content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import cv2 # import OpenCv lib cap = cv2.VideoCapture(0) # create cap object # set the format into MJPG in the FourCC format # cap.set(cv2.CAP_PROP_FOURCC,cv2.VideoWriter_fourcc('M','J','P','G')) cap.set(cv2.CAP_PROP_FOURCC,cv2.VideoWriter_fourcc('J','P','E','G')) if not cap.isOpened(): # check if the camera is opened print('Cannot open webcam') else: while True: success, frame = cap. read() # read frames cv2.imshow(" Captured: " , frame) # show frames in the window if cv2.waitKey(1) == 27: # check if the user press ESC or not break cap.release() # stop cv2. destroyAllWindows()
[ 11748, 269, 85, 17, 220, 220, 220, 220, 220, 220, 197, 197, 197, 197, 197, 220, 220, 220, 220, 220, 220, 220, 1303, 1330, 4946, 34, 85, 9195, 198, 11128, 796, 269, 85, 17, 13, 10798, 49630, 7, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 197, 220, 220, 220, 1303, 2251, 1451, 2134, 220, 198, 198, 2, 900, 262, 5794, 656, 33974, 6968, 287, 262, 6675, 4093, 5794, 220, 198, 2, 1451, 13, 2617, 7, 33967, 17, 13, 33177, 62, 4805, 3185, 62, 37, 11698, 4093, 11, 33967, 17, 13, 10798, 34379, 62, 14337, 535, 10786, 44, 41707, 41, 41707, 47, 41707, 38, 6, 4008, 198, 198, 11128, 13, 2617, 7, 33967, 17, 13, 33177, 62, 4805, 3185, 62, 37, 11698, 4093, 11, 33967, 17, 13, 10798, 34379, 62, 14337, 535, 10786, 41, 41707, 47, 41707, 36, 41707, 38, 6, 4008, 628, 198, 361, 407, 1451, 13, 271, 18257, 2945, 33529, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 197, 2, 2198, 611, 262, 4676, 318, 4721, 198, 220, 220, 220, 3601, 10786, 34, 34574, 1280, 49823, 11537, 198, 17772, 25, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 11, 5739, 796, 1451, 13, 1100, 3419, 220, 220, 220, 220, 220, 220, 220, 1303, 1100, 13431, 220, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7203, 6790, 1522, 25, 366, 837, 5739, 8, 220, 220, 1303, 905, 13431, 287, 262, 4324, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 6624, 2681, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 262, 2836, 1803, 40251, 393, 407, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 11128, 13, 20979, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2245, 220, 198, 33967, 17, 13, 4117, 3237, 11209, 3419, 220, 220, 220 ]
2.016216
370
""" Module for unit tests for translations """ import unittest from translator import french_to_english, english_to_french class TranslationTest(unittest.TestCase): """This Class contains the unit tests for translations""" def test_french_to_english(self): """This method tests the French to English Translations""" self.assertEqual(french_to_english(""),None) self.assertEqual(french_to_english("Bonjour"),[{'translation': 'Hello'}]) def test_english_to_french(self): """This method tests the English to French Translations""" self.assertEqual(english_to_french(""),None) self.assertEqual(english_to_french("Hello"),[{'translation': 'Bonjour'}]) if __name__=='__main__': unittest.main()
[ 37811, 198, 26796, 329, 4326, 5254, 329, 25231, 198, 37811, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 33417, 1330, 48718, 62, 1462, 62, 39126, 11, 46932, 62, 1462, 62, 69, 3532, 198, 198, 4871, 33322, 14402, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 1212, 5016, 4909, 262, 4326, 5254, 329, 25231, 37811, 628, 220, 220, 220, 825, 1332, 62, 69, 3532, 62, 1462, 62, 39126, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 5254, 262, 4141, 284, 3594, 3602, 49905, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 69, 3532, 62, 1462, 62, 39126, 7203, 12340, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 69, 3532, 62, 1462, 62, 39126, 7203, 20682, 73, 454, 12340, 58, 90, 6, 41519, 10354, 705, 15496, 6, 92, 12962, 628, 220, 220, 220, 825, 1332, 62, 39126, 62, 1462, 62, 69, 3532, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 5254, 262, 3594, 284, 4141, 3602, 49905, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 39126, 62, 1462, 62, 69, 3532, 7203, 12340, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 39126, 62, 1462, 62, 69, 3532, 7203, 15496, 12340, 58, 90, 6, 41519, 10354, 705, 20682, 73, 454, 6, 92, 12962, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.804428
271
for value in range(1,11): print(str(value))
[ 1640, 1988, 287, 2837, 7, 16, 11, 1157, 2599, 198, 220, 220, 220, 3601, 7, 2536, 7, 8367, 4008 ]
2.473684
19
import operator import sys sys.path.append("..") from collections import defaultdict, namedtuple from intcode import IntCodeMachine, open_file # The logic is as follows. # If we would fall into a gap otherwise, we jump (NOT A T // OR T J) # We jump early, that is a gap at B or C if we have an out, that is we can move to E or we can jump to H. input_string = """\ OR B J AND C J NOT J J AND D J OR E T OR H T AND T J NOT A T OR T J RUN """ inputs = [ord(c) for c in input_string] if __name__ == '__main__': run()
[ 11748, 10088, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7203, 492, 4943, 198, 6738, 17268, 1330, 4277, 11600, 11, 3706, 83, 29291, 198, 6738, 493, 8189, 1330, 2558, 10669, 37573, 11, 1280, 62, 7753, 198, 198, 2, 383, 9156, 318, 355, 5679, 13, 198, 2, 1002, 356, 561, 2121, 656, 257, 7625, 4306, 11, 356, 4391, 357, 11929, 317, 309, 3373, 6375, 309, 449, 8, 198, 2, 775, 4391, 1903, 11, 326, 318, 257, 7625, 379, 347, 393, 327, 611, 356, 423, 281, 503, 11, 326, 318, 356, 460, 1445, 284, 412, 393, 356, 460, 4391, 284, 367, 13, 198, 15414, 62, 8841, 796, 37227, 59, 198, 1581, 347, 449, 198, 6981, 327, 449, 198, 11929, 449, 449, 198, 6981, 360, 449, 198, 1581, 412, 309, 198, 1581, 367, 309, 198, 6981, 309, 449, 198, 11929, 317, 309, 198, 1581, 309, 449, 198, 49, 4944, 198, 37811, 198, 15414, 82, 796, 685, 585, 7, 66, 8, 329, 269, 287, 5128, 62, 8841, 60, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 3419, 198 ]
2.826087
184
from .party_affiliation import PartyAffiliation
[ 6738, 764, 10608, 62, 2001, 15547, 1330, 3615, 35191, 15547, 628 ]
4.454545
11
# Desenvolva um programa que leia o comprimento de três retas e diga ao usuário se elas podem # ou não formar um triângulo. r1 = int(input('Valor do primeiro segmento: ')) r2 = int(input('Valor do segundo segmento: ')) r3 = int(input('Valor do terceiro segmento: ')) if r1 < r2 + r3 and r2 < r1 + r3 and r3 < r1 + r2: print('Os segmentos acima PODEM formar um triângulo!') else: print('Os segmentos acima não podem formar um triângulo!')
[ 2, 2935, 268, 10396, 6862, 23781, 1430, 64, 8358, 443, 544, 267, 552, 3036, 50217, 390, 491, 25792, 82, 1005, 292, 304, 3100, 64, 257, 78, 514, 84, 6557, 27250, 384, 1288, 292, 24573, 368, 198, 2, 267, 84, 299, 28749, 1296, 283, 23781, 1333, 22940, 782, 43348, 13, 198, 198, 81, 16, 796, 493, 7, 15414, 10786, 7762, 273, 466, 6994, 7058, 10618, 78, 25, 705, 4008, 198, 81, 17, 796, 493, 7, 15414, 10786, 7762, 273, 466, 384, 70, 41204, 10618, 78, 25, 705, 4008, 198, 81, 18, 796, 493, 7, 15414, 10786, 7762, 273, 466, 1059, 344, 7058, 10618, 78, 25, 705, 4008, 198, 198, 361, 374, 16, 1279, 374, 17, 1343, 374, 18, 290, 374, 17, 1279, 374, 16, 1343, 374, 18, 290, 374, 18, 1279, 374, 16, 1343, 374, 17, 25, 198, 220, 220, 220, 3601, 10786, 16748, 10618, 418, 936, 8083, 350, 3727, 3620, 1296, 283, 23781, 1333, 22940, 782, 43348, 0, 11537, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 16748, 10618, 418, 936, 8083, 299, 28749, 24573, 368, 1296, 283, 23781, 1333, 22940, 782, 43348, 0, 11537, 198 ]
2.395722
187
name='Noaman Monther Mahmood' job='Full-Stack Mobile Developer' header= 'This Job is Done By' desc='And it is one of the requirements to be accepted in th Full-Stack Development Bootcamp \nthat is implemented by Computiq and and GIZ Interview'
[ 198, 3672, 11639, 2949, 10546, 2892, 490, 31556, 702, 6, 198, 21858, 11639, 13295, 12, 25896, 12173, 23836, 6, 198, 25677, 28, 705, 1212, 15768, 318, 24429, 2750, 6, 198, 20147, 11639, 1870, 340, 318, 530, 286, 262, 5359, 284, 307, 6292, 287, 294, 6462, 12, 25896, 7712, 18892, 16544, 3467, 77, 5562, 318, 9177, 416, 22476, 25011, 290, 290, 402, 14887, 19371, 6 ]
3.8125
64
#!/usr/bin/env python # Copyright 2008-2018 Univa Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil from tortuga.kit.installer import KitInstallerBase from tortuga.kit.manager import KitManager from tortuga.os_utility import tortugaSubprocess
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 15069, 3648, 12, 7908, 791, 12151, 10501, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 198, 6738, 7619, 30302, 13, 15813, 13, 17350, 263, 1330, 10897, 15798, 263, 14881, 198, 6738, 7619, 30302, 13, 15813, 13, 37153, 1330, 10897, 13511, 198, 6738, 7619, 30302, 13, 418, 62, 315, 879, 1330, 7619, 30302, 7004, 14681, 628 ]
3.740385
208
from __future__ import absolute_import from __future__ import division from __future__ import print_function from .dataset_utils import image_to_tfexample from json import dump from numpy import arange, empty, array, empty_like from numpy.random import shuffle from os import walk from PIL import Image from six.moves import urllib import sys import tensorflow as tf _IMAGE_SIZE = 224 _NUM_CHANNELS = 3 def _add_to_tfrecord(images, labels, num_images, tfrecord_writer): """ Loads data from the binary MNIST files and writes files to a TFRecord. Args: data_filename: The filename of the MNIST images. labels_filename: The filename of the MNIST labels. num_images: The number of images in the dataset. """ shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS) with tf.Graph().as_default(): image = tf.placeholder(dtype=tf.uint8, shape=shape) encoded_png = tf.image.encode_png(image) with tf.Session('') as sess: for j in range(num_images): sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images)) sys.stdout.flush() png_string = sess.run(encoded_png, feed_dict={image: images[j]}) example = image_to_tfexample(png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j]) tfrecord_writer.write(example.SerializeToString())
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 764, 19608, 292, 316, 62, 26791, 1330, 2939, 62, 1462, 62, 27110, 20688, 198, 6738, 33918, 1330, 10285, 198, 6738, 299, 32152, 1330, 610, 858, 11, 6565, 11, 7177, 11, 6565, 62, 2339, 198, 6738, 299, 32152, 13, 25120, 1330, 36273, 198, 6738, 28686, 1330, 2513, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 2237, 13, 76, 5241, 1330, 2956, 297, 571, 198, 11748, 25064, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 62, 3955, 11879, 62, 33489, 796, 26063, 198, 62, 41359, 62, 3398, 22846, 37142, 796, 513, 628, 198, 198, 4299, 4808, 2860, 62, 1462, 62, 27110, 22105, 7, 17566, 11, 14722, 11, 997, 62, 17566, 11, 48700, 22105, 62, 16002, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8778, 82, 1366, 422, 262, 13934, 29060, 8808, 3696, 290, 6797, 3696, 284, 257, 24958, 23739, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 34345, 25, 383, 29472, 286, 262, 29060, 8808, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 34345, 25, 383, 29472, 286, 262, 29060, 8808, 14722, 13, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 17566, 25, 383, 1271, 286, 4263, 287, 262, 27039, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5485, 796, 44104, 3955, 11879, 62, 33489, 11, 4808, 3955, 11879, 62, 33489, 11, 4808, 41359, 62, 3398, 22846, 37142, 8, 198, 220, 220, 220, 351, 48700, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 48700, 13, 5372, 13829, 7, 67, 4906, 28, 27110, 13, 28611, 23, 11, 5485, 28, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30240, 62, 11134, 796, 48700, 13, 9060, 13, 268, 8189, 62, 11134, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 36044, 7, 7061, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 22510, 62, 17566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 10786, 59, 81, 4211, 35602, 889, 2939, 4064, 67, 14, 4, 67, 6, 4064, 357, 73, 1343, 352, 11, 997, 62, 17566, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 782, 62, 8841, 796, 264, 408, 13, 5143, 7, 12685, 9043, 62, 11134, 11, 3745, 62, 11600, 34758, 9060, 25, 4263, 58, 73, 60, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1672, 796, 2939, 62, 1462, 62, 27110, 20688, 7, 11134, 62, 8841, 11, 705, 11134, 4458, 268, 8189, 22784, 4808, 3955, 11879, 62, 33489, 11, 4808, 3955, 11879, 62, 33489, 11, 14722, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48700, 22105, 62, 16002, 13, 13564, 7, 20688, 13, 32634, 1096, 2514, 10100, 28955 ]
2.508961
558
# -*- coding: utf-8 -*- """ Ilustra el método de Newton-Raphson @author: Nicolas Guarin-Zapata """ from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt plt.rcParams["mathtext.fontset"] = "cm" plt.rcParams["axes.spines.top"] = False plt.rcParams["axes.spines.right"] = False fun = lambda x: 0.3*np.abs(x)*x grad = lambda x: 0.6*np.abs(x) x = np.linspace(-2, 4, 100) y = fun(x) #%% Graficacion plt.figure(figsize=(4, 3)) ax = plt.gca() ax.plot(x, y, linewidth=2) x0 = 4 x_iter = [x0] ax.plot([x0, x0], [fun(x0), 0], color="#3f3f3f", linewidth=1.5, linestyle="dashed") ax.plot([x0], [fun(x0)], marker="o", mec="black", mfc="white", linewidth=0, zorder=5) for cont in range(3): x1 = x0 - fun(x0)/grad(x0) x_iter.append(x1) ax.plot([x0, x1], [fun(x0), 0], color="#3f3f3f", linewidth=1.5, linestyle="dashed", zorder=4) ax.plot([x1, x1], [fun(x1), 0], color="#3f3f3f", linewidth=1.5, linestyle="dashed", zorder=4) ax.plot([x1], [fun(x1)], marker="o", mec="black", mfc="white", linewidth=0, zorder=5) x0 = x1 ax.plot([0], [0], marker="o", mec="black", mfc="black", linewidth=0) plt.xticks(x_iter + [0], [r"$x_{}$".format(k) for k in range(4)] + [r"$x^*$"]) plt.yticks([]) plt.xlabel(r"$x$", horizontalalignment="right", fontsize=12) plt.ylabel(r"$f(x)$", fontsize=12) ax.spines['bottom'].set_position(('data',0)) ax.xaxis.set_label_coords(1.05, 0.25) ax.yaxis.set_label_coords(-0.05, 0.9) plt.savefig("newton_iter.pdf", bbox_inches="tight") plt.savefig("newton_iter.svg", bbox_inches="tight", transparent=True) plt.show()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 33666, 436, 430, 1288, 285, 25125, 24313, 390, 17321, 12, 49, 6570, 1559, 201, 198, 201, 198, 31, 9800, 25, 29737, 1962, 17714, 12, 57, 499, 1045, 201, 198, 37811, 201, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 201, 198, 489, 83, 13, 6015, 10044, 4105, 14692, 11018, 5239, 13, 10331, 2617, 8973, 796, 366, 11215, 1, 201, 198, 489, 83, 13, 6015, 10044, 4105, 14692, 897, 274, 13, 2777, 1127, 13, 4852, 8973, 796, 10352, 201, 198, 489, 83, 13, 6015, 10044, 4105, 14692, 897, 274, 13, 2777, 1127, 13, 3506, 8973, 796, 10352, 201, 198, 201, 198, 201, 198, 201, 198, 12543, 796, 37456, 2124, 25, 657, 13, 18, 9, 37659, 13, 8937, 7, 87, 27493, 87, 201, 198, 9744, 796, 37456, 2124, 25, 657, 13, 21, 9, 37659, 13, 8937, 7, 87, 8, 201, 198, 201, 198, 87, 796, 45941, 13, 21602, 10223, 32590, 17, 11, 604, 11, 1802, 8, 201, 198, 88, 796, 1257, 7, 87, 8, 201, 198, 201, 198, 201, 198, 201, 198, 2, 16626, 7037, 69, 291, 49443, 201, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 19, 11, 513, 4008, 201, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 201, 198, 897, 13, 29487, 7, 87, 11, 331, 11, 9493, 413, 5649, 28, 17, 8, 201, 198, 87, 15, 796, 604, 201, 198, 87, 62, 2676, 796, 685, 87, 15, 60, 201, 198, 897, 13, 29487, 26933, 87, 15, 11, 2124, 15, 4357, 685, 12543, 7, 87, 15, 828, 657, 4357, 3124, 25698, 18, 69, 18, 69, 18, 69, 1600, 9493, 413, 5649, 28, 16, 13, 20, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 2625, 67, 5263, 4943, 201, 198, 897, 13, 29487, 26933, 87, 15, 4357, 685, 12543, 7, 87, 15, 8, 4357, 18364, 2625, 78, 1600, 502, 66, 2625, 13424, 1600, 285, 16072, 2625, 11186, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 15, 11, 1976, 2875, 28, 20, 8, 201, 198, 1640, 542, 287, 2837, 7, 18, 2599, 201, 198, 220, 220, 220, 2124, 16, 796, 2124, 15, 532, 1257, 7, 87, 15, 20679, 9744, 7, 87, 15, 8, 201, 198, 220, 220, 220, 2124, 62, 2676, 13, 33295, 7, 87, 16, 8, 201, 198, 220, 220, 220, 7877, 13, 29487, 26933, 87, 15, 11, 2124, 16, 4357, 685, 12543, 7, 87, 15, 828, 657, 4357, 3124, 25698, 18, 69, 18, 69, 18, 69, 1600, 9493, 413, 5649, 28, 16, 13, 20, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 2625, 67, 5263, 1600, 1976, 2875, 28, 19, 8, 201, 198, 220, 220, 220, 7877, 13, 29487, 26933, 87, 16, 11, 2124, 16, 4357, 685, 12543, 7, 87, 16, 828, 657, 4357, 3124, 25698, 18, 69, 18, 69, 18, 69, 1600, 9493, 413, 5649, 28, 16, 13, 20, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 2625, 67, 5263, 1600, 1976, 2875, 28, 19, 8, 201, 198, 220, 220, 220, 7877, 13, 29487, 26933, 87, 16, 4357, 685, 12543, 7, 87, 16, 8, 4357, 18364, 2625, 78, 1600, 502, 66, 2625, 13424, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 16072, 2625, 11186, 1600, 9493, 413, 5649, 28, 15, 11, 1976, 2875, 28, 20, 8, 201, 198, 220, 220, 220, 2124, 15, 796, 2124, 16, 201, 198, 897, 13, 29487, 26933, 15, 4357, 685, 15, 4357, 18364, 2625, 78, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 502, 66, 2625, 13424, 1600, 285, 16072, 2625, 13424, 1600, 9493, 413, 5649, 28, 15, 8, 201, 198, 489, 83, 13, 742, 3378, 7, 87, 62, 2676, 1343, 685, 15, 4357, 685, 81, 1, 3, 87, 23330, 92, 3, 1911, 18982, 7, 74, 8, 329, 479, 287, 2837, 7, 19, 15437, 1343, 685, 81, 1, 3, 87, 61, 9, 3, 8973, 8, 201, 198, 489, 83, 13, 20760, 3378, 26933, 12962, 201, 198, 489, 83, 13, 87, 18242, 7, 81, 1, 3, 87, 3, 1600, 16021, 282, 16747, 2625, 3506, 1600, 10369, 7857, 28, 1065, 8, 201, 198, 489, 83, 13, 2645, 9608, 7, 81, 1, 3, 69, 7, 87, 8, 3, 1600, 10369, 7857, 28, 1065, 8, 201, 198, 897, 13, 2777, 1127, 17816, 22487, 6, 4083, 2617, 62, 9150, 7, 10786, 7890, 3256, 15, 4008, 201, 198, 897, 13, 87, 22704, 13, 2617, 62, 18242, 62, 1073, 3669, 7, 16, 13, 2713, 11, 657, 13, 1495, 8, 201, 198, 897, 13, 88, 22704, 13, 2617, 62, 18242, 62, 1073, 3669, 32590, 15, 13, 2713, 11, 657, 13, 24, 8, 201, 198, 489, 83, 13, 21928, 5647, 7203, 3605, 1122, 62, 2676, 13, 12315, 1600, 275, 3524, 62, 45457, 2625, 33464, 4943, 201, 198, 489, 83, 13, 21928, 5647, 7203, 3605, 1122, 62, 2676, 13, 21370, 70, 1600, 275, 3524, 62, 45457, 2625, 33464, 1600, 13245, 28, 17821, 8, 201, 198, 489, 83, 13, 12860, 3419, 201, 198 ]
1.945392
879
from metaflow_test import MetaflowTest, ExpectationFailed, steps, tag class CardExtensionsImportTest(MetaflowTest): """ - Requires on tests/extensions/packages to be installed. """ PRIORITY = 5 @tag('card(type="card_ext_init_b",save_errors=False)') @tag('card(type="card_ext_init_a",save_errors=False)') @tag('card(type="card_ns_subpackage",save_errors=False)') @tag('card(type="card_init",save_errors=False)') @steps(0, ["start"]) @steps(1, ["all"])
[ 6738, 1138, 1878, 9319, 62, 9288, 1330, 3395, 1878, 9319, 14402, 11, 23600, 341, 37, 6255, 11, 4831, 11, 7621, 628, 198, 4871, 5172, 11627, 5736, 20939, 14402, 7, 9171, 1878, 9319, 14402, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 532, 26848, 319, 5254, 14, 2302, 5736, 14, 43789, 284, 307, 6589, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4810, 41254, 9050, 796, 642, 628, 220, 220, 220, 2488, 12985, 10786, 9517, 7, 4906, 2625, 9517, 62, 2302, 62, 15003, 62, 65, 1600, 21928, 62, 48277, 28, 25101, 8, 11537, 198, 220, 220, 220, 2488, 12985, 10786, 9517, 7, 4906, 2625, 9517, 62, 2302, 62, 15003, 62, 64, 1600, 21928, 62, 48277, 28, 25101, 8, 11537, 198, 220, 220, 220, 2488, 12985, 10786, 9517, 7, 4906, 2625, 9517, 62, 5907, 62, 7266, 26495, 1600, 21928, 62, 48277, 28, 25101, 8, 11537, 198, 220, 220, 220, 2488, 12985, 10786, 9517, 7, 4906, 2625, 9517, 62, 15003, 1600, 21928, 62, 48277, 28, 25101, 8, 11537, 198, 220, 220, 220, 2488, 20214, 7, 15, 11, 14631, 9688, 8973, 8, 628, 220, 220, 220, 2488, 20214, 7, 16, 11, 14631, 439, 8973, 8, 198 ]
2.530612
196
from yapf.yapflib.yapf_api import FormatFile import sys # using yapf library taken from https://github.com/google/yapf/ # version v0.28.0 # take the source path sourcePath = sys.argv[1] # take the first argument as the filepath # then update the targeted code with their format corrected. # this function returns an array consisting the formatted code, type, and a boolean. # that boolean is assigned to true if the function works. result = FormatFile(sourcePath, in_place=True, style_config=sys.argv[2]) # this program will display error output once the code is not parseable.
[ 6738, 331, 499, 69, 13, 88, 499, 2704, 571, 13, 88, 499, 69, 62, 15042, 1330, 18980, 8979, 198, 11748, 25064, 198, 2, 1262, 331, 499, 69, 5888, 2077, 422, 3740, 1378, 12567, 13, 785, 14, 13297, 14, 88, 499, 69, 14, 198, 2, 2196, 410, 15, 13, 2078, 13, 15, 198, 198, 2, 1011, 262, 2723, 3108, 198, 10459, 15235, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 2, 1011, 262, 717, 4578, 355, 262, 2393, 6978, 198, 2, 788, 4296, 262, 7977, 2438, 351, 511, 5794, 19267, 13, 198, 2, 428, 2163, 5860, 281, 7177, 17747, 262, 39559, 2438, 11, 2099, 11, 290, 257, 25131, 13, 198, 2, 326, 25131, 318, 8686, 284, 2081, 611, 262, 2163, 2499, 13, 198, 20274, 796, 18980, 8979, 7, 10459, 15235, 11, 287, 62, 5372, 28, 17821, 11, 3918, 62, 11250, 28, 17597, 13, 853, 85, 58, 17, 12962, 198, 198, 2, 428, 1430, 481, 3359, 4049, 5072, 1752, 262, 2438, 318, 407, 21136, 540, 13, 198 ]
3.493976
166
""" Copyright (c) Lukas Hedegaard. All Rights Reserved. Included in the OpenDR Toolit with permission from the author. """ from typing import Tuple, Union import torch from torch import Tensor from torch.nn.modules.pooling import ( AdaptiveAvgPool1d, AdaptiveAvgPool2d, AdaptiveAvgPool3d, AdaptiveMaxPool1d, AdaptiveMaxPool2d, AdaptiveMaxPool3d, AvgPool2d, AvgPool3d, MaxPool2d, MaxPool3d, _triple, ) from logging import getLogger from .utils import FillMode State = Tuple[Tensor, int] Pool2D = Union[AvgPool2d, MaxPool2d, AdaptiveAvgPool2d, AdaptiveMaxPool2d] logger = getLogger(__name__) __all__ = [ "AvgPoolCo3d", "MaxPoolCo3d", "AdaptiveAvgPoolCo3d", "AdaptiveMaxPoolCo3d", "convert_avgpool3d", "convert_maxpool3d", "convert_adaptiveavgpool3d", "convert_adaptivemaxpool3d", ] def RecursivelyWindowPooled(cls: Pool2D) -> torch.nn.Module: # noqa: C901 """Wraps a pooling module to create a recursive version which pools across execusions Args: cls (Pool2D): A 2D pooling Module """ assert cls in {AdaptiveAvgPool2d, MaxPool2d, AvgPool2d, AdaptiveMaxPool2d} RePooled.__doc__ = f""" Recursive {cls.__name__} Pooling results are stored between `forward` exercutions and used to pool subsequent inputs along the temporal dimension with a spacified `window_size`. Example: For `window_size = 3`, the two previous results are stored and used for pooling. `temporal_fill` determines whether to initialize the state with a ``'replicate'`` of the output of the first execution or with with ``'zeros'``. Parent doc: {cls.__doc__} """ return RePooled AvgPoolCo3d = RecursivelyWindowPooled(AvgPool2d) MaxPoolCo3d = RecursivelyWindowPooled(MaxPool2d) AdaptiveAvgPoolCo3d = RecursivelyWindowPooled(AdaptiveAvgPool2d) AdaptiveMaxPoolCo3d = RecursivelyWindowPooled(AdaptiveMaxPool2d)
[ 37811, 198, 15269, 357, 66, 8, 28102, 292, 30920, 26470, 446, 13, 1439, 6923, 33876, 13, 198, 818, 10341, 287, 262, 4946, 7707, 16984, 270, 351, 7170, 422, 262, 1772, 13, 198, 37811, 198, 198, 6738, 19720, 1330, 309, 29291, 11, 4479, 198, 198, 11748, 28034, 198, 6738, 28034, 1330, 309, 22854, 198, 6738, 28034, 13, 20471, 13, 18170, 13, 7742, 278, 1330, 357, 198, 220, 220, 220, 30019, 425, 48997, 27201, 16, 67, 11, 198, 220, 220, 220, 30019, 425, 48997, 27201, 17, 67, 11, 198, 220, 220, 220, 30019, 425, 48997, 27201, 18, 67, 11, 198, 220, 220, 220, 30019, 425, 11518, 27201, 16, 67, 11, 198, 220, 220, 220, 30019, 425, 11518, 27201, 17, 67, 11, 198, 220, 220, 220, 30019, 425, 11518, 27201, 18, 67, 11, 198, 220, 220, 220, 33455, 27201, 17, 67, 11, 198, 220, 220, 220, 33455, 27201, 18, 67, 11, 198, 220, 220, 220, 5436, 27201, 17, 67, 11, 198, 220, 220, 220, 5436, 27201, 18, 67, 11, 198, 220, 220, 220, 4808, 28461, 1154, 11, 198, 8, 198, 198, 6738, 18931, 1330, 651, 11187, 1362, 198, 198, 6738, 764, 26791, 1330, 27845, 19076, 198, 198, 9012, 796, 309, 29291, 58, 51, 22854, 11, 493, 60, 198, 27201, 17, 35, 796, 4479, 58, 48997, 27201, 17, 67, 11, 5436, 27201, 17, 67, 11, 30019, 425, 48997, 27201, 17, 67, 11, 30019, 425, 11518, 27201, 17, 67, 60, 628, 198, 6404, 1362, 796, 651, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 48997, 27201, 7222, 18, 67, 1600, 198, 220, 220, 220, 366, 11518, 27201, 7222, 18, 67, 1600, 198, 220, 220, 220, 366, 48003, 425, 48997, 27201, 7222, 18, 67, 1600, 198, 220, 220, 220, 366, 48003, 425, 11518, 27201, 7222, 18, 67, 1600, 198, 220, 220, 220, 366, 1102, 1851, 62, 615, 70, 7742, 18, 67, 1600, 198, 220, 220, 220, 366, 1102, 1851, 62, 9806, 7742, 18, 67, 1600, 198, 220, 220, 220, 366, 1102, 1851, 62, 42552, 425, 615, 70, 7742, 18, 67, 1600, 198, 220, 220, 220, 366, 1102, 1851, 62, 42552, 425, 9806, 7742, 18, 67, 1600, 198, 60, 628, 198, 4299, 3311, 1834, 2280, 27703, 27201, 276, 7, 565, 82, 25, 19850, 17, 35, 8, 4613, 28034, 13, 20471, 13, 26796, 25, 220, 1303, 645, 20402, 25, 327, 46815, 198, 220, 220, 220, 37227, 36918, 862, 257, 5933, 278, 8265, 284, 2251, 257, 45115, 2196, 543, 20354, 1973, 2452, 15880, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 357, 27201, 17, 35, 2599, 317, 362, 35, 5933, 278, 19937, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 537, 82, 287, 1391, 48003, 425, 48997, 27201, 17, 67, 11, 5436, 27201, 17, 67, 11, 33455, 27201, 17, 67, 11, 30019, 425, 11518, 27201, 17, 67, 92, 628, 220, 220, 220, 797, 27201, 276, 13, 834, 15390, 834, 796, 277, 37811, 198, 220, 220, 220, 3311, 30753, 1391, 565, 82, 13, 834, 3672, 834, 92, 628, 220, 220, 220, 19850, 278, 2482, 389, 8574, 1022, 4600, 11813, 63, 4208, 3508, 290, 973, 284, 5933, 8840, 198, 220, 220, 220, 17311, 1863, 262, 21964, 15793, 351, 257, 34752, 1431, 4600, 17497, 62, 7857, 44646, 198, 220, 220, 220, 17934, 25, 1114, 4600, 17497, 62, 7857, 796, 513, 47671, 262, 734, 2180, 2482, 389, 8574, 290, 973, 329, 5933, 278, 13, 198, 220, 220, 220, 4600, 11498, 35738, 62, 20797, 63, 15947, 1771, 284, 41216, 262, 1181, 351, 257, 7559, 6, 35666, 5344, 6, 15506, 286, 262, 198, 220, 220, 220, 5072, 286, 262, 717, 9706, 393, 351, 351, 7559, 6, 9107, 418, 6, 15506, 13, 628, 220, 220, 220, 16774, 2205, 25, 198, 220, 220, 220, 1391, 565, 82, 13, 834, 15390, 834, 92, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 797, 27201, 276, 628, 198, 48997, 27201, 7222, 18, 67, 796, 3311, 1834, 2280, 27703, 27201, 276, 7, 48997, 27201, 17, 67, 8, 198, 11518, 27201, 7222, 18, 67, 796, 3311, 1834, 2280, 27703, 27201, 276, 7, 11518, 27201, 17, 67, 8, 198, 48003, 425, 48997, 27201, 7222, 18, 67, 796, 3311, 1834, 2280, 27703, 27201, 276, 7, 48003, 425, 48997, 27201, 17, 67, 8, 198, 48003, 425, 11518, 27201, 7222, 18, 67, 796, 3311, 1834, 2280, 27703, 27201, 276, 7, 48003, 425, 11518, 27201, 17, 67, 8, 628, 628, 198 ]
2.623306
738
import pandas as pd import numpy as np import data_inputs, evaluate_EWRs #-------------------------------------------------------------------------------------------------- def sum_events(events): '''returns a sum of events''' return int(round(events.sum(), 0)) def get_frequency(events): '''Returns the frequency of years they occur in''' if events.count() == 0: result = 0 else: result = (int(events.sum())/int(events.count()))*100 return int(round(result, 0)) def get_average(input_events): '''Returns overall average length of events''' events = input_events.dropna() if len(events) == 0: result = 0 else: result = round(sum(events)/len(events),1) return result def initialise_summary_df_columns(input_dict): '''Ingest a dictionary of ewr yearly results and a list of statistical tests to perform initialises a dataframe with these as a multilevel heading and returns this''' analysis = data_inputs.analysis() column_list = [] list_of_arrays = [] for scenario, scenario_results in input_dict.items(): for sub_col in analysis: column_list = tuple((scenario, sub_col)) list_of_arrays.append(column_list) array_of_arrays =tuple(list_of_arrays) multi_col_df = pd.MultiIndex.from_tuples(array_of_arrays, names = ['scenario', 'type']) return multi_col_df def initialise_summary_df_rows(input_dict): '''Ingests a dictionary of ewr yearly results pulls the location information and the assocaited ewrs at each location, saves these as respective indexes and return the multi-level index''' index_1 = list() index_2 = list() index_3 = list() combined_index = list() # Get unique col list: for scenario, scenario_results in input_dict.items(): for site, site_results in scenario_results.items(): for PU in site_results: site_list = [] for col in site_results[PU]: if '_' in col: all_parts = col.split('_') remove_end = all_parts[:-1] if len(remove_end) > 1: EWR_code = '_'.join(remove_end) else: EWR_code = remove_end[0] else: EWR_code = col if EWR_code in site_list: continue else: site_list.append(EWR_code) add_index = tuple((site, PU, EWR_code)) if add_index not in combined_index: combined_index.append(add_index) unique_index = tuple(combined_index) multi_index = pd.MultiIndex.from_tuples(unique_index, names = ['gauge', 'planning unit', 'EWR']) return multi_index def allocate(df, add_this, idx, site, PU, EWR, scenario, category): '''Save element to a location in the dataframe''' df.loc[idx[[site], [PU], [EWR]], idx[scenario, category]] = add_this return df def summarise(input_dict): '''Ingests a dictionary with ewr pass/fails summarises these results and returns a single summary dataframe''' PU_items = data_inputs.get_planning_unit_info() EWR_table, see_notes_ewrs, undefined_ewrs, noThresh_df, no_duration, DSF_ewrs = data_inputs.get_EWR_table() # Initialise dataframe with multi level column heading and multi-index: multi_col_df = initialise_summary_df_columns(input_dict) index = initialise_summary_df_rows(input_dict) df = pd.DataFrame(index = index, columns=multi_col_df) # Run the analysis and add the results to the dataframe created above: for scenario, scenario_results in input_dict.items(): for site, site_results in scenario_results.items(): for PU in site_results: for col in site_results[PU]: all_parts = col.split('_') remove_end = all_parts[:-1] if len(remove_end) > 1: EWR = '_'.join(remove_end) else: EWR = remove_end[0] idx = pd.IndexSlice if ('_eventYears' in col): S = sum_events(site_results[PU][col]) df = allocate(df, S, idx, site, PU, EWR, scenario, 'Event years') F = get_frequency(site_results[PU][col]) df = allocate(df, F, idx, site, PU, EWR, scenario, 'Frequency') PU_num = PU_items['PlanningUnitID'].loc[PU_items[PU_items['PlanningUnitName'] == PU].index[0]] EWR_info = evaluate_EWRs.get_EWRs(PU_num, site, EWR, EWR_table, None, ['TF']) TF = EWR_info['frequency'] df = allocate(df, TF, idx, site, PU, EWR, scenario, 'Target frequency') elif ('_numAchieved' in col): S = sum_events(site_results[PU][col]) df = allocate(df, S, idx, site, PU, EWR, scenario, 'Achievement count') ME = get_average(site_results[PU][col]) df = allocate(df, ME, idx, site, PU, EWR, scenario, 'Achievements per year') elif ('_numEvents' in col): S = sum_events(site_results[PU][col]) df = allocate(df, S, idx, site, PU, EWR, scenario, 'Event count') ME = get_average(site_results[PU][col]) df = allocate(df, ME, idx, site, PU, EWR, scenario, 'Events per year') elif ('_eventLength' in col): EL = get_event_length(site_results[PU][col], S) df = allocate(df, EL, idx, site, PU, EWR, scenario, 'Event length') elif ('_totalEventDays' in col): AD = get_average(site_results[PU][col]) df = allocate(df, AD, idx, site, PU, EWR, scenario, 'Threshold days') elif ('daysBetweenEvents' in col): PU_num = PU_items['PlanningUnitID'].loc[PU_items[PU_items['PlanningUnitName'] == PU].index[0]] EWR_info = evaluate_EWRs.get_EWRs(PU_num, site, EWR, EWR_table, None, ['MIE']) DB = count_exceedence(site_results[PU][col], EWR_info) df = allocate(df, DB, idx, site, PU, EWR, scenario, 'Inter-event exceedence count') # Also save the max inter-event period to the data summary for reference EWR_info = evaluate_EWRs.get_EWRs(PU_num, site, EWR, EWR_table, None, ['MIE']) MIE = EWR_info['max_inter-event'] df = allocate(df, MIE, idx, site, PU, EWR, scenario, 'Max inter event period (years)') elif ('_missingDays' in col): MD = sum_events(site_results[PU][col]) df = allocate(df, MD, idx, site, PU, EWR, scenario, 'No data days') elif ('_totalPossibleDays' in col): TD = sum_events(site_results[PU][col]) df = allocate(df, TD, idx, site, PU, EWR, scenario, 'Total days') return df
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 1366, 62, 15414, 82, 11, 13446, 62, 6217, 31273, 198, 2, 10097, 3880, 438, 198, 198, 4299, 2160, 62, 31534, 7, 31534, 2599, 198, 220, 220, 220, 705, 7061, 7783, 82, 257, 2160, 286, 2995, 7061, 6, 198, 220, 220, 220, 1441, 493, 7, 744, 7, 31534, 13, 16345, 22784, 657, 4008, 198, 198, 4299, 651, 62, 35324, 7, 31534, 2599, 198, 220, 220, 220, 705, 7061, 35561, 262, 8373, 286, 812, 484, 3051, 287, 7061, 6, 198, 220, 220, 220, 611, 2995, 13, 9127, 3419, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 357, 600, 7, 31534, 13, 16345, 3419, 20679, 600, 7, 31534, 13, 9127, 3419, 4008, 9, 3064, 198, 220, 220, 220, 1441, 493, 7, 744, 7, 20274, 11, 657, 4008, 198, 198, 4299, 651, 62, 23913, 7, 15414, 62, 31534, 2599, 198, 220, 220, 220, 705, 7061, 35561, 4045, 2811, 4129, 286, 2995, 7061, 6, 198, 220, 220, 220, 2995, 796, 5128, 62, 31534, 13, 14781, 2616, 3419, 198, 220, 220, 220, 611, 18896, 7, 31534, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 657, 198, 220, 220, 220, 2073, 25, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2835, 7, 16345, 7, 31534, 20679, 11925, 7, 31534, 828, 16, 8, 198, 220, 220, 220, 1441, 1255, 198, 198, 4299, 4238, 786, 62, 49736, 62, 7568, 62, 28665, 82, 7, 15414, 62, 11600, 2599, 198, 220, 220, 220, 705, 7061, 27682, 395, 257, 22155, 286, 304, 18351, 24169, 2482, 290, 257, 1351, 286, 13905, 5254, 284, 1620, 198, 220, 220, 220, 4238, 2696, 257, 1366, 14535, 351, 777, 355, 257, 1963, 576, 626, 9087, 290, 5860, 428, 7061, 6, 198, 220, 220, 220, 3781, 796, 1366, 62, 15414, 82, 13, 20930, 3419, 198, 220, 220, 220, 5721, 62, 4868, 796, 17635, 198, 220, 220, 220, 1351, 62, 1659, 62, 3258, 592, 796, 17635, 198, 220, 220, 220, 329, 8883, 11, 8883, 62, 43420, 287, 5128, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 850, 62, 4033, 287, 3781, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 4868, 796, 46545, 19510, 1416, 39055, 11, 850, 62, 4033, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 62, 1659, 62, 3258, 592, 13, 33295, 7, 28665, 62, 4868, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 7177, 62, 1659, 62, 3258, 592, 796, 83, 29291, 7, 4868, 62, 1659, 62, 3258, 592, 8, 220, 220, 220, 220, 198, 220, 220, 220, 5021, 62, 4033, 62, 7568, 796, 279, 67, 13, 29800, 15732, 13, 6738, 62, 28047, 2374, 7, 18747, 62, 1659, 62, 3258, 592, 11, 3891, 796, 37250, 1416, 39055, 3256, 705, 4906, 6, 12962, 628, 220, 220, 220, 1441, 5021, 62, 4033, 62, 7568, 198, 220, 220, 220, 220, 198, 4299, 4238, 786, 62, 49736, 62, 7568, 62, 8516, 7, 15414, 62, 11600, 2599, 198, 220, 220, 220, 705, 7061, 27682, 3558, 257, 22155, 286, 304, 18351, 24169, 2482, 198, 220, 220, 220, 16194, 262, 4067, 1321, 290, 262, 840, 11216, 863, 304, 86, 3808, 379, 1123, 4067, 11, 198, 220, 220, 220, 16031, 777, 355, 11756, 39199, 290, 1441, 262, 5021, 12, 5715, 6376, 7061, 6, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6376, 62, 16, 796, 1351, 3419, 198, 220, 220, 220, 6376, 62, 17, 796, 1351, 3419, 198, 220, 220, 220, 6376, 62, 18, 796, 1351, 3419, 198, 220, 220, 220, 5929, 62, 9630, 796, 1351, 3419, 198, 220, 220, 220, 1303, 3497, 3748, 951, 1351, 25, 198, 220, 220, 220, 329, 8883, 11, 8883, 62, 43420, 287, 5128, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2524, 11, 2524, 62, 43420, 287, 8883, 62, 43420, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24676, 287, 2524, 62, 43420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 951, 287, 2524, 62, 43420, 58, 5105, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 62, 6, 287, 951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 42632, 796, 951, 13, 35312, 10786, 62, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 437, 796, 477, 62, 42632, 58, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 28956, 62, 437, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 18564, 62, 8189, 796, 705, 62, 4458, 22179, 7, 28956, 62, 437, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 18564, 62, 8189, 796, 4781, 62, 437, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 18564, 62, 8189, 796, 951, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 412, 18564, 62, 8189, 287, 2524, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 62, 4868, 13, 33295, 7, 6217, 49, 62, 8189, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 9630, 796, 46545, 19510, 15654, 11, 24676, 11, 412, 18564, 62, 8189, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 751, 62, 9630, 407, 287, 5929, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5929, 62, 9630, 13, 33295, 7, 2860, 62, 9630, 8, 198, 220, 220, 220, 3748, 62, 9630, 796, 46545, 7, 24011, 1389, 62, 9630, 8, 198, 220, 220, 220, 5021, 62, 9630, 796, 279, 67, 13, 29800, 15732, 13, 6738, 62, 28047, 2374, 7, 34642, 62, 9630, 11, 3891, 796, 37250, 70, 559, 469, 3256, 705, 11578, 768, 4326, 3256, 705, 6217, 49, 6, 12962, 628, 220, 220, 220, 1441, 5021, 62, 9630, 198, 198, 4299, 31935, 7, 7568, 11, 751, 62, 5661, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 6536, 2599, 198, 220, 220, 220, 705, 7061, 16928, 5002, 284, 257, 4067, 287, 262, 1366, 14535, 7061, 6, 198, 220, 220, 220, 47764, 13, 17946, 58, 312, 87, 30109, 15654, 4357, 685, 5105, 4357, 685, 6217, 49, 60, 4357, 4686, 87, 58, 1416, 39055, 11, 6536, 11907, 796, 751, 62, 5661, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 47764, 198, 220, 220, 220, 220, 198, 4299, 15676, 786, 7, 15414, 62, 11600, 2599, 198, 220, 220, 220, 705, 7061, 27682, 3558, 257, 22155, 351, 304, 18351, 1208, 14, 69, 1768, 198, 220, 220, 220, 15676, 2696, 777, 2482, 290, 5860, 257, 2060, 10638, 1366, 14535, 7061, 6, 198, 220, 220, 220, 24676, 62, 23814, 796, 1366, 62, 15414, 82, 13, 1136, 62, 11578, 768, 62, 20850, 62, 10951, 3419, 198, 220, 220, 220, 412, 18564, 62, 11487, 11, 766, 62, 17815, 62, 413, 3808, 11, 28721, 62, 413, 3808, 11, 645, 817, 3447, 62, 7568, 11, 645, 62, 32257, 11, 17400, 37, 62, 413, 3808, 796, 1366, 62, 15414, 82, 13, 1136, 62, 6217, 49, 62, 11487, 3419, 198, 220, 220, 220, 1303, 20768, 786, 1366, 14535, 351, 5021, 1241, 5721, 9087, 290, 5021, 12, 9630, 25, 198, 220, 220, 220, 5021, 62, 4033, 62, 7568, 796, 4238, 786, 62, 49736, 62, 7568, 62, 28665, 82, 7, 15414, 62, 11600, 8, 198, 220, 220, 220, 6376, 796, 4238, 786, 62, 49736, 62, 7568, 62, 8516, 7, 15414, 62, 11600, 8, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 9630, 796, 6376, 11, 15180, 28, 41684, 62, 4033, 62, 7568, 8, 198, 220, 220, 220, 1303, 5660, 262, 3781, 290, 751, 262, 2482, 284, 262, 1366, 14535, 2727, 2029, 25, 198, 220, 220, 220, 329, 8883, 11, 8883, 62, 43420, 287, 5128, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2524, 11, 2524, 62, 43420, 287, 8883, 62, 43420, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24676, 287, 2524, 62, 43420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 951, 287, 2524, 62, 43420, 58, 5105, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 42632, 796, 951, 13, 35312, 10786, 62, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 437, 796, 477, 62, 42632, 58, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 28956, 62, 437, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 18564, 796, 705, 62, 4458, 22179, 7, 28956, 62, 437, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 18564, 796, 4781, 62, 437, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 279, 67, 13, 15732, 11122, 501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 62, 15596, 40630, 6, 287, 951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 796, 2160, 62, 31534, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 311, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 9237, 812, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 796, 651, 62, 35324, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 376, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 37, 28707, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24676, 62, 22510, 796, 24676, 62, 23814, 17816, 20854, 768, 26453, 2389, 6, 4083, 17946, 58, 5105, 62, 23814, 58, 5105, 62, 23814, 17816, 20854, 768, 26453, 5376, 20520, 6624, 24676, 4083, 9630, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 18564, 62, 10951, 796, 13446, 62, 6217, 31273, 13, 1136, 62, 6217, 31273, 7, 5105, 62, 22510, 11, 2524, 11, 412, 18564, 11, 412, 18564, 62, 11487, 11, 6045, 11, 37250, 10234, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24958, 796, 412, 18564, 62, 10951, 17816, 35324, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 24958, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 21745, 8373, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19203, 62, 22510, 32, 3043, 1079, 6, 287, 951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 796, 2160, 62, 31534, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 311, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 32, 24957, 434, 954, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11948, 796, 651, 62, 23913, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 11948, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 32, 24957, 902, 583, 614, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19203, 62, 22510, 37103, 6, 287, 951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 796, 2160, 62, 31534, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 311, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 9237, 954, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11948, 796, 651, 62, 23913, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 11948, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 37103, 583, 614, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19203, 62, 15596, 24539, 6, 287, 951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17852, 796, 651, 62, 15596, 62, 13664, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 4357, 311, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 17852, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 9237, 4129, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19203, 62, 23350, 9237, 38770, 6, 287, 951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5984, 796, 651, 62, 23913, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 5984, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 817, 10126, 1528, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19203, 12545, 25262, 37103, 6, 287, 951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24676, 62, 22510, 796, 24676, 62, 23814, 17816, 20854, 768, 26453, 2389, 6, 4083, 17946, 58, 5105, 62, 23814, 58, 5105, 62, 23814, 17816, 20854, 768, 26453, 5376, 20520, 6624, 24676, 4083, 9630, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 18564, 62, 10951, 796, 13446, 62, 6217, 31273, 13, 1136, 62, 6217, 31273, 7, 5105, 62, 22510, 11, 2524, 11, 412, 18564, 11, 412, 18564, 62, 11487, 11, 6045, 11, 37250, 8895, 36, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20137, 796, 954, 62, 1069, 2707, 594, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 4357, 412, 18564, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 20137, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 9492, 12, 15596, 7074, 594, 954, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4418, 3613, 262, 3509, 987, 12, 15596, 2278, 284, 262, 1366, 10638, 329, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 18564, 62, 10951, 796, 13446, 62, 6217, 31273, 13, 1136, 62, 6217, 31273, 7, 5105, 62, 22510, 11, 2524, 11, 412, 18564, 11, 412, 18564, 62, 11487, 11, 6045, 11, 37250, 8895, 36, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 10008, 796, 412, 18564, 62, 10951, 17816, 9806, 62, 3849, 12, 15596, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 337, 10008, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 11518, 987, 1785, 2278, 357, 19002, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19203, 62, 45688, 38770, 6, 287, 951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10670, 796, 2160, 62, 31534, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 10670, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 2949, 1366, 1528, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19203, 62, 23350, 47, 4733, 38770, 6, 287, 951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13320, 796, 2160, 62, 31534, 7, 15654, 62, 43420, 58, 5105, 7131, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 31935, 7, 7568, 11, 13320, 11, 4686, 87, 11, 2524, 11, 24676, 11, 412, 18564, 11, 8883, 11, 705, 14957, 1528, 11537, 198, 220, 220, 220, 1441, 47764 ]
2.006166
3,730
# Crie um programa que leia o nome e o preço de vários produtos. # O programa deverá perguntar se o usuário vai continuar ou não. No final, mostre: # A) qual é o total gasto na compra. # B) quantos produtos custam mais de R$1000. # C) qual é o nome do produto mais barato. n = '' p = 0 t = 0 c = 0 b_p = 0 # preço produto mais barato b_n = '' # nome produto mais barato while True: n = input('Nome do produto: ') p = float(input('Valor: ')) if t == 0 or p < b_p: b_n = n b_p = p if p > 1000: c += 1 t += p flag = ' ' while flag not in 'SN': flag = input('Deseja continuar? [S/N] ').upper()[0] if flag == 'N': break print(f'Total gasto na compra: R$ {t:.2f}') print(f'{c} produtos custaram mais que R$ 1000,00') print(f'{b_n} foi o produto mais barato custando R$ {b_p:.2f}')
[ 2, 327, 5034, 23781, 1430, 64, 8358, 443, 544, 267, 299, 462, 304, 267, 662, 16175, 78, 390, 410, 6557, 380, 418, 40426, 315, 418, 13, 198, 2, 440, 1430, 64, 390, 332, 6557, 583, 70, 2797, 283, 384, 267, 514, 84, 6557, 27250, 410, 1872, 11143, 283, 267, 84, 299, 28749, 13, 1400, 2457, 11, 749, 260, 25, 198, 2, 317, 8, 4140, 38251, 267, 2472, 21956, 78, 12385, 552, 430, 13, 198, 2, 347, 8, 5554, 418, 40426, 315, 418, 9378, 321, 285, 15152, 390, 371, 3, 12825, 13, 198, 2, 327, 8, 4140, 38251, 267, 299, 462, 466, 40426, 9390, 285, 15152, 2318, 5549, 13, 198, 77, 796, 10148, 198, 79, 796, 657, 198, 83, 796, 657, 198, 66, 796, 657, 198, 65, 62, 79, 796, 657, 220, 1303, 662, 16175, 78, 40426, 9390, 285, 15152, 2318, 5549, 198, 65, 62, 77, 796, 10148, 220, 1303, 299, 462, 40426, 9390, 285, 15152, 2318, 5549, 198, 4514, 6407, 25, 198, 220, 220, 220, 299, 796, 5128, 10786, 45, 462, 466, 40426, 9390, 25, 705, 8, 198, 220, 220, 220, 279, 796, 12178, 7, 15414, 10786, 7762, 273, 25, 705, 4008, 198, 220, 220, 220, 611, 256, 6624, 657, 393, 279, 1279, 275, 62, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 77, 796, 299, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 79, 796, 279, 198, 220, 220, 220, 611, 279, 1875, 8576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 15853, 352, 198, 220, 220, 220, 256, 15853, 279, 198, 220, 220, 220, 6056, 796, 705, 705, 198, 220, 220, 220, 981, 6056, 407, 287, 705, 15571, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 5128, 10786, 35, 2771, 6592, 11143, 283, 30, 685, 50, 14, 45, 60, 705, 737, 45828, 3419, 58, 15, 60, 198, 220, 220, 220, 611, 6056, 6624, 705, 45, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 4798, 7, 69, 6, 14957, 21956, 78, 12385, 552, 430, 25, 371, 3, 1391, 83, 25, 13, 17, 69, 92, 11537, 198, 4798, 7, 69, 6, 90, 66, 92, 40426, 315, 418, 9378, 41158, 285, 15152, 8358, 371, 3, 8576, 11, 405, 11537, 198, 4798, 7, 69, 6, 90, 65, 62, 77, 92, 11511, 72, 267, 40426, 9390, 285, 15152, 2318, 5549, 9378, 25440, 371, 3, 1391, 65, 62, 79, 25, 13, 17, 69, 92, 11537, 198 ]
2.091133
406
import os import sys import logging sys.path.append(os.path.dirname(os.path.realpath(__file__))) from sdc_etl_libs.database_helpers.SnowflakeDatabase import SnowflakeDatabase from sdc_etl_libs.database_helpers.NexusDatabase import NexusDatabase from sdc_etl_libs.database_helpers.MySqlDatabase import MySqlDatabase from sdc_etl_libs.database_helpers.PostgresSqlDatabase import PostgresSqlDatabase logging.basicConfig( format='%(levelname)s: %(asctime)s: ' '%(funcName)s: %(message)s') logger = logging.getLogger(__name__) logger.setLevel(logging.INFO)
[ 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 18931, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 22305, 198, 6738, 264, 17896, 62, 316, 75, 62, 8019, 82, 13, 48806, 62, 16794, 364, 13, 28974, 47597, 38105, 1330, 7967, 47597, 38105, 198, 6738, 264, 17896, 62, 316, 75, 62, 8019, 82, 13, 48806, 62, 16794, 364, 13, 45, 1069, 385, 38105, 1330, 16756, 38105, 198, 6738, 264, 17896, 62, 316, 75, 62, 8019, 82, 13, 48806, 62, 16794, 364, 13, 3666, 50, 13976, 38105, 1330, 2011, 50, 13976, 38105, 198, 6738, 264, 17896, 62, 316, 75, 62, 8019, 82, 13, 48806, 62, 16794, 364, 13, 6307, 34239, 50, 13976, 38105, 1330, 2947, 34239, 50, 13976, 38105, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 198, 220, 220, 220, 5794, 11639, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 292, 310, 524, 8, 82, 25, 220, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 7, 20786, 5376, 8, 82, 25, 4064, 7, 20500, 8, 82, 11537, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198 ]
2.651163
215
import dataiku def delete_orphaned_datasets(client=None, project_key=None, drop_data=False, dry_run=True): """Delete datasets that are not linked to any recipe. """ prj = client.get_project(project_key) flow = prj.get_flow() graph = flow.get_graph() cpt = 0 for name, props in graph.nodes.items(): if not props["predecessors"] and not props["successors"]: print(f"- Deleting {name}...") ds = prj.get_dataset(name) if not dry_run: ds.delete(drop_data=drop_data) cpt +=1 else: print("Dry run: nothing was deleted.") print(f"{cpt} datasets deleted.")
[ 11748, 1366, 28643, 198, 198, 4299, 12233, 62, 13425, 22739, 62, 19608, 292, 1039, 7, 16366, 28, 14202, 11, 1628, 62, 2539, 28, 14202, 11, 4268, 62, 7890, 28, 25101, 11, 5894, 62, 5143, 28, 17821, 2599, 198, 220, 220, 220, 37227, 38727, 40522, 326, 389, 407, 6692, 284, 597, 8364, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 778, 73, 796, 5456, 13, 1136, 62, 16302, 7, 16302, 62, 2539, 8, 198, 220, 220, 220, 5202, 796, 778, 73, 13, 1136, 62, 11125, 3419, 198, 220, 220, 220, 4823, 796, 5202, 13, 1136, 62, 34960, 3419, 198, 220, 220, 220, 269, 457, 796, 657, 198, 220, 220, 220, 329, 1438, 11, 25744, 287, 4823, 13, 77, 4147, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 25744, 14692, 28764, 721, 23295, 8973, 290, 407, 25744, 14692, 13138, 669, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 26793, 42226, 889, 1391, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 82, 796, 778, 73, 13, 1136, 62, 19608, 292, 316, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5894, 62, 5143, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 82, 13, 33678, 7, 14781, 62, 7890, 28, 14781, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 457, 15853, 16, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 35, 563, 1057, 25, 2147, 373, 13140, 19570, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 66, 457, 92, 40522, 13140, 19570, 198 ]
2.14375
320
#!/usr/bin/env python3 from urllib.request import urlopen from urllib.parse import unquote import base64 import re n3ro_rss_link = input("N3RO SIP002 URIs: ").strip() data = urlopen(n3ro_rss_link).read() links = base64.b64decode(data).decode() for link in links.splitlines(): matcher = re.match(r"ss://(.+)@(.+)#(.+)", link) a = base64.b64decode(matcher.group(1)).decode() b = matcher.group(2) c = unquote(matcher.group(3)) ss_link = base64.b64encode((a + '@' + b).encode()).decode() remark = c[:c.index('#')].replace(' ', '') print('ss://' + ss_link + '#' + remark)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 6738, 2956, 297, 571, 13, 25927, 1330, 19016, 9654, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 555, 22708, 198, 11748, 2779, 2414, 198, 11748, 302, 198, 198, 77, 18, 305, 62, 42216, 62, 8726, 796, 5128, 7203, 45, 18, 13252, 311, 4061, 21601, 37902, 3792, 25, 366, 737, 36311, 3419, 198, 198, 7890, 796, 19016, 9654, 7, 77, 18, 305, 62, 42216, 62, 8726, 737, 961, 3419, 198, 28751, 796, 2779, 2414, 13, 65, 2414, 12501, 1098, 7, 7890, 737, 12501, 1098, 3419, 198, 1640, 2792, 287, 6117, 13, 35312, 6615, 33529, 198, 220, 220, 220, 2603, 2044, 796, 302, 13, 15699, 7, 81, 1, 824, 1378, 7, 13, 28988, 31, 7, 13, 28988, 2, 7, 13, 28988, 1600, 2792, 8, 198, 220, 220, 220, 257, 796, 2779, 2414, 13, 65, 2414, 12501, 1098, 7, 6759, 2044, 13, 8094, 7, 16, 29720, 12501, 1098, 3419, 198, 220, 220, 220, 275, 796, 2603, 2044, 13, 8094, 7, 17, 8, 198, 220, 220, 220, 269, 796, 555, 22708, 7, 6759, 2044, 13, 8094, 7, 18, 4008, 628, 220, 220, 220, 37786, 62, 8726, 796, 2779, 2414, 13, 65, 2414, 268, 8189, 19510, 64, 1343, 705, 31, 6, 1343, 275, 737, 268, 8189, 3419, 737, 12501, 1098, 3419, 198, 220, 220, 220, 6919, 796, 269, 58, 25, 66, 13, 9630, 10786, 2, 11537, 4083, 33491, 10786, 46083, 10148, 8, 198, 220, 220, 220, 3601, 10786, 824, 1378, 6, 1343, 37786, 62, 8726, 1343, 705, 2, 6, 1343, 6919, 8, 198 ]
2.317829
258
import math from itertools import islice from time import ctime print(ctime()) print("" "fibonacci algorithms.py") print("Iterative positive and negative") print(ctime()) print(ctime()) print("expected Output:") print( "-832040 514229 -317811 196418 -121393 75025 -46368 28657 -17711 " "10946 -6765 4181 -2584 1597 -987 610 -377 233 -144 89 -55 34 -21 13" " -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 " "2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040") for i in range(-30, 31): print(fib(i)) print(ctime()) print("Analytic") print("Binget formula:") for i in range(1, 31): print(analytic_fibonacci(i)) print("expected Output:") print( "1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 " "4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040") print("Iterative") print("Recursive") print("Recursive with Memoization") fm = fib_memo() for i in range(1, 31): print(fm(i)) print("expected Output:") print("1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 " "2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 " "317811 514229 832040") print("Better Recursive doesn't need Memoization") print("The recursive code as written two sections above is incredibly " "slow and inefficient" " due to the nested recursion calls. Although the memoization " "above makes the code " "run faster, it is at the cost of extra memory use. The below " "code is syntactically " "recursive but actually encodes the efficient iterative process, and thus doesn't " "require memoization: ") print("However, although much faster and not requiring memory, the above " "code can only work to a limited 'n' due to the limit on stack " "recursion " "depth by Python; it is better to use the iterative code above or " "the generative one below.") print("Generative") for i in fib_gen(11): print(i) print("Example use: " "for i in fibGen(11)") print("expect: [0,1,1,2,3,5,8,13,21,34,55]") print("Matrix-Based") print("Translation of the matrix-based approach used in F#.") print("Large step recurrence") print("This is much faster for a single, large value of n: ") print("calculating it takes a few seconds, printing it takes eons... original ex. 100000000 now 1024") print("fib(1024)") print(fib(1024)) print("Same as above but slightly faster") print("Putting the dictionary outside the function makes this about 2 seconds faster, could just make a wrapper:") F = {0: 0, 1: 1, 2: 1} print(fib(1024)) print("Generative with Recursion") print("This can get very slow and uses a lot of memory. Can be sped up by caching the generator results.") print("Yield fib[n+1] + fib[n]") print("yield 1 ; have to start somewhere") print("Yield fib[n+1] + fib[n]") f = fib() for _ in range(1, 9): print(next(f)) print("expected Output:") print("[1, 1, 2, 3, 5, 8, 13, 21, 34]") print("Another version of recursive generators solution, starting from 0") print(tuple(islice(fib2(), 10)))
[ 11748, 10688, 198, 6738, 340, 861, 10141, 1330, 318, 75, 501, 198, 6738, 640, 1330, 269, 2435, 198, 198, 4798, 7, 310, 524, 28955, 628, 198, 4798, 7203, 1, 198, 220, 220, 220, 220, 220, 366, 69, 571, 261, 44456, 16113, 13, 9078, 4943, 198, 198, 4798, 7203, 29993, 876, 3967, 290, 4633, 4943, 198, 198, 4798, 7, 310, 524, 28955, 628, 198, 198, 4798, 7, 310, 524, 28955, 198, 4798, 7203, 40319, 25235, 25, 4943, 198, 4798, 7, 198, 220, 220, 220, 27444, 5999, 1238, 1821, 642, 1415, 23539, 532, 18, 23188, 1157, 17575, 1507, 532, 1065, 1485, 6052, 19683, 1495, 532, 3510, 27412, 2579, 37680, 532, 22413, 1157, 366, 198, 220, 220, 220, 366, 14454, 3510, 532, 3134, 2996, 604, 27057, 532, 1495, 5705, 1315, 5607, 532, 44183, 44300, 532, 26514, 30435, 532, 18444, 9919, 532, 2816, 4974, 532, 2481, 1511, 1, 198, 220, 220, 220, 366, 532, 23, 642, 532, 18, 362, 532, 16, 352, 657, 352, 352, 362, 513, 642, 807, 1511, 2310, 4974, 5996, 9919, 20224, 30435, 42163, 44300, 860, 5774, 1315, 5607, 366, 198, 220, 220, 220, 366, 1495, 5705, 604, 27057, 8275, 2996, 16003, 3510, 26607, 1157, 2579, 37680, 6337, 27412, 19683, 1495, 1105, 1485, 6052, 17575, 1507, 513, 23188, 1157, 642, 1415, 23539, 9698, 1238, 1821, 4943, 198, 198, 1640, 1312, 287, 2837, 32590, 1270, 11, 3261, 2599, 198, 220, 220, 220, 3601, 7, 69, 571, 7, 72, 4008, 198, 198, 4798, 7, 310, 524, 28955, 198, 4798, 7203, 37702, 13370, 4943, 198, 4798, 7203, 33, 278, 316, 10451, 25, 4943, 628, 198, 198, 1640, 1312, 287, 2837, 7, 16, 11, 3261, 2599, 198, 220, 220, 220, 3601, 7, 38200, 13370, 62, 69, 571, 261, 44456, 7, 72, 4008, 198, 198, 4798, 7203, 40319, 25235, 25, 4943, 198, 198, 4798, 7, 198, 220, 220, 220, 366, 16, 352, 362, 513, 642, 807, 1511, 2310, 4974, 5996, 9919, 20224, 30435, 42163, 44300, 860, 5774, 1315, 5607, 1679, 5705, 366, 198, 220, 220, 220, 366, 19, 27057, 8275, 2996, 16003, 3510, 26607, 1157, 2579, 37680, 6337, 27412, 19683, 1495, 1105, 1485, 6052, 17575, 1507, 513, 23188, 1157, 642, 1415, 23539, 9698, 1238, 1821, 4943, 198, 4798, 7203, 29993, 876, 4943, 628, 198, 198, 4798, 7203, 6690, 30753, 4943, 628, 198, 198, 4798, 7203, 6690, 30753, 351, 4942, 78, 1634, 4943, 628, 198, 198, 38353, 796, 12900, 62, 11883, 78, 3419, 198, 1640, 1312, 287, 2837, 7, 16, 11, 3261, 2599, 198, 220, 220, 220, 3601, 7, 38353, 7, 72, 4008, 198, 198, 4798, 7203, 40319, 25235, 25, 4943, 198, 198, 4798, 7203, 16, 352, 362, 513, 642, 807, 1511, 2310, 4974, 5996, 9919, 20224, 30435, 42163, 44300, 860, 5774, 1315, 5607, 366, 198, 220, 220, 220, 220, 220, 366, 1495, 5705, 604, 27057, 8275, 2996, 16003, 3510, 26607, 1157, 2579, 37680, 6337, 27412, 19683, 1495, 1105, 1485, 6052, 17575, 1507, 366, 198, 220, 220, 220, 220, 220, 366, 18, 23188, 1157, 642, 1415, 23539, 9698, 1238, 1821, 4943, 198, 4798, 7203, 28971, 3311, 30753, 1595, 470, 761, 4942, 78, 1634, 4943, 198, 4798, 7203, 464, 45115, 2438, 355, 3194, 734, 9004, 2029, 318, 8131, 366, 198, 220, 220, 220, 220, 220, 366, 38246, 290, 30904, 1, 198, 220, 220, 220, 220, 220, 366, 2233, 284, 262, 28376, 664, 24197, 3848, 13, 4900, 262, 16155, 1634, 366, 198, 220, 220, 220, 220, 220, 366, 29370, 1838, 262, 2438, 366, 198, 220, 220, 220, 220, 220, 366, 5143, 5443, 11, 340, 318, 379, 262, 1575, 286, 3131, 4088, 779, 13, 383, 2174, 366, 198, 220, 220, 220, 220, 220, 366, 8189, 318, 7419, 529, 1146, 366, 198, 220, 220, 220, 220, 220, 366, 8344, 30753, 475, 1682, 2207, 4147, 262, 6942, 11629, 876, 1429, 11, 290, 4145, 1595, 470, 366, 198, 220, 220, 220, 220, 220, 366, 46115, 16155, 1634, 25, 366, 8, 628, 198, 198, 4798, 7203, 4864, 11, 3584, 881, 5443, 290, 407, 10616, 4088, 11, 262, 2029, 366, 198, 220, 220, 220, 220, 220, 366, 8189, 460, 691, 670, 284, 257, 3614, 705, 77, 6, 2233, 284, 262, 4179, 319, 8931, 366, 198, 220, 220, 220, 220, 220, 366, 8344, 24197, 366, 198, 220, 220, 220, 220, 220, 366, 18053, 416, 11361, 26, 340, 318, 1365, 284, 779, 262, 11629, 876, 2438, 2029, 393, 366, 198, 220, 220, 220, 220, 220, 366, 1169, 1152, 876, 530, 2174, 19570, 198, 198, 4798, 7203, 8645, 876, 4943, 628, 198, 198, 1640, 1312, 287, 12900, 62, 5235, 7, 1157, 2599, 198, 220, 220, 220, 3601, 7, 72, 8, 198, 198, 4798, 7203, 16281, 779, 25, 366, 198, 220, 220, 220, 220, 220, 366, 1640, 1312, 287, 12900, 13746, 7, 1157, 8, 4943, 198, 198, 4798, 7203, 1069, 806, 25, 685, 15, 11, 16, 11, 16, 11, 17, 11, 18, 11, 20, 11, 23, 11, 1485, 11, 2481, 11, 2682, 11, 2816, 60, 4943, 198, 198, 4798, 7203, 46912, 12, 15001, 4943, 198, 4798, 7203, 48313, 286, 262, 17593, 12, 3106, 3164, 973, 287, 376, 2, 19570, 628, 628, 198, 4798, 7203, 21968, 2239, 664, 33928, 4943, 198, 4798, 7203, 1212, 318, 881, 5443, 329, 257, 2060, 11, 1588, 1988, 286, 299, 25, 366, 8, 628, 198, 198, 4798, 7203, 9948, 3129, 803, 340, 2753, 257, 1178, 4201, 11, 13570, 340, 2753, 304, 684, 986, 2656, 409, 13, 1802, 10535, 783, 28119, 4943, 198, 4798, 7203, 69, 571, 7, 35500, 8, 4943, 198, 4798, 7, 69, 571, 7, 35500, 4008, 198, 198, 4798, 7203, 30556, 355, 2029, 475, 4622, 5443, 4943, 198, 4798, 7203, 46399, 262, 22155, 2354, 262, 2163, 1838, 428, 546, 362, 4201, 5443, 11, 714, 655, 787, 257, 29908, 25, 4943, 198, 198, 37, 796, 1391, 15, 25, 657, 11, 352, 25, 352, 11, 362, 25, 352, 92, 628, 198, 198, 4798, 7, 69, 571, 7, 35500, 4008, 628, 198, 4798, 7203, 8645, 876, 351, 3311, 24197, 4943, 198, 4798, 7203, 1212, 460, 651, 845, 3105, 290, 3544, 257, 1256, 286, 4088, 13, 1680, 307, 40424, 510, 416, 40918, 262, 17301, 2482, 19570, 198, 4798, 7203, 56, 1164, 12900, 58, 77, 10, 16, 60, 1343, 12900, 58, 77, 60, 4943, 198, 4798, 7203, 88, 1164, 352, 220, 2162, 220, 423, 284, 923, 7382, 4943, 198, 4798, 7203, 56, 1164, 12900, 58, 77, 10, 16, 60, 1343, 12900, 58, 77, 60, 4943, 628, 198, 198, 69, 796, 12900, 3419, 198, 1640, 4808, 287, 2837, 7, 16, 11, 860, 2599, 198, 220, 220, 220, 3601, 7, 19545, 7, 69, 4008, 198, 4798, 7203, 40319, 25235, 25, 4943, 198, 4798, 7203, 58, 16, 11, 352, 11, 362, 11, 513, 11, 642, 11, 807, 11, 1511, 11, 2310, 11, 4974, 60, 4943, 198, 198, 4798, 7203, 6610, 2196, 286, 45115, 27298, 4610, 11, 3599, 422, 657, 4943, 628, 198, 198, 4798, 7, 83, 29291, 7, 3044, 501, 7, 69, 571, 17, 22784, 838, 22305, 198 ]
2.755497
1,137
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train and evaluate the model.""" import os import logging import tensorflow as tf from tensorflow import keras import nvtabular as nvt from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.inference.triton import export_tensorflow_ensemble from src.common import features, utils from src.model_training import model HIDDEN_UNITS = [128, 128] LEARNING_RATE = 0.001 BATCH_SIZE = 1024 * 32 NUM_EPOCHS = 1
[ 2, 15069, 33448, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 44077, 290, 13446, 262, 2746, 526, 15931, 198, 198, 11748, 28686, 198, 11748, 18931, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 1330, 41927, 292, 198, 11748, 299, 85, 8658, 934, 355, 299, 36540, 198, 6738, 299, 85, 8658, 934, 13, 29356, 13, 83, 22854, 11125, 1330, 17337, 292, 44015, 594, 17401, 11, 17337, 292, 44015, 594, 47139, 729, 198, 6738, 299, 85, 8658, 934, 13, 259, 4288, 13, 83, 799, 261, 1330, 10784, 62, 83, 22854, 11125, 62, 1072, 11306, 198, 198, 6738, 12351, 13, 11321, 1330, 3033, 11, 3384, 4487, 198, 6738, 12351, 13, 19849, 62, 34409, 1330, 2746, 198, 198, 39, 2389, 41819, 62, 4944, 29722, 796, 685, 12762, 11, 13108, 60, 198, 2538, 1503, 15871, 62, 49, 6158, 796, 657, 13, 8298, 198, 33, 11417, 62, 33489, 796, 28119, 1635, 3933, 198, 41359, 62, 8905, 46, 3398, 50, 796, 352, 628, 628, 198 ]
3.428571
301
import pytesseract from PIL import Image img = Image.open("flag.png") text = pytesseract.image_to_string(img) print(rot_encode(7)(text)) if __name__ == '__main__': pass
[ 11748, 12972, 83, 408, 263, 529, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 9600, 796, 7412, 13, 9654, 7203, 32109, 13, 11134, 4943, 198, 5239, 796, 12972, 83, 408, 263, 529, 13, 9060, 62, 1462, 62, 8841, 7, 9600, 8, 628, 628, 198, 198, 4798, 7, 10599, 62, 268, 8189, 7, 22, 5769, 5239, 4008, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1208, 198 ]
2.432432
74
import json import requests import sys import yaml from bs4 import BeautifulSoup from os.path import exists from os import mkdir, environ if __name__ == '__main__': reposUrl = '' authToken = '' if len(sys.argv) > 1: reposUrl = sys.argv[1] authToken = sys.argv[2] else: # an orgs' repo list API url, in form of https://api.github.com/orgs/{org}/repos reposUrl = environ['GITHUB_CONTENT_SYNC_ORG_REPOS_URL'] # an auth token for example a PAT authToken = environ['GITHUB_CONTENT_SYNC_PAT'] # info to be pulled from github initDict = { 'id': 0, 'name': '', 'description': '', 'created_at': '', 'updated_at': '', 'pushed_at': '', 'license': '', 'html_url': '', 'topics': [], 'homepage': '', # we won't be getting the social img url from github's data source, but we need to instantiate it 'social_img_url': '' } headerValues = { # We should explicitly access the latest api version per github api 'default': 'application/vnd.github.v3+json', # To access topics, we must explicitly access a preview api version 'topics': 'application/vnd.github.mercy-preview+json' } contentOutput = [] repos = [] topics = set(()) keepIndexing = True print(f'Attempting to get content from {reposUrl}.') apiPage = 1 while keepIndexing: requestParams = {'page': apiPage, 'sort': 'updated'} getRepos = requests.get( reposUrl, headers={ 'Accept': headerValues['topics'], 'Authorization': f'token {authToken}' }, params=requestParams ) if getRepos.status_code != 200: keepIndexing = False print('Received non-200 status code', getRepos.status_code, 'while trying to scan repos. This generally ' 'means the process will fail. Likely you need ' 'to authenticate to get past Github API ' 'Limits. Halting content generation.') raise ValueError('Got non-200 status when trying to get content.') # Repo information syncing loop elif keepIndexing: if not json.loads(getRepos.text): keepIndexing = False print(f'End of list reached.') else: print(f'Saving page {apiPage} of API response and getting imagery URLs...') for repo in json.loads(getRepos.text): if not repo['archived'] and not repo['private']: for topic in repo['topics']: topics.add(topic) # Initialize an empty list entry compileRepoInfo = initDict.copy() # Iterate over data placeholders and pull the data from the correct repo in memory for detail in compileRepoInfo: if detail in repo: compileRepoInfo[detail] = repo[detail] if detail == 'html_url': pageContent = requests.get(repo[detail]).text parsePage = BeautifulSoup(pageContent, "html.parser") # limit tag search to head pageHead = parsePage.html.find('head') socialImageElement = pageHead.find("meta", attrs={"property": "og:image"}) if socialImageElement: if socialImageElement.has_attr('content'): compileRepoInfo['social_img_url'] = socialImageElement['content'] # Add to list of compiled repo entries for final output contentOutput.append(compileRepoInfo) apiPage += 1 print('Collating content...') if not exists('../assets/img/thumb/'): mkdir('../assets/img/thumb/') sortedTopics = list(topics) sortedTopics.sort() dump_json('../_data/topics.json', sortedTopics) dump_json('../_data/projects.json', contentOutput) print('Downloading images...') for repo in contentOutput: response = requests.get(repo['social_img_url']) if response.ok: file_name = repo['name'] file_type = response.headers['content-type'].split('/')[1] with open(f'../assets/img/thumb/{file_name}.{file_type}', 'wb') as file: file.write(response.content)
[ 11748, 33918, 198, 11748, 7007, 198, 11748, 25064, 198, 11748, 331, 43695, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 28686, 13, 6978, 1330, 7160, 198, 6738, 28686, 1330, 33480, 15908, 11, 551, 2268, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1128, 418, 28165, 796, 10148, 198, 220, 220, 220, 6284, 30642, 796, 10148, 628, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1128, 418, 28165, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 30642, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 281, 8745, 82, 6, 29924, 1351, 7824, 19016, 11, 287, 1296, 286, 3740, 1378, 15042, 13, 12567, 13, 785, 14, 2398, 82, 14, 90, 2398, 92, 14, 260, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 1128, 418, 28165, 796, 551, 2268, 17816, 38, 10554, 10526, 62, 37815, 3525, 62, 23060, 7792, 62, 1581, 38, 62, 35316, 2640, 62, 21886, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 281, 6284, 11241, 329, 1672, 257, 28748, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 30642, 796, 551, 2268, 17816, 38, 10554, 10526, 62, 37815, 3525, 62, 23060, 7792, 62, 47, 1404, 20520, 628, 220, 220, 220, 1303, 7508, 284, 307, 5954, 422, 33084, 198, 220, 220, 220, 2315, 35, 713, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25598, 62, 265, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 43162, 62, 265, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 79, 7474, 62, 265, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 43085, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6494, 62, 6371, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4852, 873, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11195, 7700, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 1839, 470, 307, 1972, 262, 1919, 33705, 19016, 422, 33084, 338, 1366, 2723, 11, 475, 356, 761, 284, 9113, 9386, 340, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14557, 62, 9600, 62, 6371, 10354, 10148, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 13639, 40161, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 815, 11777, 1895, 262, 3452, 40391, 2196, 583, 33084, 40391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 705, 31438, 14, 85, 358, 13, 12567, 13, 85, 18, 10, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 1895, 10233, 11, 356, 1276, 11777, 1895, 257, 12714, 40391, 2196, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4852, 873, 10354, 705, 31438, 14, 85, 358, 13, 12567, 13, 647, 948, 12, 3866, 1177, 10, 17752, 6, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 2695, 26410, 796, 17635, 198, 220, 220, 220, 1128, 418, 796, 17635, 198, 220, 220, 220, 10233, 796, 900, 7, 28955, 628, 220, 220, 220, 1394, 15732, 278, 796, 6407, 628, 220, 220, 220, 3601, 7, 69, 6, 37177, 278, 284, 651, 2695, 422, 1391, 260, 1930, 28165, 92, 2637, 8, 628, 220, 220, 220, 40391, 9876, 796, 352, 198, 220, 220, 220, 981, 1394, 15732, 278, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 10044, 4105, 796, 1391, 6, 7700, 10354, 40391, 9876, 11, 705, 30619, 10354, 705, 43162, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 651, 6207, 418, 796, 7007, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1128, 418, 28165, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38855, 10354, 13639, 40161, 17816, 4852, 873, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13838, 1634, 10354, 277, 470, 4233, 1391, 18439, 30642, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 25927, 10044, 4105, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 651, 6207, 418, 13, 13376, 62, 8189, 14512, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 15732, 278, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 3041, 6471, 1729, 12, 2167, 3722, 2438, 3256, 651, 6207, 418, 13, 13376, 62, 8189, 11, 705, 4514, 2111, 284, 9367, 1128, 418, 13, 770, 4143, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1326, 504, 262, 1429, 481, 2038, 13, 45974, 345, 761, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1462, 8323, 5344, 284, 651, 1613, 38994, 7824, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19352, 896, 13, 11023, 889, 2695, 5270, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 30074, 1729, 12, 2167, 3722, 618, 2111, 284, 651, 2695, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1432, 78, 1321, 6171, 2259, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1394, 15732, 278, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 33918, 13, 46030, 7, 1136, 6207, 418, 13, 5239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 15732, 278, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 12915, 286, 1351, 4251, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 50, 2703, 2443, 1391, 15042, 9876, 92, 286, 7824, 2882, 290, 1972, 19506, 32336, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 29924, 287, 33918, 13, 46030, 7, 1136, 6207, 418, 13, 5239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 29924, 17816, 998, 1572, 20520, 290, 407, 29924, 17816, 19734, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7243, 287, 29924, 17816, 4852, 873, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10233, 13, 2860, 7, 26652, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 281, 6565, 1351, 5726, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17632, 6207, 78, 12360, 796, 2315, 35, 713, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 40806, 378, 625, 1366, 1295, 10476, 290, 2834, 262, 1366, 422, 262, 3376, 29924, 287, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3703, 287, 17632, 6207, 78, 12360, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3703, 287, 29924, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17632, 6207, 78, 12360, 58, 49170, 60, 796, 29924, 58, 49170, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3703, 6624, 705, 6494, 62, 6371, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 19746, 796, 7007, 13, 1136, 7, 260, 7501, 58, 49170, 35944, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 9876, 796, 23762, 50, 10486, 7, 7700, 19746, 11, 366, 6494, 13, 48610, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4179, 7621, 2989, 284, 1182, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 13847, 796, 21136, 9876, 13, 6494, 13, 19796, 10786, 2256, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1919, 5159, 20180, 796, 2443, 13847, 13, 19796, 7203, 28961, 1600, 708, 3808, 28, 4895, 26745, 1298, 366, 519, 25, 9060, 20662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1919, 5159, 20180, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1919, 5159, 20180, 13, 10134, 62, 35226, 10786, 11299, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17632, 6207, 78, 12360, 17816, 14557, 62, 9600, 62, 6371, 20520, 796, 1919, 5159, 20180, 17816, 11299, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 284, 1351, 286, 14102, 29924, 12784, 329, 2457, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 26410, 13, 33295, 7, 5589, 576, 6207, 78, 12360, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 9876, 15853, 352, 628, 220, 220, 220, 3601, 10786, 22667, 803, 2695, 986, 11537, 198, 220, 220, 220, 611, 407, 7160, 10786, 40720, 19668, 14, 9600, 14, 400, 2178, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 33480, 15908, 10786, 40720, 19668, 14, 9600, 14, 400, 2178, 14, 11537, 628, 220, 220, 220, 23243, 25902, 796, 1351, 7, 4852, 873, 8, 198, 220, 220, 220, 23243, 25902, 13, 30619, 3419, 198, 220, 220, 220, 10285, 62, 17752, 10786, 40720, 62, 7890, 14, 4852, 873, 13, 17752, 3256, 23243, 25902, 8, 198, 220, 220, 220, 10285, 62, 17752, 10786, 40720, 62, 7890, 14, 42068, 13, 17752, 3256, 2695, 26410, 8, 628, 220, 220, 220, 3601, 10786, 10002, 278, 4263, 986, 11537, 198, 220, 220, 220, 329, 29924, 287, 2695, 26410, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 260, 7501, 17816, 14557, 62, 9600, 62, 6371, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 29924, 17816, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 796, 2882, 13, 50145, 17816, 11299, 12, 4906, 6, 4083, 35312, 10786, 14, 11537, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 6, 40720, 19668, 14, 9600, 14, 400, 2178, 14, 90, 7753, 62, 3672, 27422, 90, 7753, 62, 4906, 92, 3256, 705, 39346, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 26209, 13, 11299, 8, 198 ]
1.978084
2,464
#------------------------------------------------------------------------------ # Copyright (c) 2013, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ import wx from atom.api import Typed from enaml.application import Application, ProxyResolver from .wx_deferred_caller import DeferredCall, TimedCall from .wx_factories import WX_FACTORIES class WxApplication(Application): """ A Wx implementation of an Enaml application. A WxApplication uses the Wx toolkit to implement an Enaml UI that runs in the local process. """ #: The private QApplication instance. _wxapp = Typed(wx.App) def __init__(self): """ Initialize a WxApplication. """ super(WxApplication, self).__init__() self._wxapp = wx.GetApp() or wx.PySimpleApp() self.resolver = ProxyResolver(factories=WX_FACTORIES) #-------------------------------------------------------------------------- # Abstract API Implementation #-------------------------------------------------------------------------- def start(self): """ Start the application's main event loop. """ app = self._wxapp if not app.IsMainLoopRunning(): app.MainLoop() def stop(self): """ Stop the application's main event loop. """ app = self._wxapp if app.IsMainLoopRunning(): app.Exit() def deferred_call(self, callback, *args, **kwargs): """ Invoke a callable on the next cycle of the main event loop thread. Parameters ---------- callback : callable The callable object to execute at some point in the future. *args, **kwargs Any additional positional and keyword arguments to pass to the callback. """ DeferredCall(callback, *args, **kwargs) def timed_call(self, ms, callback, *args, **kwargs): """ Invoke a callable on the main event loop thread at a specified time in the future. Parameters ---------- ms : int The time to delay, in milliseconds, before executing the callable. callback : callable The callable object to execute at some point in the future. *args, **kwargs Any additional positional and keyword arguments to pass to the callback. """ TimedCall(ms, callback, *args, **kwargs) def is_main_thread(self): """ Indicates whether the caller is on the main gui thread. Returns ------- result : bool True if called from the main gui thread. False otherwise. """ return wx.Thread_IsMain()
[ 2, 10097, 26171, 198, 2, 15069, 357, 66, 8, 2211, 11, 399, 14913, 291, 7712, 4816, 13, 198, 2, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 40499, 347, 10305, 13789, 13, 198, 2, 198, 2, 383, 1336, 5964, 318, 287, 262, 2393, 27975, 45761, 13, 14116, 11, 9387, 351, 428, 3788, 13, 198, 2, 10097, 26171, 198, 11748, 266, 87, 198, 198, 6738, 22037, 13, 15042, 1330, 17134, 276, 198, 198, 6738, 551, 43695, 13, 31438, 1330, 15678, 11, 38027, 4965, 14375, 198, 198, 6738, 764, 49345, 62, 4299, 17436, 62, 13345, 263, 1330, 2896, 17436, 14134, 11, 5045, 276, 14134, 198, 6738, 764, 49345, 62, 22584, 1749, 1330, 370, 55, 62, 37, 10659, 1581, 11015, 628, 198, 4871, 370, 87, 23416, 7, 23416, 2599, 198, 220, 220, 220, 37227, 317, 370, 87, 7822, 286, 281, 2039, 43695, 3586, 13, 628, 220, 220, 220, 317, 370, 87, 23416, 3544, 262, 370, 87, 2891, 15813, 284, 3494, 281, 2039, 43695, 12454, 326, 198, 220, 220, 220, 4539, 287, 262, 1957, 1429, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 25, 383, 2839, 1195, 23416, 4554, 13, 198, 220, 220, 220, 4808, 49345, 1324, 796, 17134, 276, 7, 49345, 13, 4677, 8, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20768, 1096, 257, 370, 87, 23416, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 54, 87, 23416, 11, 2116, 737, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 49345, 1324, 796, 266, 87, 13, 3855, 4677, 3419, 393, 266, 87, 13, 20519, 26437, 4677, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 14375, 796, 38027, 4965, 14375, 7, 22584, 1749, 28, 54, 55, 62, 37, 10659, 1581, 11015, 8, 628, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 27741, 7824, 46333, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 825, 923, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7253, 262, 3586, 338, 1388, 1785, 9052, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 598, 796, 2116, 13557, 49345, 1324, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 598, 13, 3792, 13383, 39516, 28768, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 13383, 39516, 3419, 628, 220, 220, 220, 825, 2245, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13707, 262, 3586, 338, 1388, 1785, 9052, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 598, 796, 2116, 13557, 49345, 1324, 198, 220, 220, 220, 220, 220, 220, 220, 611, 598, 13, 3792, 13383, 39516, 28768, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30337, 3419, 628, 220, 220, 220, 825, 28651, 62, 13345, 7, 944, 11, 23838, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10001, 2088, 257, 869, 540, 319, 262, 1306, 6772, 286, 262, 1388, 1785, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 23838, 1058, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 869, 540, 2134, 284, 12260, 379, 617, 966, 287, 262, 2003, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 11, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4377, 3224, 45203, 290, 21179, 7159, 284, 1208, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 23838, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2896, 17436, 14134, 7, 47423, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 28805, 62, 13345, 7, 944, 11, 13845, 11, 23838, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10001, 2088, 257, 869, 540, 319, 262, 1388, 1785, 9052, 4704, 379, 257, 198, 220, 220, 220, 220, 220, 220, 220, 7368, 640, 287, 262, 2003, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 13845, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 640, 284, 5711, 11, 287, 38694, 11, 878, 23710, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 869, 540, 13, 628, 220, 220, 220, 220, 220, 220, 220, 23838, 1058, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 869, 540, 2134, 284, 12260, 379, 617, 966, 287, 262, 2003, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 11, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4377, 3224, 45203, 290, 21179, 7159, 284, 1208, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 23838, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5045, 276, 14134, 7, 907, 11, 23838, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 318, 62, 12417, 62, 16663, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1423, 16856, 1771, 262, 24955, 318, 319, 262, 1388, 11774, 4704, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 611, 1444, 422, 262, 1388, 11774, 4704, 13, 10352, 4306, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 266, 87, 13, 16818, 62, 3792, 13383, 3419, 198 ]
2.787619
1,050
import os import platform import pytest _is_win = bool(os.environ.get('IS_WIN', None)) _is_macos = bool(os.environ.get('IS_MAC', None)) _is_linux = not _is_macos and not _is_win windows_mark = pytest.mark.unittest if _is_win else pytest.mark.ignore macos_mark = pytest.mark.unittest if _is_macos else pytest.mark.ignore linux_mark = pytest.mark.unittest if _is_linux else pytest.mark.ignore _is_pypy = bool(os.environ.get('IS_PYPY', None)) _is_cpython = not _is_pypy pypy_mark = pytest.mark.unittest if _is_pypy else pytest.mark.ignore cpython_mark = pytest.mark.unittest if _is_cpython else pytest.mark.ignore vpy_tuple = platform.python_version_tuple() _is_py36 = vpy_tuple[:2] == ('3', '6') _is_py37 = vpy_tuple[:2] == ('3', '7') _is_py38 = vpy_tuple[:2] == ('3', '8') _is_py39 = vpy_tuple[:2] == ('3', '9') _is_py310 = vpy_tuple[:2] == ('3', '10') py36_mark = pytest.mark.unittest if _is_py36 else pytest.mark.ignore py37_mark = pytest.mark.unittest if _is_py37 else pytest.mark.ignore py38_mark = pytest.mark.unittest if _is_py38 else pytest.mark.ignore py39_mark = pytest.mark.unittest if _is_py39 else pytest.mark.ignore py310_mark = pytest.mark.unittest if _is_py310 else pytest.mark.ignore
[ 11748, 28686, 198, 11748, 3859, 198, 198, 11748, 12972, 9288, 198, 198, 62, 271, 62, 5404, 796, 20512, 7, 418, 13, 268, 2268, 13, 1136, 10786, 1797, 62, 37620, 3256, 6045, 4008, 198, 62, 271, 62, 20285, 418, 796, 20512, 7, 418, 13, 268, 2268, 13, 1136, 10786, 1797, 62, 44721, 3256, 6045, 4008, 198, 62, 271, 62, 23289, 796, 407, 4808, 271, 62, 20285, 418, 290, 407, 4808, 271, 62, 5404, 198, 198, 28457, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 5404, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 20285, 418, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 20285, 418, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 23289, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 23289, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 198, 62, 271, 62, 79, 4464, 88, 796, 20512, 7, 418, 13, 268, 2268, 13, 1136, 10786, 1797, 62, 47, 48232, 56, 3256, 6045, 4008, 198, 62, 271, 62, 13155, 7535, 796, 407, 4808, 271, 62, 79, 4464, 88, 198, 198, 79, 4464, 88, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 79, 4464, 88, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 13155, 7535, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 13155, 7535, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 198, 85, 9078, 62, 83, 29291, 796, 3859, 13, 29412, 62, 9641, 62, 83, 29291, 3419, 198, 62, 271, 62, 9078, 2623, 796, 410, 9078, 62, 83, 29291, 58, 25, 17, 60, 6624, 19203, 18, 3256, 705, 21, 11537, 198, 62, 271, 62, 9078, 2718, 796, 410, 9078, 62, 83, 29291, 58, 25, 17, 60, 6624, 19203, 18, 3256, 705, 22, 11537, 198, 62, 271, 62, 9078, 2548, 796, 410, 9078, 62, 83, 29291, 58, 25, 17, 60, 6624, 19203, 18, 3256, 705, 23, 11537, 198, 62, 271, 62, 9078, 2670, 796, 410, 9078, 62, 83, 29291, 58, 25, 17, 60, 6624, 19203, 18, 3256, 705, 24, 11537, 198, 62, 271, 62, 9078, 26717, 796, 410, 9078, 62, 83, 29291, 58, 25, 17, 60, 6624, 19203, 18, 3256, 705, 940, 11537, 198, 198, 9078, 2623, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 9078, 2623, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 9078, 2718, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 9078, 2718, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 9078, 2548, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 9078, 2548, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 9078, 2670, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 9078, 2670, 2073, 12972, 9288, 13, 4102, 13, 46430, 198, 9078, 26717, 62, 4102, 796, 12972, 9288, 13, 4102, 13, 403, 715, 395, 611, 4808, 271, 62, 9078, 26717, 2073, 12972, 9288, 13, 4102, 13, 46430, 198 ]
2.337209
516
if __name__ == '__main__': print(navigation_schmavigation([l.strip() for l in open('input/12')])) print(navigation_schmavigation_2([l.strip() for l in open('input/12')]))
[ 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 7, 28341, 7065, 62, 20601, 76, 615, 7065, 26933, 75, 13, 36311, 3419, 329, 300, 287, 1280, 10786, 15414, 14, 1065, 11537, 60, 4008, 198, 220, 220, 220, 3601, 7, 28341, 7065, 62, 20601, 76, 615, 7065, 62, 17, 26933, 75, 13, 36311, 3419, 329, 300, 287, 1280, 10786, 15414, 14, 1065, 11537, 60, 4008, 198 ]
2.486486
74
from invoke import task @task
[ 6738, 26342, 1330, 4876, 198, 31, 35943, 198 ]
3.75
8
#!/usr/bin/python import re import json import datetime from . import pdk import logging logger = logging.getLogger(__name__)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 11748, 302, 198, 11748, 33918, 198, 11748, 4818, 8079, 198, 6738, 764, 1330, 279, 34388, 198, 11748, 18931, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198 ]
3.073171
41
""" File defining custom template tags for our project """ # Core Django imports from django import template from django.utils.safestring import mark_safe # app-imports from posts.models import Post # third-party imports import markdown register = template.Library() @register.simple_tag def total_posts(): """ A simple template tag that shows the number of posts that have been uploaded so far """ return Post.published.count() @register.inclusion_tag('posts/latest_uploads.html') def show_latest_uploads(count=3): """ An inclusion template tag that renders the latest_uploads.html template with context variables including the latest uploads. The number of latest uploads to display can be passed to the tag as the value of the 'count' variable. """ latest_uploads = Post.published.order_by('-created')[:count] return { 'latest_uploads': latest_uploads } # template filters are registered the same as template tags @register.filter(name='markdown') def markdown_format(text): """ Template filter function that renders the text given in markdown syntax as HTML """ # mark the output as safe HTML to be rendered in the template return mark_safe(markdown.markdown(text))
[ 37811, 9220, 16215, 2183, 11055, 15940, 329, 674, 1628, 37227, 198, 198, 2, 7231, 37770, 17944, 198, 6738, 42625, 14208, 1330, 11055, 198, 6738, 42625, 14208, 13, 26791, 13, 49585, 395, 1806, 1330, 1317, 62, 21230, 198, 198, 2, 598, 12, 320, 3742, 198, 6738, 6851, 13, 27530, 1330, 2947, 198, 198, 2, 2368, 12, 10608, 17944, 198, 11748, 1317, 2902, 628, 198, 30238, 796, 11055, 13, 23377, 3419, 198, 198, 31, 30238, 13, 36439, 62, 12985, 198, 4299, 2472, 62, 24875, 33529, 198, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 317, 2829, 11055, 7621, 326, 2523, 262, 1271, 198, 220, 220, 220, 286, 6851, 326, 423, 587, 19144, 523, 1290, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2947, 13, 30271, 13, 9127, 3419, 198, 198, 31, 30238, 13, 259, 4717, 62, 12985, 10786, 24875, 14, 42861, 62, 39920, 13, 6494, 11537, 198, 4299, 905, 62, 42861, 62, 39920, 7, 9127, 28, 18, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 14900, 11055, 7621, 326, 30111, 262, 3452, 62, 39920, 13, 6494, 11055, 198, 220, 220, 220, 351, 4732, 9633, 1390, 262, 3452, 9516, 82, 13, 198, 220, 220, 220, 383, 1271, 286, 3452, 9516, 82, 284, 3359, 460, 307, 3804, 284, 262, 7621, 198, 220, 220, 220, 355, 262, 1988, 286, 262, 705, 9127, 6, 7885, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3452, 62, 39920, 796, 2947, 13, 30271, 13, 2875, 62, 1525, 10786, 12, 25598, 11537, 58, 25, 9127, 60, 198, 220, 220, 220, 1441, 1391, 705, 42861, 62, 39920, 10354, 3452, 62, 39920, 1782, 198, 198, 2, 11055, 16628, 389, 6823, 262, 976, 355, 11055, 15940, 198, 31, 30238, 13, 24455, 7, 3672, 11639, 4102, 2902, 11537, 198, 4299, 1317, 2902, 62, 18982, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37350, 8106, 2163, 326, 30111, 262, 2420, 1813, 287, 1317, 2902, 198, 220, 220, 220, 15582, 355, 11532, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1317, 262, 5072, 355, 3338, 11532, 284, 307, 15111, 287, 262, 11055, 198, 220, 220, 220, 1441, 1317, 62, 21230, 7, 4102, 2902, 13, 4102, 2902, 7, 5239, 4008, 198 ]
3.403794
369
import os import pytest import torch import tests.base.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.core import memory from pytorch_lightning.trainer.distrib_parts import ( parse_gpu_ids, determine_root_gpu_device, ) from pytorch_lightning.utilities.debugging import MisconfigurationException from tests.base import LightningTestModel PRETEND_N_OF_GPUS = 16 def test_multi_gpu_model_ddp2(tmpdir): """Make sure DDP2 works.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() tutils.set_random_master_port() model, hparams = tutils.get_default_model() trainer_options = dict( default_save_path=tmpdir, show_progress_bar=True, max_epochs=1, train_percent_check=0.4, val_percent_check=0.2, gpus=2, weights_summary=None, distributed_backend='ddp2' ) tutils.run_model_test(trainer_options, model) def test_multi_gpu_model_ddp(tmpdir): """Make sure DDP works.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() tutils.set_random_master_port() model, hparams = tutils.get_default_model() trainer_options = dict( default_save_path=tmpdir, show_progress_bar=False, max_epochs=1, train_percent_check=0.4, val_percent_check=0.2, gpus=[0, 1], distributed_backend='ddp' ) tutils.run_model_test(trainer_options, model) def test_ddp_all_dataloaders_passed_to_fit(tmpdir): """Make sure DDP works with dataloaders passed to fit()""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() tutils.set_random_master_port() model, hparams = tutils.get_default_model() trainer_options = dict(default_save_path=tmpdir, show_progress_bar=False, max_epochs=1, train_percent_check=0.4, val_percent_check=0.2, gpus=[0, 1], distributed_backend='ddp') fit_options = dict(train_dataloader=model.train_dataloader(), val_dataloaders=model.val_dataloader()) trainer = Trainer(**trainer_options) result = trainer.fit(model, **fit_options) assert result == 1, "DDP doesn't work with dataloaders passed to fit()." def test_cpu_slurm_save_load(tmpdir): """Verify model save/load/checkpoint on CPU.""" tutils.reset_seed() hparams = tutils.get_default_hparams() model = LightningTestModel(hparams) # logger file to get meta logger = tutils.get_default_testtube_logger(tmpdir, False) version = logger.version trainer_options = dict( max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir) ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) real_global_step = trainer.global_step # traning complete assert result == 1, 'amp + ddp model failed to complete' # predict with trained model before saving # make a prediction dataloaders = model.test_dataloader() if not isinstance(dataloaders, list): dataloaders = [dataloaders] for dataloader in dataloaders: for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) model.eval() pred_before_saving = model(x) # test HPC saving # simulate snapshot on slurm saved_filepath = trainer.hpc_save(tmpdir, logger) assert os.path.exists(saved_filepath) # new logger file to get meta logger = tutils.get_default_testtube_logger(tmpdir, False, version=version) trainer_options = dict( max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir), ) trainer = Trainer(**trainer_options) model = LightningTestModel(hparams) # set the epoch start hook so we can predict before the model does the full training model.on_epoch_start = assert_pred_same # by calling fit again, we trigger training, loading weights from the cluster # and our hook to predict using current model before any more weight updates trainer.fit(model) def test_multi_gpu_none_backend(tmpdir): """Make sure when using multiple GPUs the user can't use `distributed_backend = None`.""" tutils.reset_seed() if not tutils.can_run_gpu_test(): return model, hparams = tutils.get_default_model() trainer_options = dict( default_save_path=tmpdir, show_progress_bar=False, max_epochs=1, train_percent_check=0.1, val_percent_check=0.1, gpus='-1' ) with pytest.warns(UserWarning): tutils.run_model_test(trainer_options, model) def test_multi_gpu_model_dp(tmpdir): """Make sure DP works.""" tutils.reset_seed() if not tutils.can_run_gpu_test(): return model, hparams = tutils.get_default_model() trainer_options = dict( default_save_path=tmpdir, show_progress_bar=False, distributed_backend='dp', max_epochs=1, train_percent_check=0.1, val_percent_check=0.1, gpus='-1' ) tutils.run_model_test(trainer_options, model) # test memory helper functions memory.get_memory_profile('min_max') @pytest.fixture @pytest.fixture @pytest.mark.gpus_param_tests @pytest.mark.parametrize(["gpus", "expected_num_gpus", "distributed_backend"], [ pytest.param(None, 0, None, id="None - expect 0 gpu to use."), pytest.param(0, 0, None, id="Oth gpu, expect 1 gpu to use."), pytest.param(1, 1, None, id="1st gpu, expect 1 gpu to use."), pytest.param(-1, PRETEND_N_OF_GPUS, "ddp", id="-1 - use all gpus"), pytest.param('-1', PRETEND_N_OF_GPUS, "ddp", id="'-1' - use all gpus"), pytest.param(3, 3, "ddp", id="3rd gpu - 1 gpu to use (backend:ddp)") ]) @pytest.mark.gpus_param_tests @pytest.mark.parametrize(["gpus", "expected_num_gpus", "distributed_backend"], [ pytest.param(None, 0, None, id="None - expect 0 gpu to use."), pytest.param(None, 0, "ddp", id="None - expect 0 gpu to use."), ]) @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus', 'expected_root_gpu', "distributed_backend"], [ pytest.param(None, None, "ddp", id="None is None"), pytest.param(0, None, "ddp", id="O gpus, expect gpu root device to be None."), pytest.param(1, 0, "ddp", id="1 gpu, expect gpu root device to be 0."), pytest.param(-1, 0, "ddp", id="-1 - use all gpus, expect gpu root device to be 0."), pytest.param('-1', 0, "ddp", id="'-1' - use all gpus, expect gpu root device to be 0."), pytest.param(3, 0, "ddp", id="3 gpus, expect gpu root device to be 0.(backend:ddp)") ]) @pytest.mark.gpus_param_tests @pytest.mark.parametrize([ 'gpus', 'expected_root_gpu', "distributed_backend"], [ pytest.param(None, None, None, id="None is None"), pytest.param(None, None, "ddp", id="None is None"), pytest.param(0, None, "ddp", id="None is None"), ]) # Asking for a gpu when non are available will result in a MisconfigurationException @pytest.mark.gpus_param_tests @pytest.mark.parametrize([ 'gpus', 'expected_root_gpu', "distributed_backend"], [ pytest.param(1, None, "ddp"), pytest.param(3, None, "ddp"), pytest.param(3, None, "ddp"), pytest.param([1, 2], None, "ddp"), pytest.param([0, 1], None, "ddp"), pytest.param(-1, None, "ddp"), pytest.param('-1', None, "ddp") ]) @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus', 'expected_root_gpu'], [ pytest.param(None, None, id="No gpus, expect gpu root device to be None"), pytest.param([0], 0, id="Oth gpu, expect gpu root device to be 0."), pytest.param([1], 1, id="1st gpu, expect gpu root device to be 1."), pytest.param([3], 3, id="3rd gpu, expect gpu root device to be 3."), pytest.param([1, 2], 1, id="[1, 2] gpus, expect gpu root device to be 1."), ]) @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus', 'expected_gpu_ids'], [ pytest.param(None, None), pytest.param(0, None), pytest.param(1, [0]), pytest.param(3, [0, 1, 2]), pytest.param(-1, list(range(PRETEND_N_OF_GPUS)), id="-1 - use all gpus"), pytest.param([0], [0]), pytest.param([1, 3], [1, 3]), pytest.param('0', [0]), pytest.param('3', [3]), pytest.param('1, 3', [1, 3]), pytest.param('-1', list(range(PRETEND_N_OF_GPUS)), id="'-1' - use all gpus"), ]) @pytest.mark.gpus_param_tests @pytest.mark.parametrize(['gpus'], [ pytest.param(0.1), pytest.param(-2), pytest.param(False), pytest.param([]), pytest.param([-1]), pytest.param([None]), pytest.param(['0']), pytest.param((0, 1)), ]) @pytest.mark.gpus_param_tests @pytest.mark.parametrize("gpus", ['']) @pytest.mark.gpus_param_tests @pytest.mark.parametrize("gpus", [[1, 2, 19], -1, '-1']) @pytest.mark.gpus_param_tests @pytest.mark.gpus_param_tests @pytest.mark.parametrize("gpus", [-1, '-1']) # if __name__ == '__main__': # pytest.main([__file__])
[ 11748, 28686, 198, 198, 11748, 12972, 9288, 198, 11748, 28034, 198, 198, 11748, 5254, 13, 8692, 13, 26791, 355, 9732, 4487, 198, 6738, 12972, 13165, 354, 62, 2971, 768, 1330, 31924, 198, 6738, 12972, 13165, 354, 62, 2971, 768, 13, 13345, 10146, 1330, 9104, 9787, 4122, 198, 6738, 12972, 13165, 354, 62, 2971, 768, 13, 7295, 1330, 4088, 198, 6738, 12972, 13165, 354, 62, 2971, 768, 13, 2213, 10613, 13, 17080, 822, 62, 42632, 1330, 357, 198, 220, 220, 220, 21136, 62, 46999, 62, 2340, 11, 198, 220, 220, 220, 5004, 62, 15763, 62, 46999, 62, 25202, 11, 198, 8, 198, 6738, 12972, 13165, 354, 62, 2971, 768, 13, 315, 2410, 13, 24442, 2667, 1330, 14136, 11250, 3924, 16922, 198, 6738, 5254, 13, 8692, 1330, 12469, 14402, 17633, 198, 198, 47, 26087, 10619, 62, 45, 62, 19238, 62, 16960, 2937, 796, 1467, 628, 198, 4299, 1332, 62, 41684, 62, 46999, 62, 19849, 62, 1860, 79, 17, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 12050, 1654, 360, 6322, 17, 2499, 526, 15931, 198, 220, 220, 220, 611, 407, 9732, 4487, 13, 5171, 62, 5143, 62, 46999, 62, 9288, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 9732, 4487, 13, 42503, 62, 28826, 3419, 198, 220, 220, 220, 9732, 4487, 13, 2617, 62, 25120, 62, 9866, 62, 634, 3419, 628, 220, 220, 220, 2746, 11, 289, 37266, 796, 9732, 4487, 13, 1136, 62, 12286, 62, 19849, 3419, 198, 220, 220, 220, 21997, 62, 25811, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 21928, 62, 6978, 28, 22065, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 33723, 62, 5657, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 538, 5374, 82, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 25067, 62, 9122, 28, 15, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 25067, 62, 9122, 28, 15, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27809, 385, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 62, 49736, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9387, 62, 1891, 437, 11639, 1860, 79, 17, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 9732, 4487, 13, 5143, 62, 19849, 62, 9288, 7, 2213, 10613, 62, 25811, 11, 2746, 8, 628, 198, 4299, 1332, 62, 41684, 62, 46999, 62, 19849, 62, 1860, 79, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 12050, 1654, 360, 6322, 2499, 526, 15931, 198, 220, 220, 220, 611, 407, 9732, 4487, 13, 5171, 62, 5143, 62, 46999, 62, 9288, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 9732, 4487, 13, 42503, 62, 28826, 3419, 198, 220, 220, 220, 9732, 4487, 13, 2617, 62, 25120, 62, 9866, 62, 634, 3419, 628, 220, 220, 220, 2746, 11, 289, 37266, 796, 9732, 4487, 13, 1136, 62, 12286, 62, 19849, 3419, 198, 220, 220, 220, 21997, 62, 25811, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 21928, 62, 6978, 28, 22065, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 33723, 62, 5657, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 538, 5374, 82, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 25067, 62, 9122, 28, 15, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 25067, 62, 9122, 28, 15, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27809, 385, 41888, 15, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 9387, 62, 1891, 437, 11639, 1860, 79, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 9732, 4487, 13, 5143, 62, 19849, 62, 9288, 7, 2213, 10613, 62, 25811, 11, 2746, 8, 628, 198, 4299, 1332, 62, 1860, 79, 62, 439, 62, 67, 10254, 1170, 364, 62, 6603, 276, 62, 1462, 62, 11147, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 12050, 1654, 360, 6322, 2499, 351, 4818, 282, 1170, 364, 3804, 284, 4197, 3419, 37811, 198, 220, 220, 220, 611, 407, 9732, 4487, 13, 5171, 62, 5143, 62, 46999, 62, 9288, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 9732, 4487, 13, 42503, 62, 28826, 3419, 198, 220, 220, 220, 9732, 4487, 13, 2617, 62, 25120, 62, 9866, 62, 634, 3419, 628, 220, 220, 220, 2746, 11, 289, 37266, 796, 9732, 4487, 13, 1136, 62, 12286, 62, 19849, 3419, 198, 220, 220, 220, 21997, 62, 25811, 796, 8633, 7, 12286, 62, 21928, 62, 6978, 28, 22065, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 33723, 62, 5657, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 538, 5374, 82, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 25067, 62, 9122, 28, 15, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 25067, 62, 9122, 28, 15, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27809, 385, 41888, 15, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9387, 62, 1891, 437, 11639, 1860, 79, 11537, 628, 220, 220, 220, 4197, 62, 25811, 796, 8633, 7, 27432, 62, 67, 10254, 1170, 263, 28, 19849, 13, 27432, 62, 67, 10254, 1170, 263, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 67, 10254, 1170, 364, 28, 19849, 13, 2100, 62, 67, 10254, 1170, 263, 28955, 628, 220, 220, 220, 21997, 796, 31924, 7, 1174, 2213, 10613, 62, 25811, 8, 198, 220, 220, 220, 1255, 796, 21997, 13, 11147, 7, 19849, 11, 12429, 11147, 62, 25811, 8, 198, 220, 220, 220, 6818, 1255, 6624, 352, 11, 366, 35, 6322, 1595, 470, 670, 351, 4818, 282, 1170, 364, 3804, 284, 4197, 3419, 526, 628, 198, 198, 4299, 1332, 62, 36166, 62, 6649, 333, 76, 62, 21928, 62, 2220, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 13414, 1958, 2746, 3613, 14, 2220, 14, 9122, 4122, 319, 9135, 526, 15931, 198, 220, 220, 220, 9732, 4487, 13, 42503, 62, 28826, 3419, 628, 220, 220, 220, 289, 37266, 796, 9732, 4487, 13, 1136, 62, 12286, 62, 71, 37266, 3419, 198, 220, 220, 220, 2746, 796, 12469, 14402, 17633, 7, 71, 37266, 8, 628, 220, 220, 220, 1303, 49706, 2393, 284, 651, 13634, 198, 220, 220, 220, 49706, 796, 9732, 4487, 13, 1136, 62, 12286, 62, 9288, 29302, 62, 6404, 1362, 7, 22065, 15908, 11, 10352, 8, 198, 220, 220, 220, 2196, 796, 49706, 13, 9641, 628, 220, 220, 220, 21997, 62, 25811, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 538, 5374, 82, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 6404, 1362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 47423, 28, 17633, 9787, 4122, 7, 22065, 15908, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 4197, 2746, 198, 220, 220, 220, 21997, 796, 31924, 7, 1174, 2213, 10613, 62, 25811, 8, 198, 220, 220, 220, 1255, 796, 21997, 13, 11147, 7, 19849, 8, 198, 220, 220, 220, 1103, 62, 20541, 62, 9662, 796, 21997, 13, 20541, 62, 9662, 628, 220, 220, 220, 1303, 491, 7574, 1844, 198, 220, 220, 220, 6818, 1255, 6624, 352, 11, 705, 696, 1343, 288, 26059, 2746, 4054, 284, 1844, 6, 628, 220, 220, 220, 1303, 4331, 351, 8776, 2746, 878, 8914, 198, 220, 220, 220, 1303, 787, 257, 17724, 198, 220, 220, 220, 4818, 282, 1170, 364, 796, 2746, 13, 9288, 62, 67, 10254, 1170, 263, 3419, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 67, 10254, 1170, 364, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 282, 1170, 364, 796, 685, 67, 10254, 1170, 364, 60, 628, 220, 220, 220, 329, 4818, 282, 1170, 263, 287, 4818, 282, 1170, 364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 15458, 287, 4818, 282, 1170, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 2124, 11, 331, 796, 15458, 198, 220, 220, 220, 2124, 796, 2124, 13, 1177, 7, 87, 13, 7857, 7, 15, 828, 532, 16, 8, 628, 220, 220, 220, 2746, 13, 18206, 3419, 198, 220, 220, 220, 2747, 62, 19052, 62, 29336, 796, 2746, 7, 87, 8, 628, 220, 220, 220, 1303, 1332, 367, 5662, 8914, 198, 220, 220, 220, 1303, 29308, 27479, 319, 40066, 76, 198, 220, 220, 220, 7448, 62, 7753, 6978, 796, 21997, 13, 71, 14751, 62, 21928, 7, 22065, 15908, 11, 49706, 8, 198, 220, 220, 220, 6818, 28686, 13, 6978, 13, 1069, 1023, 7, 82, 9586, 62, 7753, 6978, 8, 628, 220, 220, 220, 1303, 649, 49706, 2393, 284, 651, 13634, 198, 220, 220, 220, 49706, 796, 9732, 4487, 13, 1136, 62, 12286, 62, 9288, 29302, 62, 6404, 1362, 7, 22065, 15908, 11, 10352, 11, 2196, 28, 9641, 8, 628, 220, 220, 220, 21997, 62, 25811, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 538, 5374, 82, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 6404, 1362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 47423, 28, 17633, 9787, 4122, 7, 22065, 15908, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 21997, 796, 31924, 7, 1174, 2213, 10613, 62, 25811, 8, 198, 220, 220, 220, 2746, 796, 12469, 14402, 17633, 7, 71, 37266, 8, 628, 220, 220, 220, 1303, 900, 262, 36835, 923, 8011, 523, 356, 460, 4331, 878, 262, 2746, 857, 262, 1336, 3047, 628, 220, 220, 220, 2746, 13, 261, 62, 538, 5374, 62, 9688, 796, 6818, 62, 28764, 62, 31642, 628, 220, 220, 220, 1303, 416, 4585, 4197, 757, 11, 356, 7616, 3047, 11, 11046, 19590, 422, 262, 13946, 198, 220, 220, 220, 1303, 290, 674, 8011, 284, 4331, 1262, 1459, 2746, 878, 597, 517, 3463, 5992, 198, 220, 220, 220, 21997, 13, 11147, 7, 19849, 8, 628, 198, 4299, 1332, 62, 41684, 62, 46999, 62, 23108, 62, 1891, 437, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 12050, 1654, 618, 1262, 3294, 32516, 262, 2836, 460, 470, 779, 4600, 17080, 6169, 62, 1891, 437, 796, 6045, 63, 526, 15931, 198, 220, 220, 220, 9732, 4487, 13, 42503, 62, 28826, 3419, 628, 220, 220, 220, 611, 407, 9732, 4487, 13, 5171, 62, 5143, 62, 46999, 62, 9288, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 2746, 11, 289, 37266, 796, 9732, 4487, 13, 1136, 62, 12286, 62, 19849, 3419, 198, 220, 220, 220, 21997, 62, 25811, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 21928, 62, 6978, 28, 22065, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 33723, 62, 5657, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 538, 5374, 82, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 25067, 62, 9122, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 25067, 62, 9122, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27809, 385, 11639, 12, 16, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 351, 12972, 9288, 13, 40539, 82, 7, 12982, 20361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9732, 4487, 13, 5143, 62, 19849, 62, 9288, 7, 2213, 10613, 62, 25811, 11, 2746, 8, 628, 198, 4299, 1332, 62, 41684, 62, 46999, 62, 19849, 62, 26059, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 12050, 1654, 27704, 2499, 526, 15931, 198, 220, 220, 220, 9732, 4487, 13, 42503, 62, 28826, 3419, 628, 220, 220, 220, 611, 407, 9732, 4487, 13, 5171, 62, 5143, 62, 46999, 62, 9288, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 2746, 11, 289, 37266, 796, 9732, 4487, 13, 1136, 62, 12286, 62, 19849, 3419, 198, 220, 220, 220, 21997, 62, 25811, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 21928, 62, 6978, 28, 22065, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 33723, 62, 5657, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9387, 62, 1891, 437, 11639, 26059, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 538, 5374, 82, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 25067, 62, 9122, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 25067, 62, 9122, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27809, 385, 11639, 12, 16, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 9732, 4487, 13, 5143, 62, 19849, 62, 9288, 7, 2213, 10613, 62, 25811, 11, 2746, 8, 628, 220, 220, 220, 1303, 1332, 4088, 31904, 5499, 198, 220, 220, 220, 4088, 13, 1136, 62, 31673, 62, 13317, 10786, 1084, 62, 9806, 11537, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 14692, 31197, 385, 1600, 366, 40319, 62, 22510, 62, 31197, 385, 1600, 366, 17080, 6169, 62, 1891, 437, 33116, 685, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 14202, 11, 657, 11, 6045, 11, 4686, 2625, 14202, 532, 1607, 657, 308, 19944, 284, 779, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 15, 11, 657, 11, 6045, 11, 4686, 2625, 46, 400, 308, 19944, 11, 1607, 352, 308, 19944, 284, 779, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 352, 11, 6045, 11, 4686, 2625, 16, 301, 308, 19944, 11, 1607, 352, 308, 19944, 284, 779, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 32590, 16, 11, 22814, 51, 10619, 62, 45, 62, 19238, 62, 16960, 2937, 11, 366, 1860, 79, 1600, 4686, 2625, 12, 16, 532, 779, 477, 27809, 385, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 10786, 12, 16, 3256, 22814, 51, 10619, 62, 45, 62, 19238, 62, 16960, 2937, 11, 366, 1860, 79, 1600, 4686, 2625, 29001, 16, 6, 532, 779, 477, 27809, 385, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 18, 11, 513, 11, 366, 1860, 79, 1600, 4686, 2625, 18, 4372, 308, 19944, 532, 352, 308, 19944, 284, 779, 357, 1891, 437, 25, 1860, 79, 8, 4943, 198, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 14692, 31197, 385, 1600, 366, 40319, 62, 22510, 62, 31197, 385, 1600, 366, 17080, 6169, 62, 1891, 437, 33116, 685, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 14202, 11, 657, 11, 6045, 11, 4686, 2625, 14202, 532, 1607, 657, 308, 19944, 284, 779, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 14202, 11, 657, 11, 366, 1860, 79, 1600, 4686, 2625, 14202, 532, 1607, 657, 308, 19944, 284, 779, 526, 828, 198, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 17816, 31197, 385, 3256, 705, 40319, 62, 15763, 62, 46999, 3256, 366, 17080, 6169, 62, 1891, 437, 33116, 685, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 14202, 11, 6045, 11, 366, 1860, 79, 1600, 4686, 2625, 14202, 318, 6045, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 15, 11, 6045, 11, 366, 1860, 79, 1600, 4686, 2625, 46, 27809, 385, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 6045, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 657, 11, 366, 1860, 79, 1600, 4686, 2625, 16, 308, 19944, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 657, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 32590, 16, 11, 657, 11, 366, 1860, 79, 1600, 4686, 2625, 12, 16, 532, 779, 477, 27809, 385, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 657, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 10786, 12, 16, 3256, 657, 11, 366, 1860, 79, 1600, 4686, 2625, 29001, 16, 6, 532, 779, 477, 27809, 385, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 657, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 18, 11, 657, 11, 366, 1860, 79, 1600, 4686, 2625, 18, 27809, 385, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 657, 12195, 1891, 437, 25, 1860, 79, 8, 4943, 198, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 26933, 198, 220, 220, 220, 705, 31197, 385, 3256, 705, 40319, 62, 15763, 62, 46999, 3256, 366, 17080, 6169, 62, 1891, 437, 33116, 685, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 14202, 11, 6045, 11, 6045, 11, 4686, 2625, 14202, 318, 6045, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 14202, 11, 6045, 11, 366, 1860, 79, 1600, 4686, 2625, 14202, 318, 6045, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 15, 11, 6045, 11, 366, 1860, 79, 1600, 4686, 2625, 14202, 318, 6045, 12340, 198, 12962, 628, 198, 2, 1081, 3364, 329, 257, 308, 19944, 618, 1729, 389, 1695, 481, 1255, 287, 257, 14136, 11250, 3924, 16922, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 26933, 198, 220, 220, 220, 705, 31197, 385, 3256, 705, 40319, 62, 15763, 62, 46999, 3256, 366, 17080, 6169, 62, 1891, 437, 33116, 685, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 6045, 11, 366, 1860, 79, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 18, 11, 6045, 11, 366, 1860, 79, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 18, 11, 6045, 11, 366, 1860, 79, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 16, 11, 362, 4357, 6045, 11, 366, 1860, 79, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 15, 11, 352, 4357, 6045, 11, 366, 1860, 79, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 32590, 16, 11, 6045, 11, 366, 1860, 79, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 10786, 12, 16, 3256, 6045, 11, 366, 1860, 79, 4943, 198, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 17816, 31197, 385, 3256, 705, 40319, 62, 15763, 62, 46999, 6, 4357, 685, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 14202, 11, 6045, 11, 4686, 2625, 2949, 27809, 385, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 6045, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 15, 4357, 657, 11, 4686, 2625, 46, 400, 308, 19944, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 657, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 16, 4357, 352, 11, 4686, 2625, 16, 301, 308, 19944, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 352, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 18, 4357, 513, 11, 4686, 2625, 18, 4372, 308, 19944, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 513, 526, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 16, 11, 362, 4357, 352, 11, 4686, 2625, 58, 16, 11, 362, 60, 27809, 385, 11, 1607, 308, 19944, 6808, 3335, 284, 307, 352, 526, 828, 198, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 17816, 31197, 385, 3256, 705, 40319, 62, 46999, 62, 2340, 6, 4357, 685, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 14202, 11, 6045, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 15, 11, 6045, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 685, 15, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 18, 11, 685, 15, 11, 352, 11, 362, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 32590, 16, 11, 1351, 7, 9521, 7, 47, 26087, 10619, 62, 45, 62, 19238, 62, 16960, 2937, 36911, 4686, 2625, 12, 16, 532, 779, 477, 27809, 385, 12340, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 15, 4357, 685, 15, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 16, 11, 513, 4357, 685, 16, 11, 513, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 10786, 15, 3256, 685, 15, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 10786, 18, 3256, 685, 18, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 10786, 16, 11, 513, 3256, 685, 16, 11, 513, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 10786, 12, 16, 3256, 1351, 7, 9521, 7, 47, 26087, 10619, 62, 45, 62, 19238, 62, 16960, 2937, 36911, 4686, 2625, 29001, 16, 6, 532, 779, 477, 27809, 385, 12340, 198, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 17816, 31197, 385, 6, 4357, 685, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 15, 13, 16, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 32590, 17, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 25101, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 21737, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 12, 16, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 26933, 14202, 46570, 198, 220, 220, 220, 12972, 9288, 13, 17143, 7, 17816, 15, 20520, 828, 198, 220, 220, 220, 12972, 9288, 13, 17143, 19510, 15, 11, 352, 36911, 198, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 31197, 385, 1600, 685, 7061, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 31197, 385, 1600, 16410, 16, 11, 362, 11, 678, 4357, 532, 16, 11, 705, 12, 16, 6, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 628, 198, 31, 9078, 9288, 13, 4102, 13, 31197, 385, 62, 17143, 62, 41989, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 31197, 385, 1600, 25915, 16, 11, 705, 12, 16, 6, 12962, 628, 198, 2, 611, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 2, 220, 220, 220, 220, 12972, 9288, 13, 12417, 26933, 834, 7753, 834, 12962, 198 ]
2.302506
3,990
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
## -*- encoding: utf-8 -*- """ This file (./integration_doctest.sage) was *autogenerated* from ./integration.tex, with sagetex.sty version 2011/05/27 v2.3.1. It contains the contents of all the sageexample environments from this file. You should be able to doctest this file with: sage -t ./integration_doctest.sage It is always safe to delete this file; it is not used in typesetting your document. Sage example in ./integration.tex, line 44:: sage: x = var('x'); f(x) = exp(-x^2) * log(x) sage: N(integrate(f, x, 1, 3)) 0.035860294991267694 sage: plot(f, 1, 3, fill='axis') Graphics object consisting of 2 graphics primitives Sage example in ./integration.tex, line 103:: sage: fp = plot(f, 1, 3, color='red') sage: n = 4 sage: interp_points = [(1+2*u/(n-1), N(f(1+2*u/(n-1)))) ....: for u in range(n)] sage: A = PolynomialRing(RR, 'x') sage: pp = plot(A.lagrange_polynomial(interp_points), 1, 3, fill='axis') sage: show(fp+pp) Sage example in ./integration.tex, line 346:: sage: N(integrate(exp(-x^2)*log(x), x, 17, 42)) # rel tol 7e-15 2.5657285006962035e-127 Sage example in ./integration.tex, line 355:: sage: integrate(log(1+x)*x, x, 0, 1) 1/4 sage: N(integrate(log(1+x)*x, x, 0, 1)) 0.250000000000000 Sage example in ./integration.tex, line 372:: sage: numerical_integral(exp(-x^2)*log(x), 17, 42) # rel tol 7e-12 (2.5657285006962035e-127, 3.3540254049238093e-128) Sage example in ./integration.tex, line 394:: sage: numerical_integral(exp(-x^100), 0, 1.1) (0.99432585119150..., 4.0775730...e-09) sage: numerical_integral(exp(-x^100), 0, 1.1, algorithm='qng') (0.994327538576531..., 0.016840666914...) Sage example in ./integration.tex, line 404:: sage: integrate(exp(-x^2)*log(x), x, 17, 42) integrate(e^(-x^2)*log(x), x, 17, 42) Sage example in ./integration.tex, line 412:: sage: N(integrate(exp(-x^2)*log(x), x, 17, 42), 200) # rel tol 7e-15 2.5657285006962035e-127 Sage example in ./integration.tex, line 417:: sage: N(integrate(sin(x)*exp(cos(x)), x, 0, pi), 200) 2.3504023872876029137647637011912016303114359626681917404591 Sage example in ./integration.tex, line 430:: sage: sage.calculus.calculus.nintegral(sin(sin(x)), x, 0, 1) (0.430606103120690..., 4.78068810228705...e-15, 21, 0) Sage example in ./integration.tex, line 436:: sage: g(x) = sin(sin(x)) sage: g.nintegral(x, 0, 1) (0.430606103120690..., 4.78068810228705...e-15, 21, 0) Sage example in ./integration.tex, line 465:: sage: gp('intnum(x=17, 42, exp(-x^2)*log(x))') # rel tol 1e-17 2.5657285005610514829176211363206621657 E-127 Sage example in ./integration.tex, line 474:: sage: gp('intnum(x=0, 1, sin(sin(x)))') 0.430606103120690604912377355... sage: old_prec = gp.set_precision(50) sage: gp('intnum(x=0, 1, sin(sin(x)))') 0.43060610312069060491237735524846578643360804182200 Sage example in ./integration.tex, line 490:: sage: p = gp.set_precision(old_prec) # on remet la précision par défaut sage: gp('intnum(x=0, 1, x^(-1/2))') 1.99999999999999999999... Sage example in ./integration.tex, line 496:: sage: gp('intnum(x=[0, -1/2], 1, x^(-1/2))') 2.000000000000000000000000000... Sage example in ./integration.tex, line 504:: sage: gp('intnum(x=[0, -1/42], 1, x^(-1/2))') 1.99999999999999999999... Sage example in ./integration.tex, line 518:: sage: import mpmath sage: mpmath.mp.prec = 53 sage: mpmath.quad(lambda x: mpmath.sin(mpmath.sin(x)), [0, 1]) mpf('0.43060610312069059') Sage example in ./integration.tex, line 526:: sage: mpmath.mp.prec = 113 sage: mpmath.quad(lambda x: mpmath.sin(mpmath.sin(x)), [0, 1]) mpf('0.430606103120690604912377355248465809') sage: mpmath.mp.prec = 114 sage: mpmath.quad(lambda x: mpmath.sin(mpmath.sin(x)), [0, 1]) mpf('0.430606103120690604912377355248465785') Sage example in ./integration.tex, line 550:: sage: mpmath.quad(sin(sin(x)), [0, 1]) Traceback (most recent call last): ... TypeError: no canonical coercion from <type 'sage.libs.mpmath.ext_main.mpf'> to Symbolic Ring Sage example in ./integration.tex, line 565:: sage: g(x) = max_symbolic(sin(x), cos(x)) sage: mpmath.mp.prec = 100 sage: mpmath.quadts(lambda x: g(N(x, 100)), [0, 1]) mpf('0.873912416263035435957979086252') Sage example in ./integration.tex, line 574:: sage: mpmath.mp.prec = 170 sage: mpmath.quadts(lambda x: g(N(x, 190)), [0, 1]) mpf('0.87391090757400975205393005981962476344054148354188794') sage: N(sqrt(2) - cos(1), 100) 0.87391125650495533140075211677 Sage example in ./integration.tex, line 585:: sage: mpmath.quadts(lambda x: g(N(x, 170)), [0, mpmath.pi / 4, 1]) mpf('0.87391125650495533140075211676672147483736145475902551') Sage example in ./integration.tex, line 750:: sage: T = ode_solver() Sage example in ./integration.tex, line 761:: sage: def f_1(t,y,params): return [y[1],params[0]*(1-y[0]^2)*y[1]-y[0]] sage: T.function = f_1 Sage example in ./integration.tex, line 776:: sage: def j_1(t,y,params): ....: return [[0, 1], ....: [-2*params[0]*y[0]*y[1]-1, params[0]*(1-y[0]^2)], ....: [0,0]] sage: T.jacobian = j_1 Sage example in ./integration.tex, line 786:: sage: T.algorithm = "rk8pd" sage: T.ode_solve(y_0=[1,0], t_span=[0,100], params=[10], ....: num_points=1000) sage: f = T.interpolate_solution() Sage example in ./integration.tex, line 801:: sage: plot(f, 0, 100) Graphics object consisting of 1 graphics primitive Sage example in ./integration.tex, line 838:: sage: t, y = var('t, y') sage: desolve_rk4(t*y*(2-y), y, ics=[0,1], end_points=[0, 1], step=0.5) [[0, 1], [0.5, 1.12419127424558], [1.0, 1.461590162288825]] Sage example in ./integration.tex, line 861:: sage: import mpmath sage: mpmath.mp.prec = 53 sage: sol = mpmath.odefun(lambda t, y: y, 0, 1) sage: sol(1) mpf('2.7182818284590451') sage: mpmath.mp.prec = 100 sage: sol(1) mpf('2.7182818284590452353602874802307') sage: N(exp(1), 100) 2.7182818284590452353602874714 Sage example in ./integration.tex, line 889:: sage: mpmath.mp.prec = 53 sage: f = mpmath.odefun(lambda t, y: [-y[1], y[0]], 0, [1, 0]) sage: f(3) [mpf('-0.98999249660044542'), mpf('0.14112000805986721')] sage: (cos(3.), sin(3.)) (-0.989992496600445, 0.141120008059867) Sage example in ./integration.tex, line 939:: sage: mpmath.mp.prec = 10 sage: sol = mpmath.odefun(lambda t, y: y, 0, 1) sage: sol(1) mpf('2.7148') sage: mpmath.mp.prec = 100 sage: sol(1) mpf('2.7135204235459511323824699502438') """ # This file was *autogenerated* from the file integration_doctest.sage.
[ 2235, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 1212, 2393, 357, 19571, 18908, 1358, 62, 4598, 310, 395, 13, 82, 496, 8, 373, 1635, 2306, 519, 877, 515, 9, 422, 24457, 18908, 1358, 13, 16886, 11, 198, 4480, 45229, 316, 1069, 13, 34365, 2196, 2813, 14, 2713, 14, 1983, 410, 17, 13, 18, 13, 16, 13, 198, 1026, 4909, 262, 10154, 286, 477, 262, 35021, 20688, 12493, 422, 428, 2393, 13, 198, 1639, 815, 307, 1498, 284, 10412, 395, 428, 2393, 351, 25, 198, 82, 496, 532, 83, 24457, 18908, 1358, 62, 4598, 310, 395, 13, 82, 496, 198, 1026, 318, 1464, 3338, 284, 12233, 428, 2393, 26, 340, 318, 407, 973, 287, 3858, 35463, 534, 198, 22897, 13, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 5846, 3712, 628, 220, 220, 220, 35021, 25, 2124, 796, 1401, 10786, 87, 24036, 277, 7, 87, 8, 796, 1033, 32590, 87, 61, 17, 8, 1635, 2604, 7, 87, 8, 198, 220, 220, 220, 35021, 25, 399, 7, 18908, 4873, 7, 69, 11, 2124, 11, 352, 11, 513, 4008, 198, 220, 220, 220, 657, 13, 15, 31128, 1899, 27696, 2079, 1065, 3134, 45214, 198, 220, 220, 220, 35021, 25, 7110, 7, 69, 11, 352, 11, 513, 11, 6070, 11639, 22704, 11537, 198, 220, 220, 220, 19840, 2134, 17747, 286, 362, 9382, 2684, 20288, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 15349, 3712, 628, 220, 220, 220, 35021, 25, 277, 79, 796, 7110, 7, 69, 11, 352, 11, 513, 11, 3124, 11639, 445, 11537, 198, 220, 220, 220, 35021, 25, 299, 796, 604, 198, 220, 220, 220, 35021, 25, 987, 79, 62, 13033, 796, 47527, 16, 10, 17, 9, 84, 29006, 77, 12, 16, 828, 399, 7, 69, 7, 16, 10, 17, 9, 84, 29006, 77, 12, 16, 35514, 198, 220, 220, 220, 19424, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 334, 287, 2837, 7, 77, 15437, 198, 220, 220, 220, 35021, 25, 317, 796, 12280, 26601, 498, 39687, 7, 21095, 11, 705, 87, 11537, 198, 220, 220, 220, 35021, 25, 9788, 796, 7110, 7, 32, 13, 30909, 9521, 62, 35428, 26601, 498, 7, 3849, 79, 62, 13033, 828, 352, 11, 513, 11, 6070, 11639, 22704, 11537, 198, 220, 220, 220, 35021, 25, 905, 7, 46428, 10, 381, 8, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 44729, 3712, 628, 220, 220, 220, 35021, 25, 399, 7, 18908, 4873, 7, 11201, 32590, 87, 61, 17, 27493, 6404, 7, 87, 828, 2124, 11, 1596, 11, 5433, 4008, 1303, 823, 284, 75, 767, 68, 12, 1314, 198, 220, 220, 220, 362, 13, 20, 37680, 2078, 4059, 38205, 1238, 2327, 68, 12, 16799, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 36561, 3712, 628, 220, 220, 220, 35021, 25, 19386, 7, 6404, 7, 16, 10, 87, 27493, 87, 11, 2124, 11, 657, 11, 352, 8, 198, 220, 220, 220, 352, 14, 19, 198, 220, 220, 220, 35021, 25, 399, 7, 18908, 4873, 7, 6404, 7, 16, 10, 87, 27493, 87, 11, 2124, 11, 657, 11, 352, 4008, 198, 220, 220, 220, 657, 13, 1495, 8269, 20483, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 46633, 3712, 628, 220, 220, 220, 35021, 25, 29052, 62, 18908, 1373, 7, 11201, 32590, 87, 61, 17, 27493, 6404, 7, 87, 828, 1596, 11, 5433, 8, 1303, 823, 284, 75, 767, 68, 12, 1065, 198, 220, 220, 220, 357, 17, 13, 20, 37680, 2078, 4059, 38205, 1238, 2327, 68, 12, 16799, 11, 513, 13, 2327, 1821, 1495, 1821, 2920, 1954, 1795, 6052, 68, 12, 12762, 8, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 5014, 19, 3712, 628, 220, 220, 220, 35021, 25, 29052, 62, 18908, 1373, 7, 11201, 32590, 87, 61, 3064, 828, 657, 11, 352, 13, 16, 8, 198, 220, 220, 220, 357, 15, 13, 2079, 3559, 25600, 4349, 1129, 8628, 986, 11, 604, 13, 2998, 39251, 1270, 986, 68, 12, 2931, 8, 198, 220, 220, 220, 35021, 25, 29052, 62, 18908, 1373, 7, 11201, 32590, 87, 61, 3064, 828, 657, 11, 352, 13, 16, 11, 11862, 11639, 80, 782, 11537, 198, 220, 220, 220, 357, 15, 13, 2079, 3559, 23195, 2548, 3553, 2996, 3132, 986, 11, 657, 13, 486, 3104, 1821, 2791, 3388, 1415, 23029, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 32320, 3712, 628, 220, 220, 220, 35021, 25, 19386, 7, 11201, 32590, 87, 61, 17, 27493, 6404, 7, 87, 828, 2124, 11, 1596, 11, 5433, 8, 198, 220, 220, 220, 19386, 7, 68, 61, 32590, 87, 61, 17, 27493, 6404, 7, 87, 828, 2124, 11, 1596, 11, 5433, 8, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 42215, 3712, 628, 220, 220, 220, 35021, 25, 399, 7, 18908, 4873, 7, 11201, 32590, 87, 61, 17, 27493, 6404, 7, 87, 828, 2124, 11, 1596, 11, 5433, 828, 939, 8, 1303, 823, 284, 75, 767, 68, 12, 1314, 198, 220, 220, 220, 362, 13, 20, 37680, 2078, 4059, 38205, 1238, 2327, 68, 12, 16799, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 47580, 3712, 628, 220, 220, 220, 35021, 25, 399, 7, 18908, 4873, 7, 31369, 7, 87, 27493, 11201, 7, 6966, 7, 87, 36911, 2124, 11, 657, 11, 31028, 828, 939, 8, 198, 220, 220, 220, 362, 13, 14877, 1821, 1954, 5774, 27800, 1899, 1959, 19708, 2414, 4304, 2718, 486, 1129, 1065, 27037, 22572, 16562, 2327, 4846, 2075, 3104, 1129, 1558, 1821, 2231, 6420, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 35090, 3712, 628, 220, 220, 220, 35021, 25, 35021, 13, 9948, 17576, 13, 9948, 17576, 13, 77, 18908, 1373, 7, 31369, 7, 31369, 7, 87, 36911, 2124, 11, 657, 11, 352, 8, 198, 220, 220, 220, 357, 15, 13, 31794, 33206, 15197, 1065, 3312, 3829, 986, 11, 604, 13, 40873, 34427, 940, 23815, 34801, 986, 68, 12, 1314, 11, 2310, 11, 657, 8, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 50038, 3712, 628, 220, 220, 220, 35021, 25, 308, 7, 87, 8, 796, 7813, 7, 31369, 7, 87, 4008, 198, 220, 220, 220, 35021, 25, 308, 13, 77, 18908, 1373, 7, 87, 11, 657, 11, 352, 8, 198, 220, 220, 220, 357, 15, 13, 31794, 33206, 15197, 1065, 3312, 3829, 986, 11, 604, 13, 40873, 34427, 940, 23815, 34801, 986, 68, 12, 1314, 11, 2310, 11, 657, 8, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 49669, 3712, 628, 220, 220, 220, 35021, 25, 27809, 10786, 600, 22510, 7, 87, 28, 1558, 11, 5433, 11, 1033, 32590, 87, 61, 17, 27493, 6404, 7, 87, 4008, 11537, 1303, 823, 284, 75, 352, 68, 12, 1558, 198, 220, 220, 220, 362, 13, 20, 37680, 2078, 4059, 3980, 13348, 18294, 1959, 1558, 5237, 1157, 2623, 19504, 2791, 20666, 3553, 412, 12, 16799, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 604, 4524, 3712, 628, 220, 220, 220, 35021, 25, 27809, 10786, 600, 22510, 7, 87, 28, 15, 11, 352, 11, 7813, 7, 31369, 7, 87, 22305, 11537, 198, 220, 220, 220, 657, 13, 31794, 33206, 15197, 1065, 3312, 3829, 1899, 2920, 1065, 26514, 28567, 986, 198, 220, 220, 220, 35021, 25, 1468, 62, 3866, 66, 796, 27809, 13, 2617, 62, 3866, 16005, 7, 1120, 8, 198, 220, 220, 220, 35021, 25, 27809, 10786, 600, 22510, 7, 87, 28, 15, 11, 352, 11, 7813, 7, 31369, 7, 87, 22305, 11537, 198, 220, 220, 220, 657, 13, 31794, 33206, 15197, 1065, 3312, 3829, 1899, 2920, 1065, 26514, 28567, 1731, 5705, 2996, 3695, 2414, 2091, 1899, 36088, 1507, 34294, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 45601, 3712, 628, 220, 220, 220, 35021, 25, 279, 796, 27809, 13, 2617, 62, 3866, 16005, 7, 727, 62, 3866, 66, 8, 1303, 319, 816, 316, 8591, 778, 2634, 16005, 1582, 39073, 69, 2306, 198, 220, 220, 220, 35021, 25, 27809, 10786, 600, 22510, 7, 87, 28, 15, 11, 352, 11, 2124, 61, 32590, 16, 14, 17, 4008, 11537, 198, 220, 220, 220, 352, 13, 24214, 24214, 24214, 24214, 24214, 986, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 604, 4846, 3712, 628, 220, 220, 220, 35021, 25, 27809, 10786, 600, 22510, 7, 87, 41888, 15, 11, 532, 16, 14, 17, 4357, 352, 11, 2124, 61, 32590, 16, 14, 17, 4008, 11537, 198, 220, 220, 220, 362, 13, 25645, 8269, 830, 986, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 41612, 3712, 628, 220, 220, 220, 35021, 25, 27809, 10786, 600, 22510, 7, 87, 41888, 15, 11, 532, 16, 14, 3682, 4357, 352, 11, 2124, 61, 32590, 16, 14, 17, 4008, 11537, 198, 220, 220, 220, 352, 13, 24214, 24214, 24214, 24214, 24214, 986, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 642, 1507, 3712, 628, 220, 220, 220, 35021, 25, 1330, 285, 4426, 776, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 7192, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 47003, 7, 50033, 2124, 25, 285, 4426, 776, 13, 31369, 7, 3149, 11018, 13, 31369, 7, 87, 36911, 685, 15, 11, 352, 12962, 198, 220, 220, 220, 29034, 69, 10786, 15, 13, 31794, 33206, 15197, 1065, 3312, 44928, 24, 11537, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 642, 2075, 3712, 628, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 17318, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 47003, 7, 50033, 2124, 25, 285, 4426, 776, 13, 31369, 7, 3149, 11018, 13, 31369, 7, 87, 36911, 685, 15, 11, 352, 12962, 198, 220, 220, 220, 29034, 69, 10786, 15, 13, 31794, 33206, 15197, 1065, 3312, 3829, 1899, 2920, 1065, 26514, 28567, 1731, 5705, 2996, 34583, 11537, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 17342, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 47003, 7, 50033, 2124, 25, 285, 4426, 776, 13, 31369, 7, 3149, 11018, 13, 31369, 7, 87, 36911, 685, 15, 11, 352, 12962, 198, 220, 220, 220, 29034, 69, 10786, 15, 13, 31794, 33206, 15197, 1065, 3312, 3829, 1899, 2920, 1065, 26514, 28567, 1731, 5705, 2996, 41172, 11537, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 25240, 3712, 628, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 47003, 7, 31369, 7, 31369, 7, 87, 36911, 685, 15, 11, 352, 12962, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 5994, 12331, 25, 645, 40091, 32000, 422, 198, 220, 220, 220, 1279, 4906, 705, 82, 496, 13, 8019, 82, 13, 3149, 11018, 13, 2302, 62, 12417, 13, 3149, 69, 44167, 284, 41327, 4160, 12569, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 642, 2996, 3712, 628, 220, 220, 220, 35021, 25, 308, 7, 87, 8, 796, 3509, 62, 1837, 2022, 4160, 7, 31369, 7, 87, 828, 8615, 7, 87, 4008, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 1802, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 47003, 912, 7, 50033, 2124, 25, 308, 7, 45, 7, 87, 11, 1802, 36911, 685, 15, 11, 352, 12962, 198, 220, 220, 220, 29034, 69, 10786, 15, 13, 5774, 2670, 17464, 1433, 2075, 1270, 32182, 30743, 41734, 3720, 2919, 21, 22800, 11537, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 642, 4524, 3712, 628, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 16677, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 47003, 912, 7, 50033, 2124, 25, 308, 7, 45, 7, 87, 11, 19884, 36911, 685, 15, 11, 352, 12962, 198, 220, 220, 220, 29034, 69, 10786, 15, 13, 5774, 2670, 940, 3829, 2425, 4524, 28694, 2425, 21261, 2670, 6200, 41292, 25272, 1731, 4304, 2682, 1821, 4051, 18294, 32182, 20356, 50242, 11537, 198, 220, 220, 220, 35021, 25, 399, 7, 31166, 17034, 7, 17, 8, 532, 8615, 7, 16, 828, 1802, 8, 198, 220, 220, 220, 657, 13, 5774, 2670, 14686, 3980, 1120, 2920, 2816, 2091, 1415, 405, 2425, 21895, 40179, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 642, 5332, 3712, 628, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 47003, 912, 7, 50033, 2124, 25, 308, 7, 45, 7, 87, 11, 16677, 36911, 685, 15, 11, 285, 4426, 776, 13, 14415, 1220, 604, 11, 352, 12962, 198, 220, 220, 220, 29034, 69, 10786, 15, 13, 5774, 2670, 14686, 3980, 1120, 2920, 2816, 2091, 1415, 405, 2425, 21895, 3134, 2791, 4761, 20198, 2780, 2718, 2623, 1415, 4051, 2425, 3829, 1495, 4349, 11537, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 19683, 3712, 628, 220, 220, 220, 35021, 25, 309, 796, 267, 2934, 62, 82, 14375, 3419, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 767, 5333, 3712, 628, 220, 220, 220, 35021, 25, 825, 277, 62, 16, 7, 83, 11, 88, 11, 37266, 2599, 1441, 685, 88, 58, 16, 4357, 37266, 58, 15, 60, 9, 7, 16, 12, 88, 58, 15, 60, 61, 17, 27493, 88, 58, 16, 45297, 88, 58, 15, 11907, 198, 220, 220, 220, 35021, 25, 309, 13, 8818, 796, 277, 62, 16, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 767, 4304, 3712, 628, 220, 220, 220, 35021, 25, 825, 474, 62, 16, 7, 83, 11, 88, 11, 37266, 2599, 198, 220, 220, 220, 19424, 25, 220, 220, 220, 220, 1441, 16410, 15, 11, 352, 4357, 198, 220, 220, 220, 19424, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 17, 9, 37266, 58, 15, 60, 9, 88, 58, 15, 60, 9, 88, 58, 16, 45297, 16, 11, 42287, 58, 15, 60, 9, 7, 16, 12, 88, 58, 15, 60, 61, 17, 8, 4357, 198, 220, 220, 220, 19424, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 15, 11907, 198, 220, 220, 220, 35021, 25, 309, 13, 30482, 672, 666, 796, 474, 62, 16, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 767, 4521, 3712, 628, 220, 220, 220, 35021, 25, 309, 13, 282, 42289, 796, 366, 81, 74, 23, 30094, 1, 198, 220, 220, 220, 35021, 25, 309, 13, 1098, 62, 82, 6442, 7, 88, 62, 15, 41888, 16, 11, 15, 4357, 256, 62, 12626, 41888, 15, 11, 3064, 4357, 42287, 41888, 940, 4357, 198, 220, 220, 220, 19424, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 13033, 28, 12825, 8, 198, 220, 220, 220, 35021, 25, 277, 796, 309, 13, 3849, 16104, 378, 62, 82, 2122, 3419, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 807, 486, 3712, 628, 220, 220, 220, 35021, 25, 7110, 7, 69, 11, 657, 11, 1802, 8, 198, 220, 220, 220, 19840, 2134, 17747, 286, 352, 9382, 20049, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 807, 2548, 3712, 628, 220, 220, 220, 35021, 25, 256, 11, 331, 796, 1401, 10786, 83, 11, 331, 11537, 198, 220, 220, 220, 35021, 25, 748, 6442, 62, 81, 74, 19, 7, 83, 9, 88, 9, 7, 17, 12, 88, 828, 331, 11, 220, 873, 41888, 15, 11, 16, 4357, 886, 62, 13033, 41888, 15, 11, 352, 4357, 2239, 28, 15, 13, 20, 8, 198, 220, 220, 220, 16410, 15, 11, 352, 4357, 685, 15, 13, 20, 11, 352, 13, 17464, 1129, 1065, 4524, 1731, 40486, 4357, 685, 16, 13, 15, 11, 352, 13, 3510, 19707, 27037, 1828, 28011, 1495, 11907, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 807, 5333, 3712, 628, 220, 220, 220, 35021, 25, 1330, 285, 4426, 776, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 7192, 198, 220, 220, 220, 35021, 25, 1540, 796, 285, 4426, 776, 13, 375, 891, 403, 7, 50033, 256, 11, 331, 25, 331, 11, 657, 11, 352, 8, 198, 220, 220, 220, 35021, 25, 1540, 7, 16, 8, 198, 220, 220, 220, 29034, 69, 10786, 17, 13, 45720, 2078, 1507, 2078, 2231, 3829, 36330, 11537, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 1802, 198, 220, 220, 220, 35021, 25, 1540, 7, 16, 8, 198, 220, 220, 220, 29034, 69, 10786, 17, 13, 45720, 2078, 1507, 2078, 2231, 3829, 2231, 1954, 4310, 1899, 2078, 4524, 1795, 19214, 22, 11537, 198, 220, 220, 220, 35021, 25, 399, 7, 11201, 7, 16, 828, 1802, 8, 198, 220, 220, 220, 362, 13, 45720, 2078, 1507, 2078, 2231, 3829, 2231, 1954, 4310, 1899, 27800, 2857, 1415, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 807, 4531, 3712, 628, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 7192, 198, 220, 220, 220, 35021, 25, 277, 796, 285, 4426, 776, 13, 375, 891, 403, 7, 50033, 256, 11, 331, 25, 25915, 88, 58, 16, 4357, 331, 58, 15, 60, 4357, 657, 11, 685, 16, 11, 657, 12962, 198, 220, 220, 220, 35021, 25, 277, 7, 18, 8, 198, 220, 220, 220, 685, 3149, 69, 10786, 12, 15, 13, 4089, 17032, 21626, 2791, 22914, 2231, 3682, 33809, 29034, 69, 10786, 15, 13, 1415, 14686, 830, 1795, 41292, 3134, 2481, 11537, 60, 198, 220, 220, 220, 35021, 25, 357, 6966, 7, 18, 12179, 7813, 7, 18, 2014, 8, 198, 220, 220, 220, 13841, 15, 13, 4089, 17032, 21626, 2791, 22914, 2231, 11, 657, 13, 1415, 14686, 830, 1795, 41292, 3134, 8, 198, 198, 50, 496, 1672, 287, 24457, 18908, 1358, 13, 16886, 11, 1627, 860, 2670, 3712, 628, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 838, 198, 220, 220, 220, 35021, 25, 1540, 796, 285, 4426, 776, 13, 375, 891, 403, 7, 50033, 256, 11, 331, 25, 331, 11, 657, 11, 352, 8, 198, 220, 220, 220, 35021, 25, 1540, 7, 16, 8, 198, 220, 220, 220, 29034, 69, 10786, 17, 13, 22, 18294, 11537, 198, 220, 220, 220, 35021, 25, 285, 4426, 776, 13, 3149, 13, 3866, 66, 796, 1802, 198, 220, 220, 220, 35021, 25, 1540, 7, 16, 8, 198, 220, 220, 220, 29034, 69, 10786, 17, 13, 22, 17059, 18638, 22370, 2231, 3865, 16616, 23721, 26912, 2079, 1120, 1731, 2548, 11537, 198, 198, 37811, 198, 2, 770, 2393, 373, 1635, 2306, 519, 877, 515, 9, 422, 262, 2393, 11812, 62, 4598, 310, 395, 13, 82, 496, 13, 198 ]
2.168917
3,185
# Generated by Django 3.0.2 on 2020-07-21 00:58 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 17, 319, 12131, 12, 2998, 12, 2481, 3571, 25, 3365, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
3.019231
52
""" Заголовок пакета """ default_app_config = 'multimeter.apps.MultimeterConfig' # pylint: disable=invalid-name
[ 37811, 12466, 245, 16142, 140, 111, 25443, 119, 25443, 110, 25443, 118, 12466, 123, 16142, 31583, 16843, 20375, 16142, 37227, 198, 198, 12286, 62, 1324, 62, 11250, 796, 705, 16680, 16912, 13, 18211, 13, 15205, 16912, 16934, 6, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198 ]
2.235294
51
#!/usr/bin/env python3 import itertools import sys MASK = 0xffffff # did I implement this correctly? assert forward(*map(bytes.fromhex, ('1211100a0908020100', '20796c6c6172'))) == b'\xc0\x49\xa5\x38\x5a\xdc' if len(sys.argv) < 2: print(f"Usage: python3 {sys.argv[0]} <hex>") exit(1) target = bytes.fromhex(sys.argv[1]) key = (18).to_bytes(9, 'big') start = bytes(6) end = backward(key, target) assert(forward(key, end) == target) forward_dict = {} backward_dict = {} all_bytes = [i.to_bytes(1, 'big') for i in range(256)] for k in itertools.product(all_bytes, repeat=9): key = b''.join(k) f = forward(key, start) forward_dict[f] = key if f in backward_dict: ans = key + backward_dict[f] break b = backward(key, end) backward_dict[b] = key if b in forward_dict: ans = forward_dict[b] + key break print(ans.hex()) assert H(ans) == target
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 340, 861, 10141, 198, 11748, 25064, 198, 198, 31180, 42, 796, 657, 87, 12927, 487, 628, 628, 198, 2, 750, 314, 3494, 428, 9380, 30, 198, 30493, 2651, 46491, 8899, 7, 33661, 13, 6738, 33095, 11, 19203, 1065, 1157, 3064, 64, 2931, 33057, 1264, 405, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1238, 41060, 66, 21, 66, 21, 23628, 6, 22305, 6624, 275, 6, 59, 25306, 15, 59, 87, 2920, 59, 27865, 20, 59, 87, 2548, 59, 87, 20, 64, 59, 87, 17896, 6, 628, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 1279, 362, 25, 198, 220, 220, 220, 3601, 7, 69, 1, 28350, 25, 21015, 18, 1391, 17597, 13, 853, 85, 58, 15, 48999, 1279, 33095, 29, 4943, 198, 220, 220, 220, 8420, 7, 16, 8, 198, 198, 16793, 796, 9881, 13, 6738, 33095, 7, 17597, 13, 853, 85, 58, 16, 12962, 628, 198, 2539, 796, 357, 1507, 737, 1462, 62, 33661, 7, 24, 11, 705, 14261, 11537, 198, 198, 9688, 796, 9881, 7, 21, 8, 198, 437, 796, 19528, 7, 2539, 11, 2496, 8, 198, 198, 30493, 7, 11813, 7, 2539, 11, 886, 8, 6624, 2496, 8, 198, 198, 11813, 62, 11600, 796, 23884, 198, 1891, 904, 62, 11600, 796, 23884, 198, 198, 439, 62, 33661, 796, 685, 72, 13, 1462, 62, 33661, 7, 16, 11, 705, 14261, 11537, 329, 1312, 287, 2837, 7, 11645, 15437, 198, 1640, 479, 287, 340, 861, 10141, 13, 11167, 7, 439, 62, 33661, 11, 9585, 28, 24, 2599, 198, 220, 220, 220, 1994, 796, 275, 35384, 22179, 7, 74, 8, 198, 220, 220, 220, 277, 796, 2651, 7, 2539, 11, 923, 8, 198, 220, 220, 220, 2651, 62, 11600, 58, 69, 60, 796, 1994, 198, 220, 220, 220, 611, 277, 287, 19528, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9093, 796, 1994, 1343, 19528, 62, 11600, 58, 69, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 275, 796, 19528, 7, 2539, 11, 886, 8, 198, 220, 220, 220, 19528, 62, 11600, 58, 65, 60, 796, 1994, 198, 220, 220, 220, 611, 275, 287, 2651, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9093, 796, 2651, 62, 11600, 58, 65, 60, 1343, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 4798, 7, 504, 13, 33095, 28955, 198, 30493, 367, 7, 504, 8, 6624, 2496, 198 ]
2.153153
444
if __name__ == '__main__': n = int(input()) student_marks = {} for _ in range(n): name, *line = input().split() scores = list(map(float, line)) student_marks[name] = scores query_name = input() average = sum(student_marks[query_name])/ len(student_marks[query_name]) print("{:.2f}".format(average)) # Passing an integer after the ':' will cause that field to be a minimum # number of characters wide. # str.format(): Perform a string formatting operation. The string on which # this method is called can contain literal text or replacement fields # delimited by braces {}. Each replacement field contains either the # numeric index of a positional argument, or the name of a keyword # argument. Returns a copy of the string where each replacement field is # replaced with the string value of the corresponding argument.
[ 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 299, 796, 493, 7, 15414, 28955, 198, 220, 220, 220, 3710, 62, 14306, 796, 23884, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 1635, 1370, 796, 5128, 22446, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 1351, 7, 8899, 7, 22468, 11, 1627, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3710, 62, 14306, 58, 3672, 60, 796, 8198, 198, 220, 220, 220, 12405, 62, 3672, 796, 5128, 3419, 198, 220, 220, 220, 2811, 796, 2160, 7, 50139, 62, 14306, 58, 22766, 62, 3672, 12962, 14, 18896, 7, 50139, 62, 14306, 58, 22766, 62, 3672, 12962, 198, 220, 220, 220, 3601, 7203, 90, 25, 13, 17, 69, 92, 1911, 18982, 7, 23913, 4008, 198, 220, 220, 220, 220, 198, 2, 46389, 281, 18253, 706, 262, 705, 32105, 481, 2728, 326, 2214, 284, 307, 257, 5288, 198, 2, 1271, 286, 3435, 3094, 13, 198, 198, 2, 965, 13, 18982, 33529, 35006, 257, 4731, 33313, 4905, 13, 383, 4731, 319, 543, 220, 198, 2, 428, 2446, 318, 1444, 460, 3994, 18875, 2420, 393, 9014, 7032, 220, 198, 2, 46728, 863, 416, 47241, 23884, 13, 5501, 9014, 2214, 4909, 2035, 262, 220, 198, 2, 35575, 6376, 286, 257, 45203, 4578, 11, 393, 262, 1438, 286, 257, 21179, 220, 198, 2, 4578, 13, 16409, 257, 4866, 286, 262, 4731, 810, 1123, 9014, 2214, 318, 220, 198, 2, 6928, 351, 262, 4731, 1988, 286, 262, 11188, 4578, 13, 198 ]
3.304511
266
/home/runner/.cache/pip/pool/aa/b2/26/72bdb8c2f74308cbc5f71d13cb1f12d650ade8623046fcee026be0fd38
[ 14, 11195, 14, 16737, 11757, 23870, 14, 79, 541, 14, 7742, 14, 7252, 14, 65, 17, 14, 2075, 14, 4761, 65, 9945, 23, 66, 17, 69, 4524, 21495, 66, 15630, 20, 69, 4869, 67, 1485, 21101, 16, 69, 1065, 67, 17544, 671, 4521, 19214, 3510, 69, 344, 68, 45987, 1350, 15, 16344, 2548 ]
1.811321
53
''' Run NASQM created by Dustin Tracy ([email protected]) This program is used to automate NASQM job creations. You'll find the parameters to change in the file nasqm_user_input.py ''' import argparse import time from pynasqm.initialize import initialize from pynasqm.inputceon import InputCeon from pynasqm.write import (write_omega_vs_time, write_spectra_flu_input, write_average_coeffs) from pynasqm.spectracollection import write_spectra_input from pynasqm.userinput import UserInput from pynasqm.trajectories.qmgroundstatetrajectories import QmGroundTrajectories from pynasqm.trajectories.qmexcitedstatetrajectories import QmExcitedStateTrajectories from pynasqm.trajectories.pulsepump import PulsePump from pynasqm.initialexcitedstates import get_energies_and_strenghts from pynasqm.trajectories.mmgroundstatetrajectory import groundStateDynamics from pynasqm.trajectories.absorptionsnaps import AbsorptionSnaps from pynasqm.trajectories.fluorescencesnaps import FluorescenceSnaps from pynasqm.sed import sed_inplace, sed_global from pynasqm.nasqmslurm import restart_nasqm from pynasqm.trajectories.combine_trajectories import combine_trajectories from pynasqm.collect_coeffs import collect_coeffs import subprocess def main(): ''' The primary nasqm automation function call. All changable parameters can be found in userinput.py ''' parser = argparse.ArgumentParser() parser.add_argument("--init", help="initialize the directory for nasqm", action="store_true") parser.add_argument("--job", help="0-ground, 1-qmground, 2-qmexcited", default=0, type=int) parser.add_argument("--restart", help="restart attempt, 0 for first run", default=0, type=int) args = parser.parse_args() if args.init: title_print('Initializing Directory') print("Amber Input File: md_qmmm_amb.in") print("NEXMD Input File: input.ceon") print("PYNASQM Input File: pynasqm.in") print("Please rename your coordinate file to m1_md2.rst") print("Please rename your parmtop file to m1.prmtop") initialize() exit() user_input = UserInput() user_input.restart_attempt = args.restart if args.restart != 0: if args.job > 0: user_input.run_ground_state_dynamics = False if args.job > 1: user_input.run_qmground_trajectories = False user_input.run_absorption_collection = False original_inputs = copy_inputs() input_ceon = create_input(user_input) start_time = time.time() if user_input.run_ground_state_dynamics: run_mm_ground_state_dynamics(input_ceon, user_input) if user_input.run_qmground_trajectories: run_qm_ground_state_trajectories(input_ceon, user_input) if user_input.run_absorption_snapshots: run_absorption_snaps(input_ceon, user_input) if user_input.run_absorption_collection: run_absorption_collection(user_input) if should_perform_pulse_pump(user_input, args.restart): run_pulse_pump_prep(input_ceon, user_input) if should_perform_pulse_pump_collection(user_input, args.restart): run_pulse_pump_prep_collection(input_ceon, user_input) if user_input.run_excited_state_trajectories: run_excited_state_trajectories(input_ceon, user_input) if user_input.run_fluorescence_snapshots: run_fluorescence_snaps(input_ceon, user_input) if user_input.run_fluorescence_collection: run_fluorescence_collection(user_input) if not user_input.is_hpc: restore_inputs(original_inputs) input_ceon.write_log() end_time = time.time() print("Job finished in %s seconds" % (end_time - start_time)) def run_mm_ground_state_dynamics(md_qmmm_amb, user_input): ''' Run the ground state trajectory that will be used to generate initial geometries for future calculations ''' title_print("MM Ground-State Trajectory") groundStateDynamics(md_qmmm_amb, user_input) manage_restart(0, user_input, user_input.restart_attempt) def run_qm_ground_state_trajectories(input_ceon, user_input): ''' Now we want to take the original trajectory snapshots and run more trajectories using random velocities to make them different from each other ''' title_print("QM Ground-State Trajectories") QmGroundTrajectories(user_input, input_ceon).run() manage_restart(1, user_input, user_input.restart_attempt) def run_absorption_snaps(input_ceon, user_input): ''' Take snapshots from the qmground trajectories ignoring a time delay. Run singlepoints on these snaphsots ''' title_print("Absorption Snaps") AbsorptionSnaps(user_input, input_ceon).run() def run_absorption_collection(user_input): ''' Parse the output data from amber for absorption energies and create a spectra_abs.input file ''' title_print("Absorption Parsing") write_spectra_input(user_input, 'absorption') energies, strengths = get_energies_and_strenghts('spectra_absorption.input') print_energies_and_strengths(energies, strengths) def run_excited_state_trajectories(input_ceon, user_input): ''' We take the original trajectory snapshots and run further trajectories from those at the excited state ''' print("!!!!!!!!!!!!!!!!!!!! Running Excited States !!!!!!!!!!!!!!!!!!!!") QmExcitedStateTrajectories(user_input, input_ceon).run() manage_restart(2, user_input, user_input.restart_attempt) if user_input.is_tully: collect_coeffs( number_trajectories=user_input.n_snapshots_ex, number_restarts=user_input.n_exc_runs - 1 ) def run_fluorescence_snaps(input_ceon, user_input): ''' Take snapshots from the qmground trajectories ignoring a time delay. Run singlepoints on these snaphsots ''' title_print("Fluorescence Snaps") FluorescenceSnaps(user_input, input_ceon).run() def run_fluorescence_collection(user_input): ''' Parse the output data from amber for fluorescene energies and create a spectra_flu.input file ''' print("!!!!!!!!!!!!!!!!!!!! Parsing Fluorescences !!!!!!!!!!!!!!!!!!!!") # combine_trajectories("qmexcited", user_input.n_snapshots_ex, user_input.n_exc_runs) exc_state_init = user_input.exc_state_init_ex_param exc_state_prop = user_input.n_exc_states_propagate_ex_param n_completed = write_spectra_flu_input(user_input) write_omega_vs_time(n_trajectories=n_completed, n_states=exc_state_init) if user_input.is_tully: write_average_coeffs(n_trajectories=user_input.n_snapshots_ex, n_states=exc_state_prop) try: main() except KeyboardInterrupt: print("You canceled the operation")
[ 7061, 6, 198, 10987, 7210, 48, 44, 198, 25598, 416, 37616, 31140, 357, 67, 2213, 1590, 13, 3046, 31, 14816, 13, 785, 8, 198, 1212, 1430, 318, 973, 284, 43511, 7210, 48, 44, 1693, 28443, 13, 198, 1639, 1183, 1064, 262, 10007, 284, 1487, 287, 262, 2393, 25221, 80, 76, 62, 7220, 62, 15414, 13, 9078, 198, 7061, 6, 198, 11748, 1822, 29572, 198, 11748, 640, 198, 6738, 279, 2047, 292, 80, 76, 13, 36733, 1096, 1330, 41216, 198, 6738, 279, 2047, 292, 80, 76, 13, 15414, 344, 261, 1330, 23412, 34, 23277, 198, 6738, 279, 2047, 292, 80, 76, 13, 13564, 1330, 357, 13564, 62, 462, 4908, 62, 14259, 62, 2435, 11, 3551, 62, 4443, 430, 62, 35522, 62, 15414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 23913, 62, 1073, 14822, 82, 8, 198, 6738, 279, 2047, 292, 80, 76, 13, 4443, 11510, 349, 1564, 1330, 3551, 62, 4443, 430, 62, 15414, 198, 6738, 279, 2047, 292, 80, 76, 13, 7220, 15414, 1330, 11787, 20560, 198, 6738, 279, 2047, 292, 80, 76, 13, 9535, 752, 1749, 13, 80, 76, 2833, 14269, 316, 430, 752, 1749, 1330, 1195, 76, 35539, 15721, 752, 1749, 198, 6738, 279, 2047, 292, 80, 76, 13, 9535, 752, 1749, 13, 80, 76, 41194, 863, 14269, 316, 430, 752, 1749, 1330, 1195, 76, 40127, 863, 9012, 15721, 752, 1749, 198, 6738, 279, 2047, 292, 80, 76, 13, 9535, 752, 1749, 13, 79, 9615, 79, 931, 1330, 25062, 47, 931, 198, 6738, 279, 2047, 292, 80, 76, 13, 36733, 41194, 863, 27219, 1330, 651, 62, 877, 70, 444, 62, 392, 62, 301, 918, 456, 912, 198, 6738, 279, 2047, 292, 80, 76, 13, 9535, 752, 1749, 13, 3020, 2833, 14269, 316, 430, 752, 652, 1330, 2323, 9012, 35, 4989, 873, 198, 6738, 279, 2047, 292, 80, 76, 13, 9535, 752, 1749, 13, 46303, 8544, 77, 1686, 1330, 13051, 273, 1159, 16501, 1686, 198, 6738, 279, 2047, 292, 80, 76, 13, 9535, 752, 1749, 13, 35522, 45166, 3007, 77, 1686, 1330, 34070, 48699, 16501, 1686, 198, 6738, 279, 2047, 292, 80, 76, 13, 36622, 1330, 10081, 62, 259, 5372, 11, 10081, 62, 20541, 198, 6738, 279, 2047, 292, 80, 76, 13, 24716, 80, 907, 75, 333, 76, 1330, 15765, 62, 24716, 80, 76, 198, 6738, 279, 2047, 292, 80, 76, 13, 9535, 752, 1749, 13, 24011, 500, 62, 9535, 752, 1749, 1330, 12082, 62, 9535, 752, 1749, 198, 6738, 279, 2047, 292, 80, 76, 13, 33327, 62, 1073, 14822, 82, 1330, 2824, 62, 1073, 14822, 82, 198, 11748, 850, 14681, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 383, 4165, 25221, 80, 76, 22771, 2163, 869, 13, 1439, 1488, 540, 10007, 460, 307, 198, 220, 220, 220, 1043, 287, 2836, 15414, 13, 9078, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 15003, 1600, 1037, 2625, 36733, 1096, 262, 8619, 329, 25221, 80, 76, 1600, 2223, 2625, 8095, 62, 7942, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 21858, 1600, 1037, 2625, 15, 12, 2833, 11, 352, 12, 80, 76, 2833, 11, 362, 12, 80, 76, 41194, 863, 1600, 4277, 28, 15, 11, 2099, 28, 600, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 2118, 433, 1600, 1037, 2625, 2118, 433, 2230, 11, 657, 329, 717, 1057, 1600, 4277, 28, 15, 11, 2099, 28, 600, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 26498, 13, 15003, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 62, 4798, 10786, 24243, 2890, 27387, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 32, 1916, 23412, 9220, 25, 45243, 62, 80, 27532, 62, 4131, 13, 259, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 45, 6369, 12740, 23412, 9220, 25, 5128, 13, 344, 261, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 47, 56, 18293, 48, 44, 23412, 9220, 25, 279, 2047, 292, 80, 76, 13, 259, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5492, 36265, 534, 20435, 2393, 284, 285, 16, 62, 9132, 17, 13, 81, 301, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5492, 36265, 534, 1582, 76, 4852, 2393, 284, 285, 16, 13, 1050, 76, 4852, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 41216, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 628, 220, 220, 220, 2836, 62, 15414, 796, 11787, 20560, 3419, 198, 220, 220, 220, 2836, 62, 15414, 13, 2118, 433, 62, 1078, 1791, 796, 26498, 13, 2118, 433, 628, 220, 220, 220, 611, 26498, 13, 2118, 433, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21858, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 15414, 13, 5143, 62, 2833, 62, 5219, 62, 67, 4989, 873, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21858, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 15414, 13, 5143, 62, 80, 76, 2833, 62, 9535, 752, 1749, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 15414, 13, 5143, 62, 46303, 1159, 62, 43681, 796, 10352, 628, 220, 220, 220, 2656, 62, 15414, 82, 796, 4866, 62, 15414, 82, 3419, 198, 220, 220, 220, 5128, 62, 344, 261, 796, 2251, 62, 15414, 7, 7220, 62, 15414, 8, 628, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 611, 2836, 62, 15414, 13, 5143, 62, 2833, 62, 5219, 62, 67, 4989, 873, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 3020, 62, 2833, 62, 5219, 62, 67, 4989, 873, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 8, 198, 220, 220, 220, 611, 2836, 62, 15414, 13, 5143, 62, 80, 76, 2833, 62, 9535, 752, 1749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 80, 76, 62, 2833, 62, 5219, 62, 9535, 752, 1749, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 8, 198, 220, 220, 220, 611, 2836, 62, 15414, 13, 5143, 62, 46303, 1159, 62, 45380, 20910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 46303, 1159, 62, 16184, 1686, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 8, 198, 220, 220, 220, 611, 2836, 62, 15414, 13, 5143, 62, 46303, 1159, 62, 43681, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 46303, 1159, 62, 43681, 7, 7220, 62, 15414, 8, 198, 220, 220, 220, 611, 815, 62, 525, 687, 62, 79, 9615, 62, 79, 931, 7, 7220, 62, 15414, 11, 26498, 13, 2118, 433, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 79, 9615, 62, 79, 931, 62, 46012, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 8, 198, 220, 220, 220, 611, 815, 62, 525, 687, 62, 79, 9615, 62, 79, 931, 62, 43681, 7, 7220, 62, 15414, 11, 26498, 13, 2118, 433, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 79, 9615, 62, 79, 931, 62, 46012, 62, 43681, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 8, 198, 220, 220, 220, 611, 2836, 62, 15414, 13, 5143, 62, 41194, 863, 62, 5219, 62, 9535, 752, 1749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 41194, 863, 62, 5219, 62, 9535, 752, 1749, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 8, 198, 220, 220, 220, 611, 2836, 62, 15414, 13, 5143, 62, 35522, 48699, 62, 45380, 20910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 35522, 48699, 62, 16184, 1686, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 8, 198, 220, 220, 220, 611, 2836, 62, 15414, 13, 5143, 62, 35522, 48699, 62, 43681, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 35522, 48699, 62, 43681, 7, 7220, 62, 15414, 8, 628, 220, 220, 220, 611, 407, 2836, 62, 15414, 13, 271, 62, 71, 14751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11169, 62, 15414, 82, 7, 14986, 62, 15414, 82, 8, 198, 220, 220, 220, 5128, 62, 344, 261, 13, 13564, 62, 6404, 3419, 628, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 3601, 7203, 33308, 5201, 287, 4064, 82, 4201, 1, 4064, 357, 437, 62, 2435, 532, 923, 62, 2435, 4008, 628, 198, 4299, 1057, 62, 3020, 62, 2833, 62, 5219, 62, 67, 4989, 873, 7, 9132, 62, 80, 27532, 62, 4131, 11, 2836, 62, 15414, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5660, 262, 2323, 1181, 22942, 326, 481, 307, 973, 284, 7716, 4238, 4903, 908, 1678, 198, 220, 220, 220, 329, 2003, 16765, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3670, 62, 4798, 7203, 12038, 13706, 12, 9012, 4759, 752, 652, 4943, 198, 220, 220, 220, 2323, 9012, 35, 4989, 873, 7, 9132, 62, 80, 27532, 62, 4131, 11, 2836, 62, 15414, 8, 198, 220, 220, 220, 6687, 62, 2118, 433, 7, 15, 11, 2836, 62, 15414, 11, 2836, 62, 15414, 13, 2118, 433, 62, 1078, 1791, 8, 628, 198, 4299, 1057, 62, 80, 76, 62, 2833, 62, 5219, 62, 9535, 752, 1749, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2735, 356, 765, 284, 1011, 262, 2656, 22942, 47787, 290, 1057, 517, 20134, 1749, 198, 220, 220, 220, 1262, 4738, 11555, 420, 871, 284, 787, 606, 1180, 422, 1123, 584, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3670, 62, 4798, 7203, 48, 44, 13706, 12, 9012, 4759, 752, 1749, 4943, 198, 220, 220, 220, 1195, 76, 35539, 15721, 752, 1749, 7, 7220, 62, 15414, 11, 5128, 62, 344, 261, 737, 5143, 3419, 198, 220, 220, 220, 6687, 62, 2118, 433, 7, 16, 11, 2836, 62, 15414, 11, 2836, 62, 15414, 13, 2118, 433, 62, 1078, 1791, 8, 198, 198, 4299, 1057, 62, 46303, 1159, 62, 16184, 1686, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 7214, 47787, 422, 262, 10662, 76, 2833, 20134, 1749, 15482, 257, 640, 5711, 13, 198, 220, 220, 220, 5660, 2060, 13033, 319, 777, 3013, 6570, 82, 1747, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3670, 62, 4798, 7203, 24849, 273, 1159, 5489, 1686, 4943, 198, 220, 220, 220, 13051, 273, 1159, 16501, 1686, 7, 7220, 62, 15414, 11, 5128, 62, 344, 261, 737, 5143, 3419, 198, 198, 4299, 1057, 62, 46303, 1159, 62, 43681, 7, 7220, 62, 15414, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2547, 325, 262, 5072, 1366, 422, 36505, 329, 24774, 27598, 290, 2251, 257, 5444, 430, 62, 8937, 13, 15414, 198, 220, 220, 220, 2393, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3670, 62, 4798, 7203, 24849, 273, 1159, 23042, 278, 4943, 198, 220, 220, 220, 3551, 62, 4443, 430, 62, 15414, 7, 7220, 62, 15414, 11, 705, 46303, 1159, 11537, 198, 220, 220, 220, 27598, 11, 18929, 796, 651, 62, 877, 70, 444, 62, 392, 62, 301, 918, 456, 912, 10786, 4443, 430, 62, 46303, 1159, 13, 15414, 11537, 198, 220, 220, 220, 3601, 62, 877, 70, 444, 62, 392, 62, 22853, 782, 9998, 7, 877, 70, 444, 11, 18929, 8, 198, 198, 4299, 1057, 62, 41194, 863, 62, 5219, 62, 9535, 752, 1749, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 775, 1011, 262, 2656, 22942, 47787, 290, 1057, 2252, 20134, 1749, 198, 220, 220, 220, 422, 883, 379, 262, 6568, 1181, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3601, 7203, 34635, 34635, 13896, 18162, 25268, 863, 1829, 220, 34635, 34635, 10185, 2474, 8, 198, 220, 220, 220, 1195, 76, 40127, 863, 9012, 15721, 752, 1749, 7, 7220, 62, 15414, 11, 5128, 62, 344, 261, 737, 5143, 3419, 198, 220, 220, 220, 6687, 62, 2118, 433, 7, 17, 11, 2836, 62, 15414, 11, 2836, 62, 15414, 13, 2118, 433, 62, 1078, 1791, 8, 198, 220, 220, 220, 611, 2836, 62, 15414, 13, 271, 62, 83, 2132, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2824, 62, 1073, 14822, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 9535, 752, 1749, 28, 7220, 62, 15414, 13, 77, 62, 45380, 20910, 62, 1069, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 2118, 5889, 28, 7220, 62, 15414, 13, 77, 62, 41194, 62, 48381, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 4299, 1057, 62, 35522, 48699, 62, 16184, 1686, 7, 15414, 62, 344, 261, 11, 2836, 62, 15414, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 7214, 47787, 422, 262, 10662, 76, 2833, 20134, 1749, 15482, 257, 640, 5711, 13, 198, 220, 220, 220, 5660, 2060, 13033, 319, 777, 3013, 6570, 82, 1747, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3670, 62, 4798, 7203, 37, 2290, 48699, 5489, 1686, 4943, 198, 220, 220, 220, 34070, 48699, 16501, 1686, 7, 7220, 62, 15414, 11, 5128, 62, 344, 261, 737, 5143, 3419, 198, 198, 4299, 1057, 62, 35522, 48699, 62, 43681, 7, 7220, 62, 15414, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2547, 325, 262, 5072, 1366, 422, 36505, 329, 6562, 382, 29734, 27598, 290, 2251, 257, 5444, 430, 62, 35522, 13, 15414, 198, 220, 220, 220, 2393, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3601, 7203, 34635, 34635, 13896, 23042, 278, 34070, 45166, 3007, 220, 34635, 34635, 10185, 2474, 8, 198, 220, 220, 220, 1303, 12082, 62, 9535, 752, 1749, 7203, 80, 76, 41194, 863, 1600, 2836, 62, 15414, 13, 77, 62, 45380, 20910, 62, 1069, 11, 2836, 62, 15414, 13, 77, 62, 41194, 62, 48381, 8, 198, 220, 220, 220, 2859, 62, 5219, 62, 15003, 796, 2836, 62, 15414, 13, 41194, 62, 5219, 62, 15003, 62, 1069, 62, 17143, 198, 220, 220, 220, 2859, 62, 5219, 62, 22930, 796, 2836, 62, 15414, 13, 77, 62, 41194, 62, 27219, 62, 22930, 37861, 62, 1069, 62, 17143, 198, 220, 220, 220, 299, 62, 785, 16838, 796, 3551, 62, 4443, 430, 62, 35522, 62, 15414, 7, 7220, 62, 15414, 8, 198, 220, 220, 220, 3551, 62, 462, 4908, 62, 14259, 62, 2435, 7, 77, 62, 9535, 752, 1749, 28, 77, 62, 785, 16838, 11, 299, 62, 27219, 28, 41194, 62, 5219, 62, 15003, 8, 198, 220, 220, 220, 611, 2836, 62, 15414, 13, 271, 62, 83, 2132, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 23913, 62, 1073, 14822, 82, 7, 77, 62, 9535, 752, 1749, 28, 7220, 62, 15414, 13, 77, 62, 45380, 20910, 62, 1069, 11, 299, 62, 27219, 28, 41194, 62, 5219, 62, 22930, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 1388, 3419, 198, 16341, 31973, 9492, 3622, 25, 198, 220, 220, 220, 3601, 7203, 1639, 19994, 262, 4905, 4943, 198 ]
2.603715
2,584
# coding=utf-8 # Development server from slideatlas import create_app app = create_app() # app.run(host='0.0.0.0', port=8080) if __name__ == "__main__": print "To run:\ngunicorn run_gunicorn:app -b localhost:8080 -w 4"
[ 2, 19617, 28, 40477, 12, 23, 198, 198, 2, 7712, 4382, 198, 6738, 10649, 265, 21921, 1330, 2251, 62, 1324, 198, 1324, 796, 2251, 62, 1324, 3419, 198, 2, 598, 13, 5143, 7, 4774, 11639, 15, 13, 15, 13, 15, 13, 15, 3256, 2493, 28, 1795, 1795, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 366, 2514, 1057, 7479, 782, 46903, 1211, 1057, 62, 7145, 291, 1211, 25, 1324, 532, 65, 1957, 4774, 25, 1795, 1795, 532, 86, 604, 1 ]
2.488889
90
import os import helpers from compas_fab.backends import RosClient from compas_fab.robots import PlanningScene import compas HERE = os.path.dirname(__file__) MAX_STEP = 0.01 # Load assembly filename = os.path.join(HERE, 'assembly.json') assembly = compas.json_load(filename) with RosClient() as client: robot = client.load_robot() scene = PlanningScene(robot) # Prepare scene for planning helpers.attach_vacuum_gripper(scene) helpers.add_static_objects(scene) trajectory = robot.plan_cartesian_motion(assembly.pick_t0cf_frames(), start_configuration=assembly.attributes['home_config'], options=dict(max_step=MAX_STEP)) if trajectory and trajectory.fraction < 1.0: raise Exception('Incomplete trajectory. Fraction={}'.format(trajectory.fraction)) assembly.pick_trajectory = trajectory # Save assembly compas.json_dump(assembly, filename, pretty=True)
[ 11748, 28686, 198, 198, 11748, 49385, 198, 6738, 552, 292, 62, 36434, 13, 1891, 2412, 1330, 10018, 11792, 198, 6738, 552, 292, 62, 36434, 13, 22609, 1747, 1330, 21913, 36542, 198, 198, 11748, 552, 292, 198, 198, 39, 9338, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 22921, 62, 42135, 796, 657, 13, 486, 198, 198, 2, 8778, 10474, 198, 34345, 796, 28686, 13, 6978, 13, 22179, 7, 39, 9338, 11, 705, 41873, 13, 17752, 11537, 198, 41873, 796, 552, 292, 13, 17752, 62, 2220, 7, 34345, 8, 198, 198, 4480, 10018, 11792, 3419, 355, 5456, 25, 198, 220, 220, 220, 9379, 796, 5456, 13, 2220, 62, 305, 13645, 3419, 198, 220, 220, 220, 3715, 796, 21913, 36542, 7, 305, 13645, 8, 628, 220, 220, 220, 1303, 43426, 3715, 329, 5410, 198, 220, 220, 220, 49385, 13, 47348, 62, 85, 330, 13814, 62, 70, 380, 2848, 7, 29734, 8, 198, 220, 220, 220, 49385, 13, 2860, 62, 12708, 62, 48205, 7, 29734, 8, 628, 220, 220, 220, 22942, 796, 9379, 13, 11578, 62, 26674, 35610, 62, 38714, 7, 41873, 13, 27729, 62, 83, 15, 12993, 62, 37805, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 11250, 3924, 28, 41873, 13, 1078, 7657, 17816, 11195, 62, 11250, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 28, 11600, 7, 9806, 62, 9662, 28, 22921, 62, 42135, 4008, 628, 220, 220, 220, 611, 22942, 290, 22942, 13, 69, 7861, 1279, 352, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 818, 20751, 22942, 13, 376, 7861, 34758, 92, 4458, 18982, 7, 9535, 752, 652, 13, 69, 7861, 4008, 628, 220, 220, 220, 10474, 13, 27729, 62, 9535, 752, 652, 796, 22942, 198, 198, 2, 12793, 10474, 198, 5589, 292, 13, 17752, 62, 39455, 7, 41873, 11, 29472, 11, 2495, 28, 17821, 8, 198 ]
2.538462
390
from __future__ import annotations import typing as t import enum from sqlalchemy import ( Column, Integer, String, ForeignKey, MetaData, Table, JSON, ) from sqlalchemy.orm import ( relationship, RelationshipProperty, ) from ...common.sqlalchemy import ( declarative_base, RequiredColumn, OptionalColumn, RequiredEnumColumn, ) Base = declarative_base()
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 11748, 19720, 355, 256, 198, 11748, 33829, 198, 6738, 44161, 282, 26599, 1330, 357, 198, 220, 220, 220, 29201, 11, 198, 220, 220, 220, 34142, 11, 198, 220, 220, 220, 10903, 11, 198, 220, 220, 220, 8708, 9218, 11, 198, 220, 220, 220, 30277, 6601, 11, 198, 220, 220, 220, 8655, 11, 198, 220, 220, 220, 19449, 11, 198, 8, 198, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 357, 198, 220, 220, 220, 2776, 11, 198, 220, 220, 220, 39771, 21746, 11, 198, 8, 198, 198, 6738, 2644, 11321, 13, 25410, 282, 26599, 1330, 357, 198, 220, 220, 220, 2377, 283, 876, 62, 8692, 11, 198, 220, 220, 220, 20906, 39470, 11, 198, 220, 220, 220, 32233, 39470, 11, 198, 220, 220, 220, 20906, 4834, 388, 39470, 11, 198, 8, 198, 198, 14881, 796, 2377, 283, 876, 62, 8692, 3419 ]
2.75
148
#!/usr/bin/env python # Line too long - pylint: disable=C0301 # Invalid name - pylint: disable=C0103 """ Copyright (c) 2004-Present Pivotal Software, Inc. This program and the accompanying materials are made available under the terms of the under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Capture the information regarding gpdb """ try: import sys, time import traceback #from generalUtil import GeneralUtil from gppylib.commands.base import Command from PSQL import PSQL #from cdbfastUtil import PrettyPrint from datetime import datetime except Exception, e: sys.exit('Cannot import modules GpdbSegmentConfig. Please check that you have sourced greenplum_path.sh. Detail: ' + str(e)) ##### class GpdbSegmentConfig: """ Capture the information regarding Gpdb Segment Configuration @class GpdbSegmentConfig @organization: DCD Partner Engineering @contact: Kenneth Wong """ ### def __init__(self): """ Constructor for GpdbSegmentConfig """ #self.generalUtil = GeneralUtil() self.psql = PSQL ### def GetSqlData(self, sql): """ Execute the sql statement and returns the data @param sql: The sql command to execute @return: data """ data = [] # use run_sql_command in SQL instead of run #(rc, out) = psql.run(dbname='gptest', cmd='%s' % (sql), ofile='-', flag='-q -t') out = self.psql.run_sql_command(sql_cmd='%s' % (sql), dbname='gptest', out_file='-', flags='-q -t') for line in out: line = line.strip() if line: data.append(line) return 0, data def hasStandbyMaster( self ): ''' check if a greenplum database has standby master configured @return: True or False which indicates whether or not the gpdb has standby master configured ''' cmd = 'SELECT CASE WHEN count(*) > 0 THEN \'True\' ELSE \'False\' END AS hasstandby FROM pg_catalog.gp_segment_configuration WHERE content = -1 AND role = \'m\';' # use run_sql_command in SQL instead of runcmd #( ok, out ) = psql.runcmd( cmd ) out = self.psql.run_sql_command(sql_cmd='%s' % (cmd), out_file='-', flags='-t -q') #if not ok: if out and out[0].strip() == 'True': return True else: return False def hasMirrors( self ): ''' check if a greenplum database has mirrors configured @return: True or False which indicates whether or not the gpdb has mirrors configured ''' cmd = 'SELECT CASE WHEN count(*) > 0 THEN \'True\' ELSE \'False\' END AS hasstandby FROM pg_catalog.gp_segment_configuration WHERE content > -1 AND role = \'m\';' # use run_sql_command in SQL instead of runcmd #( ok, out ) = psql.runcmd( cmd ) out = self.psql.run_sql_command(sql_cmd='%s' % (cmd), out_file='-', flags='-t -q') if out.strip() == 'True': return True else: return False ### def GetSegmentInvalidCount(self): """ @return: Number of invalid segment servers """ """ """ cmd = "psql gptest -c 'SET search_path To public,gp_toolkit; SELECT COUNT(*) as invalid FROM gp_pgdatabase_invalid' | sed -n '3,3 s/^[ ]*//p'" # use Command instead of ShellCommand #rc, data = self.generalUtil.ShellCommand("psql gptest -c 'SET search_path To public,gp_toolkit; SELECT COUNT(*) as invalid FROM gp_pgdatabase_invalid' | sed -n '3,3 s/^[ ]*//p'") generalUtil = Command(name='psql gptest -c',cmdStr=cmd) generalUtil.run() rc = generalUtil.get_results().rc if rc != 0: raise Exception("psql gptest -c failed with rc: (%d)" % (rc)) data = generalUtil.get_results().stdout #segmentInvalidCount = data[0].strip() segmentInvalidCount = data.strip() return rc, segmentInvalidCount ### def GetSegmentInSync(self, sleepTime=60, repeatCnt=120, greenplum_path=""): """ @param sleepTime: Number of seconds to sleep before retry @param repeatCnt: Number of times to repeat retry. Default is 2 hours @return: Return True when the number of segment servers that are in resync is 0 rows """ inSync = "" for cnt in range(repeatCnt): data = "" try: cmd = "psql gptest -c \"SELECT dbid, content, role, preferred_role, status, mode, address, fselocation, port, replication_port FROM gp_segment_configuration, pg_filespace_entry where dbid = fsedbid and mode = 'r'\"" if greenplum_path: cmd = "%s %s" % (greenplum_path, cmd) # use Command instead of ShellCommand #rc, data = self.generalUtil.ShellCommand(cmd) generalUtil = Command(name='psql gptest -c',cmdStr=cmd) generalUtil.run() rc = generalUtil.get_results().rc data = generalUtil.get_results().stdout if rc == 0: if True in ['(0 rows)' in x for x in data]: return rc, True time.sleep(sleepTime) except Exception, e: traceback.print_exc() print "ERRORFOUND GetSegmentInSync %s" % (str(e)) #PrettyPrint('ERRORFOUND GetSegmentInSync', data) TODO print 'ERRORFOUND GetSegmentInSync', data return 0, False ### def GetServerList(self, role='p', status='u'): """ @param role: Supported role are 'p' and 'm' @param status: Supported status are 'u' and 'd' @return: list of hostname """ cmd = "SELECT hostname FROM gp_segment_configuration WHERE content != -1 AND role = '%s' AND status = '%s'" % (role, status) (rc, data) = self.GetSqlData(cmd) return rc, data ### def GetMasterHost(self, role='p', status='u'): """ @param role: Supported role are 'p' and 'm' @param status: Supported status are 'u' and 'd' @return: master hostname """ cmd = "SELECT hostname FROM gp_segment_configuration WHERE content = -1 AND role = '%s' AND status = '%s'" % (role, status) (rc, data) = self.GetSqlData(cmd) if data: data = data[0] data = data.strip() else: data = None return rc, data ### def GetMasterStandbyHost(self, status='u'): """ @param status: Supported status are 'u' and 'd' @return: Master-standby hostname """ rc, data = self.GetMasterHost('m', status) return rc, data ### def GetUpServerList(self, role='p'): """ @param role: Supported role are 'p' and 'm' @return: list of segment server that are up """ serverList = self.GetServerList(role, "u") return serverList ### def GetDownServerList(self, role='m'): """ @param role: Supported role are 'p' and 'm' @return: list of segment server that are down """ rc, serverList = self.GetServerList(role, "d") return rc, serverList ### def GetSegmentServerCount(self, role='p', status='u'): """ @param role: Supported role are 'p' and 'm' @param status: Supported status are 'u' and 'd' @return: Segment server count """ rc, serverList = self.GetServerList(role, status) return rc, len(serverList) ### def GetHostAndPort(self, content, role='p', status='u'): """ Returns the list of segment server that are up or down depending on mode @param role: Supported role are 'p' and 'm' @param status: Supported status are 'u' and 'd' @return: hostname and port """ cmd = "SELECT hostname, port FROM gp_segment_configuration WHERE content = %s AND role = '%s' AND status = '%s'" % (content, role, status) (rc, data) = self.GetSqlData(cmd) if data: host, port = data[0].split('|') return rc, host.strip(), port.strip() else: return rc, "", "" ### def GetContentIdList(self, role='p', status='u'): """ Returns the list of segment server content ID for the primary or mirror depending on role in content assending order @param role: Supported role are 'p' and 'm' @return: content list """ contentList = [] cmd = "SELECT content FROM gp_segment_configuration WHERE content != -1 AND role = '%s' AND status = '%s' ORDER BY content" % (role, status) out = self.psql.run_sql_command(sql_cmd='%s' % (cmd), dbname='gptest',out_file='-', flags='-q -t') #TODO for line in out: line = line.strip() if line: contentList.append(line) return contentList ### def GetPrimaryContentIdList(self, status): """ Returns the list of primary segment server content ID that are up or down depending on mode in assending order @param status: Supported mode are 'u' and 'd' @return: content list of primary segment server """ rc, contentList = self.GetContentIdList("p", status) return rc, contentList ### def GetMirrorContentIdList(self, status): """ Returns the list of mirror segment server content ID that are up or down depending on mode in assending order @param status: Supported status are 'u' and 'd' @return: content list of mirror segment server """ rc, contentList = self.GetContentIdList("m", status) return rc, contentList ### def GetMasterDataDirectory(self): """ @return: master data directory """ cmd = "SELECT fselocation as datadir FROM gp_segment_configuration, pg_filespace_entry, pg_catalog.pg_filespace fs WHERE fsefsoid = fs.oid and fsname='pg_system' and gp_segment_configuration.dbid=pg_filespace_entry.fsedbid AND content = -1 AND role = 'p' ORDER BY content, preferred_role" out = self.psql.run_sql_command(sql_cmd='%s' % (cmd),dbname='gptest', out_file='-', flags='-q -t') datadir = out datadir = datadir.strip() return datadir ### def GetSegmentData(self, myContentId, myRole='p', myStatus='u'): """ Returns the list of segment information that matches the content id, role and status @param myContentId: @param myRole: Either 'p' or 'm' @param myStatus: Either 'u' or 'd' @return: hostname, port, datadir address and status """ segmentData = [] cmd = "SELECT dbid, content, role, preferred_role, mode, status, hostname, address, port, fselocation as datadir, replication_port FROM gp_segment_configuration, pg_filespace_entry, pg_catalog.pg_filespace fs WHERE fsefsoid = fs.oid and fsname='pg_system' and gp_segment_configuration.dbid=pg_filespace_entry.fsedbid ORDER BY content, preferred_role" #(rc, out) = psql.run(dbname='gptest', cmd='%s' % (cmd), ofile='-', flag='-q -t') out = self.psql.run_sql_command(sql_cmd='%s' % (cmd),dbname='gptest',out_file='-', flags='-t -q') for line in out: if line: data = {} # Check for valid data if len(line) > 10: (dbid, content, role, preferred_role, mode, status, hostname, address, port, datadir, replication_port) = line.split('|') content = content.strip() role = role.strip() status = status.strip() if int(content) == int(myContentId) and role == myRole and status == myStatus: data['content'] = content data['hostname'] = hostname.strip() data['port'] = port.strip() data['datadir'] = datadir.strip() data['status'] = status.strip() data['role'] = role.strip() data['preferred_role'] = preferred_role.strip() data['address'] = address.strip() segmentData.append(data) return segmentData if __name__ == '__main__': gpdbSegmentConfig = GpdbSegmentConfig() gpdbSegmentConfig.GetSegmentInvalidCount() x, y = gpdbSegmentConfig.GetSegmentInSync() print "x %s y %s" % (x, y)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 6910, 1165, 890, 532, 279, 2645, 600, 25, 15560, 28, 34, 3070, 486, 198, 2, 17665, 1438, 220, 532, 279, 2645, 600, 25, 15560, 28, 34, 486, 3070, 198, 198, 37811, 198, 15269, 357, 66, 8, 5472, 12, 34695, 350, 452, 4997, 10442, 11, 3457, 13, 198, 198, 1212, 1430, 290, 262, 19249, 5696, 389, 925, 1695, 739, 198, 1169, 2846, 286, 262, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 198, 4023, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 198, 49630, 262, 1321, 5115, 27809, 9945, 198, 37811, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 25064, 11, 640, 198, 220, 220, 220, 1330, 12854, 1891, 198, 220, 220, 220, 1303, 6738, 2276, 18274, 346, 1330, 3611, 18274, 346, 198, 220, 220, 220, 422, 308, 381, 2645, 571, 13, 9503, 1746, 13, 8692, 1330, 9455, 198, 220, 220, 220, 422, 6599, 9711, 1330, 6599, 9711, 198, 220, 220, 220, 1303, 6738, 269, 9945, 7217, 18274, 346, 1330, 20090, 18557, 198, 220, 220, 220, 422, 4818, 8079, 1330, 4818, 8079, 198, 16341, 35528, 11, 304, 25, 198, 220, 220, 220, 25064, 13, 37023, 10786, 34, 34574, 1330, 13103, 402, 79, 9945, 41030, 434, 16934, 13, 220, 4222, 2198, 326, 345, 423, 18229, 4077, 489, 388, 62, 6978, 13, 1477, 13, 220, 42585, 25, 705, 1343, 965, 7, 68, 4008, 198, 198, 4242, 2, 198, 4871, 402, 79, 9945, 41030, 434, 16934, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31793, 262, 1321, 5115, 402, 79, 9945, 1001, 5154, 28373, 198, 220, 220, 220, 2488, 4871, 402, 79, 9945, 41030, 434, 16934, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 9971, 1634, 25, 6257, 35, 35532, 14044, 198, 220, 220, 220, 2488, 32057, 25, 23632, 27247, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 329, 402, 79, 9945, 41030, 434, 16934, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 24622, 18274, 346, 796, 3611, 18274, 346, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 862, 13976, 796, 6599, 9711, 198, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 50, 13976, 6601, 7, 944, 11, 44161, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 262, 44161, 2643, 290, 5860, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 44161, 25, 383, 44161, 3141, 284, 12260, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 1057, 62, 25410, 62, 21812, 287, 16363, 2427, 286, 1057, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7, 6015, 11, 503, 8, 796, 279, 25410, 13, 5143, 7, 9945, 3672, 11639, 70, 457, 395, 3256, 23991, 11639, 4, 82, 6, 4064, 357, 25410, 828, 286, 576, 11639, 12, 3256, 6056, 11639, 12, 80, 532, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2116, 13, 862, 13976, 13, 5143, 62, 25410, 62, 21812, 7, 25410, 62, 28758, 11639, 4, 82, 6, 4064, 357, 25410, 828, 20613, 3672, 11639, 70, 457, 395, 3256, 503, 62, 7753, 11639, 12, 3256, 9701, 11639, 12, 80, 532, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 11, 1366, 628, 220, 220, 220, 825, 468, 15480, 1525, 18254, 7, 2116, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 611, 257, 4077, 489, 388, 6831, 468, 42020, 4958, 17839, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 6407, 393, 10352, 543, 9217, 1771, 393, 407, 262, 27809, 9945, 468, 42020, 4958, 17839, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 46506, 42001, 42099, 954, 7, 28104, 1875, 657, 42243, 34373, 17821, 43054, 17852, 5188, 34373, 25101, 43054, 23578, 7054, 468, 1481, 1525, 16034, 23241, 62, 9246, 11794, 13, 31197, 62, 325, 5154, 62, 11250, 3924, 33411, 2695, 796, 532, 16, 5357, 2597, 796, 34373, 76, 59, 17020, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 1057, 62, 25410, 62, 21812, 287, 16363, 2427, 286, 1057, 28758, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7, 12876, 11, 503, 1267, 796, 279, 25410, 13, 5143, 28758, 7, 23991, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2116, 13, 862, 13976, 13, 5143, 62, 25410, 62, 21812, 7, 25410, 62, 28758, 11639, 4, 82, 6, 4064, 357, 28758, 828, 503, 62, 7753, 11639, 12, 3256, 9701, 11639, 12, 83, 532, 80, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 407, 12876, 25, 628, 220, 220, 220, 220, 220, 220, 220, 611, 503, 290, 503, 58, 15, 4083, 36311, 3419, 6624, 705, 17821, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 468, 27453, 5965, 7, 2116, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 611, 257, 4077, 489, 388, 6831, 468, 22353, 17839, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 6407, 393, 10352, 543, 9217, 1771, 393, 407, 262, 27809, 9945, 468, 22353, 17839, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 46506, 42001, 42099, 954, 7, 28104, 1875, 657, 42243, 34373, 17821, 43054, 17852, 5188, 34373, 25101, 43054, 23578, 7054, 468, 1481, 1525, 16034, 23241, 62, 9246, 11794, 13, 31197, 62, 325, 5154, 62, 11250, 3924, 33411, 2695, 1875, 532, 16, 5357, 2597, 796, 34373, 76, 59, 17020, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 1057, 62, 25410, 62, 21812, 287, 16363, 2427, 286, 1057, 28758, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7, 12876, 11, 503, 1267, 796, 279, 25410, 13, 5143, 28758, 7, 23991, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2116, 13, 862, 13976, 13, 5143, 62, 25410, 62, 21812, 7, 25410, 62, 28758, 11639, 4, 82, 6, 4064, 357, 28758, 828, 503, 62, 7753, 11639, 12, 3256, 9701, 11639, 12, 83, 532, 80, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 503, 13, 36311, 3419, 6624, 705, 17821, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 41030, 434, 44651, 12332, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 7913, 286, 12515, 10618, 9597, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 862, 13976, 308, 457, 395, 532, 66, 705, 28480, 2989, 62, 6978, 1675, 1171, 11, 31197, 62, 25981, 15813, 26, 33493, 327, 28270, 7, 28104, 355, 12515, 16034, 27809, 62, 6024, 48806, 62, 259, 12102, 6, 930, 10081, 532, 77, 705, 18, 11, 18, 264, 14, 61, 58, 220, 220, 220, 220, 2361, 9, 1003, 79, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 9455, 2427, 286, 17537, 21575, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6015, 11, 1366, 796, 2116, 13, 24622, 18274, 346, 13, 23248, 21575, 7203, 862, 13976, 308, 457, 395, 532, 66, 705, 28480, 2989, 62, 6978, 1675, 1171, 11, 31197, 62, 25981, 15813, 26, 33493, 327, 28270, 7, 28104, 355, 12515, 16034, 27809, 62, 6024, 48806, 62, 259, 12102, 6, 930, 10081, 532, 77, 705, 18, 11, 18, 264, 14, 61, 58, 220, 220, 220, 220, 2361, 9, 1003, 79, 6, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2276, 18274, 346, 796, 9455, 7, 3672, 11639, 862, 13976, 308, 457, 395, 532, 66, 3256, 28758, 13290, 28, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2276, 18274, 346, 13, 5143, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 48321, 796, 2276, 18274, 346, 13, 1136, 62, 43420, 22446, 6015, 198, 220, 220, 220, 220, 220, 220, 220, 611, 48321, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 862, 13976, 308, 457, 395, 532, 66, 4054, 351, 48321, 25, 220, 37633, 67, 16725, 4064, 357, 6015, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2276, 18274, 346, 13, 1136, 62, 43420, 22446, 19282, 448, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 325, 5154, 44651, 12332, 796, 1366, 58, 15, 4083, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 10618, 44651, 12332, 796, 1366, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 10618, 44651, 12332, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 41030, 434, 818, 28985, 7, 944, 11, 3993, 7575, 28, 1899, 11, 9585, 34, 429, 28, 10232, 11, 4077, 489, 388, 62, 6978, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3993, 7575, 25, 7913, 286, 4201, 284, 3993, 878, 1005, 563, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 9585, 34, 429, 25, 7913, 286, 1661, 284, 9585, 1005, 563, 13, 15161, 318, 362, 2250, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 8229, 6407, 618, 262, 1271, 286, 10618, 9597, 326, 389, 287, 581, 13361, 318, 657, 15274, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 287, 28985, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 429, 287, 2837, 7, 44754, 34, 429, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 862, 13976, 308, 457, 395, 532, 66, 19990, 46506, 288, 14065, 11, 2695, 11, 2597, 11, 9871, 62, 18090, 11, 3722, 11, 4235, 11, 2209, 11, 277, 741, 5040, 11, 2493, 11, 30330, 62, 634, 16034, 27809, 62, 325, 5154, 62, 11250, 3924, 11, 23241, 62, 16624, 10223, 62, 13000, 810, 288, 14065, 796, 277, 36622, 14065, 290, 4235, 796, 705, 81, 6, 7879, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4077, 489, 388, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 36521, 82, 4064, 82, 1, 4064, 357, 14809, 489, 388, 62, 6978, 11, 23991, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 9455, 2427, 286, 17537, 21575, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6015, 11, 1366, 796, 2116, 13, 24622, 18274, 346, 13, 23248, 21575, 7, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2276, 18274, 346, 796, 9455, 7, 3672, 11639, 862, 13976, 308, 457, 395, 532, 66, 3256, 28758, 13290, 28, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2276, 18274, 346, 13, 5143, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48321, 796, 2276, 18274, 346, 13, 1136, 62, 43420, 22446, 6015, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2276, 18274, 346, 13, 1136, 62, 43420, 22446, 19282, 448, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 48321, 6624, 657, 25, 198, 197, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6407, 287, 37250, 7, 15, 15274, 33047, 287, 2124, 329, 2124, 287, 1366, 5974, 198, 197, 197, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 42832, 7575, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12854, 1891, 13, 4798, 62, 41194, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 24908, 37, 15919, 3497, 41030, 434, 818, 28985, 4064, 82, 1, 4064, 357, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35700, 18557, 10786, 24908, 37, 15919, 3497, 41030, 434, 818, 28985, 3256, 1366, 8, 16926, 46, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 24908, 37, 15919, 3497, 41030, 434, 818, 28985, 3256, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 11, 10352, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 10697, 8053, 7, 944, 11, 2597, 11639, 79, 3256, 3722, 11639, 84, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 2597, 25, 36848, 2597, 389, 705, 79, 6, 290, 705, 76, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3722, 25, 36848, 3722, 389, 705, 84, 6, 290, 705, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 1351, 286, 2583, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 46506, 2583, 3672, 16034, 27809, 62, 325, 5154, 62, 11250, 3924, 33411, 2695, 14512, 532, 16, 5357, 2597, 796, 705, 4, 82, 6, 5357, 3722, 796, 705, 4, 82, 29653, 4064, 357, 18090, 11, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 357, 6015, 11, 1366, 8, 796, 2116, 13, 3855, 50, 13976, 6601, 7, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 1366, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 18254, 17932, 7, 944, 11, 2597, 11639, 79, 3256, 3722, 11639, 84, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 2597, 25, 36848, 2597, 389, 705, 79, 6, 290, 705, 76, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3722, 25, 36848, 3722, 389, 705, 84, 6, 290, 705, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 4958, 2583, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 46506, 2583, 3672, 16034, 27809, 62, 325, 5154, 62, 11250, 3924, 33411, 2695, 796, 532, 16, 5357, 2597, 796, 705, 4, 82, 6, 5357, 3722, 796, 705, 4, 82, 29653, 4064, 357, 18090, 11, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 357, 6015, 11, 1366, 8, 796, 2116, 13, 3855, 50, 13976, 6601, 7, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 1366, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 18254, 15480, 1525, 17932, 7, 944, 11, 3722, 11639, 84, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3722, 25, 36848, 3722, 389, 705, 84, 6, 290, 705, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 5599, 12, 1481, 1525, 2583, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48321, 11, 1366, 796, 2116, 13, 3855, 18254, 17932, 10786, 76, 3256, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 1366, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 4933, 10697, 8053, 7, 944, 11, 2597, 11639, 79, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 2597, 25, 36848, 2597, 389, 705, 79, 6, 290, 705, 76, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 1351, 286, 10618, 4382, 326, 389, 510, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 8053, 796, 2116, 13, 3855, 10697, 8053, 7, 18090, 11, 366, 84, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4382, 8053, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 8048, 10697, 8053, 7, 944, 11, 2597, 11639, 76, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 2597, 25, 36848, 2597, 389, 705, 79, 6, 290, 705, 76, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 1351, 286, 10618, 4382, 326, 389, 866, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48321, 11, 4382, 8053, 796, 2116, 13, 3855, 10697, 8053, 7, 18090, 11, 366, 67, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 4382, 8053, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 41030, 434, 10697, 12332, 7, 944, 11, 2597, 11639, 79, 3256, 3722, 11639, 84, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 2597, 25, 36848, 2597, 389, 705, 79, 6, 290, 705, 76, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3722, 25, 36848, 3722, 389, 705, 84, 6, 290, 705, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 1001, 5154, 4382, 954, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48321, 11, 4382, 8053, 796, 2116, 13, 3855, 10697, 8053, 7, 18090, 11, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 18896, 7, 15388, 8053, 8, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 17932, 1870, 13924, 7, 944, 11, 2695, 11, 2597, 11639, 79, 3256, 3722, 11639, 84, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1351, 286, 10618, 4382, 326, 389, 510, 393, 866, 6906, 319, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 2597, 25, 36848, 2597, 389, 705, 79, 6, 290, 705, 76, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3722, 25, 36848, 3722, 389, 705, 84, 6, 290, 705, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 2583, 3672, 290, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 46506, 2583, 3672, 11, 2493, 16034, 27809, 62, 325, 5154, 62, 11250, 3924, 33411, 2695, 796, 4064, 82, 5357, 2597, 796, 705, 4, 82, 6, 5357, 3722, 796, 705, 4, 82, 29653, 4064, 357, 11299, 11, 2597, 11, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 357, 6015, 11, 1366, 8, 796, 2116, 13, 3855, 50, 13976, 6601, 7, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2583, 11, 2493, 796, 1366, 58, 15, 4083, 35312, 10786, 91, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 2583, 13, 36311, 22784, 2493, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 366, 1600, 13538, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 19746, 7390, 8053, 7, 944, 11, 2597, 11639, 79, 3256, 3722, 11639, 84, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1351, 286, 10618, 4382, 2695, 4522, 220, 329, 262, 4165, 393, 10162, 6906, 319, 2597, 287, 2695, 840, 1571, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 2597, 25, 36848, 2597, 389, 705, 79, 6, 290, 705, 76, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 2695, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 8053, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 46506, 2695, 16034, 27809, 62, 325, 5154, 62, 11250, 3924, 33411, 2695, 14512, 532, 16, 5357, 2597, 796, 705, 4, 82, 6, 5357, 3722, 796, 705, 4, 82, 6, 38678, 11050, 2695, 1, 4064, 357, 18090, 11, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2116, 13, 862, 13976, 13, 5143, 62, 25410, 62, 21812, 7, 25410, 62, 28758, 11639, 4, 82, 6, 4064, 357, 28758, 828, 20613, 3672, 11639, 70, 457, 395, 3256, 448, 62, 7753, 11639, 12, 3256, 9701, 11639, 12, 80, 532, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 51, 3727, 46, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 8053, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2695, 8053, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 35170, 19746, 7390, 8053, 7, 944, 11, 3722, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1351, 286, 4165, 10618, 4382, 2695, 4522, 326, 389, 510, 393, 866, 6906, 319, 4235, 287, 840, 1571, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3722, 25, 36848, 4235, 389, 705, 84, 6, 290, 705, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 2695, 1351, 286, 4165, 10618, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48321, 11, 2695, 8053, 796, 2116, 13, 3855, 19746, 7390, 8053, 7203, 79, 1600, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 2695, 8053, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 27453, 1472, 19746, 7390, 8053, 7, 944, 11, 3722, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1351, 286, 10162, 10618, 4382, 2695, 4522, 326, 389, 510, 393, 866, 6906, 319, 4235, 287, 840, 1571, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3722, 25, 36848, 3722, 389, 705, 84, 6, 290, 705, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 2695, 1351, 286, 10162, 10618, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48321, 11, 2695, 8053, 796, 2116, 13, 3855, 19746, 7390, 8053, 7203, 76, 1600, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48321, 11, 2695, 8053, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 18254, 6601, 43055, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 4958, 1366, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 46506, 277, 741, 5040, 355, 4818, 324, 343, 16034, 27809, 62, 325, 5154, 62, 11250, 3924, 11, 23241, 62, 16624, 10223, 62, 13000, 11, 23241, 62, 9246, 11794, 13, 6024, 62, 16624, 10223, 43458, 33411, 277, 325, 69, 568, 312, 796, 43458, 13, 1868, 290, 43458, 3672, 11639, 6024, 62, 10057, 6, 290, 27809, 62, 325, 5154, 62, 11250, 3924, 13, 9945, 312, 28, 6024, 62, 16624, 10223, 62, 13000, 13, 9501, 276, 14065, 5357, 2695, 796, 532, 16, 5357, 2597, 796, 705, 79, 6, 38678, 11050, 2695, 11, 9871, 62, 18090, 1, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2116, 13, 862, 13976, 13, 5143, 62, 25410, 62, 21812, 7, 25410, 62, 28758, 11639, 4, 82, 6, 4064, 357, 28758, 828, 9945, 3672, 11639, 70, 457, 395, 3256, 503, 62, 7753, 11639, 12, 3256, 9701, 11639, 12, 80, 532, 83, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 4818, 324, 343, 796, 503, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 324, 343, 796, 4818, 324, 343, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4818, 324, 343, 628, 220, 220, 220, 44386, 198, 220, 220, 220, 825, 3497, 41030, 434, 6601, 7, 944, 11, 616, 19746, 7390, 11, 616, 47445, 11639, 79, 3256, 616, 19580, 11639, 84, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1351, 286, 10618, 1321, 326, 7466, 262, 2695, 4686, 11, 2597, 290, 3722, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 616, 19746, 7390, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 616, 47445, 25, 15467, 705, 79, 6, 393, 705, 76, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 616, 19580, 25, 15467, 705, 84, 6, 393, 705, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 2583, 3672, 11, 2493, 11, 4818, 324, 343, 2209, 290, 3722, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10618, 6601, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 46506, 288, 14065, 11, 2695, 11, 2597, 11, 9871, 62, 18090, 11, 4235, 11, 3722, 11, 2583, 3672, 11, 2209, 11, 2493, 11, 277, 741, 5040, 355, 4818, 324, 343, 11, 30330, 62, 634, 16034, 27809, 62, 325, 5154, 62, 11250, 3924, 11, 23241, 62, 16624, 10223, 62, 13000, 11, 23241, 62, 9246, 11794, 13, 6024, 62, 16624, 10223, 43458, 33411, 277, 325, 69, 568, 312, 796, 43458, 13, 1868, 290, 43458, 3672, 11639, 6024, 62, 10057, 6, 290, 27809, 62, 325, 5154, 62, 11250, 3924, 13, 9945, 312, 28, 6024, 62, 16624, 10223, 62, 13000, 13, 9501, 276, 14065, 38678, 11050, 2695, 11, 9871, 62, 18090, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7, 6015, 11, 503, 8, 796, 279, 25410, 13, 5143, 7, 9945, 3672, 11639, 70, 457, 395, 3256, 23991, 11639, 4, 82, 6, 4064, 357, 28758, 828, 286, 576, 11639, 12, 3256, 6056, 11639, 12, 80, 532, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2116, 13, 862, 13976, 13, 5143, 62, 25410, 62, 21812, 7, 25410, 62, 28758, 11639, 4, 82, 6, 4064, 357, 28758, 828, 9945, 3672, 11639, 70, 457, 395, 3256, 448, 62, 7753, 11639, 12, 3256, 9701, 11639, 12, 83, 532, 80, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 329, 4938, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1370, 8, 1875, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9945, 312, 11, 2695, 11, 2597, 11, 9871, 62, 18090, 11, 4235, 11, 3722, 11, 2583, 3672, 11, 2209, 11, 2493, 11, 4818, 324, 343, 11, 30330, 62, 634, 8, 796, 1627, 13, 35312, 10786, 91, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 2695, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2597, 796, 2597, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 3722, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 493, 7, 11299, 8, 6624, 493, 7, 1820, 19746, 7390, 8, 290, 2597, 6624, 616, 47445, 290, 3722, 6624, 616, 19580, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 11299, 20520, 796, 2695, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 4774, 3672, 20520, 796, 2583, 3672, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 634, 20520, 796, 2493, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 19608, 324, 343, 20520, 796, 4818, 324, 343, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 13376, 20520, 796, 3722, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 18090, 20520, 796, 2597, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 3866, 18186, 62, 18090, 20520, 796, 9871, 62, 18090, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 21975, 20520, 796, 2209, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10618, 6601, 13, 33295, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10618, 6601, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 27809, 9945, 41030, 434, 16934, 796, 402, 79, 9945, 41030, 434, 16934, 3419, 198, 220, 220, 220, 27809, 9945, 41030, 434, 16934, 13, 3855, 41030, 434, 44651, 12332, 3419, 198, 220, 220, 220, 2124, 11, 331, 796, 27809, 9945, 41030, 434, 16934, 13, 3855, 41030, 434, 818, 28985, 3419, 198, 220, 220, 220, 3601, 366, 87, 4064, 82, 331, 4064, 82, 1, 4064, 357, 87, 11, 331, 8, 198 ]
2.322037
5,636
import os import csv total_months=0 total=0 last_pl=0 average_change=0 change_in_pl=0 total_change=0 ginc_profits=0 gdec_profits=0 prev_change_in_pl=0 ginc_profits_month="" gdec_profits_month="" csvpath=os.path.join("..", "Resources", "budget_data.csv") with open (csvpath, newline="") as csvfile: csvreader=csv.reader(csvfile, delimiter=",") csv_header=next(csvreader) print("csv_header", csv_header) for row in csvreader: month=row[0] total_months=total_months+1 total = total + int(row[1]) if total_months >1: change_in_pl=int(row[1])-last_pl total_change+=change_in_pl average_change=total_change/(total_months-1) last_pl=int(row[1]) if change_in_pl>ginc_profits: ginc_profits=change_in_pl ginc_profits_month=month elif change_in_pl<gdec_profits: gdec_profits=change_in_pl gdec_profits_month=month print ("Financial Analysis") print ("-------------------------------------") print(f'Total Months: {total_months}') print(f'Total: ${total}') print(f'Average Change: ${average_change}') print(f'Greatest Increase in Profits: {ginc_profits_month} ($ {ginc_profits})') print(f'Greatest Decrease in Profits: {gdec_profits_month} ($ {gdec_profits})') output= open("budget_data_output.txt","w+") output.write("Financial Analysis \n") output.write("------------------------------------- \n") output.write(f'Total Months: {total_months}' + "\n") output.write(f'Total: ${total}'+ "\n") output.write(f'Average Change: ${average_change}'+ "\n") output.write(f'Greatest Increase in Profits: {ginc_profits_month} ($ {ginc_profits})'+ "\n") output.write(f'Greatest Decrease in Profits: {gdec_profits_month} ($ {gdec_profits})'+ "\n") output.close()
[ 11748, 28686, 198, 11748, 269, 21370, 198, 198, 23350, 62, 41537, 28, 15, 198, 23350, 28, 15, 198, 12957, 62, 489, 28, 15, 198, 23913, 62, 3803, 28, 15, 198, 3803, 62, 259, 62, 489, 28, 15, 198, 23350, 62, 3803, 28, 15, 198, 1655, 66, 62, 31504, 28, 15, 198, 70, 12501, 62, 31504, 28, 15, 198, 47050, 62, 3803, 62, 259, 62, 489, 28, 15, 198, 1655, 66, 62, 31504, 62, 8424, 33151, 198, 70, 12501, 62, 31504, 62, 8424, 33151, 198, 198, 40664, 6978, 28, 418, 13, 6978, 13, 22179, 7203, 492, 1600, 366, 33236, 1600, 366, 37315, 62, 7890, 13, 40664, 4943, 198, 198, 4480, 1280, 357, 40664, 6978, 11, 649, 1370, 2625, 4943, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 269, 21370, 46862, 28, 40664, 13, 46862, 7, 40664, 7753, 11, 46728, 2676, 28, 2430, 8, 198, 220, 220, 220, 269, 21370, 62, 25677, 28, 19545, 7, 40664, 46862, 8, 198, 220, 220, 220, 3601, 7203, 40664, 62, 25677, 1600, 269, 21370, 62, 25677, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 5752, 287, 269, 21370, 46862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1227, 28, 808, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 41537, 28, 23350, 62, 41537, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 796, 2472, 1343, 493, 7, 808, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2472, 62, 41537, 1875, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1487, 62, 259, 62, 489, 28, 600, 7, 808, 58, 16, 12962, 12, 12957, 62, 489, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 3803, 47932, 3803, 62, 259, 62, 489, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 3803, 28, 23350, 62, 3803, 29006, 23350, 62, 41537, 12, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 489, 28, 600, 7, 808, 58, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 611, 220, 1487, 62, 259, 62, 489, 29, 1655, 66, 62, 31504, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 1939, 62, 31504, 28, 3803, 62, 259, 62, 489, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 1939, 62, 31504, 62, 8424, 28, 8424, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1487, 62, 259, 62, 489, 27, 70, 12501, 62, 31504, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 12501, 62, 31504, 28, 3803, 62, 259, 62, 489, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 12501, 62, 31504, 62, 8424, 28, 8424, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4798, 5855, 43621, 14691, 4943, 198, 4798, 5855, 3880, 30934, 4943, 198, 4798, 7, 69, 6, 14957, 37461, 25, 1391, 23350, 62, 41537, 92, 11537, 198, 4798, 7, 69, 6, 14957, 25, 25597, 23350, 92, 11537, 198, 4798, 7, 69, 6, 26287, 9794, 25, 25597, 23913, 62, 3803, 92, 11537, 198, 4798, 7, 69, 6, 13681, 395, 25285, 287, 4415, 896, 25, 1391, 1655, 66, 62, 31504, 62, 8424, 92, 7198, 1391, 1655, 66, 62, 31504, 30072, 11537, 198, 4798, 7, 69, 6, 13681, 395, 36400, 589, 287, 4415, 896, 25, 1391, 70, 12501, 62, 31504, 62, 8424, 92, 7198, 1391, 70, 12501, 62, 31504, 30072, 11537, 198, 198, 22915, 28, 1280, 7203, 37315, 62, 7890, 62, 22915, 13, 14116, 2430, 86, 10, 4943, 198, 22915, 13, 13564, 7203, 43621, 14691, 3467, 77, 4943, 198, 22915, 13, 13564, 7203, 3880, 30934, 3467, 77, 4943, 198, 22915, 13, 13564, 7, 69, 6, 14957, 37461, 25, 1391, 23350, 62, 41537, 92, 6, 1343, 37082, 77, 4943, 198, 22915, 13, 13564, 7, 69, 6, 14957, 25, 25597, 23350, 92, 6, 10, 37082, 77, 4943, 198, 22915, 13, 13564, 7, 69, 6, 26287, 9794, 25, 25597, 23913, 62, 3803, 92, 6, 10, 37082, 77, 4943, 198, 22915, 13, 13564, 7, 69, 6, 13681, 395, 25285, 287, 4415, 896, 25, 1391, 1655, 66, 62, 31504, 62, 8424, 92, 7198, 1391, 1655, 66, 62, 31504, 30072, 6, 10, 37082, 77, 4943, 198, 22915, 13, 13564, 7, 69, 6, 13681, 395, 36400, 589, 287, 4415, 896, 25, 1391, 70, 12501, 62, 31504, 62, 8424, 92, 7198, 1391, 70, 12501, 62, 31504, 30072, 6, 10, 37082, 77, 4943, 198, 22915, 13, 19836, 3419 ]
2.328302
795
import sys import threading import os import subprocess import time import signal class Basher(): """ Class to execute any command given as a subprocess in a new thread. You can wait for execution to finish or execute in the background and check the output frequently. """ # Init function def __init__(self, command, lineCb=None, echo=False, waittime=1.0): """ Init the Basher NOTE + TODO: CODE INJECTION is currently possible using Basher! :param command: The command to execute in string format. :type command: str :param lineCB: An optional callback which is called for each line output of the command. :type lineCB: function(str, Basher), default: ``None`` :param echo: If output should be echoed to standard out :type echo: bool, default: ``False`` :param waittime: Time to wait for execution to finish. This only works if :func:`run<terminal.basher.Basher.run> is called with ``wait=True`` :type waittime: float, default: 1.0 """ self.command = command self.lineCb = lineCb self.output = [] self.echo = echo self.waittime = waittime self.startTime = None self.__process = None self.running = False def run(self, wait=True): """ Run the specified command. :param wait: If we shoul wait for execution to finish. :type wait: bool, default: True :return: List of output lines. :rtype: list(str) """ self.__process = subprocess.Popen(self.command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=os.setsid) self.__thread = threading.Thread(target=self.__output_reader) self.__thread2 = threading.Thread(target=self.__error_reader) self.__thread.daemon = True self.__thread2.daemon = True self.__thread.start() self.__thread2.start() self.startTime = time.time() self.running=True if wait: while self.running and time.time()-self.startTime < self.waittime: time.sleep(0.01) self.stop() return self.output def stop(self): """Stop the execution of the command.""" self.__process.terminate() self.__process.send_signal(signal.SIGTERM) # self.__thread.join() self.running=False def __output_reader(self): """Read output in thread.""" for plain_line in iter(self.__process.stdout.readline, b''): line = plain_line.decode('utf-8') self.output.append(line) if self.echo: print('#BASHER: {0}'.format(line), end='') if self.lineCb is not None: self.lineCb(line, self) self.running=False def __error_reader(self): """Read error output in thread.""" for plain_line in iter(self.__process.stderr.readline, b''): line = plain_line.decode('utf-8') self.output.append(line) if self.echo: print('#BASHER: {0}'.format(line), end='') if self.lineCb is not None: self.lineCb(line, self)
[ 11748, 25064, 198, 11748, 4704, 278, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 11748, 640, 198, 11748, 6737, 198, 198, 4871, 6455, 372, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 284, 12260, 597, 3141, 1813, 355, 257, 850, 14681, 287, 257, 649, 4704, 13, 628, 220, 220, 220, 921, 460, 4043, 329, 9706, 284, 5461, 393, 12260, 287, 262, 4469, 290, 2198, 198, 220, 220, 220, 262, 5072, 6777, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 44707, 2163, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3141, 11, 1627, 34, 65, 28, 14202, 11, 9809, 28, 25101, 11, 2082, 715, 524, 28, 16, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 44707, 262, 6455, 372, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 24550, 1343, 16926, 46, 25, 42714, 3268, 23680, 2849, 318, 3058, 1744, 1262, 6455, 372, 0, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3141, 25, 383, 3141, 284, 12260, 287, 4731, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 220, 3141, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1627, 23199, 25, 220, 1052, 11902, 23838, 543, 318, 1444, 329, 1123, 1627, 5072, 286, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 3141, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 220, 1627, 23199, 25, 220, 2163, 7, 2536, 11, 6455, 372, 828, 4277, 25, 7559, 14202, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9809, 25, 220, 220, 220, 1002, 5072, 815, 307, 22211, 284, 3210, 503, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 220, 9809, 25, 220, 220, 220, 20512, 11, 4277, 25, 7559, 25101, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2082, 715, 524, 25, 220, 220, 220, 3862, 284, 4043, 329, 9706, 284, 5461, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 691, 2499, 611, 1058, 20786, 25, 63, 5143, 27, 23705, 282, 13, 12093, 372, 13, 15522, 372, 13, 5143, 29, 318, 1444, 351, 7559, 17077, 28, 17821, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 220, 2082, 715, 524, 25, 220, 220, 220, 12178, 11, 4277, 25, 352, 13, 15, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21812, 796, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1370, 34, 65, 796, 1627, 34, 65, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30328, 796, 9809, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10247, 715, 524, 796, 2082, 715, 524, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 7575, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 14681, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20270, 796, 10352, 628, 220, 220, 220, 825, 1057, 7, 944, 11, 4043, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5660, 262, 7368, 3141, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4043, 25, 1002, 356, 427, 2852, 4043, 329, 9706, 284, 5461, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 220, 4043, 25, 20512, 11, 4277, 25, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 7343, 286, 5072, 3951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 220, 1351, 7, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 14681, 796, 850, 14681, 13, 47, 9654, 7, 944, 13, 21812, 11, 7582, 28, 17821, 11, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 336, 1082, 81, 28, 7266, 14681, 13, 47, 4061, 36, 11, 47488, 87, 721, 62, 22184, 28, 418, 13, 28709, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 16663, 796, 4704, 278, 13, 16818, 7, 16793, 28, 944, 13, 834, 22915, 62, 46862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 16663, 17, 796, 4704, 278, 13, 16818, 7, 16793, 28, 944, 13, 834, 18224, 62, 46862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 16663, 13, 6814, 7966, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 16663, 17, 13, 6814, 7966, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 16663, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 16663, 17, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 7575, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20270, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 20270, 290, 640, 13, 2435, 3419, 12, 944, 13, 9688, 7575, 1279, 2116, 13, 10247, 715, 524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 486, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22915, 628, 220, 220, 220, 825, 2245, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19485, 262, 9706, 286, 262, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 14681, 13, 23705, 378, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 14681, 13, 21280, 62, 12683, 282, 7, 12683, 282, 13, 50, 3528, 5781, 44, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 834, 16663, 13, 22179, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20270, 28, 25101, 628, 220, 220, 220, 825, 11593, 22915, 62, 46862, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5569, 5072, 287, 4704, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 8631, 62, 1370, 287, 11629, 7, 944, 13, 834, 14681, 13, 19282, 448, 13, 961, 1370, 11, 275, 7061, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 8631, 62, 1370, 13, 12501, 1098, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 30328, 25, 3601, 10786, 2, 33, 11211, 1137, 25, 1391, 15, 92, 4458, 18982, 7, 1370, 828, 886, 28, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1370, 34, 65, 318, 407, 6045, 25, 2116, 13, 1370, 34, 65, 7, 1370, 11, 2116, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20270, 28, 25101, 628, 220, 220, 220, 825, 11593, 18224, 62, 46862, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5569, 4049, 5072, 287, 4704, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 8631, 62, 1370, 287, 11629, 7, 944, 13, 834, 14681, 13, 301, 1082, 81, 13, 961, 1370, 11, 275, 7061, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 8631, 62, 1370, 13, 12501, 1098, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 30328, 25, 3601, 10786, 2, 33, 11211, 1137, 25, 1391, 15, 92, 4458, 18982, 7, 1370, 828, 886, 28, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1370, 34, 65, 318, 407, 6045, 25, 2116, 13, 1370, 34, 65, 7, 1370, 11, 2116, 8, 628 ]
2.260083
1,438
import sys import numpy as np import re #tag = sys.argv[len(sys.argv)-1] #for each log file for num in range(len(sys.argv)-1): inp = sys.argv[num+1] print('################################################################################') print("File#", num , " ", inp) print('################################################################################') run_stats = dict() trainer_metrics = dict() current_epoch = {} # Dict for each trainer to track the current epoch ds_times = {} active_ds_mode = '' sync_time = 0 # Patterns for key metrics p_trainers = re.compile('\s+Trainers\s+: ([0-9.]+)') p_ppt = re.compile('\s+Processes per trainer\s+: ([0-9.]+)') p_ppn = re.compile('\s+Processes on node\s+: ([0-9.]+)') p_procs = re.compile('\s+Total number of processes\s+: ([0-9.]+)') p_omp = re.compile('\s+OpenMP threads per process\s+: ([0-9.]+)') p_mb = re.compile('\s+mini_batch_size:\s+([0-9.]+)') # Patterns for key metrics p_train_time = re.compile('\w+\s+\(instance ([0-9]*)\) training epoch ([0-9]*) run time : ([0-9.]+)') p_test_time = re.compile('\w+\s+\(instance ([0-9]*)\) test run time : ([0-9.]+)') p_test_recon = re.compile('\w+\s+\(instance ([0-9]*)\) test recon : ([0-9.]+)') # Patterns for secondary metrics p_train_mb_time = re.compile('\w+\s+\(instance ([0-9]*)\) training epoch ([0-9]*) mini-batch time statistics : ([0-9.]+)s mean') # p_train_recon = re.compile('\w+\s+\(instance ([0-9]*)\) training epoch ([0-9]*) recon : ([0-9.]+)') # Capture the time required to load the data p_preload_data_store_mode = re.compile('starting do_preload_data_store.*num indices:\s+([0-9,]+) for role: (\w+)') p_preload_data_store_time = re.compile('\s+do_preload_data_store time:\s+([0-9.]+)') # Find the line with time to synchronize trainers p_sync_time = re.compile('synchronizing trainers... ([0-9.]+)s') with open(inp) as ifile1: for line in ifile1: m_trainers = p_trainers.match(line) if (m_trainers): run_stats['num_trainers'] = m_trainers.group(1) m_ppt = p_ppt.match(line) if (m_ppt): run_stats['procs_per_trainer'] = m_ppt.group(1) m_ppn = p_ppn.match(line) if (m_ppn): run_stats['procs_per_node'] = m_ppn.group(1) m_procs = p_procs.match(line) if (m_procs): run_stats['num_processes'] = m_procs.group(1) m_omp = p_omp.match(line) if (m_omp): run_stats['num_omp_threads'] = m_omp.group(1) m_mb = p_mb.match(line) if (m_mb): run_stats['minibatch_size'] = m_mb.group(1) m_time = p_train_time.match(line) if (m_time): tid = m_time.group(1) e = m_time.group(2) current_epoch[tid] = e # track the current epoch for each trainer t = m_time.group(3) if not trainer_metrics : trainer_metrics = { e : { tid : { 'train_time' : t } } } else: if e in trainer_metrics : if tid in trainer_metrics[e]: trainer_metrics[e][tid]['train_time'] = t else: trainer_metrics[e][tid] = { 'train_time' : t } else: trainer_metrics[e] = { tid : { 'train_time' : t } } m_test_recon = p_test_recon.match(line) if (m_test_recon): tid = m_test_recon.group(1) e = current_epoch[tid] r = m_test_recon.group(2) if not 'test_recon' in trainer_metrics[e][tid].keys(): trainer_metrics[e][tid]['test_recon'] = r else: print('@epoch ' + e + ' - duplicate test reconstruction metric found - existing = ' + trainer_metrics[e][tid]['test_recon'] + ' discarding ' + r + ' (ran test twice???)') m_test_time = p_test_time.match(line) if (m_test_time): tid = m_test_time.group(1) e = current_epoch[tid] r = m_test_time.group(2) if not 'test_time' in trainer_metrics[e][tid].keys(): trainer_metrics[e][tid]['test_time'] = r else: print('@epoch ' + e + ' - duplicate test time found - existing = ' + trainer_metrics[e][tid]['test_time'] + ' discarding ' + r + ' (ran test twice???)') m_train_mb_time = p_train_mb_time.match(line) if (m_train_mb_time): tid = m_train_mb_time.group(1) e = current_epoch[tid] if not e == m_train_mb_time.group(2): assert('Epoch mismatch') r = m_train_mb_time.group(3) if not 'train_mb_time' in trainer_metrics[e][tid].keys(): trainer_metrics[e][tid]['train_mb_time'] = r else: print('@epoch ' + e + ' - duplicate train mb time found - existing = ' + trainer_metrics[e][tid]['train_mb_time'] + ' discarding ' + r + ' (abort)') exit(-1) m_ds_mode = p_preload_data_store_mode.match(line) if (m_ds_mode): active_mode = m_ds_mode.group(2) samples = int(m_ds_mode.group(1).replace(',', '')) ds_times[active_mode] = {'samples' : samples } m_ds_time = p_preload_data_store_time.match(line) if (m_ds_time): time = float(m_ds_time.group(1)) ds_times[active_mode]['load_time'] = time m_sync_time = p_sync_time.match(line) if (m_sync_time): sync_time = float(m_sync_time.group(1)) # m_train_recon = p_train_recon.match(line) # if (m_train_recon): # tid = m_train_recon.group(1) # e = current_epoch[tid] # if not e == m_train_recon.group(2): # assert('Epoch mismatch') # r = m_train_recon.group(3) # trainer_metrics[e][tid]['train_recon'] = r print(f"Trainers : {run_stats['num_trainers']}") print(f"Procs per trainer : {run_stats['procs_per_trainer']}") print(f"Procs per node : {run_stats['procs_per_node']}") print(f"Total num. Processes : {run_stats['num_processes']}") print(f"Num. OpenMP Threads : {run_stats['num_omp_threads']}") print(f"Mini-batch Size : {run_stats['minibatch_size']}") results, partial_results, total_train_times, total_train_times_not_first_epoch = summarize_metrics(trainer_metrics) print_results(results, partial_results, total_train_times, total_train_times_not_first_epoch) ifile1.close() #table = pd.DataFrame(results) #table = pd.DataFrame(all_metrics) #met_file = "gb_metrics" +str(datetime.date.today())+'.csv' #print("Saving computed metrics to ", met_file) #table.to_csv(met_file, index=False)
[ 11748, 25064, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 302, 198, 198, 2, 12985, 796, 25064, 13, 853, 85, 58, 11925, 7, 17597, 13, 853, 85, 13219, 16, 60, 628, 198, 2, 1640, 1123, 2604, 2393, 198, 1640, 997, 287, 2837, 7, 11925, 7, 17597, 13, 853, 85, 13219, 16, 2599, 198, 220, 287, 79, 796, 25064, 13, 853, 85, 58, 22510, 10, 16, 60, 198, 220, 3601, 10786, 29113, 29113, 14468, 11537, 198, 220, 3601, 7203, 8979, 2, 1600, 997, 837, 366, 33172, 287, 79, 8, 198, 220, 3601, 10786, 29113, 29113, 14468, 11537, 198, 220, 1057, 62, 34242, 796, 8633, 3419, 198, 220, 21997, 62, 4164, 10466, 796, 8633, 3419, 198, 220, 1459, 62, 538, 5374, 796, 23884, 1303, 360, 713, 329, 1123, 21997, 284, 2610, 262, 1459, 36835, 198, 220, 288, 82, 62, 22355, 796, 23884, 198, 220, 4075, 62, 9310, 62, 14171, 796, 10148, 198, 220, 17510, 62, 2435, 796, 657, 198, 220, 1303, 47020, 329, 1994, 20731, 198, 220, 279, 62, 27432, 364, 796, 302, 13, 5589, 576, 10786, 59, 82, 10, 44077, 364, 59, 82, 10, 25, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 279, 62, 381, 83, 796, 302, 13, 5589, 576, 10786, 59, 82, 10, 18709, 274, 583, 21997, 59, 82, 10, 25, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 279, 62, 381, 77, 796, 302, 13, 5589, 576, 10786, 59, 82, 10, 18709, 274, 319, 10139, 59, 82, 10, 25, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 279, 62, 1676, 6359, 796, 302, 13, 5589, 576, 10786, 59, 82, 10, 14957, 1271, 286, 7767, 59, 82, 10, 25, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 279, 62, 3361, 796, 302, 13, 5589, 576, 10786, 59, 82, 10, 11505, 7378, 14390, 583, 1429, 59, 82, 10, 25, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 279, 62, 2022, 796, 302, 13, 5589, 576, 10786, 59, 82, 10, 45313, 62, 43501, 62, 7857, 7479, 82, 10, 26933, 15, 12, 24, 8183, 28988, 11537, 198, 220, 1303, 47020, 329, 1994, 20731, 198, 220, 279, 62, 27432, 62, 2435, 796, 302, 13, 5589, 576, 10786, 59, 86, 10, 59, 82, 10, 59, 7, 39098, 29565, 15, 12, 24, 60, 9, 19415, 8, 3047, 36835, 29565, 15, 12, 24, 60, 28104, 1057, 640, 1058, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 279, 62, 9288, 62, 2435, 796, 302, 13, 5589, 576, 10786, 59, 86, 10, 59, 82, 10, 59, 7, 39098, 29565, 15, 12, 24, 60, 9, 19415, 8, 1332, 1057, 640, 1058, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 279, 62, 9288, 62, 260, 1102, 796, 302, 13, 5589, 576, 10786, 59, 86, 10, 59, 82, 10, 59, 7, 39098, 29565, 15, 12, 24, 60, 9, 19415, 8, 1332, 8195, 1058, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 1303, 47020, 329, 9233, 20731, 198, 220, 279, 62, 27432, 62, 2022, 62, 2435, 796, 302, 13, 5589, 576, 10786, 59, 86, 10, 59, 82, 10, 59, 7, 39098, 29565, 15, 12, 24, 60, 9, 19415, 8, 3047, 36835, 29565, 15, 12, 24, 60, 28104, 9927, 12, 43501, 640, 7869, 1058, 29565, 15, 12, 24, 8183, 28988, 82, 1612, 11537, 198, 220, 1303, 279, 62, 27432, 62, 260, 1102, 796, 302, 13, 5589, 576, 10786, 59, 86, 10, 59, 82, 10, 59, 7, 39098, 29565, 15, 12, 24, 60, 9, 19415, 8, 3047, 36835, 29565, 15, 12, 24, 60, 28104, 8195, 1058, 29565, 15, 12, 24, 8183, 28988, 11537, 198, 220, 1303, 31793, 262, 640, 2672, 284, 3440, 262, 1366, 198, 220, 279, 62, 3866, 2220, 62, 7890, 62, 8095, 62, 14171, 796, 302, 13, 5589, 576, 10786, 38690, 466, 62, 3866, 2220, 62, 7890, 62, 8095, 15885, 22510, 36525, 7479, 82, 10, 26933, 15, 12, 24, 11, 60, 28988, 329, 2597, 25, 357, 59, 86, 28988, 11537, 198, 220, 279, 62, 3866, 2220, 62, 7890, 62, 8095, 62, 2435, 796, 302, 13, 5589, 576, 10786, 59, 82, 10, 4598, 62, 3866, 2220, 62, 7890, 62, 8095, 640, 7479, 82, 10, 26933, 15, 12, 24, 8183, 28988, 11537, 198, 220, 1303, 9938, 262, 1627, 351, 640, 284, 18305, 1096, 28514, 198, 220, 279, 62, 27261, 62, 2435, 796, 302, 13, 5589, 576, 10786, 28869, 11413, 2890, 28514, 986, 29565, 15, 12, 24, 8183, 28988, 82, 11537, 198, 220, 351, 1280, 7, 259, 79, 8, 355, 611, 576, 16, 25, 198, 220, 220, 220, 329, 1627, 287, 611, 576, 16, 25, 198, 220, 220, 220, 220, 220, 285, 62, 27432, 364, 796, 279, 62, 27432, 364, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 27432, 364, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 34242, 17816, 22510, 62, 27432, 364, 20520, 796, 285, 62, 27432, 364, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 285, 62, 381, 83, 796, 279, 62, 381, 83, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 381, 83, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 34242, 17816, 1676, 6359, 62, 525, 62, 2213, 10613, 20520, 796, 285, 62, 381, 83, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 285, 62, 381, 77, 796, 279, 62, 381, 77, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 381, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 34242, 17816, 1676, 6359, 62, 525, 62, 17440, 20520, 796, 285, 62, 381, 77, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 285, 62, 1676, 6359, 796, 279, 62, 1676, 6359, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 1676, 6359, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 34242, 17816, 22510, 62, 14681, 274, 20520, 796, 285, 62, 1676, 6359, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 285, 62, 3361, 796, 279, 62, 3361, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 3361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 34242, 17816, 22510, 62, 3361, 62, 16663, 82, 20520, 796, 285, 62, 3361, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 285, 62, 2022, 796, 279, 62, 2022, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 2022, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 34242, 17816, 1084, 571, 963, 62, 7857, 20520, 796, 285, 62, 2022, 13, 8094, 7, 16, 8, 628, 220, 220, 220, 220, 220, 285, 62, 2435, 796, 279, 62, 27432, 62, 2435, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 2435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29770, 796, 285, 62, 2435, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 796, 285, 62, 2435, 13, 8094, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 538, 5374, 58, 83, 312, 60, 796, 304, 1303, 2610, 262, 1459, 36835, 329, 1123, 21997, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 285, 62, 2435, 13, 8094, 7, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 21997, 62, 4164, 10466, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21997, 62, 4164, 10466, 796, 1391, 304, 1058, 1391, 29770, 1058, 1391, 705, 27432, 62, 2435, 6, 1058, 256, 1782, 1782, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 304, 287, 21997, 62, 4164, 10466, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29770, 287, 21997, 62, 4164, 10466, 58, 68, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 7131, 6, 27432, 62, 2435, 20520, 796, 256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 60, 796, 1391, 705, 27432, 62, 2435, 6, 1058, 256, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21997, 62, 4164, 10466, 58, 68, 60, 796, 1391, 29770, 1058, 1391, 705, 27432, 62, 2435, 6, 1058, 256, 1782, 1782, 628, 220, 220, 220, 220, 220, 285, 62, 9288, 62, 260, 1102, 796, 279, 62, 9288, 62, 260, 1102, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 9288, 62, 260, 1102, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29770, 796, 285, 62, 9288, 62, 260, 1102, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 796, 1459, 62, 538, 5374, 58, 83, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 285, 62, 9288, 62, 260, 1102, 13, 8094, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 705, 9288, 62, 260, 1102, 6, 287, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 7131, 6, 9288, 62, 260, 1102, 20520, 796, 374, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 31, 538, 5374, 705, 1343, 304, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 705, 532, 23418, 1332, 25056, 18663, 1043, 532, 4683, 796, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 7131, 6, 9288, 62, 260, 1102, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 705, 1221, 13493, 705, 1343, 374, 1343, 705, 357, 2596, 1332, 5403, 3548, 10091, 11537, 628, 198, 220, 220, 220, 220, 220, 285, 62, 9288, 62, 2435, 796, 279, 62, 9288, 62, 2435, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 9288, 62, 2435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29770, 796, 285, 62, 9288, 62, 2435, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 796, 1459, 62, 538, 5374, 58, 83, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 285, 62, 9288, 62, 2435, 13, 8094, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 705, 9288, 62, 2435, 6, 287, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 7131, 6, 9288, 62, 2435, 20520, 796, 374, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 31, 538, 5374, 705, 1343, 304, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 705, 532, 23418, 1332, 640, 1043, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 4683, 796, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 7131, 6, 9288, 62, 2435, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 705, 1221, 13493, 705, 1343, 374, 1343, 705, 357, 2596, 1332, 5403, 3548, 10091, 11537, 628, 220, 220, 220, 220, 220, 285, 62, 27432, 62, 2022, 62, 2435, 796, 279, 62, 27432, 62, 2022, 62, 2435, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 27432, 62, 2022, 62, 2435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29770, 796, 285, 62, 27432, 62, 2022, 62, 2435, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 796, 1459, 62, 538, 5374, 58, 83, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 304, 6624, 285, 62, 27432, 62, 2022, 62, 2435, 13, 8094, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 10786, 13807, 5374, 46318, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 285, 62, 27432, 62, 2022, 62, 2435, 13, 8094, 7, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 705, 27432, 62, 2022, 62, 2435, 6, 287, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 7131, 6, 27432, 62, 2022, 62, 2435, 20520, 796, 374, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 31, 538, 5374, 705, 1343, 304, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 705, 532, 23418, 4512, 285, 65, 640, 1043, 532, 4683, 796, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 7131, 6, 27432, 62, 2022, 62, 2435, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 705, 1221, 13493, 705, 1343, 374, 1343, 705, 357, 397, 419, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 32590, 16, 8, 628, 220, 220, 220, 220, 220, 285, 62, 9310, 62, 14171, 796, 279, 62, 3866, 2220, 62, 7890, 62, 8095, 62, 14171, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 9310, 62, 14171, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4075, 62, 14171, 796, 285, 62, 9310, 62, 14171, 13, 8094, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8405, 796, 493, 7, 76, 62, 9310, 62, 14171, 13, 8094, 7, 16, 737, 33491, 7, 3256, 3256, 10148, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 288, 82, 62, 22355, 58, 5275, 62, 14171, 60, 796, 1391, 6, 82, 12629, 6, 1058, 8405, 1782, 628, 220, 220, 220, 220, 220, 285, 62, 9310, 62, 2435, 796, 279, 62, 3866, 2220, 62, 7890, 62, 8095, 62, 2435, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 9310, 62, 2435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 640, 796, 12178, 7, 76, 62, 9310, 62, 2435, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 288, 82, 62, 22355, 58, 5275, 62, 14171, 7131, 6, 2220, 62, 2435, 20520, 796, 640, 628, 220, 220, 220, 220, 220, 285, 62, 27261, 62, 2435, 796, 279, 62, 27261, 62, 2435, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 357, 76, 62, 27261, 62, 2435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 17510, 62, 2435, 796, 12178, 7, 76, 62, 27261, 62, 2435, 13, 8094, 7, 16, 4008, 628, 220, 220, 220, 220, 220, 1303, 285, 62, 27432, 62, 260, 1102, 796, 279, 62, 27432, 62, 260, 1102, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 1303, 611, 357, 76, 62, 27432, 62, 260, 1102, 2599, 198, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 29770, 796, 285, 62, 27432, 62, 260, 1102, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 304, 796, 1459, 62, 538, 5374, 58, 83, 312, 60, 198, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 407, 304, 6624, 285, 62, 27432, 62, 260, 1102, 13, 8094, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 6818, 10786, 13807, 5374, 46318, 11537, 198, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 374, 796, 285, 62, 27432, 62, 260, 1102, 13, 8094, 7, 18, 8, 198, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 21997, 62, 4164, 10466, 58, 68, 7131, 83, 312, 7131, 6, 27432, 62, 260, 1102, 20520, 796, 374, 628, 220, 220, 220, 3601, 7, 69, 1, 44077, 364, 1058, 1391, 5143, 62, 34242, 17816, 22510, 62, 27432, 364, 20520, 92, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 2964, 6359, 583, 21997, 1058, 1391, 5143, 62, 34242, 17816, 1676, 6359, 62, 525, 62, 2213, 10613, 20520, 92, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 2964, 6359, 583, 10139, 1058, 1391, 5143, 62, 34242, 17816, 1676, 6359, 62, 525, 62, 17440, 20520, 92, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 14957, 997, 13, 10854, 274, 1058, 1391, 5143, 62, 34242, 17816, 22510, 62, 14681, 274, 20520, 92, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 33111, 13, 4946, 7378, 14122, 82, 1058, 1391, 5143, 62, 34242, 17816, 22510, 62, 3361, 62, 16663, 82, 20520, 92, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 39234, 12, 43501, 12849, 1058, 1391, 5143, 62, 34242, 17816, 1084, 571, 963, 62, 7857, 20520, 92, 4943, 198, 220, 220, 220, 2482, 11, 13027, 62, 43420, 11, 2472, 62, 27432, 62, 22355, 11, 2472, 62, 27432, 62, 22355, 62, 1662, 62, 11085, 62, 538, 5374, 796, 35743, 62, 4164, 10466, 7, 2213, 10613, 62, 4164, 10466, 8, 628, 220, 220, 220, 3601, 62, 43420, 7, 43420, 11, 13027, 62, 43420, 11, 2472, 62, 27432, 62, 22355, 11, 2472, 62, 27432, 62, 22355, 62, 1662, 62, 11085, 62, 538, 5374, 8, 628, 220, 220, 220, 611, 576, 16, 13, 19836, 3419, 628, 198, 2, 11487, 796, 279, 67, 13, 6601, 19778, 7, 43420, 8, 198, 2, 11487, 796, 279, 67, 13, 6601, 19778, 7, 439, 62, 4164, 10466, 8, 198, 2, 4164, 62, 7753, 796, 366, 22296, 62, 4164, 10466, 1, 1343, 2536, 7, 19608, 8079, 13, 4475, 13, 40838, 28955, 10, 4458, 40664, 6, 198, 2, 4798, 7203, 50, 2703, 29231, 20731, 284, 33172, 1138, 62, 7753, 8, 198, 2, 11487, 13, 1462, 62, 40664, 7, 4164, 62, 7753, 11, 6376, 28, 25101, 8, 198 ]
2.075272
3,215
import nltk lines = [] with open("foitext.txt", 'r') as f: for line in f: lines.append(strip_non_ascii(line)) narratives = [x[x.rfind('|')+1:].strip() for x in lines] tokens_list = [nltk.wordpunct_tokenize(x) for x in narratives] # pos_list = [nltk.pos_tag(x) for x in tokens_list] tokens = [] for x in tokens_list: for y in x: tokens.append(y) tokens = list(set(tokens)) tokens.sort() stem_functions = { "snwbl_eng": nltk.stem.snowball.EnglishStemmer().stem, "snwbl_snwbl": nltk.stem.snowball.SnowballStemmer("english").stem, "snwbl_prtr": nltk.stem.snowball.PorterStemmer().stem, "prtr": nltk.stem.porter.PorterStemmer().stem, "wordnet": nltk.stem.wordnet.WordNetLemmatizer().lemmatize, "lancaster": nltk.stem.lancaster.LancasterStemmer().stem } stems = {} # Make stems for name, func in stem_functions.items(): this_stem = [func(x) for x in tokens] this_stem = list(set(this_stem)) this_stem.sort() stems[name] = this_stem # Print results result = "Results:\n" for name, stem_list in stems.items(): result += name + ":\t" + str(len(stem_list)) + "\n" print result
[ 11748, 299, 2528, 74, 198, 198, 6615, 796, 17635, 198, 4480, 1280, 7203, 6513, 578, 742, 13, 14116, 1600, 705, 81, 11537, 355, 277, 25, 198, 197, 1640, 1627, 287, 277, 25, 198, 197, 197, 6615, 13, 33295, 7, 36311, 62, 13159, 62, 292, 979, 72, 7, 1370, 4008, 198, 198, 77, 3258, 2929, 796, 685, 87, 58, 87, 13, 81, 19796, 10786, 91, 11537, 10, 16, 25, 4083, 36311, 3419, 329, 2124, 287, 3951, 60, 198, 83, 482, 641, 62, 4868, 796, 685, 77, 2528, 74, 13, 4775, 79, 16260, 62, 30001, 1096, 7, 87, 8, 329, 2124, 287, 26274, 60, 198, 2, 1426, 62, 4868, 796, 685, 77, 2528, 74, 13, 1930, 62, 12985, 7, 87, 8, 329, 2124, 287, 16326, 62, 4868, 60, 198, 198, 83, 482, 641, 796, 17635, 198, 1640, 2124, 287, 16326, 62, 4868, 25, 198, 197, 1640, 331, 287, 2124, 25, 198, 197, 197, 83, 482, 641, 13, 33295, 7, 88, 8, 198, 198, 83, 482, 641, 796, 1351, 7, 2617, 7, 83, 482, 641, 4008, 198, 83, 482, 641, 13, 30619, 3419, 198, 198, 927, 62, 12543, 2733, 796, 1391, 198, 197, 1, 16184, 86, 2436, 62, 1516, 1298, 299, 2528, 74, 13, 927, 13, 82, 2197, 1894, 13, 15823, 1273, 368, 647, 22446, 927, 11, 198, 197, 1, 16184, 86, 2436, 62, 16184, 86, 2436, 1298, 299, 2528, 74, 13, 927, 13, 82, 2197, 1894, 13, 28974, 1894, 1273, 368, 647, 7203, 39126, 11074, 927, 11, 198, 197, 1, 16184, 86, 2436, 62, 1050, 2213, 1298, 299, 2528, 74, 13, 927, 13, 82, 2197, 1894, 13, 47, 4337, 1273, 368, 647, 22446, 927, 11, 198, 197, 1, 1050, 2213, 1298, 299, 2528, 74, 13, 927, 13, 26634, 13, 47, 4337, 1273, 368, 647, 22446, 927, 11, 198, 197, 1, 4775, 3262, 1298, 299, 2528, 74, 13, 927, 13, 4775, 3262, 13, 26449, 7934, 43, 368, 6759, 7509, 22446, 293, 3020, 265, 1096, 11, 198, 197, 1, 75, 1192, 1603, 1298, 299, 2528, 74, 13, 927, 13, 75, 1192, 1603, 13, 43, 1192, 1603, 1273, 368, 647, 22446, 927, 198, 92, 198, 198, 927, 82, 796, 23884, 628, 198, 2, 6889, 21552, 198, 1640, 1438, 11, 25439, 287, 10717, 62, 12543, 2733, 13, 23814, 33529, 198, 197, 5661, 62, 927, 796, 685, 20786, 7, 87, 8, 329, 2124, 287, 16326, 60, 198, 197, 5661, 62, 927, 796, 1351, 7, 2617, 7, 5661, 62, 927, 4008, 198, 197, 5661, 62, 927, 13, 30619, 3419, 198, 197, 927, 82, 58, 3672, 60, 796, 428, 62, 927, 628, 198, 2, 12578, 2482, 198, 20274, 796, 366, 25468, 7479, 77, 1, 198, 1640, 1438, 11, 10717, 62, 4868, 287, 21552, 13, 23814, 33529, 198, 197, 20274, 15853, 1438, 1343, 366, 7479, 83, 1, 1343, 965, 7, 11925, 7, 927, 62, 4868, 4008, 1343, 37082, 77, 1, 628, 198, 4798, 1255, 198 ]
2.307368
475
''' This module implements a listen attend and spell classifier. ''' from __future__ import absolute_import, division, print_function import tensorflow as tf from neuralnetworks.classifiers.classifier import Classifier from neuralnetworks.las_elements import Listener from neuralnetworks.beam_search_speller import BeamSearchSpeller from IPython.core.debugger import Tracer; debug_here = Tracer(); class LasModel(Classifier): """ A neural end to end network based speech model.""" def __init__(self, general_settings, listener_settings, attend_and_spell_settings): """ Create a listen attend and Spell model. As described in, Chan, Jaitly, Le et al. Listen, attend and spell Params: mel_feature_no: The length of the mel-featrue vectors at each time step. batch_size: The number of utterances in each (mini)-batch. target_label_no: The number of letters or phonemes in the training data set. decoding: Boolean flag indicating if this graph is going to be used for decoding purposes. """ super(LasModel, self).__init__(general_settings.target_label_no) self.gen_set = general_settings self.lst_set = listener_settings self.as_set = attend_and_spell_settings self.dtype = tf.float32 self.mel_feature_no = self.gen_set.mel_feature_no self.batch_size = self.gen_set.batch_size self.target_label_no = self.gen_set.target_label_no #decoding constants self.max_decoding_steps = 100 #self.max_decoding_steps = 44 #store the two model parts. self.listener = Listener(general_settings, listener_settings) #create a greedy speller. #self.speller = Speller(attend_and_spell_settings, # self.batch_size, # self.dtype, # self.target_label_no, # self.max_decoding_steps) #create a beam search speller. self.speller = BeamSearchSpeller(attend_and_spell_settings, self.batch_size, self.dtype, self.target_label_no, self.max_decoding_steps, beam_width=self.gen_set.beam_width, dropout_settings=self.gen_set.dropout_settings) def encode_targets_one_hot(self, targets): """ Transforn the targets into one hot encoded targets. Args: targets: Tensor of shape [batch_size, max_target_time, 1] Returns: one_hot_targets: [batch_size, max_target_time, label_no] """ with tf.variable_scope("one_hot_encoding"): target_one_hot = tf.one_hot(targets, self.target_label_no, axis=2) #one hot encoding adds an extra dimension we don't want. #squeeze it out. target_one_hot = tf.squeeze(target_one_hot, squeeze_dims=[3]) print("train targets shape: ", tf.Tensor.get_shape(target_one_hot)) return target_one_hot @staticmethod def add_input_noise(inputs, stddev=0.65): """ Add noise with a given standart deviation to the inputs Args: inputs: the noise free input-features. stddev: The standart deviation of the noise. returns: Input features plus noise. """ if stddev != 0: with tf.variable_scope("input_noise"): #add input noise with a standart deviation of stddev. inputs = tf.random_normal(tf.shape(inputs), 0.0, stddev) + inputs else: print("stddev is zero no input noise added.") return inputs
[ 7061, 6, 198, 1212, 8265, 23986, 257, 6004, 5262, 290, 4822, 1398, 7483, 13, 198, 7061, 6, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 17019, 3262, 5225, 13, 4871, 13350, 13, 4871, 7483, 1330, 5016, 7483, 198, 6738, 17019, 3262, 5225, 13, 21921, 62, 68, 3639, 1330, 7343, 877, 198, 6738, 17019, 3262, 5225, 13, 40045, 62, 12947, 62, 4125, 6051, 1330, 25855, 18243, 5248, 6051, 198, 6738, 6101, 7535, 13, 7295, 13, 24442, 1362, 1330, 833, 11736, 26, 14257, 62, 1456, 796, 833, 11736, 9783, 628, 198, 4871, 10123, 17633, 7, 9487, 7483, 2599, 198, 220, 220, 220, 37227, 317, 17019, 886, 284, 886, 3127, 1912, 4046, 2746, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2276, 62, 33692, 11, 24783, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5262, 62, 392, 62, 46143, 62, 33692, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 6004, 5262, 290, 11988, 2746, 13, 1081, 3417, 287, 11, 198, 220, 220, 220, 220, 220, 220, 220, 18704, 11, 449, 4548, 306, 11, 1004, 2123, 435, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20600, 11, 5262, 290, 4822, 628, 220, 220, 220, 220, 220, 220, 220, 2547, 4105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7758, 62, 30053, 62, 3919, 25, 383, 4129, 286, 262, 7758, 12, 27594, 24508, 30104, 379, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 2239, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 25, 383, 1271, 286, 10517, 1817, 287, 1123, 357, 45313, 13219, 43501, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 18242, 62, 3919, 25, 383, 1271, 286, 7475, 393, 32896, 368, 274, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 1366, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39938, 25, 41146, 6056, 12739, 611, 428, 4823, 318, 1016, 284, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 329, 39938, 4959, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 46898, 17633, 11, 2116, 737, 834, 15003, 834, 7, 24622, 62, 33692, 13, 16793, 62, 18242, 62, 3919, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5235, 62, 2617, 796, 2276, 62, 33692, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 75, 301, 62, 2617, 796, 24783, 62, 33692, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 292, 62, 2617, 796, 5262, 62, 392, 62, 46143, 62, 33692, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 4906, 796, 48700, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17694, 62, 30053, 62, 3919, 796, 2116, 13, 5235, 62, 2617, 13, 17694, 62, 30053, 62, 3919, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43501, 62, 7857, 796, 2116, 13, 5235, 62, 2617, 13, 43501, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 18242, 62, 3919, 796, 2116, 13, 5235, 62, 2617, 13, 16793, 62, 18242, 62, 3919, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12501, 7656, 38491, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 12501, 7656, 62, 20214, 796, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 9806, 62, 12501, 7656, 62, 20214, 796, 5846, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8095, 262, 734, 2746, 3354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 877, 796, 7343, 877, 7, 24622, 62, 33692, 11, 24783, 62, 33692, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17953, 257, 31828, 4822, 263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 4125, 6051, 796, 2531, 6051, 7, 1078, 437, 62, 392, 62, 46143, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 18242, 62, 3919, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 12501, 7656, 62, 20214, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17953, 257, 15584, 2989, 4822, 263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4125, 6051, 796, 25855, 18243, 5248, 6051, 7, 1078, 437, 62, 392, 62, 46143, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 18242, 62, 3919, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 12501, 7656, 62, 20214, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15584, 62, 10394, 28, 944, 13, 5235, 62, 2617, 13, 40045, 62, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 33692, 28, 944, 13, 5235, 62, 2617, 13, 14781, 448, 62, 33692, 8, 628, 220, 220, 220, 825, 37773, 62, 83, 853, 1039, 62, 505, 62, 8940, 7, 944, 11, 6670, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3602, 69, 1211, 262, 6670, 656, 530, 3024, 30240, 6670, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6670, 25, 309, 22854, 286, 5485, 685, 43501, 62, 7857, 11, 3509, 62, 16793, 62, 2435, 11, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 62, 8940, 62, 83, 853, 1039, 25, 685, 43501, 62, 7857, 11, 3509, 62, 16793, 62, 2435, 11, 6167, 62, 3919, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7203, 505, 62, 8940, 62, 12685, 7656, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 505, 62, 8940, 796, 48700, 13, 505, 62, 8940, 7, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 18242, 62, 3919, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 505, 3024, 21004, 6673, 281, 3131, 15793, 356, 836, 470, 765, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16485, 1453, 2736, 340, 503, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 505, 62, 8940, 796, 48700, 13, 16485, 1453, 2736, 7, 16793, 62, 505, 62, 8940, 11, 21229, 62, 67, 12078, 41888, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 27432, 6670, 5485, 25, 33172, 48700, 13, 51, 22854, 13, 1136, 62, 43358, 7, 16793, 62, 505, 62, 8940, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2496, 62, 505, 62, 8940, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 751, 62, 15414, 62, 3919, 786, 7, 15414, 82, 11, 336, 1860, 1990, 28, 15, 13, 2996, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 7838, 351, 257, 1813, 1302, 433, 28833, 284, 262, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 25, 262, 7838, 1479, 5128, 12, 40890, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1860, 1990, 25, 383, 1302, 433, 28833, 286, 262, 7838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5860, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23412, 3033, 5556, 7838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 336, 1860, 1990, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7203, 15414, 62, 3919, 786, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2860, 5128, 7838, 351, 257, 1302, 433, 28833, 286, 336, 1860, 1990, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 48700, 13, 25120, 62, 11265, 7, 27110, 13, 43358, 7, 15414, 82, 828, 657, 13, 15, 11, 336, 1860, 1990, 8, 1343, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 301, 1860, 1990, 318, 6632, 645, 5128, 7838, 2087, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17311, 628 ]
2.050882
1,985
from basketball_reference_web_scraper.data import TEAM_ABBREVIATIONS_TO_TEAM, POSITION_ABBREVIATIONS_TO_POSITION from basketball_reference_web_scraper.parsers.common import COLUMN_RENAMER, COLUMN_PARSER, \ find_team_column, parse_souped_row_given_header_columns, split_header_columns, get_all_tables_with_soup __totals_stats_by_year_header_string = "Player,Pos,Age,Tm,G,GS,MP,FG,FGA,FG%,3P,3PA,3P%,2P,2PA,2P%,eFG%,FT,FTA,FT%,ORB,DRB,TRB,AST,STL,BLK,TOV,PF,PTS" _totals_stats_by_year_header_columns = split_header_columns(__totals_stats_by_year_header_string)
[ 6738, 9669, 62, 35790, 62, 12384, 62, 1416, 38545, 13, 7890, 1330, 33536, 62, 6242, 40438, 12861, 18421, 62, 10468, 62, 9328, 2390, 11, 28069, 17941, 62, 6242, 40438, 12861, 18421, 62, 10468, 62, 37997, 17941, 198, 6738, 9669, 62, 35790, 62, 12384, 62, 1416, 38545, 13, 79, 945, 364, 13, 11321, 1330, 20444, 5883, 45, 62, 49, 1677, 2390, 1137, 11, 20444, 5883, 45, 62, 27082, 35009, 11, 3467, 198, 220, 220, 220, 1064, 62, 15097, 62, 28665, 11, 21136, 62, 82, 280, 9124, 62, 808, 62, 35569, 62, 25677, 62, 28665, 82, 11, 6626, 62, 25677, 62, 28665, 82, 11, 651, 62, 439, 62, 83, 2977, 62, 4480, 62, 82, 10486, 198, 198, 834, 83, 313, 874, 62, 34242, 62, 1525, 62, 1941, 62, 25677, 62, 8841, 796, 366, 14140, 11, 21604, 11, 23396, 11, 51, 76, 11, 38, 11, 14313, 11, 7378, 11, 30386, 11, 37, 9273, 11, 30386, 7441, 18, 47, 11, 18, 4537, 11, 18, 47, 7441, 17, 47, 11, 17, 4537, 11, 17, 47, 7441, 68, 30386, 7441, 9792, 11, 37, 5603, 11, 9792, 7441, 1581, 33, 11, 7707, 33, 11, 5446, 33, 11, 11262, 11, 2257, 43, 11, 9148, 42, 11, 51, 8874, 11, 42668, 11, 47, 4694, 1, 198, 62, 83, 313, 874, 62, 34242, 62, 1525, 62, 1941, 62, 25677, 62, 28665, 82, 796, 6626, 62, 25677, 62, 28665, 82, 7, 834, 83, 313, 874, 62, 34242, 62, 1525, 62, 1941, 62, 25677, 62, 8841, 8, 198 ]
2.292683
246
import h2o from Benchmarker.experiment import Experiment import Benchmarker.config as config import Benchmarker.utils as utils import warnings from optparse import OptionParser from Benchmarker.utils import init_journal, close_journal import numbers import Benchmarker.metaopt.fakegame as fg import Benchmarker.metaopt.params as p from Benchmarker.utils import persist import datetime import re import numpy as np from numpy.random import rand, randint import sys import pysmac dt = datetime.datetime ## Settings experiment_name = "" x_cols = [] y_col = None data_file = "" steps = int(sys.argv[1]) experiment_name = "Airlines 10k" x_cols = ["Year", "Month", "DayofMonth", "DayOfWeek", "DepTime", "CRSDepTime", "ArrTime", "CRSArrTime", "UniqueCarrier", "FlightNum", "TailNum", "Origin", "Dest", "Distance", "TaxiIn"] y_col = "IsDepDelayed" data_file = "/home/frydatom/Sync/School/Vylet_2016/data/airlines_imputed_10k.csv" # data_file = "/home/ubuntu/frydatom-vylet-2016/data/airlines_imputed_10k.csv" ## ================================================== Script =========================================================== keep_files = None optStart = dt.now() experimentName = experiment_name ## =================================================== Trainers ======================================================== trdata = None vadata = None tedata = None keep_files = None algs = [(GLMtrainer, p.glm_params),(CCtrainer, p.fakegame_cascadeCorrelation_params), (DRFtrainer, p.drf_params),(GBMtrainer, p.gbm_params), (BPtrainer, p.fakegame_backprop_params),(DLtrainer, p.dl_params), (QPtrainer, p.fakegame_quickprop_params), (RPtrainer, p.fakegame_rprop_params)] ##################################################### Run ############################################################## if __name__ == '__main__': opt = OptionParser() opt.add_option("-n", "--nthreads", dest="nthreads", help="number of threads used by h2o") opt.add_option("-c", "--cluster", dest="cluster", help="cluster name used by h2o to establish connection") opt.add_option("-j", "--journal-file", dest="journal", help="filename of a journal, i.e., file that gets" "appended by each result in case something goes wrong") (options, args) = opt.parse_args() if options.journal: utils.journal_file = options.journal init_journal() # Sanity checks try: f = open(utils.journal_file, "a") f.close() except: warnings.warn("An error occurred during opening the journal file. Have you set it properly? (-j)") exit(1) config.hostname = "127.0.0.1" config.port = 54321 config.nthreads = int(options.nthreads) if int(options.nthreads) >= 1 or options.nthreads is None else 4 config.cluster = "one" if options.cluster == "" or options.cluster is None else options.cluster # Actual code to run h2o.init(config.hostname, config.port, nthreads=config.nthreads, cluster_name=config.cluster) h2o.remove_all() data = h2o.import_file(data_file) r = data.runif() trdata = data[r < 0.5] vadata = data[(r >= 0.5) & (r < 0.75)] tedata = data[r >= 0.75] keep_frames = re.compile("|".join([trdata.frame_id, vadata.frame_id, tedata.frame_id]) + "|.*\\.hex|py_.*") for (tr, par) in algs: print("random search") randomSearch(tr, par, steps) print("smac") smac(tr, par, steps)
[ 11748, 289, 17, 78, 201, 198, 6738, 25187, 4102, 263, 13, 23100, 3681, 1330, 29544, 201, 198, 11748, 25187, 4102, 263, 13, 11250, 355, 4566, 201, 198, 11748, 25187, 4102, 263, 13, 26791, 355, 3384, 4487, 201, 198, 11748, 14601, 201, 198, 6738, 2172, 29572, 1330, 16018, 46677, 201, 198, 6738, 25187, 4102, 263, 13, 26791, 1330, 2315, 62, 24891, 11, 1969, 62, 24891, 201, 198, 11748, 3146, 201, 198, 11748, 25187, 4102, 263, 13, 28961, 8738, 13, 30706, 6057, 355, 277, 70, 201, 198, 11748, 25187, 4102, 263, 13, 28961, 8738, 13, 37266, 355, 279, 201, 198, 6738, 25187, 4102, 263, 13, 26791, 1330, 21160, 201, 198, 11748, 4818, 8079, 201, 198, 11748, 302, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 299, 32152, 13, 25120, 1330, 43720, 11, 43720, 600, 201, 198, 11748, 25064, 201, 198, 11748, 279, 893, 20285, 201, 198, 201, 198, 28664, 796, 4818, 8079, 13, 19608, 8079, 201, 198, 201, 198, 2235, 16163, 201, 198, 23100, 3681, 62, 3672, 796, 13538, 201, 198, 87, 62, 4033, 82, 796, 17635, 201, 198, 88, 62, 4033, 796, 6045, 201, 198, 7890, 62, 7753, 796, 13538, 201, 198, 20214, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 201, 198, 201, 198, 23100, 3681, 62, 3672, 796, 366, 32, 1901, 1127, 838, 74, 1, 201, 198, 87, 62, 4033, 82, 796, 14631, 17688, 1600, 366, 31948, 1600, 366, 12393, 1659, 31948, 1600, 366, 12393, 5189, 20916, 1600, 366, 12156, 7575, 1600, 366, 34, 6998, 12156, 7575, 1600, 366, 3163, 81, 7575, 1600, 366, 34, 6998, 3163, 81, 7575, 1600, 366, 40257, 9914, 5277, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43069, 33111, 1600, 366, 51, 603, 33111, 1600, 366, 39688, 1600, 366, 24159, 1600, 366, 45767, 1600, 366, 27017, 72, 818, 8973, 201, 198, 88, 62, 4033, 796, 366, 3792, 12156, 13856, 16548, 1, 201, 198, 7890, 62, 7753, 796, 12813, 11195, 14, 69, 563, 19608, 296, 14, 28985, 14, 26130, 14, 53, 88, 1616, 62, 5304, 14, 7890, 14, 958, 6615, 62, 320, 17128, 62, 940, 74, 13, 40664, 1, 201, 198, 2, 1366, 62, 7753, 796, 12813, 11195, 14, 32230, 14, 69, 563, 19608, 296, 12, 7670, 1616, 12, 5304, 14, 7890, 14, 958, 6615, 62, 320, 17128, 62, 940, 74, 13, 40664, 1, 201, 198, 2235, 46111, 4770, 28, 12327, 46111, 4770, 2559, 855, 201, 198, 14894, 62, 16624, 796, 6045, 201, 198, 8738, 10434, 796, 288, 83, 13, 2197, 3419, 201, 198, 201, 198, 23100, 3681, 5376, 796, 6306, 62, 3672, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 2235, 46111, 4770, 855, 16835, 364, 46111, 4770, 1421, 18604, 201, 198, 2213, 7890, 796, 6045, 201, 198, 85, 14706, 796, 6045, 201, 198, 1513, 1045, 796, 6045, 201, 198, 14894, 62, 16624, 796, 6045, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 14016, 82, 796, 47527, 8763, 44, 2213, 10613, 11, 279, 13, 4743, 76, 62, 37266, 828, 7, 4093, 2213, 10613, 11, 279, 13, 30706, 6057, 62, 66, 28966, 10606, 49501, 62, 37266, 828, 357, 7707, 37, 2213, 10613, 11, 279, 13, 7109, 69, 62, 37266, 828, 7, 4579, 44, 2213, 10613, 11, 279, 13, 70, 20475, 62, 37266, 828, 220, 201, 198, 220, 220, 220, 357, 20866, 2213, 10613, 11, 279, 13, 30706, 6057, 62, 1891, 22930, 62, 37266, 828, 7, 19260, 2213, 10613, 11, 279, 13, 25404, 62, 37266, 828, 357, 48, 46745, 10613, 11, 279, 13, 30706, 6057, 62, 24209, 22930, 62, 37266, 828, 357, 20031, 2213, 10613, 11, 279, 13, 30706, 6057, 62, 81, 22930, 62, 37266, 15437, 201, 198, 201, 198, 29113, 14468, 4242, 2, 5660, 1303, 29113, 14468, 7804, 4242, 2, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 2172, 796, 16018, 46677, 3419, 201, 198, 220, 220, 220, 2172, 13, 2860, 62, 18076, 7203, 12, 77, 1600, 366, 438, 77, 16663, 82, 1600, 2244, 2625, 77, 16663, 82, 1600, 1037, 2625, 17618, 286, 14390, 973, 416, 289, 17, 78, 4943, 201, 198, 220, 220, 220, 2172, 13, 2860, 62, 18076, 7203, 12, 66, 1600, 366, 438, 565, 5819, 1600, 2244, 2625, 565, 5819, 1600, 1037, 2625, 565, 5819, 1438, 973, 416, 289, 17, 78, 284, 4474, 4637, 4943, 201, 198, 220, 220, 220, 2172, 13, 2860, 62, 18076, 7203, 12, 73, 1600, 366, 438, 24891, 12, 7753, 1600, 2244, 2625, 24891, 1600, 1037, 2625, 34345, 286, 257, 3989, 11, 1312, 13, 68, 1539, 2393, 326, 3011, 1, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1324, 1631, 416, 1123, 1255, 287, 1339, 1223, 2925, 2642, 4943, 201, 198, 201, 198, 220, 220, 220, 357, 25811, 11, 26498, 8, 796, 2172, 13, 29572, 62, 22046, 3419, 201, 198, 201, 198, 220, 220, 220, 611, 3689, 13, 24891, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 24891, 62, 7753, 796, 3689, 13, 24891, 201, 198, 201, 198, 220, 220, 220, 2315, 62, 24891, 3419, 201, 198, 220, 220, 220, 1303, 2986, 414, 8794, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 26791, 13, 24891, 62, 7753, 11, 366, 64, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 201, 198, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 2025, 4049, 5091, 1141, 4756, 262, 3989, 2393, 13, 8192, 345, 900, 340, 6105, 30, 13841, 73, 8, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 201, 198, 201, 198, 220, 220, 220, 4566, 13, 4774, 3672, 796, 366, 16799, 13, 15, 13, 15, 13, 16, 1, 201, 198, 220, 220, 220, 4566, 13, 634, 796, 642, 3559, 2481, 201, 198, 220, 220, 220, 4566, 13, 77, 16663, 82, 796, 493, 7, 25811, 13, 77, 16663, 82, 8, 611, 493, 7, 25811, 13, 77, 16663, 82, 8, 18189, 352, 393, 3689, 13, 77, 16663, 82, 318, 6045, 2073, 604, 201, 198, 220, 220, 220, 4566, 13, 565, 5819, 796, 366, 505, 1, 611, 3689, 13, 565, 5819, 6624, 13538, 393, 3689, 13, 565, 5819, 318, 6045, 2073, 3689, 13, 565, 5819, 201, 198, 201, 198, 220, 220, 220, 1303, 33520, 2438, 284, 1057, 201, 198, 220, 220, 220, 289, 17, 78, 13, 15003, 7, 11250, 13, 4774, 3672, 11, 4566, 13, 634, 11, 299, 16663, 82, 28, 11250, 13, 77, 16663, 82, 11, 13946, 62, 3672, 28, 11250, 13, 565, 5819, 8, 201, 198, 220, 220, 220, 289, 17, 78, 13, 28956, 62, 439, 3419, 201, 198, 220, 220, 220, 1366, 796, 289, 17, 78, 13, 11748, 62, 7753, 7, 7890, 62, 7753, 8, 201, 198, 220, 220, 220, 374, 796, 1366, 13, 5143, 361, 3419, 201, 198, 220, 220, 220, 491, 7890, 796, 1366, 58, 81, 1279, 657, 13, 20, 60, 201, 198, 220, 220, 220, 410, 14706, 796, 1366, 58, 7, 81, 18189, 657, 13, 20, 8, 1222, 357, 81, 1279, 657, 13, 2425, 15437, 201, 198, 220, 220, 220, 28501, 1045, 796, 1366, 58, 81, 18189, 657, 13, 2425, 60, 201, 198, 201, 198, 220, 220, 220, 1394, 62, 37805, 796, 302, 13, 5589, 576, 7203, 91, 1911, 22179, 26933, 2213, 7890, 13, 14535, 62, 312, 11, 410, 14706, 13, 14535, 62, 312, 11, 28501, 1045, 13, 14535, 62, 312, 12962, 1343, 366, 91, 15885, 6852, 13, 33095, 91, 9078, 62, 15885, 4943, 201, 198, 201, 198, 220, 220, 220, 329, 357, 2213, 11, 1582, 8, 287, 435, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 25120, 2989, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 18243, 7, 2213, 11, 1582, 11, 4831, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5796, 330, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 895, 330, 7, 2213, 11, 1582, 11, 4831, 8, 201, 198 ]
2.5517
1,412
#!/usr/bin/env python import RPi.GPIO as gpio import os import time import subprocess import sys import signal import threading import datetime # Volume controls day_volume = 70 night_volume = 100 # Control box IO key_channel = 22 button_channel = 7 armed_indicator_channel = 18 activated_indicator_channel = 29 # Motor IO motor1_channel = 35 motor2_channel = 32 top_limit_channel = 33 # Wacky Wavy Guy Fan fan_channel = 40 # System control reboot_channel = 37 shutdown_channel = 38 # Set up GPIO gpio.setmode(gpio.BOARD) gpio.setup(button_channel, gpio.IN, pull_up_down=gpio.PUD_UP) gpio.setup(key_channel, gpio.IN, pull_up_down=gpio.PUD_UP) gpio.setup(armed_indicator_channel, gpio.OUT) gpio.setup(activated_indicator_channel, gpio.OUT) gpio.setup(motor1_channel, gpio.OUT) gpio.setup(motor2_channel, gpio.OUT) gpio.setup(top_limit_channel, gpio.IN, pull_up_down=gpio.PUD_UP) gpio.setup(fan_channel, gpio.OUT) gpio.setup(reboot_channel, gpio.IN, pull_up_down=gpio.PUD_UP) gpio.setup(shutdown_channel, gpio.IN, pull_up_down=gpio.PUD_UP) # Handle keyboard break # Stop light display # Check on the state of the key # Lower platform using motors # Setup to handle keyboard interrupts (control-C) signal.signal(signal.SIGINT, signal_handler) # Initial state lights = False raising_platform = False armed = gpio.input(key_channel) gpio.output(armed_indicator_channel, gpio.input(key_channel)) gpio.output(activated_indicator_channel, gpio.LOW) stop_motors() stop_fan() gpio.add_event_detect(key_channel, gpio.BOTH, callback=check_event, bouncetime=400) gpio.add_event_detect(button_channel, gpio.RISING, callback=check_event, bouncetime=300) gpio.add_event_detect(top_limit_channel, gpio.FALLING, callback=check_event, bouncetime=100) gpio.add_event_detect(reboot_channel, gpio.FALLING, callback=check_event, bouncetime=300) gpio.add_event_detect(shutdown_channel, gpio.FALLING, callback=check_event, bouncetime=300) print("Make sure everything is reset at start") stop_party() while True: # trying not to waste cycles on the pi time.sleep(2)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 27809, 952, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 6737, 198, 11748, 4704, 278, 198, 11748, 4818, 8079, 198, 198, 2, 14701, 6973, 198, 820, 62, 29048, 796, 4317, 198, 3847, 62, 29048, 796, 1802, 198, 198, 2, 6779, 3091, 24418, 198, 2539, 62, 17620, 796, 2534, 198, 16539, 62, 17620, 796, 767, 198, 12026, 62, 521, 26407, 62, 17620, 796, 220, 1248, 198, 33106, 62, 521, 26407, 62, 17620, 796, 2808, 220, 198, 198, 2, 12533, 24418, 198, 76, 20965, 16, 62, 17620, 796, 3439, 198, 76, 20965, 17, 62, 17620, 796, 3933, 198, 4852, 62, 32374, 62, 17620, 796, 4747, 198, 198, 2, 370, 36053, 370, 2830, 13145, 13836, 198, 24408, 62, 17620, 796, 2319, 198, 198, 2, 4482, 1630, 198, 260, 18769, 62, 17620, 796, 5214, 198, 49625, 2902, 62, 17620, 796, 4353, 198, 198, 2, 5345, 510, 50143, 198, 31197, 952, 13, 2617, 14171, 7, 31197, 952, 13, 8202, 9795, 8, 198, 198, 31197, 952, 13, 40406, 7, 16539, 62, 17620, 11, 27809, 952, 13, 1268, 11, 2834, 62, 929, 62, 2902, 28, 31197, 952, 13, 5105, 35, 62, 8577, 8, 198, 31197, 952, 13, 40406, 7, 2539, 62, 17620, 11, 27809, 952, 13, 1268, 11, 2834, 62, 929, 62, 2902, 28, 31197, 952, 13, 5105, 35, 62, 8577, 8, 198, 31197, 952, 13, 40406, 7, 12026, 62, 521, 26407, 62, 17620, 11, 27809, 952, 13, 12425, 8, 198, 31197, 952, 13, 40406, 7, 33106, 62, 521, 26407, 62, 17620, 11, 27809, 952, 13, 12425, 8, 198, 198, 31197, 952, 13, 40406, 7, 76, 20965, 16, 62, 17620, 11, 27809, 952, 13, 12425, 8, 198, 31197, 952, 13, 40406, 7, 76, 20965, 17, 62, 17620, 11, 27809, 952, 13, 12425, 8, 198, 31197, 952, 13, 40406, 7, 4852, 62, 32374, 62, 17620, 11, 27809, 952, 13, 1268, 11, 2834, 62, 929, 62, 2902, 28, 31197, 952, 13, 5105, 35, 62, 8577, 8, 198, 198, 31197, 952, 13, 40406, 7, 24408, 62, 17620, 11, 27809, 952, 13, 12425, 8, 198, 198, 31197, 952, 13, 40406, 7, 260, 18769, 62, 17620, 11, 27809, 952, 13, 1268, 11, 2834, 62, 929, 62, 2902, 28, 31197, 952, 13, 5105, 35, 62, 8577, 8, 198, 31197, 952, 13, 40406, 7, 49625, 2902, 62, 17620, 11, 27809, 952, 13, 1268, 11, 2834, 62, 929, 62, 2902, 28, 31197, 952, 13, 5105, 35, 62, 8577, 8, 628, 198, 2, 33141, 10586, 2270, 198, 198, 2, 13707, 1657, 3359, 628, 198, 2, 6822, 319, 262, 1181, 286, 262, 1994, 628, 628, 628, 198, 198, 2, 16048, 3859, 1262, 24699, 628, 628, 198, 2, 31122, 284, 5412, 10586, 48237, 357, 13716, 12, 34, 8, 198, 12683, 282, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 12394, 11, 6737, 62, 30281, 8, 198, 198, 2, 20768, 1181, 198, 8091, 796, 10352, 198, 32741, 62, 24254, 796, 10352, 220, 198, 12026, 796, 27809, 952, 13, 15414, 7, 2539, 62, 17620, 8, 198, 31197, 952, 13, 22915, 7, 12026, 62, 521, 26407, 62, 17620, 11, 27809, 952, 13, 15414, 7, 2539, 62, 17620, 4008, 198, 31197, 952, 13, 22915, 7, 33106, 62, 521, 26407, 62, 17620, 11, 27809, 952, 13, 43, 3913, 8, 198, 198, 11338, 62, 27926, 669, 3419, 198, 11338, 62, 24408, 3419, 198, 198, 31197, 952, 13, 2860, 62, 15596, 62, 15255, 478, 7, 2539, 62, 17620, 11, 27809, 952, 13, 33, 26946, 11, 23838, 28, 9122, 62, 15596, 11, 31283, 66, 8079, 28, 7029, 8, 198, 31197, 952, 13, 2860, 62, 15596, 62, 15255, 478, 7, 16539, 62, 17620, 11, 27809, 952, 13, 49, 1797, 2751, 11, 23838, 28, 9122, 62, 15596, 11, 31283, 66, 8079, 28, 6200, 8, 198, 31197, 952, 13, 2860, 62, 15596, 62, 15255, 478, 7, 4852, 62, 32374, 62, 17620, 11, 27809, 952, 13, 37, 7036, 2751, 11, 23838, 28, 9122, 62, 15596, 11, 31283, 66, 8079, 28, 3064, 8, 198, 31197, 952, 13, 2860, 62, 15596, 62, 15255, 478, 7, 260, 18769, 62, 17620, 11, 27809, 952, 13, 37, 7036, 2751, 11, 23838, 28, 9122, 62, 15596, 11, 31283, 66, 8079, 28, 6200, 8, 198, 31197, 952, 13, 2860, 62, 15596, 62, 15255, 478, 7, 49625, 2902, 62, 17620, 11, 27809, 952, 13, 37, 7036, 2751, 11, 23838, 28, 9122, 62, 15596, 11, 31283, 66, 8079, 28, 6200, 8, 198, 198, 4798, 7203, 12050, 1654, 2279, 318, 13259, 379, 923, 4943, 198, 11338, 62, 10608, 3419, 628, 198, 4514, 6407, 25, 198, 220, 220, 220, 1303, 2111, 407, 284, 7030, 16006, 319, 262, 31028, 198, 220, 220, 220, 640, 13, 42832, 7, 17, 8, 628 ]
2.662835
783
"""Callbacks.""" import gin from alpacka.agents.callbacks import graph_size_callback # Configure callbacks in this module to ensure they're accessible via the # alpacka.agents.callbacks.* namespace. GraphSizeCallback = configure_callback(graph_size_callback.GraphSizeCallback) # pylint: disable=invalid-name
[ 37811, 14134, 10146, 526, 15931, 198, 198, 11748, 39733, 198, 198, 6738, 435, 8002, 64, 13, 49638, 13, 13345, 10146, 1330, 4823, 62, 7857, 62, 47423, 628, 198, 2, 17056, 495, 869, 10146, 287, 428, 8265, 284, 4155, 484, 821, 9857, 2884, 262, 198, 2, 435, 8002, 64, 13, 49638, 13, 13345, 10146, 15885, 25745, 13, 628, 198, 37065, 10699, 47258, 796, 17425, 62, 47423, 7, 34960, 62, 7857, 62, 47423, 13, 37065, 10699, 47258, 8, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198 ]
3.539326
89
#!/bin/env python # -*- coding: utf-8 -*- # encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python #====================================================================== # # Copyright (c) 2017 Baidu.com, Inc. All Rights Reserved # #====================================================================== """ @Desc: dist_base_fleet module @File: dist_base_fleet.py @Author: liangjinhua @Date: 2019/8/26 19:21 """ from __future__ import print_function import paddle import math import time import numpy as np import paddle.fluid as fluid import os import sys sys.path.append('./thirdparty/ctr') import py_reader_generator as py_reader1 # from cts_test.dist_fleet.reader_generator import ctr_py_reader_generator as py_reader1 from dist_base_fleet import runtime_main from dist_base_fleet import FleetDistRunnerBase params = { "is_first_trainer": True, "model_path": "dist_model_ctr", "is_pyreader_train": True, "is_dataset_train": False } # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 np.random.seed(1) DATA_PATH = 'thirdparty/data/dist_data/ctr_data/part-100' class TestDistCTR(FleetDistRunnerBase): """distCTR model.""" def input_data(self): """ def input data for ctr. Returns: list: The return value contains dense_input,sparse_input, label. """ dense_feature_dim = 13 self.dense_input = fluid.layers.data( name="dense_input", shape=[dense_feature_dim], dtype='float32') self.sparse_input_ids = [ fluid.layers.data( name="C" + str(i), shape=[1], lod_level=1, dtype='int64') for i in range(1, 27) ] self.label = fluid.layers.data(name='label', shape=[1], dtype='int64') self._words = [self.dense_input] + self.sparse_input_ids + [self.label] return self._words def py_reader(self): """get py_reader.""" py_reader = fluid.layers.create_py_reader_by_data( capacity=64, feed_list=self._words, name='py_reader', use_double_buffer=False) return py_reader def dataset_reader(self): """get dataset_reader.""" dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var([self.dense_input] + self.sparse_input_ids + [self.label]) pipe_command = "python ./thirdparty/ctr/dataset_generator.py" dataset.set_pipe_command(pipe_command) dataset.set_batch_size(4) thread_num = int(2) dataset.set_thread(thread_num) return dataset def net(self, args=None): """ ctr net struct. Args: args (ArgumentParser): run args to config dist fleet. Returns: A Variable holding Tensor representing the cross entropy, whose data type is the same with input. """ self.inputs = self.input_data() if not args.run_params.get("run_from_dataset", False): self.pyreader = self.py_reader() self.inputs = fluid.layers.read_file(self.pyreader) sparse_feature_dim = 1000001 embedding_size = 10 words = self.inputs sparse_embed_seq = list(map(embedding_layer, words[1:-1])) concated = fluid.layers.concat(sparse_embed_seq + words[0:1], axis=1) fc1 = fluid.layers.fc(input=concated, size=400, act='relu', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Normal( scale=1 / math.sqrt(concated.shape[1])))) fc2 = fluid.layers.fc(input=fc1, size=400, act='relu', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Normal( scale=1 / math.sqrt(fc1.shape[1])))) fc3 = fluid.layers.fc(input=fc2, size=400, act='relu', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Normal( scale=1 / math.sqrt(fc2.shape[1])))) predict = fluid.layers.fc(input=fc3, size=2, act='softmax', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Normal( scale=1 / math.sqrt(fc3.shape[1])))) cost = fluid.layers.cross_entropy(input=predict, label=words[-1]) self.avg_cost = fluid.layers.reduce_sum(cost) accuracy = fluid.layers.accuracy(input=predict, label=words[-1]) auc_var, batch_auc_var, auc_states = \ fluid.layers.auc(input=predict, label=words[-1], num_thresholds=2 ** 12, slide_steps=20) return self.avg_cost def check_model_right(self, dirname): """ check model right. Args: dirname(str): model save dir """ model_filename = os.path.join(dirname, "__model__") with open(model_filename, "rb") as f: program_desc_str = f.read() program = fluid.Program.parse_from_string(program_desc_str) with open(os.path.join(dirname, "__model__.proto"), "w") as wn: wn.write(str(program)) def do_training(self, fleet, args): """ training_from_pyreader Args: fleet (DistributedTranspiler): DistributedTranspiler inherited base class Fleet args (ArgumentParser): run args to config dist fleet. Returns: list """ exe = fluid.Executor(fluid.CPUPlace()) fleet.init_worker() exe.run(fleet.startup_program) train_generator = py_reader1.CriteoDataset(1000001) file_list = [str(DATA_PATH)] * 2 train_reader = paddle.batch( train_generator.train(file_list, args.trainers, args.current_id), batch_size=4) self.pyreader.decorate_paddle_reader(train_reader) if os.getenv("PADDLE_COMPATIBILITY_CHECK", False): exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = int(2) build_strategy = fluid.BuildStrategy() build_strategy.async_mode = self.async_mode if args.run_params["sync_mode"] == "async": build_strategy.memory_optimize = False if args.run_params['cpu_num'] > 1: build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce else: build_strategy = self.strategy.get_build_strategy() if args.run_params["sync_mode"] == "async": build_strategy.memory_optimize = False self.strategy.set_build_strategy(build_strategy) exec_strategy = self.strategy.get_execute_strategy() compiled_prog = fluid.compiler.CompiledProgram( fleet.main_program).with_data_parallel( loss_name=self.avg_cost.name, build_strategy=build_strategy, exec_strategy=exec_strategy) # Notice: py_reader should use try & catch EOFException method to enter the dataset # reader.start() must declare in advance self.pyreader.start() train_info = [] batch_id = 0 try: while True: avg_cost = exe.run(program=compiled_prog, fetch_list=[self.avg_cost.name]) avg_cost = np.mean(avg_cost) train_info.append(avg_cost) batch_id += 1 if params["is_first_trainer"]: if params["is_pyreader_train"]: model_path = str(params["model_path"] + "/final" + "_pyreader") fleet.save_persistables( executor=fluid.Executor(fluid.CPUPlace()), dirname=model_path) elif params["is_dataset_train"]: model_path = str(params["model_path"] + '/final' + "_dataset") fleet.save_persistables( executor=fluid.Executor(fluid.CPUPlace()), dirname=model_path) else: raise ValueError( "Program must has Date feed method: is_pyreader_train / is_dataset_train" ) if batch_id == 5: break except fluid.core.EOFException: self.pyreader.reset() fleet.stop_worker() return train_info def do_training_from_dataset(self, fleet, args): """ training_from_dataset Args: fleet (DistributedTranspiler): args (ArgumentParser): run args to config dist fleet. Returns: list """ exe = fluid.Executor(fluid.CPUPlace()) fleet.init_worker() exe.run(fleet.startup_program) dataset = self.dataset_reader() file_list = [str(DATA_PATH)] * 2 for epoch in range(1): dataset.set_filelist(file_list) var_dict = {"loss": self.avg_cost} train_info = [] exe.train_from_dataset( program=fleet.main_program, dataset=dataset, fetch_handler=FetchVars(var_dict)) return train_info if __name__ == "__main__": runtime_main(TestDistCTR)
[ 2, 48443, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 21004, 28, 40477, 12, 23, 25357, 25, 912, 28, 19, 25, 2032, 28, 19, 25, 11201, 392, 8658, 25, 701, 28, 29412, 198, 2, 23926, 50155, 198, 2, 198, 2, 15069, 357, 66, 8, 2177, 347, 1698, 84, 13, 785, 11, 3457, 13, 1439, 6923, 33876, 198, 2, 198, 2, 23926, 50155, 198, 37811, 198, 31, 24564, 25, 1233, 62, 8692, 62, 33559, 8265, 198, 31, 8979, 25, 1233, 62, 8692, 62, 33559, 13, 9078, 198, 31, 13838, 25, 7649, 648, 18594, 33061, 198, 31, 10430, 25, 13130, 14, 23, 14, 2075, 678, 25, 2481, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 39517, 198, 11748, 10688, 198, 11748, 640, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 39517, 13, 35522, 312, 355, 11711, 198, 11748, 28686, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7, 4458, 14, 17089, 10608, 14, 24087, 11537, 198, 11748, 12972, 62, 46862, 62, 8612, 1352, 355, 12972, 62, 46862, 16, 198, 2, 422, 269, 912, 62, 9288, 13, 17080, 62, 33559, 13, 46862, 62, 8612, 1352, 1330, 269, 2213, 62, 9078, 62, 46862, 62, 8612, 1352, 355, 12972, 62, 46862, 16, 198, 6738, 1233, 62, 8692, 62, 33559, 1330, 19124, 62, 12417, 198, 6738, 1233, 62, 8692, 62, 33559, 1330, 20001, 20344, 49493, 14881, 198, 198, 37266, 796, 1391, 198, 220, 220, 220, 366, 271, 62, 11085, 62, 2213, 10613, 1298, 6407, 11, 198, 220, 220, 220, 366, 19849, 62, 6978, 1298, 366, 17080, 62, 19849, 62, 24087, 1600, 198, 220, 220, 220, 366, 271, 62, 9078, 46862, 62, 27432, 1298, 6407, 11, 198, 220, 220, 220, 366, 271, 62, 19608, 292, 316, 62, 27432, 1298, 10352, 198, 92, 198, 198, 2, 13268, 9403, 329, 1332, 198, 35522, 312, 13, 12286, 62, 9688, 929, 62, 23065, 22446, 25120, 62, 28826, 796, 352, 198, 35522, 312, 13, 12286, 62, 12417, 62, 23065, 22446, 25120, 62, 28826, 796, 352, 198, 37659, 13, 25120, 13, 28826, 7, 16, 8, 198, 198, 26947, 62, 34219, 796, 705, 17089, 10608, 14, 7890, 14, 17080, 62, 7890, 14, 24087, 62, 7890, 14, 3911, 12, 3064, 6, 628, 198, 4871, 6208, 20344, 4177, 49, 7, 47669, 316, 20344, 49493, 14881, 2599, 198, 220, 220, 220, 37227, 17080, 4177, 49, 2746, 526, 15931, 628, 220, 220, 220, 825, 5128, 62, 7890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 825, 5128, 1366, 329, 269, 2213, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 25, 383, 1441, 1988, 4909, 15715, 62, 15414, 11, 82, 29572, 62, 15414, 11, 6167, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15715, 62, 30053, 62, 27740, 796, 1511, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 1072, 62, 15414, 796, 11711, 13, 75, 6962, 13, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 67, 1072, 62, 15414, 1600, 5485, 41888, 67, 1072, 62, 30053, 62, 27740, 4357, 288, 4906, 11639, 22468, 2624, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 29572, 62, 15414, 62, 2340, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11711, 13, 75, 6962, 13, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 34, 1, 1343, 965, 7, 72, 828, 5485, 41888, 16, 4357, 19527, 62, 5715, 28, 16, 11, 288, 4906, 11639, 600, 2414, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 2681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18242, 796, 11711, 13, 75, 6962, 13, 7890, 7, 3672, 11639, 18242, 3256, 5485, 41888, 16, 4357, 288, 4906, 11639, 600, 2414, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10879, 796, 685, 944, 13, 67, 1072, 62, 15414, 60, 1343, 2116, 13, 82, 29572, 62, 15414, 62, 2340, 1343, 685, 944, 13, 18242, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 10879, 628, 220, 220, 220, 825, 12972, 62, 46862, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1136, 12972, 62, 46862, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 62, 46862, 796, 11711, 13, 75, 6962, 13, 17953, 62, 9078, 62, 46862, 62, 1525, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 4868, 28, 944, 13557, 10879, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 9078, 62, 46862, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 23352, 62, 22252, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12972, 62, 46862, 628, 220, 220, 220, 825, 27039, 62, 46862, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1136, 27039, 62, 46862, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 11711, 13, 27354, 292, 316, 22810, 22446, 17953, 62, 19608, 292, 316, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 13, 2617, 62, 1904, 62, 7785, 26933, 944, 13, 67, 1072, 62, 15414, 60, 1343, 2116, 13, 82, 29572, 62, 15414, 62, 2340, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 944, 13, 18242, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 12656, 62, 21812, 796, 366, 29412, 24457, 17089, 10608, 14, 24087, 14, 19608, 292, 316, 62, 8612, 1352, 13, 9078, 1, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 13, 2617, 62, 34360, 62, 21812, 7, 34360, 62, 21812, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 13, 2617, 62, 43501, 62, 7857, 7, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 62, 22510, 796, 493, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 13, 2617, 62, 16663, 7, 16663, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 27039, 628, 220, 220, 220, 825, 2010, 7, 944, 11, 26498, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 269, 2213, 2010, 2878, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 357, 28100, 1713, 46677, 2599, 1057, 26498, 284, 4566, 1233, 11026, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 35748, 4769, 309, 22854, 10200, 262, 3272, 40709, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3025, 1366, 2099, 318, 262, 976, 351, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15414, 82, 796, 2116, 13, 15414, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 26498, 13, 5143, 62, 37266, 13, 1136, 7203, 5143, 62, 6738, 62, 19608, 292, 316, 1600, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9078, 46862, 796, 2116, 13, 9078, 62, 46862, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15414, 82, 796, 11711, 13, 75, 6962, 13, 961, 62, 7753, 7, 944, 13, 9078, 46862, 8, 628, 220, 220, 220, 220, 220, 220, 220, 29877, 62, 30053, 62, 27740, 796, 1802, 18005, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 7857, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 2116, 13, 15414, 82, 628, 220, 220, 220, 220, 220, 220, 220, 29877, 62, 20521, 62, 41068, 796, 1351, 7, 8899, 7, 20521, 12083, 62, 29289, 11, 2456, 58, 16, 21912, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1673, 515, 796, 11711, 13, 75, 6962, 13, 1102, 9246, 7, 82, 29572, 62, 20521, 62, 41068, 1343, 2456, 58, 15, 25, 16, 4357, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 277, 66, 16, 796, 11711, 13, 75, 6962, 13, 16072, 7, 15414, 28, 1102, 66, 515, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 7029, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 719, 11639, 260, 2290, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 35226, 28, 35522, 312, 13, 22973, 8086, 81, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 28, 35522, 312, 13, 36733, 7509, 13, 26447, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 16, 1220, 10688, 13, 31166, 17034, 7, 1102, 66, 515, 13, 43358, 58, 16, 60, 35514, 198, 220, 220, 220, 220, 220, 220, 220, 277, 66, 17, 796, 11711, 13, 75, 6962, 13, 16072, 7, 15414, 28, 16072, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 7029, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 719, 11639, 260, 2290, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 35226, 28, 35522, 312, 13, 22973, 8086, 81, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 28, 35522, 312, 13, 36733, 7509, 13, 26447, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 16, 1220, 10688, 13, 31166, 17034, 7, 16072, 16, 13, 43358, 58, 16, 60, 35514, 198, 220, 220, 220, 220, 220, 220, 220, 277, 66, 18, 796, 11711, 13, 75, 6962, 13, 16072, 7, 15414, 28, 16072, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 7029, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 719, 11639, 260, 2290, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 35226, 28, 35522, 312, 13, 22973, 8086, 81, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 28, 35522, 312, 13, 36733, 7509, 13, 26447, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 16, 1220, 10688, 13, 31166, 17034, 7, 16072, 17, 13, 43358, 58, 16, 60, 35514, 198, 220, 220, 220, 220, 220, 220, 220, 4331, 796, 11711, 13, 75, 6962, 13, 16072, 7, 15414, 28, 16072, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 719, 11639, 4215, 9806, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 35226, 28, 35522, 312, 13, 22973, 8086, 81, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 28, 35522, 312, 13, 36733, 7509, 13, 26447, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 16, 1220, 10688, 13, 31166, 17034, 7, 16072, 18, 13, 43358, 58, 16, 60, 35514, 628, 220, 220, 220, 220, 220, 220, 220, 1575, 796, 11711, 13, 75, 6962, 13, 19692, 62, 298, 28338, 7, 15414, 28, 79, 17407, 11, 6167, 28, 10879, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 615, 70, 62, 15805, 796, 11711, 13, 75, 6962, 13, 445, 7234, 62, 16345, 7, 15805, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9922, 796, 11711, 13, 75, 6962, 13, 4134, 23843, 7, 15414, 28, 79, 17407, 11, 6167, 28, 10879, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 257, 1229, 62, 7785, 11, 15458, 62, 14272, 62, 7785, 11, 257, 1229, 62, 27219, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11711, 13, 75, 6962, 13, 14272, 7, 15414, 28, 79, 17407, 11, 6167, 28, 10879, 58, 12, 16, 4357, 997, 62, 400, 10126, 82, 28, 17, 12429, 1105, 11, 10649, 62, 20214, 28, 1238, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 615, 70, 62, 15805, 628, 220, 220, 220, 825, 2198, 62, 19849, 62, 3506, 7, 944, 11, 26672, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 2746, 826, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 3672, 7, 2536, 2599, 2746, 3613, 26672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 34345, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 366, 834, 19849, 834, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 19849, 62, 34345, 11, 366, 26145, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1430, 62, 20147, 62, 2536, 796, 277, 13, 961, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1430, 796, 11711, 13, 15167, 13, 29572, 62, 6738, 62, 8841, 7, 23065, 62, 20147, 62, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 366, 834, 19849, 834, 13, 1676, 1462, 12340, 366, 86, 4943, 355, 266, 77, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 77, 13, 13564, 7, 2536, 7, 23065, 4008, 628, 220, 220, 220, 825, 466, 62, 34409, 7, 944, 11, 11026, 11, 26498, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 6738, 62, 9078, 46862, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11026, 357, 20344, 6169, 8291, 79, 5329, 2599, 4307, 6169, 8291, 79, 5329, 19552, 2779, 1398, 20001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 357, 28100, 1713, 46677, 2599, 1057, 26498, 284, 4566, 1233, 11026, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 409, 68, 796, 11711, 13, 23002, 38409, 7, 35522, 312, 13, 36037, 27271, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 11026, 13, 15003, 62, 28816, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 409, 68, 13, 5143, 7, 33559, 13, 9688, 929, 62, 23065, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 8612, 1352, 796, 12972, 62, 46862, 16, 13, 34, 6525, 78, 27354, 292, 316, 7, 49388, 486, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 796, 685, 2536, 7, 26947, 62, 34219, 15437, 1635, 362, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 46862, 796, 39517, 13, 43501, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 8612, 1352, 13, 27432, 7, 7753, 62, 4868, 11, 26498, 13, 27432, 364, 11, 26498, 13, 14421, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9078, 46862, 13, 12501, 16262, 62, 79, 37382, 62, 46862, 7, 27432, 62, 46862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 1136, 24330, 7203, 47, 29266, 2538, 62, 9858, 47, 1404, 40, 25382, 62, 50084, 1600, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2452, 62, 2536, 4338, 796, 11711, 13, 23002, 1009, 13290, 4338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2452, 62, 2536, 4338, 13, 22510, 62, 16663, 82, 796, 493, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 2536, 4338, 796, 11711, 13, 15580, 13290, 4338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 2536, 4338, 13, 292, 13361, 62, 14171, 796, 2116, 13, 292, 13361, 62, 14171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 5143, 62, 37266, 14692, 27261, 62, 14171, 8973, 6624, 366, 292, 13361, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 2536, 4338, 13, 31673, 62, 40085, 1096, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 5143, 62, 37266, 17816, 36166, 62, 22510, 20520, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 2536, 4338, 13, 445, 7234, 62, 2536, 4338, 796, 11711, 13, 15580, 13290, 4338, 13, 7738, 7234, 13290, 4338, 13, 7738, 7234, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 2536, 4338, 796, 2116, 13, 2536, 4338, 13, 1136, 62, 11249, 62, 2536, 4338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 5143, 62, 37266, 14692, 27261, 62, 14171, 8973, 6624, 366, 292, 13361, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 2536, 4338, 13, 31673, 62, 40085, 1096, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 4338, 13, 2617, 62, 11249, 62, 2536, 4338, 7, 11249, 62, 2536, 4338, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2452, 62, 2536, 4338, 796, 2116, 13, 2536, 4338, 13, 1136, 62, 41049, 62, 2536, 4338, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 14102, 62, 1676, 70, 796, 11711, 13, 5589, 5329, 13, 7293, 3902, 15167, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11026, 13, 12417, 62, 23065, 737, 4480, 62, 7890, 62, 1845, 29363, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 3672, 28, 944, 13, 615, 70, 62, 15805, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 2536, 4338, 28, 11249, 62, 2536, 4338, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2452, 62, 2536, 4338, 28, 18558, 62, 2536, 4338, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17641, 25, 12972, 62, 46862, 815, 779, 1949, 1222, 4929, 412, 19238, 16922, 2446, 284, 3802, 262, 27039, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9173, 13, 9688, 3419, 1276, 13627, 287, 5963, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9078, 46862, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 10951, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 15805, 796, 409, 68, 13, 5143, 7, 23065, 28, 5589, 3902, 62, 1676, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21207, 62, 4868, 41888, 944, 13, 615, 70, 62, 15805, 13, 3672, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 15805, 796, 45941, 13, 32604, 7, 615, 70, 62, 15805, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 10951, 13, 33295, 7, 615, 70, 62, 15805, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 42287, 14692, 271, 62, 11085, 62, 2213, 10613, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 42287, 14692, 271, 62, 9078, 46862, 62, 27432, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 6978, 796, 965, 7, 37266, 14692, 19849, 62, 6978, 8973, 1343, 12813, 20311, 1, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 9078, 46862, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11026, 13, 21928, 62, 19276, 396, 2977, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3121, 273, 28, 35522, 312, 13, 23002, 38409, 7, 35522, 312, 13, 36037, 27271, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 3672, 28, 19849, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 42287, 14692, 271, 62, 19608, 292, 316, 62, 27432, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 6978, 796, 965, 7, 37266, 14692, 19849, 62, 6978, 8973, 1343, 31051, 20311, 6, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 19608, 292, 316, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11026, 13, 21928, 62, 19276, 396, 2977, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3121, 273, 28, 35522, 312, 13, 23002, 38409, 7, 35522, 312, 13, 36037, 27271, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 3672, 28, 19849, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 1276, 468, 7536, 3745, 2446, 25, 318, 62, 9078, 46862, 62, 27432, 1220, 318, 62, 19608, 292, 316, 62, 27432, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15458, 62, 312, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11711, 13, 7295, 13, 4720, 37, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9078, 46862, 13, 42503, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 11026, 13, 11338, 62, 28816, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4512, 62, 10951, 628, 220, 220, 220, 825, 466, 62, 34409, 62, 6738, 62, 19608, 292, 316, 7, 944, 11, 11026, 11, 26498, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 6738, 62, 19608, 292, 316, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11026, 357, 20344, 6169, 8291, 79, 5329, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 357, 28100, 1713, 46677, 2599, 1057, 26498, 284, 4566, 1233, 11026, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 409, 68, 796, 11711, 13, 23002, 38409, 7, 35522, 312, 13, 36037, 27271, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 11026, 13, 15003, 62, 28816, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 409, 68, 13, 5143, 7, 33559, 13, 9688, 929, 62, 23065, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 2116, 13, 19608, 292, 316, 62, 46862, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 796, 685, 2536, 7, 26947, 62, 34219, 15437, 1635, 362, 198, 220, 220, 220, 220, 220, 220, 220, 329, 36835, 287, 2837, 7, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 13, 2617, 62, 7753, 4868, 7, 7753, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 11600, 796, 19779, 22462, 1298, 2116, 13, 615, 70, 62, 15805, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 10951, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 68, 13, 27432, 62, 6738, 62, 19608, 292, 316, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1430, 28, 33559, 13, 12417, 62, 23065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 28, 19608, 292, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21207, 62, 30281, 28, 37, 7569, 53, 945, 7, 7785, 62, 11600, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4512, 62, 10951, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 19124, 62, 12417, 7, 14402, 20344, 4177, 49, 8, 198 ]
1.933229
5,122
# -*- coding: utf-8 -*- # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import pytest import time from azure.iot.common.sastoken import SasToken, SasTokenError
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 16529, 1783, 10541, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 2, 16529, 1783, 10541, 198, 198, 11748, 12972, 9288, 198, 11748, 640, 198, 6738, 35560, 495, 13, 5151, 13, 11321, 13, 82, 459, 4233, 1330, 23771, 30642, 11, 23771, 30642, 12331, 628, 198 ]
5.411765
85
#!/usr/bin/env python # encoding: utf-8 # # This file is part of graphics-lib. # # Copyright (c) 2020, 2021, 2022 Bernardo Fichera <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from waflib.Configure import conf from utils import check_include, check_lib @conf
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 2, 198, 2, 220, 220, 220, 770, 2393, 318, 636, 286, 9382, 12, 8019, 13, 198, 2, 198, 2, 220, 220, 220, 15069, 357, 66, 8, 12131, 11, 33448, 11, 33160, 6206, 13109, 376, 291, 372, 64, 1279, 33900, 13109, 13, 69, 291, 372, 64, 31, 14816, 13, 785, 29, 198, 2, 198, 2, 220, 220, 220, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 220, 220, 220, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 220, 220, 220, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 220, 220, 220, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 220, 220, 220, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 220, 220, 220, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 220, 220, 220, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 220, 220, 220, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 220, 220, 220, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 220, 220, 220, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 220, 220, 220, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 220, 220, 220, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 220, 220, 220, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 220, 220, 220, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 220, 220, 220, 47466, 13, 198, 198, 6738, 266, 1878, 8019, 13, 16934, 495, 1330, 1013, 198, 6738, 3384, 4487, 1330, 2198, 62, 17256, 11, 2198, 62, 8019, 628, 198, 198, 31, 10414, 628 ]
3.283293
413
# coding: utf-8 import pytest from pytest import approx import numpy as np from ....types.angle import Bearing from ....types.array import StateVector, CovarianceMatrix from ....types.detection import Detection from ....types.state import State from ..linear import LinearGaussian from ..nonlinear import ( CombinedReversibleGaussianMeasurementModel, CartesianToBearingRange) @pytest.fixture(scope="module")
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 11748, 12972, 9288, 198, 6738, 12972, 9288, 1330, 5561, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 19424, 19199, 13, 9248, 1330, 28834, 198, 6738, 19424, 19199, 13, 18747, 1330, 1812, 38469, 11, 39751, 2743, 590, 46912, 198, 6738, 19424, 19199, 13, 15255, 3213, 1330, 46254, 198, 6738, 19424, 19199, 13, 5219, 1330, 1812, 198, 6738, 11485, 29127, 1330, 44800, 35389, 31562, 198, 6738, 11485, 13159, 29127, 1330, 357, 198, 220, 220, 220, 32028, 3041, 37393, 35389, 31562, 47384, 434, 17633, 11, 13690, 35610, 2514, 33, 6648, 17257, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 628, 628, 628, 628 ]
3.655172
116
from flask import Flask,render_template,url_for,request import pandas as pd import pickle import traceback import ast import sklearn import xgboost pickledModel = pickle.load(open('../app/public/latePaymentsModel.pkl','rb')) app = Flask(__name__) @app.route('/') @app.route('/process',methods=["POST"]) if __name__ == '__main__': app.run(debug=True)
[ 6738, 42903, 1330, 46947, 11, 13287, 62, 28243, 11, 6371, 62, 1640, 11, 25927, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2298, 293, 198, 11748, 12854, 1891, 198, 11748, 6468, 198, 11748, 1341, 35720, 198, 11748, 2124, 70, 39521, 198, 27729, 992, 17633, 796, 2298, 293, 13, 2220, 7, 9654, 10786, 40720, 1324, 14, 11377, 14, 17660, 19197, 902, 17633, 13, 79, 41582, 41707, 26145, 6, 4008, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 14681, 3256, 24396, 82, 28, 14692, 32782, 8973, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 1324, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.795276
127
"""OwnYourResponses: turns likes, replies, etc. into posts on your web site. Polls your social network activity and creates new posts on your web site (via Micropub) for public Facebook comments and likes, Instagram likes, and Twitter @-replies, retweets, and favorites. """ import logging import json import urllib.error, urllib.parse, urllib.request from flask import Flask from google.cloud import ndb from granary import ( facebook, instagram, microformats2, source as gr_source, twitter, ) from oauth_dropins.webutil import ( appengine_info, appengine_config, flask_util, util, ) from oauth_dropins.webutil.util import json_loads # Change this to your web site's Micropub endpoint. # https://indiewebcamp.com/micropub if appengine_config.DEBUG: MICROPUB_ENDPOINT = 'http://localhost/wp-json/micropub/1.0/endpoint' MICROPUB_ACCESS_TOKEN = util.read('micropub_access_token_local') else: MICROPUB_ENDPOINT = 'https://snarfed.org/wp-json/micropub/1.0/endpoint' MICROPUB_ACCESS_TOKEN = util.read('micropub_access_token') # ActivityStreams objectTypes and verbs to create posts for. You can add or # remove types here to control what gets posted to your site. TYPES = ('like', 'comment', 'share', 'rsvp-yes', 'rsvp-no', 'rsvp-maybe') # The category to include with each response type. If you don't want categories # for any (or all) types, just remove them. CATEGORIES = { 'like': 'like', 'comment': 'reply', 'share': 'repost', 'rsvp-yes': 'rsvp', 'rsvp-no': 'rsvp', 'rsvp-maybe': 'rsvp', } FACEBOOK_ACCESS_TOKEN = util.read('facebook_access_token') INSTAGRAM_ACCESS_TOKEN = util.read('instagram_access_token') TWITTER_ACCESS_TOKEN = util.read('twitter_access_token') TWITTER_ACCESS_TOKEN_SECRET = util.read('twitter_access_token_secret') TWITTER_SCRAPE_HEADERS = json_loads(util.read('twitter_scrape_headers.schnarfed.json')) # Flask app app = Flask('bridgy-fed') app.template_folder = './templates' app.config.from_mapping( ENV='development' if appengine_info.DEBUG else 'PRODUCTION', CACHE_TYPE='SimpleCache', SECRET_KEY=util.read('flask_secret_key'), JSONIFY_PRETTYPRINT_REGULAR=True, ) app.register_error_handler(Exception, flask_util.handle_exception) app.wsgi_app = flask_util.ndb_context_middleware( app.wsgi_app, client=appengine_config.ndb_client) class Response(ndb.Model): """Key name is ActivityStreams activity id.""" activity_json = ndb.TextProperty(required=True) post_url = ndb.TextProperty() response_body = ndb.TextProperty() status = ndb.StringProperty(choices=('started', 'complete'), default='started') created = ndb.DateTimeProperty(auto_now_add=True) updated = ndb.DateTimeProperty(auto_now=True) @app.route('/cron/poll') def poll(): """Poll handler for cron job.""" # if FACEBOOK_ACCESS_TOKEN: # sources.append(facebook.Facebook(FACEBOOK_ACCESS_TOKEN)) # if INSTAGRAM_ACCESS_TOKEN: # sources.append(instagram.Instagram(INSTAGRAM_ACCESS_TOKEN)) source = twitter.Twitter(TWITTER_ACCESS_TOKEN, TWITTER_ACCESS_TOKEN_SECRET, scrape_headers=TWITTER_SCRAPE_HEADERS) activities = source.get_activities(group_id=gr_source.SELF, fetch_likes=True) resps = ndb.get_multi(ndb.Key('Response', util.trim_nulls(a['id'])) for a in activities) resps = {r.key.id(): r for r in resps if r} exception = None for activity in activities: obj = activity.get('object', {}) # have we already posted or started on this response? resp = resps.get(activity['id']) mf2 = microformats2.object_to_json(activity) mf2_props = microformats2.first_props(mf2.get('properties', {})) type = gr_source.object_type(activity) if mf2_props.get('in-reply-to'): type = 'comment' # twitter reply if type not in TYPES or (resp and resp.status == 'complete'): continue elif resp: logging.info('Retrying %s', resp) else: resp = Response.get_or_insert(activity['id'], activity_json=json.dumps(activity)) logging.info('Created new Response: %s', resp) base_id = source.base_object(activity)['id'] base = source.get_activities(activity_id=base_id)[0] # logging.info(json.dumps(base, indent=2)) # make micropub call to create post # http://indiewebcamp.com/micropub # # include access token in both header and post body for compatibility # with servers that only support one or the other (for whatever reason). headers = {'Authorization': 'Bearer ' + MICROPUB_ACCESS_TOKEN} data = { 'access_token': MICROPUB_ACCESS_TOKEN, 'h': 'entry', 'category[]': CATEGORIES.get(type), 'content[html]': render(source, activity, base), 'name': base.get('content') or base.get('object', {}).get('content'), } for key in 'in-reply-to', 'like-of', 'repost-of', 'published', 'updated': val = mf2_props.get(key) if val: data[key] = microformats2.get_string_urls([val])[0] try: result = urlopen(MICROPUB_ENDPOINT, util.trim_nulls(data), headers=headers) except urllib.error.HTTPError as exception: logging.exception('%s %s', exception.reason, exception.read()) continue except urllib.error.URLError as exception: logging.exception(exception.reason) continue resp.post_url = result.info().get('Location') logging.info('Created new post: %s', resp.post_url) resp.response_body = result.read() logging.info('Response body: %s', resp.response_body) resp.status = 'complete' resp.put() # uncomment for testing # return # end loop over activities return ('Failed, see logs', 500) if exception else 'OK'
[ 37811, 23858, 7120, 19309, 684, 274, 25, 4962, 7832, 11, 20616, 11, 3503, 13, 656, 6851, 319, 534, 3992, 2524, 13, 198, 198, 47, 33421, 534, 1919, 3127, 3842, 290, 8075, 649, 6851, 319, 534, 3992, 2524, 357, 8869, 198, 25437, 1773, 549, 8, 329, 1171, 3203, 3651, 290, 7832, 11, 10767, 7832, 11, 290, 3009, 198, 31, 12, 35666, 444, 11, 1005, 732, 1039, 11, 290, 18852, 13, 198, 37811, 198, 11748, 18931, 198, 11748, 33918, 198, 11748, 2956, 297, 571, 13, 18224, 11, 2956, 297, 571, 13, 29572, 11, 2956, 297, 571, 13, 25927, 198, 198, 6738, 42903, 1330, 46947, 198, 6738, 23645, 13, 17721, 1330, 299, 9945, 198, 6738, 19468, 560, 1330, 357, 198, 220, 23960, 11, 198, 220, 916, 6713, 11, 198, 220, 4580, 687, 1381, 17, 11, 198, 220, 2723, 355, 1036, 62, 10459, 11, 198, 220, 17044, 11, 198, 8, 198, 6738, 267, 18439, 62, 14781, 1040, 13, 732, 4360, 346, 1330, 357, 198, 220, 220, 220, 598, 18392, 62, 10951, 11, 198, 220, 220, 220, 598, 18392, 62, 11250, 11, 198, 220, 220, 220, 42903, 62, 22602, 11, 198, 220, 220, 220, 7736, 11, 198, 8, 198, 6738, 267, 18439, 62, 14781, 1040, 13, 732, 4360, 346, 13, 22602, 1330, 33918, 62, 46030, 198, 198, 2, 9794, 428, 284, 534, 3992, 2524, 338, 7631, 1773, 549, 36123, 13, 198, 2, 3740, 1378, 521, 769, 1765, 16544, 13, 785, 14, 9383, 1773, 549, 198, 361, 598, 18392, 62, 11250, 13, 30531, 25, 198, 220, 35878, 49, 3185, 10526, 62, 1677, 6322, 46, 12394, 796, 705, 4023, 1378, 36750, 14, 24142, 12, 17752, 14, 9383, 1773, 549, 14, 16, 13, 15, 14, 437, 4122, 6, 198, 220, 35878, 49, 3185, 10526, 62, 26861, 7597, 62, 10468, 43959, 796, 7736, 13, 961, 10786, 9383, 1773, 549, 62, 15526, 62, 30001, 62, 12001, 11537, 198, 17772, 25, 198, 220, 35878, 49, 3185, 10526, 62, 1677, 6322, 46, 12394, 796, 705, 5450, 1378, 16184, 283, 19082, 13, 2398, 14, 24142, 12, 17752, 14, 9383, 1773, 549, 14, 16, 13, 15, 14, 437, 4122, 6, 198, 220, 35878, 49, 3185, 10526, 62, 26861, 7597, 62, 10468, 43959, 796, 7736, 13, 961, 10786, 9383, 1773, 549, 62, 15526, 62, 30001, 11537, 198, 198, 2, 24641, 12124, 82, 2134, 31431, 290, 41781, 284, 2251, 6851, 329, 13, 921, 460, 751, 393, 198, 2, 4781, 3858, 994, 284, 1630, 644, 3011, 4481, 284, 534, 2524, 13, 198, 9936, 47, 1546, 796, 19203, 2339, 3256, 705, 23893, 3256, 705, 20077, 3256, 705, 3808, 36133, 12, 8505, 3256, 705, 3808, 36133, 12, 3919, 3256, 705, 3808, 36133, 12, 25991, 11537, 198, 198, 2, 383, 6536, 284, 2291, 351, 1123, 2882, 2099, 13, 1002, 345, 836, 470, 765, 9376, 198, 2, 329, 597, 357, 273, 477, 8, 3858, 11, 655, 4781, 606, 13, 198, 34, 6158, 38, 1581, 11015, 796, 1391, 198, 220, 705, 2339, 10354, 705, 2339, 3256, 198, 220, 705, 23893, 10354, 705, 47768, 3256, 198, 220, 705, 20077, 10354, 705, 260, 7353, 3256, 198, 220, 705, 3808, 36133, 12, 8505, 10354, 705, 3808, 36133, 3256, 198, 220, 705, 3808, 36133, 12, 3919, 10354, 705, 3808, 36133, 3256, 198, 220, 705, 3808, 36133, 12, 25991, 10354, 705, 3808, 36133, 3256, 198, 92, 198, 198, 49836, 39453, 62, 26861, 7597, 62, 10468, 43959, 796, 7736, 13, 961, 10786, 19024, 62, 15526, 62, 30001, 11537, 198, 38604, 4760, 24115, 62, 26861, 7597, 62, 10468, 43959, 796, 7736, 13, 961, 10786, 8625, 6713, 62, 15526, 62, 30001, 11537, 198, 34551, 2043, 5781, 62, 26861, 7597, 62, 10468, 43959, 796, 7736, 13, 961, 10786, 6956, 62, 15526, 62, 30001, 11537, 198, 34551, 2043, 5781, 62, 26861, 7597, 62, 10468, 43959, 62, 23683, 26087, 796, 7736, 13, 961, 10786, 6956, 62, 15526, 62, 30001, 62, 21078, 11537, 198, 34551, 2043, 5781, 62, 6173, 49, 45721, 62, 37682, 4877, 796, 33918, 62, 46030, 7, 22602, 13, 961, 10786, 6956, 62, 1416, 13484, 62, 50145, 13, 82, 1349, 283, 19082, 13, 17752, 6, 4008, 628, 198, 2, 46947, 598, 198, 1324, 796, 46947, 10786, 10236, 1360, 12, 19082, 11537, 198, 1324, 13, 28243, 62, 43551, 796, 705, 19571, 11498, 17041, 6, 198, 1324, 13, 11250, 13, 6738, 62, 76, 5912, 7, 198, 220, 220, 220, 12964, 53, 11639, 31267, 6, 611, 598, 18392, 62, 10951, 13, 30531, 2073, 705, 4805, 28644, 2849, 3256, 198, 220, 220, 220, 327, 2246, 13909, 62, 25216, 11639, 26437, 30562, 3256, 198, 220, 220, 220, 10729, 26087, 62, 20373, 28, 22602, 13, 961, 10786, 2704, 2093, 62, 21078, 62, 2539, 33809, 198, 220, 220, 220, 19449, 5064, 56, 62, 47, 26087, 9936, 4805, 12394, 62, 31553, 37232, 28, 17821, 11, 198, 8, 198, 1324, 13, 30238, 62, 18224, 62, 30281, 7, 16922, 11, 42903, 62, 22602, 13, 28144, 62, 1069, 4516, 8, 198, 198, 1324, 13, 18504, 12397, 62, 1324, 796, 42903, 62, 22602, 13, 358, 65, 62, 22866, 62, 27171, 1574, 7, 198, 220, 220, 220, 598, 13, 18504, 12397, 62, 1324, 11, 5456, 28, 1324, 18392, 62, 11250, 13, 358, 65, 62, 16366, 8, 628, 198, 4871, 18261, 7, 358, 65, 13, 17633, 2599, 198, 220, 37227, 9218, 1438, 318, 24641, 12124, 82, 3842, 4686, 526, 15931, 198, 220, 3842, 62, 17752, 796, 299, 9945, 13, 8206, 21746, 7, 35827, 28, 17821, 8, 198, 220, 1281, 62, 6371, 796, 299, 9945, 13, 8206, 21746, 3419, 198, 220, 2882, 62, 2618, 796, 299, 9945, 13, 8206, 21746, 3419, 198, 220, 3722, 796, 299, 9945, 13, 10100, 21746, 7, 6679, 1063, 28, 10786, 46981, 3256, 705, 20751, 33809, 4277, 11639, 46981, 11537, 198, 220, 2727, 796, 299, 9945, 13, 10430, 7575, 21746, 7, 23736, 62, 2197, 62, 2860, 28, 17821, 8, 198, 220, 6153, 796, 299, 9945, 13, 10430, 7575, 21746, 7, 23736, 62, 2197, 28, 17821, 8, 628, 198, 31, 1324, 13, 38629, 10786, 14, 66, 1313, 14, 30393, 11537, 198, 4299, 3278, 33529, 198, 220, 37227, 39176, 21360, 329, 1067, 261, 1693, 526, 15931, 198, 220, 1303, 611, 46587, 39453, 62, 26861, 7597, 62, 10468, 43959, 25, 198, 220, 1303, 220, 220, 4237, 13, 33295, 7, 19024, 13, 12025, 7, 49836, 39453, 62, 26861, 7597, 62, 10468, 43959, 4008, 198, 220, 1303, 611, 40589, 4760, 24115, 62, 26861, 7597, 62, 10468, 43959, 25, 198, 220, 1303, 220, 220, 4237, 13, 33295, 7, 8625, 6713, 13, 6310, 6713, 7, 38604, 4760, 24115, 62, 26861, 7597, 62, 10468, 43959, 4008, 198, 220, 2723, 796, 17044, 13, 14254, 7, 34551, 2043, 5781, 62, 26861, 7597, 62, 10468, 43959, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17306, 2043, 5781, 62, 26861, 7597, 62, 10468, 43959, 62, 23683, 26087, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42778, 62, 50145, 28, 34551, 2043, 5781, 62, 6173, 49, 45721, 62, 37682, 4877, 8, 628, 220, 4568, 796, 2723, 13, 1136, 62, 15791, 871, 7, 8094, 62, 312, 28, 2164, 62, 10459, 13, 50, 37738, 11, 21207, 62, 75, 7938, 28, 17821, 8, 198, 220, 581, 862, 796, 299, 9945, 13, 1136, 62, 41684, 7, 358, 65, 13, 9218, 10786, 31077, 3256, 7736, 13, 2213, 320, 62, 8423, 82, 7, 64, 17816, 312, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 257, 287, 4568, 8, 198, 220, 581, 862, 796, 1391, 81, 13, 2539, 13, 312, 33529, 374, 329, 374, 287, 581, 862, 611, 374, 92, 628, 220, 6631, 796, 6045, 198, 220, 329, 3842, 287, 4568, 25, 198, 220, 220, 220, 26181, 796, 3842, 13, 1136, 10786, 15252, 3256, 23884, 8, 628, 220, 220, 220, 1303, 423, 356, 1541, 4481, 393, 2067, 319, 428, 2882, 30, 198, 220, 220, 220, 1217, 796, 581, 862, 13, 1136, 7, 21797, 17816, 312, 6, 12962, 198, 220, 220, 220, 285, 69, 17, 796, 4580, 687, 1381, 17, 13, 15252, 62, 1462, 62, 17752, 7, 21797, 8, 198, 220, 220, 220, 285, 69, 17, 62, 1676, 862, 796, 4580, 687, 1381, 17, 13, 11085, 62, 1676, 862, 7, 76, 69, 17, 13, 1136, 10786, 48310, 3256, 23884, 4008, 198, 220, 220, 220, 2099, 796, 1036, 62, 10459, 13, 15252, 62, 4906, 7, 21797, 8, 628, 220, 220, 220, 611, 285, 69, 17, 62, 1676, 862, 13, 1136, 10786, 259, 12, 47768, 12, 1462, 6, 2599, 198, 220, 220, 220, 220, 220, 2099, 796, 705, 23893, 6, 220, 1303, 17044, 10971, 198, 220, 220, 220, 611, 2099, 407, 287, 24412, 47, 1546, 393, 357, 4363, 290, 1217, 13, 13376, 6624, 705, 20751, 6, 2599, 198, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 1288, 361, 1217, 25, 198, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 9781, 14992, 4064, 82, 3256, 1217, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 1217, 796, 18261, 13, 1136, 62, 273, 62, 28463, 7, 21797, 17816, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3842, 62, 17752, 28, 17752, 13, 67, 8142, 7, 21797, 4008, 198, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 41972, 649, 18261, 25, 4064, 82, 3256, 1217, 8, 628, 220, 220, 220, 2779, 62, 312, 796, 2723, 13, 8692, 62, 15252, 7, 21797, 8, 17816, 312, 20520, 198, 220, 220, 220, 2779, 796, 2723, 13, 1136, 62, 15791, 871, 7, 21797, 62, 312, 28, 8692, 62, 312, 38381, 15, 60, 198, 220, 220, 220, 1303, 18931, 13, 10951, 7, 17752, 13, 67, 8142, 7, 8692, 11, 33793, 28, 17, 4008, 628, 220, 220, 220, 1303, 787, 12314, 1773, 549, 869, 284, 2251, 1281, 198, 220, 220, 220, 1303, 2638, 1378, 521, 769, 1765, 16544, 13, 785, 14, 9383, 1773, 549, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2291, 1895, 11241, 287, 1111, 13639, 290, 1281, 1767, 329, 17764, 198, 220, 220, 220, 1303, 351, 9597, 326, 691, 1104, 530, 393, 262, 584, 357, 1640, 4232, 1738, 737, 198, 220, 220, 220, 24697, 796, 1391, 6, 13838, 1634, 10354, 705, 3856, 11258, 705, 1343, 35878, 49, 3185, 10526, 62, 26861, 7597, 62, 10468, 43959, 92, 198, 220, 220, 220, 1366, 796, 1391, 198, 220, 220, 220, 220, 220, 705, 15526, 62, 30001, 10354, 35878, 49, 3185, 10526, 62, 26861, 7597, 62, 10468, 43959, 11, 198, 220, 220, 220, 220, 220, 705, 71, 10354, 705, 13000, 3256, 198, 220, 220, 220, 220, 220, 705, 22872, 21737, 10354, 327, 6158, 38, 1581, 11015, 13, 1136, 7, 4906, 828, 198, 220, 220, 220, 220, 220, 705, 11299, 58, 6494, 60, 10354, 8543, 7, 10459, 11, 3842, 11, 2779, 828, 198, 220, 220, 220, 220, 220, 705, 3672, 10354, 2779, 13, 1136, 10786, 11299, 11537, 393, 2779, 13, 1136, 10786, 15252, 3256, 23884, 737, 1136, 10786, 11299, 33809, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 329, 1994, 287, 705, 259, 12, 47768, 12, 1462, 3256, 705, 2339, 12, 1659, 3256, 705, 260, 7353, 12, 1659, 3256, 705, 30271, 3256, 705, 43162, 10354, 198, 220, 220, 220, 220, 220, 1188, 796, 285, 69, 17, 62, 1676, 862, 13, 1136, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 611, 1188, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 2539, 60, 796, 4580, 687, 1381, 17, 13, 1136, 62, 8841, 62, 6371, 82, 26933, 2100, 12962, 58, 15, 60, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 1255, 796, 19016, 9654, 7, 49884, 49, 3185, 10526, 62, 1677, 6322, 46, 12394, 11, 7736, 13, 2213, 320, 62, 8423, 82, 7, 7890, 828, 24697, 28, 50145, 8, 198, 220, 220, 220, 2845, 2956, 297, 571, 13, 18224, 13, 40717, 12331, 355, 6631, 25, 198, 220, 220, 220, 220, 220, 18931, 13, 1069, 4516, 10786, 4, 82, 4064, 82, 3256, 6631, 13, 41181, 11, 6631, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 2845, 2956, 297, 571, 13, 18224, 13, 4261, 2538, 81, 1472, 355, 6631, 25, 198, 220, 220, 220, 220, 220, 18931, 13, 1069, 4516, 7, 1069, 4516, 13, 41181, 8, 198, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 1217, 13, 7353, 62, 6371, 796, 1255, 13, 10951, 22446, 1136, 10786, 14749, 11537, 198, 220, 220, 220, 18931, 13, 10951, 10786, 41972, 649, 1281, 25, 4064, 82, 3256, 1217, 13, 7353, 62, 6371, 8, 198, 220, 220, 220, 1217, 13, 26209, 62, 2618, 796, 1255, 13, 961, 3419, 198, 220, 220, 220, 18931, 13, 10951, 10786, 31077, 1767, 25, 4064, 82, 3256, 1217, 13, 26209, 62, 2618, 8, 628, 220, 220, 220, 1217, 13, 13376, 796, 705, 20751, 6, 198, 220, 220, 220, 1217, 13, 1996, 3419, 628, 220, 220, 220, 1303, 8820, 434, 329, 4856, 198, 220, 220, 220, 1303, 1441, 628, 220, 1303, 886, 9052, 625, 4568, 198, 220, 1441, 19203, 37, 6255, 11, 766, 17259, 3256, 5323, 8, 611, 6631, 2073, 705, 11380, 6, 198 ]
2.597555
2,209
## ssh -L 16006:127.0.0.1:16006 [email protected] import torch from models import XNOR_VGG import torchvision from torchvision import transforms import argparse import binop import torch.utils.tensorboard as tensorboard import os from datetime import datetime import time def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res class AverageMeter(object): """Computes and stores the average and current value""" parser = argparse.ArgumentParser() parser.add_argument('--dataset', default='./ImageNet', help='path to dataset, default = ./ImageNet') parser.add_argument('--attention', action='store_true', help='use attention branch model') parser.add_argument('--imgres', type=int, default=224, help='image input and output resolution, default = 352') parser.add_argument('--epoch', type=int, default=100, help='number of epochs, default = 100') parser.add_argument('--lr', type=float, default=1e-2, help='learning rate, default = 0.01') parser.add_argument('--momentum', type=float, default=0.9, help='momentum, default = 0.9') parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight_decay, default = 0.0005') parser.add_argument('--batch_size', type=int, default=16, help='training batch size, default = 10') parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin, default = 0.5') parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate, default = 0.1') parser.add_argument('--decay_epoch', type=int, default=30, help='every n epochs decay learning rate, default = 50') args = parser.parse_args() # if torch.cuda.is_available(): # device = torch.device('cuda') # else: # device = torch.device('cpu') device = torch.device('cpu') model = XNOR_VGG().to(device) # model = torchvision.models.vgg16(pretrained=True).to(device) print('Model loaded') b_model = XNOR_VGG(state_dict=model.features.state_dict()).to(device) save_path = 'ckpts/{}/'.format(model.name) torch.save(b_model.state_dict(), '{}{}.pth'.format(save_path, 'bin')) model.eval() with torch.no_grad(): n = 100 input = torch.rand([n, 1, 3, args.imgres, args.imgres]).to(device) t0 = time.time() for i in input: pred = model(i) avg_t = (time.time() - t0) / n print('Inference time', avg_t) print('FPS', 1/avg_t) b_model.eval() with torch.no_grad(): n = 100 input = torch.rand([n, 1, 3, args.imgres, args.imgres]).to(device) t0 = time.time() for i in input: pred = b_model(i) avg_t = (time.time() - t0) / n print('Inference time', avg_t) print('FPS', 1/avg_t) transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.RandomCrop((args.imgres, args.imgres)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) dataset = torchvision.datasets.ImageNet(args.dataset, split='train', transform=transform) dataset_val = torchvision.datasets.ImageNet(args.dataset, split='val', transform=transform) loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True) loader_val = torch.utils.data.DataLoader(dataset_val, batch_size=args.batch_size, shuffle=True) total_steps = len(loader) print('Dataset loaded') optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) bin_op = binop.BinOp(model) writer = tensorboard.SummaryWriter(os.path.join('logs', datetime.now().strftime('%Y%m%d-%H%M%S'))) criterion = torch.nn.CrossEntropyLoss().to(device) for epoch in range(args.epoch): lr_lambda = lambda epoch: args.decay_rate ** (epoch // args.decay_epoch) scheduler = torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_lambda=lr_lambda) validate(loader_val, model, criterion) for step, sample in enumerate(loader, start=1): global_step = epoch * total_steps + step input, target = sample target_var = torch.autograd.Variable(target).to(device) input = input.to(device) target = input.to(device) bin_op.binarization() output = model(input) loss = criterion(output, target_var) optimizer.zero_grad() loss.backward() bin_op.restore() bin_op.updateBinaryGradWeight() optimizer.step() writer.add_scalar('Loss/Total Loss', float(loss), global_step) if step % 100 == 0 or step == total_steps: print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Loss: {:.4f}'. format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), epoch+1, args.epoch, step, total_steps, loss.data)) if epoch % 5 == 0: save_path = 'ckpts/{}/'.format(model.name) if not os.path.exists(save_path): os.makedirs(save_path) torch.save(model.state_dict(), '{}{}.pth.{:03d}'.format(save_path, model.name, epoch))
[ 2235, 26678, 532, 43, 26143, 21, 25, 16799, 13, 15, 13, 15, 13, 16, 25, 1433, 28041, 285, 65, 1983, 2425, 31, 10332, 13, 6359, 13, 37648, 13, 330, 13, 2724, 198, 11748, 28034, 198, 6738, 4981, 1330, 1395, 35510, 62, 53, 11190, 198, 11748, 28034, 10178, 198, 6738, 28034, 10178, 1330, 31408, 198, 11748, 1822, 29572, 198, 11748, 9874, 404, 198, 11748, 28034, 13, 26791, 13, 83, 22854, 3526, 220, 355, 11192, 273, 3526, 198, 11748, 28686, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 640, 198, 198, 4299, 9922, 7, 22915, 11, 2496, 11, 1353, 74, 16193, 16, 35751, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 262, 15440, 31, 74, 329, 262, 7368, 3815, 286, 479, 37811, 198, 220, 220, 220, 3509, 74, 796, 3509, 7, 4852, 74, 8, 198, 220, 220, 220, 15458, 62, 7857, 796, 2496, 13, 7857, 7, 15, 8, 628, 220, 220, 220, 4808, 11, 2747, 796, 5072, 13, 4852, 74, 7, 9806, 74, 11, 352, 11, 6407, 11, 6407, 8, 198, 220, 220, 220, 2747, 796, 2747, 13, 83, 3419, 198, 220, 220, 220, 3376, 796, 2747, 13, 27363, 7, 16793, 13, 1177, 7, 16, 11, 532, 16, 737, 11201, 392, 62, 292, 7, 28764, 4008, 628, 220, 220, 220, 581, 796, 17635, 198, 220, 220, 220, 329, 479, 287, 1353, 74, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3376, 62, 74, 796, 3376, 58, 25, 74, 4083, 1177, 32590, 16, 737, 22468, 22446, 16345, 7, 15, 11, 1394, 27740, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 581, 13, 33295, 7, 30283, 62, 74, 13, 76, 377, 41052, 3064, 13, 15, 1220, 15458, 62, 7857, 4008, 198, 220, 220, 220, 1441, 581, 198, 198, 4871, 13475, 44, 2357, 7, 15252, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 290, 7000, 262, 2811, 290, 1459, 1988, 37811, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 19608, 292, 316, 3256, 4277, 28, 4458, 14, 5159, 7934, 3256, 1037, 11639, 6978, 284, 27039, 11, 4277, 796, 24457, 5159, 7934, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 1078, 1463, 3256, 2223, 11639, 8095, 62, 7942, 3256, 1037, 11639, 1904, 3241, 8478, 2746, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 9600, 411, 3256, 2099, 28, 600, 11, 4277, 28, 24137, 11, 1037, 11639, 9060, 5128, 290, 5072, 6323, 11, 4277, 796, 44063, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 538, 5374, 3256, 2099, 28, 600, 11, 4277, 28, 3064, 11, 1037, 11639, 17618, 286, 36835, 82, 11, 220, 4277, 796, 1802, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 14050, 3256, 2099, 28, 22468, 11, 4277, 28, 16, 68, 12, 17, 11, 1037, 11639, 40684, 2494, 11, 220, 4277, 796, 657, 13, 486, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 32542, 298, 388, 3256, 2099, 28, 22468, 11, 4277, 28, 15, 13, 24, 11, 1037, 11639, 32542, 298, 388, 11, 220, 4277, 796, 657, 13, 24, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 6551, 62, 12501, 323, 3256, 2099, 28, 22468, 11, 4277, 28, 20, 68, 12, 19, 11, 1037, 11639, 6551, 62, 12501, 323, 11, 220, 4277, 796, 657, 13, 830, 20, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 43501, 62, 7857, 3256, 2099, 28, 600, 11, 4277, 28, 1433, 11, 1037, 11639, 34409, 15458, 2546, 11, 220, 4277, 796, 838, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 15036, 3256, 2099, 28, 22468, 11, 4277, 28, 15, 13, 20, 11, 1037, 11639, 49607, 45013, 10330, 11, 4277, 796, 657, 13, 20, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 12501, 323, 62, 4873, 3256, 2099, 28, 22468, 11, 4277, 28, 15, 13, 16, 11, 1037, 11639, 12501, 323, 2494, 286, 4673, 2494, 11, 4277, 796, 657, 13, 16, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 12501, 323, 62, 538, 5374, 3256, 2099, 28, 600, 11, 4277, 28, 1270, 11, 1037, 11639, 16833, 299, 36835, 82, 22119, 4673, 2494, 11, 220, 4277, 796, 2026, 11537, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 2, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 2, 220, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 66, 15339, 11537, 198, 2, 2073, 25, 198, 2, 220, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 36166, 11537, 198, 198, 25202, 796, 28034, 13, 25202, 10786, 36166, 11537, 198, 19849, 796, 1395, 35510, 62, 53, 11190, 22446, 1462, 7, 25202, 8, 198, 2, 2746, 796, 28034, 10178, 13, 27530, 13, 85, 1130, 1433, 7, 5310, 13363, 28, 17821, 737, 1462, 7, 25202, 8, 198, 4798, 10786, 17633, 9639, 11537, 628, 198, 65, 62, 19849, 796, 1395, 35510, 62, 53, 11190, 7, 5219, 62, 11600, 28, 19849, 13, 40890, 13, 5219, 62, 11600, 3419, 737, 1462, 7, 25202, 8, 198, 21928, 62, 6978, 796, 705, 694, 457, 82, 14, 90, 92, 14, 4458, 18982, 7, 19849, 13, 3672, 8, 198, 13165, 354, 13, 21928, 7, 65, 62, 19849, 13, 5219, 62, 11600, 22784, 705, 90, 18477, 27422, 79, 400, 4458, 18982, 7, 21928, 62, 6978, 11, 705, 8800, 6, 4008, 198, 198, 19849, 13, 18206, 3419, 198, 4480, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 299, 796, 1802, 198, 220, 220, 220, 5128, 796, 28034, 13, 25192, 26933, 77, 11, 352, 11, 513, 11, 26498, 13, 9600, 411, 11, 26498, 13, 9600, 411, 35944, 1462, 7, 25202, 8, 198, 220, 220, 220, 256, 15, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 329, 1312, 287, 5128, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 796, 2746, 7, 72, 8, 198, 220, 220, 220, 42781, 62, 83, 796, 357, 2435, 13, 2435, 3419, 532, 256, 15, 8, 1220, 299, 198, 4798, 10786, 818, 4288, 640, 3256, 42781, 62, 83, 8, 198, 4798, 10786, 37, 3705, 3256, 352, 14, 615, 70, 62, 83, 8, 198, 198, 65, 62, 19849, 13, 18206, 3419, 198, 4480, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 299, 796, 1802, 198, 220, 220, 220, 5128, 796, 28034, 13, 25192, 26933, 77, 11, 352, 11, 513, 11, 26498, 13, 9600, 411, 11, 26498, 13, 9600, 411, 35944, 1462, 7, 25202, 8, 198, 220, 220, 220, 256, 15, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 329, 1312, 287, 5128, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 796, 275, 62, 19849, 7, 72, 8, 198, 220, 220, 220, 42781, 62, 83, 796, 357, 2435, 13, 2435, 3419, 532, 256, 15, 8, 1220, 299, 198, 4798, 10786, 818, 4288, 640, 3256, 42781, 62, 83, 8, 198, 4798, 10786, 37, 3705, 3256, 352, 14, 615, 70, 62, 83, 8, 198, 198, 35636, 796, 31408, 13, 7293, 577, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 4965, 1096, 19510, 11645, 11, 17759, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 29531, 34, 1773, 19510, 22046, 13, 9600, 411, 11, 26498, 13, 9600, 411, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 26447, 1096, 26933, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 4357, 685, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 12962, 12962, 198, 198, 19608, 292, 316, 796, 28034, 10178, 13, 19608, 292, 1039, 13, 5159, 7934, 7, 22046, 13, 19608, 292, 316, 11, 6626, 11639, 27432, 3256, 6121, 28, 35636, 8, 198, 19608, 292, 316, 62, 2100, 796, 28034, 10178, 13, 19608, 292, 1039, 13, 5159, 7934, 7, 22046, 13, 19608, 292, 316, 11, 6626, 11639, 2100, 3256, 6121, 28, 35636, 8, 198, 29356, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 19608, 292, 316, 11, 15458, 62, 7857, 28, 22046, 13, 43501, 62, 7857, 11, 36273, 28, 17821, 8, 198, 29356, 62, 2100, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 19608, 292, 316, 62, 2100, 11, 15458, 62, 7857, 28, 22046, 13, 43501, 62, 7857, 11, 36273, 28, 17821, 8, 198, 23350, 62, 20214, 796, 18896, 7, 29356, 8, 198, 4798, 10786, 27354, 292, 316, 9639, 11537, 198, 198, 40085, 7509, 796, 28034, 13, 40085, 13, 38475, 35, 7, 19849, 13, 17143, 7307, 22784, 300, 81, 28, 22046, 13, 14050, 11, 12858, 28, 22046, 13, 32542, 298, 388, 11, 3463, 62, 12501, 323, 28, 22046, 13, 6551, 62, 12501, 323, 8, 198, 8800, 62, 404, 796, 9874, 404, 13, 33, 259, 18257, 7, 19849, 8, 198, 198, 16002, 796, 11192, 273, 3526, 13, 22093, 34379, 7, 418, 13, 6978, 13, 22179, 10786, 6404, 82, 3256, 4818, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 56, 4, 76, 4, 67, 12, 4, 39, 4, 44, 4, 50, 6, 22305, 198, 198, 22213, 28019, 796, 28034, 13, 20471, 13, 21544, 14539, 28338, 43, 793, 22446, 1462, 7, 25202, 8, 198, 198, 1640, 36835, 287, 2837, 7, 22046, 13, 538, 5374, 2599, 198, 220, 220, 220, 300, 81, 62, 50033, 796, 37456, 36835, 25, 26498, 13, 12501, 323, 62, 4873, 12429, 357, 538, 5374, 3373, 26498, 13, 12501, 323, 62, 538, 5374, 8, 198, 220, 220, 220, 6038, 18173, 796, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 13, 15205, 24705, 43058, 35972, 7, 40085, 7509, 11, 300, 81, 62, 50033, 28, 14050, 62, 50033, 8, 198, 220, 220, 220, 26571, 7, 29356, 62, 2100, 11, 2746, 11, 34054, 8, 628, 220, 220, 220, 329, 2239, 11, 6291, 287, 27056, 378, 7, 29356, 11, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9662, 796, 36835, 1635, 2472, 62, 20214, 1343, 2239, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 11, 2496, 796, 6291, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 7785, 796, 28034, 13, 2306, 519, 6335, 13, 43015, 7, 16793, 737, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 796, 5128, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 5128, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9874, 62, 404, 13, 8800, 283, 1634, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2746, 7, 15414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 34054, 7, 22915, 11, 2496, 62, 7785, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 9874, 62, 404, 13, 2118, 382, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 9874, 62, 404, 13, 19119, 33, 3219, 42731, 25844, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 9662, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 1416, 282, 283, 10786, 43, 793, 14, 14957, 22014, 3256, 12178, 7, 22462, 828, 3298, 62, 9662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 4064, 1802, 6624, 657, 393, 2239, 6624, 2472, 62, 20214, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 90, 92, 4551, 5374, 685, 90, 25, 3070, 67, 92, 14, 90, 25, 3070, 67, 92, 4357, 5012, 685, 90, 25, 3023, 67, 92, 14, 90, 25, 3023, 67, 92, 4357, 22014, 25, 46110, 13, 19, 69, 92, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 7, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 33809, 36835, 10, 16, 11, 26498, 13, 538, 5374, 11, 2239, 11, 2472, 62, 20214, 11, 2994, 13, 7890, 4008, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 36835, 4064, 642, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 6978, 796, 705, 694, 457, 82, 14, 90, 92, 14, 4458, 18982, 7, 19849, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 21928, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 21928, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 7, 19849, 13, 5219, 62, 11600, 22784, 705, 90, 18477, 27422, 79, 400, 13, 90, 25, 3070, 67, 92, 4458, 18982, 7, 21928, 62, 6978, 11, 2746, 13, 3672, 11, 36835, 4008, 198 ]
2.482759
2,146
""" This module provides a solver for the spin-boson model at zero temperature using the hierarchy equations of motion (HEOM) method. """ # Authors: Shahnawaz Ahmed, Neill Lambert # Contact: [email protected] import numpy as np from copy import copy from qutip import Qobj, qeye from qutip.states import enr_state_dictionaries from qutip.superoperator import liouvillian, spre, spost from qutip import liouvillian, mat2vec, state_number_enumerate from qutip.cy.spmatfuncs import cy_ode_rhs from qutip.solver import Options, Result, Stats from scipy.special import factorial from scipy.sparse import lil_matrix from scipy.integrate import ode def add_at_idx(seq, k, val): """ Add (subtract) a value in the tuple at position k """ lst = list(seq) lst[k] += val return tuple(lst) def prevhe(current_he, k, ncut): """ Calculate the previous heirarchy index for the current index `n`. """ nprev = add_at_idx(current_he, k, -1) if nprev[k] < 0: return False return nprev def nexthe(current_he, k, ncut): """ Calculate the next heirarchy index for the current index `n`. """ nnext = add_at_idx(current_he, k, 1) if sum(nnext) > ncut: return False return nnext def num_hierarchy(ncut, kcut): """ Get the total number of auxiliary density matrices in the hierarchy. Parameters ========== ncut: int The Heirarchy cutoff kcut: int The cutoff in the correlation frequencies, i.e., how many total exponents are used. Returns ======= num_hierarchy: int The total number of auxiliary density matrices in the hierarchy. """ return int(factorial(ncut + kcut) / (factorial(ncut) * factorial(kcut))) def _heom_state_dictionaries(dims, excitations): """ Return the number of states, and lookup-dictionaries for translating a state tuple to a state index, and vice versa, for a system with a given number of components and maximum number of excitations. Parameters ---------- dims: list A list with the number of states in each sub-system. excitations : integer The maximum numbers of dimension Returns ------- nstates, state2idx, idx2state: integer, dict, dict The number of states `nstates`, a dictionary for looking up state indices from a state tuple, and a dictionary for looking up state state tuples from state indices. """ nstates = 0 state2idx = {} idx2state = {} for state in state_number_enumerate(dims, excitations): state2idx[state] = nstates idx2state[nstates] = state nstates += 1 return nstates, state2idx, idx2state def _heom_number_enumerate(dims, excitations=None, state=None, idx=0): """ An iterator that enumerate all the state number arrays (quantum numbers on the form [n1, n2, n3, ...]) for a system with dimensions given by dims. Example: >>> for state in state_number_enumerate([2,2]): >>> print(state) [ 0. 0.] [ 0. 1.] [ 1. 0.] [ 1. 1.] Parameters ---------- dims : list or array The quantum state dimensions array, as it would appear in a Qobj. state : list Current state in the iteration. Used internally. excitations : integer (None) Restrict state space to states with excitation numbers below or equal to this value. idx : integer Current index in the iteration. Used internally. Returns ------- state_number : list Successive state number arrays that can be used in loops and other iterations, using standard state enumeration *by definition*. """ if state is None: state = np.zeros(len(dims)) if excitations and sum(state[0:idx]) > excitations: pass elif idx == len(dims): if excitations is None: yield np.array(state) else: yield tuple(state) else: for n in range(dims[idx]): state[idx] = n for s in state_number_enumerate(dims, excitations, state, idx + 1): yield s def get_aux_matrices(full, level, Nc, Nk): """ Extracts the auxiliary matrices at a particular level from the full hierarchy ADOs. Parameters ---------- full: ndarray A 2D array of the time evolution of the ADOs. level: int The level of the hierarchy to get the ADOs. Nc: int The hierarchy cutoff. k: int The total number of exponentials used to express the correlation. """ nstates, state2idx, idx2state = _heom_state_dictionaries([Nc + 1] * (Nk), Nc) aux_indices = [] aux_heom_indices = [] for stateid in state2idx: if np.sum(stateid) == level: aux_indices.append(state2idx[stateid]) aux_heom_indices.append(stateid) full = np.array(full) aux = [] for i in aux_indices: qlist = [Qobj(full[k, i, :].reshape(2, 2).T) for k in range(len(full))] aux.append(qlist) return aux, aux_heom_indices class HeomUB: """ The Heom class to tackle Heirarchy using the underdamped Brownian motion Parameters ---------- hamiltonian: :class:`qutip.Qobj` The system Hamiltonian coupling: :class:`qutip.Qobj` The coupling operator coup_strength: float The coupling strength. ck: list The list of amplitudes in the expansion of the correlation function vk: list The list of frequencies in the expansion of the correlation function ncut: int The hierarchy cutoff beta: float Inverse temperature, 1/kT. At zero temperature, beta is inf and we use an optimization for the non Matsubara terms """ def populate(self, heidx_list): """ Given a Hierarchy index list, populate the graph of next and previous elements """ ncut = self.ncut kcut = self.kcut he2idx = self.he2idx idx2he = self.idx2he for heidx in heidx_list: for k in range(self.kcut): he_current = idx2he[heidx] he_next = nexthe(he_current, k, ncut) he_prev = prevhe(he_current, k, ncut) if he_next and (he_next not in he2idx): he2idx[he_next] = self.nhe idx2he[self.nhe] = he_next self.nhe += 1 if he_prev and (he_prev not in he2idx): he2idx[he_prev] = self.nhe idx2he[self.nhe] = he_prev self.nhe += 1 def grad_n(self, he_n): """ Get the gradient term for the Hierarchy ADM at level n """ c = self.ck nu = self.vk L = self.L.copy() gradient_sum = -np.sum(np.multiply(he_n, nu)) sum_op = gradient_sum * np.eye(L.shape[0]) L += sum_op # Fill in larger L nidx = self.he2idx[he_n] block = self.N ** 2 pos = int(nidx * (block)) self.L_helems[pos : pos + block, pos : pos + block] = L def grad_prev(self, he_n, k, prev_he): """ Get prev gradient """ c = self.ck nu = self.vk spreQ = self.spreQ spostQ = self.spostQ nk = he_n[k] norm_prev = nk # Non Matsubara terms if k == 0: norm_prev = np.sqrt(float(nk) / abs(self.lam)) op1 = -1j * norm_prev * (-self.lam * spostQ) elif k == 1: norm_prev = np.sqrt(float(nk) / abs(self.lam)) op1 = -1j * norm_prev * (self.lam * spreQ) # Matsubara terms else: norm_prev = np.sqrt(float(nk) / abs(c[k])) op1 = -1j * norm_prev * (c[k] * (spreQ - spostQ)) # Fill in larger L rowidx = self.he2idx[he_n] colidx = self.he2idx[prev_he] block = self.N ** 2 rowpos = int(rowidx * (block)) colpos = int(colidx * (block)) self.L_helems[rowpos : rowpos + block, colpos : colpos + block] = op1 def rhs(self, progress=None): """ Make the RHS """ while self.nhe < self.total_nhe: heidxlist = copy(list(self.idx2he.keys())) self.populate(heidxlist) if progress is not None: bar = progress(total=self.nhe * self.kcut) for n in self.idx2he: he_n = self.idx2he[n] self.grad_n(he_n) for k in range(self.kcut): next_he = nexthe(he_n, k, self.ncut) prev_he = prevhe(he_n, k, self.ncut) if next_he and (next_he in self.he2idx): self.grad_next(he_n, k, next_he) if prev_he and (prev_he in self.he2idx): self.grad_prev(he_n, k, prev_he) def solve(self, rho0, tlist, options=None, progress=None): """ Solve the Hierarchy equations of motion for the given initial density matrix and time. """ if options is None: options = Options() output = Result() output.solver = "hsolve" output.times = tlist output.states = [] output.states.append(Qobj(rho0)) dt = np.diff(tlist) rho_he = np.zeros(self.hshape, dtype=np.complex) rho_he[0] = rho0.full().ravel("F") rho_he = rho_he.flatten() self.rhs() L_helems = self.L_helems.asformat("csr") r = ode(cy_ode_rhs) r.set_f_params(L_helems.data, L_helems.indices, L_helems.indptr) r.set_integrator( "zvode", method=options.method, order=options.order, atol=options.atol, rtol=options.rtol, nsteps=options.nsteps, first_step=options.first_step, min_step=options.min_step, max_step=options.max_step, ) r.set_initial_value(rho_he, tlist[0]) dt = np.diff(tlist) n_tsteps = len(tlist) if progress: bar = progress(total=n_tsteps - 1) for t_idx, t in enumerate(tlist): if t_idx < n_tsteps - 1: r.integrate(r.t + dt[t_idx]) r1 = r.y.reshape(self.hshape) r0 = r1[0].reshape(self.N, self.N).T output.states.append(Qobj(r0)) r_heom = r.y.reshape(self.hshape) self.full_hierarchy.append(r_heom) if progress: bar.update() return output
[ 37811, 198, 1212, 8265, 3769, 257, 1540, 332, 329, 262, 7906, 12, 39565, 261, 2746, 379, 6632, 5951, 198, 3500, 262, 18911, 27490, 286, 6268, 357, 13909, 2662, 8, 2446, 13, 198, 37811, 198, 2, 46665, 25, 911, 15386, 707, 1031, 21157, 11, 3169, 359, 36978, 198, 2, 14039, 25, 427, 15386, 707, 1031, 13, 993, 1150, 3865, 31, 14816, 13, 785, 628, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4866, 1330, 4866, 198, 198, 6738, 10662, 315, 541, 1330, 1195, 26801, 11, 10662, 25379, 198, 6738, 10662, 315, 541, 13, 27219, 1330, 551, 81, 62, 5219, 62, 67, 2867, 3166, 198, 6738, 10662, 315, 541, 13, 16668, 46616, 1330, 7649, 280, 85, 37896, 11, 599, 260, 11, 599, 455, 198, 6738, 10662, 315, 541, 1330, 7649, 280, 85, 37896, 11, 2603, 17, 35138, 11, 1181, 62, 17618, 62, 268, 6975, 378, 198, 6738, 10662, 315, 541, 13, 948, 13, 2777, 6759, 12543, 6359, 1330, 3075, 62, 1098, 62, 81, 11994, 198, 6738, 10662, 315, 541, 13, 82, 14375, 1330, 18634, 11, 25414, 11, 20595, 198, 198, 6738, 629, 541, 88, 13, 20887, 1330, 1109, 5132, 198, 6738, 629, 541, 88, 13, 82, 29572, 1330, 42280, 62, 6759, 8609, 198, 6738, 629, 541, 88, 13, 18908, 4873, 1330, 267, 2934, 628, 198, 4299, 751, 62, 265, 62, 312, 87, 7, 41068, 11, 479, 11, 1188, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3060, 357, 7266, 83, 974, 8, 257, 1988, 287, 262, 46545, 379, 2292, 479, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 300, 301, 796, 1351, 7, 41068, 8, 198, 220, 220, 220, 300, 301, 58, 74, 60, 15853, 1188, 198, 220, 220, 220, 1441, 46545, 7, 75, 301, 8, 628, 198, 4299, 8654, 258, 7, 14421, 62, 258, 11, 479, 11, 299, 8968, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27131, 378, 262, 2180, 28625, 9282, 6376, 198, 220, 220, 220, 329, 262, 1459, 6376, 4600, 77, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 47050, 796, 751, 62, 265, 62, 312, 87, 7, 14421, 62, 258, 11, 479, 11, 532, 16, 8, 198, 220, 220, 220, 611, 299, 47050, 58, 74, 60, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 299, 47050, 628, 198, 4299, 1306, 258, 7, 14421, 62, 258, 11, 479, 11, 299, 8968, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27131, 378, 262, 1306, 28625, 9282, 6376, 198, 220, 220, 220, 329, 262, 1459, 6376, 4600, 77, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 19545, 796, 751, 62, 265, 62, 312, 87, 7, 14421, 62, 258, 11, 479, 11, 352, 8, 198, 220, 220, 220, 611, 2160, 7, 77, 19545, 8, 1875, 299, 8968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 299, 19545, 628, 198, 4299, 997, 62, 71, 959, 9282, 7, 77, 8968, 11, 479, 8968, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 2472, 1271, 286, 37419, 12109, 2603, 45977, 287, 262, 198, 220, 220, 220, 18911, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 796, 2559, 28, 198, 220, 220, 220, 299, 8968, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 679, 343, 9282, 45616, 628, 220, 220, 220, 479, 8968, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 45616, 287, 262, 16096, 19998, 11, 1312, 13, 68, 1539, 703, 867, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 1033, 3906, 389, 973, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 29335, 855, 198, 220, 220, 220, 997, 62, 71, 959, 9282, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2472, 1271, 286, 37419, 12109, 2603, 45977, 287, 262, 18911, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 493, 7, 22584, 5132, 7, 77, 8968, 1343, 479, 8968, 8, 1220, 357, 22584, 5132, 7, 77, 8968, 8, 1635, 1109, 5132, 7, 74, 8968, 22305, 628, 198, 4299, 4808, 258, 296, 62, 5219, 62, 67, 2867, 3166, 7, 67, 12078, 11, 2859, 20597, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 1271, 286, 2585, 11, 290, 35847, 12, 67, 2867, 3166, 329, 34665, 198, 220, 220, 220, 257, 1181, 46545, 284, 257, 1181, 6376, 11, 290, 7927, 25470, 11, 329, 257, 1080, 351, 257, 1813, 198, 220, 220, 220, 1271, 286, 6805, 290, 5415, 1271, 286, 2859, 20597, 13, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 5391, 82, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 351, 262, 1271, 286, 2585, 287, 1123, 850, 12, 10057, 13, 198, 220, 220, 220, 2859, 20597, 1058, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 3146, 286, 15793, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 299, 27219, 11, 1181, 17, 312, 87, 11, 4686, 87, 17, 5219, 25, 18253, 11, 8633, 11, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 2585, 4600, 77, 27219, 47671, 257, 22155, 329, 2045, 510, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 36525, 422, 257, 1181, 46545, 11, 290, 257, 22155, 329, 2045, 510, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 12777, 2374, 422, 1181, 36525, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 27219, 796, 657, 198, 220, 220, 220, 1181, 17, 312, 87, 796, 23884, 198, 220, 220, 220, 4686, 87, 17, 5219, 796, 23884, 628, 220, 220, 220, 329, 1181, 287, 1181, 62, 17618, 62, 268, 6975, 378, 7, 67, 12078, 11, 2859, 20597, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 17, 312, 87, 58, 5219, 60, 796, 299, 27219, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 17, 5219, 58, 77, 27219, 60, 796, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 299, 27219, 15853, 352, 198, 220, 220, 220, 1441, 299, 27219, 11, 1181, 17, 312, 87, 11, 4686, 87, 17, 5219, 628, 198, 4299, 4808, 258, 296, 62, 17618, 62, 268, 6975, 378, 7, 67, 12078, 11, 2859, 20597, 28, 14202, 11, 1181, 28, 14202, 11, 4686, 87, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 41313, 326, 27056, 378, 477, 262, 1181, 1271, 26515, 357, 40972, 388, 3146, 319, 198, 220, 220, 220, 262, 1296, 685, 77, 16, 11, 299, 17, 11, 299, 18, 11, 2644, 12962, 329, 257, 1080, 351, 15225, 1813, 416, 5391, 82, 13, 198, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 329, 1181, 287, 1181, 62, 17618, 62, 268, 6975, 378, 26933, 17, 11, 17, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 220, 220, 220, 220, 3601, 7, 5219, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 657, 13, 220, 657, 8183, 198, 220, 220, 220, 220, 220, 220, 220, 685, 657, 13, 220, 352, 8183, 198, 220, 220, 220, 220, 220, 220, 220, 685, 352, 13, 220, 657, 8183, 198, 220, 220, 220, 220, 220, 220, 220, 685, 352, 13, 220, 352, 8183, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 5391, 82, 1058, 1351, 393, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 383, 14821, 1181, 15225, 7177, 11, 355, 340, 561, 1656, 287, 257, 1195, 26801, 13, 198, 220, 220, 220, 1181, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 1181, 287, 262, 24415, 13, 16718, 20947, 13, 198, 220, 220, 220, 2859, 20597, 1058, 18253, 357, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37163, 1181, 2272, 284, 2585, 351, 2859, 3780, 3146, 2174, 393, 198, 220, 220, 220, 220, 220, 220, 220, 4961, 284, 428, 1988, 13, 198, 220, 220, 220, 4686, 87, 1058, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 6376, 287, 262, 24415, 13, 16718, 20947, 13, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1181, 62, 17618, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 16282, 425, 1181, 1271, 26515, 326, 460, 307, 973, 287, 23607, 290, 584, 198, 220, 220, 220, 220, 220, 220, 220, 34820, 11, 1262, 3210, 1181, 27056, 341, 1635, 1525, 6770, 24620, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1181, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 45941, 13, 9107, 418, 7, 11925, 7, 67, 12078, 4008, 628, 220, 220, 220, 611, 2859, 20597, 290, 2160, 7, 5219, 58, 15, 25, 312, 87, 12962, 1875, 2859, 20597, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1288, 361, 4686, 87, 6624, 18896, 7, 67, 12078, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2859, 20597, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 45941, 13, 18747, 7, 5219, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 46545, 7, 5219, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 67, 12078, 58, 312, 87, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 58, 312, 87, 60, 796, 299, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 1181, 62, 17618, 62, 268, 6975, 378, 7, 67, 12078, 11, 2859, 20597, 11, 1181, 11, 4686, 87, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 264, 628, 198, 4299, 651, 62, 14644, 62, 6759, 45977, 7, 12853, 11, 1241, 11, 399, 66, 11, 399, 74, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 82, 262, 37419, 2603, 45977, 379, 257, 1948, 1241, 198, 220, 220, 220, 422, 262, 1336, 18911, 5984, 16748, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1336, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 317, 362, 35, 7177, 286, 262, 640, 6954, 286, 262, 5984, 16748, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1241, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1241, 286, 262, 18911, 284, 651, 262, 5984, 16748, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 399, 66, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 18911, 45616, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 479, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2472, 1271, 286, 1033, 261, 14817, 973, 284, 4911, 262, 16096, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 27219, 11, 1181, 17, 312, 87, 11, 4686, 87, 17, 5219, 796, 4808, 258, 296, 62, 5219, 62, 67, 2867, 3166, 26933, 45, 66, 1343, 352, 60, 1635, 357, 45, 74, 828, 399, 66, 8, 198, 220, 220, 220, 27506, 62, 521, 1063, 796, 17635, 628, 220, 220, 220, 27506, 62, 258, 296, 62, 521, 1063, 796, 17635, 198, 220, 220, 220, 329, 1181, 312, 287, 1181, 17, 312, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 16345, 7, 5219, 312, 8, 6624, 1241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 521, 1063, 13, 33295, 7, 5219, 17, 312, 87, 58, 5219, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 258, 296, 62, 521, 1063, 13, 33295, 7, 5219, 312, 8, 198, 220, 220, 220, 1336, 796, 45941, 13, 18747, 7, 12853, 8, 198, 220, 220, 220, 27506, 796, 17635, 628, 220, 220, 220, 329, 1312, 287, 27506, 62, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 4868, 796, 685, 48, 26801, 7, 12853, 58, 74, 11, 1312, 11, 1058, 4083, 3447, 1758, 7, 17, 11, 362, 737, 51, 8, 329, 479, 287, 2837, 7, 11925, 7, 12853, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 27506, 13, 33295, 7, 80, 4868, 8, 198, 220, 220, 220, 1441, 27506, 11, 27506, 62, 258, 296, 62, 521, 1063, 628, 198, 4871, 679, 296, 10526, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 679, 296, 1398, 284, 9761, 679, 343, 9282, 1262, 262, 739, 67, 13322, 4373, 666, 6268, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 8891, 9044, 666, 25, 1058, 4871, 25, 63, 80, 315, 541, 13, 48, 26801, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1080, 11582, 666, 628, 220, 220, 220, 40204, 25, 1058, 4871, 25, 63, 80, 315, 541, 13, 48, 26801, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 40204, 10088, 628, 220, 220, 220, 12092, 62, 41402, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 40204, 4202, 13, 628, 220, 220, 220, 269, 74, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 286, 12306, 10455, 287, 262, 7118, 286, 262, 16096, 2163, 628, 220, 220, 220, 410, 74, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 286, 19998, 287, 262, 7118, 286, 262, 16096, 2163, 628, 220, 220, 220, 299, 8968, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 18911, 45616, 628, 197, 31361, 25, 12178, 198, 197, 197, 818, 4399, 5951, 11, 352, 14, 74, 51, 13, 1629, 6632, 5951, 11, 12159, 318, 1167, 290, 356, 779, 198, 197, 197, 272, 23989, 329, 262, 1729, 30107, 549, 3301, 2846, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 48040, 7, 944, 11, 339, 312, 87, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 257, 36496, 9282, 6376, 1351, 11, 48040, 262, 4823, 286, 1306, 290, 198, 220, 220, 220, 220, 220, 220, 220, 2180, 4847, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 8968, 796, 2116, 13, 77, 8968, 198, 220, 220, 220, 220, 220, 220, 220, 479, 8968, 796, 2116, 13, 74, 8968, 198, 220, 220, 220, 220, 220, 220, 220, 339, 17, 312, 87, 796, 2116, 13, 258, 17, 312, 87, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 17, 258, 796, 2116, 13, 312, 87, 17, 258, 198, 220, 220, 220, 220, 220, 220, 220, 329, 339, 312, 87, 287, 339, 312, 87, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 944, 13, 74, 8968, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 62, 14421, 796, 4686, 87, 17, 258, 58, 28420, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 62, 19545, 796, 1306, 258, 7, 258, 62, 14421, 11, 479, 11, 299, 8968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 62, 47050, 796, 8654, 258, 7, 258, 62, 14421, 11, 479, 11, 299, 8968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 339, 62, 19545, 290, 357, 258, 62, 19545, 407, 287, 339, 17, 312, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 17, 312, 87, 58, 258, 62, 19545, 60, 796, 2116, 13, 77, 258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 17, 258, 58, 944, 13, 77, 258, 60, 796, 339, 62, 19545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 258, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 339, 62, 47050, 290, 357, 258, 62, 47050, 407, 287, 339, 17, 312, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 17, 312, 87, 58, 258, 62, 47050, 60, 796, 2116, 13, 77, 258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 17, 258, 58, 944, 13, 77, 258, 60, 796, 339, 62, 47050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 258, 15853, 352, 628, 220, 220, 220, 825, 3915, 62, 77, 7, 944, 11, 339, 62, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 31312, 3381, 329, 262, 36496, 9282, 5984, 44, 379, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 299, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 694, 198, 220, 220, 220, 220, 220, 220, 220, 14364, 796, 2116, 13, 85, 74, 198, 220, 220, 220, 220, 220, 220, 220, 406, 796, 2116, 13, 43, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 31312, 62, 16345, 796, 532, 37659, 13, 16345, 7, 37659, 13, 16680, 541, 306, 7, 258, 62, 77, 11, 14364, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 62, 404, 796, 31312, 62, 16345, 1635, 45941, 13, 25379, 7, 43, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 406, 15853, 2160, 62, 404, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27845, 287, 4025, 406, 198, 220, 220, 220, 220, 220, 220, 220, 299, 312, 87, 796, 2116, 13, 258, 17, 312, 87, 58, 258, 62, 77, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 2116, 13, 45, 12429, 362, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 493, 7, 77, 312, 87, 1635, 357, 9967, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43, 62, 258, 46367, 58, 1930, 1058, 1426, 1343, 2512, 11, 1426, 1058, 1426, 1343, 2512, 60, 796, 406, 628, 220, 220, 220, 825, 3915, 62, 47050, 7, 944, 11, 339, 62, 77, 11, 479, 11, 8654, 62, 258, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 8654, 31312, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 694, 198, 220, 220, 220, 220, 220, 220, 220, 14364, 796, 2116, 13, 85, 74, 198, 220, 220, 220, 220, 220, 220, 220, 599, 260, 48, 796, 2116, 13, 2777, 260, 48, 198, 220, 220, 220, 220, 220, 220, 220, 599, 455, 48, 796, 2116, 13, 2777, 455, 48, 198, 220, 220, 220, 220, 220, 220, 220, 299, 74, 796, 339, 62, 77, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 47050, 796, 299, 74, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8504, 30107, 549, 3301, 2846, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 47050, 796, 45941, 13, 31166, 17034, 7, 22468, 7, 77, 74, 8, 1220, 2352, 7, 944, 13, 2543, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 16, 796, 532, 16, 73, 1635, 2593, 62, 47050, 1635, 13841, 944, 13, 2543, 1635, 599, 455, 48, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 479, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 47050, 796, 45941, 13, 31166, 17034, 7, 22468, 7, 77, 74, 8, 1220, 2352, 7, 944, 13, 2543, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 16, 796, 532, 16, 73, 1635, 2593, 62, 47050, 1635, 357, 944, 13, 2543, 1635, 599, 260, 48, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 30107, 549, 3301, 2846, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 47050, 796, 45941, 13, 31166, 17034, 7, 22468, 7, 77, 74, 8, 1220, 2352, 7, 66, 58, 74, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 16, 796, 532, 16, 73, 1635, 2593, 62, 47050, 1635, 357, 66, 58, 74, 60, 1635, 357, 2777, 260, 48, 532, 599, 455, 48, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27845, 287, 4025, 406, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 312, 87, 796, 2116, 13, 258, 17, 312, 87, 58, 258, 62, 77, 60, 198, 220, 220, 220, 220, 220, 220, 220, 951, 312, 87, 796, 2116, 13, 258, 17, 312, 87, 58, 47050, 62, 258, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 2116, 13, 45, 12429, 362, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 1930, 796, 493, 7, 808, 312, 87, 1635, 357, 9967, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 951, 1930, 796, 493, 7, 4033, 312, 87, 1635, 357, 9967, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43, 62, 258, 46367, 58, 808, 1930, 1058, 5752, 1930, 1343, 2512, 11, 951, 1930, 1058, 951, 1930, 1343, 2512, 60, 796, 1034, 16, 628, 220, 220, 220, 825, 9529, 82, 7, 944, 11, 4371, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6889, 262, 371, 7998, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 77, 258, 1279, 2116, 13, 23350, 62, 77, 258, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 312, 87, 4868, 796, 4866, 7, 4868, 7, 944, 13, 312, 87, 17, 258, 13, 13083, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12924, 5039, 7, 28420, 87, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4371, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2318, 796, 4371, 7, 23350, 28, 944, 13, 77, 258, 1635, 2116, 13, 74, 8968, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2116, 13, 312, 87, 17, 258, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 62, 77, 796, 2116, 13, 312, 87, 17, 258, 58, 77, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9744, 62, 77, 7, 258, 62, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 944, 13, 74, 8968, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 258, 796, 1306, 258, 7, 258, 62, 77, 11, 479, 11, 2116, 13, 77, 8968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 258, 796, 8654, 258, 7, 258, 62, 77, 11, 479, 11, 2116, 13, 77, 8968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1306, 62, 258, 290, 357, 19545, 62, 258, 287, 2116, 13, 258, 17, 312, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9744, 62, 19545, 7, 258, 62, 77, 11, 479, 11, 1306, 62, 258, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8654, 62, 258, 290, 357, 47050, 62, 258, 287, 2116, 13, 258, 17, 312, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9744, 62, 47050, 7, 258, 62, 77, 11, 479, 11, 8654, 62, 258, 8, 628, 220, 220, 220, 825, 8494, 7, 944, 11, 374, 8873, 15, 11, 256, 4868, 11, 3689, 28, 14202, 11, 4371, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4294, 303, 262, 36496, 9282, 27490, 286, 6268, 329, 262, 1813, 4238, 198, 220, 220, 220, 220, 220, 220, 220, 12109, 17593, 290, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 796, 18634, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 25414, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 82, 14375, 796, 366, 11994, 6442, 1, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 22355, 796, 256, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 27219, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 27219, 13, 33295, 7, 48, 26801, 7, 81, 8873, 15, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 288, 83, 796, 45941, 13, 26069, 7, 83, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 8873, 62, 258, 796, 45941, 13, 9107, 418, 7, 944, 13, 71, 43358, 11, 288, 4906, 28, 37659, 13, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 8873, 62, 258, 58, 15, 60, 796, 374, 8873, 15, 13, 12853, 22446, 25843, 7203, 37, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 374, 8873, 62, 258, 796, 374, 8873, 62, 258, 13, 2704, 41769, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 11994, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 406, 62, 258, 46367, 796, 2116, 13, 43, 62, 258, 46367, 13, 292, 18982, 7203, 6359, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 267, 2934, 7, 948, 62, 1098, 62, 81, 11994, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 2617, 62, 69, 62, 37266, 7, 43, 62, 258, 46367, 13, 7890, 11, 406, 62, 258, 46367, 13, 521, 1063, 11, 406, 62, 258, 46367, 13, 521, 20692, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 2617, 62, 18908, 12392, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 89, 85, 1098, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 28, 25811, 13, 24396, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 28, 25811, 13, 2875, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 349, 28, 25811, 13, 265, 349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 83, 349, 28, 25811, 13, 17034, 349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 20214, 28, 25811, 13, 77, 20214, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 9662, 28, 25811, 13, 11085, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 9662, 28, 25811, 13, 1084, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 9662, 28, 25811, 13, 9806, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 374, 13, 2617, 62, 36733, 62, 8367, 7, 81, 8873, 62, 258, 11, 256, 4868, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 796, 45941, 13, 26069, 7, 83, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 83, 20214, 796, 18896, 7, 83, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4371, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2318, 796, 4371, 7, 23350, 28, 77, 62, 83, 20214, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 62, 312, 87, 11, 256, 287, 27056, 378, 7, 83, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 62, 312, 87, 1279, 299, 62, 83, 20214, 532, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 18908, 4873, 7, 81, 13, 83, 1343, 288, 83, 58, 83, 62, 312, 87, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 16, 796, 374, 13, 88, 13, 3447, 1758, 7, 944, 13, 71, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 15, 796, 374, 16, 58, 15, 4083, 3447, 1758, 7, 944, 13, 45, 11, 2116, 13, 45, 737, 51, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 27219, 13, 33295, 7, 48, 26801, 7, 81, 15, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 62, 258, 296, 796, 374, 13, 88, 13, 3447, 1758, 7, 944, 13, 71, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12853, 62, 71, 959, 9282, 13, 33295, 7, 81, 62, 258, 296, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4371, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2318, 13, 19119, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 198 ]
2.094902
5,100
#!/usr/bin/env python from typing import Optional import sys import time import dpkt import pycozmo if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 19720, 1330, 32233, 198, 11748, 25064, 198, 11748, 640, 198, 198, 11748, 288, 79, 21841, 198, 198, 11748, 12972, 1073, 89, 5908, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.735849
53
"""Optimum-Path Forest standard definitions. """ import pickle import numpy as np import opfython.math.distance as d import opfython.stream.loader as loader import opfython.utils.exception as e import opfython.utils.logging as l from opfython.core import Subgraph logger = l.get_logger(__name__) class OPF: """A basic class to define all common OPF-related methods. References: J. P. Papa, A. X. Falcão and C. T. N. Suzuki. LibOPF: A library for the design of optimum-path forest classifiers (2015). """ def __init__(self, distance='log_squared_euclidean', pre_computed_distance=None): """Initialization method. Args: distance (str): An indicator of the distance metric to be used. pre_computed_distance (str): A pre-computed distance file for feeding into OPF. """ logger.info('Creating class: OPF.') # Initializing an empty subgraph self.subgraph = None # An indicator of the distance metric to be used self.distance = distance # Gathers the distance function as a property self.distance_fn = d.DISTANCES[distance] # If OPF should use a pre-computed distance if pre_computed_distance: # Marks the boolean indicator as True self.pre_computed_distance = True # Apply the distances matrix self._read_distances(pre_computed_distance) else: # Marks the boolean indicator as False self.pre_computed_distance = False # Marks the pre-distances property as None self.pre_distances = None logger.debug('Distance: %s | Pre-computed distance: %s.', self.distance, self.pre_computed_distance) logger.info('Class created.') @property def subgraph(self): """Subgraph: Subgraph's instance. """ return self._subgraph @subgraph.setter @property def distance(self): """str: Distance metric to be used. """ return self._distance @distance.setter @property def distance_fn(self): """callable: Distance function to be used. """ return self._distance_fn @distance_fn.setter @property def pre_computed_distance(self): """bool: Whether OPF should use a pre-computed distance or not. """ return self._pre_computed_distance @pre_computed_distance.setter @property def pre_distances(self): """np.array: Pre-computed distance matrix. """ return self._pre_distances @pre_distances.setter def _read_distances(self, file_name): """Reads the distance between nodes from a pre-defined file. Args: file_name (str): File to be loaded. """ logger.debug('Running private method: read_distances().') # Getting file extension extension = file_name.split('.')[-1] if extension == 'csv': distances = loader.load_csv(file_name) elif extension == 'txt': distances = loader.load_txt(file_name) else: # Raises an ArgumentError exception raise e.ArgumentError('File extension not recognized. It should be either `.csv` or .txt`') # Check if distances have been properly loaded if distances is None: raise e.ValueError('Pre-computed distances could not been properly loaded') # Apply the distances matrix to the property self.pre_distances = distances def load(self, file_name): """Loads the object from a pickle encoding. Args: file_name (str): Pickle's file path to be loaded. """ logger.info('Loading model from file: %s ...', file_name) with open(file_name, 'rb') as origin_file: opf = pickle.load(origin_file) self.__dict__.update(opf.__dict__) logger.info('Model loaded.') def save(self, file_name): """Saves the object to a pickle encoding. Args: file_name (str): File's name to be saved. """ logger.info('Saving model to file: %s ...', file_name) with open(file_name, 'wb') as dest_file: pickle.dump(self, dest_file) logger.info('Model saved.') def fit(self, X, Y): """Fits data in the classifier. It should be directly implemented in OPF child classes. Args: X (np.array): Array of features. Y (np.array): Array of labels. """ raise NotImplementedError def predict(self, X): """Predicts new data using the pre-trained classifier. It should be directly implemented in OPF child classes. Args: X (np.array): Array of features. Returns: A list of predictions for each record of the data. """ raise NotImplementedError
[ 37811, 27871, 2847, 12, 15235, 9115, 3210, 17336, 13, 198, 37811, 198, 198, 11748, 2298, 293, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 1034, 69, 7535, 13, 11018, 13, 30246, 355, 288, 198, 11748, 1034, 69, 7535, 13, 5532, 13, 29356, 355, 40213, 198, 11748, 1034, 69, 7535, 13, 26791, 13, 1069, 4516, 355, 304, 198, 11748, 1034, 69, 7535, 13, 26791, 13, 6404, 2667, 355, 300, 198, 6738, 1034, 69, 7535, 13, 7295, 1330, 3834, 34960, 198, 198, 6404, 1362, 796, 300, 13, 1136, 62, 6404, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 13349, 37, 25, 198, 220, 220, 220, 37227, 32, 4096, 1398, 284, 8160, 477, 2219, 13349, 37, 12, 5363, 5050, 13, 628, 220, 220, 220, 31458, 25, 198, 220, 220, 220, 220, 220, 220, 220, 449, 13, 350, 13, 42328, 11, 317, 13, 1395, 13, 9596, 66, 28749, 290, 327, 13, 309, 13, 399, 13, 35807, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7980, 3185, 37, 25, 317, 5888, 329, 262, 1486, 286, 39475, 12, 6978, 8222, 1398, 13350, 357, 4626, 737, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5253, 11639, 6404, 62, 16485, 1144, 62, 12496, 565, 485, 272, 3256, 662, 62, 785, 17128, 62, 30246, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1634, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5253, 357, 2536, 2599, 1052, 16916, 286, 262, 5253, 18663, 284, 307, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 62, 785, 17128, 62, 30246, 357, 2536, 2599, 317, 662, 12, 785, 17128, 5253, 2393, 329, 13017, 656, 13349, 37, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 32071, 1398, 25, 13349, 37, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 2890, 281, 6565, 850, 34960, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7266, 34960, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1052, 16916, 286, 262, 5253, 18663, 284, 307, 973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30246, 796, 5253, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 402, 1032, 82, 262, 5253, 2163, 355, 257, 3119, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30246, 62, 22184, 796, 288, 13, 35, 8808, 20940, 1546, 58, 30246, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 13349, 37, 815, 779, 257, 662, 12, 785, 17128, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 611, 662, 62, 785, 17128, 62, 30246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27366, 262, 25131, 16916, 355, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 785, 17128, 62, 30246, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 262, 18868, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 961, 62, 17080, 1817, 7, 3866, 62, 785, 17128, 62, 30246, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27366, 262, 25131, 16916, 355, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 785, 17128, 62, 30246, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27366, 262, 662, 12, 17080, 1817, 3119, 355, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 17080, 1817, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 45767, 25, 4064, 82, 930, 3771, 12, 785, 17128, 5253, 25, 4064, 82, 2637, 11, 2116, 13, 30246, 11, 2116, 13, 3866, 62, 785, 17128, 62, 30246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 9487, 2727, 2637, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 850, 34960, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7004, 34960, 25, 3834, 34960, 338, 4554, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 7266, 34960, 628, 220, 220, 220, 2488, 7266, 34960, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5253, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2536, 25, 34600, 18663, 284, 307, 973, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 30246, 628, 220, 220, 220, 2488, 30246, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5253, 62, 22184, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13345, 540, 25, 34600, 2163, 284, 307, 973, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 30246, 62, 22184, 628, 220, 220, 220, 2488, 30246, 62, 22184, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 662, 62, 785, 17128, 62, 30246, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30388, 25, 10127, 13349, 37, 815, 779, 257, 662, 12, 785, 17128, 5253, 393, 407, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3866, 62, 785, 17128, 62, 30246, 628, 220, 220, 220, 2488, 3866, 62, 785, 17128, 62, 30246, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 662, 62, 17080, 1817, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37659, 13, 18747, 25, 3771, 12, 785, 17128, 5253, 17593, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3866, 62, 17080, 1817, 628, 220, 220, 220, 2488, 3866, 62, 17080, 1817, 13, 2617, 353, 628, 220, 220, 220, 825, 4808, 961, 62, 17080, 1817, 7, 944, 11, 2393, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5569, 82, 262, 5253, 1022, 13760, 422, 257, 662, 12, 23211, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 357, 2536, 2599, 9220, 284, 307, 9639, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 28768, 2839, 2446, 25, 1100, 62, 17080, 1817, 22446, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 18067, 2393, 7552, 198, 220, 220, 220, 220, 220, 220, 220, 7552, 796, 2393, 62, 3672, 13, 35312, 10786, 2637, 38381, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7552, 6624, 705, 40664, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18868, 796, 40213, 13, 2220, 62, 40664, 7, 7753, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7552, 6624, 705, 14116, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18868, 796, 40213, 13, 2220, 62, 14116, 7, 7753, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7567, 2696, 281, 45751, 12331, 6631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 304, 13, 28100, 1713, 12331, 10786, 8979, 7552, 407, 8018, 13, 632, 815, 307, 2035, 4600, 13, 40664, 63, 393, 764, 14116, 63, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 18868, 423, 587, 6105, 9639, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 304, 13, 11395, 12331, 10786, 6719, 12, 785, 17128, 18868, 714, 407, 587, 6105, 9639, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 262, 18868, 17593, 284, 262, 3119, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 17080, 1817, 796, 18868, 628, 220, 220, 220, 825, 3440, 7, 944, 11, 2393, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 82, 262, 2134, 422, 257, 2298, 293, 21004, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 357, 2536, 2599, 12346, 293, 338, 2393, 3108, 284, 307, 9639, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 19031, 2746, 422, 2393, 25, 4064, 82, 2644, 3256, 2393, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 62, 3672, 11, 705, 26145, 11537, 355, 8159, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 69, 796, 2298, 293, 13, 2220, 7, 47103, 62, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11600, 834, 13, 19119, 7, 404, 69, 13, 834, 11600, 834, 8, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 17633, 9639, 2637, 8, 628, 220, 220, 220, 825, 3613, 7, 944, 11, 2393, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 3080, 262, 2134, 284, 257, 2298, 293, 21004, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 357, 2536, 2599, 9220, 338, 1438, 284, 307, 7448, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 50, 2703, 2746, 284, 2393, 25, 4064, 82, 2644, 3256, 2393, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 62, 3672, 11, 705, 39346, 11537, 355, 2244, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 944, 11, 2244, 62, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 17633, 7448, 2637, 8, 628, 220, 220, 220, 825, 4197, 7, 944, 11, 1395, 11, 575, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37, 896, 1366, 287, 262, 1398, 7483, 13, 628, 220, 220, 220, 220, 220, 220, 220, 632, 815, 307, 3264, 9177, 287, 13349, 37, 1200, 6097, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 357, 37659, 13, 18747, 2599, 15690, 286, 3033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 357, 37659, 13, 18747, 2599, 15690, 286, 14722, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 4331, 7, 944, 11, 1395, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39156, 14137, 649, 1366, 1262, 262, 662, 12, 35311, 1398, 7483, 13, 628, 220, 220, 220, 220, 220, 220, 220, 632, 815, 307, 3264, 9177, 287, 13349, 37, 1200, 6097, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 357, 37659, 13, 18747, 2599, 15690, 286, 3033, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 16277, 329, 1123, 1700, 286, 262, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 198 ]
2.43038
2,054
#!/usr/bin/env python """Record default module version and symlinks as shortcuts""" import os import re import sys from datetime import datetime from pathlib import Path def read_and_record_shortcuts(path, filename): """Read content of the directory, check validity, record to YAML file""" path = Path(path) symlinks = sorted([x for x in path.iterdir() if x.is_symlink()]) default_version = None version_file = path / ".version" if version_file.exists(): version_content = version_file.read_text() match = re.search( "^set ModulesVersion (.+)$", version_content, flags=re.MULTILINE ) if match: default_version = match.group(1) else: sys.exit( "Module .version file exists, but ModulesVersion seems to be missing" ) if not (path / default_version).exists(): sys.exit( f"Module .version file exists, but version '{default_version}' does not" ) with open(filename, "w") as record: date = datetime.today().strftime("%Y-%m-%d") record.write(f"date: {date}\n") if default_version: record.write(f'default: "{default_version}"\n') if symlinks: record.write("symbolic_links:\n") for symlink in symlinks: target = os.readlink(symlink) if not symlink.exists(): sys.exit( f"Symlink '{symlink}' exists," f" but the target '{target}' does not" ) record.write(f' - name: "{symlink.name}"\n') record.write(f' points_to: "{target}"\n') def main(): """Check parameters, make sure output directory exists, record shortcuts""" if len(sys.argv) != 2: sys.exit(f"Usage: {sys.argv[0]} MODULE_DIR") metadata_dir = Path("available") metadata_dir.mkdir(exist_ok=True) read_and_record_shortcuts(sys.argv[1], metadata_dir / "shortcuts.yml") if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 23739, 4277, 8265, 2196, 290, 5659, 28751, 355, 32953, 37811, 198, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 25064, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 3108, 8019, 1330, 10644, 628, 198, 4299, 1100, 62, 392, 62, 22105, 62, 19509, 23779, 7, 6978, 11, 29472, 2599, 198, 220, 220, 220, 37227, 5569, 2695, 286, 262, 8619, 11, 2198, 19648, 11, 1700, 284, 575, 2390, 43, 2393, 37811, 198, 220, 220, 220, 3108, 796, 10644, 7, 6978, 8, 198, 220, 220, 220, 5659, 28751, 796, 23243, 26933, 87, 329, 2124, 287, 3108, 13, 2676, 15908, 3419, 611, 2124, 13, 271, 62, 1837, 4029, 676, 3419, 12962, 628, 220, 220, 220, 4277, 62, 9641, 796, 6045, 198, 220, 220, 220, 2196, 62, 7753, 796, 3108, 1220, 27071, 9641, 1, 198, 220, 220, 220, 611, 2196, 62, 7753, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 62, 11299, 796, 2196, 62, 7753, 13, 961, 62, 5239, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 12947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 61, 2617, 3401, 5028, 14815, 20262, 28988, 3, 1600, 2196, 62, 11299, 11, 9701, 28, 260, 13, 44, 16724, 4146, 8881, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 9641, 796, 2872, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26796, 764, 9641, 2393, 7160, 11, 475, 3401, 5028, 14815, 2331, 284, 307, 4814, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 6978, 1220, 4277, 62, 9641, 737, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 26796, 764, 9641, 2393, 7160, 11, 475, 2196, 705, 90, 12286, 62, 9641, 92, 6, 857, 407, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 351, 1280, 7, 34345, 11, 366, 86, 4943, 355, 1700, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 4818, 8079, 13, 40838, 22446, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 13564, 7, 69, 1, 4475, 25, 1391, 4475, 32239, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4277, 62, 9641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 13564, 7, 69, 1549, 891, 1721, 25, 45144, 12286, 62, 9641, 36786, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5659, 28751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 13564, 7203, 1837, 2022, 4160, 62, 28751, 7479, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 827, 4029, 676, 287, 5659, 28751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 28686, 13, 961, 8726, 7, 1837, 4029, 676, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 827, 4029, 676, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 13940, 4029, 676, 705, 90, 1837, 4029, 676, 92, 6, 7160, 553, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 475, 262, 2496, 705, 90, 16793, 92, 6, 857, 407, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 13564, 7, 69, 6, 220, 532, 1438, 25, 45144, 1837, 4029, 676, 13, 3672, 36786, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 13564, 7, 69, 6, 220, 220, 220, 2173, 62, 1462, 25, 45144, 16793, 36786, 59, 77, 11537, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 9787, 10007, 11, 787, 1654, 5072, 8619, 7160, 11, 1700, 32953, 37811, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 69, 1, 28350, 25, 1391, 17597, 13, 853, 85, 58, 15, 48999, 33893, 62, 34720, 4943, 198, 220, 220, 220, 20150, 62, 15908, 796, 10644, 7203, 15182, 4943, 198, 220, 220, 220, 20150, 62, 15908, 13, 28015, 15908, 7, 38476, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 1100, 62, 392, 62, 22105, 62, 19509, 23779, 7, 17597, 13, 853, 85, 58, 16, 4357, 20150, 62, 15908, 1220, 366, 19509, 23779, 13, 88, 4029, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.164426
967
import unittest from countryfinder.country_finder import find_countries
[ 11748, 555, 715, 395, 198, 198, 6738, 1499, 22805, 13, 19315, 62, 22805, 1330, 1064, 62, 9127, 1678, 628, 198 ]
3.75
20
# Copyright 2014-2015 PUNCH Cyber Analytics Group # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Overview ======== Carve OLE streams within Microsoft Office Documents """ import olefile from io import BytesIO from stoq.plugins import StoqCarverPlugin
[ 2, 220, 220, 15069, 1946, 12, 4626, 350, 47461, 15101, 30437, 4912, 198, 2, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 29064, 198, 2559, 198, 198, 9914, 303, 440, 2538, 15190, 1626, 5413, 4452, 33267, 198, 198, 37811, 198, 198, 11748, 267, 293, 7753, 198, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 198, 6738, 3995, 80, 13, 37390, 1330, 22025, 80, 9914, 332, 37233, 628 ]
3.533937
221
from game import * from random import * # elementos e seus ids # 1-fogo # 2-agua # 3-terra # 4-ar p1 = Player("P1","Guerreiro","Masculino","Indiano") ws1 = [ #Weapon(id ,element ,price ,rarity ,strength ,speed), Weapon( 1 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"espada"), Weapon( 2 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"machado"), Weapon( 3 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"clava"), Weapon( 4 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"massa"), Weapon( 5 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"adaga") ] p2 = Player("P2","Guerreiro","Masculino","Australiano") ws2 = [ #Weapon(id ,element ,price ,rarity ,strength ,speed), Weapon( 6 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"espada"), Weapon( 7 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"machado"), Weapon( 8 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"clava"), Weapon( 9 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"massa"), Weapon(10 ,randint(1,4),randint(10,200),randint(1,5),randint(10,100),randint(2,10),"adaga") ] p1.setItensInventory(ws1) p1.equip() p2.setItensInventory(ws2) p2.equip() print(p1) print(p2) print("="*100) bf = BattleField(p1,p2) print(bf.fight()) print(bf.showPlayersStatus()) time = 0 while(not bf.end() and p1.isEquipped() and p2.isEquipped()): time += 1 if time >= 60: print("apos uma luta epica os combatentes se cansaram e ambos cairam exaltos no chao e assim o campeao menos machucado foi escolhido") print(("O "+bf.champion()+" Ganhou a luta") if bf.champion() != 0 else "Deu Empate ninguem ganhou, Droga tudo isso para nada -_-") break print(bf.fight()) print(bf.showPlayersStatus())
[ 6738, 983, 1330, 1635, 198, 6738, 4738, 1330, 1635, 198, 2, 5002, 418, 304, 384, 385, 220, 2340, 198, 2, 352, 12, 69, 24076, 198, 2, 362, 12, 363, 6413, 198, 2, 513, 12, 353, 430, 198, 2, 604, 12, 283, 198, 79, 16, 796, 7853, 7203, 47, 16, 2430, 8205, 263, 260, 7058, 2430, 38224, 3129, 2879, 2430, 5497, 10115, 4943, 198, 18504, 16, 796, 685, 198, 220, 220, 1303, 27632, 7, 312, 837, 30854, 220, 220, 220, 220, 837, 20888, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 81, 6806, 220, 220, 220, 220, 220, 837, 41402, 220, 220, 220, 220, 220, 220, 837, 12287, 828, 220, 198, 220, 220, 220, 13072, 7, 352, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 9774, 4763, 12340, 198, 220, 220, 220, 13072, 7, 362, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 76, 620, 4533, 12340, 198, 220, 220, 220, 13072, 7, 513, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 565, 4170, 12340, 198, 220, 220, 220, 13072, 7, 604, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 22208, 64, 12340, 198, 220, 220, 220, 13072, 7, 642, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 324, 8126, 4943, 198, 220, 220, 220, 2361, 198, 79, 17, 796, 7853, 7203, 47, 17, 2430, 8205, 263, 260, 7058, 2430, 38224, 3129, 2879, 2430, 19763, 10115, 4943, 198, 18504, 17, 796, 685, 198, 220, 220, 1303, 27632, 7, 312, 837, 30854, 220, 220, 220, 220, 837, 20888, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 81, 6806, 220, 220, 220, 220, 220, 837, 41402, 220, 220, 220, 220, 220, 220, 837, 12287, 828, 220, 198, 220, 220, 220, 13072, 7, 718, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 9774, 4763, 12340, 198, 220, 220, 220, 13072, 7, 767, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 76, 620, 4533, 12340, 198, 220, 220, 220, 13072, 7, 807, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 565, 4170, 12340, 198, 220, 220, 220, 13072, 7, 860, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 22208, 64, 12340, 198, 220, 220, 220, 13072, 7, 940, 837, 25192, 600, 7, 16, 11, 19, 828, 25192, 600, 7, 940, 11, 2167, 828, 25192, 600, 7, 16, 11, 20, 828, 25192, 600, 7, 940, 11, 3064, 828, 25192, 600, 7, 17, 11, 940, 27267, 324, 8126, 4943, 198, 220, 220, 220, 2361, 198, 79, 16, 13, 2617, 1026, 641, 818, 17158, 7, 18504, 16, 8, 198, 79, 16, 13, 4853, 541, 3419, 198, 79, 17, 13, 2617, 1026, 641, 818, 17158, 7, 18504, 17, 8, 198, 79, 17, 13, 4853, 541, 3419, 198, 4798, 7, 79, 16, 8, 198, 4798, 7, 79, 17, 8, 198, 198, 4798, 7203, 2625, 9, 3064, 8, 198, 198, 19881, 796, 5838, 15878, 7, 79, 16, 11, 79, 17, 8, 198, 198, 4798, 7, 19881, 13, 15481, 28955, 198, 4798, 7, 19881, 13, 12860, 24860, 19580, 28955, 198, 198, 2435, 796, 657, 198, 198, 4514, 7, 1662, 275, 69, 13, 437, 3419, 290, 279, 16, 13, 271, 23588, 3949, 3419, 290, 279, 17, 13, 271, 23588, 3949, 3419, 2599, 198, 220, 220, 220, 640, 15853, 352, 628, 220, 220, 220, 611, 640, 18189, 3126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 499, 418, 334, 2611, 300, 29822, 2462, 3970, 28686, 5249, 298, 274, 384, 23916, 41158, 304, 4915, 418, 269, 958, 321, 409, 2501, 418, 645, 442, 5488, 304, 840, 320, 267, 12172, 431, 5488, 1450, 418, 3235, 1229, 4533, 11511, 72, 3671, 349, 71, 17305, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 46, 43825, 19881, 13, 354, 6734, 3419, 10, 1, 23207, 15710, 257, 300, 29822, 4943, 611, 275, 69, 13, 354, 6734, 3419, 14512, 657, 2073, 366, 5005, 84, 2295, 79, 378, 299, 6680, 368, 308, 272, 15710, 11, 360, 3828, 64, 256, 12003, 318, 568, 31215, 299, 4763, 532, 22955, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 3601, 7, 19881, 13, 15481, 28955, 198, 220, 220, 220, 3601, 7, 19881, 13, 12860, 24860, 19580, 28955, 628, 198 ]
2.141189
942
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The TensorBoard Scalars plugin. See `http_api.md` in this directory for specifications of the routes for this plugin. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import six from six import StringIO from werkzeug import wrappers import numpy as np from tensorboard import errors from tensorboard import plugin_util from tensorboard.backend import http_util from tensorboard.data import provider from tensorboard.plugins import base_plugin from tensorboard.plugins.scalar import metadata from tensorboard.util import tensor_util _DEFAULT_DOWNSAMPLING = 1000 # scalars per time series class OutputFormat(object): """An enum used to list the valid output formats for API calls.""" JSON = "json" CSV = "csv" class ScalarsPlugin(base_plugin.TBPlugin): """Scalars Plugin for TensorBoard.""" plugin_name = metadata.PLUGIN_NAME def __init__(self, context): """Instantiates ScalarsPlugin via TensorBoard core. Args: context: A base_plugin.TBContext instance. """ self._downsample_to = (context.sampling_hints or {}).get( self.plugin_name, _DEFAULT_DOWNSAMPLING ) self._data_provider = context.data_provider def index_impl(self, ctx, experiment=None): """Return {runName: {tagName: {displayName: ..., description: ...}}}.""" mapping = self._data_provider.list_scalars( ctx, experiment_id=experiment, plugin_name=metadata.PLUGIN_NAME, ) result = {run: {} for run in mapping} for (run, tag_to_content) in six.iteritems(mapping): for (tag, metadatum) in six.iteritems(tag_to_content): description = plugin_util.markdown_to_safe_html( metadatum.description ) result[run][tag] = { "displayName": metadatum.display_name, "description": description, } return result def scalars_impl(self, ctx, tag, run, experiment, output_format): """Result of the form `(body, mime_type)`.""" all_scalars = self._data_provider.read_scalars( ctx, experiment_id=experiment, plugin_name=metadata.PLUGIN_NAME, downsample=self._downsample_to, run_tag_filter=provider.RunTagFilter(runs=[run], tags=[tag]), ) scalars = all_scalars.get(run, {}).get(tag, None) if scalars is None: raise errors.NotFoundError( "No scalar data for run=%r, tag=%r" % (run, tag) ) values = [(x.wall_time, x.step, x.value) for x in scalars] if output_format == OutputFormat.CSV: string_io = StringIO() writer = csv.writer(string_io) writer.writerow(["Wall time", "Step", "Value"]) writer.writerows(values) return (string_io.getvalue(), "text/csv") else: return (values, "application/json") @wrappers.Request.application @wrappers.Request.application def scalars_route(self, request): """Given a tag and single run, return array of ScalarEvents.""" tag = request.args.get("tag") run = request.args.get("run") ctx = plugin_util.context(request.environ) experiment = plugin_util.experiment_id(request.environ) output_format = request.args.get("format") (body, mime_type) = self.scalars_impl( ctx, tag, run, experiment, output_format ) return http_util.Respond(request, body, mime_type)
[ 2, 15069, 2177, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 464, 309, 22854, 29828, 34529, 945, 13877, 13, 198, 198, 6214, 4600, 4023, 62, 15042, 13, 9132, 63, 287, 428, 8619, 329, 20640, 286, 262, 11926, 329, 198, 5661, 13877, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 17268, 198, 11748, 269, 21370, 198, 198, 11748, 2237, 198, 6738, 2237, 1330, 10903, 9399, 198, 6738, 266, 9587, 2736, 1018, 1330, 7917, 11799, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 11192, 273, 3526, 1330, 8563, 198, 6738, 11192, 273, 3526, 1330, 13877, 62, 22602, 198, 6738, 11192, 273, 3526, 13, 1891, 437, 1330, 2638, 62, 22602, 198, 6738, 11192, 273, 3526, 13, 7890, 1330, 10131, 198, 6738, 11192, 273, 3526, 13, 37390, 1330, 2779, 62, 33803, 198, 6738, 11192, 273, 3526, 13, 37390, 13, 1416, 282, 283, 1330, 20150, 198, 6738, 11192, 273, 3526, 13, 22602, 1330, 11192, 273, 62, 22602, 628, 198, 62, 7206, 38865, 62, 35, 3913, 8035, 2390, 6489, 2751, 796, 8576, 220, 1303, 16578, 945, 583, 640, 2168, 628, 198, 4871, 25235, 26227, 7, 15252, 2599, 198, 220, 220, 220, 37227, 2025, 33829, 973, 284, 1351, 262, 4938, 5072, 17519, 329, 7824, 3848, 526, 15931, 628, 220, 220, 220, 19449, 796, 366, 17752, 1, 198, 220, 220, 220, 44189, 796, 366, 40664, 1, 628, 198, 4871, 34529, 945, 37233, 7, 8692, 62, 33803, 13, 22737, 37233, 2599, 198, 220, 220, 220, 37227, 3351, 282, 945, 42636, 329, 309, 22854, 29828, 526, 15931, 628, 220, 220, 220, 13877, 62, 3672, 796, 20150, 13, 6489, 7340, 1268, 62, 20608, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4732, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6310, 17096, 689, 34529, 945, 37233, 2884, 309, 22854, 29828, 4755, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 25, 317, 2779, 62, 33803, 13, 51, 2749, 261, 5239, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30371, 1403, 62, 1462, 796, 357, 22866, 13, 37687, 11347, 62, 71, 29503, 393, 23884, 737, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33803, 62, 3672, 11, 4808, 7206, 38865, 62, 35, 3913, 8035, 2390, 6489, 2751, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 62, 15234, 1304, 796, 4732, 13, 7890, 62, 15234, 1304, 628, 220, 220, 220, 825, 6376, 62, 23928, 7, 944, 11, 269, 17602, 11, 6306, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1391, 5143, 5376, 25, 1391, 12985, 5376, 25, 1391, 13812, 5376, 25, 2644, 11, 6764, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 42535, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 16855, 796, 2116, 13557, 7890, 62, 15234, 1304, 13, 4868, 62, 1416, 282, 945, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 11, 6306, 62, 312, 28, 23100, 3681, 11, 13877, 62, 3672, 28, 38993, 13, 6489, 7340, 1268, 62, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1391, 5143, 25, 23884, 329, 1057, 287, 16855, 92, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 5143, 11, 7621, 62, 1462, 62, 11299, 8, 287, 2237, 13, 2676, 23814, 7, 76, 5912, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 12985, 11, 1138, 324, 21307, 8, 287, 2237, 13, 2676, 23814, 7, 12985, 62, 1462, 62, 11299, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 796, 13877, 62, 22602, 13, 4102, 2902, 62, 1462, 62, 21230, 62, 6494, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 324, 21307, 13, 11213, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 5143, 7131, 12985, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13812, 5376, 1298, 1138, 324, 21307, 13, 13812, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 6764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 16578, 945, 62, 23928, 7, 944, 11, 269, 17602, 11, 7621, 11, 1057, 11, 6306, 11, 5072, 62, 18982, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23004, 286, 262, 1296, 4600, 7, 2618, 11, 285, 524, 62, 4906, 8, 63, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 1416, 282, 945, 796, 2116, 13557, 7890, 62, 15234, 1304, 13, 961, 62, 1416, 282, 945, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6306, 62, 312, 28, 23100, 3681, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13877, 62, 3672, 28, 38993, 13, 6489, 7340, 1268, 62, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21838, 1403, 28, 944, 13557, 30371, 1403, 62, 1462, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 12985, 62, 24455, 28, 15234, 1304, 13, 10987, 24835, 22417, 7, 48381, 41888, 5143, 4357, 15940, 41888, 12985, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 16578, 945, 796, 477, 62, 1416, 282, 945, 13, 1136, 7, 5143, 11, 23884, 737, 1136, 7, 12985, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16578, 945, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 3673, 21077, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2949, 16578, 283, 1366, 329, 1057, 28, 4, 81, 11, 7621, 28, 4, 81, 1, 4064, 357, 5143, 11, 7621, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 47527, 87, 13, 11930, 62, 2435, 11, 2124, 13, 9662, 11, 2124, 13, 8367, 8, 329, 2124, 287, 16578, 945, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5072, 62, 18982, 6624, 25235, 26227, 13, 7902, 53, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 62, 952, 796, 10903, 9399, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 269, 21370, 13, 16002, 7, 8841, 62, 952, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 7, 14692, 22401, 640, 1600, 366, 8600, 1600, 366, 11395, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 1666, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 8841, 62, 952, 13, 1136, 8367, 22784, 366, 5239, 14, 40664, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 27160, 11, 366, 31438, 14, 17752, 4943, 628, 220, 220, 220, 2488, 29988, 11799, 13, 18453, 13, 31438, 628, 220, 220, 220, 2488, 29988, 11799, 13, 18453, 13, 31438, 198, 220, 220, 220, 825, 16578, 945, 62, 38629, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15056, 257, 7621, 290, 2060, 1057, 11, 1441, 7177, 286, 34529, 283, 37103, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 2581, 13, 22046, 13, 1136, 7203, 12985, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 796, 2581, 13, 22046, 13, 1136, 7203, 5143, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 796, 13877, 62, 22602, 13, 22866, 7, 25927, 13, 268, 2268, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6306, 796, 13877, 62, 22602, 13, 23100, 3681, 62, 312, 7, 25927, 13, 268, 2268, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 18982, 796, 2581, 13, 22046, 13, 1136, 7203, 18982, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2618, 11, 285, 524, 62, 4906, 8, 796, 2116, 13, 1416, 282, 945, 62, 23928, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 11, 7621, 11, 1057, 11, 6306, 11, 5072, 62, 18982, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 62, 22602, 13, 19309, 623, 7, 25927, 11, 1767, 11, 285, 524, 62, 4906, 8, 198 ]
2.516129
1,736
from django.conf.urls import url, include from django.contrib.auth.decorators import login_required from django.urls import path from . import views from rest_framework.routers import DefaultRouter app_name = 'djangobasic' # Create a router and register our viewsets with it. router = DefaultRouter() router.register(r'survey', views.SurveyViewSet) router.register(r'question', views.QuestionViewSet) router.register(r'choice', views.ChoiceViewSet) router.register(r'respond', views.ResponseViewSet) router.register(r'user', views.UserViewSet) urlpatterns = [ path('', login_required(views.IndexView.as_view()), name='index'), path('<int:pk>/', login_required(views.DetailView.as_view()), name='detail'), path('<int:pk>/results/', login_required(views.ResultsView.as_view()), name='results'), path('<int:question_id>/respond/', views.respond, name='respond'), url(r'^api/', include(router.urls)), ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 11, 2291, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 764, 1330, 5009, 198, 198, 6738, 1334, 62, 30604, 13, 472, 1010, 1330, 15161, 49, 39605, 628, 198, 1324, 62, 3672, 796, 705, 28241, 648, 672, 292, 291, 6, 628, 198, 2, 13610, 257, 20264, 290, 7881, 674, 5009, 1039, 351, 340, 13, 198, 472, 353, 796, 15161, 49, 39605, 3419, 198, 472, 353, 13, 30238, 7, 81, 338, 333, 3304, 3256, 5009, 13, 14214, 3304, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 6, 25652, 3256, 5009, 13, 24361, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 6, 25541, 3256, 5009, 13, 46770, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 821, 2777, 623, 3256, 5009, 13, 31077, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 6, 7220, 3256, 5009, 13, 12982, 7680, 7248, 8, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 17594, 62, 35827, 7, 33571, 13, 15732, 7680, 13, 292, 62, 1177, 3419, 828, 1438, 11639, 9630, 33809, 198, 220, 220, 220, 3108, 10786, 27, 600, 25, 79, 74, 29, 14, 3256, 17594, 62, 35827, 7, 33571, 13, 11242, 603, 7680, 13, 292, 62, 1177, 3419, 828, 1438, 11639, 49170, 33809, 198, 220, 220, 220, 3108, 10786, 27, 600, 25, 79, 74, 29, 14, 43420, 14, 3256, 17594, 62, 35827, 7, 33571, 13, 25468, 7680, 13, 292, 62, 1177, 3419, 828, 1438, 11639, 43420, 33809, 198, 220, 220, 220, 3108, 10786, 27, 600, 25, 25652, 62, 312, 29, 14, 5546, 14, 3256, 5009, 13, 5546, 11, 1438, 11639, 5546, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 15042, 14, 3256, 2291, 7, 472, 353, 13, 6371, 82, 36911, 198, 60, 628, 198 ]
2.876161
323
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import logging from paddle.fluid.op import Operator, DynamicRecurrentOp import paddle.fluid.core as core import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid.framework import Program, program_guard class BeamSearchOpTester(unittest.TestCase): """unittest of beam_search_op""" if __name__ == '__main__': unittest.main()
[ 2, 220, 220, 15069, 357, 66, 8, 2864, 350, 37382, 47, 37382, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 18931, 198, 6738, 39517, 13, 35522, 312, 13, 404, 1330, 35946, 11, 26977, 6690, 6657, 18257, 198, 11748, 39517, 13, 35522, 312, 13, 7295, 355, 4755, 198, 11748, 555, 715, 395, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 39517, 13, 35522, 312, 355, 11711, 198, 6738, 39517, 13, 35522, 312, 13, 30604, 1330, 6118, 11, 1430, 62, 14864, 628, 198, 198, 4871, 25855, 18243, 18257, 51, 7834, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 403, 715, 395, 286, 15584, 62, 12947, 62, 404, 37811, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.520833
288
from .uploads_images import custom_upload_to
[ 6738, 764, 39920, 62, 17566, 1330, 2183, 62, 25850, 62, 1462, 198 ]
3.75
12
import pickle get_random_pgm_groups()
[ 11748, 2298, 293, 198, 198, 1136, 62, 25120, 62, 6024, 76, 62, 24432, 3419, 198 ]
2.6
15
# Copyright (C) 2021 rezasf - All Rights Reserved import random res = random.randint(0,40) count = 1 while True: daf =int(input("ye adad vared kon: ")) if daf == res : print("bad az "+ str(count) +" bar talash"+" shoma bordid") break elif daf > res : print("bro pain") count += 1 elif daf < res : print("bro bala") count += 1
[ 2, 15069, 357, 34, 8, 33448, 302, 89, 292, 69, 532, 1439, 6923, 33876, 198, 11748, 4738, 198, 411, 796, 4738, 13, 25192, 600, 7, 15, 11, 1821, 8, 198, 9127, 796, 352, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 288, 1878, 796, 600, 7, 15414, 7203, 5948, 512, 324, 410, 1144, 479, 261, 25, 220, 366, 4008, 198, 220, 220, 220, 611, 288, 1878, 6624, 581, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14774, 35560, 43825, 965, 7, 9127, 8, 1343, 1, 2318, 3305, 1077, 1, 10, 1, 427, 6086, 275, 585, 312, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1288, 361, 288, 1878, 1875, 581, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7957, 2356, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 1288, 361, 288, 1878, 1279, 581, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7957, 3652, 64, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 220, 198 ]
2.135135
185
import magnetovis as mvs import paraview.simple as pvs time = [2015,3,20,0,0,0] # time not used if coord_sys = GSM coord_sys = 'GSM' M=7.788E22 dipoleFieldSourceDisplay, renderView, dipoleFieldSource = mvs.dipole_field(time, M, coord_sys) # create a new 'Glyph' glyph = pvs.Glyph(registrationName='-- Glyph', Input=dipoleFieldSource, GlyphType='Arrow') glyph.OrientationArray = ['POINTS', 'B_field'] glyph.ScaleArray = ['POINTS', 'No scale array'] # show data in view glyphDisplay = pvs.Show(glyph, renderView, 'GeometryRepresentation') glyphDisplay.Opacity = 0.72 # center and position camera renderView.CameraPosition = [0, -120, 0] renderView.CameraFocalPoint = [0, 0.0, 0] renderView.CameraViewUp = [0.0, 0.0, 1.0] pvs.Hide(dipoleFieldSource, renderView) renderView.Update()
[ 11748, 19972, 709, 271, 355, 285, 14259, 198, 11748, 1582, 615, 769, 13, 36439, 355, 279, 14259, 198, 198, 2435, 796, 685, 4626, 11, 18, 11, 1238, 11, 15, 11, 15, 11, 15, 60, 1303, 640, 407, 973, 611, 6349, 62, 17597, 796, 402, 12310, 198, 37652, 62, 17597, 796, 705, 38, 12310, 6, 198, 44, 28, 22, 13, 22, 3459, 36, 1828, 198, 67, 541, 2305, 15878, 7416, 23114, 11, 8543, 7680, 11, 19550, 2305, 15878, 7416, 796, 220, 285, 14259, 13, 67, 541, 2305, 62, 3245, 7, 2435, 11, 337, 11, 6349, 62, 17597, 8, 198, 198, 2, 2251, 257, 649, 705, 38, 306, 746, 6, 198, 10853, 746, 796, 279, 14259, 13, 38, 306, 746, 7, 2301, 33397, 5376, 11639, 438, 27949, 746, 3256, 23412, 28, 67, 541, 2305, 15878, 7416, 11, 198, 220, 220, 220, 27949, 746, 6030, 11639, 3163, 808, 11537, 198, 10853, 746, 13, 46, 8289, 341, 19182, 796, 37250, 16402, 1268, 4694, 3256, 705, 33, 62, 3245, 20520, 198, 10853, 746, 13, 29990, 19182, 796, 37250, 16402, 1268, 4694, 3256, 705, 2949, 5046, 7177, 20520, 198, 198, 2, 905, 1366, 287, 1570, 198, 10853, 746, 23114, 796, 279, 14259, 13, 15307, 7, 10853, 746, 11, 8543, 7680, 11, 705, 10082, 15748, 40171, 341, 11537, 198, 10853, 746, 23114, 13, 18257, 4355, 796, 657, 13, 4761, 198, 198, 2, 3641, 290, 2292, 4676, 198, 13287, 7680, 13, 35632, 26545, 796, 685, 15, 11, 532, 10232, 11, 657, 60, 198, 13287, 7680, 13, 35632, 37, 4374, 12727, 796, 685, 15, 11, 657, 13, 15, 11, 657, 60, 198, 13287, 7680, 13, 35632, 7680, 4933, 796, 685, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 60, 198, 198, 79, 14259, 13, 38518, 7, 67, 541, 2305, 15878, 7416, 11, 8543, 7680, 8, 198, 13287, 7680, 13, 10260, 3419, 198 ]
2.578431
306
import functions as f import random import numpy as np import matplotlib.pyplot as plt import json def crawl2(url, depth, first_call = 0, home_tags = None): ''' Crawl the yt web graph and return relevance index upto defined depth. ''' print("---\tat depth = {}".format(depth)) if depth == 0: return [] tags = home_tags links = None attempt=5 while (tags==None or links==None) and attempt>0: attempt -= 1 tags, links = f.getDataFromUrl(url) if tags == None or links == None: print("---\t---\tpage issues...retrying") continue if attempt==0: print("---\t---\tran out of attempts") return [] temp_tags = None attempt = 10 while temp_tags==None and attempt>0: attempt -= 1 link = random.choice(links) temp_tags, _ = f.getDataFromUrl(link) if temp_tags == None: print("---\t---\tpage issues...skipping page") continue if attempt==0: print("---\t---\tran out of attempts") return [] relevance_list = [] relevance = 0 if first_call==0: tags = home_tags relevance = f.getRelevance(tags, temp_tags) relevance_list.append(relevance) return_list = crawl2(link, depth-1, 0, tags) relevance_list = relevance_list + return_list return relevance_list # Start URLs urls = [] with open("links.txt","r") as file: urls = file.readlines() urls = list(set(urls)) # Each item in this list is a list with relevance # at different depths signified by their indices results_for_urls = [] depth_range = 16 num_links = len(urls) lim_urls = random.sample(urls,num_links) results_for_json = {} for index, url in enumerate(lim_urls): print("FOR \turl#{}/{}".format(index + 1, len(lim_urls))) try: result = crawl2(url, depth_range, 1) except: continue if len(result)==depth_range: # Save result in json results_for_json[url] = result with open("results_appended_new.json","w") as file: file.write(json.dumps(results_for_json)) # links_done.add(url) results_for_urls.append(result) visualize_results(results_for_urls)
[ 11748, 5499, 355, 277, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 33918, 198, 198, 4299, 27318, 17, 7, 6371, 11, 6795, 11, 717, 62, 13345, 796, 657, 11, 1363, 62, 31499, 796, 6045, 2599, 198, 197, 7061, 6, 198, 197, 34, 13132, 262, 331, 83, 3992, 4823, 290, 1441, 23082, 6376, 198, 197, 37623, 78, 5447, 6795, 13, 198, 197, 7061, 6, 198, 197, 4798, 7203, 6329, 59, 83, 265, 6795, 796, 23884, 1911, 18982, 7, 18053, 4008, 198, 197, 361, 6795, 6624, 657, 25, 198, 197, 197, 7783, 17635, 198, 197, 198, 197, 31499, 796, 1363, 62, 31499, 198, 197, 28751, 796, 6045, 198, 197, 1078, 1791, 28, 20, 198, 197, 4514, 357, 31499, 855, 14202, 393, 6117, 855, 14202, 8, 290, 2230, 29, 15, 25, 198, 197, 197, 1078, 1791, 48185, 352, 198, 197, 197, 31499, 11, 6117, 796, 277, 13, 1136, 6601, 4863, 28165, 7, 6371, 8, 198, 197, 197, 361, 15940, 6624, 6045, 393, 6117, 6624, 6045, 25, 198, 197, 197, 197, 4798, 7203, 6329, 59, 83, 6329, 59, 83, 7700, 2428, 986, 1186, 14992, 4943, 198, 197, 197, 197, 43043, 198, 197, 198, 197, 361, 2230, 855, 15, 25, 198, 197, 197, 4798, 7203, 6329, 59, 83, 6329, 59, 2213, 272, 503, 286, 6370, 4943, 198, 197, 197, 7783, 17635, 628, 197, 29510, 62, 31499, 796, 6045, 198, 197, 1078, 1791, 796, 838, 198, 197, 4514, 20218, 62, 31499, 855, 14202, 290, 2230, 29, 15, 25, 198, 197, 197, 1078, 1791, 48185, 352, 198, 197, 197, 8726, 796, 4738, 13, 25541, 7, 28751, 8, 198, 197, 197, 29510, 62, 31499, 11, 4808, 796, 277, 13, 1136, 6601, 4863, 28165, 7, 8726, 8, 198, 197, 197, 361, 20218, 62, 31499, 6624, 6045, 25, 198, 197, 197, 197, 4798, 7203, 6329, 59, 83, 6329, 59, 83, 7700, 2428, 986, 20545, 2105, 2443, 4943, 198, 197, 197, 197, 43043, 198, 197, 361, 2230, 855, 15, 25, 198, 197, 197, 4798, 7203, 6329, 59, 83, 6329, 59, 2213, 272, 503, 286, 6370, 4943, 198, 197, 197, 7783, 17635, 198, 197, 260, 2768, 590, 62, 4868, 796, 17635, 198, 197, 260, 2768, 590, 796, 657, 198, 197, 361, 717, 62, 13345, 855, 15, 25, 198, 197, 197, 31499, 796, 1363, 62, 31499, 198, 197, 260, 2768, 590, 796, 277, 13, 1136, 3041, 2768, 590, 7, 31499, 11, 20218, 62, 31499, 8, 198, 197, 260, 2768, 590, 62, 4868, 13, 33295, 7, 260, 2768, 590, 8, 198, 197, 7783, 62, 4868, 796, 27318, 17, 7, 8726, 11, 6795, 12, 16, 11, 657, 11, 15940, 8, 198, 197, 260, 2768, 590, 62, 4868, 796, 23082, 62, 4868, 1343, 1441, 62, 4868, 198, 197, 7783, 23082, 62, 4868, 198, 198, 2, 7253, 32336, 198, 6371, 82, 796, 17635, 198, 4480, 1280, 7203, 28751, 13, 14116, 2430, 81, 4943, 355, 2393, 25, 198, 197, 6371, 82, 796, 2393, 13, 961, 6615, 3419, 198, 198, 6371, 82, 796, 1351, 7, 2617, 7, 6371, 82, 4008, 198, 2, 5501, 2378, 287, 428, 1351, 318, 257, 1351, 351, 23082, 198, 2, 379, 1180, 21593, 1051, 1431, 416, 511, 36525, 198, 43420, 62, 1640, 62, 6371, 82, 796, 17635, 198, 18053, 62, 9521, 796, 1467, 198, 22510, 62, 28751, 796, 18896, 7, 6371, 82, 8, 198, 2475, 62, 6371, 82, 796, 4738, 13, 39873, 7, 6371, 82, 11, 22510, 62, 28751, 8, 198, 198, 43420, 62, 1640, 62, 17752, 796, 23884, 198, 1640, 6376, 11, 19016, 287, 27056, 378, 7, 2475, 62, 6371, 82, 2599, 198, 220, 220, 220, 3601, 7203, 13775, 3467, 83, 6371, 2, 90, 92, 14, 90, 92, 1911, 18982, 7, 9630, 1343, 352, 11, 18896, 7, 2475, 62, 6371, 82, 22305, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 27318, 17, 7, 6371, 11, 6795, 62, 9521, 11, 352, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 611, 18896, 7, 20274, 8, 855, 18053, 62, 9521, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 1255, 287, 33918, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 1640, 62, 17752, 58, 6371, 60, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 43420, 62, 1324, 1631, 62, 3605, 13, 17752, 2430, 86, 4943, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 17752, 13, 67, 8142, 7, 43420, 62, 1640, 62, 17752, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6117, 62, 28060, 13, 2860, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 1640, 62, 6371, 82, 13, 33295, 7, 20274, 8, 198, 198, 41464, 1096, 62, 43420, 7, 43420, 62, 1640, 62, 6371, 82, 8, 628, 198 ]
2.506732
817
import numpy as np import innvestigate import innvestigate.utils as iutils import innvestigate.utils.visualizations as ivis
[ 11748, 299, 32152, 355, 45941, 198, 198, 11748, 3527, 4223, 10055, 198, 11748, 3527, 4223, 10055, 13, 26791, 355, 1312, 26791, 198, 11748, 3527, 4223, 10055, 13, 26791, 13, 41464, 4582, 355, 21628, 271, 628, 628, 628, 198 ]
3.447368
38
from django.db import models import uuid from model_utils.models import TimeStampedModel from django.conf import settings # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 11748, 334, 27112, 198, 6738, 2746, 62, 26791, 13, 27530, 1330, 3862, 1273, 13322, 17633, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 628, 198, 198, 2, 13610, 534, 4981, 994, 13, 628, 628 ]
3.690476
42
import platform, sublime, sublime_plugin
[ 11748, 3859, 11, 41674, 11, 41674, 62, 33803, 628, 198 ]
4.3
10
from ..common.trex_exceptions import * from ..utils.common import * from ..utils.text_tables import TRexTextTable, print_table_with_header from ..utils import parsing_opts
[ 6738, 11485, 11321, 13, 83, 21510, 62, 1069, 11755, 1330, 1635, 198, 6738, 11485, 26791, 13, 11321, 1330, 1635, 198, 6738, 11485, 26791, 13, 5239, 62, 83, 2977, 1330, 7579, 1069, 8206, 10962, 11, 3601, 62, 11487, 62, 4480, 62, 25677, 198, 6738, 11485, 26791, 1330, 32096, 62, 404, 912, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628 ]
3.145161
62
import turtle import pyperclip as pc class TreeBuild: """ Display how our tree looks like. """ @staticmethod @staticmethod class SquareBracketToCurlyBracket: """ [[ ]] -> {{}} or [] -> {} or [[...[]...]] -> {{..{}..}} """ if __name__ == "__main__": rep = "y" while rep == "y" or rep == "Y": print("*" * 10 + " ~~HELPER MENU~~ " + "*" * 10 + "\n") print("1. Draw Tree (press 1) ") print("2. Convert [] to {} (press 2) ") print("3. String to CharArray e.g., \"add\" -> \"{'a','d','d'}\" (press 3)") inp = int(input("\nPress enter your choice : ")) print() if inp == 1: t = TreeBuild() elif inp == 2: t = SquareBracketToCurlyBracket() elif inp == 3: t = ToCharArray() else: exit() rep = input( "\nDo you want to see 'HELPER MENU', if true 'y' else 'n' : " ).strip()
[ 11748, 28699, 198, 11748, 12972, 525, 15036, 355, 40653, 628, 198, 198, 4871, 12200, 15580, 25, 198, 220, 220, 220, 37227, 16531, 703, 674, 5509, 3073, 588, 13, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 9276, 9414, 8317, 2514, 26628, 306, 9414, 8317, 25, 198, 220, 220, 220, 37227, 16410, 2361, 60, 4613, 22935, 11709, 393, 17635, 4613, 23884, 393, 16410, 986, 21737, 986, 11907, 4613, 22935, 492, 90, 92, 492, 11709, 37227, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1128, 796, 366, 88, 1, 198, 220, 220, 220, 981, 1128, 6624, 366, 88, 1, 393, 1128, 6624, 366, 56, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9, 1, 1635, 838, 1343, 366, 220, 4907, 39, 3698, 18973, 41597, 52, 4907, 366, 1343, 366, 9, 1, 1635, 838, 1343, 37082, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 16, 13, 15315, 12200, 357, 8439, 352, 8, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 17, 13, 38240, 17635, 284, 23884, 357, 8439, 362, 8, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18, 13, 10903, 284, 3178, 19182, 304, 13, 70, 1539, 19990, 2860, 7879, 4613, 19990, 90, 6, 64, 41707, 67, 41707, 67, 6, 92, 7879, 357, 8439, 513, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 287, 79, 796, 493, 7, 15414, 7203, 59, 77, 13800, 3802, 534, 3572, 1058, 366, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 287, 79, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 12200, 15580, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 287, 79, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 9276, 9414, 8317, 2514, 26628, 306, 9414, 8317, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 287, 79, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 1675, 12441, 19182, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1128, 796, 5128, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37082, 77, 5211, 345, 765, 284, 766, 705, 39, 3698, 18973, 41597, 52, 3256, 611, 2081, 705, 88, 6, 2073, 705, 77, 6, 1058, 366, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 36311, 3419, 198 ]
2.071739
460
import pickle import os import json from sentence_transformers import SentenceTransformer if __name__ == "__main__": model = SentenceTransformer('distiluse-base-multilingual-cased', device='cuda') # path = ['./chat_text/poetry.txt', './chat_text/chat_text.txt'] # path = ['./chat_text/chat_text.txt', './chat_text/ownthink_v2.txt'] path = ['./chat_text/basic_settings.jsonl', './chat_text/natsu_chat.jsonl'] limit = 300000 count = 0 if os.path.isfile('embeddings.pickle'): with open('embeddings.pickle', 'rb') as file: embedding_cache = pickle.load(file) else: embedding_cache = {} for each_path in path: print(each_path) with open(each_path, 'r', encoding='utf-8') as f: questions = [] for each_line in f: obj = json.loads(each_line) question, answer = obj['question'], obj['answer'] if 'context' in obj: context = obj['context'] for each_context in context: if each_context not in embedding_cache: questions.append(each_context) if question not in embedding_cache: questions.append(question) if len(questions) > 4096 * 10: out = model.encode(questions, batch_size=512, show_progress_bar=True) for i, each_out in enumerate(out): embedding_cache[questions[i]] = each_out questions.clear() count += 1 if count > limit: break # 把剩余question全部处理完 if len(questions) != 0: out = model.encode(questions, show_progress_bar=True) for i, each_out in enumerate(out): embedding_cache[questions[i]] = each_out questions.clear() if count > limit: break with open('embeddings.pickle', 'wb') as file: pickle.dump(embedding_cache, file)
[ 11748, 2298, 293, 198, 11748, 28686, 198, 11748, 33918, 198, 6738, 6827, 62, 35636, 364, 1330, 11352, 594, 8291, 16354, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2746, 796, 11352, 594, 8291, 16354, 10786, 17080, 346, 1904, 12, 8692, 12, 16680, 34900, 12, 66, 839, 3256, 3335, 11639, 66, 15339, 11537, 198, 220, 220, 220, 1303, 3108, 796, 685, 4458, 14, 17006, 62, 5239, 14, 7501, 11973, 13, 14116, 3256, 705, 19571, 17006, 62, 5239, 14, 17006, 62, 5239, 13, 14116, 20520, 198, 220, 220, 220, 1303, 3108, 796, 685, 4458, 14, 17006, 62, 5239, 14, 17006, 62, 5239, 13, 14116, 3256, 705, 19571, 17006, 62, 5239, 14, 593, 14925, 62, 85, 17, 13, 14116, 20520, 198, 220, 220, 220, 3108, 796, 685, 4458, 14, 17006, 62, 5239, 14, 35487, 62, 33692, 13, 17752, 75, 3256, 705, 19571, 17006, 62, 5239, 14, 77, 19231, 62, 17006, 13, 17752, 75, 20520, 198, 220, 220, 220, 4179, 796, 5867, 830, 198, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 10786, 20521, 67, 654, 13, 27729, 293, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 10786, 20521, 67, 654, 13, 27729, 293, 3256, 705, 26145, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 23870, 796, 2298, 293, 13, 2220, 7, 7753, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 23870, 796, 23884, 198, 220, 220, 220, 329, 1123, 62, 6978, 287, 3108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 27379, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 27379, 62, 6978, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2683, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1123, 62, 1370, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 33918, 13, 46030, 7, 27379, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1808, 11, 3280, 796, 26181, 17816, 25652, 6, 4357, 26181, 17816, 41484, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 22866, 6, 287, 26181, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 26181, 17816, 22866, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1123, 62, 22866, 287, 4732, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1123, 62, 22866, 407, 287, 11525, 12083, 62, 23870, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2683, 13, 33295, 7, 27379, 62, 22866, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1808, 407, 287, 11525, 12083, 62, 23870, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2683, 13, 33295, 7, 25652, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 6138, 507, 8, 1875, 42479, 1635, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2746, 13, 268, 8189, 7, 6138, 507, 11, 15458, 62, 7857, 28, 25836, 11, 905, 62, 33723, 62, 5657, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1123, 62, 448, 287, 27056, 378, 7, 448, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 23870, 58, 6138, 507, 58, 72, 11907, 796, 1123, 62, 448, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2683, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 1875, 4179, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 232, 232, 30298, 102, 19526, 247, 25652, 17739, 101, 32849, 101, 13783, 226, 49426, 228, 22522, 234, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 6138, 507, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2746, 13, 268, 8189, 7, 6138, 507, 11, 905, 62, 33723, 62, 5657, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1123, 62, 448, 287, 27056, 378, 7, 448, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 23870, 58, 6138, 507, 58, 72, 11907, 796, 1123, 62, 448, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2683, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 1875, 4179, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 351, 1280, 10786, 20521, 67, 654, 13, 27729, 293, 3256, 705, 39346, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 20521, 12083, 62, 23870, 11, 2393, 8 ]
1.946878
1,073
from numbers import Number from typing import Type import numpy as np import torch # taken from https://stackoverflow.com/questions/18376935/best-practice-for-equality-in-python def nested_equal(a, b): """ Compare two objects recursively by element, handling numpy objects. Assumes hashable items are not mutable in a way that affects equality. """ if type(a) is not type(b): return False if isinstance(a, str): return a == b if isinstance(a, Number): return a == b if isinstance(a, np.ndarray): return np.all(a == b) if isinstance(a, torch.Tensor): return torch.equal(a, b) if isinstance(a, list): return all(nested_equal(x, y) for x, y in zip(a, b)) if isinstance(a, dict): if set(a.keys()) != set(b.keys()): return False return all(nested_equal(a[k], b[k]) for k in a.keys()) return a == b
[ 6738, 3146, 1330, 7913, 198, 6738, 19720, 1330, 5994, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 628, 198, 198, 2, 2077, 422, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 1507, 2718, 3388, 2327, 14, 13466, 12, 39541, 12, 1640, 12, 48203, 12, 259, 12, 29412, 198, 4299, 28376, 62, 40496, 7, 64, 11, 275, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27814, 734, 5563, 664, 1834, 2280, 416, 5002, 11, 9041, 299, 32152, 5563, 13, 628, 220, 220, 220, 2195, 8139, 12234, 540, 3709, 389, 407, 4517, 540, 287, 257, 835, 326, 10975, 10537, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 2099, 7, 64, 8, 318, 407, 2099, 7, 65, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 611, 318, 39098, 7, 64, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 257, 6624, 275, 628, 220, 220, 220, 611, 318, 39098, 7, 64, 11, 7913, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 257, 6624, 275, 628, 220, 220, 220, 611, 318, 39098, 7, 64, 11, 45941, 13, 358, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 439, 7, 64, 6624, 275, 8, 628, 220, 220, 220, 611, 318, 39098, 7, 64, 11, 28034, 13, 51, 22854, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 28034, 13, 40496, 7, 64, 11, 275, 8, 628, 220, 220, 220, 611, 318, 39098, 7, 64, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 477, 7, 77, 7287, 62, 40496, 7, 87, 11, 331, 8, 329, 2124, 11, 331, 287, 19974, 7, 64, 11, 275, 4008, 628, 220, 220, 220, 611, 318, 39098, 7, 64, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 900, 7, 64, 13, 13083, 28955, 14512, 900, 7, 65, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 477, 7, 77, 7287, 62, 40496, 7, 64, 58, 74, 4357, 275, 58, 74, 12962, 329, 479, 287, 257, 13, 13083, 28955, 628, 220, 220, 220, 1441, 257, 6624, 275, 198 ]
2.456464
379
from werkzeug.utils import ImportStringError from flask.config import Config class LazyValue(object): """ This class may be used to lazy resolve config after importing local overrides. For example: REDIS_URL = "redis://localhost:6379/0" CELERY_BROKER_URL = LazyValue(lambda conf: conf['REDIS_URL']) After running Config.resolve_lazy_values() CELERY_BROKER_URL will be resolved to REDIS_URL, even if REDIS_URL were redefined later. """ _counter = 0
[ 6738, 266, 9587, 2736, 1018, 13, 26791, 1330, 17267, 10100, 12331, 198, 6738, 42903, 13, 11250, 1330, 17056, 628, 198, 4871, 406, 12582, 11395, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 743, 307, 973, 284, 16931, 10568, 4566, 706, 33332, 1957, 23170, 1460, 13, 198, 220, 220, 220, 1114, 1672, 25, 198, 220, 220, 220, 23848, 1797, 62, 21886, 796, 366, 445, 271, 1378, 36750, 25, 21, 29088, 14, 15, 1, 198, 220, 220, 220, 327, 3698, 19664, 62, 11473, 11380, 1137, 62, 21886, 796, 406, 12582, 11395, 7, 50033, 1013, 25, 1013, 17816, 22083, 1797, 62, 21886, 6, 12962, 628, 220, 220, 220, 2293, 2491, 17056, 13, 411, 6442, 62, 75, 12582, 62, 27160, 3419, 198, 220, 220, 220, 327, 3698, 19664, 62, 11473, 11380, 1137, 62, 21886, 481, 307, 12939, 284, 23848, 1797, 62, 21886, 11, 772, 611, 23848, 1797, 62, 21886, 547, 2266, 18156, 1568, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 24588, 796, 657, 628 ]
2.870588
170
#!/usr/bin/env python3 """ This file contains configs that could not be inferred from the default values provided by PyTorch. If PyTorch optimizers and lr_schedulers had type annotations then we could infer everything. default values that cannot be inferred: - tuple - None - required parameters (no default value) Sometimes there are no defaults to infer from, so we got to include those here. TODO: remove this file once we can infer everything. """ from typing import List, Optional, Union from reagent.core.dataclasses import dataclass from .scheduler import LearningRateSchedulerConfig @dataclass(frozen=True) @dataclass(frozen=True) @dataclass(frozen=True) @dataclass(frozen=True) @dataclass(frozen=True) @dataclass(frozen=True) @dataclass(frozen=True) @dataclass(frozen=True) @dataclass(frozen=True)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 37811, 198, 1212, 2393, 4909, 4566, 82, 326, 714, 407, 307, 41240, 422, 262, 4277, 3815, 198, 41279, 416, 9485, 15884, 354, 13, 1002, 9485, 15884, 354, 6436, 11341, 290, 300, 81, 62, 1416, 704, 377, 364, 550, 2099, 37647, 198, 8524, 356, 714, 13249, 2279, 13, 198, 12286, 3815, 326, 2314, 307, 41240, 25, 198, 12, 46545, 198, 12, 6045, 198, 12, 2672, 10007, 357, 3919, 4277, 1988, 8, 198, 198, 15468, 612, 389, 645, 26235, 284, 13249, 422, 11, 523, 356, 1392, 284, 2291, 883, 994, 13, 198, 51, 3727, 46, 25, 4781, 428, 2393, 1752, 356, 460, 13249, 2279, 13, 198, 37811, 198, 6738, 19720, 1330, 7343, 11, 32233, 11, 4479, 198, 198, 6738, 302, 25781, 13, 7295, 13, 19608, 330, 28958, 1330, 4818, 330, 31172, 198, 198, 6738, 764, 1416, 704, 18173, 1330, 18252, 32184, 50, 1740, 18173, 16934, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 198 ]
3.152091
263
# -*- coding: utf-8 -*- """Miscellaneous utils of the package.""" import copy import inspect import itertools import logging import os import pickle import random from collections import defaultdict from glob import glob from statistics import mean from typing import List import numpy as np log = logging.getLogger(__name__) def from_pickle(input_path): """Read network from pickle.""" with open(input_path, 'rb') as f: unpickler = pickle.Unpickler(f) background_mat = unpickler.load() return background_mat def to_pickle(to_pickle, output): """Write pickle.""" with open(output, 'wb') as file: pickle.dump(to_pickle, file) def get_or_create_dir(path, basename=True) -> List[str]: """If a folder in path exist retrieve list of files, else create folder.""" if not os.path.exists(path): os.makedirs(path) return [] else: return get_files_list(path, basename) def get_dir_list(path, basename=False): """Get list of directories in path.""" if basename: return [os.path.basename(os.path.normpath(f)) for f in glob(os.path.join(path, "*")) if os.path.isdir(f)] else: return [f for f in glob(os.path.join(path, "*")) if os.path.isdir(f)] def get_files_list(path, basename=False): """Get list of files in path.""" if basename: return [os.path.basename(os.path.normpath(f)) for f in glob(os.path.join(path, "*")) if os.path.isfile(f)] else: return [f for f in glob(os.path.join(path, "*")) if os.path.isfile(f)] def get_last_file(path): """Get last file.""" list_of_files = glob(os.path.join(path, '*')) return max(list_of_files, key=os.path.getctime) def get_kernel_from_graph(graph, kernel_method, normalized=False): """Get kernel from graph given a kernel method.""" if 'normalized' in inspect.getfullargspec(kernel_method).args: return kernel_method(graph, normalized=normalized) else: return kernel_method(graph) def print_dict_dimensions(entities_db, title='', message='Total number of '): """Print dimension of the dictionary.""" total = set() m = f'{title}\n' for k1, v1 in entities_db.items(): m = '' if isinstance(v1, dict): for k2, v2 in v1.items(): m += f'{k2}({len(v2)}), ' total.update(v2) else: m += f'{len(v1)} ' total.update(v1) print(f'{message} {k1}: {m} ') print(f'Total: {len(total)} ') def print_dict(dict_to_print, message=''): """Print dimension of the dictionary.""" for k1, v1 in dict_to_print.items(): print(f'{message} {k1}: {len(v1)} ') def get_labels_set_from_dict(entities): """Return label set from entity dict values.""" if isinstance(list(entities.values())[0], dict): # TODO: Check return set(itertools.chain.from_iterable(itertools.chain.from_iterable(entities.values()))) else: return set(itertools.chain.from_iterable(entities.values())) def reverse_twodim_dict(input_d: dict): """Revert key-value dictionary.""" dict1 = copy.deepcopy(input_d) d = defaultdict(lambda: defaultdict(lambda: list)) for k1, entities1 in dict1.items(): for k2, entities2 in entities1.items(): d[k2][k1] = entities2 d[k2] = dict(d[k2]) return dict(d) def reduce_dict_dimension(d: dict): """Reduce dictionary dimension.""" reduced_dict = {} dict1 = copy.deepcopy(d) for k1, entities1 in dict1.items(): for k2, entities2 in entities1.items(): if k1 in reduced_dict.keys(): reduced_dict[k1].update(entities2) else: reduced_dict[k1] = entities2 return reduced_dict def reduce_dict_two_dimensional(d1: dict): """Reduce dictionary two dimension.""" d2 = reduce_dict_dimension(d1) return {entity: entity_value for entity_type, entity_set in d2.items() for entity, entity_value in entity_set.items() } def split_random_two_subsets(to_split): """Split random two subsets.""" if isinstance(to_split, dict): to_split_labels = list(to_split.keys()) else: to_split_labels = to_split half_1 = random.sample(population=list(to_split_labels), k=int(len(to_split_labels) / 2)) half_2 = list(set(to_split_labels) - set(half_1)) if isinstance(to_split, dict): return {entity_label: to_split[entity_label] for entity_label in half_1}, \ {entity_label: to_split[entity_label] for entity_label in half_2} else: return half_1, half_2 def hide_true_positives(to_split, k=0.5): """Hide relative number of labels.""" if isinstance(to_split, set): to_split = list(to_split) new_labels = to_split[:] # Check for -1 if -1 in new_labels: new_labels = [0 if label == -1 else label for label in new_labels] indices = [index for index, label in enumerate(new_labels) if label != 0] for index in random.choices(indices, k=int(k * len(indices))): new_labels[index] = 0 return new_labels def split_random_three_subsets(to_split): """Split proportionally random-chosen a given set in three subsets.""" half_1 = random.sample(population=list(to_split), k=int(len(to_split) / 3)) half_2, half_3 = split_random_two_subsets(list(set(to_split) - set(half_1))) return half_1, half_2, half_3 def get_three_venn_intersections(set1, set2, set3): """Get the intersection and disjunction sets from three given subsets.""" set1, set2, set3 = set(set1), set(set2), set(set3) set1_set2 = set1.intersection(set2) set1_set3 = set1.intersection(set3) core = set1_set3.intersection(set1_set2) set1_set2 = set1_set2 - core set1_set3 = set1_set3 - core set2_set3 = set2.intersection(set3) - core return {'unique_set1': set1 - set1_set2 - set1_set3 - core, 'unique_set2': set2 - set1_set2 - set2_set3 - core, 'set1_set2': set1_set2, 'unique_set3': set3 - set1_set3 - set2_set3 - core, 'set1_set3': set1_set3, 'set2_set3': set2_set3, 'core': core, } def random_disjoint_intersection_two_subsets(unique_set1, unique_set2, intersection): """Split proportionaly random-chosen the intersection of two subsets and concatenate it to the disjoint part.""" set1, set2 = split_random_two_subsets(intersection) return unique_set1 | set(set1), unique_set2 | set(set2) def random_disjoint_intersection_three_subsets(sets_dict): """Split proportionally random-chosen the intersections of three subsets and concatenate it to the disjoint part.""" set_labels = list(sets_dict.keys()) set_values = list(sets_dict.values()) set1, set2, set3 = set_values[0][0], set_values[1][0], set_values[2][0] intersections = get_three_venn_intersections(set1, set2, set3) set1, set2 = random_disjoint_intersection_two_subsets( intersections['unique_set1'], intersections['unique_set2'], intersections['set1_set2'] ) set1, set3 = random_disjoint_intersection_two_subsets(set1, intersections['unique_set3'], intersections['set1_set3'] ) set2, set3 = random_disjoint_intersection_two_subsets(set2, set3, intersections['set2_set3'] ) set1_core, set2_core, set3_core = split_random_three_subsets(intersections['core']) return {set_labels[0]: set1 | set(set1_core), set_labels[1]: set2 | set(set2_core), set_labels[2]: set3 | set(set3_core) } def get_count_and_labels_from_two_dim_dict(mapping_by_database_and_entity): """Get count and raw labels from two dimensional dict.""" db_labels = [] types_labels = [] all_count = [] all_percentage = [] # entity_type_map = {'metabolite_nodes': 'metabolite', 'mirna_nodes': 'micrornas', 'gene_nodes': 'genes', 'bp_nodes': 'bps'} for type_label, entities in mapping_by_database_and_entity.items(): db_count = [] db_percentage = [] db_labels.append(type_label) if types_labels == []: types_labels = list(entities.keys()) for entity_type, entities_tupple in entities.items(): db_count.append(entities_tupple[1]) db_percentage.append(entities_tupple[0]) all_count.append(db_count) all_percentage.append(db_percentage) return np.array(all_count), np.array(all_percentage), db_labels, types_labels def get_mean_from_two_dim_dict(d): """Get a dict with the partial means of a two dimensional dict for each subset.""" for k1, v1 in d.items(): for k2, v2 in v1.items(): if v2: d[k1][k2] = [mean(v2)] return d
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 31281, 25673, 3384, 4487, 286, 262, 5301, 526, 15931, 198, 11748, 4866, 198, 11748, 10104, 198, 11748, 340, 861, 10141, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 4738, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 15095, 1330, 15095, 198, 6738, 7869, 1330, 1612, 198, 6738, 19720, 1330, 7343, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 422, 62, 27729, 293, 7, 15414, 62, 6978, 2599, 198, 220, 220, 220, 37227, 5569, 3127, 422, 2298, 293, 526, 15931, 198, 220, 220, 220, 351, 1280, 7, 15414, 62, 6978, 11, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8593, 624, 1754, 796, 2298, 293, 13, 3118, 27729, 1754, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4469, 62, 6759, 796, 8593, 624, 1754, 13, 2220, 3419, 628, 220, 220, 220, 1441, 4469, 62, 6759, 628, 198, 4299, 284, 62, 27729, 293, 7, 1462, 62, 27729, 293, 11, 5072, 2599, 198, 220, 220, 220, 37227, 16594, 2298, 293, 526, 15931, 198, 220, 220, 220, 351, 1280, 7, 22915, 11, 705, 39346, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 1462, 62, 27729, 293, 11, 2393, 8, 628, 198, 4299, 651, 62, 273, 62, 17953, 62, 15908, 7, 6978, 11, 1615, 12453, 28, 17821, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 37227, 1532, 257, 9483, 287, 3108, 2152, 19818, 1351, 286, 3696, 11, 2073, 2251, 9483, 526, 15931, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 62, 16624, 62, 4868, 7, 6978, 11, 1615, 12453, 8, 628, 198, 4299, 651, 62, 15908, 62, 4868, 7, 6978, 11, 1615, 12453, 28, 25101, 2599, 198, 220, 220, 220, 37227, 3855, 1351, 286, 29196, 287, 3108, 526, 15931, 198, 220, 220, 220, 611, 1615, 12453, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 418, 13, 6978, 13, 12093, 12453, 7, 418, 13, 6978, 13, 27237, 6978, 7, 69, 4008, 329, 277, 287, 15095, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 366, 9, 48774, 611, 28686, 13, 6978, 13, 9409, 343, 7, 69, 15437, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 69, 329, 277, 287, 15095, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 366, 9, 48774, 611, 28686, 13, 6978, 13, 9409, 343, 7, 69, 15437, 628, 198, 4299, 651, 62, 16624, 62, 4868, 7, 6978, 11, 1615, 12453, 28, 25101, 2599, 198, 220, 220, 220, 37227, 3855, 1351, 286, 3696, 287, 3108, 526, 15931, 198, 220, 220, 220, 611, 1615, 12453, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 418, 13, 6978, 13, 12093, 12453, 7, 418, 13, 6978, 13, 27237, 6978, 7, 69, 4008, 329, 277, 287, 15095, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 366, 9, 48774, 611, 28686, 13, 6978, 13, 4468, 576, 7, 69, 15437, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 69, 329, 277, 287, 15095, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 366, 9, 48774, 611, 28686, 13, 6978, 13, 4468, 576, 7, 69, 15437, 628, 198, 4299, 651, 62, 12957, 62, 7753, 7, 6978, 2599, 198, 220, 220, 220, 37227, 3855, 938, 2393, 526, 15931, 198, 220, 220, 220, 1351, 62, 1659, 62, 16624, 796, 15095, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 705, 9, 6, 4008, 198, 220, 220, 220, 1441, 3509, 7, 4868, 62, 1659, 62, 16624, 11, 1994, 28, 418, 13, 6978, 13, 1136, 310, 524, 8, 628, 198, 4299, 651, 62, 33885, 62, 6738, 62, 34960, 7, 34960, 11, 9720, 62, 24396, 11, 39279, 28, 25101, 2599, 198, 220, 220, 220, 37227, 3855, 9720, 422, 4823, 1813, 257, 9720, 2446, 526, 15931, 198, 220, 220, 220, 611, 705, 11265, 1143, 6, 287, 10104, 13, 1136, 12853, 853, 16684, 7, 33885, 62, 24396, 737, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9720, 62, 24396, 7, 34960, 11, 39279, 28, 11265, 1143, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9720, 62, 24396, 7, 34960, 8, 628, 198, 4299, 3601, 62, 11600, 62, 27740, 5736, 7, 298, 871, 62, 9945, 11, 3670, 11639, 3256, 3275, 11639, 14957, 1271, 286, 705, 2599, 198, 220, 220, 220, 37227, 18557, 15793, 286, 262, 22155, 526, 15931, 198, 220, 220, 220, 2472, 796, 900, 3419, 198, 220, 220, 220, 285, 796, 277, 6, 90, 7839, 32239, 77, 6, 628, 220, 220, 220, 329, 479, 16, 11, 410, 16, 287, 12066, 62, 9945, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 85, 16, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 17, 11, 410, 17, 287, 410, 16, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 15853, 277, 6, 90, 74, 17, 92, 15090, 11925, 7, 85, 17, 38165, 828, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 13, 19119, 7, 85, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 15853, 277, 6, 90, 11925, 7, 85, 16, 38165, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 13, 19119, 7, 85, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 90, 20500, 92, 1391, 74, 16, 38362, 1391, 76, 92, 705, 8, 628, 220, 220, 220, 3601, 7, 69, 6, 14957, 25, 1391, 11925, 7, 23350, 38165, 705, 8, 628, 198, 4299, 3601, 62, 11600, 7, 11600, 62, 1462, 62, 4798, 11, 3275, 28, 7061, 2599, 198, 220, 220, 220, 37227, 18557, 15793, 286, 262, 22155, 526, 15931, 198, 220, 220, 220, 329, 479, 16, 11, 410, 16, 287, 8633, 62, 1462, 62, 4798, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 90, 20500, 92, 1391, 74, 16, 38362, 1391, 11925, 7, 85, 16, 38165, 705, 8, 628, 198, 4299, 651, 62, 23912, 1424, 62, 2617, 62, 6738, 62, 11600, 7, 298, 871, 2599, 198, 220, 220, 220, 37227, 13615, 6167, 900, 422, 9312, 8633, 3815, 526, 15931, 198, 220, 220, 220, 611, 318, 39098, 7, 4868, 7, 298, 871, 13, 27160, 28955, 58, 15, 4357, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 6822, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 900, 7, 270, 861, 10141, 13, 7983, 13, 6738, 62, 2676, 540, 7, 270, 861, 10141, 13, 7983, 13, 6738, 62, 2676, 540, 7, 298, 871, 13, 27160, 3419, 22305, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 900, 7, 270, 861, 10141, 13, 7983, 13, 6738, 62, 2676, 540, 7, 298, 871, 13, 27160, 3419, 4008, 628, 198, 4299, 9575, 62, 4246, 375, 320, 62, 11600, 7, 15414, 62, 67, 25, 8633, 2599, 198, 220, 220, 220, 37227, 49, 964, 83, 1994, 12, 8367, 22155, 526, 15931, 198, 220, 220, 220, 8633, 16, 796, 4866, 13, 22089, 30073, 7, 15414, 62, 67, 8, 628, 220, 220, 220, 288, 796, 4277, 11600, 7, 50033, 25, 4277, 11600, 7, 50033, 25, 1351, 4008, 628, 220, 220, 220, 329, 479, 16, 11, 12066, 16, 287, 8633, 16, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 17, 11, 12066, 17, 287, 12066, 16, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 74, 17, 7131, 74, 16, 60, 796, 12066, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 74, 17, 60, 796, 8633, 7, 67, 58, 74, 17, 12962, 628, 220, 220, 220, 1441, 8633, 7, 67, 8, 628, 198, 4299, 4646, 62, 11600, 62, 46156, 7, 67, 25, 8633, 2599, 198, 220, 220, 220, 37227, 7738, 7234, 22155, 15793, 526, 15931, 198, 220, 220, 220, 5322, 62, 11600, 796, 23884, 628, 220, 220, 220, 8633, 16, 796, 4866, 13, 22089, 30073, 7, 67, 8, 628, 220, 220, 220, 329, 479, 16, 11, 12066, 16, 287, 8633, 16, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 17, 11, 12066, 17, 287, 12066, 16, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 16, 287, 5322, 62, 11600, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5322, 62, 11600, 58, 74, 16, 4083, 19119, 7, 298, 871, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5322, 62, 11600, 58, 74, 16, 60, 796, 12066, 17, 628, 220, 220, 220, 1441, 5322, 62, 11600, 628, 198, 4299, 4646, 62, 11600, 62, 11545, 62, 19577, 7, 67, 16, 25, 8633, 2599, 198, 220, 220, 220, 37227, 7738, 7234, 22155, 734, 15793, 526, 15931, 198, 220, 220, 220, 288, 17, 796, 4646, 62, 11600, 62, 46156, 7, 67, 16, 8, 628, 220, 220, 220, 1441, 1391, 26858, 25, 9312, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9312, 62, 4906, 11, 9312, 62, 2617, 287, 288, 17, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9312, 11, 9312, 62, 8367, 287, 9312, 62, 2617, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 4299, 6626, 62, 25120, 62, 11545, 62, 7266, 28709, 7, 1462, 62, 35312, 2599, 198, 220, 220, 220, 37227, 41205, 4738, 734, 6352, 1039, 526, 15931, 198, 220, 220, 220, 611, 318, 39098, 7, 1462, 62, 35312, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 35312, 62, 23912, 1424, 796, 1351, 7, 1462, 62, 35312, 13, 13083, 28955, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 35312, 62, 23912, 1424, 796, 284, 62, 35312, 628, 220, 220, 220, 2063, 62, 16, 796, 4738, 13, 39873, 7, 39748, 28, 4868, 7, 1462, 62, 35312, 62, 23912, 1424, 828, 479, 28, 600, 7, 11925, 7, 1462, 62, 35312, 62, 23912, 1424, 8, 1220, 362, 4008, 198, 220, 220, 220, 2063, 62, 17, 796, 1351, 7, 2617, 7, 1462, 62, 35312, 62, 23912, 1424, 8, 532, 900, 7, 13959, 62, 16, 4008, 628, 220, 220, 220, 611, 318, 39098, 7, 1462, 62, 35312, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 26858, 62, 18242, 25, 284, 62, 35312, 58, 26858, 62, 18242, 60, 329, 9312, 62, 18242, 287, 2063, 62, 16, 5512, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 26858, 62, 18242, 25, 284, 62, 35312, 58, 26858, 62, 18242, 60, 329, 9312, 62, 18242, 287, 2063, 62, 17, 92, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2063, 62, 16, 11, 2063, 62, 17, 628, 198, 4299, 7808, 62, 7942, 62, 1930, 20288, 7, 1462, 62, 35312, 11, 479, 28, 15, 13, 20, 2599, 198, 220, 220, 220, 37227, 38518, 3585, 1271, 286, 14722, 526, 15931, 198, 220, 220, 220, 611, 318, 39098, 7, 1462, 62, 35312, 11, 900, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 35312, 796, 1351, 7, 1462, 62, 35312, 8, 628, 220, 220, 220, 649, 62, 23912, 1424, 796, 284, 62, 35312, 58, 47715, 628, 220, 220, 220, 1303, 6822, 329, 532, 16, 198, 220, 220, 220, 611, 532, 16, 287, 649, 62, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 23912, 1424, 796, 685, 15, 611, 6167, 6624, 532, 16, 2073, 6167, 329, 6167, 287, 649, 62, 23912, 1424, 60, 628, 220, 220, 220, 36525, 796, 685, 9630, 329, 6376, 11, 6167, 287, 27056, 378, 7, 3605, 62, 23912, 1424, 8, 611, 6167, 14512, 657, 60, 628, 220, 220, 220, 329, 6376, 287, 4738, 13, 6679, 1063, 7, 521, 1063, 11, 479, 28, 600, 7, 74, 1635, 18896, 7, 521, 1063, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 23912, 1424, 58, 9630, 60, 796, 657, 628, 220, 220, 220, 1441, 649, 62, 23912, 1424, 628, 198, 4299, 6626, 62, 25120, 62, 15542, 62, 7266, 28709, 7, 1462, 62, 35312, 2599, 198, 220, 220, 220, 37227, 41205, 9823, 453, 4738, 12, 354, 5233, 257, 1813, 900, 287, 1115, 220, 6352, 1039, 526, 15931, 198, 220, 220, 220, 2063, 62, 16, 796, 4738, 13, 39873, 7, 39748, 28, 4868, 7, 1462, 62, 35312, 828, 479, 28, 600, 7, 11925, 7, 1462, 62, 35312, 8, 1220, 513, 4008, 198, 220, 220, 220, 2063, 62, 17, 11, 2063, 62, 18, 796, 6626, 62, 25120, 62, 11545, 62, 7266, 28709, 7, 4868, 7, 2617, 7, 1462, 62, 35312, 8, 532, 900, 7, 13959, 62, 16, 22305, 628, 220, 220, 220, 1441, 2063, 62, 16, 11, 2063, 62, 17, 11, 2063, 62, 18, 628, 198, 4299, 651, 62, 15542, 62, 574, 77, 62, 3849, 23946, 7, 2617, 16, 11, 900, 17, 11, 900, 18, 2599, 198, 220, 220, 220, 37227, 3855, 262, 16246, 290, 595, 73, 4575, 5621, 422, 1115, 1813, 6352, 1039, 526, 15931, 198, 220, 220, 220, 900, 16, 11, 900, 17, 11, 900, 18, 796, 900, 7, 2617, 16, 828, 900, 7, 2617, 17, 828, 900, 7, 2617, 18, 8, 198, 220, 220, 220, 900, 16, 62, 2617, 17, 796, 900, 16, 13, 3849, 5458, 7, 2617, 17, 8, 198, 220, 220, 220, 900, 16, 62, 2617, 18, 796, 900, 16, 13, 3849, 5458, 7, 2617, 18, 8, 198, 220, 220, 220, 4755, 796, 900, 16, 62, 2617, 18, 13, 3849, 5458, 7, 2617, 16, 62, 2617, 17, 8, 628, 220, 220, 220, 900, 16, 62, 2617, 17, 796, 900, 16, 62, 2617, 17, 532, 4755, 198, 220, 220, 220, 900, 16, 62, 2617, 18, 796, 900, 16, 62, 2617, 18, 532, 4755, 198, 220, 220, 220, 900, 17, 62, 2617, 18, 796, 900, 17, 13, 3849, 5458, 7, 2617, 18, 8, 532, 4755, 628, 220, 220, 220, 1441, 1391, 6, 34642, 62, 2617, 16, 10354, 900, 16, 532, 900, 16, 62, 2617, 17, 532, 900, 16, 62, 2617, 18, 532, 4755, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34642, 62, 2617, 17, 10354, 900, 17, 532, 900, 16, 62, 2617, 17, 532, 900, 17, 62, 2617, 18, 532, 4755, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2617, 16, 62, 2617, 17, 10354, 900, 16, 62, 2617, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34642, 62, 2617, 18, 10354, 900, 18, 532, 900, 16, 62, 2617, 18, 532, 900, 17, 62, 2617, 18, 532, 4755, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2617, 16, 62, 2617, 18, 10354, 900, 16, 62, 2617, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2617, 17, 62, 2617, 18, 10354, 900, 17, 62, 2617, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7295, 10354, 4755, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 4299, 4738, 62, 6381, 73, 1563, 62, 3849, 5458, 62, 11545, 62, 7266, 28709, 7, 34642, 62, 2617, 16, 11, 3748, 62, 2617, 17, 11, 16246, 2599, 198, 220, 220, 220, 37227, 41205, 27111, 88, 4738, 12, 354, 5233, 262, 16246, 286, 734, 6352, 1039, 290, 1673, 36686, 378, 340, 284, 262, 595, 73, 1563, 636, 526, 15931, 198, 220, 220, 220, 900, 16, 11, 900, 17, 796, 6626, 62, 25120, 62, 11545, 62, 7266, 28709, 7, 3849, 5458, 8, 628, 220, 220, 220, 1441, 3748, 62, 2617, 16, 930, 900, 7, 2617, 16, 828, 3748, 62, 2617, 17, 930, 900, 7, 2617, 17, 8, 628, 198, 4299, 4738, 62, 6381, 73, 1563, 62, 3849, 5458, 62, 15542, 62, 7266, 28709, 7, 28709, 62, 11600, 2599, 198, 220, 220, 220, 37227, 41205, 9823, 453, 4738, 12, 354, 5233, 262, 42085, 286, 1115, 6352, 1039, 290, 1673, 36686, 378, 340, 284, 262, 595, 73, 1563, 636, 526, 15931, 198, 220, 220, 220, 900, 62, 23912, 1424, 796, 1351, 7, 28709, 62, 11600, 13, 13083, 28955, 198, 220, 220, 220, 900, 62, 27160, 796, 1351, 7, 28709, 62, 11600, 13, 27160, 28955, 628, 220, 220, 220, 900, 16, 11, 900, 17, 11, 900, 18, 796, 900, 62, 27160, 58, 15, 7131, 15, 4357, 900, 62, 27160, 58, 16, 7131, 15, 4357, 900, 62, 27160, 58, 17, 7131, 15, 60, 628, 220, 220, 220, 42085, 796, 651, 62, 15542, 62, 574, 77, 62, 3849, 23946, 7, 2617, 16, 11, 900, 17, 11, 900, 18, 8, 628, 220, 220, 220, 900, 16, 11, 900, 17, 796, 4738, 62, 6381, 73, 1563, 62, 3849, 5458, 62, 11545, 62, 7266, 28709, 7, 198, 220, 220, 220, 220, 220, 220, 220, 42085, 17816, 34642, 62, 2617, 16, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 42085, 17816, 34642, 62, 2617, 17, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 42085, 17816, 2617, 16, 62, 2617, 17, 20520, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 900, 16, 11, 900, 18, 796, 4738, 62, 6381, 73, 1563, 62, 3849, 5458, 62, 11545, 62, 7266, 28709, 7, 2617, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42085, 17816, 34642, 62, 2617, 18, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42085, 17816, 2617, 16, 62, 2617, 18, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 900, 17, 11, 900, 18, 796, 4738, 62, 6381, 73, 1563, 62, 3849, 5458, 62, 11545, 62, 7266, 28709, 7, 2617, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42085, 17816, 2617, 17, 62, 2617, 18, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 900, 16, 62, 7295, 11, 900, 17, 62, 7295, 11, 900, 18, 62, 7295, 796, 6626, 62, 25120, 62, 15542, 62, 7266, 28709, 7, 3849, 23946, 17816, 7295, 6, 12962, 628, 220, 220, 220, 1441, 1391, 2617, 62, 23912, 1424, 58, 15, 5974, 900, 16, 930, 900, 7, 2617, 16, 62, 7295, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 62, 23912, 1424, 58, 16, 5974, 900, 17, 930, 900, 7, 2617, 17, 62, 7295, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 62, 23912, 1424, 58, 17, 5974, 900, 18, 930, 900, 7, 2617, 18, 62, 7295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 4299, 651, 62, 9127, 62, 392, 62, 23912, 1424, 62, 6738, 62, 11545, 62, 27740, 62, 11600, 7, 76, 5912, 62, 1525, 62, 48806, 62, 392, 62, 26858, 2599, 198, 220, 220, 220, 37227, 3855, 954, 290, 8246, 14722, 422, 734, 38517, 8633, 526, 15931, 198, 220, 220, 220, 20613, 62, 23912, 1424, 796, 17635, 198, 220, 220, 220, 3858, 62, 23912, 1424, 796, 17635, 628, 220, 220, 220, 477, 62, 9127, 796, 17635, 198, 220, 220, 220, 477, 62, 25067, 496, 796, 17635, 628, 220, 220, 220, 1303, 9312, 62, 4906, 62, 8899, 796, 1391, 6, 4164, 28426, 578, 62, 77, 4147, 10354, 705, 4164, 28426, 578, 3256, 705, 10793, 2616, 62, 77, 4147, 10354, 705, 9383, 81, 1211, 292, 3256, 705, 70, 1734, 62, 77, 4147, 10354, 705, 5235, 274, 3256, 705, 46583, 62, 77, 4147, 10354, 705, 18799, 6, 92, 628, 220, 220, 220, 329, 2099, 62, 18242, 11, 12066, 287, 16855, 62, 1525, 62, 48806, 62, 392, 62, 26858, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 9127, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 25067, 496, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 23912, 1424, 13, 33295, 7, 4906, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3858, 62, 23912, 1424, 6624, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3858, 62, 23912, 1424, 796, 1351, 7, 298, 871, 13, 13083, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 329, 9312, 62, 4906, 11, 12066, 62, 83, 7211, 293, 287, 12066, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 9127, 13, 33295, 7, 298, 871, 62, 83, 7211, 293, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 25067, 496, 13, 33295, 7, 298, 871, 62, 83, 7211, 293, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 9127, 13, 33295, 7, 9945, 62, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 25067, 496, 13, 33295, 7, 9945, 62, 25067, 496, 8, 628, 220, 220, 220, 1441, 45941, 13, 18747, 7, 439, 62, 9127, 828, 45941, 13, 18747, 7, 439, 62, 25067, 496, 828, 20613, 62, 23912, 1424, 11, 3858, 62, 23912, 1424, 628, 198, 4299, 651, 62, 32604, 62, 6738, 62, 11545, 62, 27740, 62, 11600, 7, 67, 2599, 198, 220, 220, 220, 37227, 3855, 257, 8633, 351, 262, 13027, 1724, 286, 257, 734, 38517, 8633, 329, 1123, 24637, 526, 15931, 198, 220, 220, 220, 329, 479, 16, 11, 410, 16, 287, 288, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 17, 11, 410, 17, 287, 410, 16, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 74, 16, 7131, 74, 17, 60, 796, 685, 32604, 7, 85, 17, 15437, 628, 220, 220, 220, 1441, 288, 198 ]
2.223219
4,126
import pandas as pd import collections import numpy as np def count_top_words_in_genre(genre, lyrics_df): """ Detect the language of the text. Parameters ---------- genre : str genre like 'Hip-Hop' or 'Pop' lyrics_df : pandas dataframe clean dataframe Returns return list of top words of genre """ lyrics_df['most_used_words'] = pd.Series(collections.Counter(lyrics.split()) .most_common(10) for _, lyrics in lyrics_df['lyrics'].iteritems()) arr = np.array(lyrics_df[lyrics_df['genre'] == genre]['most_used_words'].tolist()) # merges row's most_used_word column to list arr = arr[~pd.isna(arr)] # removing nans' flat_list = [item for sublist in arr for item in sublist] # converts array of arrays to one big array genre_dict = {} for tupl in flat_list: genre_dict[tupl[0]] = genre_dict.get(tupl[0], 0) + tupl[1] # sums up total occurances of each word top_words = collections.Counter(genre_dict) return top_words.most_common(10) def word_count(df, new_col_name, col_with_lyrics): """ Count the number of words in a dataframe lyrics column, given a column name, process it, and save as new_col_name Parameters ---------- df : dataframe new_col_name : name of new column col_with_lyric: column with lyrics Returns return dataframe with new column """ df[new_col_name] = df[col_with_lyrics].apply(lambda words: _count_words(words)) return df def _count_words(words): """ helper method for word_count() method, return length of given words """ try: return len(words.split()) except: return 0 #TODO: better error handling, maybe not return 0 def sentence_avg_word_length(df, new_col_name, col_with_lyrics): """ Count the average word length in a dataframe lyrics column, given a column name, process it, and save as new_col_name Parameters ---------- df : dataframe new_col_name : name of new column col_with_lyric: column with lyrics Returns return dataframe with new column """ df[new_col_name] = df[col_with_lyrics].apply(_sentence_avg_word_length) return df def _sentence_avg_word_length(sentence): """ helper method for sentence_avg_word_length() method, sum of len of words in sentence, divided by length of sentence ***3 (factorize) """ res = sum(len(word.split()) for word in sentence) / len(sentence.split())**3 return res
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 17268, 198, 11748, 299, 32152, 355, 45941, 198, 198, 4299, 954, 62, 4852, 62, 10879, 62, 259, 62, 35850, 7, 35850, 11, 15844, 62, 7568, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35874, 262, 3303, 286, 262, 2420, 13, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 12121, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12121, 588, 705, 39, 541, 12, 23483, 6, 393, 705, 16979, 6, 198, 220, 220, 220, 220, 220, 220, 220, 15844, 62, 7568, 1058, 19798, 292, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3424, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 286, 1353, 2456, 286, 12121, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15844, 62, 7568, 17816, 1712, 62, 1484, 62, 10879, 20520, 796, 279, 67, 13, 27996, 7, 4033, 26448, 13, 31694, 7, 306, 10466, 13, 35312, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 1712, 62, 11321, 7, 940, 8, 329, 4808, 11, 15844, 287, 15844, 62, 7568, 17816, 306, 10466, 6, 4083, 2676, 23814, 28955, 198, 220, 220, 220, 5240, 796, 45941, 13, 18747, 7, 306, 10466, 62, 7568, 58, 306, 10466, 62, 7568, 17816, 35850, 20520, 6624, 12121, 7131, 6, 1712, 62, 1484, 62, 10879, 6, 4083, 83, 349, 396, 28955, 1303, 4017, 3212, 5752, 338, 749, 62, 1484, 62, 4775, 5721, 284, 1351, 198, 220, 220, 220, 5240, 796, 5240, 58, 93, 30094, 13, 271, 2616, 7, 3258, 15437, 1303, 10829, 299, 504, 6, 198, 220, 220, 220, 6228, 62, 4868, 796, 685, 9186, 329, 850, 4868, 287, 5240, 329, 2378, 287, 850, 4868, 60, 1303, 26161, 7177, 286, 26515, 284, 530, 1263, 7177, 198, 220, 220, 220, 12121, 62, 11600, 796, 23884, 198, 220, 220, 220, 329, 12777, 489, 287, 6228, 62, 4868, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 12121, 62, 11600, 58, 28047, 489, 58, 15, 11907, 796, 12121, 62, 11600, 13, 1136, 7, 28047, 489, 58, 15, 4357, 657, 8, 1343, 12777, 489, 58, 16, 60, 1303, 21784, 510, 2472, 3051, 1817, 286, 1123, 1573, 198, 220, 220, 220, 1353, 62, 10879, 796, 17268, 13, 31694, 7, 35850, 62, 11600, 8, 198, 220, 220, 220, 1441, 1353, 62, 10879, 13, 1712, 62, 11321, 7, 940, 8, 198, 198, 4299, 1573, 62, 9127, 7, 7568, 11, 649, 62, 4033, 62, 3672, 11, 951, 62, 4480, 62, 306, 10466, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2764, 262, 1271, 286, 2456, 287, 257, 1366, 14535, 15844, 5721, 11, 1813, 257, 5721, 1438, 11, 1429, 340, 11, 290, 3613, 355, 649, 62, 4033, 62, 3672, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 1058, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4033, 62, 3672, 1058, 1438, 286, 649, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 951, 62, 4480, 62, 306, 1173, 25, 5721, 351, 15844, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 14535, 351, 649, 5721, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47764, 58, 3605, 62, 4033, 62, 3672, 60, 796, 47764, 58, 4033, 62, 4480, 62, 306, 10466, 4083, 39014, 7, 50033, 2456, 25, 4808, 9127, 62, 10879, 7, 10879, 4008, 198, 220, 220, 220, 1441, 47764, 198, 198, 4299, 4808, 9127, 62, 10879, 7, 10879, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31904, 2446, 329, 1573, 62, 9127, 3419, 2446, 11, 1441, 4129, 286, 1813, 2456, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 10879, 13, 35312, 28955, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 1303, 51, 3727, 46, 25, 1365, 4049, 9041, 11, 3863, 407, 1441, 657, 198, 198, 4299, 6827, 62, 615, 70, 62, 4775, 62, 13664, 7, 7568, 11, 649, 62, 4033, 62, 3672, 11, 951, 62, 4480, 62, 306, 10466, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2764, 262, 2811, 1573, 4129, 287, 257, 1366, 14535, 15844, 5721, 11, 1813, 257, 5721, 1438, 11, 1429, 340, 11, 290, 3613, 355, 649, 62, 4033, 62, 3672, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 1058, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4033, 62, 3672, 1058, 1438, 286, 649, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 951, 62, 4480, 62, 306, 1173, 25, 5721, 351, 15844, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 14535, 351, 649, 5721, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47764, 58, 3605, 62, 4033, 62, 3672, 60, 796, 47764, 58, 4033, 62, 4480, 62, 306, 10466, 4083, 39014, 28264, 34086, 594, 62, 615, 70, 62, 4775, 62, 13664, 8, 198, 220, 220, 220, 1441, 47764, 198, 198, 4299, 4808, 34086, 594, 62, 615, 70, 62, 4775, 62, 13664, 7, 34086, 594, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31904, 2446, 329, 6827, 62, 615, 70, 62, 4775, 62, 13664, 3419, 2446, 11, 2160, 286, 18896, 286, 2456, 287, 6827, 11, 9086, 416, 4129, 286, 6827, 17202, 18, 357, 31412, 1096, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 581, 796, 2160, 7, 11925, 7, 4775, 13, 35312, 28955, 329, 1573, 287, 6827, 8, 1220, 18896, 7, 34086, 594, 13, 35312, 28955, 1174, 18, 198, 220, 220, 220, 1441, 581 ]
2.516941
1,033
import logging import torch import numpy as np import common.utils.torchhelper as th import common.trainloop.context as ctx import common.trainloop.hooks as hooks import common.trainloop.data as data
[ 11748, 18931, 198, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 2219, 13, 26791, 13, 13165, 354, 2978, 525, 355, 294, 198, 11748, 2219, 13, 27432, 26268, 13, 22866, 355, 269, 17602, 198, 11748, 2219, 13, 27432, 26268, 13, 25480, 82, 355, 26569, 198, 11748, 2219, 13, 27432, 26268, 13, 7890, 355, 1366, 628, 628, 628, 198 ]
3.409836
61
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import importlib from ._format import (CasavaOneEightSingleLanePerSampleDirFmt, CasavaOneEightLanelessPerSampleDirFmt, FastqGzFormat, YamlFormat, FastqManifestFormat, FastqAbsolutePathManifestFormat, SingleLanePerSampleSingleEndFastqDirFmt, SingleLanePerSamplePairedEndFastqDirFmt, SingleEndFastqManifestPhred33, SingleEndFastqManifestPhred64, PairedEndFastqManifestPhred33, PairedEndFastqManifestPhred64, SingleEndFastqManifestPhred33V2, SingleEndFastqManifestPhred64V2, PairedEndFastqManifestPhred33V2, PairedEndFastqManifestPhred64V2, QIIME1DemuxFormat, QIIME1DemuxDirFmt) from ._type import (Sequences, SequencesWithQuality, PairedEndSequencesWithQuality, JoinedSequencesWithQuality) __all__ = ['CasavaOneEightSingleLanePerSampleDirFmt', 'CasavaOneEightLanelessPerSampleDirFmt', 'FastqGzFormat', 'YamlFormat', 'FastqManifestFormat', 'FastqAbsolutePathManifestFormat', 'SingleLanePerSampleSingleEndFastqDirFmt', 'SingleLanePerSamplePairedEndFastqDirFmt', 'Sequences', 'SequencesWithQuality', 'PairedEndSequencesWithQuality', 'JoinedSequencesWithQuality', 'SingleEndFastqManifestPhred33', 'SingleEndFastqManifestPhred64', 'PairedEndFastqManifestPhred33', 'PairedEndFastqManifestPhred64', 'SingleEndFastqManifestPhred33V2', 'SingleEndFastqManifestPhred64V2', 'PairedEndFastqManifestPhred33V2', 'PairedEndFastqManifestPhred64V2', 'QIIME1DemuxFormat', 'QIIME1DemuxDirFmt'] importlib.import_module('q2_types.per_sample_sequences._transformer')
[ 2, 16529, 10541, 198, 2, 15069, 357, 66, 8, 1584, 12, 1238, 2481, 11, 1195, 40, 12789, 362, 2478, 1074, 13, 198, 2, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 40499, 347, 10305, 13789, 13, 198, 2, 198, 2, 383, 1336, 5964, 318, 287, 262, 2393, 38559, 24290, 11, 9387, 351, 428, 3788, 13, 198, 2, 16529, 10541, 198, 198, 11748, 1330, 8019, 198, 198, 6738, 47540, 18982, 1330, 357, 35155, 4170, 3198, 29571, 28008, 43, 1531, 5990, 36674, 35277, 37, 16762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11294, 4170, 3198, 29571, 43, 272, 5321, 5990, 36674, 35277, 37, 16762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12549, 80, 38, 89, 26227, 11, 14063, 75, 26227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12549, 80, 5124, 8409, 26227, 11, 12549, 80, 24849, 3552, 15235, 5124, 8409, 26227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14206, 43, 1531, 5990, 36674, 28008, 12915, 22968, 80, 35277, 37, 16762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14206, 43, 1531, 5990, 36674, 47, 9820, 12915, 22968, 80, 35277, 37, 16762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14206, 12915, 22968, 80, 5124, 8409, 2725, 445, 2091, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14206, 12915, 22968, 80, 5124, 8409, 2725, 445, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 9820, 12915, 22968, 80, 5124, 8409, 2725, 445, 2091, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 9820, 12915, 22968, 80, 5124, 8409, 2725, 445, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14206, 12915, 22968, 80, 5124, 8409, 2725, 445, 2091, 53, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14206, 12915, 22968, 80, 5124, 8409, 2725, 445, 2414, 53, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 9820, 12915, 22968, 80, 5124, 8409, 2725, 445, 2091, 53, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 9820, 12915, 22968, 80, 5124, 8409, 2725, 445, 2414, 53, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1195, 40, 12789, 16, 11522, 2821, 26227, 11, 1195, 40, 12789, 16, 11522, 2821, 35277, 37, 16762, 8, 198, 6738, 47540, 4906, 1330, 357, 44015, 3007, 11, 24604, 3007, 3152, 35013, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 9820, 12915, 44015, 3007, 3152, 35013, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16709, 44015, 3007, 3152, 35013, 8, 198, 198, 834, 439, 834, 796, 37250, 35155, 4170, 3198, 29571, 28008, 43, 1531, 5990, 36674, 35277, 37, 16762, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35155, 4170, 3198, 29571, 43, 272, 5321, 5990, 36674, 35277, 37, 16762, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22968, 80, 38, 89, 26227, 3256, 705, 56, 43695, 26227, 3256, 705, 22968, 80, 5124, 8409, 26227, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22968, 80, 24849, 3552, 15235, 5124, 8409, 26227, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28008, 43, 1531, 5990, 36674, 28008, 12915, 22968, 80, 35277, 37, 16762, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28008, 43, 1531, 5990, 36674, 47, 9820, 12915, 22968, 80, 35277, 37, 16762, 3256, 705, 44015, 3007, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 44015, 3007, 3152, 35013, 3256, 705, 47, 9820, 12915, 44015, 3007, 3152, 35013, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24363, 44015, 3007, 3152, 35013, 3256, 705, 28008, 12915, 22968, 80, 5124, 8409, 2725, 445, 2091, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28008, 12915, 22968, 80, 5124, 8409, 2725, 445, 2414, 3256, 705, 47, 9820, 12915, 22968, 80, 5124, 8409, 2725, 445, 2091, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47, 9820, 12915, 22968, 80, 5124, 8409, 2725, 445, 2414, 3256, 705, 28008, 12915, 22968, 80, 5124, 8409, 2725, 445, 2091, 53, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28008, 12915, 22968, 80, 5124, 8409, 2725, 445, 2414, 53, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47, 9820, 12915, 22968, 80, 5124, 8409, 2725, 445, 2091, 53, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47, 9820, 12915, 22968, 80, 5124, 8409, 2725, 445, 2414, 53, 17, 3256, 705, 48, 40, 12789, 16, 11522, 2821, 26227, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48, 40, 12789, 16, 11522, 2821, 35277, 37, 16762, 20520, 198, 198, 11748, 8019, 13, 11748, 62, 21412, 10786, 80, 17, 62, 19199, 13, 525, 62, 39873, 62, 3107, 3007, 13557, 7645, 16354, 11537, 198 ]
2.193858
1,042
from datetime import datetime import time import sys sys.path.insert(1, sys.path[0] + '/lib') from pexpect import pxssh, TIMEOUT CRNL = '\r\n' DEBUG_VERBOSE_PRINTING = False # experimentally derived that a sequence of tries with delays of # 1, 5, 25, 125 secs worked to surmount a 1-second delay (via `tc` test) RETRY_EXPONENT = 5
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 640, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 13, 28463, 7, 16, 11, 25064, 13, 6978, 58, 15, 60, 1343, 31051, 8019, 11537, 198, 6738, 613, 87, 806, 1330, 279, 87, 45824, 11, 20460, 12425, 198, 198, 9419, 32572, 796, 705, 59, 81, 59, 77, 6, 198, 30531, 62, 5959, 33, 14058, 62, 4805, 12394, 2751, 796, 10352, 198, 2, 6306, 453, 10944, 326, 257, 8379, 286, 8404, 351, 16119, 286, 198, 2, 220, 352, 11, 642, 11, 1679, 11, 13151, 792, 82, 3111, 284, 969, 14948, 257, 352, 12, 12227, 5711, 357, 8869, 4600, 23047, 63, 1332, 8, 198, 2200, 40405, 62, 49864, 1340, 3525, 796, 642, 628, 198 ]
2.823529
119
import os import signal import subprocess from behave import given, when, then from test.behave_utils import utils from gppylib.commands.base import Command @when('the standby host goes down') def _handle_sigpipe(): """ Work around https://bugs.python.org/issue1615376, which is not fixed until Python 3.2. This bug interferes with Bash pipelines that rely on SIGPIPE to exit cleanly. """ signal.signal(signal.SIGPIPE, signal.SIG_DFL) @when('gpstart is run with prompts accepted') def impl(context): """ Runs `yes | gpstart`. """ p = subprocess.Popen( [ "bash", "-c", "yes | gpstart" ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=_handle_sigpipe, ) context.stdout_message, context.stderr_message = p.communicate() context.ret_code = p.returncode @given('segment {dbid} goes down' ) @then('the status of segment {dbid} should be "{expected_status}"' ) @then('the status of segment {dbid} is changed to "{status}"' ) @then('the cluster is returned to a good state' )
[ 11748, 28686, 198, 11748, 6737, 198, 11748, 850, 14681, 198, 198, 6738, 17438, 1330, 1813, 11, 618, 11, 788, 198, 6738, 1332, 13, 1350, 14150, 62, 26791, 1330, 3384, 4487, 198, 6738, 308, 381, 2645, 571, 13, 9503, 1746, 13, 8692, 1330, 9455, 198, 198, 31, 12518, 10786, 1169, 42020, 2583, 2925, 866, 11537, 198, 198, 4299, 4808, 28144, 62, 82, 328, 34360, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5521, 1088, 3740, 1378, 32965, 13, 29412, 13, 2398, 14, 21949, 1433, 1314, 32128, 11, 543, 318, 407, 5969, 1566, 198, 220, 220, 220, 11361, 513, 13, 17, 13, 770, 5434, 987, 5036, 411, 351, 15743, 31108, 326, 8814, 319, 33993, 47, 4061, 36, 284, 198, 220, 220, 220, 8420, 3424, 306, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6737, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 47, 4061, 36, 11, 6737, 13, 50, 3528, 62, 35, 3697, 8, 198, 198, 31, 12518, 10786, 31197, 9688, 318, 1057, 351, 36454, 6292, 11537, 198, 4299, 4114, 7, 22866, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44743, 4600, 8505, 930, 27809, 9688, 44646, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 279, 796, 850, 14681, 13, 47, 9654, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 366, 41757, 1600, 27444, 66, 1600, 366, 8505, 930, 27809, 9688, 1, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 47488, 87, 721, 62, 22184, 28, 62, 28144, 62, 82, 328, 34360, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4732, 13, 19282, 448, 62, 20500, 11, 4732, 13, 301, 1082, 81, 62, 20500, 796, 279, 13, 10709, 5344, 3419, 198, 220, 220, 220, 4732, 13, 1186, 62, 8189, 796, 279, 13, 7783, 8189, 198, 198, 31, 35569, 10786, 325, 5154, 1391, 9945, 312, 92, 2925, 866, 6, 1267, 198, 198, 31, 8524, 10786, 1169, 3722, 286, 10618, 1391, 9945, 312, 92, 815, 307, 45144, 40319, 62, 13376, 92, 30543, 1267, 198, 198, 31, 8524, 10786, 1169, 3722, 286, 10618, 1391, 9945, 312, 92, 318, 3421, 284, 45144, 13376, 92, 30543, 1267, 198, 198, 31, 8524, 10786, 1169, 13946, 318, 4504, 284, 257, 922, 1181, 6, 1267, 198 ]
2.647783
406
from groupon import Version __author__ = "Allan Bunch" __copyright__ = "Copyright (C) 2010 Webframeworks LLC" __license__ = """Copyright 2010 Webframeworks LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" __version__ = Version __maintainer__ = "Allan Bunch" __status__ = "Beta" __credits__ = []
[ 6738, 1448, 261, 1330, 10628, 198, 198, 834, 9800, 834, 796, 366, 3237, 272, 347, 3316, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 357, 34, 8, 3050, 5313, 19298, 19653, 11419, 1, 198, 834, 43085, 834, 796, 37227, 15269, 3050, 5313, 19298, 19653, 11419, 49962, 739, 262, 24843, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 17486, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 262, 2176, 3303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15030, 21627, 290, 11247, 739, 262, 13789, 526, 15931, 198, 834, 9641, 834, 796, 10628, 198, 834, 76, 2913, 10613, 834, 796, 366, 3237, 272, 347, 3316, 1, 198, 834, 13376, 834, 796, 366, 43303, 1, 198, 834, 66, 20696, 834, 796, 17635, 628, 198 ]
2.648571
350
import json from time import sleep import requests from cloudaio import tlsexpert import uuid import random s = requests.session() stylecode = 'DB5074-101' stop = False storage = {} sizes = ['9'] cookie = '_abck=42D4E2E416589130C76B07375A19C056~-1~YAAQwArGF1ovWzJ1AQAAFVlARAS+j6F2rlSe4zrahotRz7GSQSWK5sEIKBw84/F206ZvoZUygpHQDG2YE7a/6qDtXywJFj1qo80QXunTlvRzSb9Ir3ImsuxW2d1aiy+bJXLo/yXYCOuetAXkjg2A5oCOke/NNXdy237kNClxK+sKyTBOKevR+D+E1/NGMYiEpaAzD16lT+2zRGyEuEbaP+zB3uPBJFhWZmoCmaqlwzO4DURy2G6ezrTVix6pnEtqBc8ZnwXDj9EbIet9NllmEsaBbg4J0KVTDZNrj8KC06X9kQY76KG7ySYQo76J/0q87+rdbNLPerfEMa6EEmEA1BALEvPu/QekZodLy4wSyk78/OshgKGI04hEw/A507k+jyvj2bMaRxMDZL6CBfvbNI0pLPWNBKdI38rytTrR7CmgFjb36bypW+EX9+K5CA99EYXszg==~-1~-1~-1;bm_sz=2B6D19B104CB409988B860E3EFE6EFEF~YAAQwArGFw8uWzJ1AQAAbkBARAmC3kWjspX7DFScuMysLDd9PdAF5cLWQ/pCFM4kl5WauGx51hwgvP51RoEjABxOcClhVbzjJkiRUM9nStEYbG44nHc0RZp+5JscnidJMcNh5Mtx/WKLVAI+ZFCcbqTdL/mb1bdGExlbiO11DWzzk6JVgeJMoDf4u4887uoocgyJjo+kwWkmHXUZpj4k5XfCr2IaEbQ+hLlCMOU+qWprIs8ZKdQiWEb8cKSjsfltIL2MUPanCcQIdnN8m/8F0FuevUIBGqN/FKg=;' region = 'SG' visitor = str(uuid.uuid4()) url = 'https://api.nike.com/buy/partner_cart_preorder/v1/' + str(uuid.uuid4()) proxy1 = '108.165.18.67:14025' proxy = {"http": "http://" + proxy1, "https": "https://" + proxy1} s.proxies.update(proxy) maxlimit = None print(json.dumps( { "status": "0", "message": "Starting..." } )) # Fetch Product details found = details() while not found: found = details() # Your monitor code status,size = monitor() while not status: status, size = monitor() # Later on you branch to ATC success = atc(size) if success: check_order() #Now tell the UI to show the success to the user
[ 11748, 33918, 198, 6738, 640, 1330, 3993, 198, 11748, 7007, 198, 6738, 6279, 64, 952, 1330, 256, 75, 8044, 11766, 198, 11748, 334, 27112, 198, 11748, 4738, 198, 82, 796, 7007, 13, 29891, 3419, 198, 7635, 8189, 796, 705, 11012, 1120, 4524, 12, 8784, 6, 198, 11338, 796, 10352, 198, 35350, 796, 23884, 198, 82, 4340, 796, 37250, 24, 20520, 198, 44453, 796, 705, 62, 397, 694, 28, 3682, 35, 19, 36, 17, 36, 35218, 3365, 6420, 1270, 34, 4304, 33, 2998, 22318, 32, 1129, 34, 2713, 21, 93, 12, 16, 93, 56, 3838, 48, 86, 3163, 21713, 16, 709, 54, 89, 41, 16, 32, 48, 38540, 53, 75, 1503, 1921, 10, 73, 21, 37, 17, 45895, 4653, 19, 89, 430, 8940, 49, 89, 22, 14313, 48, 17887, 42, 20, 82, 36, 18694, 33, 86, 5705, 14, 37, 22136, 57, 13038, 57, 52, 88, 31197, 41275, 35, 38, 17, 48743, 22, 64, 14, 21, 80, 35, 83, 55, 88, 86, 41, 37, 73, 16, 80, 78, 1795, 48, 55, 403, 51, 6780, 49, 89, 50, 65, 24, 23820, 18, 40, 907, 2821, 54, 17, 67, 16, 1872, 88, 10, 65, 41, 55, 27654, 14, 88, 34278, 8220, 84, 316, 25922, 42421, 70, 17, 32, 20, 78, 8220, 365, 14, 6144, 55, 9892, 24693, 74, 45, 2601, 87, 42, 10, 82, 30630, 51, 8202, 42, 1990, 49, 10, 35, 10, 36, 16, 14, 10503, 26708, 72, 36, 8957, 26903, 35, 1433, 75, 51, 10, 17, 89, 49, 44802, 36, 84, 36, 7012, 47, 10, 89, 33, 18, 84, 49079, 41, 37, 71, 54, 57, 5908, 34, 2611, 13976, 86, 89, 46, 19, 35, 4261, 88, 17, 38, 21, 8471, 81, 6849, 844, 21, 21999, 36, 83, 80, 33, 66, 23, 57, 47516, 55, 35, 73, 24, 36, 65, 40, 316, 24, 45, 297, 76, 36, 11400, 33, 35904, 19, 41, 15, 42, 53, 21016, 57, 45, 81, 73, 23, 36222, 3312, 55, 24, 74, 48, 56, 4304, 42, 38, 22, 88, 23060, 48, 78, 4304, 41, 14, 15, 80, 5774, 10, 4372, 65, 32572, 5990, 69, 3620, 64, 21, 6500, 76, 16412, 16, 33, 1847, 15200, 47, 84, 14, 48, 988, 57, 375, 31633, 19, 86, 13940, 74, 3695, 14, 46, 1477, 70, 42, 18878, 3023, 71, 36, 86, 14, 32, 35378, 74, 10, 73, 88, 85, 73, 17, 65, 21467, 49, 87, 12740, 57, 43, 21, 23199, 69, 85, 65, 22125, 15, 79, 19930, 29767, 33, 42, 67, 40, 2548, 563, 83, 2898, 49, 22, 34, 11296, 37, 73, 65, 2623, 1525, 79, 54, 10, 6369, 24, 10, 42, 20, 8141, 2079, 22348, 55, 82, 89, 70, 855, 93, 12, 16, 93, 12, 16, 93, 12, 16, 26, 20475, 62, 82, 89, 28, 17, 33, 21, 35, 1129, 33, 13464, 23199, 1821, 2079, 3459, 33, 45039, 36, 18, 36, 15112, 21, 36, 15112, 37, 93, 56, 3838, 48, 86, 3163, 21713, 86, 23, 84, 54, 89, 41, 16, 32, 48, 3838, 65, 38841, 1503, 5840, 34, 18, 74, 54, 73, 2777, 55, 22, 8068, 3351, 84, 44, 893, 11163, 67, 24, 47, 67, 8579, 20, 66, 43, 54, 48, 14, 79, 22495, 44, 19, 41582, 20, 54, 559, 38, 87, 4349, 36599, 70, 47322, 4349, 15450, 36, 73, 6242, 87, 46, 66, 2601, 71, 53, 65, 89, 73, 41, 4106, 49, 5883, 24, 77, 1273, 22348, 65, 38, 2598, 77, 39, 66, 15, 49, 57, 79, 10, 20, 41, 1416, 77, 312, 41, 9742, 45, 71, 20, 44, 17602, 14, 54, 42, 43, 11731, 40, 10, 57, 4851, 21101, 80, 51, 45582, 14, 2022, 16, 17457, 38, 3109, 75, 8482, 46, 1157, 42955, 3019, 74, 21, 41697, 469, 41, 16632, 35, 69, 19, 84, 2780, 5774, 20895, 420, 1360, 41, 7639, 10, 46265, 54, 13276, 39, 55, 52, 57, 79, 73, 19, 74, 20, 55, 69, 13916, 17, 40, 64, 36, 65, 48, 10, 71, 43, 75, 24187, 2606, 10, 80, 54, 1050, 3792, 23, 57, 42, 67, 48, 72, 8845, 65, 23, 66, 27015, 8457, 69, 2528, 4146, 17, 44, 8577, 272, 34, 66, 48, 7390, 77, 45, 23, 76, 14, 23, 37, 15, 37, 518, 85, 52, 9865, 38, 80, 45, 14, 26236, 70, 28, 26, 6, 198, 36996, 796, 705, 38475, 6, 198, 4703, 2072, 796, 965, 7, 12303, 312, 13, 12303, 312, 19, 28955, 198, 6371, 796, 705, 5450, 1378, 15042, 13, 77, 522, 13, 785, 14, 17846, 14, 3911, 1008, 62, 26674, 62, 3866, 2875, 14, 85, 16, 14, 6, 1343, 965, 7, 12303, 312, 13, 12303, 312, 19, 28955, 198, 36436, 16, 796, 705, 15711, 13, 20986, 13, 1507, 13, 3134, 25, 15187, 1495, 6, 198, 36436, 796, 19779, 4023, 1298, 366, 4023, 1378, 1, 1343, 15741, 16, 11, 366, 5450, 1298, 366, 5450, 1378, 1, 1343, 15741, 16, 92, 198, 82, 13, 1676, 87, 444, 13, 19119, 7, 36436, 8, 198, 9806, 32374, 796, 6045, 628, 198, 4798, 7, 17752, 13, 67, 8142, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20500, 1298, 366, 22851, 9313, 198, 220, 220, 220, 1782, 198, 4008, 198, 2, 376, 7569, 8721, 3307, 198, 9275, 796, 3307, 3419, 198, 4514, 407, 1043, 25, 198, 220, 220, 220, 1043, 796, 3307, 3419, 628, 198, 2, 3406, 5671, 2438, 198, 13376, 11, 7857, 796, 5671, 3419, 198, 4514, 407, 3722, 25, 198, 220, 220, 220, 3722, 11, 2546, 796, 5671, 3419, 198, 198, 2, 11450, 319, 345, 8478, 220, 284, 317, 4825, 198, 198, 13138, 796, 379, 66, 7, 7857, 8, 198, 198, 361, 1943, 25, 198, 220, 220, 220, 2198, 62, 2875, 3419, 198, 2, 3844, 1560, 262, 12454, 284, 905, 262, 1943, 284, 262, 2836, 628, 628 ]
1.776275
961
import streamlit as st import pandas as pd import numpy as np import datetime import plotly.express as px import base64
[ 11748, 4269, 18250, 355, 336, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4818, 8079, 198, 11748, 7110, 306, 13, 42712, 355, 279, 87, 198, 11748, 2779, 2414 ]
3.4
35
import argparse import logging import os from multiprocessing import Pool from distutils.util import strtobool import tensorflow as tf import numpy as np import json from pathlib import Path from generic.data_provider.iterator import Iterator from generic.tf_utils.evaluator import Evaluator from generic.tf_utils.optimizer import create_optimizer from generic.tf_utils.ckpt_loader import load_checkpoint, create_resnet_saver from generic.utils.config import load_config from generic.utils.file_handlers import pickle_dump from generic.data_provider.image_loader import get_img_builder from generic.data_provider.nlp_utils import Embeddings from generic.data_provider.nlp_utils import GloveEmbeddings from src.guesswhat.data_provider.guesswhat_dataset import OracleDataset from src.guesswhat.data_provider.oracle_batchifier import OracleBatchifier from src.guesswhat.data_provider.guesswhat_tokenizer import GWTokenizer from src.guesswhat.models.oracle.oracle_network import OracleNetwork import time if __name__ == '__main__': ############################# # LOAD CONFIG ############################# parser = argparse.ArgumentParser('Oracle network baseline!') parser.add_argument("-data_dir", type=str, help="Directory with data") parser.add_argument("-exp_dir", type=str, help="Directory in which experiments are stored") parser.add_argument("-config", type=str, help='Config file') parser.add_argument("-dict_file_question", type=str, default="dict.json", help="Dictionary file name")# default dict_pos_tag parser.add_argument("-dict_file_description", type=str, default="dict_Description.json", help="Dictionary file name") parser.add_argument("-all_dictfile", type=str, default="data/list_allquestion1.npy", help="Dictionary file name") parser.add_argument("-img_dir", type=str, help='Directory with images') parser.add_argument("-crop_dir", type=str, help='Directory with images') parser.add_argument("-load_checkpoint", type=str, help="Load model parameters from specified checkpoint") parser.add_argument("-continue_exp", type=lambda x: bool(strtobool(x)), default="False", help="Continue previously started experiment?") parser.add_argument("-gpu_ratio", type=float, default=0.50, help="How many GPU ram is required? (ratio)") parser.add_argument("-no_thread", type=int, default=4, help="No thread to load batch") parser.add_argument("-inference_mode", type=bool, default=False, help="inference mode True if you want to execute only test_dataset") args = parser.parse_args() config, exp_identifier, save_path = load_config(args.config, args.exp_dir) # logger.info("Save_path = ",save_path) # exit() logger = logging.getLogger() # Load config resnet_version = config['model']["image"].get('resnet_version', 50) finetune = config["model"]["image"].get('finetune', list()) batch_size = config['optimizer']['batch_size'] no_epoch = config["optimizer"]["no_epoch"] use_glove = config["model"]["glove"] # Inference True if want to test the dataset_test of the pre-trained Weigth inference = False wait_inference = 1 ############################# # LOAD DATA ############################# # Load image image_builder, crop_builder = None, None use_resnet = False logger.info("Loading ") t_begin = time.time() if config['inputs'].get('image', False): logger.info('Loading images..') image_builder = get_img_builder(config['model']['image'], args.img_dir) use_resnet = image_builder.is_raw_image() if config['inputs'].get('crop', False): logger.info('Loading crops..') crop_builder = get_img_builder(config['model']['crop'], args.crop_dir, is_crop=True) use_resnet = crop_builder.is_raw_image() # Load data logger.info('Loading data..') all_img_bbox = {} all_img_describtion = [] t1 = time.time() trainset = OracleDataset.load(args.data_dir, "train",image_builder = image_builder, crop_builder = crop_builder,all_img_bbox = all_img_bbox,all_img_describtion=all_img_describtion) validset = OracleDataset.load(args.data_dir, "valid", image_builder= image_builder, crop_builder = crop_builder,all_img_bbox = all_img_bbox,all_img_describtion=all_img_describtion) testset = OracleDataset.load(args.data_dir, "test",image_builder= image_builder, crop_builder = crop_builder,all_img_bbox = all_img_bbox,all_img_describtion=all_img_describtion) t2 = time.time() logger.info("Time to load data = {}".format(t2-t1)) # np.save("all_img_bbox.npy",all_img_bbox) # logger.info("Image_crop legnth= {}".format(len(all_img_describtion))) # logger.info("Image_crop = {}".format(all_img_describtion)) # with open('all_img_bbox.json', 'a') as file: # file.write(json.dumps(all_img_bbox,sort_keys=True, indent=4, separators=(',', ': '))) file_allquestion = Path("all_question_game.txt") # verify if file exist if not file_allquestion.is_file(): with open('all_question_game.txt', 'a') as file: for question in all_img_describtion: file.write(question+"\n") else: logger.info("all_question exist") # Load dictionary logger.info('Loading dictionary Question..') tokenizer = GWTokenizer(os.path.join(args.data_dir, args.dict_file_question),dic_all_question="data/dict_word_indice.pickle") # Load dictionary tokenizer_description = None if config["inputs"]["description"]: logger.info('Loading dictionary Description......') tokenizer_description = GWTokenizer(os.path.join(args.data_dir,args.dict_file_description),question=False) # Build Network logger.info('Building network..') if tokenizer_description != None: network = OracleNetwork(config, num_words_question=tokenizer.no_words,num_words_description=tokenizer_description.no_words) else: network = OracleNetwork(config, num_words_question=tokenizer.no_words,num_words_description=None) # Build Optimizer logger.info('Building optimizer..') optimizer, outputs = create_optimizer(network, config, finetune=finetune) best_param = network.get_predict() ############################## # START TRAINING ############################# logger.info("Start training .......") # create a saver to store/load checkpoint saver = tf.train.Saver() resnet_saver = None logger.info("saver done !") cpu_pool = Pool(args.no_thread, maxtasksperchild=5000) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_ratio) logger.info("gpu_options done !") # Retrieve only resnet variabes if use_resnet: resnet_saver = create_resnet_saver([network]) # use_embedding = False # if config["embedding"] != "None": # use_embedding = True logger.info("resnet_saver done !") glove = None if use_glove: logger.info('Loading glove..') glove = GloveEmbeddings(os.path.join(args.data_dir, config["glove_name"]),glove_dim=300,type_data="common_crow") logger.info("glove done !") # embedding = None # if use_embedding: # logger.info('Loading embedding..') # embedding = Embeddings(args.all_dictfile,total_words=tokenizer.no_words,train=trainset,valid=validset,test=testset,dictionary_file_question=os.path.join(args.data_dir, args.dict_file_question),dictionary_file_description=os.path.join(args.data_dir, args.dict_file_description),description=config["inputs"]["description"],lemme=config["lemme"],pos=config["pos"]) # CPU/GPU option with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) as sess: sources = network.get_sources(sess) out_net = network.get_parameters()[-1] # logger.info("Sources: " + ', '.join(sources)) sess.run(tf.global_variables_initializer()) if use_resnet: resnet_saver.restore(sess, os.path.join(args.data_dir, 'resnet_v1_{}.ckpt'.format(resnet_version))) start_epoch = load_checkpoint(sess, saver, args, save_path) best_val_err = 0 # best_train_err = None # # create training tools evaluator = Evaluator(sources, network.scope_name,network=network,tokenizer=tokenizer) # train_evaluator = MultiGPUEvaluator(sources, scope_names, networks=networks, tokenizer=tokenizer) # train_evaluator = Evaluator(sources, scope_names[0], network=networks[0], tokenizer=tokenizer) # eval_evaluator = Evaluator(sources, scope_names[0], network=networks[0], tokenizer=tokenizer) batchifier = OracleBatchifier(tokenizer, sources, status=config['status'],glove=glove,tokenizer_description=tokenizer_description,args = args,config=config) stop_learning = False progress_compteur = 0 t = 0 if inference == False: while start_epoch < no_epoch and not stop_learning : # for t in range(start_epoch, no_epoch): logger.info('Epoch {}..'.format(t + 1)) # logger.info('Epoch {}..'.format(t + 1)) logger.info(" train_oracle | Iterator ...") t1 = time.time() train_iterator = Iterator(trainset, batch_size=batch_size, pool=cpu_pool, batchifier=batchifier, shuffle=True) t2 = time.time() logger.info(" train_oracle | Iterator...Total=".format(t2-t1)) t1 = time.time() train_loss, train_accuracy = evaluator.process(sess, train_iterator, outputs=outputs + [optimizer],out_net=best_param) t2 = time.time() logger.info(" train_oracle | evaluatorator...Total=".format(t2-t1)) t1 = time.time() valid_iterator = Iterator(validset, pool=cpu_pool, batch_size=batch_size*2, batchifier=batchifier, shuffle=False) t2 = time.time() logger.info(" train_oracle | Iterator validset...Total=".format(t2-t1)) t1 = time.time() # [network.get_emb_concat()] valid_loss, valid_accuracy = evaluator.process(sess, valid_iterator, outputs=outputs,type_data="Valid") t2 = time.time() logger.info(" train_oracle | evaluator ...Total=".format(t2-t1)) logger.info("Training loss: {}".format(train_loss)) logger.info("Training error: {}".format(1-train_accuracy)) logger.info("Validation loss: {}".format(valid_loss)) logger.info("Validation error: {}".format(1-valid_accuracy)) t1 = time.time() if valid_accuracy > best_val_err: best_train_err = train_accuracy best_val_err = valid_accuracy saver.save(sess, save_path.format('params.ckpt')) progress_compteur = 0 logger.info("Oracle checkpoint saved...") pickle_dump({'epoch': t}, save_path.format('status.pkl')) elif valid_accuracy < best_val_err: progress_compteur += 1 if int(progress_compteur) == int(wait_inference): stop_learning = True t2 = time.time() logger.info(" train_oracle | Condition ...Total=".format(t2-t1)) t += 1 start_epoch += 1 # Load early stopping t1 = time.time() if inference: # save_path = "out/oracle/46499510c2ab980278d91eeff89aa06f/{}" # # save_path = "out/oracle/9efb52e0bd872e1f4e64f66b35a2f092/{}" # question # save_path = "out/oracle/a9cc5b30b2024399c79b6997086c5265/{}" # question,category,spatial # save_path = "out/oracle/89570bad275ddde7b69a5c37659bd40e/{}" # question,category,spaticial,crop # save_path = "out/oracle/b158b76a46173ff33e4aec021e267e5a/{}" # question,category,spaticial,history # save_path = "out/oracle/30ef7335e38c93632b58e91fa732cf2d/{}" # question,category,spaticial,history,Images # save_path = "out/oracle/d9f1951536bbd147a3ea605bb3cbdde7/{}" # question,category,spaticial,history,Crop # question,category,spaticial,history,Crop # save_path = "out/oracle/4a9f62698e3304c4c2d733bff0b24ee2/{}" save_path = "out/oracle/a630385c990e5cc470c2488a244f18dc/{}" # out/oracle/ce02141129f6d87172cafc817c6d0b59/params.ckpt # save_path = save_path.format('params.ckpt') logger.info("***** save_path = ".format(save_path)) save_path = save_path.format('params.ckpt') saver.restore(sess, save_path) test_iterator = Iterator(testset, pool=cpu_pool, batch_size=batch_size*2, batchifier=batchifier, shuffle=True) logger.info("Output = {}".format(outputs[1])) logger.info("Best_param = {}".format(best_param)) test_loss, test_accuracy = evaluator.process(sess, test_iterator, outputs=outputs ,out_net=best_param,inference=inference,type_data="Test") t2 = time.time() logger.info(" train_oracle | Iterator testset ...Total=".format(t2-t1)) try: logger.info("Testing loss: {}".format(test_loss)) except Exception: logger.info("Erreur loss") try: logger.info("Testing error: {}".format(1-test_accuracy)) except Exception: logger.info("Erreur accuracy") t_end = time.time() logger.info("Time execution = {}".format(t_end - t_begin))
[ 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 28686, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 6738, 1233, 26791, 13, 22602, 1330, 965, 83, 672, 970, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 14276, 13, 7890, 62, 15234, 1304, 13, 48727, 1330, 40806, 1352, 198, 6738, 14276, 13, 27110, 62, 26791, 13, 18206, 84, 1352, 1330, 26439, 84, 1352, 198, 6738, 14276, 13, 27110, 62, 26791, 13, 40085, 7509, 1330, 2251, 62, 40085, 7509, 198, 6738, 14276, 13, 27110, 62, 26791, 13, 694, 457, 62, 29356, 1330, 3440, 62, 9122, 4122, 11, 2251, 62, 411, 3262, 62, 82, 8770, 198, 6738, 14276, 13, 26791, 13, 11250, 1330, 3440, 62, 11250, 198, 6738, 14276, 13, 26791, 13, 7753, 62, 4993, 8116, 1330, 2298, 293, 62, 39455, 198, 6738, 14276, 13, 7890, 62, 15234, 1304, 13, 9060, 62, 29356, 1330, 651, 62, 9600, 62, 38272, 198, 6738, 14276, 13, 7890, 62, 15234, 1304, 13, 21283, 79, 62, 26791, 1330, 13302, 6048, 654, 198, 6738, 14276, 13, 7890, 62, 15234, 1304, 13, 21283, 79, 62, 26791, 1330, 2671, 659, 31567, 6048, 654, 198, 198, 6738, 12351, 13, 5162, 408, 10919, 13, 7890, 62, 15234, 1304, 13, 5162, 408, 10919, 62, 19608, 292, 316, 1330, 18650, 27354, 292, 316, 198, 6738, 12351, 13, 5162, 408, 10919, 13, 7890, 62, 15234, 1304, 13, 273, 6008, 62, 43501, 7483, 1330, 18650, 33, 963, 7483, 198, 6738, 12351, 13, 5162, 408, 10919, 13, 7890, 62, 15234, 1304, 13, 5162, 408, 10919, 62, 30001, 7509, 1330, 27164, 30642, 7509, 198, 6738, 12351, 13, 5162, 408, 10919, 13, 27530, 13, 273, 6008, 13, 273, 6008, 62, 27349, 1330, 18650, 26245, 198, 11748, 640, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 1303, 14468, 7804, 4242, 198, 220, 220, 220, 1303, 220, 17579, 2885, 25626, 198, 220, 220, 220, 1303, 14468, 7804, 4242, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 10786, 48625, 3127, 14805, 0, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 7890, 62, 15908, 1600, 2099, 28, 2536, 11, 1037, 2625, 43055, 351, 1366, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 11201, 62, 15908, 1600, 2099, 28, 2536, 11, 1037, 2625, 43055, 287, 543, 10256, 389, 8574, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 11250, 1600, 2099, 28, 2536, 11, 1037, 11639, 16934, 2393, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 11600, 62, 7753, 62, 25652, 1600, 2099, 28, 2536, 11, 4277, 2625, 11600, 13, 17752, 1600, 1037, 2625, 35, 14188, 2393, 1438, 4943, 2, 4277, 8633, 62, 1930, 62, 12985, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 11600, 62, 7753, 62, 11213, 1600, 2099, 28, 2536, 11, 4277, 2625, 11600, 62, 11828, 13, 17752, 1600, 1037, 2625, 35, 14188, 2393, 1438, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 439, 62, 11600, 7753, 1600, 2099, 28, 2536, 11, 4277, 2625, 7890, 14, 4868, 62, 439, 25652, 16, 13, 77, 9078, 1600, 1037, 2625, 35, 14188, 2393, 1438, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 9600, 62, 15908, 1600, 2099, 28, 2536, 11, 1037, 11639, 43055, 351, 4263, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 31476, 62, 15908, 1600, 2099, 28, 2536, 11, 1037, 11639, 43055, 351, 4263, 11537, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 2220, 62, 9122, 4122, 1600, 2099, 28, 2536, 11, 1037, 2625, 8912, 2746, 10007, 422, 7368, 26954, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 43043, 62, 11201, 1600, 2099, 28, 50033, 2124, 25, 20512, 7, 2536, 83, 672, 970, 7, 87, 36911, 4277, 2625, 25101, 1600, 1037, 2625, 29453, 4271, 2067, 6306, 1701, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 46999, 62, 10366, 952, 1600, 2099, 28, 22468, 11, 4277, 28, 15, 13, 1120, 11, 1037, 2625, 2437, 867, 11362, 15770, 318, 2672, 30, 357, 10366, 952, 8, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 3919, 62, 16663, 1600, 2099, 28, 600, 11, 4277, 28, 19, 11, 1037, 2625, 2949, 4704, 284, 3440, 15458, 4943, 628, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 259, 4288, 62, 14171, 1600, 2099, 28, 30388, 11, 4277, 28, 25101, 11, 1037, 2625, 259, 4288, 4235, 6407, 611, 345, 765, 284, 12260, 691, 1332, 62, 19608, 292, 316, 4943, 628, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 198, 220, 220, 220, 4566, 11, 1033, 62, 738, 7483, 11, 3613, 62, 6978, 796, 3440, 62, 11250, 7, 22046, 13, 11250, 11, 26498, 13, 11201, 62, 15908, 8, 198, 220, 220, 220, 1303, 49706, 13, 10951, 7203, 16928, 62, 6978, 796, 33172, 21928, 62, 6978, 8, 198, 220, 220, 220, 1303, 8420, 3419, 628, 198, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 3419, 628, 220, 220, 220, 1303, 8778, 4566, 198, 220, 220, 220, 581, 3262, 62, 9641, 796, 4566, 17816, 19849, 6, 7131, 1, 9060, 1, 4083, 1136, 10786, 411, 3262, 62, 9641, 3256, 2026, 8, 198, 220, 220, 220, 957, 316, 1726, 796, 4566, 14692, 19849, 1, 7131, 1, 9060, 1, 4083, 1136, 10786, 15643, 316, 1726, 3256, 1351, 28955, 198, 220, 220, 220, 15458, 62, 7857, 796, 4566, 17816, 40085, 7509, 6, 7131, 6, 43501, 62, 7857, 20520, 198, 220, 220, 220, 645, 62, 538, 5374, 796, 4566, 14692, 40085, 7509, 1, 7131, 1, 3919, 62, 538, 5374, 8973, 198, 220, 220, 220, 779, 62, 4743, 659, 796, 4566, 14692, 19849, 1, 7131, 1, 4743, 659, 8973, 628, 198, 220, 220, 220, 1303, 554, 4288, 6407, 611, 765, 284, 1332, 262, 27039, 62, 9288, 286, 262, 662, 12, 35311, 775, 328, 400, 628, 198, 220, 220, 220, 32278, 796, 220, 10352, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 4043, 62, 259, 4288, 796, 352, 628, 628, 220, 220, 220, 1303, 14468, 7804, 4242, 198, 220, 220, 220, 1303, 220, 17579, 2885, 42865, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 14468, 7804, 4242, 628, 220, 220, 220, 1303, 8778, 2939, 198, 220, 220, 220, 2939, 62, 38272, 11, 13833, 62, 38272, 796, 6045, 11, 6045, 198, 220, 220, 220, 779, 62, 411, 3262, 796, 10352, 198, 220, 220, 220, 49706, 13, 10951, 7203, 19031, 366, 8, 198, 220, 220, 220, 256, 62, 27471, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 611, 4566, 17816, 15414, 82, 6, 4083, 1136, 10786, 9060, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 19031, 4263, 492, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 38272, 796, 651, 62, 9600, 62, 38272, 7, 11250, 17816, 19849, 6, 7131, 6, 9060, 6, 4357, 26498, 13, 9600, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 411, 3262, 796, 2939, 62, 38272, 13, 271, 62, 1831, 62, 9060, 3419, 628, 220, 220, 220, 611, 4566, 17816, 15414, 82, 6, 4083, 1136, 10786, 31476, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 19031, 14450, 492, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 13833, 62, 38272, 796, 651, 62, 9600, 62, 38272, 7, 11250, 17816, 19849, 6, 7131, 6, 31476, 6, 4357, 26498, 13, 31476, 62, 15908, 11, 318, 62, 31476, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 411, 3262, 796, 13833, 62, 38272, 13, 271, 62, 1831, 62, 9060, 3419, 628, 220, 220, 220, 220, 628, 198, 220, 220, 220, 1303, 8778, 1366, 198, 220, 220, 220, 49706, 13, 10951, 10786, 19031, 1366, 492, 11537, 628, 220, 220, 220, 477, 62, 9600, 62, 65, 3524, 796, 23884, 198, 220, 220, 220, 477, 62, 9600, 62, 20147, 822, 5378, 796, 17635, 628, 198, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 13404, 316, 796, 220, 18650, 27354, 292, 316, 13, 2220, 7, 22046, 13, 7890, 62, 15908, 11, 366, 27432, 1600, 9060, 62, 38272, 796, 2939, 62, 38272, 11, 13833, 62, 38272, 796, 13833, 62, 38272, 11, 439, 62, 9600, 62, 65, 3524, 220, 796, 477, 62, 9600, 62, 65, 3524, 11, 439, 62, 9600, 62, 20147, 822, 5378, 28, 439, 62, 9600, 62, 20147, 822, 5378, 8, 198, 220, 220, 220, 1188, 2340, 316, 796, 220, 18650, 27354, 292, 316, 13, 2220, 7, 22046, 13, 7890, 62, 15908, 11, 366, 12102, 1600, 2939, 62, 38272, 28, 2939, 62, 38272, 11, 13833, 62, 38272, 796, 13833, 62, 38272, 11, 439, 62, 9600, 62, 65, 3524, 796, 477, 62, 9600, 62, 65, 3524, 11, 439, 62, 9600, 62, 20147, 822, 5378, 28, 439, 62, 9600, 62, 20147, 822, 5378, 8, 198, 220, 220, 220, 1332, 2617, 220, 796, 220, 18650, 27354, 292, 316, 13, 2220, 7, 22046, 13, 7890, 62, 15908, 11, 366, 9288, 1600, 9060, 62, 38272, 28, 2939, 62, 38272, 11, 13833, 62, 38272, 796, 13833, 62, 38272, 11, 439, 62, 9600, 62, 65, 3524, 796, 477, 62, 9600, 62, 65, 3524, 11, 439, 62, 9600, 62, 20147, 822, 5378, 28, 439, 62, 9600, 62, 20147, 822, 5378, 8, 628, 220, 220, 220, 220, 198, 220, 220, 220, 256, 17, 796, 640, 13, 2435, 3419, 628, 198, 220, 220, 220, 49706, 13, 10951, 7203, 7575, 284, 3440, 1366, 796, 23884, 1911, 18982, 7, 83, 17, 12, 83, 16, 4008, 628, 220, 220, 220, 1303, 45941, 13, 21928, 7203, 439, 62, 9600, 62, 65, 3524, 13, 77, 9078, 1600, 439, 62, 9600, 62, 65, 3524, 8, 198, 220, 220, 220, 1303, 49706, 13, 10951, 7203, 5159, 62, 31476, 1232, 77, 400, 28, 23884, 1911, 18982, 7, 11925, 7, 439, 62, 9600, 62, 20147, 822, 5378, 22305, 198, 220, 220, 220, 1303, 49706, 13, 10951, 7203, 5159, 62, 31476, 796, 23884, 1911, 18982, 7, 439, 62, 9600, 62, 20147, 822, 5378, 4008, 198, 220, 220, 220, 1303, 351, 1280, 10786, 439, 62, 9600, 62, 65, 3524, 13, 17752, 3256, 705, 64, 11537, 355, 2393, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 17752, 13, 67, 8142, 7, 439, 62, 9600, 62, 65, 3524, 11, 30619, 62, 13083, 28, 17821, 11, 33793, 28, 19, 11, 2880, 2024, 16193, 3256, 3256, 705, 25, 705, 22305, 198, 220, 220, 220, 2393, 62, 439, 25652, 796, 220, 10644, 7203, 439, 62, 25652, 62, 6057, 13, 14116, 4943, 628, 220, 220, 220, 1303, 11767, 611, 2393, 2152, 628, 220, 220, 220, 611, 407, 2393, 62, 439, 25652, 13, 271, 62, 7753, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 10786, 439, 62, 25652, 62, 6057, 13, 14116, 3256, 705, 64, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1808, 287, 477, 62, 9600, 62, 20147, 822, 5378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 25652, 10, 1, 59, 77, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 439, 62, 25652, 2152, 4943, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 8778, 22155, 198, 220, 220, 220, 49706, 13, 10951, 10786, 19031, 22155, 18233, 492, 11537, 198, 220, 220, 220, 11241, 7509, 796, 27164, 30642, 7509, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 11600, 62, 7753, 62, 25652, 828, 67, 291, 62, 439, 62, 25652, 2625, 7890, 14, 11600, 62, 4775, 62, 521, 501, 13, 27729, 293, 4943, 628, 220, 220, 220, 1303, 8778, 22155, 198, 220, 220, 220, 11241, 7509, 62, 11213, 796, 6045, 198, 220, 220, 220, 611, 4566, 14692, 15414, 82, 1, 7131, 1, 11213, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 19031, 22155, 12489, 16317, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 62, 11213, 796, 27164, 30642, 7509, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 7890, 62, 15908, 11, 22046, 13, 11600, 62, 7753, 62, 11213, 828, 25652, 28, 25101, 8, 628, 220, 220, 220, 1303, 10934, 7311, 198, 220, 220, 220, 49706, 13, 10951, 10786, 25954, 3127, 492, 11537, 198, 220, 220, 220, 611, 11241, 7509, 62, 11213, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3127, 796, 18650, 26245, 7, 11250, 11, 997, 62, 10879, 62, 25652, 28, 30001, 7509, 13, 3919, 62, 10879, 11, 22510, 62, 10879, 62, 11213, 28, 30001, 7509, 62, 11213, 13, 3919, 62, 10879, 8, 198, 220, 220, 220, 2073, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3127, 796, 18650, 26245, 7, 11250, 11, 997, 62, 10879, 62, 25652, 28, 30001, 7509, 13, 3919, 62, 10879, 11, 22510, 62, 10879, 62, 11213, 28, 14202, 8, 628, 220, 220, 220, 1303, 10934, 30011, 7509, 198, 220, 220, 220, 49706, 13, 10951, 10786, 25954, 6436, 7509, 492, 11537, 198, 220, 220, 220, 6436, 7509, 11, 23862, 796, 2251, 62, 40085, 7509, 7, 27349, 11, 4566, 11, 957, 316, 1726, 28, 15643, 316, 1726, 8, 198, 220, 220, 220, 1266, 62, 17143, 796, 3127, 13, 1136, 62, 79, 17407, 3419, 198, 220, 220, 220, 1303, 14468, 7804, 4242, 2, 198, 220, 220, 220, 1303, 220, 33303, 220, 29125, 1268, 2751, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 14468, 7804, 4242, 198, 220, 220, 220, 49706, 13, 10951, 7203, 10434, 3047, 19424, 9313, 8, 628, 220, 220, 220, 1303, 2251, 257, 473, 332, 284, 3650, 14, 2220, 26954, 198, 220, 220, 220, 473, 332, 796, 48700, 13, 27432, 13, 50, 8770, 3419, 198, 220, 220, 220, 581, 3262, 62, 82, 8770, 796, 6045, 628, 220, 220, 220, 49706, 13, 10951, 7203, 82, 8770, 1760, 220, 2474, 8, 628, 220, 220, 220, 42804, 62, 7742, 796, 19850, 7, 22046, 13, 3919, 62, 16663, 11, 17266, 742, 6791, 525, 9410, 28, 27641, 8, 198, 220, 220, 220, 308, 19944, 62, 25811, 796, 48700, 13, 33346, 29046, 7, 525, 62, 14681, 62, 46999, 62, 31673, 62, 69, 7861, 28, 22046, 13, 46999, 62, 10366, 952, 8, 628, 220, 220, 220, 49706, 13, 10951, 7203, 46999, 62, 25811, 1760, 220, 2474, 8, 628, 198, 220, 220, 220, 1303, 4990, 30227, 691, 581, 3262, 5553, 397, 274, 198, 220, 220, 220, 611, 779, 62, 411, 3262, 25, 198, 220, 220, 220, 220, 220, 220, 220, 581, 3262, 62, 82, 8770, 796, 2251, 62, 411, 3262, 62, 82, 8770, 26933, 27349, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 779, 62, 20521, 12083, 796, 10352, 198, 220, 220, 220, 1303, 611, 4566, 14692, 20521, 12083, 8973, 14512, 366, 14202, 1298, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 779, 62, 20521, 12083, 796, 6407, 628, 220, 220, 220, 49706, 13, 10951, 7203, 411, 3262, 62, 82, 8770, 1760, 220, 2474, 8, 628, 198, 220, 220, 220, 29144, 796, 6045, 198, 220, 220, 220, 611, 779, 62, 4743, 659, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 19031, 29144, 492, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 29144, 796, 2671, 659, 31567, 6048, 654, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 7890, 62, 15908, 11, 4566, 14692, 4743, 659, 62, 3672, 8973, 828, 4743, 659, 62, 27740, 28, 6200, 11, 4906, 62, 7890, 2625, 11321, 62, 47114, 4943, 628, 198, 220, 220, 220, 49706, 13, 10951, 7203, 4743, 659, 1760, 220, 2474, 8, 220, 220, 220, 628, 220, 220, 220, 1303, 11525, 12083, 796, 6045, 198, 220, 220, 220, 1303, 611, 779, 62, 20521, 12083, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 49706, 13, 10951, 10786, 19031, 11525, 12083, 492, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 11525, 12083, 796, 13302, 6048, 654, 7, 22046, 13, 439, 62, 11600, 7753, 11, 23350, 62, 10879, 28, 30001, 7509, 13, 3919, 62, 10879, 11, 27432, 28, 2213, 1299, 316, 11, 12102, 28, 2100, 2340, 316, 11, 9288, 28, 9288, 2617, 11, 67, 14188, 62, 7753, 62, 25652, 28, 418, 13, 6978, 13, 22179, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 11600, 62, 7753, 62, 25652, 828, 67, 14188, 62, 7753, 62, 11213, 28, 418, 13, 6978, 13, 22179, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 11600, 62, 7753, 62, 11213, 828, 11213, 28, 11250, 14692, 15414, 82, 1, 7131, 1, 11213, 33116, 10671, 1326, 28, 11250, 14692, 10671, 1326, 33116, 1930, 28, 11250, 14692, 1930, 8973, 8, 628, 198, 220, 220, 220, 1303, 9135, 14, 33346, 3038, 628, 220, 220, 220, 351, 48700, 13, 36044, 7, 11250, 28, 27110, 13, 16934, 2964, 1462, 7, 46999, 62, 25811, 28, 46999, 62, 25811, 11, 1249, 62, 4215, 62, 489, 5592, 28, 17821, 4008, 355, 264, 408, 25, 628, 198, 220, 220, 220, 220, 220, 220, 220, 4237, 796, 3127, 13, 1136, 62, 82, 2203, 7, 82, 408, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 3262, 796, 3127, 13, 1136, 62, 17143, 7307, 3419, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49706, 13, 10951, 7203, 21188, 25, 366, 1343, 46083, 45302, 22179, 7, 82, 2203, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 27110, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 611, 779, 62, 411, 3262, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 3262, 62, 82, 8770, 13, 2118, 382, 7, 82, 408, 11, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 7890, 62, 15908, 11, 705, 411, 3262, 62, 85, 16, 23330, 27422, 694, 457, 4458, 18982, 7, 411, 3262, 62, 9641, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 538, 5374, 796, 3440, 62, 9122, 4122, 7, 82, 408, 11, 473, 332, 11, 26498, 11, 3613, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 2100, 62, 8056, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1266, 62, 27432, 62, 8056, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1303, 2251, 3047, 4899, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 84, 1352, 796, 26439, 84, 1352, 7, 82, 2203, 11, 3127, 13, 29982, 62, 3672, 11, 27349, 28, 27349, 11, 30001, 7509, 28, 30001, 7509, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4512, 62, 18206, 84, 1352, 796, 15237, 33346, 36, 2100, 84, 1352, 7, 82, 2203, 11, 8354, 62, 14933, 11, 7686, 28, 3262, 5225, 11, 11241, 7509, 28, 30001, 7509, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4512, 62, 18206, 84, 1352, 796, 26439, 84, 1352, 7, 82, 2203, 11, 8354, 62, 14933, 58, 15, 4357, 3127, 28, 3262, 5225, 58, 15, 4357, 11241, 7509, 28, 30001, 7509, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5418, 62, 18206, 84, 1352, 796, 26439, 84, 1352, 7, 82, 2203, 11, 8354, 62, 14933, 58, 15, 4357, 3127, 28, 3262, 5225, 58, 15, 4357, 11241, 7509, 28, 30001, 7509, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 7483, 796, 220, 18650, 33, 963, 7483, 7, 30001, 7509, 11, 4237, 11, 3722, 28, 11250, 17816, 13376, 6, 4357, 4743, 659, 28, 4743, 659, 11, 30001, 7509, 62, 11213, 28, 30001, 7509, 62, 11213, 11, 22046, 796, 26498, 11, 11250, 28, 11250, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2245, 62, 40684, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 785, 457, 23365, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 256, 796, 657, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 32278, 6624, 10352, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 923, 62, 538, 5374, 1279, 645, 62, 538, 5374, 290, 407, 2245, 62, 40684, 1058, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 256, 287, 2837, 7, 9688, 62, 538, 5374, 11, 645, 62, 538, 5374, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 13807, 5374, 23884, 492, 4458, 18982, 7, 83, 1343, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49706, 13, 10951, 10786, 13807, 5374, 23884, 492, 4458, 18982, 7, 83, 1343, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 4512, 62, 273, 6008, 930, 40806, 1352, 35713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 48727, 796, 40806, 1352, 7, 2213, 1299, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 11, 5933, 28, 36166, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 7483, 28, 43501, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 17, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 4512, 62, 273, 6008, 930, 40806, 1352, 986, 14957, 28, 1911, 18982, 7, 83, 17, 12, 83, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 22462, 11, 4512, 62, 4134, 23843, 796, 5418, 84, 1352, 13, 14681, 7, 82, 408, 11, 4512, 62, 48727, 11, 23862, 28, 22915, 82, 1343, 685, 40085, 7509, 4357, 448, 62, 3262, 28, 13466, 62, 17143, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 17, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 4512, 62, 273, 6008, 930, 5418, 84, 1352, 1352, 986, 14957, 28, 1911, 18982, 7, 83, 17, 12, 83, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 628, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 48727, 796, 40806, 1352, 7, 2100, 2340, 316, 11, 5933, 28, 36166, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 9, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 7483, 28, 43501, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 25101, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 17, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 4512, 62, 273, 6008, 930, 40806, 1352, 1188, 2340, 316, 986, 14957, 28, 1911, 18982, 7, 83, 17, 12, 83, 16, 4008, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 27349, 13, 1136, 62, 24419, 62, 1102, 9246, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 22462, 11, 4938, 62, 4134, 23843, 796, 5418, 84, 1352, 13, 14681, 7, 82, 408, 11, 4938, 62, 48727, 11, 23862, 28, 22915, 82, 11, 4906, 62, 7890, 2625, 47139, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 17, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 4512, 62, 273, 6008, 930, 5418, 84, 1352, 2644, 14957, 28, 1911, 18982, 7, 83, 17, 12, 83, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 44357, 2994, 25, 23884, 1911, 18982, 7, 27432, 62, 22462, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 44357, 4049, 25, 23884, 1911, 18982, 7, 16, 12, 27432, 62, 4134, 23843, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 7762, 24765, 2994, 25, 23884, 1911, 18982, 7, 12102, 62, 22462, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 7762, 24765, 4049, 25, 23884, 1911, 18982, 7, 16, 12, 12102, 62, 4134, 23843, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4938, 62, 4134, 23843, 1875, 1266, 62, 2100, 62, 8056, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 27432, 62, 8056, 796, 4512, 62, 4134, 23843, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 2100, 62, 8056, 796, 4938, 62, 4134, 23843, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 332, 13, 21928, 7, 82, 408, 11, 3613, 62, 6978, 13, 18982, 10786, 37266, 13, 694, 457, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 785, 457, 23365, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 48625, 26954, 7448, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 62, 39455, 15090, 6, 538, 5374, 10354, 256, 5512, 3613, 62, 6978, 13, 18982, 10786, 13376, 13, 79, 41582, 6, 4008, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4938, 62, 4134, 23843, 1279, 1266, 62, 2100, 62, 8056, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 785, 457, 23365, 15853, 352, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 493, 7, 33723, 62, 785, 457, 23365, 8, 6624, 493, 7, 17077, 62, 259, 4288, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 62, 40684, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 17, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 4512, 62, 273, 6008, 930, 24295, 2644, 14957, 28, 1911, 18982, 7, 83, 17, 12, 83, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 538, 5374, 15853, 352, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 1903, 12225, 628, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 32278, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 366, 448, 14, 273, 6008, 14, 44578, 33438, 940, 66, 17, 397, 40022, 25870, 67, 6420, 1453, 487, 4531, 7252, 3312, 69, 14, 90, 36786, 1303, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 366, 448, 14, 273, 6008, 14, 24, 891, 65, 4309, 68, 15, 17457, 23, 4761, 68, 16, 69, 19, 68, 2414, 69, 2791, 65, 2327, 64, 17, 69, 2931, 17, 14, 90, 36786, 1303, 1808, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 366, 448, 14, 273, 6008, 14, 64, 24, 535, 20, 65, 1270, 65, 1238, 26660, 2079, 66, 3720, 65, 47325, 2154, 4521, 66, 20, 22980, 14, 90, 36786, 1303, 1808, 11, 22872, 11, 2777, 34961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 366, 448, 14, 273, 6008, 14, 23, 3865, 2154, 14774, 23195, 1860, 2934, 22, 65, 3388, 64, 20, 66, 2718, 36445, 17457, 1821, 68, 14, 90, 36786, 1303, 1808, 11, 22872, 11, 2777, 1512, 498, 11, 31476, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 366, 448, 14, 273, 6008, 14, 65, 21273, 65, 4304, 64, 3510, 25399, 487, 2091, 68, 19, 64, 721, 46821, 68, 25674, 68, 20, 64, 14, 90, 36786, 1303, 1808, 11, 22872, 11, 2777, 1512, 498, 11, 23569, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 366, 448, 14, 273, 6008, 14, 1270, 891, 22, 27326, 68, 2548, 66, 24, 2623, 2624, 65, 3365, 68, 6420, 13331, 22, 2624, 12993, 17, 67, 14, 90, 36786, 1303, 1808, 11, 22872, 11, 2777, 1512, 498, 11, 23569, 11, 29398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 366, 448, 14, 273, 6008, 14, 67, 24, 69, 22186, 1314, 2623, 11848, 67, 20198, 64, 18, 18213, 32417, 11848, 18, 21101, 1860, 68, 22, 14, 90, 36786, 1303, 1808, 11, 22872, 11, 2777, 1512, 498, 11, 23569, 11, 34, 1773, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1808, 11, 22872, 11, 2777, 1512, 498, 11, 23569, 11, 34, 1773, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 366, 448, 14, 273, 6008, 14, 19, 64, 24, 69, 45191, 4089, 68, 18, 21288, 66, 19, 66, 17, 67, 49995, 65, 487, 15, 65, 1731, 1453, 17, 14, 90, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 6978, 796, 220, 220, 366, 448, 14, 273, 6008, 14, 64, 30005, 27203, 66, 34155, 68, 20, 535, 27790, 66, 1731, 3459, 64, 25707, 69, 1507, 17896, 14, 90, 36786, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 503, 14, 273, 6008, 14, 344, 2999, 1415, 14686, 24, 69, 21, 67, 5774, 23628, 66, 1878, 66, 23, 1558, 66, 21, 67, 15, 65, 3270, 14, 37266, 13, 694, 457, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 6978, 796, 3613, 62, 6978, 13, 18982, 10786, 37266, 13, 694, 457, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 35625, 3613, 62, 6978, 796, 27071, 18982, 7, 21928, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 6978, 796, 3613, 62, 6978, 13, 18982, 10786, 37266, 13, 694, 457, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 473, 332, 13, 2118, 382, 7, 82, 408, 11, 3613, 62, 6978, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 48727, 796, 40806, 1352, 7, 9288, 2617, 11, 5933, 28, 36166, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 9, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 7483, 28, 43501, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 17821, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 26410, 796, 23884, 1911, 18982, 7, 22915, 82, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 13014, 62, 17143, 796, 23884, 1911, 18982, 7, 13466, 62, 17143, 4008, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 22462, 11, 1332, 62, 4134, 23843, 796, 5418, 84, 1352, 13, 14681, 7, 82, 408, 11, 1332, 62, 48727, 11, 220, 23862, 28, 22915, 82, 837, 448, 62, 3262, 28, 13466, 62, 17143, 11, 259, 4288, 28, 259, 4288, 11, 4906, 62, 7890, 2625, 14402, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 256, 17, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 4512, 62, 273, 6008, 930, 40806, 1352, 1332, 2617, 220, 2644, 14957, 28, 1911, 18982, 7, 83, 17, 12, 83, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 44154, 2994, 25, 23884, 1911, 18982, 7, 9288, 62, 22462, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 9139, 260, 333, 2994, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 44154, 4049, 25, 23884, 1911, 18982, 7, 16, 12, 9288, 62, 4134, 23843, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 9139, 260, 333, 9922, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 256, 62, 437, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 7575, 9706, 796, 23884, 1911, 18982, 7, 83, 62, 437, 532, 256, 62, 27471, 4008, 628, 198 ]
2.274634
6,292
""" Generally speaking, compass provides a command line util that is used a) as a management script (like django-admin.py) doing for example setup work, adding plugins to a project etc), and b) can compile the sass source files into CSS. While generally project-based, starting with 0.10, compass supposedly supports compiling individual files, which is what we are using for implementing this filter. Supposedly, because there are numerous issues that require working around. See the comments in the actual filter code for the full story on all the hoops be have to jump through. An alternative option would be to use Sass to compile. Compass essentially adds two things on top of sass: A bunch of CSS frameworks, ported to Sass, and available for including. And various ruby helpers that these frameworks and custom Sass files can use. Apparently there is supposed to be a way to compile a compass project through sass, but so far, I haven't got it to work. The syntax is supposed to be one of: $ sass -r compass `compass imports` FILE $ sass --compass FILE See: http://groups.google.com/group/compass-users/browse_thread/thread/a476dfcd2b47653e http://groups.google.com/group/compass-users/browse_thread/thread/072bd8b51bec5f7c http://groups.google.com/group/compass-users/browse_thread/thread/daf55acda03656d1 """ import os, subprocess from os import path import tempfile import shutil from webassets.exceptions import FilterError from webassets.filter import Filter, option __all__ = ('CompassFilter',) class CompassFilter(Filter): """Converts `Compass <http://compass-style.org/>`_ .sass files to CSS. Requires at least version 0.10. To compile a standard Compass project, you only need to have to compile your main ``screen.sass``, ``print.sass`` and ``ie.sass`` files. All the partials that you include will be handled by Compass. If you want to combine the filter with other CSS filters, make sure this one runs first. Supported configuration options: COMPASS_BIN The path to the Compass binary. If not set, the filter will try to run ``compass`` as if it's in the system path. COMPASS_PLUGINS Compass plugins to use. This is equivalent to the ``--require`` command line option of the Compass. and expects a Python list object of Ruby libraries to load. """ name = 'compass' options = { 'compass': ('binary', 'COMPASS_BIN'), 'plugins': option('COMPASS_PLUGINS', type=list) } def open(self, out, source_path, **kw): """Compass currently doesn't take data from stdin, and doesn't allow us accessing the result from stdout either. Also, there's a bunch of other issues we need to work around: - compass doesn't support given an explict output file, only a "--css-dir" output directory. We have to "guess" the filename that will be created in that directory. - The output filename used is based on the input filename, and simply cutting of the length of the "sass_dir" (and changing the file extension). That is, compass expects the input filename to always be inside the "sass_dir" (which defaults to ./src), and if this is not the case, the output filename will be gibberish (missing characters in front). See: https://github.com/chriseppstein/compass/issues/304 We fix this by setting the proper --sass-dir option. - Compass insists on creating a .sass-cache folder in the current working directory, and unlike the sass executable, there doesn't seem to be a way to disable it. The workaround is to set the working directory to our temp directory, so that the cache folder will be deleted at the end. """ tempout = tempfile.mkdtemp() # Temporarily move to "tempout", so .sass-cache will be created there old_wd = os.getcwdu() os.chdir(tempout) try: # Make sure to use normpath() to not cause trouble with # compass' simplistic path handling, where it just assumes # source_path is within sassdir, and cuts off the length of # sassdir from the input file. sassdir = path.normpath(path.dirname(source_path)) source_path = path.normpath(source_path) # Compass offers some helpers like image-url(), which need # information about the urls under which media files will be # available. This is hard for two reasons: First, the options in # question aren't supported on the command line, so we need to write # a temporary config file. Secondly, the assume a defined and # separate directories for "images", "stylesheets" etc., something # webassets knows nothing of: we don't support the user defining # something such directories. Because we traditionally had this # filter point all type-specific directories to the root media # directory, we will define the paths to match this. In other # words, in Compass, both inline-image("img/test.png) and # image-url("img/test.png") will find the same file, and assume it # to be {env.directory}/img/test.png. # However, this partly negates the purpose of an utiility like # image-url() in the first place - you not having to hard code # the location of your images. So a possiblity for the future # might be adding options that allow changing this behavior (see # ticket #36). # # Note that is also the --relative-assets option, which we can't # use because it calculates an actual relative path between the # image and the css output file, the latter being in a temporary # directory in our case. config_file = path.join(tempout, '.config.rb') f = open(config_file, 'w') try: f.write(""" http_path = "%s" http_images_dir = "" http_stylesheets_dir = "" http_fonts_dir = "" http_javascripts_dir = "" """ % self.env.url) f.flush() finally: f.close() command = [self.compass or 'compass', 'compile'] for plugin in self.plugins or []: command.extend(('--require', plugin)) command.extend(['--sass-dir', sassdir, '--css-dir', tempout, '--image-dir', self.env.directory, '--config', config_file, '--quiet', '--boring', '--output-style', 'expanded', source_path]) proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, # shell: necessary on windows to execute # ruby files, but doesn't work on linux. shell=(os.name == 'nt')) stdout, stderr = proc.communicate() # compass seems to always write a utf8 header? to stderr, so # make sure to not fail just because there's something there. if proc.returncode != 0: raise FilterError(('compass: subprocess had error: stderr=%s, '+ 'stdout=%s, returncode=%s') % ( stderr, stdout, proc.returncode)) guessed_outputfile = \ path.join(tempout, path.splitext(path.basename(source_path))[0]) f = open("%s.css" % guessed_outputfile) try: out.write(f.read()) finally: f.close() finally: # Restore previous working dir os.chdir(old_wd) # Clean up the temp dir shutil.rmtree(tempout)
[ 37811, 198, 37058, 5486, 11, 31855, 3769, 257, 3141, 1627, 7736, 326, 318, 973, 198, 220, 257, 8, 355, 257, 4542, 4226, 357, 2339, 42625, 14208, 12, 28482, 13, 9078, 8, 1804, 329, 1672, 198, 220, 220, 220, 9058, 670, 11, 4375, 20652, 284, 257, 1628, 3503, 828, 290, 198, 220, 275, 8, 460, 17632, 262, 264, 562, 2723, 3696, 656, 17391, 13, 198, 198, 3633, 4143, 1628, 12, 3106, 11, 3599, 351, 657, 13, 940, 11, 31855, 13519, 198, 18608, 2096, 33393, 1981, 3696, 11, 543, 318, 644, 356, 389, 1262, 329, 198, 320, 26908, 278, 428, 8106, 13, 8105, 1335, 306, 11, 780, 612, 389, 6409, 2428, 198, 5562, 2421, 1762, 1088, 13, 4091, 262, 3651, 287, 262, 4036, 8106, 2438, 198, 1640, 262, 1336, 1621, 319, 477, 262, 46730, 307, 423, 284, 4391, 832, 13, 198, 198, 2025, 5559, 3038, 561, 307, 284, 779, 48572, 284, 17632, 13, 46175, 6986, 198, 2860, 82, 734, 1243, 319, 1353, 286, 264, 562, 25, 317, 7684, 286, 17391, 29251, 11, 49702, 284, 48572, 11, 198, 392, 1695, 329, 1390, 13, 843, 2972, 43506, 49385, 326, 777, 29251, 198, 392, 2183, 48572, 3696, 460, 779, 13, 18626, 612, 318, 4385, 284, 307, 257, 835, 198, 1462, 17632, 257, 31855, 1628, 832, 264, 562, 11, 475, 523, 1290, 11, 314, 4398, 470, 1392, 340, 198, 1462, 670, 13, 383, 15582, 318, 4385, 284, 307, 530, 286, 25, 628, 220, 220, 220, 720, 264, 562, 532, 81, 31855, 4600, 5589, 562, 17944, 63, 45811, 198, 220, 220, 220, 720, 264, 562, 1377, 5589, 562, 45811, 198, 198, 6214, 25, 198, 220, 220, 220, 2638, 1378, 24432, 13, 13297, 13, 785, 14, 8094, 14, 5589, 562, 12, 18417, 14, 25367, 325, 62, 16663, 14, 16663, 14, 64, 35435, 7568, 10210, 17, 65, 2857, 46435, 68, 198, 220, 220, 220, 2638, 1378, 24432, 13, 13297, 13, 785, 14, 8094, 14, 5589, 562, 12, 18417, 14, 25367, 325, 62, 16663, 14, 16663, 14, 2998, 17, 17457, 23, 65, 4349, 9423, 20, 69, 22, 66, 198, 220, 220, 220, 2638, 1378, 24432, 13, 13297, 13, 785, 14, 8094, 14, 5589, 562, 12, 18417, 14, 25367, 325, 62, 16663, 14, 16663, 14, 67, 1878, 2816, 330, 6814, 48597, 3980, 67, 16, 198, 37811, 198, 198, 11748, 28686, 11, 850, 14681, 198, 6738, 28686, 1330, 3108, 198, 11748, 20218, 7753, 198, 11748, 4423, 346, 198, 198, 6738, 3992, 19668, 13, 1069, 11755, 1330, 25853, 12331, 198, 6738, 3992, 19668, 13, 24455, 1330, 25853, 11, 3038, 628, 198, 834, 439, 834, 796, 19203, 7293, 562, 22417, 3256, 8, 628, 198, 4871, 46175, 22417, 7, 22417, 2599, 198, 220, 220, 220, 37227, 3103, 24040, 4600, 7293, 562, 1279, 4023, 1378, 5589, 562, 12, 7635, 13, 2398, 15913, 63, 62, 764, 82, 562, 3696, 284, 198, 220, 220, 220, 17391, 13, 628, 220, 220, 220, 26848, 379, 1551, 2196, 657, 13, 940, 13, 628, 220, 220, 220, 1675, 17632, 257, 3210, 46175, 1628, 11, 345, 691, 761, 284, 423, 198, 220, 220, 220, 284, 17632, 534, 1388, 7559, 9612, 13, 82, 562, 15506, 11, 7559, 4798, 13, 82, 562, 15506, 290, 7559, 494, 13, 82, 562, 15506, 198, 220, 220, 220, 3696, 13, 1439, 262, 636, 8231, 326, 345, 2291, 481, 307, 12118, 416, 46175, 13, 628, 220, 220, 220, 1002, 345, 765, 284, 12082, 262, 8106, 351, 584, 17391, 16628, 11, 787, 198, 220, 220, 220, 1654, 428, 530, 4539, 717, 13, 628, 220, 220, 220, 36848, 8398, 3689, 25, 628, 220, 220, 220, 24301, 10705, 62, 33, 1268, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3108, 284, 262, 46175, 13934, 13, 1002, 407, 900, 11, 262, 8106, 481, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 284, 1057, 7559, 5589, 562, 15506, 355, 611, 340, 338, 287, 262, 1080, 3108, 13, 628, 220, 220, 220, 24301, 10705, 62, 6489, 7340, 20913, 198, 220, 220, 220, 220, 220, 220, 220, 46175, 20652, 284, 779, 13, 770, 318, 7548, 284, 262, 7559, 438, 46115, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 3141, 1627, 3038, 286, 262, 46175, 13, 290, 13423, 257, 11361, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 286, 10888, 12782, 284, 3440, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1438, 796, 705, 5589, 562, 6, 198, 220, 220, 220, 3689, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5589, 562, 10354, 19203, 39491, 3256, 705, 9858, 47924, 62, 33, 1268, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 37390, 10354, 3038, 10786, 9858, 47924, 62, 6489, 7340, 20913, 3256, 2099, 28, 4868, 8, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 1280, 7, 944, 11, 503, 11, 2723, 62, 6978, 11, 12429, 46265, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7293, 562, 3058, 1595, 470, 1011, 1366, 422, 14367, 259, 11, 290, 1595, 470, 1249, 198, 220, 220, 220, 220, 220, 220, 220, 514, 22534, 262, 1255, 422, 14367, 448, 2035, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4418, 11, 612, 338, 257, 7684, 286, 584, 2428, 356, 761, 284, 670, 1088, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 532, 31855, 1595, 470, 1104, 1813, 281, 1193, 713, 5072, 2393, 11, 691, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 25471, 12, 15908, 1, 5072, 8619, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 775, 423, 284, 366, 5162, 408, 1, 262, 29472, 326, 481, 307, 2727, 287, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 5072, 29472, 973, 318, 1912, 319, 262, 5128, 29472, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2391, 7720, 286, 262, 4129, 286, 262, 366, 82, 562, 62, 15908, 1, 357, 392, 5609, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2393, 7552, 737, 1320, 318, 11, 31855, 13423, 262, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 284, 1464, 307, 2641, 262, 366, 82, 562, 62, 15908, 1, 357, 4758, 26235, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24457, 10677, 828, 290, 611, 428, 318, 407, 262, 1339, 11, 262, 5072, 29472, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 46795, 527, 680, 357, 45688, 3435, 287, 2166, 737, 4091, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 354, 17163, 381, 5714, 14, 5589, 562, 14, 37165, 14, 21288, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 775, 4259, 428, 416, 4634, 262, 1774, 1377, 82, 562, 12, 15908, 3038, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 532, 46175, 17424, 319, 4441, 257, 764, 82, 562, 12, 23870, 9483, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 1762, 8619, 11, 290, 5023, 262, 264, 562, 28883, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 612, 1595, 470, 1283, 284, 307, 257, 835, 284, 15560, 340, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 46513, 318, 284, 900, 262, 1762, 8619, 284, 674, 20218, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 11, 523, 326, 262, 12940, 9483, 481, 307, 13140, 379, 262, 886, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 20218, 448, 796, 20218, 7753, 13, 28015, 67, 29510, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5825, 1819, 3093, 1445, 284, 366, 29510, 448, 1600, 523, 764, 82, 562, 12, 23870, 481, 307, 2727, 612, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 16993, 796, 28686, 13, 1136, 66, 86, 646, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 29510, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 1654, 284, 779, 2593, 6978, 3419, 284, 407, 2728, 5876, 351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 31855, 6, 35010, 3108, 9041, 11, 810, 340, 655, 18533, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2723, 62, 6978, 318, 1626, 264, 562, 15908, 11, 290, 6630, 572, 262, 4129, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 264, 562, 15908, 422, 262, 5128, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 562, 15908, 796, 3108, 13, 27237, 6978, 7, 6978, 13, 15908, 3672, 7, 10459, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 6978, 796, 3108, 13, 27237, 6978, 7, 10459, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 46175, 4394, 617, 49385, 588, 2939, 12, 6371, 22784, 543, 761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1321, 546, 262, 2956, 7278, 739, 543, 2056, 3696, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1695, 13, 770, 318, 1327, 329, 734, 3840, 25, 3274, 11, 262, 3689, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1808, 3588, 470, 4855, 319, 262, 3141, 1627, 11, 523, 356, 761, 284, 3551, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 8584, 4566, 2393, 13, 34276, 11, 262, 7048, 257, 5447, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4553, 29196, 329, 366, 17566, 1600, 366, 47720, 258, 1039, 1, 3503, 1539, 1223, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3992, 19668, 4206, 2147, 286, 25, 356, 836, 470, 1104, 262, 2836, 16215, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1223, 884, 29196, 13, 4362, 356, 16083, 550, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8106, 966, 477, 2099, 12, 11423, 29196, 284, 262, 6808, 2056, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8619, 11, 356, 481, 8160, 262, 13532, 284, 2872, 428, 13, 554, 584, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2456, 11, 287, 46175, 11, 1111, 26098, 12, 9060, 7203, 9600, 14, 9288, 13, 11134, 8, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2939, 12, 6371, 7203, 9600, 14, 9288, 13, 11134, 4943, 481, 1064, 262, 976, 2393, 11, 290, 7048, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 307, 1391, 24330, 13, 34945, 92, 14, 9600, 14, 9288, 13, 11134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2102, 11, 428, 11476, 2469, 689, 262, 4007, 286, 281, 3384, 72, 879, 588, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2939, 12, 6371, 3419, 287, 262, 717, 1295, 532, 345, 407, 1719, 284, 1327, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 4067, 286, 534, 4263, 13, 1406, 257, 1184, 10506, 414, 329, 262, 2003, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1244, 307, 4375, 3689, 326, 1249, 5609, 428, 4069, 357, 3826, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7846, 1303, 2623, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 326, 318, 635, 262, 1377, 43762, 12, 19668, 3038, 11, 543, 356, 460, 470, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 780, 340, 43707, 281, 4036, 3585, 3108, 1022, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2939, 290, 262, 269, 824, 5072, 2393, 11, 262, 6846, 852, 287, 257, 8584, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8619, 287, 674, 1339, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 7753, 796, 3108, 13, 22179, 7, 29510, 448, 11, 45302, 11250, 13, 26145, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 11250, 62, 7753, 11, 705, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 15931, 198, 4023, 62, 6978, 796, 36521, 82, 1, 198, 4023, 62, 17566, 62, 15908, 796, 13538, 198, 4023, 62, 47720, 258, 1039, 62, 15908, 796, 13538, 198, 4023, 62, 10331, 82, 62, 15908, 796, 13538, 198, 4023, 62, 37495, 82, 62, 15908, 796, 13538, 198, 220, 220, 220, 37227, 4064, 2116, 13, 24330, 13, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3141, 796, 685, 944, 13, 5589, 562, 393, 705, 5589, 562, 3256, 705, 5589, 576, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 13877, 287, 2116, 13, 37390, 393, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3141, 13, 2302, 437, 7, 10786, 438, 46115, 3256, 13877, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3141, 13, 2302, 437, 7, 17816, 438, 82, 562, 12, 15908, 3256, 264, 562, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 25471, 12, 15908, 3256, 20218, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 9060, 12, 15908, 3256, 2116, 13, 24330, 13, 34945, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 11250, 3256, 4566, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 39624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 2865, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 22915, 12, 7635, 3256, 705, 11201, 12249, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 6978, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 796, 850, 14681, 13, 47, 9654, 7, 21812, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7582, 25, 3306, 319, 9168, 284, 12260, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 43506, 3696, 11, 475, 1595, 470, 670, 319, 32639, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 16193, 418, 13, 3672, 6624, 705, 429, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 11, 336, 1082, 81, 796, 13834, 13, 10709, 5344, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 31855, 2331, 284, 1464, 3551, 257, 3384, 69, 23, 13639, 30, 284, 336, 1082, 81, 11, 523, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 1654, 284, 407, 2038, 655, 780, 612, 338, 1223, 612, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13834, 13, 7783, 8189, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 25853, 12331, 7, 10786, 5589, 562, 25, 850, 14681, 550, 4049, 25, 336, 1082, 81, 28, 4, 82, 11, 705, 10, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19282, 448, 28, 4, 82, 11, 1441, 8189, 28, 4, 82, 11537, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 11, 14367, 448, 11, 13834, 13, 7783, 8189, 4008, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25183, 62, 22915, 7753, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 13, 22179, 7, 29510, 448, 11, 3108, 13, 22018, 578, 742, 7, 6978, 13, 12093, 12453, 7, 10459, 62, 6978, 4008, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7203, 4, 82, 13, 25471, 1, 4064, 25183, 62, 22915, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 13, 13564, 7, 69, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 42019, 2180, 1762, 26672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 727, 62, 16993, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5985, 510, 262, 20218, 26672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 29510, 448, 8, 198 ]
2.431663
3,373
import time import unittest from selenium import webdriver from selenium.webdriver.common.keys import Keys if __name__ == '__main__': unittest.main()
[ 11748, 640, 198, 11748, 555, 715, 395, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 13083, 1330, 26363, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419 ]
3.019608
51
from motor.frameworks.asyncio import pymongo_class_wrapper from app.api.api_v2.endpoints import job from typing import Any, List from app.models.tool.job import JobCompositeInResponse, JobInDb, JobInRequest, JobInResponse, JobProgressResponse, JobUpdateModel from app.models.mongo_id import ObjectIdInReq, ObjectIdInRes, BsonObjectId from app.models.tool.builds import BuildMessageSpec from app.models.tool.build.common import BaseBuildModel, BaseBuildModelInRequest, BaseBuildModelInResponse, BaseBuildWithToolModelInResponse, BuildType from app.models.tool.executor import BuildExecutorCompositeInResponse, BuildExecutorDeploymentStructure, BuildExecutorInDb, BuildExecutorInRequest, BuildExecutorInResponse, ExecutionStatus from ..db.mongodb import AsyncIOMotorClient from ..core.config import ( database_name, job_collection_name as coll_name, tools_collection_name, build_collection_name, build_executor_collection_name ) # JobInResponse # JobInResponse # JobInResponse
[ 198, 6738, 5584, 13, 19298, 19653, 13, 292, 13361, 952, 1330, 279, 4948, 25162, 62, 4871, 62, 48553, 198, 6738, 598, 13, 15042, 13, 15042, 62, 85, 17, 13, 437, 13033, 1330, 1693, 198, 6738, 19720, 1330, 4377, 11, 7343, 198, 6738, 598, 13, 27530, 13, 25981, 13, 21858, 1330, 15768, 5377, 1930, 578, 818, 31077, 11, 15768, 818, 43832, 11, 15768, 818, 18453, 11, 15768, 818, 31077, 11, 15768, 32577, 31077, 11, 15768, 10260, 17633, 628, 198, 6738, 598, 13, 27530, 13, 76, 25162, 62, 312, 1330, 9515, 7390, 818, 3041, 80, 11, 9515, 7390, 818, 4965, 11, 347, 1559, 10267, 7390, 198, 6738, 598, 13, 27530, 13, 25981, 13, 11249, 82, 1330, 10934, 12837, 22882, 198, 6738, 598, 13, 27530, 13, 25981, 13, 11249, 13, 11321, 1330, 7308, 15580, 17633, 11, 7308, 15580, 17633, 818, 18453, 11, 7308, 15580, 17633, 818, 31077, 11, 7308, 15580, 3152, 25391, 17633, 818, 31077, 11, 10934, 6030, 198, 198, 6738, 598, 13, 27530, 13, 25981, 13, 18558, 38409, 1330, 10934, 23002, 38409, 5377, 1930, 578, 818, 31077, 11, 10934, 23002, 38409, 49322, 434, 1273, 5620, 11, 10934, 23002, 38409, 818, 43832, 11, 10934, 23002, 38409, 818, 18453, 11, 10934, 23002, 38409, 818, 31077, 11, 37497, 19580, 628, 198, 6738, 11485, 9945, 13, 31059, 375, 65, 1330, 1081, 13361, 40, 2662, 20965, 11792, 198, 6738, 11485, 7295, 13, 11250, 1330, 357, 198, 220, 220, 220, 6831, 62, 3672, 11, 198, 220, 220, 220, 1693, 62, 43681, 62, 3672, 355, 2927, 62, 3672, 11, 198, 220, 220, 220, 4899, 62, 43681, 62, 3672, 11, 198, 220, 220, 220, 1382, 62, 43681, 62, 3672, 11, 198, 220, 220, 220, 1382, 62, 18558, 38409, 62, 43681, 62, 3672, 198, 198, 8, 628, 628, 198, 2, 15768, 818, 31077, 628, 198, 2, 15768, 818, 31077, 628, 198, 2, 15768, 818, 31077, 628 ]
3.314754
305
# Generated by Django 3.1.5 on 2021-02-08 11:06 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 20, 319, 33448, 12, 2999, 12, 2919, 1367, 25, 3312, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
from shared.const import APPDIR, TMPDIR, TRACEDIR, PUBDIR, BINDIR, CROSSGENDIR from performance.common import remove_directory
[ 6738, 4888, 13, 9979, 1330, 3486, 5760, 4663, 11, 21232, 5760, 4663, 11, 7579, 2246, 1961, 4663, 11, 350, 10526, 34720, 11, 347, 12115, 4663, 11, 8740, 18420, 38, 10619, 4663, 198, 6738, 2854, 13, 11321, 1330, 4781, 62, 34945 ]
3.15
40
import unittest import numpy as np import chainer from chainer import optimizer_hooks from chainer import optimizers from chainer import testing _backend_params = [ # NumPy {}, {'use_ideep': 'always'}, # CuPy {'use_cuda': True, 'cuda_device': 0}, {'use_cuda': True, 'cuda_device': 1}, # ChainerX {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:1'}, ] @testing.backend.inject_backend_tests(None, _backend_params) @testing.backend.inject_backend_tests(None, _backend_params) @testing.backend.inject_backend_tests(None, _backend_params) testing.run_module(__name__, __file__)
[ 11748, 555, 715, 395, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 6333, 263, 198, 6738, 6333, 263, 1330, 6436, 7509, 62, 25480, 82, 198, 6738, 6333, 263, 1330, 6436, 11341, 198, 6738, 6333, 263, 1330, 4856, 628, 198, 62, 1891, 437, 62, 37266, 796, 685, 198, 220, 220, 220, 1303, 31835, 20519, 198, 220, 220, 220, 1391, 5512, 198, 220, 220, 220, 1391, 6, 1904, 62, 485, 538, 10354, 705, 33770, 6, 5512, 198, 220, 220, 220, 1303, 14496, 20519, 198, 220, 220, 220, 1391, 6, 1904, 62, 66, 15339, 10354, 6407, 11, 705, 66, 15339, 62, 25202, 10354, 657, 5512, 198, 220, 220, 220, 1391, 6, 1904, 62, 66, 15339, 10354, 6407, 11, 705, 66, 15339, 62, 25202, 10354, 352, 5512, 198, 220, 220, 220, 1303, 609, 10613, 55, 198, 220, 220, 220, 1391, 6, 1904, 62, 7983, 263, 87, 10354, 6407, 11, 705, 7983, 263, 87, 62, 25202, 10354, 705, 30191, 25, 15, 6, 5512, 198, 220, 220, 220, 1391, 6, 1904, 62, 7983, 263, 87, 10354, 6407, 11, 705, 7983, 263, 87, 62, 25202, 10354, 705, 66, 15339, 25, 15, 6, 5512, 198, 220, 220, 220, 1391, 6, 1904, 62, 7983, 263, 87, 10354, 6407, 11, 705, 7983, 263, 87, 62, 25202, 10354, 705, 66, 15339, 25, 16, 6, 5512, 198, 60, 628, 198, 198, 31, 33407, 13, 1891, 437, 13, 259, 752, 62, 1891, 437, 62, 41989, 7, 14202, 11, 4808, 1891, 437, 62, 37266, 8, 198, 31, 33407, 13, 1891, 437, 13, 259, 752, 62, 1891, 437, 62, 41989, 7, 14202, 11, 4808, 1891, 437, 62, 37266, 8, 198, 31, 33407, 13, 1891, 437, 13, 259, 752, 62, 1891, 437, 62, 41989, 7, 14202, 11, 4808, 1891, 437, 62, 37266, 8, 628, 198, 33407, 13, 5143, 62, 21412, 7, 834, 3672, 834, 11, 11593, 7753, 834, 8, 198 ]
2.385621
306
from restaurants.api.views import RestaurantViewSet from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register(r'', RestaurantViewSet, basename='restaurants') urlpatterns = router.urls # from django.urls import path # from .views import ( RestaurantListView, RestaurantDetailView, # RestaurantCreateView, RestaurantUpdateView, RestaurantDeleteView ) # urlpatterns = [ # path('', RestaurantListView.as_view()), # path('create/', RestaurantCreateView.as_view()), # path('<pk>', RestaurantDetailView.as_view()), # path('<pk>/update/', RestaurantUpdateView.as_view()), # path('<pk>/delete/', RestaurantDeleteView.as_view()), # ]
[ 6738, 10808, 13, 15042, 13, 33571, 1330, 26078, 7680, 7248, 198, 6738, 1334, 62, 30604, 13, 472, 1010, 1330, 15161, 49, 39605, 198, 198, 472, 353, 796, 15161, 49, 39605, 3419, 198, 472, 353, 13, 30238, 7, 81, 6, 3256, 26078, 7680, 7248, 11, 1615, 12453, 11639, 2118, 2899, 1187, 11537, 198, 6371, 33279, 82, 796, 20264, 13, 6371, 82, 628, 198, 2, 422, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 2, 422, 764, 33571, 1330, 357, 26078, 8053, 7680, 11, 26078, 11242, 603, 7680, 11, 220, 198, 2, 26078, 16447, 7680, 11, 26078, 10260, 7680, 11, 26078, 38727, 7680, 1267, 198, 198, 2, 19016, 33279, 82, 796, 685, 198, 2, 220, 220, 220, 220, 3108, 10786, 3256, 26078, 8053, 7680, 13, 292, 62, 1177, 3419, 828, 198, 2, 220, 220, 220, 220, 3108, 10786, 17953, 14, 3256, 26078, 16447, 7680, 13, 292, 62, 1177, 3419, 828, 198, 2, 220, 220, 220, 220, 3108, 10786, 27, 79, 74, 29, 3256, 26078, 11242, 603, 7680, 13, 292, 62, 1177, 3419, 828, 198, 2, 220, 220, 220, 220, 3108, 10786, 27, 79, 74, 29, 14, 19119, 14, 3256, 26078, 10260, 7680, 13, 292, 62, 1177, 3419, 828, 198, 2, 220, 220, 220, 220, 3108, 10786, 27, 79, 74, 29, 14, 33678, 14, 3256, 26078, 38727, 7680, 13, 292, 62, 1177, 3419, 828, 198, 2, 2361 ]
3.035714
224
import socket import sys __author__ = 'Gus' HOST = '' PORT = 8889 p = 0 e = 0 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print('--Socket created--') try: s.bind((HOST, PORT)) except socket.error as msg: print('Bind failed. Error Code : ' + str(msg[0]) + ' Message ' + msg[1]) sys.exit() print('Bound') s.listen(10) print('Listening') conn, addr = s.accept() print('Connection get {}'.format(addr)) while 1: if p > 0: conn, addr = s.accept() if e == 0: print('Connection get {}'.format(addr)) try: string = conn.recv(1024).decode("UTF-8") e += 1 print(string) except: try: try: while 1: string = conn.recv(4096).decode() print(string) except: print('And unknown error occurred, lost client?') pass except ConnectionResetError: print('Connection Reset') e = 0 p = 0 string = '' pass conn.close() p += 1
[ 11748, 17802, 198, 11748, 25064, 198, 198, 834, 9800, 834, 796, 705, 38, 385, 6, 198, 198, 39, 10892, 796, 10148, 198, 15490, 796, 807, 39121, 198, 79, 796, 657, 198, 68, 796, 657, 198, 82, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 4798, 10786, 438, 39105, 2727, 438, 11537, 198, 198, 28311, 25, 198, 220, 220, 220, 264, 13, 21653, 19510, 39, 10892, 11, 350, 9863, 4008, 198, 16341, 17802, 13, 18224, 355, 31456, 25, 198, 220, 220, 220, 3601, 10786, 36180, 4054, 13, 13047, 6127, 1058, 705, 1343, 965, 7, 19662, 58, 15, 12962, 1343, 705, 16000, 705, 1343, 31456, 58, 16, 12962, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 198, 4798, 10786, 49646, 11537, 198, 198, 82, 13, 4868, 268, 7, 940, 8, 198, 4798, 10786, 8053, 3101, 11537, 198, 37043, 11, 37817, 796, 264, 13, 13635, 3419, 198, 4798, 10786, 32048, 651, 23884, 4458, 18982, 7, 29851, 4008, 198, 4514, 352, 25, 198, 220, 220, 220, 611, 279, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 11, 37817, 796, 264, 13, 13635, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 32048, 651, 23884, 4458, 18982, 7, 29851, 4008, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 796, 48260, 13, 8344, 85, 7, 35500, 737, 12501, 1098, 7203, 48504, 12, 23, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 304, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 8841, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 796, 48260, 13, 8344, 85, 7, 1821, 4846, 737, 12501, 1098, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1870, 6439, 4049, 5091, 11, 2626, 5456, 8348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 26923, 4965, 316, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 32048, 30027, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 48260, 13, 19836, 3419, 198, 220, 220, 220, 279, 15853, 352, 628 ]
1.967509
554
# encoding: utf-8 # author: BrikerMan # contact: [email protected] # blog: https://eliyar.biz # file: base_processor.py # time: 2019-05-21 11:27 import collections import logging import operator from typing import List, Optional, Union, Dict, Any import numpy as np from tensorflow.python.keras.preprocessing.sequence import pad_sequences from kashgari import utils class BaseProcessor(object): """ Corpus Pre Processor class """ def _build_token_dict(self, corpus: List[List[str]], min_count: int = 3): """ Build token index dictionary using corpus Args: corpus: List of tokenized sentences, like ``[['I', 'love', 'tf'], ...]`` min_count: """ token2idx = { self.token_pad: 0, self.token_unk: 1, self.token_bos: 2, self.token_eos: 3 } token2count = {} for sentence in corpus: for token in sentence: count = token2count.get(token, 0) token2count[token] = count + 1 self.token2count = token2count # 按照词频降序排序 sorted_token2count = sorted(token2count.items(), key=operator.itemgetter(1), reverse=True) token2count = collections.OrderedDict(sorted_token2count) for token, token_count in token2count.items(): if token not in token2idx and token_count >= min_count: token2idx[token] = len(token2idx) self.token2idx = token2idx self.idx2token = dict([(value, key) for key, value in self.token2idx.items()]) logging.debug(f"build token2idx dict finished, contains {len(self.token2idx)} tokens.") self.dataset_info['token_count'] = len(self.token2idx) if __name__ == "__main__": print("Hello world")
[ 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 2, 1772, 25, 25866, 6122, 5124, 198, 2, 2800, 25, 1288, 7745, 283, 24, 1558, 31, 14816, 13, 785, 198, 2, 4130, 25, 3740, 1378, 417, 7745, 283, 13, 42189, 198, 198, 2, 2393, 25, 2779, 62, 41341, 13, 9078, 198, 2, 640, 25, 13130, 12, 2713, 12, 2481, 1367, 25, 1983, 198, 198, 11748, 17268, 198, 11748, 18931, 198, 11748, 10088, 198, 6738, 19720, 1330, 7343, 11, 32233, 11, 4479, 11, 360, 713, 11, 4377, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 6122, 292, 13, 3866, 36948, 13, 43167, 1330, 14841, 62, 3107, 3007, 198, 198, 6738, 479, 1077, 70, 2743, 1330, 3384, 4487, 628, 198, 4871, 7308, 18709, 273, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44874, 3771, 32893, 1398, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 11249, 62, 30001, 62, 11600, 7, 944, 11, 35789, 25, 7343, 58, 8053, 58, 2536, 60, 4357, 949, 62, 9127, 25, 493, 796, 513, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10934, 11241, 6376, 22155, 1262, 35789, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35789, 25, 7343, 286, 11241, 1143, 13439, 11, 588, 7559, 58, 17816, 40, 3256, 705, 23205, 3256, 705, 27110, 6, 4357, 2644, 60, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 17, 312, 87, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 62, 15636, 25, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 62, 2954, 25, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 62, 39565, 25, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 62, 68, 418, 25, 513, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 11241, 17, 9127, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6827, 287, 35789, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 287, 6827, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 796, 11241, 17, 9127, 13, 1136, 7, 30001, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 17, 9127, 58, 30001, 60, 796, 954, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 17, 9127, 796, 11241, 17, 9127, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 234, 231, 163, 227, 100, 46237, 235, 165, 95, 239, 165, 247, 235, 41753, 237, 162, 236, 240, 41753, 237, 198, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 30001, 17, 9127, 796, 23243, 7, 30001, 17, 9127, 13, 23814, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 28, 46616, 13, 9186, 1136, 353, 7, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9575, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 17, 9127, 796, 17268, 13, 35422, 1068, 35, 713, 7, 82, 9741, 62, 30001, 17, 9127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 11, 11241, 62, 9127, 287, 11241, 17, 9127, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11241, 407, 287, 11241, 17, 312, 87, 290, 11241, 62, 9127, 18189, 949, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 17, 312, 87, 58, 30001, 60, 796, 18896, 7, 30001, 17, 312, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 17, 312, 87, 796, 11241, 17, 312, 87, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 87, 17, 30001, 796, 8633, 26933, 7, 8367, 11, 1994, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 2116, 13, 30001, 17, 312, 87, 13, 23814, 3419, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 11249, 11241, 17, 312, 87, 8633, 5201, 11, 4909, 1391, 11925, 7, 944, 13, 30001, 17, 312, 87, 38165, 16326, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19608, 292, 316, 62, 10951, 17816, 30001, 62, 9127, 20520, 796, 18896, 7, 944, 13, 30001, 17, 312, 87, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7203, 15496, 995, 4943, 198 ]
2.095499
911