, 62, 6057, 62, 26268, 3419, 198 ]
2.712042
191
""" Functions related user logins, signups, password authentications, logouts, etc ... """ from lib_db import User, UserID, Group, VerifyUser from google.appengine.api import mail import hashlib import random import re import string import stripe PASS_RE = re.compile(r"^.{3,20}$") EMAIL_RE = re.compile(r"^[\S]+@[\S]+\.[\S]+$") # Define an exception for authentication errors def get_cookie_string(email): """ Creates a cookie string to use for authenticating users. user_id|encrypted_password """ user = User.all().filter("email =", email).fetch(1)[0] name = 'user' value = str(user.user_id) + '|' + str(user.password) return '%s=%s; Path=/' % (name, value) def make_salt(): """ Create a random string to salt up the encryption """ return ''.join( [random.choice(string.letters + string.digits) for i in range(10)]) def encrypt_password(password, salt): """ Encrypts a password with sha256, but should be upgraded to bcrypt once google has that python library in app engine. """ return hashlib.sha256(password + salt).hexdigest() def make_userid(): """ Generates the next user id number from the database. """ uid = UserID.all().fetch(1) if not len(uid): uid = UserID(next_id=1) else: uid = uid[0] # update ids current_id = uid.next_id next_id = current_id + 1 uid.next_id = next_id uid.put() return current_id def signup(email, password, parent=None): """ Checks for valid inputs then adds a user to the User database. """ exists = User.all().ancestor(parent).filter("email =", email) if (exists.fetch(1)): raise AuthExcept("Account Exists") if not EMAIL_RE.match(email): raise AuthExcept("Invalid Email") if not PASS_RE.match(password): raise AuthExcept("Invalid Password") salt = make_salt() encrypted_password = encrypt_password(password, salt) temp_id = hashlib.sha256(make_salt()).hexdigest() # Set up groups. See if the email domain exists groups = ['public'] domain = email.split('@')[1] g = Group.all().ancestor(parent).filter("name =", domain).fetch(1) if g: groups.append(domain) user = VerifyUser(email=email, password=encrypted_password, salt=salt, temp_id=temp_id, group=groups, parent=parent) user.put() print("http://modelr.io/verify_email?user_id=%s" % str(user.temp_id)) mail.send_mail(sender="Hello <[email protected]>", to="<%s>" % user.email, subject="Modelr email verification", body=""" Welcome to Modelr! We need to verify your email address. Click the link below to validate your account and continue to billing. http://modelr.io/verify_email?user_id=%s Cheers, Matt, Evan, and Ben """ % str(user.temp_id)) return temp_id def verify_signup(user_id, parent): """ Checks that a user id is in the queue to be added. The temporary user id is sent through email verification. Raises a AuthExcept if the id is invalid, otherwise returns the temporary user object from the database. :param user_id: User id from email verification :param parent: Ancestor database of the temporary user :returns the temporary user object. """ u = VerifyUser.all().ancestor(parent).filter("temp_id =", user_id) verified_user = u.fetch(1) # Check for success if not verified_user: raise AuthExcept("Verification Failed") return verified_user[0] def initialize_user(email, stripe_id, parent, tax_code, price, tax): """ Takes a verified user email from the authentication queue and adds it to the permanent database with a stripe id. :param verified_email: email of the verified user to add. :param stripe_id: The stripe customer id of the user. :param parent: The ancestor database key to use for the database. :param tax_code: The tax code for the user (province abbrieviation) """ verified_filter = VerifyUser.all()\ .ancestor(parent)\ .filter("email =", email) verified_user = verified_filter.fetch(1) if not verified_user: raise AuthExcept("verification failed") verified_user = verified_user[0] # Make new user and populate user = User(parent=parent) user.user_id = make_userid() user.email = verified_user.email user.password = verified_user.password user.salt = verified_user.salt user.group = verified_user.group user.stripe_id = stripe_id user.tax_code = tax_code for group in user.group: g = Group.all().ancestor(parent).filter("name =", group).fetch(1) g[0].allowed_users.append(user.user_id) g[0].put() user.put() # remove the temporary user from the queue verified_user.delete() # send a payment confirmation email mail.send_mail(sender="Hello <[email protected]>", to="<%s>" % user.email, subject="Modelr subscription confirmation", body=""" Welcome to Modelr! You are now subscribed to Modelr! Your receipt is below. To unsubscribe, please reply to this email or log in to Modelr and check your user settings. Cheers, Matt, Evan, and Ben ======================= modelr.io ======================= Monthly fee USD{0:.2f} Sales tax USD{1:.2f} Total USD{2:.2f} ======================== Modelr is a product of Agile Geoscience Ltd Nova Scotia - Canada Canada Revenue Agency reg # 840217913RT0001 ======================== """.format(price/100., tax/100., (price+tax)/100.)) def signin(email, password, parent): """ Checks if a email and password are valid. Will throw a AuthExcept if they are not. """ user = User.all().ancestor(parent).filter("email =", email).fetch(1) if not user: raise AuthExcept('invalid email') user = user[0] encrypted_password = encrypt_password(password, user.salt) if not encrypted_password == user.password: raise AuthExcept('invalid password') def verify(userid, password, ancestor): """ Verifies that the userid and encrypted password from a cookie match the database """ try: user = User.all().ancestor(ancestor)\ .filter("user_id =", int(userid)).fetch(1)[0] verified = (user.password == password) return user except IndexError: verified = False def authenticate(func): """ Wrapper function for methods that require a logged in user """ return authenticate_and_call def send_message(subject, message): """ Sends us a message from a user or non-user. """ # send the message mail.send_mail(sender="Hello <[email protected]>", to="[email protected]", subject=subject, body=message) def forgot_password(email, parent): """ Sets a new password after the user forgot it. """ user = User.all().ancestor(parent).filter("email =", email).fetch(1) if not user: raise AuthExcept('invalid email') user = user[0] new = generate_password() # send a new password email mail.send_mail(sender="Hello <[email protected]>", to="<%s>" % user.email, subject="Modelr password reset", body=""" Here's your new password! %s Please sign in with this new password, and then change it in your profile page. http://modelr.io/signin?redirect=settings Cheers, Matt, Evan, and Ben """ % new ) # Change it in the database user.password = encrypt_password(new, user.salt) user.put() def reset_password(user, current_pword, new_password, verify): """ Resets the password at the user's request. :param user: The user database object requesting the password change. :param current_pword: The user's current password to verify. :param new_password: The user's new password. :param verify: The new password verification. """ # This check should be done in the javascript on the page if new_password != verify: raise AuthExcept("New password verification failed") # Check if the original password matches the database if encrypt_password(current_pword, user.salt) != user.password: raise AuthExcept("Incorrect password") # Update the password in the database user.password = encrypt_password(new_password, user.salt) # Save it in the database user.put() def cancel_subscription(user): """ Delete the user. See notes in DeleteHandler() in main.py """ try: stripe_customer = stripe.Customer.retrieve(user.stripe_id) # Check for extra invoices, ie Taxes, that also need # to be cancelled. invoice_items = stripe.InvoiceItem.all(customer=stripe_customer) for invoice in invoice_items.data: invoice_id = invoice["id"] # get the invoice and delete it if we can invoice_obj = stripe.InvoiceItem.retrieve(invoice_id) try: invoice_obj.delete() except: msg = """ invoice # {0} not deleted from stripe id {1} """.format(invoice_id, user.stripe_id) send_message("invoice not deleted", msg) sub_id = stripe_customer.subscriptions["data"][0]["id"] stripe_customer.subscriptions\ .retrieve(sub_id).delete(at_period_end=True) user.unsubscribed = True user.put() # TODO MailChimp except Exception as e: print e raise AuthExcept("Failed to unsubscribe user: " + user.email) mail.send_mail(sender="Hello <[email protected]>", to="<%s>" % user.email, subject="Modelr account deleted", body=""" You have unsubscribed from Modelr. Your account will be deleted at the end of the billing cycle. Thank you for using Modelr. We hope to meet again some day. Cheers, Matt, Evan, and Ben """)
[ 37811, 198, 24629, 2733, 3519, 2836, 2604, 1040, 11, 1051, 4739, 11, 9206, 8323, 3736, 11, 198, 6404, 5269, 11, 3503, 2644, 198, 37811, 198, 6738, 9195, 62, 9945, 1330, 11787, 11, 11787, 2389, 11, 4912, 11, 49899, 12982, 198, 6738, 23645, 13, 1324, 18392, 13, 15042, 1330, 6920, 198, 11748, 12234, 8019, 198, 11748, 4738, 198, 11748, 302, 198, 11748, 4731, 198, 11748, 39858, 198, 198, 47924, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 13, 90, 18, 11, 1238, 92, 3, 4943, 198, 27630, 4146, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 58, 59, 50, 48688, 31, 58, 59, 50, 48688, 59, 3693, 59, 50, 48688, 3, 4943, 628, 198, 2, 2896, 500, 281, 6631, 329, 18239, 8563, 628, 198, 4299, 651, 62, 44453, 62, 8841, 7, 12888, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 19751, 4731, 284, 779, 329, 8323, 12364, 2985, 13, 198, 220, 220, 220, 2836, 62, 312, 91, 43628, 62, 28712, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2836, 796, 11787, 13, 439, 22446, 24455, 7203, 12888, 796, 1600, 3053, 737, 69, 7569, 7, 16, 38381, 15, 60, 198, 220, 220, 220, 1438, 796, 705, 7220, 6, 198, 220, 220, 220, 1988, 796, 965, 7, 7220, 13, 7220, 62, 312, 8, 1343, 705, 91, 6, 1343, 965, 7, 7220, 13, 28712, 8, 198, 220, 220, 220, 1441, 705, 4, 82, 28, 4, 82, 26, 10644, 33223, 6, 4064, 357, 3672, 11, 1988, 8, 628, 198, 4299, 787, 62, 82, 2501, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 4738, 4731, 284, 8268, 510, 262, 15835, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 705, 4458, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 25120, 13, 25541, 7, 8841, 13, 15653, 1343, 4731, 13, 12894, 896, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 8, 12962, 628, 198, 4299, 34117, 62, 28712, 7, 28712, 11, 8268, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14711, 6012, 82, 257, 9206, 351, 427, 64, 11645, 11, 475, 815, 307, 17955, 284, 275, 29609, 198, 220, 220, 220, 1752, 23645, 468, 326, 21015, 5888, 287, 598, 3113, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 12234, 8019, 13, 26270, 11645, 7, 28712, 1343, 8268, 737, 33095, 12894, 395, 3419, 628, 198, 4299, 787, 62, 7220, 312, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 689, 262, 1306, 2836, 4686, 1271, 422, 262, 6831, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 334, 312, 796, 11787, 2389, 13, 439, 22446, 69, 7569, 7, 16, 8, 198, 220, 220, 220, 611, 407, 18896, 7, 27112, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 334, 312, 796, 11787, 2389, 7, 19545, 62, 312, 28, 16, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 334, 312, 796, 334, 312, 58, 15, 60, 628, 220, 220, 220, 1303, 4296, 220, 2340, 198, 220, 220, 220, 1459, 62, 312, 796, 334, 312, 13, 19545, 62, 312, 198, 220, 220, 220, 1306, 62, 312, 796, 1459, 62, 312, 1343, 352, 198, 220, 220, 220, 334, 312, 13, 19545, 62, 312, 796, 1306, 62, 312, 628, 220, 220, 220, 334, 312, 13, 1996, 3419, 628, 220, 220, 220, 1441, 1459, 62, 312, 628, 198, 198, 4299, 1051, 929, 7, 12888, 11, 9206, 11, 2560, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 329, 4938, 17311, 788, 6673, 257, 2836, 284, 262, 11787, 6831, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 7160, 796, 11787, 13, 439, 22446, 1192, 395, 273, 7, 8000, 737, 24455, 7203, 12888, 796, 1600, 3053, 8, 198, 220, 220, 220, 611, 357, 1069, 1023, 13, 69, 7569, 7, 16, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 7203, 30116, 1475, 1023, 4943, 628, 220, 220, 220, 611, 407, 412, 5673, 4146, 62, 2200, 13, 15699, 7, 12888, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 7203, 44651, 9570, 4943, 628, 220, 220, 220, 611, 407, 41752, 62, 2200, 13, 15699, 7, 28712, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 7203, 44651, 30275, 4943, 628, 220, 220, 220, 8268, 796, 787, 62, 82, 2501, 3419, 198, 220, 220, 220, 19365, 62, 28712, 796, 34117, 62, 28712, 7, 28712, 11, 8268, 8, 198, 220, 220, 220, 20218, 62, 312, 796, 12234, 8019, 13, 26270, 11645, 7, 15883, 62, 82, 2501, 3419, 737, 33095, 12894, 395, 3419, 628, 220, 220, 220, 1303, 5345, 510, 2628, 13, 4091, 611, 262, 3053, 7386, 7160, 198, 220, 220, 220, 2628, 796, 37250, 11377, 20520, 198, 220, 220, 220, 7386, 796, 3053, 13, 35312, 10786, 31, 11537, 58, 16, 60, 198, 220, 220, 220, 308, 796, 4912, 13, 439, 22446, 1192, 395, 273, 7, 8000, 737, 24455, 7203, 3672, 796, 1600, 7386, 737, 69, 7569, 7, 16, 8, 628, 220, 220, 220, 611, 308, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2628, 13, 33295, 7, 27830, 8, 198, 220, 220, 220, 2836, 796, 49899, 12982, 7, 12888, 28, 12888, 11, 9206, 28, 43628, 62, 28712, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8268, 28, 82, 2501, 11, 20218, 62, 312, 28, 29510, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 28, 24432, 11, 2560, 28, 8000, 8, 198, 220, 220, 220, 2836, 13, 1996, 3419, 628, 220, 220, 220, 3601, 7203, 4023, 1378, 19849, 81, 13, 952, 14, 332, 1958, 62, 12888, 30, 7220, 62, 312, 28, 4, 82, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 7220, 13, 29510, 62, 312, 4008, 198, 220, 220, 220, 6920, 13, 21280, 62, 4529, 7, 82, 2194, 2625, 15496, 1279, 31373, 31, 19849, 81, 13, 952, 29, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 2625, 27, 4, 82, 24618, 4064, 2836, 13, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 2625, 17633, 81, 3053, 19637, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 2625, 15931, 198, 14618, 284, 9104, 81, 0, 198, 198, 1135, 761, 284, 11767, 534, 3053, 2209, 13, 6914, 262, 2792, 2174, 284, 26571, 534, 1848, 290, 2555, 284, 26297, 13, 220, 628, 220, 2638, 1378, 19849, 81, 13, 952, 14, 332, 1958, 62, 12888, 30, 7220, 62, 312, 28, 4, 82, 198, 198, 7376, 364, 11, 198, 13448, 11, 21523, 11, 290, 3932, 198, 37811, 4064, 965, 7, 7220, 13, 29510, 62, 312, 4008, 198, 220, 220, 220, 1441, 20218, 62, 312, 628, 198, 4299, 11767, 62, 12683, 929, 7, 7220, 62, 312, 11, 2560, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 326, 257, 2836, 4686, 318, 287, 262, 16834, 284, 307, 2087, 13, 383, 8584, 198, 220, 220, 220, 2836, 4686, 318, 1908, 832, 3053, 19637, 13, 7567, 2696, 257, 26828, 30313, 611, 198, 220, 220, 220, 262, 4686, 318, 12515, 11, 4306, 5860, 262, 8584, 2836, 2134, 198, 220, 220, 220, 422, 262, 6831, 13, 628, 220, 220, 220, 1058, 17143, 2836, 62, 312, 25, 11787, 4686, 422, 3053, 19637, 198, 220, 220, 220, 1058, 17143, 2560, 25, 31200, 273, 6831, 286, 262, 8584, 2836, 628, 220, 220, 220, 1058, 7783, 82, 262, 8584, 2836, 2134, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 334, 796, 49899, 12982, 13, 439, 22446, 1192, 395, 273, 7, 8000, 737, 24455, 7203, 29510, 62, 312, 796, 1600, 2836, 62, 312, 8, 198, 220, 220, 220, 19000, 62, 7220, 796, 334, 13, 69, 7569, 7, 16, 8, 628, 220, 220, 220, 1303, 6822, 329, 1943, 198, 220, 220, 220, 611, 407, 19000, 62, 7220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 7203, 13414, 2649, 22738, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 19000, 62, 7220, 58, 15, 60, 628, 198, 4299, 41216, 62, 7220, 7, 12888, 11, 39858, 62, 312, 11, 2560, 11, 1687, 62, 8189, 11, 2756, 11, 1687, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 257, 19000, 2836, 3053, 422, 262, 18239, 16834, 290, 6673, 198, 220, 220, 220, 340, 284, 262, 7748, 6831, 351, 257, 39858, 4686, 13, 628, 220, 220, 220, 1058, 17143, 19000, 62, 12888, 25, 3053, 286, 262, 19000, 2836, 284, 751, 13, 198, 220, 220, 220, 1058, 17143, 39858, 62, 312, 25, 383, 39858, 6491, 4686, 286, 262, 2836, 13, 198, 220, 220, 220, 1058, 17143, 2560, 25, 383, 31836, 6831, 1994, 284, 779, 329, 262, 6831, 13, 198, 220, 220, 220, 1058, 17143, 1687, 62, 8189, 25, 383, 1687, 2438, 329, 262, 2836, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15234, 924, 450, 65, 380, 1990, 3920, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19000, 62, 24455, 796, 49899, 12982, 13, 439, 3419, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 1192, 395, 273, 7, 8000, 19415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7203, 12888, 796, 1600, 3053, 8, 198, 220, 220, 220, 19000, 62, 7220, 796, 19000, 62, 24455, 13, 69, 7569, 7, 16, 8, 628, 220, 220, 220, 611, 407, 19000, 62, 7220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 7203, 332, 2649, 4054, 4943, 628, 220, 220, 220, 19000, 62, 7220, 796, 19000, 62, 7220, 58, 15, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6889, 649, 2836, 290, 48040, 198, 220, 220, 220, 2836, 796, 11787, 7, 8000, 28, 8000, 8, 198, 220, 220, 220, 2836, 13, 7220, 62, 312, 796, 787, 62, 7220, 312, 3419, 198, 220, 220, 220, 2836, 13, 12888, 796, 19000, 62, 7220, 13, 12888, 198, 220, 220, 220, 2836, 13, 28712, 796, 19000, 62, 7220, 13, 28712, 198, 220, 220, 220, 2836, 13, 82, 2501, 796, 19000, 62, 7220, 13, 82, 2501, 198, 220, 220, 220, 2836, 13, 8094, 796, 19000, 62, 7220, 13, 8094, 198, 220, 220, 220, 2836, 13, 33565, 431, 62, 312, 796, 39858, 62, 312, 198, 220, 220, 220, 2836, 13, 19290, 62, 8189, 796, 1687, 62, 8189, 628, 220, 220, 220, 329, 1448, 287, 2836, 13, 8094, 25, 198, 220, 220, 220, 220, 220, 220, 220, 308, 796, 4912, 13, 439, 22446, 1192, 395, 273, 7, 8000, 737, 24455, 7203, 3672, 796, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 737, 69, 7569, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 58, 15, 4083, 40845, 62, 18417, 13, 33295, 7, 7220, 13, 7220, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 58, 15, 4083, 1996, 3419, 198, 220, 220, 220, 2836, 13, 1996, 3419, 628, 220, 220, 220, 1303, 4781, 262, 8584, 2836, 422, 262, 16834, 198, 220, 220, 220, 19000, 62, 7220, 13, 33678, 3419, 628, 220, 220, 220, 1303, 3758, 257, 6074, 12641, 3053, 198, 220, 220, 220, 6920, 13, 21280, 62, 4529, 7, 82, 2194, 2625, 15496, 1279, 31373, 31, 19849, 81, 13, 952, 29, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 2625, 27, 4, 82, 24618, 4064, 2836, 13, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 2625, 17633, 81, 14569, 12641, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 2625, 15931, 198, 14618, 284, 9104, 81, 0, 198, 198, 1639, 389, 783, 45794, 284, 9104, 81, 0, 3406, 14507, 318, 2174, 13, 198, 198, 2514, 32793, 12522, 11, 3387, 10971, 284, 428, 3053, 393, 2604, 287, 284, 9104, 81, 290, 2198, 534, 2836, 6460, 13, 198, 198, 7376, 364, 11, 198, 13448, 11, 21523, 11, 290, 3932, 628, 198, 4770, 1421, 18604, 198, 220, 220, 220, 220, 220, 220, 2746, 81, 13, 952, 198, 4770, 1421, 18604, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 27573, 6838, 11403, 90, 15, 25, 13, 17, 69, 92, 198, 220, 220, 198, 220, 17329, 1687, 220, 220, 11403, 90, 16, 25, 13, 17, 69, 92, 198, 220, 220, 198, 220, 7472, 220, 220, 220, 220, 220, 220, 11403, 90, 17, 25, 13, 17, 69, 92, 198, 220, 220, 198, 4770, 2559, 198, 9104, 81, 318, 257, 1720, 286, 198, 220, 2449, 576, 2269, 418, 4234, 12052, 198, 220, 17711, 32586, 532, 3340, 198, 220, 220, 198, 3340, 20197, 7732, 198, 842, 1303, 807, 32531, 21738, 1485, 14181, 18005, 198, 4770, 2559, 198, 15931, 1911, 18982, 7, 20888, 14, 3064, 1539, 1687, 14, 3064, 1539, 357, 20888, 10, 19290, 20679, 3064, 2014, 8, 198, 198, 4299, 1051, 259, 7, 12888, 11, 9206, 11, 2560, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 611, 257, 3053, 290, 9206, 389, 4938, 13, 2561, 3714, 257, 26828, 30313, 198, 220, 220, 220, 611, 484, 389, 407, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2836, 796, 11787, 13, 439, 22446, 1192, 395, 273, 7, 8000, 737, 24455, 7203, 12888, 796, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 737, 69, 7569, 7, 16, 8, 198, 220, 220, 220, 611, 407, 2836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 10786, 259, 12102, 3053, 11537, 198, 220, 220, 220, 2836, 796, 2836, 58, 15, 60, 628, 220, 220, 220, 19365, 62, 28712, 796, 34117, 62, 28712, 7, 28712, 11, 2836, 13, 82, 2501, 8, 198, 220, 220, 220, 611, 407, 19365, 62, 28712, 6624, 2836, 13, 28712, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 10786, 259, 12102, 9206, 11537, 628, 220, 220, 220, 220, 198, 4299, 11767, 7, 7220, 312, 11, 9206, 11, 31836, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4643, 6945, 326, 262, 2836, 312, 290, 19365, 9206, 422, 257, 19751, 198, 220, 220, 220, 2872, 262, 6831, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 11787, 13, 439, 22446, 1192, 395, 273, 7, 1192, 395, 273, 19415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7203, 7220, 62, 312, 796, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 7220, 312, 29720, 69, 7569, 7, 16, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 19000, 796, 357, 7220, 13, 28712, 6624, 9206, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2836, 198, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19000, 796, 10352, 628, 198, 4299, 8323, 5344, 7, 20786, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27323, 2848, 2163, 329, 5050, 326, 2421, 257, 18832, 287, 198, 220, 220, 220, 2836, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 8323, 5344, 62, 392, 62, 13345, 628, 198, 4299, 3758, 62, 20500, 7, 32796, 11, 3275, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 311, 2412, 514, 257, 3275, 422, 257, 2836, 393, 1729, 12, 7220, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3758, 262, 3275, 198, 220, 220, 220, 6920, 13, 21280, 62, 4529, 7, 82, 2194, 2625, 15496, 1279, 31373, 31, 19849, 81, 13, 952, 29, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 2625, 31373, 31, 19849, 81, 13, 952, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 20500, 8, 628, 198, 4299, 16453, 62, 28712, 7, 12888, 11, 2560, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21394, 257, 649, 9206, 706, 262, 2836, 16453, 340, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2836, 796, 11787, 13, 439, 22446, 1192, 395, 273, 7, 8000, 737, 24455, 7203, 12888, 796, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 737, 69, 7569, 7, 16, 8, 198, 220, 220, 220, 611, 407, 2836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 10786, 259, 12102, 3053, 11537, 198, 220, 220, 220, 2836, 796, 2836, 58, 15, 60, 198, 220, 220, 220, 649, 796, 7716, 62, 28712, 3419, 628, 220, 220, 220, 1303, 3758, 257, 649, 9206, 3053, 198, 220, 220, 220, 6920, 13, 21280, 62, 4529, 7, 82, 2194, 2625, 15496, 1279, 31373, 31, 19849, 81, 13, 952, 29, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 2625, 27, 4, 82, 24618, 4064, 2836, 13, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 2625, 17633, 81, 9206, 13259, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 2625, 15931, 198, 4342, 338, 534, 649, 9206, 0, 628, 220, 220, 220, 4064, 82, 198, 220, 220, 220, 220, 198, 5492, 1051, 287, 351, 428, 649, 9206, 11, 290, 788, 1487, 340, 287, 534, 198, 13317, 2443, 13, 628, 220, 2638, 1378, 19849, 81, 13, 952, 14, 12683, 259, 30, 445, 1060, 28, 33692, 198, 198, 7376, 364, 11, 198, 13448, 11, 21523, 11, 290, 3932, 198, 37811, 4064, 649, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 9794, 340, 287, 262, 6831, 198, 220, 220, 220, 2836, 13, 28712, 796, 34117, 62, 28712, 7, 3605, 11, 2836, 13, 82, 2501, 8, 198, 220, 220, 220, 2836, 13, 1996, 3419, 628, 198, 4299, 13259, 62, 28712, 7, 7220, 11, 1459, 62, 79, 4775, 11, 649, 62, 28712, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11767, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1874, 1039, 262, 9206, 379, 262, 2836, 338, 2581, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17143, 2836, 25, 383, 2836, 6831, 2134, 20623, 262, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1487, 13, 198, 220, 220, 220, 1058, 17143, 1459, 62, 79, 4775, 25, 383, 2836, 338, 1459, 9206, 284, 11767, 13, 198, 220, 220, 220, 1058, 17143, 649, 62, 28712, 25, 383, 2836, 338, 649, 9206, 13, 198, 220, 220, 220, 1058, 17143, 11767, 25, 383, 649, 9206, 19637, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 770, 2198, 815, 307, 1760, 287, 262, 44575, 319, 262, 2443, 198, 220, 220, 220, 611, 649, 62, 28712, 14512, 11767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 7203, 3791, 9206, 19637, 4054, 4943, 628, 220, 220, 220, 1303, 6822, 611, 262, 2656, 9206, 7466, 262, 6831, 198, 220, 220, 220, 611, 34117, 62, 28712, 7, 14421, 62, 79, 4775, 11, 2836, 13, 82, 2501, 8, 14512, 2836, 13, 28712, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 7203, 818, 30283, 9206, 4943, 628, 220, 220, 220, 1303, 10133, 262, 9206, 287, 262, 6831, 198, 220, 220, 220, 2836, 13, 28712, 796, 34117, 62, 28712, 7, 3605, 62, 28712, 11, 2836, 13, 82, 2501, 8, 628, 220, 220, 220, 1303, 12793, 340, 287, 262, 6831, 198, 220, 220, 220, 2836, 13, 1996, 3419, 628, 198, 4299, 14241, 62, 7266, 33584, 7, 7220, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23520, 262, 2836, 13, 4091, 4710, 287, 23520, 25060, 3419, 287, 1388, 13, 9078, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 39858, 62, 23144, 263, 796, 39858, 13, 44939, 13, 1186, 30227, 7, 7220, 13, 33565, 431, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 329, 3131, 800, 78, 1063, 11, 37941, 42260, 11, 326, 635, 761, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 307, 16769, 13, 198, 220, 220, 220, 220, 220, 220, 220, 45458, 62, 23814, 796, 39858, 13, 19904, 2942, 7449, 13, 439, 7, 23144, 263, 28, 33565, 431, 62, 23144, 263, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 45458, 287, 45458, 62, 23814, 13, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45458, 62, 312, 796, 45458, 14692, 312, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 262, 45458, 290, 12233, 340, 611, 356, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45458, 62, 26801, 796, 39858, 13, 19904, 2942, 7449, 13, 1186, 30227, 7, 16340, 2942, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45458, 62, 26801, 13, 33678, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45458, 1303, 1391, 15, 92, 407, 13140, 422, 39858, 4686, 1391, 16, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1911, 18982, 7, 16340, 2942, 62, 312, 11, 2836, 13, 33565, 431, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3758, 62, 20500, 7203, 16340, 2942, 407, 13140, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 8, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 312, 796, 39858, 62, 23144, 263, 13, 7266, 12048, 507, 14692, 7890, 1, 7131, 15, 7131, 1, 312, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 39858, 62, 23144, 263, 13, 7266, 12048, 507, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 1186, 30227, 7, 7266, 62, 312, 737, 33678, 7, 265, 62, 41007, 62, 437, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 403, 7266, 47495, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 1996, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 11099, 1925, 11011, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 304, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26828, 30313, 7203, 37, 6255, 284, 32793, 12522, 2836, 25, 366, 1343, 2836, 13, 12888, 8, 198, 220, 220, 220, 6920, 13, 21280, 62, 4529, 7, 82, 2194, 2625, 15496, 1279, 31373, 31, 19849, 81, 13, 952, 29, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 2625, 27, 4, 82, 24618, 4064, 2836, 13, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 2625, 17633, 81, 1848, 13140, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 2625, 15931, 198, 1639, 423, 32793, 47495, 422, 9104, 81, 13, 3406, 1848, 481, 307, 13140, 198, 265, 262, 886, 286, 262, 26297, 6772, 13, 198, 198, 10449, 345, 329, 1262, 9104, 81, 13, 775, 2911, 284, 1826, 757, 617, 1110, 13, 198, 198, 7376, 364, 11, 198, 13448, 11, 21523, 11, 290, 3932, 198, 15931, 4943, 198 ]
2.439092
4,318
from pymodbus.client.sync import ModbusSerialClient client = ModbusSerialClient( method='rtu', port='/dev/ttyS0', baudrate=9600, timeout=3, parity='N', stopbits=1, bytesize=8 ) if client.connect(): # Trying for connect to Modbus Server/Slave '''Reading from a holding register with the below content.''' res = client.read_holding_registers(address=1, count=1, unit=1) '''Reading from a discrete register with the below content.''' # res = client.read_discrete_inputs(address=1, count=1, unit=1) if not res.isError(): print(res.registers) else: print(res) else: print('Cannot connect to the Modbus Server/Slave')
[ 6738, 12972, 4666, 10885, 13, 16366, 13, 27261, 1330, 3401, 10885, 32634, 11792, 198, 198, 16366, 796, 3401, 10885, 32634, 11792, 7, 198, 220, 220, 220, 2446, 11639, 17034, 84, 3256, 198, 220, 220, 220, 2493, 11639, 14, 7959, 14, 42852, 50, 15, 3256, 198, 220, 220, 220, 275, 3885, 4873, 28, 4846, 405, 11, 198, 220, 220, 220, 26827, 28, 18, 11, 198, 220, 220, 220, 34383, 11639, 45, 3256, 198, 220, 220, 220, 2245, 9895, 28, 16, 11, 198, 220, 220, 220, 9881, 1096, 28, 23, 198, 8, 198, 198, 361, 5456, 13, 8443, 33529, 220, 1303, 31165, 329, 2018, 284, 3401, 10885, 9652, 14, 11122, 1015, 198, 220, 220, 220, 705, 7061, 36120, 422, 257, 4769, 7881, 351, 262, 2174, 2695, 2637, 7061, 198, 220, 220, 220, 581, 796, 5456, 13, 961, 62, 19216, 62, 2301, 6223, 7, 21975, 28, 16, 11, 954, 28, 16, 11, 4326, 28, 16, 8, 628, 220, 220, 220, 705, 7061, 36120, 422, 257, 28810, 7881, 351, 262, 2174, 2695, 2637, 7061, 198, 220, 220, 220, 1303, 581, 796, 5456, 13, 961, 62, 15410, 8374, 62, 15414, 82, 7, 21975, 28, 16, 11, 954, 28, 16, 11, 4326, 28, 16, 8, 628, 220, 220, 220, 611, 407, 581, 13, 271, 12331, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 411, 13, 2301, 6223, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 411, 8, 198, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 34, 34574, 2018, 284, 262, 3401, 10885, 9652, 14, 11122, 1015, 11537 ]
2.6
265
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import hashlib import os import tempfile from oslo_serialization import jsonutils from oslo_utils import units import testtools from subject.common import timeutils from subject.tests.integration.legacy_functional import base from subject.tests.utils import minimal_headers FIVE_KB = 5 * units.Ki FIVE_GB = 5 * units.Gi
[ 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 4818, 8079, 198, 11748, 12234, 8019, 198, 11748, 28686, 198, 11748, 20218, 7753, 198, 198, 6738, 28686, 5439, 62, 46911, 1634, 1330, 33918, 26791, 198, 6738, 28686, 5439, 62, 26791, 1330, 4991, 198, 11748, 1332, 31391, 198, 198, 6738, 2426, 13, 11321, 1330, 640, 26791, 198, 6738, 2426, 13, 41989, 13, 18908, 1358, 13, 1455, 1590, 62, 45124, 1330, 2779, 198, 6738, 2426, 13, 41989, 13, 26791, 1330, 10926, 62, 50145, 198, 198, 37, 9306, 62, 22764, 796, 642, 1635, 4991, 13, 42, 72, 198, 37, 9306, 62, 4579, 796, 642, 1635, 4991, 13, 33704, 628, 198 ]
3.423221
267
import random import math import numpy as np import pandas as pd import torch import torch.nn as nn import torch.optim as optim import torch.autograd as autograd from tqdm import tqdm from ray.tune import run, Trainable, sample_from from dqn import DQN, update_target from loss import TDLoss, StableTDLoss from pbuffer import PrioritizedBuffer from env import get_env USE_CUDA = torch.cuda.is_available() Variable = lambda *args, **kwargs: autograd.Variable(*args, **kwargs).cuda() if USE_CUDA else autograd.Variable(*args, **kwargs) beta_start = 0.4 beta_frames = 1000 BETA_BY_FRAME = lambda frame_idx: min(1.0, beta_start + frame_idx * (1.0 - beta_start) / beta_frames) epsilon_start = 1.0 epsilon_final = 0.01 epsilon_decay = 500 EPSILON_BY_FRAME = lambda frame_idx: epsilon_final + (epsilon_start - epsilon_final) * math.exp(-1. * frame_idx / epsilon_decay) if __name__ == '__main__': trainable = MyTrainable() trainable._setup() print("train result: ", trainable._train()) # def train(self): # config = self.config # ''' # hyperparams # method - 'average_over_batch', 'PER' # var # mean # decision_eps, # alpha, beta, # hardcoded, cnn, # invert_actions = False, # num_frames = 30000, # num_val_trials = 10, # batch_size = 32, # gamma = 0.99, # num_trials = 5, # USE_CUDA = False, # device = "", # eps = 1., # avg_stored=False # ''' # if USE_CUDA: # device = torch.device("cuda") # """Args:""" # losses = [] # all_rewards = [] # standard_val_rewards = [] # noisy_val_rewards = [] # states_count_ratios = [] # episode_reward = 0 # # Initialize state # noisyGame = False # state = config['env'].reset() # state = np.append(state, float(noisyGame)) # meta_state = (state, float(noisyGame)) # # Initialize replay buffer, model, TD loss, and optimizers # result_df = pd.DataFrame() # theta = 1. # power = config['theta'] # all_standard_val_rewards = [] # all_proportions = [] # std_weights = [] # noisy_weights = [] # std_buffer_example_count = [] # noisy_buffer_example_count = [] # for t in range(num_trials): # if cnn: # current_model = CnnDQN(env.observation_space.shape, env.action_space.n) # target_model = CnnDQN(env.observation_space.shape, env.action_space.n) # else: # current_model = DQN(env.observation_space.shape[0] + 1, env.action_space.n) # target_model = DQN(env.observation_space.shape[0] + 1, env.action_space.n) # td_loss = TDLoss(method=config['method']) # optimizer = optim.Adam(current_model.parameters()) # # # Single GPU Code # if USE_CUDA: # current_model = current_model.cuda() # target_model = target_model.cuda() # if config['method']=='average_over_buffer': # replay_buffer = AugmentedPrioritizedBuffer(int(1e6)) # else: # replay_buffer = PrioritizedBuffer(int(1e6)) # print("trial number: {}".format(t)) # for frame_idx in range(1, config['num_frames'] + 1): # epsilon = EPSILON_BY_FRAME(frame_idx) # original_action = current_model.act(state, epsilon) # # If in noisy environment, make action random with probability eps # if noisyGame and random.uniform(0,1) < config['decision_eps']: # if invert_actions: # actual_action = 1 - original_action # invert # else: # actual_action = original_action # else: # actual_action = original_action # next_state, reward, done, _ = config['env'].step(actual_action) # # If in noisy environment, make reward completely random # if noisyGame: # reward *= np.random.normal(config['mean'], var) # if not cnn: # next_state = np.append(next_state, float(noisyGame)) # meta_next_state = (next_state, float(noisyGame)) # # store q values and hidden states in buffer # if config['method']=='average_over_buffer': # state_var = Variable(torch.FloatTensor(np.float32(state))) # with torch.no_grad(): # q_values, hiddens = current_model.forward(state_var, config['return_latent'] = "last") # replay_buffer.push(meta_state, original_action, reward, meta_next_state, done, hiddens, q_values) # else: # replay_buffer.push(meta_state, original_action, reward, meta_next_state, done) # meta_state = meta_next_state # episode_reward += reward # if done: # noisyGame = 1-noisyGame # state = env.reset() # state = np.append(state, float(noisyGame)) # meta_state = (state, float(noisyGame)) # all_rewards.append(episode_reward) # episode_reward = 0 # if len(replay_buffer) > batch_size and frame_idx % 4 == 0: # beta = BETA_BY_FRAME(frame_idx) # loss = td_loss.compute(current_model, target_model, beta, replay_buffer, optimizer) # losses.append(loss.data.tolist()) # if frame_idx % 200 == 0: # all_standard_val_rewards.append(test(val_env, False, eps, num_val_trials, current_model)) # all_proportions.append(float(replay_buffer.states_count[1]) / (float(replay_buffer.states_count[1]) + float(replay_buffer.states_count[0]))) # weight_dict = replay_buffer.get_average_weight_by_env() # std_weights.append(weight_dictconfig['std_avg']) # noisy_weights.append(weight_dictconfig['noisy_avg']) # std_buffer_example_count.append(weight_dictconfig['std_count']) # noisy_buffer_example_count.append(weight_dictconfig['noisy_count']) # # plot(frame_idx, all_rewards, losses, standard_val_rewards, noisy_val_rewards, states_count_ratios) # if frame_idx % 1000 == 0: # print("Frame {}".format(frame_idx)) # update_target(current_model, target_model) # print(len(all_proportions)) # result_dfconfig['frame'] = 200*np.arange(len(all_proportions)) % num_frames # result_dfconfig['trial_num'] = np.floor(200 *np.arange(len(all_proportions)) / num_frames) # result_dfconfig['val_reward'] = all_standard_val_rewards # result_dfconfig['proportion'] = all_proportions # result_dfconfig['std_weights'] = std_weights # result_dfconfig['noisy_weights'] = noisy_weights # result_dfconfig['std_buffer_example_count'] = std_buffer_example_count # result_dfconfig['noisy_buffer_example_count'] = noisy_buffer_example_count # return result_df
[ 11748, 4738, 198, 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 11748, 28034, 13, 2306, 519, 6335, 355, 1960, 519, 6335, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 26842, 13, 83, 1726, 1330, 1057, 11, 16835, 540, 11, 6291, 62, 6738, 198, 198, 6738, 288, 80, 77, 1330, 360, 48, 45, 11, 4296, 62, 16793, 198, 6738, 2994, 1330, 13320, 43, 793, 11, 520, 540, 51, 19260, 793, 198, 6738, 279, 22252, 1330, 14481, 36951, 28632, 198, 6738, 17365, 1330, 651, 62, 24330, 628, 198, 19108, 62, 43633, 5631, 796, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 198, 43015, 796, 37456, 1635, 22046, 11, 12429, 46265, 22046, 25, 1960, 519, 6335, 13, 43015, 46491, 22046, 11, 12429, 46265, 22046, 737, 66, 15339, 3419, 611, 23210, 62, 43633, 5631, 2073, 1960, 519, 6335, 13, 43015, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 198, 31361, 62, 9688, 796, 657, 13, 19, 198, 31361, 62, 37805, 796, 8576, 198, 33, 20892, 62, 17513, 62, 10913, 10067, 796, 37456, 5739, 62, 312, 87, 25, 949, 7, 16, 13, 15, 11, 12159, 62, 9688, 1343, 5739, 62, 312, 87, 1635, 357, 16, 13, 15, 532, 12159, 62, 9688, 8, 1220, 12159, 62, 37805, 8, 198, 198, 538, 18217, 261, 62, 9688, 796, 352, 13, 15, 198, 538, 18217, 261, 62, 20311, 796, 657, 13, 486, 198, 538, 18217, 261, 62, 12501, 323, 796, 5323, 198, 36, 3705, 4146, 1340, 62, 17513, 62, 10913, 10067, 796, 37456, 5739, 62, 312, 87, 25, 304, 862, 33576, 62, 20311, 1343, 357, 538, 18217, 261, 62, 9688, 532, 304, 862, 33576, 62, 20311, 8, 1635, 10688, 13, 11201, 32590, 16, 13, 1635, 5739, 62, 312, 87, 1220, 304, 862, 33576, 62, 12501, 323, 8, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 27432, 540, 796, 2011, 44077, 540, 3419, 198, 197, 27432, 540, 13557, 40406, 3419, 198, 197, 4798, 7203, 27432, 1255, 25, 33172, 4512, 540, 13557, 27432, 28955, 628, 198, 198, 2, 825, 4512, 7, 944, 2599, 198, 198, 2, 220, 220, 220, 220, 4566, 796, 2116, 13, 11250, 220, 198, 198, 2, 220, 220, 220, 220, 705, 7061, 198, 2, 220, 220, 220, 220, 8718, 37266, 220, 198, 198, 2, 220, 220, 220, 220, 2446, 532, 705, 23913, 62, 2502, 62, 43501, 3256, 705, 18973, 6, 198, 2, 220, 220, 220, 220, 1401, 198, 2, 220, 220, 220, 220, 1612, 198, 2, 220, 220, 220, 220, 2551, 62, 25386, 11, 198, 2, 220, 220, 220, 220, 17130, 11, 12159, 11, 198, 2, 220, 220, 220, 220, 1327, 40976, 11, 269, 20471, 11, 198, 2, 220, 220, 220, 220, 287, 1851, 62, 4658, 796, 10352, 11, 220, 198, 2, 220, 220, 220, 220, 997, 62, 37805, 796, 513, 2388, 11, 220, 198, 2, 220, 220, 220, 220, 997, 62, 2100, 62, 28461, 874, 796, 838, 11, 220, 198, 2, 220, 220, 220, 220, 15458, 62, 7857, 796, 3933, 11, 220, 198, 2, 220, 220, 220, 220, 34236, 796, 657, 13, 2079, 11, 198, 2, 220, 220, 220, 220, 997, 62, 28461, 874, 796, 642, 11, 220, 198, 2, 220, 220, 220, 220, 23210, 62, 43633, 5631, 796, 10352, 11, 220, 198, 2, 220, 220, 220, 220, 3335, 796, 366, 1600, 220, 198, 2, 220, 220, 220, 220, 304, 862, 796, 352, 1539, 220, 198, 2, 220, 220, 220, 220, 42781, 62, 301, 1850, 28, 25101, 198, 2, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 2, 220, 220, 220, 220, 611, 23210, 62, 43633, 5631, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 28034, 13, 25202, 7203, 66, 15339, 4943, 198, 198, 2, 220, 220, 220, 220, 37227, 42035, 11097, 15931, 198, 2, 220, 220, 220, 220, 9089, 796, 17635, 198, 2, 220, 220, 220, 220, 477, 62, 260, 2017, 796, 17635, 198, 2, 220, 220, 220, 220, 3210, 62, 2100, 62, 260, 2017, 796, 17635, 198, 2, 220, 220, 220, 220, 31210, 62, 2100, 62, 260, 2017, 796, 17635, 198, 2, 220, 220, 220, 220, 2585, 62, 9127, 62, 10366, 4267, 796, 17635, 198, 2, 220, 220, 220, 220, 4471, 62, 260, 904, 796, 657, 198, 198, 2, 220, 220, 220, 220, 1303, 20768, 1096, 1181, 198, 2, 220, 220, 220, 220, 31210, 8777, 796, 10352, 198, 2, 220, 220, 220, 220, 1181, 796, 4566, 17816, 24330, 6, 4083, 42503, 3419, 198, 2, 220, 220, 220, 220, 1181, 796, 45941, 13, 33295, 7, 5219, 11, 12178, 7, 3919, 13560, 8777, 4008, 220, 198, 2, 220, 220, 220, 220, 13634, 62, 5219, 796, 357, 5219, 11, 12178, 7, 3919, 13560, 8777, 4008, 198, 198, 2, 220, 220, 220, 220, 1303, 20768, 1096, 24788, 11876, 11, 2746, 11, 13320, 2994, 11, 290, 6436, 11341, 198, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 2, 220, 220, 220, 220, 262, 8326, 796, 352, 13, 198, 2, 220, 220, 220, 220, 1176, 796, 4566, 17816, 1169, 8326, 20520, 198, 2, 220, 220, 220, 220, 477, 62, 20307, 62, 2100, 62, 260, 2017, 796, 17635, 198, 2, 220, 220, 220, 220, 477, 62, 1676, 634, 507, 796, 17635, 198, 2, 220, 220, 220, 220, 14367, 62, 43775, 796, 17635, 198, 2, 220, 220, 220, 220, 31210, 62, 43775, 796, 17635, 198, 2, 220, 220, 220, 220, 14367, 62, 22252, 62, 20688, 62, 9127, 796, 17635, 198, 2, 220, 220, 220, 220, 31210, 62, 22252, 62, 20688, 62, 9127, 796, 17635, 198, 198, 2, 220, 220, 220, 220, 329, 256, 287, 2837, 7, 22510, 62, 28461, 874, 2599, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 20471, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 19849, 796, 327, 20471, 35, 48, 45, 7, 24330, 13, 672, 3168, 341, 62, 13200, 13, 43358, 11, 17365, 13, 2673, 62, 13200, 13, 77, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 19849, 220, 796, 327, 20471, 35, 48, 45, 7, 24330, 13, 672, 3168, 341, 62, 13200, 13, 43358, 11, 17365, 13, 2673, 62, 13200, 13, 77, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 19849, 796, 360, 48, 45, 7, 24330, 13, 672, 3168, 341, 62, 13200, 13, 43358, 58, 15, 60, 1343, 352, 11, 17365, 13, 2673, 62, 13200, 13, 77, 8, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 19849, 220, 796, 360, 48, 45, 7, 24330, 13, 672, 3168, 341, 62, 13200, 13, 43358, 58, 15, 60, 1343, 352, 11, 17365, 13, 2673, 62, 13200, 13, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 41560, 62, 22462, 796, 13320, 43, 793, 7, 24396, 28, 11250, 17816, 24396, 6, 12962, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 796, 6436, 13, 23159, 7, 14421, 62, 19849, 13, 17143, 7307, 28955, 628, 198, 2, 1303, 220, 220, 220, 220, 1303, 14206, 11362, 6127, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 23210, 62, 43633, 5631, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 19849, 796, 1459, 62, 19849, 13, 66, 15339, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 19849, 220, 796, 2496, 62, 19849, 13, 66, 15339, 3419, 628, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4566, 17816, 24396, 20520, 855, 6, 23913, 62, 2502, 62, 22252, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24788, 62, 22252, 796, 2447, 12061, 22442, 36951, 28632, 7, 600, 7, 16, 68, 21, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24788, 62, 22252, 796, 14481, 36951, 28632, 7, 600, 7, 16, 68, 21, 4008, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 45994, 1271, 25, 23884, 1911, 18982, 7, 83, 4008, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 62, 312, 87, 287, 2837, 7, 16, 11, 4566, 17816, 22510, 62, 37805, 20520, 1343, 352, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 862, 33576, 796, 47013, 4146, 1340, 62, 17513, 62, 10913, 10067, 7, 14535, 62, 312, 87, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 2673, 796, 1459, 62, 19849, 13, 529, 7, 5219, 11, 304, 862, 33576, 8, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 287, 31210, 2858, 11, 787, 2223, 4738, 351, 12867, 304, 862, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31210, 8777, 290, 4738, 13, 403, 6933, 7, 15, 11, 16, 8, 1279, 4566, 17816, 12501, 1166, 62, 25386, 6, 5974, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 287, 1851, 62, 4658, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4036, 62, 2673, 796, 352, 532, 2656, 62, 2673, 1303, 287, 1851, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4036, 62, 2673, 796, 2656, 62, 2673, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4036, 62, 2673, 796, 2656, 62, 2673, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 5219, 11, 6721, 11, 1760, 11, 4808, 796, 4566, 17816, 24330, 6, 4083, 9662, 7, 50039, 62, 2673, 8, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 287, 31210, 2858, 11, 787, 6721, 3190, 4738, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31210, 8777, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6721, 1635, 28, 45941, 13, 25120, 13, 11265, 7, 11250, 17816, 32604, 6, 4357, 1401, 8, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 269, 20471, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 5219, 796, 45941, 13, 33295, 7, 19545, 62, 5219, 11, 12178, 7, 3919, 13560, 8777, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 62, 19545, 62, 5219, 796, 357, 19545, 62, 5219, 11, 12178, 7, 3919, 13560, 8777, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 10662, 3815, 290, 7104, 2585, 287, 11876, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4566, 17816, 24396, 20520, 855, 6, 23913, 62, 2502, 62, 22252, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 7785, 796, 35748, 7, 13165, 354, 13, 43879, 51, 22854, 7, 37659, 13, 22468, 2624, 7, 5219, 22305, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 27160, 11, 289, 1638, 641, 796, 1459, 62, 19849, 13, 11813, 7, 5219, 62, 7785, 11, 4566, 17816, 7783, 62, 15460, 298, 20520, 796, 366, 12957, 4943, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24788, 62, 22252, 13, 14689, 7, 28961, 62, 5219, 11, 2656, 62, 2673, 11, 6721, 11, 13634, 62, 19545, 62, 5219, 11, 1760, 11, 289, 1638, 641, 11, 10662, 62, 27160, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24788, 62, 22252, 13, 14689, 7, 28961, 62, 5219, 11, 2656, 62, 2673, 11, 6721, 11, 13634, 62, 19545, 62, 5219, 11, 1760, 8, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 62, 5219, 796, 13634, 62, 19545, 62, 5219, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4471, 62, 260, 904, 15853, 6721, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1760, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31210, 8777, 796, 352, 12, 3919, 13560, 8777, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 17365, 13, 42503, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 45941, 13, 33295, 7, 5219, 11, 12178, 7, 3919, 13560, 8777, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 62, 5219, 796, 357, 5219, 11, 12178, 7, 3919, 13560, 8777, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 260, 2017, 13, 33295, 7, 38668, 62, 260, 904, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4471, 62, 260, 904, 796, 657, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 260, 1759, 62, 22252, 8, 1875, 15458, 62, 7857, 290, 5739, 62, 312, 87, 4064, 604, 6624, 657, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12159, 796, 347, 20892, 62, 17513, 62, 10913, 10067, 7, 14535, 62, 312, 87, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 41560, 62, 22462, 13, 5589, 1133, 7, 14421, 62, 19849, 11, 2496, 62, 19849, 11, 12159, 11, 24788, 62, 22252, 11, 6436, 7509, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9089, 13, 33295, 7, 22462, 13, 7890, 13, 83, 349, 396, 28955, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 62, 312, 87, 4064, 939, 6624, 657, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 20307, 62, 2100, 62, 260, 2017, 13, 33295, 7, 9288, 7, 2100, 62, 24330, 11, 10352, 11, 304, 862, 11, 997, 62, 2100, 62, 28461, 874, 11, 1459, 62, 19849, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 1676, 634, 507, 13, 33295, 7, 22468, 7, 260, 1759, 62, 22252, 13, 27219, 62, 9127, 58, 16, 12962, 1220, 357, 22468, 7, 260, 1759, 62, 22252, 13, 27219, 62, 9127, 58, 16, 12962, 220, 1343, 12178, 7, 260, 1759, 62, 22252, 13, 27219, 62, 9127, 58, 15, 60, 22305, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 11600, 796, 24788, 62, 22252, 13, 1136, 62, 23913, 62, 6551, 62, 1525, 62, 24330, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 43775, 13, 33295, 7, 6551, 62, 11600, 11250, 17816, 19282, 62, 615, 70, 6, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31210, 62, 43775, 13, 33295, 7, 6551, 62, 11600, 11250, 17816, 3919, 13560, 62, 615, 70, 6, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 22252, 62, 20688, 62, 9127, 13, 33295, 7, 6551, 62, 11600, 11250, 17816, 19282, 62, 9127, 6, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31210, 62, 22252, 62, 20688, 62, 9127, 13, 33295, 7, 6551, 62, 11600, 11250, 17816, 3919, 13560, 62, 9127, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 7, 14535, 62, 312, 87, 11, 477, 62, 260, 2017, 11, 9089, 11, 3210, 62, 2100, 62, 260, 2017, 11, 31210, 62, 2100, 62, 260, 2017, 11, 2585, 62, 9127, 62, 10366, 4267, 8, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 62, 312, 87, 4064, 8576, 6624, 657, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 19778, 23884, 1911, 18982, 7, 14535, 62, 312, 87, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 16793, 7, 14421, 62, 19849, 11, 2496, 62, 19849, 8, 198, 198, 2, 220, 220, 220, 220, 3601, 7, 11925, 7, 439, 62, 1676, 634, 507, 4008, 198, 220, 220, 220, 220, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 11250, 17816, 14535, 20520, 796, 939, 9, 37659, 13, 283, 858, 7, 11925, 7, 439, 62, 1676, 634, 507, 4008, 4064, 997, 62, 37805, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 11250, 17816, 45994, 62, 22510, 20520, 796, 45941, 13, 28300, 7, 2167, 1635, 37659, 13, 283, 858, 7, 11925, 7, 439, 62, 1676, 634, 507, 4008, 1220, 997, 62, 37805, 8, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 11250, 17816, 2100, 62, 260, 904, 20520, 796, 477, 62, 20307, 62, 2100, 62, 260, 2017, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 11250, 17816, 1676, 16864, 20520, 796, 477, 62, 1676, 634, 507, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 11250, 17816, 19282, 62, 43775, 20520, 796, 14367, 62, 43775, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 11250, 17816, 3919, 13560, 62, 43775, 20520, 796, 31210, 62, 43775, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 11250, 17816, 19282, 62, 22252, 62, 20688, 62, 9127, 20520, 796, 14367, 62, 22252, 62, 20688, 62, 9127, 198, 2, 220, 220, 220, 220, 1255, 62, 7568, 11250, 17816, 3919, 13560, 62, 22252, 62, 20688, 62, 9127, 20520, 796, 31210, 62, 22252, 62, 20688, 62, 9127, 198, 2, 220, 220, 220, 220, 1441, 1255, 62, 7568, 628 ]
2.106715
3,336
import qimpy as qp import torch import pytest @pytest.mark.mpi_skip def main(): """Run test and additionally plot for visual inspection.""" import matplotlib.pyplot as plt qp.utils.log_config() qp.rc.init() # Plot a single blip function for testing: plt.figure() coeff = torch.zeros(12) coeff[5] = 1 t = torch.linspace(0.0, 12.0, 101, device=qp.rc.device) for deriv in range(5): plt.plot( t.to(qp.rc.cpu), qp.ions.quintic_spline.Interpolator(t, 2.0, deriv)(coeff).to(qp.rc.cpu), label=f"Deriv: {deriv}", ) plt.axhline(0, color="k", ls="dotted") plt.legend() # Generate test data: dx, x_fine, y_fine, y_prime_fine, y_coeff = test_interpolator() # Plot results: plt.figure() plt.plot( x_fine.to(qp.rc.cpu), y_fine.to(qp.rc.cpu), "k--", label="Reference data", zorder=10, ) plt.plot( x_fine.to(qp.rc.cpu), y_prime_fine.to(qp.rc.cpu), "k:", label="Reference derivative", zorder=10, ) for deriv in range(5): plt.plot( x_fine.to(qp.rc.cpu), qp.ions.quintic_spline.Interpolator(x_fine, dx, deriv)(y_coeff).to( qp.rc.cpu ), label=f"Interpolant (deriv: {deriv})", lw=3, ) plt.axhline(0, color="k", ls="dotted") plt.legend() plt.show() if __name__ == "__main__": main()
[ 11748, 10662, 320, 9078, 355, 10662, 79, 198, 11748, 28034, 198, 11748, 12972, 9288, 628, 198, 31, 9078, 9288, 13, 4102, 13, 3149, 72, 62, 48267, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 10987, 1332, 290, 36527, 7110, 329, 5874, 15210, 526, 15931, 198, 220, 220, 220, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 220, 220, 220, 10662, 79, 13, 26791, 13, 6404, 62, 11250, 3419, 198, 220, 220, 220, 10662, 79, 13, 6015, 13, 15003, 3419, 628, 220, 220, 220, 1303, 28114, 257, 2060, 698, 541, 2163, 329, 4856, 25, 198, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 763, 14822, 796, 28034, 13, 9107, 418, 7, 1065, 8, 198, 220, 220, 220, 763, 14822, 58, 20, 60, 796, 352, 198, 220, 220, 220, 256, 796, 28034, 13, 21602, 10223, 7, 15, 13, 15, 11, 1105, 13, 15, 11, 8949, 11, 3335, 28, 80, 79, 13, 6015, 13, 25202, 8, 198, 220, 220, 220, 329, 16124, 287, 2837, 7, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 1462, 7, 80, 79, 13, 6015, 13, 36166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 79, 13, 507, 13, 421, 600, 291, 62, 22018, 500, 13, 9492, 16104, 1352, 7, 83, 11, 362, 13, 15, 11, 16124, 5769, 1073, 14822, 737, 1462, 7, 80, 79, 13, 6015, 13, 36166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 69, 1, 28532, 452, 25, 1391, 1082, 452, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 458, 83, 13, 897, 71, 1370, 7, 15, 11, 3124, 2625, 74, 1600, 43979, 2625, 67, 8426, 4943, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 628, 220, 220, 220, 1303, 2980, 378, 1332, 1366, 25, 198, 220, 220, 220, 44332, 11, 2124, 62, 38125, 11, 331, 62, 38125, 11, 331, 62, 35505, 62, 38125, 11, 331, 62, 1073, 14822, 796, 1332, 62, 3849, 16104, 1352, 3419, 628, 220, 220, 220, 1303, 28114, 2482, 25, 198, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 38125, 13, 1462, 7, 80, 79, 13, 6015, 13, 36166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 38125, 13, 1462, 7, 80, 79, 13, 6015, 13, 36166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 74, 438, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 26687, 1366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 940, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 38125, 13, 1462, 7, 80, 79, 13, 6015, 13, 36166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 35505, 62, 38125, 13, 1462, 7, 80, 79, 13, 6015, 13, 36166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 74, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 26687, 27255, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 940, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 329, 16124, 287, 2837, 7, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 38125, 13, 1462, 7, 80, 79, 13, 6015, 13, 36166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 79, 13, 507, 13, 421, 600, 291, 62, 22018, 500, 13, 9492, 16104, 1352, 7, 87, 62, 38125, 11, 44332, 11, 16124, 5769, 88, 62, 1073, 14822, 737, 1462, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 79, 13, 6015, 13, 36166, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 69, 1, 9492, 16104, 415, 357, 1082, 452, 25, 1391, 1082, 452, 30072, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 86, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 458, 83, 13, 897, 71, 1370, 7, 15, 11, 3124, 2625, 74, 1600, 43979, 2625, 67, 8426, 4943, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
1.84217
811
from django.db import models # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 628, 198, 2, 13610, 534, 4981, 994, 13, 628 ]
3.6875
16
import numpy as np import bruges import scipy.stats import scipy.linalg import warnings from scipy.ndimage import gaussian_filter from typing import Tuple, Union, List, Optional, Callable, Any # TODO: Add support for horizons that "stop"/"vanish" (i.e. a layer is eroded). class SyntheticData: """Class for generating synthetic geo-volumes and seismic therefrom. This class can do the following: - Generate semi-realistic random synthetic horizons inn a subsurface volume of the desired size (number of voxels). The horizons cover the entire volume. - Generate simple (unrealistic), parallel faults. - Generate synthetic seismic data from the synthetic subsurface volume. Args: shape (Tuple[int, int, int]): Shape of the synthetic geo-volume, on the format (I, X, T). Attributes: I: Number of ilines, > 0. X: Number of xlines, > 0. T: Number of tlines, > 0. n_horizons: Number of horizons in geo-volume, > 0. horizons: List of length n_horizons of ndarray of int, shape (I, X). Element (I, X) of list element h gives the height of horizon h in (I, X) - only one horizon point per horizon per trace is supported. -1 indicates out of bounds, i.e. the horizon is not in the geo-volume. facies: ndarray of int, shape (I, X, T). Facies start at horizons (inclusive) and continue to next horizon (exclusive) in t-direction. I.e. n_facies = n_horizons + 1. The array contains integers from 0 to n_horizons. seismic: ndarray of float, shape (I, X, T). Synthetic seismic. wavelet: array_like; list of wavelet amplitudes. reflection_coeffs: List of reflection coefficients, one for each horizon. Each can be a float (constant coefficients across horizons) or an (I*X) array. -1 < reflection coefficient < 1. oob_horizons: List of horizons that are partly or entirely out of bounds, i.e. some/all points of the horizon not in the geo-volume. """ @property def shape(self) -> Tuple[int, int, int]: """Shape property. Returns: Tuple[int, int, int]: Shape of geo-volume (I*X*T). """ return self.I, self.X, self.T @property def reflection_coeffs_array(self) -> Optional[np.ndarray]: """Reflection coefficient array property. Returns: np.ndarray: Shape (I*X*T); array of reflection coefficients. """ if self.reflection_coeffs is None: return None else: r_array = np.zeros(self.shape) ii, xx = np.mgrid[: self.I, : self.X] for i in range(self.n_horizons): h = self.horizons[i] # type: ignore r_array[ii, xx, h] = self.reflection_coeffs[i] return r_array @property def noise(self) -> np.ndarray: """Noise property. Subtracting noise from self.seismic gives noise-free seismic. Returns: np.ndarray: Shape (I*X*T); array of noise contribution to seismic. """ if self._blur_noise is not None: return self._blur_noise if self._systematic_noise is not None: if self._white_noise is not None: return self._systematic_noise + self._white_noise return self._systematic_noise if self._white_noise is not None: return self._white_noise return np.zeros(self.shape) def generate_horizons( self, n_horizons: int, min_distance: int = 5, volatility: float = 0.6, trend_size: float = 1, trend_length: int = 30, fault_xlines: Union[int, List[int]] = None, fault_size: Union[int, List[int]] = 5, generate_reflection_coeffs: bool = True, reflection_coeff_volatility: float = 0.005, reflection_coeff_seeds: List[float] = None, ) -> np.ndarray: """Generate synthetic horizons. Generate random synthetic horizons in the defined synthetic geo-volume. Args: n_horizons: int > 0. Number of horizons to be generated. min_distance: int >= 0. Minimum distance between the horizons (and top horizon and 0). volatility: float > 0. Decides the volatility of the horizons. trend_size: float > 0. Decides how significant trends the horizons have. trend_length: float > 0. Decides how long the trends last for. fault_xlines: Create faults at these xlines. fault_size: List of size of fault jumps, or size of all jumps if just an integer. Ignored if fault_xlines is None. generate_reflection_coeffs: If True, generate random, non-constant reflection coefficients. reflection_coeff_volatility: float > 0. Volatility of the reflection coefficients. reflection_coeff_seeds: Initial values that the random reflection coefficients will fluctuate around. Returns: List of horizon numpy arrays of size (I*X). """ # Reset: self.facies = None self.seismic = None self.oob_horizons = [] self.n_horizons = n_horizons if reflection_coeff_seeds is not None: msg = ( "Please provide a reflection coefficient seed value for each horizon, " "if any." ) assert len(reflection_coeff_seeds) == self.n_horizons, msg # TODO: Should respect bounds from _generate_horizons. self.horizons = self._generate_overlapping_horizons( volatility, trend_length, trend_size, generate_reflection_coeffs, reflection_coeff_volatility, reflection_coeff_seeds, ) self.horizons = self._set_min_distance(min_distance) if fault_xlines is not None: if isinstance(fault_xlines, int): fault_xlines = [fault_xlines] if isinstance(fault_size, int): fault_size = [fault_size] * len(fault_xlines) else: assert len(fault_size) == len(fault_xlines) for x, size in zip(fault_xlines, fault_size): self.horizons = self.create_fault(x, size) self.horizons = self._move_above_zero(min_distance) self.horizons = self._set_oob() # set points above top of vol to 0 return self.horizons def _generate_overlapping_horizons( self, volatility: float, trend_length: int, trend_size: float, generate_reflection_coeffs: bool, reflection_coeff_volatility: float, reflection_coeff_seeds: Optional[List[float]], ) -> np.ndarray: """Generate horizons independently. They will overlap.""" horizons = np.zeros((self.n_horizons, self.I, self.X)) if generate_reflection_coeffs: self.reflection_coeffs = np.zeros((self.n_horizons, self.I, self.X)) # Create trend vectors i_trend = self._get_trend_vec(self.I, trend_size, trend_length) x_trend = self._get_trend_vec(self.X, trend_size, trend_length) # Generate one horizon at a time according to a random process using # the trend vectors for h in range(0, self.n_horizons): horizons[h] = self._generate_horizon(i_trend, x_trend, _jump_r) if generate_reflection_coeffs: rel_vol = reflection_coeff_volatility / volatility for h in range(0, self.n_horizons): # Trend might be decreasing with increasing depth flip = np.random.choice((-1, 1)) if reflection_coeff_seeds is None: seed = None else: seed = reflection_coeff_seeds[h] self.reflection_coeffs[h] = self._generate_horizon( # type: ignore flip * i_trend, flip * x_trend, _jump_c, True, seed ) # horizons should be integer-valued. horizons = horizons.round().astype(int) return horizons def _generate_horizon( self, i_trend: np.ndarray, x_trend: np.ndarray, jump: Callable, reflection_coeff: bool = False, reflection_coeff_seed: float = None, ) -> np.ndarray: """Generate and return a single horizon or horizon reflection coefficients.""" iline_edge = np.zeros(self.I) xline_edge = np.zeros(self.X) if reflection_coeff: if reflection_coeff_seed is not None: iline_edge[0] = reflection_coeff_seed xline_edge[0] = reflection_coeff_seed else: # Init range (-0.25, -0.1) or (0.1, 0.25) iline_edge[0] = np.random.uniform(-0.15, 0.15) iline_edge[0] += np.sign(iline_edge[0]) * 0.1 xline_edge[0] = iline_edge[0] high = 0.3 * np.sign(iline_edge[0]) low = 0.05 * np.sign(iline_edge[0]) if high < low: high, low = (low, high) else: high = np.inf low = -high # Generate the horizon along the edges iline = 0 and xline = 0. for i in range(1, self.I): iline_edge[i] = (iline_edge[i - 1] + jump(i_trend[i])).clip(low, high) for x in range(1, self.X): xline_edge[x] = (xline_edge[x - 1] + jump(x_trend[x])).clip(low, high) horizon = np.zeros((self.I, self.X)) horizon[:, 0] = iline_edge horizon[0, :] = xline_edge # Generate the rest of the horizon. for i in range(1, self.I): for x in range(1, self.X): i_jump = jump(i_trend[i]) x_jump = jump(x_trend[x]) horizon[i, x] = ( 0.5 * (horizon[i - 1, x] + i_jump + horizon[i, x - 1] + x_jump) ).clip(low, high) return horizon def _get_trend_vec( self, n: int, trend_size: float, trend_length: int ) -> np.ndarray: """Get trend of a random walk with trend.""" trend = trend_size * np.random.randn(n) trend[0] = 0 trend = self._moving_average(trend, trend_length) return trend @staticmethod def _moving_average(a: np.ndarray, n: int) -> np.ndarray: """Moving average of a, window size = n.""" b = np.copy(a) b = np.insert(b, 0, np.full(n, a[0])) s = np.cumsum(b) res = (s[n:] - s[:-n]) / n return res def _set_min_distance(self, min_distance: int) -> np.ndarray: """Move horizons to fulfill minimum distance specification.""" for j in range(1, self.n_horizons): diff = self.horizons[j] - self.horizons[j - 1] # type: ignore min_diff = diff.min() if min_diff < min_distance: dist = np.random.randint(min_distance, 3 * min_distance) self.horizons[j] += dist - min_diff # type: ignore return self.horizons def create_fault(self, fault_xline: int, fault_size: int) -> np.ndarray: """Create a fault at a xline fault_xline. Args: fault_xline: Xline to create fault at. fault_size: Size of fault. Returns: See class attribute self.horizons. """ self.horizons[:, :, fault_xline:] += fault_size # type: ignore return self.horizons def _move_above_zero(self, min_distance: int) -> np.ndarray: """Make sure that the top horizon is a little above 0 (below seabed).""" h_min = self.horizons[0].min() # type: ignore self.horizons -= h_min self.horizons += np.random.randint(0, self.T // min(10, self.T)) self.horizons += min_distance return self.horizons def _set_oob(self) -> np.ndarray: """Remove parts of horizons above (geologically below) defined geo-volume.""" oob = self.horizons > (self.T - 1) # type: ignore if oob.sum() > 0: # type: ignore self.horizons[oob] = -1 # type: ignore for h in range(self.n_horizons - 1, -1, -1): n_out = oob[h].sum() # type: ignore if n_out > 0: I, X = self.I, self.X warnings.warn( f"horizon {h} is " f'{"partly" if n_out < (I*X) else "entirely"} ' f"out of bounds." ) self.oob_horizons.append(h) else: break return self.horizons def horizon_volume(self, horizon_number: int) -> Optional[np.ndarray]: """Produce horizon volume for a single horizon. This function transforms the generated horizon into a binary numpy array of dimensions (I, X, T). The horizon is represented by the ones. Args: horizon_number: Which horizon to generate volume for. Returns: binary ndarray of size (I*X*T) if horizon is (partly) within bounds, None otherwise. """ horizon = self.ixtn_horizons() horizon = horizon[horizon[:, 3] == horizon_number] if horizon.size == 0: warnings.warn(f"horizon {horizon_number} is not in volume.") return None horizon_vol = np.zeros(self.shape) horizon_vol[horizon[:, 0], horizon[:, 1], horizon[:, 2]] = 1 return horizon_vol def ixtn_horizons(self) -> np.ndarray: """Produce horizon coords. This function transforms the generated horizons into a numpy array of dimensions (n_horizon_points, 4) with rows (I, X, T, n_horizon). Returns: ndarray of horizon coords; shape (n_horizon_points, 4). """ in_bounds = self.horizons > -1 # type: ignore s = in_bounds.sum() # type: ignore ixtn = np.empty(shape=(s, 4), dtype=int) nix = np.argwhere(in_bounds) ixtn[:, :2] = nix[:, 1:] ixtn[:, 3] = nix[:, 0] ixtn[:, 2] = self.horizons[nix[:, 0], nix[:, 1], nix[:, 2]] # type: ignore return ixtn def get_facies(self) -> np.ndarray: """Generate facies array. Returns: ndarray of int, shape (I, X, T). See class attribute docstring (facies) for description. """ ixtn = self.ixtn_horizons() facies = np.zeros(self.shape, dtype=int) facies[ixtn[:, 0], ixtn[:, 1], ixtn[:, 2]] = 1 for t in range(1, self.T): facies[:, :, t] = facies[:, :, t] + facies[:, :, (t - 1)] self.facies = facies return facies def generate_synthetic_seismic( self, reflection_coeffs: Union[float, List[Union[float, np.ndarray]]] = None, systematic_sigma: float = 0, white_sigma: float = 0, blur_sigma: float = 0, wavelet_frequency: int = 40, ): """Generate synthetic seismic. Create synthetic seismic using instance horizons and coefficients, or provided (constant) coefficients. Args: reflection_coeffs: See class attributes. systematic_sigma: Systematic noise added if not None; higher means more noise. white_sigma: White noise added if not None; higher means more noise. blur_sigma: Seismic blurred if not None; higher means more blurred. wavelet_frequency: Frequency of wavelet passed to bruges.filters.ricker() to define wavelet. Returns: ndarray of float, shape (I, X, T). """ if reflection_coeffs is not None: if isinstance(reflection_coeffs, float): self.reflection_coeffs = np.array(reflection_coeffs).reshape(1) else: self.reflection_coeffs = np.array(reflection_coeffs) msg = ( "Please provide one reflection coefficient constant/array for each" "horizon." ) assert len(self.reflection_coeffs) == self.n_horizons, msg assert np.all(np.abs(self.reflection_coeffs) < 1), "Max 100% reflected." if self.reflection_coeffs is None: warnings.warn("No reflection coefficients. Cannot generate seismic.") return dt = 0.005 # For some reason, odd length of the wave gives two spike points, we want one... even_T = self.T - self.T % 2 duration = min(0.100, 0.005 * even_T) # n_steps <= self.T wave = bruges.filters.ricker(duration=duration, dt=dt, f=wavelet_frequency) # ... but we want odd length wave = np.delete(wave, 0) self.wavelet = wave # TODO: Quicker to use convolution_matrix here? reflection_arr = self.reflection_coeffs_array seismic = np.apply_along_axis( lambda r: np.convolve(r, wave, mode="same"), axis=-1, arr=reflection_arr ) self.seismic = seismic if systematic_sigma > 0: first_col = np.zeros(self.T) l = wave.size // 2 + 1 first_col[:l] = wave[(l - 1) :] convolution_matrix = scipy.linalg.toeplitz(first_col) self._systematic_sigma = systematic_sigma W = convolution_matrix covariance_matrix = systematic_sigma ** 2 * W @ W.T dist = scipy.stats.multivariate_normal(np.zeros(self.T), covariance_matrix) self._systematic_noise = dist.rvs((self.I, self.X)) seismic += self._systematic_noise else: self._systematic_sigma = 0 if white_sigma > 0: self._white_sigma = white_sigma self._white_noise = np.random.normal(np.zeros(seismic.shape), white_sigma) seismic += self._white_noise else: self._white_sigma = 0 if blur_sigma > 0: self._blur_sigma = blur_sigma seismic = gaussian_filter(seismic, sigma=[blur_sigma, blur_sigma, 0]) self._blur_noise = self.seismic - seismic else: self._blur_sigma = 0 self.seismic = seismic return seismic
[ 11748, 299, 32152, 355, 45941, 198, 11748, 275, 2143, 274, 198, 11748, 629, 541, 88, 13, 34242, 198, 11748, 629, 541, 88, 13, 75, 1292, 70, 198, 11748, 14601, 198, 6738, 629, 541, 88, 13, 358, 9060, 1330, 31986, 31562, 62, 24455, 198, 6738, 19720, 1330, 309, 29291, 11, 4479, 11, 7343, 11, 32233, 11, 4889, 540, 11, 4377, 198, 198, 2, 16926, 46, 25, 3060, 1104, 329, 3076, 29457, 326, 366, 11338, 1, 30487, 85, 7115, 1, 357, 72, 13, 68, 13, 257, 7679, 318, 44699, 737, 628, 198, 4871, 26375, 6587, 6601, 25, 198, 220, 220, 220, 37227, 9487, 329, 15453, 18512, 40087, 12, 10396, 8139, 290, 37463, 612, 6738, 13, 628, 220, 220, 220, 770, 1398, 460, 466, 262, 1708, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 2980, 378, 10663, 12, 5305, 2569, 4738, 18512, 3076, 29457, 3527, 257, 6352, 333, 2550, 6115, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 10348, 2546, 357, 17618, 286, 410, 1140, 1424, 737, 383, 3076, 29457, 3002, 262, 2104, 6115, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 2980, 378, 2829, 357, 403, 5305, 2569, 828, 10730, 31025, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 2980, 378, 18512, 37463, 1366, 422, 262, 18512, 6352, 333, 2550, 6115, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 51, 29291, 58, 600, 11, 493, 11, 493, 60, 2599, 25959, 286, 262, 18512, 40087, 12, 29048, 11, 319, 262, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 40, 11, 1395, 11, 309, 737, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 314, 25, 7913, 286, 4229, 1127, 11, 1875, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 25, 7913, 286, 2124, 6615, 11, 1875, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 309, 25, 7913, 286, 256, 6615, 11, 1875, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 17899, 29457, 25, 7913, 286, 3076, 29457, 287, 40087, 12, 29048, 11, 1875, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 29457, 25, 7343, 286, 4129, 299, 62, 17899, 29457, 286, 299, 67, 18747, 286, 493, 11, 5485, 357, 40, 11, 1395, 737, 11703, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 40, 11, 1395, 8, 286, 1351, 5002, 289, 3607, 262, 6001, 286, 17810, 289, 287, 357, 40, 11, 1395, 8, 532, 691, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17810, 966, 583, 17810, 583, 12854, 318, 4855, 13, 532, 16, 9217, 503, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 11, 1312, 13, 68, 13, 262, 17810, 318, 407, 287, 262, 40087, 12, 29048, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1777, 444, 25, 299, 67, 18747, 286, 493, 11, 5485, 357, 40, 11, 1395, 11, 309, 737, 376, 13433, 923, 379, 3076, 29457, 357, 259, 5731, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2555, 284, 1306, 17810, 357, 41195, 8, 287, 256, 12, 37295, 13, 314, 13, 68, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 69, 13433, 796, 299, 62, 17899, 29457, 1343, 352, 13, 383, 7177, 4909, 37014, 422, 657, 284, 299, 62, 17899, 29457, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37463, 25, 299, 67, 18747, 286, 12178, 11, 5485, 357, 40, 11, 1395, 11, 309, 737, 26375, 6587, 37463, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6769, 1616, 25, 7177, 62, 2339, 26, 1351, 286, 6769, 1616, 12306, 10455, 13, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 82, 25, 7343, 286, 14580, 44036, 11, 530, 329, 1123, 17810, 13, 5501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 307, 257, 12178, 357, 9979, 415, 44036, 1973, 3076, 29457, 8, 393, 281, 357, 40, 9, 55, 8, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 1279, 14580, 35381, 1279, 352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 267, 672, 62, 17899, 29457, 25, 7343, 286, 3076, 29457, 326, 389, 11476, 393, 5000, 503, 286, 22303, 11, 1312, 13, 68, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 617, 14, 439, 2173, 286, 262, 17810, 407, 287, 262, 40087, 12, 29048, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5485, 7, 944, 8, 4613, 309, 29291, 58, 600, 11, 493, 11, 493, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 33383, 3119, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 29291, 58, 600, 11, 493, 11, 493, 5974, 25959, 286, 40087, 12, 29048, 357, 40, 9, 55, 9, 51, 737, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 40, 11, 2116, 13, 55, 11, 2116, 13, 51, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 14580, 62, 1073, 14822, 82, 62, 18747, 7, 944, 8, 4613, 32233, 58, 37659, 13, 358, 18747, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8134, 1564, 35381, 7177, 3119, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 358, 18747, 25, 25959, 357, 40, 9, 55, 9, 51, 1776, 7177, 286, 14580, 44036, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 5420, 1564, 62, 1073, 14822, 82, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 62, 18747, 796, 45941, 13, 9107, 418, 7, 944, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21065, 11, 31383, 796, 45941, 13, 76, 25928, 58, 25, 2116, 13, 40, 11, 1058, 2116, 13, 55, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 944, 13, 77, 62, 17899, 29457, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 2116, 13, 17899, 29457, 58, 72, 60, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 62, 18747, 58, 4178, 11, 31383, 11, 289, 60, 796, 2116, 13, 5420, 1564, 62, 1073, 14822, 82, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 62, 18747, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 7838, 7, 944, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2949, 786, 3119, 13, 628, 220, 220, 220, 220, 220, 220, 220, 3834, 83, 974, 278, 7838, 422, 2116, 13, 325, 1042, 291, 3607, 7838, 12, 5787, 37463, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 358, 18747, 25, 25959, 357, 40, 9, 55, 9, 51, 1776, 7177, 286, 7838, 10156, 284, 37463, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 2436, 333, 62, 3919, 786, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 2436, 333, 62, 3919, 786, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 10057, 1512, 62, 3919, 786, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11186, 62, 3919, 786, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 10057, 1512, 62, 3919, 786, 1343, 2116, 13557, 11186, 62, 3919, 786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 10057, 1512, 62, 3919, 786, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11186, 62, 3919, 786, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 11186, 62, 3919, 786, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 9107, 418, 7, 944, 13, 43358, 8, 628, 220, 220, 220, 825, 7716, 62, 17899, 29457, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 17899, 29457, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 30246, 25, 493, 796, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 30772, 25, 12178, 796, 657, 13, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5182, 62, 7857, 25, 12178, 796, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5182, 62, 13664, 25, 493, 796, 1542, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8046, 62, 87, 6615, 25, 4479, 58, 600, 11, 7343, 58, 600, 11907, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8046, 62, 7857, 25, 4479, 58, 600, 11, 7343, 58, 600, 11907, 796, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 5420, 1564, 62, 1073, 14822, 82, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 10396, 18486, 25, 12178, 796, 657, 13, 22544, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 325, 5379, 25, 7343, 58, 22468, 60, 796, 6045, 11, 198, 220, 220, 220, 1267, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 378, 18512, 3076, 29457, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2980, 378, 4738, 18512, 3076, 29457, 287, 262, 5447, 18512, 40087, 12, 29048, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 17899, 29457, 25, 493, 1875, 657, 13, 7913, 286, 3076, 29457, 284, 307, 7560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 30246, 25, 493, 18189, 657, 13, 26265, 5253, 1022, 262, 3076, 29457, 357, 392, 1353, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17810, 290, 657, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30772, 25, 12178, 1875, 657, 13, 4280, 1460, 262, 30772, 286, 262, 3076, 29457, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5182, 62, 7857, 25, 12178, 1875, 657, 13, 4280, 1460, 703, 2383, 11257, 262, 3076, 29457, 423, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5182, 62, 13664, 25, 12178, 1875, 657, 13, 4280, 1460, 703, 890, 262, 11257, 938, 329, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8046, 62, 87, 6615, 25, 13610, 31025, 379, 777, 2124, 6615, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8046, 62, 7857, 25, 7343, 286, 2546, 286, 8046, 18045, 11, 393, 2546, 286, 477, 18045, 611, 655, 281, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18253, 13, 16583, 1850, 611, 8046, 62, 87, 6615, 318, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 5420, 1564, 62, 1073, 14822, 82, 25, 1002, 6407, 11, 7716, 4738, 11, 1729, 12, 9979, 415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14580, 44036, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 10396, 18486, 25, 12178, 1875, 657, 13, 4709, 18486, 286, 262, 14580, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44036, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 325, 5379, 25, 20768, 3815, 326, 262, 4738, 14580, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44036, 481, 19180, 4985, 1088, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 17810, 299, 32152, 26515, 286, 2546, 357, 40, 9, 55, 737, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 30027, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 13433, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 325, 1042, 291, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 78, 672, 62, 17899, 29457, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 17899, 29457, 796, 299, 62, 17899, 29457, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14580, 62, 1073, 14822, 62, 325, 5379, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5492, 2148, 257, 14580, 35381, 9403, 1988, 329, 1123, 17810, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 361, 597, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 5420, 1564, 62, 1073, 14822, 62, 325, 5379, 8, 6624, 2116, 13, 77, 62, 17899, 29457, 11, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 10358, 2461, 22303, 422, 4808, 8612, 378, 62, 17899, 29457, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 796, 2116, 13557, 8612, 378, 62, 2502, 75, 5912, 62, 17899, 29457, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30772, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5182, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5182, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 5420, 1564, 62, 1073, 14822, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 10396, 18486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 325, 5379, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 796, 2116, 13557, 2617, 62, 1084, 62, 30246, 7, 1084, 62, 30246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8046, 62, 87, 6615, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 69, 1721, 62, 87, 6615, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8046, 62, 87, 6615, 796, 685, 69, 1721, 62, 87, 6615, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 69, 1721, 62, 7857, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8046, 62, 7857, 796, 685, 69, 1721, 62, 7857, 60, 1635, 18896, 7, 69, 1721, 62, 87, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 69, 1721, 62, 7857, 8, 6624, 18896, 7, 69, 1721, 62, 87, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 11, 2546, 287, 19974, 7, 69, 1721, 62, 87, 6615, 11, 8046, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 796, 2116, 13, 17953, 62, 69, 1721, 7, 87, 11, 2546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 796, 2116, 13557, 21084, 62, 29370, 62, 22570, 7, 1084, 62, 30246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 796, 2116, 13557, 2617, 62, 78, 672, 3419, 220, 1303, 900, 2173, 2029, 1353, 286, 2322, 284, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17899, 29457, 628, 220, 220, 220, 825, 4808, 8612, 378, 62, 2502, 75, 5912, 62, 17899, 29457, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 30772, 25, 12178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5182, 62, 13664, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5182, 62, 7857, 25, 12178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 5420, 1564, 62, 1073, 14822, 82, 25, 20512, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 10396, 18486, 25, 12178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 325, 5379, 25, 32233, 58, 8053, 58, 22468, 60, 4357, 198, 220, 220, 220, 1267, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 378, 3076, 29457, 14799, 13, 1119, 481, 21721, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 29457, 796, 45941, 13, 9107, 418, 19510, 944, 13, 77, 62, 17899, 29457, 11, 2116, 13, 40, 11, 2116, 13, 55, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7716, 62, 5420, 1564, 62, 1073, 14822, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5420, 1564, 62, 1073, 14822, 82, 796, 45941, 13, 9107, 418, 19510, 944, 13, 77, 62, 17899, 29457, 11, 2116, 13, 40, 11, 2116, 13, 55, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 5182, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 83, 10920, 796, 2116, 13557, 1136, 62, 83, 10920, 62, 35138, 7, 944, 13, 40, 11, 5182, 62, 7857, 11, 5182, 62, 13664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 83, 10920, 796, 2116, 13557, 1136, 62, 83, 10920, 62, 35138, 7, 944, 13, 55, 11, 5182, 62, 7857, 11, 5182, 62, 13664, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2980, 378, 530, 17810, 379, 257, 640, 1864, 284, 257, 4738, 1429, 1262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 5182, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 329, 289, 287, 2837, 7, 15, 11, 2116, 13, 77, 62, 17899, 29457, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3076, 29457, 58, 71, 60, 796, 2116, 13557, 8612, 378, 62, 17899, 8637, 7, 72, 62, 83, 10920, 11, 2124, 62, 83, 10920, 11, 4808, 43327, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7716, 62, 5420, 1564, 62, 1073, 14822, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 62, 10396, 796, 14580, 62, 1073, 14822, 62, 10396, 18486, 1220, 30772, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 289, 287, 2837, 7, 15, 11, 2116, 13, 77, 62, 17899, 29457, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22836, 1244, 307, 24030, 351, 3649, 6795, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14283, 796, 45941, 13, 25120, 13, 25541, 19510, 12, 16, 11, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14580, 62, 1073, 14822, 62, 325, 5379, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 796, 14580, 62, 1073, 14822, 62, 325, 5379, 58, 71, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5420, 1564, 62, 1073, 14822, 82, 58, 71, 60, 796, 2116, 13557, 8612, 378, 62, 17899, 8637, 7, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14283, 1635, 1312, 62, 83, 10920, 11, 14283, 1635, 2124, 62, 83, 10920, 11, 4808, 43327, 62, 66, 11, 6407, 11, 9403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3076, 29457, 815, 307, 18253, 12, 39728, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 29457, 796, 3076, 29457, 13, 744, 22446, 459, 2981, 7, 600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3076, 29457, 628, 220, 220, 220, 825, 4808, 8612, 378, 62, 17899, 8637, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 83, 10920, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 83, 10920, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4391, 25, 4889, 540, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 25, 20512, 796, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 62, 28826, 25, 12178, 796, 6045, 11, 198, 220, 220, 220, 1267, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 378, 290, 1441, 257, 2060, 17810, 393, 17810, 14580, 44036, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4229, 500, 62, 14907, 796, 45941, 13, 9107, 418, 7, 944, 13, 40, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1370, 62, 14907, 796, 45941, 13, 9107, 418, 7, 944, 13, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14580, 62, 1073, 14822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14580, 62, 1073, 14822, 62, 28826, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4229, 500, 62, 14907, 58, 15, 60, 796, 14580, 62, 1073, 14822, 62, 28826, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1370, 62, 14907, 58, 15, 60, 796, 14580, 62, 1073, 14822, 62, 28826, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 44707, 2837, 13841, 15, 13, 1495, 11, 532, 15, 13, 16, 8, 393, 357, 15, 13, 16, 11, 657, 13, 1495, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4229, 500, 62, 14907, 58, 15, 60, 796, 45941, 13, 25120, 13, 403, 6933, 32590, 15, 13, 1314, 11, 657, 13, 1314, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4229, 500, 62, 14907, 58, 15, 60, 15853, 45941, 13, 12683, 7, 346, 500, 62, 14907, 58, 15, 12962, 1635, 657, 13, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1370, 62, 14907, 58, 15, 60, 796, 4229, 500, 62, 14907, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 796, 657, 13, 18, 1635, 45941, 13, 12683, 7, 346, 500, 62, 14907, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1877, 796, 657, 13, 2713, 1635, 45941, 13, 12683, 7, 346, 500, 62, 14907, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1029, 1279, 1877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 11, 1877, 796, 357, 9319, 11, 1029, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 796, 45941, 13, 10745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1877, 796, 532, 8929, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2980, 378, 262, 17810, 1863, 262, 13015, 4229, 500, 796, 657, 290, 2124, 1370, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 2116, 13, 40, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4229, 500, 62, 14907, 58, 72, 60, 796, 357, 346, 500, 62, 14907, 58, 72, 532, 352, 60, 1343, 4391, 7, 72, 62, 83, 10920, 58, 72, 12962, 737, 15036, 7, 9319, 11, 1029, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 16, 11, 2116, 13, 55, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1370, 62, 14907, 58, 87, 60, 796, 357, 87, 1370, 62, 14907, 58, 87, 532, 352, 60, 1343, 4391, 7, 87, 62, 83, 10920, 58, 87, 12962, 737, 15036, 7, 9319, 11, 1029, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17810, 796, 45941, 13, 9107, 418, 19510, 944, 13, 40, 11, 2116, 13, 55, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 17810, 58, 45299, 657, 60, 796, 4229, 500, 62, 14907, 198, 220, 220, 220, 220, 220, 220, 220, 17810, 58, 15, 11, 1058, 60, 796, 2124, 1370, 62, 14907, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2980, 378, 262, 1334, 286, 262, 17810, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 2116, 13, 40, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 16, 11, 2116, 13, 55, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 43327, 796, 4391, 7, 72, 62, 83, 10920, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 43327, 796, 4391, 7, 87, 62, 83, 10920, 58, 87, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17810, 58, 72, 11, 2124, 60, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 20, 1635, 357, 17899, 8637, 58, 72, 532, 352, 11, 2124, 60, 1343, 1312, 62, 43327, 1343, 17810, 58, 72, 11, 2124, 532, 352, 60, 1343, 2124, 62, 43327, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 15036, 7, 9319, 11, 1029, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17810, 628, 220, 220, 220, 825, 4808, 1136, 62, 83, 10920, 62, 35138, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 299, 25, 493, 11, 5182, 62, 7857, 25, 12178, 11, 5182, 62, 13664, 25, 493, 198, 220, 220, 220, 1267, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 5182, 286, 257, 4738, 2513, 351, 5182, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 5182, 796, 5182, 62, 7857, 1635, 45941, 13, 25120, 13, 25192, 77, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5182, 58, 15, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 5182, 796, 2116, 13557, 31462, 62, 23913, 7, 83, 10920, 11, 5182, 62, 13664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5182, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 31462, 62, 23913, 7, 64, 25, 45941, 13, 358, 18747, 11, 299, 25, 493, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 33622, 2811, 286, 257, 11, 4324, 2546, 796, 299, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 45941, 13, 30073, 7, 64, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 45941, 13, 28463, 7, 65, 11, 657, 11, 45941, 13, 12853, 7, 77, 11, 257, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 45941, 13, 66, 5700, 388, 7, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 357, 82, 58, 77, 47715, 532, 264, 58, 21912, 77, 12962, 1220, 299, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 628, 220, 220, 220, 825, 4808, 2617, 62, 1084, 62, 30246, 7, 944, 11, 949, 62, 30246, 25, 493, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 21774, 3076, 29457, 284, 14658, 5288, 5253, 20855, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 16, 11, 2116, 13, 77, 62, 17899, 29457, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 796, 2116, 13, 17899, 29457, 58, 73, 60, 532, 2116, 13, 17899, 29457, 58, 73, 532, 352, 60, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 26069, 796, 814, 13, 1084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 949, 62, 26069, 1279, 949, 62, 30246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 45941, 13, 25120, 13, 25192, 600, 7, 1084, 62, 30246, 11, 513, 1635, 949, 62, 30246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 58, 73, 60, 15853, 1233, 532, 949, 62, 26069, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17899, 29457, 628, 220, 220, 220, 825, 2251, 62, 69, 1721, 7, 944, 11, 8046, 62, 87, 1370, 25, 493, 11, 8046, 62, 7857, 25, 493, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 8046, 379, 257, 2124, 1370, 8046, 62, 87, 1370, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8046, 62, 87, 1370, 25, 1395, 1370, 284, 2251, 8046, 379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8046, 62, 7857, 25, 12849, 286, 8046, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 1398, 11688, 2116, 13, 17899, 29457, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 58, 45299, 1058, 11, 8046, 62, 87, 1370, 47715, 15853, 8046, 62, 7857, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17899, 29457, 628, 220, 220, 220, 825, 4808, 21084, 62, 29370, 62, 22570, 7, 944, 11, 949, 62, 30246, 25, 493, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 1654, 326, 262, 1353, 17810, 318, 257, 1310, 2029, 657, 357, 35993, 384, 397, 276, 21387, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 1084, 796, 2116, 13, 17899, 29457, 58, 15, 4083, 1084, 3419, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 48185, 289, 62, 1084, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 15853, 45941, 13, 25120, 13, 25192, 600, 7, 15, 11, 2116, 13, 51, 3373, 949, 7, 940, 11, 2116, 13, 51, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 15853, 949, 62, 30246, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17899, 29457, 628, 220, 220, 220, 825, 4808, 2617, 62, 78, 672, 7, 944, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27914, 3354, 286, 3076, 29457, 2029, 357, 469, 13437, 2174, 8, 5447, 40087, 12, 29048, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 267, 672, 796, 2116, 13, 17899, 29457, 1875, 357, 944, 13, 51, 532, 352, 8, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 611, 267, 672, 13, 16345, 3419, 1875, 657, 25, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 29457, 58, 78, 672, 60, 796, 532, 16, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 289, 287, 2837, 7, 944, 13, 77, 62, 17899, 29457, 532, 352, 11, 532, 16, 11, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 448, 796, 267, 672, 58, 71, 4083, 16345, 3419, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 62, 448, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 11, 1395, 796, 2116, 13, 40, 11, 2116, 13, 55, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 17899, 8637, 1391, 71, 92, 318, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 4895, 3911, 306, 1, 611, 299, 62, 448, 1279, 357, 40, 9, 55, 8, 2073, 366, 298, 557, 306, 20662, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 448, 286, 22303, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 78, 672, 62, 17899, 29457, 13, 33295, 7, 71, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17899, 29457, 628, 220, 220, 220, 825, 17810, 62, 29048, 7, 944, 11, 17810, 62, 17618, 25, 493, 8, 4613, 32233, 58, 37659, 13, 358, 18747, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11547, 344, 17810, 6115, 329, 257, 2060, 17810, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 31408, 262, 7560, 17810, 656, 257, 13934, 299, 32152, 7177, 286, 198, 220, 220, 220, 220, 220, 220, 220, 15225, 357, 40, 11, 1395, 11, 309, 737, 383, 17810, 318, 7997, 416, 262, 3392, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17810, 62, 17618, 25, 9022, 17810, 284, 7716, 6115, 329, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13934, 299, 67, 18747, 286, 2546, 357, 40, 9, 55, 9, 51, 8, 611, 17810, 318, 357, 3911, 306, 8, 1626, 22303, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4306, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17810, 796, 2116, 13, 6346, 77, 62, 17899, 29457, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 17810, 796, 17810, 58, 17899, 8637, 58, 45299, 513, 60, 6624, 17810, 62, 17618, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 17810, 13, 7857, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7, 69, 1, 17899, 8637, 1391, 17899, 8637, 62, 17618, 92, 318, 407, 287, 6115, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 17810, 62, 10396, 796, 45941, 13, 9107, 418, 7, 944, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17810, 62, 10396, 58, 17899, 8637, 58, 45299, 657, 4357, 17810, 58, 45299, 352, 4357, 17810, 58, 45299, 362, 11907, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17810, 62, 10396, 628, 220, 220, 220, 825, 1312, 742, 77, 62, 17899, 29457, 7, 944, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11547, 344, 17810, 763, 3669, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 31408, 262, 7560, 3076, 29457, 656, 257, 299, 32152, 7177, 286, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 357, 77, 62, 17899, 8637, 62, 13033, 11, 604, 8, 351, 15274, 357, 40, 11, 1395, 11, 309, 11, 299, 62, 17899, 8637, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 286, 17810, 763, 3669, 26, 5485, 357, 77, 62, 17899, 8637, 62, 13033, 11, 604, 737, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 287, 62, 65, 3733, 796, 2116, 13, 17899, 29457, 1875, 532, 16, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 287, 62, 65, 3733, 13, 16345, 3419, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 742, 77, 796, 45941, 13, 28920, 7, 43358, 16193, 82, 11, 604, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 844, 796, 45941, 13, 853, 3003, 7, 259, 62, 65, 3733, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 742, 77, 58, 45299, 1058, 17, 60, 796, 299, 844, 58, 45299, 352, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 742, 77, 58, 45299, 513, 60, 796, 299, 844, 58, 45299, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 742, 77, 58, 45299, 362, 60, 796, 2116, 13, 17899, 29457, 58, 77, 844, 58, 45299, 657, 4357, 299, 844, 58, 45299, 352, 4357, 299, 844, 58, 45299, 362, 11907, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1312, 742, 77, 628, 220, 220, 220, 825, 651, 62, 69, 13433, 7, 944, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 378, 1777, 444, 7177, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 286, 493, 11, 5485, 357, 40, 11, 1395, 11, 309, 737, 4091, 1398, 11688, 2205, 8841, 357, 69, 13433, 8, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 742, 77, 796, 2116, 13, 6346, 77, 62, 17899, 29457, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1777, 444, 796, 45941, 13, 9107, 418, 7, 944, 13, 43358, 11, 288, 4906, 28, 600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1777, 444, 58, 6346, 77, 58, 45299, 657, 4357, 1312, 742, 77, 58, 45299, 352, 4357, 1312, 742, 77, 58, 45299, 362, 11907, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2837, 7, 16, 11, 2116, 13, 51, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1777, 444, 58, 45299, 1058, 11, 256, 60, 796, 1777, 444, 58, 45299, 1058, 11, 256, 60, 1343, 1777, 444, 58, 45299, 1058, 11, 357, 83, 532, 352, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 13433, 796, 1777, 444, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1777, 444, 628, 220, 220, 220, 825, 7716, 62, 1837, 429, 6587, 62, 325, 1042, 291, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 82, 25, 4479, 58, 22468, 11, 7343, 58, 38176, 58, 22468, 11, 45941, 13, 358, 18747, 11907, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17895, 62, 82, 13495, 25, 12178, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2330, 62, 82, 13495, 25, 12178, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 23671, 62, 82, 13495, 25, 12178, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6769, 1616, 62, 35324, 25, 493, 796, 2319, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 378, 18512, 37463, 13, 628, 220, 220, 220, 220, 220, 220, 220, 13610, 18512, 37463, 1262, 4554, 3076, 29457, 290, 44036, 11, 393, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 357, 9979, 415, 8, 44036, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 1073, 14822, 82, 25, 4091, 1398, 12608, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17895, 62, 82, 13495, 25, 4482, 1512, 7838, 2087, 611, 407, 6045, 26, 2440, 1724, 517, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2330, 62, 82, 13495, 25, 2635, 7838, 2087, 611, 407, 6045, 26, 2440, 1724, 517, 7838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23671, 62, 82, 13495, 25, 1001, 1042, 291, 38258, 611, 407, 6045, 26, 2440, 1724, 517, 38258, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6769, 1616, 62, 35324, 25, 31902, 286, 6769, 1616, 3804, 284, 275, 2143, 274, 13, 10379, 1010, 13, 5557, 263, 3419, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8160, 6769, 1616, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 286, 12178, 11, 5485, 357, 40, 11, 1395, 11, 309, 737, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14580, 62, 1073, 14822, 82, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 5420, 1564, 62, 1073, 14822, 82, 11, 12178, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5420, 1564, 62, 1073, 14822, 82, 796, 45941, 13, 18747, 7, 5420, 1564, 62, 1073, 14822, 82, 737, 3447, 1758, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5420, 1564, 62, 1073, 14822, 82, 796, 45941, 13, 18747, 7, 5420, 1564, 62, 1073, 14822, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5492, 2148, 530, 14580, 35381, 6937, 14, 18747, 329, 1123, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17899, 8637, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 944, 13, 5420, 1564, 62, 1073, 14822, 82, 8, 6624, 2116, 13, 77, 62, 17899, 29457, 11, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 45941, 13, 439, 7, 37659, 13, 8937, 7, 944, 13, 5420, 1564, 62, 1073, 14822, 82, 8, 1279, 352, 828, 366, 11518, 1802, 4, 12548, 526, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 5420, 1564, 62, 1073, 14822, 82, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 2949, 14580, 44036, 13, 26003, 7716, 37463, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 288, 83, 796, 657, 13, 22544, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 617, 1738, 11, 5629, 4129, 286, 262, 6769, 3607, 734, 20240, 2173, 11, 356, 765, 530, 986, 198, 220, 220, 220, 220, 220, 220, 220, 772, 62, 51, 796, 2116, 13, 51, 532, 2116, 13, 51, 4064, 362, 198, 220, 220, 220, 220, 220, 220, 220, 9478, 796, 949, 7, 15, 13, 3064, 11, 657, 13, 22544, 1635, 772, 62, 51, 8, 220, 1303, 299, 62, 20214, 19841, 2116, 13, 51, 198, 220, 220, 220, 220, 220, 220, 220, 6769, 796, 275, 2143, 274, 13, 10379, 1010, 13, 5557, 263, 7, 32257, 28, 32257, 11, 288, 83, 28, 28664, 11, 277, 28, 19204, 1616, 62, 35324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2644, 475, 356, 765, 5629, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 6769, 796, 45941, 13, 33678, 7, 19204, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19204, 1616, 796, 6769, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 12029, 263, 284, 779, 3063, 2122, 62, 6759, 8609, 994, 30, 198, 220, 220, 220, 220, 220, 220, 220, 14580, 62, 3258, 796, 2116, 13, 5420, 1564, 62, 1073, 14822, 82, 62, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 37463, 796, 45941, 13, 39014, 62, 24176, 62, 22704, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 374, 25, 45941, 13, 42946, 6442, 7, 81, 11, 6769, 11, 4235, 2625, 31642, 12340, 16488, 10779, 16, 11, 5240, 28, 5420, 1564, 62, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 325, 1042, 291, 796, 37463, 628, 220, 220, 220, 220, 220, 220, 220, 611, 17895, 62, 82, 13495, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 4033, 796, 45941, 13, 9107, 418, 7, 944, 13, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 796, 6769, 13, 7857, 3373, 362, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 4033, 58, 25, 75, 60, 796, 6769, 58, 7, 75, 532, 352, 8, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 2122, 62, 6759, 8609, 796, 629, 541, 88, 13, 75, 1292, 70, 13, 44579, 489, 4224, 7, 11085, 62, 4033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10057, 1512, 62, 82, 13495, 796, 17895, 62, 82, 13495, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 796, 3063, 2122, 62, 6759, 8609, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44829, 590, 62, 6759, 8609, 796, 17895, 62, 82, 13495, 12429, 362, 1635, 370, 2488, 370, 13, 51, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 629, 541, 88, 13, 34242, 13, 16680, 42524, 62, 11265, 7, 37659, 13, 9107, 418, 7, 944, 13, 51, 828, 44829, 590, 62, 6759, 8609, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10057, 1512, 62, 3919, 786, 796, 1233, 13, 81, 14259, 19510, 944, 13, 40, 11, 2116, 13, 55, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37463, 15853, 2116, 13557, 10057, 1512, 62, 3919, 786, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10057, 1512, 62, 82, 13495, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2330, 62, 82, 13495, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11186, 62, 82, 13495, 796, 2330, 62, 82, 13495, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11186, 62, 3919, 786, 796, 45941, 13, 25120, 13, 11265, 7, 37659, 13, 9107, 418, 7, 325, 1042, 291, 13, 43358, 828, 2330, 62, 82, 13495, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37463, 15853, 2116, 13557, 11186, 62, 3919, 786, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11186, 62, 82, 13495, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 23671, 62, 82, 13495, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2436, 333, 62, 82, 13495, 796, 23671, 62, 82, 13495, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37463, 796, 31986, 31562, 62, 24455, 7, 325, 1042, 291, 11, 264, 13495, 41888, 2436, 333, 62, 82, 13495, 11, 23671, 62, 82, 13495, 11, 657, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2436, 333, 62, 3919, 786, 796, 2116, 13, 325, 1042, 291, 532, 37463, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2436, 333, 62, 82, 13495, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 325, 1042, 291, 796, 37463, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37463, 198 ]
2.118168
8,691
""" Python Character Mapping Codec generated from '8859-8.TXT'. Written by Marc-Andre Lemburg ([email protected]). (c) Copyright CNRI, All Rights Reserved. NO WARRANTY. """#" import codecs ### Codec APIs ### encodings module API ### Decoding Map decoding_map = { 0x00aa: 0x00d7, # MULTIPLICATION SIGN 0x00af: 0x203e, # OVERLINE 0x00ba: 0x00f7, # DIVISION SIGN 0x00df: 0x2017, # DOUBLE LOW LINE 0x00e0: 0x05d0, # HEBREW LETTER ALEF 0x00e1: 0x05d1, # HEBREW LETTER BET 0x00e2: 0x05d2, # HEBREW LETTER GIMEL 0x00e3: 0x05d3, # HEBREW LETTER DALET 0x00e4: 0x05d4, # HEBREW LETTER HE 0x00e5: 0x05d5, # HEBREW LETTER VAV 0x00e6: 0x05d6, # HEBREW LETTER ZAYIN 0x00e7: 0x05d7, # HEBREW LETTER HET 0x00e8: 0x05d8, # HEBREW LETTER TET 0x00e9: 0x05d9, # HEBREW LETTER YOD 0x00ea: 0x05da, # HEBREW LETTER FINAL KAF 0x00eb: 0x05db, # HEBREW LETTER KAF 0x00ec: 0x05dc, # HEBREW LETTER LAMED 0x00ed: 0x05dd, # HEBREW LETTER FINAL MEM 0x00ee: 0x05de, # HEBREW LETTER MEM 0x00ef: 0x05df, # HEBREW LETTER FINAL NUN 0x00f0: 0x05e0, # HEBREW LETTER NUN 0x00f1: 0x05e1, # HEBREW LETTER SAMEKH 0x00f2: 0x05e2, # HEBREW LETTER AYIN 0x00f3: 0x05e3, # HEBREW LETTER FINAL PE 0x00f4: 0x05e4, # HEBREW LETTER PE 0x00f5: 0x05e5, # HEBREW LETTER FINAL TSADI 0x00f6: 0x05e6, # HEBREW LETTER TSADI 0x00f7: 0x05e7, # HEBREW LETTER QOF 0x00f8: 0x05e8, # HEBREW LETTER RESH 0x00f9: 0x05e9, # HEBREW LETTER SHIN 0x00fa: 0x05ea, # HEBREW LETTER TAV } ### Encoding Map encoding_map = {} for k,v in decoding_map.items(): encoding_map[v] = k
[ 37811, 11361, 15684, 337, 5912, 39298, 7560, 422, 705, 3459, 3270, 12, 23, 13, 51, 25010, 4458, 628, 198, 25354, 416, 13067, 12, 31258, 20607, 7423, 357, 7617, 31, 293, 2022, 3686, 13, 785, 737, 198, 198, 7, 66, 8, 15069, 31171, 7112, 11, 1439, 6923, 33876, 13, 8005, 34764, 56, 13, 198, 198, 37811, 2, 1, 198, 198, 11748, 40481, 82, 198, 198, 21017, 39298, 23113, 198, 198, 21017, 2207, 375, 654, 8265, 7824, 198, 198, 21017, 4280, 7656, 9347, 198, 198, 12501, 7656, 62, 8899, 796, 1391, 628, 197, 15, 87, 405, 7252, 25, 657, 87, 405, 67, 22, 11, 197, 2, 220, 197, 44, 16724, 4061, 43, 2149, 6234, 36771, 198, 197, 15, 87, 405, 1878, 25, 657, 87, 22416, 68, 11, 197, 2, 220, 197, 41983, 24027, 198, 197, 15, 87, 405, 7012, 25, 657, 87, 405, 69, 22, 11, 197, 2, 220, 197, 33569, 42446, 36771, 198, 197, 15, 87, 405, 7568, 25, 657, 87, 5539, 11, 197, 2, 220, 197, 35, 2606, 19146, 46663, 48920, 198, 197, 15, 87, 405, 68, 15, 25, 657, 87, 2713, 67, 15, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 32318, 37, 198, 197, 15, 87, 405, 68, 16, 25, 657, 87, 2713, 67, 16, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 38651, 198, 197, 15, 87, 405, 68, 17, 25, 657, 87, 2713, 67, 17, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 402, 3955, 3698, 198, 197, 15, 87, 405, 68, 18, 25, 657, 87, 2713, 67, 18, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 360, 1847, 2767, 198, 197, 15, 87, 405, 68, 19, 25, 657, 87, 2713, 67, 19, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 11179, 198, 197, 15, 87, 405, 68, 20, 25, 657, 87, 2713, 67, 20, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 569, 10116, 198, 197, 15, 87, 405, 68, 21, 25, 657, 87, 2713, 67, 21, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 1168, 4792, 1268, 198, 197, 15, 87, 405, 68, 22, 25, 657, 87, 2713, 67, 22, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 367, 2767, 198, 197, 15, 87, 405, 68, 23, 25, 657, 87, 2713, 67, 23, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 309, 2767, 198, 197, 15, 87, 405, 68, 24, 25, 657, 87, 2713, 67, 24, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 575, 3727, 198, 197, 15, 87, 405, 18213, 25, 657, 87, 2713, 6814, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 25261, 509, 8579, 198, 197, 15, 87, 405, 1765, 25, 657, 87, 2713, 9945, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 509, 8579, 198, 197, 15, 87, 405, 721, 25, 657, 87, 2713, 17896, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 406, 2390, 1961, 198, 197, 15, 87, 405, 276, 25, 657, 87, 2713, 1860, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 25261, 35153, 198, 197, 15, 87, 405, 1453, 25, 657, 87, 2713, 2934, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 35153, 198, 197, 15, 87, 405, 891, 25, 657, 87, 2713, 7568, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 25261, 399, 4944, 198, 197, 15, 87, 405, 69, 15, 25, 657, 87, 2713, 68, 15, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 399, 4944, 198, 197, 15, 87, 405, 69, 16, 25, 657, 87, 2713, 68, 16, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 311, 10067, 42, 39, 198, 197, 15, 87, 405, 69, 17, 25, 657, 87, 2713, 68, 17, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 317, 56, 1268, 198, 197, 15, 87, 405, 69, 18, 25, 657, 87, 2713, 68, 18, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 25261, 18468, 198, 197, 15, 87, 405, 69, 19, 25, 657, 87, 2713, 68, 19, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 18468, 198, 197, 15, 87, 405, 69, 20, 25, 657, 87, 2713, 68, 20, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 25261, 26136, 2885, 40, 198, 197, 15, 87, 405, 69, 21, 25, 657, 87, 2713, 68, 21, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 26136, 2885, 40, 198, 197, 15, 87, 405, 69, 22, 25, 657, 87, 2713, 68, 22, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 1195, 19238, 198, 197, 15, 87, 405, 69, 23, 25, 657, 87, 2713, 68, 23, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 15731, 39, 198, 197, 15, 87, 405, 69, 24, 25, 657, 87, 2713, 68, 24, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 6006, 1268, 198, 197, 15, 87, 405, 13331, 25, 657, 87, 2713, 18213, 11, 197, 2, 220, 197, 13909, 40438, 54, 37994, 5781, 309, 10116, 198, 92, 198, 198, 21017, 14711, 7656, 9347, 198, 198, 12685, 7656, 62, 8899, 796, 23884, 198, 1640, 479, 11, 85, 287, 39938, 62, 8899, 13, 23814, 33529, 198, 220, 220, 220, 21004, 62, 8899, 58, 85, 60, 796, 479, 198 ]
1.791146
881
import argparse import subprocess import os import time import random if __name__ == "__main__": main()
[ 11748, 1822, 29572, 198, 11748, 850, 14681, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 4738, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.114286
35
# automatically generated by the FlatBuffers compiler, do not modify # namespace: FBOutput import tdw.flatbuffers
[ 2, 6338, 7560, 416, 262, 21939, 36474, 364, 17050, 11, 466, 407, 13096, 198, 198, 2, 25745, 25, 13186, 26410, 198, 198, 11748, 41560, 86, 13, 38568, 36873, 364, 198 ]
3.866667
30