content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: import framework api under this directory __all__ = [ 'create_parameter', 'ParamAttr', 'CPUPlace', 'CUDAPlace', 'CUDAPinnedPlace', 'get_default_dtype', 'set_default_dtype' ] __all__ += [ 'grad', 'LayerList', 'load', 'save', 'to_variable', 'no_grad', 'DataParallel' ] from . import random from .random import seed from .framework import get_default_dtype from .framework import set_default_dtype from ..fluid.framework import ComplexVariable #DEFINE_ALIAS from ..fluid.param_attr import ParamAttr #DEFINE_ALIAS # from ..fluid.layers.tensor import create_global_var #DEFINE_ALIAS from ..fluid.layers.tensor import create_parameter #DEFINE_ALIAS from ..fluid.core import CPUPlace #DEFINE_ALIAS from ..fluid.core import CUDAPlace #DEFINE_ALIAS from ..fluid.core import CUDAPinnedPlace #DEFINE_ALIAS from ..fluid.core import VarBase #DEFINE_ALIAS from paddle.fluid import core #DEFINE_ALIAS from ..fluid.dygraph.base import no_grad #DEFINE_ALIAS from ..fluid.dygraph.base import to_variable #DEFINE_ALIAS from ..fluid.dygraph.base import grad #DEFINE_ALIAS from .io import save from .io import load from ..fluid.dygraph.parallel import DataParallel #DEFINE_ALIAS
[ 2, 220, 220, 15069, 357, 66, 8, 12131, 350, 37382, 47, 37382, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 2, 16926, 46, 25, 1330, 9355, 40391, 739, 428, 8619, 220, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 17953, 62, 17143, 2357, 3256, 705, 22973, 8086, 81, 3256, 705, 36037, 27271, 3256, 705, 34, 8322, 2969, 27077, 3256, 705, 34, 8322, 2969, 259, 2817, 27271, 3256, 198, 220, 220, 220, 705, 1136, 62, 12286, 62, 67, 4906, 3256, 705, 2617, 62, 12286, 62, 67, 4906, 6, 198, 60, 198, 198, 834, 439, 834, 15853, 685, 198, 220, 220, 220, 705, 9744, 3256, 705, 49925, 8053, 3256, 705, 2220, 3256, 705, 21928, 3256, 705, 1462, 62, 45286, 3256, 705, 3919, 62, 9744, 3256, 198, 220, 220, 220, 705, 6601, 10044, 29363, 6, 198, 60, 198, 198, 6738, 764, 1330, 4738, 198, 6738, 764, 25120, 1330, 9403, 198, 6738, 764, 30604, 1330, 651, 62, 12286, 62, 67, 4906, 198, 6738, 764, 30604, 1330, 900, 62, 12286, 62, 67, 4906, 198, 198, 6738, 11485, 35522, 312, 13, 30604, 1330, 19157, 43015, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 17143, 62, 35226, 1330, 25139, 8086, 81, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 2, 422, 11485, 35522, 312, 13, 75, 6962, 13, 83, 22854, 1330, 2251, 62, 20541, 62, 7785, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 75, 6962, 13, 83, 22854, 1330, 2251, 62, 17143, 2357, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 7295, 1330, 9135, 27271, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 7295, 1330, 327, 8322, 2969, 27077, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 7295, 1330, 327, 8322, 2969, 259, 2817, 27271, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 7295, 1330, 12372, 14881, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 198, 6738, 39517, 13, 35522, 312, 1330, 4755, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 9892, 34960, 13, 8692, 1330, 645, 62, 9744, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 9892, 34960, 13, 8692, 1330, 284, 62, 45286, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 11485, 35522, 312, 13, 9892, 34960, 13, 8692, 1330, 3915, 220, 1303, 7206, 29940, 62, 1847, 43429, 198, 6738, 764, 952, 1330, 3613, 198, 6738, 764, 952, 1330, 3440, 198, 6738, 11485, 35522, 312, 13, 9892, 34960, 13, 1845, 29363, 1330, 6060, 10044, 29363, 220, 1303, 7206, 29940, 62, 1847, 43429, 198 ]
3.099145
585
""" MyMemory Translated @website https://mymemory.translated.net/ @provide-api yes (https://mymemory.translated.net/doc/spec.php) @using-api yes @results JSON @stable yes @parse url, title, content """ import re from sys import version_info from searx.utils import is_valid_lang if version_info[0] == 3: unicode = str categories = ['general'] url = u'http://api.mymemory.translated.net/get?q={query}&langpair={from_lang}|{to_lang}{key}' web_url = u'http://mymemory.translated.net/en/{from_lang}/{to_lang}/{query}' weight = 100 parser_re = re.compile(u'.*?([a-z]+)-([a-z]+) (.{2,})$', re.I) api_key = ''
[ 37811, 198, 2011, 30871, 3602, 17249, 628, 2488, 732, 12485, 220, 220, 220, 220, 3740, 1378, 1820, 31673, 13, 7645, 17249, 13, 3262, 14, 198, 2488, 15234, 485, 12, 15042, 3763, 357, 5450, 1378, 1820, 31673, 13, 7645, 17249, 13, 3262, 14, 15390, 14, 16684, 13, 10121, 8, 198, 2488, 3500, 12, 15042, 220, 220, 3763, 198, 2488, 43420, 220, 220, 220, 220, 19449, 198, 2488, 31284, 220, 220, 220, 220, 220, 3763, 198, 2488, 29572, 220, 220, 220, 220, 220, 220, 19016, 11, 3670, 11, 2695, 198, 37811, 198, 11748, 302, 198, 6738, 25064, 1330, 2196, 62, 10951, 198, 6738, 9622, 87, 13, 26791, 1330, 318, 62, 12102, 62, 17204, 198, 198, 361, 2196, 62, 10951, 58, 15, 60, 6624, 513, 25, 198, 220, 220, 220, 28000, 1098, 796, 965, 198, 198, 66, 26129, 796, 37250, 24622, 20520, 198, 6371, 796, 334, 6, 4023, 1378, 15042, 13, 1820, 31673, 13, 7645, 17249, 13, 3262, 14, 1136, 30, 80, 34758, 22766, 92, 5, 17204, 24874, 34758, 6738, 62, 17204, 92, 91, 90, 1462, 62, 17204, 18477, 2539, 92, 6, 198, 12384, 62, 6371, 796, 334, 6, 4023, 1378, 1820, 31673, 13, 7645, 17249, 13, 3262, 14, 268, 14, 90, 6738, 62, 17204, 92, 14, 90, 1462, 62, 17204, 92, 14, 90, 22766, 92, 6, 198, 6551, 796, 1802, 198, 198, 48610, 62, 260, 796, 302, 13, 5589, 576, 7, 84, 4458, 9, 30, 26933, 64, 12, 89, 48688, 13219, 26933, 64, 12, 89, 60, 28988, 20262, 90, 17, 11, 30072, 3, 3256, 302, 13, 40, 8, 198, 15042, 62, 2539, 796, 10148, 628, 198 ]
2.42803
264
import numpy as np np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) import matplotlib.pyplot as plt import tensorflow as tf import logging import os from scipy.io import savemat from scipy.stats import norm logger = logging.getLogger("logger") ################################### ####### HISTOGRAM OBJECTS ######### ###################################
[ 11748, 299, 32152, 355, 45941, 198, 198, 37659, 13, 2617, 62, 4798, 25811, 7, 687, 1436, 34758, 6, 22468, 10354, 37456, 2124, 25, 45144, 15, 25, 15, 13, 18, 69, 92, 1911, 18982, 7, 87, 8, 30072, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 18931, 198, 11748, 28686, 198, 6738, 629, 541, 88, 13, 952, 1330, 3613, 6759, 198, 6738, 629, 541, 88, 13, 34242, 1330, 2593, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 6404, 1362, 4943, 628, 628, 628, 628, 628, 198, 29113, 21017, 198, 4242, 21017, 367, 8808, 7730, 24115, 25334, 41, 2943, 4694, 1303, 7804, 198, 29113, 21017, 628 ]
3.268908
119
import pytest @pytest.fixture @pytest.fixture @pytest.fixture
[ 11748, 12972, 9288, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
2.428571
28
import uuid from thundra import constants, utils from thundra.application.application_info_provider import ApplicationInfoProvider
[ 11748, 334, 27112, 198, 198, 6738, 294, 917, 430, 1330, 38491, 11, 3384, 4487, 198, 6738, 294, 917, 430, 13, 31438, 13, 31438, 62, 10951, 62, 15234, 1304, 1330, 15678, 12360, 29495, 628 ]
4.030303
33
import functools import logging from spaceone.api.inventory.v1 import resource_group_pb2 from spaceone.core.pygrpc.message_type import * from spaceone.core import utils from spaceone.inventory.model.resource_group_model import ResourceGroup, Resource __all__ = ['ResourceGroupInfo', 'ResourceGroupsInfo'] _LOGGER = logging.getLogger(__name__)
[ 11748, 1257, 310, 10141, 198, 11748, 18931, 198, 6738, 2272, 505, 13, 15042, 13, 24807, 13, 85, 16, 1330, 8271, 62, 8094, 62, 40842, 17, 198, 6738, 2272, 505, 13, 7295, 13, 9078, 2164, 14751, 13, 20500, 62, 4906, 1330, 1635, 198, 6738, 2272, 505, 13, 7295, 1330, 3384, 4487, 198, 6738, 2272, 505, 13, 24807, 13, 19849, 13, 31092, 62, 8094, 62, 19849, 1330, 20857, 13247, 11, 20857, 198, 198, 834, 439, 834, 796, 37250, 26198, 13247, 12360, 3256, 705, 26198, 38, 14459, 12360, 20520, 198, 198, 62, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628 ]
3.346154
104
""" Train the NN model. """ import sys import _thread import keras import warnings import argparse import numpy as np import pandas as pd from data.data import process_data from model import model from keras.models import Model from keras.callbacks import EarlyStopping from tkinter import ttk, filedialog, dialog import os import tkinter import tkinter.messagebox warnings.filterwarnings("ignore") file_path1="" file_path2="" modelName = None def train_model(model, X_train, y_train, name, config,lag,callBack): """train train a single model. # Arguments model: Model, NN model to train. X_train: ndarray(number, lags), Input data for train. y_train: ndarray(number, ), result data for train. name: String, name of model. config: Dict, parameter for train. """ model.compile(loss="mse", optimizer="rmsprop", metrics=['mape']) # early = EarlyStopping(monitor='val_loss', patience=30, verbose=0, mode='auto') hist = model.fit( X_train, y_train, batch_size=config["batch"], epochs=config["epochs"], validation_split=0.05, callbacks=[callBack] ) model.save('model/' + name + '-' + str(lag) + '.h5') def train_allDense_model(model, X_train, y_train, name, config,lag,callBack): """train train a single model. # Arguments model: Model, NN model to train. X_train: ndarray(number, lags), Input data for train. y_train: ndarray(number, ), result data for train. name: String, name of model. config: Dict, parameter for train. """ model.compile(loss="mse", optimizer="rmsprop",metrics=['mape']) hist = model.fit( X_train, y_train, batch_size=config["batch"], epochs=config["epochs"], callbacks = [callBack] ) model.save('model/' + name + '-' + str(lag) + '.h5') lagIntStart = 0 lagIntEnd = 0 def open_file_train(): ''' 打开文件 :return: ''' file_path1 = filedialog.askopenfilename(title=u'选择训练集', initialdir=(os.path.expanduser('./data/100211data/100211_all_train.csv'))) fileStr1.set(file_path1) print('打开文件:', file_path1) window = tkinter.Tk() window.title('入口') # 标题 window.geometry('600x400') # 窗口尺寸 if __name__ == '__main__': runUI() # main(sys.argv)
[ 37811, 198, 44077, 262, 399, 45, 2746, 13, 198, 37811, 198, 11748, 25064, 198, 11748, 4808, 16663, 198, 11748, 41927, 292, 198, 11748, 14601, 198, 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 1366, 13, 7890, 1330, 1429, 62, 7890, 198, 6738, 2746, 1330, 2746, 198, 6738, 41927, 292, 13, 27530, 1330, 9104, 198, 6738, 41927, 292, 13, 13345, 10146, 1330, 12556, 1273, 33307, 198, 6738, 256, 74, 3849, 1330, 256, 30488, 11, 5717, 498, 519, 11, 17310, 198, 11748, 220, 28686, 198, 11748, 256, 74, 3849, 198, 11748, 256, 74, 3849, 13, 20500, 3524, 198, 198, 40539, 654, 13, 24455, 40539, 654, 7203, 46430, 4943, 198, 198, 7753, 62, 6978, 16, 33151, 198, 7753, 62, 6978, 17, 33151, 198, 19849, 5376, 796, 6045, 628, 198, 4299, 4512, 62, 19849, 7, 19849, 11, 1395, 62, 27432, 11, 331, 62, 27432, 11, 1438, 11, 4566, 11, 30909, 11, 13345, 7282, 2599, 198, 220, 220, 220, 37227, 27432, 198, 220, 220, 220, 4512, 257, 2060, 2746, 13, 628, 220, 220, 220, 1303, 20559, 2886, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 25, 9104, 11, 399, 45, 2746, 284, 4512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 27432, 25, 299, 67, 18747, 7, 17618, 11, 300, 3775, 828, 23412, 1366, 329, 4512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 27432, 25, 299, 67, 18747, 7, 17618, 11, 10612, 1255, 1366, 329, 4512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 10903, 11, 1438, 286, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 360, 713, 11, 11507, 329, 4512, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2746, 13, 5589, 576, 7, 22462, 2625, 76, 325, 1600, 6436, 7509, 2625, 81, 907, 22930, 1600, 20731, 28, 17816, 76, 1758, 6, 12962, 198, 220, 220, 220, 1303, 1903, 796, 12556, 1273, 33307, 7, 41143, 11639, 2100, 62, 22462, 3256, 16336, 28, 1270, 11, 15942, 577, 28, 15, 11, 4235, 11639, 23736, 11537, 198, 220, 220, 220, 1554, 796, 2746, 13, 11147, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 27432, 11, 331, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 11250, 14692, 43501, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 11250, 14692, 538, 5374, 82, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 35312, 28, 15, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 869, 10146, 41888, 13345, 7282, 60, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2746, 13, 21928, 10786, 19849, 14, 6, 1343, 1438, 1343, 705, 19355, 1343, 965, 7, 30909, 8, 1343, 45302, 71, 20, 11537, 198, 198, 4299, 4512, 62, 439, 35, 1072, 62, 19849, 7, 19849, 11, 1395, 62, 27432, 11, 331, 62, 27432, 11, 1438, 11, 4566, 11, 30909, 11, 13345, 7282, 2599, 198, 220, 220, 220, 37227, 27432, 198, 220, 220, 220, 4512, 257, 2060, 2746, 13, 628, 220, 220, 220, 1303, 20559, 2886, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 25, 9104, 11, 399, 45, 2746, 284, 4512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 27432, 25, 299, 67, 18747, 7, 17618, 11, 300, 3775, 828, 23412, 1366, 329, 4512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 27432, 25, 299, 67, 18747, 7, 17618, 11, 10612, 1255, 1366, 329, 4512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 10903, 11, 1438, 286, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 360, 713, 11, 11507, 329, 4512, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2746, 13, 5589, 576, 7, 22462, 2625, 76, 325, 1600, 6436, 7509, 2625, 81, 907, 22930, 1600, 4164, 10466, 28, 17816, 76, 1758, 6, 12962, 198, 220, 220, 220, 1554, 796, 2746, 13, 11147, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 27432, 11, 331, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 11250, 14692, 43501, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 11250, 14692, 538, 5374, 82, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 869, 10146, 796, 685, 13345, 7282, 60, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2746, 13, 21928, 10786, 19849, 14, 6, 1343, 1438, 1343, 705, 19355, 1343, 965, 7, 30909, 8, 1343, 45302, 71, 20, 11537, 628, 198, 30909, 5317, 10434, 796, 657, 198, 30909, 5317, 12915, 796, 657, 628, 198, 198, 4299, 1280, 62, 7753, 62, 27432, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 10545, 231, 241, 28156, 222, 23877, 229, 20015, 114, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2393, 62, 6978, 16, 796, 5717, 498, 519, 13, 2093, 9654, 34345, 7, 7839, 28, 84, 6, 34460, 231, 162, 233, 102, 164, 106, 255, 163, 119, 225, 37239, 228, 3256, 4238, 15908, 16193, 418, 13, 6978, 13, 11201, 392, 7220, 7, 4458, 14, 7890, 14, 3064, 21895, 7890, 14, 3064, 21895, 62, 439, 62, 27432, 13, 40664, 6, 22305, 198, 220, 220, 220, 2393, 13290, 16, 13, 2617, 7, 7753, 62, 6978, 16, 8, 198, 220, 220, 220, 3601, 10786, 33699, 241, 28156, 222, 23877, 229, 20015, 114, 171, 120, 248, 3256, 2393, 62, 6978, 16, 8, 628, 198, 17497, 796, 256, 74, 3849, 13, 51, 74, 3419, 198, 17497, 13, 7839, 10786, 17739, 98, 20998, 96, 11537, 220, 1303, 10545, 254, 229, 165, 95, 246, 198, 17497, 13, 469, 15748, 10786, 8054, 87, 7029, 11537, 220, 1303, 13328, 103, 245, 20998, 96, 22887, 118, 43380, 116, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 10080, 3419, 198, 220, 220, 220, 1303, 1388, 7, 17597, 13, 853, 85, 8, 198 ]
2.330321
996
# stdlib import random # third party import numpy as np import torch
[ 2, 14367, 8019, 198, 11748, 4738, 198, 198, 2, 2368, 2151, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 628 ]
3.380952
21
from fcrepo_verify.utils import get_data_dir, replace_strings_in_file from fcrepo_verify.constants import BAG_DATA_DIR import os import tempfile config = MockConfig({}) config.dir = "/tmp"
[ 6738, 277, 7513, 7501, 62, 332, 1958, 13, 26791, 1330, 651, 62, 7890, 62, 15908, 11, 6330, 62, 37336, 62, 259, 62, 7753, 198, 6738, 277, 7513, 7501, 62, 332, 1958, 13, 9979, 1187, 1330, 347, 4760, 62, 26947, 62, 34720, 198, 11748, 28686, 198, 11748, 20218, 7753, 628, 198, 198, 11250, 796, 44123, 16934, 15090, 30072, 198, 11250, 13, 15908, 796, 12813, 22065, 1, 628, 628 ]
2.910448
67
import logging import os import traceback import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Output, Input from dash.exceptions import PreventUpdate from plotly import graph_objects from .dash_app import DashApp from ._plotly_plots import plot_scalars from .player_controls import STEP_COUNT, parse_step_count from .._vis_base import display_name, gui_interrupt, benchmark BENCHMARK_BUTTON = Input('benchmark-button', 'n_clicks') PROFILE_BUTTON = Input('profile-button', 'n_clicks') NO_BENCHMARK_TEXT = '*No benchmarks available.*' NO_PROFILES_TEXT = '*No profiles available.*' REFRESH_GRAPHS_BUTTON = Input('refresh-graphs-button', 'n_clicks') TENSORBOARD_STATUS = Input('tensorboard-status', 'children')
[ 11748, 18931, 198, 11748, 28686, 198, 11748, 12854, 1891, 198, 198, 11748, 14470, 62, 7295, 62, 5589, 3906, 355, 288, 535, 198, 11748, 14470, 62, 6494, 62, 5589, 3906, 355, 27711, 198, 6738, 14470, 13, 45841, 3976, 1330, 25235, 11, 23412, 198, 6738, 14470, 13, 1069, 11755, 1330, 31572, 10260, 198, 6738, 7110, 306, 1330, 4823, 62, 48205, 198, 198, 6738, 764, 42460, 62, 1324, 1330, 16189, 4677, 198, 6738, 47540, 29487, 306, 62, 489, 1747, 1330, 7110, 62, 1416, 282, 945, 198, 6738, 764, 7829, 62, 13716, 82, 1330, 49154, 62, 34, 28270, 11, 21136, 62, 9662, 62, 9127, 198, 6738, 11485, 62, 4703, 62, 8692, 1330, 3359, 62, 3672, 11, 11774, 62, 3849, 3622, 11, 18335, 198, 198, 33, 1677, 3398, 44, 14175, 62, 47526, 11357, 796, 23412, 10786, 26968, 4102, 12, 16539, 3256, 705, 77, 62, 565, 3378, 11537, 198, 31190, 25664, 62, 47526, 11357, 796, 23412, 10786, 13317, 12, 16539, 3256, 705, 77, 62, 565, 3378, 11537, 198, 198, 15285, 62, 33, 1677, 3398, 44, 14175, 62, 32541, 796, 705, 9, 2949, 31747, 1695, 15885, 6, 198, 15285, 62, 4805, 19238, 4146, 1546, 62, 32541, 796, 705, 9, 2949, 16545, 1695, 15885, 6, 198, 198, 2200, 10913, 44011, 62, 10761, 2969, 7998, 62, 47526, 11357, 796, 23412, 10786, 5420, 3447, 12, 34960, 82, 12, 16539, 3256, 705, 77, 62, 565, 3378, 11537, 628, 628, 198, 51, 16938, 1581, 8202, 9795, 62, 35744, 2937, 796, 23412, 10786, 83, 22854, 3526, 12, 13376, 3256, 705, 17197, 11537, 628, 198 ]
3.055777
251
from flask import Flask from filesbuilder import FilesBuilder from inputoutput import IO #writeExcelFile if __name__ == '__main__': App = Bootstrap() App.run()
[ 6738, 42903, 1330, 46947, 198, 6738, 3696, 38272, 1330, 13283, 32875, 198, 6738, 5128, 22915, 1330, 24418, 628, 198, 2, 13564, 3109, 5276, 8979, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2034, 796, 18892, 26418, 3419, 198, 220, 220, 220, 2034, 13, 5143, 3419 ]
3.226415
53
""" Ax_Metrics - Test io.emfetch package ------------------------------------------------------------------------------ Author: Dan Kamins <dos at axonchisel dot net> Copyright (c) 2014 Dan Kamins, AxonChisel.net """ # ---------------------------------------------------------------------------- import pytest import axonchisel.metrics.foundation.chrono.timerange as timerange from axonchisel.metrics.io.emfetch.interface import EMFetcher from axonchisel.metrics.io.emfetch.base import EMFetcherBase import axonchisel.metrics.io.emfetch.plugins.emf_random as emf_random from axonchisel.metrics.io.emfetch.tmrange_time_t import TimeRange_time_t # ---------------------------------------------------------------------------- class TestEMFetcher(object): """ Test general EMFetcher. """ # # Setup / Teardown # # # Tests #
[ 37811, 198, 31554, 62, 9171, 10466, 532, 6208, 33245, 13, 368, 69, 7569, 5301, 198, 198, 10097, 26171, 198, 13838, 25, 6035, 12670, 1040, 1279, 37427, 379, 7877, 261, 354, 36811, 16605, 2010, 29, 198, 15269, 357, 66, 8, 1946, 6035, 12670, 1040, 11, 12176, 261, 1925, 36811, 13, 3262, 198, 37811, 628, 198, 2, 16529, 10541, 628, 198, 11748, 12972, 9288, 198, 198, 11748, 7877, 261, 354, 36811, 13, 4164, 10466, 13, 42526, 13, 11413, 78, 13, 45016, 858, 355, 19781, 858, 198, 6738, 7877, 261, 354, 36811, 13, 4164, 10466, 13, 952, 13, 368, 69, 7569, 13, 39994, 1330, 17228, 37, 316, 2044, 198, 6738, 7877, 261, 354, 36811, 13, 4164, 10466, 13, 952, 13, 368, 69, 7569, 13, 8692, 1330, 17228, 37, 316, 2044, 14881, 198, 11748, 7877, 261, 354, 36811, 13, 4164, 10466, 13, 952, 13, 368, 69, 7569, 13, 37390, 13, 368, 69, 62, 25120, 355, 795, 69, 62, 25120, 198, 6738, 7877, 261, 354, 36811, 13, 4164, 10466, 13, 952, 13, 368, 69, 7569, 13, 17209, 9521, 62, 2435, 62, 83, 1330, 3862, 17257, 62, 2435, 62, 83, 628, 198, 2, 16529, 10541, 628, 198, 4871, 6208, 3620, 37, 316, 2044, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 2276, 17228, 37, 316, 2044, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 31122, 1220, 1665, 446, 593, 198, 220, 220, 220, 1303, 628, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 30307, 198, 220, 220, 220, 1303, 628, 628, 628 ]
3.344828
261
# Importando apenas uma funcionalidade da biblioteca - peça a raiz quadrada de um número e arredonde ele para cima. from math import sqrt, ceil n = float(input('Digite um número para ver a sua raiz quadrada: ')) print('A raiz quadrada de {} é {}' .format(n, sqrt(n)))
[ 2, 17267, 25440, 2471, 268, 292, 334, 2611, 25439, 1538, 312, 671, 12379, 275, 29142, 313, 31047, 532, 613, 50041, 257, 2179, 528, 15094, 81, 4763, 390, 23781, 299, 21356, 647, 78, 304, 610, 445, 14378, 9766, 31215, 269, 8083, 13, 198, 198, 6738, 10688, 1330, 19862, 17034, 11, 2906, 346, 198, 77, 796, 12178, 7, 15414, 10786, 19511, 578, 23781, 299, 21356, 647, 78, 31215, 3326, 257, 424, 64, 2179, 528, 15094, 81, 4763, 25, 705, 4008, 198, 4798, 10786, 32, 2179, 528, 15094, 81, 4763, 390, 23884, 38251, 23884, 6, 764, 18982, 7, 77, 11, 19862, 17034, 7, 77, 22305, 198 ]
2.61165
103
import pytest from hamcrest import assert_that, contains_inanyorder from tests.testing_utils import param_wrapper, run_flake8, run_pylint strip_params = [ # code, flake8 rules, pylint rules param_wrapper("s.strip('abca')", {'B005'}, set(), id='strip_string'), param_wrapper(r"s.strip(r'\n\t ')", {'B005'}, set(), id='strip_raw_string'), param_wrapper("s.lstrip('abca')", {'B005'}, set(), id='lstrip_string'), param_wrapper(r"s.lstrip(r'\n\t ')", {'B005'}, set(), id='lstrip_raw_string'), param_wrapper("s.rstrip('abca')", {'B005'}, set(), id='rstrip_string'), param_wrapper(r"s.rstrip(r'\n\t ')", {'B005'}, set(), id='rstrip_raw_string'), ] @pytest.mark.parametrize('content,flake8_errors,pylint_errors', strip_params)
[ 11748, 12972, 9288, 198, 6738, 8891, 66, 2118, 1330, 6818, 62, 5562, 11, 4909, 62, 259, 1092, 2875, 198, 198, 6738, 5254, 13, 33407, 62, 26791, 1330, 5772, 62, 48553, 11, 1057, 62, 47597, 23, 11, 1057, 62, 79, 2645, 600, 198, 198, 36311, 62, 37266, 796, 685, 198, 220, 220, 220, 1303, 2438, 11, 781, 539, 23, 3173, 11, 279, 2645, 600, 3173, 198, 220, 220, 220, 5772, 62, 48553, 7203, 82, 13, 36311, 10786, 397, 6888, 11537, 1600, 1391, 6, 33, 22544, 6, 5512, 900, 22784, 4686, 11639, 36311, 62, 8841, 33809, 198, 220, 220, 220, 5772, 62, 48553, 7, 81, 1, 82, 13, 36311, 7, 81, 6, 59, 77, 59, 83, 705, 42501, 1391, 6, 33, 22544, 6, 5512, 900, 22784, 4686, 11639, 36311, 62, 1831, 62, 8841, 33809, 198, 220, 220, 220, 5772, 62, 48553, 7203, 82, 13, 75, 36311, 10786, 397, 6888, 11537, 1600, 1391, 6, 33, 22544, 6, 5512, 900, 22784, 4686, 11639, 75, 36311, 62, 8841, 33809, 198, 220, 220, 220, 5772, 62, 48553, 7, 81, 1, 82, 13, 75, 36311, 7, 81, 6, 59, 77, 59, 83, 705, 42501, 1391, 6, 33, 22544, 6, 5512, 900, 22784, 4686, 11639, 75, 36311, 62, 1831, 62, 8841, 33809, 198, 220, 220, 220, 5772, 62, 48553, 7203, 82, 13, 81, 36311, 10786, 397, 6888, 11537, 1600, 1391, 6, 33, 22544, 6, 5512, 900, 22784, 4686, 11639, 81, 36311, 62, 8841, 33809, 198, 220, 220, 220, 5772, 62, 48553, 7, 81, 1, 82, 13, 81, 36311, 7, 81, 6, 59, 77, 59, 83, 705, 42501, 1391, 6, 33, 22544, 6, 5512, 900, 22784, 4686, 11639, 81, 36311, 62, 1831, 62, 8841, 33809, 198, 60, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 11299, 11, 47597, 23, 62, 48277, 11, 79, 2645, 600, 62, 48277, 3256, 10283, 62, 37266, 8, 198 ]
2.430421
309
from tapis_cli.display import Verbosity from tapis_cli.clients.services.mixins import Username from . import API_NAME, SERVICE_VERSION from .models import Profile from .formatters import ProfilesFormatOne __all__ = ['ProfilesShow']
[ 6738, 9814, 271, 62, 44506, 13, 13812, 1330, 49973, 16579, 198, 6738, 9814, 271, 62, 44506, 13, 565, 2334, 13, 30416, 13, 19816, 1040, 1330, 50069, 198, 198, 6738, 764, 1330, 7824, 62, 20608, 11, 47453, 62, 43717, 198, 6738, 764, 27530, 1330, 13118, 198, 6738, 764, 18982, 1010, 1330, 4415, 2915, 26227, 3198, 198, 198, 834, 439, 834, 796, 37250, 15404, 2915, 15307, 20520, 628 ]
3.560606
66
from dazzler import Dazzler from dazzler.components import core from dazzler.system import Page, BindingContext, Trigger from tests.components import spec_components as spec app = Dazzler(__name__) aspect_types = { 'array': { 'value': [1, 2, 3], 'json': True, }, 'bool': { 'value': True, }, 'number': { 'value': 42, }, 'object': { 'value': {'foo': 'bar'}, 'json': True, }, 'string': { 'value': 'foo bar', }, 'enum': { 'value': 'News', }, 'union': { 'value': 1, }, 'array_of': { 'value': [6, 7, 8, 9], 'json': True, }, 'shape': { 'value': {'color': '#000', 'fontSize': 777}, 'json': True, }, } button_ids = ['set-{}'.format(y) for y in aspect_types] output_ids = ['out-{}'.format(y) for y in aspect_types] layout = core.Container([ core.Container([core.Button(x, identity=x) for x in button_ids]), spec.TestComponent('', identity='spec-output', id='spec-output'), ]) page = Page( 'page', url='/', layout=layout ) app.add_page(page) for button in button_ids: page.bind(Trigger(button, 'clicks'))(on_click_render_type) if __name__ == '__main__': app.start('-v --debug=1 --port=8155'.split())
[ 6738, 32282, 1754, 1330, 360, 8101, 1754, 198, 6738, 32282, 1754, 13, 5589, 3906, 1330, 4755, 198, 6738, 32282, 1754, 13, 10057, 1330, 7873, 11, 38904, 21947, 11, 24593, 198, 198, 6738, 5254, 13, 5589, 3906, 1330, 1020, 62, 5589, 3906, 355, 1020, 198, 198, 1324, 796, 360, 8101, 1754, 7, 834, 3672, 834, 8, 198, 198, 292, 806, 62, 19199, 796, 1391, 198, 220, 220, 220, 705, 18747, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 685, 16, 11, 362, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17752, 10354, 6407, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 30388, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6407, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 17618, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 5433, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 15252, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 1391, 6, 21943, 10354, 705, 5657, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17752, 10354, 6407, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 8841, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 705, 21943, 2318, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 44709, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 705, 9980, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 24592, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 352, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 18747, 62, 1659, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 685, 21, 11, 767, 11, 807, 11, 860, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17752, 10354, 6407, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 43358, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 1391, 6, 8043, 10354, 705, 2, 830, 3256, 705, 10331, 10699, 10354, 35534, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17752, 10354, 6407, 11, 198, 220, 220, 220, 8964, 198, 92, 198, 198, 16539, 62, 2340, 796, 37250, 2617, 12, 90, 92, 4458, 18982, 7, 88, 8, 329, 331, 287, 4843, 62, 19199, 60, 198, 22915, 62, 2340, 796, 37250, 448, 12, 90, 92, 4458, 18982, 7, 88, 8, 329, 331, 287, 4843, 62, 19199, 60, 198, 198, 39786, 796, 4755, 13, 29869, 26933, 198, 220, 220, 220, 4755, 13, 29869, 26933, 7295, 13, 21864, 7, 87, 11, 5369, 28, 87, 8, 329, 2124, 287, 4936, 62, 2340, 46570, 198, 220, 220, 220, 1020, 13, 14402, 21950, 10786, 3256, 5369, 11639, 16684, 12, 22915, 3256, 4686, 11639, 16684, 12, 22915, 33809, 198, 12962, 198, 198, 7700, 796, 7873, 7, 198, 220, 220, 220, 705, 7700, 3256, 198, 220, 220, 220, 19016, 11639, 14, 3256, 198, 220, 220, 220, 12461, 28, 39786, 198, 8, 198, 198, 1324, 13, 2860, 62, 7700, 7, 7700, 8, 628, 198, 198, 1640, 4936, 287, 4936, 62, 2340, 25, 198, 220, 220, 220, 2443, 13, 21653, 7, 48344, 7, 16539, 11, 705, 565, 3378, 6, 4008, 7, 261, 62, 12976, 62, 13287, 62, 4906, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 9688, 10786, 12, 85, 1377, 24442, 28, 16, 1377, 634, 28, 23, 18742, 4458, 35312, 28955, 198 ]
2.178631
599
import graphene from ..types import ErrorType # noqa Import ErrorType for backwards compatability
[ 11748, 42463, 198, 198, 6738, 11485, 19199, 1330, 13047, 6030, 220, 1303, 645, 20402, 17267, 13047, 6030, 329, 16196, 8330, 1799, 198 ]
4.545455
22
#MenuTitle: Access to segments # -*- coding: utf-8 -*- from GlyphsApp.plugins import * g = Glyphs.font.selectedLayers[0].parent paths = Glyphs.font.selectedLayers[0].paths for path in paths: segments = path.segments for segment in segments: print type(segment.points[0]), dir(segment.points[0])
[ 2, 23381, 19160, 25, 8798, 284, 17894, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 27949, 746, 82, 4677, 13, 37390, 1330, 1635, 198, 198, 70, 796, 27949, 746, 82, 13, 10331, 13, 34213, 43, 6962, 58, 15, 4083, 8000, 198, 6978, 82, 796, 27949, 746, 82, 13, 10331, 13, 34213, 43, 6962, 58, 15, 4083, 6978, 82, 198, 1640, 3108, 287, 13532, 25, 198, 220, 220, 220, 17894, 796, 3108, 13, 325, 11726, 198, 220, 220, 220, 329, 10618, 287, 17894, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 2099, 7, 325, 5154, 13, 13033, 58, 15, 46570, 26672, 7, 325, 5154, 13, 13033, 58, 15, 12962, 198 ]
2.608333
120
import sys sys.path.append('/opt') import os import boto3 import json import dill import ast import base64 import shutil import time import pandas as pd from boto3 import resource from boto3.dynamodb.conditions import Key, Attr # Dynamo Config dynamo_resource = resource('dynamodb') dynamo = boto3.client('dynamodb') METADATA_TABLE = 'HomeworksMetadata' TEST_CASES_TABLE = 'HomeworksTestCases' GRADEBOOK_TABLE = 'Gradebook' # Return Codes SUCCESS = 200 ERROR = 400 # Request Types STUDENT_REQUEST = 'STUDENT_GRADE' ALL_STUDENTS_REQUEST = 'ALL_STUDENTS_GRADES'
[ 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 10786, 14, 8738, 11537, 198, 11748, 28686, 198, 11748, 275, 2069, 18, 198, 11748, 33918, 198, 11748, 288, 359, 198, 11748, 6468, 198, 11748, 2779, 2414, 198, 11748, 4423, 346, 198, 11748, 640, 198, 11748, 19798, 292, 355, 279, 67, 220, 198, 198, 6738, 275, 2069, 18, 1330, 8271, 198, 6738, 275, 2069, 18, 13, 67, 4989, 375, 65, 13, 17561, 1756, 1330, 7383, 11, 3460, 81, 628, 198, 2, 41542, 17056, 198, 67, 4989, 78, 62, 31092, 796, 8271, 10786, 67, 4989, 375, 65, 11537, 198, 67, 4989, 78, 796, 275, 2069, 18, 13, 16366, 10786, 67, 4989, 375, 65, 11537, 198, 47123, 2885, 13563, 62, 38148, 220, 220, 796, 705, 28718, 19653, 9171, 14706, 6, 198, 51, 6465, 62, 34, 1921, 1546, 62, 38148, 796, 705, 28718, 19653, 14402, 34, 1386, 6, 198, 10761, 19266, 39453, 62, 38148, 220, 796, 705, 42233, 2070, 6, 198, 198, 2, 8229, 44380, 198, 12564, 4093, 7597, 796, 939, 198, 24908, 220, 220, 796, 7337, 198, 198, 2, 19390, 24897, 198, 2257, 8322, 3525, 62, 2200, 35780, 796, 705, 2257, 8322, 3525, 62, 10761, 19266, 6, 198, 7036, 62, 2257, 8322, 15365, 62, 2200, 35780, 796, 705, 7036, 62, 2257, 8322, 15365, 62, 10761, 2885, 1546, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 628, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198 ]
2.489627
241
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the crash_access library.""" # pylint: disable=protected-access import unittest import mock from clusterfuzz._internal.tests.test_libs import helpers as test_helpers from libs import crash_access from libs import helpers from libs.query import base class AddScopeTest(unittest.TestCase): """Test add_scope.""" def test_forbidden(self): """Test when user is forbidden.""" self.mock.has_access.return_value = False with self.assertRaises(helpers.EarlyExitException): crash_access.add_scope(self.query, self.params, 'security_flag', 'job_type', 'fuzzer_name') def test_default_global_privileged(self): """Test the default filter for globally privileged users.""" self.mock.has_access.return_value = True crash_access.add_scope(self.query, self.params, 'security_flag', 'job_type', 'fuzzer_name') self.assertTrue(self.params['permissions']['everything']) self.assertTrue(self.params['permissions']['isPrivileged']) self.assertEqual([], self.params['permissions']['jobs']) self.assertFalse([], self.params['permissions']['fuzzers']) self.query.union.assert_has_calls([]) self.query.filter.assert_has_calls([]) def test_default_domain(self): """Test the default filter for domain users.""" self.mock.has_access.side_effect = _has_access crash_access.add_scope(self.query, self.params, 'security_flag', 'job_type', 'fuzzer_name') self.assertTrue(self.params['permissions']['everything']) self.assertFalse(self.params['permissions']['isPrivileged']) self.assertEqual([], self.params['permissions']['jobs']) self.assertFalse([], self.params['permissions']['fuzzers']) self.query.filter.assert_has_calls([]) self.query.union.assert_called_once_with(mock.ANY) q = self.query.union.call_args[0][0] q.union.assert_has_calls([]) q.filter.assert_has_calls([mock.call('security_flag', False)]) def test_domain_with_job_and_fuzzer(self): """Test domain user with job and fuzzer.""" self.mock.has_access.side_effect = _has_access self.mock.get_user_job_type.return_value = 'job' self.mock._allowed_entities_for_user.side_effect = [['job2'], ['fuzzer']] self.mock.get_permission_names.side_effect = [['perm'], ['perm1']] crash_access.add_scope(self.query, self.params, 'security_flag', 'job_type', 'fuzzer_name') self.assertTrue(self.params['permissions']['everything']) self.assertFalse(self.params['permissions']['isPrivileged']) self.assertListEqual(['perm', 'job'], self.params['permissions']['jobs']) self.assertListEqual(['perm1'], self.params['permissions']['fuzzers']) self.query.union.assert_has_calls([]) self.query.union.assert_called_once_with(mock.ANY, mock.ANY, mock.ANY) everything_query = self.query.union.call_args[0][0] job_query = self.query.union.call_args[0][1] fuzzer_query = self.query.union.call_args[0][2] everything_query.union.assert_has_calls([]) job_query.union.assert_has_calls([]) fuzzer_query.union.assert_has_calls([]) everything_query.filter.assert_has_calls( [mock.call('security_flag', False)]) job_query.filter_in.assert_has_calls([ mock.call('job_type', ['job2', 'job']), ]) fuzzer_query.filter_in.assert_has_calls([ mock.call('fuzzer_name', ['fuzzer']), ])
[ 2, 15069, 13130, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 51, 3558, 329, 262, 7014, 62, 15526, 5888, 526, 15931, 198, 2, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 198, 198, 11748, 555, 715, 395, 198, 198, 11748, 15290, 198, 198, 6738, 13946, 69, 4715, 13557, 32538, 13, 41989, 13, 9288, 62, 8019, 82, 1330, 49385, 355, 1332, 62, 16794, 364, 198, 6738, 9195, 82, 1330, 7014, 62, 15526, 198, 6738, 9195, 82, 1330, 49385, 198, 6738, 9195, 82, 13, 22766, 1330, 2779, 628, 198, 198, 4871, 3060, 43642, 14402, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 37227, 14402, 751, 62, 29982, 526, 15931, 628, 220, 825, 1332, 62, 1640, 37978, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 618, 2836, 318, 19467, 526, 15931, 198, 220, 220, 220, 2116, 13, 76, 735, 13, 10134, 62, 15526, 13, 7783, 62, 8367, 796, 10352, 198, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 16794, 364, 13, 20457, 30337, 16922, 2599, 198, 220, 220, 220, 220, 220, 7014, 62, 15526, 13, 2860, 62, 29982, 7, 944, 13, 22766, 11, 2116, 13, 37266, 11, 705, 12961, 62, 32109, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21858, 62, 4906, 3256, 705, 69, 4715, 263, 62, 3672, 11537, 628, 220, 825, 1332, 62, 12286, 62, 20541, 62, 13776, 48446, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 262, 4277, 8106, 329, 18309, 21929, 2985, 526, 15931, 198, 220, 220, 220, 2116, 13, 76, 735, 13, 10134, 62, 15526, 13, 7783, 62, 8367, 796, 6407, 198, 220, 220, 220, 7014, 62, 15526, 13, 2860, 62, 29982, 7, 944, 13, 22766, 11, 2116, 13, 37266, 11, 705, 12961, 62, 32109, 3256, 705, 21858, 62, 4906, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 4715, 263, 62, 3672, 11537, 628, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 37814, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 271, 20184, 48446, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 26933, 4357, 2116, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 43863, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 25101, 26933, 4357, 2116, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 69, 4715, 364, 6, 12962, 628, 220, 220, 220, 2116, 13, 22766, 13, 24592, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 12962, 198, 220, 220, 220, 2116, 13, 22766, 13, 24455, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 12962, 628, 220, 825, 1332, 62, 12286, 62, 27830, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 262, 4277, 8106, 329, 7386, 2985, 526, 15931, 198, 220, 220, 220, 2116, 13, 76, 735, 13, 10134, 62, 15526, 13, 1589, 62, 10760, 796, 4808, 10134, 62, 15526, 198, 220, 220, 220, 7014, 62, 15526, 13, 2860, 62, 29982, 7, 944, 13, 22766, 11, 2116, 13, 37266, 11, 705, 12961, 62, 32109, 3256, 705, 21858, 62, 4906, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 4715, 263, 62, 3672, 11537, 628, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 37814, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 944, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 271, 20184, 48446, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 26933, 4357, 2116, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 43863, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 25101, 26933, 4357, 2116, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 69, 4715, 364, 6, 12962, 628, 220, 220, 220, 2116, 13, 22766, 13, 24455, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 12962, 198, 220, 220, 220, 2116, 13, 22766, 13, 24592, 13, 30493, 62, 7174, 62, 27078, 62, 4480, 7, 76, 735, 13, 31827, 8, 628, 220, 220, 220, 10662, 796, 2116, 13, 22766, 13, 24592, 13, 13345, 62, 22046, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 10662, 13, 24592, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 12962, 198, 220, 220, 220, 10662, 13, 24455, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 76, 735, 13, 13345, 10786, 12961, 62, 32109, 3256, 10352, 8, 12962, 628, 220, 825, 1332, 62, 27830, 62, 4480, 62, 21858, 62, 392, 62, 69, 4715, 263, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 7386, 2836, 351, 1693, 290, 26080, 263, 526, 15931, 198, 220, 220, 220, 2116, 13, 76, 735, 13, 10134, 62, 15526, 13, 1589, 62, 10760, 796, 4808, 10134, 62, 15526, 198, 220, 220, 220, 2116, 13, 76, 735, 13, 1136, 62, 7220, 62, 21858, 62, 4906, 13, 7783, 62, 8367, 796, 705, 21858, 6, 198, 220, 220, 220, 2116, 13, 76, 735, 13557, 40845, 62, 298, 871, 62, 1640, 62, 7220, 13, 1589, 62, 10760, 796, 16410, 6, 21858, 17, 6, 4357, 37250, 69, 4715, 263, 6, 11907, 198, 220, 220, 220, 2116, 13, 76, 735, 13, 1136, 62, 525, 3411, 62, 14933, 13, 1589, 62, 10760, 796, 16410, 6, 16321, 6, 4357, 37250, 16321, 16, 6, 11907, 628, 220, 220, 220, 7014, 62, 15526, 13, 2860, 62, 29982, 7, 944, 13, 22766, 11, 2116, 13, 37266, 11, 705, 12961, 62, 32109, 3256, 705, 21858, 62, 4906, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 4715, 263, 62, 3672, 11537, 628, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 37814, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 944, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 271, 20184, 48446, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 8053, 36, 13255, 7, 17816, 16321, 3256, 705, 21858, 6, 4357, 2116, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 43863, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 8053, 36, 13255, 7, 17816, 16321, 16, 6, 4357, 2116, 13, 37266, 17816, 525, 8481, 6, 7131, 6, 69, 4715, 364, 6, 12962, 628, 220, 220, 220, 2116, 13, 22766, 13, 24592, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 12962, 198, 220, 220, 220, 2116, 13, 22766, 13, 24592, 13, 30493, 62, 7174, 62, 27078, 62, 4480, 7, 76, 735, 13, 31827, 11, 15290, 13, 31827, 11, 15290, 13, 31827, 8, 628, 220, 220, 220, 2279, 62, 22766, 796, 2116, 13, 22766, 13, 24592, 13, 13345, 62, 22046, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 1693, 62, 22766, 796, 2116, 13, 22766, 13, 24592, 13, 13345, 62, 22046, 58, 15, 7131, 16, 60, 198, 220, 220, 220, 26080, 263, 62, 22766, 796, 2116, 13, 22766, 13, 24592, 13, 13345, 62, 22046, 58, 15, 7131, 17, 60, 628, 220, 220, 220, 2279, 62, 22766, 13, 24592, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 12962, 198, 220, 220, 220, 1693, 62, 22766, 13, 24592, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 12962, 198, 220, 220, 220, 26080, 263, 62, 22766, 13, 24592, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 12962, 628, 220, 220, 220, 2279, 62, 22766, 13, 24455, 13, 30493, 62, 10134, 62, 66, 5691, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 76, 735, 13, 13345, 10786, 12961, 62, 32109, 3256, 10352, 8, 12962, 198, 220, 220, 220, 1693, 62, 22766, 13, 24455, 62, 259, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 13, 13345, 10786, 21858, 62, 4906, 3256, 37250, 21858, 17, 3256, 705, 21858, 20520, 828, 198, 220, 220, 220, 33761, 198, 220, 220, 220, 26080, 263, 62, 22766, 13, 24455, 62, 259, 13, 30493, 62, 10134, 62, 66, 5691, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 13, 13345, 10786, 69, 4715, 263, 62, 3672, 3256, 37250, 69, 4715, 263, 20520, 828, 198, 220, 220, 220, 33761, 198 ]
2.619792
1,536
import csv import os import shutil from random import randint from uuid import uuid4 import cherrypy import numpy as np from cherrypy.lib.static import serve_file from ics.classifier.classifier import NO_LABEL, YES_LABEL from ics.db.sqlalchemydb import SQLAlchemyDB, Job, ClassificationMode, LabelSource from ics.util.util import get_fully_portable_file_name, bool_to_string __author__ = 'Andrea Esuli' MAX_BATCH_SIZE = 1000 CSV_LARGE_FIELD = 1024 * 1024 * 10 QUICK_CLASSIFICATION_BATCH_SIZE = 100
[ 11748, 269, 21370, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 6738, 4738, 1330, 43720, 600, 198, 6738, 334, 27112, 1330, 334, 27112, 19, 198, 198, 11748, 23612, 9078, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 23612, 9078, 13, 8019, 13, 12708, 1330, 4691, 62, 7753, 198, 198, 6738, 220, 873, 13, 4871, 7483, 13, 4871, 7483, 1330, 8005, 62, 48780, 3698, 11, 21560, 62, 48780, 3698, 198, 6738, 220, 873, 13, 9945, 13, 25410, 282, 26599, 9945, 1330, 16363, 2348, 26599, 11012, 11, 15768, 11, 40984, 19076, 11, 36052, 7416, 198, 6738, 220, 873, 13, 22602, 13, 22602, 1330, 651, 62, 2759, 62, 634, 540, 62, 7753, 62, 3672, 11, 20512, 62, 1462, 62, 8841, 198, 198, 834, 9800, 834, 796, 705, 1870, 21468, 8678, 32176, 6, 198, 198, 22921, 62, 33, 11417, 62, 33489, 796, 8576, 198, 7902, 53, 62, 43, 1503, 8264, 62, 44603, 796, 28119, 1635, 28119, 1635, 838, 198, 198, 10917, 11860, 62, 31631, 30643, 6234, 62, 33, 11417, 62, 33489, 796, 1802, 628, 628, 198 ]
2.947674
172
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from datetime import datetime,timedelta from dateutil.relativedelta import relativedelta from frappe.utils import flt, getdate, today
[ 2, 15069, 357, 66, 8, 1853, 11, 39313, 27768, 21852, 18367, 83, 13, 12052, 13, 290, 25767, 669, 290, 20420, 198, 2, 1114, 5964, 1321, 11, 3387, 766, 5964, 13, 14116, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 11748, 5306, 27768, 198, 6738, 5306, 27768, 1330, 4808, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 16514, 276, 12514, 198, 6738, 3128, 22602, 13, 2411, 265, 1572, 12514, 1330, 48993, 1572, 12514, 198, 6738, 5306, 27768, 13, 26791, 1330, 781, 83, 11, 651, 4475, 11, 1909, 198 ]
3.731183
93
import ctypes # used for accessing the dynamic library import graph_partitioning.partitioners.utils as putils # used for some of the utilities functions
[ 11748, 269, 19199, 1303, 973, 329, 22534, 262, 8925, 5888, 198, 198, 11748, 4823, 62, 3911, 653, 278, 13, 3911, 653, 364, 13, 26791, 355, 1234, 4487, 1303, 973, 329, 617, 286, 262, 20081, 5499, 628 ]
4.305556
36
# coding: UTF-8 import sys import os import numpy as np # unit is [us]. if __name__ == "__main__": argc = len(sys.argv) # 単位はus dirname = sys.argv[1] mu = int(sys.argv[2]) M = int(sys.argv[3]) N = int(sys.argv[4]) for trial in range(N): print(run(dirname, mu, M, trial)) pass
[ 2, 19617, 25, 41002, 12, 23, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 4326, 318, 685, 385, 4083, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1822, 66, 796, 18896, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 1303, 10263, 235, 246, 19526, 235, 31676, 385, 198, 220, 220, 220, 26672, 3672, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 38779, 796, 493, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 220, 220, 220, 337, 796, 493, 7, 17597, 13, 853, 85, 58, 18, 12962, 198, 220, 220, 220, 399, 796, 493, 7, 17597, 13, 853, 85, 58, 19, 12962, 628, 220, 220, 220, 329, 4473, 287, 2837, 7, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 5143, 7, 15908, 3672, 11, 38779, 11, 337, 11, 4473, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 198 ]
1.923977
171
#Django from django.apps import AppConfig class EncuestasAppConfig(AppConfig): """Encuestas app config""" name = 'encuestas.encuesta' verbose_name = 'Encuestas'
[ 2, 35, 73, 14208, 198, 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 198, 198, 4871, 14711, 84, 395, 292, 4677, 16934, 7, 4677, 16934, 2599, 198, 220, 220, 220, 37227, 27195, 84, 395, 292, 598, 4566, 37811, 628, 220, 220, 220, 1438, 796, 705, 12685, 84, 395, 292, 13, 12685, 84, 18059, 6, 198, 220, 220, 220, 15942, 577, 62, 3672, 796, 705, 27195, 84, 395, 292, 6 ]
2.521739
69
#!/usr/bin/env python3 # encoding: utf-8 # # Copyright (c) 2008 Doug Hellmann All rights reserved. # """Manipulating the order of items in a deque. """ #end_pymotw_header import collections d = collections.deque(range(10)) print('Normal :', d) d = collections.deque(range(10)) d.rotate(2) print('Right rotation:', d) d = collections.deque(range(10)) d.rotate(-2) print('Left rotation :', d)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 2, 198, 2, 15069, 357, 66, 8, 3648, 15115, 5783, 9038, 1439, 2489, 10395, 13, 198, 2, 198, 37811, 5124, 541, 8306, 262, 1502, 286, 3709, 287, 257, 390, 4188, 13, 198, 37811, 198, 198, 2, 437, 62, 79, 4948, 313, 86, 62, 25677, 198, 11748, 17268, 198, 198, 67, 796, 17268, 13, 2934, 4188, 7, 9521, 7, 940, 4008, 198, 4798, 10786, 26447, 220, 220, 220, 220, 220, 220, 220, 1058, 3256, 288, 8, 198, 198, 67, 796, 17268, 13, 2934, 4188, 7, 9521, 7, 940, 4008, 198, 67, 13, 10599, 378, 7, 17, 8, 198, 4798, 10786, 11028, 13179, 25, 3256, 288, 8, 198, 198, 67, 796, 17268, 13, 2934, 4188, 7, 9521, 7, 940, 4008, 198, 67, 13, 10599, 378, 32590, 17, 8, 198, 4798, 10786, 18819, 13179, 1058, 3256, 288, 8, 198 ]
2.61039
154
import numpy as np import scipy import scipy.optimize import argparse import sklearn.metrics import matplotlib.pyplot as plt import autograd.scipy import autograd.numpy as ag_np import autograd import pandas as pd ## TODO: # - Need a mapping from timesteps to dates ################## Functions for fitting data ######################## ##################################################################### ############## loss calculation ############### ##################################################################### FUNCTIONS = {'erf': erf, 'ag_erf': ag_erf} if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--function', default='ag_erf') parser.add_argument('--fit_type', default='cumulative') parser.add_argument('--lower_bound', default='0.0') parser.add_argument('--inputfile', default='input_example_mass_positives.csv') parser.add_argument('--outputfile', default='output_example_mass_positives.csv') args = parser.parse_args() fun = FUNCTIONS[args.function] fit_type = args.fit_type lower_bound = float(args.lower_bound) num_params = 3 seed_list = ag_np.arange(5) x, dates, y = load_data(args.inputfile, fit_type) best_loss = ag_np.inf best_seed = 0 def calc_loss(params): ''' Default loss is MSE. ''' yhat = fun(x, *params) loss = MSE(y, yhat) return loss for seed in seed_list: ag_np.random.seed(seed) initial_guess = ag_np.random.random(num_params) result = scipy.optimize.minimize( calc_loss, initial_guess, jac=autograd.grad(calc_loss), method='l-bfgs-b', constraints={}, # changing the lower bounds shifts the peak, we can explore # this for the sake of confidence intervals. bounds=[(0, ag_np.inf), (0, ag_np.inf), (np.max(y)*lower_bound, ag_np.inf)]) params = result.x loss = calc_loss(params) if loss < best_loss: best_loss = loss best_seed = seed ag_np.random.seed(best_seed) initial_guess = ag_np.random.random(num_params) result = scipy.optimize.minimize( calc_loss, initial_guess, jac=autograd.grad(calc_loss), method='l-bfgs-b', constraints={}, bounds=[(0, ag_np.inf), (0, ag_np.inf), (np.max(y)*lower_bound, ag_np.inf)]) params = result.x save_results(x, y, fun, params, fit_type, dates, args.outputfile)
[ 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 198, 11748, 629, 541, 88, 13, 40085, 1096, 198, 11748, 1822, 29572, 198, 11748, 1341, 35720, 13, 4164, 10466, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 1960, 519, 6335, 13, 1416, 541, 88, 198, 11748, 1960, 519, 6335, 13, 77, 32152, 355, 556, 62, 37659, 198, 11748, 1960, 519, 6335, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2235, 16926, 46, 25, 198, 2, 220, 220, 532, 10664, 257, 16855, 422, 4628, 395, 25386, 284, 9667, 198, 198, 14468, 2235, 40480, 329, 15830, 1366, 1303, 14468, 4242, 21017, 198, 198, 29113, 29113, 4242, 2, 198, 198, 7804, 4242, 2235, 2994, 17952, 1303, 7804, 4242, 2235, 198, 198, 29113, 29113, 4242, 2, 198, 198, 42296, 4177, 11053, 796, 1391, 6, 263, 69, 10354, 1931, 69, 11, 705, 363, 62, 263, 69, 10354, 556, 62, 263, 69, 92, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 8818, 3256, 4277, 11639, 363, 62, 263, 69, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 11147, 62, 4906, 3256, 4277, 11639, 36340, 13628, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 21037, 62, 7784, 3256, 4277, 11639, 15, 13, 15, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15414, 7753, 3256, 4277, 11639, 15414, 62, 20688, 62, 22208, 62, 1930, 20288, 13, 40664, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 22915, 7753, 3256, 4277, 11639, 22915, 62, 20688, 62, 22208, 62, 1930, 20288, 13, 40664, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 1257, 796, 29397, 4177, 11053, 58, 22046, 13, 8818, 60, 198, 220, 220, 220, 4197, 62, 4906, 796, 26498, 13, 11147, 62, 4906, 198, 220, 220, 220, 2793, 62, 7784, 796, 12178, 7, 22046, 13, 21037, 62, 7784, 8, 628, 220, 220, 220, 997, 62, 37266, 796, 513, 198, 220, 220, 220, 9403, 62, 4868, 796, 556, 62, 37659, 13, 283, 858, 7, 20, 8, 198, 220, 220, 220, 2124, 11, 9667, 11, 331, 796, 3440, 62, 7890, 7, 22046, 13, 15414, 7753, 11, 4197, 62, 4906, 8, 628, 220, 220, 220, 1266, 62, 22462, 796, 556, 62, 37659, 13, 10745, 198, 220, 220, 220, 1266, 62, 28826, 796, 657, 628, 220, 220, 220, 825, 42302, 62, 22462, 7, 37266, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 15161, 2994, 318, 337, 5188, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 331, 5183, 796, 1257, 7, 87, 11, 1635, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 337, 5188, 7, 88, 11, 331, 5183, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2994, 628, 220, 220, 220, 329, 9403, 287, 9403, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 556, 62, 37659, 13, 25120, 13, 28826, 7, 28826, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 5162, 408, 796, 556, 62, 37659, 13, 25120, 13, 25120, 7, 22510, 62, 37266, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 629, 541, 88, 13, 40085, 1096, 13, 1084, 48439, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 62, 22462, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 5162, 408, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 330, 28, 2306, 519, 6335, 13, 9744, 7, 9948, 66, 62, 22462, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 11639, 75, 12, 19881, 14542, 12, 65, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17778, 34758, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5609, 262, 2793, 22303, 15381, 262, 9103, 11, 356, 460, 7301, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 329, 262, 11060, 286, 6628, 20016, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 41888, 7, 15, 11, 556, 62, 37659, 13, 10745, 828, 357, 15, 11, 556, 62, 37659, 13, 10745, 828, 357, 37659, 13, 9806, 7, 88, 27493, 21037, 62, 7784, 11, 556, 62, 37659, 13, 10745, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1255, 13, 87, 628, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 42302, 62, 22462, 7, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2994, 1279, 1266, 62, 22462, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 22462, 796, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 28826, 796, 9403, 628, 220, 220, 220, 556, 62, 37659, 13, 25120, 13, 28826, 7, 13466, 62, 28826, 8, 198, 220, 220, 220, 4238, 62, 5162, 408, 796, 556, 62, 37659, 13, 25120, 13, 25120, 7, 22510, 62, 37266, 8, 628, 220, 220, 220, 1255, 796, 629, 541, 88, 13, 40085, 1096, 13, 1084, 48439, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 62, 22462, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 5162, 408, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 330, 28, 2306, 519, 6335, 13, 9744, 7, 9948, 66, 62, 22462, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 11639, 75, 12, 19881, 14542, 12, 65, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17778, 34758, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 41888, 7, 15, 11, 556, 62, 37659, 13, 10745, 828, 357, 15, 11, 556, 62, 37659, 13, 10745, 828, 357, 37659, 13, 9806, 7, 88, 27493, 21037, 62, 7784, 11, 556, 62, 37659, 13, 10745, 8, 12962, 198, 220, 220, 220, 42287, 796, 1255, 13, 87, 198, 220, 220, 220, 3613, 62, 43420, 7, 87, 11, 331, 11, 1257, 11, 42287, 11, 4197, 62, 4906, 11, 9667, 11, 26498, 13, 22915, 7753, 8, 628, 198 ]
2.199675
1,232
import numpy as np from numba.core import types from numba.extending import overload @overload(np.where) def where(cond, x, y): """ Implement np.where(). """ # Choose implementation based on argument types. if isinstance(cond, types.Array): # Array where() => return an array of the same shape if all(ty.layout == 'C' for ty in (cond, x, y)): def where_impl(cond, x, y): """ Fast implementation for C-contiguous arrays """ shape = cond.shape if x.shape != shape or y.shape != shape: raise ValueError("all inputs should have the same shape") res = np.empty_like(x) cf = cond.flat xf = x.flat yf = y.flat rf = res.flat for i in range(cond.size): rf[i] = xf[i] if cf[i] else yf[i] return res else: def where_impl(cond, x, y): """ Generic implementation for other arrays """ shape = cond.shape if x.shape != shape or y.shape != shape: raise ValueError("all inputs should have the same shape") res = np.empty_like(x) for idx, c in np.ndenumerate(cond): res[idx] = x[idx] if c else y[idx] return res else: def where_impl(cond, x, y): """ Scalar where() => return a 0-dim array """ scal = x if cond else y return np.full_like(scal, scal) return where_impl
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 997, 7012, 13, 7295, 1330, 3858, 198, 6738, 997, 7012, 13, 2302, 1571, 1330, 31754, 198, 198, 31, 2502, 2220, 7, 37659, 13, 3003, 8, 198, 4299, 810, 7, 17561, 11, 2124, 11, 331, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 48282, 45941, 13, 3003, 22446, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 17489, 7822, 1912, 319, 4578, 3858, 13, 198, 220, 220, 220, 611, 318, 39098, 7, 17561, 11, 3858, 13, 19182, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15690, 810, 3419, 5218, 1441, 281, 7177, 286, 262, 976, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 7, 774, 13, 39786, 6624, 705, 34, 6, 329, 1259, 287, 357, 17561, 11, 2124, 11, 331, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 810, 62, 23928, 7, 17561, 11, 2124, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12549, 7822, 329, 327, 12, 3642, 29709, 26515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 1779, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 43358, 14512, 5485, 393, 331, 13, 43358, 14512, 5485, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 439, 17311, 815, 423, 262, 976, 5485, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 45941, 13, 28920, 62, 2339, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30218, 796, 1779, 13, 38568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 69, 796, 2124, 13, 38568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 69, 796, 331, 13, 38568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 69, 796, 581, 13, 38568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17561, 13, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 69, 58, 72, 60, 796, 2124, 69, 58, 72, 60, 611, 30218, 58, 72, 60, 2073, 331, 69, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 810, 62, 23928, 7, 17561, 11, 2124, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42044, 7822, 329, 584, 26515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 1779, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 43358, 14512, 5485, 393, 331, 13, 43358, 14512, 5485, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 439, 17311, 815, 423, 262, 976, 5485, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 45941, 13, 28920, 62, 2339, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 269, 287, 45941, 13, 358, 268, 6975, 378, 7, 17561, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 58, 312, 87, 60, 796, 2124, 58, 312, 87, 60, 611, 269, 2073, 331, 58, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 825, 810, 62, 23928, 7, 17561, 11, 2124, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34529, 283, 810, 3419, 5218, 1441, 257, 657, 12, 27740, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16578, 796, 2124, 611, 1779, 2073, 331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 12853, 62, 2339, 7, 1416, 282, 11, 16578, 8, 628, 220, 220, 220, 1441, 810, 62, 23928, 198 ]
1.868943
908
import os import cv2 import itertools import numpy as np def dump_images( names, pil_images, annotations, detections, stats, labelmap, dir): """ Dumps images with bbox overlays to disk. :param names: batch of sample names :param pil_images: batch of original PIL images :param annotations: batch of annotations :param detections: batch of detections from NN :param stats: batch of debug info from a network. Keeps number of anchors that match particular GT box. :param labelmap: names of classes :param dir: destination directory to save images :return: None """ det_color = (0, 255, 0) anno_color = (255, 0, 0) if annotations is None: annotations = [] if detections is None: detections = [] if stats is None: stats = [] try: for ib, (name, pil_img, anno, detection, stat) in \ enumerate(itertools.zip_longest(names, pil_images, annotations, detections, stats)): img = np.asarray(pil_img).copy() img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) scale = [img.shape[1], img.shape[0], img.shape[1], img.shape[0]] if detection is not None: for icls, cls_det in enumerate(detection): for det in cls_det: conf = det[0] if conf > 0.0: bbox = det[1:] bbox_pix = bbox * scale type = labelmap[icls] cv2.rectangle( img, (int(bbox_pix[0]), int(bbox_pix[1])), (int(bbox_pix[2]), int(bbox_pix[3])), det_color, 1) cv2.putText( img, '{} {:.2f}'.format(type, conf), (int(bbox_pix[0]), int(bbox_pix[1])+10), cv2.FONT_HERSHEY_SIMPLEX, 0.4, det_color) if anno is not None and stat is not None: for obj, num_matches in zip(anno, stat): bbox = obj['bbox'] bbox_pix = bbox * scale cv2.rectangle( img, (int(bbox_pix[0]), int(bbox_pix[1])), (int(bbox_pix[2]), int(bbox_pix[3])), anno_color, 1) cv2.putText( img, obj['type'] + " M{}".format(num_matches), # M - number of matching anchors (int(bbox_pix[0]), int(bbox_pix[1])+10), cv2.FONT_HERSHEY_SIMPLEX, 0.4, anno_color) filename = name + '.png' cv2.imwrite(os.path.join(dir, filename), img) pass except Exception as e: pass pass
[ 11748, 28686, 198, 11748, 269, 85, 17, 198, 11748, 340, 861, 10141, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4299, 10285, 62, 17566, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 11, 5560, 62, 17566, 11, 37647, 11, 4886, 507, 11, 9756, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 8899, 11, 26672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 360, 8142, 4263, 351, 275, 3524, 12893, 592, 284, 11898, 13, 628, 220, 220, 220, 1058, 17143, 3891, 25, 15458, 286, 6291, 3891, 198, 220, 220, 220, 1058, 17143, 5560, 62, 17566, 25, 15458, 286, 2656, 350, 4146, 4263, 198, 220, 220, 220, 1058, 17143, 37647, 25, 15458, 286, 37647, 198, 220, 220, 220, 1058, 17143, 4886, 507, 25, 15458, 286, 4886, 507, 422, 399, 45, 198, 220, 220, 220, 1058, 17143, 9756, 25, 15458, 286, 14257, 7508, 422, 257, 3127, 13, 9175, 82, 1271, 286, 43360, 326, 2872, 1948, 7963, 3091, 13, 198, 220, 220, 220, 1058, 17143, 6167, 8899, 25, 3891, 286, 6097, 198, 220, 220, 220, 1058, 17143, 26672, 25, 10965, 8619, 284, 3613, 4263, 198, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1062, 62, 8043, 796, 357, 15, 11, 14280, 11, 657, 8, 198, 220, 220, 220, 1529, 78, 62, 8043, 796, 357, 13381, 11, 657, 11, 657, 8, 628, 220, 220, 220, 611, 37647, 318, 6045, 25, 37647, 796, 17635, 198, 220, 220, 220, 611, 4886, 507, 318, 6045, 25, 4886, 507, 796, 17635, 198, 220, 220, 220, 611, 9756, 318, 6045, 25, 9756, 796, 17635, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 24283, 11, 357, 3672, 11, 5560, 62, 9600, 11, 1529, 78, 11, 13326, 11, 1185, 8, 287, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27056, 378, 7, 270, 861, 10141, 13, 13344, 62, 6511, 395, 7, 14933, 11, 5560, 62, 17566, 11, 37647, 11, 4886, 507, 11, 9756, 8, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 45941, 13, 292, 18747, 7, 79, 346, 62, 9600, 737, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9600, 11, 269, 85, 17, 13, 46786, 62, 36982, 17, 33, 10761, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 796, 685, 9600, 13, 43358, 58, 16, 4357, 33705, 13, 43358, 58, 15, 4357, 33705, 13, 43358, 58, 16, 4357, 33705, 13, 43358, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13326, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 14158, 7278, 11, 537, 82, 62, 15255, 287, 27056, 378, 7, 15255, 3213, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1062, 287, 537, 82, 62, 15255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1013, 796, 1062, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1013, 1875, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 1062, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 79, 844, 796, 275, 3524, 1635, 5046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 796, 6167, 8899, 58, 291, 7278, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 2554, 9248, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 7, 65, 3524, 62, 79, 844, 58, 15, 46570, 493, 7, 65, 3524, 62, 79, 844, 58, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 7, 65, 3524, 62, 79, 844, 58, 17, 46570, 493, 7, 65, 3524, 62, 79, 844, 58, 18, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1062, 62, 8043, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 1996, 8206, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 92, 46110, 13, 17, 69, 92, 4458, 18982, 7, 4906, 11, 1013, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 7, 65, 3524, 62, 79, 844, 58, 15, 46570, 493, 7, 65, 3524, 62, 79, 844, 58, 16, 12962, 10, 940, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1062, 62, 8043, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1529, 78, 318, 407, 6045, 290, 1185, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26181, 11, 997, 62, 6759, 2052, 287, 19974, 7, 1236, 78, 11, 1185, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 26181, 17816, 65, 3524, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 79, 844, 796, 275, 3524, 1635, 5046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 2554, 9248, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 7, 65, 3524, 62, 79, 844, 58, 15, 46570, 493, 7, 65, 3524, 62, 79, 844, 58, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 7, 65, 3524, 62, 79, 844, 58, 17, 46570, 493, 7, 65, 3524, 62, 79, 844, 58, 18, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1529, 78, 62, 8043, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 1996, 8206, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 17816, 4906, 20520, 1343, 366, 337, 90, 92, 1911, 18982, 7, 22510, 62, 6759, 2052, 828, 1303, 337, 532, 1271, 286, 12336, 43360, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 7, 65, 3524, 62, 79, 844, 58, 15, 46570, 493, 7, 65, 3524, 62, 79, 844, 58, 16, 12962, 10, 940, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1529, 78, 62, 8043, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 1438, 1343, 45302, 11134, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7, 418, 13, 6978, 13, 22179, 7, 15908, 11, 29472, 828, 33705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 1208, 198 ]
1.681693
1,819
from peewee import * from playhouse.gfk import * from playhouse.tests.base import database_initializer from playhouse.tests.base import ModelTestCase db = database_initializer.get_in_memory_database()
[ 6738, 613, 413, 1453, 1330, 1635, 198, 6738, 711, 4803, 13, 70, 69, 74, 1330, 1635, 198, 6738, 711, 4803, 13, 41989, 13, 8692, 1330, 6831, 62, 36733, 7509, 198, 6738, 711, 4803, 13, 41989, 13, 8692, 1330, 9104, 14402, 20448, 628, 198, 9945, 796, 6831, 62, 36733, 7509, 13, 1136, 62, 259, 62, 31673, 62, 48806, 3419, 628, 628 ]
3.433333
60
from discord.ext import commands import requests from discord import Embed from disputils import BotEmbedPaginator
[ 6738, 36446, 13, 2302, 1330, 9729, 198, 11748, 7007, 198, 6738, 36446, 1330, 13302, 276, 198, 6738, 595, 1996, 4487, 1330, 18579, 31567, 276, 47, 363, 20900, 628 ]
4.142857
28
import typer app = typer.Typer() @app.callback('example_plugin') def check_cmd_group(): """Example plugin.""" @app.command("first_command") def _first_command(): """Example command."""
[ 11748, 1259, 525, 198, 198, 1324, 796, 1259, 525, 13, 25492, 525, 3419, 198, 198, 31, 1324, 13, 47423, 10786, 20688, 62, 33803, 11537, 198, 4299, 2198, 62, 28758, 62, 8094, 33529, 198, 220, 220, 220, 37227, 16281, 13877, 526, 15931, 198, 198, 31, 1324, 13, 21812, 7203, 11085, 62, 21812, 4943, 198, 4299, 4808, 11085, 62, 21812, 33529, 198, 220, 220, 220, 37227, 16281, 3141, 526, 15931, 198 ]
2.84058
69
#!/usr/bin/env python3 # coding: utf-8 import pytest # type: ignore from state import Board, Piece, GameState, GameMove import dataclasses, json def test_2_players_board_init(monkeypatch): """Make sure if we have just two players in a 4 corner board for them to be at the opposite corners instead of next to each other. """ board = Board.create([1, 3]) # Redundant asserts assert board.players == [1, 3] # Defaults asserts assert board.pieces_per_player == 4 assert board.board_sides == 4 assert board.board_side_length == 14 assert board.finish_zone_length == 5 # Consistency asserts assert board.player_shift == board.board_side_length * board.board_sides // len( board.players ) assert board.path_zone_length == len(board.players) * board.player_shift assert ( board.end_progress == board.player_shift * len(board.players) + board.finish_zone_length + 1 ) assert len(board.pieces) == len(board.players) * board.pieces_per_player # Explicit asserts assert board.pieces == [ Piece(0, 1, 0), Piece(1, 1, 0), Piece(2, 1, 0), Piece(3, 1, 0), Piece(0, 3, 0), Piece(1, 3, 0), Piece(2, 3, 0), Piece(3, 3, 0), ] def test_3_players_6_corner_board_init(monkeypatch): """Make sure if we have just 3 players in a 5 corner board for them to be at the opposite corners instead of next to each other. """ board = Board.create([0, 2, 3], board_sides=6, board_side_length=9) # Redundant asserts assert board.players == [0, 2, 3] assert board.board_sides == 6 assert board.board_side_length == 9 # Defaults asserts assert board.finish_zone_length == 5 assert board.pieces_per_player == 4 # Consistency asserts assert board.player_shift == board.board_side_length * board.board_sides // len( board.players ) assert board.path_zone_length == len(board.players) * board.player_shift # end_progress == path_zone_length + finish_zone_length + 1 THAT IS # end_progress == (board_sides * board_side_length) + finish_zone_length + 1 assert ( board.end_progress == board.player_shift * len(board.players) + board.finish_zone_length + 1 ) assert len(board.pieces) == len(board.players) * board.pieces_per_player # Explicit asserts assert board.pieces == [ Piece(0, 0, 0), Piece(1, 0, 0), Piece(2, 0, 0), Piece(3, 0, 0), Piece(0, 2, 0), Piece(1, 2, 0), Piece(2, 2, 0), Piece(3, 2, 0), Piece(0, 3, 0), Piece(1, 3, 0), Piece(2, 3, 0), Piece(3, 3, 0), ]
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 11748, 12972, 9288, 220, 1303, 2099, 25, 8856, 198, 6738, 1181, 1330, 5926, 11, 27053, 11, 3776, 9012, 11, 3776, 21774, 198, 11748, 4818, 330, 28958, 11, 33918, 628, 198, 198, 4299, 1332, 62, 17, 62, 32399, 62, 3526, 62, 15003, 7, 49572, 17147, 2599, 198, 220, 220, 220, 37227, 12050, 1654, 611, 356, 423, 655, 734, 1938, 287, 257, 604, 5228, 3096, 329, 606, 198, 220, 220, 220, 284, 307, 379, 262, 6697, 14371, 2427, 286, 1306, 284, 1123, 584, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3096, 796, 5926, 13, 17953, 26933, 16, 11, 513, 12962, 628, 220, 220, 220, 1303, 2297, 917, 415, 29348, 198, 220, 220, 220, 6818, 3096, 13, 32399, 6624, 685, 16, 11, 513, 60, 628, 220, 220, 220, 1303, 2896, 13185, 29348, 198, 220, 220, 220, 6818, 3096, 13, 34154, 62, 525, 62, 7829, 6624, 604, 198, 220, 220, 220, 6818, 3096, 13, 3526, 62, 82, 1460, 6624, 604, 198, 220, 220, 220, 6818, 3096, 13, 3526, 62, 1589, 62, 13664, 6624, 1478, 198, 220, 220, 220, 6818, 3096, 13, 15643, 680, 62, 11340, 62, 13664, 6624, 642, 628, 220, 220, 220, 1303, 3515, 396, 1387, 29348, 198, 220, 220, 220, 6818, 3096, 13, 7829, 62, 30846, 6624, 3096, 13, 3526, 62, 1589, 62, 13664, 1635, 3096, 13, 3526, 62, 82, 1460, 3373, 18896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3096, 13, 32399, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 3096, 13, 6978, 62, 11340, 62, 13664, 6624, 18896, 7, 3526, 13, 32399, 8, 1635, 3096, 13, 7829, 62, 30846, 198, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 3096, 13, 437, 62, 33723, 198, 220, 220, 220, 220, 220, 220, 220, 6624, 3096, 13, 7829, 62, 30846, 1635, 18896, 7, 3526, 13, 32399, 8, 1343, 3096, 13, 15643, 680, 62, 11340, 62, 13664, 1343, 352, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 18896, 7, 3526, 13, 34154, 8, 6624, 18896, 7, 3526, 13, 32399, 8, 1635, 3096, 13, 34154, 62, 525, 62, 7829, 628, 220, 220, 220, 1303, 11884, 29348, 198, 220, 220, 220, 6818, 3096, 13, 34154, 6624, 685, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 15, 11, 352, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 16, 11, 352, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 17, 11, 352, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 18, 11, 352, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 15, 11, 513, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 16, 11, 513, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 17, 11, 513, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 18, 11, 513, 11, 657, 828, 198, 220, 220, 220, 2361, 628, 198, 4299, 1332, 62, 18, 62, 32399, 62, 21, 62, 10215, 1008, 62, 3526, 62, 15003, 7, 49572, 17147, 2599, 198, 220, 220, 220, 37227, 12050, 1654, 611, 356, 423, 655, 513, 1938, 287, 257, 642, 5228, 3096, 329, 606, 198, 220, 220, 220, 284, 307, 379, 262, 6697, 14371, 2427, 286, 1306, 284, 1123, 584, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3096, 796, 5926, 13, 17953, 26933, 15, 11, 362, 11, 513, 4357, 3096, 62, 82, 1460, 28, 21, 11, 3096, 62, 1589, 62, 13664, 28, 24, 8, 628, 220, 220, 220, 1303, 2297, 917, 415, 29348, 198, 220, 220, 220, 6818, 3096, 13, 32399, 6624, 685, 15, 11, 362, 11, 513, 60, 198, 220, 220, 220, 6818, 3096, 13, 3526, 62, 82, 1460, 6624, 718, 198, 220, 220, 220, 6818, 3096, 13, 3526, 62, 1589, 62, 13664, 6624, 860, 628, 220, 220, 220, 1303, 2896, 13185, 29348, 198, 220, 220, 220, 6818, 3096, 13, 15643, 680, 62, 11340, 62, 13664, 6624, 642, 198, 220, 220, 220, 6818, 3096, 13, 34154, 62, 525, 62, 7829, 6624, 604, 628, 220, 220, 220, 1303, 3515, 396, 1387, 29348, 198, 220, 220, 220, 6818, 3096, 13, 7829, 62, 30846, 6624, 3096, 13, 3526, 62, 1589, 62, 13664, 1635, 3096, 13, 3526, 62, 82, 1460, 3373, 18896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3096, 13, 32399, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 3096, 13, 6978, 62, 11340, 62, 13664, 6624, 18896, 7, 3526, 13, 32399, 8, 1635, 3096, 13, 7829, 62, 30846, 198, 220, 220, 220, 1303, 886, 62, 33723, 6624, 3108, 62, 11340, 62, 13664, 1343, 5461, 62, 11340, 62, 13664, 1343, 352, 14603, 3180, 198, 220, 220, 220, 1303, 886, 62, 33723, 6624, 357, 3526, 62, 82, 1460, 1635, 3096, 62, 1589, 62, 13664, 8, 1343, 5461, 62, 11340, 62, 13664, 1343, 352, 198, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 3096, 13, 437, 62, 33723, 198, 220, 220, 220, 220, 220, 220, 220, 6624, 3096, 13, 7829, 62, 30846, 1635, 18896, 7, 3526, 13, 32399, 8, 1343, 3096, 13, 15643, 680, 62, 11340, 62, 13664, 1343, 352, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 18896, 7, 3526, 13, 34154, 8, 6624, 18896, 7, 3526, 13, 32399, 8, 1635, 3096, 13, 34154, 62, 525, 62, 7829, 628, 220, 220, 220, 1303, 11884, 29348, 198, 220, 220, 220, 6818, 3096, 13, 34154, 6624, 685, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 15, 11, 657, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 16, 11, 657, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 17, 11, 657, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 18, 11, 657, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 15, 11, 362, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 16, 11, 362, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 17, 11, 362, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 18, 11, 362, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 15, 11, 513, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 16, 11, 513, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 17, 11, 513, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27053, 7, 18, 11, 513, 11, 657, 828, 198, 220, 220, 220, 2361, 628, 628, 628, 628, 628, 198 ]
2.41218
1,133
__all__ = [ 'MultiLayerAtmosphere', 'AtmosphericLayer', 'phase_covariance_von_karman', 'phase_structure_function_von_karman', 'power_spectral_density_von_karman', 'Cn_squared_from_fried_parameter', 'fried_parameter_from_Cn_squared', 'seeing_to_fried_parameter', 'fried_parameter_to_seeing', 'FiniteAtmosphericLayer', 'InfiniteAtmosphericLayer', 'ModalAdaptiveOpticsLayer', 'make_standard_atmospheric_layers', 'make_las_campanas_atmospheric_layers' ] from .atmospheric_model import * from .finite_atmospheric_layer import * from .infinite_atmospheric_layer import * from .modal_adaptive_optics_layer import * from .standard_atmosphere import *
[ 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 29800, 49925, 2953, 6384, 1456, 3256, 198, 220, 220, 220, 705, 2953, 6384, 15011, 49925, 3256, 198, 220, 220, 220, 705, 40715, 62, 66, 709, 2743, 590, 62, 26982, 62, 21070, 805, 3256, 198, 220, 220, 220, 705, 40715, 62, 301, 5620, 62, 8818, 62, 26982, 62, 21070, 805, 3256, 198, 220, 220, 220, 705, 6477, 62, 4443, 1373, 62, 43337, 62, 26982, 62, 21070, 805, 3256, 198, 220, 220, 220, 705, 34, 77, 62, 16485, 1144, 62, 6738, 62, 25520, 62, 17143, 2357, 3256, 198, 220, 220, 220, 705, 25520, 62, 17143, 2357, 62, 6738, 62, 34, 77, 62, 16485, 1144, 3256, 198, 220, 220, 220, 705, 42041, 62, 1462, 62, 25520, 62, 17143, 2357, 3256, 198, 220, 220, 220, 705, 25520, 62, 17143, 2357, 62, 1462, 62, 42041, 3256, 198, 220, 220, 220, 705, 37, 9504, 2953, 6384, 15011, 49925, 3256, 198, 220, 220, 220, 705, 18943, 9504, 2953, 6384, 15011, 49925, 3256, 198, 220, 220, 220, 705, 5841, 282, 48003, 425, 27871, 873, 49925, 3256, 198, 220, 220, 220, 705, 15883, 62, 20307, 62, 265, 6384, 15011, 62, 75, 6962, 3256, 198, 197, 1101, 539, 62, 21921, 62, 16544, 15991, 62, 265, 6384, 15011, 62, 75, 6962, 6, 198, 60, 198, 198, 6738, 764, 265, 6384, 15011, 62, 19849, 1330, 1635, 198, 6738, 764, 69, 9504, 62, 265, 6384, 15011, 62, 29289, 1330, 1635, 198, 6738, 764, 10745, 9504, 62, 265, 6384, 15011, 62, 29289, 1330, 1635, 198, 6738, 764, 4666, 282, 62, 42552, 425, 62, 8738, 873, 62, 29289, 1330, 1635, 198, 6738, 764, 20307, 62, 265, 6384, 1456, 1330, 1635, 198 ]
2.525362
276
# --------------------------------------------------------------------------- # # Copyright (c) 2014, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in /LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # # Thanks for using Enthought open source! # # --------------------------------------------------------------------------- from __future__ import unicode_literals from sphinx.ext.autodoc import ( ModuleLevelDocumenter, ModuleDocumenter, annotation_option, SUPPRESS) from .util import get_trait_definition, DefinitionError class ModuleTraitDocumenter(ModuleLevelDocumenter): """ Specialised Documenter subclass for module level traits. The class defines a new documenter that recovers the trait definition signature of class level traits. """ objtype = 'data' member_order = 40 option_spec = dict(ModuleLevelDocumenter.option_spec) option_spec["annotation"] = annotation_option # must be higher than other data documenters priority = -5 @classmethod def can_document_member(cls, member, membername, isattr, parent): """ Check that the documented member is a trait instance. """ return ( isattr and hasattr(member, 'as_ctrait') and isinstance(parent, ModuleDocumenter)) def document_members(self, all_members=False): """ Trait attributes have no members """ def add_directive_header(self, sig): """ Add the sphinx directives. Add the 'attribute' directive with the annotation option set to the trait definition. """ ModuleLevelDocumenter.add_directive_header(self, sig) if hasattr(self, 'get_sourcename'): sourcename = self.get_sourcename() else: sourcename = '<autodoc>' if not self.options.annotation: try: definition = get_trait_definition( self.parent, self.object_name) except DefinitionError as error: self.directive.warn(error.args[0]) return self.add_line( ' :annotation: = {0}'.format(definition), sourcename) elif self.options.annotation is SUPPRESS: pass else: self.add_line( ' :annotation: %s' % self.options.annotation, sourcename)
[ 2, 16529, 32284, 198, 2, 198, 2, 220, 15069, 357, 66, 8, 1946, 11, 2039, 28895, 11, 3457, 13, 198, 2, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 220, 770, 3788, 318, 2810, 1231, 18215, 739, 262, 2846, 286, 262, 347, 10305, 198, 2, 220, 5964, 3017, 287, 1220, 43, 2149, 24290, 13, 14116, 290, 743, 307, 38913, 691, 198, 2, 220, 739, 262, 3403, 3417, 287, 262, 20794, 5964, 13, 220, 383, 5964, 198, 2, 220, 318, 635, 1695, 2691, 379, 2638, 1378, 2503, 13, 7944, 2917, 13, 785, 14, 677, 4541, 14, 21800, 13, 14116, 198, 2, 198, 2, 220, 6930, 329, 1262, 2039, 28895, 1280, 2723, 0, 198, 2, 198, 2, 16529, 32284, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 599, 20079, 87, 13, 2302, 13, 2306, 375, 420, 1330, 357, 198, 220, 220, 220, 19937, 4971, 24941, 263, 11, 19937, 24941, 263, 11, 23025, 62, 18076, 11, 19549, 32761, 8, 198, 198, 6738, 764, 22602, 1330, 651, 62, 9535, 270, 62, 46758, 11, 30396, 12331, 628, 198, 4871, 19937, 51, 12907, 24941, 263, 7, 26796, 4971, 24941, 263, 2599, 198, 220, 220, 220, 37227, 6093, 1417, 16854, 263, 47611, 329, 8265, 1241, 12796, 13, 628, 220, 220, 220, 383, 1398, 15738, 257, 649, 3188, 263, 326, 46773, 262, 16708, 6770, 198, 220, 220, 220, 9877, 286, 1398, 1241, 12796, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 4906, 796, 705, 7890, 6, 198, 220, 220, 220, 2888, 62, 2875, 796, 2319, 198, 220, 220, 220, 3038, 62, 16684, 796, 8633, 7, 26796, 4971, 24941, 263, 13, 18076, 62, 16684, 8, 198, 220, 220, 220, 3038, 62, 16684, 14692, 1236, 14221, 8973, 796, 23025, 62, 18076, 628, 220, 220, 220, 1303, 1276, 307, 2440, 621, 584, 1366, 3188, 364, 198, 220, 220, 220, 8475, 796, 532, 20, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 460, 62, 22897, 62, 19522, 7, 565, 82, 11, 2888, 11, 2888, 3672, 11, 318, 35226, 11, 2560, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 262, 12395, 2888, 318, 257, 16708, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 35226, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 468, 35226, 7, 19522, 11, 705, 292, 62, 310, 12907, 11537, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 39098, 7, 8000, 11, 19937, 24941, 263, 4008, 628, 220, 220, 220, 825, 3188, 62, 30814, 7, 944, 11, 477, 62, 30814, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4759, 270, 12608, 423, 645, 1866, 37227, 628, 220, 220, 220, 825, 751, 62, 12942, 425, 62, 25677, 7, 944, 11, 43237, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3060, 262, 599, 20079, 87, 34819, 13, 628, 220, 220, 220, 220, 220, 220, 220, 3060, 262, 705, 42348, 6, 22644, 351, 262, 23025, 3038, 198, 220, 220, 220, 220, 220, 220, 220, 900, 284, 262, 16708, 6770, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19937, 4971, 24941, 263, 13, 2860, 62, 12942, 425, 62, 25677, 7, 944, 11, 43237, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 944, 11, 705, 1136, 62, 82, 454, 66, 12453, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11348, 66, 12453, 796, 2116, 13, 1136, 62, 82, 454, 66, 12453, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11348, 66, 12453, 796, 705, 27, 2306, 375, 420, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 25811, 13, 1236, 14221, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6770, 796, 651, 62, 9535, 270, 62, 46758, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8000, 11, 2116, 13, 15252, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 30396, 12331, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12942, 425, 13, 40539, 7, 18224, 13, 22046, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 1370, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 220, 220, 1058, 1236, 14221, 25, 796, 1391, 15, 92, 4458, 18982, 7, 46758, 828, 11348, 66, 12453, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 25811, 13, 1236, 14221, 318, 19549, 32761, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 1370, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 220, 220, 1058, 1236, 14221, 25, 4064, 82, 6, 4064, 2116, 13, 25811, 13, 1236, 14221, 11, 11348, 66, 12453, 8, 198 ]
2.708159
956
from django.shortcuts import render from django.http import HttpResponse from .models import Image # Create your views here.
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 764, 27530, 1330, 7412, 198, 198, 2, 13610, 534, 5009, 994, 13, 198 ]
3.818182
33
#! /usr/bin/env python from wordfreq import word_frequency, iter_wordlist import regex iter = iter_wordlist('en', 'large') re_nonlatin = regex.compile('[^-_\p{Latin}\d\.\']') re_alphabet = regex.compile('[a-z]', regex.IGNORECASE) re_underscore = regex.compile('_') last_freq = -1 position = 0 current_line = 0 for word in iter: current_line += 1 # skip non english words, emoji, etc. if re_nonlatin.search(word): continue # skip '123.45', 'ŭ', etc. if not re_alphabet.search(word): continue # skip 'x_x', 'r_e_t_w_e_e_t', etc. if re_underscore.search(word): continue freq = word_frequency(word, 'en', 'large') if freq != last_freq: last_freq = freq position = current_line print("%d\t%s\t%f" % (position, word, freq * 1e6))
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 1573, 19503, 80, 1330, 1573, 62, 35324, 11, 11629, 62, 4775, 4868, 198, 11748, 40364, 198, 198, 2676, 796, 11629, 62, 4775, 4868, 10786, 268, 3256, 705, 11664, 11537, 198, 198, 260, 62, 13159, 75, 10680, 796, 40364, 13, 5589, 576, 10786, 58, 61, 12, 62, 59, 79, 90, 49022, 32239, 67, 17405, 59, 20520, 11537, 198, 260, 62, 17307, 8380, 796, 40364, 13, 5589, 576, 10786, 58, 64, 12, 89, 60, 3256, 40364, 13, 16284, 1581, 2943, 11159, 8, 198, 260, 62, 41116, 7295, 796, 40364, 13, 5589, 576, 10786, 62, 11537, 198, 198, 12957, 62, 19503, 80, 796, 532, 16, 198, 9150, 796, 657, 198, 14421, 62, 1370, 796, 657, 198, 1640, 1573, 287, 11629, 25, 198, 220, 220, 220, 1459, 62, 1370, 15853, 352, 628, 220, 220, 220, 1303, 14267, 1729, 46932, 2456, 11, 44805, 11, 3503, 13, 198, 220, 220, 220, 611, 302, 62, 13159, 75, 10680, 13, 12947, 7, 4775, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 1303, 14267, 705, 10163, 13, 2231, 3256, 705, 129, 255, 3256, 3503, 13, 198, 220, 220, 220, 611, 407, 302, 62, 17307, 8380, 13, 12947, 7, 4775, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 1303, 14267, 705, 87, 62, 87, 3256, 705, 81, 62, 68, 62, 83, 62, 86, 62, 68, 62, 68, 62, 83, 3256, 3503, 13, 198, 220, 220, 220, 611, 302, 62, 41116, 7295, 13, 12947, 7, 4775, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 2030, 80, 796, 1573, 62, 35324, 7, 4775, 11, 705, 268, 3256, 705, 11664, 11537, 628, 220, 220, 220, 611, 2030, 80, 14512, 938, 62, 19503, 80, 25, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 19503, 80, 796, 2030, 80, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 796, 1459, 62, 1370, 198, 220, 220, 220, 3601, 7203, 4, 67, 59, 83, 4, 82, 59, 83, 4, 69, 1, 4064, 357, 9150, 11, 1573, 11, 2030, 80, 1635, 352, 68, 21, 4008, 198 ]
2.258333
360
#!/usr/bin/env python # -*- coding: utf-8 -*- import ast import codecs import os.path import re import subprocess import sys from codecs import open from distutils import log from distutils.errors import DistutilsError from setuptools import find_packages, setup from setuptools.command.install import install from setuptools.command.sdist import sdist as BaseSDistCommand ROOT = os.path.realpath(os.path.dirname(__file__)) init = os.path.join(ROOT, 'src', 'etools_permissions', '__init__.py') _version_re = re.compile(r'__version__\s+=\s+(.*)') _name_re = re.compile(r'NAME\s+=\s+(.*)') sys.path.insert(0, os.path.join(ROOT, 'src')) with open(init, 'rb') as f: content = f.read().decode('utf-8') VERSION = str(ast.literal_eval(_version_re.search(content).group(1))) NAME = str(ast.literal_eval(_name_re.search(content).group(1))) class VerifyTagVersion(install): """Verify that the git tag matches version""" setup(name=NAME, version=VERSION, url='https://github.com/unicef/etools-permissions', author='UNICEF', author_email='[email protected]', license="Apache 2 License", description='Django package that handles permissions', long_description=codecs.open('README.rst').read(), package_dir={'': 'src'}, packages=find_packages(where='src'), include_package_data=True, install_requires=read('install.pip'), extras_require={ 'test': read('install.pip', 'testing.pip'), }, platforms=['any'], classifiers=[ 'Environment :: Web Environment', 'Programming Language :: Python :: 3.6', 'Framework :: Django', 'Intended Audience :: Developers'], scripts=[], cmdclass={ 'sdist': SDistCommand, "verify": VerifyTagVersion, } )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 6468, 198, 11748, 40481, 82, 198, 11748, 28686, 13, 6978, 198, 11748, 302, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 6738, 40481, 82, 1330, 1280, 198, 6738, 1233, 26791, 1330, 2604, 198, 6738, 1233, 26791, 13, 48277, 1330, 4307, 26791, 12331, 198, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 6738, 900, 37623, 10141, 13, 21812, 13, 17350, 1330, 2721, 198, 6738, 900, 37623, 10141, 13, 21812, 13, 82, 17080, 1330, 264, 17080, 355, 7308, 10305, 396, 21575, 198, 198, 13252, 2394, 796, 28686, 13, 6978, 13, 5305, 6978, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 15003, 796, 28686, 13, 6978, 13, 22179, 7, 13252, 2394, 11, 705, 10677, 3256, 705, 316, 10141, 62, 525, 8481, 3256, 705, 834, 15003, 834, 13, 9078, 11537, 198, 62, 9641, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 834, 9641, 834, 59, 82, 47932, 59, 82, 33747, 15885, 8, 11537, 198, 62, 3672, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 20608, 59, 82, 47932, 59, 82, 33747, 15885, 8, 11537, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 22179, 7, 13252, 2394, 11, 705, 10677, 6, 4008, 198, 198, 4480, 1280, 7, 15003, 11, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 2695, 796, 277, 13, 961, 22446, 12501, 1098, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 44156, 2849, 796, 965, 7, 459, 13, 18250, 1691, 62, 18206, 28264, 9641, 62, 260, 13, 12947, 7, 11299, 737, 8094, 7, 16, 22305, 198, 220, 220, 220, 36751, 796, 965, 7, 459, 13, 18250, 1691, 62, 18206, 28264, 3672, 62, 260, 13, 12947, 7, 11299, 737, 8094, 7, 16, 22305, 628, 628, 198, 4871, 49899, 24835, 14815, 7, 17350, 2599, 198, 220, 220, 220, 37227, 13414, 1958, 326, 262, 17606, 7621, 7466, 2196, 37811, 628, 198, 40406, 7, 3672, 28, 20608, 11, 198, 220, 220, 220, 220, 220, 2196, 28, 43717, 11, 198, 220, 220, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 403, 501, 69, 14, 316, 10141, 12, 525, 8481, 3256, 198, 220, 220, 220, 220, 220, 1772, 11639, 4944, 8476, 37, 3256, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 11639, 7959, 31, 403, 501, 69, 13, 2398, 3256, 198, 220, 220, 220, 220, 220, 5964, 2625, 25189, 4891, 362, 13789, 1600, 198, 220, 220, 220, 220, 220, 6764, 11639, 35, 73, 14208, 5301, 326, 17105, 21627, 3256, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 28, 19815, 721, 82, 13, 9654, 10786, 15675, 11682, 13, 81, 301, 27691, 961, 22784, 198, 220, 220, 220, 220, 220, 5301, 62, 15908, 34758, 7061, 25, 705, 10677, 6, 5512, 198, 220, 220, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 3003, 11639, 10677, 33809, 198, 220, 220, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 2721, 62, 47911, 28, 961, 10786, 17350, 13, 79, 541, 33809, 198, 220, 220, 220, 220, 220, 33849, 62, 46115, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9288, 10354, 1100, 10786, 17350, 13, 79, 541, 3256, 705, 33407, 13, 79, 541, 33809, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 9554, 28, 17816, 1092, 6, 4357, 198, 220, 220, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31441, 7904, 5313, 9344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21055, 6433, 7904, 37770, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 34152, 6, 4357, 198, 220, 220, 220, 220, 220, 14750, 41888, 4357, 198, 220, 220, 220, 220, 220, 23991, 4871, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 17080, 10354, 9834, 396, 21575, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 332, 1958, 1298, 49899, 24835, 14815, 11, 198, 220, 220, 220, 220, 220, 1782, 198, 8, 198 ]
2.500688
727
# Rotate Sprite # Demonstrates rotating a sprite from livewires import games games.init(screen_width = 640, screen_height = 480, fps = 50) class Ship(games.Sprite): """ A rotating ship. """ def update(self): """ Rotate based on keys pressed. """ if games.keyboard.is_pressed(games.K_RIGHT): self.angle += 1 if games.keyboard.is_pressed(games.K_LEFT): self.angle -= 1 if games.keyboard.is_pressed(games.K_1): self.angle = 0 if games.keyboard.is_pressed(games.K_2): self.angle = 90 if games.keyboard.is_pressed(games.K_3): self.angle = 180 if games.keyboard.is_pressed(games.K_4): self.angle = 270 main()
[ 2, 18481, 378, 33132, 198, 2, 7814, 2536, 689, 24012, 257, 33810, 198, 198, 6738, 2107, 86, 2387, 1330, 1830, 198, 198, 19966, 13, 15003, 7, 9612, 62, 10394, 796, 33759, 11, 3159, 62, 17015, 796, 23487, 11, 32977, 796, 2026, 8, 198, 198, 4871, 16656, 7, 19966, 13, 38454, 578, 2599, 198, 220, 220, 220, 37227, 317, 24012, 4074, 13, 37227, 198, 220, 220, 220, 825, 4296, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18481, 378, 1912, 319, 8251, 12070, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1830, 13, 2539, 3526, 13, 271, 62, 45477, 7, 19966, 13, 42, 62, 49, 9947, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9248, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1830, 13, 2539, 3526, 13, 271, 62, 45477, 7, 19966, 13, 42, 62, 2538, 9792, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9248, 48185, 352, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1830, 13, 2539, 3526, 13, 271, 62, 45477, 7, 19966, 13, 42, 62, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9248, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1830, 13, 2539, 3526, 13, 271, 62, 45477, 7, 19966, 13, 42, 62, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9248, 796, 4101, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1830, 13, 2539, 3526, 13, 271, 62, 45477, 7, 19966, 13, 42, 62, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9248, 796, 11546, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1830, 13, 2539, 3526, 13, 271, 62, 45477, 7, 19966, 13, 42, 62, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9248, 796, 20479, 198, 198, 12417, 3419, 198 ]
2.151429
350
__all__ = ['get_bond_yields','get_company','get_fund','get_manager','get_stock_holders','return_rate_dao']
[ 834, 439, 834, 796, 37250, 1136, 62, 65, 623, 62, 88, 1164, 82, 41707, 1136, 62, 39722, 41707, 1136, 62, 10990, 41707, 1136, 62, 37153, 41707, 1136, 62, 13578, 62, 10476, 41707, 7783, 62, 4873, 62, 67, 5488, 20520 ]
2.717949
39
# -*- coding: utf-8 -*- import numpy as np from matplotlib import pyplot as plt from anaflow import ext_thiem_3d, ext_grf_steady from anaflow.tools.coarse_graining import K_CG rad = np.geomspace(0.05, 4) # radius from the pumping well in [0, 4] r_ref = 2.0 # reference radius var = 0.5 # variance of the log-transmissivity len_scale = 10.0 # correlation length of the log-transmissivity KG = 1e-4 # the geometric mean of the transmissivity anis = 0.7 # aniso ratio rate = -1e-4 # pumping rate head1 = ext_thiem_3d(rad, r_ref, KG, var, len_scale, anis, 1, rate) head2 = ext_grf_steady(rad, r_ref, K_CG, rate=rate, cond_gmean=KG, var=var, len_scale=len_scale, anis=anis) plt.plot(rad, head1, label="Ext Thiem 3D") plt.plot(rad, head2, label="grf(K_CG)", linestyle="--") plt.xlabel("r in [m]") plt.ylabel("h in [m]") plt.legend() plt.tight_layout() plt.show()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 6738, 281, 1878, 9319, 1330, 1070, 62, 400, 26597, 62, 18, 67, 11, 1070, 62, 2164, 69, 62, 28044, 88, 198, 6738, 281, 1878, 9319, 13, 31391, 13, 1073, 17208, 62, 2164, 1397, 1330, 509, 62, 39816, 628, 198, 6335, 796, 45941, 13, 469, 296, 13200, 7, 15, 13, 2713, 11, 604, 8, 220, 1303, 16874, 422, 262, 26916, 880, 287, 685, 15, 11, 604, 60, 198, 81, 62, 5420, 796, 362, 13, 15, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4941, 16874, 198, 7785, 796, 657, 13, 20, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24198, 286, 262, 2604, 12, 7645, 3927, 3458, 198, 11925, 62, 9888, 796, 838, 13, 15, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16096, 4129, 286, 262, 2604, 12, 7645, 3927, 3458, 198, 42, 38, 796, 352, 68, 12, 19, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 38445, 1612, 286, 262, 1007, 3927, 3458, 198, 272, 271, 796, 657, 13, 22, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 281, 26786, 8064, 198, 4873, 796, 532, 16, 68, 12, 19, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26916, 2494, 198, 198, 2256, 16, 796, 1070, 62, 400, 26597, 62, 18, 67, 7, 6335, 11, 374, 62, 5420, 11, 509, 38, 11, 1401, 11, 18896, 62, 9888, 11, 281, 271, 11, 352, 11, 2494, 8, 198, 2256, 17, 796, 1070, 62, 2164, 69, 62, 28044, 88, 7, 6335, 11, 374, 62, 5420, 11, 509, 62, 39816, 11, 2494, 28, 4873, 11, 1779, 62, 70, 32604, 28, 42, 38, 11, 1401, 28, 7785, 11, 18896, 62, 9888, 28, 11925, 62, 9888, 11, 281, 271, 28, 272, 271, 8, 198, 198, 489, 83, 13, 29487, 7, 6335, 11, 1182, 16, 11, 6167, 2625, 11627, 536, 26597, 513, 35, 4943, 198, 489, 83, 13, 29487, 7, 6335, 11, 1182, 17, 11, 6167, 2625, 2164, 69, 7, 42, 62, 39816, 42501, 9493, 10992, 2625, 438, 4943, 198, 198, 489, 83, 13, 87, 18242, 7203, 81, 287, 685, 76, 60, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 71, 287, 685, 76, 60, 4943, 198, 489, 83, 13, 1455, 437, 3419, 198, 489, 83, 13, 33464, 62, 39786, 3419, 198, 489, 83, 13, 12860, 3419, 198 ]
2.08658
462
from os.path import join, isdir from os import makedirs from matplotlib.backends.backend_pdf import PdfPages from source.model.structure_model import StraightBeam from source.auxiliary.validate_and_assign_defaults import validate_and_assign_defaults from source.auxiliary.other_utilities import get_adjusted_path_string from source.auxiliary import global_definitions as GD class AnalysisController(object): """ Dervied class for the dynamic analysis of a given structure model """ POSSIBLE_ANALYSES = ['eigenvalue_analysis', 'dynamic_analysis', 'static_analysis'] # using these as default or fallback settings DEFAULT_SETTINGS = { "global_output_folder": "some/path", "model_properties": {}, "report_options": {}, "runs": [], "skin_model_parameters": {}}
[ 6738, 28686, 13, 6978, 1330, 4654, 11, 318, 15908, 198, 6738, 28686, 1330, 285, 4335, 17062, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 12315, 1330, 350, 7568, 47798, 198, 198, 6738, 2723, 13, 19849, 13, 301, 5620, 62, 19849, 1330, 27680, 3856, 321, 198, 6738, 2723, 13, 14644, 28129, 13, 12102, 378, 62, 392, 62, 562, 570, 62, 12286, 82, 1330, 26571, 62, 392, 62, 562, 570, 62, 12286, 82, 198, 6738, 2723, 13, 14644, 28129, 13, 847, 62, 315, 2410, 1330, 651, 62, 29117, 62, 6978, 62, 8841, 198, 6738, 2723, 13, 14644, 28129, 1330, 3298, 62, 4299, 50101, 355, 27044, 628, 198, 4871, 14691, 22130, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 360, 712, 798, 1398, 329, 262, 8925, 3781, 286, 257, 1813, 4645, 2746, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 350, 18420, 34563, 62, 1565, 1847, 16309, 1546, 796, 37250, 68, 9324, 8367, 62, 20930, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 67, 28995, 62, 20930, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12708, 62, 20930, 20520, 628, 220, 220, 220, 1303, 1262, 777, 355, 4277, 393, 2121, 1891, 6460, 198, 220, 220, 220, 5550, 38865, 62, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20541, 62, 22915, 62, 43551, 1298, 366, 11246, 14, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19849, 62, 48310, 1298, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13116, 62, 25811, 1298, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 366, 48381, 1298, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20407, 62, 19849, 62, 17143, 7307, 1298, 1391, 11709, 198 ]
2.615385
338
import trodesnetwork.socket as socket import trodesnetwork.trodes as trodes import threading ''' Use this class to subscribe to analog sources Requires input of a channel map object. The channel map is just a JSON-like dictionary of the XML HardwareConfiguration node in the `.trodesconfig` file. Requires a server_address to connect to the server. It can be used like this: subscriber = trodes.DigitalClient( server_address=self.network_address, channel_map=config.channel_map, channel_name='ECU_Din8') ''' ''' Subscriber wraps subscription in a thread and callback Callback can be used to call a Qt signal '''
[ 11748, 4161, 8906, 27349, 13, 44971, 355, 17802, 198, 11748, 4161, 8906, 27349, 13, 23528, 8906, 355, 4161, 8906, 198, 198, 11748, 4704, 278, 198, 198, 7061, 6, 198, 11041, 428, 1398, 284, 12383, 284, 15075, 4237, 198, 198, 39618, 5128, 286, 257, 6518, 3975, 2134, 13, 383, 6518, 3975, 318, 655, 198, 64, 19449, 12, 2339, 22155, 286, 262, 23735, 28715, 38149, 10139, 198, 259, 262, 4600, 13, 23528, 8906, 11250, 63, 2393, 13, 198, 198, 39618, 257, 4382, 62, 21975, 284, 2018, 284, 262, 4382, 13, 198, 198, 1026, 460, 307, 973, 588, 428, 25, 628, 220, 220, 220, 32944, 796, 4161, 8906, 13, 27640, 11792, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 62, 21975, 28, 944, 13, 27349, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6518, 62, 8899, 28, 11250, 13, 17620, 62, 8899, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6518, 62, 3672, 11639, 2943, 52, 62, 35, 259, 23, 11537, 198, 198, 7061, 6, 198, 198, 7061, 6, 198, 7004, 1416, 24735, 27521, 14569, 287, 257, 4704, 290, 23838, 198, 198, 47258, 460, 307, 973, 284, 869, 257, 33734, 6737, 198, 7061, 6 ]
3.28934
197
class MockRequest(object): ''' This is a mocked Request object containing only an url, as this is the only attribute accessed during the tests. There is a default value for it, but it can also be passed. ''' class MockSolrResponse(object): ''' This is a mocked Response object (can be used to replace a response from any call to "requests.get" or "request.put" or "request.delete", ...). It contains a request, a status code and some JSON content. For all of these, there is default values, but they can also be passed. Some standard cases are available, e.g. or "handle not found", which has a specific combination of HTTP status code, handle response code and content. '''
[ 198, 4871, 44123, 18453, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 770, 318, 257, 29180, 19390, 2134, 7268, 691, 281, 19016, 11, 198, 220, 220, 220, 355, 428, 318, 262, 691, 11688, 17535, 1141, 262, 5254, 13, 198, 220, 220, 220, 1318, 318, 257, 4277, 1988, 329, 340, 11, 475, 340, 460, 635, 307, 3804, 13, 198, 220, 220, 220, 705, 7061, 198, 198, 4871, 44123, 36949, 81, 31077, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 770, 318, 257, 29180, 18261, 2134, 357, 5171, 307, 973, 284, 6330, 198, 220, 220, 220, 257, 2882, 422, 597, 869, 284, 366, 8897, 3558, 13, 1136, 1, 393, 198, 220, 220, 220, 366, 25927, 13, 1996, 1, 393, 366, 25927, 13, 33678, 1600, 2644, 737, 628, 220, 220, 220, 632, 4909, 257, 2581, 11, 257, 3722, 2438, 290, 617, 19449, 2695, 13, 198, 220, 220, 220, 1114, 477, 286, 777, 11, 612, 318, 4277, 3815, 11, 475, 484, 460, 635, 198, 220, 220, 220, 307, 3804, 13, 628, 220, 220, 220, 2773, 3210, 2663, 389, 1695, 11, 304, 13, 70, 13, 393, 366, 28144, 407, 1043, 1600, 198, 220, 220, 220, 543, 468, 257, 2176, 6087, 286, 14626, 3722, 2438, 11, 5412, 198, 220, 220, 220, 2882, 2438, 290, 2695, 13, 198, 220, 220, 220, 705, 7061, 198 ]
3.273128
227
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """ A pass implementing the legacy swapper. Based on Sergey Bravyi's algorithm. """ import sys import numpy as np from qiskit.transpiler.basepasses import TransformationPass from qiskit.dagcircuit import DAGCircuit from qiskit.transpiler.exceptions import TranspilerError from qiskit.circuit import QuantumRegister from qiskit.extensions.standard import SwapGate class LegacySwap(TransformationPass): """ Maps a DAGCircuit onto a `coupling_map` adding swap gates. """ def __init__(self, coupling_map, initial_layout=None, trials=20, seed=None): """ Maps a DAGCircuit onto a `coupling_map` using swap gates. Args: coupling_map (CouplingMap): Directed graph represented a coupling map. initial_layout (Layout): initial layout of qubits in mapping trials (int): the number of attempts the randomized algorithm makes. seed (int): initial seed. """ super().__init__() self.coupling_map = coupling_map self.initial_layout = initial_layout self.trials = trials self.seed = seed def run(self, dag): """Map a DAGCircuit onto a CouplingGraph using swap gates. Args: dag (DAGCircuit): input DAG circuit Returns: DAGCircuit: object containing a circuit equivalent to circuit_graph that respects couplings in coupling_map, and a layout dict mapping qubits of circuit_graph into qubits of coupling_map. The layout may differ from the initial_layout if the first layer of gates cannot be executed on the initial_layout. Raises: TranspilerError: if there was any error during the mapping or with the parameters. """ if dag.width() > self.coupling_map.size(): raise TranspilerError("Not enough qubits in CouplingGraph") # Schedule the input circuit layerlist = list(dag.layers()) if self.initial_layout is None and self.property_set["layout"]: self.initial_layout = self.property_set["layout"] if self.initial_layout is not None: # update initial_layout from a user given dict{(regname,idx): (regname,idx)} # to an expected dict{(reg,idx): (reg,idx)} virtual_qubits = self.initial_layout.get_virtual_bits() self.initial_layout = {(v.register.name, v.index): ('q', self.initial_layout[v]) for v in virtual_qubits} device_register = QuantumRegister(self.coupling_map.size(), 'q') initial_layout = {dag.qregs[k[0]][k[1]]: device_register[v[1]] for k, v in self.initial_layout.items()} # Check the input layout circ_qubits = dag.qubits() coup_qubits = [(QuantumRegister(self.coupling_map.size(), 'q'), wire) for wire in self.coupling_map.physical_qubits] qubit_subset = [] for k, v in initial_layout.items(): qubit_subset.append(v) if k not in circ_qubits: raise TranspilerError("initial_layout qubit %s[%d] not in input " "DAGCircuit" % (k[0].name, k[1])) if v not in coup_qubits: raise TranspilerError("initial_layout qubit %s[%d] not in input " "CouplingGraph" % (v[0].name, v[1])) else: # Supply a default layout qubit_subset = [QuantumRegister(self.coupling_map.size(), 'q')[wire] for wire in self.coupling_map.physical_qubits] qubit_subset = qubit_subset[0:dag.width()] initial_layout = {a: b for a, b in zip(dag.qubits(), qubit_subset)} # Find swap circuit to preceed to each layer of input circuit layout = initial_layout.copy() # Construct an empty DAGCircuit with one qreg "q" # and the same set of cregs as the input circuit dagcircuit_output = DAGCircuit() dagcircuit_output.name = dag.name dagcircuit_output.add_qreg(QuantumRegister(self.coupling_map.size(), "q")) for creg in dag.cregs.values(): dagcircuit_output.add_creg(creg) # Make a trivial wire mapping between the subcircuits # returned by swap_mapper_layer_update and the circuit # we are building identity_wire_map = {} q = QuantumRegister(self.coupling_map.size(), 'q') for j in range(self.coupling_map.size()): identity_wire_map[q[j]] = q[j] for creg in dag.cregs.values(): for j in range(creg.size): identity_wire_map[creg[j]] = creg[j] first_layer = True # True until first layer is output # Iterate over layers for i, layer in enumerate(layerlist): # Attempt to find a permutation for this layer success_flag, best_circ, best_d, best_layout, trivial_flag \ = self.layer_permutation(layer["partition"], layout, qubit_subset) # If this fails, try one gate at a time in this layer if not success_flag: serial_layerlist = list(layer["graph"].serial_layers()) # Go through each gate in the layer for j, serial_layer in enumerate(serial_layerlist): success_flag, best_circ, best_d, best_layout, trivial_flag \ = self.layer_permutation(serial_layer["partition"], layout, qubit_subset) # Give up if we fail again if not success_flag: raise TranspilerError("swap_mapper failed: " + "layer %d, sublayer %d" % (i, j)) # If this layer is only single-qubit gates, # and we have yet to see multi-qubit gates, # continue to the next inner iteration if trivial_flag and first_layer: continue # Update the record of qubit positions for each inner iteration layout = best_layout # Update the QASM dagcircuit_output.compose_back( self.swap_mapper_layer_update(j, first_layer, best_layout, best_d, best_circ, serial_layerlist), identity_wire_map) # Update initial layout if first_layer: initial_layout = layout first_layer = False else: # Update the record of qubit positions for each iteration layout = best_layout # Update the QASM dagcircuit_output.compose_back( self.swap_mapper_layer_update(i, first_layer, best_layout, best_d, best_circ, layerlist), identity_wire_map) # Update initial layout if first_layer: initial_layout = layout first_layer = False # If first_layer is still set, the circuit only has single-qubit gates # so we can use the initial layout to output the entire circuit if first_layer: layout = initial_layout for i, layer in enumerate(layerlist): dagcircuit_output.compose_back(layer["graph"], layout) return dagcircuit_output def layer_permutation(self, layer_partition, layout, qubit_subset): """Find a swap circuit that implements a permutation for this layer. The goal is to swap qubits such that qubits in the same two-qubit gates are adjacent. Based on Sergey Bravyi's algorithm. The layer_partition is a list of (qu)bit lists and each qubit is a tuple (qreg, index). The layout is a dict mapping qubits in the circuit to qubits in the coupling graph and represents the current positions of the data. The qubit_subset is the subset of qubits in the coupling graph that we have chosen to map into. The coupling is a CouplingGraph. TRIALS is the number of attempts the randomized algorithm makes. Returns: success_flag, best_circ, best_d, best_layout, trivial_flag If success_flag is True, then best_circ contains a DAGCircuit with the swap circuit, best_d contains the depth of the swap circuit, and best_layout contains the new positions of the data qubits after the swap circuit has been applied. The trivial_flag is set if the layer has no multi-qubit gates. """ if self.seed is None: self.seed = np.random.randint(0, np.iinfo(np.int32).max) rng = np.random.RandomState(self.seed) rev_layout = {b: a for a, b in layout.items()} gates = [] for layer in layer_partition: if len(layer) > 2: raise TranspilerError("Layer contains >2 qubit gates") if len(layer) == 2: gates.append(tuple(layer)) # Can we already apply the gates? dist = sum( [self.coupling_map.distance(layout[g[0]].index, layout[g[1]].index) for g in gates]) if dist == len(gates): circ = DAGCircuit() circ.add_qreg(QuantumRegister(self.coupling_map.size(), "q")) return True, circ, 0, layout, bool(gates) # Begin loop over trials of randomized algorithm n = self.coupling_map.size() best_d = sys.maxsize # initialize best depth best_circ = None # initialize best swap circuit best_layout = None # initialize best final layout QR = QuantumRegister(self.coupling_map.size(), "q") for _ in range(self.trials): trial_layout = layout.copy() rev_trial_layout = rev_layout.copy() # SWAP circuit constructed this trial trial_circ = DAGCircuit() trial_circ.add_qreg(QR) # Compute Sergey's randomized distance xi = {} for i in self.coupling_map.physical_qubits: xi[(QR, i)] = {} for i in self.coupling_map.physical_qubits: i = (QR, i) for j in self.coupling_map.physical_qubits: j = (QR, j) scale = 1 + rng.normal(0, 1 / n) xi[i][j] = scale * self.coupling_map.distance(i[1], j[1]) ** 2 xi[j][i] = xi[i][j] # Loop over depths d up to a max depth of 2n+1 d = 1 # Circuit for this swap slice circ = DAGCircuit() circ.add_qreg(QR) # Identity wire-map for composing the circuits identity_wire_map = {QR[j]: QR[j] for j in range(n)} while d < 2 * n + 1: # Set of available qubits qubit_set = set(qubit_subset) # While there are still qubits available while qubit_set: # Compute the objective function min_cost = sum([xi[trial_layout[g[0]]][trial_layout[g[1]]] for g in gates]) # Try to decrease objective function progress_made = False # Loop over edges of coupling graph for e in self.coupling_map.get_edges(): e = [QR[edge] for edge in e] # Are the qubits available? if e[0] in qubit_set and e[1] in qubit_set: # Try this edge to reduce the cost new_layout = trial_layout.copy() new_layout[rev_trial_layout[e[0]]] = e[1] new_layout[rev_trial_layout[e[1]]] = e[0] rev_new_layout = rev_trial_layout.copy() rev_new_layout[e[0]] = rev_trial_layout[e[1]] rev_new_layout[e[1]] = rev_trial_layout[e[0]] # Compute the objective function new_cost = sum([xi[new_layout[g[0]]][new_layout[g[1]]] for g in gates]) # Record progress if we succeed if new_cost < min_cost: progress_made = True min_cost = new_cost opt_layout = new_layout rev_opt_layout = rev_new_layout opt_edge = e # Were there any good choices? if progress_made: qubit_set.remove(opt_edge[0]) qubit_set.remove(opt_edge[1]) trial_layout = opt_layout rev_trial_layout = rev_opt_layout circ.apply_operation_back( SwapGate(), [opt_edge[0], opt_edge[1]], []) else: break # We have either run out of qubits or failed to improve # Compute the coupling graph distance_qubits dist = sum([self.coupling_map.distance(trial_layout[g[0]].index, trial_layout[g[1]].index) for g in gates]) # If all gates can be applied now, we are finished # Otherwise we need to consider a deeper swap circuit if dist == len(gates): trial_circ.compose_back(circ, identity_wire_map) break # Increment the depth d += 1 # Either we have succeeded at some depth d < dmax or failed dist = sum([self.coupling_map.distance(trial_layout[g[0]].index, trial_layout[g[1]].index) for g in gates]) if dist == len(gates): if d < best_d: best_circ = trial_circ best_layout = trial_layout best_d = min(best_d, d) if best_circ is None: return False, None, None, None, False return True, best_circ, best_d, best_layout, False def swap_mapper_layer_update(self, i, first_layer, best_layout, best_d, best_circ, layer_list): """Update the QASM string for an iteration of swap_mapper. i = layer number first_layer = True if this is the first layer with multi-qubit gates best_layout = layout returned from swap algorithm best_d = depth returned from swap algorithm best_circ = swap circuit returned from swap algorithm layer_list = list of circuit objects for each layer Return DAGCircuit object to append to the output DAGCircuit. """ layout = best_layout dagcircuit_output = DAGCircuit() QR = QuantumRegister(self.coupling_map.size(), 'q') dagcircuit_output.add_qreg(QR) # Identity wire-map for composing the circuits identity_wire_map = {QR[j]: QR[j] for j in range(self.coupling_map.size())} # If this is the first layer with multi-qubit gates, # output all layers up to this point and ignore any # swap gates. Set the initial layout. if first_layer: # Output all layers up to this point for j in range(i + 1): dagcircuit_output.compose_back(layer_list[j]["graph"], layout) # Otherwise, we output the current layer and the associated swap gates. else: # Output any swaps if best_d > 0: dagcircuit_output.compose_back(best_circ, identity_wire_map) # Output this layer dagcircuit_output.compose_back(layer_list[i]["graph"], layout) return dagcircuit_output
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 770, 2438, 318, 636, 286, 1195, 1984, 270, 13, 198, 2, 198, 2, 357, 34, 8, 15069, 19764, 2177, 11, 13130, 13, 198, 2, 198, 2, 770, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 13, 921, 743, 198, 2, 7330, 257, 4866, 286, 428, 5964, 287, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 198, 2, 286, 428, 2723, 5509, 393, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 198, 2, 198, 2, 4377, 19008, 393, 27255, 2499, 286, 428, 2438, 1276, 12377, 428, 198, 2, 6634, 4003, 11, 290, 9518, 3696, 761, 284, 3283, 257, 4003, 12739, 198, 2, 326, 484, 423, 587, 14294, 422, 262, 47324, 13, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 198, 37811, 198, 32, 1208, 15427, 262, 10655, 1509, 11463, 13, 198, 198, 15001, 319, 36106, 32780, 48111, 338, 11862, 13, 198, 37811, 198, 11748, 25064, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 10662, 1984, 270, 13, 7645, 79, 5329, 13, 12093, 538, 13978, 1330, 49127, 14478, 198, 6738, 10662, 1984, 270, 13, 67, 363, 21170, 5013, 1330, 360, 4760, 31560, 5013, 198, 6738, 10662, 1984, 270, 13, 7645, 79, 5329, 13, 1069, 11755, 1330, 3602, 79, 5329, 12331, 198, 6738, 10662, 1984, 270, 13, 21170, 5013, 1330, 29082, 38804, 198, 198, 6738, 10662, 1984, 270, 13, 2302, 5736, 13, 20307, 1330, 48408, 22628, 628, 198, 4871, 14843, 10462, 499, 7, 8291, 1161, 14478, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20347, 257, 360, 4760, 31560, 5013, 4291, 257, 4600, 66, 280, 11347, 62, 8899, 63, 4375, 16075, 17435, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40204, 62, 8899, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 39786, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9867, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20347, 257, 360, 4760, 31560, 5013, 4291, 257, 4600, 66, 280, 11347, 62, 8899, 63, 1262, 16075, 17435, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40204, 62, 8899, 357, 34, 280, 11347, 13912, 2599, 4128, 276, 4823, 7997, 257, 40204, 3975, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 39786, 357, 32517, 2599, 4238, 12461, 286, 627, 9895, 287, 16855, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9867, 357, 600, 2599, 262, 1271, 286, 6370, 262, 23925, 11862, 1838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 357, 600, 2599, 4238, 9403, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 280, 11347, 62, 8899, 796, 40204, 62, 8899, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36733, 62, 39786, 796, 4238, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28461, 874, 796, 9867, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28826, 796, 9403, 628, 220, 220, 220, 825, 1057, 7, 944, 11, 48924, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13912, 257, 360, 4760, 31560, 5013, 4291, 257, 15062, 11347, 37065, 1262, 16075, 17435, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 357, 35, 4760, 31560, 5013, 2599, 5128, 360, 4760, 10349, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 4760, 31560, 5013, 25, 2134, 7268, 257, 10349, 7548, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10349, 62, 34960, 326, 19410, 2284, 47093, 287, 40204, 62, 8899, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 12461, 8633, 16855, 627, 9895, 286, 10349, 62, 34960, 656, 627, 9895, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 40204, 62, 8899, 13, 383, 12461, 743, 13238, 422, 262, 4238, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 262, 717, 7679, 286, 17435, 2314, 307, 10945, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 39786, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3602, 79, 5329, 12331, 25, 611, 612, 373, 597, 4049, 1141, 262, 16855, 393, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 48924, 13, 10394, 3419, 1875, 2116, 13, 66, 280, 11347, 62, 8899, 13, 7857, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3602, 79, 5329, 12331, 7203, 3673, 1576, 627, 9895, 287, 15062, 11347, 37065, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19281, 262, 5128, 10349, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 4868, 796, 1351, 7, 67, 363, 13, 75, 6962, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 36733, 62, 39786, 318, 6045, 290, 2116, 13, 26745, 62, 2617, 14692, 39786, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36733, 62, 39786, 796, 2116, 13, 26745, 62, 2617, 14692, 39786, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 36733, 62, 39786, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 4238, 62, 39786, 422, 257, 2836, 1813, 8633, 90, 7, 2301, 3672, 11, 312, 87, 2599, 357, 2301, 3672, 11, 312, 87, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 281, 2938, 8633, 90, 7, 2301, 11, 312, 87, 2599, 357, 2301, 11, 312, 87, 38165, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7166, 62, 421, 9895, 796, 2116, 13, 36733, 62, 39786, 13, 1136, 62, 32844, 62, 9895, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36733, 62, 39786, 796, 1391, 7, 85, 13, 30238, 13, 3672, 11, 410, 13, 9630, 2599, 19203, 80, 3256, 2116, 13, 36733, 62, 39786, 58, 85, 12962, 329, 410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 7166, 62, 421, 9895, 92, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3335, 62, 30238, 796, 29082, 38804, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 22784, 705, 80, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 39786, 796, 1391, 67, 363, 13, 80, 2301, 82, 58, 74, 58, 15, 60, 7131, 74, 58, 16, 60, 5974, 3335, 62, 30238, 58, 85, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 2116, 13, 36733, 62, 39786, 13, 23814, 3419, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 262, 5128, 12461, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2498, 62, 421, 9895, 796, 48924, 13, 421, 9895, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12092, 62, 421, 9895, 796, 47527, 24915, 388, 38804, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 22784, 705, 80, 33809, 6503, 8, 329, 6503, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 280, 11347, 62, 8899, 13, 42854, 62, 421, 9895, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 2545, 62, 7266, 2617, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 4238, 62, 39786, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 2545, 62, 7266, 2617, 13, 33295, 7, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 407, 287, 2498, 62, 421, 9895, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3602, 79, 5329, 12331, 7203, 36733, 62, 39786, 627, 2545, 4064, 82, 58, 4, 67, 60, 407, 287, 5128, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35, 4760, 31560, 5013, 1, 4064, 357, 74, 58, 15, 4083, 3672, 11, 479, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 407, 287, 12092, 62, 421, 9895, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3602, 79, 5329, 12331, 7203, 36733, 62, 39786, 627, 2545, 4064, 82, 58, 4, 67, 60, 407, 287, 5128, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 280, 11347, 37065, 1, 4064, 357, 85, 58, 15, 4083, 3672, 11, 410, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22663, 257, 4277, 12461, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 2545, 62, 7266, 2617, 796, 685, 24915, 388, 38804, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 22784, 705, 80, 11537, 58, 21809, 60, 329, 6503, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 280, 11347, 62, 8899, 13, 42854, 62, 421, 9895, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 2545, 62, 7266, 2617, 796, 627, 2545, 62, 7266, 2617, 58, 15, 25, 67, 363, 13, 10394, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 39786, 796, 1391, 64, 25, 275, 329, 257, 11, 275, 287, 19974, 7, 67, 363, 13, 421, 9895, 22784, 627, 2545, 62, 7266, 2617, 38165, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 16075, 10349, 284, 662, 2707, 284, 1123, 7679, 286, 5128, 10349, 198, 220, 220, 220, 220, 220, 220, 220, 12461, 796, 4238, 62, 39786, 13, 30073, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 28407, 281, 6565, 360, 4760, 31560, 5013, 351, 530, 10662, 2301, 366, 80, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 262, 976, 900, 286, 1126, 14542, 355, 262, 5128, 10349, 198, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 796, 360, 4760, 31560, 5013, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 3672, 796, 48924, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 2860, 62, 80, 2301, 7, 24915, 388, 38804, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 22784, 366, 80, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1126, 70, 287, 48924, 13, 66, 2301, 82, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 2860, 62, 66, 2301, 7, 66, 2301, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 257, 20861, 6503, 16855, 1022, 262, 850, 21170, 15379, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4504, 416, 16075, 62, 76, 11463, 62, 29289, 62, 19119, 290, 262, 10349, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 389, 2615, 198, 220, 220, 220, 220, 220, 220, 220, 5369, 62, 21809, 62, 8899, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 29082, 38804, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 22784, 705, 80, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5369, 62, 21809, 62, 8899, 58, 80, 58, 73, 11907, 796, 10662, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1126, 70, 287, 48924, 13, 66, 2301, 82, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 66, 2301, 13, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5369, 62, 21809, 62, 8899, 58, 66, 2301, 58, 73, 11907, 796, 1126, 70, 58, 73, 60, 628, 220, 220, 220, 220, 220, 220, 220, 717, 62, 29289, 796, 6407, 220, 1303, 6407, 1566, 717, 7679, 318, 5072, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 40806, 378, 625, 11685, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 7679, 287, 27056, 378, 7, 29289, 4868, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25770, 284, 1064, 257, 9943, 7094, 329, 428, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 62, 32109, 11, 1266, 62, 21170, 11, 1266, 62, 67, 11, 1266, 62, 39786, 11, 20861, 62, 32109, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2116, 13, 29289, 62, 16321, 7094, 7, 29289, 14692, 3911, 653, 33116, 12461, 11, 627, 2545, 62, 7266, 2617, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 428, 10143, 11, 1949, 530, 8946, 379, 257, 640, 287, 428, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1943, 62, 32109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 62, 29289, 4868, 796, 1351, 7, 29289, 14692, 34960, 1, 4083, 46911, 62, 75, 6962, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1514, 832, 1123, 8946, 287, 262, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 11, 11389, 62, 29289, 287, 27056, 378, 7, 46911, 62, 29289, 4868, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 62, 32109, 11, 1266, 62, 21170, 11, 1266, 62, 67, 11, 1266, 62, 39786, 11, 20861, 62, 32109, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2116, 13, 29289, 62, 16321, 7094, 7, 46911, 62, 29289, 14692, 3911, 653, 33116, 12461, 11, 627, 2545, 62, 7266, 2617, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13786, 510, 611, 356, 2038, 757, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1943, 62, 32109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3602, 79, 5329, 12331, 7203, 2032, 499, 62, 76, 11463, 4054, 25, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29289, 4064, 67, 11, 850, 29289, 4064, 67, 1, 4064, 357, 72, 11, 474, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 428, 7679, 318, 691, 2060, 12, 421, 2545, 17435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 356, 423, 1865, 284, 766, 5021, 12, 421, 2545, 17435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2555, 284, 262, 1306, 8434, 24415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20861, 62, 32109, 290, 717, 62, 29289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 262, 1700, 286, 627, 2545, 6116, 329, 1123, 8434, 24415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12461, 796, 1266, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 262, 1195, 1921, 44, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 785, 3455, 62, 1891, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2032, 499, 62, 76, 11463, 62, 29289, 62, 19119, 7, 73, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 39786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 67, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 21170, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 62, 29289, 4868, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5369, 62, 21809, 62, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 4238, 12461, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 717, 62, 29289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 39786, 796, 12461, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 29289, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 262, 1700, 286, 627, 2545, 6116, 329, 1123, 24415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12461, 796, 1266, 62, 39786, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 262, 1195, 1921, 44, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 785, 3455, 62, 1891, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2032, 499, 62, 76, 11463, 62, 29289, 62, 19119, 7, 72, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 39786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 67, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 21170, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 4868, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5369, 62, 21809, 62, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 4238, 12461, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 717, 62, 29289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 39786, 796, 12461, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 29289, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 717, 62, 29289, 318, 991, 900, 11, 262, 10349, 691, 468, 2060, 12, 421, 2545, 17435, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 523, 356, 460, 779, 262, 4238, 12461, 284, 5072, 262, 2104, 10349, 198, 220, 220, 220, 220, 220, 220, 220, 611, 717, 62, 29289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12461, 796, 4238, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 7679, 287, 27056, 378, 7, 29289, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 785, 3455, 62, 1891, 7, 29289, 14692, 34960, 33116, 12461, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 48924, 21170, 5013, 62, 22915, 628, 220, 220, 220, 825, 7679, 62, 16321, 7094, 7, 944, 11, 7679, 62, 3911, 653, 11, 12461, 11, 627, 2545, 62, 7266, 2617, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16742, 257, 16075, 10349, 326, 23986, 257, 9943, 7094, 329, 428, 7679, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 3061, 318, 284, 16075, 627, 9895, 884, 326, 627, 9895, 287, 262, 976, 734, 12, 421, 2545, 17435, 198, 220, 220, 220, 220, 220, 220, 220, 389, 15909, 13, 628, 220, 220, 220, 220, 220, 220, 220, 13403, 319, 36106, 32780, 48111, 338, 11862, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 7679, 62, 3911, 653, 318, 257, 1351, 286, 357, 421, 8, 2545, 8341, 290, 1123, 627, 2545, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 46545, 357, 80, 2301, 11, 6376, 737, 198, 220, 220, 220, 220, 220, 220, 220, 383, 12461, 318, 257, 8633, 16855, 627, 9895, 287, 262, 10349, 284, 627, 9895, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 40204, 4823, 290, 6870, 262, 1459, 6116, 286, 262, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 627, 2545, 62, 7266, 2617, 318, 262, 24637, 286, 627, 9895, 287, 262, 40204, 4823, 326, 198, 220, 220, 220, 220, 220, 220, 220, 356, 423, 7147, 284, 3975, 656, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 40204, 318, 257, 15062, 11347, 37065, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37679, 23333, 318, 262, 1271, 286, 6370, 262, 23925, 11862, 1838, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 1943, 62, 32109, 11, 1266, 62, 21170, 11, 1266, 62, 67, 11, 1266, 62, 39786, 11, 20861, 62, 32109, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 1943, 62, 32109, 318, 6407, 11, 788, 1266, 62, 21170, 4909, 257, 360, 4760, 31560, 5013, 351, 198, 220, 220, 220, 220, 220, 220, 220, 262, 16075, 10349, 11, 1266, 62, 67, 4909, 262, 6795, 286, 262, 16075, 10349, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 39786, 4909, 262, 649, 6116, 286, 262, 1366, 627, 9895, 706, 262, 198, 220, 220, 220, 220, 220, 220, 220, 16075, 10349, 468, 587, 5625, 13, 383, 20861, 62, 32109, 318, 900, 611, 262, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 468, 645, 5021, 12, 421, 2545, 17435, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 28826, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28826, 796, 45941, 13, 25120, 13, 25192, 600, 7, 15, 11, 45941, 13, 72, 10951, 7, 37659, 13, 600, 2624, 737, 9806, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 782, 796, 45941, 13, 25120, 13, 29531, 9012, 7, 944, 13, 28826, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2710, 62, 39786, 796, 1391, 65, 25, 257, 329, 257, 11, 275, 287, 12461, 13, 23814, 3419, 92, 198, 220, 220, 220, 220, 220, 220, 220, 17435, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7679, 287, 7679, 62, 3911, 653, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 29289, 8, 1875, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3602, 79, 5329, 12331, 7203, 49925, 4909, 1875, 17, 627, 2545, 17435, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 29289, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17435, 13, 33295, 7, 83, 29291, 7, 29289, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1680, 356, 1541, 4174, 262, 17435, 30, 198, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 2160, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 944, 13, 66, 280, 11347, 62, 8899, 13, 30246, 7, 39786, 58, 70, 58, 15, 60, 4083, 9630, 11, 12461, 58, 70, 58, 16, 60, 4083, 9630, 8, 329, 308, 287, 17435, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1233, 6624, 18896, 7, 70, 689, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2498, 796, 360, 4760, 31560, 5013, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2498, 13, 2860, 62, 80, 2301, 7, 24915, 388, 38804, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 22784, 366, 80, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 11, 2498, 11, 657, 11, 12461, 11, 20512, 7, 70, 689, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16623, 9052, 625, 9867, 286, 23925, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 2116, 13, 66, 280, 11347, 62, 8899, 13, 7857, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 67, 796, 25064, 13, 9806, 7857, 220, 1303, 41216, 1266, 6795, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 21170, 796, 6045, 220, 1303, 41216, 1266, 16075, 10349, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 39786, 796, 6045, 220, 1303, 41216, 1266, 2457, 12461, 198, 220, 220, 220, 220, 220, 220, 220, 42137, 796, 29082, 38804, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 22784, 366, 80, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 944, 13, 28461, 874, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4473, 62, 39786, 796, 12461, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2710, 62, 45994, 62, 39786, 796, 2710, 62, 39786, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12672, 2969, 10349, 12006, 428, 4473, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4473, 62, 21170, 796, 360, 4760, 31560, 5013, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4473, 62, 21170, 13, 2860, 62, 80, 2301, 7, 48, 49, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 36106, 338, 23925, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2116, 13, 66, 280, 11347, 62, 8899, 13, 42854, 62, 421, 9895, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 58, 7, 48, 49, 11, 1312, 15437, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2116, 13, 66, 280, 11347, 62, 8899, 13, 42854, 62, 421, 9895, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 357, 48, 49, 11, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2116, 13, 66, 280, 11347, 62, 8899, 13, 42854, 62, 421, 9895, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 357, 48, 49, 11, 474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 796, 352, 1343, 374, 782, 13, 11265, 7, 15, 11, 352, 1220, 299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 58, 72, 7131, 73, 60, 796, 5046, 1635, 2116, 13, 66, 280, 11347, 62, 8899, 13, 30246, 7, 72, 58, 16, 4357, 474, 58, 16, 12962, 12429, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 58, 73, 7131, 72, 60, 796, 2124, 72, 58, 72, 7131, 73, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 625, 21593, 288, 510, 284, 257, 3509, 6795, 286, 362, 77, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13588, 329, 428, 16075, 16416, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2498, 796, 360, 4760, 31560, 5013, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2498, 13, 2860, 62, 80, 2301, 7, 48, 49, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27207, 6503, 12, 8899, 329, 49760, 262, 24907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5369, 62, 21809, 62, 8899, 796, 1391, 48, 49, 58, 73, 5974, 42137, 58, 73, 60, 329, 474, 287, 2837, 7, 77, 38165, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 288, 1279, 362, 1635, 299, 1343, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 286, 1695, 627, 9895, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 2545, 62, 2617, 796, 900, 7, 421, 2545, 62, 7266, 2617, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2893, 612, 389, 991, 627, 9895, 1695, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 627, 2545, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 262, 9432, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 15805, 796, 2160, 26933, 29992, 58, 45994, 62, 39786, 58, 70, 58, 15, 11907, 7131, 45994, 62, 39786, 58, 70, 58, 16, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 287, 17435, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 284, 10070, 9432, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 9727, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 625, 13015, 286, 40204, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 304, 287, 2116, 13, 66, 280, 11347, 62, 8899, 13, 1136, 62, 276, 3212, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 796, 685, 48, 49, 58, 14907, 60, 329, 5743, 287, 304, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4231, 262, 627, 9895, 1695, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 304, 58, 15, 60, 287, 627, 2545, 62, 2617, 290, 304, 58, 16, 60, 287, 627, 2545, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 428, 5743, 284, 4646, 262, 1575, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 39786, 796, 4473, 62, 39786, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 39786, 58, 18218, 62, 45994, 62, 39786, 58, 68, 58, 15, 11907, 60, 796, 304, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 39786, 58, 18218, 62, 45994, 62, 39786, 58, 68, 58, 16, 11907, 60, 796, 304, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2710, 62, 3605, 62, 39786, 796, 2710, 62, 45994, 62, 39786, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2710, 62, 3605, 62, 39786, 58, 68, 58, 15, 11907, 796, 2710, 62, 45994, 62, 39786, 58, 68, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2710, 62, 3605, 62, 39786, 58, 68, 58, 16, 11907, 796, 2710, 62, 45994, 62, 39786, 58, 68, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 262, 9432, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 15805, 796, 2160, 26933, 29992, 58, 3605, 62, 39786, 58, 70, 58, 15, 11907, 7131, 3605, 62, 39786, 58, 70, 58, 16, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 287, 17435, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13266, 4371, 611, 356, 6758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 15805, 1279, 949, 62, 15805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 9727, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 15805, 796, 649, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 62, 39786, 796, 649, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2710, 62, 8738, 62, 39786, 796, 2710, 62, 3605, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 62, 14907, 796, 304, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15176, 612, 597, 922, 7747, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4371, 62, 9727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 2545, 62, 2617, 13, 28956, 7, 8738, 62, 14907, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 2545, 62, 2617, 13, 28956, 7, 8738, 62, 14907, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4473, 62, 39786, 796, 2172, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2710, 62, 45994, 62, 39786, 796, 2710, 62, 8738, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2498, 13, 39014, 62, 27184, 62, 1891, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48408, 22628, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 8738, 62, 14907, 58, 15, 4357, 2172, 62, 14907, 58, 16, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 423, 2035, 1057, 503, 286, 627, 9895, 393, 4054, 284, 2987, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 262, 40204, 4823, 5253, 62, 421, 9895, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 2160, 26933, 944, 13, 66, 280, 11347, 62, 8899, 13, 30246, 7, 45994, 62, 39786, 58, 70, 58, 15, 60, 4083, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4473, 62, 39786, 58, 70, 58, 16, 60, 4083, 9630, 8, 329, 308, 287, 17435, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 477, 17435, 460, 307, 5625, 783, 11, 356, 389, 5201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15323, 356, 761, 284, 2074, 257, 9211, 16075, 10349, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1233, 6624, 18896, 7, 70, 689, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4473, 62, 21170, 13, 785, 3455, 62, 1891, 7, 21170, 11, 5369, 62, 21809, 62, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10791, 434, 262, 6795, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15467, 356, 423, 14131, 379, 617, 6795, 288, 1279, 288, 9806, 393, 4054, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 2160, 26933, 944, 13, 66, 280, 11347, 62, 8899, 13, 30246, 7, 45994, 62, 39786, 58, 70, 58, 15, 60, 4083, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4473, 62, 39786, 58, 70, 58, 16, 60, 4083, 9630, 8, 329, 308, 287, 17435, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1233, 6624, 18896, 7, 70, 689, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 1279, 1266, 62, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 21170, 796, 4473, 62, 21170, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 39786, 796, 4473, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 67, 796, 949, 7, 13466, 62, 67, 11, 288, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1266, 62, 21170, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 11, 6045, 11, 6045, 11, 6045, 11, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 11, 1266, 62, 21170, 11, 1266, 62, 67, 11, 1266, 62, 39786, 11, 10352, 628, 220, 220, 220, 825, 16075, 62, 76, 11463, 62, 29289, 62, 19119, 7, 944, 11, 1312, 11, 717, 62, 29289, 11, 1266, 62, 39786, 11, 1266, 62, 67, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 21170, 11, 7679, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 1195, 1921, 44, 4731, 329, 281, 24415, 286, 16075, 62, 76, 11463, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 7679, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 717, 62, 29289, 796, 6407, 611, 428, 318, 262, 717, 7679, 351, 5021, 12, 421, 2545, 17435, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 39786, 796, 12461, 4504, 422, 16075, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 67, 796, 6795, 4504, 422, 16075, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 21170, 796, 16075, 10349, 4504, 422, 16075, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 4868, 796, 1351, 286, 10349, 5563, 329, 1123, 7679, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 360, 4760, 31560, 5013, 2134, 284, 24443, 284, 262, 5072, 360, 4760, 31560, 5013, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12461, 796, 1266, 62, 39786, 198, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 796, 360, 4760, 31560, 5013, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 42137, 796, 29082, 38804, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 22784, 705, 80, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 2860, 62, 80, 2301, 7, 48, 49, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27207, 6503, 12, 8899, 329, 49760, 262, 24907, 198, 220, 220, 220, 220, 220, 220, 220, 5369, 62, 21809, 62, 8899, 796, 1391, 48, 49, 58, 73, 5974, 42137, 58, 73, 60, 329, 474, 287, 2837, 7, 944, 13, 66, 280, 11347, 62, 8899, 13, 7857, 28955, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 428, 318, 262, 717, 7679, 351, 5021, 12, 421, 2545, 17435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5072, 477, 11685, 510, 284, 428, 966, 290, 8856, 597, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16075, 17435, 13, 5345, 262, 4238, 12461, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 717, 62, 29289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25235, 477, 11685, 510, 284, 428, 966, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 72, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 785, 3455, 62, 1891, 7, 29289, 62, 4868, 58, 73, 7131, 1, 34960, 33116, 12461, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15323, 11, 356, 5072, 262, 1459, 7679, 290, 262, 3917, 16075, 17435, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25235, 597, 43997, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1266, 62, 67, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 785, 3455, 62, 1891, 7, 13466, 62, 21170, 11, 5369, 62, 21809, 62, 8899, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25235, 428, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 21170, 5013, 62, 22915, 13, 785, 3455, 62, 1891, 7, 29289, 62, 4868, 58, 72, 7131, 1, 34960, 33116, 12461, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48924, 21170, 5013, 62, 22915, 198 ]
1.985046
8,760
""" Module: unicon.plugins.ironware.settings Author: James Di Trapani <[email protected]> - https://github.com/jamesditrapani Description: Define/Override Generic Settings specific to the Ironware NOS """ from unicon.plugins.generic.settings import GenericSettings __author__ = "James Di Trapani <[email protected]>"
[ 37811, 198, 26796, 25, 198, 220, 220, 220, 555, 4749, 13, 37390, 13, 1934, 1574, 13, 33692, 198, 198, 13838, 25, 198, 220, 220, 220, 3700, 6031, 21914, 3216, 1279, 73, 1047, 31, 5266, 2416, 3216, 13, 785, 13, 559, 29, 532, 3740, 1378, 12567, 13, 785, 14, 73, 1047, 5266, 2416, 3216, 198, 198, 11828, 25, 198, 220, 220, 220, 2896, 500, 14, 37961, 42044, 16163, 2176, 284, 262, 7931, 1574, 399, 2640, 198, 37811, 198, 198, 6738, 555, 4749, 13, 37390, 13, 41357, 13, 33692, 1330, 42044, 26232, 198, 198, 834, 9800, 834, 796, 366, 14731, 6031, 21914, 3216, 1279, 73, 1047, 31, 5266, 2416, 3216, 13, 785, 13, 559, 24618, 628 ]
3.017544
114
#!/usr/bin/python #import sys # sys.path.append('/home/ruben/leaf/pycarwings2/pycarwings2') import pycarwings2 import time from ConfigParser import SafeConfigParser import logging import sys import pprint logging.basicConfig(stream=sys.stdout, level=logging.ERROR) parser = SafeConfigParser() candidates = ['config.ini', 'my_config.ini'] found = parser.read(candidates) username = parser.get('get-leaf-info', 'username') password = parser.get('get-leaf-info', 'password') logging.debug("login = %s , password = %s" % (username, password)) print "Prepare Session" s = pycarwings2.Session(username, password, "NE") print "Login..." l = s.get_leaf() print "request_location" result_key = l.request_location() while True: location_status = l.get_status_from_location(result_key) if location_status is None: print "Waiting for response (sleep 10)" time.sleep(10) else: lat = location_status.latitude lon = location_status.longitude print("lat: {} long: {}".format(lat, lon)) # OpenStreetMap url, ctrl click in terminal to open browser, # for example, my parking lot ;) # http://www.openstreetmap.org/search?query=52.37309+4.89217#map=19/52.37310/4.89220 z = 19 # zoom level, lower is bigger area print("http://www.openstreetmap.org/search?query={}%20{}#map={}/{}/{}".format(lat,lon,z,lat,lon)) break
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 11748, 25064, 198, 2, 25064, 13, 6978, 13, 33295, 10786, 14, 11195, 14, 25089, 268, 14, 33201, 14, 9078, 7718, 48819, 17, 14, 9078, 7718, 48819, 17, 11537, 198, 198, 11748, 12972, 7718, 48819, 17, 198, 11748, 640, 198, 6738, 17056, 46677, 1330, 19978, 16934, 46677, 198, 11748, 18931, 198, 11748, 25064, 198, 11748, 279, 4798, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 5532, 28, 17597, 13, 19282, 448, 11, 1241, 28, 6404, 2667, 13, 24908, 8, 628, 198, 48610, 796, 19978, 16934, 46677, 3419, 198, 46188, 37051, 796, 37250, 11250, 13, 5362, 3256, 705, 1820, 62, 11250, 13, 5362, 20520, 198, 9275, 796, 30751, 13, 961, 7, 46188, 37051, 8, 198, 198, 29460, 796, 30751, 13, 1136, 10786, 1136, 12, 33201, 12, 10951, 3256, 705, 29460, 11537, 198, 28712, 796, 30751, 13, 1136, 10786, 1136, 12, 33201, 12, 10951, 3256, 705, 28712, 11537, 198, 198, 6404, 2667, 13, 24442, 7203, 38235, 796, 4064, 82, 837, 9206, 796, 4064, 82, 1, 4064, 357, 29460, 11, 9206, 4008, 198, 198, 4798, 366, 37534, 533, 23575, 1, 198, 82, 796, 12972, 7718, 48819, 17, 13, 36044, 7, 29460, 11, 9206, 11, 366, 12161, 4943, 198, 4798, 366, 47790, 9313, 198, 75, 796, 264, 13, 1136, 62, 33201, 3419, 198, 198, 4798, 366, 25927, 62, 24886, 1, 198, 198, 20274, 62, 2539, 796, 300, 13, 25927, 62, 24886, 3419, 198, 198, 4514, 6407, 25, 198, 220, 4067, 62, 13376, 796, 300, 13, 1136, 62, 13376, 62, 6738, 62, 24886, 7, 20274, 62, 2539, 8, 198, 220, 611, 4067, 62, 13376, 318, 6045, 25, 198, 197, 220, 3601, 366, 33484, 1780, 329, 2882, 357, 42832, 838, 16725, 198, 220, 220, 220, 640, 13, 42832, 7, 940, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 3042, 796, 4067, 62, 13376, 13, 15460, 3984, 198, 220, 220, 220, 300, 261, 796, 4067, 62, 13376, 13, 6511, 3984, 198, 220, 220, 220, 3601, 7203, 15460, 25, 23884, 890, 25, 23884, 1911, 18982, 7, 15460, 11, 300, 261, 4008, 198, 220, 220, 220, 1303, 4946, 34356, 13912, 19016, 11, 269, 14859, 3904, 287, 12094, 284, 1280, 6444, 11, 198, 220, 220, 220, 1303, 329, 1672, 11, 616, 7647, 1256, 35540, 198, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 25662, 8899, 13, 2398, 14, 12947, 30, 22766, 28, 4309, 13, 2718, 26895, 10, 19, 13, 4531, 24591, 2, 8899, 28, 1129, 14, 4309, 13, 2718, 26717, 14, 19, 13, 4531, 17572, 198, 220, 220, 220, 1976, 796, 678, 1303, 19792, 1241, 11, 2793, 318, 5749, 1989, 198, 220, 220, 220, 3601, 7203, 4023, 1378, 2503, 13, 9654, 25662, 8899, 13, 2398, 14, 12947, 30, 22766, 34758, 92, 4, 1238, 90, 92, 2, 8899, 34758, 92, 14, 90, 92, 14, 90, 92, 1911, 18982, 7, 15460, 11, 14995, 11, 89, 11, 15460, 11, 14995, 4008, 198, 220, 220, 220, 2270 ]
2.797521
484
from pypy.translator.oosupport.constant import is_primitive from pypy.rpython.ootypesystem import ootype
[ 6738, 279, 4464, 88, 13, 7645, 41880, 13, 16426, 84, 4926, 13, 9979, 415, 1330, 318, 62, 19795, 1800, 198, 6738, 279, 4464, 88, 13, 81, 29412, 13, 1025, 9497, 6781, 1330, 267, 8690, 628 ]
3.028571
35
from ml100k import recommenderMl100k import time as tm from distances import recommender s = recommender(0) s.readMovies() ''' s = recommender(0,k=3,metric='manhattan') s.readBooks() #print(s.jaccard(s.data['Stephen'],s.data['Amy'])) print(s.ProjectedRanting('Patrick C','Scarface')) ''' ''' r = recommenderMl100k(0,metric='cosine') r.loadMovieLens('../datasets/ml-100k/') #print(r.cosine(r.data['278833"'],r.data['278858"'])) #print(r.jaccard(r.data['278804'],r.data['211'])) print(r.computeNearestNeighbor("100")) '''
[ 6738, 25962, 3064, 74, 1330, 3045, 2194, 44, 75, 3064, 74, 198, 11748, 640, 355, 256, 76, 198, 6738, 18868, 1330, 3045, 2194, 198, 198, 82, 796, 3045, 2194, 7, 15, 8, 198, 82, 13, 961, 44, 20526, 3419, 198, 198, 7061, 6, 198, 82, 796, 3045, 2194, 7, 15, 11, 74, 28, 18, 11, 4164, 1173, 11639, 805, 12904, 11537, 198, 82, 13, 961, 30650, 3419, 198, 2, 4798, 7, 82, 13, 73, 4134, 446, 7, 82, 13, 7890, 17816, 24920, 6, 4357, 82, 13, 7890, 17816, 40797, 20520, 4008, 198, 4798, 7, 82, 13, 16775, 276, 49, 20482, 10786, 32718, 327, 41707, 44433, 2550, 6, 4008, 198, 7061, 6, 198, 7061, 6, 198, 81, 796, 3045, 2194, 44, 75, 3064, 74, 7, 15, 11, 4164, 1173, 11639, 6966, 500, 11537, 198, 81, 13, 2220, 25097, 49479, 10786, 40720, 19608, 292, 1039, 14, 4029, 12, 3064, 74, 14, 11537, 198, 2, 4798, 7, 81, 13, 6966, 500, 7, 81, 13, 7890, 17816, 1983, 3459, 2091, 30543, 4357, 81, 13, 7890, 17816, 1983, 3459, 3365, 1, 20520, 4008, 198, 2, 4798, 7, 81, 13, 73, 4134, 446, 7, 81, 13, 7890, 17816, 25870, 36088, 6, 4357, 81, 13, 7890, 17816, 21895, 20520, 4008, 198, 4798, 7, 81, 13, 5589, 1133, 8199, 12423, 46445, 2865, 7203, 3064, 48774, 198, 7061, 6 ]
2.368182
220
import os import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import datetime from textwrap import wrap ### NOTE: `conda install basemap` import conda conda_file_dir = conda.__file__ conda_dir = conda_file_dir.split('lib')[0] proj_lib = os.path.join(os.path.join(conda_dir, 'share'), 'proj') os.environ["PROJ_LIB"] = proj_lib from mpl_toolkits.basemap import Basemap from matplotlib import ticker def vertical_bar_chart(df, x, y, label, sort, figsize=(13, 9), ascending=True): """ This customize vertical bar chart from seaborn(sns as aliased above) Args: df: dataframe x: x-axis column y: y-axis column label: string to label the graph figsize: figure size to make chart small or big ascending: ascending order from smallest to biggest sort: which column to sort by Returns: None """ sns.set(style="whitegrid") fig, ax = plt.subplots(figsize=figsize) #sns.set_color_codes(sns.color_palette(["#0088c0"])) # Text on the top of each barplot ax = sns.barplot(x=x, y=y, data=df.sort_values(sort, ascending=ascending), label=label, color="b", palette=["#0088c0"]) total = df[y].sum() for p in ax.patches: ax.annotate(str(format(p.get_height()/total * 100, '.2f')) + '%' + ' (' + str(int(p.get_height())) + ')', (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points') y_value=['{:,.0f}'.format(x/total * 100) + '%' for x in ax.get_yticks()] plt.yticks(list(plt.yticks()[0]) + [10]) ax.set_yticklabels(y_value) plt.xlabel('') plt.ylabel('') sns.despine(left=True, bottom=True) def horizontal_bar_chart(df, x, y, label, figsize=(16, 16)): """ This customize horizontal bar chart from seaborn(sns as aliased above) Args: df: dataframe x: x-axis column y: y-axis column label: string to label the graph figsize: figure size to make chart small or big Returns: None """ sns.set(style="whitegrid") fig, ax = plt.subplots(figsize=figsize) ax = sns.barplot(x=x, y=y, data=df, label=label, color="b", palette=["#0088c0"]) total = df.values[:, 1].sum() for i, v in enumerate(df.values[:, 1]): ax.text(v + 0.1, i + .25, str(format(v / total * 100, '.2f')) + '% (' + str(v) + ')') labels = [ '\n'.join(wrap(l, 20)) for l in df.values[:, 0]] ax.set_yticklabels(labels) x_value=['{:,.0f}'.format(x/total * 100) + '%' for x in ax.get_xticks()] plt.xticks(list(plt.xticks()[0]) + [10]) ax.set_xticklabels(x_value) plt.ylabel('') plt.xlabel('') sns.despine(left=True, bottom=True) def line_graph(df, column, figsize=(12, 8)): """ This customize line chart from matplotlib(plt as aliased above) Args: df: dataframe column: x-axis column label: string to label the graph figsize: figure size to make chart small or big Returns: None """ fig, ax = plt.subplots(figsize=figsize) line_data = df[column].value_counts().reset_index().sort_values(by='index') line_data['Cumulative Frequency'] = line_data[column].cumsum() line_data.plot(x='index', y=column, style='o-', ax=ax, label='Daily Infection') line_data.plot(x='index', y='Cumulative Frequency', style='ro-', ax=ax) plt.xticks(rotation=90) plt.xlabel('') def general_line_graph(df, x, y, figsize=(12, 8)): """ This customize line chart from matplotlib(plt as aliased above) Args: df: dataframe column: x-axis column label: string to label the graph figsize: figure size to make chart small or big Returns: None """ fig, ax = plt.subplots(figsize=figsize) df.plot(x=x, y=y, style='o-', ax=ax, label='Daily Tests') plt.xticks(rotation=90) plt.xlabel('') def pie_chart(df, column): """ This customize pie chart from matplotlib(plt as aliased above) Args: df: dataframe column: x-axis column label: string to label the graph figsize: figure size to make chart small or big Returns: None """ X = df[column].value_counts() colors = ['#0088C0', '#82DAFF'] plt.pie(X.values, labels=X.index, colors=colors, startangle=90, explode = (0, 0), textprops={'fontsize': 14}, autopct = '%1.2f%%') plt.axis('equal') plt.show() def flat_globe(travel, colors): """ This customize map chart from Basemap(plt as aliased above) Args: df: dataframe column: x-axis column label: string to label the graph figsize: figure size to make chart small or big Returns: None """ plt.figure(figsize = (30,30)) m = Basemap(projection='gall') m.fillcontinents(color="#61993b",lake_color="#008ECC") m.drawmapboundary(fill_color="#5D9BFF") m.drawcountries(color='#585858',linewidth = 1) m.drawstates(linewidth = 0.2) m.drawcoastlines(linewidth=1) countries = list(travel.Source.unique()) for item in countries: for index, row in travel[travel.Source == item].drop_duplicates().iterrows(): x2, y2 = m.gcpoints( row["Source_Lat"], row["Source_Lon"], row["Dest_Lat"], row["Dest_Lon"], 20) plt.plot(x2,y2,color=colors[countries.index(item)],linewidth=0.8) plt.show() def globe(travel, colors): """ This customize map chart from Basemap(plt as aliased above) Args: df: dataframe column: x-axis column label: string to label the graph figsize: figure size to make chart small or big Returns: None """ plt.figure(figsize=(16,16)) m = Basemap(projection='ortho', lat_0=0, lon_0=0) m.drawmapboundary(fill_color='#5D9BFF') m.fillcontinents(color='#0D9C29',lake_color='#008ECC') m.drawcountries(color='#585858',linewidth=1) m.drawcoastlines() countries = list(travel.Source.unique()) for item in countries: for index, row in travel[travel.Source == item].drop_duplicates().iterrows(): x2, y2 = m.gcpoints( row["Source_Lat"], row["Source_Lon"], row["Dest_Lat"], row["Dest_Lon"], 20) plt.plot(x2,y2,color=colors[countries.index(item)],linewidth=0.8) plt.show() def plot_covid19za_grouwth(df, provinces, min_cases=100, ls='-', figsize=(12, 8)): """ This shows covid19za growth since the first case was reported from each province """ fig, ax = plt.subplots(figsize=figsize) df = (df.set_index('date')) df.index = pd.to_datetime(df.index, dayfirst=True) for province in provinces: df1 = df.loc[(df.province == province)].groupby(['date']).agg({'country': ['count']}) df1.columns = ['new cases'] df1['cummulative'] = df1['new cases'].cumsum() (df1.reset_index()['cummulative'] .plot(label=province, ls=ls)) x = np.linspace(0, plt.xlim()[1]) plt.plot(x,x+(1.33), ls='--', color='k', label='33% daily growth') plt.title('Data up to {}'.format(df.index.max().strftime('%B %d, %Y'))) plt.xlabel('Days from first confirmed case') plt.ylabel('Confirmed cases') ax.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) ax.set_xticks(range(0,int(plt.xlim()[1])+1)) plt.legend(bbox_to_anchor=(1.0, 1.0)) sns.despine() plt.annotate('Based on Coronavirus COVID-19 (2019-nCoV) Data Repository for South Africa \ [Hosted by DSFSI group at University of Pretoria]', (0.1, 0.01), xycoords='figure fraction', fontsize=10) def flat_mutipath_globe(df_travel, path_route, colors, all_starting_countries): """ This is flat structure for multistop """ plt.figure(figsize = (30,30)) m = Basemap(projection='gall') m.fillcontinents(color="#61993b",lake_color="#008ECC") m.drawmapboundary(fill_color="#5D9BFF") m.drawcountries(color='#585858',linewidth = 1) m.drawstates(linewidth = 0.2) m.drawcoastlines(linewidth=1) for path_rout in path_route: if path_rout[0][0] == 'USA;Mexico': point_a = df_travel[df_travel.country_or_province_travelled == path_rout[0][0].split(';')[0]] point_b = df_travel[df_travel.country_or_province_travelled == path_rout[0][0].split(';')[1]] point_c = df_travel[df_travel.country_or_province_travelled == path_rout[0][1]] point_d = df_travel[df_travel.country_or_province_travelled == path_rout[1]] x2, y2 = m.gcpoints(point_a["latitude"],point_a["longitude"],point_b["latitude"],point_b["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0].split(';')[0])],linewidth=3) # m.scatter(point_a["latitude"],point_a["longitude"], marker='^',color="#EC7063", s=500,zorder=5) # plt.text(point_a["latitude"],point_a["longitude"]+10000,path_rout[0][0].split(';')[0].replace('the ', ''),fontsize=20,fontweight='bold',ha='center',va='bottom',color="black") x2, y2 = m.gcpoints(point_b["latitude"],point_b["longitude"],point_c["latitude"],point_c["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0].split(';')[0])],linewidth=3) x2, y2 = m.gcpoints(point_c["latitude"],point_c["longitude"],point_d["latitude"],point_d["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0].split(';')[0])],linewidth=3) elif len(path_rout[0]) == 2: point_a = df_travel[df_travel.country_or_province_travelled == path_rout[0][0].replace('the ', '')] point_b = df_travel[df_travel.country_or_province_travelled == path_rout[0][1].replace('the ', '')] point_c = df_travel[df_travel.country_or_province_travelled == path_rout[1].replace('LP', 'LIM')] x2, y2 = m.gcpoints(point_a["latitude"],point_a["longitude"],point_b["latitude"],point_b["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0].replace('the ', ''))],linewidth=3) # m.scatter(x2, y2, marker='^',color="#EC7063", s=500,zorder=5) # plt.text(x2,y2,path_rout[0][0].replace('the ', ''),fontsize=20,fontweight='bold',ha='center',va='bottom',color="black") x2, y2 = m.gcpoints(point_b["latitude"],point_b["longitude"],point_c["latitude"],point_c["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0].replace('the ', ''))],linewidth=3) elif len(path_rout[0]) == 3: point_a = df_travel[df_travel.country_or_province_travelled == path_rout[0][0]] point_b = df_travel[df_travel.country_or_province_travelled == path_rout[0][1]] point_c = df_travel[df_travel.country_or_province_travelled == path_rout[0][2]] point_d = df_travel[df_travel.country_or_province_travelled == path_rout[1]] x2, y2 = m.gcpoints(point_a["latitude"],point_a["longitude"],point_b["latitude"],point_b["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0])],linewidth=0.8) # m.scatter(x2, y2, marker='^',color="#EC7063", s=500,zorder=5) # plt.text(x2,y2,path_rout[0][0],fontsize=20,fontweight='bold',ha='center',va='bottom',color="black") x2, y2 = m.gcpoints(point_b["latitude"],point_b["longitude"],point_c["latitude"],point_c["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0])],linewidth=0.8) x2, y2 = m.gcpoints(point_c["latitude"],point_c["longitude"],point_d["latitude"],point_d["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0])],linewidth=3) elif len(path_rout[0]) == 4: point_a = df_travel[df_travel.country_or_province_travelled == path_rout[0][0]] point_b = df_travel[df_travel.country_or_province_travelled == path_rout[0][1]] point_c = df_travel[df_travel.country_or_province_travelled == path_rout[0][2]] point_d = df_travel[df_travel.country_or_province_travelled == path_rout[0][3]] point_e = df_travel[df_travel.country_or_province_travelled == path_rout[1]] x2, y2 = m.gcpoints(point_a["latitude"],point_a["longitude"],point_b["latitude"],point_b["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0])],linewidth=3) # m.scatter(x2, y2, marker='^',color="#EC7063", s=500,zorder=5) # plt.text(x2,y2,path_rout[0][0],fontsize=20,fontweight='bold',ha='center',va='bottom',color="black") x2, y2 = m.gcpoints(point_b["latitude"],point_b["longitude"],point_c["latitude"],point_c["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0])],linewidth=3) x2, y2 = m.gcpoints(point_c["latitude"],point_c["longitude"],point_d["latitude"],point_d["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0])],linewidth=3) x2, y2 = m.gcpoints(point_d["latitude"],point_d["longitude"],point_e["latitude"],point_e["longitude"], 20) plt.plot(x2,y2,color = colors[all_starting_countries.index(path_rout[0][0])],linewidth=3) plt.show()
[ 11748, 28686, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 2420, 37150, 1330, 14441, 198, 21017, 24550, 25, 4600, 66, 13533, 2721, 1615, 368, 499, 63, 198, 11748, 1779, 64, 198, 66, 13533, 62, 7753, 62, 15908, 796, 1779, 64, 13, 834, 7753, 834, 198, 66, 13533, 62, 15908, 796, 1779, 64, 62, 7753, 62, 15908, 13, 35312, 10786, 8019, 11537, 58, 15, 60, 198, 1676, 73, 62, 8019, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 22179, 7, 66, 13533, 62, 15908, 11, 705, 20077, 33809, 705, 1676, 73, 11537, 198, 418, 13, 268, 2268, 14692, 31190, 41, 62, 40347, 8973, 796, 386, 73, 62, 8019, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 12093, 368, 499, 1330, 6455, 368, 499, 198, 6738, 2603, 29487, 8019, 1330, 4378, 263, 198, 198, 4299, 11723, 62, 5657, 62, 40926, 7, 7568, 11, 2124, 11, 331, 11, 6167, 11, 3297, 11, 2336, 7857, 16193, 1485, 11, 860, 828, 41988, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 24184, 11723, 2318, 8262, 422, 384, 397, 1211, 7, 82, 5907, 355, 34965, 839, 2029, 8, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 25, 1366, 14535, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 25, 2124, 12, 22704, 5721, 220, 198, 220, 220, 220, 220, 220, 220, 220, 331, 25, 331, 12, 22704, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 25, 4731, 284, 6167, 262, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 25, 3785, 2546, 284, 787, 8262, 1402, 393, 1263, 198, 220, 220, 220, 220, 220, 220, 220, 41988, 25, 41988, 1502, 422, 18197, 284, 4094, 198, 220, 220, 220, 220, 220, 220, 220, 3297, 25, 543, 5721, 284, 3297, 416, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3013, 82, 13, 2617, 7, 7635, 2625, 11186, 25928, 4943, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 28, 5647, 7857, 8, 198, 220, 220, 220, 1303, 82, 5907, 13, 2617, 62, 8043, 62, 40148, 7, 82, 5907, 13, 8043, 62, 18596, 5857, 7, 14692, 2, 405, 3459, 66, 15, 8973, 4008, 198, 220, 220, 220, 1303, 8255, 319, 262, 1353, 286, 1123, 2318, 29487, 198, 220, 220, 220, 7877, 796, 3013, 82, 13, 5657, 29487, 7, 87, 28, 87, 11, 331, 28, 88, 11, 1366, 28, 7568, 13, 30619, 62, 27160, 7, 30619, 11, 41988, 28, 3372, 1571, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 18242, 11, 3124, 2625, 65, 1600, 27043, 28, 14692, 2, 405, 3459, 66, 15, 8973, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2472, 796, 47764, 58, 88, 4083, 16345, 3419, 198, 220, 220, 220, 329, 279, 287, 7877, 13, 8071, 2052, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 34574, 378, 7, 2536, 7, 18982, 7, 79, 13, 1136, 62, 17015, 3419, 14, 23350, 1635, 1802, 11, 45302, 17, 69, 6, 4008, 1343, 705, 4, 6, 1343, 705, 19203, 1343, 965, 7, 600, 7, 79, 13, 1136, 62, 17015, 3419, 4008, 1343, 705, 8, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 79, 13, 1136, 62, 87, 3419, 1343, 279, 13, 1136, 62, 10394, 3419, 1220, 362, 1539, 279, 13, 1136, 62, 17015, 3419, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 387, 796, 705, 16159, 3256, 46935, 796, 705, 16159, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 5239, 796, 357, 15, 11, 838, 828, 2420, 1073, 3669, 796, 705, 28968, 2173, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 331, 62, 8367, 28, 17816, 90, 25, 38508, 15, 69, 92, 4458, 18982, 7, 87, 14, 23350, 1635, 1802, 8, 1343, 705, 4, 6, 329, 2124, 287, 7877, 13, 1136, 62, 20760, 3378, 3419, 60, 198, 220, 220, 220, 458, 83, 13, 20760, 3378, 7, 4868, 7, 489, 83, 13, 20760, 3378, 3419, 58, 15, 12962, 1343, 685, 940, 12962, 198, 220, 220, 220, 7877, 13, 2617, 62, 20760, 624, 23912, 1424, 7, 88, 62, 8367, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 7061, 8, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7, 7061, 8, 198, 220, 220, 220, 3013, 82, 13, 8906, 23908, 7, 9464, 28, 17821, 11, 4220, 28, 17821, 8, 198, 220, 220, 220, 220, 198, 4299, 16021, 62, 5657, 62, 40926, 7, 7568, 11, 2124, 11, 331, 11, 6167, 11, 2336, 7857, 16193, 1433, 11, 1467, 8, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 24184, 16021, 2318, 8262, 422, 384, 397, 1211, 7, 82, 5907, 355, 34965, 839, 2029, 8, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 25, 1366, 14535, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 25, 2124, 12, 22704, 5721, 220, 198, 220, 220, 220, 220, 220, 220, 220, 331, 25, 331, 12, 22704, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 25, 4731, 284, 6167, 262, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 25, 3785, 2546, 284, 787, 8262, 1402, 393, 1263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3013, 82, 13, 2617, 7, 7635, 2625, 11186, 25928, 4943, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 28, 5647, 7857, 8, 198, 220, 220, 220, 7877, 796, 3013, 82, 13, 5657, 29487, 7, 87, 28, 87, 11, 331, 28, 88, 11, 1366, 28, 7568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 18242, 11, 3124, 2625, 65, 1600, 27043, 28, 14692, 2, 405, 3459, 66, 15, 8973, 8, 198, 220, 220, 220, 2472, 796, 47764, 13, 27160, 58, 45299, 352, 4083, 16345, 3419, 198, 220, 220, 220, 329, 1312, 11, 410, 287, 27056, 378, 7, 7568, 13, 27160, 58, 45299, 352, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 85, 1343, 657, 13, 16, 11, 1312, 1343, 764, 1495, 11, 965, 7, 18982, 7, 85, 1220, 2472, 1635, 1802, 11, 45302, 17, 69, 6, 4008, 1343, 705, 4, 19203, 1343, 965, 7, 85, 8, 1343, 705, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 14722, 796, 685, 705, 59, 77, 4458, 22179, 7, 37150, 7, 75, 11, 1160, 4008, 329, 300, 287, 47764, 13, 27160, 58, 45299, 657, 11907, 198, 220, 220, 220, 7877, 13, 2617, 62, 20760, 624, 23912, 1424, 7, 23912, 1424, 8, 198, 220, 220, 220, 2124, 62, 8367, 28, 17816, 90, 25, 38508, 15, 69, 92, 4458, 18982, 7, 87, 14, 23350, 1635, 1802, 8, 1343, 705, 4, 6, 329, 2124, 287, 7877, 13, 1136, 62, 742, 3378, 3419, 60, 198, 220, 220, 220, 458, 83, 13, 742, 3378, 7, 4868, 7, 489, 83, 13, 742, 3378, 3419, 58, 15, 12962, 1343, 685, 940, 12962, 198, 220, 220, 220, 7877, 13, 2617, 62, 742, 624, 23912, 1424, 7, 87, 62, 8367, 8, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7, 7061, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 7061, 8, 198, 220, 220, 220, 3013, 82, 13, 8906, 23908, 7, 9464, 28, 17821, 11, 4220, 28, 17821, 8, 198, 220, 220, 220, 220, 198, 4299, 1627, 62, 34960, 7, 7568, 11, 5721, 11, 2336, 7857, 16193, 1065, 11, 807, 8, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 24184, 1627, 8262, 422, 2603, 29487, 8019, 7, 489, 83, 355, 34965, 839, 2029, 8, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 25, 1366, 14535, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 25, 2124, 12, 22704, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 25, 4731, 284, 6167, 262, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 25, 3785, 2546, 284, 787, 8262, 1402, 393, 1263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 28, 5647, 7857, 8, 198, 220, 220, 220, 1627, 62, 7890, 796, 47764, 58, 28665, 4083, 8367, 62, 9127, 82, 22446, 42503, 62, 9630, 22446, 30619, 62, 27160, 7, 1525, 11639, 9630, 11537, 198, 220, 220, 220, 1627, 62, 7890, 17816, 34, 388, 13628, 31902, 20520, 796, 1627, 62, 7890, 58, 28665, 4083, 66, 5700, 388, 3419, 198, 220, 220, 220, 1627, 62, 7890, 13, 29487, 7, 87, 11639, 9630, 3256, 331, 28, 28665, 11, 3918, 11639, 78, 12, 3256, 7877, 28, 897, 11, 6167, 11639, 28545, 26065, 295, 11537, 198, 220, 220, 220, 1627, 62, 7890, 13, 29487, 7, 87, 11639, 9630, 3256, 331, 11639, 34, 388, 13628, 31902, 3256, 3918, 11639, 305, 12, 3256, 7877, 28, 897, 8, 198, 220, 220, 220, 458, 83, 13, 742, 3378, 7, 10599, 341, 28, 3829, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 7061, 8, 198, 220, 220, 220, 220, 198, 4299, 2276, 62, 1370, 62, 34960, 7, 7568, 11, 2124, 11, 331, 11, 2336, 7857, 16193, 1065, 11, 807, 8, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 24184, 1627, 8262, 422, 2603, 29487, 8019, 7, 489, 83, 355, 34965, 839, 2029, 8, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 25, 1366, 14535, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 25, 2124, 12, 22704, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 25, 4731, 284, 6167, 262, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 25, 3785, 2546, 284, 787, 8262, 1402, 393, 1263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 28, 5647, 7857, 8, 198, 220, 220, 220, 47764, 13, 29487, 7, 87, 28, 87, 11, 331, 28, 88, 11, 3918, 11639, 78, 12, 3256, 7877, 28, 897, 11, 6167, 11639, 28545, 30307, 11537, 198, 220, 220, 220, 458, 83, 13, 742, 3378, 7, 10599, 341, 28, 3829, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 7061, 8, 198, 220, 220, 220, 220, 198, 198, 4299, 2508, 62, 40926, 7, 7568, 11, 5721, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 24184, 2508, 8262, 422, 2603, 29487, 8019, 7, 489, 83, 355, 34965, 839, 2029, 8, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 25, 1366, 14535, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 25, 2124, 12, 22704, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 25, 4731, 284, 6167, 262, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 25, 3785, 2546, 284, 787, 8262, 1402, 393, 1263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 796, 47764, 58, 28665, 4083, 8367, 62, 9127, 82, 3419, 198, 220, 220, 220, 7577, 796, 37250, 2, 405, 3459, 34, 15, 3256, 705, 2, 6469, 5631, 5777, 20520, 198, 220, 220, 220, 458, 83, 13, 21749, 7, 55, 13, 27160, 11, 14722, 28, 55, 13, 9630, 11, 7577, 28, 4033, 669, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 9248, 28, 3829, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22818, 796, 357, 15, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 1676, 862, 34758, 6, 10331, 7857, 10354, 1478, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22320, 310, 796, 705, 4, 16, 13, 17, 69, 16626, 11537, 198, 220, 220, 220, 458, 83, 13, 22704, 10786, 40496, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 198, 4299, 6228, 62, 4743, 5910, 7, 35927, 11, 7577, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 24184, 3975, 8262, 422, 6455, 368, 499, 7, 489, 83, 355, 34965, 839, 2029, 8, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 25, 1366, 14535, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 25, 2124, 12, 22704, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 25, 4731, 284, 6167, 262, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 25, 3785, 2546, 284, 787, 8262, 1402, 393, 1263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 458, 83, 13, 26875, 7, 5647, 7857, 796, 357, 1270, 11, 1270, 4008, 198, 220, 220, 220, 285, 796, 6455, 368, 499, 7, 16302, 295, 11639, 39580, 11537, 198, 220, 220, 220, 285, 13, 20797, 18487, 658, 7, 8043, 25698, 21, 24465, 65, 1600, 27180, 62, 8043, 25698, 25257, 2943, 34, 4943, 198, 220, 220, 220, 285, 13, 19334, 8899, 7784, 560, 7, 20797, 62, 8043, 25698, 20, 35, 24, 33, 5777, 4943, 198, 220, 220, 220, 285, 13, 19334, 9127, 1678, 7, 8043, 11639, 2, 3365, 3365, 3365, 3256, 2815, 413, 5649, 796, 352, 8, 198, 220, 220, 220, 285, 13, 19334, 27219, 7, 2815, 413, 5649, 796, 657, 13, 17, 8, 198, 220, 220, 220, 285, 13, 19334, 1073, 459, 6615, 7, 2815, 413, 5649, 28, 16, 8, 198, 220, 220, 220, 2678, 796, 1351, 7, 35927, 13, 7416, 13, 34642, 28955, 198, 220, 220, 220, 329, 2378, 287, 2678, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 5752, 287, 3067, 58, 35927, 13, 7416, 6624, 2378, 4083, 14781, 62, 646, 489, 16856, 22446, 2676, 8516, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 5752, 14692, 7416, 62, 24220, 33116, 5752, 14692, 7416, 62, 43, 261, 33116, 5752, 14692, 24159, 62, 24220, 33116, 5752, 14692, 24159, 62, 43, 261, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 28, 4033, 669, 58, 9127, 1678, 13, 9630, 7, 9186, 8, 4357, 2815, 413, 5649, 28, 15, 13, 23, 8, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 198, 4299, 13342, 7, 35927, 11, 7577, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 24184, 3975, 8262, 422, 6455, 368, 499, 7, 489, 83, 355, 34965, 839, 2029, 8, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 25, 1366, 14535, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 25, 2124, 12, 22704, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 25, 4731, 284, 6167, 262, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 25, 3785, 2546, 284, 787, 8262, 1402, 393, 1263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 1433, 11, 1433, 4008, 198, 220, 220, 220, 285, 796, 6455, 368, 499, 7, 16302, 295, 11639, 1506, 78, 3256, 3042, 62, 15, 28, 15, 11, 300, 261, 62, 15, 28, 15, 8, 198, 220, 220, 220, 285, 13, 19334, 8899, 7784, 560, 7, 20797, 62, 8043, 11639, 2, 20, 35, 24, 33, 5777, 11537, 198, 220, 220, 220, 285, 13, 20797, 18487, 658, 7, 8043, 11639, 2, 15, 35, 24, 34, 1959, 3256, 27180, 62, 8043, 11639, 2, 25257, 2943, 34, 11537, 198, 220, 220, 220, 285, 13, 19334, 9127, 1678, 7, 8043, 11639, 2, 3365, 3365, 3365, 3256, 2815, 413, 5649, 28, 16, 8, 198, 220, 220, 220, 285, 13, 19334, 1073, 459, 6615, 3419, 198, 220, 220, 220, 2678, 796, 1351, 7, 35927, 13, 7416, 13, 34642, 28955, 198, 220, 220, 220, 329, 2378, 287, 2678, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 5752, 287, 3067, 58, 35927, 13, 7416, 6624, 2378, 4083, 14781, 62, 646, 489, 16856, 22446, 2676, 8516, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 5752, 14692, 7416, 62, 24220, 33116, 5752, 14692, 7416, 62, 43, 261, 33116, 5752, 14692, 24159, 62, 24220, 33116, 5752, 14692, 24159, 62, 43, 261, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 28, 4033, 669, 58, 9127, 1678, 13, 9630, 7, 9186, 8, 4357, 2815, 413, 5649, 28, 15, 13, 23, 8, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 198, 4299, 7110, 62, 66, 709, 312, 1129, 4496, 62, 70, 472, 86, 400, 7, 7568, 11, 17812, 11, 949, 62, 33964, 28, 3064, 11, 43979, 11639, 12, 3256, 2336, 7857, 16193, 1065, 11, 807, 8, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2523, 39849, 312, 1129, 4496, 3349, 1201, 262, 717, 1339, 373, 2098, 220, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1123, 8473, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 28, 5647, 7857, 8, 198, 220, 220, 220, 47764, 796, 357, 7568, 13, 2617, 62, 9630, 10786, 4475, 6, 4008, 198, 220, 220, 220, 47764, 13, 9630, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 7568, 13, 9630, 11, 1110, 11085, 28, 17821, 8, 198, 220, 220, 220, 329, 8473, 287, 17812, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 16, 796, 47764, 13, 17946, 58, 7, 7568, 13, 15234, 924, 6624, 8473, 25295, 8094, 1525, 7, 17816, 4475, 20520, 737, 9460, 15090, 6, 19315, 10354, 37250, 9127, 20520, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 16, 13, 28665, 82, 796, 37250, 3605, 2663, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 16, 17816, 66, 13929, 13628, 20520, 796, 47764, 16, 17816, 3605, 2663, 6, 4083, 66, 5700, 388, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 357, 7568, 16, 13, 42503, 62, 9630, 3419, 17816, 66, 13929, 13628, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 29487, 7, 18242, 28, 15234, 924, 11, 43979, 28, 7278, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2124, 796, 45941, 13, 21602, 10223, 7, 15, 11, 458, 83, 13, 87, 2475, 3419, 58, 16, 12962, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 11, 87, 33747, 16, 13, 2091, 828, 43979, 11639, 438, 3256, 3124, 11639, 74, 3256, 6167, 11639, 2091, 4, 4445, 3349, 11537, 198, 220, 220, 220, 458, 83, 13, 7839, 10786, 6601, 510, 284, 23884, 4458, 18982, 7, 7568, 13, 9630, 13, 9806, 22446, 2536, 31387, 10786, 4, 33, 4064, 67, 11, 4064, 56, 6, 22305, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 38770, 422, 717, 4999, 1339, 11537, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 10786, 18546, 15491, 2663, 11537, 198, 220, 220, 220, 7877, 13, 1136, 62, 88, 22704, 22446, 2617, 62, 22478, 62, 687, 1436, 7, 83, 15799, 13, 3351, 282, 283, 8479, 1436, 28955, 198, 220, 220, 220, 7877, 13, 2617, 62, 742, 3378, 7, 9521, 7, 15, 11, 600, 7, 489, 83, 13, 87, 2475, 3419, 58, 16, 12962, 10, 16, 4008, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 65, 3524, 62, 1462, 62, 3702, 273, 16193, 16, 13, 15, 11, 352, 13, 15, 4008, 198, 220, 220, 220, 3013, 82, 13, 8906, 23908, 3419, 198, 220, 220, 220, 458, 83, 13, 34574, 378, 10786, 15001, 319, 2744, 261, 615, 19397, 7375, 11008, 12, 1129, 357, 23344, 12, 77, 7222, 53, 8, 6060, 1432, 13264, 329, 2520, 5478, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 685, 17932, 276, 416, 17400, 10652, 40, 1448, 379, 2059, 286, 37123, 7661, 60, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 16, 11, 657, 13, 486, 828, 2124, 88, 1073, 3669, 11639, 26875, 13390, 3256, 10369, 7857, 28, 940, 8, 198, 198, 4299, 6228, 62, 21973, 541, 776, 62, 4743, 5910, 7, 7568, 62, 35927, 11, 3108, 62, 38629, 11, 7577, 11, 477, 62, 38690, 62, 9127, 1678, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 6228, 4645, 329, 1963, 396, 404, 220, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 458, 83, 13, 26875, 7, 5647, 7857, 796, 357, 1270, 11, 1270, 4008, 198, 220, 220, 220, 285, 796, 6455, 368, 499, 7, 16302, 295, 11639, 39580, 11537, 198, 220, 220, 220, 285, 13, 20797, 18487, 658, 7, 8043, 25698, 21, 24465, 65, 1600, 27180, 62, 8043, 25698, 25257, 2943, 34, 4943, 198, 220, 220, 220, 285, 13, 19334, 8899, 7784, 560, 7, 20797, 62, 8043, 25698, 20, 35, 24, 33, 5777, 4943, 198, 220, 220, 220, 285, 13, 19334, 9127, 1678, 7, 8043, 11639, 2, 3365, 3365, 3365, 3256, 2815, 413, 5649, 796, 352, 8, 198, 220, 220, 220, 285, 13, 19334, 27219, 7, 2815, 413, 5649, 796, 657, 13, 17, 8, 198, 220, 220, 220, 285, 13, 19334, 1073, 459, 6615, 7, 2815, 413, 5649, 28, 16, 8, 198, 220, 220, 220, 329, 3108, 62, 81, 448, 287, 3108, 62, 38629, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3108, 62, 81, 448, 58, 15, 7131, 15, 60, 6624, 705, 14053, 26, 33006, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 64, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 15, 4083, 35312, 10786, 26, 11537, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 65, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 15, 4083, 35312, 10786, 26, 11537, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 66, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 67, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 64, 14692, 15460, 3984, 33116, 4122, 62, 64, 14692, 6511, 3984, 33116, 4122, 62, 65, 14692, 15460, 3984, 33116, 4122, 62, 65, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 4083, 35312, 10786, 26, 11537, 58, 15, 12962, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 1416, 1436, 7, 4122, 62, 64, 14692, 15460, 3984, 33116, 4122, 62, 64, 14692, 6511, 3984, 33116, 18364, 11639, 61, 3256, 8043, 25698, 2943, 2154, 5066, 1600, 264, 28, 4059, 11, 89, 2875, 28, 20, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5239, 7, 4122, 62, 64, 14692, 15460, 3984, 33116, 4122, 62, 64, 14692, 6511, 3984, 8973, 10, 49388, 11, 6978, 62, 81, 448, 58, 15, 7131, 15, 4083, 35312, 10786, 26, 11537, 58, 15, 4083, 33491, 10786, 1169, 46083, 10148, 828, 10331, 7857, 28, 1238, 11, 10331, 6551, 11639, 36575, 3256, 3099, 11639, 16159, 3256, 6862, 11639, 22487, 3256, 8043, 2625, 13424, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 65, 14692, 15460, 3984, 33116, 4122, 62, 65, 14692, 6511, 3984, 33116, 4122, 62, 66, 14692, 15460, 3984, 33116, 4122, 62, 66, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 4083, 35312, 10786, 26, 11537, 58, 15, 12962, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 66, 14692, 15460, 3984, 33116, 4122, 62, 66, 14692, 6511, 3984, 33116, 4122, 62, 67, 14692, 15460, 3984, 33116, 4122, 62, 67, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 4083, 35312, 10786, 26, 11537, 58, 15, 12962, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 6978, 62, 81, 448, 58, 15, 12962, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 64, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 15, 4083, 33491, 10786, 1169, 46083, 10148, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 65, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 16, 4083, 33491, 10786, 1169, 46083, 10148, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 66, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 16, 4083, 33491, 10786, 19930, 3256, 705, 43, 3955, 11537, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 64, 14692, 15460, 3984, 33116, 4122, 62, 64, 14692, 6511, 3984, 33116, 4122, 62, 65, 14692, 15460, 3984, 33116, 4122, 62, 65, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 4083, 33491, 10786, 1169, 46083, 10148, 4008, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 1416, 1436, 7, 87, 17, 11, 331, 17, 11, 18364, 11639, 61, 3256, 8043, 25698, 2943, 2154, 5066, 1600, 264, 28, 4059, 11, 89, 2875, 28, 20, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5239, 7, 87, 17, 11, 88, 17, 11, 6978, 62, 81, 448, 58, 15, 7131, 15, 4083, 33491, 10786, 1169, 46083, 10148, 828, 10331, 7857, 28, 1238, 11, 10331, 6551, 11639, 36575, 3256, 3099, 11639, 16159, 3256, 6862, 11639, 22487, 3256, 8043, 2625, 13424, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 65, 14692, 15460, 3984, 33116, 4122, 62, 65, 14692, 6511, 3984, 33116, 4122, 62, 66, 14692, 15460, 3984, 33116, 4122, 62, 66, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 4083, 33491, 10786, 1169, 46083, 10148, 4008, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 6978, 62, 81, 448, 58, 15, 12962, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 64, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 65, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 66, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 67, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 64, 14692, 15460, 3984, 33116, 4122, 62, 64, 14692, 6511, 3984, 33116, 4122, 62, 65, 14692, 15460, 3984, 33116, 4122, 62, 65, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 12962, 4357, 2815, 413, 5649, 28, 15, 13, 23, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 1416, 1436, 7, 87, 17, 11, 331, 17, 11, 18364, 11639, 61, 3256, 8043, 25698, 2943, 2154, 5066, 1600, 264, 28, 4059, 11, 89, 2875, 28, 20, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5239, 7, 87, 17, 11, 88, 17, 11, 6978, 62, 81, 448, 58, 15, 7131, 15, 4357, 10331, 7857, 28, 1238, 11, 10331, 6551, 11639, 36575, 3256, 3099, 11639, 16159, 3256, 6862, 11639, 22487, 3256, 8043, 2625, 13424, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 65, 14692, 15460, 3984, 33116, 4122, 62, 65, 14692, 6511, 3984, 33116, 4122, 62, 66, 14692, 15460, 3984, 33116, 4122, 62, 66, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 12962, 4357, 2815, 413, 5649, 28, 15, 13, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 66, 14692, 15460, 3984, 33116, 4122, 62, 66, 14692, 6511, 3984, 33116, 4122, 62, 67, 14692, 15460, 3984, 33116, 4122, 62, 67, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 12962, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 6978, 62, 81, 448, 58, 15, 12962, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 64, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 65, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 66, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 67, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 15, 7131, 18, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 62, 68, 796, 47764, 62, 35927, 58, 7568, 62, 35927, 13, 19315, 62, 273, 62, 15234, 924, 62, 83, 5758, 3353, 6624, 3108, 62, 81, 448, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 64, 14692, 15460, 3984, 33116, 4122, 62, 64, 14692, 6511, 3984, 33116, 4122, 62, 65, 14692, 15460, 3984, 33116, 4122, 62, 65, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 12962, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 1416, 1436, 7, 87, 17, 11, 331, 17, 11, 18364, 11639, 61, 3256, 8043, 25698, 2943, 2154, 5066, 1600, 264, 28, 4059, 11, 89, 2875, 28, 20, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5239, 7, 87, 17, 11, 88, 17, 11, 6978, 62, 81, 448, 58, 15, 7131, 15, 4357, 10331, 7857, 28, 1238, 11, 10331, 6551, 11639, 36575, 3256, 3099, 11639, 16159, 3256, 6862, 11639, 22487, 3256, 8043, 2625, 13424, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 65, 14692, 15460, 3984, 33116, 4122, 62, 65, 14692, 6511, 3984, 33116, 4122, 62, 66, 14692, 15460, 3984, 33116, 4122, 62, 66, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 12962, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 66, 14692, 15460, 3984, 33116, 4122, 62, 66, 14692, 6511, 3984, 33116, 4122, 62, 67, 14692, 15460, 3984, 33116, 4122, 62, 67, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 12962, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 285, 13, 36484, 13033, 7, 4122, 62, 67, 14692, 15460, 3984, 33116, 4122, 62, 67, 14692, 6511, 3984, 33116, 4122, 62, 68, 14692, 15460, 3984, 33116, 4122, 62, 68, 14692, 6511, 3984, 33116, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 11, 8043, 796, 7577, 58, 439, 62, 38690, 62, 9127, 1678, 13, 9630, 7, 6978, 62, 81, 448, 58, 15, 7131, 15, 12962, 4357, 2815, 413, 5649, 28, 18, 8, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198 ]
2.139079
6,428
""" Вывести в порядке возрастания все простые числа, расположенные между n и m (включая сами числа n и m), а также количество x этих чисел. """ start_number = int(input("Enter start number:")) end_number = int(input("Enter end number:")) # Generate elements from start_number to end_number (including) my_count = 0 for element in range(start_number, end_number + 1): # Check if this element is the prime number is_prime = True for divider in range(2, element): # If we've found any divider the remainder of which is zero # So current element is not the prime number if divider > 1 and element % divider == 0: is_prime = False break # Current element is the prime number if is_prime: print(element) my_count += 1 print("Total count of prime numbers") print(my_count)
[ 37811, 198, 140, 240, 45035, 38857, 16843, 21727, 20375, 18849, 12466, 110, 12466, 123, 15166, 21169, 40623, 43666, 31583, 16843, 12466, 110, 25443, 115, 21169, 16142, 21727, 20375, 16142, 22177, 18849, 40623, 12466, 110, 21727, 16843, 12466, 123, 21169, 15166, 21727, 20375, 45035, 16843, 220, 141, 229, 18849, 21727, 30143, 16142, 11, 220, 21169, 16142, 21727, 140, 123, 25443, 119, 25443, 114, 16843, 22177, 22177, 45035, 16843, 12466, 120, 16843, 140, 114, 43666, 35072, 299, 12466, 116, 285, 357, 38857, 31583, 30143, 141, 236, 141, 229, 16142, 40623, 220, 21727, 16142, 43108, 18849, 220, 141, 229, 18849, 21727, 30143, 16142, 299, 12466, 116, 285, 828, 198, 16142, 220, 20375, 16142, 31583, 140, 114, 16843, 12466, 118, 25443, 119, 18849, 141, 229, 16843, 21727, 20375, 38857, 15166, 2124, 220, 141, 235, 20375, 18849, 141, 227, 220, 141, 229, 18849, 21727, 16843, 30143, 13, 198, 37811, 628, 198, 9688, 62, 17618, 796, 493, 7, 15414, 7203, 17469, 923, 1271, 11097, 4008, 198, 437, 62, 17618, 796, 493, 7, 15414, 7203, 17469, 886, 1271, 11097, 4008, 198, 198, 2, 2980, 378, 4847, 422, 923, 62, 17618, 284, 886, 62, 17618, 357, 8201, 8, 198, 1820, 62, 9127, 796, 657, 198, 1640, 5002, 287, 2837, 7, 9688, 62, 17618, 11, 886, 62, 17618, 1343, 352, 2599, 198, 220, 220, 220, 1303, 6822, 611, 428, 5002, 318, 262, 6994, 1271, 198, 220, 220, 220, 318, 62, 35505, 796, 6407, 198, 220, 220, 220, 329, 2659, 1304, 287, 2837, 7, 17, 11, 5002, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 1053, 1043, 597, 2659, 1304, 262, 17675, 286, 543, 318, 6632, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1406, 1459, 5002, 318, 407, 262, 6994, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2659, 1304, 1875, 352, 290, 5002, 4064, 2659, 1304, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 35505, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1303, 9236, 5002, 318, 262, 6994, 1271, 198, 220, 220, 220, 611, 318, 62, 35505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 30854, 8, 198, 220, 220, 220, 220, 220, 220, 220, 616, 62, 9127, 15853, 352, 198, 198, 4798, 7203, 14957, 954, 286, 6994, 3146, 4943, 198, 4798, 7, 1820, 62, 9127, 8, 198 ]
2.13217
401
import pandas as pd import smtplib import imghdr from email.message import EmailMessage SenderAddress = "[email protected]" password = "ndXX@XX3$#XXX" e = pd.read_excel("email.xlsx") emails = e['Emails'].values names = e["Names"].values file = "banner.jpg" msg = EmailMessage() msg['Subject'] = "Hello world - dynamic" msg['From'] = SenderAddress print(f"The receiver's mail ids are : \n\n{emails}") with smtplib.SMTP("smtp.gmail.com", 587, timeout=15) as server: server.starttls() server.login(SenderAddress, password) # msg = f"Hello {this is an email form python" # subject = "Hello world" # body = "Subject: {}\n\n{}".format(subject,msg) with open(file, 'rb') as f: file_data = f.read() file_type = imghdr.what(f.name) file_name = f.name for email,name in zip(emails,names): msg['To'] = email body = f"Hello {name};\n\n\nThis is an email from python" # msg = "Subject: {}\n\n{}".format(subject,body) msg.set_content(body) msg.add_attachment(file_data, maintype='image', subtype=file_type, filename=file_name) server.send_message(msg) # server.sendmail(SenderAddress, email, msg) server.quit()
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 895, 83, 489, 571, 198, 11748, 545, 456, 7109, 198, 6738, 3053, 13, 20500, 1330, 9570, 12837, 198, 198, 50, 2194, 20231, 796, 366, 34278, 57, 31, 14816, 13, 785, 1, 198, 28712, 796, 366, 358, 8051, 31, 8051, 18, 3, 2, 43145, 1, 198, 198, 68, 796, 279, 67, 13, 961, 62, 1069, 5276, 7203, 12888, 13, 87, 7278, 87, 4943, 198, 368, 1768, 796, 304, 17816, 10161, 1768, 6, 4083, 27160, 198, 14933, 796, 304, 14692, 36690, 1, 4083, 27160, 198, 7753, 796, 366, 3820, 1008, 13, 9479, 1, 198, 19662, 796, 9570, 12837, 3419, 198, 19662, 17816, 19776, 20520, 796, 366, 15496, 995, 532, 8925, 1, 198, 19662, 17816, 4863, 20520, 796, 311, 2194, 20231, 198, 4798, 7, 69, 1, 464, 9733, 338, 6920, 220, 2340, 389, 1058, 3467, 77, 59, 77, 90, 368, 1768, 92, 4943, 198, 198, 4480, 895, 83, 489, 571, 13, 12310, 7250, 7203, 5796, 34788, 13, 14816, 13, 785, 1600, 642, 5774, 11, 26827, 28, 1314, 8, 355, 4382, 25, 198, 197, 15388, 13, 9688, 83, 7278, 3419, 198, 197, 15388, 13, 38235, 7, 50, 2194, 20231, 11, 9206, 8, 198, 197, 2, 31456, 796, 277, 1, 15496, 1391, 5661, 318, 281, 3053, 1296, 21015, 1, 198, 197, 2, 2426, 796, 366, 15496, 995, 1, 198, 197, 2, 1767, 796, 366, 19776, 25, 23884, 59, 77, 59, 77, 90, 92, 1911, 18982, 7, 32796, 11, 19662, 8, 198, 197, 4480, 1280, 7, 7753, 11, 705, 26145, 11537, 355, 277, 25, 198, 197, 197, 7753, 62, 7890, 796, 277, 13, 961, 3419, 198, 197, 197, 7753, 62, 4906, 796, 545, 456, 7109, 13, 10919, 7, 69, 13, 3672, 8, 198, 197, 197, 7753, 62, 3672, 796, 277, 13, 3672, 628, 197, 1640, 3053, 11, 3672, 287, 19974, 7, 368, 1768, 11, 14933, 2599, 198, 197, 197, 198, 197, 197, 19662, 17816, 2514, 20520, 796, 3053, 198, 197, 197, 198, 197, 197, 2618, 796, 277, 1, 15496, 1391, 3672, 19629, 59, 77, 59, 77, 59, 77, 1212, 318, 281, 3053, 422, 21015, 1, 198, 197, 197, 2, 31456, 796, 366, 19776, 25, 23884, 59, 77, 59, 77, 90, 92, 1911, 18982, 7, 32796, 11, 2618, 8, 198, 197, 197, 19662, 13, 2617, 62, 11299, 7, 2618, 8, 198, 197, 197, 19662, 13, 2860, 62, 1078, 15520, 7, 7753, 62, 7890, 11, 1388, 4906, 11639, 9060, 3256, 850, 4906, 28, 7753, 62, 4906, 11, 29472, 28, 7753, 62, 3672, 8, 198, 197, 197, 15388, 13, 21280, 62, 20500, 7, 19662, 8, 198, 197, 197, 2, 4382, 13, 21280, 4529, 7, 50, 2194, 20231, 11, 3053, 11, 31456, 8, 198, 197, 15388, 13, 47391, 3419, 198 ]
2.524554
448
def set_points(self, points): """ Set coordinate polygon by given string. Moreover, invalidate the parent's ``pc:AlternativeImage``s (because they will have been cropped with a bbox of the previous polygon). """ if hasattr(self, 'parent_object_'): parent = self.parent_object_ if hasattr(parent, 'invalidate_AlternativeImage'): # RegionType, TextLineType, WordType, GlyphType: parent.invalidate_AlternativeImage() elif hasattr(parent, 'parent_object_') and hasattr(parent.parent_object_, 'invalidate_AlternativeImage'): # BorderType: parent.parent_object_.invalidate_AlternativeImage(feature_selector='cropped') self.points = points
[ 4299, 900, 62, 13033, 7, 944, 11, 2173, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5345, 20435, 7514, 14520, 416, 1813, 4731, 13, 198, 220, 220, 220, 10968, 11, 12515, 378, 262, 2560, 338, 7559, 14751, 25, 49788, 5159, 15506, 82, 198, 220, 220, 220, 357, 13893, 484, 481, 423, 587, 48998, 351, 257, 275, 3524, 198, 220, 220, 220, 286, 262, 2180, 7514, 14520, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 468, 35226, 7, 944, 11, 705, 8000, 62, 15252, 62, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 796, 2116, 13, 8000, 62, 15252, 62, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 8000, 11, 705, 259, 12102, 378, 62, 49788, 5159, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17718, 6030, 11, 8255, 13949, 6030, 11, 9678, 6030, 11, 27949, 746, 6030, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 13, 259, 12102, 378, 62, 49788, 5159, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 468, 35226, 7, 8000, 11, 705, 8000, 62, 15252, 62, 11537, 290, 468, 35226, 7, 8000, 13, 8000, 62, 15252, 62, 11, 705, 259, 12102, 378, 62, 49788, 5159, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15443, 6030, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 13, 8000, 62, 15252, 44807, 259, 12102, 378, 62, 49788, 5159, 7, 30053, 62, 19738, 273, 11639, 19915, 1496, 11537, 198, 220, 220, 220, 2116, 13, 13033, 796, 2173, 198 ]
2.651079
278
"""This module provides functions that make sure environment to be compatible with RLlib. If Rllib is not used, please directly use the wrapper in comm_channel.py.""" import numpy as np from pettingzoo.utils.conversions import to_parallel_wrapper from pettingzoo.utils.wrappers import AssertOutOfBoundsWrapper, OrderEnforcingWrapper from ray.rllib.env import PettingZooEnv from ray.rllib.env.wrappers.pettingzoo_env import ParallelPettingZooEnv from supersuit import pad_action_space_v0, pad_observations_v0 from comm_channel import ParallelCommWrapper, CommWrapper def main_comm_env(base_env, comm_dict): """Wrap the communication channel into Pettingzoo main environment, and padding the environment.""" return comm_env def main_env(base_env): """Padding the environment.""" return env def parallel_comm_env(base_env, comm_dict): """Wrap the communication channel into Pettingzoo parallel environment, and padding the environment.""" return comm_env def parallel_env(base_env): """Padding the parallel environment.""" return env
[ 37811, 1212, 8265, 3769, 5499, 326, 787, 1654, 2858, 284, 307, 11670, 351, 45715, 8019, 13, 1002, 371, 297, 571, 318, 407, 973, 11, 3387, 198, 12942, 306, 779, 262, 29908, 287, 725, 62, 17620, 13, 9078, 526, 15931, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 4273, 889, 89, 2238, 13, 26791, 13, 1102, 47178, 1330, 284, 62, 1845, 29363, 62, 48553, 198, 6738, 4273, 889, 89, 2238, 13, 26791, 13, 29988, 11799, 1330, 2195, 861, 7975, 5189, 33, 3733, 36918, 2848, 11, 8284, 4834, 18766, 36918, 2848, 198, 6738, 26842, 13, 81, 297, 571, 13, 24330, 1330, 4767, 889, 57, 2238, 4834, 85, 198, 6738, 26842, 13, 81, 297, 571, 13, 24330, 13, 29988, 11799, 13, 6449, 889, 89, 2238, 62, 24330, 1330, 42945, 25803, 889, 57, 2238, 4834, 85, 198, 6738, 22754, 5013, 1330, 14841, 62, 2673, 62, 13200, 62, 85, 15, 11, 14841, 62, 672, 3168, 602, 62, 85, 15, 198, 198, 6738, 725, 62, 17620, 1330, 42945, 6935, 36918, 2848, 11, 1520, 36918, 2848, 628, 198, 4299, 1388, 62, 9503, 62, 24330, 7, 8692, 62, 24330, 11, 725, 62, 11600, 2599, 198, 220, 220, 220, 37227, 54, 2416, 262, 6946, 6518, 656, 4767, 889, 89, 2238, 1388, 2858, 11, 290, 24511, 262, 2858, 526, 15931, 198, 220, 220, 220, 1441, 725, 62, 24330, 628, 198, 4299, 1388, 62, 24330, 7, 8692, 62, 24330, 2599, 198, 220, 220, 220, 37227, 47, 26872, 262, 2858, 526, 15931, 198, 220, 220, 220, 1441, 17365, 628, 198, 4299, 10730, 62, 9503, 62, 24330, 7, 8692, 62, 24330, 11, 725, 62, 11600, 2599, 198, 220, 220, 220, 37227, 54, 2416, 262, 6946, 6518, 656, 4767, 889, 89, 2238, 10730, 2858, 11, 290, 24511, 262, 2858, 526, 15931, 198, 220, 220, 220, 1441, 725, 62, 24330, 628, 198, 4299, 10730, 62, 24330, 7, 8692, 62, 24330, 2599, 198, 220, 220, 220, 37227, 47, 26872, 262, 10730, 2858, 526, 15931, 198, 220, 220, 220, 1441, 17365, 628, 628, 198 ]
3.283537
328
import abc import random import string from typing import Generator, Iterable, Mapping, Optional, Tuple
[ 11748, 450, 66, 198, 11748, 4738, 198, 11748, 4731, 198, 6738, 19720, 1330, 35986, 11, 40806, 540, 11, 337, 5912, 11, 32233, 11, 309, 29291, 628, 628, 628 ]
3.892857
28
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Implementations of abstract role interfaces. Test cases can get objects from here via the testbed attribute. The `get_role` method queries the implementation field of an equipment, that should point to something in here. But it could be in another package. """ import abc from .. import importlib from .. import config class BaseRole(metaclass=abc.ABCMeta): """Base, abstract, role for equipment role controllers.""" class SoftwareRole(metaclass=abc.ABCMeta): """Base, abstract, role for software objects. Usually, this is an emulator of some kind.""" def get_role(classpath): """Get a role implementation by its path name.""" return importlib.get_class(classpath, __name__) # vim:ts=4:sw=4:softtabstop=4:smarttab:expandtab:fileencoding=utf-8
[ 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 198, 3546, 26908, 602, 286, 12531, 2597, 20314, 13, 6208, 2663, 460, 651, 5563, 422, 198, 1456, 2884, 262, 1332, 3077, 11688, 13, 383, 4600, 1136, 62, 18090, 63, 2446, 20743, 262, 7822, 198, 3245, 286, 281, 5112, 11, 326, 815, 966, 284, 1223, 287, 994, 13, 887, 340, 714, 307, 198, 259, 1194, 5301, 13, 198, 37811, 198, 198, 11748, 450, 66, 198, 198, 6738, 11485, 1330, 1330, 8019, 198, 6738, 11485, 1330, 4566, 198, 198, 4871, 7308, 47445, 7, 4164, 330, 31172, 28, 39305, 13, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 14881, 11, 12531, 11, 2597, 329, 5112, 2597, 20624, 526, 15931, 628, 198, 4871, 10442, 47445, 7, 4164, 330, 31172, 28, 39305, 13, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 14881, 11, 12531, 11, 2597, 329, 3788, 5563, 13, 628, 220, 220, 220, 19672, 11, 428, 318, 281, 38274, 286, 617, 1611, 526, 15931, 628, 198, 4299, 651, 62, 18090, 7, 4871, 6978, 2599, 198, 220, 220, 220, 37227, 3855, 257, 2597, 7822, 416, 663, 3108, 1438, 526, 15931, 198, 220, 220, 220, 1441, 1330, 8019, 13, 1136, 62, 4871, 7, 4871, 6978, 11, 11593, 3672, 834, 8, 628, 198, 2, 43907, 25, 912, 28, 19, 25, 2032, 28, 19, 25, 4215, 8658, 11338, 28, 19, 25, 27004, 8658, 25, 11201, 392, 8658, 25, 7753, 12685, 7656, 28, 40477, 12, 23, 198 ]
3.594005
367
import brownie YEAR = 86400 * 365
[ 11748, 7586, 494, 198, 198, 56, 17133, 796, 807, 2414, 405, 1635, 21268, 628, 628 ]
2.533333
15
from ta.momentum import rsi if __name__ == "__main__": _rsi14 = rsi(Closes, 14)
[ 6738, 20486, 13, 32542, 298, 388, 1330, 374, 13396, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 4808, 3808, 72, 1415, 796, 374, 13396, 7, 2601, 4629, 11, 1478, 8, 198 ]
2.179487
39
import lib1 as iks
[ 11748, 9195, 16, 355, 1312, 591, 198 ]
2.714286
7
#------------------------------------------------------------------------------ # Copyright (c) 2013, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ import sys from setuptools import setup, find_packages, Extension ext_modules = [ Extension( 'enaml.weakmethod', ['enaml/src/weakmethod.cpp'], language='c++', ), Extension( 'enaml.callableref', ['enaml/src/callableref.cpp'], language='c++', ), Extension( 'enaml.signaling', ['enaml/src/signaling.cpp'], language='c++', ), Extension( 'enaml.core.funchelper', ['enaml/src/funchelper.cpp'], language='c++', ), Extension( 'enaml.colorext', ['enaml/src/colorext.cpp'], language='c++', ), Extension( 'enaml.fontext', ['enaml/src/fontext.cpp'], language='c++', ), Extension( 'enaml.core.dynamicscope', ['enaml/src/dynamicscope.cpp'], language='c++', ), Extension( 'enaml.core.alias', ['enaml/src/alias.cpp'], language='c++', ) ] if sys.platform == 'win32': ext_modules.append( Extension( 'enaml.winutil', ['enaml/src/winutil.cpp'], libraries=['user32', 'gdi32'], language='c++' ) ) setup( name='enaml', version='0.8.8', author='The Nucleic Development Team', author_email='[email protected]', url='https://github.com/nucleic/enaml', description='Declarative DSL for building rich user interfaces in Python', long_description=open('README.md').read(), requires=['atom', 'PyQt', 'ply', 'casuarius'], install_requires=['distribute'], packages=find_packages(), package_data={ 'enaml.applib': ['*.enaml'], 'enaml.stdlib': ['*.enaml'], 'enaml.qt.docking': [ 'dock_images/*.png', 'dock_images/*.py', 'enaml_dock_resources.qrc' ], }, entry_points={'console_scripts': ['enaml-run = enaml.runner:main']}, ext_modules=ext_modules, )
[ 2, 10097, 26171, 198, 2, 15069, 357, 66, 8, 2211, 11, 399, 14913, 291, 7712, 4816, 13, 198, 2, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 40499, 347, 10305, 13789, 13, 198, 2, 198, 2, 383, 1336, 5964, 318, 287, 262, 2393, 27975, 45761, 13, 14116, 11, 9387, 351, 428, 3788, 13, 198, 2, 10097, 26171, 198, 11748, 25064, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 11, 27995, 628, 198, 2302, 62, 18170, 796, 685, 198, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 38695, 24396, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 38695, 24396, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 13345, 540, 5420, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 13345, 540, 5420, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 12683, 4272, 3256, 198, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 12683, 4272, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 7295, 13, 12543, 29232, 525, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 12543, 29232, 525, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 4033, 382, 742, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 4033, 382, 742, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 69, 261, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 69, 261, 5239, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 7295, 13, 67, 4989, 873, 66, 3008, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 67, 4989, 873, 66, 3008, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 7295, 13, 26011, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 26011, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 3256, 198, 220, 220, 220, 1267, 198, 60, 628, 198, 361, 25064, 13, 24254, 6624, 705, 5404, 2624, 10354, 198, 220, 220, 220, 1070, 62, 18170, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27995, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 5404, 22602, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 268, 43695, 14, 10677, 14, 5404, 22602, 13, 20322, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12782, 28, 17816, 7220, 2624, 3256, 705, 70, 10989, 2624, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 268, 43695, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 23, 13, 23, 3256, 198, 220, 220, 220, 1772, 11639, 464, 399, 14913, 291, 7712, 4816, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 82, 535, 349, 4835, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 77, 14913, 291, 14, 268, 43695, 3256, 198, 220, 220, 220, 6764, 11639, 37835, 283, 876, 32643, 329, 2615, 5527, 2836, 20314, 287, 11361, 3256, 198, 220, 220, 220, 890, 62, 11213, 28, 9654, 10786, 15675, 11682, 13, 9132, 27691, 961, 22784, 198, 220, 220, 220, 4433, 28, 17816, 37696, 3256, 705, 20519, 48, 83, 3256, 705, 2145, 3256, 705, 66, 27345, 19897, 6, 4357, 198, 220, 220, 220, 2721, 62, 47911, 28, 17816, 17080, 4163, 6, 4357, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 5301, 62, 7890, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 1324, 8019, 10354, 37250, 24620, 268, 43695, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 19282, 8019, 10354, 37250, 24620, 268, 43695, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 13, 39568, 13, 67, 8629, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 67, 735, 62, 17566, 15211, 13, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 67, 735, 62, 17566, 15211, 13, 9078, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 268, 43695, 62, 67, 735, 62, 37540, 13, 80, 6015, 6, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 5726, 62, 13033, 34758, 6, 41947, 62, 46521, 10354, 37250, 268, 43695, 12, 5143, 796, 551, 43695, 13, 16737, 25, 12417, 20520, 5512, 198, 220, 220, 220, 1070, 62, 18170, 28, 2302, 62, 18170, 11, 198, 8, 198 ]
2.224138
1,044
__author__='administrator' # -*- coding:utf-8 -*- import unittest import time # if __name__=="__main__": # unittest.main() # tester=Test() # tester.setUp() # tester.test01() # tester.test02() # tester.test03() # tester.tearDown()
[ 834, 9800, 834, 11639, 39081, 12392, 6, 201, 198, 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 201, 198, 11748, 555, 715, 395, 201, 198, 11748, 640, 201, 198, 201, 198, 2, 611, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 201, 198, 2, 220, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 201, 198, 2, 220, 220, 220, 220, 256, 7834, 28, 14402, 3419, 201, 198, 2, 220, 220, 220, 220, 256, 7834, 13, 2617, 4933, 3419, 201, 198, 2, 220, 220, 220, 220, 256, 7834, 13, 9288, 486, 3419, 201, 198, 2, 220, 220, 220, 220, 256, 7834, 13, 9288, 2999, 3419, 201, 198, 2, 220, 220, 220, 220, 256, 7834, 13, 9288, 3070, 3419, 201, 198, 2, 220, 220, 220, 220, 256, 7834, 13, 83, 451, 8048, 3419 ]
1.970803
137
from scipy import fftpack, ndimage, signal import numpy as np import threading #from scipy._lib._version import NumpyVersion _rfft_mt_safe = True # (NumpyVersion(np.__version__) >= '1.9.0.dev-e24486e') _rfft_lock = threading.Lock() import lenstronomy.Util.kernel_util as kernel_util import lenstronomy.Util.util as util import lenstronomy.Util.image_util as image_util from lenstronomy.Util.package_util import exporter export, __all__ = exporter() @export class PixelKernelConvolution(object): """ class to compute convolutions for a given pixelized kernel (fft, grid) """ def __init__(self, kernel, convolution_type='fft_static'): """ :param kernel: 2d array, convolution kernel :param convolution_type: string, 'fft', 'grid', 'fft_static' mode of 2d convolution """ self._kernel = kernel if convolution_type not in ['fft', 'grid', 'fft_static']: raise ValueError('convolution_type %s not supported!' % convolution_type) self._type = convolution_type self._pre_computed = False def pixel_kernel(self, num_pix=None): """ access pixelated kernel :param num_pix: size of returned kernel (odd number per axis). If None, return the original kernel. :return: pixel kernel centered """ if num_pix is not None: return kernel_util.cut_psf(self._kernel, num_pix) return self._kernel def copy_transpose(self): """ :return: copy of the class with kernel set to the transpose of original one """ return PixelKernelConvolution(self._kernel.T, convolution_type=self._type) def convolution2d(self, image): """ :param image: 2d array (image) to be convolved :return: fft convolution """ if self._type == 'fft': image_conv = signal.fftconvolve(image, self._kernel, mode='same') elif self._type == 'fft_static': image_conv = self._static_fft(image, mode='same') elif self._type == 'grid': image_conv = signal.convolve2d(image, self._kernel, mode='same') else: raise ValueError('convolution_type %s not supported!' % self._type) return image_conv def _static_fft(self, image, mode='same'): """ scipy fft convolution with saved static fft kernel :param image: 2d numpy array to be convolved :return: """ in1 = image in1 = np.asarray(in1) if self._pre_computed is False: self._s1, self._s2, self._complex_result, self._shape, self._fshape, self._fslice, self._sp2 = self._static_pre_compute(image) self._pre_computed = True s1, s2, complex_result, shape, fshape, fslice, sp2 = self._s1, self._s2, self._complex_result, self._shape, self._fshape, self._fslice, self._sp2 #if in1.ndim == in2.ndim == 0: # scalar inputs # return in1 * in2 #elif not in1.ndim == in2.ndim: # raise ValueError("in1 and in2 should have the same dimensionality") #elif in1.size == 0 or in2.size == 0: # empty arrays # return np.array([]) # Check that input sizes are compatible with 'valid' mode #if _inputs_swap_needed(mode, s1, s2): # Convolution is commutative; order doesn't have any effect on output # only applicable for 'valid' mode # in1, s1, in2, s2 = in2, s2, in1, s1 # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make # sure we only call rfftn/irfftn from one thread at a time. if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)): try: sp1 = np.fft.rfftn(in1, fshape) ret = (np.fft.irfftn(sp1 * sp2, fshape)[fslice].copy()) finally: if not _rfft_mt_safe: _rfft_lock.release() else: # If we're here, it's either because we need a complex result, or we # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and # is already in use by another thread). In either case, use the # (threadsafe but slower) SciPy complex-FFT routines instead. sp1 = fftpack.fftn(in1, fshape) ret = fftpack.ifftn(sp1 * sp2)[fslice].copy() if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": return _centered(ret, s1) elif mode == "valid": return _centered(ret, s1 - s2 + 1) else: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.") def _static_pre_compute(self, image): """ pre-compute Fourier transformed kernel and shape quantities to speed up convolution :param image: 2d numpy array :return: """ in1 = image in2 = self._kernel s1 = np.array(in1.shape) s2 = np.array(in2.shape) complex_result = (np.issubdtype(in1.dtype, np.complexfloating) or np.issubdtype(in2.dtype, np.complexfloating)) shape = s1 + s2 - 1 # Check that input sizes are compatible with 'valid' mode # if _inputs_swap_needed(mode, s1, s2): # Convolution is commutative; order doesn't have any effect on output # only applicable for 'valid' mode # in1, s1, in2, s2 = in2, s2, in1, s1 # Speed up FFT by padding to optimal size for FFTPACK fshape = [fftpack.helper.next_fast_len(int(d)) for d in shape] fslice = tuple([slice(0, int(sz)) for sz in shape]) # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make # sure we only call rfftn/irfftn from one thread at a time. if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)): try: sp2 = np.fft.rfftn(in2, fshape) finally: if not _rfft_mt_safe: _rfft_lock.release() else: # If we're here, it's either because we need a complex result, or we # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and # is already in use by another thread). In either case, use the # (threadsafe but slower) SciPy complex-FFT routines instead. sp2 = fftpack.fftn(in2, fshape) return s1, s2, complex_result, shape, fshape, fslice, sp2 def re_size_convolve(self, image_low_res, image_high_res=None): """ :param image_high_res: supersampled image/model to be convolved on a regular pixel grid :return: convolved and re-sized image """ return self.convolution2d(image_low_res) @export class SubgridKernelConvolution(object): """ class to compute the convolution on a supersampled grid with partial convolution computed on the regular grid """ def __init__(self, kernel_supersampled, supersampling_factor, supersampling_kernel_size=None, convolution_type='fft_static'): """ :param kernel_supersampled: kernel in supersampled pixels :param supersampling_factor: supersampling factor relative to the image pixel grid :param supersampling_kernel_size: number of pixels (in units of the image pixels) that are convolved with the supersampled kernel """ n_high = len(kernel_supersampled) self._supersampling_factor = supersampling_factor numPix = int(n_high / self._supersampling_factor) #if self._supersampling_factor % 2 == 0: # self._kernel = kernel_util.averaging_even_kernel(kernel_supersampled, self._supersampling_factor) #else: # self._kernel = util.averaging(kernel_supersampled, numGrid=n_high, numPix=numPix) if supersampling_kernel_size is None: kernel_low_res, kernel_high_res = np.zeros((3, 3)), kernel_supersampled self._low_res_convolution = False else: kernel_low_res, kernel_high_res = kernel_util.split_kernel(kernel_supersampled, supersampling_kernel_size, self._supersampling_factor) self._low_res_convolution = True self._low_res_conv = PixelKernelConvolution(kernel_low_res, convolution_type=convolution_type) self._high_res_conv = PixelKernelConvolution(kernel_high_res, convolution_type=convolution_type) def convolution2d(self, image): """ :param image: 2d array (high resoluton image) to be convolved and re-sized :return: convolved image """ image_high_res_conv = self._high_res_conv.convolution2d(image) image_resized_conv = image_util.re_size(image_high_res_conv, self._supersampling_factor) if self._low_res_convolution is True: image_resized = image_util.re_size(image, self._supersampling_factor) image_resized_conv += self._low_res_conv.convolution2d(image_resized) return image_resized_conv def re_size_convolve(self, image_low_res, image_high_res): """ :param image_high_res: supersampled image/model to be convolved on a regular pixel grid :return: convolved and re-sized image """ image_high_res_conv = self._high_res_conv.convolution2d(image_high_res) image_resized_conv = image_util.re_size(image_high_res_conv, self._supersampling_factor) if self._low_res_convolution is True: image_resized_conv += self._low_res_conv.convolution2d(image_low_res) return image_resized_conv @export class MultiGaussianConvolution(object): """ class to perform a convolution consisting of multiple 2d Gaussians This is aimed to lead to a speed-up without significant loss of accuracy do to the simplified convolution kernel relative to a pixelized kernel. """ def __init__(self, sigma_list, fraction_list, pixel_scale, supersampling_factor=1, supersampling_convolution=False, truncation=2): """ :param sigma_list: list of std value of Gaussian kernel :param fraction_list: fraction of flux to be convoled with each Gaussian kernel :param pixel_scale: scale of pixel width (to convert sigmas into units of pixels) :param truncation: float. Truncate the filter at this many standard deviations. Default is 4.0. """ self._num_gaussians = len(sigma_list) self._sigmas_scaled = np.array(sigma_list) / pixel_scale if supersampling_convolution is True: self._sigmas_scaled *= supersampling_factor self._fraction_list = fraction_list / np.sum(fraction_list) assert len(self._sigmas_scaled) == len(self._fraction_list) self._truncation = truncation self._pixel_scale = pixel_scale self._supersampling_factor = supersampling_factor self._supersampling_convolution = supersampling_convolution def convolution2d(self, image): """ 2d convolution :param image: 2d numpy array, image to be convolved :return: convolved image, 2d numpy array """ image_conv = None for i in range(self._num_gaussians): if image_conv is None: image_conv = ndimage.filters.gaussian_filter(image, self._sigmas_scaled[i], mode='nearest', truncate=self._truncation) * self._fraction_list[i] else: image_conv += ndimage.filters.gaussian_filter(image, self._sigmas_scaled[i], mode='nearest', truncate=self._truncation) * self._fraction_list[i] return image_conv def re_size_convolve(self, image_low_res, image_high_res): """ :param image_high_res: supersampled image/model to be convolved on a regular pixel grid :return: convolved and re-sized image """ if self._supersampling_convolution is True: image_high_res_conv = self.convolution2d(image_high_res) image_resized_conv = image_util.re_size(image_high_res_conv, self._supersampling_factor) else: image_resized_conv = self.convolution2d(image_low_res) return image_resized_conv def pixel_kernel(self, num_pix): """ computes a pixelized kernel from the MGE parameters :param num_pix: int, size of kernel (odd number per axis) :return: pixel kernel centered """ from lenstronomy.LightModel.Profiles.gaussian import MultiGaussian mg = MultiGaussian() x, y = util.make_grid(numPix=num_pix, deltapix=self._pixel_scale) kernel = mg.function(x, y, amp=self._fraction_list, sigma=self._sigmas_scaled) kernel = util.array2image(kernel) return kernel / np.sum(kernel) @export class FWHMGaussianConvolution(object): """ uses a two-dimensional Gaussian function with same FWHM of given kernel as approximation """ def __init__(self, kernel, truncation=4): """ :param kernel: 2d kernel :param truncation: sigma scaling of kernel truncation """ fwhm = kernel_util.fwhm_kernel(kernel) self._sigma = util.fwhm2sigma(fwhm) self._truncation = truncation def convolution2d(self, image): """ 2d convolution :param image: 2d numpy array, image to be convolved :return: convolved image, 2d numpy array """ image_conv = ndimage.filters.gaussian_filter(image, self._sigma, mode='nearest', truncate=self._truncation) return image_conv @export class MGEConvolution(object): """ approximates a 2d kernel with an azimuthal Multi-Gaussian expansion """ def __init__(self, kernel, pixel_scale, order=1): """ :param kernel: 2d convolution kernel (centered, odd axis number) :param order: order of Multi-Gaussian Expansion """ #kernel_util.fwhm_kernel(kernel) amps, sigmas, norm = kernel_util.mge_kernel(kernel, order=order) # make instance o MultiGaussian convolution kernel self._mge_conv = MultiGaussianConvolution(sigma_list=sigmas*pixel_scale, fraction_list=np.array(amps) / np.sum(amps), pixel_scale=pixel_scale, truncation=4) self._kernel = kernel # store difference between MGE approximation and real kernel def convolution2d(self, image): """ :param image: :return: """ return self._mge_conv.convolution2d(image) def kernel_difference(self): """ :return: difference between true kernel and MGE approximation """ kernel_mge = self._mge_conv.pixel_kernel(num_pix=len(self._kernel)) return self._kernel - kernel_mge
[ 6738, 629, 541, 88, 1330, 277, 701, 8002, 11, 299, 67, 9060, 11, 6737, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4704, 278, 198, 2, 6738, 629, 541, 88, 13557, 8019, 13557, 9641, 1330, 399, 32152, 14815, 198, 62, 81, 487, 83, 62, 16762, 62, 21230, 796, 6407, 220, 1303, 357, 45, 32152, 14815, 7, 37659, 13, 834, 9641, 834, 8, 18189, 705, 16, 13, 24, 13, 15, 13, 7959, 12, 68, 1731, 34251, 68, 11537, 198, 62, 81, 487, 83, 62, 5354, 796, 4704, 278, 13, 25392, 3419, 198, 198, 11748, 18896, 301, 1313, 9145, 13, 18274, 346, 13, 33885, 62, 22602, 355, 9720, 62, 22602, 198, 11748, 18896, 301, 1313, 9145, 13, 18274, 346, 13, 22602, 355, 7736, 198, 11748, 18896, 301, 1313, 9145, 13, 18274, 346, 13, 9060, 62, 22602, 355, 2939, 62, 22602, 198, 198, 6738, 18896, 301, 1313, 9145, 13, 18274, 346, 13, 26495, 62, 22602, 1330, 1033, 4337, 198, 39344, 11, 11593, 439, 834, 796, 1033, 4337, 3419, 628, 198, 198, 31, 39344, 198, 4871, 11349, 42, 7948, 3103, 85, 2122, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1398, 284, 24061, 3063, 14191, 329, 257, 1813, 17465, 1143, 9720, 357, 487, 83, 11, 10706, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9720, 11, 3063, 2122, 62, 4906, 11639, 487, 83, 62, 12708, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9720, 25, 362, 67, 7177, 11, 3063, 2122, 9720, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3063, 2122, 62, 4906, 25, 4731, 11, 705, 487, 83, 3256, 705, 25928, 3256, 705, 487, 83, 62, 12708, 6, 4235, 286, 362, 67, 3063, 2122, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 33885, 796, 9720, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3063, 2122, 62, 4906, 407, 287, 37250, 487, 83, 3256, 705, 25928, 3256, 705, 487, 83, 62, 12708, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 42946, 2122, 62, 4906, 4064, 82, 407, 4855, 13679, 4064, 3063, 2122, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4906, 796, 3063, 2122, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3866, 62, 785, 17128, 796, 10352, 628, 220, 220, 220, 825, 17465, 62, 33885, 7, 944, 11, 997, 62, 79, 844, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1895, 17465, 515, 9720, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 997, 62, 79, 844, 25, 2546, 286, 4504, 9720, 357, 5088, 1271, 583, 16488, 737, 1002, 6045, 11, 1441, 262, 2656, 9720, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 17465, 9720, 19254, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 997, 62, 79, 844, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9720, 62, 22602, 13, 8968, 62, 862, 69, 7, 944, 13557, 33885, 11, 997, 62, 79, 844, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 33885, 628, 220, 220, 220, 825, 4866, 62, 7645, 3455, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 4866, 286, 262, 1398, 351, 9720, 900, 284, 262, 1007, 3455, 286, 2656, 530, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11349, 42, 7948, 3103, 85, 2122, 7, 944, 13557, 33885, 13, 51, 11, 3063, 2122, 62, 4906, 28, 944, 13557, 4906, 8, 628, 220, 220, 220, 825, 3063, 2122, 17, 67, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 362, 67, 7177, 357, 9060, 8, 284, 307, 3063, 5634, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 277, 701, 3063, 2122, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 4906, 6624, 705, 487, 83, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 42946, 796, 6737, 13, 487, 83, 42946, 6442, 7, 9060, 11, 2116, 13557, 33885, 11, 4235, 11639, 31642, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 4906, 6624, 705, 487, 83, 62, 12708, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 42946, 796, 2116, 13557, 12708, 62, 487, 83, 7, 9060, 11, 4235, 11639, 31642, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 4906, 6624, 705, 25928, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 42946, 796, 6737, 13, 42946, 6442, 17, 67, 7, 9060, 11, 2116, 13557, 33885, 11, 4235, 11639, 31642, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 42946, 2122, 62, 4906, 4064, 82, 407, 4855, 13679, 4064, 2116, 13557, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 62, 42946, 628, 220, 220, 220, 825, 4808, 12708, 62, 487, 83, 7, 944, 11, 2939, 11, 4235, 11639, 31642, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 629, 541, 88, 277, 701, 3063, 2122, 351, 7448, 9037, 277, 701, 9720, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 362, 67, 299, 32152, 7177, 284, 307, 3063, 5634, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 287, 16, 796, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 287, 16, 796, 45941, 13, 292, 18747, 7, 259, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 3866, 62, 785, 17128, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 82, 16, 11, 2116, 13557, 82, 17, 11, 2116, 13557, 41887, 62, 20274, 11, 2116, 13557, 43358, 11, 2116, 13557, 69, 43358, 11, 2116, 13557, 69, 48369, 11, 2116, 13557, 2777, 17, 796, 2116, 13557, 12708, 62, 3866, 62, 5589, 1133, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3866, 62, 785, 17128, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 264, 16, 11, 264, 17, 11, 3716, 62, 20274, 11, 5485, 11, 277, 43358, 11, 277, 48369, 11, 599, 17, 796, 2116, 13557, 82, 16, 11, 2116, 13557, 82, 17, 11, 2116, 13557, 41887, 62, 20274, 11, 2116, 13557, 43358, 11, 2116, 13557, 69, 43358, 11, 2116, 13557, 69, 48369, 11, 2116, 13557, 2777, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 287, 16, 13, 358, 320, 6624, 287, 17, 13, 358, 320, 6624, 657, 25, 220, 1303, 16578, 283, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 1441, 287, 16, 1635, 287, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 417, 361, 407, 287, 16, 13, 358, 320, 6624, 287, 17, 13, 358, 320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 5298, 11052, 12331, 7203, 259, 16, 290, 287, 17, 815, 423, 262, 976, 15793, 1483, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 417, 361, 287, 16, 13, 7857, 6624, 657, 393, 287, 17, 13, 7857, 6624, 657, 25, 220, 1303, 6565, 26515, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 12962, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 5128, 10620, 389, 11670, 351, 705, 12102, 6, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 4808, 15414, 82, 62, 2032, 499, 62, 27938, 7, 14171, 11, 264, 16, 11, 264, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34872, 2122, 318, 725, 315, 876, 26, 1502, 1595, 470, 423, 597, 1245, 319, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 691, 9723, 329, 705, 12102, 6, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 287, 16, 11, 264, 16, 11, 287, 17, 11, 264, 17, 796, 287, 17, 11, 264, 17, 11, 287, 16, 11, 264, 16, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3771, 12, 16, 13, 24, 31835, 20519, 376, 9792, 31878, 389, 407, 14390, 8635, 13, 220, 1114, 4697, 31835, 47, 893, 11, 787, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1654, 356, 691, 869, 374, 487, 34106, 14, 343, 487, 34106, 422, 530, 4704, 379, 257, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3716, 62, 20274, 290, 44104, 81, 487, 83, 62, 16762, 62, 21230, 393, 4808, 81, 487, 83, 62, 5354, 13, 330, 29782, 7, 25101, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 599, 16, 796, 45941, 13, 487, 83, 13, 81, 487, 34106, 7, 259, 16, 11, 277, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 357, 37659, 13, 487, 83, 13, 343, 487, 34106, 7, 2777, 16, 1635, 599, 17, 11, 277, 43358, 38381, 69, 48369, 4083, 30073, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4808, 81, 487, 83, 62, 16762, 62, 21230, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 81, 487, 83, 62, 5354, 13, 20979, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 821, 994, 11, 340, 338, 2035, 780, 356, 761, 257, 3716, 1255, 11, 393, 356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4054, 284, 12831, 4808, 81, 487, 83, 62, 5354, 357, 24815, 374, 487, 34106, 2125, 470, 14390, 8635, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 1541, 287, 779, 416, 1194, 4704, 737, 220, 554, 2035, 1339, 11, 779, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 16663, 21230, 475, 13611, 8, 10286, 20519, 3716, 12, 5777, 51, 31878, 2427, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 599, 16, 796, 277, 701, 8002, 13, 487, 34106, 7, 259, 16, 11, 277, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 277, 701, 8002, 13, 361, 701, 77, 7, 2777, 16, 1635, 599, 17, 38381, 69, 48369, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3716, 62, 20274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 1005, 13, 5305, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 366, 12853, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 366, 31642, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 38050, 7, 1186, 11, 264, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 366, 12102, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 38050, 7, 1186, 11, 264, 16, 532, 264, 17, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 38855, 540, 4235, 9701, 389, 705, 12102, 40264, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 705, 31642, 3256, 393, 705, 12853, 6, 19570, 628, 220, 220, 220, 825, 4808, 12708, 62, 3866, 62, 5589, 1133, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 662, 12, 5589, 1133, 34296, 5277, 14434, 9720, 290, 5485, 17794, 284, 2866, 510, 3063, 2122, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 362, 67, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 287, 16, 796, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 287, 17, 796, 2116, 13557, 33885, 198, 220, 220, 220, 220, 220, 220, 220, 264, 16, 796, 45941, 13, 18747, 7, 259, 16, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 17, 796, 45941, 13, 18747, 7, 259, 17, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3716, 62, 20274, 796, 357, 37659, 13, 747, 549, 67, 4906, 7, 259, 16, 13, 67, 4906, 11, 45941, 13, 41887, 48679, 803, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 747, 549, 67, 4906, 7, 259, 17, 13, 67, 4906, 11, 45941, 13, 41887, 48679, 803, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 264, 16, 1343, 264, 17, 532, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 5128, 10620, 389, 11670, 351, 705, 12102, 6, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 4808, 15414, 82, 62, 2032, 499, 62, 27938, 7, 14171, 11, 264, 16, 11, 264, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34872, 2122, 318, 725, 315, 876, 26, 1502, 1595, 470, 423, 597, 1245, 319, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 691, 9723, 329, 705, 12102, 6, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 287, 16, 11, 264, 16, 11, 287, 17, 11, 264, 17, 796, 287, 17, 11, 264, 17, 11, 287, 16, 11, 264, 16, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8729, 510, 376, 9792, 416, 24511, 284, 16586, 2546, 329, 18402, 7250, 8120, 198, 220, 220, 220, 220, 220, 220, 220, 277, 43358, 796, 685, 487, 83, 8002, 13, 2978, 525, 13, 19545, 62, 7217, 62, 11925, 7, 600, 7, 67, 4008, 329, 288, 287, 5485, 60, 198, 220, 220, 220, 220, 220, 220, 220, 277, 48369, 796, 46545, 26933, 48369, 7, 15, 11, 493, 7, 82, 89, 4008, 329, 264, 89, 287, 5485, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3771, 12, 16, 13, 24, 31835, 20519, 376, 9792, 31878, 389, 407, 14390, 8635, 13, 220, 1114, 4697, 31835, 47, 893, 11, 787, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1654, 356, 691, 869, 374, 487, 34106, 14, 343, 487, 34106, 422, 530, 4704, 379, 257, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3716, 62, 20274, 290, 44104, 81, 487, 83, 62, 16762, 62, 21230, 393, 4808, 81, 487, 83, 62, 5354, 13, 330, 29782, 7, 25101, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 599, 17, 796, 45941, 13, 487, 83, 13, 81, 487, 34106, 7, 259, 17, 11, 277, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4808, 81, 487, 83, 62, 16762, 62, 21230, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 81, 487, 83, 62, 5354, 13, 20979, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 821, 994, 11, 340, 338, 2035, 780, 356, 761, 257, 3716, 1255, 11, 393, 356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4054, 284, 12831, 4808, 81, 487, 83, 62, 5354, 357, 24815, 374, 487, 34106, 2125, 470, 14390, 8635, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 1541, 287, 779, 416, 1194, 4704, 737, 220, 554, 2035, 1339, 11, 779, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 16663, 21230, 475, 13611, 8, 10286, 20519, 3716, 12, 5777, 51, 31878, 2427, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 599, 17, 796, 277, 701, 8002, 13, 487, 34106, 7, 259, 17, 11, 277, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 264, 16, 11, 264, 17, 11, 3716, 62, 20274, 11, 5485, 11, 277, 43358, 11, 277, 48369, 11, 599, 17, 628, 220, 220, 220, 825, 302, 62, 7857, 62, 42946, 6442, 7, 944, 11, 2939, 62, 9319, 62, 411, 11, 2939, 62, 8929, 62, 411, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 62, 8929, 62, 411, 25, 22754, 321, 10137, 2939, 14, 19849, 284, 307, 3063, 5634, 319, 257, 3218, 17465, 10706, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3063, 5634, 290, 302, 12, 13982, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 42946, 2122, 17, 67, 7, 9060, 62, 9319, 62, 411, 8, 628, 198, 31, 39344, 198, 4871, 3834, 25928, 42, 7948, 3103, 85, 2122, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1398, 284, 24061, 262, 3063, 2122, 319, 257, 22754, 321, 10137, 10706, 351, 13027, 3063, 2122, 29231, 319, 262, 3218, 10706, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9720, 62, 37330, 364, 321, 10137, 11, 22754, 321, 11347, 62, 31412, 11, 22754, 321, 11347, 62, 33885, 62, 7857, 28, 14202, 11, 3063, 2122, 62, 4906, 11639, 487, 83, 62, 12708, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9720, 62, 37330, 364, 321, 10137, 25, 9720, 287, 22754, 321, 10137, 17848, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 22754, 321, 11347, 62, 31412, 25, 22754, 321, 11347, 5766, 3585, 284, 262, 2939, 17465, 10706, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 22754, 321, 11347, 62, 33885, 62, 7857, 25, 1271, 286, 17848, 357, 259, 4991, 286, 262, 2939, 17848, 8, 326, 389, 3063, 5634, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 22754, 321, 10137, 9720, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 8929, 796, 18896, 7, 33885, 62, 37330, 364, 321, 10137, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 796, 22754, 321, 11347, 62, 31412, 198, 220, 220, 220, 220, 220, 220, 220, 997, 47, 844, 796, 493, 7, 77, 62, 8929, 1220, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 4064, 362, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 2116, 13557, 33885, 796, 9720, 62, 22602, 13, 8770, 3039, 62, 10197, 62, 33885, 7, 33885, 62, 37330, 364, 321, 10137, 11, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17772, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 2116, 13557, 33885, 796, 7736, 13, 8770, 3039, 7, 33885, 62, 37330, 364, 321, 10137, 11, 997, 41339, 28, 77, 62, 8929, 11, 997, 47, 844, 28, 22510, 47, 844, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 22754, 321, 11347, 62, 33885, 62, 7857, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 9319, 62, 411, 11, 9720, 62, 8929, 62, 411, 796, 45941, 13, 9107, 418, 19510, 18, 11, 513, 36911, 9720, 62, 37330, 364, 321, 10137, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9319, 62, 411, 62, 42946, 2122, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 9319, 62, 411, 11, 9720, 62, 8929, 62, 411, 796, 9720, 62, 22602, 13, 35312, 62, 33885, 7, 33885, 62, 37330, 364, 321, 10137, 11, 22754, 321, 11347, 62, 33885, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9319, 62, 411, 62, 42946, 2122, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9319, 62, 411, 62, 42946, 796, 11349, 42, 7948, 3103, 85, 2122, 7, 33885, 62, 9319, 62, 411, 11, 3063, 2122, 62, 4906, 28, 42946, 2122, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8929, 62, 411, 62, 42946, 796, 11349, 42, 7948, 3103, 85, 2122, 7, 33885, 62, 8929, 62, 411, 11, 3063, 2122, 62, 4906, 28, 42946, 2122, 62, 4906, 8, 628, 220, 220, 220, 825, 3063, 2122, 17, 67, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 362, 67, 7177, 357, 8929, 581, 349, 32894, 2939, 8, 284, 307, 3063, 5634, 290, 302, 12, 13982, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3063, 5634, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 8929, 62, 411, 62, 42946, 796, 2116, 13557, 8929, 62, 411, 62, 42946, 13, 42946, 2122, 17, 67, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 411, 1143, 62, 42946, 796, 2939, 62, 22602, 13, 260, 62, 7857, 7, 9060, 62, 8929, 62, 411, 62, 42946, 11, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 9319, 62, 411, 62, 42946, 2122, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 411, 1143, 796, 2939, 62, 22602, 13, 260, 62, 7857, 7, 9060, 11, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 411, 1143, 62, 42946, 15853, 2116, 13557, 9319, 62, 411, 62, 42946, 13, 42946, 2122, 17, 67, 7, 9060, 62, 411, 1143, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 62, 411, 1143, 62, 42946, 628, 220, 220, 220, 825, 302, 62, 7857, 62, 42946, 6442, 7, 944, 11, 2939, 62, 9319, 62, 411, 11, 2939, 62, 8929, 62, 411, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 62, 8929, 62, 411, 25, 22754, 321, 10137, 2939, 14, 19849, 284, 307, 3063, 5634, 319, 257, 3218, 17465, 10706, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3063, 5634, 290, 302, 12, 13982, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 8929, 62, 411, 62, 42946, 796, 2116, 13557, 8929, 62, 411, 62, 42946, 13, 42946, 2122, 17, 67, 7, 9060, 62, 8929, 62, 411, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 411, 1143, 62, 42946, 796, 2939, 62, 22602, 13, 260, 62, 7857, 7, 9060, 62, 8929, 62, 411, 62, 42946, 11, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 9319, 62, 411, 62, 42946, 2122, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 411, 1143, 62, 42946, 15853, 2116, 13557, 9319, 62, 411, 62, 42946, 13, 42946, 2122, 17, 67, 7, 9060, 62, 9319, 62, 411, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 62, 411, 1143, 62, 42946, 628, 198, 31, 39344, 198, 4871, 15237, 35389, 31562, 3103, 85, 2122, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1398, 284, 1620, 257, 3063, 2122, 17747, 286, 3294, 362, 67, 12822, 1046, 1547, 198, 220, 220, 220, 770, 318, 8998, 284, 1085, 284, 257, 2866, 12, 929, 1231, 2383, 2994, 286, 9922, 466, 284, 262, 27009, 3063, 2122, 9720, 198, 220, 220, 220, 3585, 284, 257, 17465, 1143, 9720, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 264, 13495, 62, 4868, 11, 13390, 62, 4868, 11, 17465, 62, 9888, 11, 22754, 321, 11347, 62, 31412, 28, 16, 11, 22754, 321, 11347, 62, 42946, 2122, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 341, 28, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 264, 13495, 62, 4868, 25, 1351, 286, 14367, 1988, 286, 12822, 31562, 9720, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13390, 62, 4868, 25, 13390, 286, 28462, 284, 307, 3063, 45342, 351, 1123, 12822, 31562, 9720, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 17465, 62, 9888, 25, 5046, 286, 17465, 9647, 357, 1462, 10385, 43237, 5356, 656, 4991, 286, 17848, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 40122, 341, 25, 12178, 13, 833, 19524, 378, 262, 8106, 379, 428, 867, 3210, 47060, 13, 198, 220, 220, 220, 220, 220, 220, 220, 15161, 318, 604, 13, 15, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22510, 62, 4908, 1046, 1547, 796, 18896, 7, 82, 13495, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 82, 328, 5356, 62, 1416, 3021, 796, 45941, 13, 18747, 7, 82, 13495, 62, 4868, 8, 1220, 17465, 62, 9888, 198, 220, 220, 220, 220, 220, 220, 220, 611, 22754, 321, 11347, 62, 42946, 2122, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 82, 328, 5356, 62, 1416, 3021, 1635, 28, 22754, 321, 11347, 62, 31412, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 69, 7861, 62, 4868, 796, 13390, 62, 4868, 1220, 45941, 13, 16345, 7, 69, 7861, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 944, 13557, 82, 328, 5356, 62, 1416, 3021, 8, 6624, 18896, 7, 944, 13557, 69, 7861, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2213, 19524, 341, 796, 40122, 341, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 32515, 62, 9888, 796, 17465, 62, 9888, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 796, 22754, 321, 11347, 62, 31412, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37330, 364, 321, 11347, 62, 42946, 2122, 796, 22754, 321, 11347, 62, 42946, 2122, 628, 220, 220, 220, 825, 3063, 2122, 17, 67, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 362, 67, 3063, 2122, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 362, 67, 299, 32152, 7177, 11, 2939, 284, 307, 3063, 5634, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3063, 5634, 2939, 11, 362, 67, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 42946, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 944, 13557, 22510, 62, 4908, 1046, 1547, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 62, 42946, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 42946, 796, 299, 67, 9060, 13, 10379, 1010, 13, 4908, 31562, 62, 24455, 7, 9060, 11, 2116, 13557, 82, 328, 5356, 62, 1416, 3021, 58, 72, 4357, 4235, 11639, 710, 12423, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 378, 28, 944, 13557, 2213, 19524, 341, 8, 1635, 2116, 13557, 69, 7861, 62, 4868, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 42946, 15853, 299, 67, 9060, 13, 10379, 1010, 13, 4908, 31562, 62, 24455, 7, 9060, 11, 2116, 13557, 82, 328, 5356, 62, 1416, 3021, 58, 72, 4357, 4235, 11639, 710, 12423, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 378, 28, 944, 13557, 2213, 19524, 341, 8, 1635, 2116, 13557, 69, 7861, 62, 4868, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 62, 42946, 628, 220, 220, 220, 825, 302, 62, 7857, 62, 42946, 6442, 7, 944, 11, 2939, 62, 9319, 62, 411, 11, 2939, 62, 8929, 62, 411, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 62, 8929, 62, 411, 25, 22754, 321, 10137, 2939, 14, 19849, 284, 307, 3063, 5634, 319, 257, 3218, 17465, 10706, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3063, 5634, 290, 302, 12, 13982, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 37330, 364, 321, 11347, 62, 42946, 2122, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 8929, 62, 411, 62, 42946, 796, 2116, 13, 42946, 2122, 17, 67, 7, 9060, 62, 8929, 62, 411, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 411, 1143, 62, 42946, 796, 2939, 62, 22602, 13, 260, 62, 7857, 7, 9060, 62, 8929, 62, 411, 62, 42946, 11, 2116, 13557, 37330, 364, 321, 11347, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 411, 1143, 62, 42946, 796, 2116, 13, 42946, 2122, 17, 67, 7, 9060, 62, 9319, 62, 411, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 62, 411, 1143, 62, 42946, 628, 220, 220, 220, 825, 17465, 62, 33885, 7, 944, 11, 997, 62, 79, 844, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 552, 1769, 257, 17465, 1143, 9720, 422, 262, 337, 8264, 10007, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 997, 62, 79, 844, 25, 493, 11, 2546, 286, 9720, 357, 5088, 1271, 583, 16488, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 17465, 9720, 19254, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 422, 18896, 301, 1313, 9145, 13, 15047, 17633, 13, 15404, 2915, 13, 4908, 31562, 1330, 15237, 35389, 31562, 198, 220, 220, 220, 220, 220, 220, 220, 10527, 796, 15237, 35389, 31562, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 796, 7736, 13, 15883, 62, 25928, 7, 22510, 47, 844, 28, 22510, 62, 79, 844, 11, 1619, 44335, 844, 28, 944, 13557, 32515, 62, 9888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 796, 10527, 13, 8818, 7, 87, 11, 331, 11, 20766, 28, 944, 13557, 69, 7861, 62, 4868, 11, 264, 13495, 28, 944, 13557, 82, 328, 5356, 62, 1416, 3021, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 796, 7736, 13, 18747, 17, 9060, 7, 33885, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9720, 1220, 45941, 13, 16345, 7, 33885, 8, 628, 198, 31, 39344, 198, 4871, 376, 12418, 20474, 64, 31562, 3103, 85, 2122, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3544, 257, 734, 12, 19577, 12822, 31562, 2163, 351, 976, 376, 12418, 44, 286, 1813, 9720, 355, 40874, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9720, 11, 40122, 341, 28, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9720, 25, 362, 67, 9720, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 40122, 341, 25, 264, 13495, 20796, 286, 9720, 40122, 341, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1929, 76, 796, 9720, 62, 22602, 13, 69, 1929, 76, 62, 33885, 7, 33885, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 82, 13495, 796, 7736, 13, 69, 1929, 76, 17, 82, 13495, 7, 69, 1929, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2213, 19524, 341, 796, 40122, 341, 628, 220, 220, 220, 825, 3063, 2122, 17, 67, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 362, 67, 3063, 2122, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 362, 67, 299, 32152, 7177, 11, 2939, 284, 307, 3063, 5634, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3063, 5634, 2939, 11, 362, 67, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 42946, 796, 299, 67, 9060, 13, 10379, 1010, 13, 4908, 31562, 62, 24455, 7, 9060, 11, 2116, 13557, 82, 13495, 11, 4235, 11639, 710, 12423, 3256, 40122, 378, 28, 944, 13557, 2213, 19524, 341, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 62, 42946, 628, 198, 31, 39344, 198, 4871, 34809, 2943, 261, 85, 2122, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5561, 26748, 257, 362, 67, 9720, 351, 281, 35560, 320, 1071, 282, 15237, 12, 35389, 31562, 7118, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9720, 11, 17465, 62, 9888, 11, 1502, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9720, 25, 362, 67, 3063, 2122, 9720, 357, 38050, 11, 5629, 16488, 1271, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1502, 25, 1502, 286, 15237, 12, 35389, 31562, 25042, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33885, 62, 22602, 13, 69, 1929, 76, 62, 33885, 7, 33885, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45796, 11, 43237, 5356, 11, 2593, 796, 9720, 62, 22602, 13, 76, 469, 62, 33885, 7, 33885, 11, 1502, 28, 2875, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 4554, 267, 15237, 35389, 31562, 3063, 2122, 9720, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 76, 469, 62, 42946, 796, 15237, 35389, 31562, 3103, 85, 2122, 7, 82, 13495, 62, 4868, 28, 82, 328, 5356, 9, 32515, 62, 9888, 11, 13390, 62, 4868, 28, 37659, 13, 18747, 7, 9430, 8, 1220, 45941, 13, 16345, 7, 9430, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17465, 62, 9888, 28, 32515, 62, 9888, 11, 40122, 341, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 33885, 796, 9720, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 3580, 1022, 337, 8264, 40874, 290, 1103, 9720, 628, 220, 220, 220, 825, 3063, 2122, 17, 67, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 76, 469, 62, 42946, 13, 42946, 2122, 17, 67, 7, 9060, 8, 628, 220, 220, 220, 825, 9720, 62, 26069, 1945, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3580, 1022, 2081, 9720, 290, 337, 8264, 40874, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 76, 469, 796, 2116, 13557, 76, 469, 62, 42946, 13, 32515, 62, 33885, 7, 22510, 62, 79, 844, 28, 11925, 7, 944, 13557, 33885, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 33885, 532, 9720, 62, 76, 469, 198 ]
2.278181
6,618
import plistlib filename = "/Applications/Safari.app/Contents/Info.plist" info = plistlib.readPlist(filename) info["CFBundleGetInfoString"] version = info["CFBundleShortVersionString"] print version print info["CFBundleURLTypes"] print info["CFBundleURLTypes"][0] print info["CFBundleURLTypes"][0]["CFBundleURLSchemes"] print info["CFBundleURLTypes"][0]["CFBundleURLSchemes"][0] filename = "/Library/Preferences/com.apple.loginwindow.plist" plistinfo = plistlib.readPlist(filename)
[ 11748, 458, 396, 8019, 198, 34345, 796, 12813, 41995, 14, 50, 1878, 2743, 13, 1324, 14, 15842, 14, 12360, 13, 489, 396, 1, 198, 10951, 796, 458, 396, 8019, 13, 961, 3646, 396, 7, 34345, 8, 198, 10951, 14692, 22495, 33, 31249, 3855, 12360, 10100, 8973, 198, 198, 9641, 796, 220, 7508, 14692, 22495, 33, 31249, 16438, 14815, 10100, 8973, 198, 4798, 2196, 198, 198, 4798, 7508, 14692, 22495, 33, 31249, 21886, 31431, 8973, 198, 198, 4798, 7508, 14692, 22495, 33, 31249, 21886, 31431, 1, 7131, 15, 60, 198, 198, 4798, 7508, 14692, 22495, 33, 31249, 21886, 31431, 1, 7131, 15, 7131, 1, 22495, 33, 31249, 4261, 6561, 2395, 6880, 8973, 198, 198, 4798, 7508, 14692, 22495, 33, 31249, 21886, 31431, 1, 7131, 15, 7131, 1, 22495, 33, 31249, 4261, 6561, 2395, 6880, 1, 7131, 15, 60, 628, 198, 34345, 796, 12813, 23377, 14, 36698, 4972, 14, 785, 13, 18040, 13, 38235, 17497, 13, 489, 396, 1, 198, 489, 396, 10951, 796, 458, 396, 8019, 13, 961, 3646, 396, 7, 34345, 8, 198 ]
2.83237
173
# Generated by Django 4.0 on 2022-03-28 09:59 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 604, 13, 15, 319, 33160, 12, 3070, 12, 2078, 7769, 25, 3270, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.966667
30
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib.auth.decorators import login_required from django.contrib import messages from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.db.models import Q from django.http import Http404 from django.shortcuts import render, get_object_or_404, redirect from .forms import QuestionForm, AnswerForm from .models import Category, Question, Answer, SendNotification # Create your views here. @login_required() @login_required() @login_required() @login_required() @login_required() @login_required()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 42625, 14208, 13, 7295, 13, 79, 363, 20900, 1330, 31525, 20900, 11, 33523, 9876, 11, 7873, 3673, 2025, 46541, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 1195, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 26429, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 651, 62, 15252, 62, 273, 62, 26429, 11, 18941, 198, 6738, 764, 23914, 1330, 18233, 8479, 11, 23998, 8479, 198, 6738, 764, 27530, 1330, 21743, 11, 18233, 11, 23998, 11, 16290, 3673, 2649, 198, 2, 13610, 534, 5009, 994, 13, 628, 628, 198, 31, 38235, 62, 35827, 3419, 628, 198, 31, 38235, 62, 35827, 3419, 628, 198, 31, 38235, 62, 35827, 3419, 628, 198, 31, 38235, 62, 35827, 3419, 628, 198, 31, 38235, 62, 35827, 3419, 628, 628, 198, 31, 38235, 62, 35827, 3419, 198 ]
3.322581
186
#!/usr/bin/env python # -*- coding: utf-8 -*- """ HTTP Protocol Binding implementation. .. autosummary:: :toctree: _http wotpy.protocols.http.handlers wotpy.protocols.http.client wotpy.protocols.http.enums wotpy.protocols.http.server """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 40717, 20497, 38904, 7822, 13, 198, 198, 492, 44619, 388, 6874, 3712, 198, 220, 220, 220, 1058, 1462, 310, 631, 25, 4808, 4023, 628, 220, 220, 220, 266, 313, 9078, 13, 11235, 4668, 82, 13, 4023, 13, 4993, 8116, 198, 220, 220, 220, 266, 313, 9078, 13, 11235, 4668, 82, 13, 4023, 13, 16366, 198, 220, 220, 220, 266, 313, 9078, 13, 11235, 4668, 82, 13, 4023, 13, 268, 5700, 198, 220, 220, 220, 266, 313, 9078, 13, 11235, 4668, 82, 13, 4023, 13, 15388, 198, 37811, 198 ]
2.289474
114
from dwave_networkx.utils import binary_quadratic_model_sampler __all__ = ["maximum_independent_set", "is_independent_set"] @binary_quadratic_model_sampler(1) def maximum_independent_set(G, sampler=None, **sampler_args): """Returns an approximate maximum independent set. Defines a QUBO with ground states corresponding to a maximum independent set and uses the sampler to sample from it. An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A maximum independent set is an independent set of largest possible size. Parameters ---------- G : NetworkX graph sampler A binary quadratic model sampler. A sampler is a process that samples from low energy states in models defined by an Ising equation or a Quadratic Unconstrained Binary Optimization Problem (QUBO). A sampler is expected to have a 'sample_qubo' and 'sample_ising' method. A sampler is expected to return an iterable of samples, in order of increasing energy. If no sampler is provided, one must be provided using the `set_default_sampler` function. sampler_args Additional keyword parameters are passed to the sampler. Returns ------- indep_nodes : list List of nodes that the form a maximum independent set, as determined by the given sampler. Examples -------- >>> G = nx.path_graph(5) >>> dnx.maximum_independent_set(G, sampler) [0, 2, 4] Notes ----- Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the quality of the returned sample. https://en.wikipedia.org/wiki/Independent_set_(graph_theory) https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization References ---------- .. [AL] Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, Volume 2, Article 5. """ # We assume that the sampler can handle an unstructured QUBO problem, so let's set one up. # Let us define the largest independent set to be S. # For each node n in the graph, we assign a boolean variable v_n, where v_n = 1 when n # is in S and v_n = 0 otherwise. # We call the matrix defining our QUBO problem Q. # On the diagnonal, we assign the linear bias for each node to be -1. This means that each # node is biased towards being in S # On the off diagnonal, we assign the off-diagonal terms of Q to be 2. Thus, if both # nodes are in S, the overall energy is increased by 2. Q = {(node, node): -1 for node in G} Q.update({edge: 2 for edge in G.edges}) # use the sampler to find low energy states response = sampler.sample_qubo(Q, **sampler_args) # we want the lowest energy sample sample = next(iter(response)) # nodes that are spin up or true are exactly the ones in S. return [node for node in sample if sample[node] > 0] def is_independent_set(G, indep_nodes): """Determines whether the given nodes form an independent set. An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. Parameters ---------- G : NetworkX graph indep_nodes : list List of nodes that the form a maximum independent set, as determined by the given sampler. Returns ------- is_independent : bool True if indep_nodes form an independent set. """ return not bool(G.subgraph(indep_nodes).edges)
[ 6738, 288, 19204, 62, 27349, 87, 13, 26791, 1330, 13934, 62, 421, 41909, 1512, 62, 19849, 62, 37687, 20053, 198, 198, 834, 439, 834, 796, 14631, 47033, 62, 34750, 62, 2617, 1600, 366, 271, 62, 34750, 62, 2617, 8973, 628, 198, 31, 39491, 62, 421, 41909, 1512, 62, 19849, 62, 37687, 20053, 7, 16, 8, 198, 4299, 5415, 62, 34750, 62, 2617, 7, 38, 11, 6072, 20053, 28, 14202, 11, 12429, 37687, 20053, 62, 22046, 2599, 198, 220, 220, 220, 37227, 35561, 281, 27665, 5415, 4795, 900, 13, 628, 220, 220, 220, 2896, 1127, 257, 19604, 8202, 351, 2323, 2585, 11188, 284, 257, 198, 220, 220, 220, 5415, 4795, 900, 290, 3544, 262, 6072, 20053, 284, 6291, 422, 198, 220, 220, 220, 340, 13, 628, 220, 220, 220, 1052, 4795, 900, 318, 257, 900, 286, 13760, 884, 326, 262, 850, 34960, 198, 220, 220, 220, 286, 402, 18268, 416, 777, 13760, 4909, 645, 13015, 13, 317, 5415, 198, 220, 220, 220, 4795, 900, 318, 281, 4795, 900, 286, 4387, 1744, 2546, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 402, 1058, 7311, 55, 4823, 628, 220, 220, 220, 6072, 20053, 198, 220, 220, 220, 220, 220, 220, 220, 317, 13934, 15094, 81, 1512, 2746, 6072, 20053, 13, 317, 6072, 20053, 318, 257, 1429, 326, 198, 220, 220, 220, 220, 220, 220, 220, 8405, 422, 1877, 2568, 2585, 287, 4981, 5447, 416, 281, 1148, 278, 198, 220, 220, 220, 220, 220, 220, 220, 16022, 393, 257, 20648, 81, 1512, 791, 1102, 2536, 1328, 45755, 30011, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 20647, 357, 10917, 8202, 737, 317, 6072, 20053, 318, 2938, 284, 423, 257, 705, 39873, 62, 421, 2127, 6, 198, 220, 220, 220, 220, 220, 220, 220, 290, 705, 39873, 62, 1710, 6, 2446, 13, 317, 6072, 20053, 318, 2938, 284, 1441, 281, 198, 220, 220, 220, 220, 220, 220, 220, 11629, 540, 286, 8405, 11, 287, 1502, 286, 3649, 2568, 13, 1002, 645, 198, 220, 220, 220, 220, 220, 220, 220, 6072, 20053, 318, 2810, 11, 530, 1276, 307, 2810, 1262, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 2617, 62, 12286, 62, 37687, 20053, 63, 2163, 13, 628, 220, 220, 220, 6072, 20053, 62, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 15891, 21179, 10007, 389, 3804, 284, 262, 6072, 20053, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 773, 538, 62, 77, 4147, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 7343, 286, 13760, 326, 262, 1296, 257, 5415, 4795, 900, 11, 355, 198, 220, 220, 220, 220, 220, 220, 5295, 416, 262, 1813, 6072, 20053, 13, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 402, 796, 299, 87, 13, 6978, 62, 34960, 7, 20, 8, 198, 220, 220, 220, 13163, 288, 77, 87, 13, 47033, 62, 34750, 62, 2617, 7, 38, 11, 6072, 20053, 8, 198, 220, 220, 220, 685, 15, 11, 362, 11, 604, 60, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 3409, 489, 364, 416, 511, 3450, 743, 407, 1441, 262, 16586, 4610, 13, 770, 198, 220, 220, 220, 2163, 857, 407, 2230, 284, 6216, 262, 3081, 286, 262, 4504, 198, 220, 220, 220, 6291, 13, 628, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 40566, 62, 2617, 41052, 34960, 62, 1169, 652, 8, 628, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 4507, 41909, 1512, 62, 403, 1102, 2536, 1328, 62, 39491, 62, 40085, 1634, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 1847, 60, 15257, 11, 317, 13, 357, 4967, 737, 1148, 278, 49971, 286, 867, 28498, 2761, 13, 198, 220, 220, 220, 220, 220, 220, 8880, 3183, 287, 23123, 11, 14701, 362, 11, 10172, 642, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 775, 7048, 326, 262, 6072, 20053, 460, 5412, 281, 555, 7249, 1522, 19604, 8202, 1917, 11, 523, 1309, 338, 900, 530, 510, 13, 198, 220, 220, 220, 1303, 3914, 514, 8160, 262, 4387, 4795, 900, 284, 307, 311, 13, 198, 220, 220, 220, 1303, 1114, 1123, 10139, 299, 287, 262, 4823, 11, 356, 8333, 257, 25131, 7885, 410, 62, 77, 11, 810, 410, 62, 77, 796, 352, 618, 299, 198, 220, 220, 220, 1303, 318, 287, 311, 290, 410, 62, 77, 796, 657, 4306, 13, 198, 220, 220, 220, 1303, 775, 869, 262, 17593, 16215, 674, 19604, 8202, 1917, 1195, 13, 198, 220, 220, 220, 1303, 1550, 262, 6689, 20996, 11, 356, 8333, 262, 14174, 10690, 329, 1123, 10139, 284, 307, 532, 16, 13, 770, 1724, 326, 1123, 198, 220, 220, 220, 1303, 10139, 318, 21925, 3371, 852, 287, 311, 198, 220, 220, 220, 1303, 1550, 262, 572, 6689, 20996, 11, 356, 8333, 262, 572, 12, 10989, 27923, 2846, 286, 1195, 284, 307, 362, 13, 6660, 11, 611, 1111, 198, 220, 220, 220, 1303, 13760, 389, 287, 311, 11, 262, 4045, 2568, 318, 3220, 416, 362, 13, 198, 220, 220, 220, 1195, 796, 1391, 7, 17440, 11, 10139, 2599, 532, 16, 329, 10139, 287, 402, 92, 198, 220, 220, 220, 1195, 13, 19119, 15090, 14907, 25, 362, 329, 5743, 287, 402, 13, 276, 3212, 30072, 628, 220, 220, 220, 1303, 779, 262, 6072, 20053, 284, 1064, 1877, 2568, 2585, 198, 220, 220, 220, 2882, 796, 6072, 20053, 13, 39873, 62, 421, 2127, 7, 48, 11, 12429, 37687, 20053, 62, 22046, 8, 628, 220, 220, 220, 1303, 356, 765, 262, 9016, 2568, 6291, 198, 220, 220, 220, 6291, 796, 1306, 7, 2676, 7, 26209, 4008, 628, 220, 220, 220, 1303, 13760, 326, 389, 7906, 510, 393, 2081, 389, 3446, 262, 3392, 287, 311, 13, 198, 220, 220, 220, 1441, 685, 17440, 329, 10139, 287, 6291, 611, 6291, 58, 17440, 60, 1875, 657, 60, 628, 198, 4299, 318, 62, 34750, 62, 2617, 7, 38, 11, 773, 538, 62, 77, 4147, 2599, 198, 220, 220, 220, 37227, 35, 13221, 274, 1771, 262, 1813, 13760, 1296, 281, 4795, 900, 13, 628, 220, 220, 220, 1052, 4795, 900, 318, 257, 900, 286, 13760, 884, 326, 262, 850, 34960, 198, 220, 220, 220, 286, 402, 18268, 416, 777, 13760, 4909, 645, 13015, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 402, 1058, 7311, 55, 4823, 628, 220, 220, 220, 773, 538, 62, 77, 4147, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 7343, 286, 13760, 326, 262, 1296, 257, 5415, 4795, 900, 11, 355, 198, 220, 220, 220, 220, 220, 220, 5295, 416, 262, 1813, 6072, 20053, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 318, 62, 34750, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 611, 773, 538, 62, 77, 4147, 1296, 281, 4795, 900, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 407, 20512, 7, 38, 13, 7266, 34960, 7, 521, 538, 62, 77, 4147, 737, 276, 3212, 8, 198 ]
3.020202
1,188
#!/usr/bin/env python3 """ Launcher for AoC 2016 puzzles. Handles puzzle selection and puzzle input. """ import day_1_no_time_for_a_taxicab as d1 import day_2_bathroom_security as d2 if __name__ == '__main__': AVAILABLE_PUZZLES = {1: run_taxicab, 2:run_keypad} print('Welcome to inifinity! Try an available solution to AoC 2016 puzzles in', \ list(AVAILABLE_PUZZLES.keys()), 'or enter EOF to quit!') while True: puzzle = None try: puzzle = int(input('Please select a puzzle: ')) if puzzle not in AVAILABLE_PUZZLES: print('That puzzle\'s solution is not available! Try one of', \ list(AVAILABLE_PUZZLES.keys())) puzzle = None else: AVAILABLE_PUZZLES[puzzle]() except ValueError: print('Please input an integer!') except EOFError: print('\nThanks for playing, happy holidays!') break
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 37811, 198, 46182, 2044, 329, 27378, 34, 1584, 24367, 13, 198, 12885, 829, 15027, 6356, 290, 15027, 5128, 13, 198, 37811, 198, 198, 11748, 1110, 62, 16, 62, 3919, 62, 2435, 62, 1640, 62, 64, 62, 19290, 291, 397, 355, 288, 16, 198, 11748, 1110, 62, 17, 62, 37648, 3823, 62, 12961, 355, 288, 17, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 317, 11731, 4146, 17534, 62, 5105, 30148, 28378, 796, 1391, 16, 25, 1057, 62, 19290, 291, 397, 11, 362, 25, 5143, 62, 2539, 15636, 92, 198, 220, 220, 220, 3601, 10786, 14618, 284, 287, 361, 6269, 0, 9993, 281, 1695, 4610, 284, 27378, 34, 1584, 24367, 287, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 7, 10116, 32, 4146, 17534, 62, 5105, 30148, 28378, 13, 13083, 3419, 828, 705, 273, 3802, 412, 19238, 284, 11238, 0, 11537, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15027, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15027, 796, 493, 7, 15414, 10786, 5492, 2922, 257, 15027, 25, 705, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15027, 407, 287, 317, 11731, 4146, 17534, 62, 5105, 30148, 28378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2504, 15027, 43054, 82, 4610, 318, 407, 1695, 0, 9993, 530, 286, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 7, 10116, 32, 4146, 17534, 62, 5105, 30148, 28378, 13, 13083, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15027, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 11731, 4146, 17534, 62, 5105, 30148, 28378, 58, 79, 9625, 60, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 5492, 5128, 281, 18253, 0, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 412, 19238, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 9690, 329, 2712, 11, 3772, 17122, 0, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 220, 198 ]
2.143478
460
from django import forms from models import Student
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 4981, 1330, 13613, 198, 197, 197, 197 ]
3.928571
14
from django.db import models from django.contrib.auth.models import User
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 201, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 201, 198, 201, 198, 201, 198 ]
2.925926
27
from _thread import * import threading import socket import json # team: PWA # member: 0870508 Tyas van de Spree # member: 0966770 Maarten de Goede # class: DINF2 BYTE_SIZE = 1024 TEAMNAME = "PWA" # programmers with attitude CLASSNAME = "DINF2" TEAMMATESTUDENTNR = '' STUDENTNR = input("Please provide your student number") if STUDENTNR == "0870508" or STUDENTNR == "": if STUDENTNR == "": STUDENTNR = "0870508" TEAMMATESTUDENTNR = '0966770' elif STUDENTNR == '0966770': TEAMMATESTUDENTNR = '0870508' SERVERIP = '145.24.238.191' MYIP = socket.gethostbyname(socket.gethostbyname("localhost")) peerIp = input("Please provide the ip of the peer client you wish to connect with. If left blank will run as both clients") if peerIp == '': peerIp = MYIP print_lock = threading.Lock() # create a peerListenerSocket object serverSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) peerConnectionSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) messageReceived = False if __name__ == '__main__': Main()
[ 6738, 4808, 16663, 1330, 1635, 198, 11748, 4704, 278, 198, 11748, 17802, 198, 11748, 33918, 198, 198, 2, 1074, 25, 350, 15543, 198, 2, 2888, 25, 8487, 2154, 33042, 7039, 292, 5719, 390, 1338, 631, 198, 2, 2888, 25, 7769, 28933, 2154, 6669, 23996, 390, 1514, 18654, 198, 2, 1398, 25, 360, 1268, 37, 17, 198, 198, 17513, 9328, 62, 33489, 796, 28119, 198, 198, 9328, 2390, 20608, 796, 366, 47, 15543, 1, 220, 1303, 24867, 351, 9408, 198, 198, 31631, 20608, 796, 366, 35, 1268, 37, 17, 1, 198, 198, 9328, 2390, 41636, 6465, 8322, 3525, 24723, 796, 10148, 198, 2257, 8322, 3525, 24723, 796, 5128, 7203, 5492, 2148, 534, 3710, 1271, 4943, 198, 361, 49348, 3525, 24723, 6624, 366, 2919, 2154, 33042, 1, 393, 49348, 3525, 24723, 6624, 366, 1298, 198, 220, 220, 220, 611, 49348, 3525, 24723, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 49348, 3525, 24723, 796, 366, 2919, 2154, 33042, 1, 198, 220, 220, 220, 33536, 41636, 6465, 8322, 3525, 24723, 796, 705, 2931, 28933, 2154, 6, 198, 417, 361, 49348, 3525, 24723, 6624, 705, 2931, 28933, 2154, 10354, 198, 220, 220, 220, 33536, 41636, 6465, 8322, 3525, 24723, 796, 705, 2919, 2154, 33042, 6, 198, 198, 35009, 5959, 4061, 796, 705, 18781, 13, 1731, 13, 23721, 13, 26492, 6, 198, 198, 26708, 4061, 796, 17802, 13, 1136, 4774, 1525, 3672, 7, 44971, 13, 1136, 4774, 1525, 3672, 7203, 36750, 48774, 198, 198, 33350, 40, 79, 796, 5128, 7203, 5492, 2148, 262, 20966, 286, 262, 12720, 5456, 345, 4601, 284, 2018, 351, 13, 1002, 1364, 9178, 481, 1057, 355, 1111, 7534, 4943, 198, 361, 12720, 40, 79, 6624, 10148, 25, 198, 220, 220, 220, 12720, 40, 79, 796, 17615, 4061, 198, 198, 4798, 62, 5354, 796, 4704, 278, 13, 25392, 3419, 198, 198, 2, 2251, 257, 12720, 33252, 39105, 2134, 198, 15388, 39105, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 33350, 32048, 39105, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 198, 20500, 3041, 6471, 796, 10352, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 8774, 3419, 198 ]
2.75
384
from typing import Callable, Optional from airflow.decorators.base import task_decorator_factory from astro.sql.operators.sql_dataframe import SqlDataframeOperator def dataframe( python_callable: Optional[Callable] = None, multiple_outputs: Optional[bool] = None, conn_id: str = "", database: Optional[str] = None, schema: Optional[str] = None, warehouse: Optional[str] = None, task_id: Optional[str] = None, identifiers_as_lower: Optional[bool] = True, ): """ This function allows a user to run python functions in Airflow but with the huge benefit that SQL files will automatically be turned into dataframes and resulting dataframes can automatically used in astro.sql functions """ param_map = { "conn_id": conn_id, "database": database, "schema": schema, "warehouse": warehouse, "identifiers_as_lower": identifiers_as_lower, } if task_id: param_map["task_id"] = task_id return task_decorator_factory( python_callable=python_callable, multiple_outputs=multiple_outputs, decorated_operator_class=SqlDataframeOperator, # type: ignore **param_map, )
[ 6738, 19720, 1330, 4889, 540, 11, 32233, 198, 198, 6738, 45771, 13, 12501, 273, 2024, 13, 8692, 1330, 4876, 62, 12501, 273, 1352, 62, 69, 9548, 198, 198, 6738, 6468, 305, 13, 25410, 13, 3575, 2024, 13, 25410, 62, 7890, 14535, 1330, 311, 13976, 6601, 14535, 18843, 1352, 628, 198, 4299, 1366, 14535, 7, 198, 220, 220, 220, 21015, 62, 13345, 540, 25, 32233, 58, 14134, 540, 60, 796, 6045, 11, 198, 220, 220, 220, 3294, 62, 22915, 82, 25, 32233, 58, 30388, 60, 796, 6045, 11, 198, 220, 220, 220, 48260, 62, 312, 25, 965, 796, 366, 1600, 198, 220, 220, 220, 6831, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 32815, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 20933, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 4876, 62, 312, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 42814, 62, 292, 62, 21037, 25, 32233, 58, 30388, 60, 796, 6407, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 3578, 257, 2836, 284, 1057, 21015, 5499, 287, 3701, 11125, 475, 351, 262, 3236, 4414, 326, 16363, 3696, 198, 220, 220, 220, 481, 6338, 307, 2900, 656, 1366, 37805, 290, 7186, 1366, 37805, 460, 6338, 973, 287, 6468, 305, 13, 25410, 5499, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5772, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37043, 62, 312, 1298, 48260, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 48806, 1298, 6831, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 2611, 1298, 32815, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1574, 4803, 1298, 20933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 738, 13350, 62, 292, 62, 21037, 1298, 42814, 62, 292, 62, 21037, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 611, 4876, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 8899, 14692, 35943, 62, 312, 8973, 796, 4876, 62, 312, 198, 220, 220, 220, 1441, 4876, 62, 12501, 273, 1352, 62, 69, 9548, 7, 198, 220, 220, 220, 220, 220, 220, 220, 21015, 62, 13345, 540, 28, 29412, 62, 13345, 540, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3294, 62, 22915, 82, 28, 48101, 62, 22915, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24789, 62, 46616, 62, 4871, 28, 50, 13976, 6601, 14535, 18843, 1352, 11, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 17143, 62, 8899, 11, 198, 220, 220, 220, 1267, 198 ]
2.685268
448
from django.urls import path from . import views urlpatterns = [ path(r'classroom/', views.classroom, name='classroom'), path(r'synopsis/', views.UnitGroupListView.as_view(), name='synopsis'), path(r'unit/problems/<int:pk>/', views.unit_problems, name='view-problems'), path(r'unit/tex/<int:pk>/', views.unit_tex, name='view-tex'), path(r'unit/solutions/<int:pk>/', views.unit_solutions, name='view-solutions'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 764, 1330, 5009, 198, 198, 6371, 33279, 82, 796, 685, 198, 197, 6978, 7, 81, 6, 4871, 3823, 14, 3256, 5009, 13, 4871, 3823, 11, 1438, 11639, 4871, 3823, 33809, 198, 197, 6978, 7, 81, 338, 2047, 24608, 14, 3256, 5009, 13, 26453, 13247, 8053, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 28869, 24608, 33809, 198, 197, 6978, 7, 81, 6, 20850, 14, 1676, 22143, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 5009, 13, 20850, 62, 1676, 22143, 11, 1438, 11639, 1177, 12, 1676, 22143, 33809, 198, 197, 6978, 7, 81, 6, 20850, 14, 16886, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 5009, 13, 20850, 62, 16886, 11, 1438, 11639, 1177, 12, 16886, 33809, 198, 197, 6978, 7, 81, 6, 20850, 14, 82, 14191, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 5009, 13, 20850, 62, 82, 14191, 11, 1438, 11639, 1177, 12, 82, 14191, 33809, 198, 60, 198 ]
2.536145
166
import numpy as np from annoy import AnnoyIndex import yaml import os import threading import queue import time model_location = '/data/model_ha'
[ 11748, 299, 32152, 355, 45941, 198, 6738, 10072, 1330, 5506, 726, 15732, 198, 11748, 331, 43695, 198, 11748, 28686, 198, 198, 11748, 4704, 278, 198, 11748, 16834, 198, 11748, 640, 198, 198, 19849, 62, 24886, 796, 31051, 7890, 14, 19849, 62, 3099, 6 ]
3.418605
43
# -*- coding: utf-8 -*- ''' Returners Directory '''
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 7061, 6, 198, 13615, 364, 27387, 198, 7061, 6, 198 ]
2.166667
24
#----------------------------------------------------------------------------# # Imports #----------------------------------------------------------------------------# from flask import Flask, render_template, request, jsonify, redirect, url_for import random from datetime import datetime from flask_cors import CORS from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import math # from flask.ext.sqlalchemy import SQLAlchemy import logging from logging import Formatter, FileHandler from forms import * import os from Aaron_Lib import * import io # Imports the Google Cloud client library from google.cloud import speech from google.cloud.speech import enums from google.cloud.speech import types # Instantiates a client client = speech.SpeechClient() #----------------------------------------------------------------------------# # App Config. #----------------------------------------------------------------------------# app = Flask(__name__) CORS(app) app.config.from_object('config') #db = SQLAlchemy(app) # Automatically tear down SQLAlchemy. ''' @app.teardown_request def shutdown_session(exception=None): db_session.remove() ''' # Login required decorator. ''' def login_required(test): @wraps(test) def wrap(*args, **kwargs): if 'logged_in' in session: return test(*args, **kwargs) else: flash('You need to login first.') return redirect(url_for('login')) return wrap ''' # Create list of calls calls = [ { 'time': str(datetime.now().strftime('%Y-%m-%d %H:%M:%S')), 'text': 'Help!', 'sentiment': 6, 'confidence': 8 } ] #----------------------------------------------------------------------------# # Controllers. #----------------------------------------------------------------------------# @app.route('/') @app.route('/about') @app.route('/login') @app.route('/register') @app.route('/forgot') @app.route('/recorder') @app.route('/recorder_mobile') # Error handlers. @app.errorhandler(500) @app.errorhandler(404) if not app.debug: file_handler = FileHandler('error.log') file_handler.setFormatter( Formatter('%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]') ) app.logger.setLevel(logging.INFO) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.info('errors') # List for request from client @app.route('/api/newcall', methods = ['POST']) #----------------------------------------------------------------------------# # Launch. #----------------------------------------------------------------------------# # Default port: # if __name__ == '__main__': # app.run() # Or specify port manually: if __name__ == '__main__': port = int(os.environ.get('PORT', 3000)) app.run(host='0.0.0.0', port=port)
[ 2, 10097, 10541, 2, 198, 2, 1846, 3742, 198, 2, 10097, 10541, 2, 198, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 2581, 11, 33918, 1958, 11, 18941, 11, 19016, 62, 1640, 198, 11748, 4738, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 42903, 62, 66, 669, 1330, 327, 20673, 198, 6738, 410, 5067, 31837, 3681, 13, 85, 5067, 31837, 3681, 1330, 11352, 3681, 5317, 6377, 37702, 9107, 198, 11748, 10688, 198, 2, 422, 42903, 13, 2302, 13, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 11748, 18931, 198, 6738, 18931, 1330, 5178, 1436, 11, 9220, 25060, 198, 6738, 5107, 1330, 1635, 198, 11748, 28686, 198, 6738, 12139, 62, 25835, 1330, 1635, 198, 198, 11748, 33245, 198, 198, 2, 1846, 3742, 262, 3012, 10130, 5456, 5888, 198, 6738, 23645, 13, 17721, 1330, 4046, 198, 6738, 23645, 13, 17721, 13, 45862, 1330, 551, 5700, 198, 6738, 23645, 13, 17721, 13, 45862, 1330, 3858, 198, 198, 2, 2262, 17096, 689, 257, 5456, 198, 16366, 796, 4046, 13, 5248, 3055, 11792, 3419, 198, 198, 2, 10097, 10541, 2, 198, 2, 2034, 17056, 13, 198, 2, 10097, 10541, 2, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 34, 20673, 7, 1324, 8, 198, 1324, 13, 11250, 13, 6738, 62, 15252, 10786, 11250, 11537, 198, 2, 9945, 796, 16363, 2348, 26599, 7, 1324, 8, 198, 198, 2, 17406, 4142, 11626, 866, 16363, 2348, 26599, 13, 198, 7061, 6, 198, 31, 1324, 13, 660, 446, 593, 62, 25927, 198, 4299, 18325, 62, 29891, 7, 1069, 4516, 28, 14202, 2599, 198, 220, 220, 220, 20613, 62, 29891, 13, 28956, 3419, 198, 7061, 6, 198, 198, 2, 23093, 2672, 11705, 1352, 13, 198, 7061, 6, 198, 4299, 17594, 62, 35827, 7, 9288, 2599, 198, 220, 220, 220, 2488, 29988, 862, 7, 9288, 8, 198, 220, 220, 220, 825, 14441, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 6404, 2004, 62, 259, 6, 287, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1332, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7644, 10786, 1639, 761, 284, 17594, 717, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 38235, 6, 4008, 198, 220, 220, 220, 1441, 14441, 198, 7061, 6, 198, 198, 2, 13610, 1351, 286, 3848, 198, 66, 5691, 796, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2435, 10354, 965, 7, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5239, 10354, 705, 22087, 0, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34086, 3681, 10354, 718, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39745, 10354, 807, 198, 220, 220, 220, 1782, 198, 60, 198, 2, 10097, 10541, 2, 198, 2, 2345, 36667, 13, 198, 2, 10097, 10541, 2, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 10755, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 38235, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 30238, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 1640, 23442, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 8344, 2875, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 8344, 2875, 62, 24896, 11537, 628, 198, 2, 13047, 32847, 13, 628, 198, 31, 1324, 13, 18224, 30281, 7, 4059, 8, 628, 198, 31, 1324, 13, 18224, 30281, 7, 26429, 8, 198, 198, 361, 407, 598, 13, 24442, 25, 198, 220, 220, 220, 2393, 62, 30281, 796, 9220, 25060, 10786, 18224, 13, 6404, 11537, 198, 220, 220, 220, 2393, 62, 30281, 13, 2617, 8479, 1436, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5178, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 4064, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 685, 259, 4064, 7, 6978, 3672, 8, 82, 25, 4, 7, 2815, 23397, 8, 67, 60, 11537, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 598, 13, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 2393, 62, 30281, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 598, 13, 6404, 1362, 13, 2860, 25060, 7, 7753, 62, 30281, 8, 198, 220, 220, 220, 598, 13, 6404, 1362, 13, 10951, 10786, 48277, 11537, 198, 198, 2, 7343, 329, 2581, 422, 5456, 198, 198, 31, 1324, 13, 38629, 10786, 14, 15042, 14, 3605, 13345, 3256, 5050, 796, 37250, 32782, 6, 12962, 198, 2, 10097, 10541, 2, 198, 2, 21225, 13, 198, 2, 10097, 10541, 2, 198, 198, 2, 15161, 2493, 25, 198, 2, 611, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 2, 220, 220, 220, 220, 598, 13, 5143, 3419, 198, 198, 2, 1471, 11986, 2493, 14500, 25, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2493, 796, 493, 7, 418, 13, 268, 2268, 13, 1136, 10786, 15490, 3256, 20343, 4008, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 11639, 15, 13, 15, 13, 15, 13, 15, 3256, 2493, 28, 634, 8, 628 ]
3.134426
915
from typing import List, Dict, Optional from pyspark.sql import DataFrame, Column from spark_auto_mapper.automappers.check_schema_result import CheckSchemaResult class AutoMapperBase: """ Abstract Base class for AutoMappers """ def transform_with_data_frame( self, df: DataFrame, source_df: Optional[DataFrame], keys: List[str] ) -> DataFrame: """ Internal function called by base class to transform the data frame :param df: destination data frame :param source_df: source data frame :param keys: key columns :return data frame after the transform """ # implement in subclasses raise NotImplementedError def get_column_specs(self, source_df: Optional[DataFrame]) -> Dict[str, Column]: """ Gets column specs (Spark expressions) :param source_df: source data frame :return: dictionary of column name, column expression """ raise NotImplementedError def check_schema( self, parent_column: Optional[str], source_df: Optional[DataFrame] ) -> Optional[CheckSchemaResult]: """ Checks the schema :param parent_column: parent column :param source_df: source data frame :return: result of checking schema """ return None
[ 6738, 19720, 1330, 7343, 11, 360, 713, 11, 32233, 198, 198, 6738, 279, 893, 20928, 13, 25410, 1330, 6060, 19778, 11, 29201, 198, 198, 6738, 9009, 62, 23736, 62, 76, 11463, 13, 2306, 296, 46629, 13, 9122, 62, 15952, 2611, 62, 20274, 1330, 6822, 27054, 2611, 23004, 628, 198, 4871, 11160, 44, 11463, 14881, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 7308, 1398, 329, 11160, 44, 46629, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 6121, 62, 4480, 62, 7890, 62, 14535, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 47764, 25, 6060, 19778, 11, 2723, 62, 7568, 25, 32233, 58, 6601, 19778, 4357, 8251, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 1267, 4613, 6060, 19778, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 18628, 2163, 1444, 416, 2779, 1398, 284, 6121, 262, 1366, 5739, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 47764, 25, 10965, 1366, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2723, 62, 7568, 25, 2723, 1366, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8251, 25, 1994, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 1366, 5739, 706, 262, 6121, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3494, 287, 850, 37724, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 651, 62, 28665, 62, 4125, 6359, 7, 944, 11, 2723, 62, 7568, 25, 32233, 58, 6601, 19778, 12962, 4613, 360, 713, 58, 2536, 11, 29201, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 5721, 25274, 357, 4561, 668, 14700, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2723, 62, 7568, 25, 2723, 1366, 5739, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 22155, 286, 5721, 1438, 11, 5721, 5408, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 2198, 62, 15952, 2611, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 2560, 62, 28665, 25, 32233, 58, 2536, 4357, 2723, 62, 7568, 25, 32233, 58, 6601, 19778, 60, 198, 220, 220, 220, 1267, 4613, 32233, 58, 9787, 27054, 2611, 23004, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 262, 32815, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2560, 62, 28665, 25, 2560, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2723, 62, 7568, 25, 2723, 1366, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1255, 286, 10627, 32815, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198 ]
2.65748
508
from bokeh.models import Panel, Tabs from bokeh.io import output_file, show from bokeh.plotting import figure output_file("slider.html") p1 = figure(plot_width=300, plot_height=300) p1.circle([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color="navy", alpha=0.5) tab1 = Panel(child=p1, title="circle") p2 = figure(plot_width=300, plot_height=300) p2.line([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], line_width=3, color="navy", alpha=0.5) tab2 = Panel(child=p2, title="line") tabs = Tabs(tabs=[ tab1, tab2 ]) show(tabs)
[ 6738, 1489, 365, 71, 13, 27530, 1330, 18810, 11, 309, 8937, 198, 6738, 1489, 365, 71, 13, 952, 1330, 5072, 62, 7753, 11, 905, 198, 6738, 1489, 365, 71, 13, 29487, 889, 1330, 3785, 198, 198, 22915, 62, 7753, 7203, 6649, 1304, 13, 6494, 4943, 198, 198, 79, 16, 796, 3785, 7, 29487, 62, 10394, 28, 6200, 11, 7110, 62, 17015, 28, 6200, 8, 198, 79, 16, 13, 45597, 26933, 16, 11, 362, 11, 513, 11, 604, 11, 642, 4357, 685, 21, 11, 767, 11, 362, 11, 604, 11, 642, 4357, 2546, 28, 1238, 11, 3124, 2625, 77, 2830, 1600, 17130, 28, 15, 13, 20, 8, 198, 8658, 16, 796, 18810, 7, 9410, 28, 79, 16, 11, 3670, 2625, 45597, 4943, 198, 198, 79, 17, 796, 3785, 7, 29487, 62, 10394, 28, 6200, 11, 7110, 62, 17015, 28, 6200, 8, 198, 79, 17, 13, 1370, 26933, 16, 11, 362, 11, 513, 11, 604, 11, 642, 4357, 685, 21, 11, 767, 11, 362, 11, 604, 11, 642, 4357, 1627, 62, 10394, 28, 18, 11, 3124, 2625, 77, 2830, 1600, 17130, 28, 15, 13, 20, 8, 198, 8658, 17, 796, 18810, 7, 9410, 28, 79, 17, 11, 3670, 2625, 1370, 4943, 198, 198, 8658, 82, 796, 309, 8937, 7, 8658, 82, 41888, 7400, 16, 11, 7400, 17, 33761, 198, 198, 12860, 7, 8658, 82, 8, 198 ]
2.28125
224
# @return a list of strings, [s1, s2] # test digits = "23" print(Solution().letterCombinations(digits))
[ 220, 220, 220, 1303, 2488, 7783, 257, 1351, 286, 13042, 11, 685, 82, 16, 11, 264, 17, 60, 198, 198, 2, 1332, 198, 12894, 896, 796, 366, 1954, 1, 198, 4798, 7, 46344, 22446, 9291, 20575, 7352, 7, 12894, 896, 4008 ]
2.634146
41
from typing import * import velocyto as vcy
[ 6738, 19720, 1330, 1635, 198, 11748, 11555, 13733, 1462, 355, 410, 948, 628 ]
3.461538
13
from plastron import ldp, ore, rdf from plastron.namespaces import dcterms, dcmitype, ebucore, fabio, pcdm, pcdmuse, premis from plastron.files import LocalFileSource, RepositoryFileSource from PIL import Image # alias the rdflib Namespace ns = pcdm @rdf.object_property('members', pcdm.hasMember) @rdf.object_property('member_of', pcdm.memberOf) @rdf.object_property('files', pcdm.hasFile) @rdf.object_property('related', pcdm.hasRelatedObject) @rdf.object_property('related_of', pcdm.relatedObjectOf) @rdf.data_property('title', dcterms.title) @rdf.rdf_class(pcdm.Object) # recursively create an object and components and that don't yet exist @rdf.object_property('file_of', pcdm.fileOf) @rdf.data_property('mimetype', ebucore.hasMimeType) @rdf.data_property('filename', ebucore.filename) @rdf.data_property('size', premis.hasSize) @rdf.data_property('width', ebucore.width) @rdf.data_property('height', ebucore.height) @rdf.object_property('dcmitype', dcterms.type) @rdf.data_property('title', dcterms.title) @rdf.rdf_class(pcdm.File) @rdf.rdf_class(pcdmuse.PreservationMasterFile) @rdf.rdf_class(pcdmuse.IntermediateFile) @rdf.rdf_class(pcdmuse.ServiceFile) @rdf.rdf_class(pcdmuse.ExtractedText) @rdf.rdf_class(pcdm.Collection) @rdf.data_property('number', fabio.hasSequenceIdentifier) @rdf.rdf_class(fabio.Page) class Page(Object): """One page of an item-level resource""" pass FILE_CLASS_FOR = { '.tif': PreservationMasterFile, '.jpg': IntermediateFile, '.txt': ExtractedText, '.xml': ExtractedText, }
[ 6738, 458, 459, 1313, 1330, 300, 26059, 11, 23751, 11, 374, 7568, 198, 6738, 458, 459, 1313, 13, 14933, 43076, 1330, 288, 310, 263, 907, 11, 288, 11215, 414, 431, 11, 36649, 1229, 382, 11, 7843, 952, 11, 279, 10210, 76, 11, 279, 10210, 76, 1904, 11, 4199, 271, 198, 6738, 458, 459, 1313, 13, 16624, 1330, 10714, 8979, 7416, 11, 1432, 13264, 8979, 7416, 198, 6738, 350, 4146, 1330, 7412, 628, 198, 2, 16144, 262, 374, 67, 2704, 571, 28531, 10223, 198, 5907, 796, 279, 10210, 76, 628, 198, 31, 4372, 69, 13, 15252, 62, 26745, 10786, 30814, 3256, 279, 10210, 76, 13, 10134, 27608, 8, 198, 31, 4372, 69, 13, 15252, 62, 26745, 10786, 19522, 62, 1659, 3256, 279, 10210, 76, 13, 19522, 5189, 8, 198, 31, 4372, 69, 13, 15252, 62, 26745, 10786, 16624, 3256, 279, 10210, 76, 13, 10134, 8979, 8, 198, 31, 4372, 69, 13, 15252, 62, 26745, 10786, 5363, 3256, 279, 10210, 76, 13, 10134, 9819, 10267, 8, 198, 31, 4372, 69, 13, 15252, 62, 26745, 10786, 5363, 62, 1659, 3256, 279, 10210, 76, 13, 5363, 10267, 5189, 8, 198, 31, 4372, 69, 13, 7890, 62, 26745, 10786, 7839, 3256, 288, 310, 263, 907, 13, 7839, 8, 198, 31, 4372, 69, 13, 4372, 69, 62, 4871, 7, 79, 10210, 76, 13, 10267, 8, 628, 220, 220, 220, 1303, 664, 1834, 2280, 2251, 281, 2134, 290, 6805, 290, 326, 836, 470, 1865, 2152, 628, 198, 31, 4372, 69, 13, 15252, 62, 26745, 10786, 7753, 62, 1659, 3256, 279, 10210, 76, 13, 7753, 5189, 8, 198, 31, 4372, 69, 13, 7890, 62, 26745, 10786, 76, 320, 2963, 431, 3256, 36649, 1229, 382, 13, 10134, 44, 524, 6030, 8, 198, 31, 4372, 69, 13, 7890, 62, 26745, 10786, 34345, 3256, 36649, 1229, 382, 13, 34345, 8, 198, 31, 4372, 69, 13, 7890, 62, 26745, 10786, 7857, 3256, 4199, 271, 13, 10134, 10699, 8, 198, 31, 4372, 69, 13, 7890, 62, 26745, 10786, 10394, 3256, 36649, 1229, 382, 13, 10394, 8, 198, 31, 4372, 69, 13, 7890, 62, 26745, 10786, 17015, 3256, 36649, 1229, 382, 13, 17015, 8, 198, 31, 4372, 69, 13, 15252, 62, 26745, 10786, 67, 11215, 414, 431, 3256, 288, 310, 263, 907, 13, 4906, 8, 198, 31, 4372, 69, 13, 7890, 62, 26745, 10786, 7839, 3256, 288, 310, 263, 907, 13, 7839, 8, 198, 31, 4372, 69, 13, 4372, 69, 62, 4871, 7, 79, 10210, 76, 13, 8979, 8, 628, 198, 31, 4372, 69, 13, 4372, 69, 62, 4871, 7, 79, 10210, 76, 1904, 13, 25460, 13208, 18254, 8979, 8, 628, 198, 31, 4372, 69, 13, 4372, 69, 62, 4871, 7, 79, 10210, 76, 1904, 13, 9492, 13857, 8979, 8, 628, 198, 31, 4372, 69, 13, 4372, 69, 62, 4871, 7, 79, 10210, 76, 1904, 13, 16177, 8979, 8, 628, 198, 31, 4372, 69, 13, 4372, 69, 62, 4871, 7, 79, 10210, 76, 1904, 13, 11627, 20216, 8206, 8, 628, 198, 31, 4372, 69, 13, 4372, 69, 62, 4871, 7, 79, 10210, 76, 13, 36307, 8, 628, 198, 31, 4372, 69, 13, 7890, 62, 26745, 10786, 17618, 3256, 7843, 952, 13, 10134, 44015, 594, 33234, 7483, 8, 198, 31, 4372, 69, 13, 4372, 69, 62, 4871, 7, 36434, 952, 13, 9876, 8, 198, 4871, 7873, 7, 10267, 2599, 198, 220, 220, 220, 37227, 3198, 2443, 286, 281, 2378, 12, 5715, 8271, 37811, 198, 220, 220, 220, 1208, 628, 198, 25664, 62, 31631, 62, 13775, 796, 1391, 198, 220, 220, 220, 45302, 49929, 10354, 47805, 18254, 8979, 11, 198, 220, 220, 220, 45302, 9479, 10354, 42540, 8979, 11, 198, 220, 220, 220, 45302, 14116, 10354, 5683, 20216, 8206, 11, 198, 220, 220, 220, 45302, 19875, 10354, 5683, 20216, 8206, 11, 198, 92, 628 ]
2.521036
618
from os import path import json
[ 6738, 28686, 1330, 3108, 198, 11748, 33918, 198 ]
4
8
import numpy as np import gpustats.kernels as kernels import gpustats.codegen as codegen import gpustats.util as util import pycuda.driver as drv from pycuda.gpuarray import GPUArray, to_gpu from pycuda.gpuarray import empty as gpu_empty from pycuda.curandom import rand as curand # reload(kernels) # reload(codegen) cu_module = codegen.get_full_cuda_module() def sample_discrete(densities, logged=False, return_gpuarray=False): """ Takes a categorical sample from the unnormalized univariate densities defined in the rows of 'densities' Parameters --------- densities : ndarray or gpuarray (n, k) logged: boolean indicating whether densities is on the log scale ... Returns ------- indices : ndarray or gpuarray (if return_gpuarray=True) of length n and dtype = int32 """ from gpustats.util import info n, k = densities.shape # prep data if isinstance(densities, GPUArray): if densities.flags.f_contiguous: gpu_densities = util.transpose(densities) else: gpu_densities = densities else: densities = util.prep_ndarray(densities) gpu_densities = to_gpu(densities) # get gpu function cu_func = cu_module.get_function('sample_discrete') # setup GPU data gpu_random = to_gpu(np.asarray(np.random.rand(n), dtype=np.float32)) gpu_dest = gpu_empty(n, dtype=np.int32) dims = np.array([n,k,logged],dtype=np.int32) if info.max_block_threads<1024: x_block_dim = 16 else: x_block_dim = 32 y_block_dim = 16 # setup GPU call block_design = (x_block_dim, y_block_dim, 1) grid_design = (int(n/y_block_dim) + 1, 1) shared_mem = 4 * ( (x_block_dim+1)*y_block_dim + 2 * y_block_dim ) cu_func(gpu_densities, gpu_random, gpu_dest, dims[0], dims[1], dims[2], block=block_design, grid=grid_design, shared=shared_mem) gpu_random.gpudata.free() if return_gpuarray: return gpu_dest else: res = gpu_dest.get() gpu_dest.gpudata.free() return res ## depreciated def sample_discrete_old(in_densities, logged=False, pad=False, return_gpuarray=False): """ Takes a categorical sample from the unnormalized univariate densities defined in the rows of 'densities' Parameters --------- densities : ndarray or gpuarray (n, k) logged: boolean indicating whether densities is on the log scale ... Returns ------- indices : ndarray or gpuarray (if return_gpuarray=True) of length n and dtype = int32 """ if pad: if logged: densities = util.pad_data_mult16(in_densities, fill=1) else: densities = util.pad_data_mult16(in_densities, fill=0) else: densities = in_densities n, k = densities.shape if logged: cu_func = cu_module.get_function('sample_discrete_logged_old') else: cu_func = cu_module.get_function('sample_discrete_old') if isinstance(densities, GPUArray): if densities.flags.f_contiguous: gpu_densities = util.transpose(densities) else: gpu_densities = densities else: densities = util.prep_ndarray(densities) gpu_densities = to_gpu(densities) # setup GPU data #gpu_random = curand(n) gpu_random = to_gpu(np.asarray(np.random.rand(n), dtype=np.float32)) #gpu_dest = to_gpu(np.zeros(n, dtype=np.float32)) gpu_dest = gpu_empty(n, dtype=np.float32) stride = gpu_densities.shape[1] if stride % 2 == 0: stride += 1 dims = np.array([n,k, gpu_densities.shape[1], stride],dtype=np.int32) # optimize design ... grid_design, block_design = _tune_sfm(n, stride, cu_func.num_regs) shared_mem = 4 * (block_design[0] * stride + 1 * block_design[0]) cu_func(gpu_densities, gpu_random, gpu_dest, dims[0], dims[1], dims[2], dims[3], block=block_design, grid=grid_design, shared=shared_mem) gpu_random.gpudata.free() if return_gpuarray: return gpu_dest else: res = gpu_dest.get() gpu_dest.gpudata.free() return res def _tune_sfm(n, stride, func_regs): """ Outputs the 'opimal' block and grid configuration for the sample discrete kernel. """ from gpustats.util import info #info = DeviceInfo() comp_cap = info.compute_cap max_smem = info.shared_mem * 0.8 max_threads = int(info.max_block_threads * 0.5) max_regs = 0.9 * info.max_registers # We want smallest dim possible in x dimsension while # still reading mem correctly if comp_cap[0] == 1: xdim = 16 else: xdim = 32 ydim = 2 while sfm_config_ok(xdim, ydim, stride, func_regs, max_regs, max_smem, max_threads): ydim += 1 ydim -= 1 nblocks = int(n/xdim) + 1 return (nblocks,1), (xdim,ydim,1) if __name__ == '__main__': n = 100 k = 5 dens = np.log(np.abs(np.random.randn(k))) - 200 densities = [dens.copy() for _ in range(n)] dens = np.exp(dens + 200) densities = np.asarray(densities) labels = sample_discrete(densities, logged=True) mu = np.dot(dens / dens.sum(), np.arange(k)) print mu, labels.mean()
[ 11748, 299, 32152, 355, 45941, 198, 198, 11748, 27809, 436, 1381, 13, 74, 44930, 355, 50207, 198, 11748, 27809, 436, 1381, 13, 8189, 5235, 355, 2438, 5235, 198, 11748, 27809, 436, 1381, 13, 22602, 355, 7736, 198, 11748, 12972, 66, 15339, 13, 26230, 355, 1553, 85, 198, 6738, 12972, 66, 15339, 13, 46999, 18747, 1330, 11362, 19182, 11, 284, 62, 46999, 198, 6738, 12972, 66, 15339, 13, 46999, 18747, 1330, 6565, 355, 308, 19944, 62, 28920, 198, 6738, 12972, 66, 15339, 13, 22019, 3749, 1330, 43720, 355, 1090, 392, 198, 198, 2, 18126, 7, 74, 44930, 8, 198, 2, 18126, 7, 8189, 5235, 8, 198, 198, 27399, 62, 21412, 796, 2438, 5235, 13, 1136, 62, 12853, 62, 66, 15339, 62, 21412, 3419, 198, 198, 4299, 6291, 62, 15410, 8374, 7, 67, 641, 871, 11, 18832, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 46999, 18747, 28, 25101, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 257, 4253, 12409, 6291, 422, 262, 555, 11265, 1143, 555, 42524, 198, 220, 220, 220, 29509, 871, 5447, 287, 262, 15274, 286, 705, 67, 641, 871, 6, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 45337, 198, 220, 220, 220, 29509, 871, 1058, 299, 67, 18747, 393, 308, 19944, 18747, 357, 77, 11, 479, 8, 198, 220, 220, 220, 18832, 25, 25131, 12739, 1771, 29509, 871, 318, 319, 262, 198, 220, 220, 220, 2604, 5046, 2644, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 36525, 1058, 299, 67, 18747, 393, 308, 19944, 18747, 357, 361, 1441, 62, 46999, 18747, 28, 17821, 8, 198, 220, 220, 220, 286, 4129, 299, 290, 288, 4906, 796, 493, 2624, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 422, 27809, 436, 1381, 13, 22602, 1330, 7508, 628, 220, 220, 220, 299, 11, 479, 796, 29509, 871, 13, 43358, 198, 220, 220, 220, 1303, 3143, 1366, 198, 220, 220, 220, 611, 318, 39098, 7, 67, 641, 871, 11, 11362, 19182, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29509, 871, 13, 33152, 13, 69, 62, 3642, 29709, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 67, 641, 871, 796, 7736, 13, 7645, 3455, 7, 67, 641, 871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 67, 641, 871, 796, 29509, 871, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29509, 871, 796, 7736, 13, 46012, 62, 358, 18747, 7, 67, 641, 871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 67, 641, 871, 796, 284, 62, 46999, 7, 67, 641, 871, 8, 628, 220, 220, 220, 1303, 651, 308, 19944, 2163, 198, 220, 220, 220, 18912, 62, 20786, 796, 18912, 62, 21412, 13, 1136, 62, 8818, 10786, 39873, 62, 15410, 8374, 11537, 628, 220, 220, 220, 1303, 9058, 11362, 1366, 198, 220, 220, 220, 308, 19944, 62, 25120, 796, 284, 62, 46999, 7, 37659, 13, 292, 18747, 7, 37659, 13, 25120, 13, 25192, 7, 77, 828, 288, 4906, 28, 37659, 13, 22468, 2624, 4008, 198, 220, 220, 220, 308, 19944, 62, 16520, 796, 308, 19944, 62, 28920, 7, 77, 11, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 5391, 82, 796, 45941, 13, 18747, 26933, 77, 11, 74, 11, 6404, 2004, 4357, 67, 4906, 28, 37659, 13, 600, 2624, 8, 628, 220, 220, 220, 611, 7508, 13, 9806, 62, 9967, 62, 16663, 82, 27, 35500, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9967, 62, 27740, 796, 1467, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9967, 62, 27740, 796, 3933, 628, 220, 220, 220, 331, 62, 9967, 62, 27740, 796, 1467, 198, 220, 220, 220, 1303, 9058, 11362, 869, 198, 220, 220, 220, 2512, 62, 26124, 796, 357, 87, 62, 9967, 62, 27740, 11, 331, 62, 9967, 62, 27740, 11, 352, 8, 198, 220, 220, 220, 10706, 62, 26124, 796, 357, 600, 7, 77, 14, 88, 62, 9967, 62, 27740, 8, 1343, 352, 11, 352, 8, 628, 220, 220, 220, 4888, 62, 11883, 796, 604, 1635, 357, 357, 87, 62, 9967, 62, 27740, 10, 16, 27493, 88, 62, 9967, 62, 27740, 1343, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1635, 331, 62, 9967, 62, 27740, 1267, 220, 220, 628, 220, 220, 220, 18912, 62, 20786, 7, 46999, 62, 67, 641, 871, 11, 308, 19944, 62, 25120, 11, 308, 19944, 62, 16520, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 82, 58, 15, 4357, 5391, 82, 58, 16, 4357, 5391, 82, 58, 17, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 28, 9967, 62, 26124, 11, 10706, 28, 25928, 62, 26124, 11, 4888, 28, 28710, 62, 11883, 8, 628, 220, 220, 220, 308, 19944, 62, 25120, 13, 31197, 463, 1045, 13, 5787, 3419, 198, 220, 220, 220, 611, 1441, 62, 46999, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 308, 19944, 62, 16520, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 308, 19944, 62, 16520, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 16520, 13, 31197, 463, 1045, 13, 5787, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 628, 198, 2235, 1207, 29102, 515, 220, 198, 4299, 6291, 62, 15410, 8374, 62, 727, 7, 259, 62, 67, 641, 871, 11, 18832, 28, 25101, 11, 14841, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 46999, 18747, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 257, 4253, 12409, 6291, 422, 262, 555, 11265, 1143, 555, 42524, 198, 220, 220, 220, 29509, 871, 5447, 287, 262, 15274, 286, 705, 67, 641, 871, 6, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 45337, 198, 220, 220, 220, 29509, 871, 1058, 299, 67, 18747, 393, 308, 19944, 18747, 357, 77, 11, 479, 8, 198, 220, 220, 220, 18832, 25, 25131, 12739, 1771, 29509, 871, 318, 319, 262, 198, 220, 220, 220, 2604, 5046, 2644, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 36525, 1058, 299, 67, 18747, 393, 308, 19944, 18747, 357, 361, 1441, 62, 46999, 18747, 28, 17821, 8, 198, 220, 220, 220, 286, 4129, 299, 290, 288, 4906, 796, 493, 2624, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 14841, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18832, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29509, 871, 796, 7736, 13, 15636, 62, 7890, 62, 16680, 1433, 7, 259, 62, 67, 641, 871, 11, 6070, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29509, 871, 796, 7736, 13, 15636, 62, 7890, 62, 16680, 1433, 7, 259, 62, 67, 641, 871, 11, 6070, 28, 15, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29509, 871, 796, 287, 62, 67, 641, 871, 628, 220, 220, 220, 299, 11, 479, 796, 29509, 871, 13, 43358, 628, 220, 220, 220, 611, 18832, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18912, 62, 20786, 796, 18912, 62, 21412, 13, 1136, 62, 8818, 10786, 39873, 62, 15410, 8374, 62, 6404, 2004, 62, 727, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18912, 62, 20786, 796, 18912, 62, 21412, 13, 1136, 62, 8818, 10786, 39873, 62, 15410, 8374, 62, 727, 11537, 628, 220, 220, 220, 611, 318, 39098, 7, 67, 641, 871, 11, 11362, 19182, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29509, 871, 13, 33152, 13, 69, 62, 3642, 29709, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 67, 641, 871, 796, 7736, 13, 7645, 3455, 7, 67, 641, 871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 67, 641, 871, 796, 29509, 871, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29509, 871, 796, 7736, 13, 46012, 62, 358, 18747, 7, 67, 641, 871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 67, 641, 871, 796, 284, 62, 46999, 7, 67, 641, 871, 8, 628, 220, 220, 220, 1303, 9058, 11362, 1366, 198, 220, 220, 220, 1303, 46999, 62, 25120, 796, 1090, 392, 7, 77, 8, 198, 220, 220, 220, 308, 19944, 62, 25120, 796, 284, 62, 46999, 7, 37659, 13, 292, 18747, 7, 37659, 13, 25120, 13, 25192, 7, 77, 828, 288, 4906, 28, 37659, 13, 22468, 2624, 4008, 198, 220, 220, 220, 1303, 46999, 62, 16520, 796, 284, 62, 46999, 7, 37659, 13, 9107, 418, 7, 77, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 4008, 198, 220, 220, 220, 308, 19944, 62, 16520, 796, 308, 19944, 62, 28920, 7, 77, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 33769, 796, 308, 19944, 62, 67, 641, 871, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 611, 33769, 4064, 362, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33769, 15853, 352, 198, 220, 220, 220, 5391, 82, 796, 45941, 13, 18747, 26933, 77, 11, 74, 11, 308, 19944, 62, 67, 641, 871, 13, 43358, 58, 16, 4357, 33769, 4357, 67, 4906, 28, 37659, 13, 600, 2624, 8, 628, 198, 220, 220, 220, 1303, 27183, 1486, 2644, 198, 220, 220, 220, 10706, 62, 26124, 11, 2512, 62, 26124, 796, 4808, 83, 1726, 62, 28202, 76, 7, 77, 11, 33769, 11, 18912, 62, 20786, 13, 22510, 62, 2301, 82, 8, 628, 220, 220, 220, 4888, 62, 11883, 796, 604, 1635, 357, 9967, 62, 26124, 58, 15, 60, 1635, 33769, 1343, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 1635, 2512, 62, 26124, 58, 15, 12962, 628, 220, 220, 220, 18912, 62, 20786, 7, 46999, 62, 67, 641, 871, 11, 308, 19944, 62, 25120, 11, 308, 19944, 62, 16520, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 82, 58, 15, 4357, 5391, 82, 58, 16, 4357, 5391, 82, 58, 17, 4357, 5391, 82, 58, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 28, 9967, 62, 26124, 11, 10706, 28, 25928, 62, 26124, 11, 4888, 28, 28710, 62, 11883, 8, 628, 220, 220, 220, 308, 19944, 62, 25120, 13, 31197, 463, 1045, 13, 5787, 3419, 198, 220, 220, 220, 611, 1441, 62, 46999, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 308, 19944, 62, 16520, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 308, 19944, 62, 16520, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 16520, 13, 31197, 463, 1045, 13, 5787, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198, 198, 4299, 4808, 83, 1726, 62, 28202, 76, 7, 77, 11, 33769, 11, 25439, 62, 2301, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25235, 82, 262, 705, 404, 4402, 6, 2512, 290, 10706, 8398, 198, 220, 220, 220, 329, 262, 6291, 28810, 9720, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 27809, 436, 1381, 13, 22602, 1330, 7508, 628, 220, 220, 220, 1303, 10951, 796, 16232, 12360, 3419, 198, 220, 220, 220, 552, 62, 11128, 796, 7508, 13, 5589, 1133, 62, 11128, 198, 220, 220, 220, 3509, 62, 5796, 368, 796, 7508, 13, 28710, 62, 11883, 1635, 657, 13, 23, 198, 220, 220, 220, 3509, 62, 16663, 82, 796, 493, 7, 10951, 13, 9806, 62, 9967, 62, 16663, 82, 1635, 657, 13, 20, 8, 198, 220, 220, 220, 3509, 62, 2301, 82, 796, 657, 13, 24, 1635, 7508, 13, 9806, 62, 2301, 6223, 628, 220, 220, 220, 1303, 775, 765, 18197, 5391, 1744, 287, 2124, 5391, 82, 3004, 981, 198, 220, 220, 220, 1303, 991, 3555, 1066, 9380, 628, 220, 220, 220, 611, 552, 62, 11128, 58, 15, 60, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 27740, 796, 1467, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 27740, 796, 3933, 628, 198, 220, 220, 220, 331, 27740, 796, 362, 198, 220, 220, 220, 981, 264, 38353, 62, 11250, 62, 482, 7, 24954, 320, 11, 331, 27740, 11, 33769, 11, 25439, 62, 2301, 82, 11, 3509, 62, 2301, 82, 11, 3509, 62, 5796, 368, 11, 3509, 62, 16663, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 331, 27740, 15853, 352, 628, 220, 220, 220, 331, 27740, 48185, 352, 628, 220, 220, 220, 299, 27372, 796, 493, 7, 77, 14, 24954, 320, 8, 1343, 352, 628, 220, 220, 220, 1441, 357, 77, 27372, 11, 16, 828, 357, 24954, 320, 11, 5173, 320, 11, 16, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 299, 796, 1802, 198, 220, 220, 220, 479, 796, 642, 198, 220, 220, 220, 29509, 796, 45941, 13, 6404, 7, 37659, 13, 8937, 7, 37659, 13, 25120, 13, 25192, 77, 7, 74, 22305, 532, 939, 198, 220, 220, 220, 29509, 871, 796, 685, 67, 641, 13, 30073, 3419, 329, 4808, 287, 2837, 7, 77, 15437, 198, 220, 220, 220, 29509, 796, 45941, 13, 11201, 7, 67, 641, 1343, 939, 8, 198, 220, 220, 220, 29509, 871, 796, 45941, 13, 292, 18747, 7, 67, 641, 871, 8, 628, 220, 220, 220, 14722, 796, 6291, 62, 15410, 8374, 7, 67, 641, 871, 11, 18832, 28, 17821, 8, 198, 220, 220, 220, 38779, 796, 45941, 13, 26518, 7, 67, 641, 1220, 29509, 13, 16345, 22784, 45941, 13, 283, 858, 7, 74, 4008, 198, 220, 220, 220, 3601, 38779, 11, 14722, 13, 32604, 3419, 198 ]
2.216172
2,424
import os from typing import Any, Dict, Optional, Sequence, Type, TYPE_CHECKING, Union from .. import _dtypes from ..base_types.media import Media if TYPE_CHECKING: # pragma: no cover from wandb.apis.public import Artifact as PublicArtifact from ...wandb_artifacts import Artifact as LocalArtifact from ...wandb_run import Run as LocalRun _dtypes.TypeRegistry.add(_ClassesIdType)
[ 11748, 28686, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 32233, 11, 45835, 11, 5994, 11, 41876, 62, 50084, 2751, 11, 4479, 198, 198, 6738, 11485, 1330, 4808, 67, 19199, 198, 6738, 11485, 8692, 62, 19199, 13, 11431, 1330, 6343, 198, 198, 361, 41876, 62, 50084, 2751, 25, 220, 1303, 23864, 2611, 25, 645, 3002, 198, 220, 220, 220, 422, 11569, 65, 13, 499, 271, 13, 11377, 1330, 45908, 355, 5094, 8001, 29660, 628, 220, 220, 220, 422, 2644, 86, 392, 65, 62, 50179, 1330, 45908, 355, 10714, 8001, 29660, 198, 220, 220, 220, 422, 2644, 86, 392, 65, 62, 5143, 1330, 5660, 355, 10714, 10987, 628, 628, 198, 62, 67, 19199, 13, 6030, 8081, 4592, 13, 2860, 28264, 9487, 274, 7390, 6030, 8, 198 ]
3.174603
126
import unittest, json from comodit_client.rest.client import HttpClient from comodit_client.rest.exceptions import ApiException from test.mock.urllib_mocks import RequestWithMethodMock, RequestResult # Create tests # Delete tests # Read tests # Update tests # Helpers if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 11, 33918, 198, 198, 6738, 401, 375, 270, 62, 16366, 13, 2118, 13, 16366, 1330, 367, 29281, 11792, 198, 6738, 401, 375, 270, 62, 16366, 13, 2118, 13, 1069, 11755, 1330, 5949, 72, 16922, 198, 6738, 1332, 13, 76, 735, 13, 333, 297, 571, 62, 76, 3320, 1330, 19390, 3152, 17410, 44, 735, 11, 19390, 23004, 628, 628, 220, 220, 220, 1303, 13610, 5254, 628, 198, 220, 220, 220, 1303, 23520, 5254, 628, 198, 220, 220, 220, 1303, 4149, 5254, 628, 198, 220, 220, 220, 1303, 10133, 5254, 628, 198, 220, 220, 220, 1303, 10478, 364, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.829268
123
# terrascript/chef/__init__.py import terrascript
[ 2, 8812, 15961, 14, 2395, 69, 14, 834, 15003, 834, 13, 9078, 198, 11748, 8812, 15961, 628 ]
3
17
from .environment import EnvironmentConf from ..tools import secret_hash class SecurityConf(EnvironmentConf): """ Security options. """ def get_secret_key(self): """ WARNING: keep the secret key used in production secret! We generate a secret from a hash of the current settings during the .finalize() phase. this is ok for local development, but may be insecure/inconvenient for """ value = self.env.str("DJANGO_SECRET_KEY", default=None) if not value: if self.ENVIRONMENT in ("local", "test"): return self.ENVIRONMENT else: return None return value # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators def get_auth_password_validators(self): """ Password validation """ prefix = "django.contrib.auth.password_validation" validators = [ "UserAttributeSimilarityValidator", "MinimumLengthValidator", "CommonPasswordValidator", "NumericPasswordValidator", ] return [{"NAME": f"{prefix}.{x}"} for x in validators]
[ 6738, 764, 38986, 1330, 9344, 18546, 198, 6738, 11485, 31391, 1330, 3200, 62, 17831, 628, 198, 4871, 4765, 18546, 7, 31441, 18546, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4765, 3689, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 62, 21078, 62, 2539, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 39410, 25, 1394, 262, 3200, 1994, 973, 287, 3227, 3200, 0, 775, 7716, 257, 198, 220, 220, 220, 220, 220, 220, 220, 3200, 422, 257, 12234, 286, 262, 1459, 6460, 1141, 262, 764, 20311, 1096, 3419, 7108, 13, 198, 220, 220, 220, 220, 220, 220, 220, 428, 318, 12876, 329, 1957, 2478, 11, 475, 743, 307, 31955, 14, 259, 1102, 48109, 329, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 24330, 13, 2536, 7203, 35028, 1565, 11230, 62, 23683, 26087, 62, 20373, 1600, 4277, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1677, 53, 4663, 1340, 10979, 287, 5855, 12001, 1600, 366, 9288, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1677, 53, 4663, 1340, 10979, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 628, 220, 220, 220, 1303, 3740, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 17, 13, 15, 14, 5420, 14, 33692, 31113, 18439, 12, 28712, 12, 12102, 2024, 198, 220, 220, 220, 825, 651, 62, 18439, 62, 28712, 62, 12102, 2024, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30275, 21201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21231, 796, 366, 28241, 14208, 13, 3642, 822, 13, 18439, 13, 28712, 62, 12102, 341, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 2024, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12982, 33682, 18925, 414, 47139, 1352, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44046, 24539, 47139, 1352, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17227, 35215, 47139, 1352, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45, 39223, 35215, 47139, 1352, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 4895, 20608, 1298, 277, 1, 90, 40290, 27422, 90, 87, 92, 20662, 329, 2124, 287, 4938, 2024, 60, 198 ]
2.370518
502
# # !/usr/bin/python3 # # -*- coding: utf-8 -*- import logging, os SETTINGS_PRIORITY = 100 # THESE SETTINGS ARE NEEDED FOR PYSETTINGS APP_LOG_FILENAME = 'app.log' APP_LOG_HANDLER_CONSOLE_LEVEL = logging.WARNING APP_LOG_HANDLER_FILE_LEVEL = logging.WARNING CONTROL_EVENTS_GRAPH_DEFAULT_SCALE = 100 BOARD_LOG_WINDOW_REFRESH_RATE = 1000 USE_MULTIPROCESSING = True PYFORMS_MAINWINDOW_MARGIN = 0 PYFORMS_STYLESHEET = '' PYFORMS_STYLESHEET_DARWIN = '' PYFORMS_SILENT_PLUGINS_FINDER = True #PYFORMS_STYLESHEET = os.path.join(os.path.dirname(__file__), 'resources', 'css', 'default.css') PYFORMS_MATPLOTLIB_ENABLED = True PYFORMS_WEB_ENABLED = True PYFORMS_GL_ENABLED = True PYFORMS_VISVIS_ENABLED = False GENERIC_EDITOR_PLUGINS_PATH = None GENERIC_EDITOR_PLUGINS_LIST = [ 'pybpodgui_plugin', 'pybpodgui_plugin_timeline', 'pybpodgui_plugin_trial_timeline', 'pybpod_alyx_plugin', 'pybpodgui_plugin_session_history', # 'pge_welcome_plugin', ] #WELCOME_PLUGIN_URL = 'http://pybpod.readthedocs.io' ############ BPODGUI PLUGIN SETTINGS ############ #DEFAULT_PROJECT_PATH = '/home/ricardo/bitbucket/pybpod/pybpod-gui-plugin/projects/Untitled project 1' BOARD_LOG_WINDOW_REFRESH_RATE = 2000 SESSIONLOG_PLUGIN_REFRESH_RATE = 1000 TIMELINE_PLUGIN_REFRESH_RATE = 1000 PYBOARD_COMMUNICATION_THREAD_REFRESH_TIME = 2 # timer for thread look for events (seconds) PYBOARD_COMMUNICATION_PROCESS_REFRESH_TIME = 2 # timer for process look for events (seconds) PYBOARD_COMMUNICATION_PROCESS_TIME_2_LIVE = 0 # wait before killing process (seconds) GENERIC_EDITOR_TITLE = 'PyBpod' PYBPOD_REPOSITORIES_TXT_LIST = 'repositories.yml'
[ 2, 1303, 5145, 14, 14629, 14, 8800, 14, 29412, 18, 198, 2, 1303, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 18931, 11, 28686, 198, 198, 28480, 51, 20754, 62, 4805, 41254, 9050, 796, 1802, 628, 198, 198, 2, 48947, 25823, 51, 20754, 15986, 36465, 1961, 7473, 350, 16309, 2767, 51, 20754, 198, 24805, 62, 25294, 62, 46700, 1677, 10067, 796, 705, 1324, 13, 6404, 6, 198, 24805, 62, 25294, 62, 39, 6981, 39878, 62, 10943, 15821, 2538, 62, 2538, 18697, 796, 18931, 13, 31502, 198, 24805, 62, 25294, 62, 39, 6981, 39878, 62, 25664, 62, 2538, 18697, 220, 197, 220, 796, 18931, 13, 31502, 198, 198, 10943, 5446, 3535, 62, 20114, 15365, 62, 10761, 31300, 62, 7206, 38865, 62, 6173, 21358, 220, 197, 28, 1802, 198, 8202, 9795, 62, 25294, 62, 28929, 3913, 62, 2200, 10913, 44011, 62, 49, 6158, 220, 197, 197, 28, 8576, 198, 198, 19108, 62, 44, 16724, 4061, 49, 4503, 7597, 2751, 796, 6407, 198, 198, 47, 56, 13775, 5653, 62, 5673, 1268, 28929, 3913, 62, 40569, 38, 1268, 220, 197, 197, 28, 657, 198, 47, 56, 13775, 5653, 62, 2257, 56, 28378, 13909, 2767, 220, 197, 197, 197, 197, 28, 10148, 198, 47, 56, 13775, 5653, 62, 2257, 56, 28378, 13909, 2767, 62, 35, 1503, 37620, 220, 197, 197, 28, 10148, 198, 47, 56, 13775, 5653, 62, 50, 4146, 3525, 62, 6489, 7340, 20913, 62, 37, 12115, 1137, 220, 197, 28, 6407, 628, 198, 2, 47, 56, 13775, 5653, 62, 2257, 56, 28378, 13909, 2767, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 37540, 3256, 705, 25471, 3256, 705, 12286, 13, 25471, 11537, 198, 198, 47, 56, 13775, 5653, 62, 41636, 6489, 2394, 40347, 62, 1677, 6242, 30465, 220, 197, 28, 6407, 198, 47, 56, 13775, 5653, 62, 8845, 33, 62, 1677, 6242, 30465, 220, 197, 197, 28, 6407, 198, 47, 56, 13775, 5653, 62, 8763, 62, 1677, 6242, 30465, 220, 197, 197, 197, 28, 6407, 198, 47, 56, 13775, 5653, 62, 29817, 29817, 62, 1677, 6242, 30465, 220, 197, 197, 28, 10352, 198, 198, 35353, 1137, 2149, 62, 24706, 1581, 62, 6489, 7340, 20913, 62, 34219, 796, 6045, 198, 35353, 1137, 2149, 62, 24706, 1581, 62, 6489, 7340, 20913, 62, 45849, 796, 685, 198, 220, 220, 220, 705, 9078, 65, 33320, 48317, 62, 33803, 3256, 198, 220, 220, 220, 705, 9078, 65, 33320, 48317, 62, 33803, 62, 16514, 4470, 3256, 198, 220, 220, 220, 705, 9078, 65, 33320, 48317, 62, 33803, 62, 45994, 62, 16514, 4470, 3256, 198, 220, 220, 220, 705, 9078, 65, 33320, 62, 3400, 87, 62, 33803, 3256, 198, 220, 220, 220, 705, 9078, 65, 33320, 48317, 62, 33803, 62, 29891, 62, 23569, 3256, 198, 2, 197, 6, 79, 469, 62, 86, 9571, 62, 33803, 3256, 198, 60, 198, 198, 2, 54, 3698, 9858, 36, 62, 6489, 7340, 1268, 62, 21886, 796, 705, 4023, 1378, 9078, 65, 33320, 13, 961, 83, 704, 420, 82, 13, 952, 6, 628, 198, 7804, 4242, 20997, 3727, 40156, 9297, 7340, 1268, 25823, 51, 20754, 1303, 7804, 21017, 198, 198, 2, 7206, 38865, 62, 31190, 23680, 62, 34219, 796, 31051, 11195, 14, 1173, 13109, 14, 2545, 27041, 316, 14, 9078, 65, 33320, 14, 9078, 65, 33320, 12, 48317, 12, 33803, 14, 42068, 14, 46332, 1628, 352, 6, 198, 198, 8202, 9795, 62, 25294, 62, 28929, 3913, 62, 2200, 10913, 44011, 62, 49, 6158, 220, 796, 4751, 198, 50, 47621, 25294, 62, 6489, 7340, 1268, 62, 2200, 10913, 44011, 62, 49, 6158, 796, 8576, 198, 51, 3955, 3698, 8881, 62, 6489, 7340, 1268, 62, 2200, 10913, 44011, 62, 49, 6158, 220, 220, 796, 8576, 198, 198, 47, 56, 8202, 9795, 62, 9858, 44, 4944, 2149, 6234, 62, 4221, 15675, 62, 2200, 10913, 44011, 62, 34694, 220, 796, 362, 1303, 19781, 329, 4704, 804, 329, 2995, 357, 43012, 8, 198, 47, 56, 8202, 9795, 62, 9858, 44, 4944, 2149, 6234, 62, 4805, 4503, 7597, 62, 2200, 10913, 44011, 62, 34694, 796, 362, 1303, 19781, 329, 1429, 804, 329, 2995, 357, 43012, 8, 198, 47, 56, 8202, 9795, 62, 9858, 44, 4944, 2149, 6234, 62, 4805, 4503, 7597, 62, 34694, 62, 17, 62, 43, 9306, 220, 796, 657, 1303, 4043, 878, 5170, 1429, 357, 43012, 8, 198, 198, 35353, 1137, 2149, 62, 24706, 1581, 62, 49560, 2538, 796, 705, 20519, 33, 33320, 6, 628, 198, 47, 56, 20866, 3727, 62, 35316, 2640, 2043, 1581, 11015, 62, 51, 25010, 62, 45849, 796, 705, 260, 1930, 270, 1749, 13, 88, 4029, 6 ]
2.197368
760
from io import BytesIO from pdfmajor.execptions import FontError, UnicodeNotDefined, CMapNotFound from pdfmajor.parser.PSStackParser import literal_name from pdfmajor.parser.PDFStream import int_value from pdfmajor.parser.PDFStream import num_value from pdfmajor.parser.PDFStream import list_value from pdfmajor.parser.PDFStream import dict_value from pdfmajor.parser.PDFStream import PDFStream from pdfmajor.parser.PDFStream import resolve1 from pdfmajor.parser.cmapdb import CMap, CMapDB, CMapParser from pdfmajor.parser.cmapdb import FileUnicodeMap from pdfmajor.utils import settings, apply_matrix_norm from .PDFFont import PDFFont, PDFSimpleFont from .util import FontMetricsDB, get_widths, get_widths2 from .Type1FontHeaderParser import Type1FontHeaderParser from .TrueTypeFont import TrueTypeFont # PDFType1Font # PDFTrueTypeFont # PDFType3Font # PDFCIDFont
[ 6738, 33245, 1330, 2750, 4879, 9399, 198, 198, 6738, 37124, 22478, 13, 18558, 8544, 1330, 24060, 12331, 11, 34371, 3673, 7469, 1389, 11, 327, 13912, 3673, 21077, 198, 6738, 37124, 22478, 13, 48610, 13, 3705, 25896, 46677, 1330, 18875, 62, 3672, 198, 6738, 37124, 22478, 13, 48610, 13, 20456, 12124, 1330, 493, 62, 8367, 198, 6738, 37124, 22478, 13, 48610, 13, 20456, 12124, 1330, 997, 62, 8367, 198, 6738, 37124, 22478, 13, 48610, 13, 20456, 12124, 1330, 1351, 62, 8367, 198, 6738, 37124, 22478, 13, 48610, 13, 20456, 12124, 1330, 8633, 62, 8367, 198, 6738, 37124, 22478, 13, 48610, 13, 20456, 12124, 1330, 12960, 12124, 198, 6738, 37124, 22478, 13, 48610, 13, 20456, 12124, 1330, 10568, 16, 198, 6738, 37124, 22478, 13, 48610, 13, 66, 8899, 9945, 1330, 327, 13912, 11, 327, 13912, 11012, 11, 327, 13912, 46677, 198, 6738, 37124, 22478, 13, 48610, 13, 66, 8899, 9945, 1330, 9220, 3118, 291, 1098, 13912, 198, 6738, 37124, 22478, 13, 26791, 1330, 6460, 11, 4174, 62, 6759, 8609, 62, 27237, 198, 198, 6738, 764, 5760, 5777, 756, 1330, 14340, 5777, 756, 11, 12960, 26437, 23252, 198, 6738, 764, 22602, 1330, 24060, 9171, 10466, 11012, 11, 651, 62, 10394, 82, 11, 651, 62, 10394, 82, 17, 198, 6738, 764, 6030, 16, 23252, 39681, 46677, 1330, 5994, 16, 23252, 39681, 46677, 198, 6738, 764, 17821, 6030, 23252, 1330, 6407, 6030, 23252, 198, 198, 2, 12960, 6030, 16, 23252, 628, 198, 2, 12960, 17821, 6030, 23252, 628, 198, 2, 12960, 6030, 18, 23252, 628, 198, 2, 14340, 4851, 2389, 23252, 198 ]
3.400778
257
import mixer import pygame soun_obj=pygame.mixer.Sound("Star Wars Main Theme (Full).mp3") soun_obj.play() soun_obj.stop()
[ 11748, 33938, 201, 198, 11748, 12972, 6057, 201, 198, 82, 977, 62, 26801, 28, 9078, 6057, 13, 19816, 263, 13, 21369, 7203, 8248, 6176, 8774, 26729, 357, 13295, 737, 3149, 18, 4943, 201, 198, 82, 977, 62, 26801, 13, 1759, 3419, 201, 198, 82, 977, 62, 26801, 13, 11338, 3419 ]
2.5
50
from functools import wraps from importlib.util import find_spec from jinja2 import Environment, FileSystemLoader from pathlib import Path from rdkit import Chem import pandas as pd env = Environment(loader=FileSystemLoader(Path(__file__).parent / 'templates'), autoescape=False) def tooltip_formatter(s, subset, fmt, style, transform): """Function to generate tooltips from a pandas Series Parameters ---------- s : pandas.Series Row in the internal pandas DataFrame subset : list Subset of columns that are used for the tooltip fmt : str Format string for each key-value pair of the tooltip style : dict CSS styling applied to each item independently transform : dict Functions applied to each value before rendering """ items = [] for k, v in s[subset].to_dict().items(): v = transform[k](v) if transform.get(k) else v v = f'<span style="{style[k](v)}">{v}</span>' if style.get(k) else v items.append(fmt.format(key=k, value=v)) return "<br>".join(items) def mol_to_smiles(mol): """Returns a SMILES from an RDKit molecule, or None if not an RDKit mol""" return Chem.MolToSmiles(mol) if mol else None def mol_to_record(mol, mol_col="mol"): """Function to create a dict of data from an RDKit molecule""" return {"SMILES": Chem.MolToSmiles(mol), **mol.GetPropsAsDict(includePrivate=True), mol_col: mol} if mol else {} def sdf_to_dataframe(sdf_path, mol_col="mol"): """Returns a dataframe of molecules from an SDF file""" return pd.DataFrame([mol_to_record(mol, mol_col) for mol in Chem.SDMolSupplier(sdf_path)]) def remove_coordinates(mol): """Removes the existing coordinates from the molecule. The molecule is modified inplace""" mol.RemoveAllConformers() return mol def make_popup_callback(title, html, js="", style=""): """Creates a JavaScript callback that displays a popup window Parameters ---------- title : str Title of the popup. Use `title='${data["Name"]}'` to use the value of the column "Name" as a title html : str Content of the popup window js : str JavaScript code executed before making the content of the popup window. This allows you to create variables and reuse them later in the `html` content of the popup, using the `${my_variable}` syntax style : str CSS style assigned to the popup window """ return (env.get_template('js/popup.js') .render(js=js, html=html, title=title, style=style))
[ 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 1330, 8019, 13, 22602, 1330, 1064, 62, 16684, 198, 6738, 474, 259, 6592, 17, 1330, 9344, 11, 9220, 11964, 17401, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 374, 67, 15813, 1330, 12870, 198, 11748, 19798, 292, 355, 279, 67, 628, 198, 24330, 796, 9344, 7, 29356, 28, 8979, 11964, 17401, 7, 15235, 7, 834, 7753, 834, 737, 8000, 1220, 705, 11498, 17041, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1960, 3028, 36435, 28, 25101, 8, 198, 198, 4299, 49472, 62, 687, 1436, 7, 82, 11, 24637, 11, 46996, 11, 3918, 11, 6121, 2599, 198, 220, 220, 220, 37227, 22203, 284, 7716, 2891, 41315, 422, 257, 19798, 292, 7171, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 264, 1058, 19798, 292, 13, 27996, 198, 220, 220, 220, 220, 220, 220, 220, 11314, 287, 262, 5387, 19798, 292, 6060, 19778, 198, 220, 220, 220, 24637, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 3834, 2617, 286, 15180, 326, 389, 973, 329, 262, 49472, 198, 220, 220, 220, 46996, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 18980, 4731, 329, 1123, 1994, 12, 8367, 5166, 286, 262, 49472, 198, 220, 220, 220, 3918, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 17391, 35517, 5625, 284, 1123, 2378, 14799, 198, 220, 220, 220, 6121, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 40480, 5625, 284, 1123, 1988, 878, 14837, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3709, 796, 17635, 198, 220, 220, 220, 329, 479, 11, 410, 287, 264, 58, 7266, 2617, 4083, 1462, 62, 11600, 22446, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 410, 796, 6121, 58, 74, 16151, 85, 8, 611, 6121, 13, 1136, 7, 74, 8, 2073, 410, 198, 220, 220, 220, 220, 220, 220, 220, 410, 796, 277, 6, 27, 12626, 3918, 2625, 90, 7635, 58, 74, 16151, 85, 38165, 5320, 90, 85, 92, 3556, 12626, 29, 6, 611, 3918, 13, 1136, 7, 74, 8, 2073, 410, 198, 220, 220, 220, 220, 220, 220, 220, 3709, 13, 33295, 7, 69, 16762, 13, 18982, 7, 2539, 28, 74, 11, 1988, 28, 85, 4008, 198, 220, 220, 220, 1441, 33490, 1671, 29, 1911, 22179, 7, 23814, 8, 198, 198, 4299, 18605, 62, 1462, 62, 5796, 2915, 7, 43132, 2599, 198, 220, 220, 220, 37227, 35561, 257, 9447, 4146, 1546, 422, 281, 31475, 20827, 27756, 11, 393, 6045, 611, 407, 281, 31475, 20827, 18605, 37811, 198, 220, 220, 220, 1441, 12870, 13, 44, 349, 2514, 7556, 2915, 7, 43132, 8, 611, 18605, 2073, 6045, 198, 198, 4299, 18605, 62, 1462, 62, 22105, 7, 43132, 11, 18605, 62, 4033, 2625, 43132, 1, 2599, 198, 220, 220, 220, 37227, 22203, 284, 2251, 257, 8633, 286, 1366, 422, 281, 31475, 20827, 27756, 37811, 198, 220, 220, 220, 1441, 19779, 12310, 4146, 1546, 1298, 12870, 13, 44, 349, 2514, 7556, 2915, 7, 43132, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 43132, 13, 3855, 2964, 862, 1722, 35, 713, 7, 17256, 29067, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18605, 62, 4033, 25, 18605, 92, 611, 18605, 2073, 23884, 198, 198, 4299, 264, 7568, 62, 1462, 62, 7890, 14535, 7, 82, 7568, 62, 6978, 11, 18605, 62, 4033, 2625, 43132, 1, 2599, 198, 220, 220, 220, 37227, 35561, 257, 1366, 14535, 286, 17745, 422, 281, 311, 8068, 2393, 37811, 198, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 26933, 43132, 62, 1462, 62, 22105, 7, 43132, 11, 18605, 62, 4033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 18605, 287, 12870, 13, 10305, 44, 349, 15979, 2505, 7, 82, 7568, 62, 6978, 8, 12962, 198, 198, 4299, 4781, 62, 37652, 17540, 7, 43132, 2599, 198, 220, 220, 220, 37227, 8413, 5241, 262, 4683, 22715, 422, 262, 27756, 13, 383, 27756, 318, 198, 220, 220, 220, 9518, 287, 5372, 37811, 198, 220, 220, 220, 18605, 13, 27914, 3237, 3103, 687, 364, 3419, 198, 220, 220, 220, 1441, 18605, 198, 198, 4299, 787, 62, 12924, 929, 62, 47423, 7, 7839, 11, 27711, 11, 44804, 2625, 1600, 3918, 33151, 2599, 198, 220, 220, 220, 37227, 16719, 274, 257, 11933, 23838, 326, 11298, 257, 46207, 4324, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3670, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11851, 286, 262, 46207, 13, 5765, 4600, 7839, 11639, 38892, 7890, 14692, 5376, 8973, 92, 6, 63, 284, 779, 262, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 5721, 366, 5376, 1, 355, 257, 3670, 198, 220, 220, 220, 27711, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 14041, 286, 262, 46207, 4324, 198, 220, 220, 220, 44804, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11933, 2438, 10945, 878, 1642, 262, 2695, 286, 262, 46207, 4324, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 3578, 345, 284, 2251, 9633, 290, 32349, 606, 1568, 287, 262, 4600, 6494, 63, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 286, 262, 46207, 11, 1262, 262, 4600, 38892, 1820, 62, 45286, 92, 63, 15582, 198, 220, 220, 220, 3918, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 17391, 3918, 8686, 284, 262, 46207, 4324, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 24330, 13, 1136, 62, 28243, 10786, 8457, 14, 12924, 929, 13, 8457, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 13287, 7, 8457, 28, 8457, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 28, 6494, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3918, 28, 7635, 4008, 198 ]
2.555764
1,067
"""The builtin str implementation""" from rpython.rlib import jit from rpython.rlib.jit import we_are_jitted from rpython.rlib.objectmodel import ( compute_hash, compute_unique_id, import_from_mixin) from rpython.rlib.buffer import StringBuffer from rpython.rlib.rstring import StringBuilder, replace from pypy.interpreter.baseobjspace import W_Root from pypy.interpreter.buffer import SimpleView from pypy.interpreter.error import OperationError, oefmt from pypy.interpreter.gateway import ( WrappedDefault, interp2app, interpindirect2app, unwrap_spec) from pypy.interpreter.typedef import TypeDef from pypy.objspace.std import newformat from pypy.objspace.std.basestringtype import basestring_typedef from pypy.objspace.std.formatting import mod_format from pypy.objspace.std.stringmethods import StringMethods from pypy.objspace.std.unicodeobject import ( decode_object, unicode_from_encoded_object, unicode_from_string, getdefaultencoding) from pypy.objspace.std.util import IDTAG_SPECIAL, IDTAG_SHIFT W_BytesObject.EMPTY = W_BytesObject('') W_BytesObject.typedef = TypeDef( "pal", basestring_typedef, None, "read", __new__ = interp2app(W_BytesObject.descr_new), __doc__ = """pal(objeto='') -> palabra Vuelve una representación palabra del objeto. Si el argumento es una palabra, lo que vuelve es el objeto mismo. """, __repr__ = interpindirect2app(W_AbstractBytesObject.descr_repr), __pal__ = interpindirect2app(W_AbstractBytesObject.descr_str), __str__ = interpindirect2app(W_AbstractBytesObject.descr_str), __hash__ = interpindirect2app(W_AbstractBytesObject.descr_hash), __ig__ = interpindirect2app(W_AbstractBytesObject.descr_eq), __eq__ = interpindirect2app(W_AbstractBytesObject.descr_eq), __ni__ = interpindirect2app(W_AbstractBytesObject.descr_ne), __ne__ = interpindirect2app(W_AbstractBytesObject.descr_ne), __meq__ = interpindirect2app(W_AbstractBytesObject.descr_lt), __lt__ = interpindirect2app(W_AbstractBytesObject.descr_lt), __mei__ = interpindirect2app(W_AbstractBytesObject.descr_le), __le__ = interpindirect2app(W_AbstractBytesObject.descr_le), __maq__ = interpindirect2app(W_AbstractBytesObject.descr_gt), __gt__ = interpindirect2app(W_AbstractBytesObject.descr_gt), __mai__ = interpindirect2app(W_AbstractBytesObject.descr_ge), __ge__ = interpindirect2app(W_AbstractBytesObject.descr_ge), __tam__ = interpindirect2app(W_AbstractBytesObject.descr_len), __len__ = interpindirect2app(W_AbstractBytesObject.descr_len), __contiene__ = interpindirect2app(W_AbstractBytesObject.descr_contains), __contains__ = interpindirect2app(W_AbstractBytesObject.descr_contains), __mas__ = interpindirect2app(W_AbstractBytesObject.descr_add), __add__ = interpindirect2app(W_AbstractBytesObject.descr_add), __mul__ = interpindirect2app(W_AbstractBytesObject.descr_mul), __dmul__ = interpindirect2app(W_AbstractBytesObject.descr_rmul), __rmul__ = interpindirect2app(W_AbstractBytesObject.descr_rmul), __sacaartic__ = interpindirect2app(W_AbstractBytesObject.descr_getitem), __getitem__ = interpindirect2app(W_AbstractBytesObject.descr_getitem), __sacaparte__ = interpindirect2app(W_AbstractBytesObject.descr_getslice), __getslice__ = interpindirect2app(W_AbstractBytesObject.descr_getslice), mayuscular = interpindirect2app(W_AbstractBytesObject.descr_capitalize), capitalize = interpindirect2app(W_AbstractBytesObject.descr_capitalize), centro = interpindirect2app(W_AbstractBytesObject.descr_center), center = interpindirect2app(W_AbstractBytesObject.descr_center), total = interpindirect2app(W_AbstractBytesObject.descr_count), count = interpindirect2app(W_AbstractBytesObject.descr_count), decodificar = interpindirect2app(W_AbstractBytesObject.descr_decode), decode = interpindirect2app(W_AbstractBytesObject.descr_decode), codificar = interpindirect2app(W_AbstractBytesObject.descr_encode), encode = interpindirect2app(W_AbstractBytesObject.descr_encode), expandtabs = interpindirect2app(W_AbstractBytesObject.descr_expandtabs), encontrar = interpindirect2app(W_AbstractBytesObject.descr_find), find = interpindirect2app(W_AbstractBytesObject.descr_find), dencontrar = interpindirect2app(W_AbstractBytesObject.descr_rfind), rfind = interpindirect2app(W_AbstractBytesObject.descr_rfind), indice = interpindirect2app(W_AbstractBytesObject.descr_index), index = interpindirect2app(W_AbstractBytesObject.descr_index), dindice = interpindirect2app(W_AbstractBytesObject.descr_rindex), rindex = interpindirect2app(W_AbstractBytesObject.descr_rindex), esalnum = interpindirect2app(W_AbstractBytesObject.descr_isalnum), isalnum = interpindirect2app(W_AbstractBytesObject.descr_isalnum), esalfa = interpindirect2app(W_AbstractBytesObject.descr_isalpha), isalpha = interpindirect2app(W_AbstractBytesObject.descr_isalpha), esdig = interpindirect2app(W_AbstractBytesObject.descr_isdigit), isdigit = interpindirect2app(W_AbstractBytesObject.descr_isdigit), esminusc = interpindirect2app(W_AbstractBytesObject.descr_islower), islower = interpindirect2app(W_AbstractBytesObject.descr_islower), esespac = interpindirect2app(W_AbstractBytesObject.descr_isspace), isspace = interpindirect2app(W_AbstractBytesObject.descr_isspace), estitulo = interpindirect2app(W_AbstractBytesObject.descr_istitle), istitle = interpindirect2app(W_AbstractBytesObject.descr_istitle), esmayusc = interpindirect2app(W_AbstractBytesObject.descr_isupper), isupper = interpindirect2app(W_AbstractBytesObject.descr_isupper), juntar = interpindirect2app(W_AbstractBytesObject.descr_join), join = interpindirect2app(W_AbstractBytesObject.descr_join), ijust = interpindirect2app(W_AbstractBytesObject.descr_ljust), ljust = interpindirect2app(W_AbstractBytesObject.descr_ljust), djust = interpindirect2app(W_AbstractBytesObject.descr_rjust), rjust = interpindirect2app(W_AbstractBytesObject.descr_rjust), minusc = interpindirect2app(W_AbstractBytesObject.descr_lower), lower = interpindirect2app(W_AbstractBytesObject.descr_lower), particion = interpindirect2app(W_AbstractBytesObject.descr_partition), partition = interpindirect2app(W_AbstractBytesObject.descr_partition), dparticion = interpindirect2app(W_AbstractBytesObject.descr_rpartition), rpartition = interpindirect2app(W_AbstractBytesObject.descr_rpartition), reemplazar = interpindirect2app(W_AbstractBytesObject.descr_replace), replace = interpindirect2app(W_AbstractBytesObject.descr_replace), quebrar = interpindirect2app(W_AbstractBytesObject.descr_split), split = interpindirect2app(W_AbstractBytesObject.descr_split), dquebrar = interpindirect2app(W_AbstractBytesObject.descr_rsplit), rsplit = interpindirect2app(W_AbstractBytesObject.descr_rsplit), quebrarlineas = interpindirect2app(W_AbstractBytesObject.descr_splitlines), splitlines = interpindirect2app(W_AbstractBytesObject.descr_splitlines), empcon = interpindirect2app(W_AbstractBytesObject.descr_startswith), startswith = interpindirect2app(W_AbstractBytesObject.descr_startswith), terminacon = interpindirect2app(W_AbstractBytesObject.descr_endswith), endswith = interpindirect2app(W_AbstractBytesObject.descr_endswith), decapar = interpindirect2app(W_AbstractBytesObject.descr_strip), strip = interpindirect2app(W_AbstractBytesObject.descr_strip), idecapar = interpindirect2app(W_AbstractBytesObject.descr_lstrip), lstrip = interpindirect2app(W_AbstractBytesObject.descr_lstrip), ddecapar = interpindirect2app(W_AbstractBytesObject.descr_rstrip), rstrip = interpindirect2app(W_AbstractBytesObject.descr_rstrip), minmayusc = interpindirect2app(W_AbstractBytesObject.descr_swapcase), swapcase = interpindirect2app(W_AbstractBytesObject.descr_swapcase), titulo = interpindirect2app(W_AbstractBytesObject.descr_title), title = interpindirect2app(W_AbstractBytesObject.descr_title), traducir = interpindirect2app(W_AbstractBytesObject.descr_translate), translate = interpindirect2app(W_AbstractBytesObject.descr_translate), mayusc = interpindirect2app(W_AbstractBytesObject.descr_upper), upper = interpindirect2app(W_AbstractBytesObject.descr_upper), cllenar = interpindirect2app(W_AbstractBytesObject.descr_zfill), zfill = interpindirect2app(W_AbstractBytesObject.descr_zfill), __bufer__ = interp2app(W_BytesObject.descr_getbuffer), __buffer__ = interp2app(W_BytesObject.descr_getbuffer), formato = interpindirect2app(W_BytesObject.descr_format), format = interpindirect2app(W_BytesObject.descr_format), __formato__ = interpindirect2app(W_BytesObject.descr__format__), __format__ = interpindirect2app(W_BytesObject.descr__format__), __mod__ = interpindirect2app(W_BytesObject.descr_mod), __dmod__ = interpindirect2app(W_BytesObject.descr_rmod), __rmod__ = interpindirect2app(W_BytesObject.descr_rmod), __sacanuevosargs__ = interpindirect2app( W_AbstractBytesObject.descr_getnewargs), __getnewargs__ = interpindirect2app( W_AbstractBytesObject.descr_getnewargs), _formatter_parser = interp2app(W_BytesObject.descr_formatter_parser), _formatter_field_name_split = interp2app(W_BytesObject.descr_formatter_field_name_split), ) W_BytesObject.typedef.flag_sequence_bug_compat = True @jit.elidable
[ 37811, 464, 3170, 259, 965, 7822, 37811, 198, 198, 6738, 374, 29412, 13, 81, 8019, 1330, 474, 270, 198, 6738, 374, 29412, 13, 81, 8019, 13, 45051, 1330, 356, 62, 533, 62, 73, 2175, 198, 6738, 374, 29412, 13, 81, 8019, 13, 15252, 19849, 1330, 357, 198, 220, 220, 220, 24061, 62, 17831, 11, 24061, 62, 34642, 62, 312, 11, 1330, 62, 6738, 62, 19816, 259, 8, 198, 6738, 374, 29412, 13, 81, 8019, 13, 22252, 1330, 10903, 28632, 198, 6738, 374, 29412, 13, 81, 8019, 13, 81, 8841, 1330, 10903, 32875, 11, 6330, 198, 198, 6738, 279, 4464, 88, 13, 3849, 3866, 353, 13, 8692, 26801, 13200, 1330, 370, 62, 30016, 198, 6738, 279, 4464, 88, 13, 3849, 3866, 353, 13, 22252, 1330, 17427, 7680, 198, 6738, 279, 4464, 88, 13, 3849, 3866, 353, 13, 18224, 1330, 14680, 12331, 11, 267, 891, 16762, 198, 6738, 279, 4464, 88, 13, 3849, 3866, 353, 13, 10494, 1014, 1330, 357, 198, 220, 220, 220, 27323, 1496, 19463, 11, 987, 79, 17, 1324, 11, 987, 79, 521, 1060, 17, 1324, 11, 7379, 2416, 62, 16684, 8, 198, 6738, 279, 4464, 88, 13, 3849, 3866, 353, 13, 774, 9124, 891, 1330, 5994, 7469, 198, 6738, 279, 4464, 88, 13, 26801, 13200, 13, 19282, 1330, 649, 18982, 198, 6738, 279, 4464, 88, 13, 26801, 13200, 13, 19282, 13, 12093, 395, 1806, 4906, 1330, 1615, 395, 1806, 62, 774, 9124, 891, 198, 6738, 279, 4464, 88, 13, 26801, 13200, 13, 19282, 13, 18982, 889, 1330, 953, 62, 18982, 198, 6738, 279, 4464, 88, 13, 26801, 13200, 13, 19282, 13, 8841, 24396, 82, 1330, 10903, 46202, 198, 6738, 279, 4464, 88, 13, 26801, 13200, 13, 19282, 13, 46903, 1098, 15252, 1330, 357, 198, 220, 220, 220, 36899, 62, 15252, 11, 28000, 1098, 62, 6738, 62, 12685, 9043, 62, 15252, 11, 198, 220, 220, 220, 28000, 1098, 62, 6738, 62, 8841, 11, 651, 12286, 12685, 7656, 8, 198, 6738, 279, 4464, 88, 13, 26801, 13200, 13, 19282, 13, 22602, 1330, 4522, 42197, 62, 48451, 12576, 11, 4522, 42197, 62, 9693, 32297, 628, 198, 198, 54, 62, 45992, 10267, 13, 39494, 9936, 796, 370, 62, 45992, 10267, 7, 7061, 8, 628, 198, 54, 62, 45992, 10267, 13, 774, 9124, 891, 796, 5994, 7469, 7, 198, 220, 220, 220, 366, 18596, 1600, 1615, 395, 1806, 62, 774, 9124, 891, 11, 6045, 11, 366, 961, 1600, 198, 220, 220, 220, 11593, 3605, 834, 796, 987, 79, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 3605, 828, 198, 220, 220, 220, 11593, 15390, 834, 796, 37227, 18596, 7, 26801, 27206, 28, 7061, 8, 4613, 6340, 397, 430, 628, 220, 220, 220, 569, 2731, 303, 555, 64, 2380, 32009, 18840, 6340, 397, 430, 1619, 26181, 27206, 13, 15638, 1288, 4578, 78, 1658, 198, 220, 220, 220, 555, 64, 6340, 397, 430, 11, 2376, 8358, 410, 2731, 303, 1658, 1288, 26181, 27206, 32691, 78, 13, 198, 220, 220, 220, 13538, 1600, 628, 220, 220, 220, 11593, 260, 1050, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 260, 1050, 828, 198, 220, 220, 220, 11593, 18596, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 2536, 828, 198, 220, 220, 220, 11593, 2536, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 2536, 828, 198, 220, 220, 220, 11593, 17831, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 17831, 828, 628, 220, 220, 220, 11593, 328, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 27363, 828, 198, 220, 220, 220, 11593, 27363, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 27363, 828, 198, 220, 220, 220, 11593, 8461, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 710, 828, 198, 220, 220, 220, 11593, 710, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 710, 828, 198, 220, 220, 220, 11593, 1326, 80, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 2528, 828, 198, 220, 220, 220, 11593, 2528, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 2528, 828, 198, 220, 220, 220, 11593, 1326, 72, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 293, 828, 198, 220, 220, 220, 11593, 293, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 293, 828, 198, 220, 220, 220, 11593, 2611, 80, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 13655, 828, 198, 220, 220, 220, 11593, 13655, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 13655, 828, 198, 220, 220, 220, 11593, 76, 1872, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 469, 828, 198, 220, 220, 220, 11593, 469, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 469, 828, 628, 220, 220, 220, 11593, 83, 321, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 11925, 828, 198, 220, 220, 220, 11593, 11925, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 11925, 828, 198, 220, 220, 220, 11593, 3642, 72, 1734, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 3642, 1299, 828, 198, 220, 220, 220, 11593, 3642, 1299, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 3642, 1299, 828, 628, 220, 220, 220, 11593, 5356, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 2860, 828, 198, 220, 220, 220, 11593, 2860, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 2860, 828, 198, 220, 220, 220, 11593, 76, 377, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 76, 377, 828, 198, 220, 220, 220, 11593, 36020, 377, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 26224, 377, 828, 198, 220, 220, 220, 11593, 26224, 377, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 26224, 377, 828, 628, 220, 220, 220, 11593, 82, 22260, 433, 291, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 1136, 9186, 828, 198, 220, 220, 220, 11593, 1136, 9186, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 1136, 9186, 828, 198, 220, 220, 220, 11593, 30584, 499, 32074, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 11407, 75, 501, 828, 198, 220, 220, 220, 11593, 11407, 75, 501, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 11407, 75, 501, 828, 628, 220, 220, 220, 743, 385, 10440, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 27544, 1096, 828, 198, 220, 220, 220, 35160, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 27544, 1096, 828, 198, 220, 220, 220, 1247, 305, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 16159, 828, 198, 220, 220, 220, 3641, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 16159, 828, 198, 220, 220, 220, 2472, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 9127, 828, 198, 220, 220, 220, 954, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 9127, 828, 198, 220, 220, 220, 875, 375, 811, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 12501, 1098, 828, 198, 220, 220, 220, 36899, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 12501, 1098, 828, 198, 220, 220, 220, 14873, 811, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 268, 8189, 828, 198, 220, 220, 220, 37773, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 268, 8189, 828, 198, 220, 220, 220, 4292, 8658, 82, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 11201, 392, 8658, 82, 828, 198, 220, 220, 220, 2207, 756, 20040, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 19796, 828, 198, 220, 220, 220, 1064, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 19796, 828, 198, 220, 220, 220, 2853, 3642, 20040, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 19796, 828, 198, 220, 220, 220, 374, 19796, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 19796, 828, 198, 220, 220, 220, 773, 501, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 9630, 828, 198, 220, 220, 220, 6376, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 9630, 828, 198, 220, 220, 220, 288, 521, 501, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 9630, 828, 198, 220, 220, 220, 374, 9630, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 9630, 828, 198, 220, 220, 220, 1658, 282, 22510, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 28456, 22510, 828, 198, 220, 220, 220, 318, 282, 22510, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 28456, 22510, 828, 198, 220, 220, 220, 1658, 1604, 64, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 271, 26591, 828, 198, 220, 220, 220, 318, 26591, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 271, 26591, 828, 198, 220, 220, 220, 1658, 12894, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 9409, 328, 270, 828, 198, 220, 220, 220, 318, 27003, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 9409, 328, 270, 828, 198, 220, 220, 220, 1658, 1084, 16241, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 3044, 789, 828, 198, 220, 220, 220, 318, 21037, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 3044, 789, 828, 198, 220, 220, 220, 1658, 9774, 330, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 747, 10223, 828, 198, 220, 220, 220, 1189, 10223, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 747, 10223, 828, 198, 220, 220, 220, 1556, 270, 43348, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 396, 2578, 828, 198, 220, 220, 220, 318, 7839, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 396, 2578, 828, 198, 220, 220, 220, 1658, 11261, 16241, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 271, 45828, 828, 198, 220, 220, 220, 318, 45828, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 271, 45828, 828, 198, 220, 220, 220, 474, 2797, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 22179, 828, 198, 220, 220, 220, 4654, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 22179, 828, 198, 220, 220, 220, 1312, 3137, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 75, 3137, 828, 198, 220, 220, 220, 300, 3137, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 75, 3137, 828, 198, 220, 220, 220, 288, 3137, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 3137, 828, 198, 220, 220, 220, 374, 3137, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 3137, 828, 198, 220, 220, 220, 949, 16241, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 21037, 828, 198, 220, 220, 220, 2793, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 21037, 828, 198, 220, 220, 220, 1344, 295, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 3911, 653, 828, 198, 220, 220, 220, 18398, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 3911, 653, 828, 198, 220, 220, 220, 288, 3911, 47430, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 3911, 653, 828, 198, 220, 220, 220, 374, 3911, 653, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 3911, 653, 828, 198, 220, 220, 220, 302, 18856, 29413, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 33491, 828, 198, 220, 220, 220, 6330, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 33491, 828, 198, 220, 220, 220, 8358, 1671, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 35312, 828, 198, 220, 220, 220, 6626, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 35312, 828, 198, 220, 220, 220, 288, 4188, 1671, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 3808, 489, 270, 828, 198, 220, 220, 220, 374, 35312, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 3808, 489, 270, 828, 198, 220, 220, 220, 8358, 1671, 283, 1370, 292, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 35312, 6615, 828, 198, 220, 220, 220, 6626, 6615, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 35312, 6615, 828, 198, 220, 220, 220, 795, 79, 1102, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 9688, 2032, 342, 828, 198, 220, 220, 220, 923, 2032, 342, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 9688, 2032, 342, 828, 198, 220, 220, 220, 5651, 7807, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 437, 2032, 342, 828, 198, 220, 220, 220, 886, 2032, 342, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 437, 2032, 342, 828, 198, 220, 220, 220, 44736, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 36311, 828, 198, 220, 220, 220, 10283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 36311, 828, 198, 220, 220, 220, 1405, 11128, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 75, 36311, 828, 198, 220, 220, 220, 300, 36311, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 75, 36311, 828, 198, 220, 220, 220, 288, 12501, 499, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 36311, 828, 198, 220, 220, 220, 374, 36311, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 81, 36311, 828, 198, 220, 220, 220, 949, 11261, 16241, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 2032, 499, 7442, 828, 198, 220, 220, 220, 16075, 7442, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 2032, 499, 7442, 828, 198, 220, 220, 220, 5259, 43348, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 7839, 828, 198, 220, 220, 220, 3670, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 7839, 828, 198, 220, 220, 220, 2083, 1229, 343, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 7645, 17660, 828, 198, 220, 220, 220, 15772, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 7645, 17660, 828, 198, 220, 220, 220, 743, 16241, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 45828, 828, 198, 220, 220, 220, 6727, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 45828, 828, 198, 220, 220, 220, 269, 297, 268, 283, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 89, 20797, 828, 198, 220, 220, 220, 1976, 20797, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 89, 20797, 828, 198, 220, 220, 220, 11593, 11110, 2232, 834, 796, 987, 79, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 1136, 22252, 828, 198, 220, 220, 220, 11593, 22252, 834, 796, 987, 79, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 1136, 22252, 828, 628, 220, 220, 220, 1296, 5549, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 18982, 828, 198, 220, 220, 220, 5794, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 18982, 828, 198, 220, 220, 220, 11593, 687, 5549, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 834, 18982, 834, 828, 198, 220, 220, 220, 11593, 18982, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 834, 18982, 834, 828, 198, 220, 220, 220, 11593, 4666, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 4666, 828, 198, 220, 220, 220, 11593, 67, 4666, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 81, 4666, 828, 198, 220, 220, 220, 11593, 81, 4666, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 81, 4666, 828, 198, 220, 220, 220, 11593, 30584, 272, 518, 85, 418, 22046, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 198, 220, 220, 220, 220, 220, 220, 220, 370, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 1136, 3605, 22046, 828, 198, 220, 220, 220, 11593, 1136, 3605, 22046, 834, 796, 987, 79, 521, 1060, 17, 1324, 7, 198, 220, 220, 220, 220, 220, 220, 220, 370, 62, 23839, 45992, 10267, 13, 20147, 81, 62, 1136, 3605, 22046, 828, 198, 220, 220, 220, 4808, 687, 1436, 62, 48610, 796, 987, 79, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 687, 1436, 62, 48610, 828, 198, 220, 220, 220, 4808, 687, 1436, 62, 3245, 62, 3672, 62, 35312, 796, 198, 220, 220, 220, 220, 220, 220, 220, 987, 79, 17, 1324, 7, 54, 62, 45992, 10267, 13, 20147, 81, 62, 687, 1436, 62, 3245, 62, 3672, 62, 35312, 828, 198, 8, 198, 54, 62, 45992, 10267, 13, 774, 9124, 891, 13, 32109, 62, 43167, 62, 25456, 62, 5589, 265, 796, 6407, 628, 198, 31, 45051, 13, 417, 23321, 198 ]
2.650153
3,593
from sqlalchemy import Column, Integer, String, Date from sqlalchemy.orm import relationship from sqlalchemy.sql.schema import ForeignKey from configuration import Base from datetime import *
[ 6738, 44161, 282, 26599, 1330, 29201, 11, 34142, 11, 10903, 11, 7536, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 198, 6738, 44161, 282, 26599, 13, 25410, 13, 15952, 2611, 1330, 8708, 9218, 198, 6738, 8398, 1330, 7308, 220, 198, 6738, 4818, 8079, 1330, 1635 ]
4.173913
46
from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import status from rest_framework.permissions import IsAdminUser from common.views import ResponseInfo, MyPageNumber from .models import File from .serializers import FileSerializer
[ 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 33571, 1330, 3486, 3824, 769, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 525, 8481, 1330, 1148, 46787, 12982, 198, 198, 6738, 2219, 13, 33571, 1330, 18261, 12360, 11, 2011, 9876, 15057, 198, 6738, 764, 27530, 1330, 9220, 198, 6738, 764, 46911, 11341, 1330, 9220, 32634, 7509, 628, 198 ]
4.279412
68
#!/usr/bin/env python """ recursive search and deinit (disconnection) for drive-google directories """ from pathlib import Path from gdrivepublic import isgdrive from subprocess import call from argparse import ArgumentParser p = ArgumentParser() p.add_argument('rdir',help='root directory to search for active drive-google connections',nargs='?',default='~') p = p.parse_args() rdir = Path(p.rdir).expanduser() #%% for d in rdir.rglob('.gd'): try: if isgdrive(d): call(['drive','deinit'],cwd=str(d)) except PermissionError: pass
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 8344, 30753, 2989, 290, 390, 15003, 357, 6381, 38659, 8, 329, 3708, 12, 13297, 29196, 198, 37811, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 308, 19472, 11377, 1330, 318, 70, 19472, 198, 6738, 850, 14681, 1330, 869, 628, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 79, 796, 45751, 46677, 3419, 198, 79, 13, 2860, 62, 49140, 10786, 4372, 343, 3256, 16794, 11639, 15763, 8619, 284, 2989, 329, 4075, 3708, 12, 13297, 8787, 3256, 77, 22046, 11639, 30, 3256, 12286, 11639, 93, 11537, 198, 79, 796, 279, 13, 29572, 62, 22046, 3419, 198, 198, 4372, 343, 796, 10644, 7, 79, 13, 4372, 343, 737, 11201, 392, 7220, 3419, 198, 2, 16626, 198, 1640, 288, 287, 374, 15908, 13, 81, 4743, 672, 7, 4458, 21287, 6, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 70, 19472, 7, 67, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 869, 7, 17816, 19472, 41707, 2934, 15003, 6, 4357, 66, 16993, 28, 2536, 7, 67, 4008, 198, 220, 220, 220, 2845, 2448, 3411, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
2.762136
206
import json import os from argparse import Namespace, _SubParsersAction from cloudfoundry_client.client import CloudFoundryClient from cloudfoundry_client.json_object import JsonObject from cloudfoundry_client.main.command_domain import CommandDomain, Command
[ 11748, 33918, 198, 11748, 28686, 198, 6738, 1822, 29572, 1330, 28531, 10223, 11, 4808, 7004, 47, 945, 364, 12502, 198, 198, 6738, 6279, 9275, 563, 62, 16366, 13, 16366, 1330, 10130, 21077, 563, 11792, 198, 6738, 6279, 9275, 563, 62, 16366, 13, 17752, 62, 15252, 1330, 449, 1559, 10267, 198, 6738, 6279, 9275, 563, 62, 16366, 13, 12417, 13, 21812, 62, 27830, 1330, 9455, 43961, 11, 9455, 628 ]
3.852941
68
from numpy import random import gc import numpy as np import pdb import cv2 import os import sys import matplotlib.pyplot as plt dataset_name = sys.argv[1] data_dir = './quickdraw/' + dataset_name + '/r128/' save_dir = './quickdraw/' + dataset_name + '/obj-in-image/' os.makedirs(save_dir + 'test/' , exist_ok=True) os.makedirs(save_dir + 'train/' , exist_ok=True) list_files = os.listdir(data_dir) test_num = int(len(list_files) / 5) mode = '' for count , file in enumerate(list_files): if count < test_num: mode = 'test/' else: mode = 'train/' obj_img = cv2.imread(data_dir + file , 0) obj_img = cv2.resize(obj_img , (32,32)) _,obj_img = cv2.threshold(obj_img,127,255,cv2.THRESH_BINARY) file , ext = os.path.splitext(file) for i in range(5): bkg_img = np.zeros((128,128)) tx = random.randint(0,64) ty = random.randint(0,64) bkg_img[tx:tx+32,ty:ty+32] = obj_img cv2.imwrite(save_dir + mode + file + '_' + str(i) + ext , bkg_img) # pdb.set_trace()
[ 6738, 299, 32152, 1330, 4738, 198, 11748, 308, 66, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 279, 9945, 198, 11748, 269, 85, 17, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 19608, 292, 316, 62, 3672, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 198, 7890, 62, 15908, 796, 705, 19571, 24209, 19334, 14, 6, 1343, 27039, 62, 3672, 1343, 31051, 81, 12762, 14, 6, 198, 21928, 62, 15908, 796, 705, 19571, 24209, 19334, 14, 6, 1343, 27039, 62, 3672, 1343, 31051, 26801, 12, 259, 12, 9060, 14, 6, 198, 418, 13, 76, 4335, 17062, 7, 21928, 62, 15908, 1343, 705, 9288, 14, 6, 837, 2152, 62, 482, 28, 17821, 8, 198, 418, 13, 76, 4335, 17062, 7, 21928, 62, 15908, 1343, 705, 27432, 14, 6, 837, 2152, 62, 482, 28, 17821, 8, 198, 198, 4868, 62, 16624, 796, 28686, 13, 4868, 15908, 7, 7890, 62, 15908, 8, 198, 9288, 62, 22510, 796, 493, 7, 11925, 7, 4868, 62, 16624, 8, 1220, 642, 8, 198, 198, 14171, 796, 10148, 198, 198, 1640, 954, 837, 2393, 287, 27056, 378, 7, 4868, 62, 16624, 2599, 198, 197, 361, 954, 1279, 1332, 62, 22510, 25, 198, 197, 197, 14171, 796, 705, 9288, 14, 6, 198, 197, 17772, 25, 198, 197, 197, 14171, 796, 705, 27432, 14, 6, 628, 197, 26801, 62, 9600, 796, 269, 85, 17, 13, 320, 961, 7, 7890, 62, 15908, 1343, 2393, 837, 657, 8, 198, 197, 26801, 62, 9600, 796, 269, 85, 17, 13, 411, 1096, 7, 26801, 62, 9600, 837, 357, 2624, 11, 2624, 4008, 198, 197, 62, 11, 26801, 62, 9600, 796, 269, 85, 17, 13, 400, 10126, 7, 26801, 62, 9600, 11, 16799, 11, 13381, 11, 33967, 17, 13, 4221, 19535, 39, 62, 33, 1268, 13153, 8, 198, 197, 7753, 837, 1070, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 7753, 8, 198, 197, 1640, 1312, 287, 2837, 7, 20, 2599, 198, 197, 197, 65, 10025, 62, 9600, 796, 45941, 13, 9107, 418, 19510, 12762, 11, 12762, 4008, 198, 197, 197, 17602, 796, 4738, 13, 25192, 600, 7, 15, 11, 2414, 8, 198, 197, 197, 774, 796, 4738, 13, 25192, 600, 7, 15, 11, 2414, 8, 198, 197, 197, 65, 10025, 62, 9600, 58, 17602, 25, 17602, 10, 2624, 11, 774, 25, 774, 10, 2624, 60, 796, 26181, 62, 9600, 198, 197, 197, 33967, 17, 13, 320, 13564, 7, 21928, 62, 15908, 1343, 4235, 1343, 2393, 1343, 705, 62, 6, 1343, 965, 7, 72, 8, 1343, 1070, 837, 275, 10025, 62, 9600, 8, 198, 197, 197, 2, 279, 9945, 13, 2617, 62, 40546, 3419, 198 ]
2.205418
443
# Use true division operator always even in old python 2.x (used in `_get_case_getter_s`) from __future__ import division from distutils.version import LooseVersion from enum import Enum from inspect import isgeneratorfunction, getmodule, currentframe from itertools import product from warnings import warn from decopatch import function_decorator, DECORATED from makefun import with_signature, add_signature_parameters, remove_signature_parameters, wraps import pytest try: # python 3.3+ from inspect import signature, Parameter except ImportError: from funcsigs import signature, Parameter try: from typing import Type except ImportError: # on old versions of typing module the above does not work. Since our code below has all Type hints quoted it's ok pass try: # type hints, python 3+ from typing import Callable, Union, Optional, Any, Tuple, List, Dict, Iterable from pytest_cases.case_funcs import CaseData, ExpectedError from types import ModuleType # Type hint for the simple functions CaseFunc = Callable[[], CaseData] # Type hint for generator functions GeneratedCaseFunc = Callable[[Any], CaseData] except ImportError: pass from pytest_cases.common import yield_fixture, get_pytest_parametrize_marks, get_test_ids_from_param_values, \ make_marked_parameter_value, extract_parameterset_info, get_fixture_name, get_param_argnames_as_list, \ get_fixture_scope, remove_duplicates from pytest_cases.main_params import cases_data def unpack_fixture(argnames, fixture): """ Creates several fixtures with names `argnames` from the source `fixture`. Created fixtures will correspond to elements unpacked from `fixture` in order. For example if `fixture` is a tuple of length 2, `argnames="a,b"` will create two fixtures containing the first and second element respectively. The created fixtures are automatically registered into the callers' module, but you may wish to assign them to variables for convenience. In that case make sure that you use the same names, e.g. `a, b = unpack_fixture('a,b', 'c')`. ```python import pytest from pytest_cases import unpack_fixture, pytest_fixture_plus @pytest_fixture_plus @pytest.mark.parametrize("o", ['hello', 'world']) def c(o): return o, o[0] a, b = unpack_fixture("a,b", c) def test_function(a, b): assert a[0] == b ``` :param argnames: same as `@pytest.mark.parametrize` `argnames`. :param fixture: a fixture name string or a fixture symbol. If a fixture symbol is provided, the created fixtures will have the same scope. If a name is provided, they will have scope='function'. Note that in practice the performance loss resulting from using `function` rather than a higher scope is negligible since the created fixtures' body is a one-liner. :return: the created fixtures. """ # get caller module to create the symbols caller_module = get_caller_module() return _unpack_fixture(caller_module, argnames, fixture) def _unpack_fixture(caller_module, argnames, fixture): """ :param caller_module: :param argnames: :param fixture: :return: """ # unpack fixture names to create if needed argnames_lst = get_param_argnames_as_list(argnames) # possibly get the source fixture name if the fixture symbol was provided if not isinstance(fixture, str): source_f_name = get_fixture_name(fixture) scope = get_fixture_scope(fixture) else: source_f_name = fixture # we dont have a clue about the real scope, so lets use function scope scope = 'function' # finally create the sub-fixtures created_fixtures = [] for value_idx, argname in enumerate(argnames_lst): # create the fixture # To fix late binding issue with `value_idx` we add an extra layer of scope: a factory function # See https://stackoverflow.com/questions/3431676/creating-functions-in-a-loop # create it fix = _create_fixture(value_idx) # add to module check_name_available(caller_module, argname, if_name_exists=WARN, caller=unpack_fixture) setattr(caller_module, argname, fix) # collect to return the whole list eventually created_fixtures.append(fix) return created_fixtures def param_fixture(argname, argvalues, autouse=False, ids=None, scope="function", **kwargs): """ Identical to `param_fixtures` but for a single parameter name, so that you can assign its output to a single variable. ```python import pytest from pytest_cases import param_fixtures, param_fixture # create a single parameter fixture my_parameter = param_fixture("my_parameter", [1, 2, 3, 4]) @pytest.fixture def fixture_uses_param(my_parameter): ... def test_uses_param(my_parameter, fixture_uses_param): ... ``` :param argname: see fixture `name` :param argvalues: see fixture `params` :param autouse: see fixture `autouse` :param ids: see fixture `ids` :param scope: see fixture `scope` :param kwargs: any other argument for 'fixture' :return: the create fixture """ if "," in argname: raise ValueError("`param_fixture` is an alias for `param_fixtures` that can only be used for a single " "parameter name. Use `param_fixtures` instead - but note that it creates several fixtures.") elif len(argname.replace(' ', '')) == 0: raise ValueError("empty argname") caller_module = get_caller_module() return _param_fixture(caller_module, argname, argvalues, autouse=autouse, ids=ids, scope=scope, **kwargs) def _param_fixture(caller_module, argname, argvalues, autouse=False, ids=None, scope="function", **kwargs): """ Internal method shared with param_fixture and param_fixtures """ # create the fixture fix = pytest_fixture_plus(name=argname, scope=scope, autouse=autouse, params=argvalues, ids=ids, **kwargs)(__param_fixture) # Dynamically add fixture to caller's module as explained in https://github.com/pytest-dev/pytest/issues/2424 check_name_available(caller_module, argname, if_name_exists=WARN, caller=param_fixture) setattr(caller_module, argname, fix) return fix class ExistingFixtureNameError(ValueError): """ Raised by `add_fixture_to_callers_module` when a fixture already exists in a module """ RAISE = 0 WARN = 1 CHANGE = 2 def check_name_available(module, name, # type: str if_name_exists=RAISE, # type: int caller=None, # type: Callable[[Any], Any] ): """ Routine to :param module: :param name: :param if_name_exists: :param caller: :return: a name that might be different if policy was CHANGE """ if name in dir(module): if caller is None: caller = '' # Name already exists: act according to policy if if_name_exists is RAISE: raise ExistingFixtureNameError(module, name, caller) elif if_name_exists is WARN: warn("%s Overriding symbol %s in module %s" % (caller, name, module)) elif if_name_exists is CHANGE: # find a non-used name in that module i = 1 name2 = name + '_%s' % i while name2 in dir(module): i += 1 name2 = name + '_%s' % i name = name2 else: raise ValueError("invalid value for `if_name_exists`: %s" % if_name_exists) return name def param_fixtures(argnames, argvalues, autouse=False, ids=None, scope="function", **kwargs): """ Creates one or several "parameters" fixtures - depending on the number or coma-separated names in `argnames`. The created fixtures are automatically registered into the callers' module, but you may wish to assign them to variables for convenience. In that case make sure that you use the same names, e.g. `p, q = param_fixtures('p,q', [(0, 1), (2, 3)])`. Note that the (argnames, argvalues, ids) signature is similar to `@pytest.mark.parametrize` for consistency, see https://docs.pytest.org/en/latest/reference.html?highlight=pytest.param#pytest-mark-parametrize ```python import pytest from pytest_cases import param_fixtures, param_fixture # create a 2-tuple parameter fixture arg1, arg2 = param_fixtures("arg1, arg2", [(1, 2), (3, 4)]) @pytest.fixture def fixture_uses_param2(arg2): ... def test_uses_param2(arg1, arg2, fixture_uses_param2): ... ``` :param argnames: same as `@pytest.mark.parametrize` `argnames`. :param argvalues: same as `@pytest.mark.parametrize` `argvalues`. :param autouse: see fixture `autouse` :param ids: same as `@pytest.mark.parametrize` `ids` :param scope: see fixture `scope` :param kwargs: any other argument for the created 'fixtures' :return: the created fixtures """ created_fixtures = [] argnames_lst = get_param_argnames_as_list(argnames) caller_module = get_caller_module() if len(argnames_lst) < 2: return _param_fixture(caller_module, argnames, argvalues, autouse=autouse, ids=ids, scope=scope, **kwargs) # create the root fixture that will contain all parameter values # note: we sort the list so that the first in alphabetical order appears first. Indeed pytest uses this order. root_fixture_name = "%s__param_fixtures_root" % ('_'.join(sorted(argnames_lst))) # Dynamically add fixture to caller's module as explained in https://github.com/pytest-dev/pytest/issues/2424 root_fixture_name = check_name_available(caller_module, root_fixture_name, if_name_exists=CHANGE, caller=param_fixtures) @pytest_fixture_plus(name=root_fixture_name, autouse=autouse, scope=scope, **kwargs) @pytest.mark.parametrize(argnames, argvalues, ids=ids) @with_signature("(%s)" % argnames) # Override once again the symbol with the correct contents setattr(caller_module, root_fixture_name, _root_fixture) # finally create the sub-fixtures for param_idx, argname in enumerate(argnames_lst): # create the fixture # To fix late binding issue with `param_idx` we add an extra layer of scope: a factory function # See https://stackoverflow.com/questions/3431676/creating-functions-in-a-loop # create it fix = _create_fixture(param_idx) # add to module check_name_available(caller_module, argname, if_name_exists=WARN, caller=param_fixtures) setattr(caller_module, argname, fix) # collect to return the whole list eventually created_fixtures.append(fix) return created_fixtures @function_decorator def cases_fixture(cases=None, # type: Union[Callable[[Any], Any], Iterable[Callable[[Any], Any]]] module=None, # type: Union[ModuleType, Iterable[ModuleType]] case_data_argname='case_data', # type: str has_tag=None, # type: Any filter=None, # type: Callable[[List[Any]], bool] f=DECORATED, **kwargs ): """ DEPRECATED - use double annotation `@pytest_fixture_plus` + `@cases_data` instead ```python @pytest_fixture_plus @cases_data(module=xxx) def my_fixture(case_data) ``` Decorates a function so that it becomes a parametrized fixture. The fixture will be automatically parametrized with all cases listed in module `module`, or with all cases listed explicitly in `cases`. Using it with a non-None `module` argument is equivalent to * extracting all cases from `module` * then decorating your function with @pytest.fixture(params=cases) with all the cases So ```python from pytest_cases import cases_fixture, CaseData # import the module containing the test cases import test_foo_cases @cases_fixture(module=test_foo_cases) def foo_fixture(case_data: CaseData): ... ``` is equivalent to: ```python import pytest from pytest_cases import get_all_cases, CaseData # import the module containing the test cases import test_foo_cases # manually list the available cases cases = get_all_cases(module=test_foo_cases) # parametrize the fixture manually @pytest.fixture(params=cases) def foo_fixture(request): case_data = request.param # type: CaseData ... ``` Parameters (cases, module, has_tag, filter) can be used to perform explicit listing, or filtering. See `get_all_cases()` for details. :param cases: a single case or a hardcoded list of cases to use. Only one of `cases` and `module` should be set. :param module: a module or a hardcoded list of modules to use. You may use `THIS_MODULE` to indicate that the module is the current one. Only one of `cases` and `module` should be set. :param case_data_argname: the optional name of the function parameter that should receive the `CaseDataGetter` object. Default is 'case_data'. :param has_tag: an optional tag used to filter the cases. Only cases with the given tag will be selected. Only cases with the given tag will be selected. :param filter: an optional filtering function taking as an input a list of tags associated with a case, and returning a boolean indicating if the case should be selected. It will be used to filter the cases in the `module`. It both `has_tag` and `filter` are set, both will be applied in sequence. :return: """ # apply @cases_data (that will translate to a @pytest.mark.parametrize) parametrized_f = cases_data(cases=cases, module=module, case_data_argname=case_data_argname, has_tag=has_tag, filter=filter)(f) # apply @pytest_fixture_plus return pytest_fixture_plus(**kwargs)(parametrized_f) @function_decorator def pytest_fixture_plus(scope="function", autouse=False, name=None, unpack_into=None, fixture_func=DECORATED, **kwargs): """ decorator to mark a fixture factory function. Identical to `@pytest.fixture` decorator, except that - it supports multi-parametrization with `@pytest.mark.parametrize` as requested in https://github.com/pytest-dev/pytest/issues/3960. As a consequence it does not support the `params` and `ids` arguments anymore. - it supports a new argument `unpack_into` where you can provide names for fixtures where to unpack this fixture into. :param scope: the scope for which this fixture is shared, one of "function" (default), "class", "module" or "session". :param autouse: if True, the fixture func is activated for all tests that can see it. If False (the default) then an explicit reference is needed to activate the fixture. :param name: the name of the fixture. This defaults to the name of the decorated function. Note: If a fixture is used in the same module in which it is defined, the function name of the fixture will be shadowed by the function arg that requests the fixture; one way to resolve this is to name the decorated function ``fixture_<fixturename>`` and then use ``@pytest.fixture(name='<fixturename>')``. :param unpack_into: an optional iterable of names, or string containing coma-separated names, for additional fixtures to create to represent parts of this fixture. See `unpack_fixture` for details. :param kwargs: other keyword arguments for `@pytest.fixture` """ if name is not None: # Compatibility for the 'name' argument if LooseVersion(pytest.__version__) >= LooseVersion('3.0.0'): # pytest version supports "name" keyword argument kwargs['name'] = name elif name is not None: # 'name' argument is not supported in this old version, use the __name__ trick. fixture_func.__name__ = name # if unpacking is requested, do it first if unpack_into is not None: # get the future fixture name if needed if name is None: name = fixture_func.__name__ # get caller module to create the symbols caller_module = get_caller_module(frame_offset=2) _unpack_fixture(caller_module, unpack_into, name) # (1) Collect all @pytest.mark.parametrize markers (including those created by usage of @cases_data) parametrizer_marks = get_pytest_parametrize_marks(fixture_func) if len(parametrizer_marks) < 1: return _create_fixture_without_marks(fixture_func, scope, autouse, **kwargs) else: if 'params' in kwargs: raise ValueError( "With `pytest_fixture_plus` you cannot mix usage of the keyword argument `params` and of " "the pytest.mark.parametrize marks") # (2) create the huge "param" containing all params combined # --loop (use the same order to get it right) params_names_or_name_combinations = [] params_values = [] params_ids = [] params_marks = [] for pmark in parametrizer_marks: # check number of parameter names in this parameterset if len(pmark.param_names) < 1: raise ValueError("Fixture function '%s' decorated with '@pytest_fixture_plus' has an empty parameter " "name in a @pytest.mark.parametrize mark") # remember params_names_or_name_combinations.append(pmark.param_names) # extract all parameters that have a specific configuration (pytest.param()) _pids, _pmarks, _pvalues = extract_parameterset_info(pmark.param_names, pmark) # Create the proper id for each test if pmark.param_ids is not None: # overridden at global pytest.mark.parametrize level - this takes precedence. try: # an explicit list of ids ? paramids = list(pmark.param_ids) except TypeError: # a callable to apply on the values paramids = list(pmark.param_ids(v) for v in _pvalues) else: # default: values-based... paramids = get_test_ids_from_param_values(pmark.param_names, _pvalues) # ...but local pytest.param takes precedence for i, _id in enumerate(_pids): if _id is not None: paramids[i] = _id # Finally store the ids, marks, and values for this parameterset params_ids.append(paramids) params_marks.append(tuple(_pmarks)) params_values.append(tuple(_pvalues)) # (3) generate the ids and values, possibly reapplying marks if len(params_names_or_name_combinations) == 1: # we can simplify - that will be more readable final_ids = params_ids[0] final_marks = params_marks[0] final_values = list(params_values[0]) # reapply the marks for i, marks in enumerate(final_marks): if marks is not None: final_values[i] = make_marked_parameter_value(final_values[i], marks=marks) else: final_values = list(product(*params_values)) final_ids = get_test_ids_from_param_values(params_names_or_name_combinations, product(*params_ids)) final_marks = tuple(product(*params_marks)) # reapply the marks for i, marks in enumerate(final_marks): ms = [m for mm in marks if mm is not None for m in mm] if len(ms) > 0: final_values[i] = make_marked_parameter_value(final_values[i], marks=ms) if len(final_values) != len(final_ids): raise ValueError("Internal error related to fixture parametrization- please report") # (4) wrap the fixture function so as to remove the parameter names and add 'request' if needed all_param_names = tuple(v for l in params_names_or_name_combinations for v in l) # --create the new signature that we want to expose to pytest old_sig = signature(fixture_func) for p in all_param_names: if p not in old_sig.parameters: raise ValueError("parameter '%s' not found in fixture signature '%s%s'" "" % (p, fixture_func.__name__, old_sig)) new_sig = remove_signature_parameters(old_sig, *all_param_names) # add request if needed func_needs_request = 'request' in old_sig.parameters if not func_needs_request: new_sig = add_signature_parameters(new_sig, first=Parameter('request', kind=Parameter.POSITIONAL_OR_KEYWORD)) # --common routine used below. Fills kwargs with the appropriate names and values from fixture_params # --Finally create the fixture function, a wrapper of user-provided fixture with the new signature if not isgeneratorfunction(fixture_func): # normal function with return statement @wraps(fixture_func, new_sig=new_sig) # transform the created wrapper into a fixture fixture_decorator = pytest.fixture(scope=scope, params=final_values, autouse=autouse, ids=final_ids, **kwargs) return fixture_decorator(wrapped_fixture_func) else: # generator function (with a yield statement) @wraps(fixture_func, new_sig=new_sig) # transform the created wrapper into a fixture fixture_decorator = yield_fixture(scope=scope, params=final_values, autouse=autouse, ids=final_ids, **kwargs) return fixture_decorator(wrapped_fixture_func) def _create_fixture_without_marks(fixture_func, scope, autouse, **kwargs): """ creates a fixture for decorated fixture function `fixture_func`. :param fixture_func: :param scope: :param autouse: :param kwargs: :return: """ # IMPORTANT: even if 'params' is not in kwargs, the fixture # can be used in a fixture union and therefore a param will be received # on some calls (and the fixture will be called several times - only once for real) # - we have to handle the NOT_USED. # --create a wrapper where we will be able to auto-detect # TODO we could put this in a dedicated wrapper 'ignore_unsused'.. old_sig = signature(fixture_func) # add request if needed func_needs_request = 'request' in old_sig.parameters if not func_needs_request: new_sig = add_signature_parameters(old_sig, first=Parameter('request', kind=Parameter.POSITIONAL_OR_KEYWORD)) else: new_sig = old_sig if not isgeneratorfunction(fixture_func): # normal function with return statement @wraps(fixture_func, new_sig=new_sig) # transform the created wrapper into a fixture fixture_decorator = pytest.fixture(scope=scope, autouse=autouse, **kwargs) return fixture_decorator(wrapped_fixture_func) else: # generator function (with a yield statement) @wraps(fixture_func, new_sig=new_sig) # transform the created wrapper into a fixture fixture_decorator = yield_fixture(scope=scope, autouse=autouse, **kwargs) return fixture_decorator(wrapped_fixture_func) NOT_USED = _NotUsed() """Object representing a fixture value when the fixture is not used""" class UnionFixtureAlternative(object): """A special class that should be used to wrap a fixture name""" # def __str__(self): # that is maybe too dangerous... # return self.fixture_name @staticmethod class IdStyle(Enum): """ The enum defining all possible id styles. """ none = None explicit = 'explicit' compact = 'compact' def apply_id_style(id, union_fixture_name, idstyle): """ Applies the id style defined in `idstyle` to the given id. See https://github.com/smarie/python-pytest-cases/issues/41 :param id: :param union_fixture_name: :param idstyle: :return: """ if idstyle is IdStyle.none: return id elif idstyle is IdStyle.explicit: return "%s_is_%s" % (union_fixture_name, id) elif idstyle is IdStyle.compact: return "U%s" % id else: raise ValueError("Invalid id style") class InvalidParamsList(Exception): """ Exception raised when users attempt to provide a non-iterable `argvalues` in pytest parametrize. See https://docs.pytest.org/en/latest/reference.html#pytest-mark-parametrize-ref """ __slots__ = 'params', def is_fixture_union_params(params): """ Internal helper to quickly check if a bunch of parameters correspond to a union fixture. :param params: :return: """ try: return len(params) >= 1 and isinstance(params[0], UnionFixtureAlternative) except TypeError: raise InvalidParamsList(params) def is_used_request(request): """ Internal helper to check if a given request for fixture is active or not. Inactive fixtures happen when a fixture is not used in the current branch of a UNION fixture. This helper is used in all fixtures created in this module. :param request: :return: """ return getattr(request, 'param', None) is not NOT_USED def fixture_union(name, fixtures, scope="function", idstyle='explicit', ids=fixture_alternative_to_str, unpack_into=None, autouse=False, **kwargs): """ Creates a fixture that will take all values of the provided fixtures in order. That fixture is automatically registered into the callers' module, but you may wish to assign it to a variable for convenience. In that case make sure that you use the same name, e.g. `a = fixture_union('a', ['b', 'c'])` The style of test ids corresponding to the union alternatives can be changed with `idstyle`. Three values are allowed: - `'explicit'` (default) favors readability, - `'compact'` adds a small mark so that at least one sees which parameters are union parameters and which others are normal parameters, - `None` does not change the ids. :param name: the name of the fixture to create :param fixtures: an array-like containing fixture names and/or fixture symbols :param scope: the scope of the union. Since the union depends on the sub-fixtures, it should be smaller than the smallest scope of fixtures referenced. :param idstyle: The style of test ids corresponding to the union alternatives. One of `'explicit'` (default), `'compact'`, or `None`. :param ids: as in pytest. The default value returns the correct fixture :param unpack_into: an optional iterable of names, or string containing coma-separated names, for additional fixtures to create to represent parts of this fixture. See `unpack_fixture` for details. :param autouse: as in pytest :param kwargs: other pytest fixture options. They might not be supported correctly. :return: the new fixture. Note: you do not need to capture that output in a symbol, since the fixture is automatically registered in your module. However if you decide to do so make sure that you use the same name. """ caller_module = get_caller_module() return _fixture_union(caller_module, name, fixtures, scope=scope, idstyle=idstyle, ids=ids, autouse=autouse, unpack_into=unpack_into, **kwargs) def _fixture_union(caller_module, name, fixtures, idstyle, scope="function", ids=fixture_alternative_to_str, unpack_into=None, autouse=False, **kwargs): """ Internal implementation for fixture_union :param caller_module: :param name: :param fixtures: :param idstyle: :param scope: :param ids: :param unpack_into: :param autouse: :param kwargs: :return: """ # test the `fixtures` argument to avoid common mistakes if not isinstance(fixtures, (tuple, set, list)): raise TypeError("fixture_union: the `fixtures` argument should be a tuple, set or list") # validate the idstyle idstyle = IdStyle(idstyle) # first get all required fixture names f_names = [] for f in fixtures: # possibly get the fixture name if the fixture symbol was provided f_names.append(get_fixture_name(f) if not isinstance(f, str) else f) if len(f_names) < 1: raise ValueError("Empty fixture unions are not permitted") # then generate the body of our union fixture. It will require all of its dependent fixtures and receive as # a parameter the name of the fixture to use @with_signature("(%s, request)" % ', '.join(f_names)) _new_fixture.__name__ = name # finally create the fixture per se. # WARNING we do not use pytest.fixture but pytest_fixture_plus so that NOT_USED is discarded f_decorator = pytest_fixture_plus(scope=scope, params=[UnionFixtureAlternative(_name, idstyle) for _name in f_names], autouse=autouse, ids=ids, **kwargs) fix = f_decorator(_new_fixture) # Dynamically add fixture to caller's module as explained in https://github.com/pytest-dev/pytest/issues/2424 check_name_available(caller_module, name, if_name_exists=WARN, caller=param_fixture) setattr(caller_module, name, fix) # if unpacking is requested, do it here if unpack_into is not None: _unpack_fixture(caller_module, argnames=unpack_into, fixture=name) return fix def _fixture_product(caller_module, name, fixtures_or_values, fixture_positions, scope="function", ids=fixture_alternative_to_str, unpack_into=None, autouse=False, **kwargs): """ Internal implementation for fixture products created by pytest parametrize plus. :param caller_module: :param name: :param fixtures_or_values: :param fixture_positions: :param idstyle: :param scope: :param ids: :param unpack_into: :param autouse: :param kwargs: :return: """ # test the `fixtures` argument to avoid common mistakes if not isinstance(fixtures_or_values, (tuple, set, list)): raise TypeError("fixture_product: the `fixtures_or_values` argument should be a tuple, set or list") _tuple_size = len(fixtures_or_values) # first get all required fixture names f_names = [None] * _tuple_size for f_pos in fixture_positions: # possibly get the fixture name if the fixture symbol was provided f = fixtures_or_values[f_pos] # and remember the position in the tuple f_names[f_pos] = get_fixture_name(f) if not isinstance(f, str) else f # remove duplicates by making it an ordered set all_names = remove_duplicates((n for n in f_names if n is not None)) if len(all_names) < 1: raise ValueError("Empty fixture products are not permitted") # then generate the body of our product fixture. It will require all of its dependent fixtures @with_signature("(%s)" % ', '.join(all_names)) _new_fixture.__name__ = name # finally create the fixture per se. # WARNING we do not use pytest.fixture but pytest_fixture_plus so that NOT_USED is discarded f_decorator = pytest_fixture_plus(scope=scope, autouse=autouse, ids=ids, **kwargs) fix = f_decorator(_new_fixture) # Dynamically add fixture to caller's module as explained in https://github.com/pytest-dev/pytest/issues/2424 check_name_available(caller_module, name, if_name_exists=WARN, caller=param_fixture) setattr(caller_module, name, fix) # if unpacking is requested, do it here if unpack_into is not None: _unpack_fixture(caller_module, argnames=unpack_into, fixture=name) return fix class fixture_ref: """ A reference to a fixture, to be used in `pytest_parametrize_plus`. You can create it from a fixture name or a fixture object (function). """ __slots__ = 'fixture', def pytest_parametrize_plus(argnames, argvalues, indirect=False, ids=None, scope=None, **kwargs): """ Equivalent to `@pytest.mark.parametrize` but also supports the fact that in argvalues one can include references to fixtures with `fixture_ref(<fixture>)` where <fixture> can be the fixture name or fixture function. When such a fixture reference is detected in the argvalues, a new function-scope fixture will be created with a unique name, and the test function will be wrapped so as to be injected with the correct parameters. Special test ids will be created to illustrate the switching between normal parameters and fixtures. :param argnames: :param argvalues: :param indirect: :param ids: :param scope: :param kwargs: :return: """ # make sure that we do not destroy the argvalues if it is provided as an iterator try: argvalues = list(argvalues) except TypeError: raise InvalidParamsList(argvalues) # get the param names all_param_names = get_param_argnames_as_list(argnames) nb_params = len(all_param_names) # find if there are fixture references in the values provided fixture_indices = [] if nb_params == 1: for i, v in enumerate(argvalues): if isinstance(v, fixture_ref): fixture_indices.append((i, None)) elif nb_params > 1: for i, v in enumerate(argvalues): try: j = 0 fix_pos = [] for j, _pval in enumerate(v): if isinstance(_pval, fixture_ref): fix_pos.append(j) if len(fix_pos) > 0: fixture_indices.append((i, fix_pos)) if j+1 != nb_params: raise ValueError("Invalid parameter values containing %s items while the number of parameters is %s: " "%s." % (j+1, nb_params, v)) except TypeError: # a fixture ref is if isinstance(v, fixture_ref): fixture_indices.append((i, None)) else: raise ValueError( "Invalid parameter values containing %s items while the number of parameters is %s: " "%s." % (1, nb_params, v)) if len(fixture_indices) == 0: # no fixture reference: do as usual return pytest.mark.parametrize(argnames, argvalues, indirect=indirect, ids=ids, scope=scope, **kwargs) else: # there are fixture references: we have to create a specific decorator caller_module = get_caller_module() def _create_param_fixture(from_i, to_i, p_fix_name): """ Routine that will be used to create a parameter fixture for argvalues between prev_i and i""" selected_argvalues = argvalues[from_i:to_i] try: # an explicit list of ids selected_ids = ids[from_i:to_i] except TypeError: # a callable to create the ids selected_ids = ids # default behaviour is not the same betwee pytest params and pytest fixtures if selected_ids is None: # selected_ids = ['-'.join([str(_v) for _v in v]) for v in selected_argvalues] selected_ids = get_test_ids_from_param_values(all_param_names, selected_argvalues) if to_i == from_i + 1: p_fix_name = "%s_is_%s" % (p_fix_name, from_i) else: p_fix_name = "%s_is_%sto%s" % (p_fix_name, from_i, to_i - 1) p_fix_name = check_name_available(caller_module, p_fix_name, if_name_exists=CHANGE, caller=pytest_parametrize_plus) param_fix = _param_fixture(caller_module, argname=p_fix_name, argvalues=selected_argvalues, ids=selected_ids) return param_fix # then create the decorator def parametrize_plus_decorate(test_func): """ A decorator that wraps the test function so that instead of receiving the parameter names, it receives the new fixture. All other decorations are unchanged. :param test_func: :return: """ # first check if the test function has the parameters as arguments old_sig = signature(test_func) for p in all_param_names: if p not in old_sig.parameters: raise ValueError("parameter '%s' not found in test function signature '%s%s'" "" % (p, test_func.__name__, old_sig)) # The base name for all fixtures that will be created below # style_template = "%s_param__%s" style_template = "%s_%s" base_name = style_template % (test_func.__name__, argnames.replace(' ', '').replace(',', '_')) base_name = check_name_available(caller_module, base_name, if_name_exists=CHANGE, caller=pytest_parametrize_plus) # Retrieve (if ref) or create (for normal argvalues) the fixtures that we will union # TODO important note: we could either wish to create one fixture for parameter value or to create one for # each consecutive group as shown below. This should not lead to different results but perf might differ. # maybe add a parameter in the signature so that users can test it ? fixtures_to_union = [] fixtures_to_union_names_for_ids = [] prev_i = -1 for i, j_list in fixture_indices: if i > prev_i + 1: # there was a non-empty group of 'normal' parameters before this fixture_ref. # create a new fixture parametrized with all of that consecutive group. param_fix = _create_param_fixture(prev_i + 1, i, base_name) fixtures_to_union.append(param_fix) fixtures_to_union_names_for_ids.append(get_fixture_name(param_fix)) if j_list is None: # add the fixture referenced with `fixture_ref` referenced_fixture = argvalues[i].fixture fixtures_to_union.append(referenced_fixture) id_for_fixture = apply_id_style(get_fixture_name(referenced_fixture), base_name, IdStyle.explicit) fixtures_to_union_names_for_ids.append(id_for_fixture) else: # create a fixture refering to all the fixtures required in the tuple prod_fix = _create_fixture_product(i, j_list, base_name) fixtures_to_union.append(prod_fix) id_for_fixture = apply_id_style(get_fixture_name(prod_fix), base_name, IdStyle.explicit) fixtures_to_union_names_for_ids.append(id_for_fixture) prev_i = i # handle last consecutive group of normal parameters, if any i = len(argvalues) if i > prev_i + 1: param_fix = _create_param_fixture(prev_i + 1, i, base_name) fixtures_to_union.append(param_fix) fixtures_to_union_names_for_ids.append(get_fixture_name(param_fix)) # Finally create a "main" fixture with a unique name for this test function # note: the function automatically registers it in the module # note 2: idstyle is set to None because we provide an explicit enough list of ids big_param_fixture = _fixture_union(caller_module, base_name, fixtures_to_union, idstyle=None, ids=fixtures_to_union_names_for_ids) # --create the new test function's signature that we want to expose to pytest # it is the same than existing, except that we want to replace all parameters with the new fixture new_sig = remove_signature_parameters(old_sig, *all_param_names) new_sig = add_signature_parameters(new_sig, Parameter(base_name, kind=Parameter.POSITIONAL_OR_KEYWORD)) # --Finally create the fixture function, a wrapper of user-provided fixture with the new signature if not isgeneratorfunction(test_func): # normal test function with return statement @wraps(test_func, new_sig=new_sig) else: # generator test function (with one or several yield statement) @wraps(test_func, new_sig=new_sig) # move all pytest marks from the test function to the wrapper # not needed because the __dict__ is automatically copied when we use @wraps # move_all_pytest_marks(test_func, wrapped_test_func) # With this hack we will be ordered correctly by pytest https://github.com/pytest-dev/pytest/issues/4429 wrapped_test_func.place_as = test_func # return the new test function return wrapped_test_func return parametrize_plus_decorate
[ 2, 5765, 2081, 7297, 10088, 1464, 772, 287, 1468, 21015, 362, 13, 87, 357, 1484, 287, 4600, 62, 1136, 62, 7442, 62, 1136, 353, 62, 82, 63, 8, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 198, 6738, 1233, 26791, 13, 9641, 1330, 6706, 577, 14815, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 10104, 1330, 318, 8612, 1352, 8818, 11, 651, 21412, 11, 1459, 14535, 198, 6738, 340, 861, 10141, 1330, 1720, 198, 6738, 14601, 1330, 9828, 198, 198, 6738, 875, 404, 963, 1330, 2163, 62, 12501, 273, 1352, 11, 27196, 1581, 11617, 198, 6738, 787, 12543, 1330, 351, 62, 12683, 1300, 11, 751, 62, 12683, 1300, 62, 17143, 7307, 11, 4781, 62, 12683, 1300, 62, 17143, 7307, 11, 27521, 198, 198, 11748, 12972, 9288, 198, 198, 28311, 25, 220, 1303, 21015, 513, 13, 18, 10, 198, 220, 220, 220, 422, 10104, 1330, 9877, 11, 25139, 2357, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 1257, 6359, 9235, 1330, 9877, 11, 25139, 2357, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 19720, 1330, 5994, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1303, 319, 1468, 6300, 286, 19720, 8265, 262, 2029, 857, 407, 670, 13, 4619, 674, 2438, 2174, 468, 477, 5994, 20269, 10947, 340, 338, 12876, 198, 220, 220, 220, 1208, 198, 198, 28311, 25, 220, 1303, 2099, 20269, 11, 21015, 513, 10, 198, 220, 220, 220, 422, 19720, 1330, 4889, 540, 11, 4479, 11, 32233, 11, 4377, 11, 309, 29291, 11, 7343, 11, 360, 713, 11, 40806, 540, 628, 220, 220, 220, 422, 12972, 9288, 62, 33964, 13, 7442, 62, 12543, 6359, 1330, 8913, 6601, 11, 1475, 7254, 12331, 628, 220, 220, 220, 422, 3858, 1330, 19937, 6030, 628, 220, 220, 220, 1303, 5994, 9254, 329, 262, 2829, 5499, 198, 220, 220, 220, 8913, 37, 19524, 796, 4889, 540, 30109, 4357, 8913, 6601, 60, 628, 220, 220, 220, 1303, 5994, 9254, 329, 17301, 5499, 198, 220, 220, 220, 2980, 515, 20448, 37, 19524, 796, 4889, 540, 30109, 7149, 4357, 8913, 6601, 60, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 6738, 12972, 9288, 62, 33964, 13, 11321, 1330, 7800, 62, 69, 9602, 11, 651, 62, 9078, 9288, 62, 17143, 316, 380, 2736, 62, 14306, 11, 651, 62, 9288, 62, 2340, 62, 6738, 62, 17143, 62, 27160, 11, 3467, 198, 220, 220, 220, 787, 62, 23505, 62, 17143, 2357, 62, 8367, 11, 7925, 62, 17143, 7307, 316, 62, 10951, 11, 651, 62, 69, 9602, 62, 3672, 11, 651, 62, 17143, 62, 853, 14933, 62, 292, 62, 4868, 11, 3467, 198, 220, 220, 220, 651, 62, 69, 9602, 62, 29982, 11, 4781, 62, 646, 489, 16856, 198, 6738, 12972, 9288, 62, 33964, 13, 12417, 62, 37266, 1330, 2663, 62, 7890, 628, 198, 4299, 555, 8002, 62, 69, 9602, 7, 853, 14933, 11, 29220, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 1811, 34609, 351, 3891, 4600, 853, 14933, 63, 422, 262, 2723, 4600, 69, 9602, 44646, 15622, 34609, 481, 6053, 284, 198, 220, 220, 220, 4847, 8593, 6021, 422, 4600, 69, 9602, 63, 287, 1502, 13, 1114, 1672, 611, 4600, 69, 9602, 63, 318, 257, 46545, 286, 4129, 362, 11, 4600, 853, 14933, 2625, 64, 11, 65, 1, 63, 481, 198, 220, 220, 220, 2251, 734, 34609, 7268, 262, 717, 290, 1218, 5002, 8148, 13, 628, 220, 220, 220, 383, 2727, 34609, 389, 6338, 6823, 656, 262, 869, 364, 6, 8265, 11, 475, 345, 743, 4601, 284, 8333, 606, 284, 198, 220, 220, 220, 9633, 329, 15607, 13, 554, 326, 1339, 787, 1654, 326, 345, 779, 262, 976, 3891, 11, 198, 220, 220, 220, 304, 13, 70, 13, 4600, 64, 11, 275, 796, 555, 8002, 62, 69, 9602, 10786, 64, 11, 65, 3256, 705, 66, 11537, 44646, 628, 220, 220, 220, 7559, 63, 29412, 198, 220, 220, 220, 1330, 12972, 9288, 198, 220, 220, 220, 422, 12972, 9288, 62, 33964, 1330, 555, 8002, 62, 69, 9602, 11, 12972, 9288, 62, 69, 9602, 62, 9541, 628, 220, 220, 220, 2488, 9078, 9288, 62, 69, 9602, 62, 9541, 198, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 78, 1600, 37250, 31373, 3256, 705, 6894, 6, 12962, 198, 220, 220, 220, 825, 269, 7, 78, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 267, 11, 267, 58, 15, 60, 628, 220, 220, 220, 257, 11, 275, 796, 555, 8002, 62, 69, 9602, 7203, 64, 11, 65, 1600, 269, 8, 628, 220, 220, 220, 825, 1332, 62, 8818, 7, 64, 11, 275, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 15, 60, 6624, 275, 198, 220, 220, 220, 7559, 63, 628, 220, 220, 220, 1058, 17143, 1822, 14933, 25, 976, 355, 4600, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 63, 4600, 853, 14933, 44646, 198, 220, 220, 220, 1058, 17143, 29220, 25, 257, 29220, 1438, 4731, 393, 257, 29220, 6194, 13, 1002, 257, 29220, 6194, 318, 2810, 11, 262, 2727, 34609, 198, 220, 220, 220, 220, 220, 220, 220, 481, 423, 262, 976, 8354, 13, 1002, 257, 1438, 318, 2810, 11, 484, 481, 423, 8354, 11639, 8818, 4458, 5740, 326, 287, 3357, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2854, 2994, 7186, 422, 1262, 4600, 8818, 63, 2138, 621, 257, 2440, 8354, 318, 36480, 1201, 262, 2727, 198, 220, 220, 220, 220, 220, 220, 220, 34609, 6, 1767, 318, 257, 530, 12, 24683, 13, 198, 220, 220, 220, 1058, 7783, 25, 262, 2727, 34609, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 651, 24955, 8265, 284, 2251, 262, 14354, 198, 220, 220, 220, 24955, 62, 21412, 796, 651, 62, 13345, 263, 62, 21412, 3419, 198, 220, 220, 220, 1441, 4808, 403, 8002, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 1822, 14933, 11, 29220, 8, 628, 198, 4299, 4808, 403, 8002, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 1822, 14933, 11, 29220, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 24955, 62, 21412, 25, 198, 220, 220, 220, 1058, 17143, 1822, 14933, 25, 198, 220, 220, 220, 1058, 17143, 29220, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 555, 8002, 29220, 3891, 284, 2251, 611, 2622, 198, 220, 220, 220, 1822, 14933, 62, 75, 301, 796, 651, 62, 17143, 62, 853, 14933, 62, 292, 62, 4868, 7, 853, 14933, 8, 628, 220, 220, 220, 1303, 5457, 651, 262, 2723, 29220, 1438, 611, 262, 29220, 6194, 373, 2810, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 69, 9602, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 69, 62, 3672, 796, 651, 62, 69, 9602, 62, 3672, 7, 69, 9602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8354, 796, 651, 62, 69, 9602, 62, 29982, 7, 69, 9602, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 69, 62, 3672, 796, 29220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 17666, 423, 257, 18437, 546, 262, 1103, 8354, 11, 523, 8781, 779, 2163, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 8354, 796, 705, 8818, 6, 628, 220, 220, 220, 1303, 3443, 2251, 262, 850, 12, 69, 25506, 198, 220, 220, 220, 2727, 62, 69, 25506, 796, 17635, 198, 220, 220, 220, 329, 1988, 62, 312, 87, 11, 1822, 3672, 287, 27056, 378, 7, 853, 14933, 62, 75, 301, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 262, 29220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 4259, 2739, 12765, 2071, 351, 4600, 8367, 62, 312, 87, 63, 356, 751, 281, 3131, 7679, 286, 8354, 25, 257, 8860, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 32118, 1433, 4304, 14, 20123, 278, 12, 12543, 2733, 12, 259, 12, 64, 12, 26268, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 340, 198, 220, 220, 220, 220, 220, 220, 220, 4259, 796, 4808, 17953, 62, 69, 9602, 7, 8367, 62, 312, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 3672, 62, 15182, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 11, 611, 62, 3672, 62, 1069, 1023, 28, 37771, 11, 24955, 28, 403, 8002, 62, 69, 9602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 11, 4259, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2824, 284, 1441, 262, 2187, 1351, 4191, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 69, 25506, 13, 33295, 7, 13049, 8, 628, 220, 220, 220, 1441, 2727, 62, 69, 25506, 628, 198, 4299, 5772, 62, 69, 9602, 7, 853, 3672, 11, 1822, 27160, 11, 1960, 1076, 28, 25101, 11, 220, 2340, 28, 14202, 11, 8354, 2625, 8818, 1600, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11440, 605, 284, 4600, 17143, 62, 69, 25506, 63, 475, 329, 257, 2060, 11507, 1438, 11, 523, 326, 345, 460, 8333, 663, 5072, 284, 257, 2060, 198, 220, 220, 220, 7885, 13, 628, 220, 220, 220, 7559, 63, 29412, 198, 220, 220, 220, 1330, 12972, 9288, 198, 220, 220, 220, 422, 12972, 9288, 62, 33964, 1330, 5772, 62, 69, 25506, 11, 5772, 62, 69, 9602, 628, 220, 220, 220, 1303, 2251, 257, 2060, 11507, 29220, 198, 220, 220, 220, 616, 62, 17143, 2357, 796, 5772, 62, 69, 9602, 7203, 1820, 62, 17143, 2357, 1600, 685, 16, 11, 362, 11, 513, 11, 604, 12962, 628, 220, 220, 220, 2488, 9078, 9288, 13, 69, 9602, 198, 220, 220, 220, 825, 29220, 62, 2664, 62, 17143, 7, 1820, 62, 17143, 2357, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 628, 220, 220, 220, 825, 1332, 62, 2664, 62, 17143, 7, 1820, 62, 17143, 2357, 11, 29220, 62, 2664, 62, 17143, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 7559, 63, 628, 220, 220, 220, 1058, 17143, 1822, 3672, 25, 766, 29220, 4600, 3672, 63, 198, 220, 220, 220, 1058, 17143, 1822, 27160, 25, 766, 29220, 4600, 37266, 63, 198, 220, 220, 220, 1058, 17143, 1960, 1076, 25, 766, 29220, 4600, 2306, 1076, 63, 198, 220, 220, 220, 1058, 17143, 220, 2340, 25, 766, 29220, 4600, 2340, 63, 198, 220, 220, 220, 1058, 17143, 8354, 25, 766, 29220, 4600, 29982, 63, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 597, 584, 4578, 329, 705, 69, 9602, 6, 198, 220, 220, 220, 1058, 7783, 25, 262, 2251, 29220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 366, 553, 287, 1822, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 63, 17143, 62, 69, 9602, 63, 318, 281, 16144, 329, 4600, 17143, 62, 69, 25506, 63, 326, 460, 691, 307, 973, 329, 257, 2060, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17143, 2357, 1438, 13, 5765, 4600, 17143, 62, 69, 25506, 63, 2427, 532, 475, 3465, 326, 340, 8075, 1811, 34609, 19570, 198, 220, 220, 220, 1288, 361, 18896, 7, 853, 3672, 13, 33491, 10786, 46083, 10148, 4008, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 28920, 1822, 3672, 4943, 628, 220, 220, 220, 24955, 62, 21412, 796, 651, 62, 13345, 263, 62, 21412, 3419, 628, 220, 220, 220, 1441, 4808, 17143, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 11, 1822, 27160, 11, 1960, 1076, 28, 2306, 1076, 11, 220, 2340, 28, 2340, 11, 8354, 28, 29982, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 4808, 17143, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 11, 1822, 27160, 11, 1960, 1076, 28, 25101, 11, 220, 2340, 28, 14202, 11, 8354, 2625, 8818, 1600, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 18628, 2446, 4888, 351, 5772, 62, 69, 9602, 290, 5772, 62, 69, 25506, 37227, 628, 220, 220, 220, 1303, 2251, 262, 29220, 628, 220, 220, 220, 4259, 796, 12972, 9288, 62, 69, 9602, 62, 9541, 7, 3672, 28, 853, 3672, 11, 8354, 28, 29982, 11, 1960, 1076, 28, 2306, 1076, 11, 42287, 28, 853, 27160, 11, 220, 2340, 28, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 5769, 834, 17143, 62, 69, 9602, 8, 628, 220, 220, 220, 1303, 14970, 1146, 751, 29220, 284, 24955, 338, 8265, 355, 4893, 287, 3740, 1378, 12567, 13, 785, 14, 9078, 9288, 12, 7959, 14, 9078, 9288, 14, 37165, 14, 1731, 1731, 198, 220, 220, 220, 2198, 62, 3672, 62, 15182, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 11, 611, 62, 3672, 62, 1069, 1023, 28, 37771, 11, 24955, 28, 17143, 62, 69, 9602, 8, 198, 220, 220, 220, 900, 35226, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 11, 4259, 8, 628, 220, 220, 220, 1441, 4259, 628, 198, 198, 4871, 1475, 9665, 37, 9602, 5376, 12331, 7, 11395, 12331, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7567, 1417, 416, 4600, 2860, 62, 69, 9602, 62, 1462, 62, 13345, 364, 62, 21412, 63, 618, 257, 29220, 1541, 7160, 287, 257, 8265, 198, 220, 220, 220, 37227, 628, 198, 3861, 24352, 796, 657, 198, 37771, 796, 352, 198, 3398, 27746, 796, 362, 628, 198, 4299, 2198, 62, 3672, 62, 15182, 7, 21412, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 62, 3672, 62, 1069, 1023, 28, 3861, 24352, 11, 220, 1303, 2099, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24955, 28, 14202, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 4889, 540, 30109, 7149, 4357, 4377, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 371, 28399, 284, 628, 220, 220, 220, 1058, 17143, 8265, 25, 198, 220, 220, 220, 1058, 17143, 1438, 25, 198, 220, 220, 220, 1058, 17143, 611, 62, 3672, 62, 1069, 1023, 25, 198, 220, 220, 220, 1058, 17143, 24955, 25, 198, 220, 220, 220, 1058, 7783, 25, 257, 1438, 326, 1244, 307, 1180, 611, 2450, 373, 5870, 27746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1438, 287, 26672, 7, 21412, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24955, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24955, 796, 10148, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6530, 1541, 7160, 25, 719, 1864, 284, 2450, 198, 220, 220, 220, 220, 220, 220, 220, 611, 611, 62, 3672, 62, 1069, 1023, 318, 17926, 24352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1475, 9665, 37, 9602, 5376, 12331, 7, 21412, 11, 1438, 11, 24955, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 611, 62, 3672, 62, 1069, 1023, 318, 42660, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7203, 4, 82, 3827, 81, 2530, 6194, 4064, 82, 287, 8265, 4064, 82, 1, 4064, 357, 13345, 263, 11, 1438, 11, 8265, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 611, 62, 3672, 62, 1069, 1023, 318, 5870, 27746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1064, 257, 1729, 12, 1484, 1438, 287, 326, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 17, 796, 1438, 1343, 705, 62, 4, 82, 6, 4064, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 1438, 17, 287, 26672, 7, 21412, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 17, 796, 1438, 1343, 705, 62, 4, 82, 6, 4064, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 1438, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 259, 12102, 1988, 329, 4600, 361, 62, 3672, 62, 1069, 1023, 63, 25, 4064, 82, 1, 4064, 611, 62, 3672, 62, 1069, 1023, 8, 628, 220, 220, 220, 1441, 1438, 628, 198, 4299, 5772, 62, 69, 25506, 7, 853, 14933, 11, 1822, 27160, 11, 1960, 1076, 28, 25101, 11, 220, 2340, 28, 14202, 11, 8354, 2625, 8818, 1600, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 530, 393, 1811, 366, 17143, 7307, 1, 34609, 532, 6906, 319, 262, 1271, 393, 33658, 12, 25512, 515, 3891, 287, 4600, 853, 14933, 44646, 383, 198, 220, 220, 220, 2727, 34609, 389, 6338, 6823, 656, 262, 869, 364, 6, 8265, 11, 475, 345, 743, 4601, 284, 8333, 606, 284, 198, 220, 220, 220, 9633, 329, 15607, 13, 554, 326, 1339, 787, 1654, 326, 345, 779, 262, 976, 3891, 11, 304, 13, 70, 13, 198, 220, 220, 220, 4600, 79, 11, 10662, 796, 5772, 62, 69, 25506, 10786, 79, 11, 80, 3256, 47527, 15, 11, 352, 828, 357, 17, 11, 513, 8, 12962, 44646, 628, 220, 220, 220, 5740, 326, 262, 357, 853, 14933, 11, 1822, 27160, 11, 220, 2340, 8, 9877, 318, 2092, 284, 4600, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 63, 329, 15794, 11, 198, 220, 220, 220, 766, 3740, 1378, 31628, 13, 9078, 9288, 13, 2398, 14, 268, 14, 42861, 14, 35790, 13, 6494, 30, 8929, 2971, 28, 9078, 9288, 13, 17143, 2, 9078, 9288, 12, 4102, 12, 17143, 316, 380, 2736, 628, 220, 220, 220, 7559, 63, 29412, 198, 220, 220, 220, 1330, 12972, 9288, 198, 220, 220, 220, 422, 12972, 9288, 62, 33964, 1330, 5772, 62, 69, 25506, 11, 5772, 62, 69, 9602, 628, 220, 220, 220, 1303, 2251, 257, 362, 12, 83, 29291, 11507, 29220, 198, 220, 220, 220, 1822, 16, 11, 1822, 17, 796, 5772, 62, 69, 25506, 7203, 853, 16, 11, 1822, 17, 1600, 47527, 16, 11, 362, 828, 357, 18, 11, 604, 8, 12962, 628, 220, 220, 220, 2488, 9078, 9288, 13, 69, 9602, 198, 220, 220, 220, 825, 29220, 62, 2664, 62, 17143, 17, 7, 853, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 628, 220, 220, 220, 825, 1332, 62, 2664, 62, 17143, 17, 7, 853, 16, 11, 1822, 17, 11, 29220, 62, 2664, 62, 17143, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 7559, 63, 628, 220, 220, 220, 1058, 17143, 1822, 14933, 25, 976, 355, 4600, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 63, 4600, 853, 14933, 44646, 198, 220, 220, 220, 1058, 17143, 1822, 27160, 25, 976, 355, 4600, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 63, 4600, 853, 27160, 44646, 198, 220, 220, 220, 1058, 17143, 1960, 1076, 25, 766, 29220, 4600, 2306, 1076, 63, 198, 220, 220, 220, 1058, 17143, 220, 2340, 25, 976, 355, 4600, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 63, 4600, 2340, 63, 198, 220, 220, 220, 1058, 17143, 8354, 25, 766, 29220, 4600, 29982, 63, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 597, 584, 4578, 329, 262, 2727, 705, 69, 25506, 6, 198, 220, 220, 220, 1058, 7783, 25, 262, 2727, 34609, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2727, 62, 69, 25506, 796, 17635, 198, 220, 220, 220, 1822, 14933, 62, 75, 301, 796, 651, 62, 17143, 62, 853, 14933, 62, 292, 62, 4868, 7, 853, 14933, 8, 628, 220, 220, 220, 24955, 62, 21412, 796, 651, 62, 13345, 263, 62, 21412, 3419, 628, 220, 220, 220, 611, 18896, 7, 853, 14933, 62, 75, 301, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 17143, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 1822, 14933, 11, 1822, 27160, 11, 1960, 1076, 28, 2306, 1076, 11, 220, 2340, 28, 2340, 11, 8354, 28, 29982, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 1303, 2251, 262, 6808, 29220, 326, 481, 3994, 477, 11507, 3815, 198, 220, 220, 220, 1303, 3465, 25, 356, 3297, 262, 1351, 523, 326, 262, 717, 287, 24830, 605, 1502, 3568, 717, 13, 9676, 12972, 9288, 3544, 428, 1502, 13, 198, 220, 220, 220, 6808, 62, 69, 9602, 62, 3672, 796, 36521, 82, 834, 17143, 62, 69, 25506, 62, 15763, 1, 4064, 19203, 62, 4458, 22179, 7, 82, 9741, 7, 853, 14933, 62, 75, 301, 22305, 628, 220, 220, 220, 1303, 14970, 1146, 751, 29220, 284, 24955, 338, 8265, 355, 4893, 287, 3740, 1378, 12567, 13, 785, 14, 9078, 9288, 12, 7959, 14, 9078, 9288, 14, 37165, 14, 1731, 1731, 198, 220, 220, 220, 6808, 62, 69, 9602, 62, 3672, 796, 2198, 62, 3672, 62, 15182, 7, 13345, 263, 62, 21412, 11, 6808, 62, 69, 9602, 62, 3672, 11, 611, 62, 3672, 62, 1069, 1023, 28, 3398, 27746, 11, 24955, 28, 17143, 62, 69, 25506, 8, 628, 220, 220, 220, 2488, 9078, 9288, 62, 69, 9602, 62, 9541, 7, 3672, 28, 15763, 62, 69, 9602, 62, 3672, 11, 1960, 1076, 28, 2306, 1076, 11, 8354, 28, 29982, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 853, 14933, 11, 1822, 27160, 11, 220, 2340, 28, 2340, 8, 198, 220, 220, 220, 2488, 4480, 62, 12683, 1300, 7203, 7, 4, 82, 16725, 4064, 1822, 14933, 8, 628, 220, 220, 220, 1303, 3827, 13154, 1752, 757, 262, 6194, 351, 262, 3376, 10154, 198, 220, 220, 220, 900, 35226, 7, 13345, 263, 62, 21412, 11, 6808, 62, 69, 9602, 62, 3672, 11, 4808, 15763, 62, 69, 9602, 8, 628, 220, 220, 220, 1303, 3443, 2251, 262, 850, 12, 69, 25506, 198, 220, 220, 220, 329, 5772, 62, 312, 87, 11, 1822, 3672, 287, 27056, 378, 7, 853, 14933, 62, 75, 301, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 262, 29220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 4259, 2739, 12765, 2071, 351, 4600, 17143, 62, 312, 87, 63, 356, 751, 281, 3131, 7679, 286, 8354, 25, 257, 8860, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 32118, 1433, 4304, 14, 20123, 278, 12, 12543, 2733, 12, 259, 12, 64, 12, 26268, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 340, 198, 220, 220, 220, 220, 220, 220, 220, 4259, 796, 4808, 17953, 62, 69, 9602, 7, 17143, 62, 312, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 3672, 62, 15182, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 11, 611, 62, 3672, 62, 1069, 1023, 28, 37771, 11, 24955, 28, 17143, 62, 69, 25506, 8, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 11, 4259, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2824, 284, 1441, 262, 2187, 1351, 4191, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 69, 25506, 13, 33295, 7, 13049, 8, 628, 220, 220, 220, 1441, 2727, 62, 69, 25506, 628, 198, 198, 31, 8818, 62, 12501, 273, 1352, 198, 4299, 2663, 62, 69, 9602, 7, 33964, 28, 14202, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 4479, 58, 14134, 540, 30109, 7149, 4357, 4377, 4357, 40806, 540, 58, 14134, 540, 30109, 7149, 4357, 4377, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 28, 14202, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 4479, 58, 26796, 6030, 11, 40806, 540, 58, 26796, 6030, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1339, 62, 7890, 62, 853, 3672, 11639, 7442, 62, 7890, 3256, 220, 220, 220, 1303, 2099, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 468, 62, 12985, 28, 14202, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 4377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 28, 14202, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 4889, 540, 30109, 8053, 58, 7149, 60, 4357, 20512, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 28, 41374, 1581, 11617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5550, 47, 38827, 11617, 532, 779, 4274, 23025, 4600, 31, 9078, 9288, 62, 69, 9602, 62, 9541, 63, 1343, 4600, 31, 33964, 62, 7890, 63, 2427, 628, 220, 220, 220, 7559, 63, 29412, 198, 220, 220, 220, 2488, 9078, 9288, 62, 69, 9602, 62, 9541, 198, 220, 220, 220, 2488, 33964, 62, 7890, 7, 21412, 28, 31811, 8, 198, 220, 220, 220, 825, 616, 62, 69, 9602, 7, 7442, 62, 7890, 8, 198, 220, 220, 220, 7559, 63, 628, 220, 220, 220, 4280, 273, 689, 257, 2163, 523, 326, 340, 4329, 257, 5772, 316, 380, 8863, 29220, 13, 628, 220, 220, 220, 383, 29220, 481, 307, 6338, 5772, 316, 380, 8863, 351, 477, 2663, 5610, 287, 8265, 4600, 21412, 47671, 393, 351, 198, 220, 220, 220, 477, 2663, 5610, 11777, 287, 4600, 33964, 44646, 628, 220, 220, 220, 8554, 340, 351, 257, 1729, 12, 14202, 4600, 21412, 63, 4578, 318, 7548, 284, 198, 220, 220, 220, 220, 1635, 37895, 477, 2663, 422, 4600, 21412, 63, 198, 220, 220, 220, 220, 1635, 788, 11705, 803, 534, 2163, 351, 2488, 9078, 9288, 13, 69, 9602, 7, 37266, 28, 33964, 8, 351, 477, 262, 2663, 628, 220, 220, 220, 1406, 628, 220, 220, 220, 7559, 63, 29412, 198, 220, 220, 220, 422, 12972, 9288, 62, 33964, 1330, 2663, 62, 69, 9602, 11, 8913, 6601, 628, 220, 220, 220, 1303, 1330, 262, 8265, 7268, 262, 1332, 2663, 198, 220, 220, 220, 1330, 1332, 62, 21943, 62, 33964, 628, 220, 220, 220, 2488, 33964, 62, 69, 9602, 7, 21412, 28, 9288, 62, 21943, 62, 33964, 8, 198, 220, 220, 220, 825, 22944, 62, 69, 9602, 7, 7442, 62, 7890, 25, 8913, 6601, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 7559, 63, 628, 220, 220, 220, 318, 7548, 284, 25, 628, 220, 220, 220, 7559, 63, 29412, 198, 220, 220, 220, 1330, 12972, 9288, 198, 220, 220, 220, 422, 12972, 9288, 62, 33964, 1330, 651, 62, 439, 62, 33964, 11, 8913, 6601, 628, 220, 220, 220, 1303, 1330, 262, 8265, 7268, 262, 1332, 2663, 198, 220, 220, 220, 1330, 1332, 62, 21943, 62, 33964, 628, 220, 220, 220, 1303, 14500, 1351, 262, 1695, 2663, 198, 220, 220, 220, 2663, 796, 651, 62, 439, 62, 33964, 7, 21412, 28, 9288, 62, 21943, 62, 33964, 8, 628, 220, 220, 220, 1303, 5772, 316, 380, 2736, 262, 29220, 14500, 198, 220, 220, 220, 2488, 9078, 9288, 13, 69, 9602, 7, 37266, 28, 33964, 8, 198, 220, 220, 220, 825, 22944, 62, 69, 9602, 7, 25927, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1339, 62, 7890, 796, 2581, 13, 17143, 220, 1303, 2099, 25, 8913, 6601, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 7559, 63, 628, 220, 220, 220, 40117, 357, 33964, 11, 8265, 11, 468, 62, 12985, 11, 8106, 8, 460, 307, 973, 284, 1620, 7952, 13487, 11, 393, 25431, 13, 4091, 198, 220, 220, 220, 4600, 1136, 62, 439, 62, 33964, 3419, 63, 329, 3307, 13, 628, 220, 220, 220, 1058, 17143, 2663, 25, 257, 2060, 1339, 393, 257, 1327, 40976, 1351, 286, 2663, 284, 779, 13, 5514, 530, 286, 4600, 33964, 63, 290, 4600, 21412, 63, 815, 307, 900, 13, 198, 220, 220, 220, 1058, 17143, 8265, 25, 257, 8265, 393, 257, 1327, 40976, 1351, 286, 13103, 284, 779, 13, 921, 743, 779, 4600, 43559, 62, 33365, 24212, 63, 284, 7603, 326, 262, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 318, 262, 1459, 530, 13, 5514, 530, 286, 4600, 33964, 63, 290, 4600, 21412, 63, 815, 307, 900, 13, 198, 220, 220, 220, 1058, 17143, 1339, 62, 7890, 62, 853, 3672, 25, 262, 11902, 1438, 286, 262, 2163, 11507, 326, 815, 3328, 262, 4600, 20448, 6601, 3855, 353, 63, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 13, 15161, 318, 705, 7442, 62, 7890, 4458, 198, 220, 220, 220, 1058, 17143, 468, 62, 12985, 25, 281, 11902, 7621, 973, 284, 8106, 262, 2663, 13, 5514, 2663, 351, 262, 1813, 7621, 481, 307, 6163, 13, 5514, 198, 220, 220, 220, 220, 220, 220, 220, 2663, 351, 262, 1813, 7621, 481, 307, 6163, 13, 198, 220, 220, 220, 1058, 17143, 8106, 25, 281, 11902, 25431, 2163, 2263, 355, 281, 5128, 257, 1351, 286, 15940, 3917, 351, 257, 1339, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 8024, 257, 25131, 12739, 611, 262, 1339, 815, 307, 6163, 13, 632, 481, 307, 973, 284, 8106, 262, 2663, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 21412, 44646, 632, 1111, 4600, 10134, 62, 12985, 63, 290, 4600, 24455, 63, 389, 900, 11, 1111, 481, 307, 5625, 287, 8379, 13, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 4174, 2488, 33964, 62, 7890, 357, 5562, 481, 15772, 284, 257, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 8, 198, 220, 220, 220, 5772, 316, 380, 8863, 62, 69, 796, 2663, 62, 7890, 7, 33964, 28, 33964, 11, 8265, 28, 21412, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1339, 62, 7890, 62, 853, 3672, 28, 7442, 62, 7890, 62, 853, 3672, 11, 468, 62, 12985, 28, 10134, 62, 12985, 11, 8106, 28, 24455, 5769, 69, 8, 198, 220, 220, 220, 1303, 4174, 2488, 9078, 9288, 62, 69, 9602, 62, 9541, 198, 220, 220, 220, 1441, 12972, 9288, 62, 69, 9602, 62, 9541, 7, 1174, 46265, 22046, 5769, 17143, 316, 380, 8863, 62, 69, 8, 628, 198, 31, 8818, 62, 12501, 273, 1352, 198, 4299, 12972, 9288, 62, 69, 9602, 62, 9541, 7, 29982, 2625, 8818, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1960, 1076, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 8002, 62, 20424, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 20786, 28, 41374, 1581, 11617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 11705, 1352, 284, 1317, 257, 29220, 8860, 2163, 13, 628, 220, 220, 220, 11440, 605, 284, 4600, 31, 9078, 9288, 13, 69, 9602, 63, 11705, 1352, 11, 2845, 326, 628, 220, 220, 220, 220, 532, 340, 6971, 5021, 12, 17143, 316, 47847, 341, 351, 4600, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 63, 355, 9167, 287, 198, 220, 220, 220, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 9078, 9288, 12, 7959, 14, 9078, 9288, 14, 37165, 14, 2670, 1899, 13, 1081, 257, 12921, 340, 857, 407, 1104, 262, 4600, 37266, 63, 290, 4600, 2340, 63, 198, 220, 220, 220, 220, 220, 220, 7159, 7471, 13, 628, 220, 220, 220, 220, 532, 340, 6971, 257, 649, 4578, 4600, 403, 8002, 62, 20424, 63, 810, 345, 460, 2148, 3891, 329, 34609, 810, 284, 555, 8002, 428, 29220, 198, 220, 220, 220, 220, 220, 220, 656, 13, 628, 220, 220, 220, 1058, 17143, 8354, 25, 262, 8354, 329, 543, 428, 29220, 318, 4888, 11, 530, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8818, 1, 357, 12286, 828, 366, 4871, 1600, 366, 21412, 1, 393, 366, 29891, 1911, 198, 220, 220, 220, 1058, 17143, 1960, 1076, 25, 611, 6407, 11, 262, 29220, 25439, 318, 13906, 329, 477, 5254, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 766, 340, 13, 220, 1002, 10352, 357, 1169, 4277, 8, 788, 281, 7952, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4941, 318, 2622, 284, 15155, 262, 29220, 13, 198, 220, 220, 220, 1058, 17143, 1438, 25, 262, 1438, 286, 262, 29220, 13, 770, 26235, 284, 262, 1438, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24789, 2163, 13, 5740, 25, 1002, 257, 29220, 318, 973, 287, 262, 976, 8265, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 543, 340, 318, 5447, 11, 262, 2163, 1438, 286, 262, 29220, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9082, 276, 416, 262, 2163, 1822, 326, 7007, 262, 29220, 26, 530, 835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 10568, 428, 318, 284, 1438, 262, 24789, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 69, 9602, 62, 27, 69, 9602, 3672, 29, 15506, 290, 788, 779, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 31, 9078, 9288, 13, 69, 9602, 7, 3672, 11639, 27, 69, 9602, 3672, 29, 11537, 15506, 13, 198, 220, 220, 220, 1058, 17143, 555, 8002, 62, 20424, 25, 281, 11902, 11629, 540, 286, 3891, 11, 393, 4731, 7268, 33658, 12, 25512, 515, 3891, 11, 329, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 34609, 284, 2251, 284, 2380, 3354, 286, 428, 29220, 13, 4091, 4600, 403, 8002, 62, 69, 9602, 63, 329, 3307, 13, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 584, 21179, 7159, 329, 4600, 31, 9078, 9288, 13, 69, 9602, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1438, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 46021, 329, 262, 705, 3672, 6, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6706, 577, 14815, 7, 9078, 9288, 13, 834, 9641, 834, 8, 18189, 6706, 577, 14815, 10786, 18, 13, 15, 13, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12972, 9288, 2196, 6971, 366, 3672, 1, 21179, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 3672, 20520, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1438, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 3672, 6, 4578, 318, 407, 4855, 287, 428, 1468, 2196, 11, 779, 262, 11593, 3672, 834, 6908, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 20786, 13, 834, 3672, 834, 796, 1438, 628, 220, 220, 220, 1303, 611, 8593, 5430, 318, 9167, 11, 466, 340, 717, 198, 220, 220, 220, 611, 555, 8002, 62, 20424, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 262, 2003, 29220, 1438, 611, 2622, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 29220, 62, 20786, 13, 834, 3672, 834, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 24955, 8265, 284, 2251, 262, 14354, 198, 220, 220, 220, 220, 220, 220, 220, 24955, 62, 21412, 796, 651, 62, 13345, 263, 62, 21412, 7, 14535, 62, 28968, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 403, 8002, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 555, 8002, 62, 20424, 11, 1438, 8, 628, 220, 220, 220, 1303, 357, 16, 8, 9745, 477, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 19736, 357, 8201, 883, 2727, 416, 8748, 286, 2488, 33964, 62, 7890, 8, 198, 220, 220, 220, 5772, 316, 380, 9107, 62, 14306, 796, 651, 62, 9078, 9288, 62, 17143, 316, 380, 2736, 62, 14306, 7, 69, 9602, 62, 20786, 8, 198, 220, 220, 220, 611, 18896, 7, 17143, 316, 380, 9107, 62, 14306, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 17953, 62, 69, 9602, 62, 19419, 62, 14306, 7, 69, 9602, 62, 20786, 11, 8354, 11, 1960, 1076, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 37266, 6, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3152, 4600, 9078, 9288, 62, 69, 9602, 62, 9541, 63, 345, 2314, 5022, 8748, 286, 262, 21179, 4578, 4600, 37266, 63, 290, 286, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1169, 12972, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 8849, 4943, 628, 220, 220, 220, 1303, 357, 17, 8, 2251, 262, 3236, 366, 17143, 1, 7268, 477, 42287, 5929, 198, 220, 220, 220, 1303, 1377, 26268, 357, 1904, 262, 976, 1502, 284, 651, 340, 826, 8, 198, 220, 220, 220, 42287, 62, 14933, 62, 273, 62, 3672, 62, 24011, 7352, 796, 17635, 198, 220, 220, 220, 42287, 62, 27160, 796, 17635, 198, 220, 220, 220, 42287, 62, 2340, 796, 17635, 198, 220, 220, 220, 42287, 62, 14306, 796, 17635, 198, 220, 220, 220, 329, 279, 4102, 287, 5772, 316, 380, 9107, 62, 14306, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 1271, 286, 11507, 3891, 287, 428, 10007, 316, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 79, 4102, 13, 17143, 62, 14933, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 37, 9602, 2163, 705, 4, 82, 6, 24789, 351, 705, 31, 9078, 9288, 62, 69, 9602, 62, 9541, 6, 468, 281, 6565, 11507, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 287, 257, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 1317, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3505, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 14933, 62, 273, 62, 3672, 62, 24011, 7352, 13, 33295, 7, 79, 4102, 13, 17143, 62, 14933, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7925, 477, 10007, 326, 423, 257, 2176, 8398, 357, 9078, 9288, 13, 17143, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 79, 2340, 11, 4808, 79, 14306, 11, 4808, 79, 27160, 796, 7925, 62, 17143, 7307, 316, 62, 10951, 7, 79, 4102, 13, 17143, 62, 14933, 11, 279, 4102, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 1774, 4686, 329, 1123, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 4102, 13, 17143, 62, 2340, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23170, 4651, 379, 3298, 12972, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 1241, 532, 428, 2753, 38177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 220, 1303, 281, 7952, 1351, 286, 220, 2340, 5633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 2340, 796, 1351, 7, 79, 4102, 13, 17143, 62, 2340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 220, 1303, 257, 869, 540, 284, 4174, 319, 262, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 2340, 796, 1351, 7, 79, 4102, 13, 17143, 62, 2340, 7, 85, 8, 329, 410, 287, 4808, 79, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4277, 25, 3815, 12, 3106, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 2340, 796, 651, 62, 9288, 62, 2340, 62, 6738, 62, 17143, 62, 27160, 7, 79, 4102, 13, 17143, 62, 14933, 11, 4808, 79, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2644, 4360, 1957, 12972, 9288, 13, 17143, 2753, 38177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4808, 312, 287, 27056, 378, 28264, 79, 2340, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 2340, 58, 72, 60, 796, 4808, 312, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9461, 3650, 262, 220, 2340, 11, 8849, 11, 290, 3815, 329, 428, 10007, 316, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 2340, 13, 33295, 7, 17143, 2340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 14306, 13, 33295, 7, 83, 29291, 28264, 79, 14306, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 27160, 13, 33295, 7, 83, 29291, 28264, 79, 27160, 4008, 628, 220, 220, 220, 1303, 357, 18, 8, 7716, 262, 220, 2340, 290, 3815, 11, 5457, 24578, 3157, 8849, 198, 220, 220, 220, 611, 18896, 7, 37266, 62, 14933, 62, 273, 62, 3672, 62, 24011, 7352, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 460, 30276, 532, 326, 481, 307, 517, 31744, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 2340, 796, 42287, 62, 2340, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 14306, 796, 42287, 62, 14306, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 27160, 796, 1351, 7, 37266, 62, 27160, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 24578, 306, 262, 8849, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 8849, 287, 27056, 378, 7, 20311, 62, 14306, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8849, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 27160, 58, 72, 60, 796, 787, 62, 23505, 62, 17143, 2357, 62, 8367, 7, 20311, 62, 27160, 58, 72, 4357, 8849, 28, 14306, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 27160, 796, 1351, 7, 11167, 46491, 37266, 62, 27160, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 2340, 796, 651, 62, 9288, 62, 2340, 62, 6738, 62, 17143, 62, 27160, 7, 37266, 62, 14933, 62, 273, 62, 3672, 62, 24011, 7352, 11, 1720, 46491, 37266, 62, 2340, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 14306, 796, 46545, 7, 11167, 46491, 37266, 62, 14306, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 24578, 306, 262, 8849, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 8849, 287, 27056, 378, 7, 20311, 62, 14306, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13845, 796, 685, 76, 329, 8085, 287, 8849, 611, 8085, 318, 407, 6045, 329, 285, 287, 8085, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 907, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 27160, 58, 72, 60, 796, 787, 62, 23505, 62, 17143, 2357, 62, 8367, 7, 20311, 62, 27160, 58, 72, 4357, 8849, 28, 907, 8, 628, 220, 220, 220, 611, 18896, 7, 20311, 62, 27160, 8, 14512, 18896, 7, 20311, 62, 2340, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 37693, 4049, 3519, 284, 29220, 5772, 316, 47847, 341, 12, 3387, 989, 4943, 628, 220, 220, 220, 1303, 357, 19, 8, 14441, 262, 29220, 2163, 523, 355, 284, 4781, 262, 11507, 3891, 290, 751, 705, 25927, 6, 611, 2622, 198, 220, 220, 220, 477, 62, 17143, 62, 14933, 796, 46545, 7, 85, 329, 300, 287, 42287, 62, 14933, 62, 273, 62, 3672, 62, 24011, 7352, 329, 410, 287, 300, 8, 628, 220, 220, 220, 1303, 1377, 17953, 262, 649, 9877, 326, 356, 765, 284, 15651, 284, 12972, 9288, 198, 220, 220, 220, 1468, 62, 82, 328, 796, 9877, 7, 69, 9602, 62, 20786, 8, 198, 220, 220, 220, 329, 279, 287, 477, 62, 17143, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 407, 287, 1468, 62, 82, 328, 13, 17143, 7307, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 17143, 2357, 705, 4, 82, 6, 407, 1043, 287, 29220, 9877, 705, 4, 82, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 4064, 357, 79, 11, 29220, 62, 20786, 13, 834, 3672, 834, 11, 1468, 62, 82, 328, 4008, 198, 220, 220, 220, 649, 62, 82, 328, 796, 4781, 62, 12683, 1300, 62, 17143, 7307, 7, 727, 62, 82, 328, 11, 1635, 439, 62, 17143, 62, 14933, 8, 198, 220, 220, 220, 1303, 751, 2581, 611, 2622, 198, 220, 220, 220, 25439, 62, 50032, 62, 25927, 796, 705, 25927, 6, 287, 1468, 62, 82, 328, 13, 17143, 7307, 198, 220, 220, 220, 611, 407, 25439, 62, 50032, 62, 25927, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 82, 328, 796, 751, 62, 12683, 1300, 62, 17143, 7307, 7, 3605, 62, 82, 328, 11, 717, 28, 36301, 10786, 25927, 3256, 1611, 28, 36301, 13, 37997, 17941, 1847, 62, 1581, 62, 20373, 54, 12532, 4008, 628, 220, 220, 220, 1303, 1377, 11321, 8027, 973, 2174, 13, 376, 2171, 479, 86, 22046, 351, 262, 5035, 3891, 290, 3815, 422, 29220, 62, 37266, 628, 220, 220, 220, 1303, 1377, 11158, 2251, 262, 29220, 2163, 11, 257, 29908, 286, 2836, 12, 41279, 29220, 351, 262, 649, 9877, 198, 220, 220, 220, 611, 407, 318, 8612, 1352, 8818, 7, 69, 9602, 62, 20786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3487, 2163, 351, 1441, 2643, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 29988, 862, 7, 69, 9602, 62, 20786, 11, 649, 62, 82, 328, 28, 3605, 62, 82, 328, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6121, 262, 2727, 29908, 656, 257, 29220, 198, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 12501, 273, 1352, 796, 12972, 9288, 13, 69, 9602, 7, 29982, 28, 29982, 11, 42287, 28, 20311, 62, 27160, 11, 1960, 1076, 28, 2306, 1076, 11, 220, 2340, 28, 20311, 62, 2340, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29220, 62, 12501, 273, 1352, 7, 29988, 1496, 62, 69, 9602, 62, 20786, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17301, 2163, 357, 4480, 257, 7800, 2643, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 29988, 862, 7, 69, 9602, 62, 20786, 11, 649, 62, 82, 328, 28, 3605, 62, 82, 328, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6121, 262, 2727, 29908, 656, 257, 29220, 198, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 12501, 273, 1352, 796, 7800, 62, 69, 9602, 7, 29982, 28, 29982, 11, 42287, 28, 20311, 62, 27160, 11, 1960, 1076, 28, 2306, 1076, 11, 220, 2340, 28, 20311, 62, 2340, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29220, 62, 12501, 273, 1352, 7, 29988, 1496, 62, 69, 9602, 62, 20786, 8, 628, 198, 4299, 4808, 17953, 62, 69, 9602, 62, 19419, 62, 14306, 7, 69, 9602, 62, 20786, 11, 8354, 11, 1960, 1076, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8075, 257, 29220, 329, 24789, 29220, 2163, 4600, 69, 9602, 62, 20786, 44646, 628, 220, 220, 220, 1058, 17143, 29220, 62, 20786, 25, 198, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 1058, 17143, 1960, 1076, 25, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 30023, 9863, 8643, 25, 772, 611, 705, 37266, 6, 318, 407, 287, 479, 86, 22046, 11, 262, 29220, 198, 220, 220, 220, 1303, 460, 307, 973, 287, 257, 29220, 6441, 290, 4361, 257, 5772, 481, 307, 2722, 198, 220, 220, 220, 1303, 319, 617, 3848, 357, 392, 262, 29220, 481, 307, 1444, 1811, 1661, 532, 691, 1752, 329, 1103, 8, 198, 220, 220, 220, 1303, 532, 356, 423, 284, 5412, 262, 5626, 62, 2937, 1961, 13, 628, 220, 220, 220, 1303, 1377, 17953, 257, 29908, 810, 356, 481, 307, 1498, 284, 8295, 12, 15255, 478, 198, 220, 220, 220, 1303, 16926, 46, 356, 714, 1234, 428, 287, 257, 7256, 29908, 705, 46430, 62, 13271, 1484, 6, 492, 628, 220, 220, 220, 1468, 62, 82, 328, 796, 9877, 7, 69, 9602, 62, 20786, 8, 198, 220, 220, 220, 1303, 751, 2581, 611, 2622, 198, 220, 220, 220, 25439, 62, 50032, 62, 25927, 796, 705, 25927, 6, 287, 1468, 62, 82, 328, 13, 17143, 7307, 198, 220, 220, 220, 611, 407, 25439, 62, 50032, 62, 25927, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 82, 328, 796, 751, 62, 12683, 1300, 62, 17143, 7307, 7, 727, 62, 82, 328, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 28, 36301, 10786, 25927, 3256, 1611, 28, 36301, 13, 37997, 17941, 1847, 62, 1581, 62, 20373, 54, 12532, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 82, 328, 796, 1468, 62, 82, 328, 198, 220, 220, 220, 611, 407, 318, 8612, 1352, 8818, 7, 69, 9602, 62, 20786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3487, 2163, 351, 1441, 2643, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 29988, 862, 7, 69, 9602, 62, 20786, 11, 649, 62, 82, 328, 28, 3605, 62, 82, 328, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6121, 262, 2727, 29908, 656, 257, 29220, 198, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 12501, 273, 1352, 796, 12972, 9288, 13, 69, 9602, 7, 29982, 28, 29982, 11, 1960, 1076, 28, 2306, 1076, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29220, 62, 12501, 273, 1352, 7, 29988, 1496, 62, 69, 9602, 62, 20786, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17301, 2163, 357, 4480, 257, 7800, 2643, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 29988, 862, 7, 69, 9602, 62, 20786, 11, 649, 62, 82, 328, 28, 3605, 62, 82, 328, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6121, 262, 2727, 29908, 656, 257, 29220, 198, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 12501, 273, 1352, 796, 7800, 62, 69, 9602, 7, 29982, 28, 29982, 11, 1960, 1076, 28, 2306, 1076, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29220, 62, 12501, 273, 1352, 7, 29988, 1496, 62, 69, 9602, 62, 20786, 8, 628, 198, 198, 11929, 62, 2937, 1961, 796, 4808, 3673, 38052, 3419, 198, 37811, 10267, 10200, 257, 29220, 1988, 618, 262, 29220, 318, 407, 973, 37811, 628, 198, 4871, 4479, 37, 9602, 49788, 7, 15252, 2599, 198, 220, 220, 220, 37227, 32, 2041, 1398, 326, 815, 307, 973, 284, 14441, 257, 29220, 1438, 37811, 628, 220, 220, 220, 1303, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 326, 318, 3863, 1165, 4923, 986, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 2116, 13, 69, 9602, 62, 3672, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 5121, 21466, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 33829, 16215, 477, 1744, 4686, 12186, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4844, 796, 6045, 198, 220, 220, 220, 7952, 796, 705, 20676, 3628, 6, 198, 220, 220, 220, 16001, 796, 705, 5589, 529, 6, 628, 198, 4299, 4174, 62, 312, 62, 7635, 7, 312, 11, 6441, 62, 69, 9602, 62, 3672, 11, 4686, 7635, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2034, 13508, 262, 4686, 3918, 5447, 287, 4600, 312, 7635, 63, 284, 262, 1813, 4686, 13, 198, 220, 220, 220, 4091, 3740, 1378, 12567, 13, 785, 14, 82, 3876, 494, 14, 29412, 12, 9078, 9288, 12, 33964, 14, 37165, 14, 3901, 628, 220, 220, 220, 1058, 17143, 4686, 25, 198, 220, 220, 220, 1058, 17143, 6441, 62, 69, 9602, 62, 3672, 25, 198, 220, 220, 220, 1058, 17143, 4686, 7635, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4686, 7635, 318, 5121, 21466, 13, 23108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4686, 198, 220, 220, 220, 1288, 361, 4686, 7635, 318, 5121, 21466, 13, 20676, 3628, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 36521, 82, 62, 271, 62, 4, 82, 1, 4064, 357, 24592, 62, 69, 9602, 62, 3672, 11, 4686, 8, 198, 220, 220, 220, 1288, 361, 4686, 7635, 318, 5121, 21466, 13, 5589, 529, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 52, 4, 82, 1, 4064, 4686, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 4686, 3918, 4943, 628, 198, 4871, 17665, 10044, 4105, 8053, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35528, 4376, 618, 2985, 2230, 284, 2148, 257, 1729, 12, 2676, 540, 4600, 853, 27160, 63, 287, 12972, 9288, 5772, 316, 380, 2736, 13, 198, 220, 220, 220, 4091, 3740, 1378, 31628, 13, 9078, 9288, 13, 2398, 14, 268, 14, 42861, 14, 35790, 13, 6494, 2, 9078, 9288, 12, 4102, 12, 17143, 316, 380, 2736, 12, 5420, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 705, 37266, 3256, 628, 198, 4299, 318, 62, 69, 9602, 62, 24592, 62, 37266, 7, 37266, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18628, 31904, 284, 2952, 2198, 611, 257, 7684, 286, 10007, 6053, 284, 257, 6441, 29220, 13, 198, 220, 220, 220, 1058, 17143, 42287, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 37266, 8, 18189, 352, 290, 318, 39098, 7, 37266, 58, 15, 4357, 4479, 37, 9602, 49788, 8, 198, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 10044, 4105, 8053, 7, 37266, 8, 628, 198, 4299, 318, 62, 1484, 62, 25927, 7, 25927, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18628, 31904, 284, 2198, 611, 257, 1813, 2581, 329, 29220, 318, 4075, 393, 407, 13, 554, 5275, 34609, 198, 220, 220, 220, 1645, 618, 257, 29220, 318, 407, 973, 287, 262, 1459, 8478, 286, 257, 4725, 2849, 29220, 13, 628, 220, 220, 220, 770, 31904, 318, 973, 287, 477, 34609, 2727, 287, 428, 8265, 13, 628, 220, 220, 220, 1058, 17143, 2581, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 651, 35226, 7, 25927, 11, 705, 17143, 3256, 6045, 8, 318, 407, 5626, 62, 2937, 1961, 628, 198, 198, 4299, 29220, 62, 24592, 7, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 2625, 8818, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 7635, 11639, 20676, 3628, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 28, 69, 9602, 62, 33645, 876, 62, 1462, 62, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 8002, 62, 20424, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1960, 1076, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 29220, 326, 481, 1011, 477, 3815, 286, 262, 2810, 34609, 287, 1502, 13, 1320, 29220, 318, 6338, 198, 220, 220, 220, 6823, 656, 262, 869, 364, 6, 8265, 11, 475, 345, 743, 4601, 284, 8333, 340, 284, 257, 7885, 329, 15607, 13, 554, 326, 1339, 198, 220, 220, 220, 787, 1654, 326, 345, 779, 262, 976, 1438, 11, 304, 13, 70, 13, 4600, 64, 796, 29220, 62, 24592, 10786, 64, 3256, 37250, 65, 3256, 705, 66, 6, 12962, 63, 628, 220, 220, 220, 383, 3918, 286, 1332, 220, 2340, 11188, 284, 262, 6441, 14693, 460, 307, 3421, 351, 4600, 312, 7635, 44646, 7683, 3815, 389, 198, 220, 220, 220, 3142, 25, 628, 220, 220, 220, 220, 532, 4600, 6, 20676, 3628, 6, 63, 357, 12286, 8, 23866, 1100, 1799, 11, 198, 220, 220, 220, 220, 532, 4600, 6, 5589, 529, 6, 63, 6673, 257, 1402, 1317, 523, 326, 379, 1551, 530, 7224, 543, 10007, 389, 6441, 10007, 290, 543, 1854, 198, 220, 220, 220, 220, 220, 220, 389, 3487, 10007, 11, 198, 220, 220, 220, 220, 532, 4600, 14202, 63, 857, 407, 1487, 262, 220, 2340, 13, 628, 220, 220, 220, 1058, 17143, 1438, 25, 262, 1438, 286, 262, 29220, 284, 2251, 198, 220, 220, 220, 1058, 17143, 34609, 25, 281, 7177, 12, 2339, 7268, 29220, 3891, 290, 14, 273, 29220, 14354, 198, 220, 220, 220, 1058, 17143, 8354, 25, 262, 8354, 286, 262, 6441, 13, 4619, 262, 6441, 8338, 319, 262, 850, 12, 69, 25506, 11, 340, 815, 307, 4833, 621, 262, 198, 220, 220, 220, 220, 220, 220, 220, 18197, 8354, 286, 34609, 20717, 13, 198, 220, 220, 220, 1058, 17143, 4686, 7635, 25, 383, 3918, 286, 1332, 220, 2340, 11188, 284, 262, 6441, 14693, 13, 1881, 286, 4600, 6, 20676, 3628, 6, 63, 357, 12286, 828, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 6, 5589, 529, 6, 47671, 393, 4600, 14202, 44646, 198, 220, 220, 220, 1058, 17143, 220, 2340, 25, 355, 287, 12972, 9288, 13, 383, 4277, 1988, 5860, 262, 3376, 29220, 198, 220, 220, 220, 1058, 17143, 555, 8002, 62, 20424, 25, 281, 11902, 11629, 540, 286, 3891, 11, 393, 4731, 7268, 33658, 12, 25512, 515, 3891, 11, 329, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 34609, 284, 2251, 284, 2380, 3354, 286, 428, 29220, 13, 4091, 4600, 403, 8002, 62, 69, 9602, 63, 329, 3307, 13, 198, 220, 220, 220, 1058, 17143, 1960, 1076, 25, 355, 287, 12972, 9288, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 584, 12972, 9288, 29220, 3689, 13, 1119, 1244, 407, 307, 4855, 9380, 13, 198, 220, 220, 220, 1058, 7783, 25, 262, 649, 29220, 13, 5740, 25, 345, 466, 407, 761, 284, 8006, 326, 5072, 287, 257, 6194, 11, 1201, 262, 29220, 318, 198, 220, 220, 220, 220, 220, 220, 220, 6338, 6823, 287, 534, 8265, 13, 2102, 611, 345, 5409, 284, 466, 523, 787, 1654, 326, 345, 779, 262, 976, 1438, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24955, 62, 21412, 796, 651, 62, 13345, 263, 62, 21412, 3419, 198, 220, 220, 220, 1441, 4808, 69, 9602, 62, 24592, 7, 13345, 263, 62, 21412, 11, 1438, 11, 34609, 11, 8354, 28, 29982, 11, 4686, 7635, 28, 312, 7635, 11, 220, 2340, 28, 2340, 11, 1960, 1076, 28, 2306, 1076, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 8002, 62, 20424, 28, 403, 8002, 62, 20424, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 4808, 69, 9602, 62, 24592, 7, 13345, 263, 62, 21412, 11, 1438, 11, 34609, 11, 4686, 7635, 11, 8354, 2625, 8818, 1600, 220, 2340, 28, 69, 9602, 62, 33645, 876, 62, 1462, 62, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 8002, 62, 20424, 28, 14202, 11, 1960, 1076, 28, 25101, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18628, 7822, 329, 29220, 62, 24592, 628, 220, 220, 220, 1058, 17143, 24955, 62, 21412, 25, 198, 220, 220, 220, 1058, 17143, 1438, 25, 198, 220, 220, 220, 1058, 17143, 34609, 25, 198, 220, 220, 220, 1058, 17143, 4686, 7635, 25, 198, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 1058, 17143, 220, 2340, 25, 198, 220, 220, 220, 1058, 17143, 555, 8002, 62, 20424, 25, 198, 220, 220, 220, 1058, 17143, 1960, 1076, 25, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1332, 262, 4600, 69, 25506, 63, 4578, 284, 3368, 2219, 10135, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 69, 25506, 11, 357, 83, 29291, 11, 900, 11, 1351, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 69, 9602, 62, 24592, 25, 262, 4600, 69, 25506, 63, 4578, 815, 307, 257, 46545, 11, 900, 393, 1351, 4943, 628, 220, 220, 220, 1303, 26571, 262, 4686, 7635, 198, 220, 220, 220, 4686, 7635, 796, 5121, 21466, 7, 312, 7635, 8, 628, 220, 220, 220, 1303, 717, 651, 477, 2672, 29220, 3891, 198, 220, 220, 220, 277, 62, 14933, 796, 17635, 198, 220, 220, 220, 329, 277, 287, 34609, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5457, 651, 262, 29220, 1438, 611, 262, 29220, 6194, 373, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 14933, 13, 33295, 7, 1136, 62, 69, 9602, 62, 3672, 7, 69, 8, 611, 407, 318, 39098, 7, 69, 11, 965, 8, 2073, 277, 8, 628, 220, 220, 220, 611, 18896, 7, 69, 62, 14933, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 40613, 29220, 11936, 389, 407, 10431, 4943, 628, 220, 220, 220, 1303, 788, 7716, 262, 1767, 286, 674, 6441, 29220, 13, 632, 481, 2421, 477, 286, 663, 10795, 34609, 290, 3328, 355, 198, 220, 220, 220, 1303, 257, 11507, 262, 1438, 286, 262, 29220, 284, 779, 198, 220, 220, 220, 2488, 4480, 62, 12683, 1300, 7203, 7, 4, 82, 11, 2581, 16725, 4064, 46083, 45302, 22179, 7, 69, 62, 14933, 4008, 628, 220, 220, 220, 4808, 3605, 62, 69, 9602, 13, 834, 3672, 834, 796, 1438, 628, 220, 220, 220, 1303, 3443, 2251, 262, 29220, 583, 384, 13, 198, 220, 220, 220, 1303, 39410, 356, 466, 407, 779, 12972, 9288, 13, 69, 9602, 475, 12972, 9288, 62, 69, 9602, 62, 9541, 523, 326, 5626, 62, 2937, 1961, 318, 25148, 198, 220, 220, 220, 277, 62, 12501, 273, 1352, 796, 12972, 9288, 62, 69, 9602, 62, 9541, 7, 29982, 28, 29982, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 41888, 38176, 37, 9602, 49788, 28264, 3672, 11, 4686, 7635, 8, 329, 4808, 3672, 287, 277, 62, 14933, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1960, 1076, 28, 2306, 1076, 11, 220, 2340, 28, 2340, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 4259, 796, 277, 62, 12501, 273, 1352, 28264, 3605, 62, 69, 9602, 8, 628, 220, 220, 220, 1303, 14970, 1146, 751, 29220, 284, 24955, 338, 8265, 355, 4893, 287, 3740, 1378, 12567, 13, 785, 14, 9078, 9288, 12, 7959, 14, 9078, 9288, 14, 37165, 14, 1731, 1731, 198, 220, 220, 220, 2198, 62, 3672, 62, 15182, 7, 13345, 263, 62, 21412, 11, 1438, 11, 611, 62, 3672, 62, 1069, 1023, 28, 37771, 11, 24955, 28, 17143, 62, 69, 9602, 8, 198, 220, 220, 220, 900, 35226, 7, 13345, 263, 62, 21412, 11, 1438, 11, 4259, 8, 628, 220, 220, 220, 1303, 611, 8593, 5430, 318, 9167, 11, 466, 340, 994, 198, 220, 220, 220, 611, 555, 8002, 62, 20424, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 403, 8002, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 1822, 14933, 28, 403, 8002, 62, 20424, 11, 29220, 28, 3672, 8, 628, 220, 220, 220, 1441, 4259, 628, 198, 4299, 4808, 69, 9602, 62, 11167, 7, 13345, 263, 62, 21412, 11, 1438, 11, 34609, 62, 273, 62, 27160, 11, 29220, 62, 1930, 1756, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 2625, 8818, 1600, 220, 2340, 28, 69, 9602, 62, 33645, 876, 62, 1462, 62, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 8002, 62, 20424, 28, 14202, 11, 1960, 1076, 28, 25101, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18628, 7822, 329, 29220, 3186, 2727, 416, 12972, 9288, 5772, 316, 380, 2736, 5556, 13, 628, 220, 220, 220, 1058, 17143, 24955, 62, 21412, 25, 198, 220, 220, 220, 1058, 17143, 1438, 25, 198, 220, 220, 220, 1058, 17143, 34609, 62, 273, 62, 27160, 25, 198, 220, 220, 220, 1058, 17143, 29220, 62, 1930, 1756, 25, 198, 220, 220, 220, 1058, 17143, 4686, 7635, 25, 198, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 1058, 17143, 220, 2340, 25, 198, 220, 220, 220, 1058, 17143, 555, 8002, 62, 20424, 25, 198, 220, 220, 220, 1058, 17143, 1960, 1076, 25, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1332, 262, 4600, 69, 25506, 63, 4578, 284, 3368, 2219, 10135, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 69, 25506, 62, 273, 62, 27160, 11, 357, 83, 29291, 11, 900, 11, 1351, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 69, 9602, 62, 11167, 25, 262, 4600, 69, 25506, 62, 273, 62, 27160, 63, 4578, 815, 307, 257, 46545, 11, 900, 393, 1351, 4943, 628, 220, 220, 220, 4808, 83, 29291, 62, 7857, 796, 18896, 7, 69, 25506, 62, 273, 62, 27160, 8, 628, 220, 220, 220, 1303, 717, 651, 477, 2672, 29220, 3891, 198, 220, 220, 220, 277, 62, 14933, 796, 685, 14202, 60, 1635, 4808, 83, 29291, 62, 7857, 198, 220, 220, 220, 329, 277, 62, 1930, 287, 29220, 62, 1930, 1756, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5457, 651, 262, 29220, 1438, 611, 262, 29220, 6194, 373, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 34609, 62, 273, 62, 27160, 58, 69, 62, 1930, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 3505, 262, 2292, 287, 262, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 14933, 58, 69, 62, 1930, 60, 796, 651, 62, 69, 9602, 62, 3672, 7, 69, 8, 611, 407, 318, 39098, 7, 69, 11, 965, 8, 2073, 277, 628, 220, 220, 220, 1303, 4781, 14184, 16856, 416, 1642, 340, 281, 6149, 900, 198, 220, 220, 220, 477, 62, 14933, 796, 4781, 62, 646, 489, 16856, 19510, 77, 329, 299, 287, 277, 62, 14933, 611, 299, 318, 407, 6045, 4008, 198, 220, 220, 220, 611, 18896, 7, 439, 62, 14933, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 40613, 29220, 3186, 389, 407, 10431, 4943, 628, 220, 220, 220, 1303, 788, 7716, 262, 1767, 286, 674, 1720, 29220, 13, 632, 481, 2421, 477, 286, 663, 10795, 34609, 198, 220, 220, 220, 2488, 4480, 62, 12683, 1300, 7203, 7, 4, 82, 16725, 4064, 46083, 45302, 22179, 7, 439, 62, 14933, 4008, 628, 220, 220, 220, 4808, 3605, 62, 69, 9602, 13, 834, 3672, 834, 796, 1438, 628, 220, 220, 220, 1303, 3443, 2251, 262, 29220, 583, 384, 13, 198, 220, 220, 220, 1303, 39410, 356, 466, 407, 779, 12972, 9288, 13, 69, 9602, 475, 12972, 9288, 62, 69, 9602, 62, 9541, 523, 326, 5626, 62, 2937, 1961, 318, 25148, 198, 220, 220, 220, 277, 62, 12501, 273, 1352, 796, 12972, 9288, 62, 69, 9602, 62, 9541, 7, 29982, 28, 29982, 11, 1960, 1076, 28, 2306, 1076, 11, 220, 2340, 28, 2340, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 4259, 796, 277, 62, 12501, 273, 1352, 28264, 3605, 62, 69, 9602, 8, 628, 220, 220, 220, 1303, 14970, 1146, 751, 29220, 284, 24955, 338, 8265, 355, 4893, 287, 3740, 1378, 12567, 13, 785, 14, 9078, 9288, 12, 7959, 14, 9078, 9288, 14, 37165, 14, 1731, 1731, 198, 220, 220, 220, 2198, 62, 3672, 62, 15182, 7, 13345, 263, 62, 21412, 11, 1438, 11, 611, 62, 3672, 62, 1069, 1023, 28, 37771, 11, 24955, 28, 17143, 62, 69, 9602, 8, 198, 220, 220, 220, 900, 35226, 7, 13345, 263, 62, 21412, 11, 1438, 11, 4259, 8, 628, 220, 220, 220, 1303, 611, 8593, 5430, 318, 9167, 11, 466, 340, 994, 198, 220, 220, 220, 611, 555, 8002, 62, 20424, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 403, 8002, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 1822, 14933, 28, 403, 8002, 62, 20424, 11, 29220, 28, 3672, 8, 628, 220, 220, 220, 1441, 4259, 628, 198, 4871, 29220, 62, 5420, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4941, 284, 257, 29220, 11, 284, 307, 973, 287, 4600, 9078, 9288, 62, 17143, 316, 380, 2736, 62, 9541, 44646, 198, 220, 220, 220, 921, 460, 2251, 340, 422, 257, 29220, 1438, 393, 257, 29220, 2134, 357, 8818, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 705, 69, 9602, 3256, 628, 198, 4299, 12972, 9288, 62, 17143, 316, 380, 2736, 62, 9541, 7, 853, 14933, 11, 1822, 27160, 11, 12913, 28, 25101, 11, 220, 2340, 28, 14202, 11, 8354, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7889, 29540, 284, 4600, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 63, 475, 635, 6971, 262, 1109, 326, 287, 1822, 27160, 530, 460, 2291, 10288, 284, 198, 220, 220, 220, 34609, 351, 4600, 69, 9602, 62, 5420, 7, 27, 69, 9602, 43734, 63, 810, 1279, 69, 9602, 29, 460, 307, 262, 29220, 1438, 393, 29220, 2163, 13, 628, 220, 220, 220, 1649, 884, 257, 29220, 4941, 318, 12326, 287, 262, 1822, 27160, 11, 257, 649, 2163, 12, 29982, 29220, 481, 307, 2727, 351, 257, 198, 220, 220, 220, 3748, 1438, 11, 290, 262, 1332, 2163, 481, 307, 12908, 523, 355, 284, 307, 25077, 351, 262, 3376, 10007, 13, 6093, 1332, 198, 220, 220, 220, 220, 2340, 481, 307, 2727, 284, 19418, 262, 15430, 1022, 3487, 10007, 290, 34609, 13, 628, 220, 220, 220, 1058, 17143, 1822, 14933, 25, 198, 220, 220, 220, 1058, 17143, 1822, 27160, 25, 198, 220, 220, 220, 1058, 17143, 12913, 25, 198, 220, 220, 220, 1058, 17143, 220, 2340, 25, 198, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 787, 1654, 326, 356, 466, 407, 4117, 262, 1822, 27160, 611, 340, 318, 2810, 355, 281, 41313, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 27160, 796, 1351, 7, 853, 27160, 8, 198, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 10044, 4105, 8053, 7, 853, 27160, 8, 628, 220, 220, 220, 1303, 651, 262, 5772, 3891, 198, 220, 220, 220, 477, 62, 17143, 62, 14933, 796, 651, 62, 17143, 62, 853, 14933, 62, 292, 62, 4868, 7, 853, 14933, 8, 198, 220, 220, 220, 299, 65, 62, 37266, 796, 18896, 7, 439, 62, 17143, 62, 14933, 8, 628, 220, 220, 220, 1303, 1064, 611, 612, 389, 29220, 10288, 287, 262, 3815, 2810, 198, 220, 220, 220, 29220, 62, 521, 1063, 796, 17635, 198, 220, 220, 220, 611, 299, 65, 62, 37266, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 410, 287, 27056, 378, 7, 853, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 85, 11, 29220, 62, 5420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 521, 1063, 13, 33295, 19510, 72, 11, 6045, 4008, 198, 220, 220, 220, 1288, 361, 299, 65, 62, 37266, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 410, 287, 27056, 378, 7, 853, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 62, 1930, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 11, 4808, 79, 2100, 287, 27056, 378, 7, 85, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 28264, 79, 2100, 11, 29220, 62, 5420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 62, 1930, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 13049, 62, 1930, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 521, 1063, 13, 33295, 19510, 72, 11, 4259, 62, 1930, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 10, 16, 14512, 299, 65, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 11507, 3815, 7268, 4064, 82, 3709, 981, 262, 1271, 286, 10007, 318, 4064, 82, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36521, 82, 526, 4064, 357, 73, 10, 16, 11, 299, 65, 62, 37266, 11, 410, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 29220, 1006, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 85, 11, 29220, 62, 5420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 521, 1063, 13, 33295, 19510, 72, 11, 6045, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44651, 11507, 3815, 7268, 4064, 82, 3709, 981, 262, 1271, 286, 10007, 318, 4064, 82, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36521, 82, 526, 4064, 357, 16, 11, 299, 65, 62, 37266, 11, 410, 4008, 628, 220, 220, 220, 611, 18896, 7, 69, 9602, 62, 521, 1063, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 29220, 4941, 25, 466, 355, 6678, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12972, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 853, 14933, 11, 1822, 27160, 11, 12913, 28, 521, 1060, 11, 220, 2340, 28, 2340, 11, 8354, 28, 29982, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 612, 389, 29220, 10288, 25, 356, 423, 284, 2251, 257, 2176, 11705, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 24955, 62, 21412, 796, 651, 62, 13345, 263, 62, 21412, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 825, 4808, 17953, 62, 17143, 62, 69, 9602, 7, 6738, 62, 72, 11, 284, 62, 72, 11, 279, 62, 13049, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 371, 28399, 326, 481, 307, 973, 284, 2251, 257, 11507, 29220, 329, 1822, 27160, 1022, 8654, 62, 72, 290, 1312, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 853, 27160, 796, 1822, 27160, 58, 6738, 62, 72, 25, 1462, 62, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 281, 7952, 1351, 286, 220, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 2340, 796, 220, 2340, 58, 6738, 62, 72, 25, 1462, 62, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 869, 540, 284, 2251, 262, 220, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 2340, 796, 220, 2340, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4277, 9172, 318, 407, 262, 976, 731, 732, 68, 12972, 9288, 42287, 290, 12972, 9288, 34609, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6163, 62, 2340, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6163, 62, 2340, 796, 685, 29001, 4458, 22179, 26933, 2536, 28264, 85, 8, 329, 4808, 85, 287, 410, 12962, 329, 410, 287, 6163, 62, 853, 27160, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 2340, 796, 651, 62, 9288, 62, 2340, 62, 6738, 62, 17143, 62, 27160, 7, 439, 62, 17143, 62, 14933, 11, 6163, 62, 853, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 284, 62, 72, 6624, 422, 62, 72, 1343, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 13049, 62, 3672, 796, 36521, 82, 62, 271, 62, 4, 82, 1, 4064, 357, 79, 62, 13049, 62, 3672, 11, 422, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 13049, 62, 3672, 796, 36521, 82, 62, 271, 62, 4, 301, 78, 4, 82, 1, 4064, 357, 79, 62, 13049, 62, 3672, 11, 422, 62, 72, 11, 284, 62, 72, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 13049, 62, 3672, 796, 2198, 62, 3672, 62, 15182, 7, 13345, 263, 62, 21412, 11, 279, 62, 13049, 62, 3672, 11, 611, 62, 3672, 62, 1069, 1023, 28, 3398, 27746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24955, 28, 9078, 9288, 62, 17143, 316, 380, 2736, 62, 9541, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 13049, 796, 4808, 17143, 62, 69, 9602, 7, 13345, 263, 62, 21412, 11, 1822, 3672, 28, 79, 62, 13049, 62, 3672, 11, 1822, 27160, 28, 34213, 62, 853, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 28, 34213, 62, 2340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5772, 62, 13049, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 788, 2251, 262, 11705, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 825, 5772, 316, 380, 2736, 62, 9541, 62, 12501, 16262, 7, 9288, 62, 20786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 11705, 1352, 326, 27521, 262, 1332, 2163, 523, 326, 2427, 286, 6464, 262, 11507, 3891, 11, 340, 11583, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 29220, 13, 1439, 584, 39011, 389, 21588, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1332, 62, 20786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 717, 2198, 611, 262, 1332, 2163, 468, 262, 10007, 355, 7159, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 82, 328, 796, 9877, 7, 9288, 62, 20786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 477, 62, 17143, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 407, 287, 1468, 62, 82, 328, 13, 17143, 7307, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 17143, 2357, 705, 4, 82, 6, 407, 1043, 287, 1332, 2163, 9877, 705, 4, 82, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 4064, 357, 79, 11, 1332, 62, 20786, 13, 834, 3672, 834, 11, 1468, 62, 82, 328, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 2779, 1438, 329, 477, 34609, 326, 481, 307, 2727, 2174, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3918, 62, 28243, 796, 36521, 82, 62, 17143, 834, 4, 82, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3918, 62, 28243, 796, 36521, 82, 62, 4, 82, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3672, 796, 3918, 62, 28243, 4064, 357, 9288, 62, 20786, 13, 834, 3672, 834, 11, 1822, 14933, 13, 33491, 10786, 46083, 10148, 737, 33491, 7, 3256, 3256, 705, 62, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3672, 796, 2198, 62, 3672, 62, 15182, 7, 13345, 263, 62, 21412, 11, 2779, 62, 3672, 11, 611, 62, 3672, 62, 1069, 1023, 28, 3398, 27746, 11, 24955, 28, 9078, 9288, 62, 17143, 316, 380, 2736, 62, 9541, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4990, 30227, 357, 361, 1006, 8, 393, 2251, 357, 1640, 3487, 1822, 27160, 8, 262, 34609, 326, 356, 481, 6441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 1593, 3465, 25, 356, 714, 2035, 4601, 284, 2251, 530, 29220, 329, 11507, 1988, 393, 284, 2251, 530, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 1123, 12785, 1448, 355, 3402, 2174, 13, 770, 815, 407, 1085, 284, 1180, 2482, 475, 23035, 1244, 13238, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 3863, 751, 257, 11507, 287, 262, 9877, 523, 326, 2985, 460, 1332, 340, 5633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 62, 14933, 62, 1640, 62, 2340, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 72, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 474, 62, 4868, 287, 29220, 62, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 8654, 62, 72, 1343, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 612, 373, 257, 1729, 12, 28920, 1448, 286, 705, 11265, 6, 10007, 878, 428, 29220, 62, 5420, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 649, 29220, 5772, 316, 380, 8863, 351, 477, 286, 326, 12785, 1448, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 13049, 796, 4808, 17953, 62, 17143, 62, 69, 9602, 7, 47050, 62, 72, 1343, 352, 11, 1312, 11, 2779, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 13, 33295, 7, 17143, 62, 13049, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 62, 14933, 62, 1640, 62, 2340, 13, 33295, 7, 1136, 62, 69, 9602, 62, 3672, 7, 17143, 62, 13049, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 62, 4868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 262, 29220, 20717, 351, 4600, 69, 9602, 62, 5420, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20717, 62, 69, 9602, 796, 1822, 27160, 58, 72, 4083, 69, 9602, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 13, 33295, 7, 5420, 14226, 771, 62, 69, 9602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 1640, 62, 69, 9602, 796, 4174, 62, 312, 62, 7635, 7, 1136, 62, 69, 9602, 62, 3672, 7, 5420, 14226, 771, 62, 69, 9602, 828, 2779, 62, 3672, 11, 5121, 21466, 13, 20676, 3628, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 62, 14933, 62, 1640, 62, 2340, 13, 33295, 7, 312, 62, 1640, 62, 69, 9602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 29220, 1006, 1586, 284, 477, 262, 34609, 2672, 287, 262, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40426, 62, 13049, 796, 4808, 17953, 62, 69, 9602, 62, 11167, 7, 72, 11, 474, 62, 4868, 11, 2779, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 13, 33295, 7, 1676, 67, 62, 13049, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 1640, 62, 69, 9602, 796, 4174, 62, 312, 62, 7635, 7, 1136, 62, 69, 9602, 62, 3672, 7, 1676, 67, 62, 13049, 828, 2779, 62, 3672, 11, 5121, 21466, 13, 20676, 3628, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 62, 14933, 62, 1640, 62, 2340, 13, 33295, 7, 312, 62, 1640, 62, 69, 9602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 72, 796, 1312, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5412, 938, 12785, 1448, 286, 3487, 10007, 11, 611, 597, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 18896, 7, 853, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 8654, 62, 72, 1343, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 13049, 796, 4808, 17953, 62, 17143, 62, 69, 9602, 7, 47050, 62, 72, 1343, 352, 11, 1312, 11, 2779, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 13, 33295, 7, 17143, 62, 13049, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 1462, 62, 24592, 62, 14933, 62, 1640, 62, 2340, 13, 33295, 7, 1136, 62, 69, 9602, 62, 3672, 7, 17143, 62, 13049, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9461, 2251, 257, 366, 12417, 1, 29220, 351, 257, 3748, 1438, 329, 428, 1332, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3465, 25, 262, 2163, 6338, 28441, 340, 287, 262, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3465, 362, 25, 4686, 7635, 318, 900, 284, 6045, 780, 356, 2148, 281, 7952, 1576, 1351, 286, 220, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1263, 62, 17143, 62, 69, 9602, 796, 4808, 69, 9602, 62, 24592, 7, 13345, 263, 62, 21412, 11, 2779, 62, 3672, 11, 34609, 62, 1462, 62, 24592, 11, 4686, 7635, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 28, 69, 25506, 62, 1462, 62, 24592, 62, 14933, 62, 1640, 62, 2340, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1377, 17953, 262, 649, 1332, 2163, 338, 9877, 326, 356, 765, 284, 15651, 284, 12972, 9288, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 318, 262, 976, 621, 4683, 11, 2845, 326, 356, 765, 284, 6330, 477, 10007, 351, 262, 649, 29220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 82, 328, 796, 4781, 62, 12683, 1300, 62, 17143, 7307, 7, 727, 62, 82, 328, 11, 1635, 439, 62, 17143, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 82, 328, 796, 751, 62, 12683, 1300, 62, 17143, 7307, 7, 3605, 62, 82, 328, 11, 25139, 2357, 7, 8692, 62, 3672, 11, 1611, 28, 36301, 13, 37997, 17941, 1847, 62, 1581, 62, 20373, 54, 12532, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1377, 11158, 2251, 262, 29220, 2163, 11, 257, 29908, 286, 2836, 12, 41279, 29220, 351, 262, 649, 9877, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 8612, 1352, 8818, 7, 9288, 62, 20786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3487, 1332, 2163, 351, 1441, 2643, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 29988, 862, 7, 9288, 62, 20786, 11, 649, 62, 82, 328, 28, 3605, 62, 82, 328, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17301, 1332, 2163, 357, 4480, 530, 393, 1811, 7800, 2643, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 29988, 862, 7, 9288, 62, 20786, 11, 649, 62, 82, 328, 28, 3605, 62, 82, 328, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1445, 477, 12972, 9288, 8849, 422, 262, 1332, 2163, 284, 262, 29908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 2622, 780, 262, 11593, 11600, 834, 318, 6338, 18984, 618, 356, 779, 2488, 29988, 862, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 1445, 62, 439, 62, 9078, 9288, 62, 14306, 7, 9288, 62, 20786, 11, 12908, 62, 9288, 62, 20786, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2080, 428, 8156, 356, 481, 307, 6149, 9380, 416, 12972, 9288, 3740, 1378, 12567, 13, 785, 14, 9078, 9288, 12, 7959, 14, 9078, 9288, 14, 37165, 14, 2598, 1959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12908, 62, 9288, 62, 20786, 13, 5372, 62, 292, 796, 1332, 62, 20786, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 262, 649, 1332, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12908, 62, 9288, 62, 20786, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5772, 316, 380, 2736, 62, 9541, 62, 12501, 16262, 198 ]
2.52071
16,514
from pydpi.pypro import PyPro import logging AA_MODIFICATIONS = { "Benzoylphenylalanine": "F", "C-term amidation": "", "Sulfotyrosine": "Y", "4-Hydroxyproline": "P", "Pyroglutamic acid": "E", "Gamma carboxylic glutamic acid": "E", "Any": "G", "D-leucine": "L", "D-phenylalanine": "F", "D-methionine": "M", "D-tryptophan": "W", "D-tyrosine": "Y", "Bromotryptophan": "W", "glycosylated serine": "S", "2_2-dimethylthiazolidine": "G", "glycosylated threonine": "T", "Oxomethionine": "M", "Selenocystine (half)": "C", "gamma-hydroxy-D-valine": "V", "5-hydroxy-lysine": "K", "Norleucine": "L", "N-Acetate (on N-terminus)": "", "3-iodotyrosine": "Y", "5-amino-3-oxo-pentanoic acid": "G", "2-amino-DL-dodecanoic acid": "G", "Carbabridge [C2 unsaturated] (half)": "G", "alpha-aminobutyric acid": "G", "Asymmetric dimethylarginine": "R", "4-(R)-amino-proline": "P", "4-(S)-amino-proline": "P", "4-(R)-guanidino-proline": "P", "4-(R)-betainamidyl-proline": "P", "4-(R)-fluoro-proline": "P", "4-(S)-fluoro-proline": "P", "4-(R)-phenyl-proline": "P", "4-(S)-phenyl-proline": "P", "4-(R)-benzyl-proline": "P", "4-(S)-benzyl-proline": "P", "4-(R)-1-naphtylmehyl-proline": "P", "4-(S)-1-naphtylmehyl-proline": "P", "3-(R)-phenyl-proline": "P", "3-(S)-phenyl-proline": "P", "5-(R)-phenyl-proline": "P", "5-(S)-phenyl-proline": "P", "Diiodotyrosine": "Y", "D-alanine": "A", "Carbabridge [C4 unsaturated] (half)": "G", "Carbabridge [C4 saturated] (half)": "G", "Carbabridge [C7 unsaturated] (half)": "G", " L-4,5-dithiolnorvaline": "V", }
[ 6738, 279, 5173, 14415, 13, 9078, 1676, 1330, 9485, 2964, 198, 11748, 18931, 198, 198, 3838, 62, 33365, 30643, 18421, 796, 1391, 198, 220, 220, 220, 366, 42484, 726, 75, 31024, 2645, 25786, 500, 1298, 366, 37, 1600, 198, 220, 220, 220, 366, 34, 12, 4354, 10371, 341, 1298, 366, 1600, 198, 220, 220, 220, 366, 50, 4754, 313, 88, 4951, 500, 1298, 366, 56, 1600, 198, 220, 220, 220, 366, 19, 12, 40436, 42059, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 20519, 3828, 75, 315, 18127, 7408, 1298, 366, 36, 1600, 198, 220, 220, 220, 366, 34777, 2611, 1097, 3524, 88, 677, 25276, 18127, 7408, 1298, 366, 36, 1600, 198, 220, 220, 220, 366, 7149, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 35, 12, 293, 1229, 500, 1298, 366, 43, 1600, 198, 220, 220, 220, 366, 35, 12, 31024, 2645, 25786, 500, 1298, 366, 37, 1600, 198, 220, 220, 220, 366, 35, 12, 76, 2788, 295, 500, 1298, 366, 44, 1600, 198, 220, 220, 220, 366, 35, 12, 83, 6012, 2522, 272, 1298, 366, 54, 1600, 198, 220, 220, 220, 366, 35, 12, 774, 4951, 500, 1298, 366, 56, 1600, 198, 220, 220, 220, 366, 33, 398, 313, 6012, 2522, 272, 1298, 366, 54, 1600, 198, 220, 220, 220, 366, 10853, 6966, 2645, 515, 1055, 500, 1298, 366, 50, 1600, 198, 220, 220, 220, 366, 17, 62, 17, 12, 27740, 21610, 400, 17890, 10180, 500, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 10853, 6966, 2645, 515, 294, 21833, 500, 1298, 366, 51, 1600, 198, 220, 220, 220, 366, 38208, 908, 71, 295, 500, 1298, 366, 44, 1600, 198, 220, 220, 220, 366, 48767, 268, 13733, 301, 500, 357, 13959, 8, 1298, 366, 34, 1600, 198, 220, 220, 220, 366, 28483, 2611, 12, 15511, 42059, 12, 35, 12, 2100, 500, 1298, 366, 53, 1600, 198, 220, 220, 220, 366, 20, 12, 15511, 42059, 12, 27385, 500, 1298, 366, 42, 1600, 198, 220, 220, 220, 366, 21991, 293, 1229, 500, 1298, 366, 43, 1600, 198, 220, 220, 220, 366, 45, 12, 12832, 316, 378, 357, 261, 399, 12, 23705, 385, 8, 1298, 366, 1600, 198, 220, 220, 220, 366, 18, 12, 2101, 313, 88, 4951, 500, 1298, 366, 56, 1600, 198, 220, 220, 220, 366, 20, 12, 321, 2879, 12, 18, 12, 1140, 78, 12, 16923, 5733, 291, 7408, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 17, 12, 321, 2879, 12, 19260, 12, 67, 375, 721, 5733, 291, 7408, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 9914, 65, 397, 12818, 685, 34, 17, 5576, 30192, 60, 357, 13959, 8, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 26591, 12, 5669, 672, 3935, 1173, 7408, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 1722, 26621, 19482, 5391, 21610, 853, 259, 500, 1298, 366, 49, 1600, 198, 220, 220, 220, 366, 19, 30420, 49, 13219, 321, 2879, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 50, 13219, 321, 2879, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 49, 13219, 5162, 272, 312, 2879, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 49, 13219, 11181, 391, 321, 312, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 49, 13219, 35522, 16522, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 50, 13219, 35522, 16522, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 49, 13219, 31024, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 50, 13219, 31024, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 49, 13219, 11722, 89, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 50, 13219, 11722, 89, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 49, 13219, 16, 12, 77, 6570, 774, 75, 1326, 71, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 19, 30420, 50, 13219, 16, 12, 77, 6570, 774, 75, 1326, 71, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 18, 30420, 49, 13219, 31024, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 18, 30420, 50, 13219, 31024, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 20, 30420, 49, 13219, 31024, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 20, 30420, 50, 13219, 31024, 2645, 12, 1676, 1370, 1298, 366, 47, 1600, 198, 220, 220, 220, 366, 18683, 2101, 313, 88, 4951, 500, 1298, 366, 56, 1600, 198, 220, 220, 220, 366, 35, 12, 25786, 500, 1298, 366, 32, 1600, 198, 220, 220, 220, 366, 9914, 65, 397, 12818, 685, 34, 19, 5576, 30192, 60, 357, 13959, 8, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 9914, 65, 397, 12818, 685, 34, 19, 24725, 60, 357, 13959, 8, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 9914, 65, 397, 12818, 685, 34, 22, 5576, 30192, 60, 357, 13959, 8, 1298, 366, 38, 1600, 198, 220, 220, 220, 366, 406, 12, 19, 11, 20, 12, 67, 342, 1669, 13099, 2100, 500, 1298, 366, 53, 1600, 198, 92, 628 ]
1.906977
903
v = int(input('Digite a velocidade do carro: ')) if v<=80: print('Dirija com segurança. Boa viagem.') else: print('Você foi multado por exeder o limite de 80km/h.') m = (v - 80) * 7 print('A multa vai custar {:.2f} reais'.format(m))
[ 85, 796, 493, 7, 15414, 10786, 19511, 578, 257, 11555, 420, 312, 671, 466, 1097, 305, 25, 705, 4008, 198, 361, 410, 27, 28, 1795, 25, 198, 220, 220, 3601, 10786, 35277, 34655, 401, 384, 70, 42211, 50041, 13, 3248, 64, 25357, 363, 368, 2637, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 53, 420, 25792, 11511, 72, 1963, 4533, 16964, 409, 5702, 267, 1761, 578, 390, 4019, 13276, 14, 71, 2637, 8, 198, 220, 220, 220, 285, 796, 357, 85, 532, 4019, 8, 1635, 767, 198, 220, 220, 220, 3601, 10786, 32, 1963, 64, 410, 1872, 9378, 283, 46110, 13, 17, 69, 92, 302, 15152, 4458, 18982, 7, 76, 4008 ]
2.185841
113