content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
"""Utils for wheel.""" from contextlib import suppress from pathlib import Path import re import shutil from .utils import run_command, build_arch RE_WHEEL_PLATFORM = re.compile(r"^(?P<name>.*-)cp\d{2}m?-linux_\w+\.whl$") ARCH_PLAT = { "amd64": "linux_x86_64", "i386": "linux_i686", "aarch64": "linux_aarch64", "armhf": "linux_armv7l", "armv7": "linux_armv7l", } def fix_wheels_name(wheels_folder: Path) -> None: """Remove platform tag from filename.""" for package in wheels_folder.glob("*.whl"): match = RE_WHEEL_PLATFORM.match(package.name) if not match: continue package.rename(Path(package.parent, f"{match.group('name')}none-any.whl")) def copy_wheels_from_cache(cache_folder: Path, wheels_folder: Path) -> None: """Preserve wheels from cache on timeout error.""" for wheel_file in cache_folder.glob("**/*.whl"): with suppress(OSError): shutil.copy(wheel_file, wheels_folder) def run_auditwheel(wheels_folder: Path) -> None: """Run auditwheel to include shared library.""" platform = ARCH_PLAT[build_arch()] for wheel_file in wheels_folder.glob("*.whl"): if not RE_WHEEL_PLATFORM.match(wheel_file.name): continue run_command( f"auditwheel repair --plat {platform} --no-update-tags -w {wheels_folder} {wheel_file}" )
[ 37811, 18274, 4487, 329, 7825, 526, 15931, 201, 198, 6738, 4732, 8019, 1330, 18175, 201, 198, 6738, 3108, 8019, 1330, 10644, 201, 198, 11748, 302, 201, 198, 11748, 4423, 346, 201, 198, 201, 198, 6738, 764, 26791, 1330, 1057, 62, 21812, 11, 1382, 62, 998, 201, 198, 201, 198, 2200, 62, 12418, 36, 3698, 62, 6489, 1404, 21389, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 7, 30, 47, 27, 3672, 29, 15885, 25106, 13155, 59, 67, 90, 17, 92, 76, 30, 12, 23289, 62, 59, 86, 10, 17405, 1929, 75, 3, 4943, 201, 198, 201, 198, 201, 198, 31315, 62, 6489, 1404, 796, 1391, 201, 198, 220, 220, 220, 366, 28745, 2414, 1298, 366, 23289, 62, 87, 4521, 62, 2414, 1600, 201, 198, 220, 220, 220, 366, 72, 21734, 1298, 366, 23289, 62, 72, 33808, 1600, 201, 198, 220, 220, 220, 366, 64, 998, 2414, 1298, 366, 23289, 62, 64, 998, 2414, 1600, 201, 198, 220, 220, 220, 366, 1670, 71, 69, 1298, 366, 23289, 62, 1670, 85, 22, 75, 1600, 201, 198, 220, 220, 220, 366, 1670, 85, 22, 1298, 366, 23289, 62, 1670, 85, 22, 75, 1600, 201, 198, 92, 201, 198, 201, 198, 201, 198, 4299, 4259, 62, 12491, 1424, 62, 3672, 7, 12491, 1424, 62, 43551, 25, 10644, 8, 4613, 6045, 25, 201, 198, 220, 220, 220, 37227, 27914, 3859, 7621, 422, 29472, 526, 15931, 201, 198, 220, 220, 220, 329, 5301, 287, 13666, 62, 43551, 13, 4743, 672, 7203, 24620, 1929, 75, 1, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 4526, 62, 12418, 36, 3698, 62, 6489, 1404, 21389, 13, 15699, 7, 26495, 13, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2872, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 13, 918, 480, 7, 15235, 7, 26495, 13, 8000, 11, 277, 1, 90, 15699, 13, 8094, 10786, 3672, 11537, 92, 23108, 12, 1092, 13, 1929, 75, 48774, 201, 198, 201, 198, 201, 198, 4299, 4866, 62, 12491, 1424, 62, 6738, 62, 23870, 7, 23870, 62, 43551, 25, 10644, 11, 13666, 62, 43551, 25, 10644, 8, 4613, 6045, 25, 201, 198, 220, 220, 220, 37227, 25460, 3760, 13666, 422, 12940, 319, 26827, 4049, 526, 15931, 201, 198, 220, 220, 220, 329, 7825, 62, 7753, 287, 12940, 62, 43551, 13, 4743, 672, 7203, 1174, 15211, 13, 1929, 75, 1, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 351, 18175, 7, 2640, 12331, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7, 22001, 62, 7753, 11, 13666, 62, 43551, 8, 201, 198, 201, 198, 201, 198, 4299, 1057, 62, 3885, 270, 22001, 7, 12491, 1424, 62, 43551, 25, 10644, 8, 4613, 6045, 25, 201, 198, 220, 220, 220, 37227, 10987, 14984, 22001, 284, 2291, 4888, 5888, 526, 15931, 201, 198, 220, 220, 220, 3859, 796, 5923, 3398, 62, 6489, 1404, 58, 11249, 62, 998, 3419, 60, 201, 198, 201, 198, 220, 220, 220, 329, 7825, 62, 7753, 287, 13666, 62, 43551, 13, 4743, 672, 7203, 24620, 1929, 75, 1, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4526, 62, 12418, 36, 3698, 62, 6489, 1404, 21389, 13, 15699, 7, 22001, 62, 7753, 13, 3672, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 21812, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 3885, 270, 22001, 9185, 1377, 489, 265, 1391, 24254, 92, 1377, 3919, 12, 19119, 12, 31499, 532, 86, 1391, 12491, 1424, 62, 43551, 92, 1391, 22001, 62, 7753, 36786, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198 ]
2.21517
646
""" PACKNET - c0mplh4cks INTERFACE """ # === Importing Dependencies === # import socket from time import time from .standards import encode, decode from . import ADDR, MAC # === Interface === #
[ 37811, 628, 47035, 12884, 220, 532, 220, 269, 15, 76, 489, 71, 19, 4657, 628, 23255, 49836, 628, 198, 37811, 628, 628, 198, 198, 2, 24844, 17267, 278, 37947, 3976, 24844, 1303, 198, 11748, 17802, 198, 6738, 640, 1330, 640, 198, 6738, 764, 1481, 1371, 1330, 37773, 11, 36899, 198, 6738, 764, 1330, 5984, 7707, 11, 20582, 628, 628, 628, 198, 198, 2, 24844, 26491, 24844, 1303, 628, 628 ]
3.144928
69
import argparse from smp_manifold_learning.differentiable_models.utils import create_dir_if_not_exist parser = argparse.ArgumentParser(allow_abbrev=False) parser.add_argument("-d", "--dir_path", default='../plot/ecmnn/', type=str) if __name__ == '__main__': args = parser.parse_args() dir_path = args.dir_path create_dir_if_not_exist(dir_path)
[ 11748, 1822, 29572, 198, 6738, 895, 79, 62, 805, 361, 727, 62, 40684, 13, 39799, 3379, 62, 27530, 13, 26791, 1330, 2251, 62, 15908, 62, 361, 62, 1662, 62, 38476, 628, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 12154, 62, 397, 4679, 85, 28, 25101, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 67, 1600, 366, 438, 15908, 62, 6978, 1600, 4277, 11639, 40720, 29487, 14, 721, 10295, 77, 14, 3256, 2099, 28, 2536, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 26672, 62, 6978, 796, 26498, 13, 15908, 62, 6978, 198, 220, 220, 220, 2251, 62, 15908, 62, 361, 62, 1662, 62, 38476, 7, 15908, 62, 6978, 8 ]
2.679104
134
# Generated by Django 3.0.3 on 2020-08-13 18:04 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 18, 319, 12131, 12, 2919, 12, 1485, 1248, 25, 3023, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
# # Copyright (c) 2017 Electronic Arts Inc. All Rights Reserved # import uuid # https://stackoverflow.com/questions/1181919/python-base-36-encoding/1181924 def base36encode(number, alphabet='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'): """Converts an integer to a base36 string.""" if not isinstance(number, (int, long)): raise TypeError('number must be an integer') base36 = '' sign = '' if number < 0: sign = '-' number = -number if 0 <= number < len(alphabet): return sign + alphabet[number] while number != 0: number, i = divmod(number, len(alphabet)) base36 = alphabet[i] + base36 return sign + base36
[ 2, 198, 2, 15069, 357, 66, 8, 2177, 19508, 11536, 3457, 13, 1439, 6923, 33876, 220, 198, 2, 628, 198, 11748, 334, 27112, 198, 198, 2, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 16817, 1129, 1129, 14, 29412, 12, 8692, 12, 2623, 12, 12685, 7656, 14, 16817, 1129, 1731, 198, 4299, 2779, 2623, 268, 8189, 7, 17618, 11, 24830, 11639, 486, 1954, 2231, 3134, 4531, 24694, 32988, 17511, 23852, 42, 31288, 45, 3185, 48, 49, 2257, 52, 30133, 34278, 57, 6, 2599, 198, 220, 220, 220, 37227, 3103, 24040, 281, 18253, 284, 257, 2779, 2623, 4731, 526, 15931, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 17618, 11, 357, 600, 11, 890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 17618, 1276, 307, 281, 18253, 11537, 628, 220, 220, 220, 2779, 2623, 796, 10148, 198, 220, 220, 220, 1051, 796, 10148, 628, 220, 220, 220, 611, 1271, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1051, 796, 705, 19355, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 532, 17618, 628, 220, 220, 220, 611, 657, 19841, 1271, 1279, 18896, 7, 17307, 8380, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1051, 1343, 24830, 58, 17618, 60, 628, 220, 220, 220, 981, 1271, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 11, 1312, 796, 2659, 4666, 7, 17618, 11, 18896, 7, 17307, 8380, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 2623, 796, 24830, 58, 72, 60, 1343, 2779, 2623, 628, 220, 220, 220, 1441, 1051, 1343, 2779, 2623, 198 ]
2.531136
273
from __future__ import annotations from dataclasses import dataclass, Field from datetime import datetime, timedelta from typing import Union, Optional, Tuple, List from parse import parse from med import Med, MedRegistry, DOSAGE_PARSE_FORMAT DEFAULT_LOG_FILE = 'logs/med.log' DEFAULT_DATE_TIME_FORMAT = r'%m/%d/%Y %H:%M' @dataclass
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 7663, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 19720, 1330, 4479, 11, 32233, 11, 309, 29291, 11, 7343, 198, 198, 6738, 21136, 1330, 21136, 198, 198, 6738, 1117, 1330, 2019, 11, 2019, 8081, 4592, 11, 43036, 11879, 62, 27082, 5188, 62, 21389, 1404, 198, 198, 7206, 38865, 62, 25294, 62, 25664, 796, 705, 6404, 82, 14, 1150, 13, 6404, 6, 198, 7206, 38865, 62, 35, 6158, 62, 34694, 62, 21389, 1404, 796, 374, 6, 4, 76, 14, 4, 67, 14, 4, 56, 4064, 39, 25, 4, 44, 6, 628, 198, 31, 19608, 330, 31172, 628, 628 ]
2.91453
117
# -*- coding: utf-8 -*- """ Created on Mon Feb 26 17:15:36 2018 @author: Raj """ import pycroscopy as px from pycroscopy.processing.fft import FrequencyFilter import pyUSID as usid import numpy as np from scipy import signal as sps from ffta.load import get_utils from ffta import pixel from matplotlib import pyplot as plt import warnings ''' For filtering data using the pycroscopy filter command To set up a filter, you can choose any of the following: Harmonic Filter: pick a frequency and bandpass filters that + 2w + 3e etc Bandpass Filter: pick a specific frequency and pass that Lowpass Filter: pick a frequency and pass all below that Noise Filter: pick frequencies to selectively remove (like electrical noise, etc) # a harmonic filter center of 2000 points long at 100kHz and 2*100 kHz, with a 5000 Hz wide window, at 1 MHz sampling >>> hbf = px.processing.fft.HarmonicPassFilter(2000, 10e6, 100e3, 5000, 2) >>> ffta.hdf_utils.filtering.test_filter(h5_main, hbf) #will display the result before applying to the whole dataset >>> ffta.hdf_utils.filtering.fft_filter(h5_main, hbf) ''' def test_filter(hdf_file, freq_filts, parameters={}, pixelnum=[0, 0], noise_tolerance=5e-7, show_plots=True, check_filter=True): """ Applies FFT Filter to the file at a specific line and displays the result Parameters ---------- hdf_file : h5Py file or Nx1 NumPy array (preferred is NumPy array) hdf_file to work on, e.g. hdf.file['/FF-raw'] if that's a Dataset if ndarray, uses passed or default parameters Use ndarray.flatten() to ensure correct dimensions freq_filts : list of FrequencyFilter class objects Contains the filters to apply to the test signal parameters : dict, optional Contains parameters in FF-raw file for constructing filters. Automatic if a Dataset/File Must contain num_pts and samp_rate to be functional pixelnum : int, optional For extracting a specific pixel to do FFT Filtering on show_plots : bool, optional Turns on FFT plots from Pycroscopy noise_tolerance : float 0 to 1 Amount of noise below which signal is set to 0 Returns ------- filt_line : numpy.ndarray Filtered signal of hdf_file freq_filts : list The filter parameters to be passed to SignalFilter fig_filt, axes_filt: matplotlib controls Only functional if show_plots is on """ reshape = False ftype = str(type(hdf_file)) if ('h5py' in ftype) or ('Dataset' in ftype): # hdf file parameters = get_utils.get_params(hdf_file) hdf_file = get_utils.get_pixel(hdf_file, [pixelnum[0], pixelnum[1]], array_form=True, transpose=False) hdf_file = hdf_file.flatten() if len(hdf_file.shape) == 2: reshape = True hdf_file = hdf_file.flatten() sh = hdf_file.shape # Test filter on a single line: filt_line, fig_filt, axes_filt = px.processing.gmode_utils.test_filter(hdf_file, frequency_filters=freq_filts, noise_threshold=noise_tolerance, show_plots=show_plots) # If need to reshape if reshape: filt_line = np.reshape(filt_line, sh) # Test filter out in Pixel if check_filter: plt.figure() plt.plot(hdf_file, 'b') plt.plot(filt_line, 'k') h5_px_filt = pixel.Pixel(filt_line, parameters) h5_px_filt.clear_filter_flags() h5_px_filt.analyze() h5_px_filt.plot(newplot=True) h5_px_raw = pixel.Pixel(hdf_file, parameters) h5_px_raw.analyze() h5_px_raw.plot(newplot=True) # h5_px_raw_unfilt = pixel.Pixel(hdf_file, parameters) # h5_px_raw_unfilt.clear_filter_flags() # h5_px_raw_unfilt.analyze() # h5_px_raw_unfilt.plot(newplot=False,c1='y', c2='c') return filt_line, freq_filts, fig_filt, axes_filt def fft_filter(h5_main, freq_filts, noise_tolerance=5e-7, make_new=False, verbose=False): """ Stub for applying filter above to the entire FF image set Parameters ---------- h5_main : h5py.Dataset object Dataset to work on, e.g. h5_main = px.hdf_utils.getDataSet(hdf.file, 'FF_raw')[0] freq_filts : list List of frequency filters usually generated in test_line above noise_tolerance : float, optional Level below which data are set to 0. Higher values = more noise (more tolerant) make_new : bool, optional Allows for re-filtering the data by creating a new folder Returns ------- h5_filt : Dataset Filtered dataset within latest -FFT_Filtering Group """ h5_filt_grp = usid.hdf_utils.check_for_old(h5_main, 'FFT_Filtering') if make_new == True or not any(h5_filt_grp): sig_filt = px.processing.SignalFilter(h5_main, frequency_filters=freq_filts, noise_threshold=noise_tolerance, write_filtered=True, write_condensed=False, num_pix=1, verbose=verbose, cores=2, max_mem_mb=512) h5_filt_grp = sig_filt.compute() else: print('Taking previously computed results') h5_filt = h5_filt_grp[0]['Filtered_Data'] h5_filt = h5_filt_grp['Filtered_Data'] usid.hdf_utils.copy_attributes(h5_main.parent, h5_filt) usid.hdf_utils.copy_attributes(h5_main.parent, h5_filt.parent) return h5_filt def lowpass(hdf_file, parameters={}, pixelnum=[0, 0], f_cutoff=None): ''' Interfaces to px.pycroscopy.fft.LowPassFilter :param hdf_file: :param parameters: :param pixelnum: See test_filter below :param f_cutoff: int frequency to cut off. Defaults to 2*drive frequency rounded to nearest 100 kHz ''' hdf_file, num_pts, drive, samp_rate = _get_pixel_for_filtering(hdf_file, parameters, pixelnum) if not f_cutoff: lpf_cutoff = np.round(drive / 1e5, decimals=0) * 2 * 1e5 # 2times the drive frequency, round up lpf = px.processing.fft.LowPassFilter(num_pts, samp_rate, lpf_cutoff) return lpf def bandpass(hdf_file, parameters={}, pixelnum=[0, 0], f_center=None, f_width=10e3, harmonic=None, fir=False): ''' Interfaces to pycroscopy.processing.fft.BandPassFilter Note that this is effectively a Harmonic Filter of number_harmonics 1, but with finite impulse response option :param hdf_file: :param parameters: :param pixelnum: See test_filter below :param f_center: int center frequency for the specific band to pass :param f_width: int width of frequency to pass :param harmonic: int if specified, sets the band to this specific multiple of the drive frequency :param fir: bool uses an Finite Impulse Response filter instead of a normal boxcar ''' hdf_file, num_pts, drive, samp_rate = _get_pixel_for_filtering(hdf_file, parameters, pixelnum) # default is the 2*w signal (second harmonic for KPFM) if not f_center: if not harmonic: f_center = drive * 2 else: f_center = int(drive * harmonic) bpf = px.processing.fft.BandPassFilter(num_pts, samp_rate, f_center, f_width, fir=fir) return bpf def harmonic(hdf_file, parameters={}, pixelnum=[0, 0], first_harm=1, bandwidth=None, num_harmonics=5): ''' Interfaces with px.processing.fft.HarmonicFilter Parameters ---------- hdf_file, parameters, pixelnum : see comments in test_filter below first_harm : int The first harmonic based on the drive frequency to use For G-KPFM this should be explicitly set to 2 bandwidth : int bandwidth for filtering. For computational purposes this is hard-set to 2500 (2.5 kHz) num_harmonics : int The number of harmonics to use (omega, 2*omega, 3*omega, etc) ''' hdf_file, num_pts, drive, samp_rate = _get_pixel_for_filtering(hdf_file, parameters, pixelnum) if not bandwidth: bandwidth = 2500 elif bandwidth > 2500: warnings.warn('Bandwidth of that level might cause errors') bandwidth = 2500 first_harm = drive * first_harm hbf = px.processing.fft.HarmonicPassFilter(num_pts, samp_rate, first_harm, bandwidth, num_harmonics) return hbf def noise_filter(hdf_file, parameters={}, pixelnum=[0, 0], centers=[10E3, 50E3, 100E3, 150E3, 200E3], widths=[20E3, 1E3, 1E3, 1E3, 1E3]): ''' Interfaces with pycroscopy.processing.fft.NoiseBandFilter :param hdf_file: :param parameters: :param pixelnum: See test_filter :param centers: list List of Frequencies to filter out :param widths: List of frequency widths for each filter. e,g. in default case (10 kHz center, 20 kHz width) is from 0 to 20 kHz ''' hdf_file, num_pts, drive, samp_rate = _get_pixel_for_filtering(hdf_file, parameters, pixelnum) nf = px.processing.fft.NoiseBandFilter(num_pts, samp_rate, centers, widths) return nf # placeholder until accepted in pull request
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 2892, 3158, 2608, 1596, 25, 1314, 25, 2623, 2864, 198, 198, 31, 9800, 25, 13308, 198, 37811, 198, 198, 11748, 12972, 19915, 1416, 11081, 355, 279, 87, 198, 6738, 12972, 19915, 1416, 11081, 13, 36948, 13, 487, 83, 1330, 31902, 22417, 198, 11748, 12972, 2937, 2389, 355, 514, 312, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 6737, 355, 599, 82, 198, 198, 6738, 277, 701, 64, 13, 2220, 1330, 651, 62, 26791, 198, 198, 6738, 277, 701, 64, 1330, 17465, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 198, 11748, 14601, 198, 198, 7061, 6, 198, 1890, 25431, 1366, 1262, 262, 12972, 19915, 1416, 11081, 8106, 3141, 198, 198, 2514, 900, 510, 257, 8106, 11, 345, 460, 3853, 597, 286, 262, 1708, 25, 198, 197, 39, 1670, 9229, 25853, 25, 2298, 257, 8373, 290, 4097, 6603, 16628, 326, 1343, 362, 86, 1343, 513, 68, 3503, 198, 197, 31407, 6603, 25853, 25, 2298, 257, 2176, 8373, 290, 1208, 326, 198, 197, 20535, 6603, 25853, 25, 2298, 257, 8373, 290, 1208, 477, 2174, 326, 198, 197, 2949, 786, 25853, 25, 2298, 19998, 284, 39119, 4781, 357, 2339, 12278, 7838, 11, 3503, 8, 198, 198, 2, 257, 49239, 8106, 3641, 286, 4751, 2173, 890, 379, 1802, 44191, 290, 362, 9, 3064, 37597, 11, 351, 257, 23336, 26109, 3094, 4324, 11, 379, 352, 19805, 19232, 198, 33409, 289, 19881, 796, 279, 87, 13, 36948, 13, 487, 83, 13, 39, 1670, 9229, 14478, 22417, 7, 11024, 11, 838, 68, 21, 11, 1802, 68, 18, 11, 23336, 11, 362, 8, 198, 33409, 277, 701, 64, 13, 71, 7568, 62, 26791, 13, 10379, 20212, 13, 9288, 62, 24455, 7, 71, 20, 62, 12417, 11, 289, 19881, 8, 1303, 10594, 3359, 262, 1255, 878, 11524, 284, 262, 2187, 27039, 198, 33409, 277, 701, 64, 13, 71, 7568, 62, 26791, 13, 10379, 20212, 13, 487, 83, 62, 24455, 7, 71, 20, 62, 12417, 11, 289, 19881, 8, 628, 198, 7061, 6, 628, 198, 4299, 1332, 62, 24455, 7, 71, 7568, 62, 7753, 11, 2030, 80, 62, 10379, 912, 11, 10007, 34758, 5512, 17465, 22510, 41888, 15, 11, 657, 4357, 7838, 62, 83, 37668, 28, 20, 68, 12, 22, 11, 198, 197, 197, 197, 197, 12860, 62, 489, 1747, 28, 17821, 11, 2198, 62, 24455, 28, 17821, 2599, 198, 197, 37811, 198, 197, 4677, 13508, 376, 9792, 25853, 284, 262, 2393, 379, 257, 2176, 1627, 290, 11298, 262, 1255, 628, 197, 48944, 198, 197, 35937, 198, 197, 71, 7568, 62, 7753, 1058, 289, 20, 20519, 2393, 393, 399, 87, 16, 31835, 20519, 7177, 357, 3866, 18186, 318, 31835, 20519, 7177, 8, 198, 197, 197, 71, 7568, 62, 7753, 284, 670, 319, 11, 304, 13, 70, 13, 289, 7568, 13, 7753, 17816, 14, 5777, 12, 1831, 20520, 611, 326, 338, 257, 16092, 292, 316, 198, 197, 197, 361, 299, 67, 18747, 11, 3544, 3804, 393, 4277, 10007, 198, 197, 197, 11041, 299, 67, 18747, 13, 2704, 41769, 3419, 284, 4155, 3376, 15225, 628, 197, 19503, 80, 62, 10379, 912, 1058, 1351, 286, 31902, 22417, 1398, 5563, 198, 197, 197, 4264, 1299, 262, 16628, 284, 4174, 284, 262, 1332, 6737, 628, 197, 17143, 7307, 1058, 8633, 11, 11902, 198, 197, 197, 4264, 1299, 10007, 287, 18402, 12, 1831, 2393, 329, 30580, 16628, 13, 30199, 611, 257, 16092, 292, 316, 14, 8979, 198, 197, 197, 34320, 3994, 997, 62, 457, 82, 290, 264, 696, 62, 4873, 284, 307, 10345, 198, 197, 198, 197, 32515, 22510, 1058, 493, 11, 11902, 198, 197, 197, 1890, 37895, 257, 2176, 17465, 284, 466, 376, 9792, 7066, 20212, 319, 198, 197, 197, 198, 197, 12860, 62, 489, 1747, 1058, 20512, 11, 11902, 198, 197, 197, 17278, 82, 319, 376, 9792, 21528, 422, 9485, 19915, 1416, 11081, 628, 197, 3919, 786, 62, 83, 37668, 1058, 12178, 657, 284, 352, 198, 197, 197, 31264, 286, 7838, 2174, 543, 6737, 318, 900, 284, 657, 628, 197, 35561, 198, 197, 26866, 198, 197, 69, 2326, 62, 1370, 1058, 299, 32152, 13, 358, 18747, 198, 197, 197, 11928, 4400, 6737, 286, 289, 7568, 62, 7753, 198, 197, 198, 197, 19503, 80, 62, 10379, 912, 1058, 1351, 198, 197, 197, 464, 8106, 10007, 284, 307, 3804, 284, 26484, 22417, 198, 197, 198, 197, 5647, 62, 69, 2326, 11, 34197, 62, 69, 2326, 25, 2603, 29487, 8019, 6973, 198, 197, 197, 10049, 10345, 611, 905, 62, 489, 1747, 318, 319, 198, 197, 37811, 628, 197, 3447, 1758, 796, 10352, 198, 197, 701, 2981, 796, 965, 7, 4906, 7, 71, 7568, 62, 7753, 4008, 198, 197, 361, 19203, 71, 20, 9078, 6, 287, 277, 4906, 8, 393, 19203, 27354, 292, 316, 6, 287, 277, 4906, 2599, 220, 1303, 289, 7568, 2393, 628, 197, 197, 17143, 7307, 796, 651, 62, 26791, 13, 1136, 62, 37266, 7, 71, 7568, 62, 7753, 8, 198, 197, 197, 71, 7568, 62, 7753, 796, 651, 62, 26791, 13, 1136, 62, 32515, 7, 71, 7568, 62, 7753, 11, 685, 32515, 22510, 58, 15, 4357, 17465, 22510, 58, 16, 60, 4357, 7177, 62, 687, 28, 17821, 11, 1007, 3455, 28, 25101, 8, 198, 197, 197, 71, 7568, 62, 7753, 796, 289, 7568, 62, 7753, 13, 2704, 41769, 3419, 628, 197, 361, 18896, 7, 71, 7568, 62, 7753, 13, 43358, 8, 6624, 362, 25, 198, 197, 197, 3447, 1758, 796, 6407, 198, 197, 197, 71, 7568, 62, 7753, 796, 289, 7568, 62, 7753, 13, 2704, 41769, 3419, 628, 197, 1477, 796, 289, 7568, 62, 7753, 13, 43358, 628, 197, 2, 6208, 8106, 319, 257, 2060, 1627, 25, 198, 197, 69, 2326, 62, 1370, 11, 2336, 62, 69, 2326, 11, 34197, 62, 69, 2326, 796, 279, 87, 13, 36948, 13, 70, 14171, 62, 26791, 13, 9288, 62, 24455, 7, 71, 7568, 62, 7753, 11, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 8373, 62, 10379, 1010, 28, 19503, 80, 62, 10379, 912, 11, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 7838, 62, 400, 10126, 28, 3919, 786, 62, 83, 37668, 11, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 905, 62, 489, 1747, 28, 12860, 62, 489, 1747, 8, 628, 197, 2, 1002, 761, 284, 27179, 1758, 198, 197, 361, 27179, 1758, 25, 198, 197, 197, 69, 2326, 62, 1370, 796, 45941, 13, 3447, 1758, 7, 69, 2326, 62, 1370, 11, 427, 8, 628, 197, 2, 6208, 8106, 503, 287, 11349, 198, 197, 361, 2198, 62, 24455, 25, 198, 197, 197, 489, 83, 13, 26875, 3419, 198, 197, 197, 489, 83, 13, 29487, 7, 71, 7568, 62, 7753, 11, 705, 65, 11537, 198, 197, 197, 489, 83, 13, 29487, 7, 69, 2326, 62, 1370, 11, 705, 74, 11537, 628, 197, 197, 71, 20, 62, 8416, 62, 69, 2326, 796, 17465, 13, 40809, 7, 69, 2326, 62, 1370, 11, 10007, 8, 198, 197, 197, 71, 20, 62, 8416, 62, 69, 2326, 13, 20063, 62, 24455, 62, 33152, 3419, 198, 197, 197, 71, 20, 62, 8416, 62, 69, 2326, 13, 38200, 2736, 3419, 198, 197, 197, 71, 20, 62, 8416, 62, 69, 2326, 13, 29487, 7, 3605, 29487, 28, 17821, 8, 628, 197, 197, 71, 20, 62, 8416, 62, 1831, 796, 17465, 13, 40809, 7, 71, 7568, 62, 7753, 11, 10007, 8, 198, 197, 197, 71, 20, 62, 8416, 62, 1831, 13, 38200, 2736, 3419, 198, 197, 197, 71, 20, 62, 8416, 62, 1831, 13, 29487, 7, 3605, 29487, 28, 17821, 8, 628, 197, 2, 220, 220, 220, 289, 20, 62, 8416, 62, 1831, 62, 403, 69, 2326, 796, 17465, 13, 40809, 7, 71, 7568, 62, 7753, 11, 10007, 8, 198, 197, 2, 220, 220, 220, 289, 20, 62, 8416, 62, 1831, 62, 403, 69, 2326, 13, 20063, 62, 24455, 62, 33152, 3419, 198, 197, 2, 220, 220, 220, 289, 20, 62, 8416, 62, 1831, 62, 403, 69, 2326, 13, 38200, 2736, 3419, 198, 197, 2, 220, 220, 220, 289, 20, 62, 8416, 62, 1831, 62, 403, 69, 2326, 13, 29487, 7, 3605, 29487, 28, 25101, 11, 66, 16, 11639, 88, 3256, 269, 17, 11639, 66, 11537, 628, 197, 7783, 1226, 83, 62, 1370, 11, 2030, 80, 62, 10379, 912, 11, 2336, 62, 69, 2326, 11, 34197, 62, 69, 2326, 628, 198, 4299, 277, 701, 62, 24455, 7, 71, 20, 62, 12417, 11, 2030, 80, 62, 10379, 912, 11, 7838, 62, 83, 37668, 28, 20, 68, 12, 22, 11, 787, 62, 3605, 28, 25101, 11, 15942, 577, 28, 25101, 2599, 198, 197, 37811, 198, 197, 1273, 549, 329, 11524, 8106, 2029, 284, 262, 2104, 18402, 2939, 900, 198, 197, 198, 197, 48944, 198, 197, 35937, 198, 197, 71, 20, 62, 12417, 1058, 289, 20, 9078, 13, 27354, 292, 316, 2134, 198, 197, 197, 27354, 292, 316, 284, 670, 319, 11, 304, 13, 70, 13, 289, 20, 62, 12417, 796, 279, 87, 13, 71, 7568, 62, 26791, 13, 1136, 6601, 7248, 7, 71, 7568, 13, 7753, 11, 705, 5777, 62, 1831, 11537, 58, 15, 60, 198, 197, 198, 197, 19503, 80, 62, 10379, 912, 1058, 1351, 198, 197, 197, 8053, 286, 8373, 16628, 3221, 7560, 287, 1332, 62, 1370, 2029, 198, 197, 197, 198, 197, 3919, 786, 62, 83, 37668, 1058, 12178, 11, 11902, 198, 197, 197, 4971, 2174, 543, 1366, 389, 900, 284, 657, 13, 16038, 3815, 796, 517, 7838, 357, 3549, 33435, 8, 198, 197, 198, 197, 15883, 62, 3605, 1058, 20512, 11, 11902, 198, 197, 197, 34934, 329, 302, 12, 10379, 20212, 262, 1366, 416, 4441, 257, 649, 9483, 198, 197, 198, 197, 35561, 198, 197, 26866, 198, 197, 198, 197, 71, 20, 62, 69, 2326, 1058, 16092, 292, 316, 198, 197, 197, 11928, 4400, 27039, 1626, 3452, 532, 5777, 51, 62, 11928, 20212, 4912, 198, 197, 197, 198, 197, 37811, 628, 197, 71, 20, 62, 69, 2326, 62, 2164, 79, 796, 514, 312, 13, 71, 7568, 62, 26791, 13, 9122, 62, 1640, 62, 727, 7, 71, 20, 62, 12417, 11, 705, 5777, 51, 62, 11928, 20212, 11537, 628, 197, 361, 787, 62, 3605, 6624, 6407, 393, 407, 597, 7, 71, 20, 62, 69, 2326, 62, 2164, 79, 2599, 628, 197, 197, 82, 328, 62, 69, 2326, 796, 279, 87, 13, 36948, 13, 11712, 282, 22417, 7, 71, 20, 62, 12417, 11, 8373, 62, 10379, 1010, 28, 19503, 80, 62, 10379, 912, 11, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 7838, 62, 400, 10126, 28, 3919, 786, 62, 83, 37668, 11, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 3551, 62, 10379, 4400, 28, 17821, 11, 3551, 62, 17561, 15385, 28, 25101, 11, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 997, 62, 79, 844, 28, 16, 11, 15942, 577, 28, 19011, 577, 11, 21758, 28, 17, 11, 3509, 62, 11883, 62, 2022, 28, 25836, 8, 628, 197, 197, 71, 20, 62, 69, 2326, 62, 2164, 79, 796, 43237, 62, 69, 2326, 13, 5589, 1133, 3419, 628, 197, 17772, 25, 198, 197, 197, 4798, 10786, 26556, 4271, 29231, 2482, 11537, 198, 197, 197, 71, 20, 62, 69, 2326, 796, 289, 20, 62, 69, 2326, 62, 2164, 79, 58, 15, 7131, 6, 11928, 4400, 62, 6601, 20520, 628, 197, 71, 20, 62, 69, 2326, 796, 289, 20, 62, 69, 2326, 62, 2164, 79, 17816, 11928, 4400, 62, 6601, 20520, 198, 197, 385, 312, 13, 71, 7568, 62, 26791, 13, 30073, 62, 1078, 7657, 7, 71, 20, 62, 12417, 13, 8000, 11, 289, 20, 62, 69, 2326, 8, 198, 197, 385, 312, 13, 71, 7568, 62, 26791, 13, 30073, 62, 1078, 7657, 7, 71, 20, 62, 12417, 13, 8000, 11, 289, 20, 62, 69, 2326, 13, 8000, 8, 628, 197, 7783, 289, 20, 62, 69, 2326, 628, 198, 4299, 1877, 6603, 7, 71, 7568, 62, 7753, 11, 10007, 34758, 5512, 17465, 22510, 41888, 15, 11, 657, 4357, 277, 62, 8968, 2364, 28, 14202, 2599, 198, 197, 7061, 6, 198, 197, 9492, 32186, 284, 279, 87, 13, 9078, 19915, 1416, 11081, 13, 487, 83, 13, 20535, 14478, 22417, 198, 197, 198, 197, 25, 17143, 289, 7568, 62, 7753, 25, 628, 197, 25, 17143, 10007, 25, 198, 197, 198, 197, 25, 17143, 17465, 22510, 25, 198, 197, 197, 6214, 1332, 62, 24455, 2174, 628, 197, 25, 17143, 277, 62, 8968, 2364, 25, 493, 198, 197, 197, 35324, 284, 2005, 572, 13, 2896, 13185, 284, 362, 9, 19472, 8373, 19273, 284, 16936, 1802, 37597, 628, 197, 7061, 6, 198, 197, 71, 7568, 62, 7753, 11, 997, 62, 457, 82, 11, 3708, 11, 264, 696, 62, 4873, 796, 4808, 1136, 62, 32515, 62, 1640, 62, 10379, 20212, 7, 71, 7568, 62, 7753, 11, 10007, 11, 17465, 22510, 8, 628, 197, 361, 407, 277, 62, 8968, 2364, 25, 198, 197, 197, 34431, 69, 62, 8968, 2364, 796, 45941, 13, 744, 7, 19472, 1220, 352, 68, 20, 11, 875, 320, 874, 28, 15, 8, 1635, 362, 1635, 352, 68, 20, 220, 1303, 362, 22355, 262, 3708, 8373, 11, 2835, 510, 628, 197, 34431, 69, 796, 279, 87, 13, 36948, 13, 487, 83, 13, 20535, 14478, 22417, 7, 22510, 62, 457, 82, 11, 264, 696, 62, 4873, 11, 300, 79, 69, 62, 8968, 2364, 8, 628, 197, 7783, 300, 79, 69, 628, 198, 4299, 4097, 6603, 7, 71, 7568, 62, 7753, 11, 10007, 34758, 5512, 17465, 22510, 41888, 15, 11, 657, 4357, 277, 62, 16159, 28, 14202, 11, 277, 62, 10394, 28, 940, 68, 18, 11, 49239, 28, 14202, 11, 37979, 28, 25101, 2599, 198, 197, 7061, 6, 198, 197, 9492, 32186, 284, 12972, 19915, 1416, 11081, 13, 36948, 13, 487, 83, 13, 31407, 14478, 22417, 198, 197, 6425, 326, 428, 318, 6840, 257, 17925, 9229, 25853, 286, 1271, 62, 29155, 38530, 352, 11, 475, 351, 27454, 25278, 2882, 3038, 628, 197, 25, 17143, 289, 7568, 62, 7753, 25, 198, 197, 25, 17143, 10007, 25, 198, 197, 25, 17143, 17465, 22510, 25, 198, 197, 197, 6214, 1332, 62, 24455, 2174, 198, 197, 25, 17143, 277, 62, 16159, 25, 493, 198, 197, 197, 16159, 8373, 329, 262, 2176, 4097, 284, 1208, 198, 197, 25, 17143, 277, 62, 10394, 25, 493, 198, 197, 197, 10394, 286, 8373, 284, 1208, 198, 197, 25, 17143, 49239, 25, 493, 198, 197, 197, 361, 7368, 11, 5621, 262, 4097, 284, 428, 2176, 3294, 286, 262, 3708, 8373, 198, 197, 25, 17143, 37979, 25, 20512, 198, 197, 197, 2664, 281, 4463, 578, 9855, 9615, 18261, 8106, 2427, 286, 257, 3487, 3091, 7718, 198, 197, 7061, 6, 628, 197, 71, 7568, 62, 7753, 11, 997, 62, 457, 82, 11, 3708, 11, 264, 696, 62, 4873, 796, 4808, 1136, 62, 32515, 62, 1640, 62, 10379, 20212, 7, 71, 7568, 62, 7753, 11, 10007, 11, 17465, 22510, 8, 628, 197, 2, 4277, 318, 262, 362, 9, 86, 6737, 357, 12227, 49239, 329, 45814, 23264, 8, 198, 197, 361, 407, 277, 62, 16159, 25, 198, 197, 197, 361, 407, 49239, 25, 198, 197, 197, 197, 69, 62, 16159, 796, 3708, 1635, 362, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 69, 62, 16159, 796, 493, 7, 19472, 1635, 49239, 8, 628, 197, 46583, 69, 796, 279, 87, 13, 36948, 13, 487, 83, 13, 31407, 14478, 22417, 7, 22510, 62, 457, 82, 11, 264, 696, 62, 4873, 11, 277, 62, 16159, 11, 277, 62, 10394, 11, 37979, 28, 69, 343, 8, 628, 197, 7783, 275, 79, 69, 628, 198, 4299, 49239, 7, 71, 7568, 62, 7753, 11, 10007, 34758, 5512, 17465, 22510, 41888, 15, 11, 657, 4357, 717, 62, 29155, 28, 16, 11, 19484, 28, 14202, 11, 997, 62, 29155, 38530, 28, 20, 2599, 198, 197, 7061, 6, 198, 197, 9492, 32186, 351, 279, 87, 13, 36948, 13, 487, 83, 13, 39, 1670, 9229, 22417, 628, 197, 48944, 198, 197, 35937, 198, 197, 71, 7568, 62, 7753, 11, 10007, 11, 17465, 22510, 1058, 766, 3651, 287, 1332, 62, 24455, 2174, 628, 197, 11085, 62, 29155, 1058, 493, 198, 197, 197, 464, 717, 49239, 1912, 319, 262, 3708, 8373, 284, 779, 198, 197, 197, 1890, 402, 12, 42, 47, 23264, 428, 815, 307, 11777, 900, 284, 362, 628, 197, 3903, 10394, 1058, 493, 198, 197, 197, 3903, 10394, 329, 25431, 13, 1114, 31350, 4959, 428, 318, 1327, 12, 2617, 284, 33507, 357, 17, 13, 20, 37597, 8, 628, 197, 22510, 62, 29155, 38530, 1058, 493, 198, 197, 197, 464, 1271, 286, 25625, 873, 284, 779, 357, 462, 4908, 11, 362, 9, 462, 4908, 11, 513, 9, 462, 4908, 11, 3503, 8, 198, 197, 7061, 6, 628, 197, 71, 7568, 62, 7753, 11, 997, 62, 457, 82, 11, 3708, 11, 264, 696, 62, 4873, 796, 4808, 1136, 62, 32515, 62, 1640, 62, 10379, 20212, 7, 71, 7568, 62, 7753, 11, 10007, 11, 17465, 22510, 8, 628, 197, 361, 407, 19484, 25, 198, 197, 197, 3903, 10394, 796, 33507, 198, 197, 417, 361, 19484, 1875, 33507, 25, 198, 197, 197, 40539, 654, 13, 40539, 10786, 31407, 10394, 286, 326, 1241, 1244, 2728, 8563, 11537, 198, 197, 197, 3903, 10394, 796, 33507, 628, 197, 11085, 62, 29155, 796, 3708, 1635, 717, 62, 29155, 628, 197, 71, 19881, 796, 279, 87, 13, 36948, 13, 487, 83, 13, 39, 1670, 9229, 14478, 22417, 7, 22510, 62, 457, 82, 11, 264, 696, 62, 4873, 11, 717, 62, 29155, 11, 19484, 11, 997, 62, 29155, 38530, 8, 628, 197, 7783, 289, 19881, 628, 198, 4299, 7838, 62, 24455, 7, 71, 7568, 62, 7753, 11, 10007, 34758, 5512, 17465, 22510, 41888, 15, 11, 657, 4357, 198, 197, 197, 197, 197, 10399, 41888, 940, 36, 18, 11, 2026, 36, 18, 11, 1802, 36, 18, 11, 6640, 36, 18, 11, 939, 36, 18, 4357, 198, 197, 197, 197, 197, 9647, 82, 41888, 1238, 36, 18, 11, 352, 36, 18, 11, 352, 36, 18, 11, 352, 36, 18, 11, 352, 36, 18, 60, 2599, 198, 197, 7061, 6, 198, 197, 9492, 32186, 351, 12972, 19915, 1416, 11081, 13, 36948, 13, 487, 83, 13, 2949, 786, 31407, 22417, 628, 197, 25, 17143, 289, 7568, 62, 7753, 25, 198, 197, 25, 17143, 10007, 25, 198, 197, 25, 17143, 17465, 22510, 25, 198, 197, 197, 6214, 1332, 62, 24455, 198, 197, 25, 17143, 10399, 25, 1351, 198, 197, 197, 8053, 286, 22192, 3976, 284, 8106, 503, 198, 197, 25, 17143, 9647, 82, 25, 198, 197, 197, 8053, 286, 8373, 9647, 82, 329, 1123, 8106, 13, 304, 11, 70, 13, 287, 4277, 1339, 357, 940, 37597, 3641, 11, 1160, 37597, 9647, 8, 318, 422, 657, 284, 1160, 37597, 198, 197, 7061, 6, 628, 197, 71, 7568, 62, 7753, 11, 997, 62, 457, 82, 11, 3708, 11, 264, 696, 62, 4873, 796, 4808, 1136, 62, 32515, 62, 1640, 62, 10379, 20212, 7, 71, 7568, 62, 7753, 11, 10007, 11, 17465, 22510, 8, 628, 197, 77, 69, 796, 279, 87, 13, 36948, 13, 487, 83, 13, 2949, 786, 31407, 22417, 7, 22510, 62, 457, 82, 11, 264, 696, 62, 4873, 11, 10399, 11, 9647, 82, 8, 628, 197, 7783, 299, 69, 628, 198, 198, 2, 46076, 1566, 6292, 287, 2834, 2581, 198 ]
2.621681
3,201
import pytest from calvin.runtime.north.plugins.port import queue from calvin.runtime.north.calvin_token import Token from calvin.runtime.north.plugins.port.queue.common import QueueEmpty from calvin.runtime.north.plugins.port.queue.test.test_collect_unordered import TestCollectUnorderedFIFO pytest_unittest = pytest.mark.unittest @pytest_unittest
[ 11748, 12972, 9288, 198, 198, 6738, 2386, 7114, 13, 43282, 13, 43588, 13, 37390, 13, 634, 1330, 16834, 198, 6738, 2386, 7114, 13, 43282, 13, 43588, 13, 9948, 7114, 62, 30001, 1330, 29130, 198, 6738, 2386, 7114, 13, 43282, 13, 43588, 13, 37390, 13, 634, 13, 36560, 13, 11321, 1330, 4670, 518, 40613, 198, 6738, 2386, 7114, 13, 43282, 13, 43588, 13, 37390, 13, 634, 13, 36560, 13, 9288, 13, 9288, 62, 33327, 62, 403, 24071, 1330, 6208, 31337, 3118, 24071, 37, 5064, 46, 198, 9078, 9288, 62, 403, 715, 395, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 31, 9078, 9288, 62, 403, 715, 395, 198 ]
2.983607
122
import matplotlib.pyplot as plt import pandas as pd from pathlib import Path import nixio as nix fnbase = Path.joinpath(Path.home(), 'Chaos', 'work') fnraw = str(Path.joinpath(fnbase, '_Lab_Zimmer/calcium_imaging/results/N2/urx/shift210421/20120705Pflp178GCaMP5kshift210421W7URXx2.log')) nixfn = str(Path.joinpath(fnbase, 'ginrepos', 'demo', 'elegans_oxygen.nix')) # row_wise read in of csv file data = pd.read_csv(fnraw) # transpose to get columns tdata = data.transpose() # get df/f column as array steps = tdata.values[0] dff = tdata.values[5] # load data into nix nixfile = nix.File.open(nixfn, nix.FileMode.Overwrite) b = nixfile.create_block(name="oxygen_shift_trials", type_="calcium_imaging") # use a group to structure the individual trials within a block g = b.create_group(name="N2_URX_shift_210421_20120705", type_="trial.datacollection") # add steps column da = b.create_data_array(name="20120705_frames", array_type="trial.column", data=steps) da.label = "frames" # add dF/F column da = b.create_data_array(name="20120705_df_over_f", array_type="trial.column", data=dff) da.label = "dF/F" # Add the second dimension to the data array dim = da.append_sampled_dimension(steps[1] - steps[0]) dim.label = "frames" # Structuring our data g.data_arrays.append(b.data_arrays["20120705_frames"]) g.data_arrays.append(b.data_arrays["20120705_df_over_f"]) # plot figure from file fig, ax = plt.subplots() ax.plot(b.data_arrays["20120705_df_over_f"][:]) ax.set(xlabel=b.data_arrays["20120705_df_over_f"].dimensions[0].label, ylabel=b.data_arrays["20120705_df_over_f"].label, title="URX oxygen shift trial (21-04-21)") plt.show() nixfile.close()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 299, 844, 952, 355, 299, 844, 198, 198, 22184, 8692, 796, 10644, 13, 22179, 6978, 7, 15235, 13, 11195, 22784, 705, 1925, 7495, 3256, 705, 1818, 11537, 628, 198, 22184, 1831, 796, 965, 7, 15235, 13, 22179, 6978, 7, 22184, 8692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 17822, 62, 57, 10957, 14, 9948, 16910, 62, 320, 3039, 14, 43420, 14, 45, 17, 14, 333, 87, 14, 30846, 17, 13464, 2481, 14, 1264, 1238, 34801, 47, 2704, 79, 23188, 15916, 64, 7378, 20, 591, 29323, 17, 13464, 2481, 54, 22, 4261, 55, 87, 17, 13, 6404, 6, 4008, 198, 198, 77, 844, 22184, 796, 965, 7, 15235, 13, 22179, 6978, 7, 22184, 8692, 11, 705, 1655, 260, 1930, 3256, 705, 9536, 78, 3256, 705, 68, 1455, 504, 62, 23536, 5235, 13, 77, 844, 6, 4008, 628, 198, 2, 5752, 62, 3083, 1100, 287, 286, 269, 21370, 2393, 198, 7890, 796, 279, 67, 13, 961, 62, 40664, 7, 22184, 1831, 8, 198, 198, 2, 1007, 3455, 284, 651, 15180, 198, 83, 7890, 796, 1366, 13, 7645, 3455, 3419, 198, 198, 2, 651, 47764, 14, 69, 5721, 355, 7177, 198, 20214, 796, 256, 7890, 13, 27160, 58, 15, 60, 198, 67, 487, 796, 256, 7890, 13, 27160, 58, 20, 60, 198, 198, 2, 3440, 1366, 656, 299, 844, 198, 77, 844, 7753, 796, 299, 844, 13, 8979, 13, 9654, 7, 77, 844, 22184, 11, 299, 844, 13, 8979, 19076, 13, 5886, 13564, 8, 198, 65, 796, 299, 844, 7753, 13, 17953, 62, 9967, 7, 3672, 2625, 23536, 5235, 62, 30846, 62, 28461, 874, 1600, 2099, 62, 2625, 9948, 16910, 62, 320, 3039, 4943, 198, 198, 2, 779, 257, 1448, 284, 4645, 262, 1981, 9867, 1626, 257, 2512, 198, 70, 796, 275, 13, 17953, 62, 8094, 7, 3672, 2625, 45, 17, 62, 4261, 55, 62, 30846, 62, 17, 13464, 2481, 62, 1264, 1238, 34801, 1600, 2099, 62, 2625, 45994, 13, 19608, 330, 349, 1564, 4943, 198, 198, 2, 751, 4831, 5721, 198, 6814, 796, 275, 13, 17953, 62, 7890, 62, 18747, 7, 3672, 2625, 1264, 1238, 34801, 62, 37805, 1600, 7177, 62, 4906, 2625, 45994, 13, 28665, 1600, 1366, 28, 20214, 8, 198, 6814, 13, 18242, 796, 366, 37805, 1, 198, 198, 2, 751, 288, 37, 14, 37, 5721, 198, 6814, 796, 275, 13, 17953, 62, 7890, 62, 18747, 7, 3672, 2625, 1264, 1238, 34801, 62, 7568, 62, 2502, 62, 69, 1600, 7177, 62, 4906, 2625, 45994, 13, 28665, 1600, 1366, 28, 67, 487, 8, 198, 6814, 13, 18242, 796, 366, 67, 37, 14, 37, 1, 198, 198, 2, 3060, 262, 1218, 15793, 284, 262, 1366, 7177, 198, 27740, 796, 12379, 13, 33295, 62, 37687, 10137, 62, 46156, 7, 20214, 58, 16, 60, 532, 4831, 58, 15, 12962, 198, 27740, 13, 18242, 796, 366, 37805, 1, 198, 198, 2, 32112, 870, 674, 1366, 198, 70, 13, 7890, 62, 3258, 592, 13, 33295, 7, 65, 13, 7890, 62, 3258, 592, 14692, 1264, 1238, 34801, 62, 37805, 8973, 8, 198, 70, 13, 7890, 62, 3258, 592, 13, 33295, 7, 65, 13, 7890, 62, 3258, 592, 14692, 1264, 1238, 34801, 62, 7568, 62, 2502, 62, 69, 8973, 8, 198, 198, 2, 7110, 3785, 422, 2393, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 897, 13, 29487, 7, 65, 13, 7890, 62, 3258, 592, 14692, 1264, 1238, 34801, 62, 7568, 62, 2502, 62, 69, 1, 7131, 25, 12962, 198, 897, 13, 2617, 7, 87, 18242, 28, 65, 13, 7890, 62, 3258, 592, 14692, 1264, 1238, 34801, 62, 7568, 62, 2502, 62, 69, 1, 4083, 27740, 5736, 58, 15, 4083, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 331, 18242, 28, 65, 13, 7890, 62, 3258, 592, 14692, 1264, 1238, 34801, 62, 7568, 62, 2502, 62, 69, 1, 4083, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 3670, 2625, 4261, 55, 11863, 6482, 4473, 357, 2481, 12, 3023, 12, 2481, 8, 4943, 198, 489, 83, 13, 12860, 3419, 198, 198, 77, 844, 7753, 13, 19836, 3419, 198 ]
2.386014
715
############################################################################# # Copyright (c) Wolf Vollprecht, QuantStack # # # # Distributed under the terms of the BSD 3-Clause License. # # # # The full license is in the file LICENSE, distributed with this software. # ############################################################################# try: import rospy except: print("The rospy package is not found in your $PYTHONPATH. Subscribe and publish are not going to work.") print("Do you need to activate your ROS environment?") try: from cv_bridge import CvBridge, CvBridgeError import cv2 bridge = CvBridge() except: pass import bqplot as bq import ipywidgets as widgets import numpy as np import threading import subprocess, yaml, os def add_widgets(msg_instance, widget_dict, widget_list, prefix=''): """ Adds widgets. @param msg_type The message type @param widget_dict The form list @param widget_list The widget list @return widget_dict and widget_list """ # import only here so non ros env doesn't block installation from genpy import Message if msg_instance._type.split('/')[-1] == 'Image': w = widgets.Text() widget_dict['img'] = w w_box = widgets.HBox([widgets.Label(value='Image path:'), w]) widget_list.append(w_box) return widget_dict, widget_list for idx, slot in enumerate(msg_instance.__slots__): attr = getattr(msg_instance, slot) s_t = msg_instance._slot_types[idx] w = None if s_t in ['float32', 'float64']: w = widgets.FloatText() if s_t in ['int8', 'uint8', 'int32', 'uint32', 'int64', 'uint64']: w = widgets.IntText() if s_t in ['string']: w = widgets.Text() if isinstance(attr, Message): widget_list.append(widgets.Label(value=slot)) widget_dict[slot] = {} add_widgets(attr, widget_dict[slot], widget_list, slot) if w: widget_dict[slot] = w w_box = widgets.HBox([widgets.Label(value=slot, layout=widgets.Layout(width="100px")), w]) widget_list.append(w_box) return widget_dict, widget_list thread_map = {} def publish(topic, msg_type): """ Create a form widget for message type msg_type. This function analyzes the fields of msg_type and creates an appropriate widget. A publisher is automatically created which publishes to the topic given as topic parameter. This allows pressing the "Send Message" button to send the message to ROS. @param msg_type The message type @param topic The topic name to publish to @return jupyter widget for display """ publisher = rospy.Publisher(topic, msg_type, queue_size=10) widget_list = [] widget_dict = {} latch_check = widgets.Checkbox(description="Latch Message") rate_field = widgets.IntText(description="Rate", value=5) stop_btn = widgets.Button(description="Start") latch_check.observe(latch_value_change, 'value') add_widgets(msg_type(), widget_dict, widget_list) send_btn = widgets.Button(description="Send Message") send_btn.on_click(send_msg) thread_map[topic] = False stop_btn.on_click(start_thread) btm_box = widgets.HBox((send_btn, latch_check, rate_field, stop_btn)) widget_list.append(btm_box) vbox = widgets.VBox(children=widget_list) return vbox def bag_player(bagfile=''): """ Create a form widget for playing ROS bags. This function takes the bag file path, extracts the bag summary and play the bag with the given arguments. @param bagfile The ROS bag file path @return jupyter widget for display """ widget_list = [] bag_player.sp = None ###### Fields ######################################################### bgpath_txt = widgets.Text() bgpath_box = widgets.HBox([widgets.Label("Bag file path:"), bgpath_txt]) bgpath_txt.value = bagfile play_btn = widgets.Button(description="Play", icon='play') pause_btn = widgets.Button(description="Pause", icon='pause', disabled=True) step_btn = widgets.Button(description="Step", icon='step-forward', disabled=True) ibox = widgets.Checkbox(description="Immediate") lbox = widgets.Checkbox(description="Loop") clockbox = widgets.Checkbox(description="Clock") dzbox = widgets.Checkbox(description="Duration") kabox = widgets.Checkbox(description="Keep alive") start_float = widgets.FloatText(value=0) start_box = widgets.HBox([widgets.Label("Start time:"), start_float]) que_int = widgets.IntText(value=100) que_box = widgets.HBox([widgets.Label("Queue size:"), que_int]) factor_float = widgets.FloatText(value=1) factor_box = widgets.HBox([widgets.Label("Multiply the publish rate by:"), factor_float]) delay_float = widgets.FloatText(value=0) delay_box = widgets.HBox([widgets.Label("Delay after every advertise call:"), delay_float]) duration_float = widgets.FloatText(value=0) duration_box = widgets.HBox([dzbox, widgets.Label("Duration in secs:"), duration_float]) out_box = widgets.Output(layout={'border': '1px solid black'}) ######## Play Button ################################################## play_btn.on_click(ply_clk) ###################### Pause Button ######################### pause_btn.on_click(pause_clk) ################## step Button ############################### step_btn.on_click(step_clk) options_hbox = widgets.HBox([ibox, lbox, clockbox, kabox]) buttons_hbox = widgets.HBox([play_btn, pause_btn, step_btn]) btm_box = widgets.VBox( [bgpath_box, options_hbox, duration_box, start_box, que_box, factor_box, delay_box, buttons_hbox, out_box]) widget_list.append(btm_box) vbox = widgets.VBox(children=widget_list) return vbox def client(srv_name, srv_type): """ Create a form widget for message type srv_type. This function analyzes the fields of srv_type and creates an appropriate widget. @param srv_type The service message type @param srv_name The service name to call @return jupyter widget for display """ rospy.wait_for_service(srv_name, timeout=5) widget_list = [] widget_dict = {} add_widgets(srv_type._request_class(), widget_dict, widget_list) call_btn = widgets.Button(description="Call Service") call_btn.on_click(call_srv) widget_list.append(call_btn) vbox = widgets.VBox(children=widget_list) return vbox
[ 29113, 29113, 7804, 4242, 2, 198, 2, 15069, 357, 66, 8, 8662, 569, 692, 3866, 21474, 11, 16972, 25896, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 347, 10305, 513, 12, 2601, 682, 13789, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 383, 1336, 5964, 318, 287, 262, 2393, 38559, 24290, 11, 9387, 351, 428, 3788, 13, 220, 1303, 198, 29113, 29113, 7804, 4242, 2, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 686, 2777, 88, 198, 16341, 25, 198, 220, 220, 220, 3601, 7203, 464, 686, 2777, 88, 5301, 318, 407, 1043, 287, 534, 720, 47, 56, 4221, 1340, 34219, 13, 19808, 290, 7715, 389, 407, 1016, 284, 670, 19570, 198, 220, 220, 220, 3601, 7203, 5211, 345, 761, 284, 15155, 534, 48263, 2858, 1701, 8, 198, 28311, 25, 198, 220, 220, 220, 422, 269, 85, 62, 9458, 1330, 327, 85, 37385, 11, 327, 85, 37385, 12331, 198, 220, 220, 220, 1330, 269, 85, 17, 628, 220, 220, 220, 7696, 796, 327, 85, 37385, 3419, 198, 16341, 25, 198, 220, 220, 220, 1208, 198, 11748, 275, 80, 29487, 355, 275, 80, 198, 11748, 20966, 88, 28029, 11407, 355, 40803, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4704, 278, 198, 11748, 850, 14681, 11, 331, 43695, 11, 28686, 628, 198, 198, 4299, 751, 62, 28029, 11407, 7, 19662, 62, 39098, 11, 26295, 62, 11600, 11, 26295, 62, 4868, 11, 21231, 28, 7061, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 34333, 40803, 13, 628, 220, 220, 220, 2488, 17143, 31456, 62, 4906, 383, 3275, 2099, 198, 220, 220, 220, 2488, 17143, 26295, 62, 11600, 383, 1296, 1351, 198, 220, 220, 220, 2488, 17143, 26295, 62, 4868, 383, 26295, 1351, 628, 220, 220, 220, 2488, 7783, 26295, 62, 11600, 290, 26295, 62, 4868, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1330, 691, 994, 523, 1729, 686, 82, 17365, 1595, 470, 2512, 9988, 198, 220, 220, 220, 422, 2429, 9078, 1330, 16000, 198, 220, 220, 220, 611, 31456, 62, 39098, 13557, 4906, 13, 35312, 10786, 14, 11537, 58, 12, 16, 60, 6624, 705, 5159, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 266, 796, 40803, 13, 8206, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 26295, 62, 11600, 17816, 9600, 20520, 796, 266, 198, 220, 220, 220, 220, 220, 220, 220, 266, 62, 3524, 796, 40803, 13, 39, 14253, 26933, 28029, 11407, 13, 33986, 7, 8367, 11639, 5159, 3108, 32105, 828, 266, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 26295, 62, 4868, 13, 33295, 7, 86, 62, 3524, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26295, 62, 11600, 11, 26295, 62, 4868, 628, 220, 220, 220, 329, 4686, 87, 11, 10852, 287, 27056, 378, 7, 19662, 62, 39098, 13, 834, 6649, 1747, 834, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 796, 651, 35226, 7, 19662, 62, 39098, 11, 10852, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 83, 796, 31456, 62, 39098, 13557, 43384, 62, 19199, 58, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 264, 62, 83, 287, 37250, 22468, 2624, 3256, 705, 22468, 2414, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 40803, 13, 43879, 8206, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 264, 62, 83, 287, 37250, 600, 23, 3256, 705, 28611, 23, 3256, 705, 600, 2624, 3256, 705, 28611, 2624, 3256, 705, 600, 2414, 3256, 705, 28611, 2414, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 40803, 13, 5317, 8206, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 264, 62, 83, 287, 37250, 8841, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 40803, 13, 8206, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 35226, 11, 16000, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 62, 4868, 13, 33295, 7, 28029, 11407, 13, 33986, 7, 8367, 28, 43384, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 62, 11600, 58, 43384, 60, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 28029, 11407, 7, 35226, 11, 26295, 62, 11600, 58, 43384, 4357, 26295, 62, 4868, 11, 10852, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 62, 11600, 58, 43384, 60, 796, 266, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 3524, 796, 40803, 13, 39, 14253, 26933, 28029, 11407, 13, 33986, 7, 8367, 28, 43384, 11, 12461, 28, 28029, 11407, 13, 32517, 7, 10394, 2625, 3064, 8416, 4943, 828, 266, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 62, 4868, 13, 33295, 7, 86, 62, 3524, 8, 628, 220, 220, 220, 1441, 26295, 62, 11600, 11, 26295, 62, 4868, 628, 198, 198, 16663, 62, 8899, 796, 23884, 628, 198, 198, 4299, 7715, 7, 26652, 11, 31456, 62, 4906, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 1296, 26295, 329, 3275, 2099, 31456, 62, 4906, 13, 198, 220, 220, 220, 770, 2163, 4284, 12271, 262, 7032, 286, 31456, 62, 4906, 290, 8075, 198, 220, 220, 220, 281, 5035, 26295, 13, 198, 220, 220, 220, 317, 9991, 318, 6338, 2727, 543, 34134, 284, 262, 198, 220, 220, 220, 7243, 1813, 355, 7243, 11507, 13, 770, 3578, 12273, 262, 198, 220, 220, 220, 366, 25206, 16000, 1, 4936, 284, 3758, 262, 3275, 284, 48263, 13, 628, 220, 220, 220, 2488, 17143, 31456, 62, 4906, 383, 3275, 2099, 198, 220, 220, 220, 2488, 17143, 7243, 383, 7243, 1438, 284, 7715, 284, 628, 220, 220, 220, 2488, 7783, 474, 929, 88, 353, 26295, 329, 3359, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9991, 796, 686, 2777, 88, 13, 46471, 7, 26652, 11, 31456, 62, 4906, 11, 16834, 62, 7857, 28, 940, 8, 628, 220, 220, 220, 26295, 62, 4868, 796, 17635, 198, 220, 220, 220, 26295, 62, 11600, 796, 23884, 628, 220, 220, 220, 43140, 62, 9122, 796, 40803, 13, 9787, 3524, 7, 11213, 2625, 43, 963, 16000, 4943, 198, 220, 220, 220, 2494, 62, 3245, 796, 40803, 13, 5317, 8206, 7, 11213, 2625, 32184, 1600, 1988, 28, 20, 8, 198, 220, 220, 220, 2245, 62, 46118, 796, 40803, 13, 21864, 7, 11213, 2625, 10434, 4943, 628, 220, 220, 220, 43140, 62, 9122, 13, 672, 2655, 303, 7, 75, 963, 62, 8367, 62, 3803, 11, 705, 8367, 11537, 628, 220, 220, 220, 751, 62, 28029, 11407, 7, 19662, 62, 4906, 22784, 26295, 62, 11600, 11, 26295, 62, 4868, 8, 198, 220, 220, 220, 3758, 62, 46118, 796, 40803, 13, 21864, 7, 11213, 2625, 25206, 16000, 4943, 628, 220, 220, 220, 3758, 62, 46118, 13, 261, 62, 12976, 7, 21280, 62, 19662, 8, 628, 220, 220, 220, 4704, 62, 8899, 58, 26652, 60, 796, 10352, 628, 220, 220, 220, 2245, 62, 46118, 13, 261, 62, 12976, 7, 9688, 62, 16663, 8, 628, 220, 220, 220, 275, 17209, 62, 3524, 796, 40803, 13, 39, 14253, 19510, 21280, 62, 46118, 11, 43140, 62, 9122, 11, 2494, 62, 3245, 11, 2245, 62, 46118, 4008, 198, 220, 220, 220, 26295, 62, 4868, 13, 33295, 7, 65, 17209, 62, 3524, 8, 198, 220, 220, 220, 410, 3524, 796, 40803, 13, 53, 14253, 7, 17197, 28, 42655, 62, 4868, 8, 628, 220, 220, 220, 1441, 410, 3524, 628, 198, 198, 4299, 6131, 62, 7829, 7, 21454, 7753, 28, 7061, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 1296, 26295, 329, 2712, 48263, 11668, 13, 198, 220, 220, 220, 770, 2163, 2753, 262, 6131, 2393, 3108, 11, 32139, 262, 6131, 10638, 198, 220, 220, 220, 290, 711, 262, 6131, 351, 262, 1813, 7159, 13, 628, 220, 220, 220, 2488, 17143, 6131, 7753, 383, 48263, 6131, 2393, 3108, 628, 220, 220, 220, 2488, 7783, 474, 929, 88, 353, 26295, 329, 3359, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26295, 62, 4868, 796, 17635, 198, 220, 220, 220, 6131, 62, 7829, 13, 2777, 796, 6045, 198, 220, 220, 220, 46424, 2, 23948, 1303, 29113, 14468, 7804, 198, 220, 220, 220, 275, 70, 6978, 62, 14116, 796, 40803, 13, 8206, 3419, 198, 220, 220, 220, 275, 70, 6978, 62, 3524, 796, 40803, 13, 39, 14253, 26933, 28029, 11407, 13, 33986, 7203, 33, 363, 2393, 3108, 11097, 828, 275, 70, 6978, 62, 14116, 12962, 198, 220, 220, 220, 275, 70, 6978, 62, 14116, 13, 8367, 796, 6131, 7753, 198, 220, 220, 220, 711, 62, 46118, 796, 40803, 13, 21864, 7, 11213, 2625, 11002, 1600, 7196, 11639, 1759, 11537, 198, 220, 220, 220, 14985, 62, 46118, 796, 40803, 13, 21864, 7, 11213, 2625, 49991, 1600, 7196, 11639, 32125, 3256, 10058, 28, 17821, 8, 198, 220, 220, 220, 2239, 62, 46118, 796, 40803, 13, 21864, 7, 11213, 2625, 8600, 1600, 7196, 11639, 9662, 12, 11813, 3256, 10058, 28, 17821, 8, 198, 220, 220, 220, 24283, 1140, 796, 40803, 13, 9787, 3524, 7, 11213, 2625, 3546, 13857, 4943, 198, 220, 220, 220, 300, 3524, 796, 40803, 13, 9787, 3524, 7, 11213, 2625, 39516, 4943, 198, 220, 220, 220, 8801, 3524, 796, 40803, 13, 9787, 3524, 7, 11213, 2625, 44758, 4943, 198, 220, 220, 220, 288, 89, 3524, 796, 40803, 13, 9787, 3524, 7, 11213, 2625, 26054, 4943, 198, 220, 220, 220, 479, 397, 1140, 796, 40803, 13, 9787, 3524, 7, 11213, 2625, 15597, 6776, 4943, 198, 220, 220, 220, 923, 62, 22468, 796, 40803, 13, 43879, 8206, 7, 8367, 28, 15, 8, 198, 220, 220, 220, 923, 62, 3524, 796, 40803, 13, 39, 14253, 26933, 28029, 11407, 13, 33986, 7203, 10434, 640, 11097, 828, 923, 62, 22468, 12962, 198, 220, 220, 220, 8358, 62, 600, 796, 40803, 13, 5317, 8206, 7, 8367, 28, 3064, 8, 198, 220, 220, 220, 8358, 62, 3524, 796, 40803, 13, 39, 14253, 26933, 28029, 11407, 13, 33986, 7203, 34991, 2546, 11097, 828, 8358, 62, 600, 12962, 198, 220, 220, 220, 5766, 62, 22468, 796, 40803, 13, 43879, 8206, 7, 8367, 28, 16, 8, 198, 220, 220, 220, 5766, 62, 3524, 796, 40803, 13, 39, 14253, 26933, 28029, 11407, 13, 33986, 7203, 15205, 541, 306, 262, 7715, 2494, 416, 11097, 828, 5766, 62, 22468, 12962, 198, 220, 220, 220, 5711, 62, 22468, 796, 40803, 13, 43879, 8206, 7, 8367, 28, 15, 8, 198, 220, 220, 220, 5711, 62, 3524, 796, 40803, 13, 39, 14253, 26933, 28029, 11407, 13, 33986, 7203, 13856, 323, 706, 790, 32740, 869, 11097, 828, 5711, 62, 22468, 12962, 198, 220, 220, 220, 9478, 62, 22468, 796, 40803, 13, 43879, 8206, 7, 8367, 28, 15, 8, 198, 220, 220, 220, 9478, 62, 3524, 796, 40803, 13, 39, 14253, 26933, 67, 89, 3524, 11, 40803, 13, 33986, 7203, 26054, 287, 792, 82, 11097, 828, 9478, 62, 22468, 12962, 198, 220, 220, 220, 503, 62, 3524, 796, 40803, 13, 26410, 7, 39786, 34758, 6, 20192, 10354, 705, 16, 8416, 4735, 2042, 6, 30072, 628, 220, 220, 220, 46424, 21017, 3811, 20969, 1303, 29113, 14468, 2, 628, 220, 220, 220, 711, 62, 46118, 13, 261, 62, 12976, 7, 2145, 62, 565, 74, 8, 628, 220, 220, 220, 1303, 14468, 4242, 2, 350, 682, 20969, 1303, 14468, 7804, 628, 220, 220, 220, 14985, 62, 46118, 13, 261, 62, 12976, 7, 32125, 62, 565, 74, 8, 628, 220, 220, 220, 1303, 14468, 2, 2239, 20969, 1303, 14468, 7804, 4242, 2235, 628, 220, 220, 220, 2239, 62, 46118, 13, 261, 62, 12976, 7, 9662, 62, 565, 74, 8, 198, 220, 220, 220, 3689, 62, 71, 3524, 796, 40803, 13, 39, 14253, 26933, 571, 1140, 11, 300, 3524, 11, 8801, 3524, 11, 479, 397, 1140, 12962, 198, 220, 220, 220, 12163, 62, 71, 3524, 796, 40803, 13, 39, 14253, 26933, 1759, 62, 46118, 11, 14985, 62, 46118, 11, 2239, 62, 46118, 12962, 198, 220, 220, 220, 275, 17209, 62, 3524, 796, 40803, 13, 53, 14253, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 35904, 6978, 62, 3524, 11, 3689, 62, 71, 3524, 11, 9478, 62, 3524, 11, 923, 62, 3524, 11, 8358, 62, 3524, 11, 5766, 62, 3524, 11, 5711, 62, 3524, 11, 12163, 62, 71, 3524, 11, 503, 62, 3524, 12962, 198, 220, 220, 220, 26295, 62, 4868, 13, 33295, 7, 65, 17209, 62, 3524, 8, 198, 220, 220, 220, 410, 3524, 796, 40803, 13, 53, 14253, 7, 17197, 28, 42655, 62, 4868, 8, 198, 220, 220, 220, 1441, 410, 3524, 628, 198, 4299, 5456, 7, 27891, 85, 62, 3672, 11, 19677, 85, 62, 4906, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 1296, 26295, 329, 3275, 2099, 19677, 85, 62, 4906, 13, 198, 220, 220, 220, 770, 2163, 4284, 12271, 262, 7032, 286, 19677, 85, 62, 4906, 290, 8075, 198, 220, 220, 220, 281, 5035, 26295, 13, 628, 220, 220, 220, 2488, 17143, 19677, 85, 62, 4906, 383, 2139, 3275, 2099, 198, 220, 220, 220, 2488, 17143, 19677, 85, 62, 3672, 383, 2139, 1438, 284, 869, 628, 220, 220, 220, 2488, 7783, 474, 929, 88, 353, 26295, 329, 3359, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 686, 2777, 88, 13, 17077, 62, 1640, 62, 15271, 7, 27891, 85, 62, 3672, 11, 26827, 28, 20, 8, 628, 220, 220, 220, 26295, 62, 4868, 796, 17635, 198, 220, 220, 220, 26295, 62, 11600, 796, 23884, 628, 220, 220, 220, 751, 62, 28029, 11407, 7, 27891, 85, 62, 4906, 13557, 25927, 62, 4871, 22784, 26295, 62, 11600, 11, 26295, 62, 4868, 8, 198, 220, 220, 220, 869, 62, 46118, 796, 40803, 13, 21864, 7, 11213, 2625, 14134, 4809, 4943, 628, 220, 220, 220, 869, 62, 46118, 13, 261, 62, 12976, 7, 13345, 62, 27891, 85, 8, 628, 220, 220, 220, 26295, 62, 4868, 13, 33295, 7, 13345, 62, 46118, 8, 198, 220, 220, 220, 410, 3524, 796, 40803, 13, 53, 14253, 7, 17197, 28, 42655, 62, 4868, 8, 628, 220, 220, 220, 1441, 410, 3524, 628 ]
2.638456
2,564
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") load("@bazel_tools//tools/build_defs/repo:utils.bzl", "maybe") load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository") def rules_nixpkgs_dependencies(rules_nixpkgs_name = "io_tweag_rules_nixpkgs"): """Load repositories required by rules_nixpkgs. Args: rules_nixpkgs_name: name under which this repository is known in your workspace """ maybe( http_archive, "platforms", urls = [ "https://mirror.bazel.build/github.com/bazelbuild/platforms/releases/download/0.0.4/platforms-0.0.4.tar.gz", "https://github.com/bazelbuild/platforms/releases/download/0.0.4/platforms-0.0.4.tar.gz", ], sha256 = "079945598e4b6cc075846f7fd6a9d0857c33a7afc0de868c2ccb96405225135d", ) maybe( http_archive, "bazel_skylib", urls = [ "https://github.com/bazelbuild/bazel-skylib/releases/download/1.0.3/bazel-skylib-1.0.3.tar.gz", "https://mirror.bazel.build/github.com/bazelbuild/bazel-skylib/releases/download/1.0.3/bazel-skylib-1.0.3.tar.gz", ], sha256 = "1c531376ac7e5a180e0237938a2536de0c54d93f5c278634818e0efc952dd56c", ) maybe( http_archive, "rules_java", url = "https://github.com/bazelbuild/rules_java/releases/download/4.0.0/rules_java-4.0.0.tar.gz", sha256 = "34b41ec683e67253043ab1a3d1e8b7c61e4e8edefbcad485381328c934d072fe", ) # the following complication is due to migrating to `bzlmod`. # fetch extracted submodules as external repositories from an existing source tree, based on the import type. rules_nixpkgs = native.existing_rule(rules_nixpkgs_name) if not rules_nixpkgs: errormsg = [ "External repository `rules_nixpkgs` not found as `{}`.".format(rules_nixpkgs_name), "Specify `rules_nixpkgs_dependencies(rules_nixpkgs_name=<name>)`", "with `<name>` as used for importing `rules_nixpkgs`.", ] fail("\n".join(errormsg)) kind = rules_nixpkgs.get("kind") strip_prefix = rules_nixpkgs.get("strip_prefix", "") if strip_prefix: strip_prefix += "/" for name, prefix in [ ("rules_nixpkgs_core", "core"), ("rules_nixpkgs_cc", "toolchains/cc"), ("rules_nixpkgs_java", "toolchains/java"), ("rules_nixpkgs_python", "toolchains/python"), ("rules_nixpkgs_go", "toolchains/go"), ("rules_nixpkgs_rust", "toolchains/rust"), ("rules_nixpkgs_posix", "toolchains/posix"), ]: # case analysis in inner loop to reduce code duplication if kind == "local_repository": path = rules_nixpkgs.get("path") maybe(native.local_repository, name, path = "{}/{}".format(path, prefix)) elif kind == "http_archive": maybe( http_archive, name, strip_prefix = strip_prefix + prefix, # there may be more attributes needed. please submit a pull request to support your use case. url = rules_nixpkgs.get("url"), urls = rules_nixpkgs.get("urls"), sha256 = rules_nixpkgs.get("sha256"), ) elif kind == "git_repository": maybe( git_repository, name, strip_prefix = strip_prefix + prefix, # there may be more attributes needed. please submit a pull request to support your use case. remote = rules_nixpkgs.get("remote"), commit = rules_nixpkgs.get("commit"), branch = rules_nixpkgs.get("branch"), tag = rules_nixpkgs.get("tag"), shallow_since = rules_nixpkgs.get("shallow_since"), ) else: errormsg = [ "Could not find any import type for `rules_nixpkgs`.", "This should not happen. If you encounter this using the latest release", "of `rules_nixpkgs`, please file an issue describing your use case:", "https://github.com/tweag/rules_nixpkgs/issues", "or submit a pull request with corrections:", "https://github.com/tweag/rules_nixpkgs/pulls", ] fail("\n".join(errormsg))
[ 2220, 7203, 31, 65, 41319, 62, 31391, 1003, 31391, 14, 11249, 62, 4299, 82, 14, 260, 7501, 25, 4023, 13, 65, 48274, 1600, 366, 4023, 62, 17474, 4943, 198, 2220, 7203, 31, 65, 41319, 62, 31391, 1003, 31391, 14, 11249, 62, 4299, 82, 14, 260, 7501, 25, 26791, 13, 65, 48274, 1600, 366, 25991, 4943, 198, 2220, 7203, 31, 65, 41319, 62, 31391, 1003, 31391, 14, 11249, 62, 4299, 82, 14, 260, 7501, 25, 18300, 13, 65, 48274, 1600, 366, 18300, 62, 260, 1930, 37765, 4943, 198, 198, 4299, 3173, 62, 77, 844, 35339, 82, 62, 45841, 3976, 7, 38785, 62, 77, 844, 35339, 82, 62, 3672, 796, 366, 952, 62, 83, 732, 363, 62, 38785, 62, 77, 844, 35339, 82, 1, 2599, 198, 220, 220, 220, 37227, 8912, 38072, 2672, 416, 3173, 62, 77, 844, 35339, 82, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3173, 62, 77, 844, 35339, 82, 62, 3672, 25, 1438, 739, 543, 428, 16099, 318, 1900, 287, 534, 44573, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3863, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 17474, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 24254, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2956, 7278, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 10793, 1472, 13, 65, 41319, 13, 11249, 14, 12567, 13, 785, 14, 65, 41319, 11249, 14, 24254, 82, 14, 260, 29329, 14, 15002, 14, 15, 13, 15, 13, 19, 14, 24254, 82, 12, 15, 13, 15, 13, 19, 13, 18870, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 12567, 13, 785, 14, 65, 41319, 11249, 14, 24254, 82, 14, 260, 29329, 14, 15002, 14, 15, 13, 15, 13, 19, 14, 24254, 82, 12, 15, 13, 15, 13, 19, 13, 18870, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 796, 366, 2998, 2079, 2231, 41292, 68, 19, 65, 21, 535, 15, 38569, 3510, 69, 22, 16344, 21, 64, 24, 67, 2919, 3553, 66, 2091, 64, 22, 1878, 66, 15, 2934, 23, 3104, 66, 17, 535, 65, 4846, 1821, 4309, 1495, 17059, 67, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3863, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 17474, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 65, 41319, 62, 15688, 8019, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2956, 7278, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 12567, 13, 785, 14, 65, 41319, 11249, 14, 65, 41319, 12, 15688, 8019, 14, 260, 29329, 14, 15002, 14, 16, 13, 15, 13, 18, 14, 65, 41319, 12, 15688, 8019, 12, 16, 13, 15, 13, 18, 13, 18870, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 10793, 1472, 13, 65, 41319, 13, 11249, 14, 12567, 13, 785, 14, 65, 41319, 11249, 14, 65, 41319, 12, 15688, 8019, 14, 260, 29329, 14, 15002, 14, 16, 13, 15, 13, 18, 14, 65, 41319, 12, 15688, 8019, 12, 16, 13, 15, 13, 18, 13, 18870, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 796, 366, 16, 66, 4310, 1485, 4304, 330, 22, 68, 20, 64, 15259, 68, 45310, 3720, 2548, 64, 1495, 2623, 2934, 15, 66, 4051, 67, 6052, 69, 20, 66, 1983, 4521, 28978, 1507, 68, 15, 891, 66, 49234, 1860, 3980, 66, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3863, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 17474, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 38785, 62, 12355, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 366, 5450, 1378, 12567, 13, 785, 14, 65, 41319, 11249, 14, 38785, 62, 12355, 14, 260, 29329, 14, 15002, 14, 19, 13, 15, 13, 15, 14, 38785, 62, 12355, 12, 19, 13, 15, 13, 15, 13, 18870, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 796, 366, 2682, 65, 3901, 721, 47521, 68, 3134, 1495, 1270, 3559, 397, 16, 64, 18, 67, 16, 68, 23, 65, 22, 66, 5333, 68, 19, 68, 23, 276, 891, 15630, 324, 32642, 2548, 1485, 2078, 66, 24, 2682, 67, 2998, 17, 5036, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 262, 1708, 45185, 318, 2233, 284, 45879, 284, 4600, 65, 48274, 4666, 44646, 198, 220, 220, 220, 1303, 21207, 21242, 850, 18170, 355, 7097, 38072, 422, 281, 4683, 2723, 5509, 11, 1912, 319, 262, 1330, 2099, 13, 198, 220, 220, 220, 3173, 62, 77, 844, 35339, 82, 796, 6868, 13, 25687, 62, 25135, 7, 38785, 62, 77, 844, 35339, 82, 62, 3672, 8, 198, 220, 220, 220, 611, 407, 3173, 62, 77, 844, 35339, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 579, 45213, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41506, 16099, 4600, 38785, 62, 77, 844, 35339, 82, 63, 407, 1043, 355, 4600, 90, 92, 63, 526, 13, 18982, 7, 38785, 62, 77, 844, 35339, 82, 62, 3672, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22882, 1958, 4600, 38785, 62, 77, 844, 35339, 82, 62, 45841, 3976, 7, 38785, 62, 77, 844, 35339, 82, 62, 3672, 28, 27, 3672, 43734, 63, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4480, 4600, 27, 3672, 29, 63, 355, 973, 329, 33332, 4600, 38785, 62, 77, 844, 35339, 82, 63, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2038, 7203, 59, 77, 1911, 22179, 7, 8056, 579, 45213, 4008, 198, 220, 220, 220, 1611, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 11031, 4943, 628, 220, 220, 220, 10283, 62, 40290, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 36311, 62, 40290, 1600, 366, 4943, 198, 220, 220, 220, 611, 10283, 62, 40290, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10283, 62, 40290, 15853, 12813, 1, 628, 220, 220, 220, 329, 1438, 11, 21231, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 38785, 62, 77, 844, 35339, 82, 62, 7295, 1600, 366, 7295, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 38785, 62, 77, 844, 35339, 82, 62, 535, 1600, 366, 25981, 38861, 14, 535, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 38785, 62, 77, 844, 35339, 82, 62, 12355, 1600, 366, 25981, 38861, 14, 12355, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 38785, 62, 77, 844, 35339, 82, 62, 29412, 1600, 366, 25981, 38861, 14, 29412, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 38785, 62, 77, 844, 35339, 82, 62, 2188, 1600, 366, 25981, 38861, 14, 2188, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 38785, 62, 77, 844, 35339, 82, 62, 11469, 1600, 366, 25981, 38861, 14, 11469, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 38785, 62, 77, 844, 35339, 82, 62, 1930, 844, 1600, 366, 25981, 38861, 14, 1930, 844, 12340, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1339, 3781, 287, 8434, 9052, 284, 4646, 2438, 50124, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1611, 6624, 366, 12001, 62, 260, 1930, 37765, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 6978, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3863, 7, 30191, 13, 12001, 62, 260, 1930, 37765, 11, 1438, 11, 3108, 796, 45144, 92, 14, 90, 92, 1911, 18982, 7, 6978, 11, 21231, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1611, 6624, 366, 4023, 62, 17474, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3863, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 17474, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10283, 62, 40290, 796, 10283, 62, 40290, 1343, 21231, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 612, 743, 307, 517, 12608, 2622, 13, 3387, 9199, 257, 2834, 2581, 284, 1104, 534, 779, 1339, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 6371, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2956, 7278, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 6371, 82, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 26270, 11645, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1611, 6624, 366, 18300, 62, 260, 1930, 37765, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3863, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17606, 62, 260, 1930, 37765, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10283, 62, 40290, 796, 10283, 62, 40290, 1343, 21231, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 612, 743, 307, 517, 12608, 2622, 13, 3387, 9199, 257, 2834, 2581, 284, 1104, 534, 779, 1339, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6569, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 47960, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4589, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 41509, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 1671, 3702, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 12985, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19337, 62, 20777, 796, 3173, 62, 77, 844, 35339, 82, 13, 1136, 7203, 1477, 12154, 62, 20777, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 579, 45213, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23722, 407, 1064, 597, 1330, 2099, 329, 4600, 38785, 62, 77, 844, 35339, 82, 63, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 815, 407, 1645, 13, 1002, 345, 8791, 428, 1262, 262, 3452, 2650, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1659, 4600, 38785, 62, 77, 844, 35339, 82, 47671, 3387, 2393, 281, 2071, 12059, 534, 779, 1339, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 12567, 13, 785, 14, 83, 732, 363, 14, 38785, 62, 77, 844, 35339, 82, 14, 37165, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 273, 9199, 257, 2834, 2581, 351, 26251, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 12567, 13, 785, 14, 83, 732, 363, 14, 38785, 62, 77, 844, 35339, 82, 14, 31216, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2038, 7203, 59, 77, 1911, 22179, 7, 8056, 579, 45213, 4008, 198 ]
2.033985
2,148
from inspect import isclass from inspect import signature from _dependencies.exceptions import DependencyError # Messages. default_class_value_template = """ {owner} has a default value of {argument!r} argument set to {value!r} class. You should either change the name of the argument into '{argument}_class' or set the default value to an instance of that class. """.strip()
[ 6738, 10104, 1330, 318, 4871, 198, 6738, 10104, 1330, 9877, 198, 198, 6738, 4808, 45841, 3976, 13, 1069, 11755, 1330, 37947, 1387, 12331, 628, 628, 628, 198, 198, 2, 43534, 13, 628, 198, 12286, 62, 4871, 62, 8367, 62, 28243, 796, 37227, 198, 90, 18403, 92, 468, 257, 4277, 1988, 286, 1391, 49140, 0, 81, 92, 4578, 900, 284, 1391, 8367, 0, 81, 92, 1398, 13, 198, 198, 1639, 815, 2035, 1487, 262, 1438, 286, 262, 4578, 656, 705, 90, 49140, 92, 62, 4871, 6, 198, 273, 900, 262, 4277, 1988, 284, 281, 4554, 286, 326, 1398, 13, 198, 15931, 1911, 36311, 3419, 198 ]
3.721154
104
import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn import datasets iris = datasets.load_iris()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 9922, 62, 26675, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 198, 6738, 1341, 35720, 13, 82, 14761, 1330, 311, 15922, 198, 198, 6738, 1341, 35720, 13, 4908, 31562, 62, 14681, 1330, 12822, 31562, 18709, 9487, 7483, 198, 6738, 1341, 35720, 13, 4908, 31562, 62, 14681, 13, 74, 44930, 1330, 17986, 37, 198, 198, 6738, 1341, 35720, 1330, 40522, 198, 198, 29616, 796, 40522, 13, 2220, 62, 29616, 3419, 198 ]
3.47
100
from datetime import datetime, timedelta from math import inf as infinity from statistics import mean
[ 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 10688, 1330, 1167, 355, 37174, 198, 6738, 7869, 1330, 1612, 628 ]
4.681818
22
import requests import re from bs4 import BeautifulSoup import indexParser source = DataSource()
[ 11748, 7007, 198, 11748, 302, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 11748, 6376, 46677, 628, 198, 198, 10459, 796, 6060, 7416, 3419, 198 ]
3.703704
27
# Generated by Django 3.0.2 on 2020-02-02 05:09 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 17, 319, 12131, 12, 2999, 12, 2999, 8870, 25, 2931, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import numpy as np import traceback import multiprocessing as mp from tqdm import tqdm from best_shape_fit import * from data import PlusShapeModel configs = [ # 'plus_shape.conditional_cinn_4', # 'plus_shape.conditional_cinn_8', # 'plus_shape.conditional_hint_4_full', # 'plus_shape.conditional_hint_8_full', # 'plus_shape.unconditional_inn_4_Q', # 'plus_shape.unconditional_inn_8', # 'plus_shape.unconditional_hint_4_full', # 'plus_shape.unconditional_hint_8_full', # 'plus_shape.unconditional_inn_16', # 'plus_shape.unconditional_inn_32', # 'plus_shape.unconditional_hint_4_1', # 'plus_shape.unconditional_hint_8_1', # 'plus_shape.unconditional_hint_16_1', # 'plus_shape.unconditional_hint_4_2', # 'plus_shape.unconditional_hint_8_2', # 'plus_shape.unconditional_hint_4_3', # 'plus_shape.unconditional_hint_4_0_small', # 'plus_shape.unconditional_hint_8_0_small', # 'plus_shape.unconditional_hint_16_0_small', # 'plus_shape.unconditional_hint_32_0_small', # 'plus_shape.unconditional_hint_4_1_small', # 'plus_shape.unconditional_hint_8_1_small', # 'plus_shape.unconditional_hint_16_1_small', # 'plus_shape.unconditional_hint_4_2_small', # 'plus_shape.unconditional_hint_8_2_small', # 'plus_shape.unconditional_hint_4_3_small', # 'plus_shape.unconditional_hint_4_0_big', # 'plus_shape.unconditional_hint_8_0_big', # 'plus_shape.unconditional_hint_16_0_big', # 'plus_shape.unconditional_hint_32_0_big', # 'plus_shape.unconditional_hint_4_1_big', # 'plus_shape.unconditional_hint_8_1_big', # 'plus_shape.unconditional_hint_16_1_big', # 'plus_shape.unconditional_hint_4_2_big', # 'plus_shape.unconditional_hint_8_2_big', # 'plus_shape.unconditional_hint_4_3_big', ] if __name__ == '__main__': pass evaluate_all() collect_results()
[ 11748, 299, 32152, 355, 45941, 201, 198, 11748, 12854, 1891, 201, 198, 11748, 18540, 305, 919, 278, 355, 29034, 201, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 201, 198, 201, 198, 6738, 1266, 62, 43358, 62, 11147, 1330, 1635, 201, 198, 6738, 1366, 1330, 8227, 33383, 17633, 201, 198, 201, 198, 201, 198, 201, 198, 11250, 82, 796, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 17561, 1859, 62, 66, 3732, 62, 19, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 17561, 1859, 62, 66, 3732, 62, 23, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 17561, 1859, 62, 71, 600, 62, 19, 62, 12853, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 17561, 1859, 62, 71, 600, 62, 23, 62, 12853, 3256, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 3732, 62, 19, 62, 48, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 3732, 62, 23, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 12853, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 12853, 3256, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 3732, 62, 1433, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 3732, 62, 2624, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 16, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 16, 3256, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 1433, 62, 16, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 17, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 17, 3256, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 18, 3256, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 15, 62, 17470, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 15, 62, 17470, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 1433, 62, 15, 62, 17470, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 2624, 62, 15, 62, 17470, 3256, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 16, 62, 17470, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 16, 62, 17470, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 1433, 62, 16, 62, 17470, 3256, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 17, 62, 17470, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 17, 62, 17470, 3256, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 18, 62, 17470, 3256, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 15, 62, 14261, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 15, 62, 14261, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 1433, 62, 15, 62, 14261, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 2624, 62, 15, 62, 14261, 3256, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 16, 62, 14261, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 16, 62, 14261, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 1433, 62, 16, 62, 14261, 3256, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 17, 62, 14261, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 23, 62, 17, 62, 14261, 3256, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 9541, 62, 43358, 13, 403, 17561, 1859, 62, 71, 600, 62, 19, 62, 18, 62, 14261, 3256, 201, 198, 220, 220, 220, 2361, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1208, 201, 198, 201, 198, 220, 220, 220, 13446, 62, 439, 3419, 201, 198, 220, 220, 220, 2824, 62, 43420, 3419, 201, 198 ]
1.923561
1,112
import time from config import CONFIG
[ 11748, 640, 198, 198, 6738, 4566, 1330, 25626, 628, 628, 198 ]
3.909091
11
from botto.core.bot import Botto db = Botto.db # pylint: disable=no-member
[ 6738, 3005, 78, 13, 7295, 13, 13645, 1330, 14835, 78, 198, 198, 9945, 796, 14835, 78, 13, 9945, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 628, 628, 628, 628, 628 ]
2.457143
35
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : Jinzhong Xu # @Contact : [email protected] # @Time : 10/12/2020 3:56 PM # @File : parse_arguments.py # @Software: PyCharm import os from optparse import OptionParser
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 2, 2488, 13838, 220, 1058, 17297, 23548, 506, 33591, 201, 198, 2, 2488, 17829, 1058, 474, 259, 23548, 506, 87, 84, 31, 66, 2385, 13, 330, 13, 31522, 201, 198, 2, 2488, 7575, 220, 220, 220, 1058, 838, 14, 1065, 14, 42334, 513, 25, 3980, 3122, 201, 198, 2, 2488, 8979, 220, 220, 220, 1058, 21136, 62, 853, 2886, 13, 9078, 201, 198, 2, 2488, 25423, 25, 9485, 1925, 1670, 201, 198, 201, 198, 11748, 28686, 201, 198, 6738, 2172, 29572, 1330, 16018, 46677, 201, 198, 201, 198 ]
2.185841
113
import math first_num = Integer(10) print(first_num.value) second_num = Integer.from_roman("IV") print(second_num.value) print(Integer.from_float("2.6")) print(Integer.from_string(2.6))
[ 11748, 10688, 628, 198, 198, 11085, 62, 22510, 796, 34142, 7, 940, 8, 198, 4798, 7, 11085, 62, 22510, 13, 8367, 8, 198, 198, 12227, 62, 22510, 796, 34142, 13, 6738, 62, 47119, 7203, 3824, 4943, 198, 4798, 7, 12227, 62, 22510, 13, 8367, 8, 198, 198, 4798, 7, 46541, 13, 6738, 62, 22468, 7203, 17, 13, 21, 48774, 198, 4798, 7, 46541, 13, 6738, 62, 8841, 7, 17, 13, 21, 4008, 198 ]
2.616438
73
""" Low level tests for the InvenTree API """ from rest_framework.test import APITestCase from rest_framework import status from django.urls import reverse from django.contrib.auth import get_user_model class APITests(APITestCase): """ Tests for the InvenTree API """ fixtures = [ 'location', 'stock', 'part', 'category', ] username = 'test_user' password = 'test_pass' def test_get_token_fail(self): """ Ensure that an invalid user cannot get a token """ token_url = reverse('api-token') response = self.client.post(token_url, format='json', data={'username': 'bad', 'password': 'also_bad'}) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertFalse('token' in response.data) def test_get_token_pass(self): """ Ensure that a valid user can request an API token """ token_url = reverse('api-token') # POST to retreive a token response = self.client.post(token_url, format='json', data={'username': self.username, 'password': self.password}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertTrue('token' in response.data) self.assertTrue('pk' in response.data) self.assertTrue(len(response.data['token']) > 0) # Now, use the token to access other data token = response.data['token'] part_url = reverse('api-part-list') # Try to access without a token response = self.client.get(part_url, format='json') self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) # Now, with the token self.client.credentials(HTTP_AUTHORIZATION='Token ' + token) response = self.client.get(part_url, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK)
[ 37811, 7754, 1241, 5254, 329, 262, 554, 574, 27660, 7824, 37227, 198, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2043, 395, 20448, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 628, 198, 4871, 3486, 2043, 3558, 7, 2969, 2043, 395, 20448, 2599, 198, 220, 220, 220, 37227, 30307, 329, 262, 554, 574, 27660, 7824, 37227, 628, 220, 220, 220, 34609, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24886, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13578, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3911, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22872, 3256, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 20579, 796, 705, 9288, 62, 7220, 6, 198, 220, 220, 220, 9206, 796, 705, 9288, 62, 6603, 6, 628, 220, 220, 220, 825, 1332, 62, 1136, 62, 30001, 62, 32165, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48987, 326, 281, 12515, 2836, 2314, 651, 257, 11241, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 6371, 796, 9575, 10786, 15042, 12, 30001, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 16366, 13, 7353, 7, 30001, 62, 6371, 11, 5794, 11639, 17752, 3256, 1366, 34758, 6, 29460, 10354, 705, 14774, 3256, 705, 28712, 10354, 705, 14508, 62, 14774, 6, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 3722, 13, 40717, 62, 7029, 62, 33, 2885, 62, 2200, 35780, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 25101, 10786, 30001, 6, 287, 2882, 13, 7890, 8, 628, 220, 220, 220, 825, 1332, 62, 1136, 62, 30001, 62, 6603, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48987, 326, 257, 4938, 2836, 460, 2581, 281, 7824, 11241, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 6371, 796, 9575, 10786, 15042, 12, 30001, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 24582, 284, 1005, 260, 425, 257, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 16366, 13, 7353, 7, 30001, 62, 6371, 11, 5794, 11639, 17752, 3256, 1366, 34758, 6, 29460, 10354, 2116, 13, 29460, 11, 705, 28712, 10354, 2116, 13, 28712, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 3722, 13, 40717, 62, 2167, 62, 11380, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 10786, 30001, 6, 287, 2882, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 10786, 79, 74, 6, 287, 2882, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 11925, 7, 26209, 13, 7890, 17816, 30001, 6, 12962, 1875, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 11, 779, 262, 11241, 284, 1895, 584, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 2882, 13, 7890, 17816, 30001, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 636, 62, 6371, 796, 9575, 10786, 15042, 12, 3911, 12, 4868, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 284, 1895, 1231, 257, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 16366, 13, 1136, 7, 3911, 62, 6371, 11, 5794, 11639, 17752, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 3722, 13, 40717, 62, 21844, 62, 52, 4535, 24318, 1581, 14887, 1961, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 11, 351, 262, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16366, 13, 66, 445, 14817, 7, 40717, 62, 32, 24318, 1581, 14887, 6234, 11639, 30642, 705, 1343, 11241, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 16366, 13, 1136, 7, 3911, 62, 6371, 11, 5794, 11639, 17752, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 3722, 13, 40717, 62, 2167, 62, 11380, 8, 198 ]
2.552097
739
from unittest import TestCase from girepo.formatter import beautify_text
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 308, 557, 7501, 13, 687, 1436, 1330, 3566, 1958, 62, 5239, 628 ]
3.409091
22
c = float(input('Digite a temperatura para ser convertida: ')) f = ((9*c)/5)+32 print('A temperatura de {}ºC, é igual a {}ºF!'.format(c, f))
[ 66, 796, 12178, 7, 15414, 10786, 19511, 578, 257, 4124, 2541, 64, 31215, 1055, 10385, 3755, 25, 705, 4008, 201, 198, 69, 796, 14808, 24, 9, 66, 20679, 20, 47762, 2624, 201, 198, 4798, 10786, 32, 4124, 2541, 64, 390, 23884, 36165, 34, 11, 38251, 45329, 723, 257, 23884, 36165, 37, 0, 4458, 18982, 7, 66, 11, 277, 4008, 201, 198, 201, 198 ]
2.31746
63
import math import os from random import * import data_loader import model_s2i import util import flags import errno import json import numpy as np import tensorflow as tf from seqeval.metrics import accuracy_score from seqeval.metrics import f1_score from seqeval.metrics import precision_score from seqeval.metrics import recall_score from sklearn.metrics import accuracy_score as scikit_accuracy from sklearn.metrics import f1_score as scikit_f1 from sklearn.model_selection import StratifiedKFold a = Random() a.seed(1) def dump_flags(FLAGS): """ Dumps the TF app flags in a JSON file. Filename will be determined based on the model name. Args: FLAGS: App flags """ flags_dict = dict() for k, v in tf.flags.FLAGS.__flags.items(): flags_dict[k] = v.value filename = FLAGS.scenario_num + '.json' filename = os.path.join(FLAGS.hyperparams_dir, filename) if not os.path.exists(os.path.dirname(filename)): try: os.makedirs(os.path.dirname(filename)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise with open(filename, 'w', encoding='utf-8') as f: json.dump(flags_dict, f, indent=4) def evaluate_validation(capsnet, val_data, FLAGS, sess, epoch, fold, log=False, calculate_learning_curves=False): """ Evaluates the model on the validation set Args: capsnet: CapsNet model val_data: validation data dict FLAGS: TensorFlow flags sess: TensorFlow session in which the training was run epoch: current epoch of training fold: current fold of K-fold cross-validation Returns: f_score: intent detection F1 score scores['f1']: slot filling F1 score """ x_te = val_data['x_val'] sentences_length_te = val_data['sentences_len_val'] y_intents_te = val_data['y_intents_val'] y_slots_te = val_data['y_slots_val'] one_hot_intents = val_data['one_hot_intents_val'] one_hot_slots = val_data['one_hot_slots_val'] slots_dict = val_data['slots_dict'] intents_dict = val_data['intents_dict'] # Define TensorBoard writer if log: writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/' + FLAGS.scenario_num + '-validation-' + str(fold), sess.graph) if calculate_learning_curves: writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/' + FLAGS.scenario_num + '-validation-lc', sess.graph) total_intent_pred = [] total_slots_pred = [] num_samples = len(x_te) batch_size = FLAGS.batch_size test_batch = int(math.ceil(num_samples / float(batch_size))) loss_val = 1 for i in range(test_batch): begin_index = i * batch_size end_index = min((i + 1) * batch_size, num_samples) batch_te = x_te[begin_index: end_index] batch_sentences_len = sentences_length_te[begin_index: end_index] batch_intents_one_hot = one_hot_intents[begin_index: end_index] batch_slots_one_hot = one_hot_slots[begin_index: end_index] batch_size = end_index - begin_index # Get predictions for current validation batch feed_dict = {capsnet.input_x: batch_te, capsnet.sentences_length: batch_sentences_len, capsnet.encoded_intents: batch_intents_one_hot, capsnet.encoded_slots: batch_slots_one_hot, capsnet.keep_prob: 1.0} if FLAGS.use_attention: mask = util.calculate_mask(batch_sentences_len, FLAGS.max_sentence_length, batch_size, FLAGS.r) feed_dict[capsnet.attention_mask] = mask [intent_outputs, slots_outputs, slot_weights_c, cross_entropy_summary, margin_loss_summary, loss_summary] = sess.run([ capsnet.intent_output_vectors, capsnet.slot_output_vectors, capsnet.slot_weights_c, capsnet.cross_entropy_val_summary, capsnet.margin_loss_val_summary, capsnet.loss_tr_summary], feed_dict=feed_dict) loss_val = loss_summary # Add TensorBoard summaries to FileWriter if log: # writer.add_summary(cross_entropy_summary, epoch * test_batch + i) # writer.add_summary(margin_loss_summary, epoch * test_batch + i) # writer.add_summary(loss_summary, epoch * test_batch + i) writer.add_summary(cross_entropy_summary, epoch + i) writer.add_summary(margin_loss_summary, epoch + i) writer.add_summary(loss_summary, epoch + i) # Modify prediction vectors dimensions to prepare for argmax intent_outputs_reduced_dim = tf.squeeze(intent_outputs, axis=[1, 4]) intent_outputs_norm = util.safe_norm(intent_outputs_reduced_dim) slot_weights_c_reduced_dim = tf.squeeze(slot_weights_c, axis=[3, 4]) [intent_predictions, slot_predictions] = sess.run([intent_outputs_norm, slot_weights_c_reduced_dim]) # Obtain intent prediction te_batch_intent_pred = np.argmax(intent_predictions, axis=1) total_intent_pred += np.ndarray.tolist(te_batch_intent_pred) # Obtain slots prediction te_batch_slots_pred = np.argmax(slot_predictions, axis=2) total_slots_pred += (np.ndarray.tolist(te_batch_slots_pred)) if calculate_learning_curves: writer.add_summary(loss_val, fold) print(' VALIDATION SET PERFORMANCE ') print('Intent detection') intents_acc = scikit_accuracy(y_intents_te, total_intent_pred) y_intents_true = np.ndarray.tolist(y_intents_te) y_intent_labels_true = [intents_dict[i] for i in y_intents_true] y_intent_labels_pred = [intents_dict[i] for i in total_intent_pred] intents = sorted(list(set(y_intent_labels_true))) f_score = scikit_f1(y_intent_labels_true, y_intent_labels_pred, average='micro', labels=intents) # print(classification_report(y_intent_labels_true, y_intent_labels_pred, digits=4)) print('Intent accuracy %lf' % intents_acc) print('F score %lf' % f_score) y_slots_te_true = np.ndarray.tolist(y_slots_te) y_slot_labels_true = [[slots_dict[slot_idx] for slot_idx in ex] for ex in y_slots_te_true] y_slot_labels_pred = [[slots_dict[slot_idx] for slot_idx in ex] for ex in total_slots_pred] scores = eval_seq_scores(y_slot_labels_true, y_slot_labels_pred) print('Slot filling') print('F1 score: %lf' % scores['f1']) print('Accuracy: %lf' % scores['accuracy']) # print('Precision: %lf' % scores['precision']) # print('Recall: %lf' % scores['recall']) return f_score, scores['f1'] def eval_seq_scores(y_true, y_pred): """ Performs sequence evaluation on slot labels Args: y_true: true slot labels y_pred: predicted slot labels Returns: scores: dict containing the evaluation scores: f1, accuracy, precision, recall """ scores = dict() scores['f1'] = f1_score(y_true, y_pred) scores['accuracy'] = accuracy_score(y_true, y_pred) scores['precision'] = precision_score(y_true, y_pred) scores['recall'] = recall_score(y_true, y_pred) return scores def generate_batch(n, batch_size): """ Generates a set of batch indices Args: n: total number of samples in set batch_size: size of batch Returns: batch_index: a list of length batch_size containing randomly sampled indices """ batch_index = a.sample(range(n), batch_size) return batch_index def assign_pretrained_word_embedding(sess, embedding, capsnet): """ Assigns word embeddings to the CapsNet model Args: sess: TensorFlow session embedding: array containing the word embeddings capsnet: CapsNet model """ print('using pre-trained word emebedding.begin...') word_embedding_placeholder = tf.placeholder(dtype=tf.float32, shape=embedding.shape) sess.run(capsnet.Embedding.assign(word_embedding_placeholder), {word_embedding_placeholder: embedding}) print('using pre-trained word emebedding.ended...') def train_cross_validation(model, train_data, val_data, embedding, FLAGS, fold, best_f_score, batches_rand=False, log=False, calculate_learning_curves=False): """ Trains the model for one cross-validation fold Args: train_data: training data dictionary val_data: validation data dictionary embedding: array containing pre-trained word embeddings FLAGS: TensorFlow application flags fold: current fold index best_f_score: best overall F1 score (across all folds so far) batches_rand: whether to random sample mini batches or not (shuffle + seq) log: toggle TensorBoard visualization on/off Returns: best_f_score: best overall F1 score (across all folds so far, including after this one) best_f_score_mean_fold: best overall F1 score for this fold best_f_score_intent_fold: best intent F1 score for this fold best_f_score_slot_fold: best slot F1 score for this fold """ # start x_train = train_data['x_tr'] sentences_length_train = train_data['sentences_len_tr'] one_hot_intents_train = train_data['one_hot_intents_tr'] one_hot_slots_train = train_data['one_hot_slots_tr'] best_f_score_mean_fold = 0.0 best_f_score_intent_fold = 0.0 best_f_score_slot_fold = 0.0 # We must reset the graph to start a brand new training of the model tf.reset_default_graph() config = tf.ConfigProto() with tf.Session(config=config) as sess: # Instantiate Model capsnet = model(FLAGS) print('Initializing Variables') sess.run(tf.global_variables_initializer()) if FLAGS.use_embedding: # load pre-trained word embedding assign_pretrained_word_embedding(sess, embedding, capsnet) # Initial evaluation on validation set intent_f_score, slot_f_score = evaluate_validation(capsnet, val_data, FLAGS, sess, epoch=0, fold=fold) f_score_mean = (intent_f_score + slot_f_score) / 2 if f_score_mean > best_f_score: best_f_score = f_score_mean var_saver = tf.train.Saver() if f_score_mean > best_f_score_mean_fold: # best mean in this fold, save scores best_f_score_mean_fold = f_score_mean best_f_score_intent_fold = intent_f_score best_f_score_slot_fold = slot_f_score if log: train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/' + FLAGS.scenario_num + '-train-fold' + str(fold), sess.graph) # Training cycle train_sample_num = x_train.shape[0] batch_num = int(math.ceil(train_sample_num / FLAGS.batch_size)) loss_train = 1 for epoch in range(FLAGS.num_epochs): for batch in range(batch_num): if batches_rand: batch_index = generate_batch(train_sample_num, FLAGS.batch_size) batch_x = x_train[batch_index] batch_sentences_len = sentences_length_train[batch_index] batch_intents_one_hot = one_hot_intents_train[batch_index] batch_slots_one_hot = one_hot_slots_train[batch_index] batch_size = FLAGS.batch_size else: # Training samples are already shuffled in the file begin_index = batch * FLAGS.batch_size end_index = min((batch + 1) * FLAGS.batch_size, train_sample_num) batch_x = x_train[begin_index: end_index] batch_sentences_len = sentences_length_train[begin_index: end_index] batch_intents_one_hot = one_hot_intents_train[begin_index: end_index] batch_slots_one_hot = one_hot_slots_train[begin_index: end_index] batch_size = end_index - begin_index feed_dict = {capsnet.input_x: batch_x, capsnet.encoded_intents: batch_intents_one_hot, capsnet.encoded_slots: batch_slots_one_hot, capsnet.sentences_length: batch_sentences_len, capsnet.keep_prob: FLAGS.keep_prob} if FLAGS.use_attention: mask = util.calculate_mask(batch_sentences_len, FLAGS.max_sentence_length, batch_size, FLAGS.r) feed_dict[capsnet.attention_mask] = mask [_, loss, _, _, cross_entropy_summary, margin_loss_summary, loss_summary] = sess.run([capsnet.train_op, capsnet.loss_val, capsnet.intent_output_vectors, capsnet.slot_output_vectors, capsnet.cross_entropy_tr_summary, capsnet.margin_loss_tr_summary, capsnet.loss_tr_summary], feed_dict=feed_dict) loss_train = loss_summary if log: train_writer.add_summary(cross_entropy_summary, batch_num * epoch + batch) train_writer.add_summary(margin_loss_summary, batch_num * epoch + batch) train_writer.add_summary(loss_summary, batch_num * epoch + batch) print('------------------epoch : ', epoch, ' Loss: ', loss, '----------------------') # TODO: figure out a more permanent fix for correct epoch numbering (so that validation and training are # not shifted, and it still works for various train/validation splits intent_f_score, slot_f_score = evaluate_validation(capsnet, val_data, FLAGS, # sess, epoch=epoch + 1, fold=fold, log=log) sess, epoch=batch_num * epoch, fold=fold, log=log) f_score_mean = (intent_f_score + slot_f_score) / 2 if f_score_mean > best_f_score: # best score overall -> save model best_f_score = f_score_mean if FLAGS.scenario_num != '': ckpt_dir = FLAGS.ckpt_dir + 'scenario' + FLAGS.scenario_num + '/' if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) else: ckpt_dir = FLAGS.ckpt_dir var_saver.save(sess, os.path.join(ckpt_dir, 'model.ckpt'), 1) print('Current F score mean', f_score_mean) print('Best F score mean', best_f_score) if f_score_mean > best_f_score_mean_fold: # best mean in this fold, save scores best_f_score_mean_fold = f_score_mean best_f_score_intent_fold = intent_f_score best_f_score_slot_fold = slot_f_score if calculate_learning_curves: train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/' + FLAGS.scenario_num + '-train-lc', sess.graph) train_writer.add_summary(loss_train, fold) intent_f_score, slot_f_score = evaluate_validation(capsnet, val_data, FLAGS, sess, epoch=epoch + 1, fold=fold, log=log, calculate_learning_curves=True) return best_f_score, best_f_score_mean_fold, best_f_score_intent_fold, best_f_score_slot_fold if __name__ == '__main__': main()
[ 11748, 10688, 198, 11748, 28686, 198, 6738, 4738, 1330, 1635, 198, 198, 11748, 1366, 62, 29356, 198, 11748, 2746, 62, 82, 17, 72, 198, 11748, 7736, 198, 11748, 9701, 198, 11748, 11454, 3919, 198, 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 33756, 18206, 13, 4164, 10466, 1330, 9922, 62, 26675, 198, 6738, 33756, 18206, 13, 4164, 10466, 1330, 277, 16, 62, 26675, 198, 6738, 33756, 18206, 13, 4164, 10466, 1330, 15440, 62, 26675, 198, 6738, 33756, 18206, 13, 4164, 10466, 1330, 10014, 62, 26675, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 9922, 62, 26675, 355, 629, 1134, 270, 62, 4134, 23843, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 277, 16, 62, 26675, 355, 629, 1134, 270, 62, 69, 16, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 29186, 1431, 42, 37, 727, 198, 198, 64, 796, 14534, 3419, 198, 64, 13, 28826, 7, 16, 8, 628, 198, 4299, 10285, 62, 33152, 7, 38948, 50, 2599, 198, 220, 220, 220, 37227, 360, 8142, 262, 24958, 598, 9701, 287, 257, 19449, 2393, 13, 7066, 12453, 481, 307, 5295, 1912, 319, 262, 2746, 1438, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 25, 2034, 9701, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9701, 62, 11600, 796, 8633, 3419, 198, 220, 220, 220, 329, 479, 11, 410, 287, 48700, 13, 33152, 13, 38948, 50, 13, 834, 33152, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 9701, 62, 11600, 58, 74, 60, 796, 410, 13, 8367, 198, 220, 220, 220, 29472, 796, 9977, 4760, 50, 13, 1416, 39055, 62, 22510, 1343, 45302, 17752, 6, 198, 220, 220, 220, 29472, 796, 28686, 13, 6978, 13, 22179, 7, 38948, 50, 13, 49229, 37266, 62, 15908, 11, 29472, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 418, 13, 6978, 13, 15908, 3672, 7, 34345, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 2859, 25, 220, 1303, 4932, 1028, 3234, 4006, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2859, 13, 8056, 3919, 14512, 11454, 3919, 13, 36, 6369, 8808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 351, 1280, 7, 34345, 11, 705, 86, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 33152, 62, 11600, 11, 277, 11, 33793, 28, 19, 8, 628, 198, 4299, 13446, 62, 12102, 341, 7, 27979, 3262, 11, 1188, 62, 7890, 11, 9977, 4760, 50, 11, 264, 408, 11, 36835, 11, 5591, 11, 2604, 28, 25101, 11, 15284, 62, 40684, 62, 22019, 1158, 28, 25101, 2599, 198, 220, 220, 220, 37227, 26439, 12632, 262, 2746, 319, 262, 21201, 900, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 25, 23534, 7934, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 7890, 25, 21201, 1366, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 25, 309, 22854, 37535, 9701, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 25, 309, 22854, 37535, 6246, 287, 543, 262, 3047, 373, 1057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 25, 1459, 36835, 286, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5591, 25, 1459, 5591, 286, 509, 12, 11379, 3272, 12, 12102, 341, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 26675, 25, 6824, 13326, 376, 16, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 17816, 69, 16, 6, 5974, 10852, 12591, 376, 16, 4776, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 62, 660, 796, 1188, 62, 7890, 17816, 87, 62, 2100, 20520, 198, 220, 220, 220, 13439, 62, 13664, 62, 660, 796, 1188, 62, 7890, 17816, 34086, 3007, 62, 11925, 62, 2100, 20520, 198, 220, 220, 220, 331, 62, 600, 658, 62, 660, 796, 1188, 62, 7890, 17816, 88, 62, 600, 658, 62, 2100, 20520, 198, 220, 220, 220, 331, 62, 6649, 1747, 62, 660, 796, 1188, 62, 7890, 17816, 88, 62, 6649, 1747, 62, 2100, 20520, 198, 220, 220, 220, 530, 62, 8940, 62, 600, 658, 796, 1188, 62, 7890, 17816, 505, 62, 8940, 62, 600, 658, 62, 2100, 20520, 198, 220, 220, 220, 530, 62, 8940, 62, 6649, 1747, 796, 1188, 62, 7890, 17816, 505, 62, 8940, 62, 6649, 1747, 62, 2100, 20520, 198, 220, 220, 220, 17314, 62, 11600, 796, 1188, 62, 7890, 17816, 6649, 1747, 62, 11600, 20520, 198, 220, 220, 220, 493, 658, 62, 11600, 796, 1188, 62, 7890, 17816, 600, 658, 62, 11600, 20520, 628, 220, 220, 220, 1303, 2896, 500, 309, 22854, 29828, 6260, 198, 220, 220, 220, 611, 2604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 48700, 13, 49736, 13, 8979, 34379, 7, 38948, 50, 13, 82, 13929, 3166, 62, 15908, 1343, 31051, 6, 1343, 9977, 4760, 50, 13, 1416, 39055, 62, 22510, 1343, 705, 12, 12102, 341, 19355, 1343, 965, 7, 11379, 828, 264, 408, 13, 34960, 8, 198, 220, 220, 220, 611, 15284, 62, 40684, 62, 22019, 1158, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 48700, 13, 49736, 13, 8979, 34379, 7, 38948, 50, 13, 82, 13929, 3166, 62, 15908, 1343, 31051, 6, 1343, 9977, 4760, 50, 13, 1416, 39055, 62, 22510, 1343, 705, 12, 12102, 341, 12, 44601, 3256, 264, 408, 13, 34960, 8, 628, 220, 220, 220, 2472, 62, 48536, 62, 28764, 796, 17635, 198, 220, 220, 220, 2472, 62, 6649, 1747, 62, 28764, 796, 17635, 628, 220, 220, 220, 997, 62, 82, 12629, 796, 18896, 7, 87, 62, 660, 8, 198, 220, 220, 220, 15458, 62, 7857, 796, 9977, 4760, 50, 13, 43501, 62, 7857, 198, 220, 220, 220, 1332, 62, 43501, 796, 493, 7, 11018, 13, 344, 346, 7, 22510, 62, 82, 12629, 1220, 12178, 7, 43501, 62, 7857, 22305, 198, 220, 220, 220, 2994, 62, 2100, 796, 352, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 9288, 62, 43501, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2221, 62, 9630, 796, 1312, 1635, 15458, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 9630, 796, 949, 19510, 72, 1343, 352, 8, 1635, 15458, 62, 7857, 11, 997, 62, 82, 12629, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 660, 796, 2124, 62, 660, 58, 27471, 62, 9630, 25, 886, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 34086, 3007, 62, 11925, 796, 13439, 62, 13664, 62, 660, 58, 27471, 62, 9630, 25, 886, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 600, 658, 62, 505, 62, 8940, 796, 530, 62, 8940, 62, 600, 658, 58, 27471, 62, 9630, 25, 886, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 6649, 1747, 62, 505, 62, 8940, 796, 530, 62, 8940, 62, 6649, 1747, 58, 27471, 62, 9630, 25, 886, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 886, 62, 9630, 532, 2221, 62, 9630, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 16277, 329, 1459, 21201, 15458, 198, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 796, 1391, 27979, 3262, 13, 15414, 62, 87, 25, 15458, 62, 660, 11, 11022, 3262, 13, 34086, 3007, 62, 13664, 25, 15458, 62, 34086, 3007, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 12685, 9043, 62, 600, 658, 25, 15458, 62, 600, 658, 62, 505, 62, 8940, 11, 11022, 3262, 13, 12685, 9043, 62, 6649, 1747, 25, 15458, 62, 6649, 1747, 62, 505, 62, 8940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 14894, 62, 1676, 65, 25, 352, 13, 15, 92, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9977, 4760, 50, 13, 1904, 62, 1078, 1463, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 7736, 13, 9948, 3129, 378, 62, 27932, 7, 43501, 62, 34086, 3007, 62, 11925, 11, 9977, 4760, 50, 13, 9806, 62, 34086, 594, 62, 13664, 11, 15458, 62, 7857, 11, 9977, 4760, 50, 13, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 58, 27979, 3262, 13, 1078, 1463, 62, 27932, 60, 796, 9335, 628, 220, 220, 220, 220, 220, 220, 220, 685, 48536, 62, 22915, 82, 11, 17314, 62, 22915, 82, 11, 10852, 62, 43775, 62, 66, 11, 3272, 62, 298, 28338, 62, 49736, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 10330, 62, 22462, 62, 49736, 11, 2994, 62, 49736, 60, 796, 264, 408, 13, 5143, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 48536, 62, 22915, 62, 303, 5217, 11, 11022, 3262, 13, 43384, 62, 22915, 62, 303, 5217, 11, 11022, 3262, 13, 43384, 62, 43775, 62, 66, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 19692, 62, 298, 28338, 62, 2100, 62, 49736, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 36153, 62, 22462, 62, 2100, 62, 49736, 11, 11022, 3262, 13, 22462, 62, 2213, 62, 49736, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 28, 12363, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 2100, 796, 2994, 62, 49736, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 309, 22854, 29828, 30114, 3166, 284, 9220, 34379, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6260, 13, 2860, 62, 49736, 7, 19692, 62, 298, 28338, 62, 49736, 11, 36835, 1635, 1332, 62, 43501, 1343, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6260, 13, 2860, 62, 49736, 7, 36153, 62, 22462, 62, 49736, 11, 36835, 1635, 1332, 62, 43501, 1343, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6260, 13, 2860, 62, 49736, 7, 22462, 62, 49736, 11, 36835, 1635, 1332, 62, 43501, 1343, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 49736, 7, 19692, 62, 298, 28338, 62, 49736, 11, 36835, 1343, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 49736, 7, 36153, 62, 22462, 62, 49736, 11, 36835, 1343, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 49736, 7, 22462, 62, 49736, 11, 36835, 1343, 1312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3401, 1958, 17724, 30104, 15225, 284, 8335, 329, 1822, 9806, 198, 220, 220, 220, 220, 220, 220, 220, 6824, 62, 22915, 82, 62, 445, 19513, 62, 27740, 796, 48700, 13, 16485, 1453, 2736, 7, 48536, 62, 22915, 82, 11, 16488, 41888, 16, 11, 604, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 6824, 62, 22915, 82, 62, 27237, 796, 7736, 13, 21230, 62, 27237, 7, 48536, 62, 22915, 82, 62, 445, 19513, 62, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10852, 62, 43775, 62, 66, 62, 445, 19513, 62, 27740, 796, 48700, 13, 16485, 1453, 2736, 7, 43384, 62, 43775, 62, 66, 11, 16488, 41888, 18, 11, 604, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 685, 48536, 62, 28764, 9278, 11, 10852, 62, 28764, 9278, 60, 796, 264, 408, 13, 5143, 26933, 48536, 62, 22915, 82, 62, 27237, 11, 10852, 62, 43775, 62, 66, 62, 445, 19513, 62, 27740, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1835, 3153, 6824, 17724, 198, 220, 220, 220, 220, 220, 220, 220, 573, 62, 43501, 62, 48536, 62, 28764, 796, 45941, 13, 853, 9806, 7, 48536, 62, 28764, 9278, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 48536, 62, 28764, 15853, 45941, 13, 358, 18747, 13, 83, 349, 396, 7, 660, 62, 43501, 62, 48536, 62, 28764, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1835, 3153, 17314, 17724, 198, 220, 220, 220, 220, 220, 220, 220, 573, 62, 43501, 62, 6649, 1747, 62, 28764, 796, 45941, 13, 853, 9806, 7, 43384, 62, 28764, 9278, 11, 16488, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 6649, 1747, 62, 28764, 15853, 357, 37659, 13, 358, 18747, 13, 83, 349, 396, 7, 660, 62, 43501, 62, 6649, 1747, 62, 28764, 4008, 628, 220, 220, 220, 611, 15284, 62, 40684, 62, 22019, 1158, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 49736, 7, 22462, 62, 2100, 11, 5591, 8, 198, 220, 220, 220, 3601, 10786, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26173, 2389, 6234, 25823, 19878, 13775, 10725, 5222, 220, 220, 220, 220, 220, 220, 220, 705, 8, 198, 220, 220, 220, 3601, 10786, 5317, 298, 13326, 11537, 198, 220, 220, 220, 493, 658, 62, 4134, 796, 629, 1134, 270, 62, 4134, 23843, 7, 88, 62, 600, 658, 62, 660, 11, 2472, 62, 48536, 62, 28764, 8, 198, 220, 220, 220, 331, 62, 600, 658, 62, 7942, 796, 45941, 13, 358, 18747, 13, 83, 349, 396, 7, 88, 62, 600, 658, 62, 660, 8, 198, 220, 220, 220, 331, 62, 48536, 62, 23912, 1424, 62, 7942, 796, 685, 600, 658, 62, 11600, 58, 72, 60, 329, 1312, 287, 331, 62, 600, 658, 62, 7942, 60, 198, 220, 220, 220, 331, 62, 48536, 62, 23912, 1424, 62, 28764, 796, 685, 600, 658, 62, 11600, 58, 72, 60, 329, 1312, 287, 2472, 62, 48536, 62, 28764, 60, 198, 220, 220, 220, 493, 658, 796, 23243, 7, 4868, 7, 2617, 7, 88, 62, 48536, 62, 23912, 1424, 62, 7942, 22305, 198, 220, 220, 220, 277, 62, 26675, 796, 629, 1134, 270, 62, 69, 16, 7, 88, 62, 48536, 62, 23912, 1424, 62, 7942, 11, 331, 62, 48536, 62, 23912, 1424, 62, 28764, 11, 2811, 11639, 24055, 3256, 14722, 28, 600, 658, 8, 198, 220, 220, 220, 1303, 3601, 7, 4871, 2649, 62, 13116, 7, 88, 62, 48536, 62, 23912, 1424, 62, 7942, 11, 331, 62, 48536, 62, 23912, 1424, 62, 28764, 11, 19561, 28, 19, 4008, 198, 220, 220, 220, 3601, 10786, 5317, 298, 9922, 4064, 1652, 6, 4064, 493, 658, 62, 4134, 8, 198, 220, 220, 220, 3601, 10786, 37, 4776, 4064, 1652, 6, 4064, 277, 62, 26675, 8, 628, 220, 220, 220, 331, 62, 6649, 1747, 62, 660, 62, 7942, 796, 45941, 13, 358, 18747, 13, 83, 349, 396, 7, 88, 62, 6649, 1747, 62, 660, 8, 198, 220, 220, 220, 331, 62, 43384, 62, 23912, 1424, 62, 7942, 796, 16410, 6649, 1747, 62, 11600, 58, 43384, 62, 312, 87, 60, 329, 10852, 62, 312, 87, 287, 409, 60, 329, 409, 287, 331, 62, 6649, 1747, 62, 660, 62, 7942, 60, 198, 220, 220, 220, 331, 62, 43384, 62, 23912, 1424, 62, 28764, 796, 16410, 6649, 1747, 62, 11600, 58, 43384, 62, 312, 87, 60, 329, 10852, 62, 312, 87, 287, 409, 60, 329, 409, 287, 2472, 62, 6649, 1747, 62, 28764, 60, 198, 220, 220, 220, 8198, 796, 5418, 62, 41068, 62, 1416, 2850, 7, 88, 62, 43384, 62, 23912, 1424, 62, 7942, 11, 331, 62, 43384, 62, 23912, 1424, 62, 28764, 8, 198, 220, 220, 220, 3601, 10786, 38963, 12591, 11537, 198, 220, 220, 220, 3601, 10786, 37, 16, 4776, 25, 4064, 1652, 6, 4064, 8198, 17816, 69, 16, 6, 12962, 198, 220, 220, 220, 3601, 10786, 17320, 23843, 25, 4064, 1652, 6, 4064, 8198, 17816, 4134, 23843, 6, 12962, 198, 220, 220, 220, 1303, 3601, 10786, 6719, 16005, 25, 4064, 1652, 6, 4064, 8198, 17816, 3866, 16005, 6, 12962, 198, 220, 220, 220, 1303, 3601, 10786, 6690, 439, 25, 4064, 1652, 6, 4064, 8198, 17816, 8344, 439, 6, 12962, 628, 220, 220, 220, 1441, 277, 62, 26675, 11, 8198, 17816, 69, 16, 20520, 628, 198, 4299, 5418, 62, 41068, 62, 1416, 2850, 7, 88, 62, 7942, 11, 331, 62, 28764, 2599, 198, 220, 220, 220, 37227, 2448, 23914, 8379, 12660, 319, 10852, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 7942, 25, 2081, 10852, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 25, 11001, 10852, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 25, 8633, 7268, 262, 12660, 8198, 25, 277, 16, 11, 9922, 11, 15440, 11, 10014, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8198, 796, 8633, 3419, 198, 220, 220, 220, 8198, 17816, 69, 16, 20520, 796, 277, 16, 62, 26675, 7, 88, 62, 7942, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 8198, 17816, 4134, 23843, 20520, 796, 9922, 62, 26675, 7, 88, 62, 7942, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 8198, 17816, 3866, 16005, 20520, 796, 15440, 62, 26675, 7, 88, 62, 7942, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 8198, 17816, 8344, 439, 20520, 796, 10014, 62, 26675, 7, 88, 62, 7942, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 1441, 8198, 628, 198, 4299, 7716, 62, 43501, 7, 77, 11, 15458, 62, 7857, 2599, 198, 220, 220, 220, 37227, 2980, 689, 257, 900, 286, 15458, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 25, 2472, 1271, 286, 8405, 287, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 25, 2546, 286, 15458, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 9630, 25, 257, 1351, 286, 4129, 15458, 62, 7857, 7268, 15456, 35846, 36525, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15458, 62, 9630, 796, 257, 13, 39873, 7, 9521, 7, 77, 828, 15458, 62, 7857, 8, 198, 220, 220, 220, 1441, 15458, 62, 9630, 628, 198, 4299, 8333, 62, 5310, 13363, 62, 4775, 62, 20521, 12083, 7, 82, 408, 11, 11525, 12083, 11, 11022, 3262, 2599, 198, 220, 220, 220, 37227, 2195, 570, 82, 1573, 11525, 67, 654, 284, 262, 23534, 7934, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 25, 309, 22854, 37535, 6246, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 25, 7177, 7268, 262, 1573, 11525, 67, 654, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 25, 23534, 7934, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 10786, 3500, 662, 12, 35311, 1573, 795, 1765, 6048, 278, 13, 27471, 986, 11537, 198, 220, 220, 220, 1573, 62, 20521, 12083, 62, 5372, 13829, 796, 48700, 13, 5372, 13829, 7, 67, 4906, 28, 27110, 13, 22468, 2624, 11, 5485, 28, 20521, 12083, 13, 43358, 8, 198, 220, 220, 220, 264, 408, 13, 5143, 7, 27979, 3262, 13, 31567, 6048, 278, 13, 562, 570, 7, 4775, 62, 20521, 12083, 62, 5372, 13829, 828, 1391, 4775, 62, 20521, 12083, 62, 5372, 13829, 25, 11525, 12083, 30072, 198, 220, 220, 220, 3601, 10786, 3500, 662, 12, 35311, 1573, 795, 1765, 6048, 278, 13, 1631, 986, 11537, 628, 198, 4299, 4512, 62, 19692, 62, 12102, 341, 7, 19849, 11, 4512, 62, 7890, 11, 1188, 62, 7890, 11, 11525, 12083, 11, 9977, 4760, 50, 11, 5591, 11, 1266, 62, 69, 62, 26675, 11, 37830, 62, 25192, 28, 25101, 11, 2604, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15284, 62, 40684, 62, 22019, 1158, 28, 25101, 2599, 198, 220, 220, 220, 37227, 833, 1299, 262, 2746, 329, 530, 3272, 12, 12102, 341, 5591, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 25, 3047, 1366, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 7890, 25, 21201, 1366, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 25, 7177, 7268, 662, 12, 35311, 1573, 11525, 67, 654, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 25, 309, 22854, 37535, 3586, 9701, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5591, 25, 1459, 5591, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 25, 1266, 4045, 376, 16, 4776, 357, 330, 1214, 477, 38744, 523, 1290, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37830, 62, 25192, 25, 1771, 284, 4738, 6291, 9927, 37830, 393, 407, 357, 1477, 18137, 1343, 33756, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 25, 19846, 309, 22854, 29828, 32704, 319, 14, 2364, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 25, 1266, 4045, 376, 16, 4776, 357, 330, 1214, 477, 38744, 523, 1290, 11, 1390, 706, 428, 530, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 32604, 62, 11379, 25, 1266, 4045, 376, 16, 4776, 329, 428, 5591, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 48536, 62, 11379, 25, 1266, 6824, 376, 16, 4776, 329, 428, 5591, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 43384, 62, 11379, 25, 1266, 10852, 376, 16, 4776, 329, 428, 5591, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 923, 198, 220, 220, 220, 2124, 62, 27432, 796, 4512, 62, 7890, 17816, 87, 62, 2213, 20520, 198, 220, 220, 220, 13439, 62, 13664, 62, 27432, 796, 4512, 62, 7890, 17816, 34086, 3007, 62, 11925, 62, 2213, 20520, 198, 220, 220, 220, 530, 62, 8940, 62, 600, 658, 62, 27432, 796, 4512, 62, 7890, 17816, 505, 62, 8940, 62, 600, 658, 62, 2213, 20520, 198, 220, 220, 220, 530, 62, 8940, 62, 6649, 1747, 62, 27432, 796, 4512, 62, 7890, 17816, 505, 62, 8940, 62, 6649, 1747, 62, 2213, 20520, 628, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 32604, 62, 11379, 796, 657, 13, 15, 198, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 48536, 62, 11379, 796, 657, 13, 15, 198, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 43384, 62, 11379, 796, 657, 13, 15, 628, 220, 220, 220, 1303, 775, 1276, 13259, 262, 4823, 284, 923, 257, 4508, 649, 3047, 286, 262, 2746, 198, 220, 220, 220, 48700, 13, 42503, 62, 12286, 62, 34960, 3419, 198, 220, 220, 220, 4566, 796, 48700, 13, 16934, 2964, 1462, 3419, 198, 220, 220, 220, 351, 48700, 13, 36044, 7, 11250, 28, 11250, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24470, 9386, 9104, 198, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 796, 2746, 7, 38948, 50, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 24243, 2890, 15965, 2977, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 27110, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9977, 4760, 50, 13, 1904, 62, 20521, 12083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3440, 662, 12, 35311, 1573, 11525, 12083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8333, 62, 5310, 13363, 62, 4775, 62, 20521, 12083, 7, 82, 408, 11, 11525, 12083, 11, 11022, 3262, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 12660, 319, 21201, 900, 198, 220, 220, 220, 220, 220, 220, 220, 6824, 62, 69, 62, 26675, 11, 10852, 62, 69, 62, 26675, 796, 13446, 62, 12102, 341, 7, 27979, 3262, 11, 1188, 62, 7890, 11, 9977, 4760, 50, 11, 264, 408, 11, 36835, 28, 15, 11, 5591, 28, 11379, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 26675, 62, 32604, 796, 357, 48536, 62, 69, 62, 26675, 1343, 10852, 62, 69, 62, 26675, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 62, 26675, 62, 32604, 1875, 1266, 62, 69, 62, 26675, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 796, 277, 62, 26675, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 82, 8770, 796, 48700, 13, 27432, 13, 50, 8770, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 277, 62, 26675, 62, 32604, 1875, 1266, 62, 69, 62, 26675, 62, 32604, 62, 11379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1266, 1612, 287, 428, 5591, 11, 3613, 8198, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 32604, 62, 11379, 796, 277, 62, 26675, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 48536, 62, 11379, 796, 6824, 62, 69, 62, 26675, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 43384, 62, 11379, 796, 10852, 62, 69, 62, 26675, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 16002, 796, 48700, 13, 49736, 13, 8979, 34379, 7, 38948, 50, 13, 82, 13929, 3166, 62, 15908, 1343, 31051, 6, 1343, 9977, 4760, 50, 13, 1416, 39055, 62, 22510, 1343, 705, 12, 27432, 12, 11379, 6, 1343, 965, 7, 11379, 828, 264, 408, 13, 34960, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13614, 6772, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 39873, 62, 22510, 796, 2124, 62, 27432, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 22510, 796, 493, 7, 11018, 13, 344, 346, 7, 27432, 62, 39873, 62, 22510, 1220, 9977, 4760, 50, 13, 43501, 62, 7857, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 27432, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 36835, 287, 2837, 7, 38948, 50, 13, 22510, 62, 538, 5374, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 15458, 287, 2837, 7, 43501, 62, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 37830, 62, 25192, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 9630, 796, 7716, 62, 43501, 7, 27432, 62, 39873, 62, 22510, 11, 9977, 4760, 50, 13, 43501, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 87, 796, 2124, 62, 27432, 58, 43501, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 34086, 3007, 62, 11925, 796, 13439, 62, 13664, 62, 27432, 58, 43501, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 600, 658, 62, 505, 62, 8940, 796, 530, 62, 8940, 62, 600, 658, 62, 27432, 58, 43501, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 6649, 1747, 62, 505, 62, 8940, 796, 530, 62, 8940, 62, 6649, 1747, 62, 27432, 58, 43501, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 9977, 4760, 50, 13, 43501, 62, 7857, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13614, 8405, 389, 1541, 32299, 992, 287, 262, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2221, 62, 9630, 796, 15458, 1635, 9977, 4760, 50, 13, 43501, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 9630, 796, 949, 19510, 43501, 1343, 352, 8, 1635, 9977, 4760, 50, 13, 43501, 62, 7857, 11, 4512, 62, 39873, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 87, 796, 2124, 62, 27432, 58, 27471, 62, 9630, 25, 886, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 34086, 3007, 62, 11925, 796, 13439, 62, 13664, 62, 27432, 58, 27471, 62, 9630, 25, 886, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 600, 658, 62, 505, 62, 8940, 796, 530, 62, 8940, 62, 600, 658, 62, 27432, 58, 27471, 62, 9630, 25, 886, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 6649, 1747, 62, 505, 62, 8940, 796, 530, 62, 8940, 62, 6649, 1747, 62, 27432, 58, 27471, 62, 9630, 25, 886, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 886, 62, 9630, 532, 2221, 62, 9630, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 796, 1391, 27979, 3262, 13, 15414, 62, 87, 25, 15458, 62, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 12685, 9043, 62, 600, 658, 25, 15458, 62, 600, 658, 62, 505, 62, 8940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 12685, 9043, 62, 6649, 1747, 25, 15458, 62, 6649, 1747, 62, 505, 62, 8940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 34086, 3007, 62, 13664, 25, 15458, 62, 34086, 3007, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 14894, 62, 1676, 65, 25, 9977, 4760, 50, 13, 14894, 62, 1676, 65, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9977, 4760, 50, 13, 1904, 62, 1078, 1463, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 7736, 13, 9948, 3129, 378, 62, 27932, 7, 43501, 62, 34086, 3007, 62, 11925, 11, 9977, 4760, 50, 13, 9806, 62, 34086, 594, 62, 13664, 11, 15458, 62, 7857, 11, 9977, 4760, 50, 13, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 58, 27979, 3262, 13, 1078, 1463, 62, 27932, 60, 796, 9335, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 62, 11, 2994, 11, 4808, 11, 4808, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3272, 62, 298, 28338, 62, 49736, 11, 10330, 62, 22462, 62, 49736, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 49736, 60, 796, 264, 408, 13, 5143, 26933, 27979, 3262, 13, 27432, 62, 404, 11, 11022, 3262, 13, 22462, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 48536, 62, 22915, 62, 303, 5217, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 43384, 62, 22915, 62, 303, 5217, 11, 11022, 3262, 13, 19692, 62, 298, 28338, 62, 2213, 62, 49736, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11022, 3262, 13, 36153, 62, 22462, 62, 2213, 62, 49736, 11, 11022, 3262, 13, 22462, 62, 2213, 62, 49736, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 28, 12363, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 27432, 796, 2994, 62, 49736, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 16002, 13, 2860, 62, 49736, 7, 19692, 62, 298, 28338, 62, 49736, 11, 15458, 62, 22510, 1635, 36835, 1343, 15458, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 16002, 13, 2860, 62, 49736, 7, 36153, 62, 22462, 62, 49736, 11, 15458, 62, 22510, 1635, 36835, 1343, 15458, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 16002, 13, 2860, 62, 49736, 7, 22462, 62, 49736, 11, 15458, 62, 22510, 1635, 36835, 1343, 15458, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1783, 438, 538, 5374, 1058, 46083, 36835, 11, 705, 22014, 25, 46083, 2994, 11, 705, 19351, 438, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 3785, 503, 257, 517, 7748, 4259, 329, 3376, 36835, 47622, 357, 568, 326, 21201, 290, 3047, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 407, 14869, 11, 290, 340, 991, 2499, 329, 2972, 4512, 14, 12102, 341, 30778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6824, 62, 69, 62, 26675, 11, 10852, 62, 69, 62, 26675, 796, 13446, 62, 12102, 341, 7, 27979, 3262, 11, 1188, 62, 7890, 11, 9977, 4760, 50, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 264, 408, 11, 36835, 28, 538, 5374, 1343, 352, 11, 5591, 28, 11379, 11, 2604, 28, 6404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 11, 36835, 28, 43501, 62, 22510, 1635, 36835, 11, 5591, 28, 11379, 11, 2604, 28, 6404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 26675, 62, 32604, 796, 357, 48536, 62, 69, 62, 26675, 1343, 10852, 62, 69, 62, 26675, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 62, 26675, 62, 32604, 1875, 1266, 62, 69, 62, 26675, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1266, 4776, 4045, 4613, 3613, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 796, 277, 62, 26675, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9977, 4760, 50, 13, 1416, 39055, 62, 22510, 14512, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 74, 457, 62, 15908, 796, 9977, 4760, 50, 13, 694, 457, 62, 15908, 1343, 705, 1416, 39055, 6, 1343, 9977, 4760, 50, 13, 1416, 39055, 62, 22510, 1343, 31051, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 694, 457, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 694, 457, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 74, 457, 62, 15908, 796, 9977, 4760, 50, 13, 694, 457, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 82, 8770, 13, 21928, 7, 82, 408, 11, 28686, 13, 6978, 13, 22179, 7, 694, 457, 62, 15908, 11, 705, 19849, 13, 694, 457, 33809, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 11297, 376, 4776, 1612, 3256, 277, 62, 26675, 62, 32604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 13014, 376, 4776, 1612, 3256, 1266, 62, 69, 62, 26675, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 62, 26675, 62, 32604, 1875, 1266, 62, 69, 62, 26675, 62, 32604, 62, 11379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1266, 1612, 287, 428, 5591, 11, 3613, 8198, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 32604, 62, 11379, 796, 277, 62, 26675, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 48536, 62, 11379, 796, 6824, 62, 69, 62, 26675, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 62, 26675, 62, 43384, 62, 11379, 796, 10852, 62, 69, 62, 26675, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15284, 62, 40684, 62, 22019, 1158, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 16002, 796, 48700, 13, 49736, 13, 8979, 34379, 7, 38948, 50, 13, 82, 13929, 3166, 62, 15908, 1343, 31051, 6, 1343, 9977, 4760, 50, 13, 1416, 39055, 62, 22510, 1343, 705, 12, 27432, 12, 44601, 3256, 264, 408, 13, 34960, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 16002, 13, 2860, 62, 49736, 7, 22462, 62, 27432, 11, 5591, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6824, 62, 69, 62, 26675, 11, 10852, 62, 69, 62, 26675, 796, 13446, 62, 12102, 341, 7, 27979, 3262, 11, 1188, 62, 7890, 11, 9977, 4760, 50, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 11, 36835, 28, 538, 5374, 1343, 352, 11, 5591, 28, 11379, 11, 2604, 28, 6404, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15284, 62, 40684, 62, 22019, 1158, 28, 17821, 8, 198, 220, 220, 220, 1441, 1266, 62, 69, 62, 26675, 11, 1266, 62, 69, 62, 26675, 62, 32604, 62, 11379, 11, 1266, 62, 69, 62, 26675, 62, 48536, 62, 11379, 11, 1266, 62, 69, 62, 26675, 62, 43384, 62, 11379, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.158271
7,266
import os import random import torch import pandas as pd import torchvision.transforms.functional as T_F from torch.utils.data import Dataset from PIL import Image class BehaviorCloneDataset(Dataset): """ Behavioral cloning dataset. I referred to https://pytorch.org/tutorials/beginner/data_loading_tutorial.html """ def __init__(self, csv_file, root_dir, transform=None): """ Read the csv here and leave the reading of images to __getitem__. This is memory efficient because all images are not stored in the memory at once but read as required. :param csv_file: path to the csv file with relative image paths and corresponding control commands, velocity. :param root_dir: directory with all the images. :param transform: optional transform to be applied on a sample. """ self.driving_records = pd.read_csv(csv_file) self.root_dir = root_dir self.transform = transform self.steer_correction = 0.1
[ 11748, 28686, 198, 11748, 4738, 198, 11748, 28034, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 10178, 13, 7645, 23914, 13, 45124, 355, 309, 62, 37, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 198, 6738, 350, 4146, 1330, 7412, 628, 198, 4871, 20181, 2601, 505, 27354, 292, 316, 7, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38483, 45973, 27039, 13, 198, 220, 220, 220, 314, 6412, 284, 3740, 1378, 9078, 13165, 354, 13, 2398, 14, 83, 44917, 82, 14, 27471, 1008, 14, 7890, 62, 25138, 62, 83, 44917, 13, 6494, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 269, 21370, 62, 7753, 11, 6808, 62, 15908, 11, 6121, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4149, 262, 269, 21370, 994, 290, 2666, 262, 3555, 286, 4263, 284, 11593, 1136, 9186, 834, 13, 770, 318, 4088, 6942, 780, 477, 4263, 198, 220, 220, 220, 220, 220, 220, 220, 389, 407, 8574, 287, 262, 4088, 379, 1752, 475, 1100, 355, 2672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 269, 21370, 62, 7753, 25, 3108, 284, 262, 269, 21370, 2393, 351, 3585, 2939, 13532, 290, 11188, 1630, 9729, 11, 15432, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6808, 62, 15908, 25, 8619, 351, 477, 262, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6121, 25, 11902, 6121, 284, 307, 5625, 319, 257, 6291, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24255, 62, 8344, 3669, 796, 279, 67, 13, 961, 62, 40664, 7, 40664, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 62, 15908, 796, 6808, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35636, 796, 6121, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4169, 263, 62, 10215, 8243, 796, 657, 13, 16, 198 ]
2.871795
351
# Generated by Django 1.11.14 on 2018-08-22 09:57 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 1415, 319, 2864, 12, 2919, 12, 1828, 7769, 25, 3553, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.90625
32
import struct import array def mac2str(mac): """Converts mac address to string . Args: mac: 6 bytes mac address Returns: readable string """ return '%02x:%02x:%02x:%02x:%02x:%02x'%tuple(int(x) for x in struct.unpack('BBBBBB', mac)) def str2mac(s): """Converts string to mac address . Args: s: 'xx:xx:xx:xx:xx:xx' format string Returns: 6 bytes mac address """ mac = tuple(int(x,16) for x in s.split(":")) return struct.pack('BBBBBB', mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]) def checksum(data): '''Calculate checksum more about checksum, see http://tools.ietf.org/html/rfc1071 ''' if len(data) & 1: data = data + '\0' words = array.array('h', data) checksum = 0 for word in words: checksum += (word & 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff) checksum = checksum + (checksum >> 16) return (~checksum) & 0xffff
[ 11748, 2878, 198, 11748, 7177, 198, 198, 4299, 8352, 17, 2536, 7, 20285, 2599, 198, 220, 220, 220, 37227, 3103, 24040, 8352, 2209, 284, 4731, 764, 198, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 25, 718, 9881, 8352, 2209, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31744, 4731, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 705, 4, 2999, 87, 25, 4, 2999, 87, 25, 4, 2999, 87, 25, 4, 2999, 87, 25, 4, 2999, 87, 25, 4, 2999, 87, 6, 4, 83, 29291, 7, 600, 7, 87, 8, 329, 2124, 287, 2878, 13, 403, 8002, 10786, 15199, 15199, 15199, 3256, 8352, 4008, 198, 198, 4299, 965, 17, 20285, 7, 82, 2599, 198, 220, 220, 220, 37227, 3103, 24040, 4731, 284, 8352, 2209, 764, 198, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 25, 705, 5324, 25, 5324, 25, 5324, 25, 5324, 25, 5324, 25, 5324, 6, 5794, 4731, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 718, 9881, 8352, 2209, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8352, 796, 46545, 7, 600, 7, 87, 11, 1433, 8, 329, 2124, 287, 264, 13, 35312, 7, 2404, 4008, 198, 220, 220, 220, 1441, 2878, 13, 8002, 10786, 15199, 15199, 15199, 3256, 8352, 58, 15, 4357, 8352, 58, 16, 4357, 8352, 58, 17, 4357, 8352, 58, 18, 4357, 8352, 58, 19, 4357, 8352, 58, 20, 12962, 628, 198, 220, 220, 220, 198, 4299, 8794, 388, 7, 7890, 2599, 198, 220, 220, 220, 705, 7061, 9771, 3129, 378, 8794, 388, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 517, 546, 8794, 388, 11, 766, 2638, 1378, 31391, 13, 1155, 69, 13, 2398, 14, 6494, 14, 81, 16072, 940, 4869, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 18896, 7, 7890, 8, 1222, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 1343, 705, 59, 15, 6, 198, 220, 220, 220, 2456, 796, 7177, 13, 18747, 10786, 71, 3256, 1366, 8, 198, 220, 220, 220, 8794, 388, 796, 657, 198, 220, 220, 220, 329, 1573, 287, 2456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8794, 388, 15853, 357, 4775, 1222, 657, 87, 12927, 8, 198, 220, 220, 220, 8794, 388, 796, 357, 42116, 388, 9609, 1467, 8, 1343, 357, 42116, 388, 1222, 657, 87, 12927, 8, 198, 220, 220, 220, 8794, 388, 796, 8794, 388, 1343, 357, 42116, 388, 9609, 1467, 8, 628, 220, 220, 220, 1441, 31034, 42116, 388, 8, 1222, 657, 87, 12927, 198 ]
2.01711
526
#!/usr/bin/env python #coding=utf-8 """ moveit_ik_demo.py - Version 0.1 2014-01-14 Use inverse kinemtatics to move the end effector to a specified pose Created for the Pi Robot Project: http://www.pirobot.org Copyleft (c) 2014 Patrick Goebel. All lefts reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.5 This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details at: http://www.gnu.org/licenses/gpl.html """ from sqlalchemy import false import rospy, sys import moveit_commander import os #print('Hello,'+os.environ.get('ROS_MASTER_URI')+'!') #import moveit_commander import tf import argparse import math import numpy as np from math import pi import time import copy from moveit_msgs.msg import RobotTrajectory,DisplayTrajectory from trajectory_msgs.msg import JointTrajectoryPoint from threading import Lock, Event from franka_msgs.srv import SetCartesianImpedance, \ SetCartesianImpedanceRequest, \ SetCartesianImpedanceResponse from controller_manager_msgs.srv import SwitchController,SwitchControllerRequest,SwitchControllerResponse import actionlib from geometry_msgs.msg import PoseStamped, Pose from tf.transformations import euler_from_quaternion, quaternion_from_euler,quaternion_multiply,quaternion_from_matrix,quaternion_matrix #from autolab_core import RigidTransform,transformations #from pyquaternion import Quaternion from gpg.msg import GraspConfig,GraspConfigList from franka_gripper.msg import GraspAction, GraspGoal from franka_gripper.msg import GraspEpsilon #解析命令行参数 parser = argparse.ArgumentParser(description='Panda go grasp') parser.add_argument('--test',type=int, default=0) #设置同时处理几个场景 parameters,unknow =parser.parse_known_args() if __name__ == "__main__": try: MoveItDemo() rospy.spin() except rospy.ROSInterruptException: rospy.loginfo("Arm tracker node terminated.")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 66, 7656, 28, 40477, 12, 23, 198, 37811, 198, 220, 220, 220, 1445, 270, 62, 1134, 62, 9536, 78, 13, 9078, 532, 10628, 657, 13, 16, 1946, 12, 486, 12, 1415, 198, 220, 220, 220, 5765, 34062, 479, 7749, 83, 23372, 284, 1445, 262, 886, 1245, 273, 284, 257, 7368, 12705, 198, 220, 220, 220, 220, 198, 220, 220, 220, 15622, 329, 262, 13993, 16071, 4935, 25, 2638, 1378, 2503, 13, 79, 7058, 13645, 13, 2398, 198, 220, 220, 220, 6955, 2349, 701, 357, 66, 8, 1946, 9925, 1514, 1765, 417, 13, 220, 1439, 1364, 82, 10395, 13, 628, 220, 220, 220, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 220, 220, 220, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 220, 220, 220, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 286, 262, 13789, 11, 393, 198, 220, 220, 220, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 20, 198, 220, 220, 220, 220, 198, 220, 220, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 220, 220, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 220, 220, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 220, 220, 220, 22961, 3611, 5094, 13789, 329, 517, 3307, 379, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2638, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 70, 489, 13, 6494, 198, 37811, 198, 198, 6738, 44161, 282, 26599, 1330, 3991, 198, 11748, 686, 2777, 88, 11, 25064, 198, 11748, 1445, 270, 62, 9503, 4066, 198, 11748, 28686, 198, 2, 4798, 10786, 15496, 4032, 10, 418, 13, 268, 2268, 13, 1136, 10786, 49, 2640, 62, 31180, 5781, 62, 47269, 11537, 10, 6, 0, 11537, 198, 2, 11748, 1445, 270, 62, 9503, 4066, 198, 11748, 48700, 198, 11748, 1822, 29572, 198, 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 10688, 1330, 31028, 198, 11748, 640, 198, 11748, 4866, 198, 6738, 1445, 270, 62, 907, 14542, 13, 19662, 1330, 16071, 15721, 752, 652, 11, 23114, 15721, 752, 652, 198, 6738, 22942, 62, 907, 14542, 13, 19662, 1330, 16798, 15721, 752, 652, 12727, 198, 6738, 4704, 278, 1330, 13656, 11, 8558, 198, 198, 6738, 14346, 64, 62, 907, 14542, 13, 27891, 85, 1330, 5345, 43476, 35610, 26950, 276, 590, 11, 3467, 198, 220, 220, 220, 5345, 43476, 35610, 26950, 276, 590, 18453, 11, 3467, 198, 220, 220, 220, 5345, 43476, 35610, 26950, 276, 590, 31077, 198, 198, 6738, 10444, 62, 37153, 62, 907, 14542, 13, 27891, 85, 1330, 14645, 22130, 11, 38978, 22130, 18453, 11, 38978, 22130, 31077, 198, 198, 11748, 2223, 8019, 198, 6738, 22939, 62, 907, 14542, 13, 19662, 1330, 37557, 1273, 13322, 11, 37557, 198, 6738, 48700, 13, 35636, 602, 1330, 304, 18173, 62, 6738, 62, 421, 9205, 295, 11, 627, 9205, 295, 62, 6738, 62, 68, 18173, 11, 421, 9205, 295, 62, 16680, 541, 306, 11, 421, 9205, 295, 62, 6738, 62, 6759, 8609, 11, 421, 9205, 295, 62, 6759, 8609, 198, 2, 6738, 1960, 349, 397, 62, 7295, 1330, 24666, 312, 41762, 11, 35636, 602, 198, 2, 6738, 12972, 421, 9205, 295, 1330, 2264, 9205, 295, 198, 6738, 308, 6024, 13, 19662, 1330, 1902, 5126, 16934, 11, 8642, 5126, 16934, 8053, 198, 6738, 14346, 64, 62, 70, 380, 2848, 13, 19662, 1330, 1902, 5126, 12502, 11, 1902, 5126, 49045, 198, 6738, 14346, 64, 62, 70, 380, 2848, 13, 19662, 1330, 1902, 5126, 36, 862, 33576, 198, 2, 164, 100, 96, 162, 252, 238, 37772, 121, 20015, 97, 26193, 234, 20998, 224, 46763, 108, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 47, 5282, 467, 13180, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 9288, 3256, 4906, 28, 600, 11, 4277, 28, 15, 8, 220, 1303, 164, 106, 122, 163, 121, 106, 28938, 234, 33768, 114, 13783, 226, 49426, 228, 49035, 254, 10310, 103, 28839, 118, 162, 247, 107, 198, 17143, 7307, 11, 2954, 2197, 796, 48610, 13, 29572, 62, 4002, 62, 22046, 3419, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10028, 1026, 11522, 78, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 686, 2777, 88, 13, 39706, 3419, 198, 220, 220, 220, 2845, 686, 2777, 88, 13, 49, 2640, 9492, 3622, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 686, 2777, 88, 13, 6404, 10951, 7203, 26560, 30013, 10139, 23083, 19570, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.893216
796
""" OpenNEM primary schema adapted to support multiple energy sources Currently supported: - NEM - WEM """ from decimal import Decimal from typing import Optional from dictalchemy import DictableModel from geoalchemy2 import Geometry from shapely import wkb from sqlalchemy import ( JSON, Boolean, Column, Date, DateTime, Enum, ForeignKey, Index, Integer, LargeBinary, Numeric, Sequence, Text, func, text, ) from sqlalchemy.dialects.postgresql import TIMESTAMP from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm import relationship from opennem.core.dispatch_type import DispatchType from opennem.core.oid import get_ocode, get_oid Base = declarative_base(cls=DictableModel) metadata = Base.metadata class BaseModel(object): """ Base model for both NEM and WEM """ created_by = Column(Text, nullable=True) # updated_by = Column(Text, nullable=True) # processed_at = Column(DateTime(timezone=True), nullable=True) created_at = Column(DateTime(timezone=True), server_default=func.now()) updated_at = Column(DateTime(timezone=True), onupdate=func.now()) class FacilityScada(Base, BaseModel): """ Facility Scada """ __tablename__ = "facility_scada" __table_args__ = ( Index( "idx_facility_scada_trading_interval_year", text("date_trunc('year', trading_interval AT TIME ZONE 'UTC')"), ), Index( "idx_facility_scada_trading_interval_month", text("date_trunc('month', trading_interval AT TIME ZONE 'UTC')"), ), Index( "idx_facility_scada_trading_interval_day", text("date_trunc('day', trading_interval AT TIME ZONE 'UTC')"), ), Index( "idx_facility_scada_trading_interval_hour", text("date_trunc('hour', trading_interval AT TIME ZONE 'UTC')"), ), # new timezone based indicies # @NOTE: other indicies in migration files ) network_id = Column( Text, ForeignKey("network.code", name="fk_balancing_summary_network_code"), primary_key=True, ) network = relationship("Network") trading_interval = Column( TIMESTAMP(timezone=True), index=True, primary_key=True ) facility_code = Column(Text, nullable=False, primary_key=True, index=True) generated = Column(Numeric, nullable=True) eoi_quantity = Column(Numeric, nullable=True)
[ 37811, 198, 220, 220, 220, 4946, 45, 3620, 4165, 32815, 16573, 284, 1104, 3294, 2568, 4237, 628, 220, 220, 220, 16888, 4855, 25, 628, 220, 220, 220, 532, 399, 3620, 198, 220, 220, 220, 532, 370, 3620, 198, 37811, 198, 198, 6738, 32465, 1330, 4280, 4402, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 8633, 282, 26599, 1330, 360, 713, 540, 17633, 198, 6738, 40087, 282, 26599, 17, 1330, 2269, 15748, 198, 6738, 5485, 306, 1330, 266, 32812, 198, 6738, 44161, 282, 26599, 1330, 357, 198, 220, 220, 220, 19449, 11, 198, 220, 220, 220, 41146, 11, 198, 220, 220, 220, 29201, 11, 198, 220, 220, 220, 7536, 11, 198, 220, 220, 220, 7536, 7575, 11, 198, 220, 220, 220, 2039, 388, 11, 198, 220, 220, 220, 8708, 9218, 11, 198, 220, 220, 220, 12901, 11, 198, 220, 220, 220, 34142, 11, 198, 220, 220, 220, 13601, 33, 3219, 11, 198, 220, 220, 220, 399, 39223, 11, 198, 220, 220, 220, 45835, 11, 198, 220, 220, 220, 8255, 11, 198, 220, 220, 220, 25439, 11, 198, 220, 220, 220, 2420, 11, 198, 8, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 13, 7353, 34239, 13976, 1330, 31742, 6465, 23518, 198, 6738, 44161, 282, 26599, 13, 2302, 13, 32446, 283, 876, 1330, 2377, 283, 876, 62, 8692, 198, 6738, 44161, 282, 26599, 13, 2302, 13, 12114, 10236, 1330, 14554, 62, 26745, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 198, 198, 6738, 1280, 77, 368, 13, 7295, 13, 6381, 17147, 62, 4906, 1330, 35934, 6030, 198, 6738, 1280, 77, 368, 13, 7295, 13, 1868, 1330, 651, 62, 420, 1098, 11, 651, 62, 1868, 198, 198, 14881, 796, 2377, 283, 876, 62, 8692, 7, 565, 82, 28, 35, 713, 540, 17633, 8, 198, 38993, 796, 7308, 13, 38993, 628, 198, 4871, 7308, 17633, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7308, 2746, 329, 1111, 399, 3620, 290, 370, 3620, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2727, 62, 1525, 796, 29201, 7, 8206, 11, 9242, 540, 28, 17821, 8, 198, 220, 220, 220, 1303, 6153, 62, 1525, 796, 29201, 7, 8206, 11, 9242, 540, 28, 17821, 8, 198, 220, 220, 220, 1303, 13686, 62, 265, 796, 29201, 7, 10430, 7575, 7, 2435, 11340, 28, 17821, 828, 9242, 540, 28, 17821, 8, 198, 220, 220, 220, 2727, 62, 265, 796, 29201, 7, 10430, 7575, 7, 2435, 11340, 28, 17821, 828, 4382, 62, 12286, 28, 20786, 13, 2197, 28955, 198, 220, 220, 220, 6153, 62, 265, 796, 29201, 7, 10430, 7575, 7, 2435, 11340, 28, 17821, 828, 319, 19119, 28, 20786, 13, 2197, 28955, 628, 628, 628, 628, 628, 628, 628, 198, 198, 4871, 29118, 3351, 4763, 7, 14881, 11, 7308, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29118, 1446, 4763, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 8658, 11925, 480, 834, 796, 366, 38942, 879, 62, 1416, 4763, 1, 628, 220, 220, 220, 11593, 11487, 62, 22046, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 87, 62, 38942, 879, 62, 1416, 4763, 62, 2213, 4980, 62, 3849, 2100, 62, 1941, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 7203, 4475, 62, 2213, 19524, 10786, 1941, 3256, 7313, 62, 3849, 2100, 5161, 20460, 1168, 11651, 705, 17429, 11537, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 87, 62, 38942, 879, 62, 1416, 4763, 62, 2213, 4980, 62, 3849, 2100, 62, 8424, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 7203, 4475, 62, 2213, 19524, 10786, 8424, 3256, 7313, 62, 3849, 2100, 5161, 20460, 1168, 11651, 705, 17429, 11537, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 87, 62, 38942, 879, 62, 1416, 4763, 62, 2213, 4980, 62, 3849, 2100, 62, 820, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 7203, 4475, 62, 2213, 19524, 10786, 820, 3256, 7313, 62, 3849, 2100, 5161, 20460, 1168, 11651, 705, 17429, 11537, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 87, 62, 38942, 879, 62, 1416, 4763, 62, 2213, 4980, 62, 3849, 2100, 62, 9769, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 7203, 4475, 62, 2213, 19524, 10786, 9769, 3256, 7313, 62, 3849, 2100, 5161, 20460, 1168, 11651, 705, 17429, 11537, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 649, 640, 11340, 1912, 2699, 444, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2488, 16580, 25, 584, 2699, 444, 287, 13472, 3696, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3127, 62, 312, 796, 29201, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8255, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8708, 9218, 7203, 27349, 13, 8189, 1600, 1438, 2625, 69, 74, 62, 6893, 5077, 62, 49736, 62, 27349, 62, 8189, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 17821, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3127, 796, 2776, 7203, 26245, 4943, 628, 220, 220, 220, 7313, 62, 3849, 2100, 796, 29201, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31742, 6465, 23518, 7, 2435, 11340, 28, 17821, 828, 6376, 28, 17821, 11, 4165, 62, 2539, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 6841, 62, 8189, 796, 29201, 7, 8206, 11, 9242, 540, 28, 25101, 11, 4165, 62, 2539, 28, 17821, 11, 6376, 28, 17821, 8, 198, 220, 220, 220, 7560, 796, 29201, 7, 45, 39223, 11, 9242, 540, 28, 17821, 8, 198, 220, 220, 220, 304, 23013, 62, 40972, 414, 796, 29201, 7, 45, 39223, 11, 9242, 540, 28, 17821, 8, 628, 198 ]
2.449153
1,062
name = 'data_service'
[ 3672, 796, 705, 7890, 62, 15271, 6, 198 ]
2.75
8
# -*- coding: UTF-8 -*- # This file is forked from Piracast (July 2014): https://github.com/codemonkeyricky/piracast # import re import time from util import get_stdout cmd_killall_wpa_spplicant = 'killall wpa_supplicant' cmd_killall_hostapd = 'killall hostapd' cmd_iwlist_wlan0_scan = 'iwlist wlan0 scan' # ----------------------- # p2p_enable # Enable wifi direct # ----------------------- # ----------------------- # p2p_peer_devaddr_get # Gets peer device address # ----------------------- # ----------------------- # p2p_req_cm_get # Gets supported authentication type # -----------------------
[ 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 2, 220, 220, 220, 220, 770, 2393, 318, 329, 9091, 422, 10334, 330, 459, 357, 16157, 1946, 2599, 3740, 1378, 12567, 13, 785, 14, 19815, 7966, 365, 2417, 17479, 14, 4063, 330, 459, 198, 2, 198, 198, 11748, 302, 198, 11748, 640, 198, 198, 6738, 7736, 1330, 651, 62, 19282, 448, 198, 198, 28758, 62, 12728, 439, 62, 86, 8957, 62, 82, 381, 677, 415, 220, 220, 796, 705, 12728, 439, 266, 8957, 62, 18608, 677, 415, 6, 198, 28758, 62, 12728, 439, 62, 4774, 499, 67, 220, 220, 220, 220, 220, 220, 220, 220, 796, 705, 12728, 439, 2583, 499, 67, 6, 198, 28758, 62, 14246, 4868, 62, 86, 9620, 15, 62, 35836, 220, 220, 220, 220, 220, 220, 796, 705, 14246, 4868, 266, 9620, 15, 9367, 6, 198, 198, 2, 41436, 6329, 198, 2, 279, 17, 79, 62, 21633, 198, 2, 220, 220, 27882, 43121, 1277, 198, 2, 41436, 6329, 198, 198, 2, 41436, 6329, 198, 2, 279, 17, 79, 62, 33350, 62, 7959, 29851, 62, 1136, 198, 2, 220, 220, 29620, 12720, 3335, 2209, 198, 2, 41436, 6329, 198, 198, 2, 41436, 6329, 198, 2, 279, 17, 79, 62, 42180, 62, 11215, 62, 1136, 198, 2, 220, 220, 29620, 4855, 18239, 2099, 198, 2, 41436, 6329, 628 ]
2.830357
224
from pyramid.response import Response from pyramid.view import view_config # from ..sample_data import MOCK_DATA from sqlalchemy.exc import DBAPIError, IntegrityError from pyramid.httpexceptions import HTTPFound, HTTPNotFound, HTTPUnauthorized, HTTPBadRequest from pyramid.security import NO_PERMISSION_REQUIRED, remember, forget from pyramid.response import Response from ..models import Account from . import DB_ERR_MSG import requests @view_config(route_name='auth', renderer='../templates/auth.jinja2', permission=NO_PERMISSION_REQUIRED) @view_config(route_name='logout')
[ 6738, 27944, 13, 26209, 1330, 18261, 198, 6738, 27944, 13, 1177, 1330, 1570, 62, 11250, 198, 2, 422, 11485, 39873, 62, 7890, 1330, 337, 11290, 62, 26947, 198, 6738, 44161, 282, 26599, 13, 41194, 1330, 20137, 17614, 12331, 11, 39348, 12331, 198, 6738, 27944, 13, 2804, 24900, 11755, 1330, 14626, 21077, 11, 14626, 3673, 21077, 11, 7154, 51, 5105, 2616, 1457, 1143, 11, 14626, 22069, 18453, 198, 6738, 27944, 13, 12961, 1330, 8005, 62, 18973, 44, 40373, 62, 2200, 10917, 37819, 11, 3505, 11, 6044, 198, 6738, 27944, 13, 26209, 1330, 18261, 198, 6738, 11485, 27530, 1330, 10781, 198, 6738, 764, 1330, 20137, 62, 1137, 49, 62, 5653, 38, 198, 11748, 7007, 628, 198, 198, 31, 1177, 62, 11250, 7, 38629, 62, 3672, 11639, 18439, 3256, 9851, 11882, 11639, 40720, 11498, 17041, 14, 18439, 13, 18594, 6592, 17, 3256, 7170, 28, 15285, 62, 18973, 44, 40373, 62, 2200, 10917, 37819, 8, 628, 198, 31, 1177, 62, 11250, 7, 38629, 62, 3672, 11639, 6404, 448, 11537 ]
3.515152
165
from typing import Union, Sized import numpy as np import torch from torch.utils.data import Sampler from utils.command_line_logger import CommandLineLogger class InfiniteSampler(Sampler): """ InfiniteSampler Class: Sampler for torch.utils.data.DataLoader that loops over the dataset indefinitely, shuffling items as it goes. Source: https://github.com/NVlabs/stylegan2-ada-pytorch/blob/main/torch_utils/misc.py """ class ResumableRandomSampler(Sampler): """ ResumableRandomSampler Class: Samples elements randomly. If without replacement, then sample from a shuffled dataset. Original source: https://gist.github.com/usamec/1b3b4dcbafad2d58faa71a9633eea6a5 """ def __init__(self, data_source: Sized, shuffle: bool = True, seed: int = 42, logger: Union[CommandLineLogger, None] = None): """ ResumableRandomSampler class constructor. generator (Generator): Generator used in sampling. :param (Sized) data_source: torch.utils.data.Dataset or generally typings.Sized object of the dataset to draw samples from :param (int) seed: generator manual seed parameter :param (optional) logger: CommandLineLogger instance """ super(ResumableRandomSampler, self).__init__(data_source=data_source) self.n_samples = len(data_source) self.generator = torch.Generator().manual_seed(seed) self.shuffle = shuffle self.perm_index = 0 if self.shuffle: self.perm = None self.reshuffle() else: self.perm = range(0, self.n_samples) self.logger = logger assert self.logger is not None, 'Please provide a logger instance for ResumableRandomSampler'
[ 6738, 19720, 1330, 4479, 11, 311, 1143, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 3409, 20053, 198, 198, 6738, 3384, 4487, 13, 21812, 62, 1370, 62, 6404, 1362, 1330, 9455, 13949, 11187, 1362, 628, 198, 4871, 22380, 16305, 20053, 7, 16305, 20053, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22380, 16305, 20053, 5016, 25, 198, 220, 220, 220, 3409, 20053, 329, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 326, 23607, 625, 262, 27039, 24391, 11, 32299, 1359, 3709, 355, 340, 2925, 13, 198, 220, 220, 220, 8090, 25, 3740, 1378, 12567, 13, 785, 14, 27159, 75, 8937, 14, 7635, 1030, 17, 12, 4763, 12, 9078, 13165, 354, 14, 2436, 672, 14, 12417, 14, 13165, 354, 62, 26791, 14, 44374, 13, 9078, 198, 220, 220, 220, 37227, 628, 198, 4871, 1874, 388, 540, 29531, 16305, 20053, 7, 16305, 20053, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1874, 388, 540, 29531, 16305, 20053, 5016, 25, 198, 220, 220, 220, 3409, 2374, 4847, 15456, 13, 1002, 1231, 9014, 11, 788, 6291, 422, 257, 32299, 992, 27039, 13, 198, 220, 220, 220, 13745, 2723, 25, 3740, 1378, 70, 396, 13, 12567, 13, 785, 14, 385, 480, 66, 14, 16, 65, 18, 65, 19, 17896, 65, 1878, 324, 17, 67, 3365, 69, 7252, 4869, 64, 4846, 2091, 1453, 64, 21, 64, 20, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1366, 62, 10459, 25, 311, 1143, 11, 36273, 25, 20512, 796, 6407, 11, 9403, 25, 493, 796, 5433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 25, 4479, 58, 21575, 13949, 11187, 1362, 11, 6045, 60, 796, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1874, 388, 540, 29531, 16305, 20053, 1398, 23772, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17301, 357, 8645, 1352, 2599, 35986, 973, 287, 19232, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 357, 50, 1143, 8, 1366, 62, 10459, 25, 28034, 13, 26791, 13, 7890, 13, 27354, 292, 316, 393, 4143, 2170, 654, 13, 50, 1143, 2134, 286, 262, 27039, 284, 3197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 422, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 357, 600, 8, 9403, 25, 17301, 10107, 9403, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 357, 25968, 8, 49706, 25, 9455, 13949, 11187, 1362, 4554, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 4965, 388, 540, 29531, 16305, 20053, 11, 2116, 737, 834, 15003, 834, 7, 7890, 62, 10459, 28, 7890, 62, 10459, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 82, 12629, 796, 18896, 7, 7890, 62, 10459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8612, 1352, 796, 28034, 13, 8645, 1352, 22446, 805, 723, 62, 28826, 7, 28826, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1477, 18137, 796, 36273, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16321, 62, 9630, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1477, 18137, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16321, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3447, 18137, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16321, 796, 2837, 7, 15, 11, 2116, 13, 77, 62, 82, 12629, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 796, 49706, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 6404, 1362, 318, 407, 6045, 11, 705, 5492, 2148, 257, 49706, 4554, 329, 1874, 388, 540, 29531, 16305, 20053, 6, 198 ]
2.535311
708
import abc import importlib import json import os import sys from typing import Union, Callable, Any from primehub.utils import group_required, create_logger, PrimeHubException from primehub.utils.core import CommandContainer from primehub.utils.decorators import cmd # noqa: F401 from primehub.utils.display import Display, HumanFriendlyDisplay, Displayable from primehub.utils.http_client import Client logger = create_logger('primehub-config') __version__ = _get_version() class PrimeHubConfig(object): """ PrimeHubConfig load the config from the default path ~/.primehub/config.json The config.json looks like: { "endpoint": "" "api-token": "", "group": { "id": "", "name": "", "displayName": "", } } PrimeHubConfig allows changing setting from four ways: * the default config path * alternative path for the config file (config argument from constructor) * environment variables: PRIMEHUB_API_TOKEN, PRIMEHUB_API_ENDPOINT and PRIMEHUB_GROUP * set property for api_token, endpoint and group PrimeHubConfig evaluates a property in the above order and the last updates take effect """ def save(self, path=None): """ The config.json looks like: { "endpoint": "" "api-token": "", "group": { "id": "", "name": "", "displayName": "", } } """ output = dict() output['endpoint'] = self.endpoint output['api-token'] = self.api_token if self.group_info and self.group_info.get('name', None) == self.group: output['group'] = self.group_info else: output['group'] = dict(name=self.group) output_path = os.path.expanduser(path or self.config_file) if os.path.dirname(output_path): os.makedirs(os.path.dirname(output_path), exist_ok=True) with open(output_path, "w") as fh: fh.write(json.dumps(output, indent=2, sort_keys=True)) @property @group.setter @property @api_token.setter @property @endpoint.setter @property @current_group.setter class Dummy(Helpful, Module): """ Dummy subcommand """ description = None def has_data_from_stdin(): """ Check if any data comes from stdin. :return: True if there are data from stdin, otherwise False """ import sys import select if select.select([sys.stdin, ], [], [], 0.0)[0]: return True else: return False
[ 11748, 450, 66, 198, 11748, 1330, 8019, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 19720, 1330, 4479, 11, 4889, 540, 11, 4377, 198, 198, 6738, 6994, 40140, 13, 26791, 1330, 1448, 62, 35827, 11, 2251, 62, 6404, 1362, 11, 5537, 16066, 16922, 198, 6738, 6994, 40140, 13, 26791, 13, 7295, 1330, 9455, 29869, 198, 6738, 6994, 40140, 13, 26791, 13, 12501, 273, 2024, 1330, 23991, 220, 1303, 645, 20402, 25, 376, 21844, 198, 6738, 6994, 40140, 13, 26791, 13, 13812, 1330, 16531, 11, 5524, 23331, 306, 23114, 11, 16531, 540, 198, 6738, 6994, 40140, 13, 26791, 13, 4023, 62, 16366, 1330, 20985, 198, 198, 6404, 1362, 796, 2251, 62, 6404, 1362, 10786, 35505, 40140, 12, 11250, 11537, 628, 198, 198, 834, 9641, 834, 796, 4808, 1136, 62, 9641, 3419, 628, 198, 4871, 5537, 16066, 16934, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5537, 16066, 16934, 3440, 262, 4566, 422, 262, 4277, 3108, 39763, 35505, 40140, 14, 11250, 13, 17752, 628, 220, 220, 220, 383, 4566, 13, 17752, 3073, 588, 25, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 366, 437, 4122, 1298, 13538, 198, 220, 220, 220, 220, 220, 220, 366, 15042, 12, 30001, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 366, 8094, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13812, 5376, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 5537, 16066, 16934, 3578, 5609, 4634, 422, 1440, 2842, 25, 198, 220, 220, 220, 1635, 262, 4277, 4566, 3108, 198, 220, 220, 220, 1635, 5559, 3108, 329, 262, 4566, 2393, 357, 11250, 4578, 422, 23772, 8, 198, 220, 220, 220, 1635, 2858, 9633, 25, 4810, 12789, 39, 10526, 62, 17614, 62, 10468, 43959, 11, 4810, 12789, 39, 10526, 62, 17614, 62, 1677, 6322, 46, 12394, 290, 4810, 12789, 39, 10526, 62, 46846, 198, 220, 220, 220, 1635, 900, 3119, 329, 40391, 62, 30001, 11, 36123, 290, 1448, 628, 220, 220, 220, 5537, 16066, 16934, 47850, 257, 3119, 287, 262, 2029, 1502, 290, 262, 938, 5992, 1011, 1245, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 3613, 7, 944, 11, 3108, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4566, 13, 17752, 3073, 588, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 437, 4122, 1298, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15042, 12, 30001, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8094, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13812, 5376, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 17816, 437, 4122, 20520, 796, 2116, 13, 437, 4122, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 17816, 15042, 12, 30001, 20520, 796, 2116, 13, 15042, 62, 30001, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 8094, 62, 10951, 290, 2116, 13, 8094, 62, 10951, 13, 1136, 10786, 3672, 3256, 6045, 8, 6624, 2116, 13, 8094, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 17816, 8094, 20520, 796, 2116, 13, 8094, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 17816, 8094, 20520, 796, 8633, 7, 3672, 28, 944, 13, 8094, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 6978, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7, 6978, 393, 2116, 13, 11250, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 15908, 3672, 7, 22915, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 22915, 62, 6978, 828, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 22915, 62, 6978, 11, 366, 86, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 13564, 7, 17752, 13, 67, 8142, 7, 22915, 11, 33793, 28, 17, 11, 3297, 62, 13083, 28, 17821, 4008, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 8094, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 15042, 62, 30001, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 437, 4122, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 14421, 62, 8094, 13, 2617, 353, 628, 628, 198, 198, 4871, 360, 13513, 7, 22087, 913, 11, 19937, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 360, 13513, 850, 21812, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6764, 796, 6045, 628, 198, 4299, 468, 62, 7890, 62, 6738, 62, 19282, 259, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 611, 597, 1366, 2058, 422, 14367, 259, 13, 628, 220, 220, 220, 1058, 7783, 25, 6407, 611, 612, 389, 1366, 422, 14367, 259, 11, 4306, 10352, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 1330, 2922, 628, 220, 220, 220, 611, 2922, 13, 19738, 26933, 17597, 13, 19282, 259, 11, 16589, 685, 4357, 685, 4357, 657, 13, 15, 38381, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628 ]
2.428041
1,077
""" The protocol for the werewolf game """ import os import socket import sys from .api import ChunckedData, ReceiveThread, _recv, TimeLock, KillableThread, ReadInput
[ 37811, 198, 464, 8435, 329, 262, 547, 18829, 983, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 17802, 198, 11748, 25064, 198, 6738, 764, 15042, 1330, 40958, 694, 276, 6601, 11, 797, 15164, 16818, 11, 4808, 8344, 85, 11, 3862, 25392, 11, 12265, 540, 16818, 11, 4149, 20560, 198 ]
3.428571
49
# -*- coding: utf-8 -*- """Main module.""" import json import logging # this only works with post-19.7.1 gunicorn to pull in commit 610596c9 # which logs separate format and args
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 13383, 8265, 526, 15931, 198, 11748, 33918, 198, 11748, 18931, 628, 198, 2, 428, 691, 2499, 351, 1281, 12, 1129, 13, 22, 13, 16, 2485, 291, 1211, 284, 2834, 287, 4589, 44300, 45734, 66, 24, 198, 2, 543, 17259, 4553, 5794, 290, 26498, 198 ]
3.033333
60
from rest_framework_extensions.routers import NestedRegistryItem from posthog.api.routing import DefaultRouterPlusPlus from .api import hooks, license
[ 6738, 1334, 62, 30604, 62, 2302, 5736, 13, 472, 1010, 1330, 399, 7287, 8081, 4592, 7449, 198, 198, 6738, 1281, 31897, 13, 15042, 13, 81, 13660, 1330, 15161, 49, 39605, 17860, 17860, 198, 198, 6738, 764, 15042, 1330, 26569, 11, 5964, 628 ]
3.666667
42
# -*- coding: utf-8 -*- # Copyright 2020 Green Valley Belgium NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.7@@ import logging import time from collections import defaultdict from datetime import datetime from influxdb import InfluxDBClient from influxdb.resultset import ResultSet from typing import List, Dict from rogerthat.consts import DEBUG, DAY from rogerthat.models.news import NewsItemAction, NewsItem from rogerthat.models.properties.news import NewsItemStatistics from rogerthat.settings import get_server_settings from rogerthat.to.news import NewsItemBasicStatisticsTO, NewsItemTimeStatisticsTO, NewsItemBasicStatisticTO, \ NewsItemTimeValueTO, NewsItemStatisticsPerApp, NewsItemStatisticApp from rogerthat.utils import now
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 12131, 3469, 6916, 15664, 23973, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 25248, 43085, 62, 9641, 25, 16, 13, 22, 12404, 198, 198, 11748, 18931, 198, 11748, 640, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 25065, 9945, 1330, 4806, 22564, 11012, 11792, 198, 6738, 25065, 9945, 13, 20274, 2617, 1330, 25414, 7248, 198, 6738, 19720, 1330, 7343, 11, 360, 713, 198, 198, 6738, 686, 1362, 5562, 13, 1102, 6448, 1330, 16959, 11, 24644, 198, 6738, 686, 1362, 5562, 13, 27530, 13, 10827, 1330, 3000, 7449, 12502, 11, 3000, 7449, 198, 6738, 686, 1362, 5562, 13, 27530, 13, 48310, 13, 10827, 1330, 3000, 7449, 48346, 198, 6738, 686, 1362, 5562, 13, 33692, 1330, 651, 62, 15388, 62, 33692, 198, 6738, 686, 1362, 5562, 13, 1462, 13, 10827, 1330, 3000, 7449, 26416, 48346, 10468, 11, 3000, 7449, 7575, 48346, 10468, 11, 3000, 7449, 26416, 17126, 2569, 10468, 11, 3467, 198, 220, 220, 220, 3000, 7449, 7575, 11395, 10468, 11, 3000, 7449, 48346, 5990, 4677, 11, 3000, 7449, 17126, 2569, 4677, 198, 6738, 686, 1362, 5562, 13, 26791, 1330, 783, 628, 628, 628, 628, 198 ]
3.696532
346
from __future__ import unicode_literals import frappe
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 11748, 5306, 27768 ]
3.785714
14
# coding=utf-8 import requests import getpass from requests.auth import HTTPBasicAuth import xml.etree.ElementTree as ET API_URL = "Place vCD URL Here" #Cloud API URL ending in /api/ EDGE_NAME = 'Place Edge Name Here' #Edge Gateway Name SYSLOG_IP = 'Place Syslog IP Here' #IP of syslog server USERNAME = 'Place Username Here' #Username@orgname E.g: [email protected]@org PASSWORD = 'Place Password Here' #Password if __name__ == '__main__': main()
[ 2, 19617, 28, 40477, 12, 23, 198, 11748, 7007, 198, 11748, 651, 6603, 198, 6738, 7007, 13, 18439, 1330, 14626, 26416, 30515, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 628, 198, 17614, 62, 21886, 796, 366, 27271, 410, 8610, 10289, 3423, 1, 1303, 18839, 7824, 10289, 7464, 287, 1220, 15042, 14, 198, 1961, 8264, 62, 20608, 796, 705, 27271, 13113, 6530, 3423, 6, 1303, 37021, 29916, 6530, 198, 23060, 8634, 7730, 62, 4061, 796, 705, 27271, 311, 893, 6404, 6101, 3423, 6, 1303, 4061, 286, 25064, 6404, 4382, 198, 29904, 20608, 796, 705, 27271, 50069, 3423, 6, 1303, 5842, 13292, 31, 2398, 3672, 412, 13, 70, 25, 3053, 31, 27830, 13, 785, 31, 2398, 198, 47924, 54, 12532, 796, 705, 27271, 30275, 3423, 6, 1303, 35215, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.04698
149
# Installed python3-praw, geany and ffmpeg from debian # and others from pip # Made a Reddit account, set up an application and added its client id and secret # made a white noise video named noise.mkv and downloaded 3 pieces of music as music{0-1}.mp3 import praw from PIL import Image, ImageDraw, ImageFont import urllib.request import sys import os from io import BytesIO import random import subprocess from gtts import gTTS DEBUG_IMAGES_CREATE=False DEBUG_AUDIOS_CREATE=False DEBUG_VIDEO_CREATE_TRY2=False DEBUG_VIDEO_COMPILATION_CREATE=False DEBUG_VIDEO_MUSIC_ADD=False DEBUG_VIDEO_COMPILATION_CREATE_2=True if DEBUG_IMAGES_CREATE==True: file_path = 'reddits.txt' sys.stdout = open(file_path, "w") reddit = praw.Reddit(client_id='', client_secret='', user_agent='') acc=0 #FOR SAVED IMAGE NUMBERING best_posts_linuxmemes = reddit.subreddit('linuxmemes').hot(limit=60) for post in best_posts_linuxmemes: if post.selftext == '' and post.stickied==False and (post.url.endswith(".png") or post.url.endswith(".jpg") or post.url.endswith(".jpeg") or post.url.endswith(".gif")): urllib.request.urlretrieve(post.url, "tmpimage") try: img = Image.open("tmpimage") except: continue wid, hgt = img.size newimg = Image.new(img.mode, (wid, hgt + (hgt//20)),(0,0,0)) newimg.paste(img, (0,0)) d1=ImageDraw.Draw(newimg) font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',hgt//40) post.title=post.title.replace('"','') post.title=post.title.replace("'",'') post.title=post.title.replace('--','') print(post.title + ' by '+post.author.name) if len(post.title)>20: post.title=post.title[0:20]+'...' d1.text((10,(hgt + hgt//50)),post.title+' - u/'+post.author.name+' - '+post.subreddit.display_name,fill="white",font=font) newimg.save('video'+str(acc)+'.png') acc+=1 if DEBUG_AUDIOS_CREATE==True: dirlist = os.listdir() f=open("reddits.txt","r") lines=f.readlines() vidcount=0 for i in dirlist: if i.startswith("video"): vidcount+=1 for i in range(vidcount): #os.system('espeak -s 120 -w audio'+str(i)+'.waw \''+lines[i]+'\'') mytext=lines[i] gts=gTTS(text=mytext,lang='en',slow=False) gts.save('audio'+str(i)+'.wav') if DEBUG_VIDEO_CREATE_TRY2==True: dirlist = os.listdir() vidcount=0 clips=[] for i in dirlist: if i.startswith("video"): vidcount+=1 for i in range(vidcount): os.system('ffmpeg -stream_loop -1 -i video'+str(i)+'.png -i audio'+str(i)+'.wav -vf "tpad=stop_mode=clone:stop_duration=7,scale=1280:720:force_original_aspect_ratio=decrease,pad=1280:720:-1:-1:color=black" -shortest out'+str(i)+'.mkv') #ffmpeg -i input -vf "scale=1280:720:force_original_aspect_ratio=decrease,pad=1280:720:-1:-1:color=black" output if DEBUG_VIDEO_COMPILATION_CREATE==True: sys.stdout = open("vids.txt", "w") dirlist = os.listdir() for i in dirlist: if i.startswith("out"): print('file '+i) print('file noise.mkv') print('file outro.mkv') subprocess.Popen('ffmpeg -f concat -i vids.txt -c copy nomusic.mkv',shell=True) if DEBUG_VIDEO_COMPILATION_CREATE_2==True: dirlist = os.listdir() #inputs='' acc=0 #filterstring='' for i in dirlist: if i.startswith("out"): # inputs=inputs+' -i '+i+' -i noise.mkv' acc+=1 #inputs=inputs+' -i outro.mkv' tmp=0 remaining=0 print(acc,'acc') sets=acc//5 if acc//5<acc/5: remaining=acc%5 print(sets,'sets') print(remaining,'remaining') for i in range(sets): inputs='-i out'+str(i*5)+'.mkv -i noise.mkv -i out'+str(i*5+1)+'.mkv -i noise.mkv -i out'+str(i*5+2)+'.mkv -i noise.mkv -i out'+str(i*5+3)+'.mkv -i noise.mkv -i out'+str(i*5+4)+'.mkv -i noise.mkv' print('ffmpeg '+inputs+' -filter_complex "[0:v] [0:a] [1:v] [1:a] [2:v] [2:a] [3:v] [3:a] [4:v] [4:a] [5:v] [5:a] [6:v] [6:a] [7:v] [7:a] [8:v] [8:a] [9:v] [9:a] concat=n=10:v=1:a=1 [v] [a]" -map "[v]" -map "[a]" nomusic-set'+str(i)+'.mkv') os.system('ffmpeg '+inputs+' -filter_complex "[0:v] [0:a] [1:v] [1:a] [2:v] [2:a] [3:v] [3:a] [4:v] [4:a] [5:v] [5:a] [6:v] [6:a] [7:v] [7:a] [8:v] [8:a] [9:v] [9:a] concat=n=10:v=1:a=1 [v] [a]" -map "[v]" -map "[a]" nomusic-set'+str(i)+'.mkv') inputs='' filterstring='' for i in range(remaining-1): inputs += '-i out'+str(sets*5+i)+'.mkv -i noise.mkv ' filterstring+='['+str(i)+':v] ['+str(i)+':a] ' filterstring+='['+str(remaining-1+i)+':v] ['+str(remaining-1+i)+':a] ' #os.system('ffmpeg '+inputs+' -filter_complex "'+filterstring+'concat=n='+str(2*(remaining-1))+':v=1:a=1 [v] [a]" -map "[v]" -map "[a]" nomusic-remaining.mkv') print('ffmpeg '+inputs+' -filter_complex "'+filterstring+'concat=n='+str(2*(remaining-1))+':v=1:a=1 [v] [a]" -map "[v]" -map "[a]" nomusic-remaining.mkv') #for i in range(acc//5): # filterstring+='['+str(i)+':v] ['+str(i)+':a] ' #print('ffmpeg'+inputs+' -filter_complex "'+filterstring+'concat=n='+str(i)+':v=1:a=1 [v] [a]" -map "[v]" -map "[a]" nomusic.mkv') #os.system('ffmpeg'+inputs+' -filter_complex "'+filterstring+'concat=n='+str(i)+':v=1:a=1 [v] [a]" -map "[v]" -map "[a]" nomusic'+str(tmp)+'.mkv') if DEBUG_VIDEO_MUSIC_ADD==True: musicno=random.randint(0,2) subprocess.Popen('ffmpeg -i nomusic.mp4 -stream_loop -1 -i music'+str(musicno)+'.mp3 -filter_complex "[1:a]volume=0.15,apad[A];[0:a][A]amerge[out]" -shortest -c:v copy -map 0:v -map [out] -y finale.mkv',shell=True)
[ 2, 2262, 4262, 21015, 18, 12, 79, 1831, 11, 4903, 1092, 290, 31246, 43913, 422, 50001, 198, 2, 290, 1854, 422, 7347, 198, 2, 14446, 257, 10750, 1848, 11, 900, 510, 281, 3586, 290, 2087, 663, 5456, 4686, 290, 3200, 198, 2, 925, 257, 2330, 7838, 2008, 3706, 7838, 13, 28015, 85, 290, 15680, 513, 5207, 286, 2647, 355, 2647, 90, 15, 12, 16, 27422, 3149, 18, 198, 198, 11748, 279, 1831, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 25302, 11, 7412, 23252, 198, 11748, 2956, 297, 571, 13, 25927, 198, 11748, 25064, 198, 11748, 28686, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 11748, 4738, 198, 11748, 850, 14681, 198, 6738, 308, 83, 912, 1330, 308, 51, 4694, 198, 198, 30531, 62, 3955, 25552, 62, 43387, 6158, 28, 25101, 198, 30531, 62, 48877, 40, 2640, 62, 43387, 6158, 28, 25101, 198, 30531, 62, 42937, 62, 43387, 6158, 62, 40405, 17, 28, 25101, 198, 30531, 62, 42937, 62, 9858, 47, 4146, 6234, 62, 43387, 6158, 28, 25101, 198, 30531, 62, 42937, 62, 44, 2937, 2149, 62, 29266, 28, 25101, 198, 30531, 62, 42937, 62, 9858, 47, 4146, 6234, 62, 43387, 6158, 62, 17, 28, 17821, 198, 198, 361, 16959, 62, 3955, 25552, 62, 43387, 6158, 855, 17821, 25, 198, 197, 7753, 62, 6978, 796, 705, 36581, 13, 14116, 6, 198, 197, 17597, 13, 19282, 448, 796, 1280, 7, 7753, 62, 6978, 11, 366, 86, 4943, 628, 197, 10748, 796, 279, 1831, 13, 22367, 7, 16366, 62, 312, 11639, 3256, 5456, 62, 21078, 11639, 3256, 2836, 62, 25781, 28, 7061, 8, 628, 197, 4134, 28, 15, 1303, 13775, 311, 10116, 1961, 8959, 11879, 36871, 13246, 2751, 198, 197, 13466, 62, 24875, 62, 23289, 11883, 274, 796, 18374, 13, 7266, 10748, 10786, 23289, 11883, 274, 27691, 8940, 7, 32374, 28, 1899, 8, 198, 197, 1640, 1281, 287, 1266, 62, 24875, 62, 23289, 11883, 274, 25, 198, 197, 197, 361, 1281, 13, 944, 5239, 6624, 10148, 290, 1281, 13, 13915, 798, 855, 25101, 290, 357, 7353, 13, 6371, 13, 437, 2032, 342, 7, 1911, 11134, 4943, 393, 1281, 13, 6371, 13, 437, 2032, 342, 7, 1911, 9479, 4943, 393, 1281, 13, 6371, 13, 437, 2032, 342, 7, 1911, 73, 22071, 4943, 393, 1281, 13, 6371, 13, 437, 2032, 342, 7, 1911, 27908, 4943, 2599, 198, 197, 197, 197, 333, 297, 571, 13, 25927, 13, 6371, 1186, 30227, 7, 7353, 13, 6371, 11, 366, 22065, 9060, 4943, 198, 197, 197, 197, 28311, 25, 198, 197, 197, 197, 197, 9600, 796, 7412, 13, 9654, 7203, 22065, 9060, 4943, 198, 197, 197, 197, 16341, 25, 198, 197, 197, 197, 197, 43043, 198, 197, 197, 197, 28029, 11, 289, 13655, 796, 33705, 13, 7857, 198, 197, 197, 197, 3605, 9600, 796, 7412, 13, 3605, 7, 9600, 13, 14171, 11, 357, 28029, 11, 289, 13655, 1343, 357, 71, 13655, 1003, 1238, 36911, 7, 15, 11, 15, 11, 15, 4008, 198, 197, 197, 197, 3605, 9600, 13, 34274, 7, 9600, 11, 357, 15, 11, 15, 4008, 198, 197, 197, 197, 67, 16, 28, 5159, 25302, 13, 25302, 7, 3605, 9600, 8, 198, 197, 197, 197, 10331, 796, 7412, 23252, 13, 83, 622, 2963, 431, 10786, 14, 14629, 14, 20077, 14, 10331, 82, 14, 83, 622, 2963, 431, 14, 5787, 10331, 14, 11146, 50, 504, 13, 926, 69, 3256, 71, 13655, 1003, 1821, 8, 198, 197, 197, 197, 7353, 13, 7839, 28, 7353, 13, 7839, 13, 33491, 10786, 1, 3256, 7061, 8, 198, 197, 197, 197, 7353, 13, 7839, 28, 7353, 13, 7839, 13, 33491, 7203, 6, 1600, 7061, 8, 198, 197, 197, 197, 7353, 13, 7839, 28, 7353, 13, 7839, 13, 33491, 10786, 438, 3256, 7061, 8, 198, 197, 197, 197, 4798, 7, 7353, 13, 7839, 1343, 705, 416, 705, 10, 7353, 13, 9800, 13, 3672, 8, 198, 197, 197, 197, 361, 18896, 7, 7353, 13, 7839, 8, 29, 1238, 25, 198, 197, 197, 197, 197, 7353, 13, 7839, 28, 7353, 13, 7839, 58, 15, 25, 1238, 48688, 6, 986, 6, 198, 197, 197, 197, 67, 16, 13, 5239, 19510, 940, 11, 7, 71, 13655, 1343, 289, 13655, 1003, 1120, 36911, 7353, 13, 7839, 10, 6, 532, 334, 14, 6, 10, 7353, 13, 9800, 13, 3672, 10, 6, 532, 705, 10, 7353, 13, 7266, 10748, 13, 13812, 62, 3672, 11, 20797, 2625, 11186, 1600, 10331, 28, 10331, 8, 198, 197, 197, 197, 3605, 9600, 13, 21928, 10786, 15588, 6, 10, 2536, 7, 4134, 47762, 4458, 11134, 11537, 198, 197, 197, 197, 4134, 47932, 16, 198, 198, 361, 16959, 62, 48877, 40, 2640, 62, 43387, 6158, 855, 17821, 25, 198, 197, 67, 1901, 396, 796, 28686, 13, 4868, 15908, 3419, 198, 197, 69, 28, 9654, 7203, 36581, 13, 14116, 2430, 81, 4943, 198, 197, 6615, 28, 69, 13, 961, 6615, 3419, 198, 197, 16921, 9127, 28, 15, 198, 197, 1640, 1312, 287, 288, 1901, 396, 25, 198, 197, 197, 361, 1312, 13, 9688, 2032, 342, 7203, 15588, 1, 2599, 198, 197, 197, 197, 16921, 9127, 47932, 16, 198, 197, 1640, 1312, 287, 2837, 7, 16921, 9127, 2599, 198, 197, 197, 197, 2, 418, 13, 10057, 10786, 274, 36729, 532, 82, 7982, 532, 86, 6597, 6, 10, 2536, 7, 72, 47762, 4458, 86, 707, 3467, 7061, 10, 6615, 58, 72, 48688, 6, 59, 7061, 8, 198, 197, 197, 197, 1820, 5239, 28, 6615, 58, 72, 60, 198, 197, 197, 197, 70, 912, 28, 70, 51, 4694, 7, 5239, 28, 1820, 5239, 11, 17204, 11639, 268, 3256, 38246, 28, 25101, 8, 198, 197, 197, 197, 70, 912, 13, 21928, 10786, 24051, 6, 10, 2536, 7, 72, 47762, 4458, 45137, 11537, 198, 361, 16959, 62, 42937, 62, 43387, 6158, 62, 40405, 17, 855, 17821, 25, 198, 197, 67, 1901, 396, 796, 28686, 13, 4868, 15908, 3419, 198, 197, 16921, 9127, 28, 15, 198, 197, 31945, 28, 21737, 198, 197, 1640, 1312, 287, 288, 1901, 396, 25, 198, 197, 197, 361, 1312, 13, 9688, 2032, 342, 7203, 15588, 1, 2599, 198, 197, 197, 197, 16921, 9127, 47932, 16, 198, 197, 1640, 1312, 287, 2837, 7, 16921, 9127, 2599, 198, 197, 197, 418, 13, 10057, 10786, 487, 43913, 532, 5532, 62, 26268, 532, 16, 532, 72, 2008, 6, 10, 2536, 7, 72, 47762, 4458, 11134, 532, 72, 6597, 6, 10, 2536, 7, 72, 47762, 4458, 45137, 532, 85, 69, 366, 83, 15636, 28, 11338, 62, 14171, 28, 21018, 25, 11338, 62, 32257, 28, 22, 11, 9888, 28, 1065, 1795, 25, 23906, 25, 3174, 62, 14986, 62, 292, 806, 62, 10366, 952, 28, 12501, 260, 589, 11, 15636, 28, 1065, 1795, 25, 23906, 21912, 16, 21912, 16, 25, 8043, 28, 13424, 1, 532, 19509, 395, 503, 6, 10, 2536, 7, 72, 47762, 4458, 28015, 85, 11537, 198, 197, 197, 2, 487, 43913, 532, 72, 5128, 532, 85, 69, 366, 9888, 28, 1065, 1795, 25, 23906, 25, 3174, 62, 14986, 62, 292, 806, 62, 10366, 952, 28, 12501, 260, 589, 11, 15636, 28, 1065, 1795, 25, 23906, 21912, 16, 21912, 16, 25, 8043, 28, 13424, 1, 5072, 198, 361, 16959, 62, 42937, 62, 9858, 47, 4146, 6234, 62, 43387, 6158, 855, 17821, 25, 198, 197, 17597, 13, 19282, 448, 796, 1280, 7203, 85, 2340, 13, 14116, 1600, 366, 86, 4943, 198, 197, 67, 1901, 396, 796, 28686, 13, 4868, 15908, 3419, 198, 197, 1640, 1312, 287, 288, 1901, 396, 25, 198, 197, 197, 361, 1312, 13, 9688, 2032, 342, 7203, 448, 1, 2599, 198, 197, 197, 197, 4798, 10786, 7753, 705, 10, 72, 8, 198, 197, 197, 197, 4798, 10786, 7753, 7838, 13, 28015, 85, 11537, 198, 197, 4798, 10786, 7753, 503, 305, 13, 28015, 85, 11537, 198, 197, 7266, 14681, 13, 47, 9654, 10786, 487, 43913, 532, 69, 1673, 265, 532, 72, 410, 2340, 13, 14116, 532, 66, 4866, 4515, 385, 291, 13, 28015, 85, 3256, 29149, 28, 17821, 8, 198, 198, 361, 16959, 62, 42937, 62, 9858, 47, 4146, 6234, 62, 43387, 6158, 62, 17, 855, 17821, 25, 198, 197, 67, 1901, 396, 796, 28686, 13, 4868, 15908, 3419, 198, 197, 2, 15414, 82, 28, 7061, 198, 197, 4134, 28, 15, 198, 197, 2, 24455, 8841, 28, 7061, 198, 197, 1640, 1312, 287, 288, 1901, 396, 25, 198, 197, 197, 361, 1312, 13, 9688, 2032, 342, 7203, 448, 1, 2599, 198, 197, 2, 197, 197, 15414, 82, 28, 15414, 82, 10, 6, 532, 72, 705, 10, 72, 10, 6, 532, 72, 7838, 13, 28015, 85, 6, 198, 197, 197, 197, 4134, 47932, 16, 198, 197, 2, 15414, 82, 28, 15414, 82, 10, 6, 532, 72, 503, 305, 13, 28015, 85, 6, 198, 197, 22065, 28, 15, 198, 197, 2787, 1397, 28, 15, 198, 197, 4798, 7, 4134, 4032, 4134, 11537, 198, 197, 28709, 28, 4134, 1003, 20, 198, 197, 361, 697, 1003, 20, 27, 4134, 14, 20, 25, 198, 197, 197, 2787, 1397, 28, 4134, 4, 20, 198, 197, 4798, 7, 28709, 4032, 28709, 11537, 198, 197, 4798, 7, 2787, 1397, 4032, 2787, 1397, 11537, 198, 197, 1640, 1312, 287, 2837, 7, 28709, 2599, 198, 197, 197, 15414, 82, 11639, 12, 72, 503, 6, 10, 2536, 7, 72, 9, 20, 47762, 4458, 28015, 85, 532, 72, 7838, 13, 28015, 85, 532, 72, 503, 6, 10, 2536, 7, 72, 9, 20, 10, 16, 47762, 4458, 28015, 85, 532, 72, 7838, 13, 28015, 85, 532, 72, 503, 6, 10, 2536, 7, 72, 9, 20, 10, 17, 47762, 4458, 28015, 85, 532, 72, 7838, 13, 28015, 85, 532, 72, 503, 6, 10, 2536, 7, 72, 9, 20, 10, 18, 47762, 4458, 28015, 85, 532, 72, 7838, 13, 28015, 85, 532, 72, 503, 6, 10, 2536, 7, 72, 9, 20, 10, 19, 47762, 4458, 28015, 85, 532, 72, 7838, 13, 28015, 85, 6, 198, 197, 197, 4798, 10786, 487, 43913, 705, 10, 15414, 82, 10, 6, 532, 24455, 62, 41887, 12878, 15, 25, 85, 60, 685, 15, 25, 64, 60, 685, 16, 25, 85, 60, 685, 16, 25, 64, 60, 685, 17, 25, 85, 60, 685, 17, 25, 64, 60, 685, 18, 25, 85, 60, 685, 18, 25, 64, 60, 685, 19, 25, 85, 60, 685, 19, 25, 64, 60, 685, 20, 25, 85, 60, 685, 20, 25, 64, 60, 685, 21, 25, 85, 60, 685, 21, 25, 64, 60, 685, 22, 25, 85, 60, 685, 22, 25, 64, 60, 685, 23, 25, 85, 60, 685, 23, 25, 64, 60, 685, 24, 25, 85, 60, 685, 24, 25, 64, 60, 1673, 265, 28, 77, 28, 940, 25, 85, 28, 16, 25, 64, 28, 16, 685, 85, 60, 685, 64, 30866, 532, 8899, 12878, 85, 30866, 532, 8899, 12878, 64, 30866, 4515, 385, 291, 12, 2617, 6, 10, 2536, 7, 72, 47762, 4458, 28015, 85, 11537, 198, 197, 197, 418, 13, 10057, 10786, 487, 43913, 705, 10, 15414, 82, 10, 6, 532, 24455, 62, 41887, 12878, 15, 25, 85, 60, 685, 15, 25, 64, 60, 685, 16, 25, 85, 60, 685, 16, 25, 64, 60, 685, 17, 25, 85, 60, 685, 17, 25, 64, 60, 685, 18, 25, 85, 60, 685, 18, 25, 64, 60, 685, 19, 25, 85, 60, 685, 19, 25, 64, 60, 685, 20, 25, 85, 60, 685, 20, 25, 64, 60, 685, 21, 25, 85, 60, 685, 21, 25, 64, 60, 685, 22, 25, 85, 60, 685, 22, 25, 64, 60, 685, 23, 25, 85, 60, 685, 23, 25, 64, 60, 685, 24, 25, 85, 60, 685, 24, 25, 64, 60, 1673, 265, 28, 77, 28, 940, 25, 85, 28, 16, 25, 64, 28, 16, 685, 85, 60, 685, 64, 30866, 532, 8899, 12878, 85, 30866, 532, 8899, 12878, 64, 30866, 4515, 385, 291, 12, 2617, 6, 10, 2536, 7, 72, 47762, 4458, 28015, 85, 11537, 198, 197, 15414, 82, 28, 7061, 198, 197, 24455, 8841, 28, 7061, 198, 197, 1640, 1312, 287, 2837, 7, 2787, 1397, 12, 16, 2599, 198, 197, 197, 15414, 82, 15853, 705, 12, 72, 503, 6, 10, 2536, 7, 28709, 9, 20, 10, 72, 47762, 4458, 28015, 85, 532, 72, 7838, 13, 28015, 85, 705, 198, 197, 197, 24455, 8841, 10, 11639, 17816, 10, 2536, 7, 72, 47762, 10354, 85, 60, 37250, 10, 2536, 7, 72, 47762, 10354, 64, 60, 705, 198, 197, 197, 24455, 8841, 10, 11639, 17816, 10, 2536, 7, 2787, 1397, 12, 16, 10, 72, 47762, 10354, 85, 60, 37250, 10, 2536, 7, 2787, 1397, 12, 16, 10, 72, 47762, 10354, 64, 60, 705, 198, 197, 2, 418, 13, 10057, 10786, 487, 43913, 705, 10, 15414, 82, 10, 6, 532, 24455, 62, 41887, 24018, 10, 24455, 8841, 10, 6, 1102, 9246, 28, 77, 11639, 10, 2536, 7, 17, 9, 7, 2787, 1397, 12, 16, 4008, 10, 10354, 85, 28, 16, 25, 64, 28, 16, 685, 85, 60, 685, 64, 30866, 532, 8899, 12878, 85, 30866, 532, 8899, 12878, 64, 30866, 4515, 385, 291, 12, 2787, 1397, 13, 28015, 85, 11537, 198, 197, 4798, 10786, 487, 43913, 705, 10, 15414, 82, 10, 6, 532, 24455, 62, 41887, 24018, 10, 24455, 8841, 10, 6, 1102, 9246, 28, 77, 11639, 10, 2536, 7, 17, 9, 7, 2787, 1397, 12, 16, 4008, 10, 10354, 85, 28, 16, 25, 64, 28, 16, 685, 85, 60, 685, 64, 30866, 532, 8899, 12878, 85, 30866, 532, 8899, 12878, 64, 30866, 4515, 385, 291, 12, 2787, 1397, 13, 28015, 85, 11537, 198, 197, 2, 1640, 1312, 287, 2837, 7, 4134, 1003, 20, 2599, 198, 197, 2, 197, 24455, 8841, 10, 11639, 17816, 10, 2536, 7, 72, 47762, 10354, 85, 60, 37250, 10, 2536, 7, 72, 47762, 10354, 64, 60, 705, 198, 197, 2, 4798, 10786, 487, 43913, 6, 10, 15414, 82, 10, 6, 532, 24455, 62, 41887, 24018, 10, 24455, 8841, 10, 6, 1102, 9246, 28, 77, 11639, 10, 2536, 7, 72, 47762, 10354, 85, 28, 16, 25, 64, 28, 16, 685, 85, 60, 685, 64, 30866, 532, 8899, 12878, 85, 30866, 532, 8899, 12878, 64, 30866, 4515, 385, 291, 13, 28015, 85, 11537, 198, 197, 2, 418, 13, 10057, 10786, 487, 43913, 6, 10, 15414, 82, 10, 6, 532, 24455, 62, 41887, 24018, 10, 24455, 8841, 10, 6, 1102, 9246, 28, 77, 11639, 10, 2536, 7, 72, 47762, 10354, 85, 28, 16, 25, 64, 28, 16, 685, 85, 60, 685, 64, 30866, 532, 8899, 12878, 85, 30866, 532, 8899, 12878, 64, 30866, 4515, 385, 291, 6, 10, 2536, 7, 22065, 47762, 4458, 28015, 85, 11537, 198, 198, 361, 16959, 62, 42937, 62, 44, 2937, 2149, 62, 29266, 855, 17821, 25, 198, 197, 28965, 3919, 28, 25120, 13, 25192, 600, 7, 15, 11, 17, 8, 198, 197, 7266, 14681, 13, 47, 9654, 10786, 487, 43913, 532, 72, 4515, 385, 291, 13, 3149, 19, 532, 5532, 62, 26268, 532, 16, 532, 72, 2647, 6, 10, 2536, 7, 28965, 3919, 47762, 4458, 3149, 18, 532, 24455, 62, 41887, 12878, 16, 25, 64, 60, 29048, 28, 15, 13, 1314, 11, 499, 324, 58, 32, 11208, 58, 15, 25, 64, 7131, 32, 60, 2382, 469, 58, 448, 30866, 532, 19509, 395, 532, 66, 25, 85, 4866, 532, 8899, 657, 25, 85, 532, 8899, 685, 448, 60, 532, 88, 19523, 13, 28015, 85, 3256, 29149, 28, 17821, 8, 198 ]
2.128051
2,499
# -*- coding: utf8 -*- """ Services """ from __future__ import absolute_import, division, print_function from .base_service import BaseService from .shot_detector_service import ShotDetectorPlotService
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 23, 532, 9, 12, 198, 198, 37811, 198, 220, 220, 220, 6168, 220, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 6738, 764, 8692, 62, 15271, 1330, 7308, 16177, 198, 6738, 764, 9442, 62, 15255, 9250, 62, 15271, 1330, 13590, 11242, 9250, 43328, 16177, 198 ]
3.230769
65
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @version: 0.1 @author: pjgao @city: Nanjing @file: __init__.py.py @time: 2018/12/10 16:22 """ __version__ = '0.1.1'
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 31, 9641, 25, 657, 13, 16, 198, 31, 9800, 25, 220, 279, 73, 4908, 78, 198, 31, 19205, 25, 18008, 49940, 198, 31, 7753, 25, 220, 220, 220, 11593, 15003, 834, 13, 9078, 13, 9078, 198, 31, 2435, 25, 220, 220, 220, 2864, 14, 1065, 14, 940, 1467, 25, 1828, 198, 37811, 198, 198, 834, 9641, 834, 796, 705, 15, 13, 16, 13, 16, 6 ]
1.912088
91
# -*- coding: utf-8 -*- from .jsonrpc import validate_jsonrpc_request from .jussi import finalize_jussi_response from .jussi import convert_to_jussi_request from .limits import check_limits from .caching import get_response from .caching import cache_response from .update_block_num import update_last_irreversible_block_num
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 764, 17752, 81, 14751, 1330, 26571, 62, 17752, 81, 14751, 62, 25927, 198, 6738, 764, 73, 1046, 72, 1330, 2457, 1096, 62, 73, 1046, 72, 62, 26209, 198, 6738, 764, 73, 1046, 72, 1330, 10385, 62, 1462, 62, 73, 1046, 72, 62, 25927, 198, 6738, 764, 49196, 1330, 2198, 62, 49196, 198, 6738, 764, 66, 8103, 1330, 651, 62, 26209, 198, 6738, 764, 66, 8103, 1330, 12940, 62, 26209, 198, 6738, 764, 19119, 62, 9967, 62, 22510, 1330, 4296, 62, 12957, 62, 343, 260, 37393, 62, 9967, 62, 22510, 628 ]
3.084906
106
# --- # jupyter: # jupytext: # cell_metadata_filter: all # notebook_metadata_filter: all,-language_info # text_representation: # extension: .py # format_name: percent # format_version: '1.2' # jupytext_version: 1.2.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # toc: # base_numbering: 1 # nav_menu: {} # number_sections: true # sideBar: true # skip_h1_title: false # title_cell: Table of Contents # title_sidebar: Contents # toc_cell: true # toc_position: {} # toc_section_display: true # toc_window_display: true # --- # %% [markdown] {"toc": true} # <h1>Table of Contents<span class="tocSkip"></span></h1> # <div class="toc"><ul class="toc-item"><li><span><a href="#Introduction" data-toc-modified-id="Introduction-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Introduction</a></span><ul class="toc-item"><li><span><a href="#Introduction-to-Python-and-its-use-in-science" data-toc-modified-id="Introduction-to-Python-and-its-use-in-science-1.1"><span class="toc-item-num">1.1&nbsp;&nbsp;</span>Introduction to Python and its use in science</a></span></li></ul></li></ul></div> # %% [markdown] # Introduction # ============ # # latex # # Introduction to Python and its use in science # --------------------------------------------- # # This manual is meant to serve as an introduction to the Python # programming language and its use for scientific computing. It's ok if # you have never programmed a computer before. This manual will teach you # how to do it from the ground up. # # The Python programming language is useful for all kinds of scientific # and engineering tasks. You can use it to analyze and plot data. You can # also use it to numerically solve science and engineering problems that # are difficult or even impossible to solve analytically. # # While we want to marshall Python's powers to address scientific # problems, you should know that Python is a general purpose computer # language that is widely used to address all kinds of computing tasks, # from web applications to processing financial data on Wall Street and # various scripting tasks for computer system management. Over the past # decade it has been increasingly used by scientists and engineers for # numerical computations, graphics, and as a "wrapper" for numerical # software originally written in other languages, like Fortran and C. # # Python is similar to Matlab and IDL, two other computer languages that # are frequently used in science and engineering applications. Like Matlab # and IDL, Python is an *interpreted* language, meaning you can run your # code without having to go through an extra step of compiling, as # required for the C and Fortran programming languages. It is also a # *dynamically typed* language, meaning you don't have to declare # variables and set aside memory before using them. Don't worry if you # don't know exactly what these terms mean. Their primary significance for # you is that you can write Python code, test, and use it quickly with a # minimum of fuss. # # One advantage of Python over similar languages like Matlab and IDL is # that it is free. It can be downloaded from the web and is available on # all the standard computer platforms, including Windows, MacOS, and # Linux. This also means that you can use Python without being tethered to # the internet, as required for commercial software that is tied to a # remote license server. # # Another advantage is Python's clean and simple syntax, including its # implementation of *object oriented* programming (which we do not # emphasize in this introduction). # # An important disadvantage is that Python programs can be slower than # compiled languages like C. For large scale simulations and other # demanding applications, there can be a considerable speed penalty in # using Python. In these cases, C, C++, or Fortran is recommended, # although intelligent use of Python's array processing tools contained in # the NumPy module can greatly speed up Python code. Another disadvantage # is that compared to Matlab and IDL, Python is less well documented. This # stems from the fact that it is public *open source* software and thus is # dependent on volunteers from the community of developers and users for # documentation. The documentation is freely available on the web but is # scattered among a number of different sites and can be terse. This # manual will acquaint you with the most commonly-used web sites. Search # engines like Google can help you find others. # # You are not assumed to have had any previous programming experience. # However, the purpose of this manual isn't to teach you the principles of # computer programming; it's to provide a practical guide to getting # started with Python for scientific computing. Perhaps once you see some # of the powerful tasks that you can accomplish with Python, you will be # inspired to study computational science and engineering, as well as # computer programming, in greater depth.
[ 2, 11420, 198, 2, 474, 929, 88, 353, 25, 198, 2, 220, 220, 474, 929, 88, 5239, 25, 198, 2, 220, 220, 220, 220, 2685, 62, 38993, 62, 24455, 25, 477, 198, 2, 220, 220, 220, 220, 20922, 62, 38993, 62, 24455, 25, 477, 12095, 16129, 62, 10951, 198, 2, 220, 220, 220, 220, 2420, 62, 15603, 341, 25, 198, 2, 220, 220, 220, 220, 220, 220, 7552, 25, 764, 9078, 198, 2, 220, 220, 220, 220, 220, 220, 5794, 62, 3672, 25, 1411, 198, 2, 220, 220, 220, 220, 220, 220, 5794, 62, 9641, 25, 705, 16, 13, 17, 6, 198, 2, 220, 220, 220, 220, 220, 220, 474, 929, 88, 5239, 62, 9641, 25, 352, 13, 17, 13, 16, 198, 2, 220, 220, 50207, 43106, 25, 198, 2, 220, 220, 220, 220, 3359, 62, 3672, 25, 11361, 513, 198, 2, 220, 220, 220, 220, 3303, 25, 21015, 198, 2, 220, 220, 220, 220, 1438, 25, 21015, 18, 198, 2, 220, 220, 284, 66, 25, 198, 2, 220, 220, 220, 220, 2779, 62, 17618, 278, 25, 352, 198, 2, 220, 220, 220, 220, 6812, 62, 26272, 25, 23884, 198, 2, 220, 220, 220, 220, 1271, 62, 23946, 25, 2081, 198, 2, 220, 220, 220, 220, 1735, 10374, 25, 2081, 198, 2, 220, 220, 220, 220, 14267, 62, 71, 16, 62, 7839, 25, 3991, 198, 2, 220, 220, 220, 220, 3670, 62, 3846, 25, 8655, 286, 26714, 198, 2, 220, 220, 220, 220, 3670, 62, 1589, 5657, 25, 26714, 198, 2, 220, 220, 220, 220, 284, 66, 62, 3846, 25, 2081, 198, 2, 220, 220, 220, 220, 284, 66, 62, 9150, 25, 23884, 198, 2, 220, 220, 220, 220, 284, 66, 62, 5458, 62, 13812, 25, 2081, 198, 2, 220, 220, 220, 220, 284, 66, 62, 17497, 62, 13812, 25, 2081, 198, 2, 11420, 198, 198, 2, 43313, 685, 4102, 2902, 60, 19779, 40301, 1298, 2081, 92, 198, 2, 1279, 71, 16, 29, 10962, 286, 26714, 27, 12626, 1398, 2625, 40301, 50232, 23984, 12626, 12240, 71, 16, 29, 198, 2, 1279, 7146, 1398, 2625, 40301, 22039, 377, 1398, 2625, 40301, 12, 9186, 22039, 4528, 6927, 12626, 6927, 64, 13291, 25698, 21906, 1, 1366, 12, 40301, 12, 41771, 12, 312, 2625, 21906, 12, 16, 22039, 12626, 1398, 2625, 40301, 12, 9186, 12, 22510, 5320, 16, 5, 77, 24145, 26, 5, 77, 24145, 26, 3556, 12626, 29, 21906, 3556, 64, 12240, 12626, 6927, 377, 1398, 2625, 40301, 12, 9186, 22039, 4528, 6927, 12626, 6927, 64, 13291, 25698, 21906, 12, 1462, 12, 37906, 12, 392, 12, 896, 12, 1904, 12, 259, 12, 16801, 1, 1366, 12, 40301, 12, 41771, 12, 312, 2625, 21906, 12, 1462, 12, 37906, 12, 392, 12, 896, 12, 1904, 12, 259, 12, 16801, 12, 16, 13, 16, 22039, 12626, 1398, 2625, 40301, 12, 9186, 12, 22510, 5320, 16, 13, 16, 5, 77, 24145, 26, 5, 77, 24145, 26, 3556, 12626, 29, 21906, 284, 11361, 290, 663, 779, 287, 3783, 3556, 64, 12240, 12626, 12240, 4528, 12240, 377, 12240, 4528, 12240, 377, 12240, 7146, 29, 198, 198, 2, 43313, 685, 4102, 2902, 60, 198, 2, 22395, 198, 2, 796, 2559, 18604, 198, 2, 198, 2, 47038, 198, 2, 198, 2, 22395, 284, 11361, 290, 663, 779, 287, 3783, 198, 2, 20368, 32501, 198, 2, 198, 2, 770, 10107, 318, 4001, 284, 4691, 355, 281, 9793, 284, 262, 11361, 198, 2, 8300, 3303, 290, 663, 779, 329, 5654, 14492, 13, 632, 338, 12876, 611, 198, 2, 345, 423, 1239, 27402, 257, 3644, 878, 13, 770, 10107, 481, 4545, 345, 198, 2, 703, 284, 466, 340, 422, 262, 2323, 510, 13, 198, 2, 198, 2, 383, 11361, 8300, 3303, 318, 4465, 329, 477, 6982, 286, 5654, 198, 2, 290, 8705, 8861, 13, 921, 460, 779, 340, 284, 16602, 290, 7110, 1366, 13, 921, 460, 198, 2, 635, 779, 340, 284, 5470, 1146, 8494, 3783, 290, 8705, 2761, 326, 198, 2, 389, 2408, 393, 772, 5340, 284, 8494, 4284, 83, 1146, 13, 198, 2, 198, 2, 2893, 356, 765, 284, 22397, 439, 11361, 338, 5635, 284, 2209, 5654, 198, 2, 2761, 11, 345, 815, 760, 326, 11361, 318, 257, 2276, 4007, 3644, 198, 2, 3303, 326, 318, 6768, 973, 284, 2209, 477, 6982, 286, 14492, 8861, 11, 198, 2, 422, 3992, 5479, 284, 7587, 3176, 1366, 319, 5007, 3530, 290, 198, 2, 2972, 36883, 8861, 329, 3644, 1080, 4542, 13, 3827, 262, 1613, 198, 2, 5707, 340, 468, 587, 6481, 973, 416, 5519, 290, 12037, 329, 198, 2, 29052, 2653, 602, 11, 9382, 11, 290, 355, 257, 366, 48553, 1, 329, 29052, 198, 2, 3788, 6198, 3194, 287, 584, 8950, 11, 588, 6401, 2596, 290, 327, 13, 198, 2, 198, 2, 11361, 318, 2092, 284, 6550, 23912, 290, 4522, 43, 11, 734, 584, 3644, 8950, 326, 198, 2, 389, 6777, 973, 287, 3783, 290, 8705, 5479, 13, 4525, 6550, 23912, 198, 2, 290, 4522, 43, 11, 11361, 318, 281, 1635, 27381, 276, 9, 3303, 11, 3616, 345, 460, 1057, 534, 198, 2, 2438, 1231, 1719, 284, 467, 832, 281, 3131, 2239, 286, 33393, 11, 355, 198, 2, 2672, 329, 262, 327, 290, 6401, 2596, 8300, 8950, 13, 632, 318, 635, 257, 198, 2, 1635, 67, 4989, 1146, 25683, 9, 3303, 11, 3616, 345, 836, 470, 423, 284, 13627, 198, 2, 9633, 290, 900, 7263, 4088, 878, 1262, 606, 13, 2094, 470, 5490, 611, 345, 198, 2, 836, 470, 760, 3446, 644, 777, 2846, 1612, 13, 5334, 4165, 12085, 329, 198, 2, 345, 318, 326, 345, 460, 3551, 11361, 2438, 11, 1332, 11, 290, 779, 340, 2952, 351, 257, 198, 2, 5288, 286, 34297, 13, 198, 2, 198, 2, 1881, 4621, 286, 11361, 625, 2092, 8950, 588, 6550, 23912, 290, 4522, 43, 318, 198, 2, 326, 340, 318, 1479, 13, 632, 460, 307, 15680, 422, 262, 3992, 290, 318, 1695, 319, 198, 2, 477, 262, 3210, 3644, 9554, 11, 1390, 3964, 11, 4100, 2640, 11, 290, 198, 2, 7020, 13, 770, 635, 1724, 326, 345, 460, 779, 11361, 1231, 852, 28408, 6083, 284, 198, 2, 262, 5230, 11, 355, 2672, 329, 5068, 3788, 326, 318, 8165, 284, 257, 198, 2, 6569, 5964, 4382, 13, 198, 2, 198, 2, 6023, 4621, 318, 11361, 338, 3424, 290, 2829, 15582, 11, 1390, 663, 198, 2, 7822, 286, 1635, 15252, 25921, 9, 8300, 357, 4758, 356, 466, 407, 198, 2, 21322, 287, 428, 9793, 737, 198, 2, 198, 2, 1052, 1593, 21407, 318, 326, 11361, 4056, 460, 307, 13611, 621, 198, 2, 14102, 8950, 588, 327, 13, 1114, 1588, 5046, 27785, 290, 584, 198, 2, 11334, 5479, 11, 612, 460, 307, 257, 11091, 2866, 7389, 287, 198, 2, 1262, 11361, 13, 554, 777, 2663, 11, 327, 11, 327, 4880, 11, 393, 6401, 2596, 318, 7151, 11, 198, 2, 3584, 12661, 779, 286, 11361, 338, 7177, 7587, 4899, 7763, 287, 198, 2, 262, 31835, 20519, 8265, 460, 9257, 2866, 510, 11361, 2438, 13, 6023, 21407, 198, 2, 318, 326, 3688, 284, 6550, 23912, 290, 4522, 43, 11, 11361, 318, 1342, 880, 12395, 13, 770, 198, 2, 21552, 422, 262, 1109, 326, 340, 318, 1171, 1635, 9654, 2723, 9, 3788, 290, 4145, 318, 198, 2, 10795, 319, 11661, 422, 262, 2055, 286, 6505, 290, 2985, 329, 198, 2, 10314, 13, 383, 10314, 318, 12748, 1695, 319, 262, 3992, 475, 318, 198, 2, 16830, 1871, 257, 1271, 286, 1180, 5043, 290, 460, 307, 1059, 325, 13, 770, 198, 2, 10107, 481, 24852, 345, 351, 262, 749, 8811, 12, 1484, 3992, 5043, 13, 11140, 198, 2, 11874, 588, 3012, 460, 1037, 345, 1064, 1854, 13, 198, 2, 198, 2, 921, 389, 407, 9672, 284, 423, 550, 597, 2180, 8300, 1998, 13, 198, 2, 2102, 11, 262, 4007, 286, 428, 10107, 2125, 470, 284, 4545, 345, 262, 7811, 286, 198, 2, 3644, 8300, 26, 340, 338, 284, 2148, 257, 8472, 5698, 284, 1972, 198, 2, 2067, 351, 11361, 329, 5654, 14492, 13, 8673, 1752, 345, 766, 617, 198, 2, 286, 262, 3665, 8861, 326, 345, 460, 9989, 351, 11361, 11, 345, 481, 307, 198, 2, 7867, 284, 2050, 31350, 3783, 290, 8705, 11, 355, 880, 355, 198, 2, 3644, 8300, 11, 287, 3744, 6795, 13, 198 ]
3.748707
1,353
#!/usr/bin/env python import glob import os import sys from bokeh.io import output_file from bokeh.models import SingleIntervalTicker from bokeh.plotting import figure, show if __name__ == '__main__': if len(sys.argv) < 4: print(f'USAGE: {sys.argv[0]} <owner> <project> <stack> <run> [label ...]') else: plot_run(owner=sys.argv[1], project=sys.argv[2], stack=sys.argv[3], run=sys.argv[4], solve_labels=[] if len(sys.argv) == 4 else sys.argv[5:])
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 15095, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 1489, 365, 71, 13, 952, 1330, 5072, 62, 7753, 198, 6738, 1489, 365, 71, 13, 27530, 1330, 14206, 9492, 2100, 51, 15799, 198, 6738, 1489, 365, 71, 13, 29487, 889, 1330, 3785, 11, 905, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1279, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 2937, 11879, 25, 1391, 17597, 13, 853, 85, 58, 15, 48999, 1279, 18403, 29, 1279, 16302, 29, 1279, 25558, 29, 1279, 5143, 29, 685, 18242, 2644, 60, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 5143, 7, 18403, 28, 17597, 13, 853, 85, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1628, 28, 17597, 13, 853, 85, 58, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8931, 28, 17597, 13, 853, 85, 58, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 28, 17597, 13, 853, 85, 58, 19, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8494, 62, 23912, 1424, 28, 21737, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 604, 2073, 25064, 13, 853, 85, 58, 20, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
1.971631
282
CAMERA_MODEL_OPENCV_PINHOLE: str = "opencv_pinhole" CAMERA_MODEL_OPENCV_FISHEYE: str = "opencv_fisheye" CAMERA_MODEL_PD_FISHEYE: str = "pd_fisheye"
[ 34, 2390, 46461, 62, 33365, 3698, 62, 3185, 24181, 53, 62, 44032, 32298, 2538, 25, 965, 796, 366, 9654, 33967, 62, 11635, 13207, 1, 198, 34, 2390, 46461, 62, 33365, 3698, 62, 3185, 24181, 53, 62, 37, 1797, 13909, 48743, 25, 965, 796, 366, 9654, 33967, 62, 69, 271, 258, 5948, 1, 198, 34, 2390, 46461, 62, 33365, 3698, 62, 5760, 62, 37, 1797, 13909, 48743, 25, 965, 796, 366, 30094, 62, 69, 271, 258, 5948, 1, 198 ]
1.897436
78
import unittest from collections import Counter import flask import json from panoptes_aggregation.reducers.question_reducer import process_data, question_reducer from panoptes_aggregation.reducers.test_utils import extract_in_data extracted_data = [ {'a': 1, 'b': 1}, {'a': 1}, {'b': 1, 'c': 1}, {'b': 1, 'a': 1} ] processed_data = [ Counter({'a': 1, 'b': 1}), Counter({'a': 1}), Counter({'b': 1, 'c': 1}), Counter({'b': 1, 'a': 1}) ] processed_data_pairs = [ Counter({'a+b': 1}), Counter({'a': 1}), Counter({'b+c': 1}), Counter({'a+b': 1}) ] reduced_data = { 'a': 3, 'b': 3, 'c': 1 } reduced_data_pairs = { 'a+b': 2, 'a': 1, 'b+c': 1 } if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 17268, 1330, 15034, 198, 11748, 42903, 198, 11748, 33918, 198, 6738, 3425, 404, 4879, 62, 9460, 43068, 13, 445, 1229, 364, 13, 25652, 62, 445, 48915, 1330, 1429, 62, 7890, 11, 1808, 62, 445, 48915, 198, 6738, 3425, 404, 4879, 62, 9460, 43068, 13, 445, 1229, 364, 13, 9288, 62, 26791, 1330, 7925, 62, 259, 62, 7890, 198, 198, 2302, 20216, 62, 7890, 796, 685, 198, 220, 220, 220, 1391, 6, 64, 10354, 352, 11, 705, 65, 10354, 352, 5512, 198, 220, 220, 220, 1391, 6, 64, 10354, 352, 5512, 198, 220, 220, 220, 1391, 6, 65, 10354, 352, 11, 705, 66, 10354, 352, 5512, 198, 220, 220, 220, 1391, 6, 65, 10354, 352, 11, 705, 64, 10354, 352, 92, 198, 60, 198, 198, 14681, 276, 62, 7890, 796, 685, 198, 220, 220, 220, 15034, 15090, 6, 64, 10354, 352, 11, 705, 65, 10354, 352, 92, 828, 198, 220, 220, 220, 15034, 15090, 6, 64, 10354, 352, 92, 828, 198, 220, 220, 220, 15034, 15090, 6, 65, 10354, 352, 11, 705, 66, 10354, 352, 92, 828, 198, 220, 220, 220, 15034, 15090, 6, 65, 10354, 352, 11, 705, 64, 10354, 352, 30072, 198, 60, 198, 198, 14681, 276, 62, 7890, 62, 79, 3468, 796, 685, 198, 220, 220, 220, 15034, 15090, 6, 64, 10, 65, 10354, 352, 92, 828, 198, 220, 220, 220, 15034, 15090, 6, 64, 10354, 352, 92, 828, 198, 220, 220, 220, 15034, 15090, 6, 65, 10, 66, 10354, 352, 92, 828, 198, 220, 220, 220, 15034, 15090, 6, 64, 10, 65, 10354, 352, 30072, 198, 60, 198, 198, 445, 19513, 62, 7890, 796, 1391, 198, 220, 220, 220, 705, 64, 10354, 513, 11, 198, 220, 220, 220, 705, 65, 10354, 513, 11, 198, 220, 220, 220, 705, 66, 10354, 352, 198, 92, 198, 198, 445, 19513, 62, 7890, 62, 79, 3468, 796, 1391, 198, 220, 220, 220, 705, 64, 10, 65, 10354, 362, 11, 198, 220, 220, 220, 705, 64, 10354, 352, 11, 198, 220, 220, 220, 705, 65, 10, 66, 10354, 352, 198, 92, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.073171
369
# 3. Принтер дат. Напишите программу, которая считывает от пользователя # строковое значение, содержащее дату в формате дд/мм/гггг. Она должна # напечатать дату в формате 12 марта 2018 г. main()
[ 2, 513, 13, 12466, 253, 21169, 18849, 22177, 20375, 16843, 21169, 12466, 112, 16142, 20375, 13, 12466, 251, 16142, 140, 123, 18849, 141, 230, 18849, 20375, 16843, 12466, 123, 21169, 25443, 111, 21169, 16142, 43108, 43108, 35072, 11, 12466, 118, 15166, 20375, 15166, 21169, 16142, 40623, 220, 21727, 141, 229, 18849, 20375, 45035, 38857, 16142, 16843, 20375, 12466, 122, 20375, 12466, 123, 25443, 119, 45367, 140, 115, 25443, 110, 16142, 20375, 16843, 30143, 40623, 198, 2, 220, 21727, 20375, 21169, 25443, 118, 25443, 110, 15166, 16843, 12466, 115, 22177, 16142, 141, 229, 16843, 22177, 18849, 16843, 11, 220, 21727, 25443, 112, 16843, 21169, 140, 114, 16142, 141, 231, 16843, 16843, 12466, 112, 16142, 20375, 35072, 12466, 110, 220, 141, 226, 15166, 21169, 43108, 16142, 20375, 16843, 12466, 112, 43666, 14, 43108, 43108, 14, 140, 111, 140, 111, 140, 111, 140, 111, 13, 12466, 252, 22177, 16142, 12466, 112, 25443, 119, 140, 114, 22177, 16142, 198, 2, 12466, 121, 16142, 140, 123, 16843, 141, 229, 16142, 20375, 16142, 20375, 45367, 12466, 112, 16142, 20375, 35072, 12466, 110, 220, 141, 226, 15166, 21169, 43108, 16142, 20375, 16843, 1105, 12466, 120, 16142, 21169, 20375, 16142, 2864, 12466, 111, 13, 628, 628, 198, 12417, 3419, 198 ]
0.985149
202
# Port from https://github.com/zuzak/owo """MIT License Original substitutions: Copyright (c) 2018 Eva (Nepeta) JavaScript library: Copyright (c) 2019 Douglas Gardner <[email protected]> Python library: Copyright (c) 2019 tekofu Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import random owoPrefix = [ '<3 ', 'H-hewwo?? ', 'HIIII! ', 'Haiiii! ', 'Huohhhh. ', 'OWO ', 'OwO ', 'UwU ' ] owoSuffix = [ ' :3', ' UwU', ' ʕʘ‿ʘʔ', ' >_>', ' ^_^', '..', ' Huoh.', ' ^-^', ' ;_;', ' ;-;', ' xD', ' x3', ' :D', ' :P', ' ;3', ' XDDD', ', fwendo', ' ㅇㅅㅇ', ' (人◕ω◕)', '(^v^)', ' Sigh.', ' x3', ' ._.', ' (• o •)', ' >_<' ] owoDict = { 'r': 'w', 'l': 'w', 'R': 'W', 'L': 'W', 'no': 'nu', 'has': 'haz', 'have': 'haz', 'you': 'uu', 'the ': 'da ', 'The ': 'Da ' }
[ 2, 4347, 422, 3740, 1378, 12567, 13, 785, 14, 89, 10277, 461, 14, 322, 78, 198, 198, 37811, 36393, 13789, 198, 198, 20556, 21436, 3508, 25, 15069, 357, 66, 8, 2864, 32355, 357, 45, 538, 17167, 8, 198, 29584, 7391, 5888, 25, 220, 220, 220, 220, 15069, 357, 66, 8, 13130, 15796, 27911, 1279, 67, 280, 14391, 31, 354, 41214, 13, 354, 29, 198, 37906, 5888, 25, 220, 220, 220, 220, 220, 220, 220, 220, 15069, 357, 66, 8, 13130, 573, 74, 1659, 84, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 22163, 444, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 15821, 37485, 13, 198, 198, 37811, 198, 198, 11748, 4738, 198, 198, 322, 78, 36698, 844, 796, 685, 198, 220, 220, 220, 705, 27, 18, 46083, 198, 220, 220, 220, 705, 39, 12, 258, 1383, 78, 3548, 46083, 198, 220, 220, 220, 705, 39, 3978, 3978, 0, 46083, 198, 220, 220, 220, 705, 39, 1872, 15479, 0, 46083, 198, 220, 220, 220, 705, 38202, 1219, 49126, 13, 46083, 198, 220, 220, 220, 705, 3913, 46, 46083, 198, 220, 220, 220, 705, 46, 86, 46, 46083, 198, 220, 220, 220, 705, 52, 86, 52, 705, 198, 60, 198, 198, 322, 34049, 1648, 844, 796, 685, 198, 220, 220, 220, 705, 1058, 18, 3256, 198, 220, 220, 220, 705, 471, 86, 52, 3256, 198, 220, 220, 220, 705, 220, 134, 243, 134, 246, 447, 123, 134, 246, 134, 242, 3256, 198, 220, 220, 220, 705, 1875, 49029, 3256, 198, 220, 220, 220, 705, 10563, 62, 61, 3256, 198, 220, 220, 220, 705, 492, 3256, 198, 220, 220, 220, 705, 11256, 1219, 2637, 11, 198, 220, 220, 220, 705, 10563, 12, 61, 3256, 198, 220, 220, 220, 705, 2162, 62, 26, 3256, 198, 220, 220, 220, 705, 2162, 12, 26, 3256, 198, 220, 220, 220, 705, 2124, 35, 3256, 198, 220, 220, 220, 705, 2124, 18, 3256, 198, 220, 220, 220, 705, 1058, 35, 3256, 198, 220, 220, 220, 705, 1058, 47, 3256, 198, 220, 220, 220, 705, 2162, 18, 3256, 198, 220, 220, 220, 705, 1395, 16458, 35, 3256, 198, 220, 220, 220, 46083, 277, 86, 31110, 3256, 198, 220, 220, 220, 705, 220, 159, 227, 229, 159, 227, 227, 159, 227, 229, 3256, 198, 220, 220, 220, 705, 357, 21689, 15926, 243, 49535, 15926, 243, 8, 3256, 198, 220, 220, 220, 705, 171, 120, 230, 171, 120, 122, 171, 121, 244, 171, 120, 122, 171, 120, 231, 3256, 198, 220, 220, 220, 705, 311, 394, 2637, 11, 198, 220, 220, 220, 705, 2124, 18, 3256, 198, 220, 220, 220, 705, 47540, 2637, 11, 198, 220, 220, 220, 705, 357, 3581, 267, 5595, 8, 3256, 198, 220, 220, 220, 705, 1875, 62, 27, 6, 198, 60, 198, 198, 322, 78, 35, 713, 796, 1391, 198, 220, 220, 220, 705, 81, 10354, 705, 86, 3256, 198, 220, 220, 220, 705, 75, 10354, 705, 86, 3256, 198, 220, 220, 220, 705, 49, 10354, 705, 54, 3256, 198, 220, 220, 220, 705, 43, 10354, 705, 54, 3256, 198, 220, 220, 220, 705, 3919, 10354, 705, 28803, 3256, 198, 220, 220, 220, 705, 10134, 10354, 705, 71, 1031, 3256, 198, 220, 220, 220, 705, 14150, 10354, 705, 71, 1031, 3256, 198, 220, 220, 220, 705, 5832, 10354, 705, 12303, 3256, 198, 220, 220, 220, 705, 1169, 705, 25, 705, 6814, 46083, 198, 220, 220, 220, 705, 464, 705, 25, 705, 26531, 705, 198, 92, 628 ]
2.368681
811
import json import urllib.parse from .lib.gethttp import getHttpPage
[ 11748, 33918, 198, 11748, 2956, 297, 571, 13, 29572, 198, 6738, 764, 8019, 13, 1136, 4023, 1330, 651, 43481, 9876 ]
3.4
20
import unittest import vdebug.dbgp import xml.etree.ElementTree as ET
[ 11748, 555, 715, 395, 198, 11748, 410, 24442, 13, 9945, 31197, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198 ]
3.043478
23
# coding: utf-8 # Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from .item import Item from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class LimitItem(Item): """ Details of Limit Item """ #: A constant which can be used with the limit_status property of a LimitItem. #: This constant has a value of "APPROVED" LIMIT_STATUS_APPROVED = "APPROVED" #: A constant which can be used with the limit_status property of a LimitItem. #: This constant has a value of "PARTIALLY_APPROVED" LIMIT_STATUS_PARTIALLY_APPROVED = "PARTIALLY_APPROVED" #: A constant which can be used with the limit_status property of a LimitItem. #: This constant has a value of "NOT_APPROVED" LIMIT_STATUS_NOT_APPROVED = "NOT_APPROVED" def __init__(self, **kwargs): """ Initializes a new LimitItem object with values from keyword arguments. The default value of the :py:attr:`~oci.cims.models.LimitItem.type` attribute of this class is ``limit`` and it should not be changed. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param item_key: The value to assign to the item_key property of this LimitItem. :type item_key: str :param name: The value to assign to the name property of this LimitItem. :type name: str :param type: The value to assign to the type property of this LimitItem. :type type: str :param category: The value to assign to the category property of this LimitItem. :type category: Category :param sub_category: The value to assign to the sub_category property of this LimitItem. :type sub_category: SubCategory :param issue_type: The value to assign to the issue_type property of this LimitItem. :type issue_type: IssueType :param current_limit: The value to assign to the current_limit property of this LimitItem. :type current_limit: int :param current_usage: The value to assign to the current_usage property of this LimitItem. :type current_usage: int :param requested_limit: The value to assign to the requested_limit property of this LimitItem. :type requested_limit: int :param limit_status: The value to assign to the limit_status property of this LimitItem. Allowed values for this property are: "APPROVED", "PARTIALLY_APPROVED", "NOT_APPROVED", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type limit_status: str """ self.swagger_types = { 'item_key': 'str', 'name': 'str', 'type': 'str', 'category': 'Category', 'sub_category': 'SubCategory', 'issue_type': 'IssueType', 'current_limit': 'int', 'current_usage': 'int', 'requested_limit': 'int', 'limit_status': 'str' } self.attribute_map = { 'item_key': 'itemKey', 'name': 'name', 'type': 'type', 'category': 'category', 'sub_category': 'subCategory', 'issue_type': 'issueType', 'current_limit': 'currentLimit', 'current_usage': 'currentUsage', 'requested_limit': 'requestedLimit', 'limit_status': 'limitStatus' } self._item_key = None self._name = None self._type = None self._category = None self._sub_category = None self._issue_type = None self._current_limit = None self._current_usage = None self._requested_limit = None self._limit_status = None self._type = 'limit' @property def current_limit(self): """ Gets the current_limit of this LimitItem. Current available limit of the resource :return: The current_limit of this LimitItem. :rtype: int """ return self._current_limit @current_limit.setter def current_limit(self, current_limit): """ Sets the current_limit of this LimitItem. Current available limit of the resource :param current_limit: The current_limit of this LimitItem. :type: int """ self._current_limit = current_limit @property def current_usage(self): """ Gets the current_usage of this LimitItem. Current used limit of the resource :return: The current_usage of this LimitItem. :rtype: int """ return self._current_usage @current_usage.setter def current_usage(self, current_usage): """ Sets the current_usage of this LimitItem. Current used limit of the resource :param current_usage: The current_usage of this LimitItem. :type: int """ self._current_usage = current_usage @property def requested_limit(self): """ Gets the requested_limit of this LimitItem. Requested limit for the resource :return: The requested_limit of this LimitItem. :rtype: int """ return self._requested_limit @requested_limit.setter def requested_limit(self, requested_limit): """ Sets the requested_limit of this LimitItem. Requested limit for the resource :param requested_limit: The requested_limit of this LimitItem. :type: int """ self._requested_limit = requested_limit @property def limit_status(self): """ Gets the limit_status of this LimitItem. Status of the Limit Allowed values for this property are: "APPROVED", "PARTIALLY_APPROVED", "NOT_APPROVED", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The limit_status of this LimitItem. :rtype: str """ return self._limit_status @limit_status.setter def limit_status(self, limit_status): """ Sets the limit_status of this LimitItem. Status of the Limit :param limit_status: The limit_status of this LimitItem. :type: str """ allowed_values = ["APPROVED", "PARTIALLY_APPROVED", "NOT_APPROVED"] if not value_allowed_none_or_none_sentinel(limit_status, allowed_values): limit_status = 'UNKNOWN_ENUM_VALUE' self._limit_status = limit_status
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 15069, 357, 66, 8, 1584, 11, 12131, 11, 18650, 290, 14, 273, 663, 29116, 13, 220, 1439, 2489, 10395, 13, 198, 2, 770, 3788, 318, 10668, 12, 36612, 284, 345, 739, 262, 14499, 2448, 33532, 13789, 357, 52, 6489, 8, 352, 13, 15, 355, 3402, 379, 3740, 1378, 793, 13, 273, 6008, 13, 785, 14, 677, 4541, 14, 84, 489, 393, 24843, 13789, 362, 13, 15, 355, 3402, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 921, 743, 3853, 2035, 5964, 13, 198, 198, 6738, 764, 9186, 1330, 9097, 198, 6738, 267, 979, 13, 22602, 1330, 39559, 62, 38568, 62, 11600, 11, 399, 11651, 62, 50, 3525, 1268, 3698, 11, 1988, 62, 40845, 62, 23108, 62, 273, 62, 23108, 62, 34086, 20538, 220, 1303, 645, 20402, 25, 376, 21844, 198, 6738, 267, 979, 13, 12501, 273, 2024, 1330, 2315, 62, 19849, 62, 5219, 62, 6738, 62, 46265, 22046, 628, 198, 31, 15003, 62, 19849, 62, 5219, 62, 6738, 62, 46265, 22046, 198, 4871, 27272, 7449, 7, 7449, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14890, 286, 27272, 9097, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 25, 317, 6937, 543, 460, 307, 973, 351, 262, 4179, 62, 13376, 3119, 286, 257, 27272, 7449, 13, 198, 220, 220, 220, 1303, 25, 770, 6937, 468, 257, 1988, 286, 366, 2969, 41283, 1961, 1, 198, 220, 220, 220, 27564, 2043, 62, 35744, 2937, 62, 2969, 41283, 1961, 796, 366, 2969, 41283, 1961, 1, 628, 220, 220, 220, 1303, 25, 317, 6937, 543, 460, 307, 973, 351, 262, 4179, 62, 13376, 3119, 286, 257, 27272, 7449, 13, 198, 220, 220, 220, 1303, 25, 770, 6937, 468, 257, 1988, 286, 366, 30709, 40, 19807, 62, 2969, 41283, 1961, 1, 198, 220, 220, 220, 27564, 2043, 62, 35744, 2937, 62, 30709, 40, 19807, 62, 2969, 41283, 1961, 796, 366, 30709, 40, 19807, 62, 2969, 41283, 1961, 1, 628, 220, 220, 220, 1303, 25, 317, 6937, 543, 460, 307, 973, 351, 262, 4179, 62, 13376, 3119, 286, 257, 27272, 7449, 13, 198, 220, 220, 220, 1303, 25, 770, 6937, 468, 257, 1988, 286, 366, 11929, 62, 2969, 41283, 1961, 1, 198, 220, 220, 220, 27564, 2043, 62, 35744, 2937, 62, 11929, 62, 2969, 41283, 1961, 796, 366, 11929, 62, 2969, 41283, 1961, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 4340, 257, 649, 27272, 7449, 2134, 351, 3815, 422, 21179, 7159, 13, 383, 4277, 1988, 286, 262, 1058, 9078, 25, 35226, 25, 63, 93, 1733, 13, 66, 12078, 13, 27530, 13, 39184, 7449, 13, 4906, 63, 11688, 198, 220, 220, 220, 220, 220, 220, 220, 286, 428, 1398, 318, 7559, 32374, 15506, 290, 340, 815, 407, 307, 3421, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1708, 21179, 7159, 389, 4855, 357, 10215, 5546, 278, 284, 262, 651, 1010, 14, 2617, 1010, 286, 428, 1398, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2378, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 2378, 62, 2539, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2378, 62, 2539, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 1438, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1438, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2099, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 2099, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2099, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 6536, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 6536, 25, 21743, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 850, 62, 22872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 850, 62, 22872, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 850, 62, 22872, 25, 3834, 27313, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2071, 62, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 2071, 62, 4906, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2071, 62, 4906, 25, 18232, 6030, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1459, 62, 32374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 1459, 62, 32374, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1459, 62, 32374, 25, 493, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1459, 62, 26060, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 1459, 62, 26060, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1459, 62, 26060, 25, 493, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9167, 62, 32374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 9167, 62, 32374, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 9167, 62, 32374, 25, 493, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4179, 62, 13376, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 4179, 62, 13376, 3119, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1439, 6972, 3815, 329, 428, 3119, 389, 25, 366, 2969, 41283, 1961, 1600, 366, 30709, 40, 19807, 62, 2969, 41283, 1961, 1600, 366, 11929, 62, 2969, 41283, 1961, 1600, 705, 4944, 44706, 62, 1677, 5883, 62, 39488, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4377, 43483, 1143, 3815, 4504, 416, 257, 2139, 481, 307, 27661, 284, 705, 4944, 44706, 62, 1677, 5883, 62, 39488, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4179, 62, 13376, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2032, 7928, 62, 19199, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9186, 62, 2539, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22872, 10354, 705, 27313, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 62, 22872, 10354, 705, 7004, 27313, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21949, 62, 4906, 10354, 705, 45147, 6030, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 32374, 10354, 705, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 26060, 10354, 705, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25927, 276, 62, 32374, 10354, 705, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32374, 62, 13376, 10354, 705, 2536, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42348, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9186, 62, 2539, 10354, 705, 9186, 9218, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 4906, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22872, 10354, 705, 22872, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 62, 22872, 10354, 705, 7266, 27313, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21949, 62, 4906, 10354, 705, 21949, 6030, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 32374, 10354, 705, 14421, 39184, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 26060, 10354, 705, 14421, 28350, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25927, 276, 62, 32374, 10354, 705, 25927, 276, 39184, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32374, 62, 13376, 10354, 705, 32374, 19580, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9186, 62, 2539, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4906, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22872, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7266, 62, 22872, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21949, 62, 4906, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14421, 62, 32374, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14421, 62, 26060, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25927, 276, 62, 32374, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 32374, 62, 13376, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4906, 796, 705, 32374, 6, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1459, 62, 32374, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 262, 1459, 62, 32374, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 1695, 4179, 286, 262, 8271, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 1459, 62, 32374, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 14421, 62, 32374, 628, 220, 220, 220, 2488, 14421, 62, 32374, 13, 2617, 353, 198, 220, 220, 220, 825, 1459, 62, 32374, 7, 944, 11, 1459, 62, 32374, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 1459, 62, 32374, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 1695, 4179, 286, 262, 8271, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1459, 62, 32374, 25, 383, 1459, 62, 32374, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14421, 62, 32374, 796, 1459, 62, 32374, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1459, 62, 26060, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 262, 1459, 62, 26060, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 973, 4179, 286, 262, 8271, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 1459, 62, 26060, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 14421, 62, 26060, 628, 220, 220, 220, 2488, 14421, 62, 26060, 13, 2617, 353, 198, 220, 220, 220, 825, 1459, 62, 26060, 7, 944, 11, 1459, 62, 26060, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 1459, 62, 26060, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 973, 4179, 286, 262, 8271, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1459, 62, 26060, 25, 383, 1459, 62, 26060, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14421, 62, 26060, 796, 1459, 62, 26060, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9167, 62, 32374, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 262, 9167, 62, 32374, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 19390, 276, 4179, 329, 262, 8271, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 9167, 62, 32374, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 25927, 276, 62, 32374, 628, 220, 220, 220, 2488, 25927, 276, 62, 32374, 13, 2617, 353, 198, 220, 220, 220, 825, 9167, 62, 32374, 7, 944, 11, 9167, 62, 32374, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 9167, 62, 32374, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 19390, 276, 4179, 329, 262, 8271, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9167, 62, 32374, 25, 383, 9167, 62, 32374, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25927, 276, 62, 32374, 796, 9167, 62, 32374, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4179, 62, 13376, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 262, 4179, 62, 13376, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12678, 286, 262, 27272, 628, 220, 220, 220, 220, 220, 220, 220, 1439, 6972, 3815, 329, 428, 3119, 389, 25, 366, 2969, 41283, 1961, 1600, 366, 30709, 40, 19807, 62, 2969, 41283, 1961, 1600, 366, 11929, 62, 2969, 41283, 1961, 1600, 705, 4944, 44706, 62, 1677, 5883, 62, 39488, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 4377, 43483, 1143, 3815, 4504, 416, 257, 2139, 481, 307, 27661, 284, 705, 4944, 44706, 62, 1677, 5883, 62, 39488, 4458, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 4179, 62, 13376, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 32374, 62, 13376, 628, 220, 220, 220, 2488, 32374, 62, 13376, 13, 2617, 353, 198, 220, 220, 220, 825, 4179, 62, 13376, 7, 944, 11, 4179, 62, 13376, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 4179, 62, 13376, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12678, 286, 262, 27272, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4179, 62, 13376, 25, 383, 4179, 62, 13376, 286, 428, 27272, 7449, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3142, 62, 27160, 796, 14631, 2969, 41283, 1961, 1600, 366, 30709, 40, 19807, 62, 2969, 41283, 1961, 1600, 366, 11929, 62, 2969, 41283, 1961, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1988, 62, 40845, 62, 23108, 62, 273, 62, 23108, 62, 34086, 20538, 7, 32374, 62, 13376, 11, 3142, 62, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4179, 62, 13376, 796, 705, 4944, 44706, 62, 1677, 5883, 62, 39488, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 32374, 62, 13376, 796, 4179, 62, 13376, 198 ]
2.444292
2,908
from sg.sg_base import GatewayBaseTest from remote.remote_util import RemoteMachineShellConnection import time help_string = ['This script creates an init service to run a sync_gateway instance.', 'If you want to install more than one service instance', 'create additional services with different names.', '', 'sync_gateway_service_install.sh', ' -h --help', ' --runas=<The user account to run sync_gateway as; default (sync_gateway)>', ' --runbase=<The directory to run sync_gateway from; defaut (/home/sync_gateway)>', ' --sgpath=<The path to the sync_gateway executable; default (/opt/couchbase-sync-gateway/bin/sync_gateway)>', ' --cfgpath=<The path to the sync_gateway JSON config file; default (/home/sync_gateway/sync_gateway.json)>', ' --logsdir=<The path to the log file direcotry; default (/home/sync_gateway/logs)>', '']
[ 6738, 264, 70, 13, 45213, 62, 8692, 1330, 29916, 14881, 14402, 198, 6738, 6569, 13, 47960, 62, 22602, 1330, 21520, 37573, 23248, 32048, 198, 11748, 640, 198, 198, 16794, 62, 8841, 796, 37250, 1212, 4226, 8075, 281, 2315, 2139, 284, 1057, 257, 17510, 62, 10494, 1014, 4554, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1532, 345, 765, 284, 2721, 517, 621, 530, 2139, 4554, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17953, 3224, 2594, 351, 1180, 3891, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3256, 705, 27261, 62, 10494, 1014, 62, 15271, 62, 17350, 13, 1477, 3256, 705, 220, 220, 220, 532, 71, 1377, 16794, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 220, 220, 220, 1377, 5143, 292, 28, 27, 464, 2836, 1848, 284, 1057, 17510, 62, 10494, 1014, 355, 26, 4277, 357, 27261, 62, 10494, 1014, 8, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 220, 220, 220, 1377, 5143, 8692, 28, 27, 464, 8619, 284, 1057, 17510, 62, 10494, 1014, 422, 26, 825, 2306, 50247, 11195, 14, 27261, 62, 10494, 1014, 8, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 220, 220, 220, 1377, 45213, 6978, 28, 27, 464, 3108, 284, 262, 17510, 62, 10494, 1014, 28883, 26, 4277, 50247, 8738, 14, 66, 7673, 8692, 12, 27261, 12, 10494, 1014, 14, 8800, 14, 27261, 62, 10494, 1014, 8, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 220, 220, 220, 1377, 37581, 6978, 28, 27, 464, 3108, 284, 262, 17510, 62, 10494, 1014, 19449, 4566, 2393, 26, 4277, 50247, 11195, 14, 27261, 62, 10494, 1014, 14, 27261, 62, 10494, 1014, 13, 17752, 8, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 220, 220, 220, 1377, 6404, 82, 15908, 28, 27, 464, 3108, 284, 262, 2604, 2393, 19958, 25557, 563, 26, 4277, 50247, 11195, 14, 27261, 62, 10494, 1014, 14, 6404, 82, 8, 29, 3256, 10148, 60, 628 ]
2.492308
390
#!/usr/bin/env python import argparse import math import os import pathlib import re from rich.console import Console from rich.progress import Progress if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 1822, 29572, 198, 11748, 10688, 198, 11748, 28686, 198, 11748, 3108, 8019, 198, 11748, 302, 198, 198, 6738, 5527, 13, 41947, 1330, 24371, 198, 6738, 5527, 13, 33723, 1330, 18387, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.174603
63
from flask import Flask, render_template, request, url_for, flash, redirect from werkzeug.exceptions import abort app = Flask(__name__) app.config['SECRET_KEY'] = 'mA7OumwKVZQr9ousrge1OVQxQr51WEs7' @app.route('/') @app.route('/info') @app.route('/algo')
[ 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 2581, 11, 19016, 62, 1640, 11, 7644, 11, 18941, 198, 6738, 266, 9587, 2736, 1018, 13, 1069, 11755, 1330, 15614, 628, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 17816, 23683, 26087, 62, 20373, 20520, 796, 705, 42646, 22, 46, 388, 86, 42, 53, 57, 48, 81, 24, 516, 81, 469, 16, 8874, 48, 87, 48, 81, 4349, 8845, 82, 22, 6, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 10951, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 282, 2188, 11537 ]
2.433962
106
from pathlib import Path from black import format_str, FileMode from autoflake import fix_code from pyheck import snake from genpy import ( FromImport, Import, Assign, Suite, Collection, ImportAs, Return, For, If, Raise, Statement, ) from anchorpy.coder.accounts import _account_discriminator from anchorpy.idl import ( Idl, _IdlAccountDef, ) from anchorpy.clientgen.genpy_extension import ( Dataclass, Method, ClassMethod, TypedParam, TypedDict, StrDict, StrDictEntry, NamedArg, Call, Continue, ) from anchorpy.clientgen.common import ( _json_interface_name, _py_type_from_idl, _idl_type_to_json_type, _layout_for_type, _field_from_decoded, _field_to_json, _field_from_json, )
[ 6738, 3108, 8019, 1330, 10644, 198, 6738, 2042, 1330, 5794, 62, 2536, 11, 9220, 19076, 198, 6738, 1960, 1659, 27180, 1330, 4259, 62, 8189, 198, 6738, 12972, 258, 694, 1330, 17522, 198, 6738, 2429, 9078, 1330, 357, 198, 220, 220, 220, 3574, 20939, 11, 198, 220, 220, 220, 17267, 11, 198, 220, 220, 220, 2195, 570, 11, 198, 220, 220, 220, 26264, 11, 198, 220, 220, 220, 12251, 11, 198, 220, 220, 220, 17267, 1722, 11, 198, 220, 220, 220, 8229, 11, 198, 220, 220, 220, 1114, 11, 198, 220, 220, 220, 1002, 11, 198, 220, 220, 220, 35123, 11, 198, 220, 220, 220, 21983, 11, 198, 8, 198, 6738, 18021, 9078, 13, 66, 12342, 13, 23317, 82, 1330, 4808, 23317, 62, 15410, 3036, 20900, 198, 6738, 18021, 9078, 13, 312, 75, 1330, 357, 198, 220, 220, 220, 5121, 75, 11, 198, 220, 220, 220, 4808, 7390, 75, 30116, 7469, 11, 198, 8, 198, 6738, 18021, 9078, 13, 16366, 5235, 13, 5235, 9078, 62, 2302, 3004, 1330, 357, 198, 220, 220, 220, 16092, 330, 31172, 11, 198, 220, 220, 220, 11789, 11, 198, 220, 220, 220, 5016, 17410, 11, 198, 220, 220, 220, 17134, 276, 22973, 11, 198, 220, 220, 220, 17134, 276, 35, 713, 11, 198, 220, 220, 220, 4285, 35, 713, 11, 198, 220, 220, 220, 4285, 35, 713, 30150, 11, 198, 220, 220, 220, 34441, 28100, 11, 198, 220, 220, 220, 4889, 11, 198, 220, 220, 220, 10054, 11, 198, 8, 198, 6738, 18021, 9078, 13, 16366, 5235, 13, 11321, 1330, 357, 198, 220, 220, 220, 4808, 17752, 62, 39994, 62, 3672, 11, 198, 220, 220, 220, 4808, 9078, 62, 4906, 62, 6738, 62, 312, 75, 11, 198, 220, 220, 220, 4808, 312, 75, 62, 4906, 62, 1462, 62, 17752, 62, 4906, 11, 198, 220, 220, 220, 4808, 39786, 62, 1640, 62, 4906, 11, 198, 220, 220, 220, 4808, 3245, 62, 6738, 62, 12501, 9043, 11, 198, 220, 220, 220, 4808, 3245, 62, 1462, 62, 17752, 11, 198, 220, 220, 220, 4808, 3245, 62, 6738, 62, 17752, 11, 198, 8, 628, 628, 628 ]
2.320809
346
import numpy as np import sys sys.path.append('../../../tools/') import fitting_functions import os import scipy.io as sio import scipy.optimize import tqdm if __name__ == "__main__": file_names = [ ('090711e_0006',), ('090811c_0002',), ('090811d_0002','090811d_0004',), ('091111a_0001', '091111a_0003'), ('091111c_0003',), ('091211a_0002', '091211a_0005')] best_num_components = {'090711e':3, '090811c':3, '090811d':3, '091111a':4, '091111c':3, '091211a':3} T_start = 17 # ~130 ms if not os.path.isdir('deconv'): os.makedirs('deconv') if not os.path.isdir('deconv/distributed'): os.makedirs('deconv/distributed') if not os.path.isdir('deconv/fast'): os.makedirs('deconv/fast') for fish_num in tqdm.trange(len(file_names), desc='Fish'): fish_name = file_names[fish_num][0][:-5] n = best_num_components[fish_name] # Load plants plant_file = sio.loadmat('../plants/best/distributed/'+fish_name+'.mat') plant = plant_file['plant'][0] plant_file = sio.loadmat('../plants/best/fast/'+fish_name+'.mat') plant_fast = plant_file['plant'][0] for trace_num in range(len(file_names[fish_num])): saccade_data_file = sio.loadmat('fit/'+file_names[fish_num][trace_num]+'.mat') trange_sacc = saccade_data_file['trange'][0] eye_pos_sacc = saccade_data_file['model'][0] drive = deconvolveEyePos(trange_sacc, eye_pos_sacc, plant) drive_fast = deconvolveEyePos(trange_sacc, eye_pos_sacc, fast_plant) sio.savemat('deconv/distributed/'+file_names[fish_num][trace_num]+'.mat', {'drive': drive}) sio.savemat('deconv/fast/'+file_names[fish_num][trace_num]+'.mat', {'drive': drive_fast})
[ 11748, 299, 32152, 355, 45941, 198, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 40720, 40720, 31391, 14, 11537, 198, 11748, 15830, 62, 12543, 2733, 198, 198, 11748, 28686, 198, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 198, 11748, 629, 541, 88, 13, 40085, 1096, 198, 11748, 256, 80, 36020, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2393, 62, 14933, 796, 685, 19203, 2931, 2998, 1157, 68, 62, 830, 21, 3256, 828, 19203, 2931, 2919, 1157, 66, 62, 34215, 3256, 828, 19203, 2931, 2919, 1157, 67, 62, 34215, 41707, 2931, 2919, 1157, 67, 62, 830, 19, 3256, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 2931, 26259, 64, 62, 18005, 3256, 705, 2931, 26259, 64, 62, 830, 18, 33809, 19203, 2931, 26259, 66, 62, 830, 18, 3256, 828, 19203, 2931, 1065, 1157, 64, 62, 34215, 3256, 705, 2931, 1065, 1157, 64, 62, 830, 20, 11537, 60, 198, 220, 220, 220, 1266, 62, 22510, 62, 5589, 3906, 796, 1391, 6, 2931, 2998, 1157, 68, 10354, 18, 11, 705, 2931, 2919, 1157, 66, 10354, 18, 11, 705, 2931, 2919, 1157, 67, 10354, 18, 11, 705, 2931, 26259, 64, 10354, 19, 11, 705, 2931, 26259, 66, 10354, 18, 11, 705, 2931, 1065, 1157, 64, 10354, 18, 92, 198, 220, 220, 220, 309, 62, 9688, 796, 1596, 1303, 5299, 12952, 13845, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 10786, 12501, 261, 85, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 10786, 12501, 261, 85, 11537, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 10786, 12501, 261, 85, 14, 17080, 6169, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 10786, 12501, 261, 85, 14, 17080, 6169, 11537, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 10786, 12501, 261, 85, 14, 7217, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 10786, 12501, 261, 85, 14, 7217, 11537, 198, 220, 220, 220, 329, 5916, 62, 22510, 287, 256, 80, 36020, 13, 2213, 858, 7, 11925, 7, 7753, 62, 14933, 828, 1715, 11639, 39428, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5916, 62, 3672, 796, 2393, 62, 14933, 58, 11084, 62, 22510, 7131, 15, 7131, 21912, 20, 60, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 1266, 62, 22510, 62, 5589, 3906, 58, 11084, 62, 3672, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 6134, 198, 220, 220, 220, 220, 220, 220, 220, 4618, 62, 7753, 796, 264, 952, 13, 2220, 6759, 10786, 40720, 489, 1187, 14, 13466, 14, 17080, 6169, 14, 6, 10, 11084, 62, 3672, 10, 4458, 6759, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4618, 796, 4618, 62, 7753, 17816, 15060, 6, 7131, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 4618, 62, 7753, 796, 264, 952, 13, 2220, 6759, 10786, 40720, 489, 1187, 14, 13466, 14, 7217, 14, 6, 10, 11084, 62, 3672, 10, 4458, 6759, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4618, 62, 7217, 796, 4618, 62, 7753, 17816, 15060, 6, 7131, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 12854, 62, 22510, 287, 2837, 7, 11925, 7, 7753, 62, 14933, 58, 11084, 62, 22510, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 4134, 671, 62, 7890, 62, 7753, 796, 264, 952, 13, 2220, 6759, 10786, 11147, 14, 6, 10, 7753, 62, 14933, 58, 11084, 62, 22510, 7131, 40546, 62, 22510, 48688, 4458, 6759, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 491, 858, 62, 82, 4134, 796, 264, 4134, 671, 62, 7890, 62, 7753, 17816, 2213, 858, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 62, 1930, 62, 82, 4134, 796, 264, 4134, 671, 62, 7890, 62, 7753, 17816, 19849, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3708, 796, 37431, 85, 6442, 24876, 21604, 7, 2213, 858, 62, 82, 4134, 11, 4151, 62, 1930, 62, 82, 4134, 11, 4618, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3708, 62, 7217, 796, 37431, 85, 6442, 24876, 21604, 7, 2213, 858, 62, 82, 4134, 11, 4151, 62, 1930, 62, 82, 4134, 11, 3049, 62, 15060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 952, 13, 21928, 6759, 10786, 12501, 261, 85, 14, 17080, 6169, 14, 6, 10, 7753, 62, 14933, 58, 11084, 62, 22510, 7131, 40546, 62, 22510, 48688, 4458, 6759, 3256, 1391, 6, 19472, 10354, 3708, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 952, 13, 21928, 6759, 10786, 12501, 261, 85, 14, 7217, 14, 6, 10, 7753, 62, 14933, 58, 11084, 62, 22510, 7131, 40546, 62, 22510, 48688, 4458, 6759, 3256, 1391, 6, 19472, 10354, 3708, 62, 7217, 30072, 198 ]
2.081871
855
# -*- coding: utf-8 -*- # Thanks to https://github.com/ericsun99/Shufflenet-v2-Pytorch import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from collections import OrderedDict from torch.nn import init import math __all__ = ['shufflenet_v2', 'ShuffleNetV2'] if __name__ == "__main__": """Testing """ from torchsummary import summary model = shufflenet_v2(pretrained=True, output_stride=16) summary(model, [3, 224, 224], device='cpu')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 6930, 284, 3740, 1378, 12567, 13, 785, 14, 263, 873, 403, 2079, 14, 2484, 1648, 11925, 316, 12, 85, 17, 12, 20519, 13165, 354, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 28034, 13, 20471, 1330, 2315, 198, 11748, 10688, 198, 198, 834, 439, 834, 796, 37250, 1477, 1648, 11925, 316, 62, 85, 17, 3256, 705, 2484, 18137, 7934, 53, 17, 20520, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 37227, 44154, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 28034, 49736, 1330, 10638, 628, 220, 220, 220, 2746, 796, 32299, 11925, 316, 62, 85, 17, 7, 5310, 13363, 28, 17821, 11, 5072, 62, 2536, 485, 28, 1433, 8, 198, 220, 220, 220, 10638, 7, 19849, 11, 685, 18, 11, 26063, 11, 26063, 4357, 3335, 11639, 36166, 11537, 198 ]
2.734043
188
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © 2017 # # Distributed under terms of the MIT license. import click import datetime import logging import logging.config import multiprocessing import os import sys import uuid from utilities import get_features_from_geojson from utilities import get_organization from utilities import get_pyeve_formatted_datetime from utilities import post_feature logging.config.fileConfig( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'logging.conf')) logger = logging.getLogger("aclu_importer.tmks") @click.command() @click.option('--tmk_features_path', help='Path to tmk features file being imported.', required=True, type=click.Path(exists=True)) @click.option('--api_base_url', default='http://localhost:50050', help='API base url. Defaults to http://localhost:50050') if __name__ == '__main__': import_tmk() # vim: fenc=utf-8 # vim: filetype=python
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 10673, 2177, 198, 2, 198, 2, 4307, 6169, 739, 2846, 286, 262, 17168, 5964, 13, 198, 198, 11748, 3904, 198, 11748, 4818, 8079, 198, 11748, 18931, 198, 11748, 18931, 13, 11250, 198, 11748, 18540, 305, 919, 278, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 334, 27112, 628, 198, 6738, 20081, 1330, 651, 62, 40890, 62, 6738, 62, 469, 13210, 1559, 198, 6738, 20081, 1330, 651, 62, 9971, 1634, 198, 6738, 20081, 1330, 651, 62, 79, 5948, 303, 62, 687, 16898, 62, 19608, 8079, 198, 6738, 20081, 1330, 1281, 62, 30053, 628, 198, 6404, 2667, 13, 11250, 13, 7753, 16934, 7, 198, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 705, 6404, 2667, 13, 10414, 6, 4008, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 330, 2290, 62, 320, 26634, 13, 17209, 591, 4943, 628, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 17209, 74, 62, 40890, 62, 6978, 3256, 1037, 11639, 15235, 284, 256, 28015, 3033, 2393, 852, 17392, 2637, 11, 2672, 28, 17821, 11, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 17821, 4008, 198, 31, 12976, 13, 18076, 10786, 438, 15042, 62, 8692, 62, 6371, 3256, 4277, 11639, 4023, 1378, 36750, 25, 4059, 1120, 3256, 1037, 11639, 17614, 2779, 19016, 13, 2896, 13185, 284, 2638, 1378, 36750, 25, 4059, 1120, 11537, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 62, 17209, 74, 3419, 198, 198, 2, 43907, 25, 277, 12685, 28, 40477, 12, 23, 198, 2, 43907, 25, 2393, 4906, 28, 29412, 198 ]
3.009677
310
from src.models.version_model import VersionModel
[ 6738, 12351, 13, 27530, 13, 9641, 62, 19849, 1330, 10628, 17633, 628, 628 ]
4.076923
13
width = 300 height = 450 box_size = 35 x = width / box_size y = height / box_size File = "/interface/kirk.gif"
[ 10394, 796, 5867, 198, 17015, 796, 18523, 198, 3524, 62, 7857, 796, 3439, 198, 87, 796, 9647, 1220, 3091, 62, 7857, 198, 88, 796, 6001, 1220, 3091, 62, 7857, 198, 8979, 796, 12813, 39994, 14, 74, 14232, 13, 27908, 1, 628 ]
2.731707
41
"""add skipped_transaction level column Revision ID: f775fb87f5ff Revises: be27a2794f75 Create Date: 2022-01-12 22:32:24.949547 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "f775fb87f5ff" down_revision = "be27a2794f75" branch_labels = None depends_on = None
[ 37811, 2860, 26684, 62, 7645, 2673, 1241, 5721, 198, 198, 18009, 1166, 4522, 25, 277, 34483, 21855, 5774, 69, 20, 487, 198, 18009, 2696, 25, 307, 1983, 64, 1983, 5824, 69, 2425, 198, 16447, 7536, 25, 33160, 12, 486, 12, 1065, 2534, 25, 2624, 25, 1731, 13, 24, 33781, 2857, 198, 198, 37811, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 628, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 366, 69, 34483, 21855, 5774, 69, 20, 487, 1, 198, 2902, 62, 260, 10178, 796, 366, 1350, 1983, 64, 1983, 5824, 69, 2425, 1, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 628, 198 ]
2.596774
124
import sqlite3 sqlite3.register_adapter(Point, adapt_point) con = sqlite3.connect(":memory:") cur = con.cursor() p = Point(4.0, -3.2) cur.execute("select ?", (p,)) print(cur.fetchone()[0]) con.close()
[ 11748, 44161, 578, 18, 198, 198, 25410, 578, 18, 13, 30238, 62, 324, 3429, 7, 12727, 11, 6068, 62, 4122, 8, 198, 198, 1102, 796, 44161, 578, 18, 13, 8443, 7, 1298, 31673, 25, 4943, 198, 22019, 796, 369, 13, 66, 21471, 3419, 198, 198, 79, 796, 6252, 7, 19, 13, 15, 11, 532, 18, 13, 17, 8, 198, 22019, 13, 41049, 7203, 19738, 5633, 1600, 357, 79, 11, 4008, 198, 4798, 7, 22019, 13, 69, 7569, 505, 3419, 58, 15, 12962, 198, 198, 1102, 13, 19836, 3419, 198 ]
2.303371
89
# schedule 0.5.0 import schedule import time # 1분마다 호출 schedule.every().minutes.do(job) while True: schedule.run_pending() time.sleep(1)
[ 2, 7269, 657, 13, 20, 13, 15, 198, 198, 11748, 7269, 198, 11748, 640, 198, 198, 2, 352, 167, 114, 226, 167, 100, 230, 46695, 97, 220, 169, 246, 116, 168, 114, 250, 198, 15952, 5950, 13, 16833, 22446, 1084, 1769, 13, 4598, 7, 21858, 8, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 7269, 13, 5143, 62, 79, 1571, 3419, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8 ]
2.041667
72
import os from dotenv import load_dotenv from pathlib import Path env_path = Path('.') / '.env' load_dotenv(dotenv_path=env_path) ############################# CONNECTION TO ELASTICSEARCH LOCALHOST ############################# # username = os.environ.get('ELASTICSEARCH_USERNAME_LOCALHOST') # password = os.environ.get('ELASTICSEARCH_PASSWORD_LOCALHOST') # ES_HOST = {"host": "localhost", "port": 9200} ############################# CONNECTION TO CLOUD ELASTICSEARCH ################################# username = os.getenv('ELASTIC_CLOUD_USERNAME') password = os.getenv('ELASTIC_CLOUD_PASSWORD') ES_HOST = "REPLACE_THIS_WITH_YOUR_ES_HOST" #################################################################################################
[ 11748, 28686, 198, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 24330, 62, 6978, 796, 10644, 10786, 2637, 8, 1220, 45302, 24330, 6, 198, 2220, 62, 26518, 24330, 7, 26518, 24330, 62, 6978, 28, 24330, 62, 6978, 8, 198, 198, 14468, 7804, 4242, 2, 7102, 45, 24565, 5390, 17852, 11262, 2149, 5188, 31315, 37347, 1847, 39, 10892, 1303, 14468, 7804, 4242, 198, 2, 20579, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 3698, 11262, 2149, 5188, 31315, 62, 29904, 20608, 62, 29701, 1847, 39, 10892, 11537, 198, 2, 9206, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 3698, 11262, 2149, 5188, 31315, 62, 47924, 54, 12532, 62, 29701, 1847, 39, 10892, 11537, 198, 2, 13380, 62, 39, 10892, 796, 19779, 4774, 1298, 366, 36750, 1600, 366, 634, 1298, 860, 2167, 92, 198, 14468, 7804, 4242, 2, 7102, 45, 24565, 5390, 7852, 2606, 35, 17852, 11262, 2149, 5188, 31315, 1303, 29113, 198, 29460, 796, 28686, 13, 1136, 24330, 10786, 3698, 11262, 2149, 62, 5097, 2606, 35, 62, 29904, 20608, 11537, 198, 28712, 796, 28686, 13, 1136, 24330, 10786, 3698, 11262, 2149, 62, 5097, 2606, 35, 62, 47924, 54, 12532, 11537, 198, 1546, 62, 39, 10892, 796, 366, 2200, 6489, 11598, 62, 43559, 62, 54, 10554, 62, 56, 11698, 62, 1546, 62, 39, 10892, 1, 198, 29113, 29113, 29113, 2 ]
3.255507
227
from itertools import * import benchbase from benchbase import with_text, children, nochange ############################################################ # Benchmarks ############################################################ if __name__ == "__main__": benchbase.main(BenchMark)
[ 6738, 340, 861, 10141, 1330, 1635, 198, 198, 11748, 7624, 8692, 198, 6738, 7624, 8692, 1330, 351, 62, 5239, 11, 1751, 11, 645, 3803, 198, 198, 29113, 14468, 7804, 4242, 198, 2, 25187, 14306, 198, 29113, 14468, 7804, 4242, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 7624, 8692, 13, 12417, 7, 44199, 9704, 8, 198 ]
4.461538
65
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs __all__ = [ 'ContainerClone', 'ContainerConsole', 'ContainerCpu', 'ContainerDisk', 'ContainerInitialization', 'ContainerInitializationDns', 'ContainerInitializationIpConfig', 'ContainerInitializationIpConfigIpv4', 'ContainerInitializationIpConfigIpv6', 'ContainerInitializationUserAccount', 'ContainerMemory', 'ContainerNetworkInterface', 'ContainerOperatingSystem', ] @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type @pulumi.output_type
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 17202, 39410, 25, 428, 2393, 373, 7560, 416, 262, 21624, 12994, 24118, 687, 10290, 357, 27110, 5235, 8, 16984, 13, 17202, 198, 2, 17202, 2141, 407, 4370, 416, 1021, 4556, 345, 821, 1728, 345, 760, 644, 345, 389, 1804, 0, 17202, 198, 198, 11748, 14601, 198, 11748, 17472, 12994, 198, 11748, 17472, 12994, 13, 43282, 198, 6738, 19720, 1330, 4377, 11, 337, 5912, 11, 32233, 11, 45835, 11, 4479, 198, 6738, 11485, 1330, 4808, 315, 2410, 11, 4808, 83, 2977, 198, 6738, 764, 1330, 23862, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 29869, 2601, 505, 3256, 198, 220, 220, 220, 705, 29869, 47581, 3256, 198, 220, 220, 220, 705, 29869, 34, 19944, 3256, 198, 220, 220, 220, 705, 29869, 40961, 3256, 198, 220, 220, 220, 705, 29869, 24243, 1634, 3256, 198, 220, 220, 220, 705, 29869, 24243, 1634, 35, 5907, 3256, 198, 220, 220, 220, 705, 29869, 24243, 1634, 40, 79, 16934, 3256, 198, 220, 220, 220, 705, 29869, 24243, 1634, 40, 79, 16934, 40, 79, 85, 19, 3256, 198, 220, 220, 220, 705, 29869, 24243, 1634, 40, 79, 16934, 40, 79, 85, 21, 3256, 198, 220, 220, 220, 705, 29869, 24243, 1634, 12982, 30116, 3256, 198, 220, 220, 220, 705, 29869, 30871, 3256, 198, 220, 220, 220, 705, 29869, 26245, 39317, 3256, 198, 220, 220, 220, 705, 29869, 18843, 803, 11964, 3256, 198, 60, 198, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 22915, 62, 4906, 628, 198 ]
2.87027
370
# Copyright (C) 2017-2019 New York University, # University at Buffalo, # Illinois Institute of Technology. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Vizier web service application object. We currently use Flask microframework to build the web service. The web service is the main access point for the Vizier front end and for any other (remote) clients. """ import logging import os from flask import Flask, jsonify, make_response, redirect from flask_cors import CORS # type: ignore[import] from logging.handlers import RotatingFileHandler from vizier.config.app import AppConfig import vizier.api.base as srv import vizier.config.base as const def create_app() -> Flask: """Factory pattern for Flask. Initialize the Flask application object. Returns ------- Flask """ #Get application configuration parameters from environment variables. config = AppConfig() # Create the app and enable cross-origin resource sharing app = Flask(__name__) #app.config['APPLICATION_ROOT'] = config.webservice.app_path #app.config['DEBUG'] = True # Set size limit for uploaded files app.config['MAX_CONTENT_LENGTH'] = config.webservice.defaults.max_file_size # Enable CORS CORS(app) # Switch logging on log_dir = os.path.abspath(config.logs.server) # Create the directory if it does not exist if not os.path.isdir(log_dir): os.makedirs(log_dir) # File handle for server logs file_handler = RotatingFileHandler( os.path.join(log_dir, 'vizier-webapi.log'), maxBytes=1024 * 1024 * 100, backupCount=20 ) file_handler.setLevel(logging.ERROR) file_handler.setFormatter( logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") ) app.logger.addHandler(file_handler) # -------------------------------------------------------------------------- # # Error Handler # # -------------------------------------------------------------------------- @app.errorhandler(srv.ServerRequestException) def invalid_request_or_resource_not_found(error): """JSON response handler for invalid requests or requests that access unknown resources. Parameters ---------- error : Exception Exception thrown by request Handler Returns ------- Http response """ app.logger.error(error.message) response = jsonify(error.to_dict()) response.status_code = error.status_code return response @app.errorhandler(413) def upload_error(exception): """Exception handler for file uploads that exceed the file size limit.""" app.logger.error(exception) return make_response(jsonify({'title':'Error', 'message': str(exception), 'error': str(exception)}), 413) @app.errorhandler(500) def internal_error(exception): """Exception handler that logs exceptions.""" app.logger.error(exception) return make_response(jsonify({'title':'Error', 'message': str(exception), 'error': str(exception)}), 500) # Register the API blueprint from . import server app.register_blueprint(server.bp) # Return the applicatio object # -------------------------------------------------------------------------- # # Initialize # # -------------------------------------------------------------------------- @app.before_first_request def initialize(): """Initialize Mimir gateway (if necessary) before the first request. """ # Initialize the Mimir gateway if using Mimir engine if config.engine.identifier == const.MIMIR_ENGINE: import vizier.mimir as mimir print("Using Mimir at {}".format(mimir._mimir_url)) root_redirect_path = "{}/web-ui/vizier-db".format(server.bp.url_prefix) @app.route("/") def handle_root(): """Redirect users to the web UI """ return redirect(root_redirect_path) return app
[ 2, 15069, 357, 34, 8, 2177, 12, 23344, 968, 1971, 2059, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2059, 379, 14905, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9486, 5136, 286, 8987, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 53, 528, 959, 3992, 2139, 3586, 2134, 13, 775, 3058, 779, 46947, 4580, 30604, 198, 1462, 1382, 262, 3992, 2139, 13, 383, 3992, 2139, 318, 262, 1388, 1895, 966, 329, 262, 198, 53, 528, 959, 2166, 886, 290, 329, 597, 584, 357, 47960, 8, 7534, 13, 198, 37811, 198, 198, 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 42903, 1330, 46947, 11, 33918, 1958, 11, 787, 62, 26209, 11, 18941, 198, 6738, 42903, 62, 66, 669, 1330, 327, 20673, 1303, 2099, 25, 8856, 58, 11748, 60, 198, 6738, 18931, 13, 4993, 8116, 1330, 18481, 803, 8979, 25060, 198, 198, 6738, 48569, 959, 13, 11250, 13, 1324, 1330, 2034, 16934, 198, 198, 11748, 48569, 959, 13, 15042, 13, 8692, 355, 19677, 85, 198, 11748, 48569, 959, 13, 11250, 13, 8692, 355, 1500, 628, 198, 4299, 2251, 62, 1324, 3419, 4613, 46947, 25, 198, 220, 220, 220, 37227, 22810, 3912, 329, 46947, 13, 20768, 1096, 262, 46947, 3586, 2134, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 46947, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3855, 3586, 8398, 10007, 422, 2858, 9633, 13, 198, 220, 220, 220, 4566, 796, 2034, 16934, 3419, 198, 220, 220, 220, 1303, 13610, 262, 598, 290, 7139, 3272, 12, 47103, 8271, 7373, 198, 220, 220, 220, 598, 796, 46947, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 1303, 1324, 13, 11250, 17816, 2969, 31484, 6234, 62, 13252, 2394, 20520, 796, 4566, 13, 732, 1443, 712, 501, 13, 1324, 62, 6978, 198, 220, 220, 220, 1303, 1324, 13, 11250, 17816, 30531, 20520, 796, 6407, 198, 220, 220, 220, 1303, 5345, 2546, 4179, 329, 19144, 3696, 198, 220, 220, 220, 598, 13, 11250, 17816, 22921, 62, 37815, 3525, 62, 43, 49494, 20520, 796, 4566, 13, 732, 1443, 712, 501, 13, 12286, 82, 13, 9806, 62, 7753, 62, 7857, 198, 220, 220, 220, 1303, 27882, 327, 20673, 198, 220, 220, 220, 327, 20673, 7, 1324, 8, 198, 220, 220, 220, 1303, 14645, 18931, 319, 198, 220, 220, 220, 2604, 62, 15908, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 11250, 13, 6404, 82, 13, 15388, 8, 198, 220, 220, 220, 1303, 13610, 262, 8619, 611, 340, 857, 407, 2152, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 6404, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6404, 62, 15908, 8, 198, 220, 220, 220, 1303, 9220, 5412, 329, 4382, 17259, 198, 220, 220, 220, 2393, 62, 30281, 796, 18481, 803, 8979, 25060, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 6404, 62, 15908, 11, 705, 85, 528, 959, 12, 12384, 15042, 13, 6404, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 45992, 28, 35500, 1635, 28119, 1635, 1802, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11559, 12332, 28, 1238, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2393, 62, 30281, 13, 2617, 4971, 7, 6404, 2667, 13, 24908, 8, 198, 220, 220, 220, 2393, 62, 30281, 13, 2617, 8479, 1436, 7, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 8479, 1436, 7203, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 4943, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 598, 13, 6404, 1362, 13, 2860, 25060, 7, 7753, 62, 30281, 8, 628, 220, 220, 220, 1303, 16529, 35937, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 13047, 32412, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 16529, 35937, 628, 220, 220, 220, 2488, 1324, 13, 18224, 30281, 7, 27891, 85, 13, 10697, 18453, 16922, 8, 198, 220, 220, 220, 825, 12515, 62, 25927, 62, 273, 62, 31092, 62, 1662, 62, 9275, 7, 18224, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40386, 2882, 21360, 329, 12515, 7007, 393, 7007, 326, 1895, 198, 220, 220, 220, 220, 220, 220, 220, 6439, 4133, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 1058, 35528, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35528, 8754, 416, 2581, 32412, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 367, 29281, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 6404, 1362, 13, 18224, 7, 18224, 13, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 33918, 1958, 7, 18224, 13, 1462, 62, 11600, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 13376, 62, 8189, 796, 4049, 13, 13376, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 198, 220, 220, 220, 2488, 1324, 13, 18224, 30281, 7, 44103, 8, 198, 220, 220, 220, 825, 9516, 62, 18224, 7, 1069, 4516, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16922, 21360, 329, 2393, 9516, 82, 326, 7074, 262, 2393, 2546, 4179, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 6404, 1362, 13, 18224, 7, 1069, 4516, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 7, 17752, 1958, 15090, 6, 7839, 10354, 6, 12331, 3256, 705, 20500, 10354, 965, 7, 1069, 4516, 828, 705, 18224, 10354, 965, 7, 1069, 4516, 38165, 828, 46618, 8, 628, 198, 220, 220, 220, 2488, 1324, 13, 18224, 30281, 7, 4059, 8, 198, 220, 220, 220, 825, 5387, 62, 18224, 7, 1069, 4516, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16922, 21360, 326, 17259, 13269, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 6404, 1362, 13, 18224, 7, 1069, 4516, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 7, 17752, 1958, 15090, 6, 7839, 10354, 6, 12331, 3256, 705, 20500, 10354, 965, 7, 1069, 4516, 828, 705, 18224, 10354, 965, 7, 1069, 4516, 38165, 828, 5323, 8, 628, 220, 220, 220, 1303, 17296, 262, 7824, 30881, 198, 220, 220, 220, 422, 764, 1330, 4382, 198, 220, 220, 220, 598, 13, 30238, 62, 17585, 4798, 7, 15388, 13, 46583, 8, 198, 220, 220, 220, 1303, 8229, 262, 2161, 39485, 2134, 628, 220, 220, 220, 1303, 16529, 35937, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 20768, 1096, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 16529, 35937, 628, 220, 220, 220, 2488, 1324, 13, 19052, 62, 11085, 62, 25927, 198, 220, 220, 220, 825, 41216, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 337, 13057, 24308, 357, 361, 3306, 8, 878, 262, 717, 2581, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 262, 337, 13057, 24308, 611, 1262, 337, 13057, 3113, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4566, 13, 18392, 13, 738, 7483, 6624, 1500, 13, 44, 3955, 4663, 62, 26808, 8881, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 48569, 959, 13, 76, 13057, 355, 285, 13057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12814, 337, 13057, 379, 23884, 1911, 18982, 7, 76, 13057, 13557, 76, 13057, 62, 6371, 4008, 628, 220, 220, 220, 6808, 62, 445, 1060, 62, 6978, 796, 45144, 92, 14, 12384, 12, 9019, 14, 85, 528, 959, 12, 9945, 1911, 18982, 7, 15388, 13, 46583, 13, 6371, 62, 40290, 8, 628, 220, 220, 220, 2488, 1324, 13, 38629, 7203, 14, 4943, 198, 220, 220, 220, 825, 5412, 62, 15763, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7738, 1060, 2985, 284, 262, 3992, 12454, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 15763, 62, 445, 1060, 62, 6978, 8, 628, 198, 220, 220, 220, 1441, 598, 198 ]
2.914812
1,573
import hmac import hashlib import base64 import json import re import time def extractAndValidateBody( body: str, key: str = "", signature: str = "", isBase64: bool = False, with_validate: bool = True, ) -> dict: """ Basic parsing of the body, including optional validation of a HMAC, to a dict >>> t = int(time.time()) >>> valid_body = f'{{ "subnet": "123", "sg": "456", "repo": "789", "time": {t} }}' >>> valid_b64b = base64.b64encode(valid_body.encode("utf-8")).decode("utf-8") >>> test1 = extractAndValidateBody(valid_b64b, isBase64=True, with_validate=False) >>> test1.pop("time") != "0" True >>> test1 {'subnet': '123', 'sg': '456', 'repo': '789'} >>> test2 = extractAndValidateBody(valid_body, with_validate=False) >>> test2.pop("time") != "0" True >>> test2 {'subnet': '123', 'sg': '456', 'repo': '789'} >>> kinda_valid = f'{{ "subnet": "123", "sg": "456", "repo": "789", "time": {t} }}' >>> test3 = extractAndValidateBody(kinda_valid, with_validate=False) >>> test3.pop("time") != "0" True >>> test3 {'subnet': '123', 'sg': '456', 'repo': '789'} >>> with open('tests/fixtures/example.json') as json_file: ... example = json.load(json_file) >>> example["body"] = example["body"].replace("111", str(t)) >>> test4 = extractAndValidateBody(example["body"], with_validate=False) >>> test4.pop("time") != "0" True >>> test4 {'subnet': '123', 'sg': '456', 'repo': '789'} >>> key = "abcdefg" >>> h = hmac.new(key.encode("utf-8"), valid_body.encode("utf-8"), hashlib.sha512) >>> test5 = extractAndValidateBody(valid_body, key=key, signature=h.hexdigest()) >>> test5.pop("time") != "0" True >>> test5 {'subnet': '123', 'sg': '456', 'repo': '789'} >>> try: ... extractAndValidateBody(key="12345", body="{}") ... except Exception as e: ... print(e) key or signature missing >>> try: ... extractAndValidateBody('{"subnet": "123", "sg": "456", "repo": "789", "time": 1015213801}', with_validate=False) ... except Exception as e: ... print(e) request expired """ if with_validate and (not key or not signature): raise Exception("key or signature missing") if isBase64: dec_body = base64.b64decode(body.encode("utf-8")) body = dec_body.decode("utf-8") body_qs = json.loads(body) if not all(x in body_qs for x in ["time"]): raise Exception("missing required body item") requestTime = int(body_qs["time"]) # less than 30 seconds old if (int(time.time()) - requestTime) >= 30: raise Exception(f"request expired") if with_validate: key_bytes = None if not key: raise Exception("Key not valid") else: key_bytes = key.encode("utf-8") h = hmac.new(key_bytes, body.encode("utf-8"), hashlib.sha512) res = h.hexdigest() if res == signature: return body_qs else: raise Exception("Bad signature") return body_qs
[ 11748, 289, 20285, 201, 198, 11748, 12234, 8019, 201, 198, 11748, 2779, 2414, 201, 198, 11748, 33918, 201, 198, 11748, 302, 201, 198, 11748, 640, 201, 198, 201, 198, 201, 198, 4299, 7925, 1870, 7762, 20540, 25842, 7, 201, 198, 220, 220, 220, 1767, 25, 965, 11, 201, 198, 220, 220, 220, 1994, 25, 965, 796, 366, 1600, 201, 198, 220, 220, 220, 9877, 25, 965, 796, 366, 1600, 201, 198, 220, 220, 220, 318, 14881, 2414, 25, 20512, 796, 10352, 11, 201, 198, 220, 220, 220, 351, 62, 12102, 378, 25, 20512, 796, 6407, 11, 201, 198, 8, 4613, 8633, 25, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 14392, 32096, 286, 262, 1767, 11, 1390, 11902, 21201, 286, 257, 25904, 2246, 11, 284, 257, 8633, 201, 198, 201, 198, 220, 220, 220, 13163, 256, 796, 493, 7, 2435, 13, 2435, 28955, 201, 198, 220, 220, 220, 13163, 4938, 62, 2618, 796, 277, 6, 27007, 366, 7266, 3262, 1298, 366, 10163, 1600, 366, 45213, 1298, 366, 29228, 1600, 366, 260, 7501, 1298, 366, 40401, 1600, 366, 2435, 1298, 1391, 83, 92, 34949, 6, 201, 198, 220, 220, 220, 13163, 4938, 62, 65, 2414, 65, 796, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 12102, 62, 2618, 13, 268, 8189, 7203, 40477, 12, 23, 4943, 737, 12501, 1098, 7203, 40477, 12, 23, 4943, 201, 198, 201, 198, 220, 220, 220, 13163, 1332, 16, 796, 7925, 1870, 7762, 20540, 25842, 7, 12102, 62, 65, 2414, 65, 11, 318, 14881, 2414, 28, 17821, 11, 351, 62, 12102, 378, 28, 25101, 8, 201, 198, 220, 220, 220, 13163, 1332, 16, 13, 12924, 7203, 2435, 4943, 14512, 366, 15, 1, 201, 198, 220, 220, 220, 6407, 201, 198, 220, 220, 220, 13163, 1332, 16, 201, 198, 220, 220, 220, 1391, 6, 7266, 3262, 10354, 705, 10163, 3256, 705, 45213, 10354, 705, 29228, 3256, 705, 260, 7501, 10354, 705, 40401, 6, 92, 201, 198, 201, 198, 220, 220, 220, 13163, 1332, 17, 796, 7925, 1870, 7762, 20540, 25842, 7, 12102, 62, 2618, 11, 351, 62, 12102, 378, 28, 25101, 8, 201, 198, 220, 220, 220, 13163, 1332, 17, 13, 12924, 7203, 2435, 4943, 14512, 366, 15, 1, 201, 198, 220, 220, 220, 6407, 201, 198, 220, 220, 220, 13163, 1332, 17, 201, 198, 220, 220, 220, 1391, 6, 7266, 3262, 10354, 705, 10163, 3256, 705, 45213, 10354, 705, 29228, 3256, 705, 260, 7501, 10354, 705, 40401, 6, 92, 201, 198, 201, 198, 220, 220, 220, 13163, 17855, 62, 12102, 796, 277, 6, 27007, 366, 7266, 3262, 1298, 366, 10163, 1600, 366, 45213, 1298, 366, 29228, 1600, 366, 260, 7501, 1298, 366, 40401, 1600, 366, 2435, 1298, 1391, 83, 92, 34949, 6, 201, 198, 220, 220, 220, 13163, 1332, 18, 796, 7925, 1870, 7762, 20540, 25842, 7, 11031, 64, 62, 12102, 11, 351, 62, 12102, 378, 28, 25101, 8, 201, 198, 220, 220, 220, 13163, 1332, 18, 13, 12924, 7203, 2435, 4943, 14512, 366, 15, 1, 201, 198, 220, 220, 220, 6407, 201, 198, 220, 220, 220, 13163, 1332, 18, 201, 198, 220, 220, 220, 1391, 6, 7266, 3262, 10354, 705, 10163, 3256, 705, 45213, 10354, 705, 29228, 3256, 705, 260, 7501, 10354, 705, 40401, 6, 92, 201, 198, 201, 198, 220, 220, 220, 13163, 351, 1280, 10786, 41989, 14, 69, 25506, 14, 20688, 13, 17752, 11537, 355, 33918, 62, 7753, 25, 201, 198, 220, 220, 220, 2644, 220, 220, 1672, 796, 33918, 13, 2220, 7, 17752, 62, 7753, 8, 201, 198, 220, 220, 220, 13163, 1672, 14692, 2618, 8973, 796, 1672, 14692, 2618, 1, 4083, 33491, 7203, 16243, 1600, 965, 7, 83, 4008, 201, 198, 220, 220, 220, 13163, 1332, 19, 796, 7925, 1870, 7762, 20540, 25842, 7, 20688, 14692, 2618, 33116, 351, 62, 12102, 378, 28, 25101, 8, 201, 198, 220, 220, 220, 13163, 1332, 19, 13, 12924, 7203, 2435, 4943, 14512, 366, 15, 1, 201, 198, 220, 220, 220, 6407, 201, 198, 220, 220, 220, 13163, 1332, 19, 201, 198, 220, 220, 220, 1391, 6, 7266, 3262, 10354, 705, 10163, 3256, 705, 45213, 10354, 705, 29228, 3256, 705, 260, 7501, 10354, 705, 40401, 6, 92, 201, 198, 201, 198, 220, 220, 220, 13163, 1994, 796, 366, 39305, 4299, 70, 1, 201, 198, 220, 220, 220, 13163, 289, 796, 289, 20285, 13, 3605, 7, 2539, 13, 268, 8189, 7203, 40477, 12, 23, 12340, 4938, 62, 2618, 13, 268, 8189, 7203, 40477, 12, 23, 12340, 12234, 8019, 13, 26270, 25836, 8, 201, 198, 220, 220, 220, 13163, 1332, 20, 796, 7925, 1870, 7762, 20540, 25842, 7, 12102, 62, 2618, 11, 1994, 28, 2539, 11, 9877, 28, 71, 13, 33095, 12894, 395, 28955, 201, 198, 220, 220, 220, 13163, 1332, 20, 13, 12924, 7203, 2435, 4943, 14512, 366, 15, 1, 201, 198, 220, 220, 220, 6407, 201, 198, 220, 220, 220, 13163, 1332, 20, 201, 198, 220, 220, 220, 1391, 6, 7266, 3262, 10354, 705, 10163, 3256, 705, 45213, 10354, 705, 29228, 3256, 705, 260, 7501, 10354, 705, 40401, 6, 92, 201, 198, 201, 198, 220, 220, 220, 13163, 1949, 25, 201, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 7925, 1870, 7762, 20540, 25842, 7, 2539, 2625, 10163, 2231, 1600, 1767, 2625, 90, 92, 4943, 201, 198, 220, 220, 220, 2644, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 3601, 7, 68, 8, 201, 198, 220, 220, 220, 1994, 393, 9877, 4814, 201, 198, 201, 198, 220, 220, 220, 13163, 1949, 25, 201, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 7925, 1870, 7762, 20540, 25842, 10786, 4895, 7266, 3262, 1298, 366, 10163, 1600, 366, 45213, 1298, 366, 29228, 1600, 366, 260, 7501, 1298, 366, 40401, 1600, 366, 2435, 1298, 8949, 4309, 20107, 486, 92, 3256, 351, 62, 12102, 378, 28, 25101, 8, 201, 198, 220, 220, 220, 2644, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 3601, 7, 68, 8, 201, 198, 220, 220, 220, 2581, 21350, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 611, 351, 62, 12102, 378, 290, 357, 1662, 1994, 393, 407, 9877, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 2539, 393, 9877, 4814, 4943, 201, 198, 201, 198, 220, 220, 220, 611, 318, 14881, 2414, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 875, 62, 2618, 796, 2779, 2414, 13, 65, 2414, 12501, 1098, 7, 2618, 13, 268, 8189, 7203, 40477, 12, 23, 48774, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1767, 796, 875, 62, 2618, 13, 12501, 1098, 7203, 40477, 12, 23, 4943, 201, 198, 201, 198, 220, 220, 220, 1767, 62, 48382, 796, 33918, 13, 46030, 7, 2618, 8, 201, 198, 201, 198, 220, 220, 220, 611, 407, 477, 7, 87, 287, 1767, 62, 48382, 329, 2124, 287, 14631, 2435, 8973, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 45688, 2672, 1767, 2378, 4943, 201, 198, 201, 198, 220, 220, 220, 2581, 7575, 796, 493, 7, 2618, 62, 48382, 14692, 2435, 8973, 8, 201, 198, 220, 220, 220, 1303, 1342, 621, 1542, 4201, 1468, 201, 198, 220, 220, 220, 611, 357, 600, 7, 2435, 13, 2435, 28955, 532, 2581, 7575, 8, 18189, 1542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 69, 1, 25927, 21350, 4943, 201, 198, 201, 198, 220, 220, 220, 611, 351, 62, 12102, 378, 25, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 33661, 796, 6045, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1994, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 9218, 407, 4938, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 33661, 796, 1994, 13, 268, 8189, 7203, 40477, 12, 23, 4943, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 289, 796, 289, 20285, 13, 3605, 7, 2539, 62, 33661, 11, 1767, 13, 268, 8189, 7203, 40477, 12, 23, 12340, 12234, 8019, 13, 26270, 25836, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 289, 13, 33095, 12894, 395, 3419, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 581, 6624, 9877, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1767, 62, 48382, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 22069, 9877, 4943, 201, 198, 201, 198, 220, 220, 220, 1441, 1767, 62, 48382, 201, 198 ]
2.217033
1,456
from airflow import version print(version.version)
[ 6738, 45771, 1330, 2196, 198, 4798, 7, 9641, 13, 9641, 8 ]
4.545455
11
from jetconf.data import BaseDatastore
[ 6738, 12644, 10414, 13, 7890, 1330, 7308, 27354, 459, 382, 628 ]
3.636364
11
# -*- coding: utf-8 -*- ######################################################################### # # Copyright (C) 2016 OSGeo # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ######################################################################### from django.utils.translation import ugettext_noop as _ from geonode.notifications_helper import NotificationsAppConfigBase default_app_config = 'geonode.maps.MapsAppConfig'
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 29113, 29113, 7804, 2, 198, 2, 198, 2, 15069, 357, 34, 8, 1584, 7294, 10082, 78, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 2, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 1863, 351, 428, 1430, 13, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 2, 198, 29113, 29113, 7804, 2, 628, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 3919, 404, 355, 4808, 198, 6738, 4903, 261, 1098, 13, 1662, 6637, 62, 2978, 525, 1330, 1892, 6637, 4677, 16934, 14881, 628, 198, 198, 12286, 62, 1324, 62, 11250, 796, 705, 6281, 1098, 13, 31803, 13, 47010, 4677, 16934, 6, 198 ]
4.01581
253
#!/usr/bin/env python # -*- coding: utf-8 -*- """Login middleware tests""" # System imports import logging from mock import MagicMock, patch from datetime import datetime, timedelta from django.http import HttpRequest from django.conf import settings from django.contrib import auth from django.urls import reverse # Project imports from draalcore.test_utils.basetest import BaseTestMiddleware from ..login import LoginRequiredMiddleware, UserEmailRequiredMiddleware, AutoLogout, DateTimeSerializer logger = logging.getLogger(__name__) class LoginRequiredTestCase(BaseTestMiddleware): """Login required middleware.""" def test_request(self): """User authentication is validated.""" obj = LoginRequiredMiddleware(self.get_response) # GIVEN request has no user authentication request = HttpRequest() request.path_info = '/view' request.user = MagicMock() request.user.is_authenticated = False # WHEN request is processed by the login middleware response = obj(request) # THEN redirect response should returned self.assertIsNotNone(response) self.assertEqual(response.status_code, 401) self.assertEqual(self.responseFuncCalled, 0) self.clear_response() class UserEmailRequiredTestCase(BaseTestMiddleware): """User email required middleware.""" def test_request_redirect(self): """Presence of user email is validated.""" obj = UserEmailRequiredMiddleware(self.get_response) # GIVEN user data has no email included and user requests main page request = HttpRequest() request.path_info = '/' request.user = MagicMock(email='') request.user.is_authenticated = True # WHEN request is processed by the middleware response = obj(request) # THEN redirect response should returned self.assertIsNotNone(response) self.assertTrue('{}?next='.format(reverse(settings.USER_EMAIL_REDIRECT)) in response['Location']) self.assertEqual(self.responseFuncCalled, 0) self.clear_response() # ----- # GIVEN user data has email included and user requests main page request = HttpRequest() request.path_info = '/' request.user = MagicMock(email='[email protected]') request.user.is_authenticated = True # WHEN request is processed by the middleware response = obj(request) # THEN provided callable should be called self.assertTrue(response) self.assertEqual(self.responseFuncCalled, 1) self.clear_response() class AutoLogoutTestCase(BaseTestMiddleware): """Auto logout middleware.""" def test_request1(self): """User is not logged in.""" obj = AutoLogout(self.get_response) # GIVEN unauthenticated user request = HttpRequest() request.user = MagicMock() request.user.is_authenticated = False # WHEN request is processed by the auto logout middleware response = obj(request) # THEN it succeeds self.assertTrue(response) self.assertEqual(self.responseFuncCalled, 1) self.clear_response() @patch.object(auth, 'logout') def test_request2(self, logout): """User session has expired.""" obj = AutoLogout(self.get_response) logout.return_value = True # GIVEN expired user session request = HttpRequest() request.user = MagicMock() request.user.is_authenticated = True timestamp = datetime.now() - timedelta(0, settings.AUTO_LOGOUT_DELAY * 2, 0) request.session = {'last_touch': DateTimeSerializer(timestamp).encode} # WHEN request is processed by the auto logout middleware response = obj(request) # THEN unauthorized response is returned self.assertIsNotNone(response) self.assertEqual(response.status_code, 401)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 47790, 3504, 1574, 5254, 37811, 198, 198, 2, 4482, 17944, 198, 11748, 18931, 198, 6738, 15290, 1330, 6139, 44, 735, 11, 8529, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 18453, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6284, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 198, 2, 4935, 17944, 198, 6738, 28841, 282, 7295, 13, 9288, 62, 26791, 13, 12093, 316, 395, 1330, 7308, 14402, 34621, 1574, 198, 6738, 11485, 38235, 1330, 23093, 37374, 34621, 1574, 11, 11787, 15333, 37374, 34621, 1574, 11, 11160, 11187, 448, 11, 7536, 7575, 32634, 7509, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 23093, 37374, 14402, 20448, 7, 14881, 14402, 34621, 1574, 2599, 198, 220, 220, 220, 37227, 47790, 2672, 3504, 1574, 526, 15931, 628, 220, 220, 220, 825, 1332, 62, 25927, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12982, 18239, 318, 31031, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 23093, 37374, 34621, 1574, 7, 944, 13, 1136, 62, 26209, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 402, 3824, 1677, 2581, 468, 645, 2836, 18239, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 796, 367, 29281, 18453, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 6978, 62, 10951, 796, 31051, 1177, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 796, 6139, 44, 735, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 13, 271, 62, 41299, 3474, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42099, 2581, 318, 13686, 416, 262, 17594, 3504, 1574, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 26181, 7, 25927, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42243, 18941, 2882, 815, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 3673, 14202, 7, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 22219, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 944, 13, 26209, 37, 19524, 34, 4262, 11, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20063, 62, 26209, 3419, 628, 198, 4871, 11787, 15333, 37374, 14402, 20448, 7, 14881, 14402, 34621, 1574, 2599, 198, 220, 220, 220, 37227, 12982, 3053, 2672, 3504, 1574, 526, 15931, 628, 220, 220, 220, 825, 1332, 62, 25927, 62, 445, 1060, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25460, 594, 286, 2836, 3053, 318, 31031, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 11787, 15333, 37374, 34621, 1574, 7, 944, 13, 1136, 62, 26209, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 402, 3824, 1677, 2836, 1366, 468, 645, 3053, 3017, 290, 2836, 7007, 1388, 2443, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 796, 367, 29281, 18453, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 6978, 62, 10951, 796, 31051, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 796, 6139, 44, 735, 7, 12888, 28, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 13, 271, 62, 41299, 3474, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42099, 2581, 318, 13686, 416, 262, 3504, 1574, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 26181, 7, 25927, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42243, 18941, 2882, 815, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 3673, 14202, 7, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 10786, 90, 92, 30, 19545, 28, 4458, 18982, 7, 50188, 7, 33692, 13, 29904, 62, 27630, 4146, 62, 22083, 40, 23988, 4008, 287, 2882, 17816, 14749, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 944, 13, 26209, 37, 19524, 34, 4262, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20063, 62, 26209, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37404, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 402, 3824, 1677, 2836, 1366, 468, 3053, 3017, 290, 2836, 7007, 1388, 2443, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 796, 367, 29281, 18453, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 6978, 62, 10951, 796, 31051, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 796, 6139, 44, 735, 7, 12888, 11639, 9288, 31, 9288, 13, 785, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 13, 271, 62, 41299, 3474, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42099, 2581, 318, 13686, 416, 262, 3504, 1574, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 26181, 7, 25927, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42243, 2810, 869, 540, 815, 307, 1444, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 944, 13, 26209, 37, 19524, 34, 4262, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20063, 62, 26209, 3419, 628, 198, 4871, 11160, 11187, 448, 14402, 20448, 7, 14881, 14402, 34621, 1574, 2599, 198, 220, 220, 220, 37227, 27722, 2604, 448, 3504, 1574, 526, 15931, 628, 220, 220, 220, 825, 1332, 62, 25927, 16, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12982, 318, 407, 18832, 287, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 11160, 11187, 448, 7, 944, 13, 1136, 62, 26209, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 402, 3824, 1677, 555, 41299, 3474, 2836, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 796, 367, 29281, 18453, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 796, 6139, 44, 735, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 13, 271, 62, 41299, 3474, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42099, 2581, 318, 13686, 416, 262, 8295, 2604, 448, 3504, 1574, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 26181, 7, 25927, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42243, 340, 31137, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 944, 13, 26209, 37, 19524, 34, 4262, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20063, 62, 26209, 3419, 628, 220, 220, 220, 2488, 17147, 13, 15252, 7, 18439, 11, 705, 6404, 448, 11537, 198, 220, 220, 220, 825, 1332, 62, 25927, 17, 7, 944, 11, 2604, 448, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12982, 6246, 468, 21350, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 11160, 11187, 448, 7, 944, 13, 1136, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 448, 13, 7783, 62, 8367, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 402, 3824, 1677, 21350, 2836, 6246, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 796, 367, 29281, 18453, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 796, 6139, 44, 735, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 7220, 13, 271, 62, 41299, 3474, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 41033, 796, 4818, 8079, 13, 2197, 3419, 532, 28805, 12514, 7, 15, 11, 6460, 13, 39371, 46, 62, 25294, 12425, 62, 35, 3698, 4792, 1635, 362, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 29891, 796, 1391, 6, 12957, 62, 29332, 10354, 7536, 7575, 32634, 7509, 7, 16514, 27823, 737, 268, 8189, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42099, 2581, 318, 13686, 416, 262, 8295, 2604, 448, 3504, 1574, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 26181, 7, 25927, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42243, 22959, 2882, 318, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 3673, 14202, 7, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 22219, 8, 198 ]
2.682432
1,480
from sklearn.svm import SVR from data_science_layer.machine_learning.base_regressor import BaseRegressor
[ 6738, 1341, 35720, 13, 82, 14761, 1330, 311, 13024, 198, 6738, 1366, 62, 16801, 62, 29289, 13, 30243, 62, 40684, 13, 8692, 62, 2301, 44292, 1330, 7308, 8081, 44292, 628, 198 ]
3.451613
31
ips = [ '10.0.0.5', '10.5.3.1', '192.168.11.10', '2.2.2.2', '100.0.0.1', '20.3.2.4' ] print(sort_ips(ips))
[ 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2419, 796, 685, 198, 197, 6, 940, 13, 15, 13, 15, 13, 20, 3256, 198, 197, 6, 940, 13, 20, 13, 18, 13, 16, 3256, 198, 197, 6, 17477, 13, 14656, 13, 1157, 13, 940, 3256, 198, 197, 6, 17, 13, 17, 13, 17, 13, 17, 3256, 198, 197, 6, 3064, 13, 15, 13, 15, 13, 16, 3256, 198, 197, 6, 1238, 13, 18, 13, 17, 13, 19, 6, 198, 197, 60, 198, 198, 4798, 7, 30619, 62, 2419, 7, 2419, 4008, 628, 198 ]
1.351064
94
# -*- coding: utf-8 -*- """ glusternodestate.py :copyright: (c) 2013 by Aravinda VK :license: BSD, GPL v2, see LICENSE for more details. """ import argparse import errno import os from functools import wraps import sys import requests from glusterfstools import volumes import nodestatedb as _db from config import DB_PATH, DB_FILE, HOOKS_ROOT _glusterfs_events_funcs = {} @glusterfsevent("setup") @glusterfsevent("cleanup") @glusterfsevent("glusterd-start") @glusterfsevent("create") @glusterfsevent("delete") @glusterfsevent("add-brick") @glusterfsevent("remove-brick") @glusterfsevent("set") @glusterfsevent("start") @glusterfsevent("stop") if __name__ == "__main__": main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 220, 220, 220, 1278, 436, 1142, 375, 44146, 13, 9078, 628, 220, 220, 220, 1058, 22163, 4766, 25, 357, 66, 8, 2211, 416, 317, 4108, 22261, 45917, 198, 220, 220, 220, 1058, 43085, 25, 347, 10305, 11, 38644, 410, 17, 11, 766, 38559, 24290, 329, 517, 3307, 13, 198, 37811, 198, 198, 11748, 1822, 29572, 198, 11748, 11454, 3919, 198, 11748, 28686, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 11748, 25064, 198, 11748, 7007, 198, 198, 6738, 1278, 5819, 69, 301, 10141, 1330, 15343, 198, 11748, 18666, 395, 515, 65, 355, 4808, 9945, 198, 6738, 4566, 1330, 20137, 62, 34219, 11, 20137, 62, 25664, 11, 367, 15308, 50, 62, 13252, 2394, 198, 198, 62, 4743, 5819, 9501, 62, 31534, 62, 12543, 6359, 796, 23884, 628, 628, 198, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 40406, 4943, 628, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 27773, 929, 4943, 628, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 4743, 5819, 67, 12, 9688, 4943, 628, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 17953, 4943, 628, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 33678, 4943, 628, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 2860, 12, 1671, 624, 4943, 628, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 28956, 12, 1671, 624, 4943, 628, 198, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 2617, 4943, 628, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 9688, 4943, 628, 198, 31, 4743, 5819, 69, 325, 1151, 7203, 11338, 4943, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.54386
285
print(decrypt([5, 7, 1, 4], 3)) print(decrypt([1, 2, 3, 4], 0)) print(decrypt([2, 4, 9, 3], -2))
[ 198, 198, 4798, 7, 12501, 6012, 26933, 20, 11, 767, 11, 352, 11, 604, 4357, 513, 4008, 198, 4798, 7, 12501, 6012, 26933, 16, 11, 362, 11, 513, 11, 604, 4357, 657, 4008, 198, 4798, 7, 12501, 6012, 26933, 17, 11, 604, 11, 860, 11, 513, 4357, 532, 17, 4008, 198 ]
1.941176
51
import requests from bs4 import BeautifulSoup import csv cont = 0 i = 0 j = 0 source = requests.get('https://lol.gamepedia.com/LPL/2021_Season/Spring_Season/Scoreboards/Week_10').text soup = BeautifulSoup(source, 'html.parser') times = soup.find_all('span', "teamname") kills = soup.find_all('div', "sb-footer-item sb-footer-item-dragons") numpartidas = 9 listatime = [] partidas = [[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]] numkills = [] numdragonspartidas = [0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0] print(partidas) for time in times: listatime.append(time.text) for l in range(0,numpartidas): for c in range(0,2): partidas[l][c] = listatime[i] i = i + 1 for kill in kills: numkills.append(kill.text) for linha in range(0,numpartidas): for coluna in range(0,2): numdragonspartidas[linha][coluna] = numkills[j] j = j + 1 print(numdragonspartidas) """with open('newFile.csv', 'a') as csvfile: wr = csv.writer(csvfile, quoting=csv.QUOTE_ALL) for word in partidas: wr.writerow([None,[word]]) """ with open('dragons_lpl.csv', 'a', newline="") as csvfile: wr = csv.writer(csvfile,quoting=csv.QUOTE_ALL) for word in partidas: wr.writerow(word) for word in numdragonspartidas: wr.writerow(word)
[ 11748, 7007, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 11748, 269, 21370, 198, 198, 3642, 796, 657, 198, 72, 796, 657, 198, 73, 796, 657, 628, 198, 10459, 796, 7007, 13, 1136, 10786, 5450, 1378, 47288, 13, 6057, 50235, 13, 785, 14, 43, 6489, 14, 1238, 2481, 62, 18960, 14, 30387, 62, 18960, 14, 26595, 12821, 14, 20916, 62, 940, 27691, 5239, 198, 198, 82, 10486, 796, 23762, 50, 10486, 7, 10459, 11, 705, 6494, 13, 48610, 11537, 198, 22355, 796, 17141, 13, 19796, 62, 439, 10786, 12626, 3256, 366, 15097, 3672, 4943, 198, 74, 2171, 796, 17141, 13, 19796, 62, 439, 10786, 7146, 3256, 366, 36299, 12, 5898, 263, 12, 9186, 264, 65, 12, 5898, 263, 12, 9186, 12, 7109, 34765, 4943, 198, 198, 77, 931, 433, 24496, 796, 860, 198, 4868, 265, 524, 796, 17635, 198, 3911, 24496, 796, 16410, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 11907, 198, 22510, 74, 2171, 796, 17635, 198, 22510, 7109, 34765, 3911, 24496, 796, 685, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 38430, 15, 11, 15, 60, 628, 198, 4798, 7, 3911, 24496, 8, 198, 198, 1640, 640, 287, 1661, 25, 198, 220, 220, 220, 1351, 265, 524, 13, 33295, 7, 2435, 13, 5239, 8, 198, 198, 1640, 300, 287, 2837, 7, 15, 11, 77, 931, 433, 24496, 2599, 198, 220, 220, 220, 329, 269, 287, 2837, 7, 15, 11, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 636, 24496, 58, 75, 7131, 66, 60, 796, 1351, 265, 524, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 1343, 352, 628, 198, 1640, 1494, 287, 12847, 25, 198, 220, 220, 220, 997, 74, 2171, 13, 33295, 7, 12728, 13, 5239, 8, 198, 198, 1640, 9493, 3099, 287, 2837, 7, 15, 11, 77, 931, 433, 24496, 2599, 198, 220, 220, 220, 329, 951, 9613, 287, 2837, 7, 15, 11, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 997, 7109, 34765, 3911, 24496, 58, 2815, 3099, 7131, 4033, 9613, 60, 796, 997, 74, 2171, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 474, 796, 474, 1343, 352, 628, 198, 4798, 7, 22510, 7109, 34765, 3911, 24496, 8, 198, 37811, 4480, 1280, 10786, 3605, 8979, 13, 40664, 3256, 705, 64, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 1319, 796, 269, 21370, 13, 16002, 7, 40664, 7753, 11, 28411, 28, 40664, 13, 10917, 23051, 62, 7036, 8, 198, 220, 220, 220, 329, 1573, 287, 636, 24496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1319, 13, 16002, 322, 26933, 14202, 17414, 4775, 11907, 8, 198, 37811, 198, 198, 4480, 1280, 10786, 7109, 34765, 62, 75, 489, 13, 40664, 3256, 705, 64, 3256, 649, 1370, 2625, 4943, 355, 269, 21370, 7753, 25, 628, 220, 220, 220, 1319, 796, 269, 21370, 13, 16002, 7, 40664, 7753, 11, 421, 10720, 28, 40664, 13, 10917, 23051, 62, 7036, 8, 198, 220, 220, 220, 329, 1573, 287, 636, 24496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1319, 13, 16002, 322, 7, 4775, 8, 198, 220, 220, 220, 329, 1573, 287, 997, 7109, 34765, 3911, 24496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1319, 13, 16002, 322, 7, 4775, 8 ]
2.223906
594
#!/usr/bin/env python # # ryw_benchmark.py # # This source file is part of the FoundationDB open source project # # Copyright 2013-2018 Apple Inc. and the FoundationDB project authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os import sys import time import traceback sys.path.append(os.path.join(os.path.dirname(__file__), "..")) from python_tests import PythonTest import fdb fdb.api_version(400) if __name__ == "__main__": print( "Running RYW Benchmark test on Python version %d.%d.%d%s%d" % ( sys.version_info[0], sys.version_info[1], sys.version_info[2], sys.version_info[3][0], sys.version_info[4], ) ) parser = argparse.ArgumentParser() tests = sorted(RYWBenchmark.tests.keys()) assert len(tests) > 0, "RYW benchmark test has no test_functions" test_string = ", ".join(tests[:-1]) if len(tests) > 1: test_string += ", and " test_string += tests[-1] parser.add_argument( "--tests-to-run", nargs="*", help="Names of tests to run. Can be any of %s. By default, all tests are run." % test_string, ) RYWBenchmark().run(parser=parser)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 374, 88, 86, 62, 26968, 4102, 13, 9078, 198, 2, 198, 2, 770, 2723, 2393, 318, 636, 286, 262, 5693, 11012, 1280, 2723, 1628, 198, 2, 198, 2, 15069, 2211, 12, 7908, 4196, 3457, 13, 290, 262, 5693, 11012, 1628, 7035, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 628, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 12854, 1891, 198, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 366, 492, 48774, 198, 6738, 21015, 62, 41989, 1330, 11361, 14402, 198, 198, 11748, 277, 9945, 198, 198, 69, 9945, 13, 15042, 62, 9641, 7, 7029, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28768, 371, 56, 54, 25187, 4102, 1332, 319, 11361, 2196, 4064, 67, 13, 4, 67, 13, 4, 67, 4, 82, 4, 67, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 9641, 62, 10951, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 9641, 62, 10951, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 9641, 62, 10951, 58, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 9641, 62, 10951, 58, 18, 7131, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 9641, 62, 10951, 58, 19, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 628, 220, 220, 220, 5254, 796, 23243, 7, 18276, 54, 44199, 4102, 13, 41989, 13, 13083, 28955, 198, 220, 220, 220, 6818, 18896, 7, 41989, 8, 1875, 657, 11, 366, 18276, 54, 18335, 1332, 468, 645, 1332, 62, 12543, 2733, 1, 198, 220, 220, 220, 1332, 62, 8841, 796, 33172, 27071, 22179, 7, 41989, 58, 21912, 16, 12962, 198, 220, 220, 220, 611, 18896, 7, 41989, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 8841, 15853, 33172, 290, 366, 628, 220, 220, 220, 1332, 62, 8841, 15853, 5254, 58, 12, 16, 60, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 41989, 12, 1462, 12, 5143, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 2625, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 36690, 286, 5254, 284, 1057, 13, 1680, 307, 597, 286, 4064, 82, 13, 2750, 4277, 11, 477, 5254, 389, 1057, 526, 198, 220, 220, 220, 220, 220, 220, 220, 4064, 1332, 62, 8841, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 371, 56, 54, 44199, 4102, 22446, 5143, 7, 48610, 28, 48610, 8, 198 ]
2.645455
660
#!/bin/env python import os,sys #Root of spify src directory SPIFY_SRC_DIR = os.path.join(os.getcwd(),'..') #Name your parser spify_parser_name = "ExampleIFP" spify_parser_params = [] #Specify parameters spify_parser_params.append( { 'name':'boolOption', 'type':'bool', 'shortDesc':'My Boolean Option', 'defaultValue': 0 } ) spify_parser_params.append( { 'name':'boolVectOption', 'type':'v_bool', 'shortDesc':'A vector of booleans.', 'defaultValue': [1,0,1,0] } ) spify_parser_params.append( { 'name':'intOption', 'type':'int', 'longDesc': """Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.""", 'discreteValues': [0,1,3,5,7] } ) spify_parser_params.append( { 'name':'intVectOption', 'type':'v_int', 'shortDesc':'My Integer Vector Option.', 'defaultValue': [-3,-2,-1,0], 'boundMin': -10, 'boundMax': 10 } ) spify_parser_params.append( { 'name':'floatOption', 'type':'double', 'defaultValue': 300.0, 'boundMax': 300.0 } ) spify_parser_params.append( { 'name':'floatVectOption', 'type':'v_double', 'boundMin': 0.0, 'boundMax': 100.0 } ) spify_parser_params.append( { 'name':'stringOption', 'type':'string', 'defaultValue': "foo", 'discreteValues': ["foo","bar","baz"] } ) spify_parser_params.append( { 'name':'stringVectOption', 'type':'v_string', 'shortDesc': "My String Vector Option" } ) spify_parser_params.append( { 'name':'intIntMapOption', 'type':'m_int_int', 'shortDesc': "My Integer-Integer Map Option", 'discreteValuesFirst': [1,2,4,6] } ) spify_parser_params.append( { 'name':'stringIntMapOption', 'type':'m_string_int', 'defaultValue': {"foo":1,"bar":2} } ) spify_parser_params.append( { 'name':'stringStringMapOption', 'type':'m_string_string', 'discreteValuesFirst': ["foo","bar","baz"], 'discreteValuesSecond': ["parrot","buzzard","eagle"] } ) spify_parser_params.append( { 'name':'floatFloatMapOption', 'type':'m_double_double', 'defaultValue': {1.0:10.0, 2.0:20.0, 3.0:30.0} } ) #Make sure we can import SpifyParserGenerator sys.path.append(os.path.join(SPIFY_SRC_DIR,'src')) #Import from SpifyParserGenerator import SpifyParserGenerator as spg #Generate parser code spg().generate(spify_parser_name,spify_parser_params) #Generate master file spg().make_master_file(spify_parser_name,spify_parser_params) #Done.
[ 2, 48443, 8800, 14, 24330, 21015, 198, 198, 11748, 28686, 11, 17597, 198, 198, 2, 30016, 286, 599, 1958, 12351, 8619, 198, 4303, 5064, 56, 62, 50, 7397, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 6, 492, 11537, 198, 198, 2, 5376, 534, 30751, 198, 2777, 1958, 62, 48610, 62, 3672, 796, 366, 16281, 5064, 47, 1, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 796, 17635, 198, 198, 2, 22882, 1958, 10007, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 30388, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 30388, 3256, 198, 220, 220, 220, 705, 19509, 24564, 10354, 6, 3666, 41146, 16018, 3256, 198, 220, 220, 220, 705, 12286, 11395, 10354, 657, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 30388, 53, 478, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 85, 62, 30388, 3256, 198, 220, 220, 220, 705, 19509, 24564, 10354, 6, 32, 15879, 286, 1489, 2305, 504, 2637, 11, 198, 220, 220, 220, 705, 12286, 11395, 10354, 685, 16, 11, 15, 11, 16, 11, 15, 60, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 600, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 600, 3256, 198, 220, 220, 220, 705, 6511, 24564, 10354, 198, 37811, 43, 29625, 220, 2419, 388, 288, 45621, 1650, 716, 316, 11, 369, 8831, 316, 333, 31659, 271, 6345, 1288, 270, 11, 10081, 466, 304, 3754, 4666, 10042, 198, 1939, 312, 312, 2797, 3384, 2248, 382, 2123, 288, 349, 382, 2153, 2616, 435, 1557, 64, 13, 7273, 551, 320, 512, 10356, 8710, 1789, 11, 627, 271, 198, 77, 455, 81, 463, 4208, 3780, 334, 297, 321, 1073, 4827, 271, 299, 23267, 3384, 435, 1557, 541, 409, 304, 64, 13088, 78, 4937, 265, 13, 198, 35660, 271, 257, 1133, 4173, 495, 288, 45621, 287, 1128, 260, 258, 681, 270, 287, 2322, 37623, 378, 11555, 270, 1658, 325, 269, 359, 388, 288, 349, 382, 304, 84, 198, 69, 1018, 5375, 9242, 64, 1582, 72, 2541, 13, 18181, 23365, 264, 600, 1609, 64, 721, 265, 6508, 312, 265, 265, 1729, 386, 738, 11, 264, 2797, 287, 198, 3129, 8957, 45567, 1163, 544, 748, 263, 2797, 285, 692, 270, 2355, 4686, 1556, 4827, 388, 32203, 1600, 198, 220, 220, 220, 705, 15410, 8374, 40161, 10354, 685, 15, 11, 16, 11, 18, 11, 20, 11, 22, 60, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 600, 53, 478, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 85, 62, 600, 3256, 198, 220, 220, 220, 705, 19509, 24564, 10354, 6, 3666, 34142, 20650, 16018, 2637, 11, 198, 220, 220, 220, 705, 12286, 11395, 10354, 25915, 18, 12095, 17, 12095, 16, 11, 15, 4357, 198, 220, 220, 220, 705, 7784, 9452, 10354, 532, 940, 11, 198, 220, 220, 220, 705, 7784, 11518, 10354, 838, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 22468, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 23352, 3256, 198, 220, 220, 220, 705, 12286, 11395, 10354, 5867, 13, 15, 11, 198, 220, 220, 220, 705, 7784, 11518, 10354, 5867, 13, 15, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 22468, 53, 478, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 85, 62, 23352, 3256, 198, 220, 220, 220, 705, 7784, 9452, 10354, 657, 13, 15, 11, 198, 220, 220, 220, 705, 7784, 11518, 10354, 1802, 13, 15, 198, 92, 198, 8, 628, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 8841, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 8841, 3256, 198, 220, 220, 220, 705, 12286, 11395, 10354, 366, 21943, 1600, 198, 220, 220, 220, 705, 15410, 8374, 40161, 10354, 14631, 21943, 2430, 5657, 2430, 65, 1031, 8973, 198, 92, 198, 8, 628, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 8841, 53, 478, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 85, 62, 8841, 3256, 198, 220, 220, 220, 705, 19509, 24564, 10354, 366, 3666, 10903, 20650, 16018, 1, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 600, 5317, 13912, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 76, 62, 600, 62, 600, 3256, 198, 220, 220, 220, 705, 19509, 24564, 10354, 366, 3666, 34142, 12, 46541, 9347, 16018, 1600, 198, 220, 220, 220, 705, 15410, 8374, 40161, 5962, 10354, 685, 16, 11, 17, 11, 19, 11, 21, 60, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 8841, 5317, 13912, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 76, 62, 8841, 62, 600, 3256, 198, 220, 220, 220, 705, 12286, 11395, 10354, 19779, 21943, 1298, 16, 553, 5657, 1298, 17, 92, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 8841, 10100, 13912, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 76, 62, 8841, 62, 8841, 3256, 198, 220, 220, 220, 705, 15410, 8374, 40161, 5962, 10354, 14631, 21943, 2430, 5657, 2430, 65, 1031, 33116, 198, 220, 220, 220, 705, 15410, 8374, 40161, 12211, 10354, 14631, 1845, 10599, 2430, 65, 4715, 446, 2430, 68, 19345, 8973, 198, 92, 198, 8, 198, 198, 2777, 1958, 62, 48610, 62, 37266, 13, 33295, 7, 198, 90, 198, 220, 220, 220, 705, 3672, 10354, 6, 22468, 43879, 13912, 19722, 3256, 198, 220, 220, 220, 705, 4906, 10354, 6, 76, 62, 23352, 62, 23352, 3256, 198, 220, 220, 220, 705, 12286, 11395, 10354, 1391, 16, 13, 15, 25, 940, 13, 15, 11, 362, 13, 15, 25, 1238, 13, 15, 11, 513, 13, 15, 25, 1270, 13, 15, 92, 198, 92, 198, 8, 198, 198, 2, 12050, 1654, 356, 460, 1330, 1338, 1958, 46677, 8645, 1352, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 4303, 5064, 56, 62, 50, 7397, 62, 34720, 4032, 10677, 6, 4008, 198, 198, 2, 20939, 198, 6738, 1338, 1958, 46677, 8645, 1352, 1330, 1338, 1958, 46677, 8645, 1352, 355, 599, 70, 198, 198, 2, 8645, 378, 30751, 2438, 198, 2777, 70, 22446, 8612, 378, 7, 2777, 1958, 62, 48610, 62, 3672, 11, 2777, 1958, 62, 48610, 62, 37266, 8, 198, 2, 8645, 378, 4958, 2393, 198, 2777, 70, 22446, 15883, 62, 9866, 62, 7753, 7, 2777, 1958, 62, 48610, 62, 3672, 11, 2777, 1958, 62, 48610, 62, 37266, 8, 198, 198, 2, 45677, 13, 198 ]
2.343802
1,210
import streamlit as st
[ 11748, 4269, 18250, 355, 336, 201 ]
3.833333
6
import requests from bs4 import BeautifulSoup import mysql.connector conn = mysql.connector.connect(host="localhost", user="root", password="root", database="pokedex", port=8889) cursor = conn.cursor(buffered=True) # connexion et récupération des données / parse du site #response = requests.get("https://pokemondb.net/pokedex/all") #html = str(response.content) fichier = open("data_pokemon.html","r") html = fichier.read() fichier.close() soup = BeautifulSoup(html, "html.parser") tab = soup.find(id="pokedex") for link in tab.find_all("tr"): tt = [] x = 0 type_ids = [] for l in link.find_all("td"): if x == 1: if l.find_all("a"): nom = l.find_all("a") tt.append(nom[0].text) else: tt.append("") if x == 2: for type_poke in l.find_all("a"): nom_type = type_poke.text cursor.execute("SELECT id FROM type WHERE nom LIKE '"+nom_type+"%' ;") test_type = cursor.fetchone() if test_type == None: cursor.execute("INSERT INTO type VALUES (0, '"+nom_type+"');") type_ids.append(cursor.lastrowid) if x == 0 or x > 2: tt.append(l.text) x = x+1 if len(tt) > 0 and tt[1] != "": cursor.execute("""INSERT INTO pokemon (ref, nom, total, hp, attack, defense, sp_atk, sp_def, speed) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)""", tt) pokemon_id = cursor.lastrowid for type_id in type_ids: print(type_id) cursor.execute("INSERT INTO pokemon_types VALUES (0, "+str(pokemon_id)+", "+str(type_id)+");") cursor.close() conn.commit() conn.close()
[ 11748, 7007, 198, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 198, 11748, 48761, 13, 8443, 273, 198, 37043, 796, 48761, 13, 8443, 273, 13, 8443, 7, 4774, 2625, 36750, 1600, 2836, 2625, 15763, 1600, 9206, 2625, 15763, 1600, 6831, 2625, 79, 6545, 1069, 1600, 2493, 28, 3459, 4531, 8, 198, 66, 21471, 796, 48260, 13, 66, 21471, 7, 36873, 1068, 28, 17821, 8, 198, 198, 2, 369, 12413, 295, 2123, 40560, 25244, 2634, 1358, 748, 836, 77, 2634, 274, 1220, 21136, 7043, 2524, 198, 198, 2, 26209, 796, 7007, 13, 1136, 7203, 5450, 1378, 35924, 6327, 65, 13, 3262, 14, 79, 6545, 1069, 14, 439, 4943, 198, 2, 6494, 796, 965, 7, 26209, 13, 11299, 8, 198, 198, 69, 488, 959, 796, 1280, 7203, 7890, 62, 79, 12717, 13, 6494, 2430, 81, 4943, 198, 6494, 796, 277, 488, 959, 13, 961, 3419, 198, 69, 488, 959, 13, 19836, 3419, 198, 198, 82, 10486, 796, 23762, 50, 10486, 7, 6494, 11, 366, 6494, 13, 48610, 4943, 198, 198, 8658, 796, 17141, 13, 19796, 7, 312, 2625, 79, 6545, 1069, 4943, 198, 198, 1640, 2792, 287, 7400, 13, 19796, 62, 439, 7203, 2213, 1, 2599, 198, 220, 220, 220, 256, 83, 796, 17635, 198, 220, 220, 220, 2124, 796, 657, 198, 220, 220, 220, 2099, 62, 2340, 796, 17635, 198, 220, 220, 220, 329, 300, 287, 2792, 13, 19796, 62, 439, 7203, 8671, 1, 2599, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 300, 13, 19796, 62, 439, 7203, 64, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4515, 796, 300, 13, 19796, 62, 439, 7203, 64, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 83, 13, 33295, 7, 26601, 58, 15, 4083, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 83, 13, 33295, 7203, 4943, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2099, 62, 35924, 287, 300, 13, 19796, 62, 439, 7203, 64, 1, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4515, 62, 4906, 796, 2099, 62, 35924, 13, 5239, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23493, 13, 41049, 7203, 46506, 4686, 16034, 2099, 33411, 4515, 34178, 705, 1, 10, 26601, 62, 4906, 10, 1, 4, 6, 2162, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 4906, 796, 23493, 13, 69, 7569, 505, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1332, 62, 4906, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23493, 13, 41049, 7203, 20913, 17395, 39319, 2099, 26173, 35409, 357, 15, 11, 705, 1, 10, 26601, 62, 4906, 10, 1, 24036, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 2340, 13, 33295, 7, 66, 21471, 13, 12957, 808, 312, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 6624, 657, 393, 2124, 1875, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 83, 13, 33295, 7, 75, 13, 5239, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2124, 10, 16, 628, 628, 220, 220, 220, 611, 18896, 7, 926, 8, 1875, 657, 290, 256, 83, 58, 16, 60, 14512, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 23493, 13, 41049, 7203, 15931, 20913, 17395, 39319, 43962, 357, 5420, 11, 4515, 11, 2472, 11, 27673, 11, 1368, 11, 3761, 11, 599, 62, 265, 74, 11, 599, 62, 4299, 11, 2866, 8, 26173, 35409, 37633, 82, 11, 4064, 82, 11, 4064, 82, 11, 4064, 82, 11, 4064, 82, 11, 4064, 82, 11, 4064, 82, 11, 4064, 82, 11, 4064, 82, 8, 15931, 1600, 256, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 43962, 62, 312, 796, 23493, 13, 12957, 808, 312, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2099, 62, 312, 287, 2099, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 4906, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23493, 13, 41049, 7203, 20913, 17395, 39319, 43962, 62, 19199, 26173, 35409, 357, 15, 11, 43825, 2536, 7, 79, 12717, 62, 312, 47762, 1600, 43825, 2536, 7, 4906, 62, 312, 47762, 15341, 4943, 198, 198, 66, 21471, 13, 19836, 3419, 198, 37043, 13, 41509, 3419, 198, 37043, 13, 19836, 3419 ]
2.052817
852
import subprocess import arcpy from arcpy import env import sqlite3 import xml.etree.ElementTree import os import json import zipfile from arcpy import mapping import os from xml.dom.minidom import parse from datetime import datetime import time import copy import shutil import types import ConfigParser import copy import logging import sys Config = ConfigParser.ConfigParser() #logging.basicConfig(filename="logfile.txt") logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # create a file handler handler = logging.FileHandler("logfile.txt") handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) arcpy.env.overwriteOutput = True #notes: urlKey in portals.self.json must be blank or it will try to authenticate at arcgis.com #other gotchas #For polygon styles, makes sure to use "style": "esriSFSSolid" and NOT "style": "esriSLSSolid" for the outline style #OBS! OBJECTID in layers/tables MUST be int32, not integer. Otherwise lookups will not work, even after creating new records #import time #env.workspace = "CURRENT" #env.addOutputsToMap = False #env.overwriteOutput = True arcpy.env.overwriteOutput = True toolkitPath = os.path.abspath(os.path.dirname(__file__)).replace("\\","/") gdal_path = "" ogr2ogr_path = "" ogrinfo_path = "" gdal_data_path = "" spatialite_path = "" #toolkitPath+"/gdal/ogr2ogr.exe #create a replica sqlite database for a single layer/table #DatasetID #DatasetName #DatasetType>esriDTFeatureClass</DatasetType> #LayerID #LayerName # Open original file #et = xml.etree.ElementTree.parse(xmlFile) # Append new tag: <a x='1' y='abc'>body text</a> #new_tag = xml.etree.ElementTree.SubElement(et.getroot(), 'a') #new_tag.text = 'body text' #new_tag.attrib['x'] = '1' # must be str; cannot be an int #new_tag.attrib['y'] = 'abc' # Write back to file #et.write('file.xml') #et.write('file_new.xml') #def getLayerDefinition(lyr,symbol): # return getSymbol(lyr,symbols[featureName],lyr.name) # layerDef={ # "drawingInfo":{ # "renderer":getRendere(lyr) # } # } #get the fields for the popup #{ # "id" : <relationshipId1>, # "name" : "<relationshipName1>", # "relatedTableId" : <relatedTableId1>, # "cardinality" : "<esriRelCardinalityOneToOne>|<esriRelCardinalityOneToMany>|<esriRelCardinalityManyToMany>";,//Added at 10.1 # "role" : "<esriRelRoleOrigin>|<esriRelRoleDestination>";,//Added at 10.1 # "keyField" : "<keyFieldName2>",//Added at 10.1 # "composite" : <true>|<false>,//Added at 10.1 # "relationshipTableId": <attributedRelationshipClassTableId>, //Added in 10.1. Returned only for attributed relationships # "keyFieldInRelationshipTable": "<key field in AttributedRelationshipClass table that matches keyField>" //Added in 10.1. Returned only for attributed relationships #}, #def getRelationships(lyr,lyrid,cnt,tables,relationshipObj): # getFeatureClassParentWorkspace: This script gets the geodatabase for a # feature class. The trick here is that feature classes can be within a # feature dataset so you need to account for two possible levels in the # directory structure. #see http://resources.arcgis.com/en/help/arcgis-rest-api/index.html#//02r30000019t000000 # and http://resources.arcgis.com/en/help/arcgis-rest-api/index.html#//02r3000000n5000000 #"symbol":{ "type": "esriSMS", "style": "esriSMSSquare", "color": [76,115,0,255], "size": 8, "angle": 0, "xoffset": 0, "yoffset": 0, "outline": { "color": [152,230,0,255], "width": 1 } } if __name__ == '__main__': if sys.executable.find("python.exe") != -1: main()
[ 11748, 850, 14681, 198, 11748, 10389, 9078, 198, 6738, 10389, 9078, 1330, 17365, 198, 11748, 44161, 578, 18, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 19974, 7753, 198, 6738, 10389, 9078, 1330, 16855, 198, 11748, 28686, 198, 6738, 35555, 13, 3438, 13, 1084, 312, 296, 1330, 21136, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 640, 198, 11748, 4866, 198, 11748, 4423, 346, 198, 11748, 3858, 198, 11748, 17056, 46677, 198, 11748, 4866, 198, 11748, 18931, 198, 11748, 25064, 198, 198, 16934, 796, 17056, 46677, 13, 16934, 46677, 3419, 628, 198, 2, 6404, 2667, 13, 35487, 16934, 7, 34345, 2625, 6404, 7753, 13, 14116, 4943, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 198, 2, 2251, 257, 2393, 21360, 198, 30281, 796, 18931, 13, 8979, 25060, 7203, 6404, 7753, 13, 14116, 4943, 198, 30281, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 198, 2, 2251, 257, 18931, 5794, 198, 687, 1436, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 3672, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 11537, 198, 30281, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 198, 2, 751, 262, 32847, 284, 262, 49706, 198, 6404, 1362, 13, 2860, 25060, 7, 30281, 8, 628, 198, 5605, 9078, 13, 24330, 13, 2502, 13564, 26410, 796, 6407, 198, 2, 17815, 25, 220, 19016, 9218, 287, 42604, 13, 944, 13, 17752, 1276, 307, 9178, 393, 340, 481, 1949, 284, 8323, 5344, 379, 10389, 70, 271, 13, 785, 198, 2, 847, 1392, 354, 292, 198, 2, 1890, 7514, 14520, 12186, 11, 1838, 1654, 284, 779, 366, 7635, 1298, 366, 274, 380, 20802, 5432, 10180, 1, 290, 5626, 366, 7635, 1298, 366, 274, 380, 8634, 5432, 10180, 1, 329, 262, 19001, 3918, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 46, 4462, 0, 25334, 23680, 2389, 287, 11685, 14, 83, 2977, 17191, 307, 493, 2624, 11, 407, 18253, 13, 220, 15323, 804, 4739, 481, 407, 670, 11, 772, 706, 4441, 649, 4406, 198, 198, 2, 11748, 640, 198, 2, 24330, 13, 5225, 10223, 796, 366, 34, 39237, 1, 198, 2, 24330, 13, 2860, 26410, 82, 2514, 13912, 796, 10352, 198, 2, 24330, 13, 2502, 13564, 26410, 796, 6407, 198, 5605, 9078, 13, 24330, 13, 2502, 13564, 26410, 796, 6407, 198, 198, 25981, 15813, 15235, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 29720, 33491, 7203, 6852, 2430, 14, 4943, 198, 21287, 282, 62, 6978, 796, 13538, 198, 519, 81, 17, 519, 81, 62, 6978, 796, 13538, 198, 519, 81, 10951, 62, 6978, 796, 13538, 198, 21287, 282, 62, 7890, 62, 6978, 796, 13538, 198, 2777, 34961, 578, 62, 6978, 796, 13538, 198, 198, 2, 25981, 15813, 15235, 10, 1, 14, 21287, 282, 14, 519, 81, 17, 519, 81, 13, 13499, 198, 220, 220, 198, 2, 17953, 257, 30069, 44161, 578, 6831, 329, 257, 2060, 7679, 14, 11487, 628, 198, 2, 27354, 292, 316, 2389, 198, 2, 27354, 292, 316, 5376, 198, 2, 27354, 292, 316, 6030, 29, 274, 380, 35, 10234, 68, 1300, 9487, 3556, 27354, 292, 316, 6030, 29, 198, 2, 49925, 2389, 198, 2, 49925, 5376, 628, 220, 1303, 4946, 2656, 2393, 198, 220, 1303, 316, 796, 35555, 13, 316, 631, 13, 20180, 27660, 13, 29572, 7, 19875, 8979, 8, 628, 220, 1303, 2034, 437, 649, 7621, 25, 1279, 64, 2124, 11639, 16, 6, 331, 11639, 39305, 44167, 2618, 2420, 3556, 64, 29, 198, 220, 1303, 3605, 62, 12985, 796, 35555, 13, 316, 631, 13, 20180, 27660, 13, 7004, 20180, 7, 316, 13, 1136, 15763, 22784, 705, 64, 11537, 198, 220, 1303, 3605, 62, 12985, 13, 5239, 796, 705, 2618, 2420, 6, 198, 220, 1303, 3605, 62, 12985, 13, 1078, 822, 17816, 87, 20520, 796, 705, 16, 6, 1303, 1276, 307, 965, 26, 2314, 307, 281, 493, 198, 220, 1303, 3605, 62, 12985, 13, 1078, 822, 17816, 88, 20520, 796, 705, 39305, 6, 628, 220, 1303, 19430, 736, 284, 2393, 198, 220, 1303, 316, 13, 13564, 10786, 7753, 13, 19875, 11537, 198, 220, 1303, 316, 13, 13564, 10786, 7753, 62, 3605, 13, 19875, 11537, 628, 628, 198, 198, 2, 4299, 651, 49925, 36621, 7, 306, 81, 11, 1837, 23650, 2599, 198, 2, 220, 220, 220, 1441, 651, 13940, 23650, 7, 306, 81, 11, 1837, 2022, 10220, 58, 30053, 5376, 4357, 306, 81, 13, 3672, 8, 198, 2, 220, 220, 220, 7679, 7469, 34758, 198, 2, 220, 220, 220, 220, 220, 220, 220, 366, 19334, 278, 12360, 1298, 90, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10920, 11882, 1298, 1136, 49, 437, 567, 7, 306, 81, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 2, 220, 220, 220, 1782, 198, 198, 2, 1136, 262, 7032, 329, 262, 46207, 198, 198, 2, 90, 198, 2, 220, 220, 220, 366, 312, 1, 1058, 1279, 39468, 1056, 7390, 16, 22330, 198, 2, 220, 220, 220, 366, 3672, 1, 1058, 33490, 39468, 1056, 5376, 16, 29, 1600, 198, 2, 220, 220, 220, 366, 5363, 10962, 7390, 1, 1058, 1279, 5363, 10962, 7390, 16, 22330, 198, 2, 220, 220, 220, 366, 9517, 1292, 414, 1, 1058, 33490, 274, 380, 6892, 16962, 1292, 414, 3198, 2514, 3198, 29, 91, 27, 274, 380, 6892, 16962, 1292, 414, 3198, 2514, 7085, 29, 91, 27, 274, 380, 6892, 16962, 1292, 414, 7085, 2514, 7085, 29, 8172, 11, 1003, 13003, 379, 838, 13, 16, 198, 2, 220, 220, 220, 366, 18090, 1, 1058, 33490, 274, 380, 6892, 47445, 39688, 29, 91, 27, 274, 380, 6892, 47445, 24159, 1883, 29, 8172, 11, 1003, 13003, 379, 838, 13, 16, 198, 2, 220, 220, 220, 366, 2539, 15878, 1, 1058, 33490, 2539, 15878, 5376, 17, 29, 1600, 1003, 13003, 379, 838, 13, 16, 198, 2, 220, 220, 220, 366, 785, 1930, 578, 1, 1058, 1279, 7942, 29, 91, 27, 9562, 22330, 1003, 13003, 379, 838, 13, 16, 198, 2, 220, 220, 220, 366, 39468, 1056, 10962, 7390, 1298, 1279, 1078, 6169, 47117, 1056, 9487, 10962, 7390, 22330, 220, 3373, 13003, 287, 838, 13, 16, 13, 8229, 276, 691, 329, 14183, 6958, 198, 2, 220, 220, 220, 366, 2539, 15878, 818, 47117, 1056, 10962, 1298, 33490, 2539, 2214, 287, 3460, 6169, 47117, 1056, 9487, 3084, 326, 7466, 1994, 15878, 24618, 3373, 13003, 287, 838, 13, 16, 13, 8229, 276, 691, 329, 14183, 6958, 198, 2, 5512, 198, 198, 2, 4299, 651, 47117, 5748, 7, 306, 81, 11, 306, 6058, 11, 66, 429, 11, 83, 2977, 11, 39468, 1056, 49201, 2599, 628, 198, 2, 651, 38816, 9487, 24546, 23044, 10223, 25, 770, 4226, 3011, 262, 4903, 375, 265, 5754, 329, 257, 198, 2, 3895, 1398, 13, 383, 6908, 994, 318, 326, 3895, 6097, 460, 307, 1626, 257, 198, 2, 3895, 27039, 523, 345, 761, 284, 1848, 329, 734, 1744, 2974, 287, 262, 198, 2, 8619, 4645, 13, 628, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 2, 3826, 2638, 1378, 37540, 13, 5605, 70, 271, 13, 785, 14, 268, 14, 16794, 14, 5605, 70, 271, 12, 2118, 12, 15042, 14, 9630, 13, 6494, 2, 1003, 2999, 81, 18, 2388, 30484, 83, 10535, 198, 2, 290, 2638, 1378, 37540, 13, 5605, 70, 271, 13, 785, 14, 268, 14, 16794, 14, 5605, 70, 271, 12, 2118, 12, 15042, 14, 9630, 13, 6494, 2, 1003, 2999, 81, 18, 10535, 77, 20, 10535, 198, 2, 1, 1837, 23650, 1298, 90, 366, 4906, 1298, 366, 274, 380, 50, 5653, 1600, 366, 7635, 1298, 366, 274, 380, 12310, 5432, 421, 533, 1600, 366, 8043, 1298, 685, 4304, 11, 15363, 11, 15, 11, 13381, 4357, 366, 7857, 1298, 807, 11, 366, 9248, 1298, 657, 11, 366, 87, 28968, 1298, 657, 11, 366, 88, 28968, 1298, 657, 11, 366, 448, 1370, 1298, 1391, 366, 8043, 1298, 685, 17827, 11, 19214, 11, 15, 11, 13381, 4357, 366, 10394, 1298, 352, 1782, 1782, 628, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 611, 25064, 13, 18558, 18187, 13, 19796, 7203, 29412, 13, 13499, 4943, 14512, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 1388, 3419, 198 ]
2.703756
1,411
"Testcases for text messages" from .. import Case from bobot.Rule import Rule from bobot.Response import Text responseAsTextDict = Case.Case([ Rule({ 'match': 'text', 'response': { 'text': 'Waiting for text' } }) ], [ { 'expected': [Case.Expectation('Waiting for text').value()], 'message': Case.Message('text').value() } ]) responseAsTextDictOptions = Case.Case([ Rule({ 'match': 'text', 'response': { 'text': { 'text': 'Waiting for {text}', 'interpolate': True } } }) ], [ { 'expected': [Case.Expectation('Waiting for text').value()], 'message': Case.Message('text').value() } ]) responseAsTextObject = Case.Case([ Rule({ 'match': 'text', 'response': Text('Waiting for text') }) ], [ { 'expected': [Case.Expectation('Waiting for text').value()], 'message': Case.Message('text').value() } ]) responseAsTextObjectOptions = Case.Case([ Rule({ 'match': 'text', 'response': Text('Waiting for {text}', interpolate=True) }) ], [ { 'expected': [Case.Expectation('Waiting for text').value()], 'message': Case.Message('text').value() } ])
[ 1, 14402, 33964, 329, 2420, 6218, 1, 628, 198, 6738, 11485, 1330, 8913, 198, 6738, 29202, 313, 13, 31929, 1330, 14330, 198, 6738, 29202, 313, 13, 31077, 1330, 8255, 198, 198, 26209, 1722, 8206, 35, 713, 796, 8913, 13, 20448, 26933, 198, 220, 220, 220, 14330, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15699, 10354, 705, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26209, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5239, 10354, 705, 33484, 1780, 329, 2420, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 32092, 198, 4357, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 10354, 685, 20448, 13, 3109, 806, 341, 10786, 33484, 1780, 329, 2420, 27691, 8367, 3419, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20500, 10354, 8913, 13, 12837, 10786, 5239, 27691, 8367, 3419, 198, 220, 220, 220, 1782, 198, 12962, 198, 198, 26209, 1722, 8206, 35, 713, 29046, 796, 8913, 13, 20448, 26933, 198, 220, 220, 220, 14330, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15699, 10354, 705, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26209, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5239, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5239, 10354, 705, 33484, 1780, 329, 1391, 5239, 92, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3849, 16104, 378, 10354, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 32092, 198, 4357, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 10354, 685, 20448, 13, 3109, 806, 341, 10786, 33484, 1780, 329, 2420, 27691, 8367, 3419, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20500, 10354, 8913, 13, 12837, 10786, 5239, 27691, 8367, 3419, 198, 220, 220, 220, 1782, 198, 12962, 198, 198, 26209, 1722, 8206, 10267, 796, 8913, 13, 20448, 26933, 198, 220, 220, 220, 14330, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15699, 10354, 705, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26209, 10354, 8255, 10786, 33484, 1780, 329, 2420, 11537, 198, 220, 220, 220, 32092, 198, 4357, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 10354, 685, 20448, 13, 3109, 806, 341, 10786, 33484, 1780, 329, 2420, 27691, 8367, 3419, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20500, 10354, 8913, 13, 12837, 10786, 5239, 27691, 8367, 3419, 198, 220, 220, 220, 1782, 198, 12962, 198, 198, 26209, 1722, 8206, 10267, 29046, 796, 8913, 13, 20448, 26933, 198, 220, 220, 220, 14330, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15699, 10354, 705, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26209, 10354, 8255, 10786, 33484, 1780, 329, 1391, 5239, 92, 3256, 39555, 378, 28, 17821, 8, 198, 220, 220, 220, 32092, 198, 4357, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 10354, 685, 20448, 13, 3109, 806, 341, 10786, 33484, 1780, 329, 2420, 27691, 8367, 3419, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20500, 10354, 8913, 13, 12837, 10786, 5239, 27691, 8367, 3419, 198, 220, 220, 220, 1782, 198, 12962, 198 ]
2.181063
602
#!/usr/bin/env python # Copyright (c) 2019 VMware, Inc. All Rights Reserved. # SPDX-License-Identifier: BSD-2 License # The full license information can be found in LICENSE.txt # in the root directory of this project. import uuid from sqlalchemy.orm import joinedload from sqlalchemy.sql import func from axon.db.sql.config import models as cmodels from axon.db.sql.analytics import models as amodels
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 15069, 357, 66, 8, 13130, 37754, 11, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 17, 13789, 198, 2, 383, 1336, 5964, 1321, 460, 307, 1043, 287, 38559, 24290, 13, 14116, 198, 2, 287, 262, 6808, 8619, 286, 428, 1628, 13, 198, 198, 11748, 334, 27112, 198, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 5399, 2220, 198, 6738, 44161, 282, 26599, 13, 25410, 1330, 25439, 198, 198, 6738, 7877, 261, 13, 9945, 13, 25410, 13, 11250, 1330, 4981, 355, 269, 27530, 198, 6738, 7877, 261, 13, 9945, 13, 25410, 13, 38200, 14094, 1330, 4981, 355, 716, 375, 1424, 628, 628, 628, 628, 198 ]
3.296
125
from py3dbp import Packer, Bin, Item packer = Packer() packer.add_bin(Bin('small', 300,300,200,5)) packer.add_bin(Bin('big', 500,600,400,8)) packer.add_item(Item('Producto 1',45,60,70,0.5)) packer.add_item(Item('Producto 2',30,50,30,0.7)) packer.add_item(Item('Producto 3',20,70,70,1)) packer.add_item(Item('Producto 4',45,60,70,1.2)) packer.add_item(Item('Producto 5',170,80,70,1.2)) packer.add_item(Item('Producto 6',300,200,70,1.2)) packer.pack(bigger_first=True) for b in packer.bins: print(":::::::::::", b.string()) print("FITTED ITEMS:") for item in b.items: print("====> ", item.string()) print("UNFITTED ITEMS:") for item in b.unfitted_items: print("====> ", item.string()) print("***************************************************") print("***************************************************")
[ 6738, 12972, 18, 9945, 79, 1330, 6400, 263, 11, 20828, 11, 9097, 198, 198, 8002, 263, 796, 6400, 263, 3419, 198, 198, 8002, 263, 13, 2860, 62, 8800, 7, 33, 259, 10786, 17470, 3256, 5867, 11, 6200, 11, 2167, 11, 20, 4008, 198, 8002, 263, 13, 2860, 62, 8800, 7, 33, 259, 10786, 14261, 3256, 5323, 11, 8054, 11, 7029, 11, 23, 4008, 198, 198, 8002, 263, 13, 2860, 62, 9186, 7, 7449, 10786, 15667, 78, 352, 3256, 2231, 11, 1899, 11, 2154, 11, 15, 13, 20, 4008, 198, 8002, 263, 13, 2860, 62, 9186, 7, 7449, 10786, 15667, 78, 362, 3256, 1270, 11, 1120, 11, 1270, 11, 15, 13, 22, 4008, 198, 8002, 263, 13, 2860, 62, 9186, 7, 7449, 10786, 15667, 78, 513, 3256, 1238, 11, 2154, 11, 2154, 11, 16, 4008, 198, 8002, 263, 13, 2860, 62, 9186, 7, 7449, 10786, 15667, 78, 604, 3256, 2231, 11, 1899, 11, 2154, 11, 16, 13, 17, 4008, 198, 8002, 263, 13, 2860, 62, 9186, 7, 7449, 10786, 15667, 78, 642, 3256, 17279, 11, 1795, 11, 2154, 11, 16, 13, 17, 4008, 198, 8002, 263, 13, 2860, 62, 9186, 7, 7449, 10786, 15667, 78, 718, 3256, 6200, 11, 2167, 11, 2154, 11, 16, 13, 17, 4008, 198, 198, 8002, 263, 13, 8002, 7, 14261, 1362, 62, 11085, 28, 17821, 8, 198, 198, 1640, 275, 287, 2353, 263, 13, 65, 1040, 25, 198, 220, 220, 220, 3601, 7, 1298, 43661, 3712, 1600, 275, 13, 8841, 28955, 628, 220, 220, 220, 3601, 7203, 37, 22470, 1961, 7283, 39201, 25, 4943, 198, 220, 220, 220, 329, 2378, 287, 275, 13, 23814, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1421, 29, 33172, 2378, 13, 8841, 28955, 628, 220, 220, 220, 3601, 7203, 4944, 37, 22470, 1961, 7283, 39201, 25, 4943, 198, 220, 220, 220, 329, 2378, 287, 275, 13, 403, 38631, 62, 23814, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1421, 29, 33172, 2378, 13, 8841, 28955, 628, 220, 220, 220, 3601, 7203, 17174, 8412, 8162, 4943, 198, 220, 220, 220, 3601, 7203, 17174, 8412, 8162, 4943 ]
2.438746
351
# 🚨 Don't change the code below 👇 print("Welcome to the Love Calculator!") name1 = input("What is your name? \n") name2 = input("What is their name? \n") # 🚨 Don't change the code above 👆 #Write your code below this line 👇 names_concat = name1.lower() + name2.lower() names_true_total = names_concat.count('t') + names_concat.count('r') + names_concat.count('u') + names_concat.count('e') names_love_total = names_concat.count('l') + names_concat.count('o') + names_concat.count('v') + names_concat.count('e') score_str = str(names_true_total) + str(names_love_total) score = int(score_str) if score < 10 or score > 90: print(f"Your score is {score}, you go together like coke and mentos.") elif score >= 40 and score <= 50: print(f"Your score is {score}, you are alright together.") else: print(f"Your score is {score}.")
[ 2, 12520, 248, 101, 2094, 470, 1487, 262, 2438, 2174, 50169, 229, 198, 4798, 7203, 14618, 284, 262, 5896, 43597, 2474, 8, 198, 3672, 16, 796, 5128, 7203, 2061, 318, 534, 1438, 30, 3467, 77, 4943, 198, 3672, 17, 796, 5128, 7203, 2061, 318, 511, 1438, 30, 3467, 77, 4943, 198, 2, 12520, 248, 101, 2094, 470, 1487, 262, 2438, 2029, 50169, 228, 198, 198, 2, 16594, 534, 2438, 2174, 428, 1627, 50169, 229, 198, 198, 14933, 62, 1102, 9246, 796, 1438, 16, 13, 21037, 3419, 1343, 1438, 17, 13, 21037, 3419, 198, 198, 14933, 62, 7942, 62, 23350, 796, 3891, 62, 1102, 9246, 13, 9127, 10786, 83, 11537, 1343, 3891, 62, 1102, 9246, 13, 9127, 10786, 81, 11537, 1343, 3891, 62, 1102, 9246, 13, 9127, 10786, 84, 11537, 1343, 3891, 62, 1102, 9246, 13, 9127, 10786, 68, 11537, 198, 14933, 62, 23205, 62, 23350, 796, 3891, 62, 1102, 9246, 13, 9127, 10786, 75, 11537, 1343, 3891, 62, 1102, 9246, 13, 9127, 10786, 78, 11537, 1343, 3891, 62, 1102, 9246, 13, 9127, 10786, 85, 11537, 1343, 3891, 62, 1102, 9246, 13, 9127, 10786, 68, 11537, 198, 198, 26675, 62, 2536, 796, 965, 7, 14933, 62, 7942, 62, 23350, 8, 1343, 965, 7, 14933, 62, 23205, 62, 23350, 8, 198, 26675, 796, 493, 7, 26675, 62, 2536, 8, 198, 198, 361, 4776, 1279, 838, 393, 4776, 1875, 4101, 25, 198, 220, 220, 220, 3601, 7, 69, 1, 7120, 4776, 318, 1391, 26675, 5512, 345, 467, 1978, 588, 763, 365, 290, 6229, 418, 19570, 198, 417, 361, 4776, 18189, 2319, 290, 4776, 19841, 2026, 25, 198, 220, 220, 220, 3601, 7, 69, 1, 7120, 4776, 318, 1391, 26675, 5512, 345, 389, 23036, 1978, 19570, 198, 17772, 25, 198, 220, 220, 220, 3601, 7, 69, 1, 7120, 4776, 318, 1391, 26675, 92, 19570, 198 ]
2.790698
301
import pandas as pd import os import pymorphy2 from sklearn.preprocessing import MinMaxScaler from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer import numpy as np import pickle PATH = 'models/' with open(os.path.join(PATH, 'tfidf.pkl'), 'rb') as f: tfidf = pickle.load(f) time_related = ['лет', 'год ', 'меся', 'недел', 'дне', 'года'] specials_to_remove = [ '.', '"', "'", '?', '(', ')', '`', ] specials_to_replace = [ '-', '\\', '/', ',' ] key_pos = ['NOUN', 'VERB', 'NUMR', 'ADJF', 'ADJS', 'INFN'] morph = pymorphy2.MorphAnalyzer()
[ 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 28686, 201, 198, 11748, 12972, 4491, 6883, 17, 201, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 1855, 11518, 3351, 36213, 201, 198, 6738, 1341, 35720, 13, 30053, 62, 2302, 7861, 13, 5239, 1330, 2764, 38469, 7509, 11, 309, 69, 312, 69, 38469, 7509, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2298, 293, 201, 198, 201, 198, 34219, 796, 705, 27530, 14, 6, 201, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 34219, 11, 705, 27110, 312, 69, 13, 79, 41582, 33809, 705, 26145, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 48700, 312, 69, 796, 2298, 293, 13, 2220, 7, 69, 8, 201, 198, 201, 198, 2435, 62, 5363, 796, 37250, 30143, 16843, 20375, 3256, 705, 140, 111, 25443, 112, 46083, 705, 43108, 16843, 21727, 40623, 3256, 705, 22177, 16843, 43666, 16843, 30143, 3256, 705, 43666, 22177, 16843, 3256, 705, 140, 111, 25443, 112, 16142, 20520, 201, 198, 20887, 82, 62, 1462, 62, 28956, 796, 685, 201, 198, 220, 220, 220, 705, 2637, 11, 705, 1, 3256, 24018, 1600, 705, 30, 3256, 29513, 3256, 705, 8, 3256, 705, 63, 3256, 201, 198, 60, 201, 198, 20887, 82, 62, 1462, 62, 33491, 796, 685, 201, 198, 220, 220, 220, 705, 12, 3256, 705, 6852, 3256, 31051, 3256, 705, 4032, 201, 198, 60, 201, 198, 2539, 62, 1930, 796, 37250, 45, 19385, 3256, 705, 5959, 33, 3256, 705, 41359, 49, 3256, 705, 2885, 41, 37, 3256, 705, 2885, 20120, 3256, 705, 1268, 43221, 20520, 201, 198, 24503, 796, 12972, 4491, 6883, 17, 13, 44, 13425, 37702, 9107, 3419, 201 ]
2.179487
273
import rebound import unittest import math import numpy as np if __name__ == "__main__": unittest.main()
[ 11748, 23623, 198, 11748, 555, 715, 395, 198, 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.820513
39
from typing import Dict, Optional from datasets import datasets import torch from torch.utils.data import DataLoader from catalyst.contrib import nn from catalyst.contrib.models.cv.encoders import ResnetEncoder from catalyst.data.dataset.self_supervised import SelfSupervisedDatasetWrapper def add_arguments(parser) -> None: """Function to add common arguments to argparse: feature_dim: Feature dim for latent vector temperature: Temperature used in softmax batch_size: Number of images in each mini-batch epochs: Number of sweeps over the dataset to train num_workers: Number of workers to process a dataloader logdir: Logs directory (tensorboard, weights, etc) dataset: CIFAR-10, CIFAR-100 or STL10 learning-rate: Learning rate for optimizer Args: parser: argparser like object """ parser.add_argument( "--feature_dim", default=128, type=int, help="Feature dim for latent vector" ) parser.add_argument( "--temperature", default=0.5, type=float, help="Temperature used in softmax" ) parser.add_argument( "--batch_size", default=512, type=int, help="Number of images in each mini-batch" ) parser.add_argument( "--epochs", default=1000, type=int, help="Number of sweeps over the dataset to train" ) parser.add_argument( "--num_workers", default=8, type=float, help="Number of workers to process a dataloader" ) parser.add_argument( "--logdir", default="./logdir", type=str, help="Logs directory (tensorboard, weights, etc)", ) parser.add_argument( "--dataset", default="CIFAR-10", type=str, choices=datasets.keys(), help="Dataset: CIFAR-10, CIFAR-100 or STL10", ) parser.add_argument( "--learning-rate", default=0.001, type=float, help="Learning rate for optimizer" ) class ContrastiveModel(torch.nn.Module): """Contrastive model with projective head. Args: model: projective head for the train time encoder: model for the future uses """ def forward(self, x): """Forward method. Args: x: input for the encoder Returns: (embeddings, projections) """ emb = self.encoder(x) projection = self.model(emb) return emb, projection def get_loaders( dataset: str, batch_size: int, num_workers: Optional[int] ) -> Dict[str, DataLoader]: """Init loaders based on parsed parametrs. Args: dataset: dataset for the experiment batch_size: batch size for loaders num_workers: number of workers to process loaders Returns: {"train":..., "valid":...} """ transforms = datasets[dataset]["train_transform"] transform_original = datasets[dataset]["valid_transform"] train_data = SelfSupervisedDatasetWrapper( datasets[dataset]["dataset"](root="data", train=True, transform=None, download=True), transforms=transforms, transform_original=transform_original, ) valid_data = SelfSupervisedDatasetWrapper( datasets[dataset]["dataset"](root="data", train=False, transform=None, download=True), transforms=transforms, transform_original=transform_original, ) train_loader = DataLoader(train_data, batch_size=batch_size, num_workers=num_workers) valid_loader = DataLoader(valid_data, batch_size=batch_size, num_workers=num_workers) return {"train": train_loader, "valid": valid_loader} def get_contrastive_model(feature_dim: int) -> ContrastiveModel: """Init contrastive model based on parsed parametrs. Args: feature_dim: dimensinality of contrative projection Returns: ContrstiveModel instance """ encoder = nn.Sequential(ResnetEncoder(arch="resnet50", frozen=False), nn.Flatten()) projection_head = nn.Sequential( nn.Linear(2048, 512, bias=False), nn.ReLU(inplace=True), nn.Linear(512, feature_dim, bias=True), ) model = ContrastiveModel(projection_head, encoder) return model
[ 6738, 19720, 1330, 360, 713, 11, 32233, 198, 198, 6738, 40522, 1330, 40522, 198, 11748, 28034, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 198, 6738, 31357, 13, 3642, 822, 1330, 299, 77, 198, 6738, 31357, 13, 3642, 822, 13, 27530, 13, 33967, 13, 12685, 375, 364, 1330, 1874, 3262, 27195, 12342, 198, 6738, 31357, 13, 7890, 13, 19608, 292, 316, 13, 944, 62, 16668, 16149, 1330, 12189, 12442, 16149, 27354, 292, 316, 36918, 2848, 628, 198, 4299, 751, 62, 853, 2886, 7, 48610, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 22203, 284, 751, 2219, 7159, 284, 1822, 29572, 25, 198, 220, 220, 220, 3895, 62, 27740, 25, 27018, 5391, 329, 41270, 15879, 198, 220, 220, 220, 5951, 25, 34467, 973, 287, 2705, 9806, 198, 220, 220, 220, 15458, 62, 7857, 25, 7913, 286, 4263, 287, 1123, 9927, 12, 43501, 198, 220, 220, 220, 36835, 82, 25, 7913, 286, 46778, 625, 262, 27039, 284, 4512, 198, 220, 220, 220, 997, 62, 22896, 25, 7913, 286, 3259, 284, 1429, 257, 4818, 282, 1170, 263, 198, 220, 220, 220, 2604, 15908, 25, 5972, 82, 8619, 357, 83, 22854, 3526, 11, 19590, 11, 3503, 8, 198, 220, 220, 220, 27039, 25, 327, 5064, 1503, 12, 940, 11, 327, 5064, 1503, 12, 3064, 393, 37269, 940, 198, 220, 220, 220, 4673, 12, 4873, 25, 18252, 2494, 329, 6436, 7509, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 25, 1822, 48610, 588, 2134, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 30053, 62, 27740, 1600, 4277, 28, 12762, 11, 2099, 28, 600, 11, 1037, 2625, 38816, 5391, 329, 41270, 15879, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 11498, 21069, 1600, 4277, 28, 15, 13, 20, 11, 2099, 28, 22468, 11, 1037, 2625, 42492, 973, 287, 2705, 9806, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 43501, 62, 7857, 1600, 4277, 28, 25836, 11, 2099, 28, 600, 11, 1037, 2625, 15057, 286, 4263, 287, 1123, 9927, 12, 43501, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 538, 5374, 82, 1600, 4277, 28, 12825, 11, 2099, 28, 600, 11, 1037, 2625, 15057, 286, 46778, 625, 262, 27039, 284, 4512, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 22510, 62, 22896, 1600, 4277, 28, 23, 11, 2099, 28, 22468, 11, 1037, 2625, 15057, 286, 3259, 284, 1429, 257, 4818, 282, 1170, 263, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 6404, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 1911, 14, 6404, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 11187, 82, 8619, 357, 83, 22854, 3526, 11, 19590, 11, 3503, 42501, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 19608, 292, 316, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 34, 5064, 1503, 12, 940, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 19608, 292, 1039, 13, 13083, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 27354, 292, 316, 25, 327, 5064, 1503, 12, 940, 11, 327, 5064, 1503, 12, 3064, 393, 37269, 940, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 40684, 12, 4873, 1600, 4277, 28, 15, 13, 8298, 11, 2099, 28, 22468, 11, 1037, 2625, 41730, 2494, 329, 6436, 7509, 1, 198, 220, 220, 220, 1267, 628, 198, 4871, 47011, 425, 17633, 7, 13165, 354, 13, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 4264, 5685, 425, 2746, 351, 1628, 425, 1182, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 25, 1628, 425, 1182, 329, 262, 4512, 640, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 25, 2746, 329, 262, 2003, 3544, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39746, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 25, 5128, 329, 262, 2207, 12342, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 20521, 67, 654, 11, 19887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4072, 796, 2116, 13, 12685, 12342, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20128, 796, 2116, 13, 19849, 7, 24419, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4072, 11, 20128, 628, 198, 4299, 651, 62, 2220, 364, 7, 198, 220, 220, 220, 27039, 25, 965, 11, 15458, 62, 7857, 25, 493, 11, 997, 62, 22896, 25, 32233, 58, 600, 60, 198, 8, 4613, 360, 713, 58, 2536, 11, 6060, 17401, 5974, 198, 220, 220, 220, 37227, 31768, 3440, 364, 1912, 319, 44267, 5772, 316, 3808, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 25, 27039, 329, 262, 6306, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 25, 15458, 2546, 329, 3440, 364, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22896, 25, 1271, 286, 3259, 284, 1429, 3440, 364, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19779, 27432, 1298, 986, 11, 366, 12102, 1298, 986, 92, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31408, 796, 40522, 58, 19608, 292, 316, 7131, 1, 27432, 62, 35636, 8973, 198, 220, 220, 220, 6121, 62, 14986, 796, 40522, 58, 19608, 292, 316, 7131, 1, 12102, 62, 35636, 8973, 628, 220, 220, 220, 4512, 62, 7890, 796, 12189, 12442, 16149, 27354, 292, 316, 36918, 2848, 7, 198, 220, 220, 220, 220, 220, 220, 220, 40522, 58, 19608, 292, 316, 7131, 1, 19608, 292, 316, 8973, 7, 15763, 2625, 7890, 1600, 4512, 28, 17821, 11, 6121, 28, 14202, 11, 4321, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 31408, 28, 7645, 23914, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 62, 14986, 28, 35636, 62, 14986, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4938, 62, 7890, 796, 12189, 12442, 16149, 27354, 292, 316, 36918, 2848, 7, 198, 220, 220, 220, 220, 220, 220, 220, 40522, 58, 19608, 292, 316, 7131, 1, 19608, 292, 316, 8973, 7, 15763, 2625, 7890, 1600, 4512, 28, 25101, 11, 6121, 28, 14202, 11, 4321, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 31408, 28, 7645, 23914, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 62, 14986, 28, 35636, 62, 14986, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4512, 62, 29356, 796, 6060, 17401, 7, 27432, 62, 7890, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 11, 997, 62, 22896, 28, 22510, 62, 22896, 8, 628, 220, 220, 220, 4938, 62, 29356, 796, 6060, 17401, 7, 12102, 62, 7890, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 11, 997, 62, 22896, 28, 22510, 62, 22896, 8, 628, 220, 220, 220, 1441, 19779, 27432, 1298, 4512, 62, 29356, 11, 366, 12102, 1298, 4938, 62, 29356, 92, 628, 198, 4299, 651, 62, 3642, 5685, 425, 62, 19849, 7, 30053, 62, 27740, 25, 493, 8, 4613, 47011, 425, 17633, 25, 198, 220, 220, 220, 37227, 31768, 6273, 425, 2746, 1912, 319, 44267, 5772, 316, 3808, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 27740, 25, 5391, 641, 1292, 414, 286, 3445, 876, 20128, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2345, 81, 301, 425, 17633, 4554, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2207, 12342, 796, 299, 77, 13, 44015, 1843, 7, 4965, 3262, 27195, 12342, 7, 998, 2625, 411, 3262, 1120, 1600, 12912, 28, 25101, 828, 299, 77, 13, 7414, 41769, 28955, 198, 220, 220, 220, 20128, 62, 2256, 796, 299, 77, 13, 44015, 1843, 7, 198, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 14993, 451, 7, 1238, 2780, 11, 22243, 11, 10690, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 3041, 41596, 7, 259, 5372, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 14993, 451, 7, 25836, 11, 3895, 62, 27740, 11, 10690, 28, 17821, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2746, 796, 47011, 425, 17633, 7, 16302, 295, 62, 2256, 11, 2207, 12342, 8, 198, 220, 220, 220, 1441, 2746, 198 ]
2.59185
1,595
import spotipy import sys import musicbrainzngs from spotipy.oauth2 import SpotifyClientCredentials from requests import get, exceptions from json import loads from dateparser import parse from pandas import DataFrame, read_excel from bs4 import BeautifulSoup from time import sleep from datetime import datetime, timedelta from re import compile, sub from codecs import open import pysftp from glob import glob import os if __name__ == "__main__": tst = sys.argv[1] if len(sys.argv) > 1 else False vg = Versgedropt(test=tst) vg.set_mbids(mscbrnz_path="") if vg.test: vg.get_drops_for_musicbrainz_belgians() vg.generate_website() vg.put_website_online() else: while True: if datetime.now().hour == 14: vg.get_drops_for_musicbrainz_belgians() vg.generate_website() vg.put_website_online()
[ 11748, 4136, 541, 88, 198, 11748, 25064, 198, 11748, 2647, 27825, 89, 782, 82, 198, 6738, 4136, 541, 88, 13, 12162, 1071, 17, 1330, 26778, 11792, 34, 445, 14817, 198, 6738, 7007, 1330, 651, 11, 13269, 198, 6738, 33918, 1330, 15989, 198, 6738, 3128, 48610, 1330, 21136, 198, 6738, 19798, 292, 1330, 6060, 19778, 11, 1100, 62, 1069, 5276, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 640, 1330, 3993, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 302, 1330, 17632, 11, 850, 198, 6738, 40481, 82, 1330, 1280, 198, 11748, 279, 893, 701, 79, 198, 6738, 15095, 1330, 15095, 198, 11748, 28686, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 256, 301, 796, 25064, 13, 853, 85, 58, 16, 60, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 2073, 10352, 198, 220, 220, 220, 410, 70, 796, 18535, 2004, 305, 457, 7, 9288, 28, 83, 301, 8, 198, 220, 220, 220, 410, 70, 13, 2617, 62, 2022, 2340, 7, 907, 66, 1671, 27305, 62, 6978, 2625, 4943, 198, 220, 220, 220, 611, 410, 70, 13, 9288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 70, 13, 1136, 62, 49253, 62, 1640, 62, 28965, 27825, 89, 62, 6667, 70, 1547, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 410, 70, 13, 8612, 378, 62, 732, 12485, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 410, 70, 13, 1996, 62, 732, 12485, 62, 25119, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4818, 8079, 13, 2197, 22446, 9769, 6624, 1478, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 70, 13, 1136, 62, 49253, 62, 1640, 62, 28965, 27825, 89, 62, 6667, 70, 1547, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 70, 13, 8612, 378, 62, 732, 12485, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 70, 13, 1996, 62, 732, 12485, 62, 25119, 3419, 198 ]
2.375979
383
"""Tests for the pushbullet component."""
[ 37811, 51, 3558, 329, 262, 4574, 15065, 1616, 7515, 526, 15931, 198 ]
3.5
12
# -*- coding: utf-8 -*- """Tests for processing.querying module.""" from os.path import expanduser from nose.tools import assert_equal, assert_true from string import Template from sosia.establishing import connect_database from sosia.processing import base_query, count_citations, create_queries,\ query_pubs_by_sourceyear, stacked_query test_cache = expanduser("~/.sosia/test.sqlite") test_conn = connect_database(test_cache) test_id = 53164702100 year = 2017 refresh = 30
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 51, 3558, 329, 7587, 13, 10819, 1112, 8265, 526, 15931, 198, 198, 6738, 28686, 13, 6978, 1330, 4292, 7220, 198, 198, 6738, 9686, 13, 31391, 1330, 6818, 62, 40496, 11, 6818, 62, 7942, 198, 6738, 4731, 1330, 37350, 198, 198, 6738, 264, 418, 544, 13, 40037, 278, 1330, 2018, 62, 48806, 198, 6738, 264, 418, 544, 13, 36948, 1330, 2779, 62, 22766, 11, 954, 62, 66, 20597, 11, 2251, 62, 421, 10640, 11, 59, 198, 220, 220, 220, 12405, 62, 12984, 82, 62, 1525, 62, 10459, 1941, 11, 24167, 62, 22766, 198, 198, 9288, 62, 23870, 796, 4292, 7220, 7203, 93, 11757, 82, 418, 544, 14, 9288, 13, 25410, 578, 4943, 198, 9288, 62, 37043, 796, 2018, 62, 48806, 7, 9288, 62, 23870, 8, 198, 9288, 62, 312, 796, 7192, 23237, 2154, 2481, 405, 198, 1941, 796, 2177, 198, 5420, 3447, 796, 1542, 628, 628, 628, 628, 198 ]
3.01227
163
# swgpy from swgpy import app, utility, weather from swgpy.weather import WeatherEvent, WeatherSequence # modules import random service_mgr = kernel.serviceManager() weather_svc = service_mgr.weatherService() #This script is called every 30 minutes. #Weather duration is now set in minutes: weather_event(duration(mins),weatherType,cloudVector(X,Y,Z)). #Each of the following is a list of weather sequences. Each sequence runs until its duration has expired. #At the end of the sequence, NOSTORM is used to set the weather back to clear. Whilst each weather sequence list #is running, no other weather sequence can be used on the same scene until the sequences have expired. lightStormSequence = WeatherSequence() lightStormSequence.append(WeatherEvent(20, weather.WEATHER.CLOUDY, utility.vector3(1.0, 0.0, 0.0))) lightStormSequence.append(WeatherEvent(10, weather.WEATHER.LIGHTSTORM, utility.vector3(1.0, 0.0, 0.0))) lightStormSequence.append(WeatherEvent(10, weather.WEATHER.CLOUDY, utility.vector3(1.0, 0.0, 0.0))) lightStormSequence.append(WeatherEvent(10, weather.WEATHER.NOSTORM, utility.vector3(1.0, 0.0, 0.0))) mediumStormSequence = WeatherSequence() mediumStormSequence.append(WeatherEvent(20, weather.WEATHER.CLOUDY, utility.vector3(1.0, 0.0, 0.0))) mediumStormSequence.append(WeatherEvent(3, weather.WEATHER.LIGHTSTORM, utility.vector3(1.0, 0.0, 0.0))) mediumStormSequence.append(WeatherEvent(10, weather.WEATHER.MEDIUMSTORM, utility.vector3(1.0, 0.0, 0.0))) mediumStormSequence.append(WeatherEvent(3, weather.WEATHER.LIGHTSTORM, utility.vector3(1.0, 0.0, 0.0))) mediumStormSequence.append(WeatherEvent(10, weather.WEATHER.CLOUDY, utility.vector3(1.0, 0.0, 0.0))) mediumStormSequence.append(WeatherEvent(10, weather.WEATHER.NOSTORM, utility.vector3(1.0, 0.0, 0.0))) heavyStormSequence = WeatherSequence() heavyStormSequence.append(WeatherEvent(20, weather.WEATHER.CLOUDY, utility.vector3(1.0, 0.0, 0.0))) heavyStormSequence.append(WeatherEvent(3, weather.WEATHER.LIGHTSTORM, utility.vector3(1.0, 0.0, 0.0))) heavyStormSequence.append(WeatherEvent(5, weather.WEATHER.MEDIUMSTORM, utility.vector3(1.0, 0.0, 0.0))) heavyStormSequence.append(WeatherEvent(20, weather.WEATHER.HEAVYSTORM, utility.vector3(1.0, 0.0, 0.0))) heavyStormSequence.append(WeatherEvent(5, weather.WEATHER.MEDIUMSTORM, utility.vector3(1.0, 0.0, 0.0))) heavyStormSequence.append(WeatherEvent(3, weather.WEATHER.LIGHTSTORM, utility.vector3(1.0, 0.0, 0.0))) heavyStormSequence.append(WeatherEvent(10, weather.WEATHER.CLOUDY, utility.vector3(1.0, 0.0, 0.0))) heavyStormSequence.append(WeatherEvent(10, weather.WEATHER.NOSTORM, utility.vector3(1.0, 0.0, 0.0))) #Crude random function with weight. Needs improving. weatherChoice([(heavyStormSequence, 0.02), (mediumStormSequence, 0.15), (lightStormSequence,0.2)],weather.SCENE.CORELLIA)
[ 2, 1509, 70, 9078, 198, 6738, 1509, 70, 9078, 1330, 598, 11, 10361, 11, 6193, 198, 6738, 1509, 70, 9078, 13, 23563, 1330, 15615, 9237, 11, 15615, 44015, 594, 198, 198, 2, 13103, 198, 11748, 4738, 198, 15271, 62, 76, 2164, 796, 9720, 13, 15271, 13511, 3419, 198, 23563, 62, 21370, 66, 796, 2139, 62, 76, 2164, 13, 23563, 16177, 3419, 198, 198, 2, 1212, 4226, 318, 1444, 790, 1542, 2431, 13, 198, 2, 41865, 9478, 318, 783, 900, 287, 2431, 25, 6193, 62, 15596, 7, 32257, 7, 42951, 828, 23563, 6030, 11, 17721, 38469, 7, 55, 11, 56, 11, 57, 29720, 198, 2, 10871, 286, 262, 1708, 318, 257, 1351, 286, 6193, 16311, 13, 5501, 8379, 4539, 1566, 663, 9478, 468, 21350, 13, 198, 2, 2953, 262, 886, 286, 262, 8379, 11, 8005, 2257, 1581, 44, 318, 973, 284, 900, 262, 6193, 736, 284, 1598, 13, 40661, 1123, 6193, 8379, 1351, 198, 2, 271, 2491, 11, 645, 584, 6193, 8379, 460, 307, 973, 319, 262, 976, 3715, 1566, 262, 16311, 423, 21350, 13, 198, 2971, 32173, 44015, 594, 796, 15615, 44015, 594, 3419, 198, 2971, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 1238, 11, 6193, 13, 8845, 45226, 13, 5097, 2606, 35, 56, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 2971, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 940, 11, 6193, 13, 8845, 45226, 13, 43, 9947, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 2971, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 940, 11, 6193, 13, 8845, 45226, 13, 5097, 2606, 35, 56, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 2971, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 940, 11, 6193, 13, 8845, 45226, 13, 45, 10892, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 198, 24132, 32173, 44015, 594, 796, 15615, 44015, 594, 3419, 198, 24132, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 1238, 11, 6193, 13, 8845, 45226, 13, 5097, 2606, 35, 56, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 24132, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 18, 11, 6193, 13, 8845, 45226, 13, 43, 9947, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 24132, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 940, 11, 6193, 13, 8845, 45226, 13, 30733, 41796, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 24132, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 18, 11, 6193, 13, 8845, 45226, 13, 43, 9947, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 24132, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 940, 11, 6193, 13, 8845, 45226, 13, 5097, 2606, 35, 56, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 24132, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 940, 11, 6193, 13, 8845, 45226, 13, 45, 10892, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 198, 23701, 32173, 44015, 594, 796, 15615, 44015, 594, 3419, 198, 23701, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 1238, 11, 6193, 13, 8845, 45226, 13, 5097, 2606, 35, 56, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 23701, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 18, 11, 6193, 13, 8845, 45226, 13, 43, 9947, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 23701, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 20, 11, 6193, 13, 8845, 45226, 13, 30733, 41796, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 23701, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 1238, 11, 6193, 13, 8845, 45226, 13, 13909, 10116, 56, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 23701, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 20, 11, 6193, 13, 8845, 45226, 13, 30733, 41796, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 23701, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 18, 11, 6193, 13, 8845, 45226, 13, 43, 9947, 2257, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 23701, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 940, 11, 6193, 13, 8845, 45226, 13, 5097, 2606, 35, 56, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 23701, 32173, 44015, 594, 13, 33295, 7, 41865, 9237, 7, 940, 11, 6193, 13, 8845, 45226, 13, 45, 10892, 1581, 44, 11, 10361, 13, 31364, 18, 7, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 22305, 198, 198, 2, 13916, 2507, 4738, 2163, 351, 3463, 13, 36557, 10068, 13, 628, 198, 23563, 46770, 26933, 7, 23701, 32173, 44015, 594, 11, 657, 13, 2999, 828, 357, 24132, 32173, 44015, 594, 11, 657, 13, 1314, 828, 357, 2971, 32173, 44015, 594, 11, 15, 13, 17, 8, 4357, 23563, 13, 6173, 39267, 13, 34, 6965, 3069, 3539, 8, 198 ]
2.828313
996
#!/usr/bin/env python # blou # Raspberry Car v1.xx # MIT Licence - Tom Wersinger https://github.com/tomplays/raspberry-car/ import RPi.GPIO as io import time # pins attribution #motor A in3_pin = 4 in4_pin = 17 #motor B in1_pin = 27 in2_pin = 22 #Blinking orange leds o_pin = 24 or_pin = 23 # always stop motors after xx seconds.. securetime = 10 #misc def glowtime = .1 turntime = .04 #GPIO inits io.setmode(io.BCM) io.setup(in1_pin, io.OUT) io.setup(in2_pin, io.OUT) io.setup(in3_pin, io.OUT) io.setup(in4_pin, io.OUT) io.setup(o_pin, io.OUT) io.setup(or_pin, io.OUT) #demo mode for glow #make the two orange leds blink #params # dir: left|right #params # dir: forward|backward # long: how long (to check) # turns all gpio off # Main loop # expects keyboard inputs: # zw(drive) - ae(turn) - lm -hg(glows) - s(stop) p(demo) : while True: cmd = raw_input("zw - ae - lm - hg - s :") direction = cmd[0] if direction == "e": turn('right') elif direction == "a": turn('left') elif direction == "s": stopall() elif direction == "z": drive('forward',1) elif direction == "w": drive('back', 1) elif direction == "p": demoa() elif direction == "h": glow(True, True, .1, 2, "no") elif direction == "l": glow(True, False, .1, 5, "yes") elif direction == "g": glow(True, True, .5, 5, "yes") else: stopall()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 698, 280, 198, 2, 24244, 1879, 410, 16, 13, 5324, 198, 2, 17168, 10483, 594, 532, 4186, 370, 364, 3889, 3740, 1378, 12567, 13, 785, 14, 83, 6316, 592, 14, 81, 17653, 12, 7718, 14, 628, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 33245, 198, 11748, 640, 628, 198, 2, 20567, 39629, 198, 2, 76, 20965, 317, 198, 259, 18, 62, 11635, 796, 604, 198, 259, 19, 62, 11635, 796, 1596, 198, 198, 2, 76, 20965, 347, 198, 259, 16, 62, 11635, 796, 2681, 198, 259, 17, 62, 11635, 796, 2534, 198, 198, 2, 3629, 8040, 10912, 2957, 82, 198, 78, 62, 11635, 796, 1987, 198, 273, 62, 11635, 796, 2242, 198, 198, 2, 1464, 2245, 24699, 706, 31383, 4201, 492, 198, 22390, 2435, 796, 838, 198, 198, 2, 44374, 825, 198, 4743, 322, 2435, 796, 764, 16, 198, 36590, 429, 524, 796, 764, 3023, 198, 198, 2, 16960, 9399, 287, 896, 198, 952, 13, 2617, 14171, 7, 952, 13, 2749, 44, 8, 198, 952, 13, 40406, 7, 259, 16, 62, 11635, 11, 33245, 13, 12425, 8, 198, 952, 13, 40406, 7, 259, 17, 62, 11635, 11, 33245, 13, 12425, 8, 198, 952, 13, 40406, 7, 259, 18, 62, 11635, 11, 33245, 13, 12425, 8, 198, 952, 13, 40406, 7, 259, 19, 62, 11635, 11, 33245, 13, 12425, 8, 198, 952, 13, 40406, 7, 78, 62, 11635, 11, 33245, 13, 12425, 8, 198, 952, 13, 40406, 7, 273, 62, 11635, 11, 33245, 13, 12425, 8, 198, 198, 2, 9536, 78, 4235, 329, 19634, 198, 198, 2, 15883, 262, 734, 10912, 2957, 82, 21019, 198, 198, 2, 37266, 198, 2, 220, 220, 26672, 25, 1364, 91, 3506, 628, 198, 2, 37266, 198, 2, 220, 220, 26672, 25, 2651, 91, 1891, 904, 198, 2, 220, 220, 890, 25, 703, 890, 357, 1462, 2198, 8, 198, 198, 2, 4962, 477, 27809, 952, 572, 198, 198, 2, 8774, 9052, 198, 2, 13423, 10586, 17311, 25, 198, 2, 1976, 86, 7, 19472, 8, 532, 257, 68, 7, 15344, 8, 532, 300, 76, 532, 71, 70, 7, 4743, 1666, 8, 532, 264, 7, 11338, 8, 279, 7, 9536, 78, 8, 1058, 198, 4514, 6407, 25, 198, 220, 220, 220, 23991, 796, 8246, 62, 15414, 7203, 89, 86, 532, 257, 68, 532, 300, 76, 532, 289, 70, 532, 264, 1058, 4943, 198, 220, 220, 220, 4571, 796, 23991, 58, 15, 60, 198, 220, 220, 220, 611, 4571, 6624, 366, 68, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1210, 10786, 3506, 11537, 198, 220, 220, 220, 1288, 361, 4571, 6624, 366, 64, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1210, 10786, 9464, 11537, 198, 220, 220, 220, 1288, 361, 4571, 6624, 366, 82, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 439, 3419, 198, 220, 220, 220, 1288, 361, 4571, 6624, 366, 89, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3708, 10786, 11813, 3256, 16, 8, 198, 220, 220, 220, 1288, 361, 4571, 6624, 366, 86, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3708, 10786, 1891, 3256, 352, 8, 198, 220, 220, 220, 1288, 361, 4571, 6624, 366, 79, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1357, 12162, 3419, 198, 220, 220, 220, 1288, 361, 4571, 6624, 366, 71, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 19634, 7, 17821, 11, 6407, 11, 764, 16, 11, 362, 11, 366, 3919, 4943, 198, 220, 220, 220, 1288, 361, 4571, 6624, 366, 75, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 19634, 7, 17821, 11, 10352, 11, 764, 16, 11, 642, 11, 366, 8505, 4943, 198, 220, 220, 220, 1288, 361, 4571, 6624, 366, 70, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 19634, 7, 17821, 11, 6407, 11, 764, 20, 11, 642, 11, 366, 8505, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 439, 3419, 628, 198 ]
2.187311
662
from drf_writable_nested import WritableNestedModelSerializer, UniqueFieldsMixin from rest_framework import serializers from api_recipes.models import Recipe, Ingredient, Food, Step, User class FoodSerializer(UniqueFieldsMixin, serializers.ModelSerializer): """Food serializer.""" class StepSerializer(UniqueFieldsMixin, serializers.ModelSerializer): """Recipe step serializer.""" class IngredientSerializer(WritableNestedModelSerializer): """Food ingredient serializer.""" food = FoodSerializer() class UserSerializer(serializers.ModelSerializer): """User serializer.""" class RecipeSerializer(WritableNestedModelSerializer): """Recipe serializer.""" ingredients = IngredientSerializer(many=True) steps = StepSerializer(many=True) author = UserSerializer(read_only=True)
[ 6738, 1553, 69, 62, 8933, 540, 62, 77, 7287, 1330, 12257, 540, 45, 7287, 17633, 32634, 7509, 11, 30015, 15878, 82, 35608, 259, 198, 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 198, 6738, 40391, 62, 8344, 18636, 13, 27530, 1330, 26694, 11, 17589, 445, 1153, 11, 7318, 11, 5012, 11, 11787, 628, 198, 4871, 7318, 32634, 7509, 7, 40257, 15878, 82, 35608, 259, 11, 11389, 11341, 13, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 24602, 11389, 7509, 526, 15931, 628, 198, 4871, 5012, 32634, 7509, 7, 40257, 15878, 82, 35608, 259, 11, 11389, 11341, 13, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 37523, 2239, 11389, 7509, 526, 15931, 628, 198, 4871, 17589, 445, 1153, 32634, 7509, 7, 20257, 540, 45, 7287, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 24602, 18734, 11389, 7509, 526, 15931, 198, 220, 220, 220, 2057, 796, 7318, 32634, 7509, 3419, 628, 198, 4871, 11787, 32634, 7509, 7, 46911, 11341, 13, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 12982, 11389, 7509, 526, 15931, 628, 198, 4871, 26694, 32634, 7509, 7, 20257, 540, 45, 7287, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 37523, 11389, 7509, 526, 15931, 198, 220, 220, 220, 9391, 796, 17589, 445, 1153, 32634, 7509, 7, 21834, 28, 17821, 8, 198, 220, 220, 220, 4831, 796, 5012, 32634, 7509, 7, 21834, 28, 17821, 8, 198, 220, 220, 220, 1772, 796, 11787, 32634, 7509, 7, 961, 62, 8807, 28, 17821, 8, 198 ]
3.315789
247
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program.
[ 2, 19617, 28, 40477, 23, 198, 198, 2, 15069, 2864, 28591, 5097, 2606, 35, 13, 9858, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 24550, 25, 770, 1398, 318, 8295, 7560, 416, 262, 474, 67, 17721, 2438, 17301, 1430, 13, 628 ]
3.73743
179
from django.contrib import admin from django.utils.translation import ugettext_lazy as _ from ella.core.admin import PublishableAdmin, ListingInlineAdmin, RelatedInlineAdmin from ella.articles.models import Article admin.site.register(Article, ArticleAdmin)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 304, 8466, 13, 7295, 13, 28482, 1330, 8525, 1836, 540, 46787, 11, 7343, 278, 818, 1370, 46787, 11, 19809, 818, 1370, 46787, 198, 6738, 304, 8466, 13, 26845, 13, 27530, 1330, 10172, 628, 198, 198, 28482, 13, 15654, 13, 30238, 7, 14906, 11, 10172, 46787, 8, 198 ]
3.493333
75