content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
""" [ raycast select module ] """ from bpy.types import Operator import bpy from bpy import ops as O from .DoRaycast import do_raycast from . import CallbackOptions class PerformRaycastSelect(Operator): """Run a side differentiation and select the points by raycast""" bl_idname = "view3d.raycast_select_pair" bl_label = "RayCast Select Operator" bl_options = {'REGISTER', 'UNDO'} # Establish some variables execution_function_name: bpy.props.StringProperty(name='callback', default='run_by_selection') # Initialize some variables execution_function = None save_mode = None break_number = 0
[ 37811, 685, 26842, 2701, 2922, 8265, 2361, 37227, 198, 6738, 275, 9078, 13, 19199, 1330, 35946, 198, 11748, 275, 9078, 198, 6738, 275, 9078, 1330, 39628, 355, 440, 198, 198, 6738, 764, 5211, 19591, 2701, 1330, 466, 62, 2433, 2701, 198, 6738, 764, 1330, 4889, 1891, 29046, 628, 198, 4871, 35006, 19591, 2701, 17563, 7, 18843, 1352, 2599, 198, 220, 220, 220, 37227, 10987, 257, 1735, 32488, 290, 2922, 262, 2173, 416, 26842, 2701, 37811, 198, 220, 220, 220, 698, 62, 312, 3672, 796, 366, 1177, 18, 67, 13, 2433, 2701, 62, 19738, 62, 24874, 1, 198, 220, 220, 220, 698, 62, 18242, 796, 366, 19591, 19248, 9683, 35946, 1, 198, 220, 220, 220, 698, 62, 25811, 796, 1391, 6, 31553, 41517, 3256, 705, 4944, 18227, 6, 92, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 10062, 17148, 617, 9633, 198, 220, 220, 220, 9706, 62, 8818, 62, 3672, 25, 275, 9078, 13, 1676, 862, 13, 10100, 21746, 7, 3672, 11639, 47423, 3256, 4277, 11639, 5143, 62, 1525, 62, 49283, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 20768, 1096, 617, 9633, 198, 220, 220, 220, 9706, 62, 8818, 796, 6045, 198, 220, 220, 220, 3613, 62, 14171, 796, 6045, 198, 220, 220, 220, 2270, 62, 17618, 796, 657, 198 ]
2.995349
215
"""Free Google Translate API for Python. Translates totally free of charge.""" __all__ = 'Translator', __version__ = '3.2.1' from aiogoogletrans.client import Translator from aiogoogletrans.constants import LANGCODES, LANGUAGES
[ 37811, 11146, 3012, 3602, 17660, 7824, 329, 11361, 13, 3602, 75, 689, 6635, 1479, 286, 3877, 526, 15931, 198, 834, 439, 834, 796, 705, 8291, 41880, 3256, 198, 834, 9641, 834, 796, 705, 18, 13, 17, 13, 16, 6, 628, 198, 6738, 257, 72, 24076, 519, 1616, 26084, 13, 16366, 1330, 3602, 41880, 198, 6738, 257, 72, 24076, 519, 1616, 26084, 13, 9979, 1187, 1330, 406, 15567, 34, 3727, 1546, 11, 406, 15567, 52, 25552, 198 ]
3.026316
76
import uuid import pytest from selenium.common.exceptions import TimeoutException from skyportal.tests import api @pytest.mark.flaky(reruns=2) @pytest.mark.flaky(reruns=2) @pytest.mark.flaky(reruns=2) @pytest.mark.flaky(reruns=2) @pytest.mark.flaky(reruns=2) @pytest.mark.flaky(reruns=2)
[ 11748, 334, 27112, 198, 11748, 12972, 9288, 198, 6738, 384, 11925, 1505, 13, 11321, 13, 1069, 11755, 1330, 3862, 448, 16922, 198, 198, 6738, 6766, 634, 282, 13, 41989, 1330, 40391, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 2704, 15492, 7, 260, 48381, 28, 17, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 2704, 15492, 7, 260, 48381, 28, 17, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 2704, 15492, 7, 260, 48381, 28, 17, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 2704, 15492, 7, 260, 48381, 28, 17, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 2704, 15492, 7, 260, 48381, 28, 17, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 2704, 15492, 7, 260, 48381, 28, 17, 8, 198 ]
2.341085
129
from pypy.rpython.ootypesystem.ootype import ROOT, Instance, \ addMethods, meth, Meth, Void from pypy.translator.backendopt.checkvirtual import check_virtual_methods
[ 6738, 279, 4464, 88, 13, 81, 29412, 13, 1025, 9497, 6781, 13, 1025, 2981, 1330, 15107, 2394, 11, 2262, 590, 11, 3467, 198, 220, 220, 220, 220, 751, 46202, 11, 11248, 11, 39675, 11, 18331, 198, 6738, 279, 4464, 88, 13, 7645, 41880, 13, 1891, 437, 8738, 13, 9122, 32844, 1330, 2198, 62, 32844, 62, 24396, 82, 628 ]
2.965517
58
from .URL_PARSER import get_text
[ 6738, 764, 21886, 62, 27082, 35009, 1330, 651, 62, 5239, 198 ]
3
11
import argparse, logging, filepattern from pathlib import Path # Initialize the logger logging.basicConfig( format="%(asctime)s - %(name)-8s - %(levelname)-8s - %(message)s", datefmt="%d-%b-%y %H:%M:%S", ) logger = logging.getLogger("main") logger.setLevel(logging.INFO) if __name__ == "__main__": # Setup the Argument parsing logger.info("Parsing arguments...") parser = argparse.ArgumentParser( prog="main", description="Extract individual fields of view from a czi file." ) parser.add_argument( "--stitchDir", dest="stitch_dir", type=str, help="Stitching vector to recycle", required=True, ) parser.add_argument( "--collectionDir", dest="collection_dir", type=str, help="Image collection to place in new stitching vector", required=True, ) parser.add_argument( "--filepattern", dest="pattern", type=str, help="Stitching vector regular expression", required=False, ) parser.add_argument( "--outDir", dest="output_dir", type=str, help="The directory in which to save stitching vectors.", required=True, ) # Get the arguments args = parser.parse_args() stitch_dir = Path(args.stitch_dir) collection_dir = Path(args.collection_dir) if collection_dir.joinpath("images").is_dir(): # switch to images folder if present inpDir = collection_dir.joinpath("images").absolute() pattern = args.pattern output_dir = Path(args.output_dir) logger.info("stitch_dir = {}".format(stitch_dir)) logger.info("collection_dir = {}".format(collection_dir)) logger.info("filepattern = {}".format(pattern)) logger.info("output_dir = {}".format(output_dir)) main(stitch_dir, collection_dir, output_dir, pattern)
[ 11748, 1822, 29572, 11, 18931, 11, 2393, 33279, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 2, 20768, 1096, 262, 49706, 198, 6404, 2667, 13, 35487, 16934, 7, 198, 220, 220, 220, 5794, 2625, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 3672, 13219, 23, 82, 532, 4064, 7, 5715, 3672, 13219, 23, 82, 532, 4064, 7, 20500, 8, 82, 1600, 198, 220, 220, 220, 3128, 69, 16762, 2625, 4, 67, 12, 4, 65, 12, 4, 88, 4064, 39, 25, 4, 44, 25, 4, 50, 1600, 198, 8, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 12417, 4943, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1303, 31122, 262, 45751, 32096, 198, 220, 220, 220, 49706, 13, 10951, 7203, 47, 945, 278, 7159, 9313, 8, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1172, 2625, 12417, 1600, 6764, 2625, 11627, 974, 1981, 7032, 286, 1570, 422, 257, 269, 17027, 2393, 526, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 301, 2007, 35277, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 301, 2007, 62, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1273, 19811, 15879, 284, 48914, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 43681, 35277, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 43681, 62, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 5159, 4947, 284, 1295, 287, 649, 48945, 15879, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 7753, 33279, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 33279, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1273, 19811, 15879, 3218, 5408, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 25101, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 448, 35277, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 22915, 62, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 464, 8619, 287, 543, 284, 3613, 48945, 30104, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 3497, 262, 7159, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 24695, 62, 15908, 796, 10644, 7, 22046, 13, 301, 2007, 62, 15908, 8, 198, 220, 220, 220, 4947, 62, 15908, 796, 10644, 7, 22046, 13, 43681, 62, 15908, 8, 198, 220, 220, 220, 611, 4947, 62, 15908, 13, 22179, 6978, 7203, 17566, 11074, 271, 62, 15908, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5078, 284, 4263, 9483, 611, 1944, 198, 220, 220, 220, 220, 220, 220, 220, 287, 79, 35277, 796, 4947, 62, 15908, 13, 22179, 6978, 7203, 17566, 11074, 48546, 3419, 198, 220, 220, 220, 3912, 796, 26498, 13, 33279, 198, 220, 220, 220, 5072, 62, 15908, 796, 10644, 7, 22046, 13, 22915, 62, 15908, 8, 198, 220, 220, 220, 49706, 13, 10951, 7203, 301, 2007, 62, 15908, 796, 23884, 1911, 18982, 7, 301, 2007, 62, 15908, 4008, 198, 220, 220, 220, 49706, 13, 10951, 7203, 43681, 62, 15908, 796, 23884, 1911, 18982, 7, 43681, 62, 15908, 4008, 198, 220, 220, 220, 49706, 13, 10951, 7203, 7753, 33279, 796, 23884, 1911, 18982, 7, 33279, 4008, 198, 220, 220, 220, 49706, 13, 10951, 7203, 22915, 62, 15908, 796, 23884, 1911, 18982, 7, 22915, 62, 15908, 4008, 628, 220, 220, 220, 1388, 7, 301, 2007, 62, 15908, 11, 4947, 62, 15908, 11, 5072, 62, 15908, 11, 3912, 8, 198 ]
2.469201
763
# # @lc app=leetcode id=1 lang=python3 # # [1] Two Sum # # @lc code=start # @lc code=end
[ 2, 198, 2, 2488, 44601, 598, 28, 293, 316, 8189, 4686, 28, 16, 42392, 28, 29412, 18, 198, 2, 198, 2, 685, 16, 60, 4930, 5060, 198, 2, 198, 198, 2, 2488, 44601, 2438, 28, 9688, 198, 2, 2488, 44601, 2438, 28, 437, 628 ]
2.068182
44
from flask import Flask from flask_bootstrap import Bootstrap from flask_sqlalchemy import SQLAlchemy from config import config from config import Config as CF from utils import log bootstrap = Bootstrap() db = SQLAlchemy()
[ 6738, 42903, 1330, 46947, 198, 6738, 42903, 62, 18769, 26418, 1330, 18892, 26418, 198, 6738, 42903, 62, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 6738, 4566, 1330, 4566, 198, 6738, 4566, 1330, 17056, 355, 18551, 198, 6738, 3384, 4487, 1330, 2604, 198, 198, 18769, 26418, 796, 18892, 26418, 3419, 198, 9945, 796, 16363, 2348, 26599, 3419, 628 ]
3.896552
58
# -*- coding: utf-8 -*- # @Author: aaronpmishkin # @Date: 2017-07-28 21:07:21 # @Last Modified by: aaronpmishkin # @Last Modified time: 2017-08-09 13:09:35 import numpy as np from scipy.spatial.distance import cdist class RBF(): """ RBF Implementation of the radial basis function kernel. Also called the squared exponential kernel. Arguments: ---------- dim: integer The dimensionality of inputs to the kernel (i.e. dimension of X). length_scale: number The length scale of the kernel function. var: number The variance magnitude of the kernel function. """ def get_parameters(self): """ get_parameters Get the kernel's parameters. """ return np.array([self.length_scale, self.var]) def set_parameters(self, theta): """ set_parameters Set the kernel's parameters. Arguments: ---------- theta: array-like, shape = [2, ] An array containing the new parameters of the kernel. The parameter order is [length_scale, variance] """ self.length_scale = theta[0] self.var = theta[1] def cov(self, X, Y=None, theta=None): """ cov Compute the covariance matrix of X and Y using the RBF kernel. Arguments: ---------- X: array-like, shape = [n_samples, n_features] An array of inputs. Y (optional): array-like, shape = [m_samples, n_features] A second array of inputs. If Y is None, then the covariance matrix of X with itself will be computed. theta (optional): array-like, shape = [2, ] An array of parameter values for the kernel. """ # print(X, Y) if Y is None: Y = X if theta is None: theta = np.array([self.length_scale, self.var]) # Compute a matrix of squared eucledian distances between X and Y dist = cdist(X, Y, 'sqeuclidean') K = theta[1] * np.exp(dist / (-2 * (theta[0] ** 2))) # print(K.shape) return K def cov_gradient(self, X, theta=None): """ cov_gradient Compute the gradient of the covariance matrix of X with respect to the parameters of the RBF kernel. Arguments: ---------- X: array-like, shape = [n_samples, n_features] An array of inputs. theta (optional): array-like, shape = [2, ] An array of parameter values for the kernel. """ if theta is None: theta = np.array([self.length_scale, self.var]) dist = cdist(X, X, 'sqeuclidean') K = np.exp(dist / (-2 * (theta[0] ** 2))) dK_dl = theta[1] * (theta[0] ** -3) * dist * K dK_dvar = K return np.array([dK_dl, dK_dvar]) class Additive(): """ RBF Implementation of the additive kernel as described by Duvenaud et al, 2011 Arguments: ---------- dim: integer, The dimensionality of inputs to the kernel (i.e. dimension of X). order: number, order <= dim The order of the additive kernel. base_kernels: array-like, shape = [dim, ] The set of base kernel functions, one for each dimension. var: array-like, shape = [order, ] An array of variance magnitudes, one for each order d: 1 <= d <= D """ def get_parameters(self): """ get_parameters Get the kernel's parameters, which include the parameters of the base kernels. """ theta = np.copy(self.var) for kernel in self.base_kernels: theta = np.append(theta, kernel.get_parameters()) return theta def set_parameters(self, theta): """ set_parameters Set the kernel's parameters. This must include the parameters of the base kernels. Arguments: ---------- theta: array-like, shape = [n_parameter, ] An array containing the new parameters of the kernel. The first |self.order| elements must be the interaction variance parameters. The remaining elements must be parameters for the base kernels. """ self.var = theta[0:self.order] param_index = self.order for kernel in self.base_kernels: kernel.set_parameters(theta[param_index:param_index + kernel.num_parameters]) param_index += kernel.num_parameters def __cov__(self, X, Y=None, order=None, theta=None, base_kernels=None): """ __cov__ Compute the covariance matrix of inputs X and Y. Returns both the covariance matrix and a list of covariance matrices for each order of interaction. This is an internal helper. To obtain the just covariance matrix of X (and Y), call "cov" instead. Arguments: ---------- X: array-like, shape = [n_samples, n_features] An array of inputs. Y (optional): array-like, shape = [m_samples, n_features] A second array of inputs. theta: array-like, shape = [n_parameter, ] The kernel parameters to use when computing the covariance. If None, the current parameters of the kernel are used. order: integer The interaction order that will be used. If None, the current kernel setting will be used. base_kernels: array-like, shape = [n_features, ] The list of base_kernels, one for each feature. Exactly one base_kernel must be provided per input feature. If None, the current base_kernels of the kernel are used. """ if Y is None: Y = X if theta is None: theta = self.theta if order is None: order = self.order if base_kernels is None: base_kernels = self.base_kernels # Z is the array of covariance matrices produced by application of the base kernels. Z = np.ones((len(base_kernels), X.shape[0], Y.shape[0])) # S is the array of of k^th power sums of the matrices in Z, k = 1 ... self.order S = np.ones((order + 1, X.shape[0], Y.shape[0])) # K is the array of k^th order additive kernels, k = 1 ... order K = np.zeros((order + 1, X.shape[0], Y.shape[0])) K[0] = 1 p_index = len(base_kernels) for i, kernel in enumerate(base_kernels): params = theta[p_index:p_index + kernel.num_parameters] p_index += kernel.num_parameters Z[i] = kernel.cov(X[:, i].reshape(X.shape[0], 1), Y[:, i].reshape(Y.shape[0], 1), theta=params) Z_d = np.copy(Z) for d in range(1, order + 1): S[d] = np.sum(Z_d, axis=0) Z_d = Z_d * Z_d for d in range(1, order + 1): for j in range(1, d + 1): K[d] += ((-1) ** (j - 1)) * K[d - j] * S[j] K[d] = K[d] / d for d in range(1, order + 1): K[d] = theta[d - 1] * K[d] return np.sum(K[1:], axis=0), K[1:] def cov(self, X, Y=None, order=None, theta=None, base_kernels=None): """ cov Compute the covariance matrix of inputs X and Y using __cov__. Arguments: ---------- X: array-like, shape = [n_samples, n_features] An array of inputs. Y (optional): array-like, shape = [m_samples, n_features] A second array of inputs. theta: array-like, shape = [n_parameter, ] The kernel parameters to use when computing the covariance. If None, the current parameters of the kernel are used. order: integer The interaction order that will be used. If None, the current kernel setting will be used. base_kernels: array-like, shape = [X.shape[0], ] The base_kernels to use for each feature. Exactly one base_kernel must be provided per input feature. If None, the current base_kernels of the kernel are used. """ K, K_orders = self.__cov__(X, Y, order, theta, base_kernels) return K def cov_gradient(self, X, theta=None): """ cov_gradient Compute the gradient of the covariance matrix of X with respect to the parameters of the additive kernel and the base kernels. Arguments: ---------- X: array-like, shape = [n_samples, n_features] An array of inputs. theta: array-like, shape = [n_parameter, ] The kernel parameters to use when computing the covariance. If None, the current parameters of the kernel are used. """ if theta is None: theta = self.theta gradient = [] p_index = self.dim K, K_orders = self.__cov__(X, theta=theta) for i in range(self.order): gradient.append(K_orders[i]) for i, ki in enumerate(self.base_kernels): dK_dki = self.cov(np.delete(X, i, axis=1), order=(self.order - 1), base_kernels=np.delete(self.base_kernels, i)) dki_dtheta = ki.cov_gradient(X, theta[p_index: p_index + ki.num_parameters]) gradient.extend((dK_dki + 1) * dki_dtheta) return np.array(gradient)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 13838, 25, 257, 8045, 4426, 680, 5116, 198, 2, 2488, 10430, 25, 220, 220, 2177, 12, 2998, 12, 2078, 2310, 25, 2998, 25, 2481, 198, 2, 2488, 5956, 40499, 416, 25, 220, 220, 257, 8045, 4426, 680, 5116, 198, 2, 2488, 5956, 40499, 640, 25, 2177, 12, 2919, 12, 2931, 1511, 25, 2931, 25, 2327, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 2777, 34961, 13, 30246, 1330, 269, 17080, 628, 198, 4871, 17986, 37, 33529, 198, 220, 220, 220, 37227, 17986, 37, 198, 220, 220, 220, 46333, 286, 262, 44503, 4308, 2163, 9720, 13, 4418, 1444, 262, 44345, 39682, 9720, 13, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 15793, 1483, 286, 17311, 284, 262, 9720, 357, 72, 13, 68, 13, 15793, 286, 1395, 737, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 9888, 25, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4129, 5046, 286, 262, 9720, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 25, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 24198, 14735, 286, 262, 9720, 2163, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 62, 17143, 7307, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 651, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 9720, 338, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 944, 13, 13664, 62, 9888, 11, 2116, 13, 7785, 12962, 628, 220, 220, 220, 825, 900, 62, 17143, 7307, 7, 944, 11, 262, 8326, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 900, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 9720, 338, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 25, 7177, 12, 2339, 11, 5485, 796, 685, 17, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 7268, 262, 649, 10007, 286, 262, 9720, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 11507, 1502, 318, 685, 13664, 62, 9888, 11, 24198, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13664, 62, 9888, 796, 262, 8326, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 796, 262, 8326, 58, 16, 60, 628, 220, 220, 220, 825, 39849, 7, 944, 11, 1395, 11, 575, 28, 14202, 11, 262, 8326, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39849, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 262, 44829, 590, 17593, 286, 1395, 290, 575, 1262, 262, 17986, 37, 9720, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 82, 12629, 11, 299, 62, 40890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 357, 25968, 2599, 7177, 12, 2339, 11, 5485, 796, 685, 76, 62, 82, 12629, 11, 299, 62, 40890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1218, 7177, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 575, 318, 6045, 11, 788, 262, 44829, 590, 17593, 286, 1395, 351, 2346, 481, 307, 29231, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 357, 25968, 2599, 7177, 12, 2339, 11, 5485, 796, 685, 17, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 11507, 3815, 329, 262, 9720, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 55, 11, 575, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 575, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 796, 1395, 628, 220, 220, 220, 220, 220, 220, 220, 611, 262, 8326, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 45941, 13, 18747, 26933, 944, 13, 13664, 62, 9888, 11, 2116, 13, 7785, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 257, 17593, 286, 44345, 304, 84, 20095, 666, 18868, 1022, 1395, 290, 575, 198, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 269, 17080, 7, 55, 11, 575, 11, 705, 31166, 12496, 565, 485, 272, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 509, 796, 262, 8326, 58, 16, 60, 1635, 45941, 13, 11201, 7, 17080, 1220, 13841, 17, 1635, 357, 1169, 8326, 58, 15, 60, 12429, 362, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 42, 13, 43358, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 509, 628, 220, 220, 220, 825, 39849, 62, 49607, 7, 944, 11, 1395, 11, 262, 8326, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39849, 62, 49607, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 262, 31312, 286, 262, 44829, 590, 17593, 286, 1395, 351, 2461, 284, 262, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 17986, 37, 9720, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 82, 12629, 11, 299, 62, 40890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 357, 25968, 2599, 7177, 12, 2339, 11, 5485, 796, 685, 17, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 11507, 3815, 329, 262, 9720, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 262, 8326, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 45941, 13, 18747, 26933, 944, 13, 13664, 62, 9888, 11, 2116, 13, 7785, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 269, 17080, 7, 55, 11, 1395, 11, 705, 31166, 12496, 565, 485, 272, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 509, 796, 45941, 13, 11201, 7, 17080, 1220, 13841, 17, 1635, 357, 1169, 8326, 58, 15, 60, 12429, 362, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 288, 42, 62, 25404, 796, 262, 8326, 58, 16, 60, 1635, 357, 1169, 8326, 58, 15, 60, 12429, 532, 18, 8, 1635, 1233, 1635, 509, 628, 220, 220, 220, 220, 220, 220, 220, 288, 42, 62, 67, 7785, 796, 509, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 67, 42, 62, 25404, 11, 288, 42, 62, 67, 7785, 12962, 628, 198, 4871, 3060, 1800, 33529, 198, 220, 220, 220, 37227, 17986, 37, 198, 220, 220, 220, 46333, 286, 262, 38298, 9720, 355, 3417, 416, 10343, 574, 3885, 2123, 435, 11, 2813, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 25, 18253, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 15793, 1483, 286, 17311, 284, 262, 9720, 357, 72, 13, 68, 13, 15793, 286, 1395, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 25, 1271, 11, 1502, 19841, 5391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1502, 286, 262, 38298, 9720, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 74, 44930, 25, 7177, 12, 2339, 11, 5485, 796, 685, 27740, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 900, 286, 2779, 9720, 5499, 11, 530, 329, 1123, 15793, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 25, 7177, 12, 2339, 11, 5485, 796, 685, 2875, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 24198, 7842, 10455, 11, 530, 329, 1123, 1502, 288, 25, 352, 19841, 288, 19841, 360, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 62, 17143, 7307, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 651, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 9720, 338, 10007, 11, 543, 2291, 262, 10007, 286, 262, 2779, 50207, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 45941, 13, 30073, 7, 944, 13, 7785, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 9720, 287, 2116, 13, 8692, 62, 74, 44930, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 45941, 13, 33295, 7, 1169, 8326, 11, 9720, 13, 1136, 62, 17143, 7307, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 262, 8326, 628, 220, 220, 220, 825, 900, 62, 17143, 7307, 7, 944, 11, 262, 8326, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 900, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 9720, 338, 10007, 13, 770, 1276, 2291, 262, 10007, 286, 262, 2779, 50207, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 17143, 2357, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 7268, 262, 649, 10007, 286, 262, 9720, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 717, 930, 944, 13, 2875, 91, 4847, 1276, 307, 262, 10375, 24198, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5637, 4847, 1276, 307, 10007, 329, 262, 2779, 50207, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 796, 262, 8326, 58, 15, 25, 944, 13, 2875, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 9630, 796, 2116, 13, 2875, 628, 220, 220, 220, 220, 220, 220, 220, 329, 9720, 287, 2116, 13, 8692, 62, 74, 44930, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 13, 2617, 62, 17143, 7307, 7, 1169, 8326, 58, 17143, 62, 9630, 25, 17143, 62, 9630, 1343, 9720, 13, 22510, 62, 17143, 7307, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 9630, 15853, 9720, 13, 22510, 62, 17143, 7307, 628, 220, 220, 220, 825, 11593, 66, 709, 834, 7, 944, 11, 1395, 11, 575, 28, 14202, 11, 1502, 28, 14202, 11, 262, 8326, 28, 14202, 11, 2779, 62, 74, 44930, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11593, 66, 709, 834, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 262, 44829, 590, 17593, 286, 17311, 1395, 290, 575, 13, 16409, 1111, 262, 44829, 590, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 290, 257, 1351, 286, 44829, 590, 2603, 45977, 329, 1123, 1502, 286, 10375, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 281, 5387, 31904, 13, 1675, 7330, 262, 655, 44829, 590, 17593, 286, 1395, 357, 392, 575, 828, 869, 366, 66, 709, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2427, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 82, 12629, 11, 299, 62, 40890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 357, 25968, 2599, 7177, 12, 2339, 11, 5485, 796, 685, 76, 62, 82, 12629, 11, 299, 62, 40890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1218, 7177, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 17143, 2357, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 9720, 10007, 284, 779, 618, 14492, 262, 44829, 590, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 262, 1459, 10007, 286, 262, 9720, 389, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 10375, 1502, 326, 481, 307, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 262, 1459, 9720, 4634, 481, 307, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 74, 44930, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 40890, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 286, 2779, 62, 74, 44930, 11, 530, 329, 1123, 3895, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36819, 530, 2779, 62, 33885, 1276, 307, 2810, 583, 5128, 3895, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 262, 1459, 2779, 62, 74, 44930, 286, 262, 9720, 389, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 575, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 796, 1395, 628, 220, 220, 220, 220, 220, 220, 220, 611, 262, 8326, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 2116, 13, 1169, 8326, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1502, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 796, 2116, 13, 2875, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2779, 62, 74, 44930, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 74, 44930, 796, 2116, 13, 8692, 62, 74, 44930, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1168, 318, 262, 7177, 286, 44829, 590, 2603, 45977, 4635, 416, 3586, 286, 262, 2779, 50207, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1168, 796, 45941, 13, 1952, 19510, 11925, 7, 8692, 62, 74, 44930, 828, 1395, 13, 43358, 58, 15, 4357, 575, 13, 43358, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 311, 318, 262, 7177, 286, 286, 479, 61, 400, 1176, 21784, 286, 262, 2603, 45977, 287, 1168, 11, 479, 796, 352, 2644, 2116, 13, 2875, 198, 220, 220, 220, 220, 220, 220, 220, 311, 796, 45941, 13, 1952, 19510, 2875, 1343, 352, 11, 1395, 13, 43358, 58, 15, 4357, 575, 13, 43358, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 509, 318, 262, 7177, 286, 479, 61, 400, 1502, 38298, 50207, 11, 479, 796, 352, 2644, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 509, 796, 45941, 13, 9107, 418, 19510, 2875, 1343, 352, 11, 1395, 13, 43358, 58, 15, 4357, 575, 13, 43358, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 509, 58, 15, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 279, 62, 9630, 796, 18896, 7, 8692, 62, 74, 44930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 9720, 287, 27056, 378, 7, 8692, 62, 74, 44930, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 262, 8326, 58, 79, 62, 9630, 25, 79, 62, 9630, 1343, 9720, 13, 22510, 62, 17143, 7307, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 9630, 15853, 9720, 13, 22510, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1168, 58, 72, 60, 796, 9720, 13, 66, 709, 7, 55, 58, 45299, 1312, 4083, 3447, 1758, 7, 55, 13, 43358, 58, 15, 4357, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 58, 45299, 1312, 4083, 3447, 1758, 7, 56, 13, 43358, 58, 15, 4357, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 28, 37266, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1168, 62, 67, 796, 45941, 13, 30073, 7, 57, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 2837, 7, 16, 11, 1502, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 58, 67, 60, 796, 45941, 13, 16345, 7, 57, 62, 67, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1168, 62, 67, 796, 1168, 62, 67, 1635, 1168, 62, 67, 628, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 2837, 7, 16, 11, 1502, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 16, 11, 288, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 58, 67, 60, 15853, 14808, 12, 16, 8, 12429, 357, 73, 532, 352, 4008, 1635, 509, 58, 67, 532, 474, 60, 1635, 311, 58, 73, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 58, 67, 60, 796, 509, 58, 67, 60, 1220, 288, 628, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 2837, 7, 16, 11, 1502, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 58, 67, 60, 796, 262, 8326, 58, 67, 532, 352, 60, 1635, 509, 58, 67, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 16345, 7, 42, 58, 16, 25, 4357, 16488, 28, 15, 828, 509, 58, 16, 47715, 628, 220, 220, 220, 825, 39849, 7, 944, 11, 1395, 11, 575, 28, 14202, 11, 1502, 28, 14202, 11, 262, 8326, 28, 14202, 11, 2779, 62, 74, 44930, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39849, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 262, 44829, 590, 17593, 286, 17311, 1395, 290, 575, 1262, 11593, 66, 709, 834, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 82, 12629, 11, 299, 62, 40890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 357, 25968, 2599, 7177, 12, 2339, 11, 5485, 796, 685, 76, 62, 82, 12629, 11, 299, 62, 40890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1218, 7177, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 17143, 2357, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 9720, 10007, 284, 779, 618, 14492, 262, 44829, 590, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 262, 1459, 10007, 286, 262, 9720, 389, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 25, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 10375, 1502, 326, 481, 307, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 262, 1459, 9720, 4634, 481, 307, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 74, 44930, 25, 7177, 12, 2339, 11, 5485, 796, 685, 55, 13, 43358, 58, 15, 4357, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2779, 62, 74, 44930, 284, 779, 329, 1123, 3895, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36819, 530, 2779, 62, 33885, 1276, 307, 2810, 583, 5128, 3895, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 262, 1459, 2779, 62, 74, 44930, 286, 262, 9720, 389, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 509, 11, 509, 62, 6361, 796, 2116, 13, 834, 66, 709, 834, 7, 55, 11, 575, 11, 1502, 11, 262, 8326, 11, 2779, 62, 74, 44930, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 509, 628, 220, 220, 220, 825, 39849, 62, 49607, 7, 944, 11, 1395, 11, 262, 8326, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39849, 62, 49607, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 262, 31312, 286, 262, 44829, 590, 17593, 286, 1395, 351, 2461, 284, 262, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 38298, 9720, 290, 262, 2779, 50207, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 82, 12629, 11, 299, 62, 40890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 17143, 2357, 11, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 9720, 10007, 284, 779, 618, 14492, 262, 44829, 590, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 262, 1459, 10007, 286, 262, 9720, 389, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 262, 8326, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 2116, 13, 1169, 8326, 628, 220, 220, 220, 220, 220, 220, 220, 31312, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 9630, 796, 2116, 13, 27740, 628, 220, 220, 220, 220, 220, 220, 220, 509, 11, 509, 62, 6361, 796, 2116, 13, 834, 66, 709, 834, 7, 55, 11, 262, 8326, 28, 1169, 8326, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 944, 13, 2875, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31312, 13, 33295, 7, 42, 62, 6361, 58, 72, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 47748, 287, 27056, 378, 7, 944, 13, 8692, 62, 74, 44930, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 42, 62, 67, 4106, 796, 2116, 13, 66, 709, 7, 37659, 13, 33678, 7, 55, 11, 1312, 11, 16488, 28, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 16193, 944, 13, 2875, 532, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 74, 44930, 28, 37659, 13, 33678, 7, 944, 13, 8692, 62, 74, 44930, 11, 1312, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4106, 62, 67, 1169, 8326, 796, 47748, 13, 66, 709, 62, 49607, 7, 55, 11, 262, 8326, 58, 79, 62, 9630, 25, 279, 62, 9630, 1343, 47748, 13, 22510, 62, 17143, 7307, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31312, 13, 2302, 437, 19510, 67, 42, 62, 67, 4106, 1343, 352, 8, 1635, 288, 4106, 62, 67, 1169, 8326, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 7, 49607, 8, 628, 628, 628, 628 ]
2.162785
4,466
from flask import Blueprint, jsonify, request from playhouse.shortcuts import model_to_dict from flask_login import current_user, login_required import models waitlists = Blueprint('waitlists', 'waitlists') print() # Index route @waitlist.route('/', methods=["GET"]) # Create route @waitlist.route('/', methods=["POST"]) @login_required # Show route @waitlist.route('/<id>', methods=["GET"]) # Update route @waitlist.route('/<id>', methods=["PUT"]) # Delete route @waitlist.route('/<id>', methods=["DELETE"])
[ 6738, 42903, 1330, 39932, 11, 33918, 1958, 11, 2581, 198, 6738, 711, 4803, 13, 19509, 23779, 1330, 2746, 62, 1462, 62, 11600, 198, 6738, 42903, 62, 38235, 1330, 1459, 62, 7220, 11, 17594, 62, 35827, 198, 198, 11748, 4981, 198, 198, 17077, 20713, 796, 39932, 10786, 17077, 20713, 3256, 705, 17077, 20713, 11537, 198, 4798, 3419, 198, 198, 2, 12901, 6339, 198, 31, 17077, 4868, 13, 38629, 10786, 14, 3256, 5050, 28, 14692, 18851, 8973, 8, 198, 198, 2, 13610, 6339, 198, 31, 17077, 4868, 13, 38629, 10786, 14, 3256, 5050, 28, 14692, 32782, 8973, 8, 198, 31, 38235, 62, 35827, 628, 198, 2, 5438, 6339, 198, 31, 17077, 4868, 13, 38629, 10786, 14, 27, 312, 29, 3256, 5050, 28, 14692, 18851, 8973, 8, 198, 198, 2, 10133, 6339, 198, 31, 17077, 4868, 13, 38629, 10786, 14, 27, 312, 29, 3256, 5050, 28, 14692, 30076, 8973, 8, 628, 198, 2, 23520, 6339, 198, 31, 17077, 4868, 13, 38629, 10786, 14, 27, 312, 29, 3256, 5050, 28, 14692, 7206, 2538, 9328, 8973, 8, 198 ]
2.99422
173
import itertools print(pairs_difference(2,[1, 5, 3, 4, 2]))
[ 11748, 340, 861, 10141, 201, 198, 201, 198, 201, 198, 201, 198, 4798, 7, 79, 3468, 62, 26069, 1945, 7, 17, 17414, 16, 11, 642, 11, 513, 11, 604, 11, 362, 60, 4008, 201, 198 ]
1.942857
35
from PyQt5.QtWidgets import QLabel from PyQt5.QtCore import Qt, pyqtSignal, QTimer from PyQt5.QtGui import QPainter, QColor, QPen
[ 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 33986, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 33734, 11, 12972, 39568, 11712, 282, 11, 1195, 48801, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1195, 38490, 353, 11, 1195, 10258, 11, 1195, 25553 ]
2.345455
55
keyboard.send_keys("<alt>+<page_up>")
[ 2539, 3526, 13, 21280, 62, 13083, 7203, 27, 2501, 29, 10, 27, 7700, 62, 929, 29, 4943 ]
2.176471
17
import json import logging import logging.config import os import sqlite3 import yaml import paho.mqtt.client as paho DATABASE = os.environ.get("DB_NAME") if __name__ == "__main__": db = get_db() with db: try: db.execute("CREATE TABLE devices_table (device_id TEXT NOT NULL, lights_on INTEGER NOT NULL)") except: pass try: db.execute("INSERT INTO devices_table VALUES ('123', 0)") except: pass wait_for_messages()
[ 11748, 33918, 198, 11748, 18931, 198, 11748, 18931, 13, 11250, 198, 11748, 28686, 198, 11748, 44161, 578, 18, 198, 198, 11748, 331, 43695, 198, 11748, 279, 17108, 13, 76, 80, 926, 13, 16366, 355, 279, 17108, 628, 198, 35, 1404, 6242, 11159, 796, 28686, 13, 268, 2268, 13, 1136, 7203, 11012, 62, 20608, 4943, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 20613, 796, 651, 62, 9945, 3419, 628, 220, 220, 220, 351, 20613, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 41049, 7203, 43387, 6158, 43679, 4410, 62, 11487, 357, 25202, 62, 312, 40383, 5626, 15697, 11, 7588, 62, 261, 17828, 7156, 1137, 5626, 15697, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 41049, 7203, 20913, 17395, 39319, 4410, 62, 11487, 26173, 35409, 19203, 10163, 3256, 657, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 4043, 62, 1640, 62, 37348, 1095, 3419, 198 ]
2.221277
235
def reverse(s): ''' (str) -> str Return a reversed version of s. >>> reverse('hello') 'olleh' >>> reverse('a') 'a' ''' new = '' for i in range(len(s)): new += s[len(s) - 1 - i] return new def is_palindrome(s): ''' (str) -> bool Return True iff s is a palindrome. >>> is_palindrome('noon') True >>> is_palindrome('racecar') True >>> is_palindrome('dented') False ''' return reverse(s) == s def is_palindrome2(s): ''' (str) -> bool Return True iff s is a palindrome. >>> is_palindrome2('noon') True >>> is_palindrome2('racecar') True >>> is_palindrome2('dented') False ''' half_s = '' if (len(s) % 2) == 0: half_s += s[len(s) // 2 :] else: half_s += s[(len(s) // 2) + 1:] return reverse(half_s) == s[:len(s) // 2] # compare the first half of s to the reverse of the second half # omit the middle character of an odd-length string #n = len(s) #return s[:n // 2] == reverse(s[n - n // 2:])
[ 4299, 9575, 7, 82, 2599, 198, 220, 220, 220, 705, 7061, 357, 2536, 8, 4613, 965, 198, 220, 220, 220, 220, 198, 220, 220, 220, 8229, 257, 17687, 2196, 286, 264, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 13163, 9575, 10786, 31373, 11537, 198, 220, 220, 220, 705, 349, 293, 71, 6, 198, 220, 220, 220, 13163, 9575, 10786, 64, 11537, 198, 220, 220, 220, 705, 64, 6, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 649, 796, 10148, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 82, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 15853, 264, 58, 11925, 7, 82, 8, 532, 352, 532, 1312, 60, 198, 220, 220, 220, 1441, 649, 198, 220, 220, 220, 220, 198, 198, 4299, 318, 62, 18596, 521, 5998, 7, 82, 2599, 198, 220, 220, 220, 705, 7061, 357, 2536, 8, 4613, 20512, 198, 220, 220, 220, 220, 198, 220, 220, 220, 8229, 6407, 611, 69, 264, 318, 257, 6340, 521, 5998, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 13163, 318, 62, 18596, 521, 5998, 10786, 6357, 11537, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 13163, 318, 62, 18596, 521, 5998, 10786, 16740, 7718, 11537, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 13163, 318, 62, 18596, 521, 5998, 10786, 67, 4714, 11537, 198, 220, 220, 220, 10352, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 9575, 7, 82, 8, 6624, 264, 198, 220, 220, 220, 220, 198, 4299, 318, 62, 18596, 521, 5998, 17, 7, 82, 2599, 198, 220, 220, 220, 705, 7061, 357, 2536, 8, 4613, 20512, 198, 220, 220, 220, 220, 198, 220, 220, 220, 8229, 6407, 611, 69, 264, 318, 257, 6340, 521, 5998, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 13163, 318, 62, 18596, 521, 5998, 17, 10786, 6357, 11537, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 13163, 318, 62, 18596, 521, 5998, 17, 10786, 16740, 7718, 11537, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 13163, 318, 62, 18596, 521, 5998, 17, 10786, 67, 4714, 11537, 198, 220, 220, 220, 10352, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2063, 62, 82, 796, 10148, 198, 220, 220, 220, 611, 357, 11925, 7, 82, 8, 4064, 362, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2063, 62, 82, 15853, 264, 58, 11925, 7, 82, 8, 3373, 362, 1058, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2063, 62, 82, 15853, 264, 58, 7, 11925, 7, 82, 8, 3373, 362, 8, 1343, 352, 47715, 198, 220, 220, 220, 1441, 9575, 7, 13959, 62, 82, 8, 6624, 264, 58, 25, 11925, 7, 82, 8, 3373, 362, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 8996, 262, 717, 2063, 286, 264, 284, 262, 9575, 286, 262, 1218, 2063, 198, 220, 220, 220, 1303, 42848, 262, 3504, 2095, 286, 281, 5629, 12, 13664, 4731, 198, 220, 220, 220, 1303, 77, 796, 18896, 7, 82, 8, 198, 220, 220, 220, 1303, 7783, 264, 58, 25, 77, 3373, 362, 60, 6624, 9575, 7, 82, 58, 77, 532, 299, 3373, 362, 25, 12962 ]
2.019964
551
# -------------------------------------------------------------------------- # Source file provided under Apache License, Version 2.0, January 2004, # http://www.apache.org/licenses/ # (c) Copyright IBM Corp. 2015, 2016 # -------------------------------------------------------------------------- # gendoc: ignore import math from docplex.mp.compat23 import izip from docplex.mp.constr import AbstractConstraint, LinearConstraint,\ LogicalConstraint, EquivalenceConstraint, IndicatorConstraint, QuadraticConstraint from docplex.mp.error_handler import docplex_fatal from docplex.mp.operand import LinearOperand from docplex.mp.dvar import Var from docplex.mp.pwl import PwlFunction from docplex.mp.progress import ProgressListener from docplex.mp.utils import is_int, is_number, is_iterable, is_string, generate_constant, \ is_ordered_sequence, is_iterator, resolve_caller_as_string from docplex.mp.vartype import VarType import six _vartype_code_map = {sc().cplex_typecode: sc().short_name for sc in VarType.__subclasses__()} # noinspection PyAbstractClass # ------------------------------ # noinspection PyPep8 _tck_map = {'default': StandardTypeChecker, 'standard': StandardTypeChecker, 'std': StandardTypeChecker, 'on': StandardTypeChecker, # -- 'numeric': NumericTypeChecker, 'full': FullTypeChecker, # -- 'off': DummyTypeChecker, 'deploy': DummyTypeChecker, 'no_checks': DummyTypeChecker}
[ 2, 16529, 35937, 198, 2, 8090, 2393, 2810, 739, 24843, 13789, 11, 10628, 362, 13, 15, 11, 3269, 5472, 11, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 198, 2, 357, 66, 8, 15069, 19764, 11421, 13, 1853, 11, 1584, 198, 2, 16529, 35937, 198, 198, 2, 308, 437, 420, 25, 8856, 628, 198, 11748, 10688, 198, 198, 6738, 2205, 11141, 13, 3149, 13, 5589, 265, 1954, 1330, 220, 528, 541, 198, 6738, 2205, 11141, 13, 3149, 13, 1102, 2536, 1330, 27741, 3103, 2536, 2913, 11, 44800, 3103, 2536, 2913, 11, 59, 198, 220, 220, 220, 5972, 605, 3103, 2536, 2913, 11, 7889, 2473, 594, 3103, 2536, 2913, 11, 1423, 26407, 3103, 2536, 2913, 11, 20648, 81, 1512, 3103, 2536, 2913, 198, 6738, 2205, 11141, 13, 3149, 13, 18224, 62, 30281, 1330, 2205, 11141, 62, 69, 10254, 198, 6738, 2205, 11141, 13, 3149, 13, 3575, 392, 1330, 44800, 18843, 392, 198, 6738, 2205, 11141, 13, 3149, 13, 67, 7785, 1330, 12372, 198, 6738, 2205, 11141, 13, 3149, 13, 79, 40989, 1330, 350, 40989, 22203, 198, 6738, 2205, 11141, 13, 3149, 13, 33723, 1330, 18387, 33252, 198, 6738, 2205, 11141, 13, 3149, 13, 26791, 1330, 318, 62, 600, 11, 318, 62, 17618, 11, 318, 62, 2676, 540, 11, 318, 62, 8841, 11, 7716, 62, 9979, 415, 11, 3467, 198, 220, 220, 220, 318, 62, 24071, 62, 43167, 11, 318, 62, 48727, 11, 10568, 62, 13345, 263, 62, 292, 62, 8841, 198, 6738, 2205, 11141, 13, 3149, 13, 85, 433, 2981, 1330, 12372, 6030, 198, 11748, 2237, 198, 198, 62, 85, 433, 2981, 62, 8189, 62, 8899, 796, 1391, 1416, 22446, 66, 11141, 62, 4906, 8189, 25, 629, 22446, 19509, 62, 3672, 329, 629, 287, 12372, 6030, 13, 834, 7266, 37724, 834, 3419, 92, 628, 628, 198, 198, 2, 645, 1040, 14978, 9485, 23839, 9487, 628, 628, 628, 198, 2, 220, 34400, 26171, 198, 2, 645, 1040, 14978, 9485, 47, 538, 23, 198, 62, 83, 694, 62, 8899, 796, 1391, 6, 12286, 10354, 8997, 6030, 9787, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20307, 10354, 8997, 6030, 9787, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19282, 10354, 8997, 6030, 9787, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 261, 10354, 8997, 6030, 9787, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 39223, 10354, 399, 39223, 6030, 9787, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12853, 10354, 6462, 6030, 9787, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 10354, 360, 13513, 6030, 9787, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2934, 1420, 10354, 360, 13513, 6030, 9787, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3919, 62, 42116, 10354, 360, 13513, 6030, 9787, 263, 92, 628 ]
2.864312
538
""" This module shows you how to perform various kinds of density calculations. """ # Does some sys.path manipulation so we can run examples in-place. # noinspection PyUnresolvedReferences import example_config from colormath.color_objects import SpectralColor from colormath.density_standards import ANSI_STATUS_T_RED, ISO_VISUAL EXAMPLE_COLOR = SpectralColor( observer=2, illuminant='d50', spec_380nm=0.0600, spec_390nm=0.0600, spec_400nm=0.0641, spec_410nm=0.0654, spec_420nm=0.0645, spec_430nm=0.0605, spec_440nm=0.0562, spec_450nm=0.0543, spec_460nm=0.0537, spec_470nm=0.0541, spec_480nm=0.0559, spec_490nm=0.0603, spec_500nm=0.0651, spec_510nm=0.0680, spec_520nm=0.0705, spec_530nm=0.0736, spec_540nm=0.0772, spec_550nm=0.0809, spec_560nm=0.0870, spec_570nm=0.0990, spec_580nm=0.1128, spec_590nm=0.1251, spec_600nm=0.1360, spec_610nm=0.1439, spec_620nm=0.1511, spec_630nm=0.1590, spec_640nm=0.1688, spec_650nm=0.1828, spec_660nm=0.1996, spec_670nm=0.2187, spec_680nm=0.2397, spec_690nm=0.2618, spec_700nm=0.2852, spec_710nm=0.2500, spec_720nm=0.2400, spec_730nm=0.2300) # Feel free to comment/un-comment examples as you please. example_auto_status_t_density() example_manual_status_t_density() example_visual_density()
[ 37811, 201, 198, 1212, 8265, 2523, 345, 703, 284, 1620, 2972, 6982, 286, 12109, 16765, 13, 201, 198, 37811, 201, 198, 201, 198, 2, 8314, 617, 25064, 13, 6978, 17512, 523, 356, 460, 1057, 6096, 287, 12, 5372, 13, 201, 198, 2, 645, 1040, 14978, 9485, 3118, 411, 5634, 19927, 201, 198, 11748, 1672, 62, 11250, 201, 198, 201, 198, 6738, 951, 579, 776, 13, 8043, 62, 48205, 1330, 13058, 1373, 10258, 201, 198, 6738, 951, 579, 776, 13, 43337, 62, 1481, 1371, 1330, 3537, 11584, 62, 35744, 2937, 62, 51, 62, 22083, 11, 19694, 62, 29817, 25620, 201, 198, 201, 198, 6369, 2390, 16437, 62, 46786, 796, 13058, 1373, 10258, 7, 201, 198, 220, 220, 220, 22890, 28, 17, 11, 2801, 7230, 415, 11639, 67, 1120, 3256, 201, 198, 220, 220, 220, 1020, 62, 23734, 21533, 28, 15, 13, 3312, 405, 11, 1020, 62, 25964, 21533, 28, 15, 13, 3312, 405, 11, 1020, 62, 7029, 21533, 28, 15, 13, 15, 42759, 11, 201, 198, 220, 220, 220, 1020, 62, 33289, 21533, 28, 15, 13, 15, 39111, 11, 1020, 62, 27211, 21533, 28, 15, 13, 3312, 2231, 11, 1020, 62, 31794, 21533, 28, 15, 13, 15, 32417, 11, 201, 198, 220, 220, 220, 1020, 62, 25644, 21533, 28, 15, 13, 2713, 5237, 11, 1020, 62, 17885, 21533, 28, 15, 13, 2713, 3559, 11, 1020, 62, 34716, 21533, 28, 15, 13, 2713, 2718, 11, 201, 198, 220, 220, 220, 1020, 62, 27790, 21533, 28, 15, 13, 2713, 3901, 11, 1020, 62, 22148, 21533, 28, 15, 13, 2713, 3270, 11, 1020, 62, 31503, 21533, 28, 15, 13, 15, 35642, 11, 201, 198, 220, 220, 220, 1020, 62, 4059, 21533, 28, 15, 13, 15, 40639, 11, 1020, 62, 33690, 21533, 28, 15, 13, 3312, 1795, 11, 1020, 62, 31211, 21533, 28, 15, 13, 15, 34801, 11, 201, 198, 220, 220, 220, 1020, 62, 38612, 21533, 28, 15, 13, 2998, 2623, 11, 1020, 62, 35005, 21533, 28, 15, 13, 2998, 4761, 11, 1020, 62, 22730, 21533, 28, 15, 13, 33057, 24, 11, 201, 198, 220, 220, 220, 1020, 62, 34135, 21533, 28, 15, 13, 2919, 2154, 11, 1020, 62, 39254, 21533, 28, 15, 13, 15, 34155, 11, 1020, 62, 39322, 21533, 28, 15, 13, 16, 12762, 11, 201, 198, 220, 220, 220, 1020, 62, 36993, 21533, 28, 15, 13, 1065, 4349, 11, 1020, 62, 8054, 21533, 28, 15, 13, 1485, 1899, 11, 1020, 62, 39132, 21533, 28, 15, 13, 1415, 2670, 11, 201, 198, 220, 220, 220, 1020, 62, 38850, 21533, 28, 15, 13, 1314, 1157, 11, 1020, 62, 30005, 21533, 28, 15, 13, 1314, 3829, 11, 1020, 62, 31102, 21533, 28, 15, 13, 1433, 3459, 11, 201, 198, 220, 220, 220, 1020, 62, 17544, 21533, 28, 15, 13, 1507, 2078, 11, 1020, 62, 39885, 21533, 28, 15, 13, 22288, 11, 1020, 62, 43798, 21533, 28, 15, 13, 17, 23451, 11, 201, 198, 220, 220, 220, 1020, 62, 37397, 21533, 28, 15, 13, 1954, 5607, 11, 1020, 62, 35844, 21533, 28, 15, 13, 2075, 1507, 11, 1020, 62, 9879, 21533, 28, 15, 13, 2078, 4309, 11, 201, 198, 220, 220, 220, 1020, 62, 43147, 21533, 28, 15, 13, 44688, 11, 1020, 62, 23906, 21533, 28, 15, 13, 1731, 405, 11, 1020, 62, 43916, 21533, 28, 15, 13, 1954, 405, 8, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198, 2, 18571, 1479, 284, 2912, 14, 403, 12, 23893, 6096, 355, 345, 3387, 13, 201, 198, 20688, 62, 23736, 62, 13376, 62, 83, 62, 43337, 3419, 201, 198, 20688, 62, 805, 723, 62, 13376, 62, 83, 62, 43337, 3419, 201, 198, 20688, 62, 41464, 62, 43337, 3419, 201, 198 ]
2.16913
609
''' Copyright (C) 2021 CG Cookie https://github.com/CGCookie/retopoflow This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import inspect from .debug import ExceptionHandler from .debug import debugger from .utils import find_fns
[ 7061, 6, 198, 15269, 357, 34, 8, 33448, 29925, 39606, 198, 5450, 1378, 12567, 13, 785, 14, 34, 15916, 18055, 14, 1186, 404, 1659, 9319, 198, 220, 220, 220, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 220, 220, 220, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 220, 220, 220, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 220, 220, 220, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 220, 220, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 220, 220, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 220, 220, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 220, 220, 220, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 220, 220, 220, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 220, 220, 220, 1863, 351, 428, 1430, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 7061, 6, 198, 198, 11748, 10104, 198, 198, 6738, 764, 24442, 1330, 35528, 25060, 198, 6738, 764, 24442, 1330, 49518, 198, 6738, 764, 26791, 1330, 1064, 62, 69, 5907, 628, 628 ]
3.581197
234
# ## PyMoira client library ## ## This file contains the Moira-related errors. # from . import constants class BaseError(Exception): """Any exception thrown by the library is inhereted from this""" pass class ConnectionError(BaseError): """An error which prevents the client from having or continuing a meaningful dialogue with a server (parsing failure, connection failure, etc)""" pass class MoiraError(BaseError): """An error returned from Moira server itself which has a Moira error code.""" class MoiraUnavailableError(BaseError): """An error raised in case when Moira MOTD is not empty.""" pass class UserError(BaseError): """An error related to Moira but not returned from the server.""" pass class AuthenticationError(BaseError): """An error related to the authentication process.""" pass
[ 2, 198, 2235, 9485, 16632, 8704, 5456, 5888, 198, 2235, 198, 2235, 770, 2393, 4909, 262, 4270, 8704, 12, 5363, 8563, 13, 198, 2, 198, 198, 6738, 764, 1330, 38491, 198, 198, 4871, 7308, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 7149, 6631, 8754, 416, 262, 5888, 318, 287, 258, 1186, 276, 422, 428, 37811, 628, 220, 220, 220, 1208, 198, 198, 4871, 26923, 12331, 7, 14881, 12331, 2599, 198, 220, 220, 220, 37227, 2025, 4049, 543, 15174, 262, 5456, 422, 1719, 393, 8282, 257, 11570, 198, 220, 220, 220, 10721, 351, 257, 4382, 357, 79, 945, 278, 5287, 11, 4637, 5287, 11, 3503, 8, 37811, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1208, 198, 198, 4871, 4270, 8704, 12331, 7, 14881, 12331, 2599, 198, 220, 220, 220, 37227, 2025, 4049, 4504, 422, 4270, 8704, 4382, 2346, 543, 468, 257, 4270, 8704, 4049, 2438, 526, 15931, 198, 198, 4871, 4270, 8704, 3118, 15182, 12331, 7, 14881, 12331, 2599, 198, 220, 220, 220, 37227, 2025, 4049, 4376, 287, 1339, 618, 4270, 8704, 42982, 35, 318, 407, 6565, 526, 15931, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1208, 198, 198, 4871, 11787, 12331, 7, 14881, 12331, 2599, 198, 220, 220, 220, 37227, 2025, 4049, 3519, 284, 4270, 8704, 475, 407, 4504, 422, 262, 4382, 526, 15931, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1208, 198, 198, 4871, 48191, 12331, 7, 14881, 12331, 2599, 198, 220, 220, 220, 37227, 2025, 4049, 3519, 284, 262, 18239, 1429, 526, 15931, 628, 220, 220, 220, 1208, 198 ]
3.355212
259
#!/usr/bin/python import pytest import pandas as pd import numpy as np from yahoo_fantasy_bot import roster RBLDR_COLS = ["player_id", "name", "eligible_positions", "selected_position"] RSEL_COLS = ["player_id", "name", "HR", "OBP", "W", "ERA"] @pytest.fixture @pytest.fixture @pytest.fixture
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 11748, 12972, 9288, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 331, 12992, 62, 69, 34921, 62, 13645, 1330, 9354, 198, 198, 49, 9148, 7707, 62, 25154, 50, 796, 14631, 7829, 62, 312, 1600, 366, 3672, 1600, 366, 31595, 62, 1930, 1756, 1600, 366, 34213, 62, 9150, 8973, 198, 6998, 3698, 62, 25154, 50, 796, 14631, 7829, 62, 312, 1600, 366, 3672, 1600, 366, 17184, 1600, 366, 9864, 47, 1600, 366, 54, 1600, 366, 46461, 8973, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
2.57265
117
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # author: bigfoolliu """ 使用邻接表表示图 A --> B A --> C B --> C B --> D C --> D D --> C E --> F F --> C """ def find_one_path(graph, start, end, path=[]): """ 寻找graph中由start到end顶点的其中一条路径 graph: dict start: str end: str return: list """ path = path + [start] if start == end: return path if start not in graph.keys(): return None for node in graph[start]: if node not in path: # 保证路径的顶点不重复 new_path = find_one_path(graph, node, end, path) if new_path: return new_path return path def find_all_paths(graph, start, end, path=[]): """ 寻找graph中由start到end顶点的所有路径 graph: dict start: str end: str return: [[], ...] """ path = path + [start] if start == end: return [path] if start not in graph.keys(): return [] paths = [] for node in graph[start]: if node not in path: new_paths = find_all_paths(graph, node, end, path) for new_path in new_paths: paths.append(new_path) return paths def find_shortest_path(graph, start, end, path=[]): """ 寻找graph中由start到end顶点的最短路径,思路是将如果每次找到了新路径将旧的存储的最短路径对比 graph: dict start: str end: str return: list """ path = path + [start] if start == end: return path if start not in graph.keys(): return None shortest_path = None for node in graph[start]: if node not in path: new_path = find_shortest_path(graph, node, end, path) if new_path: if not shortest_path or len(new_path) < len(shortest_path): # 当有多条最短路径的时候只会记录首条 shortest_path = new_path return shortest_path if __name__ == "__main__": # 使邻接表定义一个有向图 graph = { "A": ["B", "C"], "B": ["C", "D"], "C": ["D"], "D": ["C"], "E": ["F"], "F": ["C"] } print(find_one_path(graph, "A", "D")) # 结果正确 print(find_one_path(graph, "B", "F")) # TODO: 结果应该报错或者怎样 print(find_all_paths(graph, "A", "D")) print(find_shortest_path(graph, "A", "D"))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 2, 1772, 25, 1263, 6513, 692, 16115, 628, 198, 37811, 198, 45635, 18796, 101, 165, 224, 119, 162, 236, 98, 26193, 101, 26193, 101, 163, 97, 118, 32368, 122, 198, 32, 14610, 347, 198, 32, 14610, 327, 198, 33, 14610, 327, 198, 33, 14610, 360, 198, 34, 14610, 360, 198, 35, 14610, 327, 198, 36, 14610, 376, 198, 37, 14610, 327, 198, 37811, 628, 198, 4299, 1064, 62, 505, 62, 6978, 7, 34960, 11, 923, 11, 886, 11, 3108, 28, 21737, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 107, 119, 33699, 122, 34960, 40792, 18796, 109, 9688, 26344, 108, 437, 165, 94, 114, 163, 224, 117, 21410, 17739, 114, 40792, 31660, 30266, 94, 164, 115, 107, 36181, 226, 198, 220, 220, 220, 4823, 25, 8633, 198, 220, 220, 220, 923, 25, 965, 198, 220, 220, 220, 886, 25, 965, 198, 220, 220, 220, 1441, 25, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3108, 796, 3108, 1343, 685, 9688, 60, 198, 220, 220, 220, 611, 923, 6624, 886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3108, 198, 220, 220, 220, 611, 923, 407, 287, 4823, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 329, 10139, 287, 4823, 58, 9688, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 407, 287, 3108, 25, 220, 1303, 220, 46479, 251, 46237, 223, 164, 115, 107, 36181, 226, 21410, 165, 94, 114, 163, 224, 117, 38834, 34932, 235, 13783, 235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 6978, 796, 1064, 62, 505, 62, 6978, 7, 34960, 11, 10139, 11, 886, 11, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 6978, 198, 220, 220, 220, 1441, 3108, 628, 198, 4299, 1064, 62, 439, 62, 6978, 82, 7, 34960, 11, 923, 11, 886, 11, 3108, 28, 21737, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 107, 119, 33699, 122, 34960, 40792, 18796, 109, 9688, 26344, 108, 437, 165, 94, 114, 163, 224, 117, 21410, 33699, 222, 17312, 231, 164, 115, 107, 36181, 226, 198, 220, 220, 220, 4823, 25, 8633, 198, 220, 220, 220, 923, 25, 965, 198, 220, 220, 220, 886, 25, 965, 198, 220, 220, 220, 1441, 25, 16410, 4357, 2644, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3108, 796, 3108, 1343, 685, 9688, 60, 198, 220, 220, 220, 611, 923, 6624, 886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 6978, 60, 198, 220, 220, 220, 611, 923, 407, 287, 4823, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 13532, 796, 17635, 198, 220, 220, 220, 329, 10139, 287, 4823, 58, 9688, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 407, 287, 3108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 6978, 82, 796, 1064, 62, 439, 62, 6978, 82, 7, 34960, 11, 10139, 11, 886, 11, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 649, 62, 6978, 287, 649, 62, 6978, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 13, 33295, 7, 3605, 62, 6978, 8, 198, 220, 220, 220, 1441, 13532, 628, 198, 4299, 1064, 62, 19509, 395, 62, 6978, 7, 34960, 11, 923, 11, 886, 11, 3108, 28, 21737, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 107, 119, 33699, 122, 34960, 40792, 18796, 109, 9688, 26344, 108, 437, 165, 94, 114, 163, 224, 117, 21410, 17312, 222, 163, 253, 255, 164, 115, 107, 36181, 226, 171, 120, 234, 45250, 251, 164, 115, 107, 42468, 49546, 36685, 224, 162, 252, 250, 162, 107, 237, 162, 105, 94, 33699, 122, 26344, 108, 12859, 228, 23877, 108, 164, 115, 107, 36181, 226, 49546, 33768, 100, 21410, 27764, 246, 43636, 101, 21410, 17312, 222, 163, 253, 255, 164, 115, 107, 36181, 226, 43380, 117, 162, 107, 242, 198, 220, 220, 220, 4823, 25, 8633, 198, 220, 220, 220, 923, 25, 965, 198, 220, 220, 220, 886, 25, 965, 198, 220, 220, 220, 1441, 25, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3108, 796, 3108, 1343, 685, 9688, 60, 198, 220, 220, 220, 611, 923, 6624, 886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3108, 198, 220, 220, 220, 611, 923, 407, 287, 4823, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 35581, 62, 6978, 796, 6045, 198, 220, 220, 220, 329, 10139, 287, 4823, 58, 9688, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 407, 287, 3108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 6978, 796, 1064, 62, 19509, 395, 62, 6978, 7, 34960, 11, 10139, 11, 886, 11, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 35581, 62, 6978, 393, 18896, 7, 3605, 62, 6978, 8, 1279, 18896, 7, 19509, 395, 62, 6978, 2599, 220, 1303, 10263, 121, 241, 17312, 231, 13783, 248, 30266, 94, 17312, 222, 163, 253, 255, 164, 115, 107, 36181, 226, 21410, 33768, 114, 161, 222, 247, 20998, 103, 27670, 248, 164, 106, 108, 37605, 243, 165, 99, 244, 30266, 94, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 6978, 796, 649, 62, 6978, 198, 220, 220, 220, 1441, 35581, 62, 6978, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 220, 45635, 165, 224, 119, 162, 236, 98, 26193, 101, 22522, 248, 20046, 231, 31660, 10310, 103, 17312, 231, 28938, 239, 32368, 122, 198, 220, 220, 220, 4823, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32, 1298, 14631, 33, 1600, 366, 34, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33, 1298, 14631, 34, 1600, 366, 35, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34, 1298, 14631, 35, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 35, 1298, 14631, 34, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 36, 1298, 14631, 37, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37, 1298, 14631, 34, 8973, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 3601, 7, 19796, 62, 505, 62, 6978, 7, 34960, 11, 366, 32, 1600, 366, 35, 48774, 220, 1303, 13328, 119, 241, 162, 252, 250, 29826, 96, 163, 94, 106, 198, 220, 220, 220, 3601, 7, 19796, 62, 505, 62, 6978, 7, 34960, 11, 366, 33, 1600, 366, 37, 48774, 220, 1303, 16926, 46, 25, 13328, 119, 241, 162, 252, 250, 41753, 242, 46237, 98, 162, 232, 98, 165, 242, 247, 22755, 244, 38519, 45250, 236, 43718, 115, 628, 220, 220, 220, 3601, 7, 19796, 62, 439, 62, 6978, 82, 7, 34960, 11, 366, 32, 1600, 366, 35, 48774, 198, 220, 220, 220, 3601, 7, 19796, 62, 19509, 395, 62, 6978, 7, 34960, 11, 366, 32, 1600, 366, 35, 48774, 198 ]
1.723005
1,278
###________________________ 2nd-Order-Free-Response ________________________### import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams.update({'font.size': 22}) ##__________ Functions for dumping characteristic cases __________## ##__________ 2nd order free response __________## for xii in [1.5, 1.85, 2.5]: # for xii in [0.00, 1.00, 2.50]: for wnn in [1, 3, 5]: for x00 in [-1, -0.5, 0]: for x_dot00 in [1.5, 3.6, 4.5]: plot_2order_free_resp(xii, wnn, x00, x_dot00)
[ 21017, 32941, 362, 358, 12, 18743, 12, 11146, 12, 31077, 220, 32941, 21017, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2603, 29487, 8019, 198, 198, 6759, 29487, 8019, 13, 6015, 10044, 4105, 13, 19119, 15090, 6, 10331, 13, 7857, 10354, 2534, 30072, 198, 198, 2235, 2602, 834, 40480, 329, 30231, 16704, 2663, 220, 2602, 834, 2235, 198, 198, 2235, 2602, 834, 362, 358, 1502, 1479, 2882, 220, 2602, 834, 2235, 198, 198, 1640, 2124, 4178, 287, 685, 16, 13, 20, 11, 352, 13, 5332, 11, 362, 13, 20, 5974, 198, 2, 329, 2124, 4178, 287, 685, 15, 13, 405, 11, 352, 13, 405, 11, 362, 13, 1120, 5974, 198, 220, 220, 220, 329, 266, 20471, 287, 685, 16, 11, 513, 11, 642, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 405, 287, 25915, 16, 11, 532, 15, 13, 20, 11, 657, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 62, 26518, 405, 287, 685, 16, 13, 20, 11, 513, 13, 21, 11, 604, 13, 20, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 17, 2875, 62, 5787, 62, 4363, 7, 87, 4178, 11, 266, 20471, 11, 2124, 405, 11, 2124, 62, 26518, 405, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628 ]
2.296748
246
from typing import List, Dict import numpy as np from em.platform.rendering.dto.time_interval import TimeInterval from em.platform.rendering.schema.events.event import Event from em.platform.rendering.schema.processing_strategy import ProcessingStrategy
[ 6738, 19720, 1330, 7343, 11, 360, 713, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 795, 13, 24254, 13, 13287, 278, 13, 67, 1462, 13, 2435, 62, 3849, 2100, 1330, 3862, 9492, 2100, 198, 6738, 795, 13, 24254, 13, 13287, 278, 13, 15952, 2611, 13, 31534, 13, 15596, 1330, 8558, 198, 6738, 795, 13, 24254, 13, 13287, 278, 13, 15952, 2611, 13, 36948, 62, 2536, 4338, 1330, 28403, 13290, 4338, 628 ]
3.520548
73
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from doubanfm.views.lrc_view import Lrc from doubanfm.dal.dal_help import HelpDal class Help(Lrc): """帮助界面"""
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 3385, 272, 38353, 13, 33571, 13, 75, 6015, 62, 1177, 1330, 406, 6015, 198, 6738, 3385, 272, 38353, 13, 31748, 13, 31748, 62, 16794, 1330, 10478, 35, 282, 628, 198, 4871, 10478, 7, 43, 6015, 2599, 198, 220, 220, 220, 37227, 30585, 106, 27950, 102, 45911, 234, 165, 251, 95, 37811, 198 ]
2.116883
77
maps = { 'batting': { 'a': 'assists', 'ab': 'atbats', 'ao': 'air_outs', 'avg': 'batting_avg', 'bb': 'base_on_balls', 'cs': 'caught_stealing', 'e': 'error', 'gidp': 'ground_into_dp', 'go': 'ground_out', 'h': 'hit', 'hbp': 'hit_by_pitch', 'hr': 'home_run', 'lob': 'left_on_base' } }
[ 31803, 796, 1391, 198, 220, 220, 220, 705, 8664, 889, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 705, 562, 1023, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 397, 10354, 705, 265, 50199, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5488, 10354, 705, 958, 62, 5269, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 615, 70, 10354, 705, 8664, 889, 62, 615, 70, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11848, 10354, 705, 8692, 62, 261, 62, 21591, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6359, 10354, 705, 66, 3413, 62, 301, 26919, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 68, 10354, 705, 18224, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 70, 312, 79, 10354, 705, 2833, 62, 20424, 62, 26059, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2188, 10354, 705, 2833, 62, 448, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 71, 10354, 705, 17945, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 71, 46583, 10354, 705, 17945, 62, 1525, 62, 79, 2007, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11840, 10354, 705, 11195, 62, 5143, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 75, 672, 10354, 705, 9464, 62, 261, 62, 8692, 6, 198, 220, 220, 220, 1782, 198, 92 ]
1.640167
239
import networkx as nx import numpy as np import scipy.sparse as sp from grapht.graphtools import * G = nx.barabasi_albert_graph(100, 2) G.add_edge(0, 1) # the initial condition of BA(n, 2) means it can have pendant edges, this stops that happening G_with_pendant = G.copy() G_with_pendant.add_node(100) G_with_pendant.add_edge(0, 100) G_with_isolate = G.copy() G_with_isolate.add_node(100)
[ 11748, 3127, 87, 355, 299, 87, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 82, 29572, 355, 599, 198, 6738, 4823, 83, 13, 34960, 31391, 1330, 1635, 198, 198, 38, 796, 299, 87, 13, 5657, 397, 17053, 62, 282, 4835, 62, 34960, 7, 3064, 11, 362, 8, 198, 38, 13, 2860, 62, 14907, 7, 15, 11, 352, 8, 1303, 262, 4238, 4006, 286, 23715, 7, 77, 11, 362, 8, 1724, 340, 460, 423, 279, 23048, 13015, 11, 428, 9911, 326, 5836, 198, 38, 62, 4480, 62, 79, 23048, 796, 402, 13, 30073, 3419, 198, 38, 62, 4480, 62, 79, 23048, 13, 2860, 62, 17440, 7, 3064, 8, 198, 38, 62, 4480, 62, 79, 23048, 13, 2860, 62, 14907, 7, 15, 11, 1802, 8, 198, 38, 62, 4480, 62, 271, 27976, 796, 402, 13, 30073, 3419, 198, 38, 62, 4480, 62, 271, 27976, 13, 2860, 62, 17440, 7, 3064, 8, 198 ]
2.538961
154
"""Recurrent layers and their base classes.""" from tensorflow.keras.layers import RNN from tensorflow.keras.layers import StackedRNNCells from tensorflow.keras.layers import SimpleRNN from tensorflow.keras.layers import GRU from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import SimpleRNNCell from tensorflow.keras.layers import GRUCell from tensorflow.keras.layers import LSTMCell
[ 37811, 6690, 6657, 11685, 290, 511, 2779, 6097, 526, 15931, 198, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 371, 6144, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 520, 6021, 49, 6144, 34, 19187, 198, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 17427, 49, 6144, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 10863, 52, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 406, 2257, 44, 198, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 17427, 49, 6144, 28780, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 10863, 9598, 695, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 406, 2257, 9655, 695, 198 ]
2.978102
137
# Python - 2.7.6
[ 2, 11361, 532, 362, 13, 22, 13, 21 ]
2
8
import sys import pybel filename = "" verbose = False if (len(sys.argv)) == 2: filename = sys.argv[1] else: print "usage :", sys.argv[0] , " filename.xyz" exit(1) matrix = pybel.ob.matrix3x3() matrix.RotAboutAxisByAngle(pybel.ob.vector3(1, 0, 0), 90) if verbose: for i in range(3): for j in range(3): line = "%10.5f "%(matrix.Get(i,j)) sys.stdout.write(line) sys.stdout.write("\n") imatrix = matrix.inverse() if verbose: print "" for i in range(3): for j in range(3): line = "%10.5f "%(imatrix.Get(i,j)) sys.stdout.write(line) sys.stdout.write("\n") rotarray = pybel.ob.doubleArray(9) matrix.GetArray(rotarray) mol = pybel.readfile("xyz", filename).next() mol.OBMol.Rotate(rotarray) mol.OBMol.Translate(pybel.ob.vector3(1.0, 10.0, 3.0)); print mol.write("xyz")
[ 11748, 25064, 198, 11748, 12972, 6667, 198, 198, 34345, 796, 13538, 198, 19011, 577, 796, 10352, 198, 198, 361, 357, 11925, 7, 17597, 13, 853, 85, 4008, 6624, 362, 25, 220, 198, 220, 29472, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 17772, 25, 198, 220, 3601, 366, 26060, 1058, 1600, 25064, 13, 853, 85, 58, 15, 60, 837, 366, 29472, 13, 5431, 89, 1, 198, 220, 8420, 7, 16, 8, 198, 198, 6759, 8609, 796, 12972, 6667, 13, 672, 13, 6759, 8609, 18, 87, 18, 3419, 198, 6759, 8609, 13, 24864, 8585, 31554, 271, 3886, 13450, 293, 7, 9078, 6667, 13, 672, 13, 31364, 18, 7, 16, 11, 657, 11, 657, 828, 4101, 8, 198, 198, 361, 15942, 577, 25, 198, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 36521, 940, 13, 20, 69, 36521, 7, 6759, 8609, 13, 3855, 7, 72, 11, 73, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7203, 59, 77, 4943, 198, 198, 320, 265, 8609, 796, 17593, 13, 259, 4399, 3419, 198, 198, 361, 15942, 577, 25, 198, 220, 3601, 13538, 198, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 36521, 940, 13, 20, 69, 36521, 7, 320, 265, 8609, 13, 3855, 7, 72, 11, 73, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7203, 59, 77, 4943, 198, 198, 10599, 18747, 796, 12972, 6667, 13, 672, 13, 23352, 19182, 7, 24, 8, 198, 6759, 8609, 13, 3855, 19182, 7, 10599, 18747, 8, 198, 198, 43132, 796, 12972, 6667, 13, 961, 7753, 7203, 5431, 89, 1600, 29472, 737, 19545, 3419, 198, 43132, 13, 9864, 44, 349, 13, 24864, 378, 7, 10599, 18747, 8, 198, 43132, 13, 9864, 44, 349, 13, 8291, 17660, 7, 9078, 6667, 13, 672, 13, 31364, 18, 7, 16, 13, 15, 11, 838, 13, 15, 11, 513, 13, 15, 18125, 198, 4798, 18605, 13, 13564, 7203, 5431, 89, 4943, 198 ]
2.06846
409
# -*- coding: utf-8 -*- from os import setuid, chown from pwd import getpwnam from typing import Union
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 28686, 1330, 900, 27112, 11, 442, 593, 198, 6738, 279, 16993, 1330, 651, 79, 675, 321, 198, 6738, 19720, 1330, 4479, 628, 628 ]
2.74359
39
#!/usr/bin/env python """ Tests gristle_determinator.py Contains a primary class: FileStructureFixtureManager Which is extended by six classes that override various methods or variables. This is a failed experiment - since the output isn't as informative as it should be. This should be redesigned. See the file "LICENSE" for the full license governing this code. Copyright 2011,2012,2013,2017 Ken Farmer """ #adjust pylint for pytest oddities: #pylint: disable=missing-docstring #pylint: disable=unused-argument #pylint: disable=attribute-defined-outside-init #pylint: disable=protected-access #pylint: disable=no-self-use #pylint: disable=empty-docstring import tempfile import csv import errno import shutil import os from os.path import join as pjoin, dirname from pprint import pprint as pp import pytest import envoy import datagristle.test_tools as test_tools import datagristle.file_type as file_type script_path = dirname(dirname(os.path.realpath((__file__)))) def get_value(parsable_out, division, section, subsection, key): """ Gets the value (right-most field) out of gristle_determinator parsable output given the key values for the rest of the fields. """ mydialect = csv.Dialect mydialect.delimiter = '|' mydialect.quoting = file_type.get_quote_number('QUOTE_ALL') mydialect.quotechar = '"' mydialect.lineterminator = '\n' csvobj = csv.reader(parsable_out.split('\n'), dialect=mydialect) for record in csvobj: if not record: continue assert len(record) == 5 rec_division = record[0] rec_section = record[1] rec_subsection = record[2] rec_key = record[3] rec_value = record[4] if (rec_division == division and rec_section == section and rec_subsection == subsection and rec_key == key): return rec_value return None
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 30307, 1036, 12535, 62, 67, 13221, 1352, 13, 9078, 628, 220, 220, 220, 49850, 257, 4165, 1398, 25, 9220, 1273, 5620, 37, 9602, 13511, 198, 220, 220, 220, 9022, 318, 7083, 416, 2237, 6097, 326, 20957, 2972, 5050, 393, 9633, 13, 198, 220, 220, 220, 770, 318, 257, 4054, 6306, 532, 1201, 262, 5072, 2125, 470, 355, 30304, 355, 340, 198, 220, 220, 220, 815, 307, 13, 220, 770, 815, 307, 36240, 13, 628, 220, 220, 220, 4091, 262, 2393, 366, 43, 2149, 24290, 1, 329, 262, 1336, 5964, 15030, 428, 2438, 13, 198, 220, 220, 220, 15069, 2813, 11, 6999, 11, 6390, 11, 5539, 7148, 37755, 198, 37811, 198, 2, 23032, 279, 2645, 600, 329, 12972, 9288, 5629, 871, 25, 198, 2, 79, 2645, 600, 25, 15560, 28, 45688, 12, 15390, 8841, 198, 2, 79, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 2, 79, 2645, 600, 25, 15560, 28, 42348, 12, 23211, 12, 43435, 12, 15003, 198, 2, 79, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 198, 2, 79, 2645, 600, 25, 15560, 28, 3919, 12, 944, 12, 1904, 198, 2, 79, 2645, 600, 25, 15560, 28, 28920, 12, 15390, 8841, 198, 198, 11748, 20218, 7753, 198, 11748, 269, 21370, 198, 11748, 11454, 3919, 198, 11748, 4423, 346, 198, 11748, 28686, 198, 6738, 28686, 13, 6978, 1330, 4654, 355, 279, 22179, 11, 26672, 3672, 198, 6738, 279, 4798, 1330, 279, 4798, 355, 9788, 198, 198, 11748, 12972, 9288, 198, 11748, 39137, 198, 198, 11748, 4818, 363, 1585, 293, 13, 9288, 62, 31391, 355, 1332, 62, 31391, 198, 11748, 4818, 363, 1585, 293, 13, 7753, 62, 4906, 355, 2393, 62, 4906, 198, 198, 12048, 62, 6978, 796, 26672, 3672, 7, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 19510, 834, 7753, 834, 35514, 628, 628, 198, 4299, 651, 62, 8367, 7, 79, 945, 540, 62, 448, 11, 7297, 11, 2665, 11, 8371, 11, 1994, 2599, 198, 220, 220, 220, 37227, 29620, 262, 1988, 357, 3506, 12, 1712, 2214, 8, 503, 286, 1036, 12535, 62, 67, 13221, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 13544, 540, 5072, 1813, 262, 1994, 3815, 329, 262, 1334, 286, 262, 7032, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 616, 38969, 478, 796, 269, 21370, 13, 24400, 478, 198, 220, 220, 220, 616, 38969, 478, 13, 12381, 320, 2676, 796, 705, 91, 6, 198, 220, 220, 220, 616, 38969, 478, 13, 421, 10720, 796, 2393, 62, 4906, 13, 1136, 62, 22708, 62, 17618, 10786, 10917, 23051, 62, 7036, 11537, 198, 220, 220, 220, 616, 38969, 478, 13, 22708, 10641, 796, 705, 30543, 198, 220, 220, 220, 616, 38969, 478, 13, 2815, 13221, 1352, 796, 705, 59, 77, 6, 628, 220, 220, 220, 269, 21370, 26801, 796, 269, 21370, 13, 46862, 7, 79, 945, 540, 62, 448, 13, 35312, 10786, 59, 77, 33809, 23637, 28, 1820, 38969, 478, 8, 628, 220, 220, 220, 329, 1700, 287, 269, 21370, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1700, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 22105, 8, 6624, 642, 198, 220, 220, 220, 220, 220, 220, 220, 664, 62, 21426, 796, 1700, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 664, 62, 5458, 796, 1700, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 664, 62, 7266, 5458, 796, 1700, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 664, 62, 2539, 796, 1700, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 664, 62, 8367, 796, 1700, 58, 19, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 8344, 62, 21426, 6624, 7297, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 664, 62, 5458, 6624, 2665, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 664, 62, 7266, 5458, 6624, 8371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 664, 62, 2539, 6624, 1994, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 664, 62, 8367, 628, 220, 220, 220, 1441, 6045, 628, 628, 628, 628, 628, 198 ]
2.670748
735
from manimlib.imports import * import numpy as np #ahora vamos a explicar el caso de esferas duras, qeu por encima de 50% de ocupacion muestan cristalización #despues vamos a introducir el tema de espacio disponible #puedes decir, bueno pero esque si hay muchas esferas o su radio es muy grande, pues no les queda otra que ordenarse para caber, claro. #Bueno pues esque es eso lo qeu pasa cuando la temperatura es baja que se debe buscar la ordenacion para no solaparse, sino el estado no existiria, o #o quiza empezarian a solapar y habría una presion extraña de algun lado, pero gracias a que se ordenan el sistema puede existir en equilibrio!!! #ultima escena ya, ostia #aqui vamos a poner la equivalencia entre mas espacio disponible y mayor numero de estados #mencionar que el caso de esferas duras es cierto en algunos coloides, pero para otros muchos casos, #lo ultimo sera el tema de la segregacion entrópica
[ 6738, 582, 320, 8019, 13, 320, 3742, 1330, 1635, 198, 11748, 299, 32152, 355, 45941, 220, 198, 220, 220, 220, 1303, 993, 5799, 410, 321, 418, 257, 1193, 291, 283, 1288, 6124, 78, 390, 1658, 2232, 292, 288, 17786, 11, 10662, 12496, 16964, 2207, 8083, 390, 2026, 4, 390, 267, 25244, 49443, 38779, 395, 272, 1067, 396, 282, 528, 32009, 18840, 198, 220, 220, 220, 1303, 8906, 79, 947, 410, 321, 418, 257, 3120, 66, 343, 1288, 2169, 64, 390, 15024, 48711, 4596, 261, 856, 628, 198, 198, 2, 79, 1739, 274, 875, 343, 11, 809, 23397, 583, 78, 1658, 4188, 33721, 27678, 881, 292, 1658, 2232, 292, 267, 424, 5243, 1658, 285, 4669, 4490, 68, 11, 279, 947, 645, 10287, 627, 18082, 267, 9535, 8358, 2760, 268, 17208, 31215, 16212, 263, 11, 10212, 78, 13, 198, 2, 38374, 23397, 279, 947, 1658, 4188, 1658, 1658, 78, 2376, 10662, 12496, 279, 15462, 18912, 25440, 8591, 4124, 2541, 64, 1658, 275, 27792, 8358, 384, 390, 1350, 1323, 7718, 8591, 2760, 268, 49443, 31215, 645, 1540, 499, 17208, 11, 264, 2879, 1288, 1556, 4533, 645, 2152, 343, 544, 11, 267, 220, 198, 2, 78, 627, 23638, 795, 46057, 3699, 257, 1540, 499, 283, 331, 387, 1671, 29690, 555, 64, 906, 295, 3131, 30644, 390, 435, 7145, 300, 4533, 11, 583, 78, 1036, 330, 4448, 257, 8358, 384, 2760, 268, 272, 1288, 264, 396, 19687, 279, 1739, 68, 2152, 343, 551, 1602, 22282, 27250, 10185, 628, 628, 198, 198, 2, 586, 8083, 3671, 8107, 21349, 11, 23619, 544, 198, 220, 220, 220, 1303, 36129, 72, 410, 321, 418, 257, 279, 14491, 8591, 6854, 29634, 920, 260, 12422, 15024, 48711, 4596, 261, 856, 331, 9591, 997, 3529, 390, 1556, 22484, 628, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 3653, 66, 295, 283, 8358, 1288, 6124, 78, 390, 1658, 2232, 292, 288, 17786, 1658, 269, 72, 13806, 551, 435, 7145, 418, 951, 78, 1460, 11, 583, 78, 31215, 30972, 4951, 881, 418, 6124, 418, 11, 220, 198, 198, 2, 5439, 3789, 25147, 1055, 64, 1288, 2169, 64, 390, 8591, 32301, 49443, 24481, 10205, 79, 3970 ]
2.701705
352
# Copyright 2020 Johns Hopkins University (Shinji Watanabe) # Northwestern Polytechnical University (Pengcheng Guo) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) # Adapted by Florian Lux 2021 import torch class Swish(torch.nn.Module): """ Construct an Swish activation function for Conformer. """ def forward(self, x): """ Return Swish activation function. """ return x * torch.sigmoid(x)
[ 2, 15069, 12131, 25824, 21183, 2059, 357, 44592, 7285, 12242, 272, 11231, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30197, 12280, 47944, 2059, 357, 47, 1516, 2395, 782, 1962, 78, 8, 198, 2, 220, 24843, 362, 13, 15, 220, 357, 4023, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 8, 198, 2, 30019, 276, 416, 4432, 666, 17145, 33448, 198, 198, 11748, 28034, 628, 198, 4871, 2451, 680, 7, 13165, 354, 13, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28407, 281, 2451, 680, 14916, 2163, 329, 1482, 16354, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 2451, 680, 14916, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 1635, 28034, 13, 82, 17225, 1868, 7, 87, 8, 198 ]
2.568306
183
import os, sys lib_path = os.path.abspath(os.path.join('..', 'utils')) sys.path.append(lib_path) import ftplib as FTP import credentials as cred import RPIO import RPi.GPIO as GPIO from pump import Pump # use BCM mode to play well with RPIO GPIO.setmode(GPIO.BCM) # start dispatch loop in background RPIO.wait_for_interrupts(threaded=True) p0 = Pump(23, 24)
[ 171, 119, 123, 11748, 28686, 11, 25064, 198, 8019, 62, 6978, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 26791, 6, 4008, 198, 17597, 13, 6978, 13, 33295, 7, 8019, 62, 6978, 8, 198, 198, 11748, 10117, 489, 571, 355, 45854, 198, 11748, 18031, 355, 2600, 198, 11748, 25812, 9399, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198, 6738, 8901, 1330, 23220, 198, 198, 2, 779, 11843, 44, 4235, 284, 711, 880, 351, 25812, 9399, 198, 16960, 9399, 13, 2617, 14171, 7, 16960, 9399, 13, 2749, 44, 8, 198, 198, 2, 923, 27965, 9052, 287, 4469, 198, 20031, 9399, 13, 17077, 62, 1640, 62, 3849, 3622, 82, 7, 16663, 276, 28, 17821, 8, 198, 198, 79, 15, 796, 23220, 7, 1954, 11, 1987, 8, 628, 198 ]
2.644928
138
"""Multiple calls in one logical line.""" import cyberbrain cyberbrain.init() x = {f(x=1), f(y=2)} cyberbrain.register(x)
[ 37811, 31217, 3848, 287, 530, 12219, 1627, 526, 15931, 198, 198, 11748, 10075, 27825, 198, 198, 948, 527, 27825, 13, 15003, 3419, 628, 198, 198, 87, 796, 1391, 69, 7, 87, 28, 16, 828, 277, 7, 88, 28, 17, 38165, 628, 198, 948, 527, 27825, 13, 30238, 7, 87, 8, 198 ]
2.529412
51
import math class Shape: """Container to store 3D Image/array/feature/tensor sizes. This is a convenience class because size specifications are often required yet their format is ambigous. Sometimes, images are specified as CHW (Tensorflow), sometimes as HWC (NumPy, Matplotlib). Sometimes, only the width and height are needed which Tensorflow needs as (height, width) yet eg. PIL returns as (width, height). This container class accepts the three size parameters and can return them in all possible formats. Inputs: chan: int Number of channels. Must be non-negative or None. height: int Must be non-negative (can *not* be None). width: int Must be non-negative (can *not* be None). """
[ 11748, 10688, 198, 198, 4871, 25959, 25, 198, 220, 220, 220, 37227, 29869, 284, 3650, 513, 35, 7412, 14, 18747, 14, 30053, 14, 83, 22854, 10620, 13, 628, 220, 220, 220, 770, 318, 257, 15607, 1398, 780, 2546, 20640, 389, 1690, 2672, 198, 220, 220, 220, 1865, 511, 5794, 318, 18203, 516, 13, 8975, 11, 4263, 389, 7368, 355, 5870, 54, 198, 220, 220, 220, 357, 51, 22854, 11125, 828, 3360, 355, 367, 27353, 357, 33111, 20519, 11, 6550, 29487, 8019, 737, 8975, 11, 691, 262, 198, 220, 220, 220, 9647, 290, 6001, 389, 2622, 543, 309, 22854, 11125, 2476, 355, 357, 17015, 11, 9647, 8, 1865, 198, 220, 220, 220, 29206, 13, 350, 4146, 5860, 355, 357, 10394, 11, 6001, 737, 628, 220, 220, 220, 770, 9290, 1398, 18178, 262, 1115, 2546, 10007, 290, 460, 1441, 606, 198, 220, 220, 220, 287, 477, 1744, 17519, 13, 628, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 442, 272, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 9619, 13, 12039, 307, 1729, 12, 31591, 393, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6001, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1729, 12, 31591, 357, 5171, 1635, 1662, 9, 307, 6045, 737, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1729, 12, 31591, 357, 5171, 1635, 1662, 9, 307, 6045, 737, 198, 220, 220, 220, 37227, 198 ]
2.958955
268
import os import sys folder = sys.argv[1] script = sys.argv[2] for root, dirs, files in os.walk(folder): for filename in files: data_file = "{}/{}".format(root,filename) os.system("python3 {} {}".format(script,data_file))
[ 11748, 28686, 198, 11748, 25064, 198, 198, 43551, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 12048, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 198, 1640, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 43551, 2599, 198, 220, 220, 220, 329, 29472, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 7753, 796, 45144, 92, 14, 90, 92, 1911, 18982, 7, 15763, 11, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 7203, 29412, 18, 23884, 23884, 1911, 18982, 7, 12048, 11, 7890, 62, 7753, 4008, 198 ]
2.415842
101
import numpy as np import tensorflow as tf import itertools import os # used for directory operations import io from PIL import Image # used to read images from directory import random tf.enable_eager_execution() # Global constants # Information from input tfrecord files SOURCE_ID = 'image/source_id' BBOX_CONFIDENCE = 'image/object/bbox/confidence' BBOX_XMIN = 'image/object/bbox/xmin' BBOX_YMIN = 'image/object/bbox/ymin' BBOX_XMAX = 'image/object/bbox/xmax' BBOX_YMAX = 'image/object/bbox/ymax' # confidence threshold for determine as neg/pos examples CONF_THRESHOLD = {'neg': 0.1, 'pos': 0.9} OUTPUT_IMAGE_SIZE = (64, 64) # Reads tfrecords and parse the labels and data needed for the new dataset. # Parse and cleanup the labels to a more straigtforward format. # Transform raw image data and label into a tfexample format. # Write all images into the test TFrecord file. # Striped out only the maximum confidence bbox of a image. Function is called in generate_tfexamples_from_detections(). # Striped out ALL bbox where confidence is over threshold. Function is called in generate_tfexamples_from_detections(). # Read image from path and check exclude non RGB image. # Strip the bboxes from the parsed_image_dataset that are over threshold and added the tfexample to the return list. # Write positive and negative tfexamples to tfrecord using the writer. A balance boolean parameter can decide to balance the pos and neg examples count. # Write tfrecords in batches of input record files. # Filter the dataset with images bbox lower than the threshold, and copy the image bbox to output directory. These images will be handpicked to be used as negative examples in the test set.
[ 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 340, 861, 10141, 198, 11748, 28686, 220, 1303, 973, 329, 8619, 4560, 198, 11748, 33245, 198, 6738, 350, 4146, 1330, 7412, 220, 1303, 973, 284, 1100, 4263, 422, 8619, 198, 11748, 4738, 198, 198, 27110, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 198, 198, 2, 8060, 38491, 198, 2, 6188, 422, 5128, 48700, 22105, 3696, 198, 47690, 62, 2389, 796, 705, 9060, 14, 10459, 62, 312, 6, 198, 33, 39758, 62, 10943, 37, 2389, 18310, 796, 705, 9060, 14, 15252, 14, 65, 3524, 14, 39745, 6, 198, 33, 39758, 62, 55, 23678, 796, 705, 9060, 14, 15252, 14, 65, 3524, 14, 87, 1084, 6, 198, 33, 39758, 62, 56, 23678, 796, 705, 9060, 14, 15252, 14, 65, 3524, 14, 88, 1084, 6, 198, 33, 39758, 62, 55, 22921, 796, 705, 9060, 14, 15252, 14, 65, 3524, 14, 87, 9806, 6, 198, 33, 39758, 62, 56, 22921, 796, 705, 9060, 14, 15252, 14, 65, 3524, 14, 4948, 897, 6, 198, 198, 2, 6628, 11387, 329, 5004, 355, 2469, 14, 1930, 6096, 198, 10943, 37, 62, 4221, 19535, 39, 15173, 796, 1391, 6, 12480, 10354, 657, 13, 16, 11, 705, 1930, 10354, 657, 13, 24, 92, 198, 2606, 7250, 3843, 62, 3955, 11879, 62, 33489, 796, 357, 2414, 11, 5598, 8, 628, 198, 2, 4149, 82, 48700, 8344, 3669, 290, 21136, 262, 14722, 290, 1366, 2622, 329, 262, 649, 27039, 13, 628, 198, 2, 2547, 325, 290, 27425, 262, 14722, 284, 257, 517, 3534, 328, 83, 11813, 5794, 13, 628, 198, 2, 26981, 8246, 2939, 1366, 290, 6167, 656, 257, 48700, 20688, 5794, 13, 628, 198, 2, 19430, 477, 4263, 656, 262, 1332, 24958, 22105, 2393, 13, 198, 198, 2, 18508, 276, 503, 691, 262, 5415, 6628, 275, 3524, 286, 257, 2939, 13, 15553, 318, 1444, 287, 7716, 62, 27110, 1069, 12629, 62, 6738, 62, 15255, 478, 507, 22446, 628, 198, 2, 18508, 276, 503, 11096, 275, 3524, 810, 6628, 318, 625, 11387, 13, 15553, 318, 1444, 287, 7716, 62, 27110, 1069, 12629, 62, 6738, 62, 15255, 478, 507, 22446, 628, 198, 2, 4149, 2939, 422, 3108, 290, 2198, 19607, 1729, 25228, 2939, 13, 628, 198, 2, 18508, 262, 275, 29305, 422, 262, 44267, 62, 9060, 62, 19608, 292, 316, 326, 389, 625, 11387, 290, 2087, 262, 48700, 20688, 284, 262, 1441, 1351, 13, 198, 198, 2, 19430, 3967, 290, 4633, 48700, 1069, 12629, 284, 48700, 22105, 1262, 262, 6260, 13, 317, 5236, 25131, 11507, 460, 5409, 284, 5236, 262, 1426, 290, 2469, 6096, 954, 13, 628, 198, 2, 19430, 48700, 8344, 3669, 287, 37830, 286, 5128, 1700, 3696, 13, 628, 198, 2, 25853, 262, 27039, 351, 4263, 275, 3524, 2793, 621, 262, 11387, 11, 290, 4866, 262, 2939, 275, 3524, 284, 5072, 8619, 13, 2312, 4263, 481, 307, 1021, 41891, 284, 307, 973, 355, 4633, 6096, 287, 262, 1332, 900, 13, 628 ]
3.513347
487
import os import unittest import tempfile import hiro import jiracli.cache
[ 11748, 28686, 198, 11748, 555, 715, 395, 198, 11748, 20218, 7753, 198, 11748, 289, 7058, 198, 11748, 474, 343, 330, 4528, 13, 23870, 628 ]
3.166667
24
# -*- coding: utf-8 -*- import sys sys.path.insert(0, os.path.join(os.path.dirname( os.path.realpath(__file__)), "../")) from Functions import processing_utils as pu def on_log(client, userdata, level, buf): """ Log callback """ print("log: ", buf) pass def on_disconnect(client, userdata, flags, rc=0): """ Callback to define what's happening when disconnecting """ print("DisConnected flags {0}, result code:{1}, client_id: {2} ".format(flags, rc, client._client_id)) def on_message(client, userdata, message): """ Callback to handle subscription topics incoming messages """ msg = message pu.motion_clf(msg) def on_connect(client, userdata, flags, rc): """ Callback to define what to happen when connecting """ if(rc==0): print("connecting to broker ", broker) print("subscribing to topics ") client.subscribe(in_topic) elif(rc==3): print("server unavailable") client.loop_stop() sys.exit("Server is unavailable, please try later") elif(rc==5): print("Invalid Credentials") client.loop_stop() sys.exit(5) else: print("Bad connection, returned code=",rc) client.loop_stop() sys.exit("Bad connection, returned code={0}".format(rc)) if __name__ == '__main__': u_name. u_pass, in_topic, out_topic = pu.p_type_service_args() broker = "localhost" client = mqtt.Client("P-type") client.username_pw_set(username, user_pass) client.on_message = on_message client.on_log = on_log client.on_connect = on_connect client.on_disconnect = on_disconnect try: client.connect(broker) except: print("Error connecting") sys.exit() client.loop_forever()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 198, 220, 220, 220, 28686, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 366, 492, 30487, 4008, 198, 6738, 40480, 1330, 7587, 62, 26791, 355, 47574, 628, 198, 4299, 319, 62, 6404, 7, 16366, 11, 2836, 7890, 11, 1241, 11, 42684, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5972, 23838, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7203, 6404, 25, 33172, 42684, 8, 198, 220, 220, 220, 1208, 198, 198, 4299, 319, 62, 6381, 8443, 7, 16366, 11, 2836, 7890, 11, 9701, 11, 48321, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 1891, 284, 8160, 644, 338, 5836, 618, 22837, 278, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7203, 7279, 13313, 276, 9701, 1391, 15, 5512, 1255, 2438, 29164, 16, 5512, 5456, 62, 312, 25, 1391, 17, 92, 27071, 18982, 7, 33152, 11, 48321, 11, 5456, 13557, 16366, 62, 312, 4008, 198, 198, 4299, 319, 62, 20500, 7, 16366, 11, 2836, 7890, 11, 3275, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 1891, 284, 5412, 14569, 10233, 15619, 6218, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31456, 796, 3275, 198, 220, 220, 220, 47574, 13, 38714, 62, 565, 69, 7, 19662, 8, 198, 198, 4299, 319, 62, 8443, 7, 16366, 11, 2836, 7890, 11, 9701, 11, 48321, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 1891, 284, 8160, 644, 284, 1645, 618, 14320, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 7, 6015, 855, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 8443, 278, 284, 20426, 33172, 20426, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7266, 1416, 23098, 284, 10233, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 7266, 12522, 7, 259, 62, 26652, 8, 628, 220, 220, 220, 1288, 361, 7, 6015, 855, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15388, 23485, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 26268, 62, 11338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7203, 10697, 318, 23485, 11, 3387, 1949, 1568, 4943, 198, 220, 220, 220, 1288, 361, 7, 6015, 855, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 44651, 327, 445, 14817, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 26268, 62, 11338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 20, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 22069, 4637, 11, 4504, 2438, 28, 1600, 6015, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 26268, 62, 11338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7203, 22069, 4637, 11, 4504, 2438, 34758, 15, 92, 1911, 18982, 7, 6015, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 334, 62, 3672, 13, 334, 62, 6603, 11, 287, 62, 26652, 11, 503, 62, 26652, 796, 47574, 13, 79, 62, 4906, 62, 15271, 62, 22046, 3419, 198, 220, 220, 220, 20426, 796, 366, 36750, 1, 628, 220, 220, 220, 5456, 796, 285, 80, 926, 13, 11792, 7203, 47, 12, 4906, 4943, 198, 220, 220, 220, 5456, 13, 29460, 62, 79, 86, 62, 2617, 7, 29460, 11, 2836, 62, 6603, 8, 198, 220, 220, 220, 5456, 13, 261, 62, 20500, 796, 319, 62, 20500, 198, 220, 220, 220, 5456, 13, 261, 62, 6404, 796, 319, 62, 6404, 198, 220, 220, 220, 5456, 13, 261, 62, 8443, 796, 319, 62, 8443, 198, 220, 220, 220, 5456, 13, 261, 62, 6381, 8443, 796, 319, 62, 6381, 8443, 628, 220, 220, 220, 1949, 25, 198, 197, 220, 220, 220, 5456, 13, 8443, 7, 7957, 6122, 8, 198, 220, 220, 220, 2845, 25, 198, 197, 220, 220, 220, 3601, 7203, 12331, 14320, 4943, 198, 197, 220, 220, 220, 25064, 13, 37023, 3419, 628, 220, 220, 220, 5456, 13, 26268, 62, 754, 332, 3419, 198 ]
2.447154
738
from insomniac import activation_controller exec(activation_controller.get_extra_feature("action_warmup"))
[ 6738, 1035, 296, 8461, 330, 1330, 14916, 62, 36500, 198, 198, 18558, 7, 48545, 62, 36500, 13, 1136, 62, 26086, 62, 30053, 7203, 2673, 62, 31975, 929, 48774, 198 ]
3.724138
29
# -*- coding:UTF-8 -*- import logging from datetime import datetime from typing import List, Callable from minimir import Struct from minimir.BattleAction import BattleAction from minimir.Utils import Utils
[ 2, 532, 9, 12, 19617, 25, 48504, 12, 23, 532, 9, 12, 198, 11748, 18931, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 7343, 11, 4889, 540, 198, 198, 6738, 10356, 343, 1330, 32112, 198, 6738, 10356, 343, 13, 24064, 12502, 1330, 5838, 12502, 198, 6738, 10356, 343, 13, 18274, 4487, 1330, 7273, 4487, 628 ]
3.603448
58
# -*- coding: utf-8 -*- import concurrent.futures import logging import os import sys from Crypto.Cipher import AES from m3u8_To_MP4 import v2_abstract_task_processor from m3u8_To_MP4.helpers import path_helper from m3u8_To_MP4.helpers import printer_helper from m3u8_To_MP4.networks.synchronous.sync_http_requester import request_for
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 11748, 24580, 13, 69, 315, 942, 201, 198, 11748, 18931, 201, 198, 11748, 28686, 201, 198, 11748, 25064, 201, 198, 201, 198, 6738, 36579, 13, 34, 10803, 1330, 34329, 201, 198, 201, 198, 6738, 285, 18, 84, 23, 62, 2514, 62, 7378, 19, 1330, 410, 17, 62, 397, 8709, 62, 35943, 62, 41341, 201, 198, 6738, 285, 18, 84, 23, 62, 2514, 62, 7378, 19, 13, 16794, 364, 1330, 3108, 62, 2978, 525, 201, 198, 6738, 285, 18, 84, 23, 62, 2514, 62, 7378, 19, 13, 16794, 364, 1330, 20632, 62, 2978, 525, 201, 198, 6738, 285, 18, 84, 23, 62, 2514, 62, 7378, 19, 13, 3262, 5225, 13, 28869, 11413, 516, 13, 27261, 62, 4023, 62, 8897, 7834, 1330, 2581, 62, 1640, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.431507
146
from django.db import models from django.db.models import fields from rest_framework import serializers from .models import Todo
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 7032, 198, 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 764, 27530, 1330, 309, 24313 ]
4
32
from rest_framework import serializers from legislature.models import District, State
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 198, 6738, 15928, 13, 27530, 1330, 5665, 11, 1812, 628, 198 ]
4.684211
19
from flask_wtf import FlaskForm from wtforms import PasswordField, RadioField, StringField from wtforms.fields.html5 import EmailField import wtforms.validators as validate
[ 6738, 42903, 62, 86, 27110, 1330, 46947, 8479, 198, 6738, 266, 83, 23914, 1330, 30275, 15878, 11, 8829, 15878, 11, 10903, 15878, 198, 6738, 266, 83, 23914, 13, 25747, 13, 6494, 20, 1330, 9570, 15878, 198, 11748, 266, 83, 23914, 13, 12102, 2024, 355, 26571, 628 ]
3.782609
46
#!/usr/bin/env python import tensorflow as tf import numpy as np import scipy.signal from scipy import misc import scipy.io from PIL import Image import json import os from offline_feature import * from bbox_tool import * import glob from reward_function import * from semantic_environment import * from shortest_path import * IMAGE_WIDTH = 600 IMAGE_HEIGHT = 450 # cfg = json.load(open('../config.json','r')) cfg = json.load(open(os.path.join(os.path.dirname(os.path.dirname(__file__)), 'config.json'),'r'))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 12683, 282, 198, 6738, 629, 541, 88, 1330, 12747, 198, 11748, 629, 541, 88, 13, 952, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 33918, 198, 11748, 28686, 198, 6738, 18043, 62, 30053, 1330, 1635, 198, 6738, 275, 3524, 62, 25981, 1330, 1635, 198, 11748, 15095, 198, 6738, 6721, 62, 8818, 1330, 1635, 198, 6738, 37865, 62, 38986, 1330, 1635, 198, 6738, 35581, 62, 6978, 1330, 1635, 198, 198, 3955, 11879, 62, 54, 2389, 4221, 796, 10053, 198, 3955, 11879, 62, 13909, 9947, 796, 18523, 198, 198, 2, 30218, 70, 796, 33918, 13, 2220, 7, 9654, 10786, 40720, 11250, 13, 17752, 41707, 81, 6, 4008, 198, 37581, 796, 33918, 13, 2220, 7, 9654, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 705, 11250, 13, 17752, 33809, 6, 81, 6, 4008, 628, 628, 628, 628, 628, 198 ]
2.894444
180
#!/usr/bin/env python from pymap3d.vincenty import vdist from argparse import ArgumentParser if __name__ == '__main__': # pragma: no cover main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 279, 4948, 499, 18, 67, 13, 7114, 1087, 88, 1330, 410, 17080, 198, 6738, 1822, 29572, 1330, 45751, 46677, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 220, 1303, 23864, 2611, 25, 645, 3002, 198, 220, 220, 220, 1388, 3419, 198 ]
2.75
56
from django.urls import path from mytravelblog.accounts.views import * urlpatterns = ( path('login/', UserLoginView.as_view(), name='login user'), path('logout/', UserLogoutConfirmationView.as_view(), name='logout user confirmation'), path('logout/signout/', UserLogoutView.as_view(), name='logout user'), path('profile-details/<int:pk>/', UserProfileDetailsView.as_view(), name='profile details'), path('profile/create/', UserRegisterView.as_view(), name='profile create'), path('edit-profile/<int:pk>/', EditProfileView.as_view(), name='profile edit'), path('delete-profile/<int:pk>/', DeleteProfileView.as_view(), name='profile delete'), path('edit-password/<int:pk>/', ChangeUserPasswordView.as_view(), name='change password'), )
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 616, 35927, 14036, 13, 23317, 82, 13, 33571, 1330, 1635, 198, 198, 6371, 33279, 82, 796, 357, 198, 220, 220, 220, 3108, 10786, 38235, 14, 3256, 11787, 47790, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 38235, 2836, 33809, 198, 220, 220, 220, 3108, 10786, 6404, 448, 14, 3256, 11787, 11187, 448, 18546, 36241, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 6404, 448, 2836, 12641, 33809, 198, 220, 220, 220, 3108, 10786, 6404, 448, 14, 12683, 448, 14, 3256, 11787, 11187, 448, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 6404, 448, 2836, 33809, 628, 220, 220, 220, 3108, 10786, 13317, 12, 36604, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 11787, 37046, 24259, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 13317, 3307, 33809, 198, 220, 220, 220, 3108, 10786, 13317, 14, 17953, 14, 3256, 11787, 38804, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 13317, 2251, 33809, 198, 220, 220, 220, 3108, 10786, 19312, 12, 13317, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 5312, 37046, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 13317, 4370, 33809, 198, 220, 220, 220, 3108, 10786, 33678, 12, 13317, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 23520, 37046, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 13317, 12233, 33809, 628, 220, 220, 220, 3108, 10786, 19312, 12, 28712, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 9794, 12982, 35215, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 3803, 9206, 33809, 198, 8, 198 ]
2.972973
259
# import util import sys import os pioPath = ".platformio/penv/lib/python3.9/site-packages fullPath = os.path.join(os.path.expanduser('~'), pioPath) print(fullPath) sys.path.append(os.path.join(os.path.expanduser('~'), pioPath)) import util util.get_serial_ports()
[ 2, 1330, 7736, 198, 11748, 25064, 198, 11748, 28686, 198, 79, 952, 15235, 796, 27071, 24254, 952, 14, 3617, 85, 14, 8019, 14, 29412, 18, 13, 24, 14, 15654, 12, 43789, 198, 12853, 15235, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 33809, 279, 952, 15235, 8, 198, 4798, 7, 12853, 15235, 8, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 33809, 279, 952, 15235, 4008, 198, 11748, 7736, 198, 22602, 13, 1136, 62, 46911, 62, 3742, 3419, 198 ]
2.623762
101
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from pylib.base import environment from pylib.device import adb_wrapper from pylib.device import device_errors from pylib.device import device_utils from pylib.utils import parallelizer
[ 2, 15069, 1946, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 6738, 279, 2645, 571, 13, 8692, 1330, 2858, 198, 6738, 279, 2645, 571, 13, 25202, 1330, 512, 65, 62, 48553, 198, 6738, 279, 2645, 571, 13, 25202, 1330, 3335, 62, 48277, 198, 6738, 279, 2645, 571, 13, 25202, 1330, 3335, 62, 26791, 198, 6738, 279, 2645, 571, 13, 26791, 1330, 10730, 7509, 628, 198 ]
3.65625
96
BASE_URL = 'https://fantasy.premierleague.com/drf/' FPL_DATA = BASE_URL + 'bootstrap-static' # (player id) PLAYER_DATA = BASE_URL + 'element-summary/{}' # (gameweek) DREAM_TEAM_DATA = BASE_URL + 'dream-team/{}' # (team id) USER_DATA = BASE_URL + 'entry/{}' # (gameweek) USER_GAMEWEEK_TEAM_DATA = USER_DATA + '/event/{}/picks'
[ 33, 11159, 62, 21886, 796, 705, 5450, 1378, 69, 34921, 13, 31605, 959, 19316, 13, 785, 14, 7109, 69, 14, 6, 198, 198, 5837, 43, 62, 26947, 796, 49688, 62, 21886, 1343, 705, 18769, 26418, 12, 12708, 6, 198, 198, 2, 357, 7829, 4686, 8, 198, 31519, 1137, 62, 26947, 796, 49688, 62, 21886, 1343, 705, 30854, 12, 49736, 14, 90, 92, 6, 198, 2, 357, 28483, 413, 68, 988, 8, 198, 35, 32235, 62, 9328, 2390, 62, 26947, 796, 49688, 62, 21886, 1343, 705, 25966, 12, 15097, 14, 90, 92, 6, 198, 2, 357, 15097, 4686, 8, 198, 29904, 62, 26947, 796, 49688, 62, 21886, 1343, 705, 13000, 14, 90, 92, 6, 198, 2, 357, 28483, 413, 68, 988, 8, 198, 29904, 62, 38, 2390, 6217, 33823, 62, 9328, 2390, 62, 26947, 796, 1294, 1137, 62, 26947, 1343, 31051, 15596, 14, 90, 92, 14, 79, 3378, 6, 198 ]
2.201342
149
from flask import current_app, abort, request from dmutils.authentication import UnauthorizedWWWAuthenticate def get_allowed_tokens_from_config(config, module='main'): """Return a list of allowed auth tokens from the application config""" env_variable_name = 'DM_API_AUTH_TOKENS' if module == 'callbacks': env_variable_name = 'DM_API_CALLBACK_AUTH_TOKENS' return [token for token in config.get(env_variable_name, '').split(':') if token]
[ 6738, 42903, 1330, 1459, 62, 1324, 11, 15614, 11, 2581, 198, 198, 6738, 288, 21973, 4487, 13, 41299, 3299, 1330, 791, 19721, 17947, 15543, 315, 6925, 5344, 628, 628, 198, 4299, 651, 62, 40845, 62, 83, 482, 641, 62, 6738, 62, 11250, 7, 11250, 11, 8265, 11639, 12417, 6, 2599, 198, 220, 220, 220, 37227, 13615, 257, 1351, 286, 3142, 6284, 16326, 422, 262, 3586, 4566, 37811, 198, 220, 220, 220, 17365, 62, 45286, 62, 3672, 796, 705, 23127, 62, 17614, 62, 32, 24318, 62, 10468, 42, 16938, 6, 628, 220, 220, 220, 611, 8265, 6624, 705, 13345, 10146, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 17365, 62, 45286, 62, 3672, 796, 705, 23127, 62, 17614, 62, 34, 7036, 31098, 62, 32, 24318, 62, 10468, 42, 16938, 6, 628, 220, 220, 220, 1441, 685, 30001, 329, 11241, 287, 4566, 13, 1136, 7, 24330, 62, 45286, 62, 3672, 11, 10148, 737, 35312, 7, 10354, 11537, 611, 11241, 60, 628 ]
2.9375
160
import numpy as np from scipy.constants import m_p, c, e import matplotlib.pyplot as plt import PyHEADTAIL.particles.generators as generators from PyHEADTAIL.trackers.transverse_tracking import TransverseMap from PyHEADTAIL.trackers.detuners import Chromaticity, AmplitudeDetuning if __name__ == '__main__': run()
[ 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 9979, 1187, 1330, 285, 62, 79, 11, 269, 11, 304, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11748, 9485, 37682, 5603, 4146, 13, 3911, 2983, 13, 8612, 2024, 355, 27298, 198, 6738, 9485, 37682, 5603, 4146, 13, 11659, 364, 13, 7645, 4399, 62, 36280, 1330, 3602, 4399, 13912, 198, 6738, 9485, 37682, 5603, 4146, 13, 11659, 364, 13, 15255, 403, 364, 1330, 18255, 1512, 414, 11, 44074, 3984, 11242, 46493, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 3419, 628 ]
3.018692
107
# calculating_pi.py # From Classic Computer Science Problems in Python Chapter 1 # Copyright 2018 David Kopec # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. if __name__ == "__main__": print(calculate_pi(1000000))
[ 2, 26019, 62, 14415, 13, 9078, 198, 2, 3574, 13449, 13851, 5800, 32093, 287, 11361, 7006, 352, 198, 2, 15069, 2864, 3271, 40500, 721, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7, 9948, 3129, 378, 62, 14415, 7, 16, 10535, 4008 ]
3.757895
190
# # auth test module - add, update, delete # """ MIT License Copyright (c) 2017, 2018 Ioan Coman Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ DELETE_TESTS = True import requests import json import os import time import datetime import traceback class AuthTests(ApiTests): ''' def add(self, title, description, done='yes'): try: values = [title, description, done] data = dict(data=json.dumps(values)) result = json.loads(self.session.post(self.url_add, data).text) ret = result['ok'], result['data'] except Exception as ex: ret = False, str(ex) return ret def update(self, obid, title, description, done='yes'): try: values = [title, description, done] data = dict(data=json.dumps(values), id=obid) result = json.loads(self.session.post(self.url_update, data).text) ret = result['ok'], result['data'] except Exception as ex: ret = False, str(ex) return ret def delete(self, obid): try: data = dict(id=obid) result = json.loads(self.session.post(self.url_delete, data).text) ret = result['ok'], result['data'] except Exception as ex: ret = False, str(ex) return ret ''' if __name__ == "__main__": import sys py = sys.version_info py3k = py >= (3, 0, 0) try: test_function() except Exception as ex: print("Exception found: {}".format(ex)) # traceback.print_exc(file=sys.stdout) msg = 'Program ends, press Enter.' if py3k: input(msg) else: raw_input(msg)
[ 2, 198, 2, 6284, 1332, 8265, 532, 751, 11, 4296, 11, 12233, 198, 2, 198, 198, 37811, 198, 198, 36393, 13789, 198, 198, 15269, 357, 66, 8, 2177, 11, 2864, 314, 24611, 955, 272, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 22163, 444, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 15821, 37485, 13, 198, 198, 37811, 198, 198, 7206, 2538, 9328, 62, 51, 1546, 4694, 796, 6407, 198, 198, 11748, 7007, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 4818, 8079, 198, 11748, 12854, 1891, 628, 198, 198, 4871, 26828, 51, 3558, 7, 32, 14415, 51, 3558, 2599, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 825, 751, 7, 944, 11, 3670, 11, 6764, 11, 1760, 11639, 8505, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 685, 7839, 11, 6764, 11, 1760, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 8633, 7, 7890, 28, 17752, 13, 67, 8142, 7, 27160, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 33918, 13, 46030, 7, 944, 13, 29891, 13, 7353, 7, 944, 13, 6371, 62, 2860, 11, 1366, 737, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 1255, 17816, 482, 6, 4357, 1255, 17816, 7890, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 10352, 11, 965, 7, 1069, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 909, 312, 11, 3670, 11, 6764, 11, 1760, 11639, 8505, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 685, 7839, 11, 6764, 11, 1760, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 8633, 7, 7890, 28, 17752, 13, 67, 8142, 7, 27160, 828, 4686, 28, 672, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 33918, 13, 46030, 7, 944, 13, 29891, 13, 7353, 7, 944, 13, 6371, 62, 19119, 11, 1366, 737, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 1255, 17816, 482, 6, 4357, 1255, 17816, 7890, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 10352, 11, 965, 7, 1069, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 220, 220, 220, 825, 12233, 7, 944, 11, 909, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 8633, 7, 312, 28, 672, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 33918, 13, 46030, 7, 944, 13, 29891, 13, 7353, 7, 944, 13, 6371, 62, 33678, 11, 1366, 737, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 1255, 17816, 482, 6, 4357, 1255, 17816, 7890, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 10352, 11, 965, 7, 1069, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 25064, 628, 220, 220, 220, 12972, 796, 25064, 13, 9641, 62, 10951, 198, 220, 220, 220, 12972, 18, 74, 796, 12972, 18189, 357, 18, 11, 657, 11, 657, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 8818, 3419, 198, 220, 220, 220, 2845, 35528, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 16922, 1043, 25, 23884, 1911, 18982, 7, 1069, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12854, 1891, 13, 4798, 62, 41194, 7, 7753, 28, 17597, 13, 19282, 448, 8, 198, 220, 220, 220, 31456, 796, 705, 15167, 5645, 11, 1803, 6062, 2637, 198, 220, 220, 220, 611, 12972, 18, 74, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 7, 19662, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 15414, 7, 19662, 8, 198 ]
2.61284
1,028
"""TODO: Use dataclasses.""" from __future__ import annotations import abc import datetime import sys from collections import MutableMapping from typing import Any from typing import Dict from typing import Iterator from typing import KeysView from typing import List from typing import Optional from typing import Tuple from typing import Type from typing import Union from logbook import Logger from logbook import StreamHandler from steam.steamid import SteamID from rs2wapy.adapters import adapters from rs2wapy.epicgamesstore import EGSID from rs2wapy.steam import SteamWebAPI BAN_DATE_FMT = "%Y/%m/%d %H:%M:%S" StreamHandler(sys.stdout, level="WARNING").push_application() logger = Logger(__name__) HEX_COLOR_BLUE_TEAM = "#50A0F0" HEX_COLOR_RED_TEAM = "#E54927" HEX_COLOR_UNKNOWN_TEAM = "transparent" HEX_COLOR_ALL_TEAM = "" HEX_COLOR_TO_TEAM = { HEX_COLOR_BLUE_TEAM: BlueTeam, HEX_COLOR_RED_TEAM: RedTeam, HEX_COLOR_UNKNOWN_TEAM: UnknownTeam, HEX_COLOR_ALL_TEAM: AllTeam, } TEAM_INDEX_TO_TEAM: Dict[int, Type[Team]] = { 0: RedTeam, 1: BlueTeam, } TEAM_TO_TEAM_INDEX: Dict[Type[Team], int] = { RedTeam: 0, BlueTeam: 1, } # TODO: SteamPlayer and EGSPlayer classes? CHAT_CHANNEL_ALL_STR = "(ALL)" CHAT_CHANNEL_TEAM_STR = "(TEAM)" TEAMNOTICE_TEAM = CHAT_CHANNEL_TEAM_STR TEAMNOTICE_TO_CHAT_CHANNEL = { None: ChatChannelAll, TEAMNOTICE_TEAM: ChatChannelTeam, } CHAT_CHANNEL_TO_STR = { ChatChannelAll: CHAT_CHANNEL_ALL_STR, ChatChannelTeam: CHAT_CHANNEL_TEAM_STR, } # TODO: Refactor attributes etc.
[ 37811, 51, 3727, 46, 25, 5765, 4818, 330, 28958, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 11748, 450, 66, 198, 11748, 4818, 8079, 198, 11748, 25064, 198, 6738, 17268, 1330, 13859, 540, 44, 5912, 198, 6738, 19720, 1330, 4377, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 19720, 1330, 40806, 1352, 198, 6738, 19720, 1330, 26363, 7680, 198, 6738, 19720, 1330, 7343, 198, 6738, 19720, 1330, 32233, 198, 6738, 19720, 1330, 309, 29291, 198, 6738, 19720, 1330, 5994, 198, 6738, 19720, 1330, 4479, 198, 198, 6738, 2604, 2070, 1330, 5972, 1362, 198, 6738, 2604, 2070, 1330, 13860, 25060, 198, 6738, 13324, 13, 21465, 312, 1330, 9094, 2389, 198, 198, 6738, 44608, 17, 86, 12826, 13, 324, 12126, 1330, 46363, 198, 6738, 44608, 17, 86, 12826, 13, 538, 291, 19966, 8095, 1330, 412, 14313, 2389, 198, 6738, 44608, 17, 86, 12826, 13, 21465, 1330, 9094, 13908, 17614, 198, 198, 33, 1565, 62, 35, 6158, 62, 37, 13752, 796, 36521, 56, 14, 4, 76, 14, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 1, 198, 198, 12124, 25060, 7, 17597, 13, 19282, 448, 11, 1241, 2625, 31502, 11074, 14689, 62, 31438, 3419, 198, 6404, 1362, 796, 5972, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 39, 6369, 62, 46786, 62, 9148, 8924, 62, 9328, 2390, 796, 25113, 1120, 32, 15, 37, 15, 1, 198, 39, 6369, 62, 46786, 62, 22083, 62, 9328, 2390, 796, 25113, 36, 44966, 1983, 1, 198, 39, 6369, 62, 46786, 62, 4944, 44706, 62, 9328, 2390, 796, 366, 7645, 8000, 1, 198, 39, 6369, 62, 46786, 62, 7036, 62, 9328, 2390, 796, 13538, 628, 628, 628, 198, 198, 39, 6369, 62, 46786, 62, 10468, 62, 9328, 2390, 796, 1391, 198, 220, 220, 220, 367, 6369, 62, 46786, 62, 9148, 8924, 62, 9328, 2390, 25, 4518, 15592, 11, 198, 220, 220, 220, 367, 6369, 62, 46786, 62, 22083, 62, 9328, 2390, 25, 2297, 15592, 11, 198, 220, 220, 220, 367, 6369, 62, 46786, 62, 4944, 44706, 62, 9328, 2390, 25, 16185, 15592, 11, 198, 220, 220, 220, 367, 6369, 62, 46786, 62, 7036, 62, 9328, 2390, 25, 1439, 15592, 11, 198, 92, 198, 198, 9328, 2390, 62, 12115, 6369, 62, 10468, 62, 9328, 2390, 25, 360, 713, 58, 600, 11, 5994, 58, 15592, 11907, 796, 1391, 198, 220, 220, 220, 657, 25, 2297, 15592, 11, 198, 220, 220, 220, 352, 25, 4518, 15592, 11, 198, 92, 198, 198, 9328, 2390, 62, 10468, 62, 9328, 2390, 62, 12115, 6369, 25, 360, 713, 58, 6030, 58, 15592, 4357, 493, 60, 796, 1391, 198, 220, 220, 220, 2297, 15592, 25, 657, 11, 198, 220, 220, 220, 4518, 15592, 25, 352, 11, 198, 92, 628, 198, 2, 16926, 46, 25, 9094, 14140, 290, 412, 14313, 14140, 6097, 30, 628, 198, 31542, 62, 3398, 22846, 3698, 62, 7036, 62, 18601, 796, 30629, 7036, 16725, 198, 31542, 62, 3398, 22846, 3698, 62, 9328, 2390, 62, 18601, 796, 30629, 9328, 2390, 16725, 198, 9328, 2390, 11929, 8476, 62, 9328, 2390, 796, 5870, 1404, 62, 3398, 22846, 3698, 62, 9328, 2390, 62, 18601, 628, 628, 198, 198, 9328, 2390, 11929, 8476, 62, 10468, 62, 31542, 62, 3398, 22846, 3698, 796, 1391, 198, 220, 220, 220, 6045, 25, 24101, 29239, 3237, 11, 198, 220, 220, 220, 33536, 11929, 8476, 62, 9328, 2390, 25, 24101, 29239, 15592, 11, 198, 92, 198, 198, 31542, 62, 3398, 22846, 3698, 62, 10468, 62, 18601, 796, 1391, 198, 220, 220, 220, 24101, 29239, 3237, 25, 5870, 1404, 62, 3398, 22846, 3698, 62, 7036, 62, 18601, 11, 198, 220, 220, 220, 24101, 29239, 15592, 25, 5870, 1404, 62, 3398, 22846, 3698, 62, 9328, 2390, 62, 18601, 11, 198, 92, 628, 628, 628, 628, 628, 198, 2, 16926, 46, 25, 6524, 11218, 12608, 3503, 13, 628 ]
2.523052
629
l = int(input("digite a largura: ")) a = int(input("digite a altura: ")) L = A = 1 while A <= a: while L <= l: print("#", end="") L += 1 A += 1 L = 1 print()
[ 75, 796, 493, 7, 15414, 7203, 12894, 578, 257, 2552, 5330, 25, 366, 4008, 198, 64, 796, 493, 7, 15414, 7203, 12894, 578, 257, 5988, 5330, 25, 366, 4008, 198, 43, 796, 317, 796, 352, 198, 4514, 317, 19841, 257, 25, 198, 220, 220, 220, 981, 406, 19841, 300, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2, 1600, 886, 2625, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 406, 15853, 352, 198, 220, 220, 220, 317, 15853, 352, 198, 220, 220, 220, 406, 796, 352, 198, 220, 220, 220, 3601, 3419, 198 ]
1.958763
97
from unittest import TestCase import plotly.graph_objs as go from nose.tools import raises
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 11748, 7110, 306, 13, 34960, 62, 672, 8457, 355, 467, 198, 6738, 9686, 13, 31391, 1330, 12073, 628, 628 ]
3.481481
27
# -*- coding: utf-8 -*- # Copyright (c) 2014 Plivo Team. See LICENSE.txt for details. import time import msgpack VALID_IDENTIFIER_SET = set(list('abcdefghijklmnopqrstuvwxyz0123456789_-')) def is_valid_identifier(identifier): """Checks if the given identifier is valid or not. A valid identifier may consists of the following characters with a maximum length of 100 characters, minimum of 1 character. Valid characters for an identifier, - A to Z - a to z - 0 to 9 - _ (underscore) - - (hypen) """ if not isinstance(identifier, basestring): return False if len(identifier) > 100 or len(identifier) < 1: return False condensed_form = set(list(identifier.lower())) return condensed_form.issubset(VALID_IDENTIFIER_SET) def is_valid_interval(interval): """Checks if the given interval is valid. A valid interval is always a positive, non-zero integer value. """ if not isinstance(interval, (int, long)): return False if interval <= 0: return False return True def is_valid_requeue_limit(requeue_limit): """Checks if the given requeue limit is valid. A valid requeue limit is always greater than or equal to -1. """ if not isinstance(requeue_limit, (int, long)): return False if requeue_limit <= -2: return False return True def serialize_payload(payload): """Tries to serialize the payload using msgpack. If it is not serializable, raises a TypeError. """ return msgpack.packb(payload) def deserialize_payload(payload): """Tries to deserialize the payload using msgpack. """ return msgpack.unpackb(payload) def generate_epoch(): """Generates an unix epoch in ms. """ return int(time.time() * 1000)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 66, 8, 1946, 1345, 23593, 4816, 13, 4091, 38559, 24290, 13, 14116, 329, 3307, 13, 198, 11748, 640, 198, 11748, 31456, 8002, 198, 198, 23428, 2389, 62, 25256, 5064, 38311, 62, 28480, 796, 900, 7, 4868, 10786, 39305, 4299, 456, 2926, 41582, 10295, 404, 80, 81, 301, 14795, 86, 5431, 89, 486, 1954, 2231, 3134, 4531, 62, 19355, 4008, 628, 198, 4299, 318, 62, 12102, 62, 738, 7483, 7, 738, 7483, 2599, 198, 220, 220, 220, 37227, 7376, 4657, 611, 262, 1813, 27421, 318, 4938, 393, 407, 13, 317, 4938, 198, 220, 220, 220, 27421, 743, 10874, 286, 262, 1708, 3435, 351, 257, 198, 220, 220, 220, 5415, 4129, 286, 1802, 3435, 11, 5288, 286, 352, 2095, 13, 628, 220, 220, 220, 48951, 3435, 329, 281, 27421, 11, 198, 220, 220, 220, 220, 220, 220, 220, 532, 317, 284, 1168, 198, 220, 220, 220, 220, 220, 220, 220, 532, 257, 284, 1976, 198, 220, 220, 220, 220, 220, 220, 220, 532, 657, 284, 860, 198, 220, 220, 220, 220, 220, 220, 220, 532, 4808, 357, 41116, 7295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 532, 357, 12114, 3617, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 738, 7483, 11, 1615, 395, 1806, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 611, 18896, 7, 738, 7483, 8, 1875, 1802, 393, 18896, 7, 738, 7483, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 38784, 62, 687, 796, 900, 7, 4868, 7, 738, 7483, 13, 21037, 3419, 4008, 198, 220, 220, 220, 1441, 38784, 62, 687, 13, 747, 549, 2617, 7, 23428, 2389, 62, 25256, 5064, 38311, 62, 28480, 8, 628, 198, 4299, 318, 62, 12102, 62, 3849, 2100, 7, 3849, 2100, 2599, 198, 220, 220, 220, 37227, 7376, 4657, 611, 262, 1813, 16654, 318, 4938, 13, 317, 4938, 16654, 198, 220, 220, 220, 318, 1464, 257, 3967, 11, 1729, 12, 22570, 18253, 1988, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 3849, 2100, 11, 357, 600, 11, 890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 611, 16654, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 1441, 6407, 628, 198, 4299, 318, 62, 12102, 62, 260, 36560, 62, 32374, 7, 260, 36560, 62, 32374, 2599, 198, 220, 220, 220, 37227, 7376, 4657, 611, 262, 1813, 1038, 68, 518, 4179, 318, 4938, 13, 198, 220, 220, 220, 317, 4938, 1038, 68, 518, 4179, 318, 1464, 3744, 621, 198, 220, 220, 220, 393, 4961, 284, 532, 16, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 260, 36560, 62, 32374, 11, 357, 600, 11, 890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 611, 1038, 68, 518, 62, 32374, 19841, 532, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 1441, 6407, 628, 198, 4299, 11389, 1096, 62, 15577, 2220, 7, 15577, 2220, 2599, 198, 220, 220, 220, 37227, 51, 1678, 284, 11389, 1096, 262, 21437, 1262, 31456, 8002, 13, 1002, 340, 318, 198, 220, 220, 220, 407, 11389, 13821, 11, 12073, 257, 5994, 12331, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 31456, 8002, 13, 8002, 65, 7, 15577, 2220, 8, 628, 198, 4299, 748, 48499, 1096, 62, 15577, 2220, 7, 15577, 2220, 2599, 198, 220, 220, 220, 37227, 51, 1678, 284, 748, 48499, 1096, 262, 21437, 1262, 31456, 8002, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 31456, 8002, 13, 403, 8002, 65, 7, 15577, 2220, 8, 628, 198, 4299, 7716, 62, 538, 5374, 33529, 198, 220, 220, 220, 37227, 8645, 689, 281, 555, 844, 36835, 287, 13845, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 493, 7, 2435, 13, 2435, 3419, 1635, 8576, 8, 198 ]
2.643064
692
import copy import generators import math import neighbor_states as ns import numpy as np import plotter import random as rand n = 200 iterations = 500000 temperature = 1000 decay_rate = 0.99995 swap_type = "consecutive" low = 0 high = 1 distribution = "uniform" first_path, best_path, distances_plot_data, temperatures_plot_data = travelling_salesman_problem(n, iterations, temperature, decay_rate, swap_type, low, high, distribution) plotter.plot_data(first_path, best_path, distances_plot_data, temperatures_plot_data)
[ 11748, 4866, 198, 11748, 27298, 198, 11748, 10688, 198, 11748, 4780, 62, 27219, 355, 36545, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 7110, 353, 198, 11748, 4738, 355, 43720, 628, 628, 198, 198, 77, 796, 939, 198, 2676, 602, 796, 5323, 830, 198, 11498, 21069, 796, 8576, 198, 12501, 323, 62, 4873, 796, 657, 13, 24214, 20, 198, 2032, 499, 62, 4906, 796, 366, 1102, 4552, 425, 1, 198, 9319, 796, 657, 198, 8929, 796, 352, 198, 17080, 3890, 796, 366, 403, 6933, 1, 198, 198, 11085, 62, 6978, 11, 1266, 62, 6978, 11, 18868, 62, 29487, 62, 7890, 11, 10101, 62, 29487, 62, 7890, 796, 16574, 62, 82, 2040, 805, 62, 45573, 7, 77, 11, 34820, 11, 5951, 11, 22119, 62, 4873, 11, 16075, 62, 4906, 11, 1877, 11, 1029, 11, 6082, 8, 198, 198, 29487, 353, 13, 29487, 62, 7890, 7, 11085, 62, 6978, 11, 1266, 62, 6978, 11, 18868, 62, 29487, 62, 7890, 11, 10101, 62, 29487, 62, 7890, 8, 198 ]
3.206061
165
import gym from gym import spaces import torch import torch.nn as nn from matplotlib import pyplot as plt import pandas as pd import numpy as np from xitorch.interpolate import Interp1D from tqdm.auto import tqdm, trange import time from rcmodel.room import Room from rcmodel.building import Building from rcmodel.RCModel import RCModel from rcmodel.tools import InputScaling from rcmodel.tools import BuildingTemperatureDataset class LSIEnv(gym.Env): """Custom Environment that follows gym interface""" metadata = {'render.modes': ['human']} # action # (observation, reward, done, info) # self.state, reward, done, {} if __name__ == '__main__': path_sorted = '/Users/benfourcin/OneDrive - University of Exeter/PhD/LSI/Data/210813data_sorted.csv' time_data = torch.tensor(pd.read_csv(path_sorted, skiprows=0).iloc[:, 1], dtype=torch.float64) temp_data = torch.tensor(pd.read_csv(path_sorted, skiprows=0).iloc[:, 2:].to_numpy(dtype=np.float32), dtype=torch.float32) ###### path = '/Users/benfourcin/OneDrive - University of Exeter/PhD/LSI/Data/DummyData/' dt = 30 # timestep (seconds), data and the model are sampled at this frequency sample_size = int(5 * (60 ** 2 * 24) / dt) # one day of data training_data = BuildingTemperatureDataset(path + 'train5d.csv', sample_size) train_dataloader = torch.utils.data.DataLoader(training_data, batch_size=1, shuffle=False) ###### time_data = time_data[0:100] temp_data = temp_data[0:100, :] policy = PolicyNetwork(7, 2) RC, Tout_continuous = initialise_model(policy) env = LSIEnv(RC, time_data) reinforce = Reinforce(env, time_data, temp_data, alpha=1e-2) num_episodes = 10 step_size = 24*60**2 / 30 # timesteps in 1 day start_time = time.time() plot_total_rewards, plot_ER = reinforce.train(num_episodes, step_size) print(f'fin, duration: {(time.time() - start_time) / 60:.1f} minutes') fig, axs = plt.subplots(1, 2, figsize=(10, 7),) axs[0].plot(torch.stack(plot_ER).detach().numpy(), label='expected rewards') axs[0].legend() axs[1].plot(torch.stack(plot_total_rewards).detach().numpy(), label='total rewards') axs[1].legend() plt.savefig('Rewards.png') plt.show()
[ 11748, 11550, 198, 6738, 11550, 1330, 9029, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2124, 2072, 354, 13, 3849, 16104, 378, 1330, 4225, 79, 16, 35, 198, 6738, 256, 80, 36020, 13, 23736, 1330, 256, 80, 36020, 11, 491, 858, 198, 11748, 640, 198, 198, 6738, 48321, 19849, 13, 3823, 1330, 10096, 198, 6738, 48321, 19849, 13, 16894, 1330, 11819, 198, 6738, 48321, 19849, 13, 7397, 17633, 1330, 13987, 17633, 198, 6738, 48321, 19849, 13, 31391, 1330, 23412, 3351, 4272, 198, 6738, 48321, 19849, 13, 31391, 1330, 11819, 42492, 27354, 292, 316, 628, 628, 198, 4871, 406, 11584, 4834, 85, 7, 1360, 76, 13, 4834, 85, 2599, 198, 220, 220, 220, 37227, 15022, 9344, 326, 5679, 11550, 7071, 37811, 198, 220, 220, 220, 20150, 796, 1391, 6, 13287, 13, 76, 4147, 10354, 37250, 10734, 20520, 92, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 672, 3168, 341, 11, 6721, 11, 1760, 11, 7508, 8, 198, 220, 220, 220, 1303, 2116, 13, 5219, 11, 6721, 11, 1760, 11, 23884, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 198, 220, 220, 220, 3108, 62, 82, 9741, 796, 31051, 14490, 14, 11722, 14337, 17879, 14, 3198, 24825, 532, 2059, 286, 1475, 2357, 14, 2725, 35, 14, 6561, 40, 14, 6601, 14, 17, 15711, 1485, 7890, 62, 82, 9741, 13, 40664, 6, 198, 220, 220, 220, 640, 62, 7890, 796, 28034, 13, 83, 22854, 7, 30094, 13, 961, 62, 40664, 7, 6978, 62, 82, 9741, 11, 14267, 8516, 28, 15, 737, 346, 420, 58, 45299, 352, 4357, 288, 4906, 28, 13165, 354, 13, 22468, 2414, 8, 198, 220, 220, 220, 20218, 62, 7890, 796, 28034, 13, 83, 22854, 7, 30094, 13, 961, 62, 40664, 7, 6978, 62, 82, 9741, 11, 14267, 8516, 28, 15, 737, 346, 420, 58, 45299, 362, 25, 4083, 1462, 62, 77, 32152, 7, 67, 4906, 28, 37659, 13, 22468, 2624, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 13165, 354, 13, 22468, 2624, 8, 628, 220, 220, 220, 46424, 2, 198, 220, 220, 220, 3108, 796, 31051, 14490, 14, 11722, 14337, 17879, 14, 3198, 24825, 532, 2059, 286, 1475, 2357, 14, 2725, 35, 14, 6561, 40, 14, 6601, 14, 35, 13513, 6601, 14, 6, 198, 220, 220, 220, 288, 83, 796, 1542, 220, 1303, 4628, 395, 538, 357, 43012, 828, 1366, 290, 262, 2746, 389, 35846, 379, 428, 8373, 198, 220, 220, 220, 6291, 62, 7857, 796, 493, 7, 20, 1635, 357, 1899, 12429, 362, 1635, 1987, 8, 1220, 288, 83, 8, 220, 1303, 530, 1110, 286, 1366, 628, 220, 220, 220, 3047, 62, 7890, 796, 11819, 42492, 27354, 292, 316, 7, 6978, 1343, 705, 27432, 20, 67, 13, 40664, 3256, 6291, 62, 7857, 8, 198, 220, 220, 220, 4512, 62, 67, 10254, 1170, 263, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 34409, 62, 7890, 11, 15458, 62, 7857, 28, 16, 11, 36273, 28, 25101, 8, 198, 220, 220, 220, 46424, 2, 628, 628, 198, 220, 220, 220, 640, 62, 7890, 796, 640, 62, 7890, 58, 15, 25, 3064, 60, 198, 220, 220, 220, 20218, 62, 7890, 796, 20218, 62, 7890, 58, 15, 25, 3064, 11, 1058, 60, 628, 220, 220, 220, 2450, 796, 7820, 26245, 7, 22, 11, 362, 8, 198, 220, 220, 220, 13987, 11, 309, 448, 62, 18487, 5623, 796, 4238, 786, 62, 19849, 7, 30586, 8, 198, 220, 220, 220, 17365, 796, 406, 11584, 4834, 85, 7, 7397, 11, 640, 62, 7890, 8, 198, 220, 220, 220, 19594, 796, 22299, 3174, 7, 24330, 11, 640, 62, 7890, 11, 20218, 62, 7890, 11, 17130, 28, 16, 68, 12, 17, 8, 628, 220, 220, 220, 997, 62, 538, 8052, 796, 838, 198, 220, 220, 220, 2239, 62, 7857, 796, 1987, 9, 1899, 1174, 17, 1220, 1542, 220, 1303, 4628, 395, 25386, 287, 352, 1110, 198, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 7110, 62, 23350, 62, 260, 2017, 11, 7110, 62, 1137, 796, 19594, 13, 27432, 7, 22510, 62, 538, 8052, 11, 2239, 62, 7857, 8, 628, 220, 220, 220, 3601, 7, 69, 6, 15643, 11, 9478, 25, 1391, 7, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 8, 1220, 3126, 25, 13, 16, 69, 92, 2431, 11537, 628, 220, 220, 220, 2336, 11, 7877, 82, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 362, 11, 2336, 7857, 16193, 940, 11, 767, 828, 8, 198, 220, 220, 220, 7877, 82, 58, 15, 4083, 29487, 7, 13165, 354, 13, 25558, 7, 29487, 62, 1137, 737, 15255, 620, 22446, 77, 32152, 22784, 6167, 11639, 40319, 11530, 11537, 198, 220, 220, 220, 7877, 82, 58, 15, 4083, 1455, 437, 3419, 628, 220, 220, 220, 7877, 82, 58, 16, 4083, 29487, 7, 13165, 354, 13, 25558, 7, 29487, 62, 23350, 62, 260, 2017, 737, 15255, 620, 22446, 77, 32152, 22784, 6167, 11639, 23350, 11530, 11537, 198, 220, 220, 220, 7877, 82, 58, 16, 4083, 1455, 437, 3419, 628, 220, 220, 220, 458, 83, 13, 21928, 5647, 10786, 30003, 1371, 13, 11134, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628 ]
2.487152
934
import sys from WidgetManager import WidgetManager from Dashboard import Dashboard from asciimatics.screen import Screen from asciimatics.exceptions import ResizeScreenError """ The application is initialized using an asciimatics wrapper """ widgetmanager = WidgetManager() last_scene = None while True: try: Screen.wrapper(app, catch_interrupt=True, arguments=[last_scene]) sys.exit(0) except ResizeScreenError as e: pass last_scene = e.scene
[ 11748, 25064, 201, 198, 201, 198, 6738, 370, 17484, 13511, 1330, 370, 17484, 13511, 201, 198, 6738, 16189, 3526, 1330, 16189, 3526, 201, 198, 201, 198, 6738, 355, 979, 320, 23372, 13, 9612, 1330, 15216, 201, 198, 6738, 355, 979, 320, 23372, 13, 1069, 11755, 1330, 1874, 1096, 23901, 12331, 201, 198, 201, 198, 201, 198, 37811, 201, 198, 464, 3586, 318, 23224, 1262, 281, 355, 979, 320, 23372, 29908, 201, 198, 37811, 201, 198, 201, 198, 201, 198, 201, 198, 42655, 37153, 796, 370, 17484, 13511, 3419, 201, 198, 12957, 62, 29734, 796, 6045, 201, 198, 4514, 6407, 25, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 15216, 13, 48553, 7, 1324, 11, 4929, 62, 3849, 3622, 28, 17821, 11, 7159, 41888, 12957, 62, 29734, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 201, 198, 220, 220, 220, 2845, 1874, 1096, 23901, 12331, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 29734, 796, 304, 13, 29734, 201, 198 ]
2.696335
191
@jit
[ 31, 45051 ]
2
2
import pyxel import math # ablak szélessége, magassága, címe pyxel.init(255,255, caption="Hello") # Mit csináljunk egy képkocka előtt # Hogyan rajzolunk ki egy-egy képkockát # Elindítjuk pyxel.run(update, draw)
[ 11748, 12972, 87, 417, 198, 11748, 10688, 198, 2, 46624, 461, 264, 89, 2634, 1203, 2634, 469, 11, 2153, 562, 6557, 4908, 11, 269, 8836, 1326, 198, 9078, 87, 417, 13, 15003, 7, 13381, 11, 13381, 11, 8305, 2625, 15496, 4943, 198, 198, 2, 11707, 269, 31369, 6557, 75, 73, 2954, 304, 1360, 479, 2634, 79, 74, 735, 64, 1288, 129, 239, 926, 198, 198, 2, 22411, 4121, 374, 1228, 89, 349, 2954, 47748, 304, 1360, 12, 68, 1360, 479, 2634, 79, 74, 735, 6557, 83, 198, 220, 220, 220, 220, 198, 2, 2574, 521, 8836, 83, 73, 2724, 198, 9078, 87, 417, 13, 5143, 7, 19119, 11, 3197, 8 ]
1.972727
110
from rest_framework import serializers from crisiscleanup.calls.models import Gateway from crisiscleanup.calls.models import Language
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 198, 6738, 4442, 2304, 13087, 929, 13, 66, 5691, 13, 27530, 1330, 29916, 198, 6738, 4442, 2304, 13087, 929, 13, 66, 5691, 13, 27530, 1330, 15417, 198 ]
3.857143
35
from contextlib import contextmanager from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from ..config import settings __engine = create_engine(settings.DATABASE) __session_maker = sessionmaker(bind=__engine) @contextmanager
[ 6738, 4732, 8019, 1330, 4732, 37153, 198, 198, 6738, 44161, 282, 26599, 1330, 2251, 62, 18392, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 6246, 10297, 198, 198, 6738, 11485, 11250, 1330, 6460, 198, 198, 834, 18392, 796, 2251, 62, 18392, 7, 33692, 13, 35, 1404, 6242, 11159, 8, 198, 834, 29891, 62, 10297, 796, 6246, 10297, 7, 21653, 28, 834, 18392, 8, 628, 198, 198, 31, 22866, 37153, 198 ]
3.671429
70
import re
[ 11748, 302, 201, 198, 220, 220, 220, 220 ]
1.875
8
from csv import DictReader from cd4ml.filenames import file_names
[ 6738, 269, 21370, 1330, 360, 713, 33634, 198, 6738, 22927, 19, 4029, 13, 10379, 268, 1047, 1330, 2393, 62, 14933, 628 ]
3.190476
21
from django.urls import path from .views import PriorityListView, PriorityDetailView urlpatterns = ( path('', PriorityListView.as_view(), name='priority-list'), path('<str:priority>', PriorityDetailView.as_view(), name='priority-detail'), )
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 33571, 1330, 34416, 8053, 7680, 11, 34416, 11242, 603, 7680, 198, 198, 6371, 33279, 82, 796, 357, 198, 220, 220, 220, 3108, 10786, 3256, 34416, 8053, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 49336, 12, 4868, 33809, 198, 220, 220, 220, 3108, 10786, 27, 2536, 25, 49336, 29, 3256, 34416, 11242, 603, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 49336, 12, 49170, 33809, 198, 8 ]
3.192308
78
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys from typing import List sys.path.insert(0, os.path.abspath("../../src/")) on_rtd = os.environ.get("READTHEDOCS") == "True" # -- Project information ----------------------------------------------------- project = "redgrease" copyright = "2021, Lyngon Pte. Ltd." author = "Anders Åström" version = "0.1" # can this be dynamic somehow? # -- General configuration --------------------------------------------------- autoclass_content = "both" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions: List[str] = [ "sphinx.ext.napoleon", "sphinx.ext.autodoc", "sphinx.ext.viewcode", "sphinx_tabs.tabs", # "sphinxcontrib.osexample", ] # ["recommonmark"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns: List[str] = [] # -- Options for HTML output ------------------------------------------------- # pygments_style = "fruity" # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_theme_options = { # 'analytics_id': 'UA-XXXXXXX-1', # Provided by Google in your dashboard # "analytics_anonymize_ip": True, "display_version": True, "prev_next_buttons_location": "both", "style_external_links": True, # "style_nav_header_background": "#7a0c00", } html_logo = "../images/redgrease_icon_02.png" html_favicon = "../images/LyngonIcon_v3.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # custom.css is inside one of the html_static_path folders (e.g. _static) html_css_files = ["custom.css"] ml_css_files = [] # type: List[str] # def setup(app): # app.add_stylesheet("custom.css")
[ 2, 28373, 2393, 329, 262, 45368, 28413, 10314, 27098, 13, 198, 2, 198, 2, 770, 2393, 691, 4909, 257, 6356, 286, 262, 749, 2219, 3689, 13, 1114, 257, 1336, 198, 2, 1351, 766, 262, 10314, 25, 198, 2, 3740, 1378, 2503, 13, 82, 746, 28413, 12, 15390, 13, 2398, 14, 268, 14, 9866, 14, 26060, 14, 11250, 3924, 13, 6494, 198, 198, 2, 1377, 10644, 9058, 20368, 1783, 26171, 198, 198, 2, 1002, 18366, 357, 273, 13103, 284, 3188, 351, 1960, 375, 420, 8, 389, 287, 1194, 8619, 11, 198, 2, 751, 777, 29196, 284, 25064, 13, 6978, 994, 13, 1002, 262, 8619, 318, 3585, 284, 262, 198, 2, 10314, 6808, 11, 779, 28686, 13, 6978, 13, 397, 2777, 776, 284, 787, 340, 4112, 11, 588, 3402, 994, 13, 198, 2, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 19720, 1330, 7343, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 397, 2777, 776, 7203, 40720, 40720, 10677, 30487, 4008, 198, 198, 261, 62, 81, 8671, 796, 28686, 13, 268, 2268, 13, 1136, 7203, 15675, 4221, 1961, 4503, 50, 4943, 6624, 366, 17821, 1, 198, 198, 2, 1377, 4935, 1321, 20368, 19351, 12, 198, 198, 16302, 796, 366, 445, 16694, 589, 1, 198, 22163, 4766, 796, 366, 1238, 2481, 11, 9334, 782, 261, 350, 660, 13, 12052, 526, 198, 9800, 796, 366, 1870, 364, 6184, 227, 2536, 9101, 76, 1, 198, 9641, 796, 366, 15, 13, 16, 1, 220, 1303, 460, 428, 307, 8925, 7599, 30, 628, 198, 2, 1377, 3611, 8398, 20368, 1783, 6329, 198, 2306, 420, 31172, 62, 11299, 796, 366, 16885, 1, 198, 198, 2, 3060, 597, 45368, 28413, 7552, 8265, 3891, 994, 11, 355, 13042, 13, 1119, 460, 307, 198, 2, 18366, 2406, 351, 45368, 28413, 357, 13190, 705, 82, 746, 28413, 13, 2302, 15885, 11537, 393, 534, 2183, 198, 2, 3392, 13, 198, 2302, 5736, 25, 7343, 58, 2536, 60, 796, 685, 198, 220, 220, 220, 366, 82, 746, 28413, 13, 2302, 13, 77, 499, 25637, 1600, 198, 220, 220, 220, 366, 82, 746, 28413, 13, 2302, 13, 2306, 375, 420, 1600, 198, 220, 220, 220, 366, 82, 746, 28413, 13, 2302, 13, 1177, 8189, 1600, 198, 220, 220, 220, 366, 82, 746, 28413, 62, 8658, 82, 13, 8658, 82, 1600, 198, 220, 220, 220, 1303, 220, 220, 220, 366, 82, 746, 28413, 3642, 822, 13, 577, 87, 1403, 1600, 198, 60, 198, 2, 14631, 260, 11321, 4102, 8973, 198, 198, 2, 3060, 597, 13532, 326, 3994, 24019, 994, 11, 3585, 284, 428, 8619, 13, 198, 11498, 17041, 62, 6978, 796, 14631, 62, 11498, 17041, 8973, 198, 198, 2, 7343, 286, 7572, 11, 3585, 284, 2723, 8619, 11, 326, 2872, 3696, 290, 198, 2, 29196, 284, 8856, 618, 2045, 329, 2723, 3696, 13, 198, 2, 770, 3912, 635, 10975, 27711, 62, 12708, 62, 6978, 290, 27711, 62, 26086, 62, 6978, 13, 198, 1069, 9152, 62, 33279, 82, 25, 7343, 58, 2536, 60, 796, 17635, 628, 198, 2, 1377, 18634, 329, 11532, 5072, 20368, 1783, 12, 198, 198, 2, 12972, 11726, 62, 7635, 796, 366, 69, 622, 414, 1, 198, 198, 2, 383, 7505, 284, 779, 329, 11532, 290, 11532, 10478, 5468, 13, 220, 4091, 262, 10314, 329, 198, 2, 257, 1351, 286, 3170, 259, 13460, 13, 198, 2, 198, 6494, 62, 43810, 796, 366, 82, 746, 28413, 62, 81, 8671, 62, 43810, 1, 198, 6494, 62, 43810, 62, 25811, 796, 1391, 198, 220, 220, 220, 1303, 705, 38200, 14094, 62, 312, 10354, 705, 34970, 12, 24376, 43145, 12, 16, 3256, 220, 1303, 220, 29750, 416, 3012, 287, 534, 30415, 198, 220, 220, 220, 1303, 366, 38200, 14094, 62, 272, 5177, 1096, 62, 541, 1298, 6407, 11, 198, 220, 220, 220, 366, 13812, 62, 9641, 1298, 6407, 11, 198, 220, 220, 220, 366, 47050, 62, 19545, 62, 4360, 27288, 62, 24886, 1298, 366, 16885, 1600, 198, 220, 220, 220, 366, 7635, 62, 22615, 62, 28751, 1298, 6407, 11, 198, 220, 220, 220, 1303, 366, 7635, 62, 28341, 62, 25677, 62, 25249, 1298, 25113, 22, 64, 15, 66, 405, 1600, 198, 92, 198, 198, 6494, 62, 6404, 78, 796, 366, 40720, 17566, 14, 445, 16694, 589, 62, 4749, 62, 2999, 13, 11134, 1, 198, 6494, 62, 69, 615, 4749, 796, 366, 40720, 17566, 14, 31633, 782, 261, 19578, 62, 85, 18, 13, 3713, 1, 628, 198, 2, 3060, 597, 13532, 326, 3994, 2183, 9037, 3696, 357, 10508, 355, 3918, 15747, 8, 994, 11, 198, 2, 3585, 284, 428, 8619, 13, 1119, 389, 18984, 706, 262, 3170, 259, 9037, 3696, 11, 198, 2, 523, 257, 2393, 3706, 366, 12286, 13, 25471, 1, 481, 49312, 262, 3170, 259, 366, 12286, 13, 25471, 1911, 198, 6494, 62, 12708, 62, 6978, 796, 14631, 62, 12708, 8973, 198, 2, 2183, 13, 25471, 318, 2641, 530, 286, 262, 27711, 62, 12708, 62, 6978, 24512, 357, 68, 13, 70, 13, 4808, 12708, 8, 198, 6494, 62, 25471, 62, 16624, 796, 14631, 23144, 13, 25471, 8973, 198, 198, 4029, 62, 25471, 62, 16624, 796, 17635, 220, 1303, 2099, 25, 7343, 58, 2536, 60, 628, 198, 2, 825, 9058, 7, 1324, 2599, 198, 2, 220, 220, 220, 220, 598, 13, 2860, 62, 47720, 25473, 7203, 23144, 13, 25471, 4943, 198 ]
3.210587
869
CHOICES = ["A", "C", "G", "T"]
[ 44899, 34444, 796, 14631, 32, 1600, 366, 34, 1600, 366, 38, 1600, 366, 51, 8973 ]
2
15
""" [17-08-21] Challenge #328 [Easy] Latin Squares https://www.reddit.com/r/dailyprogrammer/comments/6v29zk/170821_challenge_328_easy_latin_squares/ #**Description** A [Latin square](https://en.wikipedia.org/wiki/Latin_square) is an n × n array filled with n different symbols, each occurring exactly once in each row and exactly once in each column. For example: >1 And, >1 2 >2 1 Another one, >1 2 3 >3 1 2 >2 3 1 In this challenge, you have to check whether a given array is a Latin square. #**Input Description** Let the user enter the length of the array followed by *n x n* numbers. Fill an array from left to right starting from above. #**Output Description** If it is a Latin square, then display true. Else, display false. #**Challenge Input** > 5 > 1 2 3 4 5 5 1 2 3 4 4 5 1 2 3 3 4 5 1 2 2 3 4 5 1 > 2 > 1 3 3 4 > 4 > 1 2 3 4 1 3 2 4 2 3 4 1 4 3 2 1 #**Challenge Output** > true > false > false --------- #**Bonus** A Latin square is said to be reduced if both its first row and its first column are in their natural order. You can reduce a Latin square by reordering the rows and columns. The example in the description can be reduced to this >1 2 3 >2 3 1 >3 1 2 If a given array turns out to be a Latin square, then your program should reduce it and display it. Edit: /u/tomekanco has pointed out that many solutions which have an error. I shall look into this. Meanwhile, I have added an extra challenge input-output for you to check. """ if __name__ == "__main__": main()
[ 37811, 198, 58, 1558, 12, 2919, 12, 2481, 60, 13879, 1303, 34256, 685, 28406, 60, 9133, 5056, 3565, 198, 198, 5450, 1378, 2503, 13, 10748, 13, 785, 14, 81, 14, 29468, 23065, 647, 14, 15944, 14, 21, 85, 1959, 89, 74, 14, 1558, 2919, 2481, 62, 36747, 3540, 62, 34256, 62, 38171, 62, 75, 10680, 62, 16485, 3565, 14, 198, 198, 2, 1174, 11828, 1174, 198, 32, 685, 49022, 6616, 16151, 5450, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 49022, 62, 23415, 8, 1849, 271, 281, 1849, 77, 1849, 12906, 1849, 77, 1849, 18747, 5901, 351, 1849, 77, 1849, 39799, 14354, 11, 1123, 198, 13966, 14924, 3446, 1752, 287, 1123, 5752, 290, 3446, 1752, 287, 1123, 5721, 13, 198, 1890, 1672, 25, 198, 29, 16, 198, 1870, 11, 198, 29, 16, 362, 198, 29, 17, 352, 198, 6610, 530, 11, 220, 198, 29, 16, 362, 513, 220, 198, 29, 18, 352, 362, 198, 29, 17, 513, 352, 198, 818, 428, 4427, 11, 345, 423, 284, 2198, 1771, 257, 1813, 7177, 318, 257, 9133, 6616, 13, 220, 198, 2, 1174, 20560, 12489, 1174, 198, 5756, 262, 2836, 3802, 262, 4129, 286, 262, 7177, 3940, 416, 1635, 77, 2124, 299, 9, 3146, 13, 27845, 281, 7177, 422, 1364, 284, 826, 3599, 422, 198, 29370, 13, 220, 198, 2, 1174, 26410, 12489, 1174, 198, 1532, 340, 318, 257, 9133, 6616, 11, 788, 3359, 2081, 13, 25974, 11, 3359, 3991, 13, 220, 198, 2, 1174, 41812, 3540, 23412, 1174, 198, 29, 642, 220, 198, 29, 352, 362, 513, 604, 642, 642, 352, 362, 513, 604, 604, 642, 352, 362, 513, 513, 604, 642, 352, 362, 362, 513, 604, 642, 352, 198, 29, 362, 198, 29, 352, 513, 513, 604, 198, 29, 604, 198, 29, 352, 362, 513, 604, 352, 513, 362, 604, 362, 513, 604, 352, 604, 513, 362, 352, 220, 198, 2, 1174, 41812, 3540, 25235, 1174, 198, 29, 220, 2081, 198, 29, 3991, 198, 29, 3991, 220, 198, 45537, 198, 2, 1174, 29435, 1174, 198, 32, 9133, 6616, 318, 531, 284, 307, 1849, 445, 19513, 611, 1111, 663, 717, 5752, 290, 663, 717, 5721, 389, 287, 511, 3288, 1502, 13, 198, 1639, 460, 4646, 257, 9133, 6616, 416, 302, 34555, 262, 15274, 290, 15180, 13, 383, 1672, 287, 262, 6764, 460, 307, 5322, 284, 428, 198, 29, 16, 362, 513, 198, 29, 17, 513, 352, 198, 29, 18, 352, 362, 198, 1532, 257, 1813, 7177, 4962, 503, 284, 307, 257, 9133, 6616, 11, 788, 534, 1430, 815, 4646, 340, 290, 3359, 340, 13, 220, 198, 18378, 25, 1220, 84, 14, 83, 462, 27541, 1073, 468, 6235, 503, 326, 867, 8136, 543, 423, 281, 4049, 13, 314, 2236, 804, 656, 428, 13, 11214, 11, 314, 423, 198, 29373, 281, 3131, 4427, 5128, 12, 22915, 329, 345, 284, 2198, 13, 220, 198, 37811, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.071283
491
from qore import * from libs.menu import Menu from libs.monitor import Monitor from libs.agents import Agents from libs.header import AppHeader from libs.health import Health AutomicTerminal.run(title="Automic", log="textual.log")
[ 6738, 10662, 382, 1330, 1635, 201, 198, 6738, 9195, 82, 13, 26272, 1330, 21860, 201, 198, 6738, 9195, 82, 13, 41143, 1330, 18289, 201, 198, 6738, 9195, 82, 13, 49638, 1330, 28295, 201, 198, 6738, 9195, 82, 13, 25677, 1330, 2034, 39681, 201, 198, 6738, 9195, 82, 13, 13948, 1330, 3893, 201, 198, 201, 198, 16541, 10179, 44798, 282, 13, 5143, 7, 7839, 2625, 16541, 10179, 1600, 2604, 2625, 5239, 723, 13, 6404, 4943, 201, 198 ]
3.157895
76
# -*- coding: utf-8 -*- # @Time : 2021-04-26 7:52 p.m. # @Author : young wang # @FileName: quality.py # @Software: PyCharm import numpy as np from skimage.filters import gaussian from scipy.ndimage import median_filter from misc.processing import imag2uint def ROI(x, y, width, height,s): '''obtain the ROI from the standard layout [330x512] parameters ---------- s has the standard dimension [330x512] y is defined as the axial direction: 330 x is defined as the lateral direction: 512 height refers the increment in the axial direction > 0 width refers the increment in the lateral direction > 0 ''' # fetch ROI if height > 0 and width > 0: if (x >= 0) and (y >= 0) and (x + width <= s.shape[1]) and (y + height <= s.shape[0]): roi = s[y:y + height, x:x + width] return roi def SF(s): '''obtain the sparsity fraction from given region of interest parameters ---------- i_{mn} represents the matrix of pixel intensities at each location \left(m,n\right) in an N by M image patch, where im,n0 is the l_0 norm of i_{mn}, i.e., the number of nonzero elements ''' return (1 - np.count_nonzero(s) / s.size) def SNR(roi_h,roi_b): '''compute the SNR of a given homogenous region SNR = 10*log10(uh/σb) Improving ultrasound images with elevational angular compounding based on acoustic refraction https://doi.org/10.1038/s41598-020-75092-8 parameters ---------- roi_h: array_like homogeneous region roi_b: array_like background region ''' mean_h = np.mean(roi_h) std_b = np.std(roi_b) with np.errstate(divide='ignore'): snr = 10*np.log10(mean_h/ std_b) return snr def CNR(roi_h,roi_a): '''compute the CNR between homogeneous and region free of structure CNR = 10*log((|uh-ub|/σb) Reference: Improving ultrasound images with elevational angular compounding based on acoustic refraction https://doi.org/10.1038/s41598-020-75092-8 parameters ---------- roi_h: array_like homogeneous region roi_a: array_like region free of structure ''' h_mean = np.mean(roi_h) a_mean = np.mean(roi_a) a_std = np.std(roi_a) with np.errstate(divide='ignore'): cnr = abs(h_mean - a_mean) / a_std return 10*np.log10(cnr)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 220, 220, 1058, 33448, 12, 3023, 12, 2075, 767, 25, 4309, 279, 13, 76, 13, 198, 2, 2488, 13838, 220, 1058, 1862, 266, 648, 198, 2, 2488, 8979, 5376, 25, 3081, 13, 9078, 198, 2, 2488, 25423, 25, 9485, 1925, 1670, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 9060, 13, 10379, 1010, 1330, 31986, 31562, 198, 6738, 629, 541, 88, 13, 358, 9060, 1330, 14288, 62, 24455, 198, 6738, 12747, 13, 36948, 1330, 3590, 17, 28611, 628, 198, 4299, 15107, 40, 7, 87, 11, 331, 11, 9647, 11, 6001, 11, 82, 2599, 198, 220, 220, 220, 705, 7061, 672, 3153, 262, 15107, 40, 422, 262, 3210, 12461, 685, 26073, 87, 25836, 60, 628, 220, 220, 220, 10007, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 264, 468, 262, 3210, 15793, 685, 26073, 87, 25836, 60, 198, 220, 220, 220, 331, 318, 5447, 355, 262, 7877, 498, 4571, 25, 25508, 198, 220, 220, 220, 2124, 318, 5447, 355, 262, 25653, 4571, 25, 22243, 198, 220, 220, 220, 6001, 10229, 262, 18703, 287, 262, 7877, 498, 4571, 1875, 657, 198, 220, 220, 220, 9647, 10229, 262, 18703, 287, 262, 25653, 4571, 1875, 657, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 21207, 15107, 40, 198, 220, 220, 220, 611, 6001, 1875, 657, 290, 9647, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 87, 18189, 657, 8, 290, 357, 88, 18189, 657, 8, 290, 357, 87, 1343, 9647, 19841, 264, 13, 43358, 58, 16, 12962, 290, 357, 88, 1343, 6001, 19841, 264, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 72, 796, 264, 58, 88, 25, 88, 1343, 6001, 11, 2124, 25, 87, 1343, 9647, 60, 198, 220, 220, 220, 1441, 686, 72, 198, 198, 4299, 14362, 7, 82, 2599, 198, 220, 220, 220, 705, 7061, 672, 3153, 262, 599, 45826, 13390, 422, 1813, 3814, 286, 1393, 628, 220, 220, 220, 10007, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1312, 23330, 10295, 92, 6870, 262, 17593, 286, 17465, 17509, 871, 379, 198, 220, 220, 220, 1123, 4067, 3467, 9464, 7, 76, 11, 77, 59, 3506, 8, 287, 281, 399, 416, 337, 2939, 8529, 11, 198, 220, 220, 220, 810, 545, 11, 77, 15, 318, 262, 300, 62, 15, 2593, 286, 1312, 23330, 10295, 5512, 1312, 13, 68, 1539, 198, 220, 220, 220, 262, 1271, 286, 1729, 22570, 4847, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 357, 16, 532, 45941, 13, 9127, 62, 13159, 22570, 7, 82, 8, 1220, 264, 13, 7857, 8, 198, 198, 4299, 11346, 49, 7, 305, 72, 62, 71, 11, 305, 72, 62, 65, 2599, 628, 220, 220, 220, 705, 7061, 5589, 1133, 262, 11346, 49, 286, 257, 1813, 3488, 27897, 3814, 628, 220, 220, 220, 11346, 49, 796, 838, 9, 6404, 940, 7, 7456, 14, 38392, 65, 8, 628, 220, 220, 220, 12205, 1075, 37721, 4263, 351, 198, 220, 220, 220, 7662, 864, 32558, 552, 9969, 1912, 319, 198, 220, 220, 220, 26071, 1006, 7861, 198, 220, 220, 220, 3740, 1378, 34023, 13, 2398, 14, 940, 13, 940, 2548, 14, 82, 35038, 4089, 12, 33618, 12, 15426, 5892, 12, 23, 628, 220, 220, 220, 10007, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 686, 72, 62, 71, 25, 7177, 62, 2339, 198, 220, 220, 220, 3488, 32269, 3814, 628, 220, 220, 220, 686, 72, 62, 65, 25, 7177, 62, 2339, 198, 220, 220, 220, 4469, 3814, 628, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1612, 62, 71, 796, 45941, 13, 32604, 7, 305, 72, 62, 71, 8, 198, 220, 220, 220, 14367, 62, 65, 796, 45941, 13, 19282, 7, 305, 72, 62, 65, 8, 628, 220, 220, 220, 351, 45941, 13, 8056, 5219, 7, 7146, 485, 11639, 46430, 6, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 3013, 81, 796, 838, 9, 37659, 13, 6404, 940, 7, 32604, 62, 71, 14, 14367, 62, 65, 8, 628, 220, 220, 220, 1441, 3013, 81, 198, 198, 4299, 327, 24723, 7, 305, 72, 62, 71, 11, 305, 72, 62, 64, 2599, 628, 220, 220, 220, 705, 7061, 5589, 1133, 262, 327, 24723, 1022, 3488, 32269, 290, 3814, 1479, 286, 198, 220, 220, 220, 4645, 628, 220, 220, 220, 327, 24723, 796, 838, 9, 6404, 19510, 91, 7456, 12, 549, 91, 14, 38392, 65, 8, 628, 220, 220, 220, 20984, 25, 198, 220, 220, 220, 12205, 1075, 37721, 4263, 351, 198, 220, 220, 220, 7662, 864, 32558, 552, 9969, 1912, 319, 198, 220, 220, 220, 26071, 1006, 7861, 198, 220, 220, 220, 3740, 1378, 34023, 13, 2398, 14, 940, 13, 940, 2548, 14, 82, 35038, 4089, 12, 33618, 12, 15426, 5892, 12, 23, 628, 198, 220, 220, 220, 10007, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 686, 72, 62, 71, 25, 7177, 62, 2339, 198, 220, 220, 220, 3488, 32269, 3814, 198, 220, 220, 220, 686, 72, 62, 64, 25, 7177, 62, 2339, 198, 220, 220, 220, 3814, 1479, 286, 4645, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 289, 62, 32604, 796, 45941, 13, 32604, 7, 305, 72, 62, 71, 8, 198, 220, 220, 220, 257, 62, 32604, 796, 45941, 13, 32604, 7, 305, 72, 62, 64, 8, 628, 220, 220, 220, 257, 62, 19282, 796, 45941, 13, 19282, 7, 305, 72, 62, 64, 8, 628, 220, 220, 220, 351, 45941, 13, 8056, 5219, 7, 7146, 485, 11639, 46430, 6, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 269, 48624, 796, 2352, 7, 71, 62, 32604, 532, 257, 62, 32604, 8, 1220, 257, 62, 19282, 628, 220, 220, 220, 1441, 838, 9, 37659, 13, 6404, 940, 7, 31522, 81, 8, 628, 220, 220, 220, 220, 628 ]
2.436992
984
import requests import sqlite3 conn = sqlite3.connect('twitter_resources.db', check_same_thread=False) c = conn.cursor()
[ 11748, 7007, 198, 11748, 44161, 578, 18, 198, 198, 37043, 796, 44161, 578, 18, 13, 8443, 10786, 6956, 62, 37540, 13, 9945, 3256, 2198, 62, 31642, 62, 16663, 28, 25101, 8, 198, 66, 796, 48260, 13, 66, 21471, 3419, 628, 628, 198 ]
3
42
import csv from copy import copy, deepcopy import pytest from hypothesis import given from hypothesis.extra.pandas import data_frames, column from canvasxpress.data.matrix import CXCSVData from tests.util.hypothesis_support import everything_except csv_sample = """ "C1","C2","C3" 1,2,3 4,5,6 """ @given( data_frames([column('A', dtype=int), column('B', dtype=int)]) ) @given(everything_except(dict, str)) @given(everything_except(dict, str))
[ 11748, 269, 21370, 198, 6738, 4866, 1330, 4866, 11, 2769, 30073, 198, 198, 11748, 12972, 9288, 198, 6738, 14078, 1330, 1813, 198, 6738, 14078, 13, 26086, 13, 79, 392, 292, 1330, 1366, 62, 37805, 11, 5721, 198, 198, 6738, 21978, 87, 8439, 13, 7890, 13, 6759, 8609, 1330, 327, 55, 7902, 53, 6601, 198, 6738, 5254, 13, 22602, 13, 36362, 313, 8497, 62, 11284, 1330, 2279, 62, 16341, 198, 198, 40664, 62, 39873, 796, 37227, 198, 1, 34, 16, 2430, 34, 17, 2430, 34, 18, 1, 198, 16, 11, 17, 11, 18, 198, 19, 11, 20, 11, 21, 198, 37811, 628, 198, 31, 35569, 7, 198, 220, 220, 220, 1366, 62, 37805, 26933, 28665, 10786, 32, 3256, 288, 4906, 28, 600, 828, 5721, 10786, 33, 3256, 288, 4906, 28, 600, 8, 12962, 198, 8, 628, 198, 31, 35569, 7, 37814, 62, 16341, 7, 11600, 11, 965, 4008, 628, 198, 31, 35569, 7, 37814, 62, 16341, 7, 11600, 11, 965, 4008, 628, 628, 628 ]
2.828221
163
from .edges import make_edges
[ 6738, 764, 276, 3212, 1330, 787, 62, 276, 3212, 198 ]
3
10
from nose.tools import assert_equal
[ 6738, 9686, 13, 31391, 1330, 6818, 62, 40496, 198 ]
4
9
import ctypes.util from .ffi_build import ffi def _dlopen(generated_ffi, *names): """Try various names for the same library, for different platforms.""" for name in names: for lib_name in (name, 'lib' + name): try: path = ctypes.util.find_library(lib_name) lib = generated_ffi.dlopen(path or lib_name) if lib: return lib except OSError: pass raise OSError("dlopen() failed to load a library: %s" % ' / '.join(names)) pango = _dlopen(ffi, 'pango', 'pango-1', 'pango-1.0', 'pango-1.0-0') gobject = _dlopen(ffi, 'gobject-2.0', 'gobject-2.0-0') # Imports are normally always put at the top of the file. # But the wrapper API requires that the pango library be loaded first. # Therefore, we have to disable linting rules for these lines. from .version import * # noqa from .enums import * # noqa from .convert import * # noqa from .font_description import FontDescription # noqa from .rectangle import Rectangle # noqa from .item import Item # noqa from .context import Context # noqa from .glyph_item import GlyphItem # noqa from .glyph_item_iter import GlyphItemIter # noqa from .layout_run import LayoutRun # noqa from .layout_iter import LayoutIter # noqa from .layout import Layout # noqa
[ 11748, 269, 19199, 13, 22602, 198, 6738, 764, 487, 72, 62, 11249, 1330, 277, 12463, 628, 198, 4299, 4808, 25404, 9654, 7, 27568, 62, 487, 72, 11, 1635, 14933, 2599, 198, 220, 220, 220, 37227, 23433, 2972, 3891, 329, 262, 976, 5888, 11, 329, 1180, 9554, 526, 15931, 198, 220, 220, 220, 329, 1438, 287, 3891, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 9195, 62, 3672, 287, 357, 3672, 11, 705, 8019, 6, 1343, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 269, 19199, 13, 22602, 13, 19796, 62, 32016, 7, 8019, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9195, 796, 7560, 62, 487, 72, 13, 25404, 9654, 7, 6978, 393, 9195, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9195, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9195, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 5298, 440, 5188, 81, 1472, 7203, 25404, 9654, 3419, 4054, 284, 3440, 257, 5888, 25, 4064, 82, 1, 4064, 705, 1220, 45302, 22179, 7, 14933, 4008, 628, 198, 79, 14208, 796, 4808, 25404, 9654, 7, 487, 72, 11, 705, 79, 14208, 3256, 705, 79, 14208, 12, 16, 3256, 705, 79, 14208, 12, 16, 13, 15, 3256, 705, 79, 14208, 12, 16, 13, 15, 12, 15, 11537, 198, 70, 15252, 796, 4808, 25404, 9654, 7, 487, 72, 11, 705, 70, 15252, 12, 17, 13, 15, 3256, 705, 70, 15252, 12, 17, 13, 15, 12, 15, 11537, 628, 198, 2, 1846, 3742, 389, 7685, 1464, 1234, 379, 262, 1353, 286, 262, 2393, 13, 198, 2, 887, 262, 29908, 7824, 4433, 326, 262, 279, 14208, 5888, 307, 9639, 717, 13, 198, 2, 8447, 11, 356, 423, 284, 15560, 300, 600, 278, 3173, 329, 777, 3951, 13, 198, 6738, 764, 9641, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 764, 268, 5700, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 764, 1102, 1851, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 764, 10331, 62, 11213, 1330, 24060, 11828, 220, 1303, 645, 20402, 198, 6738, 764, 2554, 9248, 1330, 48599, 9248, 220, 1303, 645, 20402, 198, 6738, 764, 9186, 1330, 9097, 220, 1303, 645, 20402, 198, 6738, 764, 22866, 1330, 30532, 220, 1303, 645, 20402, 198, 6738, 764, 10853, 746, 62, 9186, 1330, 27949, 746, 7449, 220, 1303, 645, 20402, 198, 6738, 764, 10853, 746, 62, 9186, 62, 2676, 1330, 27949, 746, 7449, 29993, 220, 1303, 645, 20402, 198, 6738, 764, 39786, 62, 5143, 1330, 47639, 10987, 220, 1303, 645, 20402, 198, 6738, 764, 39786, 62, 2676, 1330, 47639, 29993, 220, 1303, 645, 20402, 198, 6738, 764, 39786, 1330, 47639, 220, 1303, 645, 20402, 198 ]
2.538023
526
# -*- coding: utf-8 -*- import os from datetime import datetime from src.utils.filemeta import get_filename from src.loader.converter import Converter from src.utils.logging import logger
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 12351, 13, 26791, 13, 7753, 28961, 1330, 651, 62, 34345, 198, 198, 6738, 12351, 13, 29356, 13, 1102, 332, 353, 1330, 35602, 353, 198, 6738, 12351, 13, 26791, 13, 6404, 2667, 1330, 49706, 198 ]
3.131148
61
import os import json import glob # test_name = 'time_solve_r_essentials_r_base_conda_forge' test_name = 'time_solve_anaconda_44' for f in glob.glob("*.json"): with open(f) as fd: d = json.load(fd) if f != 'machine.json' and d: # timeval = ((d.get('results', {}) or {}).get(test_name, {}) or {}).get('result', [0])[0] # if timeval < 1.0 and f != "machine.json": # print("remove {}".format(f)) # os.remove(f) if 'params' in d: if 'conda-env' not in d['params']: d['params']['conda-env'] = "" d['requirements']['conda-env'] = "" elif d['params']['conda-env'] == []: d['params']['conda-env'] = "" d['requirements']['conda-env'] = "" else: d['params'] = {'conda-env': ""} d['requirements']['conda-env'] = "" if "chardet-mock" in d['env_name']: d['env_name'] = d['env_name'].replace("chardet-mock", 'chardet-conda-env-mock') f = f.replace("chardet-mock", 'chardet-conda-env-mock') with open(f, 'w') as fd: json.dump(d, fd, indent=2) else: print("file {} appears corrupt".format(f))
[ 11748, 28686, 198, 11748, 33918, 198, 11748, 15095, 198, 198, 2, 1332, 62, 3672, 796, 705, 2435, 62, 82, 6442, 62, 81, 62, 408, 14817, 62, 81, 62, 8692, 62, 66, 13533, 62, 30293, 6, 198, 9288, 62, 3672, 796, 705, 2435, 62, 82, 6442, 62, 272, 330, 13533, 62, 2598, 6, 198, 198, 1640, 277, 287, 15095, 13, 4743, 672, 7203, 24620, 17752, 1, 2599, 198, 220, 220, 220, 351, 1280, 7, 69, 8, 355, 277, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 33918, 13, 2220, 7, 16344, 8, 198, 220, 220, 220, 611, 277, 14512, 705, 30243, 13, 17752, 6, 290, 288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 640, 2100, 796, 14808, 67, 13, 1136, 10786, 43420, 3256, 23884, 8, 393, 23884, 737, 1136, 7, 9288, 62, 3672, 11, 23884, 8, 393, 23884, 737, 1136, 10786, 20274, 3256, 685, 15, 12962, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 640, 2100, 1279, 352, 13, 15, 290, 277, 14512, 366, 30243, 13, 17752, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7203, 28956, 23884, 1911, 18982, 7, 69, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 28686, 13, 28956, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 37266, 6, 287, 288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 66, 13533, 12, 24330, 6, 407, 287, 288, 17816, 37266, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17816, 37266, 6, 7131, 6, 66, 13533, 12, 24330, 20520, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17816, 8897, 18883, 6, 7131, 6, 66, 13533, 12, 24330, 20520, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 288, 17816, 37266, 6, 7131, 6, 66, 13533, 12, 24330, 20520, 6624, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17816, 37266, 6, 7131, 6, 66, 13533, 12, 24330, 20520, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17816, 8897, 18883, 6, 7131, 6, 66, 13533, 12, 24330, 20520, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17816, 37266, 20520, 796, 1391, 6, 66, 13533, 12, 24330, 10354, 13538, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17816, 8897, 18883, 6, 7131, 6, 66, 13533, 12, 24330, 20520, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 30215, 316, 12, 76, 735, 1, 287, 288, 17816, 24330, 62, 3672, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17816, 24330, 62, 3672, 20520, 796, 288, 17816, 24330, 62, 3672, 6, 4083, 33491, 7203, 30215, 316, 12, 76, 735, 1600, 705, 30215, 316, 12, 66, 13533, 12, 24330, 12, 76, 735, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 277, 13, 33491, 7203, 30215, 316, 12, 76, 735, 1600, 705, 30215, 316, 12, 66, 13533, 12, 24330, 12, 76, 735, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 11, 705, 86, 11537, 355, 277, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 67, 11, 277, 67, 11, 33793, 28, 17, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7753, 23884, 3568, 10622, 1911, 18982, 7, 69, 4008, 198 ]
1.904984
642
import asyncio as _asyncio from typing import Callable as _Callable from . import database as _database from .chat_log import PssChatLogger as _PssChatLogger from .reaction_role import ReactionRole as _ReactionRole from .reaction_role import ReactionRoleChange as _ReactionRoleChange from .reaction_role import ReactionRoleRequirement as _ReactionRoleRequirement from .. import utils as _utils # ---------- Initialization ---------- # ---------- DB Schema ---------- # ---------- Helper ----------- # ---------- Testing ---------- if __name__ == '__main__': _asyncio.get_event_loop().run_until_complete(test())
[ 11748, 30351, 952, 355, 4808, 292, 13361, 952, 198, 6738, 19720, 1330, 4889, 540, 355, 4808, 14134, 540, 198, 198, 6738, 764, 1330, 6831, 355, 4808, 48806, 198, 6738, 764, 17006, 62, 6404, 1330, 350, 824, 30820, 11187, 1362, 355, 4808, 47, 824, 30820, 11187, 1362, 198, 6738, 764, 260, 2673, 62, 18090, 1330, 39912, 47445, 355, 4808, 3041, 2673, 47445, 198, 6738, 764, 260, 2673, 62, 18090, 1330, 39912, 47445, 19400, 355, 4808, 3041, 2673, 47445, 19400, 198, 6738, 764, 260, 2673, 62, 18090, 1330, 39912, 47445, 16844, 24615, 355, 4808, 3041, 2673, 47445, 16844, 24615, 198, 6738, 11485, 1330, 3384, 4487, 355, 4808, 26791, 628, 198, 2, 24200, 438, 20768, 1634, 24200, 438, 628, 628, 198, 198, 2, 24200, 438, 20137, 10011, 2611, 24200, 438, 628, 628, 628, 628, 198, 198, 2, 24200, 438, 5053, 525, 24200, 6329, 628, 628, 198, 198, 2, 24200, 438, 23983, 24200, 438, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4808, 292, 13361, 952, 13, 1136, 62, 15596, 62, 26268, 22446, 5143, 62, 28446, 62, 20751, 7, 9288, 28955 ]
3.448649
185
from button_logic import ButtonLogic from fake_hw import FakeHardware from hardware import Hardware, is_pi from internet_checker import InternetChecker from paper_status import PaperStatus from recording import Recording from tg import Telegram import os if __name__ == '__main__': main()
[ 6738, 4936, 62, 6404, 291, 1330, 20969, 11187, 291, 198, 6738, 8390, 62, 36599, 1330, 33482, 49865, 198, 6738, 6890, 1330, 28715, 11, 318, 62, 14415, 198, 6738, 5230, 62, 9122, 263, 1330, 4455, 9787, 263, 198, 6738, 3348, 62, 13376, 1330, 14962, 19580, 198, 6738, 8296, 1330, 43905, 198, 6738, 256, 70, 1330, 50203, 198, 11748, 28686, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
3.868421
76
#Import Modules import pygame as pg from pygame import gfxdraw from math import * from random import randint from time import sleep from glob import glob import easygui import types #Custom Modules from sceneFile import scene,world,player import guibuttons import shapes pg.init() #Initialize pygame VERSION = "Beta 0.4" # Version textFont = "font/opensans.ttf" # set default font w = 800 # Screen size h = 600 translate = (w/2,h/2) d = pg.display.set_mode((w,h)) # Initialize the display pg.display.set_caption("Ivy3d v " + VERSION) pg.display.set_icon(pg.image.load("favicon.png")) running = True #Projects 3d Point To 2d Point #Multiplies two vectors #Adds two vectors #Rotates vector by another vector # Calculates the normals for three vectors # Gets the average of a list of vectors # Rendering function takes in scene as a list of dictionaries (see example in sceneFile.py) #Gets collision for physics # Calculates all of the physics # Return a text surface # Display text # Class for dealing with buttons meshes = shapes.meshes # Get meshes from shapes.py keys = [] # List of keys and if they are pressed for i in range(0,1024): keys.append(False) a = 0 sim = False sel = 0 buff = "" mouse = { "x":0, "y":0, "pressed":False } # Mouse dictionary with x position, y position, and if the mouse is pressed while running: # Loop while program is running for e in pg.event.get(): # Get all events if e.type == pg.QUIT: # if program is closed, stop running running = False if e.type == pg.MOUSEMOTION: # Get mouse motion ms = pg.mouse.get_pos() mouse["x"] = ms[0] mouse["y"] = ms[1] if e.type == pg.MOUSEBUTTONDOWN: # Get mouse button mouse["pressed"] = True if e.type == pg.MOUSEBUTTONUP: mouse["pressed"] = False if e.type == pg.KEYDOWN: # Get keydown keys[e.key] = True if(e.key == pg.K_p): if(not(sim)): buff = str(scene) else: scene = eval(buff) sim = not(sim) if e.type == pg.KEYUP: keys[e.key] = False # Clear screen d.fill(world["background"]) if sim: # Simulate scene = simulate(scene,world,keys) render(scene) #Render if(not(sim)): pos = scene[sel]["position"] pg.draw.line(d,(255,0,0),project(pos),project( (pos[0]+25,pos[1],pos[2]) ) ,4) #Draw axies at position pg.draw.line(d,(0,255,0),project(pos),project( (pos[0] ,pos[1]+25,pos[2]) ) ,4) pg.draw.line(d,(0,0,255),project(pos),project( (pos[0] ,pos[1],pos[2]+25) ) ,4) guiEvents = gui(mouse["x"],mouse["y"],mouse["pressed"],scene[sel],sel) #Get all button if(guiEvents[0]["pressed"]): sel+=1 if(sel > len(scene)-1): sel = 0 sleep(0.1) if(guiEvents[1]["pressed"]): scene[sel]["shape"]+=1 if(scene[sel]["shape"] > len(shapes.meshes)-1): scene[sel]["shape"] = 0 sleep(0.1) name = "position" if(guiEvents[2]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0]-4,pos[1],pos[2]) if(guiEvents[3]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0]+4,pos[1],pos[2]) if(guiEvents[4]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0],pos[1]-4,pos[2]) if(guiEvents[5]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0],pos[1]+4,pos[2]) if(guiEvents[6]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0],pos[1],pos[2]-4) if(guiEvents[7]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0],pos[1],pos[2]+4) name = "scale" if(guiEvents[8]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0]-4,pos[1],pos[2]) if(guiEvents[9]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0]+4,pos[1],pos[2]) if(guiEvents[10]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0],pos[1]-4,pos[2]) if(guiEvents[11]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0],pos[1]+4,pos[2]) if(guiEvents[12]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0],pos[1],pos[2]-4) if(guiEvents[13]["pressed"]): pos = scene[sel][name] scene[sel][name] = (pos[0],pos[1],pos[2]+4) if(guiEvents[14]["pressed"]): pos = scene[sel]["material"]["color"] scene[sel]["material"]["color"] = (pos[0]-4,pos[1],pos[2]) if(guiEvents[15]["pressed"]): pos = scene[sel]["material"]["color"] scene[sel]["material"]["color"] = (pos[0]+4,pos[1],pos[2]) if(guiEvents[16]["pressed"]): pos = scene[sel]["material"]["color"] scene[sel]["material"]["color"] = (pos[0],pos[1]-4,pos[2]) if(guiEvents[17]["pressed"]): pos = scene[sel]["material"]["color"] scene[sel]["material"]["color"] = (pos[0],pos[1]+4,pos[2]) if(guiEvents[18]["pressed"]): pos = scene[sel]["material"]["color"] scene[sel]["material"]["color"] = (pos[0],pos[1],pos[2]-4) if(guiEvents[19]["pressed"]): pos = scene[sel]["material"]["color"] scene[sel]["material"]["color"] = (pos[0],pos[1],pos[2]+4) if(guiEvents[20]["pressed"]): scene[sel]["physics"]["rigidBody"] = not(scene[sel]["physics"]["rigidBody"]) sleep(0.1) if(guiEvents[21]["pressed"]): scene[sel]["physics"]["control"] = not(scene[sel]["physics"]["control"]) sleep(0.1) if(guiEvents[22]["pressed"]): scene[sel]["physics"]["bounce"]-= 0.01 if(guiEvents[23]["pressed"]): scene[sel]["physics"]["bounce"]+= 0.01 if(guiEvents[24]["pressed"]): scene[sel]["physics"]["friction"]-= 0.01 if(guiEvents[25]["pressed"]): scene[sel]["physics"]["friction"]+= 0.01 if(guiEvents[26]["pressed"]): inText = easygui.fileopenbox(default="maps/",filetypes=["*.png","*.jpg","*.jpeg","*.gif","*.*"]) if type(inText) == type(" "): scene[sel]["material"]["map"] = inText else: scene[sel]["material"]["map"] = "none" if(guiEvents[27]["pressed"]): aaa = { "shape":0, "position":(0,0,0), "scale":(25,25,25), "rotation":(0,0,0), "material":{ "wire":False, "color":(200,63,63), "map":"none" }, "physics": { "rigidBody":False, "velocity":(0,0,0), "friction":0.05, "bounce":0, "control":False } } scene.append(aaa) sel = len(scene)-1 sleep(0.1) if(guiEvents[28]["pressed"]): if(sel != 0): scene.pop(sel) sel = 0 print("Removed Mesh.") else: easygui.msgbox(msg="Cannot Remove Mesh",title="Error:") sleep(0.1) if(guiEvents[29]["pressed"]): d.fill(world["background"]) render(scene) # antialias() pg.image.save(d,easygui.filesavebox(filetypes=["*.png","*.jpg","*.*"])) easygui.msgbox(msg="Rendered And Exported",title="Success!") sleep(0.1) if(guiEvents[30]["pressed"]): buff = str(scene) try: numFrames = int(easygui.enterbox("How Many Frames?")) except: easygui.msgbox(msg="Number Must Be A Valid Integer",title="Error:") numFrames = 0 for i in range(numFrames): scene = simulate(scene,world,keys) d.fill(world["background"]) render(scene) pg.display.update() pg.image.save(d,"output/" + str(i) + ".png") print("Done " +str(i) + "/" + str(numFrames)) scene = eval(buff) if(guiEvents[31]["pressed"]): scene[sel]["material"]["wire"] = not(scene[sel]["material"]["wire"]) sleep(0.1) if(guiEvents[32]["pressed"]): try: f = open(easygui.fileopenbox(default="scenes/",filetypes=["*.ivy","*.*"]),"r") buff = str(scene) try: scene = eval(f.read()) except: easygui.msgbox(msg="Invalid Input File",title="Error:") scene = eval(buff) f.close() except: print("Blank File") if(guiEvents[33]["pressed"]): try: f = open(easygui.filesavebox(default="scenes/",filetypes=["*.ivy","*.*"]),"w") f.write(str(scene)) f.close() except: print("Blank File") if(guiEvents[36]["pressed"]): rt = scene[sel]["rotation"] rt = (rt[0],rt[1]-0.1) scene[sel]["rotation"] = rt if(guiEvents[37]["pressed"]): rt = scene[sel]["rotation"] rt = (rt[0],rt[1]+0.1) scene[sel]["rotation"] = rt if(guiEvents[34]["pressed"]): rt = scene[sel]["rotation"] rt = (rt[0]-0.1,rt[1]) scene[sel]["rotation"] = rt if(guiEvents[35]["pressed"]): rt = scene[sel]["rotation"] rt = (rt[0]+0.1,rt[1]) scene[sel]["rotation"] = rt clr = scene[sel]["material"]["color"] r = clr[0] g = clr[1] b = clr[2] r = max(min(r,255),0) g = max(min(g,255),0) b = max(min(b,255),0) scene[sel]["material"]["color"] = (r,g,b) pg.display.update()
[ 2, 20939, 3401, 5028, 198, 11748, 12972, 6057, 355, 23241, 198, 6738, 12972, 6057, 1330, 308, 21373, 19334, 198, 6738, 10688, 1330, 1635, 198, 6738, 4738, 1330, 43720, 600, 198, 6738, 640, 1330, 3993, 198, 6738, 15095, 1330, 15095, 198, 11748, 2562, 48317, 198, 11748, 3858, 198, 2, 15022, 3401, 5028, 198, 6738, 3715, 8979, 1330, 3715, 11, 6894, 11, 7829, 198, 11748, 915, 571, 15318, 684, 198, 11748, 15268, 628, 198, 6024, 13, 15003, 3419, 1303, 24243, 1096, 12972, 6057, 198, 198, 43717, 796, 366, 43303, 657, 13, 19, 1, 1303, 10628, 198, 198, 5239, 23252, 796, 366, 10331, 14, 44813, 504, 13, 926, 69, 1, 1303, 900, 4277, 10369, 198, 198, 86, 796, 10460, 1303, 15216, 2546, 198, 71, 796, 10053, 198, 7645, 17660, 796, 357, 86, 14, 17, 11, 71, 14, 17, 8, 628, 628, 198, 67, 796, 23241, 13, 13812, 13, 2617, 62, 14171, 19510, 86, 11, 71, 4008, 1303, 20768, 1096, 262, 3359, 198, 6024, 13, 13812, 13, 2617, 62, 6888, 1159, 7203, 40, 7670, 18, 67, 410, 366, 1343, 44156, 2849, 8, 198, 6024, 13, 13812, 13, 2617, 62, 4749, 7, 6024, 13, 9060, 13, 2220, 7203, 69, 615, 4749, 13, 11134, 48774, 198, 198, 20270, 796, 6407, 198, 198, 2, 16775, 82, 513, 67, 6252, 1675, 362, 67, 6252, 628, 198, 2, 15205, 24705, 444, 734, 30104, 628, 198, 2, 46245, 734, 30104, 628, 198, 2, 24864, 689, 15879, 416, 1194, 15879, 628, 198, 198, 2, 27131, 689, 262, 2593, 874, 329, 1115, 30104, 628, 198, 2, 29620, 262, 2811, 286, 257, 1351, 286, 30104, 628, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 28703, 1586, 2163, 2753, 287, 3715, 355, 257, 1351, 286, 48589, 3166, 357, 3826, 1672, 287, 3715, 8979, 13, 9078, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 198, 220, 220, 220, 220, 628, 198, 198, 2, 38, 1039, 17661, 329, 11887, 628, 198, 198, 2, 27131, 689, 477, 286, 262, 11887, 628, 628, 198, 2, 8229, 257, 2420, 4417, 198, 198, 2, 16531, 2420, 628, 198, 2, 5016, 329, 7219, 351, 12163, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 198, 6880, 956, 796, 15268, 13, 6880, 956, 1303, 3497, 48754, 422, 15268, 13, 9078, 628, 198, 13083, 796, 17635, 1303, 7343, 286, 8251, 290, 611, 484, 389, 12070, 198, 1640, 1312, 287, 2837, 7, 15, 11, 35500, 2599, 198, 220, 220, 220, 8251, 13, 33295, 7, 25101, 8, 198, 198, 64, 796, 657, 198, 198, 14323, 796, 10352, 198, 741, 796, 657, 198, 198, 36873, 796, 13538, 628, 198, 35888, 796, 1391, 198, 220, 220, 220, 366, 87, 1298, 15, 11, 198, 220, 220, 220, 366, 88, 1298, 15, 11, 198, 220, 220, 220, 366, 45477, 1298, 25101, 198, 92, 1303, 21839, 22155, 351, 2124, 2292, 11, 331, 2292, 11, 290, 611, 262, 10211, 318, 12070, 628, 198, 198, 4514, 2491, 25, 1303, 26304, 981, 1430, 318, 2491, 198, 220, 220, 220, 329, 304, 287, 23241, 13, 15596, 13, 1136, 33529, 1303, 3497, 477, 2995, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 4906, 6624, 23241, 13, 10917, 2043, 25, 1303, 611, 1430, 318, 4838, 11, 2245, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 796, 10352, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 4906, 6624, 23241, 13, 44, 20958, 3620, 2394, 2849, 25, 1303, 3497, 10211, 6268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13845, 796, 23241, 13, 35888, 13, 1136, 62, 1930, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10211, 14692, 87, 8973, 796, 13845, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10211, 14692, 88, 8973, 796, 13845, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 4906, 6624, 23241, 13, 44, 2606, 5188, 47526, 11357, 41925, 25, 1303, 3497, 10211, 4936, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10211, 14692, 45477, 8973, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 4906, 6624, 23241, 13, 44, 2606, 5188, 47526, 11357, 8577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10211, 14692, 45477, 8973, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 4906, 6624, 23241, 13, 20373, 41925, 25, 1303, 3497, 1994, 2902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 58, 68, 13, 2539, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 68, 13, 2539, 6624, 23241, 13, 42, 62, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 1662, 7, 14323, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6940, 796, 965, 7, 29734, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 796, 5418, 7, 36873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 796, 407, 7, 14323, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 4906, 6624, 23241, 13, 20373, 8577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 58, 68, 13, 2539, 60, 796, 10352, 628, 220, 220, 220, 1303, 11459, 3159, 198, 220, 220, 220, 288, 13, 20797, 7, 6894, 14692, 25249, 8973, 8, 628, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 985, 25, 1303, 3184, 5039, 198, 220, 220, 220, 220, 220, 220, 220, 3715, 796, 29308, 7, 29734, 11, 6894, 11, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 220, 220, 220, 8543, 7, 29734, 8, 1303, 45819, 198, 220, 220, 220, 611, 7, 1662, 7, 14323, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 1, 9150, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 23241, 13, 19334, 13, 1370, 7, 67, 11, 7, 13381, 11, 15, 11, 15, 828, 16302, 7, 1930, 828, 16302, 7, 220, 357, 1930, 58, 15, 48688, 1495, 11, 1930, 58, 16, 4357, 1930, 58, 17, 12962, 220, 1267, 837, 19, 8, 1303, 25302, 7877, 444, 379, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 23241, 13, 19334, 13, 1370, 7, 67, 11, 7, 15, 11, 13381, 11, 15, 828, 16302, 7, 1930, 828, 16302, 7, 220, 357, 1930, 58, 15, 60, 837, 1930, 58, 16, 48688, 1495, 11, 1930, 58, 17, 12962, 220, 1267, 837, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 23241, 13, 19334, 13, 1370, 7, 67, 11, 7, 15, 11, 15, 11, 13381, 828, 16302, 7, 1930, 828, 16302, 7, 220, 357, 1930, 58, 15, 60, 837, 1930, 58, 16, 4357, 1930, 58, 17, 48688, 1495, 8, 220, 1267, 837, 19, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 11774, 37103, 796, 11774, 7, 35888, 14692, 87, 33116, 35888, 14692, 88, 33116, 35888, 14692, 45477, 33116, 29734, 58, 741, 4357, 741, 8, 1303, 3855, 477, 4936, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 15, 7131, 1, 45477, 8973, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 384, 75, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 741, 1875, 18896, 7, 29734, 13219, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 384, 75, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 16, 7131, 1, 45477, 8973, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 43358, 8973, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 29734, 58, 741, 7131, 1, 43358, 8973, 1875, 18896, 7, 1477, 7916, 13, 6880, 956, 13219, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 43358, 8973, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 366, 9150, 1, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 17, 7131, 1, 45477, 8973, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 45297, 19, 11, 1930, 58, 16, 4357, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 18, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 48688, 19, 11, 1930, 58, 16, 4357, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 19, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 45297, 19, 11, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 20, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 48688, 19, 11, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 21, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 4357, 1930, 58, 17, 45297, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 22, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 4357, 1930, 58, 17, 48688, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 366, 9888, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 23, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 45297, 19, 11, 1930, 58, 16, 4357, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 24, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 48688, 19, 11, 1930, 58, 16, 4357, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 940, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 45297, 19, 11, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1157, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 48688, 19, 11, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1065, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 4357, 1930, 58, 17, 45297, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1485, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 3672, 60, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 4357, 1930, 58, 17, 48688, 19, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1415, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 796, 357, 1930, 58, 15, 45297, 19, 11, 1930, 58, 16, 4357, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1314, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 796, 357, 1930, 58, 15, 48688, 19, 11, 1930, 58, 16, 4357, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1433, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 45297, 19, 11, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1558, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 48688, 19, 11, 1930, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1507, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 4357, 1930, 58, 17, 45297, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1129, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 796, 357, 1930, 58, 15, 4357, 1930, 58, 16, 4357, 1930, 58, 17, 48688, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1238, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 746, 23154, 1, 7131, 1, 4359, 312, 25842, 8973, 796, 407, 7, 29734, 58, 741, 7131, 1, 746, 23154, 1, 7131, 1, 4359, 312, 25842, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2481, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 746, 23154, 1, 7131, 1, 13716, 8973, 796, 407, 7, 29734, 58, 741, 7131, 1, 746, 23154, 1, 7131, 1, 13716, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1828, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 746, 23154, 1, 7131, 1, 65, 8652, 8973, 12, 28, 657, 13, 486, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1954, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 746, 23154, 1, 7131, 1, 65, 8652, 8973, 47932, 657, 13, 486, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1731, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 746, 23154, 1, 7131, 1, 69, 46214, 8973, 12, 28, 657, 13, 486, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1495, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 746, 23154, 1, 7131, 1, 69, 46214, 8973, 47932, 657, 13, 486, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2075, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 8206, 796, 2562, 48317, 13, 7753, 9654, 3524, 7, 12286, 2625, 31803, 14, 1600, 7753, 19199, 28, 14692, 24620, 11134, 2430, 24620, 9479, 2430, 24620, 73, 22071, 2430, 24620, 27908, 2430, 9, 15885, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 259, 8206, 8, 6624, 2099, 7203, 366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8899, 8973, 796, 287, 8206, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8899, 8973, 796, 366, 23108, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1983, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 7252, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43358, 1298, 15, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9150, 1298, 7, 15, 11, 15, 11, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9888, 1298, 7, 1495, 11, 1495, 11, 1495, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10599, 341, 1298, 7, 15, 11, 15, 11, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33665, 1298, 90, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21809, 1298, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8043, 1298, 7, 2167, 11, 5066, 11, 5066, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8899, 2404, 23108, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 746, 23154, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4359, 312, 25842, 1298, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 626, 11683, 1298, 7, 15, 11, 15, 11, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 69, 46214, 1298, 15, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 8652, 1298, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13716, 1298, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 13, 33295, 7, 46071, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 384, 75, 796, 18896, 7, 29734, 13219, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2078, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 741, 14512, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 13, 12924, 7, 741, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 384, 75, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 45975, 47529, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2562, 48317, 13, 19662, 3524, 7, 19662, 2625, 34, 34574, 17220, 47529, 1600, 7839, 2625, 12331, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1959, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 13, 20797, 7, 6894, 14692, 25249, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8543, 7, 29734, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1885, 498, 4448, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23241, 13, 9060, 13, 21928, 7, 67, 11, 38171, 48317, 13, 16624, 1015, 3524, 7, 7753, 19199, 28, 14692, 24620, 11134, 2430, 24620, 9479, 2430, 9, 15885, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2562, 48317, 13, 19662, 3524, 7, 19662, 2625, 49, 30398, 843, 1475, 9213, 1600, 7839, 2625, 33244, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 1270, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6940, 796, 965, 7, 29734, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 35439, 796, 493, 7, 38171, 48317, 13, 9255, 3524, 7203, 2437, 4650, 36291, 1701, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2562, 48317, 13, 19662, 3524, 7, 19662, 2625, 15057, 12039, 1355, 317, 48951, 34142, 1600, 7839, 2625, 12331, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 35439, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 35439, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 796, 29308, 7, 29734, 11, 6894, 11, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 13, 20797, 7, 6894, 14692, 25249, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8543, 7, 29734, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23241, 13, 13812, 13, 19119, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23241, 13, 9060, 13, 21928, 7, 67, 553, 22915, 30487, 1343, 965, 7, 72, 8, 1343, 27071, 11134, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 45677, 366, 1343, 2536, 7, 72, 8, 1343, 220, 12813, 1, 1343, 965, 7, 22510, 35439, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 796, 5418, 7, 36873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 3132, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 21809, 8973, 796, 407, 7, 29734, 58, 741, 7131, 1, 33665, 1, 7131, 1, 21809, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2624, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 38171, 48317, 13, 7753, 9654, 3524, 7, 12286, 2625, 28123, 14, 1600, 7753, 19199, 28, 14692, 24620, 452, 88, 2430, 9, 15885, 8973, 27267, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6940, 796, 965, 7, 29734, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 796, 5418, 7, 69, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2562, 48317, 13, 19662, 3524, 7, 19662, 2625, 44651, 23412, 9220, 1600, 7839, 2625, 12331, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 796, 5418, 7, 36873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3629, 962, 9220, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2091, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 38171, 48317, 13, 16624, 1015, 3524, 7, 12286, 2625, 28123, 14, 1600, 7753, 19199, 28, 14692, 24620, 452, 88, 2430, 9, 15885, 8973, 27267, 86, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 2536, 7, 29734, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3629, 962, 9220, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2623, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 796, 3715, 58, 741, 7131, 1, 10599, 341, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 796, 357, 17034, 58, 15, 4357, 17034, 58, 16, 45297, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 10599, 341, 8973, 796, 374, 83, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2718, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 796, 3715, 58, 741, 7131, 1, 10599, 341, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 796, 357, 17034, 58, 15, 4357, 17034, 58, 16, 48688, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 10599, 341, 8973, 796, 374, 83, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2682, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 796, 3715, 58, 741, 7131, 1, 10599, 341, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 796, 357, 17034, 58, 15, 45297, 15, 13, 16, 11, 17034, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 10599, 341, 8973, 796, 374, 83, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 48317, 37103, 58, 2327, 7131, 1, 45477, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 796, 3715, 58, 741, 7131, 1, 10599, 341, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 796, 357, 17034, 58, 15, 48688, 15, 13, 16, 11, 17034, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3715, 58, 741, 7131, 1, 10599, 341, 8973, 796, 374, 83, 628, 220, 220, 220, 537, 81, 796, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 628, 220, 220, 220, 374, 796, 537, 81, 58, 15, 60, 198, 220, 220, 220, 308, 796, 537, 81, 58, 16, 60, 198, 220, 220, 220, 275, 796, 537, 81, 58, 17, 60, 628, 220, 220, 220, 374, 796, 3509, 7, 1084, 7, 81, 11, 13381, 828, 15, 8, 198, 220, 220, 220, 308, 796, 3509, 7, 1084, 7, 70, 11, 13381, 828, 15, 8, 198, 220, 220, 220, 275, 796, 3509, 7, 1084, 7, 65, 11, 13381, 828, 15, 8, 198, 220, 220, 220, 3715, 58, 741, 7131, 1, 33665, 1, 7131, 1, 8043, 8973, 796, 357, 81, 11, 70, 11, 65, 8, 628, 220, 220, 220, 23241, 13, 13812, 13, 19119, 3419, 198 ]
1.832207
5,769
from daipecore.decorator.notebook_function import notebook_function @notebook_function
[ 6738, 288, 1872, 431, 7295, 13, 12501, 273, 1352, 13, 11295, 2070, 62, 8818, 1330, 20922, 62, 8818, 628, 198, 31, 11295, 2070, 62, 8818, 198 ]
3.423077
26
# coding=utf-8 import re import ast from setuptools import setup from os import path _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('psi/app/__init__.py', 'rb') as f: version = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) with open('etc/requirements/common.txt', 'r') as f: install_reqs = [ s for s in [ line.strip(' \n') for line in f ] if not s.startswith('#') and s != '' ] with open('etc/requirements/test.txt', 'r') as f: tests_reqs = [ s for s in [ line.strip(' \n') for line in f ] if not s.startswith('#') and s != '' and not s.startswith('-r ') ] # read the contents of your README file this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name="betterlifepsi", version=version, packages=['psi'], include_package_data=True, author="Lawrence Liu", author_email="[email protected]", description="Betterlife Intelligent PSI(Purchase, Sales and Inventory) system", long_description=long_description, long_description_content_type='text/markdown', license="MIT", keywords="Betterlife, Intelligent, Purchase Order, Sales Order, Inventory Management, Retail", url="https://github.com/betterlife/psi", install_requires=install_reqs, tests_require=tests_reqs, setup_requires=install_reqs, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Office/Business :: Financial :: Point-Of-Sale', 'Topic :: Office/Business :: Financial', 'Topic :: Office/Business :: Financial :: Accounting', 'Natural Language :: Chinese (Simplified)', 'Natural Language :: English', 'Framework :: Flask', ], )
[ 2, 19617, 28, 40477, 12, 23, 198, 198, 11748, 302, 198, 11748, 6468, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 6738, 28686, 1330, 3108, 198, 198, 62, 9641, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 834, 9641, 834, 59, 82, 47932, 59, 82, 33747, 15885, 8, 11537, 198, 198, 4480, 1280, 10786, 862, 72, 14, 1324, 14, 834, 15003, 834, 13, 9078, 3256, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 2196, 796, 965, 7, 459, 13, 18250, 1691, 62, 18206, 28264, 9641, 62, 260, 13, 12947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 961, 22446, 12501, 1098, 10786, 40477, 12, 23, 11537, 737, 8094, 7, 16, 22305, 198, 198, 4480, 1280, 10786, 14784, 14, 8897, 18883, 14, 11321, 13, 14116, 3256, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 2721, 62, 42180, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 264, 329, 264, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 36311, 10786, 3467, 77, 11537, 329, 1627, 287, 277, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 611, 407, 264, 13, 9688, 2032, 342, 10786, 2, 11537, 290, 264, 14512, 10148, 198, 220, 220, 220, 2361, 198, 198, 4480, 1280, 10786, 14784, 14, 8897, 18883, 14, 9288, 13, 14116, 3256, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 5254, 62, 42180, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 264, 329, 264, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 36311, 10786, 3467, 77, 11537, 329, 1627, 287, 277, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 611, 407, 264, 13, 9688, 2032, 342, 10786, 2, 11537, 290, 264, 14512, 10148, 290, 407, 264, 13, 9688, 2032, 342, 10786, 12, 81, 705, 8, 198, 220, 220, 220, 2361, 198, 198, 2, 1100, 262, 10154, 286, 534, 20832, 11682, 2393, 198, 5661, 62, 34945, 796, 3108, 13, 397, 2777, 776, 7, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 4480, 1280, 7, 6978, 13, 22179, 7, 5661, 62, 34945, 11, 705, 15675, 11682, 13, 9132, 33809, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 13, 961, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 27903, 36195, 538, 13396, 1600, 198, 220, 220, 220, 2196, 28, 9641, 11, 198, 220, 220, 220, 10392, 28, 17816, 862, 72, 6, 4357, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 1772, 2625, 16966, 6784, 18258, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 6270, 6784, 31, 27903, 6042, 13, 952, 1600, 198, 220, 220, 220, 6764, 2625, 28971, 6042, 49452, 6599, 40, 7, 47651, 11, 17329, 290, 35772, 8, 1080, 1600, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 11639, 5239, 14, 4102, 2902, 3256, 198, 220, 220, 220, 5964, 2625, 36393, 1600, 198, 220, 220, 220, 26286, 2625, 28971, 6042, 11, 49452, 11, 27637, 8284, 11, 17329, 8284, 11, 35772, 8549, 11, 26702, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 27903, 6042, 14, 862, 72, 1600, 198, 220, 220, 220, 2721, 62, 47911, 28, 17350, 62, 42180, 82, 11, 198, 220, 220, 220, 5254, 62, 46115, 28, 41989, 62, 42180, 82, 11, 198, 220, 220, 220, 9058, 62, 47911, 28, 17350, 62, 42180, 82, 11, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 362, 532, 3771, 12, 38077, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18843, 803, 4482, 7904, 7294, 13362, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 20, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4452, 14, 24749, 7904, 11302, 7904, 6252, 12, 5189, 12, 50, 1000, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4452, 14, 24749, 7904, 11302, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4452, 14, 24749, 7904, 11302, 7904, 40964, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35364, 15417, 7904, 3999, 357, 8890, 489, 1431, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35364, 15417, 7904, 3594, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21055, 6433, 7904, 46947, 3256, 198, 220, 220, 220, 16589, 198, 8, 198 ]
2.564345
847
""" Convert a fasta/quality files to a fastq file. I can't believe I'm writing this in 2020 """ import os import sys import argparse from roblib import read_fasta, write_fastq, message __author__ = 'Rob Edwards' __copyright__ = 'Copyright 2020, Rob Edwards' __credits__ = ['Rob Edwards'] __license__ = 'MIT' __maintainer__ = 'Rob Edwards' __email__ = '[email protected]' if __name__ == '__main__': parser = argparse.ArgumentParser(description=" ") parser.add_argument('-f', help='fasta file', required=True) parser.add_argument('-q', help='quality file', required=True) parser.add_argument('-o', help='output fastq file', required=True) parser.add_argument('-v', help='verbose output', action='store_true') args = parser.parse_args() if not os.path.exists(args.f) and not os.path.exists(args.q): message("FATAL: either {args.f} or {args.q} not found", "RED") sys.exit(-1) fa = read_fasta(args.f, True, False) qu = read_fasta(args.q, True, True) write_fastq(fa, qu, args.o, args.v)
[ 37811, 198, 3103, 1851, 257, 3049, 64, 14, 13237, 3696, 284, 257, 3049, 80, 2393, 13, 314, 460, 470, 1975, 314, 1101, 3597, 428, 287, 12131, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 198, 6738, 686, 2436, 571, 1330, 1100, 62, 7217, 64, 11, 3551, 62, 7217, 80, 11, 3275, 198, 198, 834, 9800, 834, 796, 705, 14350, 17381, 6, 198, 834, 22163, 4766, 834, 796, 705, 15269, 12131, 11, 3851, 17381, 6, 198, 834, 66, 20696, 834, 796, 37250, 14350, 17381, 20520, 198, 834, 43085, 834, 796, 705, 36393, 6, 198, 834, 76, 2913, 10613, 834, 796, 705, 14350, 17381, 6, 198, 834, 12888, 834, 796, 705, 430, 276, 2017, 31, 14816, 13, 785, 6, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 366, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 69, 3256, 1037, 11639, 7217, 64, 2393, 3256, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 80, 3256, 1037, 11639, 13237, 2393, 3256, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 78, 3256, 1037, 11639, 22915, 3049, 80, 2393, 3256, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 85, 3256, 1037, 11639, 19011, 577, 5072, 3256, 2223, 11639, 8095, 62, 7942, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 22046, 13, 69, 8, 290, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 22046, 13, 80, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 7203, 37, 1404, 1847, 25, 2035, 1391, 22046, 13, 69, 92, 393, 1391, 22046, 13, 80, 92, 407, 1043, 1600, 366, 22083, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 32590, 16, 8, 628, 220, 220, 220, 24685, 796, 1100, 62, 7217, 64, 7, 22046, 13, 69, 11, 6407, 11, 10352, 8, 198, 220, 220, 220, 627, 796, 1100, 62, 7217, 64, 7, 22046, 13, 80, 11, 6407, 11, 6407, 8, 628, 220, 220, 220, 3551, 62, 7217, 80, 7, 13331, 11, 627, 11, 26498, 13, 78, 11, 26498, 13, 85, 8, 198 ]
2.654822
394
#!/usr/bin/env python3 # -*- codint: utf-8 -*- import datetime d1 = datetime.datetime.today() print("today: " ,d1) d2 = datetime.datetime.now() print("now: " ,d2)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 14873, 600, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 4818, 8079, 198, 198, 67, 16, 796, 4818, 8079, 13, 19608, 8079, 13, 40838, 3419, 198, 4798, 7203, 40838, 25, 366, 837, 67, 16, 8, 198, 198, 67, 17, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 7203, 2197, 25, 366, 837, 67, 17, 8, 628, 628, 198 ]
2.179487
78
import os from amokryshev import settings from django.db.models.fields.files import FieldFile, FileField class DeduplicatedFieldFile(FieldFile): """The implementation of simple deduplication functional while saving the file, I couldn't find deduplication feature in Django FileField and didn't want to install additional batteries from third party developers, because the functional, required by me, too easy, so I wrote a little crutch""" class FileFieldDedupByName(FileField): """The implementation of simple deduplication functional while saving the file, I couldn't find deduplication feature in Django FileField and didn't want to install additional batteries from third party developers, because the functional, required by me, too easy, so I wrote a little crutch""" attr_class = DeduplicatedFieldFile
[ 11748, 28686, 198, 6738, 716, 482, 563, 7091, 85, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 25747, 13, 16624, 1330, 7663, 8979, 11, 9220, 15878, 628, 198, 4871, 360, 15532, 489, 3474, 15878, 8979, 7, 15878, 8979, 2599, 198, 220, 220, 220, 37227, 464, 7822, 286, 2829, 4648, 84, 489, 3299, 10345, 981, 8914, 262, 2393, 11, 198, 220, 220, 220, 314, 3521, 470, 1064, 4648, 84, 489, 3299, 3895, 287, 37770, 9220, 15878, 290, 1422, 470, 765, 284, 2721, 198, 220, 220, 220, 3224, 13591, 422, 2368, 2151, 6505, 11, 780, 262, 10345, 11, 2672, 416, 502, 11, 198, 220, 220, 220, 1165, 2562, 11, 523, 314, 2630, 257, 1310, 1067, 7140, 37811, 628, 198, 4871, 9220, 15878, 35, 276, 929, 3886, 5376, 7, 8979, 15878, 2599, 198, 220, 220, 220, 37227, 464, 7822, 286, 2829, 4648, 84, 489, 3299, 10345, 981, 8914, 262, 2393, 11, 198, 220, 220, 220, 220, 220, 220, 220, 314, 3521, 470, 1064, 4648, 84, 489, 3299, 3895, 287, 37770, 9220, 15878, 290, 1422, 470, 765, 284, 2721, 198, 220, 220, 220, 220, 220, 220, 220, 3224, 13591, 422, 2368, 2151, 6505, 11, 780, 262, 10345, 11, 2672, 416, 502, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1165, 2562, 11, 523, 314, 2630, 257, 1310, 1067, 7140, 37811, 628, 220, 220, 220, 708, 81, 62, 4871, 796, 360, 15532, 489, 3474, 15878, 8979, 198 ]
3.652542
236
# Copyright 2019 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utils of BERT Modules. """ import json import os from abc import ABC from typing import Any, Dict import torch from texar.torch.modules.pretrained.pretrained_base import PretrainedMixin __all__ = [ "PretrainedBERTMixin", ] _BERT_PATH = "https://storage.googleapis.com/bert_models/" _BIOBERT_PATH = "https://github.com/naver/biobert-pretrained/releases/download/" class PretrainedBERTMixin(PretrainedMixin, ABC): r"""A mixin class to support loading pre-trained checkpoints for modules that implement the BERT model. Both standard BERT models and many domain specific BERT-based models are supported. You can specify the :attr:`pretrained_model_name` argument to pick which pre-trained BERT model to use. All available categories of pre-trained models (and names) include: * **Standard BERT**: proposed in (`Devlin et al`. 2018) `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ . A bidirectional Transformer language model pre-trained on large text corpora. Available model names include: * ``bert-base-uncased``: 12-layer, 768-hidden, 12-heads, 110M parameters. * ``bert-large-uncased``: 24-layer, 1024-hidden, 16-heads, 340M parameters. * ``bert-base-cased``: 12-layer, 768-hidden, 12-heads , 110M parameters. * ``bert-large-cased``: 24-layer, 1024-hidden, 16-heads, 340M parameters. * ``bert-base-multilingual-uncased``: 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters. * ``bert-base-multilingual-cased``: 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters. * ``bert-base-chinese``: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters. * **BioBERT**: proposed in (`Lee et al`. 2019) `BioBERT: a pre-trained biomedical language representation model for biomedical text mining`_ . A domain specific language representation model pre-trained on large-scale biomedical corpora. Based on the BERT architecture, BioBERT effectively transfers the knowledge from a large amount of biomedical texts to biomedical text mining models with minimal task-specific architecture modifications. Available model names include: * ``biobert-v1.0-pmc``: BioBERT v1.0 (+ PMC 270K) - based on BERT-base-Cased (same vocabulary) * ``biobert-v1.0-pubmed-pmc``: BioBERT v1.0 (+ PubMed 200K + PMC 270K) - based on BERT-base-Cased (same vocabulary) * ``biobert-v1.0-pubmed``: BioBERT v1.0 (+ PubMed 200K) - based on BERT-base-Cased (same vocabulary) * ``biobert-v1.1-pubmed``: BioBERT v1.1 (+ PubMed 1M) - based on BERT-base-Cased (same vocabulary) We provide the following BERT classes: * :class:`~texar.torch.modules.BERTEncoder` for text encoding. * :class:`~texar.torch.modules.BERTClassifier` for text classification and sequence tagging. .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`: https://arxiv.org/abs/1810.04805 .. _`BioBERT: a pre-trained biomedical language representation model for biomedical text mining`: https://arxiv.org/abs/1901.08746 """ _MODEL_NAME = "BERT" _MODEL2URL = { # Standard BERT 'bert-base-uncased': _BERT_PATH + "2018_10_18/uncased_L-12_H-768_A-12.zip", 'bert-large-uncased': _BERT_PATH + "2018_10_18/uncased_L-24_H-1024_A-16.zip", 'bert-base-cased': _BERT_PATH + "2018_10_18/cased_L-12_H-768_A-12.zip", 'bert-large-cased': _BERT_PATH + "2018_10_18/cased_L-24_H-1024_A-16.zip", 'bert-base-multilingual-uncased': _BERT_PATH + "2018_11_23/multi_cased_L-12_H-768_A-12.zip", 'bert-base-multilingual-cased': _BERT_PATH + "2018_11_03/multilingual_L-12_H-768_A-12.zip", 'bert-base-chinese': _BERT_PATH + "2018_11_03/chinese_L-12_H-768_A-12.zip", # BioBERT 'biobert-v1.0-pmc': _BIOBERT_PATH + 'v1.0-pmc/biobert_v1.0_pmc.tar.gz', 'biobert-v1.0-pubmed-pmc': _BIOBERT_PATH + 'v1.0-pubmed-pmc/biobert_v1.0_pubmed_pmc.tar.gz', 'biobert-v1.0-pubmed': _BIOBERT_PATH + 'v1.0-pubmed/biobert_v1.0_pubmed.tar.gz', 'biobert-v1.1-pubmed': _BIOBERT_PATH + 'v1.1-pubmed/biobert_v1.1_pubmed.tar.gz', } _MODEL2CKPT = { # Standard BERT 'bert-base-uncased': 'bert_model.ckpt', 'bert-large-uncased': 'bert_model.ckpt', 'bert-base-cased': 'bert_model.ckpt', 'bert-large-cased': 'bert_model.ckpt', 'bert-base-multilingual-uncased': 'bert_model.ckpt', 'bert-base-multilingual-cased': 'bert_model.ckpt', 'bert-base-chinese': 'bert_model.ckpt', # BioBERT 'biobert-v1.0-pmc': 'biobert_model.ckpt', 'biobert-v1.0-pubmed-pmc': 'biobert_model.ckpt', 'biobert-v1.0-pubmed': 'biobert_model.ckpt', 'biobert-v1.1-pubmed': 'model.ckpt-1000000', } @classmethod
[ 2, 15069, 13130, 383, 3567, 283, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 198, 18274, 4487, 286, 347, 17395, 3401, 5028, 13, 198, 37811, 198, 198, 11748, 33918, 198, 11748, 28686, 198, 6738, 450, 66, 1330, 9738, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 198, 198, 11748, 28034, 198, 198, 6738, 48659, 283, 13, 13165, 354, 13, 18170, 13, 5310, 13363, 13, 5310, 13363, 62, 8692, 1330, 37123, 13363, 35608, 259, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 47, 1186, 13363, 13246, 15972, 844, 259, 1600, 198, 60, 198, 198, 62, 13246, 51, 62, 34219, 796, 366, 5450, 1378, 35350, 13, 13297, 499, 271, 13, 785, 14, 4835, 62, 27530, 30487, 198, 62, 3483, 9864, 17395, 62, 34219, 796, 366, 5450, 1378, 12567, 13, 785, 14, 2616, 332, 14, 65, 952, 4835, 12, 5310, 13363, 14, 260, 29329, 14, 15002, 30487, 628, 198, 4871, 37123, 13363, 13246, 15972, 844, 259, 7, 47, 1186, 13363, 35608, 259, 11, 9738, 2599, 198, 220, 220, 220, 374, 37811, 32, 5022, 259, 1398, 284, 1104, 11046, 662, 12, 35311, 36628, 329, 13103, 198, 220, 220, 220, 326, 3494, 262, 347, 17395, 2746, 13, 628, 220, 220, 220, 5747, 3210, 347, 17395, 4981, 290, 867, 7386, 2176, 347, 17395, 12, 3106, 4981, 389, 198, 220, 220, 220, 4855, 13, 921, 460, 11986, 262, 1058, 35226, 25, 63, 5310, 13363, 62, 19849, 62, 3672, 63, 4578, 284, 198, 220, 220, 220, 2298, 543, 662, 12, 35311, 347, 17395, 2746, 284, 779, 13, 1439, 1695, 9376, 286, 198, 220, 220, 220, 662, 12, 35311, 4981, 357, 392, 3891, 8, 2291, 25, 628, 220, 220, 220, 1635, 12429, 23615, 347, 17395, 1174, 25, 5150, 287, 357, 63, 13603, 2815, 2123, 435, 44646, 2864, 8, 198, 220, 220, 220, 220, 220, 4600, 13246, 51, 25, 3771, 12, 34409, 286, 10766, 43484, 4154, 282, 39185, 329, 15417, 28491, 63, 62, 198, 220, 220, 220, 220, 220, 764, 317, 8406, 4154, 282, 3602, 16354, 3303, 2746, 662, 12, 35311, 319, 1588, 2420, 198, 220, 220, 220, 220, 220, 3990, 64, 13, 14898, 2746, 3891, 2291, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 4835, 12, 8692, 12, 19524, 839, 15506, 25, 1105, 12, 29289, 11, 46720, 12, 30342, 11, 1105, 12, 16600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9796, 44, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 4835, 12, 11664, 12, 19524, 839, 15506, 25, 1987, 12, 29289, 11, 28119, 12, 30342, 11, 1467, 12, 16600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28560, 44, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 4835, 12, 8692, 12, 66, 839, 15506, 25, 1105, 12, 29289, 11, 46720, 12, 30342, 11, 1105, 12, 16600, 837, 9796, 44, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 4835, 12, 11664, 12, 66, 839, 15506, 25, 1987, 12, 29289, 11, 28119, 12, 30342, 11, 1467, 12, 16600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28560, 44, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 4835, 12, 8692, 12, 16680, 34900, 12, 19524, 839, 15506, 25, 15143, 8950, 11, 1105, 12, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46720, 12, 30342, 11, 1105, 12, 16600, 11, 9796, 44, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 4835, 12, 8692, 12, 16680, 34900, 12, 66, 839, 15506, 25, 14436, 8950, 11, 1105, 12, 29289, 11, 46720, 12, 30342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1105, 12, 16600, 11, 9796, 44, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 4835, 12, 8692, 12, 354, 3762, 15506, 25, 3999, 45157, 1431, 290, 29065, 11, 1105, 12, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46720, 12, 30342, 11, 1105, 12, 16600, 11, 9796, 44, 10007, 13, 628, 220, 220, 220, 1635, 12429, 42787, 13246, 51, 1174, 25, 5150, 287, 357, 63, 24338, 2123, 435, 44646, 13130, 8, 198, 220, 220, 220, 220, 220, 4600, 42787, 13246, 51, 25, 257, 662, 12, 35311, 48730, 3303, 10552, 2746, 329, 48730, 2420, 9691, 63, 62, 198, 220, 220, 220, 220, 220, 764, 317, 7386, 2176, 3303, 10552, 2746, 662, 12, 35311, 319, 198, 220, 220, 220, 220, 220, 1588, 12, 9888, 48730, 3990, 64, 13, 13403, 319, 262, 347, 17395, 10959, 11, 16024, 13246, 51, 198, 220, 220, 220, 220, 220, 6840, 16395, 262, 3725, 422, 257, 1588, 2033, 286, 48730, 198, 220, 220, 220, 220, 220, 13399, 284, 48730, 2420, 9691, 4981, 351, 10926, 4876, 12, 11423, 198, 220, 220, 220, 220, 220, 10959, 19008, 13, 14898, 2746, 3891, 2291, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 4426, 66, 15506, 25, 16024, 13246, 51, 410, 16, 13, 15, 11502, 3122, 34, 20479, 42, 8, 532, 1912, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 17395, 12, 8692, 12, 34, 839, 357, 31642, 25818, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 12984, 1150, 12, 4426, 66, 15506, 25, 16024, 13246, 51, 410, 16, 13, 15, 11502, 32131, 939, 42, 1343, 3122, 34, 20479, 42, 8, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1912, 319, 347, 17395, 12, 8692, 12, 34, 839, 357, 31642, 25818, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 12984, 1150, 15506, 25, 16024, 13246, 51, 410, 16, 13, 15, 11502, 32131, 939, 42, 8, 532, 1912, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 17395, 12, 8692, 12, 34, 839, 357, 31642, 25818, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 65, 952, 4835, 12, 85, 16, 13, 16, 12, 12984, 1150, 15506, 25, 16024, 13246, 51, 410, 16, 13, 16, 11502, 32131, 352, 44, 8, 532, 1912, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 17395, 12, 8692, 12, 34, 839, 357, 31642, 25818, 8, 628, 220, 220, 220, 775, 2148, 262, 1708, 347, 17395, 6097, 25, 628, 220, 220, 220, 220, 220, 1635, 1058, 4871, 25, 63, 93, 16886, 283, 13, 13165, 354, 13, 18170, 13, 13246, 51, 27195, 12342, 63, 329, 2420, 21004, 13, 198, 220, 220, 220, 220, 220, 1635, 1058, 4871, 25, 63, 93, 16886, 283, 13, 13165, 354, 13, 18170, 13, 13246, 51, 9487, 7483, 63, 329, 2420, 17923, 290, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 49620, 13, 628, 220, 220, 220, 11485, 4808, 63, 13246, 51, 25, 3771, 12, 34409, 286, 10766, 43484, 4154, 282, 39185, 329, 15417, 28491, 63, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1507, 940, 13, 3023, 28256, 628, 220, 220, 220, 11485, 4808, 63, 42787, 13246, 51, 25, 257, 662, 12, 35311, 48730, 3303, 10552, 2746, 329, 48730, 2420, 9691, 63, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1129, 486, 13, 2919, 22, 3510, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4808, 33365, 3698, 62, 20608, 796, 366, 13246, 51, 1, 198, 220, 220, 220, 4808, 33365, 3698, 17, 21886, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8997, 347, 17395, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 19524, 839, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 13246, 51, 62, 34219, 1343, 366, 7908, 62, 940, 62, 1507, 14, 19524, 839, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 13, 13344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 11664, 12, 19524, 839, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 13246, 51, 62, 34219, 1343, 366, 7908, 62, 940, 62, 1507, 14, 19524, 839, 62, 43, 12, 1731, 62, 39, 12, 35500, 62, 32, 12, 1433, 13, 13344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 66, 839, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 13246, 51, 62, 34219, 1343, 366, 7908, 62, 940, 62, 1507, 14, 66, 839, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 13, 13344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 11664, 12, 66, 839, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 13246, 51, 62, 34219, 1343, 366, 7908, 62, 940, 62, 1507, 14, 66, 839, 62, 43, 12, 1731, 62, 39, 12, 35500, 62, 32, 12, 1433, 13, 13344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 16680, 34900, 12, 19524, 839, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 13246, 51, 62, 34219, 1343, 366, 7908, 62, 1157, 62, 1954, 14, 41684, 62, 66, 839, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 13, 13344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 16680, 34900, 12, 66, 839, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 13246, 51, 62, 34219, 1343, 366, 7908, 62, 1157, 62, 3070, 14, 16680, 34900, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 13, 13344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 354, 3762, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 13246, 51, 62, 34219, 1343, 366, 7908, 62, 1157, 62, 3070, 14, 354, 3762, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 13, 13344, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16024, 13246, 51, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 4426, 66, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3483, 9864, 17395, 62, 34219, 1343, 705, 85, 16, 13, 15, 12, 4426, 66, 14, 65, 952, 4835, 62, 85, 16, 13, 15, 62, 4426, 66, 13, 18870, 13, 34586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 12984, 1150, 12, 4426, 66, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3483, 9864, 17395, 62, 34219, 1343, 705, 85, 16, 13, 15, 12, 12984, 1150, 12, 4426, 66, 14, 65, 952, 4835, 62, 85, 16, 13, 15, 62, 12984, 1150, 62, 4426, 66, 13, 18870, 13, 34586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 12984, 1150, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3483, 9864, 17395, 62, 34219, 1343, 705, 85, 16, 13, 15, 12, 12984, 1150, 14, 65, 952, 4835, 62, 85, 16, 13, 15, 62, 12984, 1150, 13, 18870, 13, 34586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 952, 4835, 12, 85, 16, 13, 16, 12, 12984, 1150, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3483, 9864, 17395, 62, 34219, 1343, 705, 85, 16, 13, 16, 12, 12984, 1150, 14, 65, 952, 4835, 62, 85, 16, 13, 16, 62, 12984, 1150, 13, 18870, 13, 34586, 3256, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 4808, 33365, 3698, 17, 34, 42, 11571, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8997, 347, 17395, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 19524, 839, 10354, 705, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 11664, 12, 19524, 839, 10354, 705, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 66, 839, 10354, 705, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 11664, 12, 66, 839, 10354, 705, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 16680, 34900, 12, 19524, 839, 10354, 705, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 16680, 34900, 12, 66, 839, 10354, 705, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4835, 12, 8692, 12, 354, 3762, 10354, 705, 4835, 62, 19849, 13, 694, 457, 3256, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16024, 13246, 51, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 4426, 66, 10354, 705, 65, 952, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 12984, 1150, 12, 4426, 66, 10354, 705, 65, 952, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 952, 4835, 12, 85, 16, 13, 15, 12, 12984, 1150, 10354, 705, 65, 952, 4835, 62, 19849, 13, 694, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 952, 4835, 12, 85, 16, 13, 16, 12, 12984, 1150, 10354, 705, 19849, 13, 694, 457, 12, 16, 10535, 3256, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 2488, 4871, 24396, 198 ]
2.351912
2,458
#Libraries from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import * from os.path import split as PATHSPLIT #Pythons from settings import *
[ 2, 43, 11127, 201, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1635, 201, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1635, 201, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1635, 201, 198, 6738, 28686, 13, 6978, 1330, 6626, 355, 46490, 4303, 43, 2043, 201, 198, 201, 198, 2, 47, 5272, 684, 201, 198, 6738, 6460, 1330, 1635, 201 ]
2.369863
73
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import mock from oslo_serialization import jsonutils from congressclient.common import utils from congressclient.osc.v1 import datasource from congressclient.tests import common
[ 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 739, 262, 13789, 13, 198, 2, 198, 198, 11748, 15290, 198, 6738, 28686, 5439, 62, 46911, 1634, 1330, 33918, 26791, 198, 198, 6738, 8681, 16366, 13, 11321, 1330, 3384, 4487, 198, 6738, 8681, 16366, 13, 17500, 13, 85, 16, 1330, 19395, 1668, 198, 6738, 8681, 16366, 13, 41989, 1330, 2219, 628, 628, 628, 628, 628, 628, 198 ]
3.587678
211
# Напечатать три данных действительных числа , и сначала в порядке их возрастания, затем - в порядке убывания a = input("Введите первое число: ") b = input("Введите второе число: ") c = input("Введите третье число: ") print(min(a, b, c), (max(min(a, b), min(b, c)) if not min(a, b) == min(b, c) else min(a, c)), max(a, b, c)) print(max(a, b, c), (min(max(a, b), max(b, c)) if not max(a, b) == max(b, c) else max(a, c)), min(a, b, c))
[ 2, 12466, 251, 16142, 140, 123, 16843, 141, 229, 16142, 20375, 16142, 20375, 45367, 220, 20375, 21169, 18849, 12466, 112, 16142, 22177, 22177, 45035, 141, 227, 12466, 112, 16843, 140, 117, 21727, 20375, 38857, 18849, 20375, 16843, 30143, 45367, 22177, 45035, 141, 227, 220, 141, 229, 18849, 21727, 30143, 16142, 837, 12466, 116, 220, 21727, 22177, 16142, 141, 229, 16142, 30143, 16142, 12466, 110, 12466, 123, 15166, 21169, 40623, 43666, 31583, 16843, 12466, 116, 141, 227, 12466, 110, 25443, 115, 21169, 16142, 21727, 20375, 16142, 22177, 18849, 40623, 11, 12466, 115, 16142, 20375, 16843, 43108, 532, 12466, 110, 12466, 123, 15166, 21169, 40623, 43666, 31583, 16843, 220, 35072, 140, 109, 45035, 38857, 16142, 22177, 18849, 40623, 198, 198, 64, 796, 5128, 7203, 140, 240, 38857, 16843, 43666, 18849, 20375, 16843, 12466, 123, 16843, 21169, 38857, 15166, 16843, 220, 141, 229, 18849, 21727, 30143, 15166, 25, 366, 8, 198, 65, 796, 5128, 7203, 140, 240, 38857, 16843, 43666, 18849, 20375, 16843, 12466, 110, 20375, 15166, 21169, 15166, 16843, 220, 141, 229, 18849, 21727, 30143, 15166, 25, 366, 8, 198, 66, 796, 5128, 7203, 140, 240, 38857, 16843, 43666, 18849, 20375, 16843, 220, 20375, 21169, 16843, 20375, 45367, 16843, 220, 141, 229, 18849, 21727, 30143, 15166, 25, 366, 8, 198, 4798, 7, 1084, 7, 64, 11, 275, 11, 269, 828, 357, 9806, 7, 1084, 7, 64, 11, 275, 828, 949, 7, 65, 11, 269, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 198, 1084, 7, 64, 11, 275, 8, 6624, 949, 7, 65, 11, 269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 949, 7, 64, 11, 269, 36911, 3509, 7, 64, 11, 275, 11, 269, 4008, 198, 4798, 7, 9806, 7, 64, 11, 275, 11, 269, 828, 357, 1084, 7, 9806, 7, 64, 11, 275, 828, 3509, 7, 65, 11, 269, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 198, 9806, 7, 64, 11, 275, 8, 6624, 3509, 7, 65, 11, 269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 3509, 7, 64, 11, 269, 36911, 949, 7, 64, 11, 275, 11, 269, 4008, 198 ]
1.278325
406
# Generated by Django 2.2.5 on 2019-10-18 17:41 import card.modelfields import django.core.validators from django.db import migrations
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 20, 319, 13130, 12, 940, 12, 1507, 1596, 25, 3901, 198, 198, 11748, 2657, 13, 19849, 25747, 198, 11748, 42625, 14208, 13, 7295, 13, 12102, 2024, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
3.044444
45
# -*- coding: utf-8 -*- # BEWARE: to not import this package at startup, # but only into functions otherwise pip will go crazy # (we cannot understand why, but it does!) # which version of python is this? # Retrocompatibility for Python < 3.6 from sultan.api import Sultan try: import_exceptions = (ModuleNotFoundError, ImportError) except NameError: import_exceptions = ImportError
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 347, 6217, 12203, 25, 284, 407, 1330, 428, 5301, 379, 13693, 11, 198, 2, 475, 691, 656, 5499, 4306, 7347, 481, 467, 7165, 198, 2, 357, 732, 2314, 1833, 1521, 11, 475, 340, 857, 8133, 198, 198, 2, 543, 2196, 286, 21015, 318, 428, 30, 198, 2, 29884, 5589, 25901, 329, 11361, 1279, 513, 13, 21, 198, 6738, 264, 30454, 13, 15042, 1330, 37399, 198, 28311, 25, 198, 220, 220, 220, 1330, 62, 1069, 11755, 796, 357, 26796, 3673, 21077, 12331, 11, 17267, 12331, 8, 198, 16341, 6530, 12331, 25, 198, 220, 220, 220, 1330, 62, 1069, 11755, 796, 17267, 12331, 628, 628, 198 ]
3.308333
120
from tkinter import ttk from tkinter import * import requests import json import os # variables page = 0 vplan = None tableContent = [] navigationLabel = None leftArrow = None rightArrow = None tableHeaders = ["Datum", "Kurs", "Stunde", "Fach", "Raum", "Lehrer", "Info"] #tableHeaders = ["ID", "Datum", "Kurs", "Stunde", "Fach", "Raum", "Lehrer", "Info"] # test # config setup config = {} configNames = ["Kurs", "History", "Isolate", "width", "height"] for i in configNames: config[i] = False if os.path.exists('config.json'): config = json.loads(open('config.json', 'r').read()) width = config['width'] height = config['height'] if width < 600: width = 600 if height < 150: height = 150 if (width / 50) != (width // 50): width = (width // 50) * 50 if (height / 50) != (height // 50): height = (height // 50) * 50 amountRows = (height - 100) // 50 # Tkinter GUI root = Tk() root.iconbitmap("icon.ico") root.title("Vertretungsplan - BBS II Emden //./ by zlyfa! 2018") root.geometry('%sx%s+0+0' % (width, height)) root.configure(background='#257BF4') loadingLabel = placeLoadingLabel() tableHeaderGen() tableContentGen() navigationArrowsGen() navigationLabelGen() removeLoadingLabel(loadingLabel) leftArrow.bind('<Enter>', hoverLeftArrowEnter) leftArrow.bind('<Leave>', hoverLeftArrowLeave) rightArrow.bind('<Enter>', hoverRightArrowEnter) rightArrow.bind('<Leave>', hoverRightArrowLeave) root.mainloop()
[ 6738, 256, 74, 3849, 1330, 256, 30488, 198, 6738, 256, 74, 3849, 1330, 1635, 198, 11748, 7007, 198, 11748, 33918, 198, 11748, 28686, 198, 198, 2, 9633, 198, 198, 7700, 796, 657, 198, 85, 11578, 796, 6045, 198, 11487, 19746, 796, 17635, 198, 28341, 7065, 33986, 796, 6045, 198, 9464, 3163, 808, 796, 6045, 198, 3506, 3163, 808, 796, 6045, 198, 11487, 13847, 364, 796, 14631, 35, 21307, 1600, 366, 42, 1834, 1600, 366, 1273, 917, 68, 1600, 366, 37, 620, 1600, 366, 21762, 388, 1600, 366, 3123, 71, 11751, 1600, 366, 12360, 8973, 198, 2, 11487, 13847, 364, 796, 14631, 2389, 1600, 366, 35, 21307, 1600, 366, 42, 1834, 1600, 366, 1273, 917, 68, 1600, 366, 37, 620, 1600, 366, 21762, 388, 1600, 366, 3123, 71, 11751, 1600, 366, 12360, 8973, 1303, 1332, 198, 198, 2, 4566, 9058, 198, 11250, 796, 23884, 198, 11250, 36690, 796, 14631, 42, 1834, 1600, 366, 18122, 1600, 366, 3792, 27976, 1600, 366, 10394, 1600, 366, 17015, 8973, 198, 1640, 1312, 287, 4566, 36690, 25, 198, 197, 11250, 58, 72, 60, 796, 10352, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 10786, 11250, 13, 17752, 6, 2599, 198, 197, 11250, 796, 33918, 13, 46030, 7, 9654, 10786, 11250, 13, 17752, 3256, 705, 81, 27691, 961, 28955, 198, 198, 10394, 796, 4566, 17816, 10394, 20520, 198, 17015, 796, 4566, 17816, 17015, 20520, 198, 361, 9647, 1279, 10053, 25, 198, 197, 10394, 796, 10053, 198, 361, 6001, 1279, 6640, 25, 198, 197, 17015, 796, 6640, 198, 361, 357, 10394, 1220, 2026, 8, 14512, 357, 10394, 3373, 2026, 2599, 198, 197, 10394, 796, 357, 10394, 3373, 2026, 8, 1635, 2026, 198, 361, 357, 17015, 1220, 2026, 8, 14512, 357, 17015, 3373, 2026, 2599, 198, 197, 17015, 796, 357, 17015, 3373, 2026, 8, 1635, 2026, 198, 17287, 49, 1666, 796, 357, 17015, 532, 1802, 8, 3373, 2026, 198, 198, 2, 309, 74, 3849, 25757, 198, 15763, 796, 309, 74, 3419, 198, 15763, 13, 4749, 2545, 8899, 7203, 4749, 13, 3713, 4943, 198, 15763, 13, 7839, 7203, 42369, 1186, 2150, 82, 11578, 532, 347, 4462, 2873, 2295, 6559, 3373, 19571, 416, 1976, 306, 13331, 0, 2864, 4943, 198, 15763, 13, 469, 15748, 10786, 4, 82, 87, 4, 82, 10, 15, 10, 15, 6, 4064, 357, 10394, 11, 6001, 4008, 198, 15763, 13, 11250, 495, 7, 25249, 11639, 2, 28676, 29499, 19, 11537, 198, 198, 25138, 33986, 796, 1295, 19031, 33986, 3419, 198, 11487, 39681, 13746, 3419, 198, 11487, 19746, 13746, 3419, 198, 28341, 7065, 3163, 8516, 13746, 3419, 198, 28341, 7065, 33986, 13746, 3419, 198, 28956, 19031, 33986, 7, 25138, 33986, 8, 198, 9464, 3163, 808, 13, 21653, 10786, 27, 17469, 29, 3256, 20599, 18819, 3163, 808, 17469, 8, 198, 9464, 3163, 808, 13, 21653, 10786, 27, 35087, 29, 3256, 20599, 18819, 3163, 808, 35087, 8, 198, 3506, 3163, 808, 13, 21653, 10786, 27, 17469, 29, 3256, 20599, 11028, 3163, 808, 17469, 8, 198, 3506, 3163, 808, 13, 21653, 10786, 27, 35087, 29, 3256, 20599, 11028, 3163, 808, 35087, 8, 198, 198, 15763, 13, 12417, 26268, 3419, 198 ]
2.781925
509
from karabo.simulation.coordinate_helper import east_north_to_long_lat from karabo.simulation.east_north_coordinate import EastNorthCoordinate
[ 6738, 479, 283, 34748, 13, 14323, 1741, 13, 37652, 4559, 62, 2978, 525, 1330, 7627, 62, 43588, 62, 1462, 62, 6511, 62, 15460, 198, 6738, 479, 283, 34748, 13, 14323, 1741, 13, 23316, 62, 43588, 62, 37652, 4559, 1330, 3687, 14157, 7222, 45480, 198 ]
3.25
44
from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive import spec2model.config_manager as yml_manager config_file_path = 'spec2model/configuration.yml'
[ 6738, 279, 5173, 11590, 13, 18439, 1330, 3012, 30515, 198, 6738, 279, 5173, 11590, 13, 19472, 1330, 3012, 24825, 198, 11748, 1020, 17, 19849, 13, 11250, 62, 37153, 355, 331, 4029, 62, 37153, 198, 198, 11250, 62, 7753, 62, 6978, 796, 705, 16684, 17, 19849, 14, 11250, 3924, 13, 88, 4029, 6, 198 ]
3.264151
53
#! /usr/bin/python3 # Author: Cavyn VonDeylen # Date: August 2010 # Larson-Group UWM # Updated to python 3 by Tyler Cernik from __future__ import print_function from __future__ import division from __future__ import unicode_literals import struct # Handles binary data #-------------------------------------------------------------------------------------------------- def readGradsData(fileName, numLevels, begTime, endTime, varNum, numVars): """ Reads a GrADS *.dat file and obtains a single-time or time-averaged profile. Input: filename: A GrADS *.dat file numLevels: Number of z levels in profile begTime: Iteration to start averaging at endTime: Iteration to end averaging at varNum: Which variable to read (see .ctl file) numVars: Total number of variables in grads file (see .ctl file) """ timeInterval = (endTime-begTime) + 1 # Open in read-binary mode dataFile = open(fileName, "rb") # Declare array with one slot per z level avgField = [0] * numLevels # Add data from each time iteration to avgField time = begTime while True: # Strange loop construct because python doesn't have do-while loops byte_position = 4*( (varNum-1)*numLevels+numVars*numLevels*(time-1) ) dataFile.seek(byte_position) # Read data in for each z level zLevel = 0 while zLevel < numLevels: # Read 4 bytes binaryData = dataFile.read(4) # Translate binary data to a float. avgField[zLevel] = avgField[zLevel] + list(struct.unpack("f", binaryData))[0] zLevel += 1 time += 1 if time >= endTime: break # Divide by total number of iterations to come up # with average value across all iterations for each z level zLevel = 0 while zLevel < numLevels: avgField[zLevel] = avgField[zLevel]//timeInterval zLevel += 1 dataFile.close() return avgField #-------------------------------------------------------------------------------------------------- # Allows this module to be run as a script if __name__ == "__main__": import sys # If wrong arguments were given, print a helpful message if len(sys.argv) != 7: print('Arguments must be: filename z_levels beg_time end_time var_number number_vars') sys.exit(0) print(readNetcdfData( sys.argv[1], int(sys.argv[2]), int(sys.argv[3]), int(sys.argv[4]), \ int(sys.argv[5]), int(sys.argv[6]) ))
[ 2, 0, 1220, 14629, 14, 8800, 14, 29412, 18, 198, 2, 6434, 25, 19931, 2047, 26985, 5005, 2645, 268, 198, 2, 7536, 25, 2932, 3050, 198, 2, 42630, 12, 13247, 471, 22117, 198, 2, 19433, 284, 21015, 513, 416, 14886, 327, 1142, 1134, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 11748, 2878, 1303, 7157, 829, 13934, 1366, 198, 198, 2, 10097, 3880, 438, 198, 4299, 1100, 8642, 5643, 6601, 7, 7753, 5376, 11, 997, 4971, 82, 11, 4123, 7575, 11, 886, 7575, 11, 1401, 33111, 11, 997, 53, 945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 82, 257, 1902, 47149, 46866, 19608, 2393, 290, 909, 12143, 257, 2060, 12, 2435, 393, 640, 12, 8770, 1886, 7034, 13, 198, 220, 220, 220, 23412, 25, 29472, 25, 317, 1902, 47149, 46866, 19608, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 4971, 82, 25, 7913, 286, 1976, 2974, 287, 7034, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4123, 7575, 25, 40806, 341, 284, 923, 20430, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 7575, 25, 40806, 341, 284, 886, 20430, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 33111, 25, 9022, 7885, 284, 1100, 357, 3826, 764, 34168, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 53, 945, 25, 7472, 1271, 286, 9633, 287, 3915, 82, 2393, 357, 3826, 764, 34168, 2393, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 640, 9492, 2100, 796, 357, 437, 7575, 12, 1350, 70, 7575, 8, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 4946, 287, 1100, 12, 39491, 4235, 198, 220, 220, 220, 1366, 8979, 796, 1280, 7, 7753, 5376, 11, 366, 26145, 4943, 628, 220, 220, 220, 1303, 16691, 533, 7177, 351, 530, 10852, 583, 1976, 1241, 198, 220, 220, 220, 42781, 15878, 796, 685, 15, 60, 1635, 997, 4971, 82, 628, 220, 220, 220, 1303, 3060, 1366, 422, 1123, 640, 24415, 284, 42781, 15878, 198, 220, 220, 220, 640, 796, 4123, 7575, 198, 220, 220, 220, 981, 6407, 25, 1303, 16810, 9052, 5678, 780, 21015, 1595, 470, 423, 466, 12, 4514, 23607, 198, 220, 220, 220, 220, 220, 220, 220, 18022, 62, 9150, 796, 604, 9, 7, 357, 7785, 33111, 12, 16, 27493, 22510, 4971, 82, 10, 22510, 53, 945, 9, 22510, 4971, 82, 9, 7, 2435, 12, 16, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 8979, 13, 36163, 7, 26327, 62, 9150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 1366, 287, 329, 1123, 1976, 1241, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 4971, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 1976, 4971, 1279, 997, 4971, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 604, 9881, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13934, 6601, 796, 1366, 8979, 13, 961, 7, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3602, 17660, 13934, 1366, 284, 257, 12178, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 15878, 58, 89, 4971, 60, 796, 42781, 15878, 58, 89, 4971, 60, 1343, 1351, 7, 7249, 13, 403, 8002, 7203, 69, 1600, 13934, 6601, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 4971, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 640, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 640, 18189, 886, 7575, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1303, 46894, 416, 2472, 1271, 286, 34820, 284, 1282, 510, 198, 220, 220, 220, 1303, 351, 2811, 1988, 1973, 477, 34820, 329, 1123, 1976, 1241, 198, 220, 220, 220, 1976, 4971, 796, 657, 198, 220, 220, 220, 981, 1976, 4971, 1279, 997, 4971, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42781, 15878, 58, 89, 4971, 60, 796, 42781, 15878, 58, 89, 4971, 60, 1003, 2435, 9492, 2100, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 4971, 15853, 352, 628, 220, 220, 220, 1366, 8979, 13, 19836, 3419, 198, 220, 220, 220, 1441, 42781, 15878, 198, 220, 220, 220, 220, 198, 2, 10097, 3880, 438, 198, 2, 40402, 428, 8265, 284, 307, 1057, 355, 257, 4226, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 1002, 2642, 7159, 547, 1813, 11, 3601, 257, 7613, 3275, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 14512, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 28100, 2886, 1276, 307, 25, 29472, 1976, 62, 46170, 4123, 62, 2435, 886, 62, 2435, 1401, 62, 17618, 1271, 62, 85, 945, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 7, 961, 7934, 66, 7568, 6601, 7, 25064, 13, 853, 85, 58, 16, 4357, 493, 7, 17597, 13, 853, 85, 58, 17, 46570, 493, 7, 17597, 13, 853, 85, 58, 18, 46570, 493, 7, 17597, 13, 853, 85, 58, 19, 46570, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 493, 7, 17597, 13, 853, 85, 58, 20, 46570, 493, 7, 17597, 13, 853, 85, 58, 21, 12962, 15306, 198 ]
2.62831
982