content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from yucheng_ner.tplinker_ner import tplinker_ner from yucheng_ner.ner_common import components, utils
[ 6738, 331, 1229, 31753, 62, 1008, 13, 83, 489, 24275, 62, 1008, 1330, 256, 489, 24275, 62, 1008, 198, 6738, 331, 1229, 31753, 62, 1008, 13, 1008, 62, 11321, 1330, 6805, 11, 3384, 4487 ]
3
34
''' Created on Apr 2014 Edited on Oct 2020 @author: Jan Verhoeven @author: Bassem Girgis @copyright: MIT license, see http://opensource.org/licenses/MIT ''' import argparse import signal import sys from typing import Optional, Tuple import zmq # Handle OS signals (like keyboard interrupt) signal.signal(signal.SIGINT, _signal_handler) if __name__ == '__main__': sys.exit(main())
[ 198, 198, 7061, 6, 198, 41972, 319, 2758, 1946, 198, 45882, 319, 2556, 12131, 198, 198, 31, 9800, 25, 2365, 4643, 38979, 574, 198, 31, 9800, 25, 6455, 43616, 23837, 70, 271, 198, 198, 31, 22163, 4766, 25, 17168, 5964, 11, 766, 2638, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 7061, 6, 628, 198, 11748, 1822, 29572, 198, 11748, 6737, 198, 11748, 25064, 198, 6738, 19720, 1330, 32233, 11, 309, 29291, 198, 198, 11748, 1976, 76, 80, 628, 198, 2, 33141, 7294, 10425, 357, 2339, 10586, 11313, 8, 628, 198, 12683, 282, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 12394, 11, 4808, 12683, 282, 62, 30281, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 28955, 198 ]
2.912409
137
# Submitted April 2, 2020 # Team 28: # Nathan MacDiarmid 101098993 # Anita Ntomchukwu 101138391 # Sam Hurd 101146639 # Yahya Shah 101169280 # MILESTONE 3 # IMPORTS from T28_image_filters import * from Cimpl import * # DEFINITIONS def execute_filter(command: tuple) -> Image: """ Returns an image with the filters applied that are found in the batch file. >>>execute_filter('image.jpg', 'test1.jpg', 'T') image.jpg is saved as test1.jpg with the sepia filter applied """ input_filename, output_filename, filters = command if filters == 'X': image = extreme_contrast((input_filename)) return image elif filters == 'T': image = sepia((input_filename)) return image elif filters == 'P': image = posterize((input_filename)) return image elif filters == 'V': image = flip_vertical((input_filename)) return image elif filters == 'H': image = flip_horizontal((input_filename)) return image elif filters == '2': col1 = 'yellow' col2 = 'cyan' image = two_tone((input_filename), col1, col2) return image elif filters == '3': col1 = 'yellow' col2 = 'magenta' col3 = 'cyan' image = three_tone((input_filename), col1, col2, col3) return image elif filters == 'E': image = detect_edges((input_filename), 10) return image elif filters == 'I': image = detect_edges_better((input_filename), 10) return image # SCRIPTING filename = input("Please input the name of the batch file: ") batch_file = open(filename, 'r') i = 0 count = len(open(filename).readlines()) newlist = [0] * count for line in batch_file: newline = line.split() newlist[i] = tuple(newline) i += 1 for x in newlist: lenght = len(x) i = 2 image = load_image(x[0]) while i < lenght: image = execute_filter((image, x[1], x[i])) i += 1 save_as(image, x[1]) batch_file.close()
[ 2, 3834, 3291, 3035, 362, 11, 12131, 198, 2, 4816, 2579, 25, 198, 2, 18106, 4100, 18683, 1670, 312, 8949, 2931, 44093, 18, 198, 2, 38992, 399, 39532, 46019, 43812, 8949, 20107, 37710, 198, 2, 3409, 367, 2799, 8949, 1415, 2791, 2670, 198, 2, 35473, 3972, 18381, 8949, 1433, 5892, 1795, 198, 2, 31515, 6465, 11651, 513, 198, 198, 2, 30023, 33002, 198, 198, 6738, 309, 2078, 62, 9060, 62, 10379, 1010, 1330, 1635, 198, 6738, 327, 23928, 1330, 1635, 198, 198, 2, 5550, 20032, 2043, 11053, 628, 198, 4299, 12260, 62, 24455, 7, 21812, 25, 46545, 8, 4613, 7412, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 281, 2939, 351, 262, 16628, 5625, 326, 389, 1043, 287, 262, 15458, 2393, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 13163, 41049, 62, 24455, 10786, 9060, 13, 9479, 3256, 705, 9288, 16, 13, 9479, 3256, 705, 51, 11537, 198, 220, 220, 220, 2939, 13, 9479, 318, 7448, 355, 1332, 16, 13, 9479, 351, 262, 41767, 544, 8106, 5625, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5128, 62, 34345, 11, 5072, 62, 34345, 11, 16628, 796, 3141, 628, 220, 220, 220, 611, 16628, 6624, 705, 55, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 3257, 62, 3642, 5685, 19510, 15414, 62, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 628, 220, 220, 220, 1288, 361, 16628, 6624, 705, 51, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 41767, 544, 19510, 15414, 62, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 628, 220, 220, 220, 1288, 361, 16628, 6624, 705, 47, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 11968, 1096, 19510, 15414, 62, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 628, 220, 220, 220, 1288, 361, 16628, 6624, 705, 53, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 14283, 62, 1851, 605, 19510, 15414, 62, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 628, 220, 220, 220, 1288, 361, 16628, 6624, 705, 39, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 14283, 62, 17899, 38342, 19510, 15414, 62, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 628, 220, 220, 220, 1288, 361, 16628, 6624, 705, 17, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 951, 16, 796, 705, 36022, 6, 198, 220, 220, 220, 220, 220, 220, 220, 951, 17, 796, 705, 948, 272, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 734, 62, 41527, 19510, 15414, 62, 34345, 828, 951, 16, 11, 951, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 628, 220, 220, 220, 1288, 361, 16628, 6624, 705, 18, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 951, 16, 796, 705, 36022, 6, 198, 220, 220, 220, 220, 220, 220, 220, 951, 17, 796, 705, 19726, 29188, 6, 198, 220, 220, 220, 220, 220, 220, 220, 951, 18, 796, 705, 948, 272, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 1115, 62, 41527, 19510, 15414, 62, 34345, 828, 951, 16, 11, 951, 17, 11, 951, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 628, 220, 220, 220, 1288, 361, 16628, 6624, 705, 36, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 4886, 62, 276, 3212, 19510, 15414, 62, 34345, 828, 838, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 628, 220, 220, 220, 1288, 361, 16628, 6624, 705, 40, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 4886, 62, 276, 3212, 62, 27903, 19510, 15414, 62, 34345, 828, 838, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 198, 198, 2, 6374, 46023, 2751, 628, 198, 34345, 796, 5128, 7203, 5492, 5128, 262, 1438, 286, 262, 15458, 2393, 25, 366, 8, 198, 43501, 62, 7753, 796, 1280, 7, 34345, 11, 705, 81, 11537, 198, 72, 796, 657, 198, 9127, 796, 18896, 7, 9654, 7, 34345, 737, 961, 6615, 28955, 198, 3605, 4868, 796, 685, 15, 60, 1635, 954, 198, 198, 1640, 1627, 287, 15458, 62, 7753, 25, 198, 220, 220, 220, 649, 1370, 796, 1627, 13, 35312, 3419, 198, 220, 220, 220, 649, 4868, 58, 72, 60, 796, 46545, 7, 3605, 1370, 8, 198, 220, 220, 220, 1312, 15853, 352, 198, 198, 1640, 2124, 287, 649, 4868, 25, 198, 220, 220, 220, 18896, 456, 83, 796, 18896, 7, 87, 8, 198, 220, 220, 220, 1312, 796, 362, 198, 220, 220, 220, 2939, 796, 3440, 62, 9060, 7, 87, 58, 15, 12962, 198, 220, 220, 220, 981, 1312, 1279, 18896, 456, 83, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 12260, 62, 24455, 19510, 9060, 11, 2124, 58, 16, 4357, 2124, 58, 72, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 3613, 62, 292, 7, 9060, 11, 2124, 58, 16, 12962, 198, 198, 43501, 62, 7753, 13, 19836, 3419, 198 ]
2.392019
852
""" The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143? """ import math INPUT = 600851475143 if __name__ == '__main__': for i in range(math.ceil(math.sqrt(INPUT)), 1, -2): if INPUT % i == 0 and is_prime(i): print(i) break
[ 37811, 198, 464, 6994, 5087, 286, 1511, 22186, 389, 642, 11, 767, 11, 1511, 290, 2808, 13, 198, 198, 2061, 318, 262, 4387, 6994, 5766, 286, 262, 1271, 10053, 5332, 1415, 2425, 21139, 30, 198, 37811, 198, 198, 11748, 10688, 198, 198, 1268, 30076, 796, 10053, 5332, 1415, 2425, 21139, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11018, 13, 344, 346, 7, 11018, 13, 31166, 17034, 7, 1268, 30076, 36911, 352, 11, 532, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3268, 30076, 4064, 1312, 6624, 657, 290, 318, 62, 35505, 7, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198 ]
2.262411
141
from typing import Tuple import torch import os import tensorflow as tf import networkx as nx import scipy as sp import numpy as np import torch_geometric.utils as tu from torch_geometric.data import Data import gpflow from gpn.utils import ModelConfiguration from .gpflow_gpp import GPFLOWGGP from .matern_ggp_utils import GPInducingVariables, GraphMaternKernel, optimize_SVGP gpflow.config.set_default_float(tf.float64) gpflow.config.set_default_summary_fmt("notebook") tf.get_logger().setLevel('ERROR') class MaternGGP(GPFLOWGGP): """model wrapping MaternGGP into our pipeline code taken from https://github.com/spbu-math-cs/Graph-Gaussian-Processes """
[ 6738, 19720, 1330, 309, 29291, 198, 11748, 28034, 198, 11748, 28686, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 629, 541, 88, 355, 599, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 62, 469, 16996, 13, 26791, 355, 12777, 198, 6738, 28034, 62, 469, 16996, 13, 7890, 1330, 6060, 198, 11748, 27809, 11125, 198, 198, 6738, 308, 21999, 13, 26791, 1330, 9104, 38149, 198, 6738, 764, 31197, 11125, 62, 70, 381, 1330, 14714, 3697, 3913, 11190, 47, 198, 198, 6738, 764, 76, 9205, 62, 1130, 79, 62, 26791, 1330, 14714, 5497, 25648, 23907, 2977, 11, 29681, 44, 9205, 42, 7948, 11, 27183, 62, 50, 53, 16960, 198, 198, 31197, 11125, 13, 11250, 13, 2617, 62, 12286, 62, 22468, 7, 27110, 13, 22468, 2414, 8, 198, 31197, 11125, 13, 11250, 13, 2617, 62, 12286, 62, 49736, 62, 69, 16762, 7203, 11295, 2070, 4943, 198, 27110, 13, 1136, 62, 6404, 1362, 22446, 2617, 4971, 10786, 24908, 11537, 628, 198, 4871, 337, 9205, 11190, 47, 7, 16960, 3697, 3913, 11190, 47, 2599, 198, 220, 220, 220, 37227, 19849, 27074, 337, 9205, 11190, 47, 656, 674, 11523, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2438, 2077, 422, 3740, 1378, 12567, 13, 785, 14, 2777, 11110, 12, 11018, 12, 6359, 14, 37065, 12, 35389, 31562, 12, 18709, 274, 198, 220, 220, 220, 37227, 198 ]
2.952174
230
# -*- coding: utf-8 -*- """ This is the find module. The find module supplies one function, autocorrelation() """ from statsmodels.tsa.stattools import acf import pandas as pd def autocorrelation( data_frame: pd.DataFrame, unbiased: bool = False, nlags: int = 40, fft: bool = None, alpha: float = None, missing: str = "none", headers: [str] = None, ) -> pd.DataFrame: """Autocorrelation function for 1d arrays. This is a adapted acf function of statsmodels package. Parameters ---------- data_frame : pd.DataFrame Input dataframe unbiased : bool, optional See statsmodels.tsa.stattools.acf, by default False nlags : int, optional See statsmodels.tsa.stattools.acf, by default 40 fft : bool, optional See statsmodels.tsa.stattools.acf, by default None alpha : float, optional See statsmodels.tsa.stattools.acf, by default None missing : str, optional See statsmodels.tsa.stattools.acf, by default "none" headers : [type], optional Chosen dataframe headers, by default None Returns ------- pd.DataFrame A object with autocorrelation function. """ if headers: data_frame = data_frame.loc[:, headers] return pd.DataFrame( { "acf": acf( data_frame, unbiased=unbiased, nlags=nlags, fft=fft, alpha=alpha, missing=missing, ) } ) if __name__ == "__main__": import argparse # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument( "-d", "--dataset", required=True, help="path to input dataset" ) ap.add_argument( "-f", "--file-out", type=str, help="path to file of output json" ) ap.add_argument( "-o", "--orient", type=str, default="columns", help="""format json output {'split', 'records', 'index', 'values', 'table', 'columns'} (default: 'columns')""", ) ap.add_argument( "-pd", "--parse-dates", type=str, nargs="*", help="""Headers of columns to parse dates. A column named datetime is created.""", ) ap.add_argument( "-i", "--index", type=str, nargs="*", help="Headers of columns to set as index.", ) ap.add_argument( "-hd", "--headers", type=str, nargs="*", help="an string for the header in the dataset", ) ap.add_argument("--unbiased", type=bool, default=False) ap.add_argument("--nlags", type=int, default=40) ap.add_argument("--fft", type=bool, default=None) ap.add_argument("--alpha", type=float, default=None) ap.add_argument("--missing", type=str, default="none") args = vars(ap.parse_args()) # If exist parse_dates, creates a structure with column name datetime if args["parse_dates"]: args["parse_dates"] = {"datetime": args["parse_dates"]} # Apply result = autocorrelation( pd.read_csv( args["dataset"], parse_dates=args["parse_dates"], index_col=args["index"], ), unbiased=args["unbiased"], nlags=args["nlags"], fft=args["fft"], alpha=args["alpha"], missing=args["missing"], headers=args["headers"], ) # Output in json format result = result.to_json( args.get("file_out"), force_ascii=False, orient=args["orient"] ) if result: print(result)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 1212, 318, 262, 1064, 8265, 13, 198, 464, 1064, 8265, 9416, 530, 2163, 11, 198, 220, 220, 220, 1960, 420, 273, 49501, 3419, 198, 37811, 198, 198, 6738, 9756, 27530, 13, 912, 64, 13, 301, 1078, 10141, 1330, 936, 69, 198, 11748, 19798, 292, 355, 279, 67, 628, 198, 4299, 1960, 420, 273, 49501, 7, 198, 220, 220, 220, 1366, 62, 14535, 25, 279, 67, 13, 6601, 19778, 11, 198, 220, 220, 220, 46735, 25, 20512, 796, 10352, 11, 198, 220, 220, 220, 299, 75, 3775, 25, 493, 796, 2319, 11, 198, 220, 220, 220, 277, 701, 25, 20512, 796, 6045, 11, 198, 220, 220, 220, 17130, 25, 12178, 796, 6045, 11, 198, 220, 220, 220, 4814, 25, 965, 796, 366, 23108, 1600, 198, 220, 220, 220, 24697, 25, 685, 2536, 60, 796, 6045, 11, 198, 8, 4613, 279, 67, 13, 6601, 19778, 25, 198, 220, 220, 220, 37227, 16541, 420, 273, 49501, 2163, 329, 352, 67, 26515, 13, 770, 318, 257, 16573, 936, 69, 2163, 198, 220, 220, 220, 286, 9756, 27530, 5301, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 62, 14535, 1058, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 1366, 14535, 198, 220, 220, 220, 46735, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 4091, 9756, 27530, 13, 912, 64, 13, 301, 1078, 10141, 13, 330, 69, 11, 416, 4277, 10352, 198, 220, 220, 220, 299, 75, 3775, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 4091, 9756, 27530, 13, 912, 64, 13, 301, 1078, 10141, 13, 330, 69, 11, 416, 4277, 2319, 198, 220, 220, 220, 277, 701, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 4091, 9756, 27530, 13, 912, 64, 13, 301, 1078, 10141, 13, 330, 69, 11, 416, 4277, 6045, 198, 220, 220, 220, 17130, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 4091, 9756, 27530, 13, 912, 64, 13, 301, 1078, 10141, 13, 330, 69, 11, 416, 4277, 6045, 198, 220, 220, 220, 4814, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 4091, 9756, 27530, 13, 912, 64, 13, 301, 1078, 10141, 13, 330, 69, 11, 416, 4277, 366, 23108, 1, 198, 220, 220, 220, 24697, 1058, 685, 4906, 4357, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 39884, 1366, 14535, 24697, 11, 416, 4277, 6045, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 317, 2134, 351, 1960, 420, 273, 49501, 2163, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 24697, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 14535, 796, 1366, 62, 14535, 13, 17946, 58, 45299, 24697, 60, 628, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 330, 69, 1298, 936, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 14535, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46735, 28, 403, 38002, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 75, 3775, 28, 21283, 3775, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 701, 28, 487, 83, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 28, 45688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 1822, 29572, 628, 220, 220, 220, 1303, 5678, 262, 4578, 30751, 290, 21136, 262, 7159, 198, 220, 220, 220, 2471, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 67, 1600, 366, 438, 19608, 292, 316, 1600, 2672, 28, 17821, 11, 1037, 2625, 6978, 284, 5128, 27039, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 69, 1600, 366, 438, 7753, 12, 448, 1600, 2099, 28, 2536, 11, 1037, 2625, 6978, 284, 2393, 286, 5072, 33918, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 78, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 13989, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 28665, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 18982, 33918, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 35312, 3256, 705, 8344, 3669, 3256, 705, 9630, 3256, 705, 27160, 3256, 705, 11487, 3256, 705, 28665, 82, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 25, 705, 28665, 82, 11537, 15931, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 30094, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 29572, 12, 19581, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 2625, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 13847, 364, 286, 15180, 284, 21136, 9667, 13, 317, 5721, 3706, 4818, 8079, 318, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 32203, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 72, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 9630, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 2625, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 13847, 364, 286, 15180, 284, 900, 355, 6376, 33283, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 31298, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 50145, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 2625, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 272, 4731, 329, 262, 13639, 287, 262, 27039, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7203, 438, 403, 38002, 1600, 2099, 28, 30388, 11, 4277, 28, 25101, 8, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7203, 438, 21283, 3775, 1600, 2099, 28, 600, 11, 4277, 28, 1821, 8, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7203, 438, 487, 83, 1600, 2099, 28, 30388, 11, 4277, 28, 14202, 8, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7203, 438, 26591, 1600, 2099, 28, 22468, 11, 4277, 28, 14202, 8, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7203, 438, 45688, 1600, 2099, 28, 2536, 11, 4277, 2625, 23108, 4943, 198, 220, 220, 220, 26498, 796, 410, 945, 7, 499, 13, 29572, 62, 22046, 28955, 628, 220, 220, 220, 1303, 1002, 2152, 21136, 62, 19581, 11, 8075, 257, 4645, 351, 5721, 1438, 4818, 8079, 198, 220, 220, 220, 611, 26498, 14692, 29572, 62, 19581, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 14692, 29572, 62, 19581, 8973, 796, 19779, 19608, 8079, 1298, 26498, 14692, 29572, 62, 19581, 8973, 92, 628, 220, 220, 220, 1303, 27967, 198, 220, 220, 220, 1255, 796, 1960, 420, 273, 49501, 7, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 961, 62, 40664, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 14692, 19608, 292, 316, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 19581, 28, 22046, 14692, 29572, 62, 19581, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 4033, 28, 22046, 14692, 9630, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 46735, 28, 22046, 14692, 403, 38002, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 299, 75, 3775, 28, 22046, 14692, 21283, 3775, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 277, 701, 28, 22046, 14692, 487, 83, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 22046, 14692, 26591, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 28, 22046, 14692, 45688, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 22046, 14692, 50145, 33116, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 25235, 287, 33918, 5794, 198, 220, 220, 220, 1255, 796, 1255, 13, 1462, 62, 17752, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 1136, 7203, 7753, 62, 448, 12340, 2700, 62, 292, 979, 72, 28, 25101, 11, 11367, 28, 22046, 14692, 13989, 8973, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 1255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20274, 8, 198 ]
2.204573
1,662
#Escreva um progrma que leia a velocidade de um carro. #Se ele ultrapassar 80Km/h, mostre um mensagem de que ele foi multado #A multa vai custar R$7,00 por cada Km acima do limite. v = float(input('Velocidade do carro: ')) if v <= 80: print('Dentro do limite de velocidade. Boa viagem') else: print(f'Velocidade: {v:.1f}Km/h. Acima do limite!') p = (v - 80)*7 print(f'Você foi multado. Valor da multa: R${p:.2f}')
[ 2, 47051, 260, 6862, 23781, 1172, 81, 2611, 8358, 443, 544, 257, 11555, 420, 312, 671, 390, 23781, 1097, 305, 13, 198, 2, 4653, 9766, 3789, 2416, 562, 283, 4019, 42, 76, 14, 71, 11, 749, 260, 23781, 285, 641, 363, 368, 390, 8358, 9766, 11511, 72, 1963, 4533, 198, 2, 32, 1963, 64, 410, 1872, 9378, 283, 371, 3, 22, 11, 405, 16964, 269, 4763, 509, 76, 936, 8083, 466, 1761, 578, 13, 198, 198, 85, 796, 12178, 7, 15414, 10786, 46261, 420, 312, 671, 466, 1097, 305, 25, 705, 4008, 198, 361, 410, 19841, 4019, 25, 198, 220, 220, 220, 3601, 10786, 35, 298, 305, 466, 1761, 578, 390, 11555, 420, 312, 671, 13, 3248, 64, 25357, 363, 368, 11537, 198, 17772, 25, 198, 220, 220, 220, 3601, 7, 69, 6, 46261, 420, 312, 671, 25, 1391, 85, 25, 13, 16, 69, 92, 42, 76, 14, 71, 13, 4013, 8083, 466, 1761, 578, 0, 11537, 198, 220, 220, 220, 279, 796, 357, 85, 532, 4019, 27493, 22, 198, 220, 220, 220, 3601, 7, 69, 6, 53, 420, 25792, 11511, 72, 1963, 4533, 13, 3254, 273, 12379, 1963, 64, 25, 371, 38892, 79, 25, 13, 17, 69, 92, 11537, 198 ]
2.144279
201
# https://leetcode.com/problems/middle-of-the-linked-list/ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None
[ 2, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 27171, 12, 1659, 12, 1169, 12, 25614, 12, 4868, 14, 628, 198, 2, 30396, 329, 1702, 306, 12, 25614, 1351, 13, 198, 2, 1398, 7343, 19667, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2124, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 796, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19545, 796, 6045, 198 ]
2.294118
85
"""Tests for the Amount field""" from decimal import Decimal import pytest from swissdta.fields import Amount from swissdta.records.record import DTARecord FIELD_LENGTH = 8 class ARecord(DTARecord): """Subclass of DTARecord for testing the Numeric field""" field = Amount(length=FIELD_LENGTH) @pytest.mark.parametrize(('value', 'expected_value'), ( (Decimal('1_4_3'), '143, '), (Decimal('14_00_0'), '14000, '), (Decimal(0b11), '3, '), (Decimal(0B11), '3, '), (Decimal(0b11_11), '15, '), (Decimal(0B11_1), '7, '), (Decimal(0o17), '15, '), (Decimal(0O31), '25, '), (Decimal(0o10_42), '546, '), (Decimal(0O23_5), '157, '), (Decimal(0xAF), '175, '), (Decimal(0Xa3), '163, '), (Decimal(0xf4_4c), '62540, '), (Decimal(0Xfb_1), '4017, '), (Decimal('5.34'), '5,34 ') )) @pytest.mark.parametrize(('value', 'expected_errors'), ( (Decimal('5'), tuple()), (Decimal('5.'), tuple()), (Decimal('-5'), ("[field] INVALID: May not be negative",)), (Decimal('-5.'), ("[field] INVALID: May not be negative",)), (Decimal('0'), ("[field] INVALID: May not be zero",)), (Decimal('0.'), ("[field] INVALID: May not be zero",)) )) def test_invalid_values(value, expected_errors): """Verify that non positive values are detected""" record = ARecord() record.field = value assert not record.validation_warnings assert record.validation_errors == expected_errors
[ 37811, 51, 3558, 329, 262, 26308, 2214, 37811, 198, 198, 6738, 32465, 1330, 4280, 4402, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 1509, 747, 67, 8326, 13, 25747, 1330, 26308, 198, 6738, 1509, 747, 67, 8326, 13, 8344, 3669, 13, 22105, 1330, 24311, 1503, 721, 585, 198, 198, 44603, 62, 43, 49494, 796, 807, 628, 198, 4871, 5923, 721, 585, 7, 24544, 1503, 721, 585, 2599, 198, 220, 220, 220, 37227, 7004, 4871, 286, 24311, 1503, 721, 585, 329, 4856, 262, 399, 39223, 2214, 37811, 198, 220, 220, 220, 2214, 796, 26308, 7, 13664, 28, 44603, 62, 43, 49494, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 10786, 8367, 3256, 705, 40319, 62, 8367, 33809, 357, 198, 220, 220, 220, 357, 10707, 4402, 10786, 16, 62, 19, 62, 18, 33809, 705, 21139, 11, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 10786, 1415, 62, 405, 62, 15, 33809, 705, 1415, 830, 11, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 65, 1157, 828, 705, 18, 11, 220, 220, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 33, 1157, 828, 705, 18, 11, 220, 220, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 65, 1157, 62, 1157, 828, 705, 1314, 11, 220, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 33, 1157, 62, 16, 828, 705, 22, 11, 220, 220, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 78, 1558, 828, 705, 1314, 11, 220, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 46, 3132, 828, 705, 1495, 11, 220, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 78, 940, 62, 3682, 828, 705, 49489, 11, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 46, 1954, 62, 20, 828, 705, 18458, 11, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 87, 8579, 828, 705, 17430, 11, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 55, 64, 18, 828, 705, 24136, 11, 220, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 26152, 19, 62, 19, 66, 828, 705, 26704, 1821, 11, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 7, 15, 55, 21855, 62, 16, 828, 705, 21844, 22, 11, 220, 220, 705, 828, 198, 220, 220, 220, 357, 10707, 4402, 10786, 20, 13, 2682, 33809, 705, 20, 11, 2682, 220, 220, 220, 705, 8, 198, 4008, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 10786, 8367, 3256, 705, 40319, 62, 48277, 33809, 357, 198, 220, 220, 220, 357, 10707, 4402, 10786, 20, 33809, 46545, 3419, 828, 198, 220, 220, 220, 357, 10707, 4402, 10786, 20, 2637, 828, 46545, 3419, 828, 198, 220, 220, 220, 357, 10707, 4402, 10786, 12, 20, 33809, 5855, 58, 3245, 60, 3268, 23428, 2389, 25, 1737, 407, 307, 4633, 1600, 36911, 198, 220, 220, 220, 357, 10707, 4402, 10786, 12, 20, 2637, 828, 5855, 58, 3245, 60, 3268, 23428, 2389, 25, 1737, 407, 307, 4633, 1600, 36911, 198, 220, 220, 220, 357, 10707, 4402, 10786, 15, 33809, 5855, 58, 3245, 60, 3268, 23428, 2389, 25, 1737, 407, 307, 6632, 1600, 36911, 198, 220, 220, 220, 357, 10707, 4402, 10786, 15, 2637, 828, 5855, 58, 3245, 60, 3268, 23428, 2389, 25, 1737, 407, 307, 6632, 1600, 4008, 198, 4008, 198, 4299, 1332, 62, 259, 12102, 62, 27160, 7, 8367, 11, 2938, 62, 48277, 2599, 198, 220, 220, 220, 37227, 13414, 1958, 326, 1729, 3967, 3815, 389, 12326, 37811, 198, 220, 220, 220, 1700, 796, 5923, 721, 585, 3419, 198, 220, 220, 220, 1700, 13, 3245, 796, 1988, 198, 220, 220, 220, 6818, 407, 1700, 13, 12102, 341, 62, 40539, 654, 198, 220, 220, 220, 6818, 1700, 13, 12102, 341, 62, 48277, 6624, 2938, 62, 48277, 198 ]
2.215022
679
#!/usr/bin/env python #****************************************************************************** # Name: ct.py # Purpose: determine classification accuracy and contingency table # from test data # Usage: # python ct.py # # Copyright (c) 2018, Mort Canty import numpy as np import contextlib import sys, getopt @contextlib.contextmanager if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 17174, 17174, 46068, 1174, 198, 2, 220, 6530, 25, 220, 220, 220, 220, 269, 83, 13, 9078, 198, 2, 220, 32039, 25, 220, 5004, 17923, 9922, 290, 38820, 3084, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 1332, 1366, 198, 2, 220, 29566, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 220, 220, 220, 21015, 269, 83, 13, 9078, 220, 198, 2, 198, 2, 220, 15069, 357, 66, 8, 2864, 11, 10788, 16821, 88, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4732, 8019, 220, 198, 11748, 25064, 11, 651, 8738, 198, 198, 31, 22866, 8019, 13, 22866, 37153, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 220, 220, 220, 220, 220 ]
2.782051
156
import gspread import pandas as pd from datetime import datetime import os import json # print(os.environ.get('google_p_key')) credentials = json.loads(os.environ.get('google_p_key')) gc = gspread.service_account_from_dict(credentials) sh = gc.open_by_key("1b9o6uDO18sLxBqPwl_Gh9bnhW-ev_dABH83M5Vb5L8o") worksheet = sh.sheet1 dataframe = pd.DataFrame(worksheet.get_all_records()) last_date = sh.sheet1.get('C2')[0][0] last_date = datetime.strptime(last_date, "%m/%d/%y") tspan = datetime.now() - last_date days_this_year = (datetime.now() - datetime(datetime.now().year, 1, 1)).days # print(days_this_year) # # # if __name__ == "__main__": # print(get_morbid())
[ 11748, 308, 43639, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 28686, 198, 11748, 33918, 198, 198, 2, 3601, 7, 418, 13, 268, 2268, 13, 1136, 10786, 13297, 62, 79, 62, 2539, 6, 4008, 198, 198, 66, 445, 14817, 796, 33918, 13, 46030, 7, 418, 13, 268, 2268, 13, 1136, 10786, 13297, 62, 79, 62, 2539, 6, 4008, 198, 198, 36484, 796, 308, 43639, 13, 15271, 62, 23317, 62, 6738, 62, 11600, 7, 66, 445, 14817, 8, 198, 198, 1477, 796, 308, 66, 13, 9654, 62, 1525, 62, 2539, 7203, 16, 65, 24, 78, 21, 84, 18227, 1507, 82, 43, 87, 33, 80, 47, 40989, 62, 41126, 24, 9374, 71, 54, 12, 1990, 62, 67, 6242, 39, 5999, 44, 20, 53, 65, 20, 43, 23, 78, 4943, 198, 198, 5225, 25473, 796, 427, 13, 21760, 16, 198, 7890, 14535, 796, 279, 67, 13, 6601, 19778, 7, 5225, 25473, 13, 1136, 62, 439, 62, 8344, 3669, 28955, 198, 12957, 62, 4475, 796, 427, 13, 21760, 16, 13, 1136, 10786, 34, 17, 11537, 58, 15, 7131, 15, 60, 198, 12957, 62, 4475, 796, 4818, 8079, 13, 2536, 457, 524, 7, 12957, 62, 4475, 11, 36521, 76, 14, 4, 67, 14, 4, 88, 4943, 198, 912, 6839, 796, 4818, 8079, 13, 2197, 3419, 532, 938, 62, 4475, 198, 12545, 62, 5661, 62, 1941, 796, 357, 19608, 8079, 13, 2197, 3419, 532, 4818, 8079, 7, 19608, 8079, 13, 2197, 22446, 1941, 11, 352, 11, 352, 29720, 12545, 198, 2, 3601, 7, 12545, 62, 5661, 62, 1941, 8, 628, 198, 198, 2, 198, 2, 198, 2, 611, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 2, 220, 220, 220, 220, 3601, 7, 1136, 62, 4491, 14065, 28955 ]
2.304795
292
#!/usr/bin/python3 import sys filename = sys.argv[1] out_filename = filename[:-3] + "csv" with open(filename, "r", encoding='utf-16le') as inputFile: with open(out_filename, "w") as outputFile: lines = [line.strip() for line in inputFile.readlines()] lines = [line[2:] for line in lines if line.startswith('=')] final_lines = [] header_line = None for line in lines: if line.startswith("Run"): header_line = line else: final_lines.append(line) sys.stdout = outputFile print(header_line) [print(line) for line in final_lines] inputFile.close() outputFile.close()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 25064, 198, 198, 34345, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 448, 62, 34345, 796, 29472, 58, 21912, 18, 60, 1343, 366, 40664, 1, 198, 198, 4480, 1280, 7, 34345, 11, 366, 81, 1600, 21004, 11639, 40477, 12, 1433, 293, 11537, 355, 5128, 8979, 25, 198, 220, 220, 220, 351, 1280, 7, 448, 62, 34345, 11, 366, 86, 4943, 355, 5072, 8979, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 685, 1370, 13, 36311, 3419, 329, 1627, 287, 5128, 8979, 13, 961, 6615, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 685, 1370, 58, 17, 47715, 329, 1627, 287, 3951, 611, 1627, 13, 9688, 2032, 342, 10786, 28, 11537, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 6615, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 1370, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 3951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7203, 10987, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 1370, 796, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 6615, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 796, 5072, 8979, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 25677, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 4798, 7, 1370, 8, 329, 1627, 287, 2457, 62, 6615, 60, 198, 15414, 8979, 13, 19836, 3419, 198, 22915, 8979, 13, 19836, 3419, 198 ]
2.208333
312
import bech32 from eth_hash.auto import keccak as keccak_256 DEFAULT_ADDRESS_PREFIX = 'io' def pubkey_to_address(pubkey, prefix=None): """This implements the algorithm described here https://github.com/iotexproject/iotex-address""" if prefix is None: prefix = DEFAULT_ADDRESS_PREFIX if pubkey is None or len(pubkey) < 1: return None pubkey_hash = keccak_256(pubkey[1:]) if pubkey_hash is None or len(pubkey_hash) < 12: return None payload = pubkey_hash[12:] return bech32_encode(prefix, payload)
[ 11748, 307, 354, 2624, 198, 6738, 4555, 62, 17831, 13, 23736, 1330, 885, 535, 461, 355, 885, 535, 461, 62, 11645, 198, 198, 7206, 38865, 62, 2885, 7707, 7597, 62, 47, 31688, 10426, 796, 705, 952, 6, 628, 198, 198, 4299, 2240, 2539, 62, 1462, 62, 21975, 7, 12984, 2539, 11, 21231, 28, 14202, 2599, 198, 220, 220, 220, 37227, 1212, 23986, 262, 11862, 3417, 994, 3740, 1378, 12567, 13, 785, 14, 5151, 1069, 16302, 14, 5151, 1069, 12, 21975, 37811, 198, 220, 220, 220, 611, 21231, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21231, 796, 5550, 38865, 62, 2885, 7707, 7597, 62, 47, 31688, 10426, 628, 220, 220, 220, 611, 2240, 2539, 318, 6045, 393, 18896, 7, 12984, 2539, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 2240, 2539, 62, 17831, 796, 885, 535, 461, 62, 11645, 7, 12984, 2539, 58, 16, 25, 12962, 198, 220, 220, 220, 611, 2240, 2539, 62, 17831, 318, 6045, 393, 18896, 7, 12984, 2539, 62, 17831, 8, 1279, 1105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 21437, 796, 2240, 2539, 62, 17831, 58, 1065, 47715, 198, 220, 220, 220, 1441, 307, 354, 2624, 62, 268, 8189, 7, 40290, 11, 21437, 8, 628, 198 ]
2.5
222
""" Input and output data """ from networktables import NetworkTables import logging logging.basicConfig(level=logging.DEBUG) SD = NetworkTables.getTable("SmartDashboard")
[ 37811, 198, 198, 20560, 290, 5072, 1366, 198, 198, 37811, 198, 198, 6738, 3127, 83, 2977, 1330, 7311, 51, 2977, 198, 198, 11748, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 30531, 8, 198, 198, 10305, 796, 7311, 51, 2977, 13, 1136, 10962, 7203, 25610, 43041, 3526, 4943, 198 ]
3.277778
54
import time, threading from scapy.all import * listc = [] lists = [] print('debut') x = time.time() p1 = Find(1,50) p2 = Find(50,100) p3 = Find(100, 150) p4 = Find(150,200) p1.start() p2.start() p3.start() p4.start() for i in range(200, 250): print(time.time() - x , 's :', f'192.168.8.{i}') rep, non_rep = sr(IP(dst=f'192.168.8.{i}') / ICMP(), timeout=0.005) for elem in rep: if elem[1].type == 0: print('**********************************') print('Connected adress' ,elem[1].src + ' est connecter') listc.append(elem[1].src) print('**********************************') p1.join() p2.join() p3.join() p4.join() print('temps totaux:', time.time() - x) print(len(listc), 'connecter') for i in listc: print(i) print(len(lists), 'serveur') for i in lists: print(i)
[ 11748, 640, 11, 4704, 278, 198, 6738, 629, 12826, 13, 439, 1330, 1635, 198, 4868, 66, 796, 17635, 198, 20713, 796, 17635, 198, 4798, 10786, 11275, 315, 11537, 198, 87, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 198, 79, 16, 796, 9938, 7, 16, 11, 1120, 8, 198, 79, 17, 796, 9938, 7, 1120, 11, 3064, 8, 198, 79, 18, 796, 9938, 7, 3064, 11, 6640, 8, 198, 79, 19, 796, 9938, 7, 8628, 11, 2167, 8, 198, 198, 79, 16, 13, 9688, 3419, 198, 79, 17, 13, 9688, 3419, 198, 79, 18, 13, 9688, 3419, 198, 79, 19, 13, 9688, 3419, 198, 198, 1640, 1312, 287, 2837, 7, 2167, 11, 8646, 2599, 198, 220, 220, 220, 3601, 7, 2435, 13, 2435, 3419, 532, 2124, 837, 705, 82, 1058, 3256, 220, 277, 6, 17477, 13, 14656, 13, 23, 13, 90, 72, 92, 11537, 198, 220, 220, 220, 1128, 11, 1729, 62, 7856, 796, 19677, 7, 4061, 7, 67, 301, 28, 69, 6, 17477, 13, 14656, 13, 23, 13, 90, 72, 92, 11537, 1220, 12460, 7378, 22784, 26827, 28, 15, 13, 22544, 8, 198, 220, 220, 220, 329, 9766, 76, 287, 1128, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9766, 76, 58, 16, 4083, 4906, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 17174, 1174, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 13313, 276, 512, 601, 6, 837, 68, 10671, 58, 16, 4083, 10677, 1343, 705, 1556, 2018, 263, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 66, 13, 33295, 7, 68, 10671, 58, 16, 4083, 10677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 17174, 1174, 11537, 198, 198, 79, 16, 13, 22179, 3419, 198, 79, 17, 13, 22179, 3419, 198, 79, 18, 13, 22179, 3419, 198, 79, 19, 13, 22179, 3419, 198, 198, 4798, 10786, 11498, 862, 2006, 14644, 25, 3256, 640, 13, 2435, 3419, 532, 2124, 8, 198, 4798, 7, 11925, 7, 4868, 66, 828, 705, 8443, 263, 11537, 198, 1640, 1312, 287, 1351, 66, 25, 198, 220, 220, 220, 3601, 7, 72, 8, 198, 4798, 7, 11925, 7, 20713, 828, 705, 2655, 303, 333, 11537, 198, 1640, 1312, 287, 8341, 25, 198, 220, 220, 220, 3601, 7, 72, 8 ]
2.079327
416
''' TACO: Multi-sample transcriptome assembly from RNA-Seq ''' import os import cStringIO import timeit import numpy as np from taco.lib.dtypes import FLOAT_DTYPE from taco.lib.bedgraph import array_to_bedgraph, bedgraph_to_array from taco.lib.cbedgraph import array_to_bedgraph as c_array_to_bedgraph
[ 7061, 6, 198, 51, 2246, 46, 25, 15237, 12, 39873, 14687, 462, 10474, 422, 25897, 12, 4653, 80, 198, 7061, 6, 198, 11748, 28686, 198, 11748, 269, 10100, 9399, 198, 11748, 640, 270, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 47884, 13, 8019, 13, 67, 19199, 1330, 9977, 46, 1404, 62, 35, 25216, 198, 6738, 47884, 13, 8019, 13, 3077, 34960, 1330, 7177, 62, 1462, 62, 3077, 34960, 11, 3996, 34960, 62, 1462, 62, 18747, 198, 6738, 47884, 13, 8019, 13, 66, 3077, 34960, 1330, 7177, 62, 1462, 62, 3077, 34960, 355, 269, 62, 18747, 62, 1462, 62, 3077, 34960, 628, 628, 628, 628, 198 ]
2.906542
107
from textwrap import TextWrapper from sqs_workers.utils import ( adv_bind_arguments, adv_validate_arguments, instantiate_from_dict, instantiate_from_string, string_to_object, )
[ 6738, 2420, 37150, 1330, 8255, 36918, 2848, 198, 198, 6738, 19862, 82, 62, 22896, 13, 26791, 1330, 357, 198, 220, 220, 220, 1354, 62, 21653, 62, 853, 2886, 11, 198, 220, 220, 220, 1354, 62, 12102, 378, 62, 853, 2886, 11, 198, 220, 220, 220, 9113, 9386, 62, 6738, 62, 11600, 11, 198, 220, 220, 220, 9113, 9386, 62, 6738, 62, 8841, 11, 198, 220, 220, 220, 4731, 62, 1462, 62, 15252, 11, 198, 8, 628, 628, 628 ]
2.602564
78
import numpy as np import cPickle """* This file contains everything that has to be loaded from lookuptables e.g., the sound file lengths, the alphabet etc * Lookuptables stored in files, all depend on a root directory""" class AlphabetLoader(FileLoader): """This class contains all the loading functions associated with loading the alphabet, and configuring it for multiple channels usage Input: * The setChannels functions is expected to be called to change the configuration * Otherwise the get functions should be called for different representations of the same alphabet.""" ###################################### Init functions ##################################### Load the alphabet ##################################### Get functions ##################################### Private functions ##################################### Display functions
[ 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 31686, 293, 198, 198, 37811, 9, 770, 2393, 4909, 2279, 326, 468, 284, 307, 9639, 422, 804, 37623, 2977, 304, 13, 70, 1539, 262, 2128, 2393, 20428, 11, 262, 24830, 3503, 198, 220, 220, 220, 1635, 6803, 37623, 2977, 8574, 287, 3696, 11, 477, 4745, 319, 257, 6808, 8619, 37811, 198, 198, 4871, 45695, 17401, 7, 8979, 17401, 2599, 198, 220, 220, 220, 37227, 1212, 1398, 4909, 477, 262, 11046, 5499, 3917, 351, 11046, 262, 24830, 11, 290, 4566, 870, 340, 329, 3294, 9619, 8748, 198, 220, 220, 220, 220, 220, 220, 23412, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 383, 900, 1925, 8961, 5499, 318, 2938, 284, 307, 1444, 284, 1487, 262, 8398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 15323, 262, 651, 5499, 815, 307, 1444, 329, 1180, 24612, 286, 262, 976, 24830, 526, 15931, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 29113, 4242, 2, 44707, 5499, 628, 220, 220, 220, 1303, 29113, 4242, 8778, 262, 24830, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 29113, 4242, 3497, 5499, 220, 198, 220, 198, 220, 220, 220, 1303, 29113, 4242, 15348, 5499, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 29113, 4242, 16531, 5499 ]
4.100437
229
import os from flask import Flask, request app = Flask(__name__) @app.route('/', methods=["GET", "POST"]) if __name__ == "__main__": app.run(debug=True)
[ 11748, 28686, 198, 6738, 42903, 1330, 46947, 11, 2581, 628, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 628, 198, 31, 1324, 13, 38629, 10786, 14, 3256, 5050, 28, 14692, 18851, 1600, 366, 32782, 8973, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 1324, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.666667
60
from datetime import timedelta from django.conf import settings from money import set_default_currency DEBUG = getattr(settings, "DEBUG", False) if DEBUG: # use sandboxes while in debug mode PAYPAL_ENDPOINT = 'https://svcs.sandbox.paypal.com/AdaptivePayments/' PAYPAL_PAYMENT_HOST = 'https://www.sandbox.paypal.com/au/cgi-bin/webscr' EMBEDDED_ENDPOINT = 'https://www.sandbox.paypal.com/webapps/adaptivepayment/flow/pay' PAYPAL_APPLICATION_ID = 'APP-80W284485P519543T' # sandbox only else: PAYPAL_ENDPOINT = 'https://svcs.paypal.com/AdaptivePayments/' # production PAYPAL_PAYMENT_HOST = 'https://www.paypal.com/webscr' # production EMBEDDED_ENDPOINT = 'https://paypal.com/webapps/adaptivepayment/flow/pay' PAYPAL_APPLICATION_ID = settings.PAYPAL_APPLICATION_ID # These settings are required PAYPAL_USERID = settings.PAYPAL_USERID PAYPAL_PASSWORD = settings.PAYPAL_PASSWORD PAYPAL_SIGNATURE = settings.PAYPAL_SIGNATURE PAYPAL_EMAIL = settings.PAYPAL_EMAIL USE_IPN = getattr(settings, 'PAYPAL_USE_IPN', True) USE_DELAYED_UPDATES = getattr(settings, 'PAYPAL_USE_DELAYED_UPDATES', False) DELAYED_UPDATE_COUNTDOWN = getattr( settings, 'PAYPAL_DELAYED_UPDATE_COUNTDOWN', timedelta(minutes=60)) USE_CHAIN = getattr(settings, 'PAYPAL_USE_CHAIN', True) USE_EMBEDDED = getattr(settings, 'PAYPAL_USE_EMBEDDED', True) SHIPPING = getattr(settings, 'PAYPAL_USE_SHIPPING', False) DEFAULT_CURRENCY = getattr(settings, 'DEFAULT_CURRENCY', 'USD') set_default_currency(code=DEFAULT_CURRENCY) DECIMAL_PLACES = getattr(settings, 'PAYPAL_DECIMAL_PLACES', 2) MAX_DIGITS = getattr(settings, 'PAYPAL_MAX_DIGITS', 10) # Should tests hit Paypaladaptive or not? Defaults to using mock responses TEST_WITH_MOCK = getattr(settings, 'PAYPAL_TEST_WITH_MOCK', True)
[ 6738, 4818, 8079, 1330, 28805, 12514, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 1637, 1330, 900, 62, 12286, 62, 34415, 628, 198, 30531, 796, 651, 35226, 7, 33692, 11, 366, 30531, 1600, 10352, 8, 198, 198, 361, 16959, 25, 198, 220, 220, 220, 1303, 779, 6450, 29305, 981, 287, 14257, 4235, 198, 220, 220, 220, 38444, 47, 1847, 62, 1677, 6322, 46, 12394, 796, 705, 5450, 1378, 21370, 6359, 13, 38142, 3524, 13, 15577, 18596, 13, 785, 14, 48003, 425, 19197, 902, 14, 6, 198, 220, 220, 220, 38444, 47, 1847, 62, 4537, 56, 10979, 62, 39, 10892, 796, 705, 5450, 1378, 2503, 13, 38142, 3524, 13, 15577, 18596, 13, 785, 14, 559, 14, 37157, 12, 8800, 14, 12384, 1416, 81, 6, 198, 220, 220, 220, 412, 10744, 1961, 35, 1961, 62, 1677, 6322, 46, 12394, 796, 705, 5450, 1378, 2503, 13, 38142, 3524, 13, 15577, 18596, 13, 785, 14, 12384, 18211, 14, 42552, 425, 37301, 14, 11125, 14, 15577, 6, 628, 220, 220, 220, 38444, 47, 1847, 62, 2969, 31484, 6234, 62, 2389, 796, 705, 24805, 12, 1795, 54, 2078, 2598, 5332, 47, 20, 22186, 3559, 51, 6, 1303, 35204, 691, 198, 17772, 25, 198, 220, 220, 220, 38444, 47, 1847, 62, 1677, 6322, 46, 12394, 796, 705, 5450, 1378, 21370, 6359, 13, 15577, 18596, 13, 785, 14, 48003, 425, 19197, 902, 14, 6, 1303, 3227, 198, 220, 220, 220, 38444, 47, 1847, 62, 4537, 56, 10979, 62, 39, 10892, 796, 705, 5450, 1378, 2503, 13, 15577, 18596, 13, 785, 14, 12384, 1416, 81, 6, 1303, 3227, 198, 220, 220, 220, 412, 10744, 1961, 35, 1961, 62, 1677, 6322, 46, 12394, 796, 705, 5450, 1378, 15577, 18596, 13, 785, 14, 12384, 18211, 14, 42552, 425, 37301, 14, 11125, 14, 15577, 6, 628, 220, 220, 220, 38444, 47, 1847, 62, 2969, 31484, 6234, 62, 2389, 796, 6460, 13, 4537, 48232, 1847, 62, 2969, 31484, 6234, 62, 2389, 198, 198, 2, 2312, 6460, 389, 2672, 198, 4537, 48232, 1847, 62, 29904, 2389, 796, 6460, 13, 4537, 48232, 1847, 62, 29904, 2389, 198, 4537, 48232, 1847, 62, 47924, 54, 12532, 796, 6460, 13, 4537, 48232, 1847, 62, 47924, 54, 12532, 198, 4537, 48232, 1847, 62, 46224, 40086, 796, 6460, 13, 4537, 48232, 1847, 62, 46224, 40086, 198, 4537, 48232, 1847, 62, 27630, 4146, 796, 6460, 13, 4537, 48232, 1847, 62, 27630, 4146, 198, 198, 19108, 62, 4061, 45, 796, 651, 35226, 7, 33692, 11, 705, 4537, 48232, 1847, 62, 19108, 62, 4061, 45, 3256, 6407, 8, 198, 19108, 62, 35, 3698, 4792, 1961, 62, 52, 5760, 29462, 796, 651, 35226, 7, 33692, 11, 705, 4537, 48232, 1847, 62, 19108, 62, 35, 3698, 4792, 1961, 62, 52, 5760, 29462, 3256, 10352, 8, 198, 35, 3698, 4792, 1961, 62, 16977, 62, 34, 28270, 41925, 796, 651, 35226, 7, 198, 220, 220, 220, 6460, 11, 705, 4537, 48232, 1847, 62, 35, 3698, 4792, 1961, 62, 16977, 62, 34, 28270, 41925, 3256, 28805, 12514, 7, 1084, 1769, 28, 1899, 4008, 198, 19108, 62, 3398, 29833, 796, 651, 35226, 7, 33692, 11, 705, 4537, 48232, 1847, 62, 19108, 62, 3398, 29833, 3256, 6407, 8, 198, 19108, 62, 3620, 33, 1961, 35, 1961, 796, 651, 35226, 7, 33692, 11, 705, 4537, 48232, 1847, 62, 19108, 62, 3620, 33, 1961, 35, 1961, 3256, 6407, 8, 198, 9693, 31444, 2751, 796, 651, 35226, 7, 33692, 11, 705, 4537, 48232, 1847, 62, 19108, 62, 9693, 31444, 2751, 3256, 10352, 8, 198, 198, 7206, 38865, 62, 34, 31302, 45155, 796, 651, 35226, 7, 33692, 11, 705, 7206, 38865, 62, 34, 31302, 45155, 3256, 705, 29072, 11537, 198, 2617, 62, 12286, 62, 34415, 7, 8189, 28, 7206, 38865, 62, 34, 31302, 45155, 8, 198, 198, 41374, 3955, 1847, 62, 6489, 2246, 1546, 796, 651, 35226, 7, 33692, 11, 705, 4537, 48232, 1847, 62, 41374, 3955, 1847, 62, 6489, 2246, 1546, 3256, 362, 8, 198, 22921, 62, 35, 3528, 29722, 796, 651, 35226, 7, 33692, 11, 705, 4537, 48232, 1847, 62, 22921, 62, 35, 3528, 29722, 3256, 838, 8, 198, 198, 2, 10358, 5254, 2277, 7119, 18596, 42552, 425, 393, 407, 30, 2896, 13185, 284, 1262, 15290, 9109, 198, 51, 6465, 62, 54, 10554, 62, 44, 11290, 796, 651, 35226, 7, 33692, 11, 705, 4537, 48232, 1847, 62, 51, 6465, 62, 54, 10554, 62, 44, 11290, 3256, 6407, 8, 198 ]
2.478442
719
"""Create WaveJSON text string from VCD file.""" import sys
[ 37811, 16447, 17084, 40386, 2420, 4731, 422, 569, 8610, 2393, 526, 15931, 198, 11748, 25064, 628, 628, 198 ]
3.555556
18
import time from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException from screenshot import screen_component_by_id from image_to_asciify import map_to_ascii from image_map_processing import run_map_processing from get_path import get_path
[ 11748, 640, 198, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 13083, 1330, 26363, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 2673, 62, 38861, 1330, 7561, 1925, 1299, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 9019, 1330, 5313, 32103, 21321, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 355, 13182, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 198, 6738, 384, 11925, 1505, 13, 11321, 13, 1069, 11755, 1330, 3862, 448, 16922, 198, 198, 6738, 22032, 1330, 3159, 62, 42895, 62, 1525, 62, 312, 198, 6738, 2939, 62, 1462, 62, 292, 979, 1958, 1330, 3975, 62, 1462, 62, 292, 979, 72, 198, 6738, 2939, 62, 8899, 62, 36948, 1330, 1057, 62, 8899, 62, 36948, 198, 6738, 651, 62, 6978, 1330, 651, 62, 6978, 198, 220, 220, 220, 220 ]
3.45625
160
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sched import time """ Perform crawling tasks on a regular basis, this module default starts crawler 'fish_simple_crawler' on the everyday. """ scheduler = sched.scheduler(time.time, time.sleep) if __name__ == '__main__': scheduler.enter(0, 0, crawl_sched, ('fish_simple_crawler', 86400,)) scheduler.run()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 28686, 198, 11748, 6038, 198, 11748, 640, 198, 198, 37811, 198, 5990, 687, 34499, 8861, 319, 257, 3218, 4308, 11, 220, 198, 5661, 8265, 4277, 4940, 27784, 1754, 705, 11084, 62, 36439, 62, 66, 39464, 6, 319, 262, 10908, 13, 220, 220, 220, 198, 37811, 198, 198, 1416, 704, 18173, 796, 6038, 13, 1416, 704, 18173, 7, 2435, 13, 2435, 11, 640, 13, 42832, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 6038, 18173, 13, 9255, 7, 15, 11, 657, 11, 27318, 62, 1416, 704, 11, 19203, 11084, 62, 36439, 62, 66, 39464, 3256, 807, 2414, 405, 11, 4008, 198, 220, 220, 220, 6038, 18173, 13, 5143, 3419, 198 ]
2.699301
143
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # from ._utils import _C import torch if torch.__version__.split(".")[0] == "1": from torchvision.ops import nms elif torch.__version__ == "0.4.0": from model.nms.nms_wrapper import nms else: raise RuntimeError("unsupported torch version. Supported: 0.4.0 (recommended) and 1.x") # nms.__doc__ = """ # This function performs Non-maximum suppresion"""
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 1439, 6923, 33876, 13, 198, 2, 422, 47540, 26791, 1330, 4808, 34, 198, 198, 11748, 28034, 198, 361, 28034, 13, 834, 9641, 834, 13, 35312, 7203, 19570, 58, 15, 60, 6624, 366, 16, 1298, 198, 220, 220, 220, 422, 28034, 10178, 13, 2840, 1330, 299, 907, 198, 417, 361, 28034, 13, 834, 9641, 834, 6624, 366, 15, 13, 19, 13, 15, 1298, 198, 220, 220, 220, 422, 2746, 13, 77, 907, 13, 77, 907, 62, 48553, 1330, 299, 907, 198, 17772, 25, 198, 220, 220, 220, 5298, 43160, 12331, 7203, 403, 15999, 28034, 2196, 13, 36848, 25, 657, 13, 19, 13, 15, 357, 47335, 1631, 8, 290, 352, 13, 87, 4943, 198, 198, 2, 299, 907, 13, 834, 15390, 834, 796, 37227, 198, 2, 770, 2163, 17706, 8504, 12, 47033, 802, 411, 295, 37811, 198 ]
2.952703
148
#!/usr/bin/python import RPi.GPIO as GPIO import time #monitor = SonicDistanceMonitor(print_distance) #monitor.start(0.2)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198, 11748, 640, 198, 198, 2, 41143, 796, 18426, 45767, 35479, 7, 4798, 62, 30246, 8, 198, 2, 41143, 13, 9688, 7, 15, 13, 17, 8, 628 ]
2.883721
43
import logging from kfusiontables.kft import KFusionTables logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 198, 6738, 479, 69, 4241, 83, 2977, 13, 74, 701, 1330, 509, 37, 4241, 51, 2977, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
2.857143
35
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file '/home/colin/dev/pyQode/pyqode.core/forms/search_panel.ui' # # Created by: PyQt5 UI code generator 5.5.1 # # WARNING! All changes made in this file will be lost! from qtpy import QtCore, QtGui, QtWidgets from pyqode.core.widgets import PromptLineEdit from . import pyqode_core_rc
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 5178, 7822, 7560, 422, 3555, 334, 72, 2393, 31051, 11195, 14, 4033, 259, 14, 7959, 14, 9078, 48, 1098, 14, 9078, 80, 1098, 13, 7295, 14, 23914, 14, 12947, 62, 35330, 13, 9019, 6, 198, 2, 198, 2, 15622, 416, 25, 9485, 48, 83, 20, 12454, 2438, 17301, 642, 13, 20, 13, 16, 198, 2, 198, 2, 39410, 0, 1439, 2458, 925, 287, 428, 2393, 481, 307, 2626, 0, 198, 198, 6738, 10662, 83, 9078, 1330, 33734, 14055, 11, 33734, 8205, 72, 11, 33734, 54, 312, 11407, 198, 198, 6738, 12972, 80, 1098, 13, 7295, 13, 28029, 11407, 1330, 45965, 13949, 18378, 198, 6738, 764, 1330, 12972, 80, 1098, 62, 7295, 62, 6015 ]
2.782946
129
#!/usr/bin/env python import json import re import sys import time from argparse import ArgumentParser from queue import Queue import requests as rq from bs4 import BeautifulSoup from loguru import logger if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 33918, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 640, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 6738, 16834, 1330, 4670, 518, 198, 198, 11748, 7007, 355, 374, 80, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 2604, 14717, 1330, 49706, 628, 628, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.185185
81
#!/usr/bin/env python3 ## # # GraceNET v0.0 # # Predict future anomolies based soley on the past 24 months of # GRACE anomolies. This file generates training and testing data # saving both to json files # ## import random import csv import glob import json import datetime import numpy as np import matplotlib.pyplot as plt import time import re data_dir = "/home/vince/Groundwater/NeuralNet/data/" grace_data = None irrigation_data = None population_data = None precipitation_data = None temperature_data = None vegetation_data = None def load_all_data(): """ Load data from files as global variables. Note that this requires a significant amount (~4.5GB) of RAM. """ global grace_data global irrigation_data global population_data global precipitation_data global temperature_data global vegetation_data print("===> Loading GRACE data to memory") grace_data = get_data_dict('grace/GRC*', 'grace') #print("===> Loading IRRIGATION data to memory") #irrigation_data = get_data_dict('irrigation/irrigation*', 'irr') #print("===> Loading POPULATION data to memory") #population_data = get_data_dict('population/population*', 'pop') print("===> Loading PRECIPITATION data to memory") precipitation_data = get_data_dict('precipitation/precipitation*', 'precip') print("===> Loading TEMPERATURE data to memory") temperature_data = get_data_dict('temperature/MOD11C3_LST*', 'temp') print("===> Loading VEGETATION data to memory") vegetation_data = get_data_dict('vegetation/MOD13C2_EVI_*', 'veg') def get_regional_data(): """ Get training/testing data from plaintext files. Only use data from the conententla US (ish) Return X, y, where y is the GRACE anomoly and X is the data we'll use to derive the anomoly. """ X = [] y = [] print("===> Getting valid pixels") dates = valid_date_list() pixels = valid_pixel_list(dates) print("===> Generating dataset") for date in dates: anomolies = [] precips = [] # store precipitation, temperature, and vegetation data temps = [] # we'll collapse these into 1d after we get all the pixels vegs = [] for pixel in pixels: lat = pixel[1] lon = pixel[0] # grace anomoly --> output grace = grace_data[date][pixel] # other varialbes --> input precip = precipitation_data[date][pixel] temp = temperature_data[date][pixel] veg = vegetation_data[date][pixel] # Add to the datasets! anomolies.append(grace) precips.append(precip) precips.append(temp) vegs.append(veg) #print(len(anomolies)) #print(len(precips+temps+vegs)/3) print(str(len(X)) + " datapoints") print("input dimensions: " + str(len(X[0]))) return (X, y) def valid_date_list(): """ Return a list of dates that have data for grace, precipitation, temperature, and vegetation. """ dates = [] for date in grace_data: if (date in precipitation_data and date in temperature_data and date in vegetation_data): dates.append(date) return dates def valid_pixel_list(date_list): """ Return a list of pixels in the contental US with precipitation, temperature, vegetation, and grace data for all the given dates. """ possiblepixels = set() badpixels = set() # get all grace pixels in the continental US for pixel in grace_data[(2002, 4)]: lon = pixel[0] lat = pixel[1] inbounds = True #(lat > 26 and lat < 49 and lon > -125 and lon < -67) if inbounds: possiblepixels.add(pixel) # now go back and filter out pixels that aren't in all the places for date in date_list: for pixel in possiblepixels: in_all_sets = (pixel in grace_data[date]) if not in_all_sets: badpixels.add(pixel) valid_pixels = possiblepixels - badpixels # pixels that are in possible but not in bad print(len(possiblepixels)) print(len(badpixels)) print(len(valid_pixels)) return list(valid_pixels) def get_data(): """ Get training/testing data from plaintext files. Return X, y, where y is the GRACE slope and X is the data we'll use to derive the GRACE data. """ X = [] y = [] max_n=200000 print("===> Generating dataset") i = 0 # number of iterations for date in grace_data: for pixel in grace_data[(2004,1)]: # use a consistent list of pixels lat = pixel[1] lon = pixel[0] # restrict to lower asia ish region try: # grace slope --> output grace = get_trend(pixel, date, grace_data) # other varialbes --> input # include both trend and average (over ~ 2 yrs) precip = get_trend(pixel, date, precipitation_data) temp = get_trend(pixel, date, temperature_data) veg = get_trend(pixel, date, vegetation_data) precipavg = get_average(pixel, date, precipitation_data) vegavg = get_average(pixel, date, vegetation_data) tempavg = get_average(pixel, date, temperature_data) if grace: # it's useless to include data without an output! # add to the master arrays of data X.append([precip, precipavg, temp, tempavg, veg, vegavg, lat]) y.append(grace) except KeyError: # sometimes we won't have enough corresponding data on some of the # extra variables. We'll just ignore that pixel/date pair in that case. pass n = len(X) print("Date %s / %s | Sample %s / %s " % (i, len(grace_data), n, max_n)) if n > max_n: # quit when we have enough samples break i+=1 # iteration counter print(str(len(X)) + " datapoints") print("input dimensions: " + str(len(X[0]))) return (X, y) def double_data(x_row, y_row): """ Create and return an artificial dataset by adding gaussian noise to the given real data. """ pass def nearby_valid_date(desired_date, dictionary): """ Sometimes we get a date (year, month, day) that does not exactly exist in another dictionary. We want to find a nearby date that does exist in that dictionary, but is part of the same month. """ for valid_date in dictionary: if (valid_date[0:2] == desired_date[0:2]): # matching year and month return valid_date def get_prev_entry(year, month, day): """ For a given month's data, we might like to find the month that preceeds it. This function returns the year, month, and day that correspond to that month's data. """ files = glob.glob(data_dir + "grace/GRCTellus.JPL*") files.sort() # sorting alphabetically is enough b/c nice naming scheme! this_name = data_dir + "grace/GRCTellus.JPL.%04d%02d%02d.LND.RL05_1.DSTvSCS1411.txt" % (year, month, day) for i in range(len(files)): if files[i] == this_name: fname = files[i-1] yyyymmdd = fname[-35:-27] # looking backwards from the end in case data_dir changes y = yyyymmdd[0:4] m = yyyymmdd[4:6] d = yyyymmdd[6:8] return (int(y), int(m), int(d)) return None def get_data_dict(fpattern, fformat): """ Load the data from a given file pattern into a dictionary. This dictionary will hold all the data for a given variable. Example input for vegetation: fpattern="vegetation/MOD13C2_EVI*", fformat="veg" The fformat is used to differentiate between different file naming conventions. Returns: { DATE: {PIXEL: DATA, PIXEL1: DATA1, ...}, DATE2: {PIXEL: DATA, PIXEL1: DATA1, ...}, } """ d = {} # the dictionary that will hold all of our data files = glob.glob(data_dir + fpattern) files.sort() # sorting alphabetically puts files in chronological order # figure out the date from the filename. # This will depend on the naming conventions of the files, which we learn # from the fformat variable. if fformat == 'veg': # vegetation elif fformat == 'temp': # temperature elif fformat == 'precip': # precipitation elif fformat == 'pop': # population elif fformat == 'irr': # irritation elif fformat == 'grace': # grace anomoly data else: print("ERROR: unrecognized file format %s" % fformat) return None for fname in files: date = get_date(fname) # (year, month, day) data = get_pixel_data(fname) # {(lon, lat): val, ...} # add an entry to the dictionary d[date] = data return d def get_pixel_data(fname): """ Return a dictionary of pixel tuples (lon, lat) and measurents for all lines in the given file. Assume that each file is for a unique date, and that columns 0, 1, and 2 are lat, lon, and measurement respectively. """ d = {} with open(fname, 'r') as fh: reader = csv.reader(fh, delimiter=" ") for row in reader: if row[0] != "HDR": # exclude header rows lon = float(row[0]) lat = float(row[1]) meas = float(row[2]) d[(lon,lat)] = meas return d def get_veg_trend(pixel, year, month, day): """ Return the 2 year vegetation trend for a given pixel and date. The trend should be over the N months before the given date. pixel should be a (lon, lat) touple. year, month, and day should be strings. """ N = 24 day_of_year = datetime.datetime(int(year), int(month), int(day)).strftime("%j") files = glob.glob(data_dir + "vegetation/MOD13C2_EVI*") files.sort() # sorting alphabetically is enough b/c nice naming scheme! # find the vegetation data closest to the requested date testf = data_dir + "vegetation/MOD13C2_EVI_%s_%s_monthly.csv" % (year, day_of_year) # data for the day we'd really like if (testf in files): # this date is already exactly included! startf = testf else: # we need to look back a bit to find the entry closest to but before # the given date lst = files + [testf] lst.sort() for i in range(len(lst)): if lst[i] == testf: startf = lst[i-1] # get data files for the previous N months fnames = [] for i in range(len(files)): if files[i] == startf: start = i for j in range(N): fnames.append(files[start-j]) # get data for this pixel from these previous months lon = str(pixel[0]) lat = str(pixel[1]) evi = [] months = [] n = 0 for fname in fnames: found = False with open(fname, 'r') as fh: reader = csv.reader(fh, delimiter=" ") for row in reader: if (row[0] == lon and row[1] == lat): # check for matching pixel evi.append(float(row[2])) found = True if found: months.append(n) n+=1 if len(evi) < 10: print("no EVI data avilible for this pixel") return None # now fit a linear regression of the form y = mx+b x = np.array(months) y = np.array(evi) A = np.vstack([x, np.ones(len(x))]).T slope, y_int = np.linalg.lstsq(A, y)[0] return(slope) def get_anomoly(pixel, year, month, day): """ Return the anomoly found in with the given specifications. pixel should be a (lon, lat) touple. year, month, and day should be strings. """ fname = data_dir + "grace/GRCTellus.JPL.%04d%02d%02d.LND.RL05_1.DSTvSCS1411.txt" % (year, month, day) lon = str(pixel[0]) lat = str(pixel[1]) with open(fname, 'r') as fh: reader = csv.reader(fh, delimiter=" ") for row in reader: if (row[0] == lon and row[1] == lat): # check for matching pixel return float(row[2]) return None def get_irrigation_level(pixel): """ Get the 2013 percent of land equipped for irrigation for a given pixel. """ fname = data_dir + "irrigation/irrigation_pct_2013.csv" lon = str(pixel[0]) lat = str(pixel[1]) with open(fname, 'r') as fh: reader = csv.reader(fh, delimiter=" ") for row in reader: if (row[0] == lon and row[1] == lat): print("irrigation found!") return float(row[2]) # assume no data means the level is zero. This prevents excessive # pruning of pixels, since irrigation data is so sparce. return 0.0 def get_precip_trend(pixel, year, month, day): """ Return the precipitation trend for a given pixel and date. The trend should be over the N months before the given date. pixel should be a (lon, lat) touple. year, month, and day should be strings. """ N = 24 decidate = str(toYearFraction(datetime.datetime(int(year), int(month), int(day))))[0:8] files = glob.glob(data_dir + "precipitation/precipitation_20*") files.sort() # sorting alphabetically is enough b/c nice naming scheme! # find the vegetation data closest to the requested date testf = data_dir + "precipitation/precipitation_%s" % (decidate) # data for the day we'd really like if (testf in files): # this date is already exactly included! startf = testf else: # we need to look back a bit to find the entry closest to but before # the given date lst = files + [testf] lst.sort() for i in range(len(lst)): if lst[i] == testf: startf = lst[i-1] # get data files for the previous N months fnames = [] for i in range(len(files)): if files[i] == startf: start = i for j in range(N): fnames.append(files[start-j]) # get data for this pixel from these previous months lon = str(pixel[0]) lat = str(pixel[1]) precip_pct = [] months = [] n = 0 for fname in fnames: found = False with open(fname, 'r') as fh: reader = csv.reader(fh, delimiter=" ") for row in reader: if (row[0] == lon and row[1] == lat): # check for matching pixel precip_pct.append(float(row[2])) found = True if found: months.append(n) n+=1 if len(precip_pct) < 10: print("no precipitation data avilible for this pixel") return None # now fit a linear regression of the form y = mx+b x = np.array(months) y = np.array(precip_pct) A = np.vstack([x, np.ones(len(x))]).T slope, y_int = np.linalg.lstsq(A, y)[0] return(slope) def get_trend(pixel, date, dataset): """ Return a N month trend in the given dataset. """ N = 24 vals = [] months = [] n = 0 bad_cnt = 0 # generate lists of month numbers and values for i in range(N): try: vals.append(dataset[date][pixel]) months.append(n) except KeyError: bad_cnt += 1 # ignore when we can't get a value n+=1 date = previous_month(date) if bad_cnt > 15: return 0 # ingore if there are too few datapoints # now fit a linear regression x = np.array(months) y = np.array(vals) A = np.vstack([x, np.ones(len(x))]).T slope, y_int = np.linalg.lstsq(A, y)[0] return(slope) def get_average(pixel, date, dataset): """ Return an N month average in the given dataset. """ N = 24 vals = [] bad_cnt = 0 # generate lists of month numbers and values for i in range(N): try: vals.append(dataset[date][pixel]) except KeyError: bad_cnt += 1 # ignore when we can't get a value date = previous_month(date) if bad_cnt > 15: return 0 # ingore if there are too few datapoints avg = np.average(vals) return avg def previous_month(date): """ Return the previous month for a given date """ year = date[0] month = date[1] new_year = year new_month = month - 1 if new_month == 0: new_year -= 1 new_month = 12 return (new_year, new_month) def get_temperature_trend(pixel, date): """ Return the 2 year tempearature trend for a given pixel and date. The trend should be over the N months before the given date. pixel should be a (lon, lat) touple. date should be a (year, month) touple """ N = 24 # get data for this pixel from these previous months lon = str(pixel[0]) lat = str(pixel[1]) this_temp = temperature_data[date][pixel] print(this_temp) return # now fit a linear regression of the form y = mx+b x = np.array(months) y = np.array(temp) A = np.vstack([x, np.ones(len(x))]).T slope, y_int = np.linalg.lstsq(A, y)[0] return(slope) def random_valid_pixel(pixel_list): """ Randomly select a pixel that will yield valid training data. This means that the given pixel 1. Must exist for the given date 2. Must exist in the previous 24 months 3. Must not be in pixel_list Return a tuple of pixel, year, month, day """ files = glob.glob(data_dir + "grace/GRCTellus.JPL*") files.sort() # sorting alphabetically is enough b/c nice naming scheme! files = files[24:] # remove the first 24 months since there won't be enough data before these startfile = files[random.randint(0,len(files)-1)] # choose a random month # choose a random pixel with open(startfile) as f: for i, l in enumerate(f): pass num_lines = i header_lines = 22 pixel_line = random.randint(header_lines, num_lines) # get the value of that pixel with open(startfile) as f: reader = csv.reader(f, delimiter=" ") for i, row in enumerate(reader): if (i == pixel_line): pixel = (float(row[0]), float(row[1])) # make sure the pixel isn't already in our list if pixel in pixel_list: # this pixel is already in our list #print("pixel already chosen. picking a new one") return random_valid_pixel(pixel_list) yyyymmdd = startfile[-35:-27] # looking backwards from the end in case data_dir changes year = int(yyyymmdd[0:4]) month = int(yyyymmdd[4:6]) day = int(yyyymmdd[6:8]) # make sure that pixel exists for the previous 24 months y, m, d = (year, month, day) for i in range(24): y, m, d = get_prev_entry(y, m, d) if not exists(pixel, y, m, d): # one of the previous months doesn't have our given pixel # So do we give up? No. We try again #print("Found invalid pixel. Trying again") return random_valid_pixel(pixel_list) return (pixel, year, month, day) def exists(pixel, year, month, day): """ Check if a given pixel for a given date exists. Return true or false. """ fname = data_dir + "grace/GRCTellus.JPL.%04d%02d%02d.LND.RL05_1.DSTvSCS1411.txt" % (year, month, day) lon = str(pixel[0]) lat = str(pixel[1]) try: with open(fname, 'r') as fh: reader = csv.reader(fh, delimiter=" ") for row in reader: if (row[0] == lon and row[1] == lat): # check for matching pixel return True # found the pixel! return False except: # if the file can't be opened, it's probably a bad date return False def save_validation_data(): """ Save grace and input data in a csv file. format: LON LAT GRACESLOPE PRECIP TEMP VEG PRECIPAVG TEMPAVG VEGAVG """ X = [] # input vars y = [] # grace with open('validation.csv', 'w') as fh: writer = csv.writer(fh, delimiter=' ') writer.writerow(["HDR","long","lat","grace","precip","temp","veg","precipavg","tempavg","vegavg"]) date = (2016,1) for pixel in grace_data[(2004,1)]: # use a consistent list of pixels lat = pixel[1] lon = pixel[0] try: # grace slope --> output grace = get_trend(pixel, date, grace_data) # other varialbes --> input # include both trend and average (over ~ 2 yrs) precip = get_trend(pixel, date, precipitation_data) temp = get_trend(pixel, date, temperature_data) veg = get_trend(pixel, date, vegetation_data) precipavg = get_average(pixel, date, precipitation_data) vegavg = get_average(pixel, date, vegetation_data) tempavg = get_average(pixel, date, temperature_data) writer.writerow([lon, lat, grace, precip, temp, veg, precipavg, tempavg, vegavg]) except KeyError: # sometimes we won't have enough corresponding data on some of the # extra variables. We'll just ignore that pixel/date pair in that case. pass if __name__=="__main__": load_all_data() # do this first since many functions reference global vars main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2235, 198, 2, 198, 2, 16156, 12884, 410, 15, 13, 15, 198, 2, 198, 2, 49461, 2003, 281, 296, 349, 444, 1912, 523, 1636, 319, 262, 1613, 1987, 1933, 286, 198, 2, 10863, 11598, 281, 296, 349, 444, 13, 770, 2393, 18616, 3047, 290, 4856, 1366, 220, 198, 2, 8914, 1111, 284, 33918, 3696, 198, 2, 198, 2235, 198, 198, 11748, 4738, 198, 11748, 269, 21370, 198, 11748, 15095, 198, 11748, 33918, 198, 11748, 4818, 8079, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 640, 198, 11748, 302, 198, 198, 7890, 62, 15908, 796, 12813, 11195, 14, 85, 924, 14, 35539, 7050, 14, 8199, 1523, 7934, 14, 7890, 30487, 198, 198, 2164, 558, 62, 7890, 796, 6045, 198, 343, 4359, 341, 62, 7890, 796, 6045, 198, 39748, 62, 7890, 796, 6045, 198, 3866, 66, 541, 3780, 62, 7890, 796, 6045, 198, 11498, 21069, 62, 7890, 796, 6045, 198, 303, 1136, 341, 62, 7890, 796, 6045, 198, 198, 4299, 3440, 62, 439, 62, 7890, 33529, 198, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 8778, 1366, 422, 3696, 355, 3298, 9633, 13, 220, 198, 220, 220, 220, 5740, 326, 428, 4433, 257, 2383, 2033, 31034, 19, 13, 20, 4579, 8, 198, 220, 220, 220, 286, 13931, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 11542, 62, 7890, 198, 220, 220, 220, 3298, 35425, 62, 7890, 198, 220, 220, 220, 3298, 3265, 62, 7890, 198, 220, 220, 220, 3298, 32025, 62, 7890, 198, 220, 220, 220, 3298, 5951, 62, 7890, 198, 220, 220, 220, 3298, 28459, 62, 7890, 628, 220, 220, 220, 3601, 7203, 855, 14804, 12320, 10863, 11598, 1366, 284, 4088, 4943, 198, 220, 220, 220, 11542, 62, 7890, 796, 651, 62, 7890, 62, 11600, 10786, 2164, 558, 14, 38, 7397, 9, 3256, 705, 2164, 558, 11537, 628, 220, 220, 220, 1303, 4798, 7203, 855, 14804, 12320, 14826, 49, 3528, 6234, 1366, 284, 4088, 4943, 198, 220, 220, 220, 1303, 343, 4359, 341, 62, 7890, 796, 651, 62, 7890, 62, 11600, 10786, 343, 4359, 341, 14, 343, 4359, 341, 9, 3256, 705, 343, 81, 11537, 198, 220, 220, 220, 1303, 4798, 7203, 855, 14804, 12320, 37586, 6239, 6234, 1366, 284, 4088, 4943, 198, 220, 220, 220, 1303, 39748, 62, 7890, 796, 651, 62, 7890, 62, 11600, 10786, 39748, 14, 39748, 9, 3256, 705, 12924, 11537, 628, 220, 220, 220, 3601, 7203, 855, 14804, 12320, 22814, 34, 4061, 2043, 6234, 1366, 284, 4088, 4943, 198, 220, 220, 220, 32025, 62, 7890, 796, 651, 62, 7890, 62, 11600, 10786, 3866, 66, 541, 3780, 14, 3866, 66, 541, 3780, 9, 3256, 705, 3866, 66, 541, 11537, 628, 220, 220, 220, 3601, 7203, 855, 14804, 12320, 309, 3620, 18973, 40086, 1366, 284, 4088, 4943, 198, 220, 220, 220, 5951, 62, 7890, 796, 651, 62, 7890, 62, 11600, 10786, 11498, 21069, 14, 33365, 1157, 34, 18, 62, 43, 2257, 9, 3256, 705, 29510, 11537, 628, 220, 220, 220, 3601, 7203, 855, 14804, 12320, 569, 7156, 2767, 6234, 1366, 284, 4088, 4943, 198, 220, 220, 220, 28459, 62, 7890, 796, 651, 62, 7890, 62, 11600, 10786, 303, 1136, 341, 14, 33365, 1485, 34, 17, 62, 36, 12861, 62, 9, 3256, 705, 303, 70, 11537, 198, 198, 4299, 651, 62, 2301, 1538, 62, 7890, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 3047, 14, 33407, 1366, 422, 8631, 5239, 3696, 13, 198, 220, 220, 220, 5514, 779, 1366, 422, 262, 369, 298, 298, 5031, 1294, 357, 680, 8, 198, 220, 220, 220, 8229, 1395, 11, 331, 11, 810, 331, 318, 262, 10863, 11598, 281, 296, 3366, 290, 220, 198, 220, 220, 220, 1395, 318, 262, 1366, 356, 1183, 779, 284, 27099, 262, 281, 296, 3366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 796, 17635, 198, 220, 220, 220, 331, 796, 17635, 628, 220, 220, 220, 3601, 7203, 855, 14804, 18067, 4938, 17848, 4943, 198, 220, 220, 220, 9667, 796, 4938, 62, 4475, 62, 4868, 3419, 198, 220, 220, 220, 17848, 796, 4938, 62, 32515, 62, 4868, 7, 19581, 8, 628, 220, 220, 220, 3601, 7203, 855, 14804, 2980, 803, 27039, 4943, 628, 220, 220, 220, 329, 3128, 287, 9667, 25, 198, 220, 220, 220, 220, 220, 220, 220, 281, 296, 349, 444, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3718, 2419, 796, 17635, 220, 1303, 3650, 32025, 11, 5951, 11, 290, 28459, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2169, 862, 796, 17635, 220, 220, 220, 1303, 356, 1183, 9807, 777, 656, 352, 67, 706, 356, 651, 477, 262, 17848, 198, 220, 220, 220, 220, 220, 220, 220, 1569, 14542, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 17465, 287, 17848, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3042, 796, 17465, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 261, 796, 17465, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11542, 281, 296, 3366, 14610, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11542, 796, 11542, 62, 7890, 58, 4475, 7131, 32515, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 584, 1401, 498, 12636, 14610, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18812, 796, 32025, 62, 7890, 58, 4475, 7131, 32515, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 5951, 62, 7890, 58, 4475, 7131, 32515, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 70, 796, 28459, 62, 7890, 58, 4475, 7131, 32515, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 284, 262, 40522, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 296, 349, 444, 13, 33295, 7, 2164, 558, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3718, 2419, 13, 33295, 7, 3866, 66, 541, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3718, 2419, 13, 33295, 7, 29510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 14542, 13, 33295, 7, 303, 70, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 11925, 7, 272, 296, 349, 444, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 11925, 7, 3866, 66, 2419, 10, 11498, 862, 10, 303, 14542, 20679, 18, 8, 628, 220, 220, 220, 3601, 7, 2536, 7, 11925, 7, 55, 4008, 1343, 366, 4818, 499, 1563, 82, 4943, 198, 220, 220, 220, 3601, 7203, 15414, 15225, 25, 366, 1343, 965, 7, 11925, 7, 55, 58, 15, 60, 22305, 628, 220, 220, 220, 1441, 357, 55, 11, 331, 8, 198, 198, 4299, 4938, 62, 4475, 62, 4868, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 1351, 286, 9667, 326, 423, 1366, 329, 11542, 11, 32025, 11, 198, 220, 220, 220, 5951, 11, 290, 28459, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9667, 796, 17635, 198, 220, 220, 220, 329, 3128, 287, 11542, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 4475, 287, 32025, 62, 7890, 290, 3128, 287, 5951, 62, 7890, 290, 3128, 287, 28459, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 13, 33295, 7, 4475, 8, 198, 220, 220, 220, 1441, 9667, 198, 198, 4299, 4938, 62, 32515, 62, 4868, 7, 4475, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 1351, 286, 17848, 287, 262, 542, 2470, 1294, 351, 32025, 11, 5951, 11, 220, 198, 220, 220, 220, 28459, 11, 290, 11542, 1366, 329, 477, 262, 1813, 9667, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1744, 79, 14810, 796, 900, 3419, 198, 220, 220, 220, 2089, 79, 14810, 796, 900, 3419, 628, 220, 220, 220, 1303, 651, 477, 11542, 17848, 287, 262, 29843, 1294, 198, 220, 220, 220, 329, 17465, 287, 11542, 62, 7890, 58, 7, 16942, 11, 604, 8, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 300, 261, 796, 17465, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3042, 796, 17465, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 287, 65, 3733, 796, 6407, 1303, 7, 15460, 1875, 2608, 290, 3042, 1279, 5125, 290, 300, 261, 1875, 532, 11623, 290, 300, 261, 1279, 532, 3134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 287, 65, 3733, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1744, 79, 14810, 13, 2860, 7, 32515, 8, 628, 220, 220, 220, 1303, 783, 467, 736, 290, 8106, 503, 17848, 326, 3588, 470, 287, 477, 262, 4113, 198, 220, 220, 220, 329, 3128, 287, 3128, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 17465, 287, 1744, 79, 14810, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 439, 62, 28709, 796, 357, 32515, 287, 11542, 62, 7890, 58, 4475, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 287, 62, 439, 62, 28709, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2089, 79, 14810, 13, 2860, 7, 32515, 8, 628, 220, 220, 220, 4938, 62, 79, 14810, 796, 1744, 79, 14810, 532, 2089, 79, 14810, 220, 1303, 17848, 326, 389, 287, 1744, 475, 407, 287, 2089, 198, 220, 220, 220, 3601, 7, 11925, 7, 79, 4733, 79, 14810, 4008, 198, 220, 220, 220, 3601, 7, 11925, 7, 14774, 79, 14810, 4008, 198, 220, 220, 220, 3601, 7, 11925, 7, 12102, 62, 79, 14810, 4008, 198, 220, 220, 220, 1441, 1351, 7, 12102, 62, 79, 14810, 8, 198, 198, 4299, 651, 62, 7890, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 3047, 14, 33407, 1366, 422, 8631, 5239, 3696, 13, 198, 220, 220, 220, 8229, 1395, 11, 331, 11, 810, 331, 318, 262, 10863, 11598, 22638, 290, 220, 198, 220, 220, 220, 1395, 318, 262, 1366, 356, 1183, 779, 284, 27099, 262, 10863, 11598, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 796, 17635, 198, 220, 220, 220, 331, 796, 17635, 628, 220, 220, 220, 3509, 62, 77, 28, 33470, 628, 220, 220, 220, 3601, 7203, 855, 14804, 2980, 803, 27039, 4943, 198, 220, 220, 220, 1312, 796, 657, 1303, 1271, 286, 34820, 198, 220, 220, 220, 329, 3128, 287, 11542, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 17465, 287, 11542, 62, 7890, 58, 7, 15724, 11, 16, 8, 5974, 220, 220, 1303, 779, 257, 6414, 1351, 286, 17848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3042, 796, 17465, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 261, 796, 17465, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4239, 284, 2793, 355, 544, 318, 71, 3814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11542, 22638, 14610, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11542, 796, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 11542, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 584, 1401, 498, 12636, 14610, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2291, 1111, 5182, 290, 2811, 357, 2502, 5299, 362, 331, 3808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18812, 796, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 32025, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 5951, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 70, 796, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 28459, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18812, 615, 70, 796, 651, 62, 23913, 7, 32515, 11, 3128, 11, 32025, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 70, 615, 70, 796, 651, 62, 23913, 7, 32515, 11, 3128, 11, 28459, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 615, 70, 796, 651, 62, 23913, 7, 32515, 11, 3128, 11, 5951, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11542, 25, 220, 1303, 340, 338, 13894, 284, 2291, 1366, 1231, 281, 5072, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 262, 4958, 26515, 286, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 13, 33295, 26933, 3866, 66, 541, 11, 18812, 615, 70, 11, 20218, 11, 20218, 615, 70, 11, 1569, 70, 11, 1569, 70, 615, 70, 11, 3042, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 13, 33295, 7, 2164, 558, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3360, 356, 1839, 470, 423, 1576, 11188, 1366, 319, 617, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3131, 9633, 13, 775, 1183, 655, 8856, 326, 17465, 14, 4475, 5166, 287, 326, 1339, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 299, 796, 18896, 7, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10430, 4064, 82, 1220, 4064, 82, 930, 27565, 4064, 82, 1220, 4064, 82, 366, 4064, 357, 72, 11, 18896, 7, 2164, 558, 62, 7890, 828, 299, 11, 3509, 62, 77, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 299, 1875, 3509, 62, 77, 25, 220, 1303, 11238, 618, 356, 423, 1576, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 1312, 47932, 16, 220, 1303, 24415, 3753, 628, 220, 220, 220, 3601, 7, 2536, 7, 11925, 7, 55, 4008, 1343, 366, 4818, 499, 1563, 82, 4943, 198, 220, 220, 220, 3601, 7203, 15414, 15225, 25, 366, 1343, 965, 7, 11925, 7, 55, 58, 15, 60, 22305, 628, 220, 220, 220, 1441, 357, 55, 11, 331, 8, 198, 198, 4299, 4274, 62, 7890, 7, 87, 62, 808, 11, 331, 62, 808, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 290, 1441, 281, 11666, 27039, 416, 4375, 198, 220, 220, 220, 31986, 31562, 7838, 284, 262, 1813, 1103, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1208, 628, 198, 4299, 6716, 62, 12102, 62, 4475, 7, 8906, 1202, 62, 4475, 11, 22155, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8975, 356, 651, 257, 3128, 357, 1941, 11, 1227, 11, 1110, 8, 326, 857, 407, 3446, 2152, 287, 198, 220, 220, 220, 1194, 22155, 13, 775, 765, 284, 1064, 257, 6716, 3128, 326, 857, 2152, 287, 326, 220, 198, 220, 220, 220, 22155, 11, 475, 318, 636, 286, 262, 976, 1227, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 4938, 62, 4475, 287, 22155, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 12102, 62, 4475, 58, 15, 25, 17, 60, 6624, 220, 10348, 62, 4475, 58, 15, 25, 17, 60, 2599, 220, 1303, 12336, 614, 290, 1227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4938, 62, 4475, 198, 198, 4299, 651, 62, 47050, 62, 13000, 7, 1941, 11, 1227, 11, 1110, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1114, 257, 1813, 1227, 338, 1366, 11, 356, 1244, 588, 284, 1064, 262, 1227, 198, 220, 220, 220, 326, 662, 2707, 82, 340, 13, 770, 2163, 5860, 262, 614, 11, 1227, 11, 290, 198, 220, 220, 220, 1110, 326, 6053, 284, 326, 1227, 338, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3696, 796, 15095, 13, 4743, 672, 7, 7890, 62, 15908, 1343, 366, 2164, 558, 14, 10761, 4177, 695, 385, 13, 41, 6489, 9, 4943, 198, 220, 220, 220, 3696, 13, 30619, 3419, 220, 220, 1303, 29407, 24830, 1146, 318, 1576, 275, 14, 66, 3621, 19264, 7791, 0, 198, 220, 220, 220, 428, 62, 3672, 796, 1366, 62, 15908, 1343, 366, 2164, 558, 14, 10761, 4177, 695, 385, 13, 41, 6489, 13, 4, 3023, 67, 4, 2999, 67, 4, 2999, 67, 13, 43, 8575, 13, 7836, 2713, 62, 16, 13, 35, 2257, 85, 6173, 50, 1415, 1157, 13, 14116, 1, 4064, 357, 1941, 11, 1227, 11, 1110, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 16624, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3696, 58, 72, 60, 6624, 428, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 796, 3696, 58, 72, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 22556, 26621, 1860, 796, 277, 3672, 58, 12, 2327, 21912, 1983, 60, 220, 1303, 2045, 16196, 422, 262, 886, 287, 1339, 1366, 62, 15908, 2458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 331, 22556, 26621, 1860, 58, 15, 25, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 796, 331, 22556, 26621, 1860, 58, 19, 25, 21, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 331, 22556, 26621, 1860, 58, 21, 25, 23, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 600, 7, 88, 828, 493, 7, 76, 828, 493, 7, 67, 4008, 198, 220, 220, 220, 1441, 6045, 198, 198, 4299, 651, 62, 7890, 62, 11600, 7, 69, 33279, 11, 277, 18982, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8778, 262, 1366, 422, 257, 1813, 2393, 3912, 656, 257, 22155, 13, 198, 220, 220, 220, 770, 22155, 481, 1745, 477, 262, 1366, 329, 257, 1813, 7885, 13, 220, 628, 220, 220, 220, 17934, 5128, 329, 28459, 25, 277, 33279, 2625, 303, 1136, 341, 14, 33365, 1485, 34, 17, 62, 36, 12861, 9, 1600, 277, 18982, 2625, 303, 70, 1, 198, 220, 220, 220, 383, 277, 18982, 318, 973, 284, 28754, 1022, 1180, 2393, 19264, 21396, 13, 628, 220, 220, 220, 16409, 25, 1391, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 6158, 25, 1391, 47, 10426, 3698, 25, 42865, 11, 350, 10426, 3698, 16, 25, 42865, 16, 11, 2644, 5512, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 6158, 17, 25, 1391, 47, 10426, 3698, 25, 42865, 11, 350, 10426, 3698, 16, 25, 42865, 16, 11, 2644, 5512, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 796, 23884, 220, 1303, 262, 22155, 326, 481, 1745, 477, 286, 674, 1366, 198, 220, 220, 220, 3696, 796, 15095, 13, 4743, 672, 7, 7890, 62, 15908, 1343, 277, 33279, 8, 198, 220, 220, 220, 3696, 13, 30619, 3419, 220, 1303, 29407, 24830, 1146, 7584, 3696, 287, 45946, 1502, 628, 220, 220, 220, 1303, 3785, 503, 262, 3128, 422, 262, 29472, 13, 220, 198, 220, 220, 220, 1303, 770, 481, 4745, 319, 262, 19264, 21396, 286, 262, 3696, 11, 543, 356, 2193, 198, 220, 220, 220, 1303, 422, 262, 277, 18982, 7885, 13, 198, 220, 220, 220, 611, 277, 18982, 6624, 705, 303, 70, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28459, 198, 220, 220, 220, 1288, 361, 277, 18982, 6624, 705, 29510, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5951, 198, 220, 220, 220, 1288, 361, 277, 18982, 6624, 705, 3866, 66, 541, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 32025, 198, 220, 220, 220, 1288, 361, 277, 18982, 6624, 705, 12924, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3265, 198, 220, 220, 220, 1288, 361, 277, 18982, 6624, 705, 343, 81, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35164, 198, 220, 220, 220, 1288, 361, 277, 18982, 6624, 705, 2164, 558, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11542, 281, 296, 3366, 1366, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24908, 25, 43483, 1143, 2393, 5794, 4064, 82, 1, 4064, 277, 18982, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 329, 277, 3672, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 651, 62, 4475, 7, 69, 3672, 8, 220, 1303, 357, 1941, 11, 1227, 11, 1110, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 651, 62, 32515, 62, 7890, 7, 69, 3672, 8, 220, 1303, 1391, 7, 14995, 11, 3042, 2599, 1188, 11, 2644, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 281, 5726, 284, 262, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 4475, 60, 796, 1366, 628, 220, 220, 220, 1441, 288, 198, 198, 4299, 651, 62, 32515, 62, 7890, 7, 69, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 22155, 286, 17465, 12777, 2374, 357, 14995, 11, 3042, 8, 290, 3953, 429, 82, 198, 220, 220, 220, 329, 477, 3951, 287, 262, 1813, 2393, 13, 2195, 2454, 326, 1123, 2393, 318, 198, 220, 220, 220, 329, 257, 3748, 3128, 11, 290, 326, 15180, 657, 11, 352, 11, 290, 362, 389, 3042, 11, 300, 261, 11, 198, 220, 220, 220, 290, 15558, 8148, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 796, 23884, 198, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 705, 81, 11537, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 71, 11, 46728, 2676, 2625, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5752, 58, 15, 60, 14512, 366, 39, 7707, 1298, 220, 1303, 19607, 13639, 15274, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 261, 796, 12178, 7, 808, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3042, 796, 12178, 7, 808, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2212, 796, 12178, 7, 808, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 7, 14995, 11, 15460, 15437, 796, 2212, 198, 220, 220, 220, 1441, 288, 198, 198, 4299, 651, 62, 303, 70, 62, 83, 10920, 7, 32515, 11, 614, 11, 1227, 11, 1110, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 362, 614, 28459, 5182, 329, 257, 1813, 17465, 198, 220, 220, 220, 290, 3128, 13, 383, 5182, 815, 307, 625, 262, 399, 1933, 878, 198, 220, 220, 220, 262, 1813, 3128, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17465, 815, 307, 257, 357, 14995, 11, 3042, 8, 2819, 1154, 13, 220, 198, 220, 220, 220, 614, 11, 1227, 11, 290, 1110, 815, 307, 13042, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 399, 796, 1987, 198, 220, 220, 220, 1110, 62, 1659, 62, 1941, 796, 4818, 8079, 13, 19608, 8079, 7, 600, 7, 1941, 828, 493, 7, 8424, 828, 493, 7, 820, 29720, 2536, 31387, 7203, 4, 73, 4943, 198, 220, 220, 220, 3696, 796, 15095, 13, 4743, 672, 7, 7890, 62, 15908, 1343, 366, 303, 1136, 341, 14, 33365, 1485, 34, 17, 62, 36, 12861, 9, 4943, 198, 220, 220, 220, 3696, 13, 30619, 3419, 220, 220, 1303, 29407, 24830, 1146, 318, 1576, 275, 14, 66, 3621, 19264, 7791, 0, 628, 220, 220, 220, 1303, 1064, 262, 28459, 1366, 11706, 284, 262, 9167, 3128, 198, 220, 220, 220, 1332, 69, 796, 1366, 62, 15908, 1343, 366, 303, 1136, 341, 14, 33365, 1485, 34, 17, 62, 36, 12861, 62, 4, 82, 62, 4, 82, 62, 8424, 306, 13, 40664, 1, 4064, 357, 1941, 11, 1110, 62, 1659, 62, 1941, 8, 220, 220, 1303, 1366, 329, 262, 1110, 356, 1549, 1107, 588, 198, 220, 220, 220, 611, 357, 9288, 69, 287, 3696, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 3128, 318, 1541, 3446, 3017, 0, 198, 220, 220, 220, 220, 220, 220, 220, 923, 69, 796, 1332, 69, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 761, 284, 804, 736, 257, 1643, 284, 1064, 262, 5726, 11706, 284, 475, 878, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1813, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 796, 3696, 1343, 685, 9288, 69, 60, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 13, 30619, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 75, 301, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 300, 301, 58, 72, 60, 6624, 1332, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 69, 796, 300, 301, 58, 72, 12, 16, 60, 628, 220, 220, 220, 1303, 651, 1366, 3696, 329, 262, 2180, 399, 1933, 198, 220, 220, 220, 277, 14933, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 16624, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3696, 58, 72, 60, 6624, 923, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 1312, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 14933, 13, 33295, 7, 16624, 58, 9688, 12, 73, 12962, 628, 220, 220, 220, 1303, 651, 1366, 329, 428, 17465, 422, 777, 2180, 1933, 198, 220, 220, 220, 300, 261, 796, 965, 7, 32515, 58, 15, 12962, 198, 220, 220, 220, 3042, 796, 965, 7, 32515, 58, 16, 12962, 628, 220, 220, 220, 819, 72, 796, 17635, 198, 220, 220, 220, 1933, 796, 17635, 198, 220, 220, 220, 299, 796, 657, 198, 220, 220, 220, 329, 277, 3672, 287, 277, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 705, 81, 11537, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 71, 11, 46728, 2676, 2625, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 58, 15, 60, 6624, 300, 261, 290, 5752, 58, 16, 60, 6624, 3042, 2599, 220, 220, 1303, 2198, 329, 12336, 17465, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 819, 72, 13, 33295, 7, 22468, 7, 808, 58, 17, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1933, 13, 33295, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 47932, 16, 628, 220, 220, 220, 611, 18896, 7, 1990, 72, 8, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3919, 8696, 40, 1366, 1196, 346, 856, 329, 428, 17465, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1303, 783, 4197, 257, 14174, 20683, 286, 262, 1296, 331, 796, 285, 87, 10, 65, 198, 220, 220, 220, 2124, 796, 45941, 13, 18747, 7, 41537, 8, 198, 220, 220, 220, 331, 796, 45941, 13, 18747, 7, 1990, 72, 8, 198, 220, 220, 220, 317, 796, 45941, 13, 85, 25558, 26933, 87, 11, 45941, 13, 1952, 7, 11925, 7, 87, 4008, 35944, 51, 198, 220, 220, 220, 22638, 11, 331, 62, 600, 796, 45941, 13, 75, 1292, 70, 13, 75, 6448, 80, 7, 32, 11, 331, 38381, 15, 60, 628, 220, 220, 220, 1441, 7, 6649, 3008, 8, 628, 198, 4299, 651, 62, 272, 296, 3366, 7, 32515, 11, 614, 11, 1227, 11, 1110, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 281, 296, 3366, 1043, 287, 351, 262, 1813, 20640, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17465, 815, 307, 257, 357, 14995, 11, 3042, 8, 2819, 1154, 13, 220, 198, 220, 220, 220, 614, 11, 1227, 11, 290, 1110, 815, 307, 13042, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 3672, 796, 1366, 62, 15908, 1343, 366, 2164, 558, 14, 10761, 4177, 695, 385, 13, 41, 6489, 13, 4, 3023, 67, 4, 2999, 67, 4, 2999, 67, 13, 43, 8575, 13, 7836, 2713, 62, 16, 13, 35, 2257, 85, 6173, 50, 1415, 1157, 13, 14116, 1, 4064, 357, 1941, 11, 1227, 11, 1110, 8, 198, 220, 220, 220, 300, 261, 796, 965, 7, 32515, 58, 15, 12962, 198, 220, 220, 220, 3042, 796, 965, 7, 32515, 58, 16, 12962, 198, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 705, 81, 11537, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 71, 11, 46728, 2676, 2625, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 58, 15, 60, 6624, 300, 261, 290, 5752, 58, 16, 60, 6624, 3042, 2599, 220, 220, 1303, 2198, 329, 12336, 17465, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12178, 7, 808, 58, 17, 12962, 198, 220, 220, 220, 1441, 6045, 198, 198, 4299, 651, 62, 343, 4359, 341, 62, 5715, 7, 32515, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 2211, 1411, 286, 1956, 10911, 329, 35425, 329, 198, 220, 220, 220, 257, 1813, 17465, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 3672, 796, 1366, 62, 15908, 1343, 366, 343, 4359, 341, 14, 343, 4359, 341, 62, 79, 310, 62, 6390, 13, 40664, 1, 198, 220, 220, 220, 300, 261, 796, 965, 7, 32515, 58, 15, 12962, 198, 220, 220, 220, 3042, 796, 965, 7, 32515, 58, 16, 12962, 198, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 705, 81, 11537, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 71, 11, 46728, 2676, 2625, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 58, 15, 60, 6624, 300, 261, 290, 5752, 58, 16, 60, 6624, 3042, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 343, 4359, 341, 1043, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12178, 7, 808, 58, 17, 12962, 198, 220, 220, 220, 1303, 7048, 645, 1366, 1724, 262, 1241, 318, 6632, 13, 770, 15174, 13181, 220, 198, 220, 220, 220, 1303, 778, 46493, 286, 17848, 11, 1201, 35425, 1366, 318, 523, 37331, 344, 13, 220, 198, 220, 220, 220, 1441, 657, 13, 15, 220, 220, 198, 198, 4299, 651, 62, 3866, 66, 541, 62, 83, 10920, 7, 32515, 11, 614, 11, 1227, 11, 1110, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 32025, 5182, 329, 257, 1813, 17465, 198, 220, 220, 220, 290, 3128, 13, 383, 5182, 815, 307, 625, 262, 399, 1933, 878, 198, 220, 220, 220, 262, 1813, 3128, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17465, 815, 307, 257, 357, 14995, 11, 3042, 8, 2819, 1154, 13, 220, 198, 220, 220, 220, 614, 11, 1227, 11, 290, 1110, 815, 307, 13042, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 399, 796, 1987, 198, 220, 220, 220, 875, 20540, 796, 965, 7, 1462, 17688, 37, 7861, 7, 19608, 8079, 13, 19608, 8079, 7, 600, 7, 1941, 828, 493, 7, 8424, 828, 493, 7, 820, 35514, 58, 15, 25, 23, 60, 198, 220, 220, 220, 3696, 796, 15095, 13, 4743, 672, 7, 7890, 62, 15908, 1343, 366, 3866, 66, 541, 3780, 14, 3866, 66, 541, 3780, 62, 1238, 9, 4943, 198, 220, 220, 220, 3696, 13, 30619, 3419, 220, 220, 1303, 29407, 24830, 1146, 318, 1576, 275, 14, 66, 3621, 19264, 7791, 0, 628, 220, 220, 220, 1303, 1064, 262, 28459, 1366, 11706, 284, 262, 9167, 3128, 198, 220, 220, 220, 1332, 69, 796, 1366, 62, 15908, 1343, 366, 3866, 66, 541, 3780, 14, 3866, 66, 541, 3780, 62, 4, 82, 1, 4064, 357, 12501, 20540, 8, 220, 220, 1303, 1366, 329, 262, 1110, 356, 1549, 1107, 588, 198, 220, 220, 220, 611, 357, 9288, 69, 287, 3696, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 3128, 318, 1541, 3446, 3017, 0, 198, 220, 220, 220, 220, 220, 220, 220, 923, 69, 796, 1332, 69, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 761, 284, 804, 736, 257, 1643, 284, 1064, 262, 5726, 11706, 284, 475, 878, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1813, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 796, 3696, 1343, 685, 9288, 69, 60, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 13, 30619, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 75, 301, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 300, 301, 58, 72, 60, 6624, 1332, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 69, 796, 300, 301, 58, 72, 12, 16, 60, 628, 220, 220, 220, 1303, 651, 1366, 3696, 329, 262, 2180, 399, 1933, 198, 220, 220, 220, 277, 14933, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 16624, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3696, 58, 72, 60, 6624, 923, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 1312, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 14933, 13, 33295, 7, 16624, 58, 9688, 12, 73, 12962, 628, 220, 220, 220, 1303, 651, 1366, 329, 428, 17465, 422, 777, 2180, 1933, 198, 220, 220, 220, 300, 261, 796, 965, 7, 32515, 58, 15, 12962, 198, 220, 220, 220, 3042, 796, 965, 7, 32515, 58, 16, 12962, 628, 220, 220, 220, 18812, 62, 79, 310, 796, 17635, 198, 220, 220, 220, 1933, 796, 17635, 198, 220, 220, 220, 299, 796, 657, 198, 220, 220, 220, 329, 277, 3672, 287, 277, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 705, 81, 11537, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 71, 11, 46728, 2676, 2625, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 58, 15, 60, 6624, 300, 261, 290, 5752, 58, 16, 60, 6624, 3042, 2599, 220, 220, 1303, 2198, 329, 12336, 17465, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18812, 62, 79, 310, 13, 33295, 7, 22468, 7, 808, 58, 17, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1933, 13, 33295, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 47932, 16, 628, 220, 220, 220, 611, 18896, 7, 3866, 66, 541, 62, 79, 310, 8, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3919, 32025, 1366, 1196, 346, 856, 329, 428, 17465, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1303, 783, 4197, 257, 14174, 20683, 286, 262, 1296, 331, 796, 285, 87, 10, 65, 198, 220, 220, 220, 2124, 796, 45941, 13, 18747, 7, 41537, 8, 198, 220, 220, 220, 331, 796, 45941, 13, 18747, 7, 3866, 66, 541, 62, 79, 310, 8, 198, 220, 220, 220, 317, 796, 45941, 13, 85, 25558, 26933, 87, 11, 45941, 13, 1952, 7, 11925, 7, 87, 4008, 35944, 51, 198, 220, 220, 220, 22638, 11, 331, 62, 600, 796, 45941, 13, 75, 1292, 70, 13, 75, 6448, 80, 7, 32, 11, 331, 38381, 15, 60, 628, 220, 220, 220, 1441, 7, 6649, 3008, 8, 198, 198, 4299, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 27039, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 399, 1227, 5182, 287, 262, 1813, 27039, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 399, 796, 1987, 628, 220, 220, 220, 410, 874, 796, 17635, 198, 220, 220, 220, 1933, 796, 17635, 198, 220, 220, 220, 299, 796, 657, 198, 220, 220, 220, 2089, 62, 66, 429, 796, 657, 198, 220, 220, 220, 1303, 7716, 8341, 286, 1227, 3146, 290, 3815, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 874, 13, 33295, 7, 19608, 292, 316, 58, 4475, 7131, 32515, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1933, 13, 33295, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2089, 62, 66, 429, 15853, 352, 220, 1303, 8856, 618, 356, 460, 470, 651, 257, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 299, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 2180, 62, 8424, 7, 4475, 8, 628, 220, 220, 220, 611, 2089, 62, 66, 429, 1875, 1315, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 220, 220, 1303, 5347, 382, 611, 612, 389, 1165, 1178, 4818, 499, 1563, 82, 628, 220, 220, 220, 1303, 783, 4197, 257, 14174, 20683, 198, 220, 220, 220, 2124, 796, 45941, 13, 18747, 7, 41537, 8, 198, 220, 220, 220, 331, 796, 45941, 13, 18747, 7, 12786, 8, 198, 220, 220, 220, 317, 796, 45941, 13, 85, 25558, 26933, 87, 11, 45941, 13, 1952, 7, 11925, 7, 87, 4008, 35944, 51, 198, 220, 220, 220, 22638, 11, 331, 62, 600, 796, 45941, 13, 75, 1292, 70, 13, 75, 6448, 80, 7, 32, 11, 331, 38381, 15, 60, 628, 220, 220, 220, 1441, 7, 6649, 3008, 8, 198, 198, 4299, 651, 62, 23913, 7, 32515, 11, 3128, 11, 27039, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 281, 399, 1227, 2811, 287, 262, 1813, 27039, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 399, 796, 1987, 628, 220, 220, 220, 410, 874, 796, 17635, 198, 220, 220, 220, 2089, 62, 66, 429, 796, 657, 198, 220, 220, 220, 1303, 7716, 8341, 286, 1227, 3146, 290, 3815, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 874, 13, 33295, 7, 19608, 292, 316, 58, 4475, 7131, 32515, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2089, 62, 66, 429, 15853, 352, 220, 1303, 8856, 618, 356, 460, 470, 651, 257, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 2180, 62, 8424, 7, 4475, 8, 628, 220, 220, 220, 611, 2089, 62, 66, 429, 1875, 1315, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 220, 220, 1303, 5347, 382, 611, 612, 389, 1165, 1178, 4818, 499, 1563, 82, 628, 220, 220, 220, 42781, 796, 45941, 13, 23913, 7, 12786, 8, 198, 220, 220, 220, 1441, 42781, 198, 198, 4299, 2180, 62, 8424, 7, 4475, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 2180, 1227, 329, 257, 1813, 3128, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 614, 796, 3128, 58, 15, 60, 198, 220, 220, 220, 1227, 796, 3128, 58, 16, 60, 198, 220, 220, 220, 649, 62, 1941, 796, 614, 198, 220, 220, 220, 649, 62, 8424, 796, 1227, 532, 352, 628, 220, 220, 220, 611, 649, 62, 8424, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1941, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 8424, 796, 1105, 628, 220, 220, 220, 1441, 357, 3605, 62, 1941, 11, 649, 62, 8424, 8, 628, 198, 4299, 651, 62, 11498, 21069, 62, 83, 10920, 7, 32515, 11, 3128, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 362, 614, 2169, 431, 283, 1300, 5182, 329, 257, 1813, 17465, 198, 220, 220, 220, 290, 3128, 13, 383, 5182, 815, 307, 625, 262, 399, 1933, 878, 198, 220, 220, 220, 262, 1813, 3128, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17465, 815, 307, 257, 357, 14995, 11, 3042, 8, 2819, 1154, 13, 3128, 815, 307, 257, 198, 220, 220, 220, 357, 1941, 11, 1227, 8, 2819, 1154, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 399, 796, 1987, 628, 220, 220, 220, 1303, 651, 1366, 329, 428, 17465, 422, 777, 2180, 1933, 198, 220, 220, 220, 300, 261, 796, 965, 7, 32515, 58, 15, 12962, 198, 220, 220, 220, 3042, 796, 965, 7, 32515, 58, 16, 12962, 628, 220, 220, 220, 428, 62, 29510, 796, 5951, 62, 7890, 58, 4475, 7131, 32515, 60, 198, 220, 220, 220, 3601, 7, 5661, 62, 29510, 8, 628, 220, 220, 220, 1441, 628, 220, 220, 220, 1303, 783, 4197, 257, 14174, 20683, 286, 262, 1296, 331, 796, 285, 87, 10, 65, 198, 220, 220, 220, 2124, 796, 45941, 13, 18747, 7, 41537, 8, 198, 220, 220, 220, 331, 796, 45941, 13, 18747, 7, 29510, 8, 198, 220, 220, 220, 317, 796, 45941, 13, 85, 25558, 26933, 87, 11, 45941, 13, 1952, 7, 11925, 7, 87, 4008, 35944, 51, 198, 220, 220, 220, 22638, 11, 331, 62, 600, 796, 45941, 13, 75, 1292, 70, 13, 75, 6448, 80, 7, 32, 11, 331, 38381, 15, 60, 628, 220, 220, 220, 1441, 7, 6649, 3008, 8, 198, 198, 4299, 4738, 62, 12102, 62, 32515, 7, 32515, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14534, 306, 2922, 257, 17465, 326, 481, 7800, 4938, 3047, 1366, 13, 198, 220, 220, 220, 770, 1724, 326, 262, 1813, 17465, 198, 220, 220, 220, 220, 220, 220, 220, 352, 13, 12039, 2152, 329, 262, 1813, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 12039, 2152, 287, 262, 2180, 1987, 1933, 198, 220, 220, 220, 220, 220, 220, 220, 513, 13, 12039, 407, 307, 287, 17465, 62, 4868, 628, 220, 220, 220, 8229, 257, 46545, 286, 17465, 11, 614, 11, 1227, 11, 1110, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3696, 796, 15095, 13, 4743, 672, 7, 7890, 62, 15908, 1343, 366, 2164, 558, 14, 10761, 4177, 695, 385, 13, 41, 6489, 9, 4943, 198, 220, 220, 220, 3696, 13, 30619, 3419, 220, 220, 1303, 29407, 24830, 1146, 318, 1576, 275, 14, 66, 3621, 19264, 7791, 0, 198, 220, 220, 220, 3696, 796, 3696, 58, 1731, 47715, 220, 220, 220, 1303, 4781, 262, 717, 1987, 1933, 1201, 612, 1839, 470, 307, 1576, 1366, 878, 777, 628, 220, 220, 220, 923, 7753, 796, 3696, 58, 25120, 13, 25192, 600, 7, 15, 11, 11925, 7, 16624, 13219, 16, 15437, 220, 1303, 3853, 257, 4738, 1227, 628, 220, 220, 220, 1303, 3853, 257, 4738, 17465, 198, 220, 220, 220, 351, 1280, 7, 9688, 7753, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 300, 287, 27056, 378, 7, 69, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 997, 62, 6615, 796, 1312, 198, 220, 220, 220, 13639, 62, 6615, 796, 2534, 198, 220, 220, 220, 17465, 62, 1370, 796, 4738, 13, 25192, 600, 7, 25677, 62, 6615, 11, 997, 62, 6615, 8, 628, 220, 220, 220, 1303, 651, 262, 1988, 286, 326, 17465, 198, 220, 220, 220, 351, 1280, 7, 9688, 7753, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 11, 46728, 2676, 2625, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 5752, 287, 27056, 378, 7, 46862, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 72, 6624, 17465, 62, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17465, 796, 357, 22468, 7, 808, 58, 15, 46570, 12178, 7, 808, 58, 16, 60, 4008, 628, 220, 220, 220, 1303, 787, 1654, 262, 17465, 2125, 470, 1541, 287, 674, 1351, 198, 220, 220, 220, 611, 17465, 287, 17465, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 17465, 318, 1541, 287, 674, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 32515, 1541, 7147, 13, 10868, 257, 649, 530, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4738, 62, 12102, 62, 32515, 7, 32515, 62, 4868, 8, 628, 220, 220, 220, 331, 22556, 26621, 1860, 796, 923, 7753, 58, 12, 2327, 21912, 1983, 60, 220, 1303, 2045, 16196, 422, 262, 886, 287, 1339, 1366, 62, 15908, 2458, 198, 220, 220, 220, 614, 796, 493, 7, 22556, 22556, 3020, 1860, 58, 15, 25, 19, 12962, 198, 220, 220, 220, 1227, 796, 493, 7, 22556, 22556, 3020, 1860, 58, 19, 25, 21, 12962, 198, 220, 220, 220, 1110, 796, 493, 7, 22556, 22556, 3020, 1860, 58, 21, 25, 23, 12962, 628, 220, 220, 220, 1303, 787, 1654, 326, 17465, 7160, 329, 262, 2180, 1987, 1933, 198, 220, 220, 220, 331, 11, 285, 11, 288, 796, 357, 1941, 11, 1227, 11, 1110, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 1731, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11, 285, 11, 288, 796, 651, 62, 47050, 62, 13000, 7, 88, 11, 285, 11, 288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 7160, 7, 32515, 11, 331, 11, 285, 11, 288, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 530, 286, 262, 2180, 1933, 1595, 470, 423, 674, 1813, 17465, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1406, 466, 356, 1577, 510, 30, 1400, 13, 775, 1949, 757, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 21077, 12515, 17465, 13, 31165, 757, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4738, 62, 12102, 62, 32515, 7, 32515, 62, 4868, 8, 628, 220, 220, 220, 1441, 357, 32515, 11, 614, 11, 1227, 11, 1110, 8, 198, 198, 4299, 7160, 7, 32515, 11, 614, 11, 1227, 11, 1110, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 611, 257, 1813, 17465, 329, 257, 1813, 3128, 7160, 13, 198, 220, 220, 220, 8229, 2081, 393, 3991, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 3672, 796, 1366, 62, 15908, 1343, 366, 2164, 558, 14, 10761, 4177, 695, 385, 13, 41, 6489, 13, 4, 3023, 67, 4, 2999, 67, 4, 2999, 67, 13, 43, 8575, 13, 7836, 2713, 62, 16, 13, 35, 2257, 85, 6173, 50, 1415, 1157, 13, 14116, 1, 4064, 357, 1941, 11, 1227, 11, 1110, 8, 198, 220, 220, 220, 300, 261, 796, 965, 7, 32515, 58, 15, 12962, 198, 220, 220, 220, 3042, 796, 965, 7, 32515, 58, 16, 12962, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 705, 81, 11537, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 71, 11, 46728, 2676, 2625, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 58, 15, 60, 6624, 300, 261, 290, 5752, 58, 16, 60, 6624, 3042, 2599, 220, 220, 1303, 2198, 329, 12336, 17465, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 220, 220, 1303, 1043, 262, 17465, 0, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 2845, 25, 220, 1303, 611, 262, 2393, 460, 470, 307, 4721, 11, 340, 338, 2192, 257, 2089, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 198, 4299, 3613, 62, 12102, 341, 62, 7890, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12793, 11542, 290, 5128, 1366, 287, 257, 269, 21370, 2393, 13, 220, 198, 220, 220, 220, 5794, 25, 220, 198, 220, 220, 220, 406, 1340, 42355, 10863, 2246, 1546, 43, 32135, 22814, 34, 4061, 309, 39494, 569, 7156, 22814, 34, 4061, 10116, 38, 309, 3620, 4537, 43490, 569, 7156, 10116, 38, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 796, 17635, 220, 1303, 5128, 410, 945, 198, 220, 220, 220, 331, 796, 17635, 1303, 11542, 628, 220, 220, 220, 351, 1280, 10786, 12102, 341, 13, 40664, 3256, 705, 86, 11537, 355, 277, 71, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 269, 21370, 13, 16002, 7, 69, 71, 11, 46728, 2676, 11639, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 7, 14692, 39, 7707, 2430, 6511, 2430, 15460, 2430, 2164, 558, 2430, 3866, 66, 541, 2430, 29510, 2430, 303, 70, 2430, 3866, 66, 541, 615, 70, 2430, 29510, 615, 70, 2430, 303, 70, 615, 70, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 357, 5304, 11, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 17465, 287, 11542, 62, 7890, 58, 7, 15724, 11, 16, 8, 5974, 220, 220, 1303, 779, 257, 6414, 1351, 286, 17848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3042, 796, 17465, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 261, 796, 17465, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11542, 22638, 14610, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11542, 796, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 11542, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 584, 1401, 498, 12636, 14610, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2291, 1111, 5182, 290, 2811, 357, 2502, 5299, 362, 331, 3808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18812, 796, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 32025, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 5951, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 70, 796, 651, 62, 83, 10920, 7, 32515, 11, 3128, 11, 28459, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18812, 615, 70, 796, 651, 62, 23913, 7, 32515, 11, 3128, 11, 32025, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 70, 615, 70, 796, 651, 62, 23913, 7, 32515, 11, 3128, 11, 28459, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 615, 70, 796, 651, 62, 23913, 7, 32515, 11, 3128, 11, 5951, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 26933, 14995, 11, 3042, 11, 11542, 11, 18812, 11, 20218, 11, 1569, 70, 11, 18812, 615, 70, 11, 20218, 615, 70, 11, 1569, 70, 615, 70, 12962, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3360, 356, 1839, 470, 423, 1576, 11188, 1366, 319, 617, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3131, 9633, 13, 775, 1183, 655, 8856, 326, 17465, 14, 4475, 5166, 287, 326, 1339, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 3440, 62, 439, 62, 7890, 3419, 220, 1303, 466, 428, 717, 1201, 867, 5499, 4941, 3298, 410, 945, 198, 220, 220, 220, 1388, 3419, 628 ]
2.307176
9,379
"""doc # Train Config This is the main configuration file used for training the approach. """ import os from deeptech.core import Config, cli from deeptech.model.module_from_json import Module from deeptech.training.trainers import SupervisedTrainer from deeptech.training.optimizers import smart_optimizer from torch.optim import SGD from ..data.dataset import FashionMNISTDataset from ..training.loss import SparseCrossEntropyLossFromLogits # Run with parameters parsed from commandline. # python -m deeptech.examples.mnist_simple --mode=train --input=Datasets --output=Results if __name__ == "__main__": cli.run(FashionMNISTConfig)
[ 37811, 15390, 198, 2, 16835, 17056, 198, 198, 1212, 318, 262, 1388, 8398, 2393, 973, 329, 3047, 262, 3164, 13, 198, 37811, 198, 11748, 28686, 198, 6738, 390, 19598, 3055, 13, 7295, 1330, 17056, 11, 537, 72, 198, 6738, 390, 19598, 3055, 13, 19849, 13, 21412, 62, 6738, 62, 17752, 1330, 19937, 198, 6738, 390, 19598, 3055, 13, 34409, 13, 27432, 364, 1330, 3115, 16149, 2898, 10613, 198, 6738, 390, 19598, 3055, 13, 34409, 13, 40085, 11341, 1330, 4451, 62, 40085, 7509, 198, 6738, 28034, 13, 40085, 1330, 26147, 35, 198, 198, 6738, 11485, 7890, 13, 19608, 292, 316, 1330, 30958, 39764, 8808, 27354, 292, 316, 198, 6738, 11485, 34409, 13, 22462, 1330, 1338, 17208, 21544, 14539, 28338, 43, 793, 4863, 11187, 896, 628, 198, 198, 2, 5660, 351, 10007, 44267, 422, 3141, 1370, 13, 198, 2, 21015, 532, 76, 390, 19598, 3055, 13, 1069, 12629, 13, 10295, 396, 62, 36439, 1377, 14171, 28, 27432, 1377, 15414, 28, 27354, 292, 1039, 1377, 22915, 28, 25468, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 537, 72, 13, 5143, 7, 37, 5880, 39764, 8808, 16934, 8, 198 ]
3.354167
192
#!/usr/bin/env python # Copyright (c) 2009, Giampaolo Rodola'. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """FreeBSD platform implementation.""" import errno import os import sys import warnings import _psutil_bsd import _psutil_posix from psutil import _psposix from psutil._common import * from psutil._compat import namedtuple, wraps from psutil._error import AccessDenied, NoSuchProcess, TimeoutExpired __extra__all__ = [] # --- constants # Since these constants get determined at import time we do not want to # crash immediately; instead we'll set them to None and most likely # we'll crash later as they're used for determining process CPU stats # and creation_time try: NUM_CPUS = _psutil_bsd.get_num_cpus() except Exception: NUM_CPUS = None warnings.warn("couldn't determine platform's NUM_CPUS", RuntimeWarning) try: TOTAL_PHYMEM = _psutil_bsd.get_virtual_mem()[0] except Exception: TOTAL_PHYMEM = None warnings.warn("couldn't determine platform's TOTAL_PHYMEM", RuntimeWarning) try: BOOT_TIME = _psutil_bsd.get_system_boot_time() except Exception: BOOT_TIME = None warnings.warn("couldn't determine platform's BOOT_TIME", RuntimeWarning) PROC_STATUSES = { _psutil_bsd.SSTOP: STATUS_STOPPED, _psutil_bsd.SSLEEP: STATUS_SLEEPING, _psutil_bsd.SRUN: STATUS_RUNNING, _psutil_bsd.SIDL: STATUS_IDLE, _psutil_bsd.SWAIT: STATUS_WAITING, _psutil_bsd.SLOCK: STATUS_LOCKED, _psutil_bsd.SZOMB: STATUS_ZOMBIE, } TCP_STATUSES = { _psutil_bsd.TCPS_ESTABLISHED: CONN_ESTABLISHED, _psutil_bsd.TCPS_SYN_SENT: CONN_SYN_SENT, _psutil_bsd.TCPS_SYN_RECEIVED: CONN_SYN_RECV, _psutil_bsd.TCPS_FIN_WAIT_1: CONN_FIN_WAIT1, _psutil_bsd.TCPS_FIN_WAIT_2: CONN_FIN_WAIT2, _psutil_bsd.TCPS_TIME_WAIT: CONN_TIME_WAIT, _psutil_bsd.TCPS_CLOSED: CONN_CLOSE, _psutil_bsd.TCPS_CLOSE_WAIT: CONN_CLOSE_WAIT, _psutil_bsd.TCPS_LAST_ACK: CONN_LAST_ACK, _psutil_bsd.TCPS_LISTEN: CONN_LISTEN, _psutil_bsd.TCPS_CLOSING: CONN_CLOSING, _psutil_bsd.PSUTIL_CONN_NONE: CONN_NONE, } PAGESIZE = os.sysconf("SC_PAGE_SIZE") nt_virtmem_info = namedtuple('vmem', ' '.join([ # all platforms 'total', 'available', 'percent', 'used', 'free', # FreeBSD specific 'active', 'inactive', 'buffers', 'cached', 'shared', 'wired'])) def virtual_memory(): """System virtual memory as a namedutple.""" mem = _psutil_bsd.get_virtual_mem() total, free, active, inactive, wired, cached, buffers, shared = mem avail = inactive + cached + free used = active + wired + cached percent = usage_percent((total - avail), total, _round=1) return nt_virtmem_info(total, avail, percent, used, free, active, inactive, buffers, cached, shared, wired) def swap_memory(): """System swap memory as (total, used, free, sin, sout) namedtuple.""" total, used, free, sin, sout = \ [x * PAGESIZE for x in _psutil_bsd.get_swap_mem()] percent = usage_percent(used, total, _round=1) return nt_swapmeminfo(total, used, free, percent, sin, sout) _cputimes_ntuple = namedtuple('cputimes', 'user nice system idle irq') def get_system_cpu_times(): """Return system per-CPU times as a named tuple""" user, nice, system, idle, irq = _psutil_bsd.get_system_cpu_times() return _cputimes_ntuple(user, nice, system, idle, irq) def get_system_per_cpu_times(): """Return system CPU times as a named tuple""" ret = [] for cpu_t in _psutil_bsd.get_system_per_cpu_times(): user, nice, system, idle, irq = cpu_t item = _cputimes_ntuple(user, nice, system, idle, irq) ret.append(item) return ret # XXX # Ok, this is very dirty. # On FreeBSD < 8 we cannot gather per-cpu information, see: # http://code.google.com/p/psutil/issues/detail?id=226 # If NUM_CPUS > 1, on first call we return single cpu times to avoid a # crash at psutil import time. # Next calls will fail with NotImplementedError if not hasattr(_psutil_bsd, "get_system_per_cpu_times"): get_system_per_cpu_times.__called__ = False get_pid_list = _psutil_bsd.get_pid_list pid_exists = _psposix.pid_exists get_disk_usage = _psposix.get_disk_usage net_io_counters = _psutil_bsd.get_net_io_counters disk_io_counters = _psutil_bsd.get_disk_io_counters # not public; it's here because we need to test it from test_memory_leask.py get_num_cpus = _psutil_bsd.get_num_cpus() get_system_boot_time = _psutil_bsd.get_system_boot_time def wrap_exceptions(fun): """Decorator which translates bare OSError exceptions into NoSuchProcess and AccessDenied. """ @wraps(fun) return wrapper class Process(object): """Wrapper class around underlying C implementation.""" __slots__ = ["pid", "_process_name"] @wrap_exceptions def get_process_name(self): """Return process name as a string of limited len (15).""" return _psutil_bsd.get_process_name(self.pid) @wrap_exceptions def get_process_exe(self): """Return process executable pathname.""" return _psutil_bsd.get_process_exe(self.pid) @wrap_exceptions def get_process_cmdline(self): """Return process cmdline as a list of arguments.""" return _psutil_bsd.get_process_cmdline(self.pid) @wrap_exceptions @wrap_exceptions def get_process_ppid(self): """Return process parent pid.""" return _psutil_bsd.get_process_ppid(self.pid) # XXX - available on FreeBSD >= 8 only if hasattr(_psutil_bsd, "get_process_cwd"): @wrap_exceptions def get_process_cwd(self): """Return process current working directory.""" # sometimes we get an empty string, in which case we turn # it into None return _psutil_bsd.get_process_cwd(self.pid) or None @wrap_exceptions def get_process_uids(self): """Return real, effective and saved user ids.""" real, effective, saved = _psutil_bsd.get_process_uids(self.pid) return nt_uids(real, effective, saved) @wrap_exceptions def get_process_gids(self): """Return real, effective and saved group ids.""" real, effective, saved = _psutil_bsd.get_process_gids(self.pid) return nt_gids(real, effective, saved) @wrap_exceptions def get_cpu_times(self): """return a tuple containing process user/kernel time.""" user, system = _psutil_bsd.get_process_cpu_times(self.pid) return nt_cputimes(user, system) @wrap_exceptions def get_memory_info(self): """Return a tuple with the process' RSS and VMS size.""" rss, vms = _psutil_bsd.get_process_memory_info(self.pid)[:2] return nt_meminfo(rss, vms) _nt_ext_mem = namedtuple('meminfo', 'rss vms text data stack') @wrap_exceptions @wrap_exceptions def get_process_create_time(self): """Return the start time of the process as a number of seconds since the epoch.""" return _psutil_bsd.get_process_create_time(self.pid) @wrap_exceptions def get_process_num_threads(self): """Return the number of threads belonging to the process.""" return _psutil_bsd.get_process_num_threads(self.pid) @wrap_exceptions @wrap_exceptions def get_num_fds(self): """Return the number of file descriptors opened by this process.""" return _psutil_bsd.get_process_num_fds(self.pid) @wrap_exceptions def get_process_threads(self): """Return the number of threads belonging to the process.""" rawlist = _psutil_bsd.get_process_threads(self.pid) retlist = [] for thread_id, utime, stime in rawlist: ntuple = nt_thread(thread_id, utime, stime) retlist.append(ntuple) return retlist @wrap_exceptions def get_open_files(self): """Return files opened by process as a list of namedtuples.""" # XXX - C implementation available on FreeBSD >= 8 only # else fallback on lsof parser if hasattr(_psutil_bsd, "get_process_open_files"): rawlist = _psutil_bsd.get_process_open_files(self.pid) return [nt_openfile(path, fd) for path, fd in rawlist] else: lsof = _psposix.LsofParser(self.pid, self._process_name) return lsof.get_process_open_files() @wrap_exceptions def get_connections(self, kind='inet'): """Return etwork connections opened by a process as a list of namedtuples. """ if kind not in conn_tmap: raise ValueError("invalid %r kind argument; choose between %s" % (kind, ', '.join([repr(x) for x in conn_tmap]))) families, types = conn_tmap[kind] rawlist = _psutil_bsd.get_process_connections(self.pid, families, types) ret = [] for item in rawlist: fd, fam, type, laddr, raddr, status = item status = TCP_STATUSES[status] nt = nt_connection(fd, fam, type, laddr, raddr, status) ret.append(nt) return ret @wrap_exceptions @wrap_exceptions @wrap_exceptions @wrap_exceptions @wrap_exceptions nt_mmap_grouped = namedtuple( 'mmap', 'path rss, private, ref_count, shadow_count') nt_mmap_ext = namedtuple( 'mmap', 'addr, perms path rss, private, ref_count, shadow_count') @wrap_exceptions # FreeBSD < 8 does not support kinfo_getfile() and kinfo_getvmmap() if not hasattr(_psutil_bsd, 'get_process_open_files'): get_open_files = _not_implemented get_process_cwd = _not_implemented get_memory_maps = _not_implemented get_num_fds = _not_implemented
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 15069, 357, 66, 8, 3717, 11, 8118, 13299, 14057, 6882, 5708, 4458, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 11146, 21800, 3859, 7822, 526, 15931, 198, 198, 11748, 11454, 3919, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 14601, 198, 198, 11748, 4808, 862, 22602, 62, 1443, 67, 198, 11748, 4808, 862, 22602, 62, 1930, 844, 198, 198, 6738, 26692, 22602, 1330, 4808, 862, 1930, 844, 198, 6738, 26692, 22602, 13557, 11321, 1330, 1635, 198, 6738, 26692, 22602, 13557, 5589, 265, 1330, 3706, 83, 29291, 11, 27521, 198, 6738, 26692, 22602, 13557, 18224, 1330, 8798, 21306, 798, 11, 1400, 16678, 18709, 11, 3862, 448, 3109, 6474, 198, 198, 834, 26086, 834, 439, 834, 796, 17635, 198, 198, 2, 11420, 38491, 198, 198, 2, 4619, 777, 38491, 651, 5295, 379, 1330, 640, 356, 466, 407, 765, 284, 198, 2, 7014, 3393, 26, 2427, 356, 1183, 900, 606, 284, 6045, 290, 749, 1884, 198, 2, 356, 1183, 7014, 1568, 355, 484, 821, 973, 329, 13213, 1429, 9135, 9756, 198, 2, 290, 6282, 62, 2435, 198, 28311, 25, 198, 220, 220, 220, 36871, 62, 8697, 2937, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 22510, 62, 13155, 385, 3419, 198, 16341, 35528, 25, 198, 220, 220, 220, 36871, 62, 8697, 2937, 796, 6045, 198, 220, 220, 220, 14601, 13, 40539, 7203, 24089, 77, 470, 5004, 3859, 338, 36871, 62, 8697, 2937, 1600, 43160, 20361, 8, 198, 28311, 25, 198, 220, 220, 220, 36247, 62, 11909, 56, 44, 3620, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 32844, 62, 11883, 3419, 58, 15, 60, 198, 16341, 35528, 25, 198, 220, 220, 220, 36247, 62, 11909, 56, 44, 3620, 796, 6045, 198, 220, 220, 220, 14601, 13, 40539, 7203, 24089, 77, 470, 5004, 3859, 338, 36247, 62, 11909, 56, 44, 3620, 1600, 43160, 20361, 8, 198, 28311, 25, 198, 220, 220, 220, 16494, 2394, 62, 34694, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 10057, 62, 18769, 62, 2435, 3419, 198, 16341, 35528, 25, 198, 220, 220, 220, 16494, 2394, 62, 34694, 796, 6045, 198, 220, 220, 220, 14601, 13, 40539, 7203, 24089, 77, 470, 5004, 3859, 338, 16494, 2394, 62, 34694, 1600, 43160, 20361, 8, 198, 198, 4805, 4503, 62, 35744, 2937, 1546, 796, 1391, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 50, 2257, 3185, 25, 15486, 2937, 62, 2257, 3185, 47, 1961, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 5432, 2538, 8905, 25, 15486, 2937, 62, 50, 2538, 8905, 2751, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 12562, 4944, 25, 15486, 2937, 62, 49, 4944, 15871, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 50, 2389, 43, 25, 15486, 2937, 62, 2389, 2538, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 50, 15543, 2043, 25, 15486, 2937, 62, 15543, 2043, 2751, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 8634, 11290, 25, 15486, 2937, 62, 36840, 1961, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 50, 57, 2662, 33, 25, 15486, 2937, 62, 57, 2662, 3483, 36, 11, 198, 92, 198, 198, 4825, 47, 62, 35744, 2937, 1546, 796, 1391, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 1546, 5603, 9148, 18422, 1961, 25, 7102, 45, 62, 1546, 5603, 9148, 18422, 1961, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 23060, 45, 62, 50, 3525, 25, 7102, 45, 62, 23060, 45, 62, 50, 3525, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 23060, 45, 62, 2200, 5222, 3824, 1961, 25, 7102, 45, 62, 23060, 45, 62, 2200, 33538, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 20032, 62, 15543, 2043, 62, 16, 25, 7102, 45, 62, 20032, 62, 15543, 2043, 16, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 20032, 62, 15543, 2043, 62, 17, 25, 7102, 45, 62, 20032, 62, 15543, 2043, 17, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 34694, 62, 15543, 2043, 25, 7102, 45, 62, 34694, 62, 15543, 2043, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 5097, 48751, 25, 7102, 45, 62, 32737, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 32737, 62, 15543, 2043, 25, 7102, 45, 62, 32737, 62, 15543, 2043, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 43, 11262, 62, 8120, 25, 7102, 45, 62, 43, 11262, 62, 8120, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 45849, 1677, 25, 7102, 45, 62, 45849, 1677, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 4825, 3705, 62, 5097, 2640, 2751, 25, 7102, 45, 62, 5097, 2640, 2751, 11, 198, 220, 220, 220, 4808, 862, 22602, 62, 1443, 67, 13, 3705, 3843, 4146, 62, 10943, 45, 62, 45, 11651, 25, 7102, 45, 62, 45, 11651, 11, 198, 92, 198, 198, 4537, 48075, 35400, 796, 28686, 13, 17597, 10414, 7203, 6173, 62, 4537, 8264, 62, 33489, 4943, 628, 198, 429, 62, 48940, 11883, 62, 10951, 796, 3706, 83, 29291, 10786, 85, 11883, 3256, 705, 45302, 22179, 26933, 198, 220, 220, 220, 1303, 477, 9554, 198, 220, 220, 220, 705, 23350, 3256, 705, 15182, 3256, 705, 25067, 3256, 705, 1484, 3256, 705, 5787, 3256, 198, 220, 220, 220, 1303, 35841, 2176, 198, 220, 220, 220, 705, 5275, 3256, 198, 220, 220, 220, 705, 259, 5275, 3256, 198, 220, 220, 220, 705, 36873, 364, 3256, 198, 220, 220, 220, 705, 66, 2317, 3256, 198, 220, 220, 220, 705, 28710, 3256, 198, 220, 220, 220, 705, 44236, 20520, 4008, 198, 198, 4299, 7166, 62, 31673, 33529, 198, 220, 220, 220, 37227, 11964, 7166, 4088, 355, 257, 3706, 315, 1154, 526, 15931, 198, 220, 220, 220, 1066, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 32844, 62, 11883, 3419, 198, 220, 220, 220, 2472, 11, 1479, 11, 4075, 11, 28621, 11, 28217, 11, 39986, 11, 39334, 11, 4888, 796, 1066, 198, 220, 220, 220, 29107, 796, 28621, 1343, 39986, 1343, 1479, 198, 220, 220, 220, 973, 796, 4075, 1343, 28217, 1343, 39986, 198, 220, 220, 220, 1411, 796, 8748, 62, 25067, 19510, 23350, 532, 29107, 828, 2472, 11, 4808, 744, 28, 16, 8, 198, 220, 220, 220, 1441, 299, 83, 62, 48940, 11883, 62, 10951, 7, 23350, 11, 29107, 11, 1411, 11, 973, 11, 1479, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4075, 11, 28621, 11, 39334, 11, 39986, 11, 4888, 11, 28217, 8, 628, 198, 4299, 16075, 62, 31673, 33529, 198, 220, 220, 220, 37227, 11964, 16075, 4088, 355, 357, 23350, 11, 973, 11, 1479, 11, 7813, 11, 264, 448, 8, 3706, 83, 29291, 526, 15931, 198, 220, 220, 220, 2472, 11, 973, 11, 1479, 11, 7813, 11, 264, 448, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 685, 87, 1635, 350, 25552, 35400, 329, 2124, 287, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 2032, 499, 62, 11883, 3419, 60, 198, 220, 220, 220, 1411, 796, 8748, 62, 25067, 7, 1484, 11, 2472, 11, 4808, 744, 28, 16, 8, 198, 220, 220, 220, 1441, 299, 83, 62, 2032, 499, 11883, 10951, 7, 23350, 11, 973, 11, 1479, 11, 1411, 11, 7813, 11, 264, 448, 8, 628, 198, 62, 66, 1996, 999, 62, 429, 29291, 796, 3706, 83, 29291, 10786, 66, 1996, 999, 3256, 705, 7220, 3621, 1080, 21696, 4173, 80, 11537, 198, 198, 4299, 651, 62, 10057, 62, 36166, 62, 22355, 33529, 198, 220, 220, 220, 37227, 13615, 1080, 583, 12, 36037, 1661, 355, 257, 3706, 46545, 37811, 198, 220, 220, 220, 2836, 11, 3621, 11, 1080, 11, 21696, 11, 4173, 80, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 10057, 62, 36166, 62, 22355, 3419, 198, 220, 220, 220, 1441, 4808, 66, 1996, 999, 62, 429, 29291, 7, 7220, 11, 3621, 11, 1080, 11, 21696, 11, 4173, 80, 8, 628, 198, 4299, 651, 62, 10057, 62, 525, 62, 36166, 62, 22355, 33529, 198, 220, 220, 220, 37227, 13615, 1080, 9135, 1661, 355, 257, 3706, 46545, 37811, 198, 220, 220, 220, 1005, 796, 17635, 198, 220, 220, 220, 329, 42804, 62, 83, 287, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 10057, 62, 525, 62, 36166, 62, 22355, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 11, 3621, 11, 1080, 11, 21696, 11, 4173, 80, 796, 42804, 62, 83, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 4808, 66, 1996, 999, 62, 429, 29291, 7, 7220, 11, 3621, 11, 1080, 11, 21696, 11, 4173, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 13, 33295, 7, 9186, 8, 198, 220, 220, 220, 1441, 1005, 198, 198, 2, 27713, 198, 2, 6762, 11, 428, 318, 845, 11841, 13, 198, 2, 1550, 35841, 1279, 807, 356, 2314, 6431, 583, 12, 36166, 1321, 11, 766, 25, 198, 2, 2638, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 862, 22602, 14, 37165, 14, 49170, 30, 312, 28, 24909, 198, 2, 1002, 36871, 62, 8697, 2937, 1875, 352, 11, 319, 717, 869, 356, 1441, 2060, 42804, 1661, 284, 3368, 257, 198, 2, 7014, 379, 26692, 22602, 1330, 640, 13, 198, 2, 7406, 3848, 481, 2038, 351, 1892, 3546, 1154, 12061, 12331, 198, 361, 407, 468, 35226, 28264, 862, 22602, 62, 1443, 67, 11, 366, 1136, 62, 10057, 62, 525, 62, 36166, 62, 22355, 1, 2599, 198, 198, 1136, 62, 10057, 62, 525, 62, 36166, 62, 22355, 13, 834, 7174, 834, 796, 10352, 628, 628, 198, 1136, 62, 35317, 62, 4868, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 35317, 62, 4868, 198, 35317, 62, 1069, 1023, 796, 4808, 862, 1930, 844, 13, 35317, 62, 1069, 1023, 198, 1136, 62, 39531, 62, 26060, 796, 4808, 862, 1930, 844, 13, 1136, 62, 39531, 62, 26060, 198, 3262, 62, 952, 62, 66, 15044, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 3262, 62, 952, 62, 66, 15044, 198, 39531, 62, 952, 62, 66, 15044, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 39531, 62, 952, 62, 66, 15044, 198, 2, 407, 1171, 26, 340, 338, 994, 780, 356, 761, 284, 1332, 340, 422, 1332, 62, 31673, 62, 293, 2093, 13, 9078, 198, 1136, 62, 22510, 62, 13155, 385, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 22510, 62, 13155, 385, 3419, 198, 1136, 62, 10057, 62, 18769, 62, 2435, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 10057, 62, 18769, 62, 2435, 628, 198, 4299, 14441, 62, 1069, 11755, 7, 12543, 2599, 198, 220, 220, 220, 37227, 10707, 273, 1352, 543, 23677, 6247, 440, 5188, 81, 1472, 13269, 656, 198, 220, 220, 220, 1400, 16678, 18709, 290, 8798, 21306, 798, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 29988, 862, 7, 12543, 8, 198, 220, 220, 220, 1441, 29908, 628, 198, 4871, 10854, 7, 15252, 2599, 198, 220, 220, 220, 37227, 36918, 2848, 1398, 1088, 10238, 327, 7822, 526, 15931, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 14631, 35317, 1600, 45434, 14681, 62, 3672, 8973, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 3672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1429, 1438, 355, 257, 4731, 286, 3614, 18896, 357, 1314, 21387, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 3672, 7, 944, 13, 35317, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 13499, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1429, 28883, 3108, 3672, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 13499, 7, 944, 13, 35317, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 28758, 1370, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1429, 23991, 1370, 355, 257, 1351, 286, 7159, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 28758, 1370, 7, 944, 13, 35317, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 381, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1429, 2560, 46514, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 381, 312, 7, 944, 13, 35317, 8, 628, 220, 220, 220, 1303, 27713, 532, 1695, 319, 35841, 18189, 807, 691, 198, 220, 220, 220, 611, 468, 35226, 28264, 862, 22602, 62, 1443, 67, 11, 366, 1136, 62, 14681, 62, 66, 16993, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 220, 220, 220, 220, 825, 651, 62, 14681, 62, 66, 16993, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1429, 1459, 1762, 8619, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3360, 356, 651, 281, 6565, 4731, 11, 287, 543, 1339, 356, 1210, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 656, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 66, 16993, 7, 944, 13, 35317, 8, 393, 6045, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 84, 2340, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1103, 11, 4050, 290, 7448, 2836, 220, 2340, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1103, 11, 4050, 11, 7448, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 84, 2340, 7, 944, 13, 35317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 299, 83, 62, 84, 2340, 7, 5305, 11, 4050, 11, 7448, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 70, 2340, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1103, 11, 4050, 290, 7448, 1448, 220, 2340, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1103, 11, 4050, 11, 7448, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 70, 2340, 7, 944, 13, 35317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 299, 83, 62, 70, 2340, 7, 5305, 11, 4050, 11, 7448, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 36166, 62, 22355, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7783, 257, 46545, 7268, 1429, 2836, 14, 33885, 640, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 11, 1080, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 36166, 62, 22355, 7, 944, 13, 35317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 299, 83, 62, 66, 1996, 999, 7, 7220, 11, 1080, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 31673, 62, 10951, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 46545, 351, 262, 1429, 6, 25012, 290, 569, 5653, 2546, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 374, 824, 11, 410, 907, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 31673, 62, 10951, 7, 944, 13, 35317, 38381, 25, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 299, 83, 62, 11883, 10951, 7, 42216, 11, 410, 907, 8, 628, 220, 220, 220, 4808, 429, 62, 2302, 62, 11883, 796, 3706, 83, 29291, 10786, 11883, 10951, 3256, 705, 42216, 410, 907, 2420, 1366, 8931, 11537, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 17953, 62, 2435, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 923, 640, 286, 262, 1429, 355, 257, 1271, 286, 4201, 1201, 198, 220, 220, 220, 220, 220, 220, 220, 262, 36835, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 17953, 62, 2435, 7, 944, 13, 35317, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 22510, 62, 16663, 82, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1271, 286, 14390, 16686, 284, 262, 1429, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 22510, 62, 16663, 82, 7, 944, 13, 35317, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 22510, 62, 69, 9310, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1271, 286, 2393, 12145, 669, 4721, 416, 428, 1429, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 22510, 62, 69, 9310, 7, 944, 13, 35317, 8, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 14681, 62, 16663, 82, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1271, 286, 14390, 16686, 284, 262, 1429, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 4868, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 16663, 82, 7, 944, 13, 35317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4704, 62, 312, 11, 3384, 524, 11, 336, 524, 287, 8246, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 83, 29291, 796, 299, 83, 62, 16663, 7, 16663, 62, 312, 11, 3384, 524, 11, 336, 524, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 4868, 13, 33295, 7, 429, 29291, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 4868, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 9654, 62, 16624, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 3696, 4721, 416, 1429, 355, 257, 1351, 286, 3706, 28047, 2374, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27713, 532, 327, 7822, 1695, 319, 35841, 18189, 807, 691, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 2121, 1891, 319, 300, 568, 69, 30751, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 28264, 862, 22602, 62, 1443, 67, 11, 366, 1136, 62, 14681, 62, 9654, 62, 16624, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 4868, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 9654, 62, 16624, 7, 944, 13, 35317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 429, 62, 9654, 7753, 7, 6978, 11, 277, 67, 8, 329, 3108, 11, 277, 67, 287, 8246, 4868, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 568, 69, 796, 4808, 862, 1930, 844, 13, 43, 568, 69, 46677, 7, 944, 13, 35317, 11, 2116, 13557, 14681, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 300, 568, 69, 13, 1136, 62, 14681, 62, 9654, 62, 16624, 3419, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 198, 220, 220, 220, 825, 651, 62, 8443, 507, 7, 944, 11, 1611, 11639, 42504, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 2123, 1818, 8787, 4721, 416, 257, 1429, 355, 257, 1351, 286, 198, 220, 220, 220, 220, 220, 220, 220, 3706, 28047, 2374, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1611, 407, 287, 48260, 62, 83, 8899, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 259, 12102, 4064, 81, 1611, 4578, 26, 3853, 1022, 4064, 82, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 11031, 11, 46083, 45302, 22179, 26933, 260, 1050, 7, 87, 8, 329, 2124, 287, 48260, 62, 83, 8899, 60, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 4172, 11, 3858, 796, 48260, 62, 83, 8899, 58, 11031, 60, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 4868, 796, 4808, 862, 22602, 62, 1443, 67, 13, 1136, 62, 14681, 62, 8443, 507, 7, 944, 13, 35317, 11, 4172, 11, 3858, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 8246, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 67, 11, 1145, 11, 2099, 11, 300, 29851, 11, 2511, 7109, 11, 3722, 796, 2378, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 23633, 62, 35744, 2937, 1546, 58, 13376, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 299, 83, 62, 38659, 7, 16344, 11, 1145, 11, 2099, 11, 300, 29851, 11, 2511, 7109, 11, 3722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 13, 33295, 7, 429, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 299, 83, 62, 3020, 499, 62, 8094, 276, 796, 3706, 83, 29291, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3020, 499, 3256, 705, 6978, 374, 824, 11, 2839, 11, 1006, 62, 9127, 11, 9082, 62, 9127, 11537, 198, 220, 220, 220, 299, 83, 62, 3020, 499, 62, 2302, 796, 3706, 83, 29291, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3020, 499, 3256, 705, 29851, 11, 583, 907, 3108, 374, 824, 11, 2839, 11, 1006, 62, 9127, 11, 9082, 62, 9127, 11537, 628, 220, 220, 220, 2488, 37150, 62, 1069, 11755, 628, 220, 220, 220, 1303, 35841, 1279, 807, 857, 407, 1104, 479, 10951, 62, 1136, 7753, 3419, 290, 479, 10951, 62, 1136, 85, 3020, 499, 3419, 198, 220, 220, 220, 611, 407, 468, 35226, 28264, 862, 22602, 62, 1443, 67, 11, 705, 1136, 62, 14681, 62, 9654, 62, 16624, 6, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 651, 62, 9654, 62, 16624, 796, 4808, 1662, 62, 320, 1154, 12061, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 14681, 62, 66, 16993, 796, 4808, 1662, 62, 320, 1154, 12061, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 31673, 62, 31803, 796, 4808, 1662, 62, 320, 1154, 12061, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 22510, 62, 69, 9310, 796, 4808, 1662, 62, 320, 1154, 12061, 198 ]
2.390944
4,108
import singer from tap_kit import TapExecutor from tap_kit.utils import (transform_write_and_count) LOGGER = singer.get_logger()
[ 11748, 14015, 198, 198, 6738, 9814, 62, 15813, 1330, 16880, 23002, 38409, 198, 6738, 9814, 62, 15813, 13, 26791, 1330, 357, 35636, 62, 13564, 62, 392, 62, 9127, 8, 198, 198, 25294, 30373, 796, 14015, 13, 1136, 62, 6404, 1362, 3419, 628 ]
3.142857
42
# Generated by Django 2.1.14 on 2020-03-10 19:03 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 1415, 319, 12131, 12, 3070, 12, 940, 678, 25, 3070, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.875
32
""" This package defines database models and relations used """ from . import db from flask_login import UserMixin from werkzeug.security import generate_password_hash, check_password_hash class MovieHandle(db.Model): """ MovieHandle class provides a representation of a movie id for the database """ id = db.Column(db.Integer, primary_key=True) class TvShowHandle(db.Model): """ TvShowHandle class provides a representation of a TV show id for the database """ id = db.Column(db.Integer, primary_key=True) movie_favorites = db.Table( 'movie_favorites', db.Column('user_id', db.Integer, db.ForeignKey('user.id'), primary_key=True), db.Column('movie_id', db.Integer, db.ForeignKey(f'{MovieHandle.__tablename__}.id'), primary_key=True), ) tv_favorites = db.Table( 'tv_favorites', db.Column('user_id', db.Integer, db.ForeignKey('user.id'), primary_key=True), db.Column('tv_id', db.Integer, db.ForeignKey(f'{TvShowHandle.__tablename__}.id'), primary_key=True), ) class User(db.Model, UserMixin): """ User class is a model for a user in the database """ id = db.Column( db.Integer, primary_key=True ) name = db.Column( db.String(100), nullable=False, unique=False ) email = db.Column( db.String(40), unique=True, nullable=False ) password = db.Column( db.String(200), primary_key=False, unique=False, nullable=False ) movie_favorites = db.relationship('MovieHandle', secondary=movie_favorites, lazy='dynamic') tv_favorites = db.relationship('TvShowHandle', secondary=tv_favorites, lazy='dynamic') def set_password(self, password): """Create hashed password.""" self.password = generate_password_hash( password, method='sha256' ) def check_password(self, password): """Check hashed password.""" return check_password_hash(self.password, password) def has_favorite(self, movie_id, movie_type): """ Checks if user has an item as their favorite :param self: User object :param movie_id: Item id :param movie_type: Item type :return: ``True`` if user has the item as their favorite, ``False`` otherwise """ if movie_type == "movie": return self.movie_favorites.filter_by(id=movie_id).first() is not None else: return self.tv_favorites.filter_by(id=movie_id).first() is not None def add_favorite(self, movie_id, movie_type): """ Add a favorite for the user :param self: User object :param movie_id: Item id :param movie_type: Item type :return: ``None`` """ if not self.has_favorite(movie_id, movie_type): if movie_type == "movie": handle = db.session.get(MovieHandle, movie_id) or MovieHandle(id=movie_id) db.session.add(handle) self.movie_favorites.append(handle) db.session.add(self) else: handle = db.session.get(TvShowHandle, movie_id) or TvShowHandle(id=movie_id) db.session.add(handle) self.tv_favorites.append(handle) db.session.add(self) db.session.commit() def remove_favorite(self, movie_id, movie_type): """ Remove a favorite for the user :param self: User object :param movie_id: Item id :param movie_type: Item type :return: ``None`` """ if self.has_favorite(movie_id, movie_type): if movie_type == "movie": handle = db.session.get(MovieHandle, movie_id) or MovieHandle(id=movie_id) self.movie_favorites.remove(handle) else: handle = db.session.get(TvShowHandle, movie_id) or TvShowHandle(id=movie_id) self.tv_favorites.remove(handle) db.session.add(self) db.session.commit()
[ 37811, 198, 1212, 5301, 15738, 6831, 4981, 290, 2316, 973, 198, 37811, 198, 6738, 764, 1330, 20613, 198, 6738, 42903, 62, 38235, 1330, 11787, 35608, 259, 198, 6738, 266, 9587, 2736, 1018, 13, 12961, 1330, 7716, 62, 28712, 62, 17831, 11, 2198, 62, 28712, 62, 17831, 628, 198, 4871, 15875, 37508, 7, 9945, 13, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15875, 37508, 1398, 3769, 257, 10552, 286, 257, 3807, 4686, 329, 262, 6831, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4686, 796, 20613, 13, 39470, 7, 9945, 13, 46541, 11, 4165, 62, 2539, 28, 17821, 8, 628, 198, 4871, 309, 85, 15307, 37508, 7, 9945, 13, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 309, 85, 15307, 37508, 1398, 3769, 257, 10552, 286, 257, 3195, 905, 4686, 329, 262, 6831, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4686, 796, 20613, 13, 39470, 7, 9945, 13, 46541, 11, 4165, 62, 2539, 28, 17821, 8, 628, 198, 41364, 62, 69, 5570, 2737, 796, 20613, 13, 10962, 7, 198, 220, 220, 220, 705, 41364, 62, 69, 5570, 2737, 3256, 198, 220, 220, 220, 20613, 13, 39470, 10786, 7220, 62, 312, 3256, 20613, 13, 46541, 11, 20613, 13, 33616, 9218, 10786, 7220, 13, 312, 33809, 4165, 62, 2539, 28, 17821, 828, 198, 220, 220, 220, 20613, 13, 39470, 10786, 41364, 62, 312, 3256, 20613, 13, 46541, 11, 20613, 13, 33616, 9218, 7, 69, 6, 90, 25097, 37508, 13, 834, 8658, 11925, 480, 834, 27422, 312, 33809, 4165, 62, 2539, 28, 17821, 828, 198, 8, 198, 198, 14981, 62, 69, 5570, 2737, 796, 20613, 13, 10962, 7, 198, 220, 220, 220, 705, 14981, 62, 69, 5570, 2737, 3256, 198, 220, 220, 220, 20613, 13, 39470, 10786, 7220, 62, 312, 3256, 20613, 13, 46541, 11, 20613, 13, 33616, 9218, 10786, 7220, 13, 312, 33809, 4165, 62, 2539, 28, 17821, 828, 198, 220, 220, 220, 20613, 13, 39470, 10786, 14981, 62, 312, 3256, 20613, 13, 46541, 11, 20613, 13, 33616, 9218, 7, 69, 6, 90, 51, 85, 15307, 37508, 13, 834, 8658, 11925, 480, 834, 27422, 312, 33809, 4165, 62, 2539, 28, 17821, 828, 198, 8, 628, 198, 4871, 11787, 7, 9945, 13, 17633, 11, 11787, 35608, 259, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11787, 1398, 318, 257, 2746, 329, 257, 2836, 287, 262, 6831, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4686, 796, 20613, 13, 39470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 46541, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 17821, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1438, 796, 20613, 13, 39470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 10100, 7, 3064, 828, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 540, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 28, 25101, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3053, 796, 20613, 13, 39470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 10100, 7, 1821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 540, 28, 25101, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 9206, 796, 20613, 13, 39470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 10100, 7, 2167, 828, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 540, 28, 25101, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3807, 62, 69, 5570, 2737, 796, 20613, 13, 39468, 1056, 10786, 25097, 37508, 3256, 9233, 28, 41364, 62, 69, 5570, 2737, 11, 16931, 11639, 67, 28995, 11537, 198, 220, 220, 220, 31557, 62, 69, 5570, 2737, 796, 20613, 13, 39468, 1056, 10786, 51, 85, 15307, 37508, 3256, 9233, 28, 14981, 62, 69, 5570, 2737, 11, 16931, 11639, 67, 28995, 11537, 628, 220, 220, 220, 825, 900, 62, 28712, 7, 944, 11, 9206, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 468, 704, 9206, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28712, 796, 7716, 62, 28712, 62, 17831, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 11639, 26270, 11645, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 2198, 62, 28712, 7, 944, 11, 9206, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 468, 704, 9206, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2198, 62, 28712, 62, 17831, 7, 944, 13, 28712, 11, 9206, 8, 628, 220, 220, 220, 825, 468, 62, 35200, 7, 944, 11, 3807, 62, 312, 11, 3807, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 611, 2836, 468, 281, 2378, 355, 511, 4004, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2116, 25, 11787, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3807, 62, 312, 25, 9097, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3807, 62, 4906, 25, 9097, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 7559, 17821, 15506, 611, 2836, 468, 262, 2378, 355, 511, 4004, 11, 7559, 25101, 15506, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3807, 62, 4906, 6624, 366, 41364, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 41364, 62, 69, 5570, 2737, 13, 24455, 62, 1525, 7, 312, 28, 41364, 62, 312, 737, 11085, 3419, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 14981, 62, 69, 5570, 2737, 13, 24455, 62, 1525, 7, 312, 28, 41364, 62, 312, 737, 11085, 3419, 318, 407, 6045, 628, 220, 220, 220, 825, 751, 62, 35200, 7, 944, 11, 3807, 62, 312, 11, 3807, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 257, 4004, 329, 262, 2836, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2116, 25, 11787, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3807, 62, 312, 25, 9097, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3807, 62, 4906, 25, 9097, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 7559, 14202, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 10134, 62, 35200, 7, 41364, 62, 312, 11, 3807, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3807, 62, 4906, 6624, 366, 41364, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5412, 796, 20613, 13, 29891, 13, 1136, 7, 25097, 37508, 11, 3807, 62, 312, 8, 393, 15875, 37508, 7, 312, 28, 41364, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 28144, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41364, 62, 69, 5570, 2737, 13, 33295, 7, 28144, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5412, 796, 20613, 13, 29891, 13, 1136, 7, 51, 85, 15307, 37508, 11, 3807, 62, 312, 8, 393, 309, 85, 15307, 37508, 7, 312, 28, 41364, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 28144, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14981, 62, 69, 5570, 2737, 13, 33295, 7, 28144, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 628, 220, 220, 220, 825, 4781, 62, 35200, 7, 944, 11, 3807, 62, 312, 11, 3807, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17220, 257, 4004, 329, 262, 2836, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2116, 25, 11787, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3807, 62, 312, 25, 9097, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3807, 62, 4906, 25, 9097, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 7559, 14202, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10134, 62, 35200, 7, 41364, 62, 312, 11, 3807, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3807, 62, 4906, 6624, 366, 41364, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5412, 796, 20613, 13, 29891, 13, 1136, 7, 25097, 37508, 11, 3807, 62, 312, 8, 393, 15875, 37508, 7, 312, 28, 41364, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41364, 62, 69, 5570, 2737, 13, 28956, 7, 28144, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5412, 796, 20613, 13, 29891, 13, 1136, 7, 51, 85, 15307, 37508, 11, 3807, 62, 312, 8, 393, 309, 85, 15307, 37508, 7, 312, 28, 41364, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14981, 62, 69, 5570, 2737, 13, 28956, 7, 28144, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 198 ]
2.256354
1,810
# -*- coding: utf-8 -*- """ Created on Tue Mar 5 00:39:20 2019 @author: Ham HackerRanch Challenge: Iterable and Iterators The itertools module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination. Together, they form an iterator algebra making it possible to construct specialized tools succinctly and efficiently in pure Python. To read more about the functions in this module, check out their documentation here. You are given a list of N lowercase English letters. For a given integer k, you can select any k indices (assume 1-based indexing) with a uniform probability from the list. Find the probability that at least one of the K indices selected will contain the letter: 'a'. Input Format The input consists of three lines. The first line contains the integer N, denoting the length of the list. The next line consists of N space-separated lowercase English letters, denoting the elements of the list. The third and the last line of input contains the integer k, denoting the number of indices to be selected. Output Format Output a single line consisting of the probability that at least one of the indices selected contains the letter:'a'. Note: The answer must be correct up to 3 decimal places. Constraints All the letters in the list are lowercase English letters. Sample Input 4 a a c d 2 Sample Output 0.8333 Explanation All possible unordered tuples of length 2 comprising of indices from 1 to 4 are: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4) Out of these 6 combinations, 5 of them contain either index 1 or index 2 which are the indices that contain the letter 'a'. Hence, the answer is 5/6. """ import itertools if __name__ == '__main__': n = int(input().strip()) #w = [p for p, l in enumerate(input().strip().split(), 1) if l == 'a'] #print(w) #k = int(input().strip()) #a = 0 #for c, t in enumerate(itertools.combinations(range(1, n + 1), k), 1): # for i in t: # if i in w: # a += 1 # #print(c, t, a) # break # # Above is my original, and working submission # Below is a revision after reading the Discussion forum # I optimized to iterate thru the combo(w, k) only once. # Other solution might iterate thru 3 times: 1st to make it a list; # 2nd to iterate thru the list; then 3rd to calculate len of the list. # The c, t in enumerate(iterable, 1) is such that at the end, # c will be the length of the iterable. # Caution: if someone tries to convert the "for" loop to a list comp, # then (for Python 3), both "c" and "t" are NOT be defined # after the list comprehension! # w = input().strip().split() k = int(input().strip()) #print(k, w) a = 0 for c, t in enumerate(itertools.combinations(w, k), 1): #print(c, t) if 'a' in t: a += 1 #print(a, c) print("%.12f" % (float(a) / float(c)))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 30030, 1526, 220, 642, 3571, 25, 2670, 25, 1238, 13130, 201, 198, 201, 198, 31, 9800, 25, 4345, 201, 198, 201, 198, 39, 10735, 49, 3702, 13879, 25, 40806, 540, 290, 40806, 2024, 201, 198, 201, 198, 464, 340, 861, 10141, 8265, 3210, 4340, 257, 4755, 900, 286, 3049, 11, 4088, 6942, 4899, 201, 198, 5562, 389, 4465, 416, 2405, 393, 287, 6087, 13, 201, 198, 41631, 11, 484, 1296, 281, 41313, 37139, 1642, 340, 1744, 284, 5678, 201, 198, 20887, 1143, 4899, 46263, 306, 290, 18306, 287, 5899, 11361, 13, 201, 198, 201, 198, 2514, 1100, 517, 546, 262, 5499, 287, 428, 8265, 11, 2198, 503, 511, 10314, 994, 13, 201, 198, 201, 198, 1639, 389, 1813, 257, 1351, 286, 399, 2793, 7442, 3594, 7475, 13, 201, 198, 1890, 257, 1813, 18253, 479, 11, 345, 460, 2922, 597, 479, 36525, 357, 562, 2454, 352, 12, 3106, 6376, 278, 8, 201, 198, 4480, 257, 8187, 12867, 422, 262, 1351, 13, 201, 198, 201, 198, 16742, 262, 12867, 326, 379, 1551, 530, 286, 262, 509, 36525, 6163, 481, 3994, 262, 3850, 25, 705, 64, 4458, 201, 198, 201, 198, 20560, 18980, 201, 198, 201, 198, 464, 5128, 10874, 286, 1115, 3951, 13, 201, 198, 464, 717, 1627, 4909, 262, 18253, 399, 11, 2853, 10720, 262, 4129, 286, 262, 1351, 13, 201, 198, 464, 1306, 1627, 10874, 286, 399, 2272, 12, 25512, 515, 2793, 7442, 3594, 7475, 11, 201, 198, 6559, 10720, 262, 4847, 286, 262, 1351, 13, 201, 198, 201, 198, 464, 2368, 290, 262, 938, 1627, 286, 5128, 4909, 262, 18253, 479, 11, 201, 198, 6559, 10720, 262, 1271, 286, 36525, 284, 307, 6163, 13, 201, 198, 201, 198, 26410, 18980, 201, 198, 201, 198, 26410, 257, 2060, 1627, 17747, 286, 262, 12867, 201, 198, 5562, 379, 1551, 530, 286, 262, 220, 36525, 6163, 4909, 262, 3850, 32105, 64, 4458, 201, 198, 201, 198, 6425, 25, 383, 3280, 1276, 307, 3376, 510, 284, 513, 32465, 4113, 13, 201, 198, 201, 198, 3103, 2536, 6003, 201, 198, 201, 198, 201, 198, 201, 198, 3237, 262, 7475, 287, 262, 1351, 389, 2793, 7442, 3594, 7475, 13, 201, 198, 201, 198, 36674, 23412, 201, 198, 201, 198, 19, 201, 198, 64, 257, 269, 288, 201, 198, 17, 201, 198, 201, 198, 36674, 25235, 201, 198, 201, 198, 15, 13, 23, 20370, 201, 198, 201, 198, 3109, 11578, 341, 201, 198, 201, 198, 3237, 1744, 555, 24071, 12777, 2374, 286, 4129, 362, 27918, 286, 36525, 422, 352, 284, 604, 389, 25, 201, 198, 201, 198, 7, 16, 11, 362, 828, 357, 16, 11, 513, 828, 357, 16, 11, 604, 828, 357, 17, 11, 513, 828, 357, 17, 11, 604, 828, 290, 357, 18, 11, 604, 8, 201, 198, 201, 198, 7975, 286, 777, 718, 17790, 11, 642, 286, 606, 3994, 2035, 201, 198, 9630, 352, 393, 6376, 362, 543, 389, 262, 36525, 326, 3994, 262, 3850, 705, 64, 4458, 201, 198, 201, 198, 39, 594, 11, 262, 3280, 318, 642, 14, 21, 13, 201, 198, 201, 198, 37811, 201, 198, 201, 198, 11748, 340, 861, 10141, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 299, 796, 493, 7, 15414, 22446, 36311, 28955, 201, 198, 220, 220, 220, 1303, 86, 796, 685, 79, 329, 279, 11, 300, 287, 27056, 378, 7, 15414, 22446, 36311, 22446, 35312, 22784, 352, 8, 611, 300, 6624, 705, 64, 20520, 201, 198, 220, 220, 220, 1303, 4798, 7, 86, 8, 201, 198, 220, 220, 220, 1303, 74, 796, 493, 7, 15414, 22446, 36311, 28955, 201, 198, 220, 220, 220, 1303, 64, 796, 657, 201, 198, 220, 220, 220, 1303, 1640, 269, 11, 256, 287, 27056, 378, 7, 270, 861, 10141, 13, 24011, 7352, 7, 9521, 7, 16, 11, 299, 1343, 352, 828, 479, 828, 352, 2599, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 329, 1312, 287, 256, 25, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 287, 266, 25, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 15853, 352, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 66, 11, 256, 11, 257, 8, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 23302, 318, 616, 2656, 11, 290, 1762, 14498, 201, 198, 220, 220, 220, 1303, 10383, 318, 257, 18440, 706, 3555, 262, 27766, 10041, 201, 198, 220, 220, 220, 1303, 314, 23392, 284, 11629, 378, 33834, 262, 14831, 7, 86, 11, 479, 8, 691, 1752, 13, 201, 198, 220, 220, 220, 1303, 3819, 4610, 1244, 11629, 378, 33834, 513, 1661, 25, 352, 301, 284, 787, 340, 257, 1351, 26, 201, 198, 220, 220, 220, 1303, 362, 358, 284, 11629, 378, 33834, 262, 1351, 26, 788, 513, 4372, 284, 15284, 18896, 286, 262, 1351, 13, 201, 198, 220, 220, 220, 1303, 383, 269, 11, 256, 287, 27056, 378, 7, 2676, 540, 11, 352, 8, 318, 884, 326, 379, 262, 886, 11, 201, 198, 220, 220, 220, 1303, 269, 481, 307, 262, 4129, 286, 262, 11629, 540, 13, 201, 198, 220, 220, 220, 1303, 6488, 1009, 25, 611, 2130, 8404, 284, 10385, 262, 366, 1640, 1, 9052, 284, 257, 1351, 552, 11, 201, 198, 220, 220, 220, 1303, 788, 357, 1640, 11361, 513, 828, 1111, 366, 66, 1, 290, 366, 83, 1, 389, 5626, 307, 5447, 201, 198, 220, 220, 220, 1303, 706, 262, 1351, 35915, 0, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 266, 796, 5128, 22446, 36311, 22446, 35312, 3419, 201, 198, 220, 220, 220, 479, 796, 493, 7, 15414, 22446, 36311, 28955, 201, 198, 220, 220, 220, 1303, 4798, 7, 74, 11, 266, 8, 201, 198, 220, 220, 220, 257, 796, 657, 201, 198, 220, 220, 220, 329, 269, 11, 256, 287, 27056, 378, 7, 270, 861, 10141, 13, 24011, 7352, 7, 86, 11, 479, 828, 352, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 66, 11, 256, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 64, 6, 287, 256, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 15853, 352, 201, 198, 220, 220, 220, 1303, 4798, 7, 64, 11, 269, 8, 201, 198, 220, 220, 220, 3601, 7203, 7225, 1065, 69, 1, 4064, 357, 22468, 7, 64, 8, 1220, 12178, 7, 66, 22305, 201, 198 ]
2.758252
1,121
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='Fun project to explore numer.ai modelling of market trends', author='Arvpau', license='', )
[ 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 10677, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2196, 11639, 15, 13, 16, 13, 15, 3256, 198, 220, 220, 220, 6764, 11639, 24629, 1628, 284, 7301, 5470, 13, 1872, 38591, 286, 1910, 11257, 3256, 198, 220, 220, 220, 1772, 11639, 3163, 36133, 559, 3256, 198, 220, 220, 220, 5964, 11639, 3256, 198, 8, 198 ]
2.878049
82
''' This program will convert PDFs into images and read text from those images and print the text over the screen. This can also extract text directly from images and print it out. ''' import os # try is used to keep a check over the import. If there is an error, it will not close # the program, but instead execute the except statement, similar to if & else. try: from PIL import Image, ImageChops, ImageDraw except ImportError: import Image, ImageChops, ImageDraw # extracts text from images import pytesseract # convert pdf into images from pdf2image import convert_from_path # image processing library import cv2 as cv pytesseract.pytesseract.tesseract_cmd = r"C:\\Program Files\\Tesseract-OCR\\tesseract.exe" class OCR: ''' OCR class to process PDFs and images to extract text from them. ''' def __init__(self, filename): ''' Initializes the memory of the object as the object is created using the parent class. :param filename: string parameter to save the path and name of the file. ''' self.filename = filename def split_pdf_and_convert_to_images(self): ''' A method of OCR class that takes pdf file and path as the input parameter and split the pdf into multiple images. After splitting the pdf, it takes every image, convert into binary color format, i.e., black and white, and extracts text from the images using the read_text function. :param: filename as string containing path of a PDF file. :return: text extracted from the PDF file. ''' # saving filename as dirName to create a directory of the same name as of the file dirName = self.filename.split("\\")[1].split(".")[0] # create a directory with name similar to filename and do nothing if an error is raised. try: os.mkdir(dirName) except: pass dirPath = "{}\\".format(dirName) # create images by random names of every page of the PDF within the created directory. convert_from_path(self.filename, output_folder=dirPath, fmt="png") # next method is used to iterate files within the directory, os.walk is used to scan # for files within a directory as we are only storing the filenames as imageNames, # the earlier underscores stores the root directory name and child directory names. # This will give us imageNames as a list of files inside the directory. (_, _, imageNames) = next(os.walk(dirPath)) for i in imageNames: i = dirPath + i # creating an openCV object of the image to perform image processing operations a = cv.imread(i) # changing image from coloured to gray grayImage = cv.cvtColor(a, cv.COLOR_BGR2GRAY) # changing images threshold to convert the image to black and white only. (thresh, blackAndWhiteImage) = cv.threshold(grayImage, 127, 255, cv.THRESH_BINARY) name_2 = dirPath + "a.png" # creating black and white image on path cv.imwrite(name_2, blackAndWhiteImage) # fetching the text from the image using read_text function text = self.read_text(filename=name_2) # printing text of single image print(text) # Deleting b&w image from the directory os.unlink(name_2) # deleting gray image from the directory os.unlink(i) # removing the directory os.rmdir(dirName) def read_text(self, filename=None): """ This function will handle the core OCR processing of images. :param: filename as string containing path of an image. :return: text extracted from the image. """ if filename == None: filename = self.filename text = pytesseract.image_to_string(Image.open(filename)) # We'll use Pillow's Image class to open the image and # pytesseract to detect the string in the image return text # processing an individual image filename = 'Images\\wordsworthwordle1.jpg' file_text = OCR(filename) print(file_text.read_text()) # or # processing a PDF file filename = 'Files\\cert.pdf' file_text = OCR(filename) print(file_text.split_pdf_and_convert_to_images())
[ 7061, 6, 198, 1212, 1430, 481, 10385, 12960, 82, 656, 4263, 290, 1100, 2420, 422, 883, 4263, 198, 392, 3601, 262, 2420, 625, 262, 3159, 13, 198, 1212, 460, 635, 7925, 2420, 3264, 422, 4263, 290, 3601, 340, 503, 13, 198, 7061, 6, 198, 11748, 28686, 198, 198, 2, 1949, 318, 973, 284, 1394, 257, 2198, 625, 262, 1330, 13, 1002, 612, 318, 281, 4049, 11, 340, 481, 407, 1969, 198, 2, 262, 1430, 11, 475, 2427, 12260, 262, 2845, 2643, 11, 2092, 284, 611, 1222, 2073, 13, 198, 28311, 25, 198, 220, 220, 220, 422, 350, 4146, 1330, 7412, 11, 7412, 1925, 2840, 11, 7412, 25302, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 7412, 11, 7412, 1925, 2840, 11, 7412, 25302, 198, 198, 2, 32139, 2420, 422, 4263, 198, 11748, 12972, 83, 408, 263, 529, 198, 198, 2, 10385, 37124, 656, 4263, 198, 6738, 37124, 17, 9060, 1330, 10385, 62, 6738, 62, 6978, 198, 198, 2, 2939, 7587, 5888, 198, 11748, 269, 85, 17, 355, 269, 85, 198, 198, 9078, 83, 408, 263, 529, 13, 9078, 83, 408, 263, 529, 13, 83, 408, 263, 529, 62, 28758, 796, 374, 1, 34, 25, 6852, 15167, 13283, 6852, 51, 408, 263, 529, 12, 4503, 49, 6852, 83, 408, 263, 529, 13, 13499, 1, 628, 198, 4871, 440, 9419, 25, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 440, 9419, 1398, 284, 1429, 12960, 82, 290, 4263, 284, 7925, 2420, 422, 606, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 29472, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 4340, 262, 4088, 286, 262, 2134, 355, 262, 2134, 318, 2727, 1262, 262, 2560, 1398, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 29472, 25, 4731, 11507, 284, 3613, 262, 3108, 290, 1438, 286, 262, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34345, 796, 29472, 628, 220, 220, 220, 825, 6626, 62, 12315, 62, 392, 62, 1102, 1851, 62, 1462, 62, 17566, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 317, 2446, 286, 440, 9419, 1398, 326, 2753, 37124, 2393, 290, 3108, 355, 262, 5128, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 290, 6626, 262, 37124, 656, 3294, 4263, 13, 2293, 26021, 262, 37124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 340, 2753, 790, 2939, 11, 10385, 656, 13934, 3124, 5794, 11, 1312, 13, 68, 1539, 2042, 290, 2330, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 32139, 2420, 422, 262, 4263, 1262, 262, 1100, 62, 5239, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25, 29472, 355, 4731, 7268, 3108, 286, 257, 12960, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2420, 21242, 422, 262, 12960, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8914, 29472, 355, 26672, 5376, 284, 2251, 257, 8619, 286, 262, 976, 1438, 355, 286, 262, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 26672, 5376, 796, 2116, 13, 34345, 13, 35312, 7203, 6852, 4943, 58, 16, 4083, 35312, 7203, 19570, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 8619, 351, 1438, 2092, 284, 29472, 290, 466, 2147, 611, 281, 4049, 318, 4376, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 15908, 5376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 26672, 15235, 796, 45144, 92, 6852, 1911, 18982, 7, 15908, 5376, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 4263, 416, 4738, 3891, 286, 790, 2443, 286, 262, 12960, 1626, 262, 2727, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10385, 62, 6738, 62, 6978, 7, 944, 13, 34345, 11, 5072, 62, 43551, 28, 15908, 15235, 11, 46996, 2625, 11134, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1306, 2446, 318, 973, 284, 11629, 378, 3696, 1626, 262, 8619, 11, 28686, 13, 11152, 318, 973, 284, 9367, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 3696, 1626, 257, 8619, 355, 356, 389, 691, 23069, 262, 1226, 268, 1047, 355, 2939, 36690, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 2961, 41731, 7000, 262, 6808, 8619, 1438, 290, 1200, 8619, 3891, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 481, 1577, 514, 2939, 36690, 355, 257, 1351, 286, 3696, 2641, 262, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 44104, 11, 4808, 11, 2939, 36690, 8, 796, 1306, 7, 418, 13, 11152, 7, 15908, 15235, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2939, 36690, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 26672, 15235, 1343, 1312, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4441, 281, 1280, 33538, 2134, 286, 262, 2939, 284, 1620, 2939, 7587, 4560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 796, 269, 85, 13, 320, 961, 7, 72, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5609, 2939, 422, 34746, 284, 12768, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12768, 5159, 796, 269, 85, 13, 33967, 83, 10258, 7, 64, 11, 269, 85, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5609, 4263, 11387, 284, 10385, 262, 2939, 284, 2042, 290, 2330, 691, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 400, 3447, 11, 2042, 1870, 12256, 5159, 8, 796, 269, 85, 13, 400, 10126, 7, 44605, 5159, 11, 18112, 11, 14280, 11, 269, 85, 13, 4221, 19535, 39, 62, 33, 1268, 13153, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 17, 796, 26672, 15235, 1343, 366, 64, 13, 11134, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4441, 2042, 290, 2330, 2939, 319, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 13564, 7, 3672, 62, 17, 11, 2042, 1870, 12256, 5159, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 21207, 278, 262, 2420, 422, 262, 2939, 1262, 1100, 62, 5239, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 2116, 13, 961, 62, 5239, 7, 34345, 28, 3672, 62, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13570, 2420, 286, 2060, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 5239, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 42226, 889, 275, 5, 86, 2939, 422, 262, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 403, 8726, 7, 3672, 62, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34817, 12768, 2939, 422, 262, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 403, 8726, 7, 72, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10829, 262, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 81, 9132, 343, 7, 15908, 5376, 8, 628, 220, 220, 220, 825, 1100, 62, 5239, 7, 944, 11, 29472, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 481, 5412, 262, 4755, 440, 9419, 7587, 286, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25, 29472, 355, 4731, 7268, 3108, 286, 281, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2420, 21242, 422, 262, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29472, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 2116, 13, 34345, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 12972, 83, 408, 263, 529, 13, 9060, 62, 1462, 62, 8841, 7, 5159, 13, 9654, 7, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 1183, 779, 19770, 322, 338, 7412, 1398, 284, 1280, 262, 2939, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12972, 83, 408, 263, 529, 284, 4886, 262, 4731, 287, 262, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2420, 198, 198, 2, 7587, 281, 1981, 2939, 198, 34345, 796, 705, 29398, 6852, 4775, 30567, 4775, 293, 16, 13, 9479, 6, 198, 7753, 62, 5239, 796, 440, 9419, 7, 34345, 8, 198, 4798, 7, 7753, 62, 5239, 13, 961, 62, 5239, 28955, 198, 2, 393, 198, 2, 7587, 257, 12960, 2393, 198, 34345, 796, 705, 25876, 6852, 22583, 13, 12315, 6, 198, 7753, 62, 5239, 796, 440, 9419, 7, 34345, 8, 198, 4798, 7, 7753, 62, 5239, 13, 35312, 62, 12315, 62, 392, 62, 1102, 1851, 62, 1462, 62, 17566, 28955, 198 ]
2.693878
1,617
# -*- coding: utf-8 -*- import pytest from rostestplus.ros_comm.asserts import ( AssertException, assert_node_pingable, assert_node_listed, assert_node_listed_on_machine, assert_service_response_success_true, )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 686, 301, 395, 9541, 13, 4951, 62, 9503, 13, 30493, 82, 1330, 357, 198, 220, 220, 220, 2195, 861, 16922, 11, 198, 220, 220, 220, 6818, 62, 17440, 62, 13886, 540, 11, 198, 220, 220, 220, 6818, 62, 17440, 62, 17935, 11, 198, 220, 220, 220, 6818, 62, 17440, 62, 17935, 62, 261, 62, 30243, 11, 198, 220, 220, 220, 6818, 62, 15271, 62, 26209, 62, 13138, 62, 7942, 11, 198, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 198 ]
2.352381
105
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import unittest import numpy as np from mo.graph.graph import Node from mo.ops.pad import Pad, AttributedPad from mo.utils.unittest.graph import build_graph
[ 2, 15069, 357, 34, 8, 2864, 12, 1238, 2481, 8180, 10501, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 198, 198, 11748, 555, 715, 395, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 6941, 13, 34960, 13, 34960, 1330, 19081, 198, 6738, 6941, 13, 2840, 13, 15636, 1330, 15744, 11, 3460, 6169, 26114, 198, 6738, 6941, 13, 26791, 13, 403, 715, 395, 13, 34960, 1330, 1382, 62, 34960, 628 ]
3.115385
78
from ocnn import *
[ 6738, 267, 66, 20471, 1330, 1635, 628, 628, 628, 628, 198 ]
2.454545
11
import sqlalchemy import sqlalchemy.orm from wod_board import config Base = sqlalchemy.orm.declarative_base() engine = sqlalchemy.create_engine(config.DATABASE_URL) Session = sqlalchemy.orm.sessionmaker(bind=engine, class_=sqlalchemy.orm.Session) # Import each model fo Alembic from wod_board.models.equipment import * # noqa from wod_board.models.goal import * # noqa from wod_board.models.movement import * # noqa from wod_board.models.unit import * # noqa from wod_board.models.user import * # noqa from wod_board.models.wod import * # noqa from wod_board.models.wod_round import * # noqa
[ 11748, 44161, 282, 26599, 198, 11748, 44161, 282, 26599, 13, 579, 198, 198, 6738, 266, 375, 62, 3526, 1330, 4566, 628, 198, 14881, 796, 44161, 282, 26599, 13, 579, 13, 32446, 283, 876, 62, 8692, 3419, 198, 198, 18392, 796, 44161, 282, 26599, 13, 17953, 62, 18392, 7, 11250, 13, 35, 1404, 6242, 11159, 62, 21886, 8, 198, 198, 36044, 796, 44161, 282, 26599, 13, 579, 13, 29891, 10297, 7, 21653, 28, 18392, 11, 1398, 62, 28, 25410, 282, 26599, 13, 579, 13, 36044, 8, 628, 198, 198, 2, 17267, 1123, 2746, 11511, 9300, 2022, 291, 198, 6738, 266, 375, 62, 3526, 13, 27530, 13, 4853, 4667, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 266, 375, 62, 3526, 13, 27530, 13, 35231, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 266, 375, 62, 3526, 13, 27530, 13, 21084, 434, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 266, 375, 62, 3526, 13, 27530, 13, 20850, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 266, 375, 62, 3526, 13, 27530, 13, 7220, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 266, 375, 62, 3526, 13, 27530, 13, 86, 375, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 266, 375, 62, 3526, 13, 27530, 13, 86, 375, 62, 744, 1330, 1635, 220, 1303, 645, 20402, 628, 198 ]
2.819444
216
# Generated by Django 2.1.15 on 2020-12-30 14:55 import os from django.conf import settings from django.db import migrations from django.db.migrations.recorder import MigrationRecorder
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 1314, 319, 12131, 12, 1065, 12, 1270, 1478, 25, 2816, 198, 11748, 28686, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 198, 6738, 42625, 14208, 13, 9945, 13, 76, 3692, 602, 13, 8344, 2875, 1330, 36991, 6690, 2875, 628, 628 ]
3.20339
59
from __future__ import unicode_literals from flask import Flask, render_template, request from flask_cors import CORS, cross_origin import requests import dropbox app = Flask(__name__) cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type' import praw import requests import youtube_dl import random import time import os dbx = dropbox.Dropbox(os.environ.get('DROPBOX_ACCESS_TOKEN')) reddit = praw.Reddit( client_id=os.environ.get('REDDIT_CLIENT_ID'), client_secret=os.environ.get('REDDIT_CLIENT_SECRET'), user_agent=os.environ.get('REDDIT_USER_AGENT'), username=os.environ.get('REDDIT_USERNAME'), password=os.environ.get('REDDIT_PASSWORD') ) print(reddit.read_only) from twython import Twython twitter = Twython(os.environ.get('TWITTER_APP_KEY'), os.environ.get('TWITTER_APP_SECRET'), os.environ.get('TWITTER_OAUTH_TOKEN'), os.environ.get('TWITTER_OAUTH_TOKEN_SECRET')) @app.route("/") @app.route("/postreddit")
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 2581, 198, 6738, 42903, 62, 66, 669, 1330, 327, 20673, 11, 3272, 62, 47103, 198, 11748, 7007, 198, 11748, 4268, 3524, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 220, 198, 66, 669, 796, 327, 20673, 7, 1324, 8, 198, 1324, 13, 11250, 17816, 34, 20673, 62, 37682, 4877, 20520, 796, 705, 19746, 12, 6030, 6, 198, 198, 11748, 279, 1831, 198, 11748, 7007, 198, 11748, 35116, 62, 25404, 198, 11748, 4738, 198, 11748, 640, 198, 11748, 28686, 198, 198, 9945, 87, 796, 4268, 3524, 13, 26932, 3524, 7, 418, 13, 268, 2268, 13, 1136, 10786, 7707, 3185, 39758, 62, 26861, 7597, 62, 10468, 43959, 6, 4008, 198, 198, 10748, 796, 279, 1831, 13, 22367, 7, 198, 5456, 62, 312, 28, 418, 13, 268, 2268, 13, 1136, 10786, 22083, 49828, 62, 5097, 28495, 62, 2389, 33809, 198, 5456, 62, 21078, 28, 418, 13, 268, 2268, 13, 1136, 10786, 22083, 49828, 62, 5097, 28495, 62, 23683, 26087, 33809, 198, 2836, 62, 25781, 28, 418, 13, 268, 2268, 13, 1136, 10786, 22083, 49828, 62, 29904, 62, 4760, 3525, 33809, 198, 20579, 28, 418, 13, 268, 2268, 13, 1136, 10786, 22083, 49828, 62, 29904, 20608, 33809, 198, 9206, 28, 418, 13, 268, 2268, 13, 1136, 10786, 22083, 49828, 62, 47924, 54, 12532, 11537, 198, 8, 198, 4798, 7, 10748, 13, 961, 62, 8807, 8, 198, 198, 6738, 665, 7535, 1330, 1815, 7535, 198, 6956, 796, 1815, 7535, 7, 418, 13, 268, 2268, 13, 1136, 10786, 34551, 2043, 5781, 62, 24805, 62, 20373, 33809, 28686, 13, 268, 2268, 13, 1136, 10786, 34551, 2043, 5781, 62, 24805, 62, 23683, 26087, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 13, 1136, 10786, 34551, 2043, 5781, 62, 23621, 24318, 62, 10468, 43959, 33809, 28686, 13, 268, 2268, 13, 1136, 10786, 34551, 2043, 5781, 62, 23621, 24318, 62, 10468, 43959, 62, 23683, 26087, 6, 4008, 198, 198, 31, 1324, 13, 38629, 7203, 14, 4943, 220, 198, 198, 31, 1324, 13, 38629, 7203, 14, 7353, 10748, 4943, 220, 198 ]
2.594005
367
''' Main prediction module for dgaintel package ''' import os import numpy as np from tensorflow.keras.models import load_model DIR_PATH = os.path.dirname(os.path.abspath(__file__)) SAVED_MODEL_PATH = os.path.join(DIR_PATH, 'domain_classifier_model.h5') MODEL = load_model(SAVED_MODEL_PATH) CHAR2IDX = {'-': 0, '.': 1, '0': 2, '1': 3, '2': 4, '3': 5, '4': 6, '5': 7, '6': 8, '7': 9, '8': 10, '9': 11, '_': 12, 'a': 13, 'b': 14, 'c': 15, 'd': 16, 'e': 17, 'f': 18, 'g': 19, 'h': 20, 'i': 21, 'j': 22, 'k': 23, 'l': 24, 'm': 25, 'n': 26, 'o': 27, 'p': 28, 'q': 29, 'r': 30, 's': 31, 't': 32, 'u': 33, 'v': 34, 'w': 35, 'x': 36, 'y': 37, 'z': 38} def get_prob(domains, raw=False, internal=False): ''' Core inference function; calls model on vectorized batch of domain names. Input: list of domains (list) Output: len(domains) == 1: single probability value raw=False: list of tuples of format (domain_name, probability) raw=True: np.ndarray of probabilities ''' if not isinstance(domains, list): domains = _inputs(domains) vec = np.zeros((len(domains), 82)) for i, domain in enumerate(domains): for j, char in enumerate(domain): vec[i, j] = CHAR2IDX[char] if char in CHAR2IDX else -1 prob = MODEL(vec).numpy() prob = prob.transpose()[0] if not internal: if prob.shape[0] == 1: return prob.sum() if raw: return prob return list(zip(domains, list(prob))) def get_prediction(domains, to_file=None, show=True): ''' Wrapper for printing out/writing full predictions on a domain or set of domains Input: domain (str), list of domains (list), domains in .txt file (FileObj) Output: show to stdout show=False: list of prediction strings (list) to_file=<filename>.txt: writes new file at <filename>.txt with predictions ''' if not isinstance(domains, list): domains = _inputs(domains) raw_probs = get_prob(domains, internal=True) preds = [_get_prediction(domain, prob=prob) for domain, prob in raw_probs] if to_file: assert os.path.splitext(to_file)[1] == ".txt" with open(os.path.join(os.getcwd(), to_file), 'w') as outfile: outfile.writelines(preds) return None if show: for pred in preds: print(pred.strip('\n')) return None return preds def main(): ''' Main function for testing purposes. ''' get_prediction(['microsoft.com', 'squarespace.com', 'hsfkjdshfjasdhfk.com', 'fdkhakshfda.com', 'foilfencersarebad.com', 'discojjfdsf.com', 'fasddafhkj.com', 'wikipedai.com']) if __name__ == '__main__': main()
[ 7061, 6, 198, 13383, 17724, 8265, 329, 288, 70, 2913, 417, 5301, 198, 7061, 6, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 27530, 1330, 3440, 62, 19849, 198, 198, 34720, 62, 34219, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 4090, 53, 1961, 62, 33365, 3698, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 7, 34720, 62, 34219, 11, 705, 27830, 62, 4871, 7483, 62, 19849, 13, 71, 20, 11537, 198, 198, 33365, 3698, 796, 3440, 62, 19849, 7, 4090, 53, 1961, 62, 33365, 3698, 62, 34219, 8, 198, 38019, 17, 2389, 55, 796, 1391, 29001, 10354, 657, 11, 705, 2637, 25, 352, 11, 705, 15, 10354, 362, 11, 705, 16, 10354, 513, 11, 705, 17, 10354, 604, 11, 705, 18, 10354, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19, 10354, 718, 11, 705, 20, 10354, 767, 11, 705, 21, 10354, 807, 11, 705, 22, 10354, 860, 11, 705, 23, 10354, 838, 11, 705, 24, 10354, 1367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 10354, 1105, 11, 705, 64, 10354, 1511, 11, 705, 65, 10354, 1478, 11, 705, 66, 10354, 1315, 11, 705, 67, 10354, 1467, 11, 705, 68, 10354, 1596, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 10354, 1248, 11, 705, 70, 10354, 678, 11, 705, 71, 10354, 1160, 11, 705, 72, 10354, 2310, 11, 705, 73, 10354, 2534, 11, 705, 74, 10354, 2242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 10354, 1987, 11, 705, 76, 10354, 1679, 11, 705, 77, 10354, 2608, 11, 705, 78, 10354, 2681, 11, 705, 79, 10354, 2579, 11, 705, 80, 10354, 2808, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 81, 10354, 1542, 11, 705, 82, 10354, 3261, 11, 705, 83, 10354, 3933, 11, 705, 84, 10354, 4747, 11, 705, 85, 10354, 4974, 11, 705, 86, 10354, 3439, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 87, 10354, 4570, 11, 705, 88, 10354, 5214, 11, 705, 89, 10354, 4353, 92, 198, 198, 4299, 651, 62, 1676, 65, 7, 3438, 1299, 11, 8246, 28, 25101, 11, 5387, 28, 25101, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 7231, 32278, 2163, 26, 3848, 2746, 319, 15879, 1143, 15458, 286, 7386, 3891, 13, 198, 220, 220, 220, 23412, 25, 1351, 286, 18209, 357, 4868, 8, 198, 220, 220, 220, 25235, 25, 18896, 7, 3438, 1299, 8, 6624, 352, 25, 2060, 12867, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 28, 25101, 25, 1351, 286, 12777, 2374, 286, 5794, 357, 27830, 62, 3672, 11, 12867, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 28, 17821, 25, 45941, 13, 358, 18747, 286, 39522, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 3438, 1299, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18209, 796, 4808, 15414, 82, 7, 3438, 1299, 8, 628, 220, 220, 220, 43030, 796, 45941, 13, 9107, 418, 19510, 11925, 7, 3438, 1299, 828, 9415, 4008, 628, 220, 220, 220, 329, 1312, 11, 7386, 287, 27056, 378, 7, 3438, 1299, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 11, 1149, 287, 27056, 378, 7, 27830, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43030, 58, 72, 11, 474, 60, 796, 28521, 17, 2389, 55, 58, 10641, 60, 611, 1149, 287, 28521, 17, 2389, 55, 2073, 532, 16, 628, 198, 220, 220, 220, 1861, 796, 19164, 3698, 7, 35138, 737, 77, 32152, 3419, 198, 220, 220, 220, 1861, 796, 1861, 13, 7645, 3455, 3419, 58, 15, 60, 628, 220, 220, 220, 611, 407, 5387, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1861, 13, 43358, 58, 15, 60, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1861, 13, 16345, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 8246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1861, 628, 220, 220, 220, 1441, 1351, 7, 13344, 7, 3438, 1299, 11, 1351, 7, 1676, 65, 22305, 198, 198, 4299, 651, 62, 28764, 2867, 7, 3438, 1299, 11, 284, 62, 7753, 28, 14202, 11, 905, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 27323, 2848, 329, 13570, 503, 14, 16502, 1336, 16277, 319, 257, 7386, 393, 900, 286, 18209, 198, 220, 220, 220, 23412, 25, 7386, 357, 2536, 828, 1351, 286, 18209, 357, 4868, 828, 18209, 287, 764, 14116, 2393, 357, 8979, 49201, 8, 198, 220, 220, 220, 25235, 25, 905, 284, 14367, 448, 198, 220, 220, 220, 220, 220, 220, 220, 905, 28, 25101, 25, 1351, 286, 17724, 13042, 357, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 7753, 28, 27, 34345, 28401, 14116, 25, 6797, 649, 2393, 379, 1279, 34345, 28401, 14116, 351, 16277, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 3438, 1299, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18209, 796, 4808, 15414, 82, 7, 3438, 1299, 8, 628, 220, 220, 220, 8246, 62, 1676, 1443, 796, 651, 62, 1676, 65, 7, 3438, 1299, 11, 5387, 28, 17821, 8, 198, 220, 220, 220, 2747, 82, 796, 685, 62, 1136, 62, 28764, 2867, 7, 27830, 11, 1861, 28, 1676, 65, 8, 329, 7386, 11, 1861, 287, 8246, 62, 1676, 1443, 60, 628, 220, 220, 220, 611, 284, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 28686, 13, 6978, 13, 22018, 578, 742, 7, 1462, 62, 7753, 38381, 16, 60, 6624, 27071, 14116, 1, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 284, 62, 7753, 828, 705, 86, 11537, 355, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 13, 8933, 20655, 7, 28764, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 611, 905, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2747, 287, 2747, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 28764, 13, 36311, 10786, 59, 77, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1441, 2747, 82, 198, 198, 4299, 1388, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 8774, 2163, 329, 4856, 4959, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 651, 62, 28764, 2867, 7, 17816, 40485, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16485, 3565, 10223, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11994, 69, 42421, 67, 1477, 69, 28121, 34985, 69, 74, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16344, 14636, 461, 1477, 69, 6814, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6513, 346, 41037, 7999, 533, 14774, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 67, 4861, 41098, 69, 9310, 69, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 292, 1860, 1878, 71, 42421, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20763, 46647, 1872, 13, 785, 6, 12962, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.093324
1,393
""" Created: 11 November 2016 Last Updated: 16 February 2018 Dan Marley [email protected] Texas A&M University ----- Base class for plotting deep learning Designed for running on desktop at TAMU with specific set of software installed --> not guaranteed to work in CMSSW environment! Does not use ROOT! Instead, uses matplotlib to generate figures """ import os import sys import json import util from datetime import date import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib import rc rc('font', family='sans-serif') from keras.utils.vis_utils import plot_model as keras_plot from sklearn.metrics import roc_curve, auc import hepPlotter.hepPlotterLabels as hpl import hepPlotter.hepPlotterTools as hpt from hepPlotter.hepPlotter import HepPlotter class Target(object): """Class to contain information for targets used in training""" class DeepLearningPlotter(object): """Plotting utilities for deep learning""" def __init__(self): """Give default values to member variables""" self.date = date.today().strftime('%d%b%Y') self.betterColors = hpt.betterColors()['linecolors'] self.sample_labels = hpl.sample_labels() self.variable_labels = hpl.variable_labels() self.msg_svc = util.VERBOSE() self.filename = "" self.output_dir = '' self.image_format = 'png' self.process_label = '' # if a single process is used for all training, set this self.classification = False # 'binary','multi',False self.regression = False # True or False self.df = None self.targets = [] self.CMSlabelStatus = "Internal" def initialize(self,dataframe,target_names=[],target_values=[]): """ Set parameters of class to make plots @param dataframe The dataframe that contains physics information for training/testing """ self.df = dataframe try: self.processlabel = self.sample_labels[self.filename].label # process used in each plot except KeyError: self.processlabel = '' if self.classification: for i,(n,v) in enumerate(zip(target_names,target_values)): tmp = Target(n) tmp.df = self.df.loc[self.df['target']==v] tmp.target_value = v tmp.label = self.sample_labels[n].label tmp.color = self.betterColors[i] self.targets.append(tmp) else: # regression try: tmp = Target(target_names[0]) tmp.df = self.df.loc[self.df['target']==target_values[0]] tmp.target_value = target_values[0] except TypeError: tmp = Target(target_names) tmp.df = self.df.loc[self.df['target']==target_values] tmp.target_value = target_values tmp.label = self.sample_labels[tmp.name].label tmp.color = self.betterColors[i] self.targets.append(tmp) return def features(self): """ Plot the features For classification, compare different targets For regression, just plot the features <- should do data/mc plots instead! """ self.msg_svc.INFO("DL : Plotting features.") target0 = self.targets[0] # hard-coded for binary comparisons target1 = self.targets[1] plt_features = self.df.keys() for hi,feature in enumerate(plt_features): if feature=='target': continue binning = self.variable_labels[feature].binning hist = HepPlotter("histogram",1) hist.normed = True hist.stacked = False hist.logplot = {"y":False,"x":False,"data":False} hist.binning = binning hist.x_label = self.variable_labels[feature].label hist.y_label = "Events" hist.format = self.image_format hist.saveAs = self.output_dir+"/hist_"+feature+"_"+self.date hist.ratio_plot = True hist.ratio_type = 'ratio' hist.y_ratio_label = '{0}/{1}'.format(target0.label,target1.label) hist.CMSlabel = 'top left' hist.CMSlabelStatus = self.CMSlabelStatus hist.numLegendColumns = 1 # Add some extra text to the plot if self.processlabel: hist.extra_text.Add(self.processlabel,coords=[0.03,0.80]) # physics process that produces these features hist.initialize() hist.Add(target0.df[feature], name=target0.name, draw='step', linecolor=target0.color, label=target0.label, ratio_num=True,ratio_den=False,ratio_partner=target1.name) hist.Add(target1.df[feature], name=target1.name, draw='step', linecolor=target1.color, label=target1.label, ratio_num=False,ratio_den=True,ratio_partner=target0.name) if self.classification=='binary': t0,_ = np.histogram(target0.df[feature],bins=binning,normed=True) t1,_ = np.histogram(target1.df[feature],bins=binning,normed=True) separation = util.getSeparation(t0,t1) hist.extra_text.Add("Separation = {0:.4f}".format(separation),coords=[0.03,0.73]) p = hist.execute() hist.savefig() return def feature_correlations(self): """Plot correlations between features of the NN""" ## Correlation Matrices of Features (top/antitop) ## fontProperties = {'family':'sans-serif'} opts = {'cmap': plt.get_cmap("bwr"), 'vmin': -1, 'vmax': +1} for c,target in enumerate(self.targets): saveAs = "{0}/correlations_{1}_{2}".format(self.output_dir,target.name,self.date) allkeys = target.df.keys() keys = [] for key in allkeys: if key!='target': keys.append(key) t_ = target.df[keys] corrmat = t_.corr() # Save correlation matrix to CSV file corrmat.to_csv("{0}.csv".format(saveAs)) # Use matplotlib directly fig,ax = plt.subplots() heatmap1 = ax.pcolor(corrmat, **opts) cbar = plt.colorbar(heatmap1, ax=ax) cbar.ax.set_yticklabels( [i.get_text().strip('$') for i in cbar.ax.get_yticklabels()], **fontProperties ) labels = corrmat.columns.values labels = [i.replace('_','\_') for i in labels] # shift location of ticks to center of the bins ax.set_xticks(np.arange(len(labels))+0.5, minor=False) ax.set_yticks(np.arange(len(labels))+0.5, minor=False) ax.set_xticklabels(labels, fontProperties, fontsize=18, minor=False, ha='right', rotation=70) ax.set_yticklabels(labels, fontProperties, fontsize=18, minor=False) ## CMS/COM Energy Label + Signal name cms_stamp = hpl.CMSStamp(self.CMSlabelStatus) cms_stamp.coords = [0.02,1.00] cms_stamp.fontsize = 16 cms_stamp.va = 'bottom' ax.text(0.02,1.00,cms_stamp.text,fontsize=cms_stamp.fontsize, ha=cms_stamp.ha,va=cms_stamp.va,transform=ax.transAxes) energy_stamp = hpl.EnergyStamp() energy_stamp.ha = 'right' energy_stamp.coords = [0.99,1.00] energy_stamp.fontsize = 16 energy_stamp.va = 'bottom' ax.text(energy_stamp.coords[0],energy_stamp.coords[1],energy_stamp.text, fontsize=energy_stamp.fontsize,ha=energy_stamp.ha, va=energy_stamp.va, transform=ax.transAxes) ax.text(0.03,0.93,target.label,fontsize=16,ha='left',va='bottom',transform=ax.transAxes) plt.savefig("{0}.{1}".format(saveAs,self.image_format), format=self.image_format,dpi=300,bbox_inches='tight') plt.close() return def prediction(self,train_data={},test_data={}): """Plot the training and testing predictions""" self.msg_svc.INFO("DL : Plotting DNN prediction. ") # Plot all k-fold cross-validation results for i,(train,trainY,test,testY) in enumerate(zip(train_data['X'],train_data['Y'],test_data['X'],test_data['Y'])): hist = HepPlotter("histogram",1) hist.ratio_plot = True hist.ratio_type = "ratio" hist.y_ratio_label = "Test/Train" hist.label_size = 14 hist.normed = True # compare shape differences (likely don't have the same event yield) hist.format = self.image_format hist.saveAs = "{0}/hist_DNN_prediction_kfold{1}_{2}".format(self.output_dir,i,self.date) hist.binning = [bb/10. for bb in range(11)] hist.stacked = False hist.logplot = {"y":False,"x":False,"data":False} hist.x_label = "Prediction" hist.y_label = "Arb. Units" hist.CMSlabel = 'top left' hist.CMSlabelStatus = self.CMSlabelStatus hist.numLegendColumns = 1 if self.processlabel: hist.extra_text.Add(self.processlabel,coords=[0.03,0.80],fontsize=14) hist.initialize() test_data = [] train_data = [] json_data = {} for t,target in enumerate(self.targets): ## Training target_value = target.target_value hist.Add(train[ trainY==target_value ], name=target.name+'_train', linecolor=target.color, linewidth=2, draw='step', label=target.label+" Train", ratio_den=True,ratio_num=False,ratio_partner=target.name+'_test') ## Testing hist.Add(test[ testY==target_value ], name=target.name+'_test', linecolor=target.color, color=target.color, linewidth=0, draw='stepfilled', label=target.label+" Test", alpha=0.5, ratio_den=False,ratio_num=True,ratio_partner=target.name+'_train') ## Save data to JSON file json_data[target.name+"_train"] = {} json_data[target.name+"_test"] = {} d_tr,b_tr = np.histogram(train[trainY==target_value],bins=hist.binning) d_te,b_te = np.histogram(test[testY==target_value], bins=hist.binning) json_data[target.name+"_train"]["binning"] = b_tr.tolist() json_data[target.name+"_train"]["content"] = d_tr.tolist() json_data[target.name+"_test"]["binning"] = b_te.tolist() json_data[target.name+"_test"]["content"] = d_te.tolist() test_data.append(d_te.tolist()) train_data.append(d_tr.tolist()) separation = util.getSeparation(test_data[0],test_data[1]) hist.extra_text.Add("Test Separation = {0:.4f}".format(separation),coords=[0.03,0.72]) p = hist.execute() hist.savefig() # save results to JSON file (just histogram values & bins) to re-make plots with open("{0}.json".format(hist.saveAs), 'w') as outfile: json.dump(json_data, outfile) return def ROC(self,fprs=[],tprs=[],accuracy={}): """Plot the ROC curve & save to text file""" self.msg_svc.INFO("DL : Plotting ROC curve.") saveAs = "{0}/roc_curve_{1}".format(self.output_dir,self.date) ## Use matplotlib directly fig,ax = plt.subplots() # Draw all of the ROC curves from the K-fold cross-validation ax.plot([0, 1], [0, 1], ls='--',label='No Discrimination',lw=2,c='gray') ax.axhline(y=1,lw=1,c='lightgray',ls='--') for ft,(fpr,tpr) in enumerate(zip(fprs,tprs)): roc_auc = auc(fpr,tpr) ax.plot(fpr,tpr,label='K-fold {0} (AUC = {1:.2f})'.format(ft,roc_auc),lw=2) # save ROC curve to CSV file (to plot later) outfile_name = "{0}_{1}.csv".format(saveAs,ft) csv = [ "{0},{1}".format(fp,tp) for fp,tp in zip(fpr,tpr) ] util.to_csv(outfile_name,csv) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.5]) ax.set_xlabel(r'$\epsilon$(anti-top)',fontsize=22,ha='right',va='top',position=(1,0)) ax.set_xticklabels(["{0:.1f}".format(i) for i in ax.get_xticks()],fontsize=22) ax.set_ylabel(r'$\epsilon$(top)',fontsize=22,ha='right',va='bottom',position=(0,1)) ax.set_yticklabels(['']+["{0:.1f}".format(i) for i in ax.get_yticks()[1:-1]]+[''],fontsize=22) ## CMS/COM Energy Label cms_stamp = hpl.CMSStamp(self.CMSlabelStatus) cms_stamp.coords = [0.03,0.97] cms_stamp.fontsize = 16 ax.text(cms_stamp.coords[0],cms_stamp.coords[1],cms_stamp.text,fontsize=cms_stamp.fontsize, ha=cms_stamp.ha,va=cms_stamp.va,transform=ax.transAxes) energy_stamp = hpl.EnergyStamp() energy_stamp.coords = [0.03,0.90] energy_stamp.fontsize = 16 ax.text(energy_stamp.coords[0],energy_stamp.coords[1],energy_stamp.text, fontsize=energy_stamp.fontsize,ha=energy_stamp.ha, va=energy_stamp.va, transform=ax.transAxes) text_args = {'ha':'left','va':'top','fontsize':18,'transform':ax.transAxes} if self.processlabel: ax.text(0.03,0.82,self.processlabel,**text_args) if accuracy: ax.text(0.03,0.75,r"Accuracy = {0:.2f}$\pm${1:.2f}".format(accuracy['mean'],accuracy['std']),**text_args) leg = ax.legend(loc=4,numpoints=1,fontsize=12,ncol=1,columnspacing=0.3) leg.draw_frame(False) plt.savefig('{0}.{1}'.format(saveAs,self.image_format), format=self.image_format,bbox_inches='tight',dpi=300) plt.close() return def plot_loss_history(self,history,ax=None,index=-1): """Draw history of model""" loss = history.history['loss'] x = range(1,len(loss)+1) label = 'Loss {0}'.format(index) if index>=0 else 'Loss' ax.plot(x,loss,label=label) csv = [ "{0},{1}".format(i,j) for i,j in zip(x,loss) ] return csv def loss_history(self,history,kfold=0,val_loss=0.0): """Plot loss as a function of epoch for model""" self.msg_svc.INFO("DL : Plotting loss as a function of epoch number.") saveAs = "{0}/loss_epochs_{1}".format(self.output_dir,self.date) all_histories = type(history)==list # draw the loss curve fig,ax = plt.subplots() # also save the data to a CSV file if all_histories: for i,h in enumerate(history): csv = self.plot_loss_history(h,ax=ax,index=i) filename = "{0}_{1}.csv".format(saveAs,i) util.to_csv(filename,csv) else: csv = self.plot_loss_history(history,ax=ax) filename = "{0}.csv".format(saveAs) util.to_csv(filename,csv) ax.set_xlabel('Epoch',fontsize=22,ha='right',va='top',position=(1,0)) ax.set_xticklabels(["{0:.1f}".format(i) for i in ax.get_xticks()],fontsize=22) ax.set_ylabel('Loss',fontsize=22,ha='right',va='bottom',position=(0,1)) ax.set_yticklabels(['']+["{0:.1f}".format(i) for i in ax.get_yticks()[1:-1]]+[''],fontsize=22) ## CMS/COM Energy Label cms_stamp = hpl.CMSStamp(self.CMSlabelStatus) cms_stamp.coords = [0.03,0.97] cms_stamp.fontsize = 18 ax.text(cms_stamp.coords[0],cms_stamp.coords[1],cms_stamp.text,fontsize=cms_stamp.fontsize, ha=cms_stamp.ha,va=cms_stamp.va,transform=ax.transAxes) energy_stamp = hpl.EnergyStamp() energy_stamp.coords = [0.03,0.90] energy_stamp.fontsize = 18 ax.text(energy_stamp.coords[0],energy_stamp.coords[1],energy_stamp.text, fontsize=energy_stamp.fontsize,ha=energy_stamp.ha, va=energy_stamp.va, transform=ax.transAxes) text_args = {'ha':'left','va':'top','fontsize':18,'transform':ax.transAxes} text = "Validation Loss = {0}; {1} K-folds".format(val_loss,len(history)) if all_histories else "Validation Loss = {0}".format(val_loss) ax.text(0.03,0.76,text,**text_args) leg = ax.legend(loc=1,numpoints=1,fontsize=12,ncol=1,columnspacing=0.3) leg.draw_frame(False) f = lambda x,pos: str(x).rstrip('0').rstrip('.') ax.xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(f)) plt.savefig('{0}.{1}'.format(saveAs,self.image_format), format=self.image_format,bbox_inches='tight',dpi=200) plt.close() return def model(self,model,name): """Plot the model architecture to view later""" keras_plot(model,to_file='{0}/{1}_model.eps'.format(self.output_dir,name),show_shapes=True) return ## THE END ##
[ 37811, 198, 41972, 25, 220, 220, 220, 220, 220, 220, 220, 1367, 3389, 220, 1584, 198, 5956, 19433, 25, 220, 220, 1467, 3945, 220, 2864, 198, 198, 21174, 1526, 1636, 198, 67, 6321, 13, 276, 1653, 13, 3876, 1636, 31, 30903, 4303, 2390, 11929, 13, 354, 198, 21607, 317, 5, 44, 2059, 198, 30934, 198, 198, 14881, 1398, 329, 29353, 2769, 4673, 198, 198, 5960, 3916, 329, 2491, 319, 11364, 379, 33112, 52, 198, 4480, 2176, 900, 286, 3788, 6589, 198, 46904, 407, 11462, 284, 670, 287, 16477, 5432, 54, 2858, 0, 198, 198, 13921, 407, 779, 15107, 2394, 0, 198, 13193, 11, 3544, 2603, 29487, 8019, 284, 7716, 5538, 198, 37811, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 33918, 198, 11748, 7736, 198, 6738, 4818, 8079, 1330, 3128, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 1330, 48321, 198, 6015, 10786, 10331, 3256, 1641, 11639, 82, 504, 12, 2655, 361, 11537, 198, 6738, 41927, 292, 13, 26791, 13, 4703, 62, 26791, 1330, 7110, 62, 19849, 355, 41927, 292, 62, 29487, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 686, 66, 62, 22019, 303, 11, 257, 1229, 198, 198, 11748, 47585, 43328, 353, 13, 258, 79, 43328, 353, 17822, 1424, 355, 289, 489, 198, 11748, 47585, 43328, 353, 13, 258, 79, 43328, 353, 33637, 355, 289, 457, 198, 6738, 47585, 43328, 353, 13, 258, 79, 43328, 353, 1330, 32308, 43328, 353, 628, 198, 198, 4871, 12744, 7, 15252, 2599, 198, 220, 220, 220, 37227, 9487, 284, 3994, 1321, 329, 6670, 973, 287, 3047, 37811, 628, 198, 4871, 10766, 41730, 43328, 353, 7, 15252, 2599, 198, 220, 220, 220, 37227, 43328, 889, 20081, 329, 2769, 4673, 37811, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23318, 4277, 3815, 284, 2888, 9633, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4475, 796, 3128, 13, 40838, 22446, 2536, 31387, 10786, 4, 67, 4, 65, 4, 56, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27903, 5216, 669, 796, 289, 457, 13, 27903, 5216, 669, 3419, 17816, 1370, 4033, 669, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39873, 62, 23912, 1424, 220, 220, 796, 289, 489, 13, 39873, 62, 23912, 1424, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45286, 62, 23912, 1424, 796, 289, 489, 13, 45286, 62, 23912, 1424, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19662, 62, 21370, 66, 220, 220, 220, 220, 220, 796, 7736, 13, 5959, 33, 14058, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34345, 220, 220, 220, 220, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 62, 15908, 220, 220, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9060, 62, 18982, 796, 705, 11134, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14681, 62, 18242, 796, 10148, 220, 220, 220, 220, 220, 1303, 611, 257, 2060, 1429, 318, 973, 329, 477, 3047, 11, 900, 428, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4871, 2649, 796, 10352, 220, 1303, 705, 39491, 41707, 41684, 3256, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2301, 2234, 220, 220, 220, 220, 796, 10352, 220, 1303, 6407, 393, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 853, 1039, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34, 5653, 18242, 19580, 796, 366, 37693, 1, 628, 198, 220, 220, 220, 825, 41216, 7, 944, 11, 7890, 14535, 11, 16793, 62, 14933, 41888, 4357, 16793, 62, 27160, 28, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 10007, 286, 1398, 284, 787, 21528, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 1366, 14535, 220, 220, 220, 383, 1366, 14535, 326, 4909, 11887, 1321, 329, 3047, 14, 33407, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 796, 1366, 14535, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14681, 18242, 796, 2116, 13, 39873, 62, 23912, 1424, 58, 944, 13, 34345, 4083, 18242, 220, 220, 1303, 1429, 973, 287, 1123, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14681, 18242, 796, 10148, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 4871, 2649, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 7, 77, 11, 85, 8, 287, 27056, 378, 7, 13344, 7, 16793, 62, 14933, 11, 16793, 62, 27160, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 220, 220, 220, 796, 12744, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 7568, 796, 2116, 13, 7568, 13, 17946, 58, 944, 13, 7568, 17816, 16793, 20520, 855, 85, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 16793, 62, 8367, 796, 410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 18242, 796, 2116, 13, 39873, 62, 23912, 1424, 58, 77, 4083, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 8043, 796, 2116, 13, 27903, 5216, 669, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 853, 1039, 13, 33295, 7, 22065, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 20683, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 220, 220, 220, 796, 12744, 7, 16793, 62, 14933, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 7568, 796, 2116, 13, 7568, 13, 17946, 58, 944, 13, 7568, 17816, 16793, 20520, 855, 16793, 62, 27160, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 16793, 62, 8367, 796, 2496, 62, 27160, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 220, 220, 220, 796, 12744, 7, 16793, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 7568, 796, 2116, 13, 7568, 13, 17946, 58, 944, 13, 7568, 17816, 16793, 20520, 855, 16793, 62, 27160, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 16793, 62, 8367, 796, 2496, 62, 27160, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 18242, 796, 2116, 13, 39873, 62, 23912, 1424, 58, 22065, 13, 3672, 4083, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 8043, 796, 2116, 13, 27903, 5216, 669, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 853, 1039, 13, 33295, 7, 22065, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 220, 220, 220, 825, 3033, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28114, 262, 3033, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 17923, 11, 8996, 1180, 6670, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 20683, 11, 655, 7110, 262, 3033, 220, 220, 220, 220, 220, 220, 220, 24293, 815, 466, 1366, 14, 23209, 21528, 2427, 0, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19662, 62, 21370, 66, 13, 10778, 7203, 19260, 1058, 28114, 889, 3033, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 2496, 15, 796, 2116, 13, 83, 853, 1039, 58, 15, 60, 220, 1303, 1327, 12, 40976, 329, 13934, 17909, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 16, 796, 2116, 13, 83, 853, 1039, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 62, 40890, 796, 2116, 13, 7568, 13, 13083, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 23105, 11, 30053, 287, 27056, 378, 7, 489, 83, 62, 40890, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3895, 855, 6, 16793, 10354, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9874, 768, 796, 2116, 13, 45286, 62, 23912, 1424, 58, 30053, 4083, 8800, 768, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 796, 32308, 43328, 353, 7203, 10034, 21857, 1600, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 27237, 276, 220, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 301, 6021, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 6404, 29487, 796, 19779, 88, 1298, 25101, 553, 87, 1298, 25101, 553, 7890, 1298, 25101, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 8800, 768, 796, 9874, 768, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 87, 62, 18242, 796, 2116, 13, 45286, 62, 23912, 1424, 58, 30053, 4083, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 88, 62, 18242, 796, 366, 37103, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 18982, 220, 796, 2116, 13, 9060, 62, 18982, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 21928, 1722, 220, 796, 2116, 13, 22915, 62, 15908, 10, 1, 14, 10034, 62, 1, 10, 30053, 10, 1, 62, 1, 10, 944, 13, 4475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 10366, 952, 62, 29487, 220, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 10366, 952, 62, 4906, 220, 796, 705, 10366, 952, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 88, 62, 10366, 952, 62, 18242, 796, 705, 90, 15, 92, 14, 90, 16, 92, 4458, 18982, 7, 16793, 15, 13, 18242, 11, 16793, 16, 13, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 34, 5653, 18242, 220, 220, 220, 796, 705, 4852, 1364, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 34, 5653, 18242, 19580, 220, 220, 796, 2116, 13, 34, 5653, 18242, 19580, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 22510, 21351, 39470, 82, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 617, 3131, 2420, 284, 262, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14681, 18242, 25, 1554, 13, 26086, 62, 5239, 13, 4550, 7, 944, 13, 14681, 18242, 11, 1073, 3669, 41888, 15, 13, 3070, 11, 15, 13, 1795, 12962, 1303, 11887, 1429, 326, 11073, 777, 3033, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 36733, 1096, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 4550, 7, 16793, 15, 13, 7568, 58, 30053, 4357, 1438, 28, 16793, 15, 13, 3672, 11, 3197, 11639, 9662, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 8043, 28, 16793, 15, 13, 8043, 11, 6167, 28, 16793, 15, 13, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8064, 62, 22510, 28, 17821, 11, 10366, 952, 62, 6559, 28, 25101, 11, 10366, 952, 62, 3911, 1008, 28, 16793, 16, 13, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 4550, 7, 16793, 16, 13, 7568, 58, 30053, 4357, 1438, 28, 16793, 16, 13, 3672, 11, 3197, 11639, 9662, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 8043, 28, 16793, 16, 13, 8043, 11, 6167, 28, 16793, 16, 13, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8064, 62, 22510, 28, 25101, 11, 10366, 952, 62, 6559, 28, 17821, 11, 10366, 952, 62, 3911, 1008, 28, 16793, 15, 13, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 4871, 2649, 855, 6, 39491, 10354, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 15, 11, 62, 796, 45941, 13, 10034, 21857, 7, 16793, 15, 13, 7568, 58, 30053, 4357, 65, 1040, 28, 8800, 768, 11, 27237, 276, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 11, 62, 796, 45941, 13, 10034, 21857, 7, 16793, 16, 13, 7568, 58, 30053, 4357, 65, 1040, 28, 8800, 768, 11, 27237, 276, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14139, 796, 7736, 13, 1136, 19117, 10186, 7, 83, 15, 11, 83, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 26086, 62, 5239, 13, 4550, 7203, 19117, 10186, 796, 1391, 15, 25, 13, 19, 69, 92, 1911, 18982, 7, 25512, 341, 828, 1073, 3669, 41888, 15, 13, 3070, 11, 15, 13, 4790, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 1554, 13, 41049, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 21928, 5647, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 220, 220, 220, 825, 3895, 62, 10215, 39468, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43328, 35811, 1022, 3033, 286, 262, 399, 45, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 2744, 49501, 6550, 45977, 286, 17571, 357, 4852, 14, 415, 270, 404, 8, 22492, 198, 220, 220, 220, 220, 220, 220, 220, 10369, 2964, 18200, 796, 1391, 6, 17989, 10354, 6, 82, 504, 12, 2655, 361, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2172, 82, 796, 1391, 6, 66, 8899, 10354, 458, 83, 13, 1136, 62, 66, 8899, 7203, 65, 18351, 12340, 705, 85, 1084, 10354, 532, 16, 11, 705, 85, 9806, 10354, 1343, 16, 92, 628, 220, 220, 220, 220, 220, 220, 220, 329, 269, 11, 16793, 287, 27056, 378, 7, 944, 13, 83, 853, 1039, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 1722, 796, 45144, 15, 92, 14, 10215, 39468, 23330, 16, 92, 23330, 17, 92, 1911, 18982, 7, 944, 13, 22915, 62, 15908, 11, 16793, 13, 3672, 11, 944, 13, 4475, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 13083, 796, 2496, 13, 7568, 13, 13083, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 477, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 0, 11639, 16793, 10354, 8251, 13, 33295, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 796, 2496, 13, 7568, 58, 13083, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1162, 81, 6759, 796, 256, 44807, 10215, 81, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 16096, 17593, 284, 44189, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1162, 81, 6759, 13, 1462, 62, 40664, 7203, 90, 15, 27422, 40664, 1911, 18982, 7, 21928, 1722, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 2603, 29487, 8019, 3264, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 897, 796, 458, 83, 13, 7266, 489, 1747, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4894, 8899, 16, 796, 7877, 13, 79, 8043, 7, 10215, 81, 6759, 11, 12429, 404, 912, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 5657, 220, 220, 220, 220, 796, 458, 83, 13, 8043, 5657, 7, 25080, 8899, 16, 11, 7877, 28, 897, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 5657, 13, 897, 13, 2617, 62, 20760, 624, 23912, 1424, 7, 685, 72, 13, 1136, 62, 5239, 22446, 36311, 10786, 3, 11537, 329, 1312, 287, 269, 5657, 13, 897, 13, 1136, 62, 20760, 624, 23912, 1424, 3419, 4357, 12429, 10331, 2964, 18200, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 1162, 81, 6759, 13, 28665, 82, 13, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 685, 72, 13, 33491, 10786, 62, 41707, 59, 62, 11537, 329, 1312, 287, 14722, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6482, 4067, 286, 36066, 284, 3641, 286, 262, 41701, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 742, 3378, 7, 37659, 13, 283, 858, 7, 11925, 7, 23912, 1424, 4008, 10, 15, 13, 20, 11, 4159, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 20760, 3378, 7, 37659, 13, 283, 858, 7, 11925, 7, 23912, 1424, 4008, 10, 15, 13, 20, 11, 4159, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 742, 624, 23912, 1424, 7, 23912, 1424, 11, 10369, 2964, 18200, 11, 10369, 7857, 28, 1507, 11, 4159, 28, 25101, 11, 387, 11639, 3506, 3256, 13179, 28, 2154, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 20760, 624, 23912, 1424, 7, 23912, 1424, 11, 10369, 2964, 18200, 11, 10369, 7857, 28, 1507, 11, 4159, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 40773, 14, 9858, 6682, 36052, 1343, 26484, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 796, 289, 489, 13, 34, 5653, 1273, 696, 7, 944, 13, 34, 5653, 18242, 19580, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 13, 1073, 3669, 796, 685, 15, 13, 2999, 11, 16, 13, 405, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 13, 10331, 7857, 796, 1467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 13, 6862, 796, 705, 22487, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 15, 13, 2999, 11, 16, 13, 405, 11, 46406, 62, 301, 696, 13, 5239, 11, 10331, 7857, 28, 46406, 62, 301, 696, 13, 10331, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 387, 28, 46406, 62, 301, 696, 13, 3099, 11, 6862, 28, 46406, 62, 301, 696, 13, 6862, 11, 35636, 28, 897, 13, 7645, 31554, 274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 220, 220, 220, 796, 289, 489, 13, 28925, 1273, 696, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 13, 3099, 796, 705, 3506, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 13, 1073, 3669, 796, 685, 15, 13, 2079, 11, 16, 13, 405, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 13, 10331, 7857, 796, 1467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 13, 6862, 796, 705, 22487, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 22554, 62, 301, 696, 13, 1073, 3669, 58, 15, 4357, 22554, 62, 301, 696, 13, 1073, 3669, 58, 16, 4357, 22554, 62, 301, 696, 13, 5239, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 22554, 62, 301, 696, 13, 10331, 7857, 11, 3099, 28, 22554, 62, 301, 696, 13, 3099, 11, 46935, 28, 22554, 62, 301, 696, 13, 6862, 11, 6121, 28, 897, 13, 7645, 31554, 274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 15, 13, 3070, 11, 15, 13, 6052, 11, 16793, 13, 18242, 11, 10331, 7857, 28, 1433, 11, 3099, 11639, 9464, 3256, 6862, 11639, 22487, 3256, 35636, 28, 897, 13, 7645, 31554, 274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7203, 90, 15, 27422, 90, 16, 92, 1911, 18982, 7, 21928, 1722, 11, 944, 13, 9060, 62, 18982, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 28, 944, 13, 9060, 62, 18982, 11, 67, 14415, 28, 6200, 11, 65, 3524, 62, 45457, 11639, 33464, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 220, 220, 220, 825, 17724, 7, 944, 11, 27432, 62, 7890, 34758, 5512, 9288, 62, 7890, 34758, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43328, 262, 3047, 290, 4856, 16277, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19662, 62, 21370, 66, 13, 10778, 7203, 19260, 1058, 28114, 889, 360, 6144, 17724, 13, 366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 477, 479, 12, 11379, 3272, 12, 12102, 341, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 7, 27432, 11, 27432, 56, 11, 9288, 11, 9288, 56, 8, 287, 27056, 378, 7, 13344, 7, 27432, 62, 7890, 17816, 55, 6, 4357, 27432, 62, 7890, 17816, 56, 6, 4357, 9288, 62, 7890, 17816, 55, 6, 4357, 9288, 62, 7890, 17816, 56, 6, 12962, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 796, 32308, 43328, 353, 7203, 10034, 21857, 1600, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 10366, 952, 62, 29487, 220, 220, 220, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 10366, 952, 62, 4906, 220, 220, 220, 796, 366, 10366, 952, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 88, 62, 10366, 952, 62, 18242, 796, 366, 14402, 14, 44077, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 18242, 62, 7857, 220, 220, 220, 796, 1478, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 27237, 276, 220, 796, 6407, 220, 1303, 8996, 5485, 5400, 357, 40798, 836, 470, 423, 262, 976, 1785, 7800, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 18982, 220, 796, 2116, 13, 9060, 62, 18982, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 21928, 1722, 220, 796, 45144, 15, 92, 14, 10034, 62, 35, 6144, 62, 28764, 2867, 62, 74, 11379, 90, 16, 92, 23330, 17, 92, 1911, 18982, 7, 944, 13, 22915, 62, 15908, 11, 72, 11, 944, 13, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 8800, 768, 796, 685, 11848, 14, 940, 13, 329, 275, 65, 287, 2837, 7, 1157, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 301, 6021, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 6404, 29487, 796, 19779, 88, 1298, 25101, 553, 87, 1298, 25101, 553, 7890, 1298, 25101, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 87, 62, 18242, 796, 366, 39156, 2867, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 88, 62, 18242, 796, 366, 3163, 65, 13, 27719, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 34, 5653, 18242, 796, 705, 4852, 1364, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 34, 5653, 18242, 19580, 220, 220, 796, 2116, 13, 34, 5653, 18242, 19580, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 22510, 21351, 39470, 82, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14681, 18242, 25, 1554, 13, 26086, 62, 5239, 13, 4550, 7, 944, 13, 14681, 18242, 11, 1073, 3669, 41888, 15, 13, 3070, 11, 15, 13, 1795, 4357, 10331, 7857, 28, 1415, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 36733, 1096, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 220, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 220, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 11, 16793, 287, 27056, 378, 7, 944, 13, 83, 853, 1039, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 13614, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 8367, 796, 2496, 13, 16793, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 4550, 7, 27432, 58, 4512, 56, 855, 16793, 62, 8367, 16589, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 16793, 13, 3672, 10, 6, 62, 27432, 3256, 1627, 8043, 28, 16793, 13, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 17, 11, 3197, 11639, 9662, 3256, 6167, 28, 16793, 13, 18242, 10, 1, 16835, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8064, 62, 6559, 28, 17821, 11, 10366, 952, 62, 22510, 28, 25101, 11, 10366, 952, 62, 3911, 1008, 28, 16793, 13, 3672, 10, 6, 62, 9288, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 23983, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 4550, 7, 9288, 58, 1332, 56, 855, 16793, 62, 8367, 16589, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 16793, 13, 3672, 10, 6, 62, 9288, 3256, 1627, 8043, 28, 16793, 13, 8043, 11, 3124, 28, 16793, 13, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 15, 11, 3197, 11639, 9662, 20286, 3256, 6167, 28, 16793, 13, 18242, 10, 1, 6208, 1600, 17130, 28, 15, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8064, 62, 6559, 28, 25101, 11, 10366, 952, 62, 22510, 28, 17821, 11, 10366, 952, 62, 3911, 1008, 28, 16793, 13, 3672, 10, 6, 62, 27432, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 12793, 1366, 284, 19449, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 58, 16793, 13, 3672, 10, 1, 62, 27432, 8973, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 58, 16793, 13, 3672, 10, 1, 62, 9288, 8973, 220, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 2213, 11, 65, 62, 2213, 796, 45941, 13, 10034, 21857, 7, 27432, 58, 27432, 56, 855, 16793, 62, 8367, 4357, 65, 1040, 28, 10034, 13, 8800, 768, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 660, 11, 65, 62, 660, 796, 45941, 13, 10034, 21857, 7, 9288, 58, 9288, 56, 855, 16793, 62, 8367, 4357, 220, 41701, 28, 10034, 13, 8800, 768, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 58, 16793, 13, 3672, 10, 1, 62, 27432, 1, 7131, 1, 8800, 768, 8973, 796, 275, 62, 2213, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 58, 16793, 13, 3672, 10, 1, 62, 27432, 1, 7131, 1, 11299, 8973, 796, 288, 62, 2213, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 58, 16793, 13, 3672, 10, 1, 62, 9288, 1, 7131, 1, 8800, 768, 8973, 796, 275, 62, 660, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 58, 16793, 13, 3672, 10, 1, 62, 9288, 1, 7131, 1, 11299, 8973, 796, 288, 62, 660, 13, 83, 349, 396, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 13, 33295, 7, 67, 62, 660, 13, 83, 349, 396, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 13, 33295, 7, 67, 62, 2213, 13, 83, 349, 396, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14139, 796, 7736, 13, 1136, 19117, 10186, 7, 9288, 62, 7890, 58, 15, 4357, 9288, 62, 7890, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 26086, 62, 5239, 13, 4550, 7203, 14402, 8621, 10186, 796, 1391, 15, 25, 13, 19, 69, 92, 1911, 18982, 7, 25512, 341, 828, 1073, 3669, 41888, 15, 13, 3070, 11, 15, 13, 4761, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 1554, 13, 41049, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 21928, 5647, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 2482, 284, 19449, 2393, 357, 3137, 1554, 21857, 3815, 1222, 41701, 8, 284, 302, 12, 15883, 21528, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 90, 15, 27422, 17752, 1911, 18982, 7, 10034, 13, 21928, 1722, 828, 705, 86, 11537, 355, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 17752, 62, 7890, 11, 503, 7753, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 628, 220, 220, 220, 825, 371, 4503, 7, 944, 11, 69, 1050, 82, 41888, 4357, 83, 1050, 82, 41888, 4357, 4134, 23843, 34758, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43328, 262, 371, 4503, 12133, 1222, 3613, 284, 2420, 2393, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19662, 62, 21370, 66, 13, 10778, 7203, 19260, 1058, 28114, 889, 371, 4503, 12133, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 3613, 1722, 796, 45144, 15, 92, 14, 12204, 62, 22019, 303, 23330, 16, 92, 1911, 18982, 7, 944, 13, 22915, 62, 15908, 11, 944, 13, 4475, 8, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 5765, 2603, 29487, 8019, 3264, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 897, 796, 458, 83, 13, 7266, 489, 1747, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15315, 477, 286, 262, 371, 4503, 23759, 422, 262, 509, 12, 11379, 3272, 12, 12102, 341, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 15, 11, 352, 4357, 685, 15, 11, 352, 4357, 43979, 11639, 438, 3256, 18242, 11639, 2949, 49298, 3256, 75, 86, 28, 17, 11, 66, 11639, 44605, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 897, 71, 1370, 7, 88, 28, 16, 11, 75, 86, 28, 16, 11, 66, 11639, 2971, 44605, 3256, 7278, 11639, 438, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 329, 10117, 11, 7, 69, 1050, 11, 83, 1050, 8, 287, 27056, 378, 7, 13344, 7, 69, 1050, 82, 11, 83, 1050, 82, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 66, 62, 14272, 796, 257, 1229, 7, 69, 1050, 11, 83, 1050, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 69, 1050, 11, 83, 1050, 11, 18242, 11639, 42, 12, 11379, 1391, 15, 92, 357, 32, 9598, 796, 1391, 16, 25, 13, 17, 69, 30072, 4458, 18982, 7, 701, 11, 12204, 62, 14272, 828, 75, 86, 28, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 371, 4503, 12133, 284, 44189, 2393, 357, 1462, 7110, 1568, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 62, 3672, 796, 45144, 15, 92, 23330, 16, 27422, 40664, 1911, 18982, 7, 21928, 1722, 11, 701, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 796, 685, 45144, 15, 5512, 90, 16, 92, 1911, 18982, 7, 46428, 11, 34788, 8, 329, 277, 79, 11, 34788, 287, 19974, 7, 69, 1050, 11, 83, 1050, 8, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7736, 13, 1462, 62, 40664, 7, 448, 7753, 62, 3672, 11, 40664, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 26933, 15, 13, 15, 11, 352, 13, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 15, 13, 15, 11, 352, 13, 20, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 81, 6, 3, 59, 538, 18217, 261, 3, 7, 17096, 12, 4852, 8, 3256, 10331, 7857, 28, 1828, 11, 3099, 11639, 3506, 3256, 6862, 11639, 4852, 3256, 9150, 16193, 16, 11, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 742, 624, 23912, 1424, 7, 14692, 90, 15, 25, 13, 16, 69, 92, 1911, 18982, 7, 72, 8, 329, 1312, 287, 7877, 13, 1136, 62, 742, 3378, 3419, 4357, 10331, 7857, 28, 1828, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7, 81, 6, 3, 59, 538, 18217, 261, 3, 7, 4852, 8, 3256, 10331, 7857, 28, 1828, 11, 3099, 11639, 3506, 3256, 6862, 11639, 22487, 3256, 9150, 16193, 15, 11, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 20760, 624, 23912, 1424, 26933, 7061, 48688, 14692, 90, 15, 25, 13, 16, 69, 92, 1911, 18982, 7, 72, 8, 329, 1312, 287, 7877, 13, 1136, 62, 20760, 3378, 3419, 58, 16, 21912, 16, 11907, 10, 58, 7061, 4357, 10331, 7857, 28, 1828, 8, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 40773, 14, 9858, 6682, 36052, 198, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 796, 289, 489, 13, 34, 5653, 1273, 696, 7, 944, 13, 34, 5653, 18242, 19580, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 13, 1073, 3669, 796, 685, 15, 13, 3070, 11, 15, 13, 5607, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 13, 10331, 7857, 796, 1467, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 46406, 62, 301, 696, 13, 1073, 3669, 58, 15, 4357, 46406, 62, 301, 696, 13, 1073, 3669, 58, 16, 4357, 46406, 62, 301, 696, 13, 5239, 11, 10331, 7857, 28, 46406, 62, 301, 696, 13, 10331, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 387, 28, 46406, 62, 301, 696, 13, 3099, 11, 6862, 28, 46406, 62, 301, 696, 13, 6862, 11, 35636, 28, 897, 13, 7645, 31554, 274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 220, 220, 220, 796, 289, 489, 13, 28925, 1273, 696, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 13, 1073, 3669, 796, 685, 15, 13, 3070, 11, 15, 13, 3829, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 13, 10331, 7857, 796, 1467, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 22554, 62, 301, 696, 13, 1073, 3669, 58, 15, 4357, 22554, 62, 301, 696, 13, 1073, 3669, 58, 16, 4357, 22554, 62, 301, 696, 13, 5239, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 22554, 62, 301, 696, 13, 10331, 7857, 11, 3099, 28, 22554, 62, 301, 696, 13, 3099, 11, 46935, 28, 22554, 62, 301, 696, 13, 6862, 11, 6121, 28, 897, 13, 7645, 31554, 274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 22046, 796, 1391, 6, 3099, 10354, 6, 9464, 41707, 6862, 10354, 6, 4852, 41707, 10331, 7857, 10354, 1507, 4032, 35636, 10354, 897, 13, 7645, 31554, 274, 92, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14681, 18242, 25, 7877, 13, 5239, 7, 15, 13, 3070, 11, 15, 13, 6469, 11, 944, 13, 14681, 18242, 11, 1174, 5239, 62, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9922, 25, 7877, 13, 5239, 7, 15, 13, 3070, 11, 15, 13, 2425, 11, 81, 1, 17320, 23843, 796, 1391, 15, 25, 13, 17, 69, 92, 3, 59, 4426, 38892, 16, 25, 13, 17, 69, 92, 1911, 18982, 7, 4134, 23843, 17816, 32604, 6, 4357, 4134, 23843, 17816, 19282, 20520, 828, 1174, 5239, 62, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1232, 796, 7877, 13, 1455, 437, 7, 17946, 28, 19, 11, 77, 931, 1563, 82, 28, 16, 11, 10331, 7857, 28, 1065, 11, 77, 4033, 28, 16, 11, 28665, 2777, 4092, 28, 15, 13, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1232, 13, 19334, 62, 14535, 7, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 10786, 90, 15, 27422, 90, 16, 92, 4458, 18982, 7, 21928, 1722, 11, 944, 13, 9060, 62, 18982, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 28, 944, 13, 9060, 62, 18982, 11, 65, 3524, 62, 45457, 11639, 33464, 3256, 67, 14415, 28, 6200, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 220, 220, 220, 825, 7110, 62, 22462, 62, 23569, 7, 944, 11, 23569, 11, 897, 28, 14202, 11, 9630, 10779, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25302, 2106, 286, 2746, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 220, 796, 2106, 13, 23569, 17816, 22462, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 220, 220, 220, 220, 796, 2837, 7, 16, 11, 11925, 7, 22462, 47762, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 705, 43, 793, 1391, 15, 92, 4458, 18982, 7, 9630, 8, 611, 6376, 29, 28, 15, 2073, 705, 43, 793, 6, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 22462, 11, 18242, 28, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 796, 685, 45144, 15, 5512, 90, 16, 92, 1911, 18982, 7, 72, 11, 73, 8, 329, 1312, 11, 73, 287, 19974, 7, 87, 11, 22462, 8, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 21370, 628, 198, 220, 220, 220, 825, 2994, 62, 23569, 7, 944, 11, 23569, 11, 74, 11379, 28, 15, 11, 2100, 62, 22462, 28, 15, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43328, 2994, 355, 257, 2163, 286, 36835, 329, 2746, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19662, 62, 21370, 66, 13, 10778, 7203, 19260, 1058, 28114, 889, 2994, 355, 257, 2163, 286, 36835, 1271, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 3613, 1722, 796, 45144, 15, 92, 14, 22462, 62, 538, 5374, 82, 23330, 16, 92, 1911, 18982, 7, 944, 13, 22915, 62, 15908, 11, 944, 13, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 10034, 1749, 796, 2099, 7, 23569, 8, 855, 4868, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3197, 262, 2994, 12133, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 897, 796, 458, 83, 13, 7266, 489, 1747, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 635, 3613, 262, 1366, 284, 257, 44189, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 62, 10034, 1749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 71, 287, 27056, 378, 7, 23569, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 796, 2116, 13, 29487, 62, 22462, 62, 23569, 7, 71, 11, 897, 28, 897, 11, 9630, 28, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 45144, 15, 92, 23330, 16, 27422, 40664, 1911, 18982, 7, 21928, 1722, 11, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7736, 13, 1462, 62, 40664, 7, 34345, 11, 40664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 796, 2116, 13, 29487, 62, 22462, 62, 23569, 7, 23569, 11, 897, 28, 897, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 45144, 15, 27422, 40664, 1911, 18982, 7, 21928, 1722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7736, 13, 1462, 62, 40664, 7, 34345, 11, 40664, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 13807, 5374, 3256, 10331, 7857, 28, 1828, 11, 3099, 11639, 3506, 3256, 6862, 11639, 4852, 3256, 9150, 16193, 16, 11, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 742, 624, 23912, 1424, 7, 14692, 90, 15, 25, 13, 16, 69, 92, 1911, 18982, 7, 72, 8, 329, 1312, 287, 7877, 13, 1136, 62, 742, 3378, 3419, 4357, 10331, 7857, 28, 1828, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 43, 793, 3256, 10331, 7857, 28, 1828, 11, 3099, 11639, 3506, 3256, 6862, 11639, 22487, 3256, 9150, 16193, 15, 11, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 20760, 624, 23912, 1424, 26933, 7061, 48688, 14692, 90, 15, 25, 13, 16, 69, 92, 1911, 18982, 7, 72, 8, 329, 1312, 287, 7877, 13, 1136, 62, 20760, 3378, 3419, 58, 16, 21912, 16, 11907, 10, 58, 7061, 4357, 10331, 7857, 28, 1828, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 40773, 14, 9858, 6682, 36052, 198, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 796, 289, 489, 13, 34, 5653, 1273, 696, 7, 944, 13, 34, 5653, 18242, 19580, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 13, 1073, 3669, 796, 685, 15, 13, 3070, 11, 15, 13, 5607, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 907, 62, 301, 696, 13, 10331, 7857, 796, 1248, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 46406, 62, 301, 696, 13, 1073, 3669, 58, 15, 4357, 46406, 62, 301, 696, 13, 1073, 3669, 58, 16, 4357, 46406, 62, 301, 696, 13, 5239, 11, 10331, 7857, 28, 46406, 62, 301, 696, 13, 10331, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 387, 28, 46406, 62, 301, 696, 13, 3099, 11, 6862, 28, 46406, 62, 301, 696, 13, 6862, 11, 35636, 28, 897, 13, 7645, 31554, 274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 220, 220, 220, 796, 289, 489, 13, 28925, 1273, 696, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 13, 1073, 3669, 796, 685, 15, 13, 3070, 11, 15, 13, 3829, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 301, 696, 13, 10331, 7857, 796, 1248, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 22554, 62, 301, 696, 13, 1073, 3669, 58, 15, 4357, 22554, 62, 301, 696, 13, 1073, 3669, 58, 16, 4357, 22554, 62, 301, 696, 13, 5239, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 22554, 62, 301, 696, 13, 10331, 7857, 11, 3099, 28, 22554, 62, 301, 696, 13, 3099, 11, 46935, 28, 22554, 62, 301, 696, 13, 6862, 11, 6121, 28, 897, 13, 7645, 31554, 274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 22046, 796, 1391, 6, 3099, 10354, 6, 9464, 41707, 6862, 10354, 6, 4852, 41707, 10331, 7857, 10354, 1507, 4032, 35636, 10354, 897, 13, 7645, 31554, 274, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 366, 7762, 24765, 22014, 796, 1391, 15, 19629, 1391, 16, 92, 509, 12, 69, 10119, 1911, 18982, 7, 2100, 62, 22462, 11, 11925, 7, 23569, 4008, 611, 477, 62, 10034, 1749, 2073, 366, 7762, 24765, 22014, 796, 1391, 15, 92, 1911, 18982, 7, 2100, 62, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 15, 13, 3070, 11, 15, 13, 4304, 11, 5239, 11, 1174, 5239, 62, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1232, 796, 7877, 13, 1455, 437, 7, 17946, 28, 16, 11, 77, 931, 1563, 82, 28, 16, 11, 10331, 7857, 28, 1065, 11, 77, 4033, 28, 16, 11, 28665, 2777, 4092, 28, 15, 13, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1232, 13, 19334, 62, 14535, 7, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 277, 796, 37456, 2124, 11, 1930, 25, 965, 7, 87, 737, 81, 36311, 10786, 15, 27691, 81, 36311, 10786, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 687, 1436, 7, 6759, 29487, 8019, 13, 83, 15799, 13, 37, 19524, 8479, 1436, 7, 69, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 10786, 90, 15, 27422, 90, 16, 92, 4458, 18982, 7, 21928, 1722, 11, 944, 13, 9060, 62, 18982, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 28, 944, 13, 9060, 62, 18982, 11, 65, 3524, 62, 45457, 11639, 33464, 3256, 67, 14415, 28, 2167, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 220, 220, 220, 825, 2746, 7, 944, 11, 19849, 11, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43328, 262, 2746, 10959, 284, 1570, 1568, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 41927, 292, 62, 29487, 7, 19849, 11, 1462, 62, 7753, 11639, 90, 15, 92, 14, 90, 16, 92, 62, 19849, 13, 25386, 4458, 18982, 7, 944, 13, 22915, 62, 15908, 11, 3672, 828, 12860, 62, 1477, 7916, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 198, 2235, 3336, 23578, 22492, 628 ]
2.030001
8,433
""" Solve Lasso problem as parametric QP by updating iteratively lambda """ import numpy as np import pandas as pd import os from solvers.solvers import SOLVER_MAP # AVOID CIRCULAR DEPENDENCY from problem_classes.lasso import LassoExample from utils.general import make_sure_path_exists # import osqppurepy as osqp import osqp
[ 37811, 198, 50, 6442, 406, 28372, 1917, 355, 5772, 19482, 1195, 47, 416, 19698, 11629, 9404, 37456, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 6738, 1540, 690, 13, 34453, 690, 1330, 36817, 5959, 62, 33767, 220, 1303, 14661, 46, 2389, 327, 49060, 37232, 5550, 47, 10619, 45155, 198, 6738, 1917, 62, 37724, 13, 75, 28372, 1330, 406, 28372, 16281, 198, 6738, 3384, 4487, 13, 24622, 1330, 787, 62, 19532, 62, 6978, 62, 1069, 1023, 198, 2, 1330, 28686, 80, 381, 495, 9078, 355, 28686, 80, 79, 198, 11748, 28686, 80, 79, 628 ]
3.163462
104
#!/usr/bin/env python3 """ Installation script for Datalad and related components ``datalad-installer`` is a script for installing Datalad_, git-annex_, and related components all in a single invocation. It requires no third-party Python libraries, though it does make heavy use of external packaging commands. .. _Datalad: https://www.datalad.org .. _git-annex: https://git-annex.branchable.com Visit <https://github.com/datalad/datalad-installer> for more information. """ __version__ = "0.5.4" __author__ = "The DataLad Team and Contributors" __author_email__ = "[email protected]" __license__ = "MIT" __url__ = "https://github.com/datalad/datalad-installer" from abc import ABC, abstractmethod from contextlib import contextmanager import ctypes from enum import Enum from functools import total_ordering from getopt import GetoptError, getopt import json import logging import os import os.path from pathlib import Path import platform from random import randrange import re import shlex import shutil import subprocess import sys import tempfile import textwrap from time import sleep from typing import ( Any, Callable, ClassVar, Dict, Iterator, List, NamedTuple, Optional, Tuple, Type, Union, ) from urllib.request import Request, urlopen from zipfile import ZipFile log = logging.getLogger("datalad_installer") SYSTEM = platform.system() ON_LINUX = SYSTEM == "Linux" ON_MACOS = SYSTEM == "Darwin" ON_WINDOWS = SYSTEM == "Windows" ON_POSIX = ON_LINUX or ON_MACOS def parse_log_level(level: str) -> int: """ Convert a log level name (case-insensitive) or number to its numeric value """ try: lv = int(level) except ValueError: levelup = level.upper() if levelup in {"CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG"}: ll = getattr(logging, levelup) assert isinstance(ll, int) return ll else: raise UsageError(f"Invalid log level: {level!r}") else: return lv class Immediate: """ Superclass for constructs returned by the argument-parsing code representing options that are handled "immediately" (i.e., --version and --help) """ pass class VersionRequest(Immediate): """`Immediate` representing a ``--version`` option""" class HelpRequest(Immediate): """`Immediate` representing a ``--help`` option""" SHORT_RGX = re.compile(r"-[^-]") LONG_RGX = re.compile(r"--[^-].*") OPTION_COLUMN_WIDTH = 30 OPTION_HELP_COLUMN_WIDTH = 40 HELP_GUTTER = 2 HELP_INDENT = 2 HELP_WIDTH = 75 @total_ordering class UsageError(Exception): """Raised when an error occurs while processing command-line options""" class ParsedArgs(NamedTuple): """ A pair of global options and `ComponentRequest`\\s parsed from command-line arguments """ global_opts: Dict[str, Any] components: List["ComponentRequest"] class ComponentRequest: """A request for a component parsed from command-line arguments""" class CondaInstance(NamedTuple): """A Conda installation or environment""" #: The root of the Conda installation basepath: Path #: The name of the environment (`None` for the base environment) name: Optional[str] @property def conda_exe(self) -> Path: """The path to the Conda executable""" if ON_WINDOWS: return self.basepath / "Scripts" / "conda.exe" else: return self.basepath / "bin" / "conda" @property def bindir(self) -> Path: """ The directory in which command-line programs provided by packages are installed """ dirname = "Scripts" if ON_WINDOWS else "bin" if self.name is None: return self.basepath / dirname else: return self.basepath / "envs" / self.name / dirname #: A list of command names and the paths at which they are located CommandList = List[Tuple[str, Path]] class DataladInstaller: """The script's primary class, a manager & runner of components""" COMPONENTS: ClassVar[Dict[str, Type["Component"]]] = {} OPTION_PARSER = OptionParser( help="Installation script for Datalad and related components", options=[ Option( "-V", "--version", is_flag=True, immediate=VersionRequest(), help="Show program version and exit", ), Option( "-l", "--log-level", converter=parse_log_level, metavar="LEVEL", help="Set logging level [default: INFO]", ), Option( "-E", "--env-write-file", converter=Path, multiple=True, help=( "Append PATH modifications and other shell commands to the" " given file; can be given multiple times" ), ), Option( "--sudo", choices=[v.value for v in SudoConfirm], converter=SudoConfirm, help="How to handle sudo commands [default: ask]", ), ], ) @classmethod def register_component( cls, name: str ) -> Callable[[Type["Component"]], Type["Component"]]: """A decorator for registering concrete `Component` subclasses""" return decorator def ensure_env_write_file(self) -> None: """If there are no env write files registered, add one""" if not self.env_write_files: fd, fpath = tempfile.mkstemp(prefix="dl-env-", suffix=".sh") os.close(fd) log.info("Writing environment modifications to %s", fpath) self.env_write_files.append(Path(fpath)) @classmethod def parse_args(cls, args: List[str]) -> Union[Immediate, ParsedArgs]: """ Parse all command-line arguments. :param List[str] args: command-line arguments without ``sys.argv[0]`` """ r = cls.OPTION_PARSER.parse_args(args) if isinstance(r, Immediate): return r global_opts, leftovers = r components: List[ComponentRequest] = [] while leftovers: c = leftovers.pop(0) name, eq, version = c.partition("=") if not name: raise UsageError("Component name must be nonempty") try: component = cls.COMPONENTS[name] except KeyError: raise UsageError(f"Unknown component: {name!r}") cparser = component.OPTION_PARSER if version and not cparser.versioned: raise UsageError(f"{name} component does not take a version", name) if eq and not version: raise UsageError("Version must be nonempty", name) cr = cparser.parse_args(leftovers) if isinstance(cr, Immediate): return cr kwargs, leftovers = cr if version: kwargs["version"] = version components.append(ComponentRequest(name=name, **kwargs)) return ParsedArgs(global_opts, components) def main(self, argv: Optional[List[str]] = None) -> int: """ Parsed command-line arguments and perform the requested actions. Returns 0 if everything was OK, nonzero otherwise. :param List[str] argv: command-line arguments, including ``sys.argv[0]`` """ if argv is None: argv = sys.argv progname, *args = argv if not progname: progname = "datalad-installer" else: progname = Path(progname).name try: r = self.parse_args(args) except UsageError as e: print(self.short_help(progname, e.component), file=sys.stderr) print(file=sys.stderr) print(str(e), file=sys.stderr) return 2 if isinstance(r, VersionRequest): print("datalad-installer", __version__) return 0 elif isinstance(r, HelpRequest): print(self.long_help(progname, r.component)) return 0 else: assert isinstance(r, ParsedArgs) global_opts, components = r if not components: components = [ComponentRequest("datalad")] logging.basicConfig( format="%(asctime)s [%(levelname)-8s] %(name)s %(message)s", datefmt="%Y-%m-%dT%H:%M:%S%z", level=global_opts.pop("log_level", logging.INFO), ) if global_opts.get("env_write_file"): self.env_write_files.extend(global_opts["env_write_file"]) self.ensure_env_write_file() if global_opts.get("sudo"): self.sudo_confirm = global_opts["sudo"] for cr in components: self.addcomponent(name=cr.name, **cr.kwargs) ok = True for name, path in self.new_commands: log.info("%s is now installed at %s", name, path) if not os.path.exists(path): log.error("%s does not exist!", path) ok = False elif not ON_WINDOWS and not os.access(path, os.X_OK): log.error("%s is not executable!", path) ok = False else: try: sr = subprocess.run( [str(path), "--help"], stdout=subprocess.DEVNULL ) except Exception as e: log.error("Failed to run `%s --help`: %s", path, e) ok = False else: if sr.returncode != 0: log.error("`%s --help` command failed!", path) ok = False return 0 if ok else 1 def addenv(self, line: str) -> None: """Write a line to the env write files""" log.debug("Adding line %r to env_write_files", line) for p in self.env_write_files: with p.open("a") as fp: print(line, file=fp) def addpath(self, p: Union[str, os.PathLike], last: bool = False) -> None: """ Add a line to the env write files that prepends (or appends, if ``last`` is true) a given path to ``PATH`` """ path = Path(p).resolve() if not last: line = f'export PATH={shlex.quote(str(path))}:"$PATH"' else: line = f'export PATH="$PATH":{shlex.quote(str(path))}' self.addenv(line) def addcomponent(self, name: str, **kwargs: Any) -> None: """Provision the given component""" try: component = self.COMPONENTS[name] except AttributeError: raise ValueError(f"Unknown component: {name}") component(self).provide(**kwargs) def get_conda(self) -> CondaInstance: """ Return the most-recently created Conda installation or environment. If there is no such instance, return an instance for an externally-installed Conda installation, raising an error if none is found. """ if self.conda_stack: return self.conda_stack[-1] else: conda_path = shutil.which("conda") if conda_path is not None: basepath = Path(readcmd(conda_path, "info", "--base").strip()) return CondaInstance(basepath=basepath, name=None) else: raise RuntimeError("conda not installed") @classmethod @classmethod class Component(ABC): """ An abstract base class for a component that can be specified on the command line and provisioned """ OPTION_PARSER: ClassVar[OptionParser] @abstractmethod @DataladInstaller.register_component("venv") class VenvComponent(Component): """Creates a Python virtual environment using ``python -m venv``""" OPTION_PARSER = OptionParser( "venv", versioned=False, help="Create a Python virtual environment", options=[ Option( "--path", converter=Path, metavar="PATH", help="Create the venv at the given path", ), Option( "-e", "--extra-args", converter=shlex.split, help="Extra arguments to pass to the venv command", ), # For use in testing against the dev version of pip: Option( "--dev-pip", is_flag=True, help="Install the development version of pip from GitHub", ), ], ) @DataladInstaller.register_component("miniconda") class MinicondaComponent(Component): """Installs Miniconda""" OPTION_PARSER = OptionParser( "miniconda", versioned=False, help="Install Miniconda", options=[ Option( "--path", converter=Path, metavar="PATH", help="Install Miniconda at the given path", ), Option("--batch", is_flag=True, help="Run in batch (noninteractive) mode"), Option( "--spec", converter=str.split, help=( "Space-separated list of package specifiers to install in" " the Miniconda environment" ), ), Option( "-e", "--extra-args", converter=shlex.split, help="Extra arguments to pass to the install command", ), ], ) @DataladInstaller.register_component("conda-env") class CondaEnvComponent(Component): """Creates a Conda environment""" OPTION_PARSER = OptionParser( "conda-env", versioned=False, help="Create a Conda environment", options=[ Option( "-n", "--name", "envname", metavar="NAME", help="Name of the environment", ), Option( "--spec", converter=str.split, help="Space-separated list of package specifiers to install in the environment", ), Option( "-e", "--extra-args", converter=shlex.split, help="Extra arguments to pass to the `conda create` command", ), ], ) @DataladInstaller.register_component("neurodebian") class NeurodebianComponent(Component): """Installs & configures NeuroDebian""" OPTION_PARSER = OptionParser( "neurodebian", versioned=False, help="Install & configure NeuroDebian", options=[ Option( "-e", "--extra-args", converter=shlex.split, help="Extra arguments to pass to the nd-configurerepo command", ) ], ) KEY_FINGERPRINT = "0xA5D32F012649A5A9" KEY_URL = "http://neuro.debian.net/_static/neuro.debian.net.asc" DOWNLOAD_SERVER = "us-nh" class InstallableComponent(Component): """ Superclass for components that install packages via installation methods """ NAME: ClassVar[str] INSTALLERS: ClassVar[Dict[str, Type["Installer"]]] = {} @classmethod def register_installer(cls, installer: Type["Installer"]) -> Type["Installer"]: """A decorator for registering concrete `Installer` subclasses""" cls.INSTALLERS[installer.NAME] = installer methods = cls.OPTION_PARSER.options["--method"].choices assert methods is not None methods.append(installer.NAME) for opt in installer.OPTIONS: cls.OPTION_PARSER.add_option(opt) return installer def get_installer(self, name: str) -> "Installer": """Retrieve & instantiate the installer with the given name""" try: installer_cls = self.INSTALLERS[name] except KeyError: raise ValueError(f"Unknown installation method: {name}") return installer_cls(self.manager) @DataladInstaller.register_component("git-annex") class GitAnnexComponent(InstallableComponent): """Installs git-annex""" NAME = "git-annex" OPTION_PARSER = OptionParser( "git-annex", versioned=True, help="Install git-annex", options=[ Option( "-m", "--method", choices=["auto"], help="Select the installation method to use", ), ], ) @DataladInstaller.register_component("datalad") class DataladComponent(InstallableComponent): """Installs Datalad""" NAME = "datalad" OPTION_PARSER = OptionParser( "datalad", versioned=True, help="Install Datalad", options=[ Option( "-m", "--method", choices=["auto"], help="Select the installation method to use", ), ], ) class Installer(ABC): """An abstract base class for installation methods for packages""" NAME: ClassVar[str] OPTIONS: ClassVar[List[Option]] #: Mapping from supported installable component names to #: (installer-specific package IDs, list of installed programs) pairs PACKAGES: ClassVar[Dict[str, Tuple[str, List[str]]]] def install(self, component: str, **kwargs: Any) -> CommandList: """ Installs a given component. Raises `MethodNotSupportedError` if the installation method is not supported on the system or the method does not support installing the given component. Returns a list of (command, Path) pairs for each installed program. """ self.assert_supported_system() try: package, commands = self.PACKAGES[component] except KeyError: raise MethodNotSupportedError( f"{self.NAME} does not know how to install {component}" ) bindir = self.install_package(package, **kwargs) bins = [] for cmd in commands: p = bindir / cmd if ON_WINDOWS and p.suffix == "": p = p.with_suffix(".exe") bins.append((cmd, p)) return bins @abstractmethod def install_package(self, package: str, **kwargs: Any) -> Path: """ Installs a given package. Returns the installation directory for the package's programs. """ ... @abstractmethod def assert_supported_system(self) -> None: """ If the installation method is not supported by the current system, raises `MethodNotSupportedError`; otherwise, does nothing. """ ... EXTRA_ARGS_OPTION = Option( "-e", "--extra-args", converter=shlex.split, help="Extra arguments to pass to the install command", ) @GitAnnexComponent.register_installer @DataladComponent.register_installer class AptInstaller(Installer): """Installs via apt-get""" NAME = "apt" OPTIONS = [ Option( "--build-dep", is_flag=True, help="Install build-dep instead of the package" ), EXTRA_ARGS_OPTION, ] PACKAGES = { "datalad": ("datalad", ["datalad"]), "git-annex": ("git-annex", ["git-annex"]), } @DataladComponent.register_installer @GitAnnexComponent.register_installer class HomebrewInstaller(Installer): """Installs via brew (Homebrew)""" NAME = "brew" OPTIONS = [ EXTRA_ARGS_OPTION, ] PACKAGES = { "datalad": ("datalad", ["datalad"]), "git-annex": ("git-annex", ["git-annex"]), } @DataladComponent.register_installer class PipInstaller(Installer): """ Installs via pip, either at the system level or into a given virtual environment """ NAME = "pip" OPTIONS = [ Option("--devel", is_flag=True, help="Install from GitHub repository"), Option("-E", "--extras", metavar="EXTRAS", help="Install package extras"), EXTRA_ARGS_OPTION, ] PACKAGES = { "datalad": ("datalad", ["datalad"]), } DEVEL_PACKAGES = { "datalad": "git+https://github.com/datalad/datalad.git", } @property @GitAnnexComponent.register_installer class NeurodebianInstaller(AptInstaller): """Installs via apt-get and the NeuroDebian repositories""" NAME = "neurodebian" PACKAGES = { "git-annex": ("git-annex-standalone", ["git-annex"]), } @GitAnnexComponent.register_installer @DataladComponent.register_installer class DebURLInstaller(Installer): """Installs a ``*.deb`` package by URL""" NAME = "deb-url" OPTIONS = [ Option("--url", metavar="URL", help="URL from which to download `*.deb` file"), Option( "--install-dir", converter=Path, metavar="DIR", help="Directory in which to unpack the `*.deb`", ), EXTRA_ARGS_OPTION, ] PACKAGES = { "git-annex": ("git-annex", ["git-annex"]), "datalad": ("datalad", ["datalad"]), } @GitAnnexComponent.register_installer class AutobuildInstaller(AutobuildSnapshotInstaller): """Installs the latest official build of git-annex from kitenet.net""" NAME = "autobuild" @GitAnnexComponent.register_installer class SnapshotInstaller(AutobuildSnapshotInstaller): """ Installs the latest official snapshot build of git-annex from kitenet.net """ NAME = "snapshot" @GitAnnexComponent.register_installer @DataladComponent.register_installer class CondaInstaller(Installer): """Installs via conda""" NAME = "conda" OPTIONS = [ EXTRA_ARGS_OPTION, ] PACKAGES = { "datalad": ("datalad", ["datalad"]), "git-annex": ("git-annex", ["git-annex"]), } @GitAnnexComponent.register_installer class DataladGitAnnexBuildInstaller(Installer): """ Installs git-annex via the artifact from the latest successful build of datalad/git-annex """ NAME = "datalad/git-annex:tested" OPTIONS = [ Option( "--install-dir", converter=Path, metavar="DIR", help="Directory in which to unpack the `*.deb`", ), ] PACKAGES = { "git-annex": ("git-annex", ["git-annex"]), } @staticmethod def download(ostype: str, target_dir: Path) -> None: """ Download & unzip the artifact from the latest successful build of datalad/git-annex for the given OS in the given directory """ GitHubArtifactDownloader().download_last_successful_artifact( target_dir, repo="datalad/git-annex", workflow=f"build-{ostype}.yaml" ) @GitAnnexComponent.register_installer class DataladGitAnnexLatestBuildInstaller(DataladGitAnnexBuildInstaller): """ Installs git-annex via the artifact from the latest artifact-producing build (successful or unsuccessful) of datalad/git-annex """ NAME = "datalad/git-annex" @staticmethod def download(ostype: str, target_dir: Path) -> None: """ Download & unzip the artifact from the latest build of datalad/git-annex for the given OS in the given directory """ GitHubArtifactDownloader().download_latest_artifact( target_dir, repo="datalad/git-annex", workflow=f"build-{ostype}.yaml" ) @GitAnnexComponent.register_installer class DataladPackagesBuildInstaller(Installer): """ Installs git-annex via artifacts uploaded to <https://datasets.datalad.org/?dir=/datalad/packages> """ NAME = "datalad/packages" OPTIONS: ClassVar[List[Option]] = [] PACKAGES = { "git-annex": ("git-annex", ["git-annex"]), } @GitAnnexComponent.register_installer class DMGInstaller(Installer): """Installs a local ``*.dmg`` file""" NAME = "dmg" OPTIONS = [ Option( "--path", converter=Path, metavar="PATH", help="Path to local `*.dmg` to install", ), ] PACKAGES = { "git-annex": ("git-annex", ["git-annex"]), } class MethodNotSupportedError(Exception): """ Raised when an installer's `install()` method is called on an unsupported system or with an unsupported component """ pass def download_file( url: str, path: Union[str, os.PathLike], headers: Optional[Dict[str, str]] = None ) -> None: """ Download a file from ``url``, saving it at ``path``. Optional ``headers`` are sent in the HTTP request. """ log.info("Downloading %s", url) if headers is None: headers = {} req = Request(url, headers=headers) with urlopen(req) as r: with open(path, "wb") as fp: shutil.copyfileobj(r, fp) def compose_pip_requirement( package: str, version: Optional[str] = None, urlspec: Optional[str] = None, extras: Optional[str] = None, ) -> str: """Compose a PEP 503 requirement specifier""" req = package if extras is not None: req += f"[{extras}]" if urlspec is None: if version is not None: req += f"=={version}" else: req += f" @ {urlspec}" if version is not None: req += f"@{version}" return req def mktempdir(prefix: str) -> Path: """Create a directory in ``$TMPDIR`` with the given prefix""" return Path(tempfile.mkdtemp(prefix=prefix)) def runcmd(*args: Any, **kwargs: Any) -> subprocess.CompletedProcess: """Run (and log) a given command. Raise an error if it fails.""" arglist = [str(a) for a in args] log.info("Running: %s", " ".join(map(shlex.quote, arglist))) return subprocess.run(arglist, check=True, **kwargs) def readcmd(*args: Any) -> str: """Run a command, capturing & returning its stdout""" s = runcmd(*args, stdout=subprocess.PIPE, universal_newlines=True).stdout assert isinstance(s, str) return s def install_git_annex_dmg( dmgpath: Union[str, os.PathLike], manager: DataladInstaller ) -> Path: """Install git-annex from a DMG file at ``dmgpath``""" runcmd("hdiutil", "attach", dmgpath) runcmd("rsync", "-a", "/Volumes/git-annex/git-annex.app", "/Applications/") runcmd("hdiutil", "detach", "/Volumes/git-annex/") annex_bin = Path("/Applications/git-annex.app/Contents/MacOS") manager.addpath(annex_bin) return annex_bin def parse_header_links(links_header: str) -> Dict[str, Dict[str, str]]: """ Parse a "Link" header from an HTTP response into a `dict` of the form:: {"next": {"url": "...", "rel": "next"}, "last": { ... }} """ # <https://git.io/JcYZi> links: Dict[str, Dict[str, str]] = {} replace_chars = " '\"" value = links_header.strip(replace_chars) if not value: return links for val in re.split(r", *<", value): try: url, params = val.split(";", 1) except ValueError: url, params = val, "" link: Dict[str, str] = {"url": url.strip("<> '\"")} for param in params.split(";"): try: key, value = param.split("=") except ValueError: break link[key.strip(replace_chars)] = value.strip(replace_chars) key = link.get("rel") or link.get("url") assert key is not None links[key] = link return links if __name__ == "__main__": sys.exit(main(sys.argv))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 30838, 4226, 329, 360, 10254, 324, 290, 3519, 6805, 198, 198, 15506, 67, 10254, 324, 12, 17350, 263, 15506, 318, 257, 4226, 329, 15975, 360, 10254, 324, 62, 11, 17606, 12, 272, 12413, 62, 11, 290, 198, 5363, 6805, 477, 287, 257, 2060, 43219, 13, 220, 632, 4433, 645, 2368, 12, 10608, 198, 37906, 12782, 11, 996, 340, 857, 787, 4334, 779, 286, 7097, 16846, 9729, 13, 198, 198, 492, 4808, 35, 10254, 324, 25, 3740, 1378, 2503, 13, 67, 10254, 324, 13, 2398, 198, 492, 4808, 18300, 12, 272, 12413, 25, 3740, 1378, 18300, 12, 272, 12413, 13, 1671, 3702, 540, 13, 785, 198, 198, 31141, 1279, 5450, 1378, 12567, 13, 785, 14, 67, 10254, 324, 14, 67, 10254, 324, 12, 17350, 263, 29, 329, 517, 1321, 13, 198, 37811, 198, 198, 834, 9641, 834, 796, 366, 15, 13, 20, 13, 19, 1, 198, 834, 9800, 834, 796, 366, 464, 6060, 43, 324, 4816, 290, 25767, 669, 1, 198, 834, 9800, 62, 12888, 834, 796, 366, 15097, 31, 67, 10254, 324, 13, 2398, 1, 198, 834, 43085, 834, 796, 366, 36393, 1, 198, 834, 6371, 834, 796, 366, 5450, 1378, 12567, 13, 785, 14, 67, 10254, 324, 14, 67, 10254, 324, 12, 17350, 263, 1, 198, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 4732, 8019, 1330, 4732, 37153, 198, 11748, 269, 19199, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 1257, 310, 10141, 1330, 2472, 62, 34555, 198, 6738, 651, 8738, 1330, 3497, 8738, 12331, 11, 651, 8738, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 3859, 198, 6738, 4738, 1330, 43720, 9521, 198, 11748, 302, 198, 11748, 427, 2588, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 20218, 7753, 198, 11748, 2420, 37150, 198, 6738, 640, 1330, 3993, 198, 6738, 19720, 1330, 357, 198, 220, 220, 220, 4377, 11, 198, 220, 220, 220, 4889, 540, 11, 198, 220, 220, 220, 5016, 19852, 11, 198, 220, 220, 220, 360, 713, 11, 198, 220, 220, 220, 40806, 1352, 11, 198, 220, 220, 220, 7343, 11, 198, 220, 220, 220, 34441, 51, 29291, 11, 198, 220, 220, 220, 32233, 11, 198, 220, 220, 220, 309, 29291, 11, 198, 220, 220, 220, 5994, 11, 198, 220, 220, 220, 4479, 11, 198, 8, 198, 6738, 2956, 297, 571, 13, 25927, 1330, 19390, 11, 19016, 9654, 198, 6738, 19974, 7753, 1330, 38636, 8979, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7203, 67, 10254, 324, 62, 17350, 263, 4943, 198, 198, 23060, 25361, 796, 3859, 13, 10057, 3419, 198, 1340, 62, 34509, 31235, 796, 36230, 6624, 366, 19314, 1, 198, 1340, 62, 44721, 2640, 796, 36230, 6624, 366, 32708, 5404, 1, 198, 1340, 62, 33207, 796, 36230, 6624, 366, 11209, 1, 198, 1340, 62, 37997, 10426, 796, 6177, 62, 34509, 31235, 393, 6177, 62, 44721, 2640, 628, 198, 198, 4299, 21136, 62, 6404, 62, 5715, 7, 5715, 25, 965, 8, 4613, 493, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 257, 2604, 1241, 1438, 357, 7442, 12, 1040, 18464, 8, 393, 1271, 284, 663, 35575, 1988, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 85, 796, 493, 7, 5715, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 929, 796, 1241, 13, 45828, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1241, 929, 287, 19779, 9419, 2043, 20151, 1600, 366, 24908, 1600, 366, 31502, 1600, 366, 10778, 1600, 366, 30531, 20662, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 796, 651, 35226, 7, 6404, 2667, 11, 1241, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 297, 11, 493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 32660, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 29566, 12331, 7, 69, 1, 44651, 2604, 1241, 25, 1391, 5715, 0, 81, 92, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 300, 85, 628, 198, 4871, 1846, 13857, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3115, 4871, 329, 34175, 4504, 416, 262, 4578, 12, 79, 945, 278, 2438, 198, 220, 220, 220, 10200, 3689, 326, 389, 12118, 366, 320, 23802, 1, 357, 72, 13, 68, 1539, 1377, 9641, 290, 198, 220, 220, 220, 1377, 16794, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1208, 628, 198, 4871, 10628, 18453, 7, 3546, 13857, 2599, 198, 220, 220, 220, 37227, 63, 3546, 13857, 63, 10200, 257, 7559, 438, 9641, 15506, 3038, 37811, 628, 198, 4871, 10478, 18453, 7, 3546, 13857, 2599, 198, 220, 220, 220, 37227, 63, 3546, 13857, 63, 10200, 257, 7559, 438, 16794, 15506, 3038, 37811, 628, 198, 9693, 9863, 62, 48192, 55, 796, 302, 13, 5589, 576, 7, 81, 26793, 58, 61, 12, 60, 4943, 198, 43, 18494, 62, 48192, 55, 796, 302, 13, 5589, 576, 7, 81, 1, 438, 58, 61, 12, 4083, 9, 4943, 198, 198, 3185, 24131, 62, 25154, 5883, 45, 62, 54, 2389, 4221, 796, 1542, 198, 3185, 24131, 62, 39, 3698, 47, 62, 25154, 5883, 45, 62, 54, 2389, 4221, 796, 2319, 198, 39, 3698, 47, 62, 38, 3843, 5781, 796, 362, 198, 39, 3698, 47, 62, 12115, 3525, 796, 362, 198, 39, 3698, 47, 62, 54, 2389, 4221, 796, 5441, 628, 198, 31, 23350, 62, 34555, 628, 198, 198, 4871, 29566, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 21762, 1417, 618, 281, 4049, 8833, 981, 7587, 3141, 12, 1370, 3689, 37811, 628, 198, 4871, 23042, 276, 42035, 7, 45, 2434, 51, 29291, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 5166, 286, 3298, 3689, 290, 4600, 21950, 18453, 63, 6852, 82, 44267, 422, 3141, 12, 1370, 198, 220, 220, 220, 7159, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3298, 62, 404, 912, 25, 360, 713, 58, 2536, 11, 4377, 60, 198, 220, 220, 220, 6805, 25, 7343, 14692, 21950, 18453, 8973, 628, 198, 4871, 35100, 18453, 25, 198, 220, 220, 220, 37227, 32, 2581, 329, 257, 7515, 44267, 422, 3141, 12, 1370, 7159, 37811, 628, 198, 4871, 9724, 64, 33384, 7, 45, 2434, 51, 29291, 2599, 198, 220, 220, 220, 37227, 32, 9724, 64, 9988, 393, 2858, 37811, 628, 220, 220, 220, 1303, 25, 383, 6808, 286, 262, 9724, 64, 9988, 198, 220, 220, 220, 1615, 538, 776, 25, 10644, 628, 220, 220, 220, 1303, 25, 383, 1438, 286, 262, 2858, 357, 63, 14202, 63, 329, 262, 2779, 2858, 8, 198, 220, 220, 220, 1438, 25, 32233, 58, 2536, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1779, 64, 62, 13499, 7, 944, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 3108, 284, 262, 9724, 64, 28883, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6177, 62, 33207, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12093, 538, 776, 1220, 366, 7391, 82, 1, 1220, 366, 66, 13533, 13, 13499, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12093, 538, 776, 1220, 366, 8800, 1, 1220, 366, 66, 13533, 1, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 11007, 343, 7, 944, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 8619, 287, 543, 3141, 12, 1370, 4056, 2810, 416, 10392, 389, 198, 220, 220, 220, 220, 220, 220, 220, 6589, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26672, 3672, 796, 366, 7391, 82, 1, 611, 6177, 62, 33207, 2073, 366, 8800, 1, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3672, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12093, 538, 776, 1220, 26672, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12093, 538, 776, 1220, 366, 268, 14259, 1, 1220, 2116, 13, 3672, 1220, 26672, 3672, 628, 198, 2, 25, 317, 1351, 286, 3141, 3891, 290, 262, 13532, 379, 543, 484, 389, 5140, 198, 21575, 8053, 796, 7343, 58, 51, 29291, 58, 2536, 11, 10644, 11907, 628, 198, 4871, 360, 10254, 324, 15798, 263, 25, 198, 220, 220, 220, 37227, 464, 4226, 338, 4165, 1398, 11, 257, 4706, 1222, 17490, 286, 6805, 37811, 628, 220, 220, 220, 24301, 1340, 15365, 25, 5016, 19852, 58, 35, 713, 58, 2536, 11, 5994, 14692, 21950, 8973, 11907, 796, 23884, 628, 220, 220, 220, 39852, 2849, 62, 27082, 35009, 796, 16018, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 30838, 4226, 329, 360, 10254, 324, 290, 3519, 6805, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 53, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 9641, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7103, 28, 14815, 18453, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15307, 1430, 2196, 290, 8420, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 75, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 6404, 12, 5715, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 29572, 62, 6404, 62, 5715, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 2538, 18697, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7248, 18931, 1241, 685, 12286, 25, 24890, 60, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 36, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 24330, 12, 13564, 12, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4677, 437, 46490, 19008, 290, 584, 7582, 9729, 284, 262, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1813, 2393, 26, 460, 307, 1813, 3294, 1661, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 24032, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 41888, 85, 13, 8367, 329, 410, 287, 311, 12003, 18546, 2533, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 50, 12003, 18546, 2533, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 2437, 284, 5412, 21061, 9729, 685, 12286, 25, 1265, 60, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 7881, 62, 42895, 7, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 11, 1438, 25, 965, 198, 220, 220, 220, 1267, 4613, 4889, 540, 30109, 6030, 14692, 21950, 8973, 4357, 5994, 14692, 21950, 8973, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 32, 11705, 1352, 329, 28336, 10017, 4600, 21950, 63, 850, 37724, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 11705, 1352, 628, 220, 220, 220, 825, 4155, 62, 24330, 62, 13564, 62, 7753, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1532, 612, 389, 645, 17365, 3551, 3696, 6823, 11, 751, 530, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 24330, 62, 13564, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 67, 11, 277, 6978, 796, 20218, 7753, 13, 28015, 927, 79, 7, 40290, 2625, 25404, 12, 24330, 12, 1600, 35488, 28, 1911, 1477, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 19836, 7, 16344, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 33874, 2858, 19008, 284, 4064, 82, 1600, 277, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24330, 62, 13564, 62, 16624, 13, 33295, 7, 15235, 7, 69, 6978, 4008, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 21136, 62, 22046, 7, 565, 82, 11, 26498, 25, 7343, 58, 2536, 12962, 4613, 4479, 58, 3546, 13857, 11, 23042, 276, 42035, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2547, 325, 477, 3141, 12, 1370, 7159, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7343, 58, 2536, 60, 26498, 25, 3141, 12, 1370, 7159, 1231, 7559, 17597, 13, 853, 85, 58, 15, 60, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 537, 82, 13, 3185, 24131, 62, 27082, 35009, 13, 29572, 62, 22046, 7, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 81, 11, 1846, 13857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 404, 912, 11, 1364, 13801, 796, 374, 198, 220, 220, 220, 220, 220, 220, 220, 6805, 25, 7343, 58, 21950, 18453, 60, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 981, 1364, 13801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 1364, 13801, 13, 12924, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 37430, 11, 2196, 796, 269, 13, 3911, 653, 7203, 2625, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 29566, 12331, 7203, 21950, 1438, 1276, 307, 1729, 28920, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7515, 796, 537, 82, 13, 9858, 47, 1340, 15365, 58, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 29566, 12331, 7, 69, 1, 20035, 7515, 25, 1391, 3672, 0, 81, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31396, 28198, 796, 7515, 13, 3185, 24131, 62, 27082, 35009, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2196, 290, 407, 31396, 28198, 13, 9641, 276, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 29566, 12331, 7, 69, 1, 90, 3672, 92, 7515, 857, 407, 1011, 257, 2196, 1600, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 37430, 290, 407, 2196, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 29566, 12331, 7203, 14815, 1276, 307, 1729, 28920, 1600, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1067, 796, 31396, 28198, 13, 29572, 62, 22046, 7, 9464, 13801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 6098, 11, 1846, 13857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1067, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 11, 1364, 13801, 796, 1067, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2196, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 9641, 8973, 796, 2196, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6805, 13, 33295, 7, 21950, 18453, 7, 3672, 28, 3672, 11, 12429, 46265, 22046, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23042, 276, 42035, 7, 20541, 62, 404, 912, 11, 6805, 8, 628, 220, 220, 220, 825, 1388, 7, 944, 11, 1822, 85, 25, 32233, 58, 8053, 58, 2536, 11907, 796, 6045, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23042, 276, 3141, 12, 1370, 7159, 290, 1620, 262, 9167, 4028, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 657, 611, 2279, 373, 7477, 11, 1729, 22570, 4306, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7343, 58, 2536, 60, 1822, 85, 25, 3141, 12, 1370, 7159, 11, 1390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 17597, 13, 853, 85, 58, 15, 60, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1822, 85, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 85, 796, 25064, 13, 853, 85, 198, 220, 220, 220, 220, 220, 220, 220, 1172, 3672, 11, 1635, 22046, 796, 1822, 85, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1172, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1172, 3672, 796, 366, 67, 10254, 324, 12, 17350, 263, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1172, 3672, 796, 10644, 7, 1676, 70, 3672, 737, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 2116, 13, 29572, 62, 22046, 7, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 29566, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 944, 13, 19509, 62, 16794, 7, 1676, 70, 3672, 11, 304, 13, 42895, 828, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2536, 7, 68, 828, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 81, 11, 10628, 18453, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 67, 10254, 324, 12, 17350, 263, 1600, 11593, 9641, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 81, 11, 10478, 18453, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 944, 13, 6511, 62, 16794, 7, 1676, 70, 3672, 11, 374, 13, 42895, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 81, 11, 23042, 276, 42035, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 404, 912, 11, 6805, 796, 374, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6805, 796, 685, 21950, 18453, 7203, 67, 10254, 324, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 35487, 16934, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 2625, 4, 7, 292, 310, 524, 8, 82, 685, 4, 7, 5715, 3672, 13219, 23, 82, 60, 4064, 7, 3672, 8, 82, 4064, 7, 20500, 8, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 69, 16762, 2625, 4, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 4, 44, 25, 4, 50, 4, 89, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 20541, 62, 404, 912, 13, 12924, 7203, 6404, 62, 5715, 1600, 18931, 13, 10778, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3298, 62, 404, 912, 13, 1136, 7203, 24330, 62, 13564, 62, 7753, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24330, 62, 13564, 62, 16624, 13, 2302, 437, 7, 20541, 62, 404, 912, 14692, 24330, 62, 13564, 62, 7753, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 641, 495, 62, 24330, 62, 13564, 62, 7753, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3298, 62, 404, 912, 13, 1136, 7203, 24032, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24032, 62, 10414, 2533, 796, 3298, 62, 404, 912, 14692, 24032, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1067, 287, 6805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 42895, 7, 3672, 28, 6098, 13, 3672, 11, 12429, 6098, 13, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 3108, 287, 2116, 13, 3605, 62, 9503, 1746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 4, 82, 318, 783, 6589, 379, 4064, 82, 1600, 1438, 11, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 7203, 4, 82, 857, 407, 2152, 40754, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 6177, 62, 33207, 290, 407, 28686, 13, 15526, 7, 6978, 11, 28686, 13, 55, 62, 11380, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 7203, 4, 82, 318, 407, 28883, 40754, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19677, 796, 850, 14681, 13, 5143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2536, 7, 6978, 828, 366, 438, 16794, 33116, 14367, 448, 28, 7266, 14681, 13, 39345, 33991, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 7203, 37, 6255, 284, 1057, 4600, 4, 82, 1377, 16794, 63, 25, 4064, 82, 1600, 3108, 11, 304, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19677, 13, 7783, 8189, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 7203, 63, 4, 82, 1377, 16794, 63, 3141, 4054, 40754, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 611, 12876, 2073, 352, 628, 220, 220, 220, 825, 751, 24330, 7, 944, 11, 1627, 25, 965, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16594, 257, 1627, 284, 262, 17365, 3551, 3696, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 32901, 1627, 4064, 81, 284, 17365, 62, 13564, 62, 16624, 1600, 1627, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2116, 13, 24330, 62, 13564, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 279, 13, 9654, 7203, 64, 4943, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 11, 2393, 28, 46428, 8, 628, 220, 220, 220, 825, 751, 6978, 7, 944, 11, 279, 25, 4479, 58, 2536, 11, 28686, 13, 15235, 7594, 4357, 938, 25, 20512, 796, 10352, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 257, 1627, 284, 262, 17365, 3551, 3696, 326, 3143, 2412, 357, 273, 598, 2412, 11, 611, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 12957, 15506, 318, 2081, 8, 257, 1813, 3108, 284, 7559, 34219, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 10644, 7, 79, 737, 411, 6442, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 938, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 277, 6, 39344, 46490, 34758, 1477, 2588, 13, 22708, 7, 2536, 7, 6978, 4008, 92, 11097, 3, 34219, 30543, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 277, 6, 39344, 46490, 2625, 3, 34219, 1298, 90, 1477, 2588, 13, 22708, 7, 2536, 7, 6978, 4008, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 24330, 7, 1370, 8, 628, 220, 220, 220, 825, 751, 42895, 7, 944, 11, 1438, 25, 965, 11, 12429, 46265, 22046, 25, 4377, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2964, 10178, 262, 1813, 7515, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7515, 796, 2116, 13, 9858, 47, 1340, 15365, 58, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 20035, 7515, 25, 1391, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 7515, 7, 944, 737, 15234, 485, 7, 1174, 46265, 22046, 8, 628, 220, 220, 220, 825, 651, 62, 66, 13533, 7, 944, 8, 4613, 9724, 64, 33384, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 749, 12, 49921, 306, 2727, 9724, 64, 9988, 393, 2858, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 612, 318, 645, 884, 4554, 11, 1441, 281, 4554, 329, 281, 198, 220, 220, 220, 220, 220, 220, 220, 45107, 12, 37050, 9724, 64, 9988, 11, 8620, 281, 4049, 611, 4844, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 66, 13533, 62, 25558, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 66, 13533, 62, 25558, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1779, 64, 62, 6978, 796, 4423, 346, 13, 4758, 7203, 66, 13533, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1779, 64, 62, 6978, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1615, 538, 776, 796, 10644, 7, 961, 28758, 7, 66, 13533, 62, 6978, 11, 366, 10951, 1600, 366, 438, 8692, 11074, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9724, 64, 33384, 7, 12093, 538, 776, 28, 12093, 538, 776, 11, 1438, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 66, 13533, 407, 6589, 4943, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 4871, 35100, 7, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 12531, 2779, 1398, 329, 257, 7515, 326, 460, 307, 7368, 319, 262, 3141, 198, 220, 220, 220, 1627, 290, 8287, 276, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 39852, 2849, 62, 27082, 35009, 25, 5016, 19852, 58, 19722, 46677, 60, 628, 220, 220, 220, 2488, 397, 8709, 24396, 628, 198, 31, 35, 10254, 324, 15798, 263, 13, 30238, 62, 42895, 7203, 574, 85, 4943, 198, 4871, 9932, 85, 21950, 7, 21950, 2599, 198, 220, 220, 220, 37227, 16719, 274, 257, 11361, 7166, 2858, 1262, 7559, 29412, 532, 76, 8710, 85, 15506, 37811, 628, 220, 220, 220, 39852, 2849, 62, 27082, 35009, 796, 16018, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 574, 85, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 276, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 16447, 257, 11361, 7166, 2858, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 34219, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 16447, 262, 8710, 85, 379, 262, 1813, 3108, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 68, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 26086, 12, 22046, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 1477, 2588, 13, 35312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 27726, 7159, 284, 1208, 284, 262, 8710, 85, 3141, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 779, 287, 4856, 1028, 262, 1614, 2196, 286, 7347, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 7959, 12, 79, 541, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15798, 262, 2478, 2196, 286, 7347, 422, 21722, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 628, 198, 31, 35, 10254, 324, 15798, 263, 13, 30238, 62, 42895, 7203, 1084, 291, 13533, 4943, 198, 4871, 1855, 291, 13533, 21950, 7, 21950, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 1855, 291, 13533, 37811, 628, 220, 220, 220, 39852, 2849, 62, 27082, 35009, 796, 16018, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 291, 13533, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 276, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15798, 1855, 291, 13533, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 34219, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15798, 1855, 291, 13533, 379, 262, 1813, 3108, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7203, 438, 43501, 1600, 318, 62, 32109, 28, 17821, 11, 1037, 2625, 10987, 287, 15458, 357, 13159, 3849, 5275, 8, 4235, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 16684, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 2536, 13, 35312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14106, 12, 25512, 515, 1351, 286, 5301, 1020, 13350, 284, 2721, 287, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 262, 1855, 291, 13533, 2858, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 68, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 26086, 12, 22046, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 1477, 2588, 13, 35312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 27726, 7159, 284, 1208, 284, 262, 2721, 3141, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 628, 198, 31, 35, 10254, 324, 15798, 263, 13, 30238, 62, 42895, 7203, 66, 13533, 12, 24330, 4943, 198, 4871, 9724, 64, 4834, 85, 21950, 7, 21950, 2599, 198, 220, 220, 220, 37227, 16719, 274, 257, 9724, 64, 2858, 37811, 628, 220, 220, 220, 39852, 2849, 62, 27082, 35009, 796, 16018, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 66, 13533, 12, 24330, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 276, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 16447, 257, 9724, 64, 2858, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24330, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 20608, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 5376, 286, 262, 2858, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 16684, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 2536, 13, 35312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 14106, 12, 25512, 515, 1351, 286, 5301, 1020, 13350, 284, 2721, 287, 262, 2858, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 68, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 26086, 12, 22046, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 1477, 2588, 13, 35312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 27726, 7159, 284, 1208, 284, 262, 4600, 66, 13533, 2251, 63, 3141, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 628, 198, 31, 35, 10254, 324, 15798, 263, 13, 30238, 62, 42895, 7203, 710, 1434, 24689, 4943, 198, 4871, 13782, 24689, 21950, 7, 21950, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 1222, 4566, 942, 13782, 16587, 666, 37811, 628, 220, 220, 220, 39852, 2849, 62, 27082, 35009, 796, 16018, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 710, 1434, 24689, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 276, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15798, 1222, 17425, 13782, 16587, 666, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 68, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 26086, 12, 22046, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 1477, 2588, 13, 35312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 27726, 7159, 284, 1208, 284, 262, 299, 67, 12, 11250, 495, 260, 7501, 3141, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 35374, 62, 37, 2751, 1137, 4805, 12394, 796, 366, 15, 87, 32, 20, 35, 2624, 37, 486, 2075, 2920, 32, 20, 32, 24, 1, 198, 220, 220, 220, 35374, 62, 21886, 796, 366, 4023, 1378, 710, 1434, 13, 24689, 13, 3262, 47835, 12708, 14, 710, 1434, 13, 24689, 13, 3262, 13, 3372, 1, 198, 220, 220, 220, 30320, 35613, 62, 35009, 5959, 796, 366, 385, 12, 77, 71, 1, 628, 198, 4871, 15545, 540, 21950, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3115, 4871, 329, 6805, 326, 2721, 10392, 2884, 9988, 5050, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 36751, 25, 5016, 19852, 58, 2536, 60, 628, 220, 220, 220, 40589, 7036, 4877, 25, 5016, 19852, 58, 35, 713, 58, 2536, 11, 5994, 14692, 15798, 263, 8973, 11907, 796, 23884, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 7881, 62, 17350, 263, 7, 565, 82, 11, 29124, 25, 5994, 14692, 15798, 263, 8973, 8, 4613, 5994, 14692, 15798, 263, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 32, 11705, 1352, 329, 28336, 10017, 4600, 15798, 263, 63, 850, 37724, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 38604, 7036, 4877, 58, 17350, 263, 13, 20608, 60, 796, 29124, 198, 220, 220, 220, 220, 220, 220, 220, 5050, 796, 537, 82, 13, 3185, 24131, 62, 27082, 35009, 13, 25811, 14692, 438, 24396, 1, 4083, 6679, 1063, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 5050, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 5050, 13, 33295, 7, 17350, 263, 13, 20608, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2172, 287, 29124, 13, 3185, 51, 11053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 3185, 24131, 62, 27082, 35009, 13, 2860, 62, 18076, 7, 8738, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29124, 628, 220, 220, 220, 825, 651, 62, 17350, 263, 7, 944, 11, 1438, 25, 965, 8, 4613, 366, 15798, 263, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9781, 30227, 1222, 9113, 9386, 262, 29124, 351, 262, 1813, 1438, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29124, 62, 565, 82, 796, 2116, 13, 38604, 7036, 4877, 58, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 20035, 9988, 2446, 25, 1391, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29124, 62, 565, 82, 7, 944, 13, 37153, 8, 628, 198, 31, 35, 10254, 324, 15798, 263, 13, 30238, 62, 42895, 7203, 18300, 12, 272, 12413, 4943, 198, 4871, 15151, 2025, 12413, 21950, 7, 15798, 540, 21950, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 17606, 12, 272, 12413, 37811, 628, 220, 220, 220, 36751, 796, 366, 18300, 12, 272, 12413, 1, 628, 220, 220, 220, 39852, 2849, 62, 27082, 35009, 796, 16018, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 276, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15798, 17606, 12, 272, 12413, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 24396, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 14692, 23736, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 17563, 262, 9988, 2446, 284, 779, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 628, 198, 31, 35, 10254, 324, 15798, 263, 13, 30238, 62, 42895, 7203, 67, 10254, 324, 4943, 198, 4871, 360, 10254, 324, 21950, 7, 15798, 540, 21950, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 360, 10254, 324, 37811, 628, 220, 220, 220, 36751, 796, 366, 67, 10254, 324, 1, 628, 220, 220, 220, 39852, 2849, 62, 27082, 35009, 796, 16018, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 10254, 324, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 276, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15798, 360, 10254, 324, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 24396, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 14692, 23736, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 17563, 262, 9988, 2446, 284, 779, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 628, 198, 4871, 15545, 263, 7, 24694, 2599, 198, 220, 220, 220, 37227, 2025, 12531, 2779, 1398, 329, 9988, 5050, 329, 10392, 37811, 628, 220, 220, 220, 36751, 25, 5016, 19852, 58, 2536, 60, 628, 220, 220, 220, 39852, 11053, 25, 5016, 19852, 58, 8053, 58, 19722, 11907, 628, 220, 220, 220, 1303, 25, 337, 5912, 422, 4855, 2721, 540, 7515, 3891, 284, 198, 220, 220, 220, 1303, 25, 357, 17350, 263, 12, 11423, 5301, 32373, 11, 1351, 286, 6589, 4056, 8, 14729, 198, 220, 220, 220, 47035, 25552, 25, 5016, 19852, 58, 35, 713, 58, 2536, 11, 309, 29291, 58, 2536, 11, 7343, 58, 2536, 11907, 11907, 628, 220, 220, 220, 825, 2721, 7, 944, 11, 7515, 25, 965, 11, 12429, 46265, 22046, 25, 4377, 8, 4613, 9455, 8053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2262, 5691, 257, 1813, 7515, 13, 220, 7567, 2696, 4600, 17410, 3673, 48181, 12331, 63, 611, 262, 198, 220, 220, 220, 220, 220, 220, 220, 9988, 2446, 318, 407, 4855, 319, 262, 1080, 393, 262, 2446, 857, 198, 220, 220, 220, 220, 220, 220, 220, 407, 1104, 15975, 262, 1813, 7515, 13, 220, 16409, 257, 1351, 286, 198, 220, 220, 220, 220, 220, 220, 220, 357, 21812, 11, 10644, 8, 14729, 329, 1123, 6589, 1430, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 62, 15999, 62, 10057, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5301, 11, 9729, 796, 2116, 13, 47, 8120, 25552, 58, 42895, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11789, 3673, 48181, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 944, 13, 20608, 92, 857, 407, 760, 703, 284, 2721, 1391, 42895, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 11007, 343, 796, 2116, 13, 17350, 62, 26495, 7, 26495, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 41701, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 23991, 287, 9729, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 11007, 343, 1220, 23991, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6177, 62, 33207, 290, 279, 13, 37333, 844, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 279, 13, 4480, 62, 37333, 844, 7, 1911, 13499, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41701, 13, 33295, 19510, 28758, 11, 279, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 41701, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 2721, 62, 26495, 7, 944, 11, 5301, 25, 965, 11, 12429, 46265, 22046, 25, 4377, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2262, 5691, 257, 1813, 5301, 13, 220, 16409, 262, 9988, 8619, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 338, 4056, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 6818, 62, 15999, 62, 10057, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 9988, 2446, 318, 407, 4855, 416, 262, 1459, 1080, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12073, 4600, 17410, 3673, 48181, 12331, 63, 26, 4306, 11, 857, 2147, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 628, 198, 13918, 3861, 62, 1503, 14313, 62, 3185, 24131, 796, 16018, 7, 198, 220, 220, 220, 27444, 68, 1600, 198, 220, 220, 220, 366, 438, 26086, 12, 22046, 1600, 198, 220, 220, 220, 38394, 28, 1477, 2588, 13, 35312, 11, 198, 220, 220, 220, 1037, 2625, 27726, 7159, 284, 1208, 284, 262, 2721, 3141, 1600, 198, 8, 628, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 31, 35, 10254, 324, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 317, 457, 15798, 263, 7, 15798, 263, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 2884, 15409, 12, 1136, 37811, 628, 220, 220, 220, 36751, 796, 366, 2373, 1, 628, 220, 220, 220, 39852, 11053, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 11249, 12, 10378, 1600, 318, 62, 32109, 28, 17821, 11, 1037, 2625, 15798, 1382, 12, 10378, 2427, 286, 262, 5301, 1, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 27489, 3861, 62, 1503, 14313, 62, 3185, 24131, 11, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 10254, 324, 1298, 5855, 67, 10254, 324, 1600, 14631, 67, 10254, 324, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1298, 5855, 18300, 12, 272, 12413, 1600, 14631, 18300, 12, 272, 12413, 8973, 828, 198, 220, 220, 220, 1782, 628, 198, 31, 35, 10254, 324, 21950, 13, 30238, 62, 17350, 263, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 5995, 11269, 15798, 263, 7, 15798, 263, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 2884, 9059, 357, 16060, 11269, 8, 37811, 628, 220, 220, 220, 36751, 796, 366, 11269, 1, 628, 220, 220, 220, 39852, 11053, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 27489, 3861, 62, 1503, 14313, 62, 3185, 24131, 11, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 10254, 324, 1298, 5855, 67, 10254, 324, 1600, 14631, 67, 10254, 324, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1298, 5855, 18300, 12, 272, 12413, 1600, 14631, 18300, 12, 272, 12413, 8973, 828, 198, 220, 220, 220, 1782, 628, 198, 31, 35, 10254, 324, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 25149, 15798, 263, 7, 15798, 263, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2262, 5691, 2884, 7347, 11, 2035, 379, 262, 1080, 1241, 393, 656, 257, 1813, 7166, 198, 220, 220, 220, 2858, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 36751, 796, 366, 79, 541, 1, 628, 220, 220, 220, 39852, 11053, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 16018, 7203, 438, 2934, 626, 1600, 318, 62, 32109, 28, 17821, 11, 1037, 2625, 15798, 422, 21722, 16099, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 16018, 7203, 12, 36, 1600, 366, 438, 2302, 8847, 1600, 1138, 615, 283, 2625, 6369, 5446, 1921, 1600, 1037, 2625, 15798, 5301, 33849, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 27489, 3861, 62, 1503, 14313, 62, 3185, 24131, 11, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 10254, 324, 1298, 5855, 67, 10254, 324, 1600, 14631, 67, 10254, 324, 8973, 828, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 5550, 18697, 62, 47, 8120, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 10254, 324, 1298, 366, 18300, 10, 5450, 1378, 12567, 13, 785, 14, 67, 10254, 324, 14, 67, 10254, 324, 13, 18300, 1600, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 2488, 26745, 628, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 13782, 24689, 15798, 263, 7, 32, 457, 15798, 263, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 2884, 15409, 12, 1136, 290, 262, 13782, 16587, 666, 38072, 37811, 628, 220, 220, 220, 36751, 796, 366, 710, 1434, 24689, 1, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1298, 5855, 18300, 12, 272, 12413, 12, 1481, 17749, 1600, 14631, 18300, 12, 272, 12413, 8973, 828, 198, 220, 220, 220, 1782, 628, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 31, 35, 10254, 324, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 8965, 21886, 15798, 263, 7, 15798, 263, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 257, 7559, 24620, 11275, 15506, 5301, 416, 10289, 37811, 628, 220, 220, 220, 36751, 796, 366, 11275, 12, 6371, 1, 628, 220, 220, 220, 39852, 11053, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 16018, 7203, 438, 6371, 1600, 1138, 615, 283, 2625, 21886, 1600, 1037, 2625, 21886, 422, 543, 284, 4321, 4600, 24620, 11275, 63, 2393, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 17350, 12, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 34720, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 43055, 287, 543, 284, 555, 8002, 262, 4600, 24620, 11275, 63, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 27489, 3861, 62, 1503, 14313, 62, 3185, 24131, 11, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1298, 5855, 18300, 12, 272, 12413, 1600, 14631, 18300, 12, 272, 12413, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 10254, 324, 1298, 5855, 67, 10254, 324, 1600, 14631, 67, 10254, 324, 8973, 828, 198, 220, 220, 220, 1782, 628, 198, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 41735, 3547, 15798, 263, 7, 16541, 672, 3547, 43826, 9442, 15798, 263, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 262, 3452, 1743, 1382, 286, 17606, 12, 272, 12413, 422, 6220, 268, 316, 13, 3262, 37811, 628, 220, 220, 220, 36751, 796, 366, 2306, 672, 3547, 1, 628, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 16026, 9442, 15798, 263, 7, 16541, 672, 3547, 43826, 9442, 15798, 263, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2262, 5691, 262, 3452, 1743, 27479, 1382, 286, 17606, 12, 272, 12413, 422, 6220, 268, 316, 13, 3262, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 36751, 796, 366, 45380, 9442, 1, 628, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 31, 35, 10254, 324, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 9724, 64, 15798, 263, 7, 15798, 263, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 2884, 1779, 64, 37811, 628, 220, 220, 220, 36751, 796, 366, 66, 13533, 1, 628, 220, 220, 220, 39852, 11053, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 27489, 3861, 62, 1503, 14313, 62, 3185, 24131, 11, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 10254, 324, 1298, 5855, 67, 10254, 324, 1600, 14631, 67, 10254, 324, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1298, 5855, 18300, 12, 272, 12413, 1600, 14631, 18300, 12, 272, 12413, 8973, 828, 198, 220, 220, 220, 1782, 628, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 360, 10254, 324, 38, 270, 2025, 12413, 15580, 15798, 263, 7, 15798, 263, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2262, 5691, 17606, 12, 272, 12413, 2884, 262, 24127, 422, 262, 3452, 4388, 1382, 286, 198, 220, 220, 220, 4818, 282, 324, 14, 18300, 12, 272, 12413, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 36751, 796, 366, 67, 10254, 324, 14, 18300, 12, 272, 12413, 25, 39612, 1, 628, 220, 220, 220, 39852, 11053, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 17350, 12, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 34720, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 43055, 287, 543, 284, 555, 8002, 262, 4600, 24620, 11275, 63, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1298, 5855, 18300, 12, 272, 12413, 1600, 14631, 18300, 12, 272, 12413, 8973, 828, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4321, 7, 455, 2981, 25, 965, 11, 2496, 62, 15908, 25, 10644, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10472, 1222, 555, 13344, 262, 24127, 422, 262, 3452, 4388, 1382, 286, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 282, 324, 14, 18300, 12, 272, 12413, 329, 262, 1813, 7294, 287, 262, 1813, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21722, 8001, 29660, 10002, 263, 22446, 15002, 62, 12957, 62, 17212, 62, 433, 29660, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 15908, 11, 29924, 2625, 67, 10254, 324, 14, 18300, 12, 272, 12413, 1600, 30798, 28, 69, 1, 11249, 12, 90, 455, 2981, 27422, 88, 43695, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 360, 10254, 324, 38, 270, 2025, 12413, 39478, 15580, 15798, 263, 7, 35, 10254, 324, 38, 270, 2025, 12413, 15580, 15798, 263, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2262, 5691, 17606, 12, 272, 12413, 2884, 262, 24127, 422, 262, 3452, 24127, 12, 36866, 198, 220, 220, 220, 1382, 357, 17212, 393, 23993, 8, 286, 4818, 282, 324, 14, 18300, 12, 272, 12413, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 36751, 796, 366, 67, 10254, 324, 14, 18300, 12, 272, 12413, 1, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4321, 7, 455, 2981, 25, 965, 11, 2496, 62, 15908, 25, 10644, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10472, 1222, 555, 13344, 262, 24127, 422, 262, 3452, 1382, 286, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 282, 324, 14, 18300, 12, 272, 12413, 329, 262, 1813, 7294, 287, 262, 1813, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21722, 8001, 29660, 10002, 263, 22446, 15002, 62, 42861, 62, 433, 29660, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 15908, 11, 29924, 2625, 67, 10254, 324, 14, 18300, 12, 272, 12413, 1600, 30798, 28, 69, 1, 11249, 12, 90, 455, 2981, 27422, 88, 43695, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 360, 10254, 324, 11869, 1095, 15580, 15798, 263, 7, 15798, 263, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2262, 5691, 17606, 12, 272, 12413, 2884, 20316, 19144, 284, 198, 220, 220, 220, 1279, 5450, 1378, 19608, 292, 1039, 13, 67, 10254, 324, 13, 2398, 20924, 15908, 33223, 67, 10254, 324, 14, 43789, 29, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 36751, 796, 366, 67, 10254, 324, 14, 43789, 1, 628, 220, 220, 220, 39852, 11053, 25, 5016, 19852, 58, 8053, 58, 19722, 11907, 796, 17635, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1298, 5855, 18300, 12, 272, 12413, 1600, 14631, 18300, 12, 272, 12413, 8973, 828, 198, 220, 220, 220, 1782, 628, 198, 31, 38, 270, 2025, 12413, 21950, 13, 30238, 62, 17350, 263, 198, 4871, 14848, 38, 15798, 263, 7, 15798, 263, 2599, 198, 220, 220, 220, 37227, 6310, 5691, 257, 1957, 7559, 24620, 67, 11296, 15506, 2393, 37811, 628, 220, 220, 220, 36751, 796, 366, 67, 11296, 1, 628, 220, 220, 220, 39852, 11053, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 16018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 34219, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 1957, 4600, 24620, 67, 11296, 63, 284, 2721, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 47035, 25552, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 12, 272, 12413, 1298, 5855, 18300, 12, 272, 12413, 1600, 14631, 18300, 12, 272, 12413, 8973, 828, 198, 220, 220, 220, 1782, 628, 198, 4871, 11789, 3673, 48181, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7567, 1417, 618, 281, 29124, 338, 4600, 17350, 3419, 63, 2446, 318, 1444, 319, 281, 24222, 198, 220, 220, 220, 1080, 393, 351, 281, 24222, 7515, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1208, 628, 198, 4299, 4321, 62, 7753, 7, 198, 220, 220, 220, 19016, 25, 965, 11, 3108, 25, 4479, 58, 2536, 11, 28686, 13, 15235, 7594, 4357, 24697, 25, 32233, 58, 35, 713, 58, 2536, 11, 965, 11907, 796, 6045, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10472, 257, 2393, 422, 7559, 6371, 15506, 11, 8914, 340, 379, 7559, 6978, 15506, 13, 220, 32233, 7559, 50145, 15506, 198, 220, 220, 220, 389, 1908, 287, 262, 14626, 2581, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2604, 13, 10951, 7203, 10002, 278, 4064, 82, 1600, 19016, 8, 198, 220, 220, 220, 611, 24697, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 23884, 198, 220, 220, 220, 43089, 796, 19390, 7, 6371, 11, 24697, 28, 50145, 8, 198, 220, 220, 220, 351, 19016, 9654, 7, 42180, 8, 355, 374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 11, 366, 39346, 4943, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7753, 26801, 7, 81, 11, 277, 79, 8, 628, 198, 4299, 36664, 62, 79, 541, 62, 8897, 24615, 7, 198, 220, 220, 220, 5301, 25, 965, 11, 198, 220, 220, 220, 2196, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 19016, 16684, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 33849, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 7293, 577, 257, 350, 8905, 44541, 9079, 1020, 7483, 37811, 198, 220, 220, 220, 43089, 796, 5301, 198, 220, 220, 220, 611, 33849, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 43089, 15853, 277, 17912, 90, 2302, 8847, 92, 30866, 198, 220, 220, 220, 611, 19016, 16684, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2196, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43089, 15853, 277, 1, 855, 90, 9641, 36786, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 43089, 15853, 277, 1, 2488, 1391, 6371, 16684, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2196, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43089, 15853, 277, 1, 31, 90, 9641, 36786, 198, 220, 220, 220, 1441, 43089, 628, 198, 4299, 33480, 29510, 15908, 7, 40290, 25, 965, 8, 4613, 10644, 25, 198, 220, 220, 220, 37227, 16447, 257, 8619, 287, 7559, 3, 15972, 5760, 4663, 15506, 351, 262, 1813, 21231, 37811, 198, 220, 220, 220, 1441, 10644, 7, 29510, 7753, 13, 28015, 67, 29510, 7, 40290, 28, 40290, 4008, 628, 198, 4299, 1057, 28758, 46491, 22046, 25, 4377, 11, 12429, 46265, 22046, 25, 4377, 8, 4613, 850, 14681, 13, 43768, 18709, 25, 198, 220, 220, 220, 37227, 10987, 357, 392, 2604, 8, 257, 1813, 3141, 13, 220, 35123, 281, 4049, 611, 340, 10143, 526, 15931, 198, 220, 220, 220, 1822, 4868, 796, 685, 2536, 7, 64, 8, 329, 257, 287, 26498, 60, 198, 220, 220, 220, 2604, 13, 10951, 7203, 28768, 25, 4064, 82, 1600, 366, 27071, 22179, 7, 8899, 7, 1477, 2588, 13, 22708, 11, 1822, 4868, 22305, 198, 220, 220, 220, 1441, 850, 14681, 13, 5143, 7, 853, 4868, 11, 2198, 28, 17821, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 1100, 28758, 46491, 22046, 25, 4377, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 10987, 257, 3141, 11, 21430, 1222, 8024, 663, 14367, 448, 37811, 198, 220, 220, 220, 264, 796, 1057, 28758, 46491, 22046, 11, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 10112, 62, 3605, 6615, 28, 17821, 737, 19282, 448, 198, 220, 220, 220, 6818, 318, 39098, 7, 82, 11, 965, 8, 198, 220, 220, 220, 1441, 264, 628, 198, 4299, 2721, 62, 18300, 62, 272, 12413, 62, 67, 11296, 7, 198, 220, 220, 220, 41323, 6978, 25, 4479, 58, 2536, 11, 28686, 13, 15235, 7594, 4357, 4706, 25, 360, 10254, 324, 15798, 263, 198, 8, 4613, 10644, 25, 198, 220, 220, 220, 37227, 15798, 17606, 12, 272, 12413, 422, 257, 14848, 38, 2393, 379, 7559, 67, 11296, 6978, 15506, 37811, 198, 220, 220, 220, 1057, 28758, 7203, 71, 10989, 22602, 1600, 366, 47348, 1600, 41323, 6978, 8, 198, 220, 220, 220, 1057, 28758, 7203, 81, 27261, 1600, 27444, 64, 1600, 12813, 16598, 8139, 14, 18300, 12, 272, 12413, 14, 18300, 12, 272, 12413, 13, 1324, 1600, 12813, 41995, 14, 4943, 198, 220, 220, 220, 1057, 28758, 7203, 71, 10989, 22602, 1600, 366, 15255, 620, 1600, 12813, 16598, 8139, 14, 18300, 12, 272, 12413, 14, 4943, 198, 220, 220, 220, 22768, 62, 8800, 796, 10644, 7203, 14, 41995, 14, 18300, 12, 272, 12413, 13, 1324, 14, 15842, 14, 14155, 2640, 4943, 198, 220, 220, 220, 4706, 13, 2860, 6978, 7, 272, 12413, 62, 8800, 8, 198, 220, 220, 220, 1441, 22768, 62, 8800, 628, 628, 198, 198, 4299, 21136, 62, 25677, 62, 28751, 7, 28751, 62, 25677, 25, 965, 8, 4613, 360, 713, 58, 2536, 11, 360, 713, 58, 2536, 11, 965, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2547, 325, 257, 366, 11280, 1, 13639, 422, 281, 14626, 2882, 656, 257, 4600, 11600, 63, 286, 262, 1296, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 19779, 19545, 1298, 19779, 6371, 1298, 366, 9313, 11, 366, 2411, 1298, 366, 19545, 25719, 366, 12957, 1298, 1391, 2644, 34949, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1279, 5450, 1378, 18300, 13, 952, 14, 41, 66, 56, 57, 72, 29, 198, 220, 220, 220, 6117, 25, 360, 713, 58, 2536, 11, 360, 713, 58, 2536, 11, 965, 11907, 796, 23884, 198, 220, 220, 220, 6330, 62, 354, 945, 796, 366, 705, 7879, 1, 198, 220, 220, 220, 1988, 796, 6117, 62, 25677, 13, 36311, 7, 33491, 62, 354, 945, 8, 198, 220, 220, 220, 611, 407, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6117, 198, 220, 220, 220, 329, 1188, 287, 302, 13, 35312, 7, 81, 1600, 1635, 27, 1600, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11, 42287, 796, 1188, 13, 35312, 7203, 26, 1600, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11, 42287, 796, 1188, 11, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 2792, 25, 360, 713, 58, 2536, 11, 965, 60, 796, 19779, 6371, 1298, 19016, 13, 36311, 7203, 27, 29, 705, 7879, 4943, 92, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5772, 287, 42287, 13, 35312, 7203, 26033, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 11, 1988, 796, 5772, 13, 35312, 7203, 2625, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2792, 58, 2539, 13, 36311, 7, 33491, 62, 354, 945, 15437, 796, 1988, 13, 36311, 7, 33491, 62, 354, 945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 2792, 13, 1136, 7203, 2411, 4943, 393, 2792, 13, 1136, 7203, 6371, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1994, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 6117, 58, 2539, 60, 796, 2792, 198, 220, 220, 220, 1441, 6117, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 7, 17597, 13, 853, 85, 4008, 198 ]
2.229372
12,495
"""Steady-State Visually Evoked Potentials Paradigms""" import logging from moabb.datasets import utils from moabb.datasets.fake import FakeDataset from moabb.paradigms.base import BaseParadigm log = logging.getLogger(__name__) class BaseSSVEP(BaseParadigm): """Base SSVEP Paradigm Parameters ---------- filters: list of list | None (default [7, 45]) Bank of bandpass filter to apply. events: list of str | None (default None) List of stimulation frequencies. If None, use all stimulus found in the dataset. n_classes: int or None (default None) Number of classes each dataset must have. All dataset classes if None. tmin: float (default 0.0) Start time (in second) of the epoch, relative to the dataset specific task interval e.g. tmin = 1 would mean the epoch will start 1 second after the begining of the task as defined by the dataset. tmax: float | None, (default None) End time (in second) of the epoch, relative to the begining of the dataset specific task interval. tmax = 5 would mean the epoch will end 5 second after the begining of the task as defined in the dataset. If None, use the dataset value. baseline: None | tuple of length 2 The time interval to consider as “baseline” when applying baseline correction. If None, do not apply baseline correction. If a tuple (a, b), the interval is between a and b (in seconds), including the endpoints. Correction is applied by computing the mean of the baseline period and subtracting it from the data (see mne.Epochs) channels: list of str | None (default None) List of channel to select. If None, use all EEG channels available in the dataset. resample: float | None (default None) If not None, resample the eeg data with the sampling rate provided. """ @property @property class SSVEP(BaseSSVEP): """Single bandpass filter SSVEP SSVEP paradigm with only one bandpass filter (default 7 to 45 Hz) Metric is 'roc-auc' if 2 classes and 'accuracy' if more Parameters ---------- fmin: float (default 7) cutoff frequency (Hz) for the high pass filter fmax: float (default 45) cutoff frequency (Hz) for the low pass filter events: list of str | None (default None) List of stimulation frequencies. If None, use all stimulus found in the dataset. n_classes: int or None (default None) Number of classes each dataset must have. All dataset classes if None tmin: float (default 0.0) Start time (in second) of the epoch, relative to the dataset specific task interval e.g. tmin = 1 would mean the epoch will start 1 second after the begining of the task as defined by the dataset. tmax: float | None, (default None) End time (in second) of the epoch, relative to the begining of the dataset specific task interval. tmax = 5 would mean the epoch will end 5 second after the begining of the task as defined in the dataset. If None, use the dataset value. baseline: None | tuple of length 2 The time interval to consider as “baseline” when applying baseline correction. If None, do not apply baseline correction. If a tuple (a, b), the interval is between a and b (in seconds), including the endpoints. Correction is applied by computing the mean of the baseline period and subtracting it from the data (see mne.Epochs) channels: list of str | None (default None) List of channel to select. If None, use all EEG channels available in the dataset. resample: float | None (default None) If not None, resample the eeg data with the sampling rate provided. """ class FilterBankSSVEP(BaseSSVEP): """Filtered bank n-class SSVEP paradigm SSVEP paradigm with multiple narrow bandpass filters, centered around the frequencies of considered events. Metric is 'roc-auc' if 2 classes and 'accuracy' if more. Parameters ----------- filters: list of list | None (default None) If None, bandpass set around freqs of events with [f_n-0.5, f_n+0.5] events: List of str, List of stimulation frequencies. If None, use all stimulus found in the dataset. n_classes: int or None (default 2) Number of classes each dataset must have. All dataset classes if None tmin: float (default 0.0) Start time (in second) of the epoch, relative to the dataset specific task interval e.g. tmin = 1 would mean the epoch will start 1 second after the begining of the task as defined by the dataset. tmax: float | None, (default None) End time (in second) of the epoch, relative to the begining of the dataset specific task interval. tmax = 5 would mean the epoch will end 5 second after the begining of the task as defined in the dataset. If None, use the dataset value. baseline: None | tuple of length 2 The time interval to consider as “baseline” when applying baseline correction. If None, do not apply baseline correction. If a tuple (a, b), the interval is between a and b (in seconds), including the endpoints. Correction is applied by computing the mean of the baseline period and subtracting it from the data (see mne.Epochs) channels: list of str | None (default None) List of channel to select. If None, use all EEG channels available in the dataset. resample: float | None (default None) If not None, resample the eeg data with the sampling rate provided. """ class FakeSSVEPParadigm(BaseSSVEP): """Fake SSVEP classification.""" @property
[ 37811, 7447, 4597, 12, 9012, 6911, 935, 4319, 6545, 6902, 14817, 14853, 328, 907, 37811, 198, 198, 11748, 18931, 198, 198, 6738, 6941, 6485, 13, 19608, 292, 1039, 1330, 3384, 4487, 198, 6738, 6941, 6485, 13, 19608, 292, 1039, 13, 30706, 1330, 33482, 27354, 292, 316, 198, 6738, 6941, 6485, 13, 1845, 324, 328, 907, 13, 8692, 1330, 7308, 10044, 324, 17225, 628, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 7308, 5432, 6089, 47, 7, 14881, 10044, 324, 17225, 2599, 198, 220, 220, 220, 37227, 14881, 6723, 6089, 47, 14853, 17225, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 16628, 25, 1351, 286, 1351, 930, 6045, 357, 12286, 685, 22, 11, 4153, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5018, 286, 4097, 6603, 8106, 284, 4174, 13, 628, 220, 220, 220, 2995, 25, 1351, 286, 965, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 20087, 19998, 13, 1002, 6045, 11, 779, 477, 19819, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 287, 262, 27039, 13, 628, 220, 220, 220, 299, 62, 37724, 25, 493, 393, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 6097, 1123, 27039, 1276, 423, 13, 1439, 27039, 6097, 611, 6045, 13, 628, 220, 220, 220, 256, 1084, 25, 12178, 357, 12286, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7253, 640, 357, 259, 1218, 8, 286, 262, 36835, 11, 3585, 284, 262, 27039, 2176, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 16654, 304, 13, 70, 13, 256, 1084, 796, 352, 561, 1612, 262, 36835, 481, 923, 352, 1218, 198, 220, 220, 220, 220, 220, 220, 220, 706, 262, 2221, 278, 286, 262, 4876, 355, 5447, 416, 262, 27039, 13, 628, 220, 220, 220, 256, 9806, 25, 12178, 930, 6045, 11, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5268, 640, 357, 259, 1218, 8, 286, 262, 36835, 11, 3585, 284, 262, 2221, 278, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 2176, 4876, 16654, 13, 256, 9806, 796, 642, 561, 1612, 262, 36835, 481, 886, 198, 220, 220, 220, 220, 220, 220, 220, 642, 1218, 706, 262, 2221, 278, 286, 262, 4876, 355, 5447, 287, 262, 27039, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 779, 262, 27039, 1988, 13, 628, 220, 220, 220, 14805, 25, 6045, 930, 46545, 286, 4129, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 640, 16654, 284, 2074, 355, 564, 250, 12093, 4470, 447, 251, 618, 11524, 14805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 13, 1002, 6045, 11, 466, 407, 4174, 14805, 17137, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 257, 46545, 357, 64, 11, 275, 828, 262, 16654, 318, 1022, 257, 290, 275, 357, 259, 4201, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1390, 262, 886, 13033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35074, 318, 5625, 416, 14492, 262, 1612, 286, 262, 14805, 2278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 34128, 278, 340, 422, 262, 1366, 357, 3826, 285, 710, 13, 13807, 5374, 82, 8, 628, 220, 220, 220, 9619, 25, 1351, 286, 965, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 6518, 284, 2922, 13, 1002, 6045, 11, 779, 477, 48749, 9619, 1695, 287, 198, 220, 220, 220, 220, 220, 220, 220, 262, 27039, 13, 628, 220, 220, 220, 581, 1403, 25, 12178, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 407, 6045, 11, 581, 1403, 262, 304, 1533, 1366, 351, 262, 19232, 2494, 2810, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 198, 4871, 6723, 6089, 47, 7, 14881, 5432, 6089, 47, 2599, 198, 220, 220, 220, 37227, 28008, 4097, 6603, 8106, 6723, 6089, 47, 628, 220, 220, 220, 6723, 6089, 47, 23457, 351, 691, 530, 4097, 6603, 8106, 357, 12286, 767, 284, 4153, 26109, 8, 198, 220, 220, 220, 3395, 1173, 318, 705, 12204, 12, 14272, 6, 611, 362, 6097, 290, 705, 4134, 23843, 6, 611, 517, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 277, 1084, 25, 12178, 357, 12286, 767, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 8373, 357, 7399, 8, 329, 262, 1029, 1208, 8106, 628, 220, 220, 220, 277, 9806, 25, 12178, 357, 12286, 4153, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 8373, 357, 7399, 8, 329, 262, 1877, 1208, 8106, 628, 220, 220, 220, 2995, 25, 1351, 286, 965, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 20087, 19998, 13, 1002, 6045, 11, 779, 477, 19819, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 287, 262, 27039, 13, 628, 220, 220, 220, 299, 62, 37724, 25, 493, 393, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 6097, 1123, 27039, 1276, 423, 13, 1439, 27039, 6097, 611, 6045, 628, 220, 220, 220, 256, 1084, 25, 12178, 357, 12286, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7253, 640, 357, 259, 1218, 8, 286, 262, 36835, 11, 3585, 284, 262, 27039, 2176, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 16654, 304, 13, 70, 13, 256, 1084, 796, 352, 561, 1612, 262, 36835, 481, 923, 352, 1218, 198, 220, 220, 220, 220, 220, 220, 220, 706, 262, 2221, 278, 286, 262, 4876, 355, 5447, 416, 262, 27039, 13, 628, 220, 220, 220, 256, 9806, 25, 12178, 930, 6045, 11, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5268, 640, 357, 259, 1218, 8, 286, 262, 36835, 11, 3585, 284, 262, 2221, 278, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 2176, 4876, 16654, 13, 256, 9806, 796, 642, 561, 1612, 262, 36835, 481, 886, 198, 220, 220, 220, 220, 220, 220, 220, 642, 1218, 706, 262, 2221, 278, 286, 262, 4876, 355, 5447, 287, 262, 27039, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 779, 262, 27039, 1988, 13, 628, 220, 220, 220, 14805, 25, 6045, 930, 46545, 286, 4129, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 640, 16654, 284, 2074, 355, 564, 250, 12093, 4470, 447, 251, 618, 11524, 14805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 13, 1002, 6045, 11, 466, 407, 4174, 14805, 17137, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 257, 46545, 357, 64, 11, 275, 828, 262, 16654, 318, 1022, 257, 290, 275, 357, 259, 4201, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1390, 262, 886, 13033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35074, 318, 5625, 416, 14492, 262, 1612, 286, 262, 14805, 2278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 34128, 278, 340, 422, 262, 1366, 357, 3826, 285, 710, 13, 13807, 5374, 82, 8, 628, 220, 220, 220, 9619, 25, 1351, 286, 965, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 6518, 284, 2922, 13, 1002, 6045, 11, 779, 477, 48749, 9619, 1695, 287, 198, 220, 220, 220, 220, 220, 220, 220, 262, 27039, 13, 628, 220, 220, 220, 581, 1403, 25, 12178, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 407, 6045, 11, 581, 1403, 262, 304, 1533, 1366, 351, 262, 19232, 2494, 2810, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 25853, 28650, 5432, 6089, 47, 7, 14881, 5432, 6089, 47, 2599, 198, 220, 220, 220, 37227, 11928, 4400, 3331, 299, 12, 4871, 6723, 6089, 47, 23457, 628, 220, 220, 220, 6723, 6089, 47, 23457, 351, 3294, 7135, 4097, 6603, 16628, 11, 19254, 1088, 262, 198, 220, 220, 220, 19998, 286, 3177, 2995, 13, 198, 220, 220, 220, 3395, 1173, 318, 705, 12204, 12, 14272, 6, 611, 362, 6097, 290, 705, 4134, 23843, 6, 611, 517, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 16628, 25, 1351, 286, 1351, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 4097, 6603, 900, 1088, 2030, 48382, 286, 2995, 351, 685, 69, 62, 77, 12, 15, 13, 20, 11, 277, 62, 77, 10, 15, 13, 20, 60, 628, 220, 220, 220, 2995, 25, 7343, 286, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 20087, 19998, 13, 1002, 6045, 11, 779, 477, 19819, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 287, 262, 27039, 13, 628, 220, 220, 220, 299, 62, 37724, 25, 493, 393, 6045, 357, 12286, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 6097, 1123, 27039, 1276, 423, 13, 1439, 27039, 6097, 611, 6045, 628, 220, 220, 220, 256, 1084, 25, 12178, 357, 12286, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7253, 640, 357, 259, 1218, 8, 286, 262, 36835, 11, 3585, 284, 262, 27039, 2176, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 16654, 304, 13, 70, 13, 256, 1084, 796, 352, 561, 1612, 262, 36835, 481, 923, 352, 1218, 198, 220, 220, 220, 220, 220, 220, 220, 706, 262, 2221, 278, 286, 262, 4876, 355, 5447, 416, 262, 27039, 13, 628, 220, 220, 220, 256, 9806, 25, 12178, 930, 6045, 11, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5268, 640, 357, 259, 1218, 8, 286, 262, 36835, 11, 3585, 284, 262, 2221, 278, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 2176, 4876, 16654, 13, 256, 9806, 796, 642, 561, 1612, 262, 36835, 481, 886, 198, 220, 220, 220, 220, 220, 220, 220, 642, 1218, 706, 262, 2221, 278, 286, 262, 4876, 355, 5447, 287, 262, 27039, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 779, 262, 27039, 1988, 13, 628, 220, 220, 220, 14805, 25, 6045, 930, 46545, 286, 4129, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 640, 16654, 284, 2074, 355, 564, 250, 12093, 4470, 447, 251, 618, 11524, 14805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 13, 1002, 6045, 11, 466, 407, 4174, 14805, 17137, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 257, 46545, 357, 64, 11, 275, 828, 262, 16654, 318, 1022, 257, 290, 275, 357, 259, 4201, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1390, 262, 886, 13033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35074, 318, 5625, 416, 14492, 262, 1612, 286, 262, 14805, 2278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 34128, 278, 340, 422, 262, 1366, 357, 3826, 285, 710, 13, 13807, 5374, 82, 8, 628, 220, 220, 220, 9619, 25, 1351, 286, 965, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 6518, 284, 2922, 13, 1002, 6045, 11, 779, 477, 48749, 9619, 1695, 287, 198, 220, 220, 220, 220, 220, 220, 220, 262, 27039, 13, 628, 220, 220, 220, 581, 1403, 25, 12178, 930, 6045, 357, 12286, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 407, 6045, 11, 581, 1403, 262, 304, 1533, 1366, 351, 262, 19232, 2494, 2810, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 33482, 5432, 6089, 47, 10044, 324, 17225, 7, 14881, 5432, 6089, 47, 2599, 198, 220, 220, 220, 37227, 49233, 6723, 6089, 47, 17923, 526, 15931, 628, 220, 220, 220, 2488, 26745, 198 ]
2.923304
2,034
import os import subprocess import sys import time modulenames = ", ".join(list(set(sys.modules) & set(globals()))) msg = "---> Automagically imported these packages (if available): {}".format(modulenames) formatted_msg = Style.LINE + Style.BOLD + Style.RED + msg + Style.END print(formatted_msg)
[ 11748, 28686, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 640, 628, 198, 198, 4666, 377, 268, 1047, 796, 33172, 27071, 22179, 7, 4868, 7, 2617, 7, 17597, 13, 18170, 8, 1222, 900, 7, 4743, 672, 874, 3419, 22305, 198, 19662, 796, 366, 438, 3784, 17406, 39066, 17392, 777, 10392, 357, 361, 1695, 2599, 23884, 1911, 18982, 7, 4666, 377, 268, 1047, 8, 198, 687, 16898, 62, 19662, 796, 17738, 13, 24027, 1343, 17738, 13, 33, 15173, 1343, 17738, 13, 22083, 1343, 31456, 1343, 17738, 13, 10619, 198, 4798, 7, 687, 16898, 62, 19662, 8, 198 ]
3.092784
97
from tests.common import InstantCensusTestCase from utils.parser_helpers import split_standard_separators # from parsers.number_parser import text2int from string import whitespace as WHITESPACE_CHARS # text2int_tests = { # "twenty-two" : 22, # "ninety seven" : 97, # "one hundred thirty seven" : 137, # "one million" : 1000000, # "fiftieth" : 50, # "four-hundred and forty-fourth" : 444, # "eighty" : 80, # "ten thousand and one" : 10001, # } # def test_text2int(): # with Test() as test: # for test_inp, result in text2int_tests.iteritems(): # ret = text2int(test_inp) # test.assertTrue(ret == result, str(test_inp) + " parsed incorrectly: " + # str(ret) + " != " + str(result))
[ 6738, 5254, 13, 11321, 1330, 24470, 34, 7314, 14402, 20448, 198, 6738, 3384, 4487, 13, 48610, 62, 16794, 364, 1330, 6626, 62, 20307, 62, 25512, 2024, 198, 2, 422, 13544, 364, 13, 17618, 62, 48610, 1330, 2420, 17, 600, 198, 6738, 4731, 1330, 13216, 10223, 355, 7655, 2043, 1546, 47, 11598, 62, 3398, 27415, 628, 198, 2, 2420, 17, 600, 62, 41989, 796, 1391, 198, 2, 220, 220, 220, 220, 366, 4246, 3787, 12, 11545, 1, 1058, 2534, 11, 198, 2, 220, 220, 220, 220, 366, 35073, 2963, 3598, 1, 1058, 10111, 11, 198, 2, 220, 220, 220, 220, 366, 505, 3470, 12277, 3598, 1, 1058, 21643, 11, 198, 2, 220, 220, 220, 220, 366, 505, 1510, 1, 1058, 1802, 2388, 11, 198, 2, 220, 220, 220, 220, 366, 69, 2135, 19235, 1, 1058, 2026, 11, 198, 2, 220, 220, 220, 220, 366, 14337, 12, 71, 3229, 290, 16571, 12, 49393, 1, 1058, 45095, 11, 198, 2, 220, 220, 220, 220, 366, 68, 14400, 1, 1058, 4019, 11, 198, 2, 220, 220, 220, 220, 366, 1452, 7319, 290, 530, 1, 1058, 1802, 486, 11, 198, 2, 220, 220, 220, 220, 1782, 198, 198, 2, 825, 1332, 62, 5239, 17, 600, 33529, 198, 2, 220, 220, 220, 220, 351, 6208, 3419, 355, 1332, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1332, 62, 259, 79, 11, 1255, 287, 2420, 17, 600, 62, 41989, 13, 2676, 23814, 33529, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 2420, 17, 600, 7, 9288, 62, 259, 79, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 13, 30493, 17821, 7, 1186, 6624, 1255, 11, 965, 7, 9288, 62, 259, 79, 8, 1343, 366, 44267, 23175, 25, 366, 1343, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 1186, 8, 1343, 366, 14512, 366, 1343, 965, 7, 20274, 4008, 198 ]
2.237288
354
with open("input", "r") as file: input = file.read() nums = list(input) sum = 0 for i in range(0, len(nums)): if nums[i] == nums[i-1]: sum += int(nums[i]) print(sum)
[ 4480, 1280, 7203, 15414, 1600, 366, 81, 4943, 355, 2393, 25, 198, 220, 220, 220, 5128, 796, 2393, 13, 961, 3419, 198, 220, 220, 220, 997, 82, 796, 1351, 7, 15414, 8, 198, 220, 220, 220, 2160, 796, 657, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 77, 5700, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 997, 82, 58, 72, 60, 6624, 997, 82, 58, 72, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 15853, 493, 7, 77, 5700, 58, 72, 12962, 198, 220, 220, 220, 3601, 7, 16345, 8, 198 ]
1.907407
108
import tensorflow as tf tf_version = int((tf.__version__).split('.')[0]) if tf_version >= 2: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import os import sys import random import numpy as np import cv2 import skimage.io import warnings; warnings.simplefilter('ignore') import time import h5py # Root directory of the project ROOT_DIR = os.path.abspath("../../") print(ROOT_DIR) # Import Mask RCNN #sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import utils import mrcnn.model as modellib from mrcnn.model import log from skimage import measure #################################################################### # CONFIGURATION #################################################################### #################################################################### # DATASET #################################################################### class CellsDataset(utils.Dataset): """Generates a cells dataset for training. Dataset consists of microscope images. """ def generate_masks(mask_array): """ Generate a dictionary of masks. The keys are instance numbers from the numpy stack and the values are the corresponding binary masks. Args: mask_array: numpy array of size [H,W]. 0 represents the background. Any non zero integer represents a individual instance Returns: Mask dictionary {instance_id: [H,W] numpy binary mask array} """ masks = {} # keys are instances, values are corresponding binary mask array for (x,y), value in np.ndenumerate(mask_array): #go through entire array if value != 0: # if cell if value not in masks: # if new instance introduced masks[value] = np.zeros(mask_array.shape) #make new array dummy_array = masks[value] dummy_array[(x,y)] = 1 masks[value] = dummy_array # change value of array to 1 to represent cell return masks def load_cells(self, h5_file, image_ids): """ Loads cell images from the dataset h5 file. Parameters: ----------- h5_file: str Path to the h5 file that contains the datasets image_ids: numpy_array The ids of the images that would be loaded """ # Add class self.add_class("cells", 1, "cellobj") # Name of images / masks datasets in the h5 file. self.h5_file = h5_file self.images_dataset_name = 'DAPI_uint16touint8_normalizeandscale' self.masks_dataset_name = "bitmask_labeled_uint16" #The attribute for h5 index self.h5_index = 'h5_index' count = 0 for _id in image_ids: params = {} params[self.h5_index] = _id self.add_image('cells', count, path=None, **params) count += 1 def load_image(self, image_id): """ Load the specified image from h5 file and return a [H,W,3] Numpy array. Parameters ---------- image_id: int The id of the image in the dataset Returns ------- numpy.ndarray[uint8][3] """ #t1s = time.time() #HDF5 file with ~320K patches of 256x256. HDF5 saves data as "datasets". Note that the following datasets in the below mentioned .h5 file info = self.image_info[image_id] h5_index = info[self.h5_index] with h5py.File(self.h5_file, 'r') as file_p: image = np.copy(file_p[self.images_dataset_name][h5_index]) # If grayscale. Convert to RGB for consistency. if image.ndim != 3: image = skimage.color.gray2rgb(image) # If has an alpha channel, remove it for consistency if image.shape[-1] == 4: image = image[..., :3] #t1e = time.time() #print("Load image time:{0}".format(t1e-t1s)) #print("loaded_image:{0}".format(image_id)) return image def map_uint16_to_uint8(self, img, lower_bound=None, upper_bound=None): ''' Map a 16-bit image trough a lookup table to convert it to 8-bit. Parameters ---------- img: numpy.ndarray[np.uint16] image that should be mapped lower_bound: int, optional lower bound of the range that should be mapped to ``[0, 255]``, value must be in the range ``[0, 65535]`` and smaller than `upper_bound` (defaults to ``numpy.min(img)``) upper_bound: int, optional upper bound of the range that should be mapped to ``[0, 255]``, value must be in the range ``[0, 65535]`` and larger than `lower_bound` (defaults to ``numpy.max(img)``) Returns ------- numpy.ndarray[uint8] ''' if lower_bound is None: lower_bound = np.min(img) if not(0 <= lower_bound < 2**16): raise ValueError( '"lower_bound" must be in the range [0, 65535]') if upper_bound is None: upper_bound = np.max(img) if not(0 <= upper_bound < 2**16): raise ValueError( '"upper_bound" must be in the range [0, 65535]') if lower_bound >= upper_bound: raise ValueError( '"lower_bound" must be smaller than "upper_bound"') lut = np.concatenate([ np.zeros(lower_bound, dtype=np.uint16), np.linspace(0, 255, upper_bound - lower_bound).astype(np.uint16), np.ones(2**16 - upper_bound, dtype=np.uint16) * 255 ]) return lut[img].astype(np.uint8) def load_mask(self, image_id): """ Generates instance masks for images of the given image ID. Parameters ---------- image_id: int The id of the image in the class Return ------ numpy.ndarray[n_objects, H, W] , numpy_ndarray[n_objects] """ #ts = time.time() info = self.image_info[image_id] h5_index = info[self.h5_index] with h5py.File(self.h5_file, 'r') as file_p: mask = np.copy(file_p[self.masks_dataset_name][h5_index]) #The mask already has a different id for every nucleus labels = np.unique(mask) #Remove the background labels = labels[labels != 0] all_masks = [] if not labels.size == 0: for label in np.nditer(labels): nucleus_mask = np.zeros(mask.shape, dtype=np.int8) nucleus_mask[mask == label] = 1 all_masks.append(nucleus_mask) else: #If there are no masks print("WARNING: h5_index:{0} has no masks".format(h5_index)) nucleus_mask = np.zeros(mask.shape, dtype=np.int8) all_masks.append(nucleus_mask) mask_np = np.stack(all_masks, axis = -1).astype(np.int8) # Return mask, and array of class IDs of each instance. Since we have # one class ID, we return an array of ones #tf = time.time() #print("load_mask time:{0}".format(tf-ts)) #print("loaded_mask:{0}".format(image_id)) return mask_np, np.ones([len(all_masks)], dtype=np.int8) def get_n_images(h5_file): """ Returns the number of images in the h5 file """ with h5py.File(h5_file, 'r') as file_p: a_dataset = list(file_p.keys())[0] shape = file_p[a_dataset].shape return shape[0] #################################################################### # TRAINING #################################################################### def train(h5_file, model_dir, init_with='coco',latest="latest.h5"): """ Train the MRCNN using the Parameters: ----------- h5_file: str Path to the h5file that contains the ground truth datasets init_with: str Name of the h5 file to initilaze the M-RCNN network model_dir: str Directory to save logs and trained model lastes: src The file to use as symlink for the best model """ # Total number of images in the .h5 file n_images = get_n_images(h5_file) print("number of images:{0}".format(n_images)) #n_images = 200 imgs_ind = np.arange(n_images) np.random.shuffle(imgs_ind) # Split 80-20 train_last_id = int(n_images*0.80) train_indexes = imgs_ind[0:train_last_id] test_indexes = imgs_ind[train_last_id+1: n_images] n_test = len(test_indexes) print("Total:{0}, Train:{1}, Test:{2}".format(n_images, len(train_indexes), len(test_indexes))) dataset_train = CellsDataset() dataset_train.load_cells(h5_file, train_indexes) dataset_train.prepare() dataset_test = CellsDataset() dataset_test.load_cells(h5_file, test_indexes) dataset_test.prepare() MODEL_DIR = model_dir config = CellsConfig() #GZ: Change to accomodate the real number of passes while #executing the schedule below or 200 epochs total_passes = 30 n_epochs = 200 config.STEPS_PER_EPOCH= int(train_last_id * total_passes / \ n_epochs / config.BATCH_SIZE) config.VALIDATION_STEPS = int(n_test * total_passes / \ n_epochs / config.BATCH_SIZE) #config.STEPS_PER_EPOCH = train_indexes.shape[0] / config.BATCH_SIZE #config.VALIDATION_STEPS = test_indexes.shape[0] / config.BATCH_SIZE config.display() print("MRCNN Train module:", modellib.__file__) model = modellib.MaskRCNN(mode="training", config=config, model_dir=model_dir) #print(image1.shape) #print( mask1.shape, ids) #np.save("image.npy", image1) #np.save("mask.npy", mask1) #exit() # Which weights to start with? # imagenet, coco, or last print('initializing with {}'.format(init_with)) initial_layers = "heads" if init_with == "imagenet": model.load_weights(model.get_imagenet_weights(), by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes # See README for instructions to download the COCO weights # Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training model.load_weights(model.find_last(), by_name=True) elif init_with == "random": print("Warning: Model is initialized with random weights") initial_layers = "all" elif os.path.exists(init_with): import inspect print(inspect.getfullargspec(model.load_weights)) print(model.load_weights.__module__) model.load_weights(init_with, by_name=True, reset_init_epoch=True) else: print("ERROR: No model initialization provided") exit(1) ### TRAIN THE MODEL # TGAR, modify how to train model. Epochs accumulate (ex. line first call to model.train means train epochs 1-75 and second call to train means train from epochs 75-100. #DEVICE = '/device:GPU:0' #with tf.device(DEVICE): train_heads_start = time.time() model.train(dataset_train, dataset_test, learning_rate=config.LEARNING_RATE, #augmentation=augmentation, epochs=75, layers= initial_layers) model.train(dataset_train, dataset_test, learning_rate=config.LEARNING_RATE / 10, #augmentation=augmentation, epochs=100, layers=initial_layers) model.train(dataset_train, dataset_test, learning_rate=config.LEARNING_RATE / 100, #augmentation=augmentation, epochs=125, layers=initial_layers) train_heads_end = time.time() train_heads_time = train_heads_end - train_heads_start print('\n Done training {0}. Took {1} seconds'.format(initial_layers, train_heads_time)) # Fine tune all layers # Passing layers="all" trains all layers. You can also # pass a regular expression to select which layers to # train by name pattern. train_all_start = time.time() t1s = time.time() model.train(dataset_train, dataset_test, learning_rate=config.LEARNING_RATE / 10, #augmentation=augmentation, epochs=150, layers="all") t1e = time.time() print(t1e-t1s) t2s = time.time() model.train(dataset_train, dataset_test, learning_rate=config.LEARNING_RATE / 100, #augmentation=augmentation, epochs=175, layers="all") t2e = time.time() print(t2e-t2s) t3s = time.time() model.train(dataset_train, dataset_test, learning_rate=config.LEARNING_RATE / 1000, #augmentation=augmentation, epochs=200, layers="all") t3e = time.time() print(t3e-t3s) train_all_end = time.time() train_all_time = train_all_end - train_all_start print("Here", model.find_last()) best_model = os.path.abspath(model.find_last()) os.symlink(best_model, latest) print('\n Best model {0} symlinked to {1}'.format(best_model, latest)) print('\n Done training all layers. Took {} seconds'.format(train_all_time))
[ 11748, 11192, 273, 11125, 355, 48700, 198, 27110, 62, 9641, 796, 493, 19510, 27110, 13, 834, 9641, 834, 737, 35312, 10786, 2637, 38381, 15, 12962, 198, 361, 48700, 62, 9641, 18189, 362, 25, 198, 220, 220, 220, 1330, 11192, 273, 11125, 13, 5589, 265, 13, 85, 16, 355, 48700, 198, 220, 220, 220, 48700, 13, 40223, 62, 85, 17, 62, 46571, 3419, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 1341, 9060, 13, 952, 198, 11748, 14601, 26, 14601, 13, 36439, 24455, 10786, 46430, 11537, 198, 11748, 640, 198, 11748, 289, 20, 9078, 198, 198, 2, 20410, 8619, 286, 262, 1628, 198, 13252, 2394, 62, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7203, 40720, 40720, 4943, 198, 4798, 7, 13252, 2394, 62, 34720, 8, 198, 198, 2, 17267, 18007, 13987, 6144, 198, 2, 17597, 13, 6978, 13, 33295, 7, 13252, 2394, 62, 34720, 8, 220, 1303, 1675, 1064, 1957, 2196, 286, 262, 5888, 198, 6738, 285, 6015, 20471, 13, 11250, 1330, 17056, 198, 6738, 285, 6015, 20471, 1330, 3384, 4487, 198, 11748, 285, 6015, 20471, 13, 19849, 355, 953, 695, 571, 198, 6738, 285, 6015, 20471, 13, 19849, 1330, 2604, 198, 6738, 1341, 9060, 1330, 3953, 628, 198, 29113, 29113, 4242, 198, 2, 25626, 4261, 6234, 198, 29113, 29113, 4242, 628, 198, 198, 29113, 29113, 4242, 198, 2, 360, 1404, 1921, 2767, 220, 198, 29113, 29113, 4242, 628, 198, 198, 4871, 39794, 27354, 292, 316, 7, 26791, 13, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 8645, 689, 257, 4778, 27039, 329, 3047, 13, 16092, 292, 316, 10874, 286, 36396, 4263, 13, 198, 37811, 628, 220, 220, 220, 825, 7716, 62, 5356, 591, 7, 27932, 62, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2980, 378, 257, 22155, 286, 20680, 13, 383, 8251, 389, 4554, 3146, 422, 262, 299, 32152, 8931, 290, 262, 3815, 389, 262, 11188, 13934, 20680, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 18747, 25, 299, 32152, 7177, 286, 2546, 685, 39, 11, 54, 4083, 657, 6870, 262, 4469, 13, 4377, 1729, 6632, 18253, 6870, 257, 1981, 4554, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18007, 22155, 1391, 39098, 62, 312, 25, 685, 39, 11, 54, 60, 299, 32152, 13934, 9335, 7177, 92, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20680, 796, 23884, 1303, 8251, 389, 10245, 11, 3815, 389, 11188, 13934, 9335, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 87, 11, 88, 828, 1988, 287, 45941, 13, 358, 268, 6975, 378, 7, 27932, 62, 18747, 2599, 1303, 2188, 832, 2104, 7177, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 14512, 657, 25, 1303, 611, 2685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 407, 287, 20680, 25, 1303, 611, 649, 4554, 5495, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20680, 58, 8367, 60, 796, 45941, 13, 9107, 418, 7, 27932, 62, 18747, 13, 43358, 8, 1303, 15883, 649, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31548, 62, 18747, 796, 20680, 58, 8367, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31548, 62, 18747, 58, 7, 87, 11, 88, 15437, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20680, 58, 8367, 60, 796, 31548, 62, 18747, 1303, 1487, 1988, 286, 7177, 284, 352, 284, 2380, 2685, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 20680, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 3440, 62, 46342, 7, 944, 11, 289, 20, 62, 7753, 11, 2939, 62, 2340, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 82, 2685, 4263, 422, 262, 27039, 289, 20, 2393, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 6329, 198, 220, 220, 220, 220, 220, 220, 220, 289, 20, 62, 7753, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 262, 289, 20, 2393, 326, 4909, 262, 40522, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 2340, 25, 299, 32152, 62, 18747, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 220, 2340, 286, 262, 4263, 326, 561, 307, 9639, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 4871, 7203, 46342, 1600, 352, 11, 366, 3846, 26801, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6530, 286, 4263, 1220, 20680, 40522, 287, 262, 289, 20, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 20, 62, 7753, 796, 289, 20, 62, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17566, 62, 19608, 292, 316, 62, 3672, 796, 705, 35, 17614, 62, 28611, 1433, 83, 280, 600, 23, 62, 11265, 1096, 392, 9888, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5356, 591, 62, 19608, 292, 316, 62, 3672, 796, 366, 2545, 27932, 62, 18242, 276, 62, 28611, 1433, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 464, 11688, 329, 289, 20, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 20, 62, 9630, 796, 705, 71, 20, 62, 9630, 6, 628, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 312, 287, 2939, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 944, 13, 71, 20, 62, 9630, 60, 796, 4808, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 9060, 10786, 46342, 3256, 954, 11, 3108, 28, 14202, 11, 12429, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 3440, 62, 9060, 7, 944, 11, 2939, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 262, 7368, 2939, 422, 289, 20, 2393, 290, 1441, 257, 685, 39, 11, 54, 11, 18, 60, 399, 32152, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 220, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 312, 25, 220, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4686, 286, 262, 2939, 287, 262, 27039, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 13, 358, 18747, 58, 28611, 23, 7131, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 83, 16, 82, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 39, 8068, 20, 2393, 351, 5299, 19504, 42, 16082, 286, 17759, 87, 11645, 13, 5572, 37, 20, 16031, 1366, 355, 366, 19608, 292, 1039, 1911, 5740, 326, 262, 1708, 40522, 287, 262, 2174, 4750, 764, 71, 20, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 2116, 13, 9060, 62, 10951, 58, 9060, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 289, 20, 62, 9630, 220, 796, 7508, 58, 944, 13, 71, 20, 62, 9630, 60, 628, 220, 220, 220, 220, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 944, 13, 71, 20, 62, 7753, 11, 705, 81, 11537, 355, 2393, 62, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 45941, 13, 30073, 7, 7753, 62, 79, 58, 944, 13, 17566, 62, 19608, 292, 316, 62, 3672, 7131, 71, 20, 62, 9630, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 1036, 592, 38765, 13, 38240, 284, 25228, 329, 15794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 13, 358, 320, 14512, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 1341, 9060, 13, 8043, 13, 44605, 17, 81, 22296, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 468, 281, 17130, 6518, 11, 4781, 340, 329, 15794, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 13, 43358, 58, 12, 16, 60, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 58, 986, 11, 1058, 18, 60, 198, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 83, 16, 68, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 8912, 2939, 640, 29164, 15, 92, 1911, 18982, 7, 83, 16, 68, 12, 83, 16, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 14578, 62, 9060, 29164, 15, 92, 1911, 18982, 7, 9060, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 825, 3975, 62, 28611, 1433, 62, 1462, 62, 28611, 23, 7, 944, 11, 33705, 11, 2793, 62, 7784, 28, 14202, 11, 6727, 62, 7784, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 9347, 257, 1467, 12, 2545, 2939, 45047, 257, 35847, 3084, 284, 10385, 340, 284, 807, 12, 2545, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 25, 299, 32152, 13, 358, 18747, 58, 37659, 13, 28611, 1433, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 326, 815, 307, 27661, 198, 220, 220, 220, 220, 220, 220, 220, 2793, 62, 7784, 25, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 5421, 286, 262, 2837, 326, 815, 307, 27661, 284, 7559, 58, 15, 11, 14280, 60, 15506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 1276, 307, 287, 262, 2837, 7559, 58, 15, 11, 45021, 2327, 60, 15506, 290, 4833, 621, 4600, 45828, 62, 7784, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 82, 284, 7559, 77, 32152, 13, 1084, 7, 9600, 8, 15506, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6727, 62, 7784, 25, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6727, 5421, 286, 262, 2837, 326, 815, 307, 27661, 284, 7559, 58, 15, 11, 14280, 60, 15506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 1276, 307, 287, 262, 2837, 7559, 58, 15, 11, 45021, 2327, 60, 15506, 290, 4025, 621, 4600, 21037, 62, 7784, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 82, 284, 7559, 77, 32152, 13, 9806, 7, 9600, 8, 15506, 8, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 13, 358, 18747, 58, 28611, 23, 60, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2793, 62, 7784, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 62, 7784, 796, 45941, 13, 1084, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 7, 15, 19841, 2793, 62, 7784, 1279, 362, 1174, 1433, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 21037, 62, 7784, 1, 1276, 307, 287, 262, 2837, 685, 15, 11, 45021, 2327, 60, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6727, 62, 7784, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6727, 62, 7784, 796, 45941, 13, 9806, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 7, 15, 19841, 6727, 62, 7784, 1279, 362, 1174, 1433, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 45828, 62, 7784, 1, 1276, 307, 287, 262, 2837, 685, 15, 11, 45021, 2327, 60, 11537, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2793, 62, 7784, 18189, 6727, 62, 7784, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 21037, 62, 7784, 1, 1276, 307, 4833, 621, 366, 45828, 62, 7784, 1, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 300, 315, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 9107, 418, 7, 21037, 62, 7784, 11, 288, 4906, 28, 37659, 13, 28611, 1433, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 15, 11, 14280, 11, 6727, 62, 7784, 532, 2793, 62, 7784, 737, 459, 2981, 7, 37659, 13, 28611, 1433, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 1952, 7, 17, 1174, 1433, 532, 6727, 62, 7784, 11, 288, 4906, 28, 37659, 13, 28611, 1433, 8, 1635, 14280, 198, 220, 220, 220, 220, 220, 220, 220, 33761, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 300, 315, 58, 9600, 4083, 459, 2981, 7, 37659, 13, 28611, 23, 8, 628, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 3440, 62, 27932, 7, 944, 11, 2939, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2980, 689, 4554, 20680, 329, 4263, 286, 262, 1813, 2939, 4522, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 312, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4686, 286, 262, 2939, 287, 262, 1398, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 13, 358, 18747, 58, 77, 62, 48205, 11, 367, 11, 370, 60, 837, 299, 32152, 62, 358, 18747, 58, 77, 62, 48205, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 912, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 2116, 13, 9060, 62, 10951, 58, 9060, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 289, 20, 62, 9630, 796, 7508, 58, 944, 13, 71, 20, 62, 9630, 60, 220, 628, 220, 220, 220, 220, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 944, 13, 71, 20, 62, 7753, 11, 705, 81, 11537, 355, 2393, 62, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 45941, 13, 30073, 7, 7753, 62, 79, 58, 944, 13, 5356, 591, 62, 19608, 292, 316, 62, 3672, 7131, 71, 20, 62, 9630, 12962, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 464, 9335, 1541, 468, 257, 1180, 4686, 329, 790, 29984, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 45941, 13, 34642, 7, 27932, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27914, 262, 4469, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 14722, 58, 23912, 1424, 14512, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 5356, 591, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 14722, 13, 7857, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6167, 287, 45941, 13, 358, 2676, 7, 23912, 1424, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29984, 62, 27932, 796, 45941, 13, 9107, 418, 7, 27932, 13, 43358, 11, 288, 4906, 28, 37659, 13, 600, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29984, 62, 27932, 58, 27932, 6624, 6167, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 5356, 591, 13, 33295, 7, 77, 14913, 385, 62, 27932, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1532, 612, 389, 645, 20680, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 31502, 25, 289, 20, 62, 9630, 29164, 15, 92, 468, 645, 20680, 1911, 18982, 7, 71, 20, 62, 9630, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29984, 62, 27932, 796, 45941, 13, 9107, 418, 7, 27932, 13, 43358, 11, 288, 4906, 28, 37659, 13, 600, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 5356, 591, 13, 33295, 7, 77, 14913, 385, 62, 27932, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 37659, 796, 45941, 13, 25558, 7, 439, 62, 5356, 591, 11, 16488, 796, 532, 16, 737, 459, 2981, 7, 37659, 13, 600, 23, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8229, 9335, 11, 290, 7177, 286, 1398, 32373, 286, 1123, 4554, 13, 4619, 356, 423, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 530, 1398, 4522, 11, 356, 1441, 281, 7177, 286, 3392, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27110, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 2220, 62, 27932, 640, 29164, 15, 92, 1911, 18982, 7, 27110, 12, 912, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 14578, 62, 27932, 29164, 15, 92, 1911, 18982, 7, 9060, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9335, 62, 37659, 11, 45941, 13, 1952, 26933, 11925, 7, 439, 62, 5356, 591, 8, 4357, 288, 4906, 28, 37659, 13, 600, 23, 8, 220, 198, 198, 4299, 651, 62, 77, 62, 17566, 7, 71, 20, 62, 7753, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 1271, 286, 4263, 287, 262, 289, 20, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 71, 20, 62, 7753, 11, 705, 81, 11537, 355, 2393, 62, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 19608, 292, 316, 796, 1351, 7, 7753, 62, 79, 13, 13083, 28955, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 2393, 62, 79, 58, 64, 62, 19608, 292, 316, 4083, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5485, 58, 15, 60, 628, 198, 29113, 29113, 4242, 198, 2, 29125, 1268, 2751, 220, 198, 29113, 29113, 4242, 198, 198, 4299, 4512, 7, 71, 20, 62, 7753, 11, 2746, 62, 15908, 11, 2315, 62, 4480, 11639, 66, 25634, 3256, 42861, 2625, 42861, 13, 71, 20, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16835, 262, 337, 7397, 6144, 1262, 262, 220, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 24200, 6329, 198, 220, 220, 220, 289, 20, 62, 7753, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 262, 289, 20, 7753, 326, 4909, 262, 2323, 3872, 40522, 198, 220, 220, 220, 2315, 62, 4480, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 289, 20, 2393, 284, 2315, 346, 6201, 262, 337, 12, 7397, 6144, 3127, 198, 220, 220, 220, 2746, 62, 15908, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 27387, 284, 3613, 17259, 290, 8776, 2746, 628, 220, 220, 220, 938, 274, 25, 12351, 220, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2393, 284, 779, 355, 827, 4029, 676, 329, 262, 1266, 2746, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 7472, 1271, 286, 4263, 287, 262, 764, 71, 20, 2393, 628, 220, 220, 220, 299, 62, 17566, 796, 651, 62, 77, 62, 17566, 7, 71, 20, 62, 7753, 8, 220, 198, 220, 220, 220, 3601, 7203, 17618, 286, 4263, 29164, 15, 92, 1911, 18982, 7, 77, 62, 17566, 4008, 198, 220, 220, 220, 1303, 77, 62, 17566, 796, 939, 198, 220, 220, 220, 545, 14542, 62, 521, 796, 45941, 13, 283, 858, 7, 77, 62, 17566, 8, 198, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 9600, 82, 62, 521, 8, 628, 220, 220, 220, 1303, 27758, 4019, 12, 1238, 198, 220, 220, 220, 4512, 62, 12957, 62, 312, 796, 493, 7, 77, 62, 17566, 9, 15, 13, 1795, 8, 628, 220, 220, 220, 4512, 62, 9630, 274, 796, 545, 14542, 62, 521, 58, 15, 25, 27432, 62, 12957, 62, 312, 60, 198, 220, 220, 220, 1332, 62, 9630, 274, 796, 545, 14542, 62, 521, 58, 27432, 62, 12957, 62, 312, 10, 16, 25, 299, 62, 17566, 60, 198, 220, 220, 220, 299, 62, 9288, 796, 18896, 7, 9288, 62, 9630, 274, 8, 198, 220, 220, 220, 3601, 7203, 14957, 29164, 15, 5512, 16835, 29164, 16, 5512, 6208, 29164, 17, 92, 1911, 18982, 7, 77, 62, 17566, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 27432, 62, 9630, 274, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 9288, 62, 9630, 274, 22305, 220, 628, 220, 220, 220, 27039, 62, 27432, 796, 39794, 27354, 292, 316, 3419, 198, 220, 220, 220, 27039, 62, 27432, 13, 2220, 62, 46342, 7, 71, 20, 62, 7753, 11, 4512, 62, 9630, 274, 8, 198, 220, 220, 220, 27039, 62, 27432, 13, 46012, 533, 3419, 628, 198, 220, 220, 220, 27039, 62, 9288, 796, 39794, 27354, 292, 316, 3419, 198, 220, 220, 220, 27039, 62, 9288, 13, 2220, 62, 46342, 7, 71, 20, 62, 7753, 11, 1332, 62, 9630, 274, 8, 198, 220, 220, 220, 27039, 62, 9288, 13, 46012, 533, 3419, 628, 198, 220, 220, 220, 19164, 3698, 62, 34720, 796, 2746, 62, 15908, 198, 220, 220, 628, 220, 220, 220, 4566, 796, 39794, 16934, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38, 57, 25, 9794, 284, 697, 296, 375, 378, 262, 1103, 1271, 286, 8318, 981, 198, 220, 220, 220, 1303, 18558, 15129, 262, 7269, 2174, 393, 939, 36835, 82, 198, 220, 220, 220, 2472, 62, 6603, 274, 796, 1542, 198, 220, 220, 220, 299, 62, 538, 5374, 82, 796, 939, 198, 220, 220, 220, 4566, 13, 30516, 3705, 62, 18973, 62, 8905, 46, 3398, 28, 493, 7, 27432, 62, 12957, 62, 312, 1635, 2472, 62, 6603, 274, 1220, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 538, 5374, 82, 1220, 4566, 13, 33, 11417, 62, 33489, 8, 628, 220, 220, 220, 4566, 13, 23428, 2389, 6234, 62, 30516, 3705, 796, 493, 7, 77, 62, 9288, 1635, 2472, 62, 6603, 274, 1220, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 538, 5374, 82, 1220, 4566, 13, 33, 11417, 62, 33489, 8, 628, 198, 220, 220, 220, 1303, 11250, 13, 30516, 3705, 62, 18973, 62, 8905, 46, 3398, 796, 4512, 62, 9630, 274, 13, 43358, 58, 15, 60, 220, 1220, 4566, 13, 33, 11417, 62, 33489, 198, 220, 220, 220, 1303, 11250, 13, 23428, 2389, 6234, 62, 30516, 3705, 796, 1332, 62, 9630, 274, 13, 43358, 58, 15, 60, 1220, 4566, 13, 33, 11417, 62, 33489, 198, 220, 220, 220, 4566, 13, 13812, 3419, 628, 220, 220, 220, 3601, 7203, 44, 7397, 6144, 16835, 8265, 25, 1600, 953, 695, 571, 13, 834, 7753, 834, 8, 198, 220, 220, 220, 2746, 796, 953, 695, 571, 13, 45195, 7397, 6144, 7, 14171, 2625, 34409, 1600, 4566, 28, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 15908, 28, 19849, 62, 15908, 8, 628, 198, 220, 220, 220, 1303, 4798, 7, 9060, 16, 13, 43358, 8, 198, 220, 220, 220, 1303, 4798, 7, 9335, 16, 13, 43358, 11, 220, 2340, 8, 198, 220, 220, 220, 1303, 37659, 13, 21928, 7203, 9060, 13, 77, 9078, 1600, 2939, 16, 8, 198, 220, 220, 220, 1303, 37659, 13, 21928, 7203, 27932, 13, 77, 9078, 1600, 9335, 16, 8, 198, 220, 220, 220, 1303, 37023, 3419, 198, 220, 220, 220, 1303, 9022, 19590, 284, 923, 351, 30, 198, 220, 220, 220, 1303, 3590, 268, 316, 11, 8954, 78, 11, 393, 938, 198, 220, 220, 220, 3601, 10786, 36733, 2890, 351, 23884, 4458, 18982, 7, 15003, 62, 4480, 4008, 198, 220, 220, 220, 4238, 62, 75, 6962, 796, 366, 16600, 1, 198, 220, 220, 220, 611, 2315, 62, 4480, 6624, 366, 320, 11286, 316, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7, 19849, 13, 1136, 62, 320, 11286, 316, 62, 43775, 22784, 416, 62, 3672, 28, 17821, 8, 198, 220, 220, 220, 1288, 361, 2315, 62, 4480, 6624, 366, 66, 25634, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 19590, 8776, 319, 6579, 327, 4503, 46, 11, 475, 14267, 11685, 326, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 389, 1180, 2233, 284, 262, 1180, 1271, 286, 6097, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 20832, 11682, 329, 7729, 284, 4321, 262, 327, 4503, 46, 19590, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10714, 3108, 284, 8776, 19590, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 327, 4503, 46, 62, 33365, 3698, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 7, 13252, 2394, 62, 34720, 11, 366, 27932, 62, 6015, 20471, 62, 66, 25634, 13, 71, 20, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10472, 327, 4503, 46, 8776, 19590, 422, 48691, 611, 2622, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 34, 4503, 46, 62, 33365, 3698, 62, 34219, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 15002, 62, 35311, 62, 43775, 7, 34, 4503, 46, 62, 33365, 3698, 62, 34219, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7, 34, 4503, 46, 62, 33365, 3698, 62, 34219, 11, 416, 62, 3672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19607, 28, 14692, 76, 6015, 20471, 62, 4871, 62, 6404, 896, 1600, 366, 76, 6015, 20471, 62, 65, 3524, 62, 16072, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 76, 6015, 20471, 62, 65, 3524, 1600, 366, 76, 6015, 20471, 62, 27932, 8973, 8, 198, 220, 220, 220, 1288, 361, 2315, 62, 4480, 6624, 366, 12957, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 262, 938, 2746, 345, 8776, 290, 2555, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7, 19849, 13, 19796, 62, 12957, 22784, 416, 62, 3672, 28, 17821, 8, 198, 220, 220, 220, 1288, 361, 2315, 62, 4480, 6624, 366, 25120, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 20361, 25, 9104, 318, 23224, 351, 4738, 19590, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 75, 6962, 796, 366, 439, 1, 198, 220, 220, 220, 1288, 361, 28686, 13, 6978, 13, 1069, 1023, 7, 15003, 62, 4480, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 10104, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1040, 806, 13, 1136, 12853, 853, 16684, 7, 19849, 13, 2220, 62, 43775, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 19849, 13, 2220, 62, 43775, 13, 834, 21412, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7, 15003, 62, 4480, 11, 416, 62, 3672, 28, 17821, 11, 13259, 62, 15003, 62, 538, 5374, 28, 17821, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24908, 25, 1400, 2746, 37588, 2810, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 198, 220, 220, 220, 44386, 29125, 1268, 3336, 19164, 3698, 198, 220, 220, 220, 1303, 44121, 1503, 11, 13096, 703, 284, 4512, 2746, 13, 4551, 5374, 82, 29915, 357, 1069, 13, 1627, 717, 869, 284, 2746, 13, 27432, 1724, 4512, 36835, 82, 352, 12, 2425, 290, 1218, 869, 284, 4512, 1724, 4512, 422, 36835, 82, 5441, 12, 3064, 13, 198, 220, 220, 220, 1303, 7206, 27389, 796, 31051, 25202, 25, 33346, 25, 15, 6, 198, 220, 220, 220, 1303, 4480, 48700, 13, 25202, 7, 7206, 27389, 2599, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 4512, 62, 16600, 62, 9688, 796, 640, 13, 2435, 3419, 220, 198, 220, 220, 220, 2746, 13, 27432, 7, 19608, 292, 316, 62, 27432, 11, 27039, 62, 9288, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 28, 11250, 13, 2538, 1503, 15871, 62, 49, 6158, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 559, 5154, 341, 28, 559, 5154, 341, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 2425, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11685, 28, 4238, 62, 75, 6962, 8, 628, 198, 220, 220, 220, 2746, 13, 27432, 7, 19608, 292, 316, 62, 27432, 11, 27039, 62, 9288, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 28, 11250, 13, 2538, 1503, 15871, 62, 49, 6158, 1220, 838, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 559, 5154, 341, 28, 559, 5154, 341, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11685, 28, 36733, 62, 75, 6962, 8, 628, 220, 220, 220, 2746, 13, 27432, 7, 19608, 292, 316, 62, 27432, 11, 27039, 62, 9288, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 28, 11250, 13, 2538, 1503, 15871, 62, 49, 6158, 1220, 1802, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 559, 5154, 341, 28, 559, 5154, 341, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 11623, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11685, 28, 36733, 62, 75, 6962, 8, 628, 198, 220, 220, 220, 4512, 62, 16600, 62, 437, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 4512, 62, 16600, 62, 2435, 796, 4512, 62, 16600, 62, 437, 532, 4512, 62, 16600, 62, 9688, 198, 220, 220, 220, 3601, 10786, 59, 77, 24429, 3047, 1391, 15, 27422, 309, 566, 1391, 16, 92, 4201, 4458, 18982, 7, 36733, 62, 75, 6962, 11, 4512, 62, 16600, 62, 2435, 4008, 628, 220, 220, 220, 1303, 17867, 14009, 477, 11685, 198, 220, 220, 220, 1303, 46389, 11685, 2625, 439, 1, 13404, 477, 11685, 13, 921, 460, 635, 220, 198, 220, 220, 220, 1303, 1208, 257, 3218, 5408, 284, 2922, 543, 11685, 284, 198, 220, 220, 220, 1303, 4512, 416, 1438, 3912, 13, 628, 220, 220, 220, 4512, 62, 439, 62, 9688, 796, 640, 13, 2435, 3419, 220, 628, 220, 220, 220, 256, 16, 82, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 2746, 13, 27432, 7, 19608, 292, 316, 62, 27432, 11, 27039, 62, 9288, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 28, 11250, 13, 2538, 1503, 15871, 62, 49, 6158, 1220, 838, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 559, 5154, 341, 28, 559, 5154, 341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 8628, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11685, 2625, 439, 4943, 198, 220, 220, 220, 256, 16, 68, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 3601, 7, 83, 16, 68, 12, 83, 16, 82, 8, 628, 220, 220, 220, 256, 17, 82, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 2746, 13, 27432, 7, 19608, 292, 316, 62, 27432, 11, 27039, 62, 9288, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 28, 11250, 13, 2538, 1503, 15871, 62, 49, 6158, 1220, 1802, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 559, 5154, 341, 28, 559, 5154, 341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 17430, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11685, 2625, 439, 4943, 198, 220, 220, 220, 256, 17, 68, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 3601, 7, 83, 17, 68, 12, 83, 17, 82, 8, 628, 220, 220, 220, 256, 18, 82, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 2746, 13, 27432, 7, 19608, 292, 316, 62, 27432, 11, 27039, 62, 9288, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 28, 11250, 13, 2538, 1503, 15871, 62, 49, 6158, 1220, 8576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 559, 5154, 341, 28, 559, 5154, 341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 2167, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11685, 2625, 439, 4943, 198, 220, 220, 220, 256, 18, 68, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 3601, 7, 83, 18, 68, 12, 83, 18, 82, 8, 220, 220, 220, 220, 628, 220, 220, 220, 4512, 62, 439, 62, 437, 796, 640, 13, 2435, 3419, 220, 198, 220, 220, 220, 4512, 62, 439, 62, 2435, 796, 4512, 62, 439, 62, 437, 532, 4512, 62, 439, 62, 9688, 198, 220, 220, 220, 3601, 7203, 4342, 1600, 2746, 13, 19796, 62, 12957, 28955, 198, 220, 220, 220, 1266, 62, 19849, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 19849, 13, 19796, 62, 12957, 28955, 198, 220, 220, 220, 28686, 13, 1837, 4029, 676, 7, 13466, 62, 19849, 11, 3452, 8, 628, 220, 220, 220, 3601, 10786, 59, 77, 6705, 2746, 1391, 15, 92, 827, 4029, 676, 276, 284, 1391, 16, 92, 4458, 18982, 7, 13466, 62, 19849, 11, 3452, 4008, 198, 220, 220, 220, 3601, 10786, 59, 77, 24429, 3047, 477, 11685, 13, 309, 566, 23884, 4201, 4458, 18982, 7, 27432, 62, 439, 62, 2435, 4008, 198 ]
2.232595
6,277
""" Usage example of the ESP32 over UART using the CircuitPython ESP_ATControl library. Dependencies: * https://github.com/adafruit/Adafruit_CircuitPython_ESP_ATcontrol """ from random import randint import board import busio from digitalio import DigitalInOut # Import Adafruit IO REST Client from adafruit_io.adafruit_io import RESTClient, AdafruitIO_RequestError # ESP32 AT from adafruit_espatcontrol import adafruit_espatcontrol, adafruit_espatcontrol_wifimanager #Use below for Most Boards import neopixel status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2) # Uncomment for Most Boards #Uncomment below for ItsyBitsy M4# #import adafruit_dotstar as dotstar #status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, brightness=0.2) #Uncomment below for Particle Argon# #status_light = None # Get wifi details and more from a secrets.py file try: from secrets import secrets except ImportError: print("WiFi secrets are kept in secrets.py, please add them there!") raise # With a Metro or Feather M4 uart = busio.UART(board.TX, board.RX, timeout=0.1) resetpin = DigitalInOut(board.D5) rtspin = DigitalInOut(board.D6) # With a Particle Argon """ RX = board.ESP_TX TX = board.ESP_RX resetpin = DigitalInOut(board.ESP_WIFI_EN) rtspin = DigitalInOut(board.ESP_CTS) uart = busio.UART(TX, RX, timeout=0.1) esp_boot = DigitalInOut(board.ESP_BOOT_MODE) from digitalio import Direction esp_boot.direction = Direction.OUTPUT esp_boot.value = True """ esp = adafruit_espatcontrol.ESP_ATcontrol(uart, 115200, reset_pin=resetpin, rts_pin=rtspin, debug=False) wifi = adafruit_espatcontrol_wifimanager.ESPAT_WiFiManager(esp, secrets, status_light) # Set your Adafruit IO Username and Key in secrets.py # (visit io.adafruit.com if you need to create an account, # or if you need your Adafruit IO key.) ADAFRUIT_IO_USER = secrets['adafruit_io_user'] ADAFRUIT_IO_KEY = secrets['adafruit_io_key'] # Create an instance of the Adafruit IO REST client io = RESTClient(ADAFRUIT_IO_USER, ADAFRUIT_IO_KEY, wifi) try: # Get the 'temperature' feed from Adafruit IO temperature_feed = io.get_feed('temperature') except AdafruitIO_RequestError: # If no 'temperature' feed exists, create one temperature_feed = io.create_new_feed('temperature') # Send random integer values to the feed random_value = randint(0, 50) print('Sending {0} to temperature feed...'.format(random_value)) io.send_data(temperature_feed['key'], random_value) print('Data sent!') # Retrieve data value from the feed print('Retrieving data from temperature feed...') received_data = io.receive_data(temperature_feed['key']) print('Data from temperature feed: ', received_data['value'])
[ 37811, 198, 28350, 1672, 286, 262, 9428, 2624, 625, 471, 7227, 198, 3500, 262, 13588, 37906, 9428, 62, 1404, 15988, 5888, 13, 198, 198, 35, 2690, 3976, 25, 198, 220, 220, 220, 1635, 3740, 1378, 12567, 13, 785, 14, 324, 1878, 4872, 14, 2782, 1878, 4872, 62, 31560, 5013, 37906, 62, 1546, 47, 62, 1404, 13716, 198, 37811, 198, 6738, 4738, 1330, 43720, 600, 198, 11748, 3096, 198, 11748, 1323, 952, 198, 6738, 4875, 952, 1330, 10231, 818, 7975, 198, 198, 2, 17267, 1215, 1878, 4872, 24418, 30617, 20985, 198, 6738, 512, 1878, 4872, 62, 952, 13, 324, 1878, 4872, 62, 952, 1330, 30617, 11792, 11, 1215, 1878, 4872, 9399, 62, 18453, 12331, 198, 198, 2, 9428, 2624, 5161, 198, 6738, 512, 1878, 4872, 62, 274, 8071, 13716, 1330, 512, 1878, 4872, 62, 274, 8071, 13716, 11, 512, 1878, 4872, 62, 274, 8071, 13716, 62, 86, 361, 24086, 3536, 198, 198, 2, 11041, 2174, 329, 4042, 48606, 198, 11748, 497, 404, 7168, 198, 13376, 62, 2971, 796, 497, 404, 7168, 13, 8199, 78, 40809, 7, 3526, 13, 12161, 3185, 10426, 3698, 11, 352, 11, 22204, 28, 15, 13, 17, 8, 1303, 791, 23893, 329, 4042, 48606, 198, 198, 2, 3118, 23893, 2174, 329, 632, 1837, 33, 896, 88, 337, 19, 2, 198, 2, 11748, 512, 1878, 4872, 62, 26518, 7364, 355, 16605, 7364, 198, 2, 13376, 62, 2971, 796, 16605, 7364, 13, 35, 313, 8248, 7, 3526, 13, 2969, 32, 15377, 62, 6173, 42, 11, 3096, 13, 2969, 32, 15377, 62, 44, 2640, 40, 11, 352, 11, 22204, 28, 15, 13, 17, 8, 198, 198, 2, 3118, 23893, 2174, 329, 2142, 1548, 49974, 2, 198, 2, 13376, 62, 2971, 796, 6045, 198, 198, 2, 3497, 43121, 3307, 290, 517, 422, 257, 13141, 13, 9078, 2393, 198, 28311, 25, 198, 220, 220, 220, 422, 13141, 1330, 13141, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 3601, 7203, 31294, 10547, 13141, 389, 4030, 287, 13141, 13, 9078, 11, 3387, 751, 606, 612, 2474, 8, 198, 220, 220, 220, 5298, 198, 198, 2, 2080, 257, 12477, 393, 34501, 337, 19, 198, 19986, 796, 1323, 952, 13, 52, 7227, 7, 3526, 13, 29551, 11, 3096, 13, 49, 55, 11, 26827, 28, 15, 13, 16, 8, 198, 42503, 11635, 796, 10231, 818, 7975, 7, 3526, 13, 35, 20, 8, 198, 81, 912, 11635, 796, 10231, 818, 7975, 7, 3526, 13, 35, 21, 8, 198, 198, 2, 2080, 257, 2142, 1548, 49974, 198, 37811, 198, 49, 55, 796, 3096, 13, 1546, 47, 62, 29551, 198, 29551, 796, 3096, 13, 1546, 47, 62, 49, 55, 198, 42503, 11635, 796, 10231, 818, 7975, 7, 3526, 13, 1546, 47, 62, 54, 5064, 40, 62, 1677, 8, 198, 81, 912, 11635, 796, 10231, 818, 7975, 7, 3526, 13, 1546, 47, 62, 4177, 50, 8, 198, 19986, 796, 1323, 952, 13, 52, 7227, 7, 29551, 11, 24202, 11, 26827, 28, 15, 13, 16, 8, 198, 9774, 62, 18769, 796, 10231, 818, 7975, 7, 3526, 13, 1546, 47, 62, 8202, 2394, 62, 49058, 8, 198, 6738, 4875, 952, 1330, 41837, 198, 9774, 62, 18769, 13, 37295, 796, 41837, 13, 2606, 7250, 3843, 198, 9774, 62, 18769, 13, 8367, 796, 6407, 198, 37811, 198, 198, 9774, 796, 512, 1878, 4872, 62, 274, 8071, 13716, 13, 1546, 47, 62, 1404, 13716, 7, 19986, 11, 12279, 2167, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13259, 62, 11635, 28, 42503, 11635, 11, 374, 912, 62, 11635, 28, 81, 912, 11635, 11, 14257, 28, 25101, 8, 198, 86, 22238, 796, 512, 1878, 4872, 62, 274, 8071, 13716, 62, 86, 361, 24086, 3536, 13, 1546, 47, 1404, 62, 31294, 10547, 13511, 7, 9774, 11, 13141, 11, 3722, 62, 2971, 8, 198, 198, 2, 5345, 534, 1215, 1878, 4872, 24418, 50069, 290, 7383, 287, 13141, 13, 9078, 198, 2, 357, 4703, 270, 33245, 13, 324, 1878, 4872, 13, 785, 611, 345, 761, 284, 2251, 281, 1848, 11, 198, 2, 393, 611, 345, 761, 534, 1215, 1878, 4872, 24418, 1994, 2014, 198, 2885, 8579, 49, 52, 2043, 62, 9399, 62, 29904, 796, 13141, 17816, 324, 1878, 4872, 62, 952, 62, 7220, 20520, 198, 2885, 8579, 49, 52, 2043, 62, 9399, 62, 20373, 796, 13141, 17816, 324, 1878, 4872, 62, 952, 62, 2539, 20520, 198, 198, 2, 13610, 281, 4554, 286, 262, 1215, 1878, 4872, 24418, 30617, 5456, 198, 952, 796, 30617, 11792, 7, 2885, 8579, 49, 52, 2043, 62, 9399, 62, 29904, 11, 46460, 10913, 52, 2043, 62, 9399, 62, 20373, 11, 43121, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 1303, 3497, 262, 705, 11498, 21069, 6, 3745, 422, 1215, 1878, 4872, 24418, 198, 220, 220, 220, 5951, 62, 12363, 796, 33245, 13, 1136, 62, 12363, 10786, 11498, 21069, 11537, 198, 16341, 1215, 1878, 4872, 9399, 62, 18453, 12331, 25, 198, 220, 220, 220, 1303, 1002, 645, 705, 11498, 21069, 6, 3745, 7160, 11, 2251, 530, 198, 220, 220, 220, 5951, 62, 12363, 796, 33245, 13, 17953, 62, 3605, 62, 12363, 10786, 11498, 21069, 11537, 198, 198, 2, 16290, 4738, 18253, 3815, 284, 262, 3745, 198, 25120, 62, 8367, 796, 43720, 600, 7, 15, 11, 2026, 8, 198, 4798, 10786, 50, 1571, 1391, 15, 92, 284, 5951, 3745, 986, 4458, 18982, 7, 25120, 62, 8367, 4008, 198, 952, 13, 21280, 62, 7890, 7, 11498, 21069, 62, 12363, 17816, 2539, 6, 4357, 4738, 62, 8367, 8, 198, 4798, 10786, 6601, 1908, 0, 11537, 198, 198, 2, 4990, 30227, 1366, 1988, 422, 262, 3745, 198, 4798, 10786, 9781, 37418, 1366, 422, 5951, 3745, 986, 11537, 198, 47844, 62, 7890, 796, 33245, 13, 260, 15164, 62, 7890, 7, 11498, 21069, 62, 12363, 17816, 2539, 6, 12962, 198, 4798, 10786, 6601, 422, 5951, 3745, 25, 46083, 2722, 62, 7890, 17816, 8367, 6, 12962, 198 ]
2.779575
989
#!/usr/bin/env python from __future__ import print_function import argparse import glob import os import subprocess import sys CHR = "c" START = "s" END = "e" DESC = "d" if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 1822, 29572, 198, 11748, 15095, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 11748, 25064, 628, 198, 198, 37846, 796, 366, 66, 1, 198, 2257, 7227, 796, 366, 82, 1, 198, 10619, 796, 366, 68, 1, 198, 30910, 34, 796, 366, 67, 1, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.626506
83
#NAME: select.py #DATE: 31/03/2019 import json import time import random import tkinter as tk from PIL import Image, ImageTk coverPath = "noimage.png" root = tk.Tk() root.title("Marvel Movie Generator") root.configure(background='black') #size of the window root.geometry("450x880") frame = tk.Frame(root) frame.pack() buttonGenerate = tk.Button(frame,text="Generate",fg="white",bg="green",font=("Arial", 16), height=2, width=10, command=generate) buttonGenerate.pack(side=tk.LEFT) buttonQuit = tk.Button(frame,text="Quit",fg="white",bg="red",font=("Arial", 16), height=2,width=10, command=quit) buttonQuit.pack(side=tk.LEFT) selectedTitle = tk.Label(root, bg="black",fg="white") selectedTitle.config(font=("Arial", 16)) selectedTitle.pack() releaseYear = tk.Label(root, bg="black",fg="white") releaseYear.config(font=("Arial", 20)) releaseYear.pack() #The Label widget is a standard Tkinter widget used to display a text or image on the screen. cover = Image.open(coverPath) cover = cover.resize((400, 650), Image.ANTIALIAS) coverImage = ImageTk.PhotoImage(cover) poster = tk.Label(root, bg="black", image=coverImage) #The Pack geometry manager packs widgets in rows or columns. poster.pack(fill = "both", expand = "yes") phaseText = tk.Label(root, bg="black",fg="white") phaseText.config(font=("Arial", 18),padx=10, pady=20) phaseText.pack() root.mainloop()
[ 2, 20608, 25, 2922, 13, 9078, 198, 2, 35, 6158, 25, 3261, 14, 3070, 14, 23344, 198, 198, 11748, 33918, 198, 11748, 640, 198, 11748, 4738, 198, 11748, 256, 74, 3849, 355, 256, 74, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 51, 74, 198, 198, 9631, 15235, 796, 366, 3919, 9060, 13, 11134, 1, 198, 198, 15763, 796, 256, 74, 13, 51, 74, 3419, 198, 15763, 13, 7839, 7203, 38864, 15875, 35986, 4943, 198, 15763, 13, 11250, 495, 7, 25249, 11639, 13424, 11537, 198, 198, 2, 7857, 286, 262, 4324, 198, 15763, 13, 469, 15748, 7203, 17885, 87, 41655, 4943, 198, 198, 14535, 796, 256, 74, 13, 19778, 7, 15763, 8, 198, 14535, 13, 8002, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 16539, 8645, 378, 796, 256, 74, 13, 21864, 7, 14535, 11, 5239, 2625, 8645, 378, 1600, 40616, 2625, 11186, 1600, 35904, 2625, 14809, 1600, 10331, 28, 7203, 32, 4454, 1600, 1467, 828, 6001, 28, 17, 11, 9647, 28, 940, 11, 3141, 28, 8612, 378, 8, 198, 198, 16539, 8645, 378, 13, 8002, 7, 1589, 28, 30488, 13, 2538, 9792, 8, 198, 198, 16539, 4507, 270, 796, 256, 74, 13, 21864, 7, 14535, 11, 5239, 2625, 4507, 270, 1600, 40616, 2625, 11186, 1600, 35904, 2625, 445, 1600, 10331, 28, 7203, 32, 4454, 1600, 1467, 828, 6001, 28, 17, 11, 10394, 28, 940, 11, 3141, 28, 47391, 8, 198, 16539, 4507, 270, 13, 8002, 7, 1589, 28, 30488, 13, 2538, 9792, 8, 198, 198, 34213, 19160, 796, 256, 74, 13, 33986, 7, 15763, 11, 275, 70, 2625, 13424, 1600, 40616, 2625, 11186, 4943, 198, 34213, 19160, 13, 11250, 7, 10331, 28, 7203, 32, 4454, 1600, 1467, 4008, 198, 34213, 19160, 13, 8002, 3419, 198, 20979, 17688, 796, 256, 74, 13, 33986, 7, 15763, 11, 275, 70, 2625, 13424, 1600, 40616, 2625, 11186, 4943, 198, 20979, 17688, 13, 11250, 7, 10331, 28, 7203, 32, 4454, 1600, 1160, 4008, 198, 20979, 17688, 13, 8002, 3419, 198, 198, 2, 464, 36052, 26295, 318, 257, 3210, 309, 74, 3849, 26295, 973, 284, 3359, 257, 2420, 393, 2939, 319, 262, 3159, 13, 198, 9631, 796, 7412, 13, 9654, 7, 9631, 15235, 8, 198, 9631, 796, 3002, 13, 411, 1096, 19510, 7029, 11, 22626, 828, 7412, 13, 8643, 12576, 43429, 8, 220, 198, 9631, 5159, 796, 7412, 51, 74, 13, 6191, 5159, 7, 9631, 8, 198, 79, 6197, 796, 256, 74, 13, 33986, 7, 15763, 11, 275, 70, 2625, 13424, 1600, 2939, 28, 9631, 5159, 8, 198, 198, 2, 464, 6400, 22939, 4706, 15186, 40803, 287, 15274, 393, 15180, 13, 198, 79, 6197, 13, 8002, 7, 20797, 796, 366, 16885, 1600, 4292, 796, 366, 8505, 4943, 198, 198, 40715, 8206, 796, 256, 74, 13, 33986, 7, 15763, 11, 275, 70, 2625, 13424, 1600, 40616, 2625, 11186, 4943, 198, 40715, 8206, 13, 11250, 7, 10331, 28, 7203, 32, 4454, 1600, 1248, 828, 15636, 87, 28, 940, 11, 279, 4597, 28, 1238, 8, 198, 40715, 8206, 13, 8002, 3419, 198, 198, 15763, 13, 12417, 26268, 3419 ]
2.745527
503
""" Unit tests for utils.py functions. """ import unittest import numpy as np from sympy import Integer, log from radioactivedecay.utils import ( get_metastable_chars, Z_to_elem, elem_to_Z, build_id, build_nuclide_string, NuclideStrError, parse_nuclide_str, parse_id, parse_nuclide, add_dictionaries, sort_dictionary_alphabetically, sort_list_according_to_dataset, ) class TestFunctions(unittest.TestCase): """ Unit tests for the utils.py functions. """ def test_get_metastable_chars(self) -> None: """ Test fetching of list of metastable state characters. """ self.assertEqual(get_metastable_chars(), ["m", "n", "p", "q", "r", "x"]) def test_Z_to_elem(self) -> None: """ Test the conversion of atomic number to element symbol. """ self.assertEqual(Z_to_elem(1), "H") self.assertEqual(Z_to_elem(20), "Ca") self.assertEqual(Z_to_elem(26), "Fe") def test_elem_to_Z(self) -> None: """ Test the conversion of element symbol to atomic number. """ self.assertEqual(elem_to_Z("H"), 1) self.assertEqual(elem_to_Z("Ca"), 20) self.assertEqual(elem_to_Z("Fe"), 26) def test_build_id(self) -> None: """ Test the canonical id builder. """ self.assertEqual(build_id(26, 56), 260560000) self.assertEqual(build_id(53, 118), 531180000) self.assertEqual(build_id(53, 118, "m"), 531180001) self.assertEqual(build_id(65, 156, "n"), 651560002) self.assertEqual(build_id(49, 129, "p"), 491290003) self.assertEqual(build_id(71, 177, "q"), 711770004) self.assertEqual(build_id(71, 177, "r"), 711770005) self.assertEqual(build_id(71, 174, "x"), 711740006) with self.assertRaises(ValueError): build_id(65, 156, "z") def test_built_nuclide_string(self) -> None: """ Test the nuclide string builder. """ self.assertEqual(build_nuclide_string(26, 56), "Fe-56") self.assertEqual(build_nuclide_string(53, 118), "I-118") self.assertEqual(build_nuclide_string(53, 118, "m"), "I-118m") self.assertEqual(build_nuclide_string(65, 156, "n"), "Tb-156n") self.assertEqual(build_nuclide_string(49, 129, "p"), "In-129p") self.assertEqual(build_nuclide_string(71, 177, "q"), "Lu-177q") self.assertEqual(build_nuclide_string(71, 177, "r"), "Lu-177r") self.assertEqual(build_nuclide_string(71, 174, "x"), "Lu-174x") with self.assertRaises(ValueError): build_nuclide_string(999, 1000, "z") def test_parse_nuclide_str(self) -> None: """ Test the parsing of nuclide strings. """ self.assertEqual(parse_nuclide_str("Ca-40"), "Ca-40") self.assertEqual(parse_nuclide_str("Ca40"), "Ca-40") self.assertEqual(parse_nuclide_str("40Ca"), "Ca-40") # Whitespace removal (Issue #65) self.assertEqual(parse_nuclide_str(" Ca -40 "), "Ca-40") self.assertEqual(parse_nuclide_str("C\ta\n-40"), "Ca-40") # Robust to capitalization mistakes (Issue #65) self.assertEqual(parse_nuclide_str("y-91"), "Y-91") self.assertEqual(parse_nuclide_str("y91"), "Y-91") self.assertEqual(parse_nuclide_str("91y"), "Y-91") self.assertEqual(parse_nuclide_str("y-91M"), "Y-91m") self.assertEqual(parse_nuclide_str("y91M"), "Y-91m") # Following test will fail as no capitalization of Y # self.assertEqual(parse_nuclide_str("91my"), "Y-91m") self.assertEqual(parse_nuclide_str("ca-40"), "Ca-40") self.assertEqual(parse_nuclide_str("CA-40"), "Ca-40") self.assertEqual(parse_nuclide_str("Tc-99M"), "Tc-99m") self.assertEqual(parse_nuclide_str("iR192N"), "Ir-192n") self.assertEqual(parse_nuclide_str("192NiR"), "Ir-192n") self.assertEqual(parse_nuclide_str("iN129P"), "In-129p") self.assertEqual(parse_nuclide_str("177qLu"), "Lu-177q") self.assertEqual(parse_nuclide_str("LU177R"), "Lu-177r") self.assertEqual(parse_nuclide_str("lu-174x"), "Lu-174x") self.assertEqual(parse_nuclide_str("ni56"), "Ni-56") self.assertEqual(parse_nuclide_str("ni-56"), "Ni-56") self.assertEqual(parse_nuclide_str("56Ni"), "Ni-56") self.assertEqual(parse_nuclide_str("56ni"), "Ni-56") # Following test will fail as logic assumes this is I-56n # self.assertEqual(parse_nuclide_str("56nI"), "Ni-56") self.assertEqual(parse_nuclide_str("ni69M"), "Ni-69m") self.assertEqual(parse_nuclide_str("ni-69n"), "Ni-69n") self.assertEqual(parse_nuclide_str("69nni"), "Ni-69n") self.assertEqual(parse_nuclide_str("130nI"), "I-130n") # Following tests will fail as logic assumes Ni-130 # self.assertEqual(parse_nuclide_str("130NI"), "I-130n") # self.assertEqual(parse_nuclide_str("130Ni"), "I-130n") # self.assertEqual(parse_nuclide_str("130ni"), "I-130n") with self.assertRaises(NuclideStrError): parse_nuclide_str("H3.") # not alpha-numeric with self.assertRaises(NuclideStrError): parse_nuclide_str("H-3-") # too many hyphens with self.assertRaises(NuclideStrError): parse_nuclide_str("H-301") # mass number too large with self.assertRaises(NuclideStrError): parse_nuclide_str("H") # no mass number with self.assertRaises(NuclideStrError): parse_nuclide_str("Tc-99m3") # more than one number with self.assertRaises(NuclideStrError): parse_nuclide_str("F26m0") # more than one number with self.assertRaises(NuclideStrError): parse_nuclide_str("A3") # invalid element with self.assertRaises(NuclideStrError): parse_nuclide_str("Tc-99mm") # metastable char too long with self.assertRaises(NuclideStrError): parse_nuclide_str("Tc-99o") # metastable char invalid def test_parse_id(self) -> None: """ Test the canonical id to nuclide string converter. """ self.assertEqual(parse_id(260560000), "Fe-56") self.assertEqual(parse_id(531180000), "I-118") self.assertEqual(parse_id(531180001), "I-118m") self.assertEqual(parse_id(651560002), "Tb-156n") self.assertEqual(parse_id(491290003), "In-129p") self.assertEqual(parse_id(711770004), "Lu-177q") self.assertEqual(parse_id(711770005), "Lu-177r") self.assertEqual(parse_id(711740006), "Lu-174x") def test_parse_nuclide(self) -> None: """ Test the parsing of nuclide strings. """ nuclides = np.array( [ "H-3", "Be-7", "C-10", "Ne-19", "I-118", "Pd-100", "Cl-34m", "I-118m", "Tb-156m", "Tb-156n", "In-129p", "Lu-177q", "Lu-177r", "Lu-174x", ] ) dataset_name = "test" # Re-formatting of acceptable strings e.g. 100Pd -> Pd-100 self.assertEqual(parse_nuclide("H-3", nuclides, dataset_name), "H-3") self.assertEqual(parse_nuclide("H3", nuclides, dataset_name), "H-3") self.assertEqual(parse_nuclide("3H", nuclides, dataset_name), "H-3") self.assertEqual(parse_nuclide(10030000, nuclides, dataset_name), "H-3") self.assertEqual(parse_nuclide("Be-7", nuclides, dataset_name), "Be-7") self.assertEqual(parse_nuclide("Be7", nuclides, dataset_name), "Be-7") self.assertEqual(parse_nuclide("7Be", nuclides, dataset_name), "Be-7") self.assertEqual(parse_nuclide(40070000, nuclides, dataset_name), "Be-7") self.assertEqual(parse_nuclide("C-10", nuclides, dataset_name), "C-10") self.assertEqual(parse_nuclide("C10", nuclides, dataset_name), "C-10") self.assertEqual(parse_nuclide("10C", nuclides, dataset_name), "C-10") self.assertEqual(parse_nuclide(60100000, nuclides, dataset_name), "C-10") self.assertEqual(parse_nuclide("Ne-19", nuclides, dataset_name), "Ne-19") self.assertEqual(parse_nuclide("Ne19", nuclides, dataset_name), "Ne-19") self.assertEqual(parse_nuclide("19Ne", nuclides, dataset_name), "Ne-19") self.assertEqual(parse_nuclide(100190000, nuclides, dataset_name), "Ne-19") self.assertEqual(parse_nuclide("I-118", nuclides, dataset_name), "I-118") self.assertEqual(parse_nuclide("I118", nuclides, dataset_name), "I-118") self.assertEqual(parse_nuclide("118I", nuclides, dataset_name), "I-118") self.assertEqual(parse_nuclide(531180000, nuclides, dataset_name), "I-118") self.assertEqual(parse_nuclide("Pd-100", nuclides, dataset_name), "Pd-100") self.assertEqual(parse_nuclide("Pd100", nuclides, dataset_name), "Pd-100") self.assertEqual(parse_nuclide("100Pd", nuclides, dataset_name), "Pd-100") self.assertEqual(parse_nuclide(461000000, nuclides, dataset_name), "Pd-100") self.assertEqual(parse_nuclide("Cl-34m", nuclides, dataset_name), "Cl-34m") self.assertEqual(parse_nuclide("Cl34m", nuclides, dataset_name), "Cl-34m") self.assertEqual(parse_nuclide("34mCl", nuclides, dataset_name), "Cl-34m") self.assertEqual(parse_nuclide(170340001, nuclides, dataset_name), "Cl-34m") self.assertEqual(parse_nuclide("I-118m", nuclides, dataset_name), "I-118m") self.assertEqual(parse_nuclide("I118m", nuclides, dataset_name), "I-118m") self.assertEqual(parse_nuclide("118mI", nuclides, dataset_name), "I-118m") self.assertEqual(parse_nuclide(531180001, nuclides, dataset_name), "I-118m") self.assertEqual(parse_nuclide("Tb-156m", nuclides, dataset_name), "Tb-156m") self.assertEqual(parse_nuclide("Tb156m", nuclides, dataset_name), "Tb-156m") self.assertEqual(parse_nuclide("156mTb", nuclides, dataset_name), "Tb-156m") self.assertEqual(parse_nuclide(651560001, nuclides, dataset_name), "Tb-156m") self.assertEqual(parse_nuclide("Tb-156n", nuclides, dataset_name), "Tb-156n") self.assertEqual(parse_nuclide("Tb156n", nuclides, dataset_name), "Tb-156n") self.assertEqual(parse_nuclide("156nTb", nuclides, dataset_name), "Tb-156n") self.assertEqual(parse_nuclide(651560002, nuclides, dataset_name), "Tb-156n") self.assertEqual(parse_nuclide("In-129p", nuclides, dataset_name), "In-129p") self.assertEqual(parse_nuclide("In129p", nuclides, dataset_name), "In-129p") self.assertEqual(parse_nuclide("129pIn", nuclides, dataset_name), "In-129p") self.assertEqual(parse_nuclide(491290003, nuclides, dataset_name), "In-129p") self.assertEqual(parse_nuclide("Lu-177q", nuclides, dataset_name), "Lu-177q") self.assertEqual(parse_nuclide("Lu177q", nuclides, dataset_name), "Lu-177q") self.assertEqual(parse_nuclide("177qLu", nuclides, dataset_name), "Lu-177q") self.assertEqual(parse_nuclide(711770004, nuclides, dataset_name), "Lu-177q") self.assertEqual(parse_nuclide("Lu-177r", nuclides, dataset_name), "Lu-177r") self.assertEqual(parse_nuclide("Lu-177r", nuclides, dataset_name), "Lu-177r") self.assertEqual(parse_nuclide("177rLu", nuclides, dataset_name), "Lu-177r") self.assertEqual(parse_nuclide(711770005, nuclides, dataset_name), "Lu-177r") self.assertEqual(parse_nuclide("Lu-174x", nuclides, dataset_name), "Lu-174x") self.assertEqual(parse_nuclide("Lu-174x", nuclides, dataset_name), "Lu-174x") self.assertEqual(parse_nuclide("174xLu", nuclides, dataset_name), "Lu-174x") self.assertEqual(parse_nuclide(711740006, nuclides, dataset_name), "Lu-174x") # Catch erroneous strings with self.assertRaises(TypeError): parse_nuclide(1.2, nuclides, dataset_name) with self.assertRaises(ValueError): parse_nuclide("H", nuclides, dataset_name) with self.assertRaises(ValueError): parse_nuclide("A1", nuclides, dataset_name) with self.assertRaises(ValueError): parse_nuclide("1A", nuclides, dataset_name) with self.assertRaises(ValueError): parse_nuclide("H-4", nuclides, dataset_name) with self.assertRaises(ValueError): parse_nuclide("H4", nuclides, dataset_name) with self.assertRaises(ValueError): parse_nuclide("4H", nuclides, dataset_name) with self.assertRaises(ValueError): parse_nuclide("Pb-198m", nuclides, dataset_name) with self.assertRaises(ValueError): parse_nuclide("Pbo-198m", nuclides, dataset_name) def test_add_dictionaries(self) -> None: """ Test function which adds two inventory dictionaries together. """ dict1 = {"Pm-141": 1.0, "Rb-78": 2.0} dict2 = {"Pm-141": 3.0, "Rb-90": 4.0} self.assertEqual( add_dictionaries(dict1, dict2), {"Pm-141": 4.0, "Rb-78": 2.0, "Rb-90": 4.0}, ) dict1 = {"Pm-141": Integer(2) * log(3), "Rb-78": Integer(4) / log(5)} dict2 = {"Pm-141": log(3) / Integer(7), "Rb-90": Integer(9)} self.assertEqual( add_dictionaries(dict1, dict2), { "Pm-141": Integer(15) * log(3) / Integer(7), "Rb-78": Integer(4) / log(5), "Rb-90": Integer(9), }, ) def test_sort_dictionary_alphabetically(self) -> None: """ Test the sorting of a dictionary by its keys alphabetically. """ inv_dict = {"U-235": 1.2, "Tc-99m": 2.3, "Tc-99": 5.8} self.assertEqual( sort_dictionary_alphabetically(inv_dict), {"Tc-99": 5.8, "Tc-99m": 2.3, "U-235": 1.2}, ) inv_dict = {"U-235": Integer(1), "Tc-99m": Integer(2), "Tc-99": Integer(3)} self.assertEqual( sort_dictionary_alphabetically(inv_dict), {"Tc-99": Integer(3), "Tc-99m": Integer(2), "U-235": Integer(1)}, ) def test_sort_list_according_to_dataset(self) -> None: """ Test the sorting of list of nuclides according to their position in the decay dataset. """ nuclide_list = ["Tc-99", "Tc-99m"] nuclide_dict = {"Tc-99m": 0, "Tc-99": 1} self.assertEqual( sort_list_according_to_dataset(nuclide_list, nuclide_dict), ["Tc-99m", "Tc-99"], ) class TestNuclideStrError(unittest.TestCase): """ Unit tests for the NuclideStrError class. """ def test_instantiation(self) -> None: """ Test instantiation of NuclideStrError exceptions. """ err = NuclideStrError("A4", "Dummy message.") self.assertEqual(err.nuclide, "A4") self.assertEqual(err.additional_message, "Dummy message.") def test___str__(self) -> None: """ Test string representation f NuclideStrError exceptions. """ err = NuclideStrError("A4", "Dummy message.") self.assertEqual(str(err), "A4 is not a valid nuclide string. Dummy message.") if __name__ == "__main__": unittest.main()
[ 37811, 198, 26453, 5254, 329, 3384, 4487, 13, 9078, 5499, 13, 198, 37811, 198, 198, 11748, 555, 715, 395, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 10558, 88, 1330, 34142, 11, 2604, 198, 6738, 5243, 529, 1572, 721, 323, 13, 26791, 1330, 357, 198, 220, 220, 220, 651, 62, 4164, 459, 540, 62, 354, 945, 11, 198, 220, 220, 220, 1168, 62, 1462, 62, 68, 10671, 11, 198, 220, 220, 220, 9766, 76, 62, 1462, 62, 57, 11, 198, 220, 220, 220, 1382, 62, 312, 11, 198, 220, 220, 220, 1382, 62, 28803, 565, 485, 62, 8841, 11, 198, 220, 220, 220, 21733, 565, 485, 13290, 12331, 11, 198, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 11, 198, 220, 220, 220, 21136, 62, 312, 11, 198, 220, 220, 220, 21136, 62, 28803, 565, 485, 11, 198, 220, 220, 220, 751, 62, 67, 2867, 3166, 11, 198, 220, 220, 220, 3297, 62, 67, 14188, 62, 17307, 8380, 1146, 11, 198, 220, 220, 220, 3297, 62, 4868, 62, 38169, 62, 1462, 62, 19608, 292, 316, 11, 198, 8, 628, 198, 4871, 6208, 24629, 2733, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11801, 5254, 329, 262, 3384, 4487, 13, 9078, 5499, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 1136, 62, 4164, 459, 540, 62, 354, 945, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 21207, 278, 286, 1351, 286, 44678, 540, 1181, 3435, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 1136, 62, 4164, 459, 540, 62, 354, 945, 22784, 14631, 76, 1600, 366, 77, 1600, 366, 79, 1600, 366, 80, 1600, 366, 81, 1600, 366, 87, 8973, 8, 628, 220, 220, 220, 825, 1332, 62, 57, 62, 1462, 62, 68, 10671, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 11315, 286, 17226, 1271, 284, 5002, 6194, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 57, 62, 1462, 62, 68, 10671, 7, 16, 828, 366, 39, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 57, 62, 1462, 62, 68, 10671, 7, 1238, 828, 366, 24334, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 57, 62, 1462, 62, 68, 10671, 7, 2075, 828, 366, 14304, 4943, 628, 220, 220, 220, 825, 1332, 62, 68, 10671, 62, 1462, 62, 57, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 11315, 286, 5002, 6194, 284, 17226, 1271, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 68, 10671, 62, 1462, 62, 57, 7203, 39, 12340, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 68, 10671, 62, 1462, 62, 57, 7203, 24334, 12340, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 68, 10671, 62, 1462, 62, 57, 7203, 14304, 12340, 2608, 8, 628, 220, 220, 220, 825, 1332, 62, 11249, 62, 312, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 40091, 4686, 27098, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 312, 7, 2075, 11, 7265, 828, 21148, 3980, 2388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 312, 7, 4310, 11, 19035, 828, 7192, 16817, 2388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 312, 7, 4310, 11, 19035, 11, 366, 76, 12340, 7192, 1157, 7410, 486, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 312, 7, 2996, 11, 23871, 11, 366, 77, 12340, 6135, 21599, 34215, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 312, 7, 2920, 11, 20248, 11, 366, 79, 12340, 5125, 18741, 830, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 312, 7, 4869, 11, 26607, 11, 366, 80, 12340, 767, 1157, 3324, 830, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 312, 7, 4869, 11, 26607, 11, 366, 81, 12340, 767, 1157, 3324, 830, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 312, 7, 4869, 11, 27621, 11, 366, 87, 12340, 767, 1157, 4524, 830, 21, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 312, 7, 2996, 11, 23871, 11, 366, 89, 4943, 628, 220, 220, 220, 825, 1332, 62, 18780, 62, 28803, 565, 485, 62, 8841, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 14364, 565, 485, 4731, 27098, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 28803, 565, 485, 62, 8841, 7, 2075, 11, 7265, 828, 366, 14304, 12, 3980, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 28803, 565, 485, 62, 8841, 7, 4310, 11, 19035, 828, 366, 40, 12, 16817, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 28803, 565, 485, 62, 8841, 7, 4310, 11, 19035, 11, 366, 76, 12340, 366, 40, 12, 16817, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 28803, 565, 485, 62, 8841, 7, 2996, 11, 23871, 11, 366, 77, 12340, 366, 51, 65, 12, 21599, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 28803, 565, 485, 62, 8841, 7, 2920, 11, 20248, 11, 366, 79, 12340, 366, 818, 12, 18741, 79, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 28803, 565, 485, 62, 8841, 7, 4869, 11, 26607, 11, 366, 80, 12340, 366, 25596, 12, 22413, 80, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 28803, 565, 485, 62, 8841, 7, 4869, 11, 26607, 11, 366, 81, 12340, 366, 25596, 12, 22413, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11249, 62, 28803, 565, 485, 62, 8841, 7, 4869, 11, 27621, 11, 366, 87, 12340, 366, 25596, 12, 22985, 87, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 28803, 565, 485, 62, 8841, 7, 17032, 11, 8576, 11, 366, 89, 4943, 628, 220, 220, 220, 825, 1332, 62, 29572, 62, 28803, 565, 485, 62, 2536, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 32096, 286, 14364, 565, 485, 13042, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 24334, 12, 1821, 12340, 366, 24334, 12, 1821, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 24334, 1821, 12340, 366, 24334, 12, 1821, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 1821, 24334, 12340, 366, 24334, 12, 1821, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29290, 10223, 9934, 357, 45147, 1303, 2996, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 6488, 532, 1821, 366, 828, 366, 24334, 12, 1821, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 34, 59, 8326, 59, 77, 12, 1821, 12340, 366, 24334, 12, 1821, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3851, 436, 284, 3139, 1634, 10135, 357, 45147, 1303, 2996, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 88, 12, 6420, 12340, 366, 56, 12, 6420, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 88, 6420, 12340, 366, 56, 12, 6420, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 6420, 88, 12340, 366, 56, 12, 6420, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 88, 12, 6420, 44, 12340, 366, 56, 12, 6420, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 88, 6420, 44, 12340, 366, 56, 12, 6420, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14207, 1332, 481, 2038, 355, 645, 3139, 1634, 286, 575, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 6420, 1820, 12340, 366, 56, 12, 6420, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 6888, 12, 1821, 12340, 366, 24334, 12, 1821, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 8141, 12, 1821, 12340, 366, 24334, 12, 1821, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 51, 66, 12, 2079, 44, 12340, 366, 51, 66, 12, 2079, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 72, 49, 17477, 45, 12340, 366, 23820, 12, 17477, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 17477, 34153, 49, 12340, 366, 23820, 12, 17477, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 72, 45, 18741, 47, 12340, 366, 818, 12, 18741, 79, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 22413, 80, 25596, 12340, 366, 25596, 12, 22413, 80, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 41596, 22413, 49, 12340, 366, 25596, 12, 22413, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 2290, 12, 22985, 87, 12340, 366, 25596, 12, 22985, 87, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 8461, 3980, 12340, 366, 34153, 12, 3980, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 8461, 12, 3980, 12340, 366, 34153, 12, 3980, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 3980, 34153, 12340, 366, 34153, 12, 3980, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 3980, 8461, 12340, 366, 34153, 12, 3980, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14207, 1332, 481, 2038, 355, 9156, 18533, 428, 318, 314, 12, 3980, 77, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 3980, 77, 40, 12340, 366, 34153, 12, 3980, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 8461, 3388, 44, 12340, 366, 34153, 12, 3388, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 8461, 12, 3388, 77, 12340, 366, 34153, 12, 3388, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 3388, 77, 8461, 12340, 366, 34153, 12, 3388, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 12952, 77, 40, 12340, 366, 40, 12, 12952, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14207, 5254, 481, 2038, 355, 9156, 18533, 11556, 12, 12952, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 12952, 22125, 12340, 366, 40, 12, 12952, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 12952, 34153, 12340, 366, 40, 12, 12952, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 62, 2536, 7203, 12952, 8461, 12340, 366, 40, 12, 12952, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 39, 18, 19570, 220, 1303, 407, 17130, 12, 77, 39223, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 39, 12, 18, 12, 4943, 220, 1303, 1165, 867, 5328, 5135, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 39, 12, 18938, 4943, 220, 1303, 2347, 1271, 1165, 1588, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 39, 4943, 220, 1303, 645, 2347, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 51, 66, 12, 2079, 76, 18, 4943, 220, 1303, 517, 621, 530, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 37, 2075, 76, 15, 4943, 220, 1303, 517, 621, 530, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 32, 18, 4943, 220, 1303, 12515, 5002, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 51, 66, 12, 2079, 3020, 4943, 220, 1303, 44678, 540, 1149, 1165, 890, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 45, 36616, 485, 13290, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 62, 2536, 7203, 51, 66, 12, 2079, 78, 4943, 220, 1303, 44678, 540, 1149, 12515, 628, 220, 220, 220, 825, 1332, 62, 29572, 62, 312, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 40091, 4686, 284, 14364, 565, 485, 4731, 38394, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 312, 7, 21719, 3980, 2388, 828, 366, 14304, 12, 3980, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 312, 7, 4310, 16817, 2388, 828, 366, 40, 12, 16817, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 312, 7, 4310, 1157, 7410, 486, 828, 366, 40, 12, 16817, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 312, 7, 2996, 21599, 34215, 828, 366, 51, 65, 12, 21599, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 312, 7, 2920, 18741, 830, 18, 828, 366, 818, 12, 18741, 79, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 312, 7, 22, 1157, 3324, 830, 19, 828, 366, 25596, 12, 22413, 80, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 312, 7, 22, 1157, 3324, 830, 20, 828, 366, 25596, 12, 22413, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 312, 7, 22, 1157, 4524, 830, 21, 828, 366, 25596, 12, 22985, 87, 4943, 628, 220, 220, 220, 825, 1332, 62, 29572, 62, 28803, 565, 485, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 32096, 286, 14364, 565, 485, 13042, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14364, 565, 1460, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39, 12, 18, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3856, 12, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 12, 940, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8199, 12, 1129, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40, 12, 16817, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 67, 12, 3064, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2601, 12, 2682, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40, 12, 16817, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 51, 65, 12, 21599, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 51, 65, 12, 21599, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 818, 12, 18741, 79, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25596, 12, 22413, 80, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25596, 12, 22413, 81, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25596, 12, 22985, 87, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 3672, 796, 366, 9288, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 797, 12, 18982, 889, 286, 10909, 13042, 304, 13, 70, 13, 1802, 47, 67, 4613, 350, 67, 12, 3064, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 39, 12, 18, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 39, 12, 18, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 39, 18, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 39, 12, 18, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 18, 39, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 39, 12, 18, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 3064, 18, 2388, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 39, 12, 18, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 3856, 12, 22, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 3856, 12, 22, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 3856, 22, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 3856, 12, 22, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 22, 3856, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 3856, 12, 22, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 7029, 22, 2388, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 3856, 12, 22, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 34, 12, 940, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 34, 12, 940, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 34, 940, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 34, 12, 940, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 940, 34, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 34, 12, 940, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 41706, 20483, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 34, 12, 940, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 8199, 12, 1129, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 8199, 12, 1129, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 8199, 1129, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 8199, 12, 1129, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 1129, 8199, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 8199, 12, 1129, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 3064, 1129, 2388, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 8199, 12, 1129, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 40, 12, 16817, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 40, 12, 16817, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 40, 16817, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 40, 12, 16817, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 16817, 40, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 40, 12, 16817, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 4310, 16817, 2388, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 40, 12, 16817, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 47, 67, 12, 3064, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 47, 67, 12, 3064, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 47, 67, 3064, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 47, 67, 12, 3064, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 3064, 47, 67, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 47, 67, 12, 3064, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 40652, 10535, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 47, 67, 12, 3064, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 2601, 12, 2682, 76, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 2601, 12, 2682, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 2601, 2682, 76, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 2601, 12, 2682, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 2682, 76, 2601, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 2601, 12, 2682, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 17279, 2682, 18005, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 2601, 12, 2682, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 40, 12, 16817, 76, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 40, 12, 16817, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 40, 16817, 76, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 40, 12, 16817, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 16817, 76, 40, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 40, 12, 16817, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 4310, 1157, 7410, 486, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 40, 12, 16817, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 51, 65, 12, 21599, 76, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 51, 65, 12, 21599, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 51, 65, 21599, 76, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 51, 65, 12, 21599, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 21599, 76, 51, 65, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 51, 65, 12, 21599, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 2996, 1314, 8054, 486, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 51, 65, 12, 21599, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 51, 65, 12, 21599, 77, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 51, 65, 12, 21599, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 51, 65, 21599, 77, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 51, 65, 12, 21599, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 21599, 77, 51, 65, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 51, 65, 12, 21599, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 2996, 21599, 34215, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 51, 65, 12, 21599, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 818, 12, 18741, 79, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 818, 12, 18741, 79, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 818, 18741, 79, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 818, 12, 18741, 79, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 18741, 79, 818, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 818, 12, 18741, 79, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 2920, 18741, 830, 18, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 818, 12, 18741, 79, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 25596, 12, 22413, 80, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22413, 80, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 25596, 22413, 80, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22413, 80, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 22413, 80, 25596, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22413, 80, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 22, 1157, 3324, 830, 19, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22413, 80, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 25596, 12, 22413, 81, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22413, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 25596, 12, 22413, 81, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22413, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 22413, 81, 25596, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22413, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 22, 1157, 3324, 830, 20, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22413, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 25596, 12, 22985, 87, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22985, 87, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 25596, 12, 22985, 87, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22985, 87, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7203, 22985, 87, 25596, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22985, 87, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 29572, 62, 28803, 565, 485, 7, 22, 1157, 4524, 830, 21, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 828, 366, 25596, 12, 22985, 87, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 25750, 35366, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7, 16, 13, 17, 11, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7203, 39, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7203, 32, 16, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7203, 16, 32, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7203, 39, 12, 19, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7203, 39, 19, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7203, 19, 39, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7203, 47, 65, 12, 22337, 76, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 28803, 565, 485, 7203, 47, 2127, 12, 22337, 76, 1600, 14364, 565, 1460, 11, 27039, 62, 3672, 8, 628, 220, 220, 220, 825, 1332, 62, 2860, 62, 67, 2867, 3166, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 2163, 543, 6673, 734, 13184, 48589, 3166, 1978, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 8633, 16, 796, 19779, 47, 76, 12, 23756, 1298, 352, 13, 15, 11, 366, 49, 65, 12, 3695, 1298, 362, 13, 15, 92, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 17, 796, 19779, 47, 76, 12, 23756, 1298, 513, 13, 15, 11, 366, 49, 65, 12, 3829, 1298, 604, 13, 15, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 67, 2867, 3166, 7, 11600, 16, 11, 8633, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 47, 76, 12, 23756, 1298, 604, 13, 15, 11, 366, 49, 65, 12, 3695, 1298, 362, 13, 15, 11, 366, 49, 65, 12, 3829, 1298, 604, 13, 15, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 8633, 16, 796, 19779, 47, 76, 12, 23756, 1298, 34142, 7, 17, 8, 1635, 2604, 7, 18, 828, 366, 49, 65, 12, 3695, 1298, 34142, 7, 19, 8, 1220, 2604, 7, 20, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 17, 796, 19779, 47, 76, 12, 23756, 1298, 2604, 7, 18, 8, 1220, 34142, 7, 22, 828, 366, 49, 65, 12, 3829, 1298, 34142, 7, 24, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 67, 2867, 3166, 7, 11600, 16, 11, 8633, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 76, 12, 23756, 1298, 34142, 7, 1314, 8, 1635, 2604, 7, 18, 8, 1220, 34142, 7, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49, 65, 12, 3695, 1298, 34142, 7, 19, 8, 1220, 2604, 7, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49, 65, 12, 3829, 1298, 34142, 7, 24, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 30619, 62, 67, 14188, 62, 17307, 8380, 1146, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 29407, 286, 257, 22155, 416, 663, 8251, 24830, 1146, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 800, 62, 11600, 796, 19779, 52, 12, 22370, 1298, 352, 13, 17, 11, 366, 51, 66, 12, 2079, 76, 1298, 362, 13, 18, 11, 366, 51, 66, 12, 2079, 1298, 642, 13, 23, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 67, 14188, 62, 17307, 8380, 1146, 7, 16340, 62, 11600, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 51, 66, 12, 2079, 1298, 642, 13, 23, 11, 366, 51, 66, 12, 2079, 76, 1298, 362, 13, 18, 11, 366, 52, 12, 22370, 1298, 352, 13, 17, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 800, 62, 11600, 796, 19779, 52, 12, 22370, 1298, 34142, 7, 16, 828, 366, 51, 66, 12, 2079, 76, 1298, 34142, 7, 17, 828, 366, 51, 66, 12, 2079, 1298, 34142, 7, 18, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 67, 14188, 62, 17307, 8380, 1146, 7, 16340, 62, 11600, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 51, 66, 12, 2079, 1298, 34142, 7, 18, 828, 366, 51, 66, 12, 2079, 76, 1298, 34142, 7, 17, 828, 366, 52, 12, 22370, 1298, 34142, 7, 16, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 30619, 62, 4868, 62, 38169, 62, 1462, 62, 19608, 292, 316, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 29407, 286, 1351, 286, 14364, 565, 1460, 1864, 284, 511, 2292, 287, 262, 22119, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14364, 565, 485, 62, 4868, 796, 14631, 51, 66, 12, 2079, 1600, 366, 51, 66, 12, 2079, 76, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 14364, 565, 485, 62, 11600, 796, 19779, 51, 66, 12, 2079, 76, 1298, 657, 11, 366, 51, 66, 12, 2079, 1298, 352, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 4868, 62, 38169, 62, 1462, 62, 19608, 292, 316, 7, 28803, 565, 485, 62, 4868, 11, 14364, 565, 485, 62, 11600, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 51, 66, 12, 2079, 76, 1600, 366, 51, 66, 12, 2079, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4871, 6208, 45, 36616, 485, 13290, 12331, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11801, 5254, 329, 262, 21733, 565, 485, 13290, 12331, 1398, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 8625, 415, 3920, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 9113, 3920, 286, 21733, 565, 485, 13290, 12331, 13269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 11454, 796, 21733, 565, 485, 13290, 12331, 7203, 32, 19, 1600, 366, 35, 13513, 3275, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8056, 13, 28803, 565, 485, 11, 366, 32, 19, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8056, 13, 2860, 1859, 62, 20500, 11, 366, 35, 13513, 3275, 19570, 628, 220, 220, 220, 825, 1332, 17569, 2536, 834, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 4731, 10552, 277, 21733, 565, 485, 13290, 12331, 13269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 11454, 796, 21733, 565, 485, 13290, 12331, 7203, 32, 19, 1600, 366, 35, 13513, 3275, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 2536, 7, 8056, 828, 366, 32, 19, 318, 407, 257, 4938, 14364, 565, 485, 4731, 13, 360, 13513, 3275, 19570, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.058941
7,499
from django.db import models from cms.models.pluginmodel import CMSPlugin from django.utils.http import int_to_base36 # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 269, 907, 13, 27530, 13, 33803, 19849, 1330, 40773, 37233, 198, 6738, 42625, 14208, 13, 26791, 13, 4023, 1330, 493, 62, 1462, 62, 8692, 2623, 198, 2, 13610, 534, 4981, 994, 13, 198 ]
3.452381
42
import json import os from config import Config from level import Level
[ 11748, 33918, 198, 11748, 28686, 198, 198, 6738, 4566, 1330, 17056, 198, 6738, 1241, 1330, 5684, 628 ]
4.352941
17
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Builds the MNIST network. Implements the inference/loss/training pattern for model building. 1. inference() - Builds the model as far as required for running the network forward to make predictions. 2. loss() - Adds to the inference model the layers required to generate loss. 3. training() - Adds to the loss model the Ops required to generate and apply gradients. This file is used by the various "fully_connected_*.py" files and not meant to be run. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import tensorflow as tf import tqdm from scipy import misc from scipy.ndimage import rotate as rot # The MNIST dataset has 10 classes, representing the digits 0 through 9. NUM_CLASSES = 10 # The MNIST images are always 28x28 pixels. IMAGE_SIZE = 28 IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE slim = tf.contrib.slim FLAGS = tf.app.flags.FLAGS
[ 2, 15069, 1853, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 198, 37811, 15580, 82, 262, 29060, 8808, 3127, 13, 198, 198, 3546, 1154, 902, 262, 32278, 14, 22462, 14, 34409, 3912, 329, 2746, 2615, 13, 198, 198, 16, 13, 32278, 3419, 532, 10934, 82, 262, 2746, 355, 1290, 355, 2672, 329, 2491, 262, 3127, 198, 11813, 284, 787, 16277, 13, 198, 17, 13, 2994, 3419, 532, 34333, 284, 262, 32278, 2746, 262, 11685, 2672, 284, 7716, 2994, 13, 198, 18, 13, 3047, 3419, 532, 34333, 284, 262, 2994, 2746, 262, 26123, 2672, 284, 7716, 290, 198, 39014, 3915, 2334, 13, 198, 198, 1212, 2393, 318, 973, 416, 262, 2972, 366, 2759, 62, 15236, 62, 24620, 9078, 1, 3696, 290, 407, 4001, 284, 198, 1350, 1057, 13, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 10688, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 256, 80, 36020, 198, 6738, 629, 541, 88, 1330, 12747, 198, 6738, 629, 541, 88, 13, 358, 9060, 1330, 23064, 355, 5724, 198, 198, 2, 383, 29060, 8808, 27039, 468, 838, 6097, 11, 10200, 262, 19561, 657, 832, 860, 13, 198, 41359, 62, 31631, 1546, 796, 838, 198, 198, 2, 383, 29060, 8808, 4263, 389, 1464, 2579, 87, 2078, 17848, 13, 198, 3955, 11879, 62, 33489, 796, 2579, 198, 3955, 11879, 62, 47, 10426, 37142, 796, 8959, 11879, 62, 33489, 1635, 8959, 11879, 62, 33489, 198, 198, 82, 2475, 796, 48700, 13, 3642, 822, 13, 82, 2475, 198, 38948, 50, 796, 48700, 13, 1324, 13, 33152, 13, 38948, 50, 628, 198 ]
3.765517
435
import unittest from desc.plotting import Plot
[ 11748, 555, 715, 395, 198, 198, 6738, 1715, 13, 29487, 889, 1330, 28114, 198 ]
3.428571
14
#!/usr/bin/env python3 # Copyright 2020 Alexis Lopez Zubieta # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. import argparse import logging import os from appimagebuilder.common import shell from appimagebuilder import recipe from appimagebuilder.builder.builder import Builder from appimagebuilder.appimage import AppImageCreator from appimagebuilder.generator.generator import RecipeGenerator from appimagebuilder.tester import ExecutionTest from appimagebuilder.tester.errors import TestFailed if __name__ == "__main__": # execute only if run as the entry point into the program __main__()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 220, 15069, 220, 12131, 31078, 22593, 47828, 1155, 64, 198, 2, 198, 2, 220, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 198, 2, 220, 4866, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 198, 2, 220, 284, 1730, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 198, 2, 220, 2489, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 198, 2, 220, 3677, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 220, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 220, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 220, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 598, 9060, 38272, 13, 11321, 1330, 7582, 198, 6738, 598, 9060, 38272, 1330, 8364, 198, 6738, 598, 9060, 38272, 13, 38272, 13, 38272, 1330, 35869, 198, 6738, 598, 9060, 38272, 13, 1324, 9060, 1330, 2034, 5159, 16719, 273, 198, 6738, 598, 9060, 38272, 13, 8612, 1352, 13, 8612, 1352, 1330, 26694, 8645, 1352, 198, 6738, 598, 9060, 38272, 13, 4879, 353, 1330, 37497, 14402, 198, 6738, 598, 9060, 38272, 13, 4879, 353, 13, 48277, 1330, 6208, 37, 6255, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 12260, 691, 611, 1057, 355, 262, 5726, 966, 656, 262, 1430, 198, 220, 220, 220, 11593, 12417, 834, 3419, 198 ]
4.020979
286
# coding: utf-8 # <div class="alert alert-block alert-info" style="margin-top: 20px"> # <a href="http://cocl.us/NotebooksPython101"><img src = "https://ibm.box.com/shared/static/yfe6h4az47ktg2mm9h05wby2n7e8kei3.png" width = 750, align = "center"></a> # <a href="https://www.bigdatauniversity.com"><img src = "https://ibm.box.com/shared/static/ugcqz6ohbvff804xp84y4kqnvvk3bq1g.png" width = 300, align = "center"></a> # # <h1 align=center><font size = 5> Make Fake Album Cover Game</font></h1> # ## Table of Contents # Our goal is to create randomly generated album covers with: # # <div class="alert alert-block alert-info" style="margin-top: 20px"> # <ol> # # <li><a href="#ref1">Learn how to use the function display_cover</a></li> # <li><a href="#ref2">Loading a random page from Wikipedia</a></li> # <li><a href="#ref3">Extracting the Title of the Article</a></li> # <li><a href="#ref4"> Displaying the Album Cover</a></li> # # # </ol> # <br> # <p></p> # Estimated Time Needed: <strong>60 min</strong> # </div> # # <hr> # # Inspiration: [Fake Album Covers](https://fakealbumcovers.com/) # #### Import libraries # # In[8]: from IPython.display import Image as IPythonImage from PIL import Image from PIL import ImageFont from PIL import ImageDraw # #### Helper function to superimpose text on image # # In[4]: def display_cover(top,bottom ): """This fucntoin """ import requests name='album_art_raw.png' # Now let's make get an album cover. # https://picsum.photos/ is a free service that offers random images. # Let's get a random image: album_art_raw = requests.get('https://picsum.photos/500/500/?random') # and save it as 'album_art_raw.png' with open(name,'wb') as album_art_raw_file: album_art_raw_file.write(album_art_raw.content) # Now that we have our raw image, let's open it # and write our band and album name on it img = Image.open("album_art_raw.png") draw = ImageDraw.Draw(img) # We'll choose a font for our band and album title, # run "% ls /usr/share/fonts/truetype/dejavu" in a cell to see what else is available, # or download your own .ttf fonts! band_name_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 25) #25pt font album_name_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 20) # 20pt font # the x,y coordinates for where our album name and band name text will start # counted from the top left of the picture (in pixels) band_x, band_y = 50, 50 album_x, album_y = 50, 400 # Our text should be visible on any image. A good way # of accomplishing that is to use white text with a # black border. We'll use the technique shown here to draw the border: # https://mail.python.org/pipermail/image-sig/2009-May/005681.html outline_color ="black" draw.text((band_x-1, band_y-1), top, font=band_name_font, fill=outline_color) draw.text((band_x+1, band_y-1), top, font=band_name_font, fill=outline_color) draw.text((band_x-1, band_y+1), top, font=band_name_font, fill=outline_color) draw.text((band_x+1, band_y+1), top, font=band_name_font, fill=outline_color) draw.text((album_x-1, album_y-1), bottom , font=album_name_font, fill=outline_color) draw.text((album_x+1, album_y-1), bottom , font=album_name_font, fill=outline_color) draw.text((album_x-1, album_y+1), bottom , font=album_name_font, fill=outline_color) draw.text((album_x+1, album_y+1), bottom , font=album_name_font, fill=outline_color) draw.text((band_x,band_y),top,(255,255,255),font=band_name_font) draw.text((album_x, album_y),bottom,(255,255,255),font=album_name_font) return img # ## 1) Learn how to use the function display_cover <a id='ref1'></a> # The function **display_cover** selects a random image from https://picsum.photos/ and will help us superimpose two strings over the image. The parameter **top** is the string we would like to superimpose on the top of an image. The parameter bottom is the string we would like to display on the bottom of the image. The function does not return the image but returns an object of type Image from the Pillow library; the object represents a PIL image. # In[ ]: img=display_cover(top='top',bottom='bottom') # To save the image, we use the method **save** . The argument is the file name of the image we would like to save in this case 'sample-out.png' # In[ ]: img.save('sample-out.png') # Finely we use **IPythonImage** to read the image file and display the results. # # In[11]: IPythonImage(filename='sample-out.png') # **Question 1)** Use the **display_cover** function to display the image with the name Python on the top and Data Science on the bottom. Save the image as **'sample-out.png'**. # In[9]: img=display_cover(top='Python',bottom='Data Science') # In[10]: img.save('sample-out.png') # ## Part 2: Loading a random page from Wikipedia <a id='ref2'></a> # In this project, we will use the request library, we used it in the function **display_cover**, but you should import the library in the next cell. # In[12]: import requests # The following is the URL to the page # In[13]: wikipedia_link='https://en.wikipedia.org/wiki/Special:Random' # **Question 2)** Get Wikipedia page is converted to a string # Use the function **get** from the **requests** library to download the Wikipedia page using the **wikipedia_link** as an argument. Assign the object to the variable **raw_random_wikipedia_page**. # In[14]: #hint: requests.get() raw_random_wikipedia_page=requests.get(wikipedia_link) # Use the data attribute **text** to extract the XML as a text file a string and assign the result variable **page**: # In[18]: page=raw_random_wikipedia_page.text print(page) # # Part 3: Extracting the Title of the Article <a id='ref3'></a> # **Question 3 (part 1)** Use the title of the Wikipedia article as the title of the band. The title of the article is surrounded by the XML node title as follows: **&lt;title&gt;title - Wikipedia&lt;/title>** # . For example, if the title of the article was Python we would see the following: **&lt;title&gt;Python - Wikipedia&lt;/title>**. Consider the example where the title of the article is Teenage Mutant Ninja Turtles the result would be: **&lt;title&gt;Teenage Mutant Ninja Turtles - Wikipedia&lt;/title>**. The first step is to find the XML node **&lt;title&gt;** and **&lt;/title&gt;**indicating the start and end of the title. The string function **find** maybe helpful, you can also use libraries like **xlxml**. # In[27]: page.title() # **Question 3 (part 2)** Next get rid of the term ** - Wikipedia** from the title and assign the result to the **band_title** For example you can use the function or method **strip** or **replace**. # # # **Question 4)** Repeat the second and third step, to extract the title of a second Wikipedia article but use the result to **album_title** # In[ ]: # If you did everything correct the following cell should display the album and band name: # # In[ ]: print("Your band: ", band_title) print("Your album: ", album_title) # ## Part 4: Displaying the Album Cover <a id='ref4'></a> # Use the function **display_cover** to superimpose the band and album title over a random image, assign the result to the variable **album_cover **. # **Question 5)** use the function display_cover to display the album cover with two random article titles representing the name of the band and the title of the album. # In[29]: album_cover=display_cover(top='Python',bottom='Data Science') # Use the method save to save the image as **sample-out.png**: # In[30]: img.save('sample-out.png') # Use the function **IPythonImage** to display the image # # In[31]: IPythonImage(filename='sample-out.png') # ### About the Authors: # [James Reeve]( https://www.linkedin.com/in/reevejamesd/) James Reeves is a Software Engineering intern at IBM. # # # [Joseph Santarcangelo]( https://www.linkedin.com/in/joseph-s-50398b136/) has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD. # # <hr> # Copyright &copy; 2018 [cognitiveclass.ai](cognitiveclass.ai?utm_source=bducopyrightlink&utm_medium=dswb&utm_campaign=bdu). This notebook and its source code are released under the terms of the [MIT License](https://bigdatauniversity.com/mit-license/).
[ 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 220, 1279, 7146, 1398, 2625, 44598, 7995, 12, 9967, 7995, 12, 10951, 1, 3918, 2625, 36153, 12, 4852, 25, 1160, 8416, 5320, 198, 2, 220, 1279, 64, 13291, 2625, 4023, 1378, 66, 38679, 13, 385, 14, 6425, 12106, 37906, 8784, 22039, 9600, 12351, 796, 366, 5450, 1378, 571, 76, 13, 3524, 13, 785, 14, 28710, 14, 12708, 14, 88, 5036, 21, 71, 19, 1031, 2857, 21841, 70, 17, 3020, 24, 71, 2713, 86, 1525, 17, 77, 22, 68, 23, 365, 72, 18, 13, 11134, 1, 9647, 796, 19683, 11, 10548, 796, 366, 16159, 23984, 64, 29, 198, 198, 2, 1279, 64, 13291, 2625, 5450, 1378, 2503, 13, 14261, 7890, 403, 1608, 13, 785, 22039, 9600, 12351, 796, 366, 5450, 1378, 571, 76, 13, 3524, 13, 785, 14, 28710, 14, 12708, 14, 1018, 66, 80, 89, 21, 1219, 65, 85, 487, 36088, 42372, 5705, 88, 19, 74, 80, 77, 25093, 74, 18, 65, 80, 16, 70, 13, 11134, 1, 9647, 796, 5867, 11, 10548, 796, 366, 16159, 23984, 64, 29, 198, 2, 220, 198, 2, 1279, 71, 16, 10548, 28, 16159, 6927, 10331, 2546, 796, 642, 29, 6889, 33482, 23999, 17546, 3776, 3556, 10331, 12240, 71, 16, 29, 198, 198, 2, 22492, 8655, 286, 26714, 198, 2, 3954, 3061, 318, 284, 2251, 15456, 7560, 5062, 8698, 351, 25, 198, 2, 220, 198, 2, 1279, 7146, 1398, 2625, 44598, 7995, 12, 9967, 7995, 12, 10951, 1, 3918, 2625, 36153, 12, 4852, 25, 1160, 8416, 5320, 198, 2, 1279, 349, 29, 198, 2, 220, 198, 2, 1279, 4528, 6927, 64, 13291, 25698, 5420, 16, 5320, 20238, 703, 284, 779, 262, 2163, 3359, 62, 9631, 3556, 64, 12240, 4528, 29, 198, 2, 1279, 4528, 6927, 64, 13291, 25698, 5420, 17, 5320, 19031, 257, 4738, 2443, 422, 15312, 3556, 64, 12240, 4528, 29, 198, 2, 1279, 4528, 6927, 64, 13291, 25698, 5420, 18, 5320, 11627, 974, 278, 262, 11851, 286, 262, 10172, 3556, 64, 12240, 4528, 29, 198, 2, 1279, 4528, 6927, 64, 13291, 25698, 5420, 19, 5320, 16531, 278, 262, 23999, 17546, 3556, 64, 12240, 4528, 29, 198, 2, 220, 198, 2, 220, 198, 2, 7359, 349, 29, 198, 2, 1279, 1671, 29, 198, 2, 1279, 79, 12240, 79, 29, 198, 2, 47737, 3862, 10664, 276, 25, 1279, 11576, 29, 1899, 949, 3556, 11576, 29, 198, 2, 7359, 7146, 29, 198, 2, 220, 198, 2, 1279, 11840, 29, 198, 198, 2, 220, 198, 2, 25300, 15297, 25, 685, 49233, 23999, 1766, 690, 16151, 5450, 1378, 30706, 40916, 1073, 690, 13, 785, 34729, 198, 198, 2, 1303, 21017, 17267, 12782, 220, 198, 2, 220, 198, 198, 2, 554, 58, 23, 5974, 198, 198, 6738, 6101, 7535, 13, 13812, 1330, 7412, 355, 6101, 7535, 5159, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 350, 4146, 1330, 7412, 23252, 198, 6738, 350, 4146, 1330, 7412, 25302, 628, 198, 2, 1303, 21017, 5053, 525, 2163, 284, 2208, 320, 3455, 2420, 319, 2939, 220, 198, 2, 220, 198, 198, 2, 554, 58, 19, 5974, 198, 198, 4299, 3359, 62, 9631, 7, 4852, 11, 22487, 15179, 198, 220, 220, 220, 37227, 1212, 277, 1229, 429, 36743, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 7007, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1438, 11639, 40916, 62, 433, 62, 1831, 13, 11134, 6, 198, 220, 220, 220, 1303, 2735, 1309, 338, 787, 651, 281, 5062, 3002, 13, 198, 220, 220, 220, 1303, 3740, 1378, 79, 873, 388, 13, 24729, 14, 318, 257, 1479, 2139, 326, 4394, 4738, 4263, 13, 198, 220, 220, 220, 1303, 3914, 338, 651, 257, 4738, 2939, 25, 198, 220, 220, 220, 5062, 62, 433, 62, 1831, 796, 7007, 13, 1136, 10786, 5450, 1378, 79, 873, 388, 13, 24729, 14, 4059, 14, 4059, 20924, 25120, 11537, 198, 220, 220, 220, 1303, 290, 3613, 340, 355, 705, 40916, 62, 433, 62, 1831, 13, 11134, 6, 198, 220, 220, 220, 351, 1280, 7, 3672, 4032, 39346, 11537, 355, 5062, 62, 433, 62, 1831, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 5062, 62, 433, 62, 1831, 62, 7753, 13, 13564, 7, 40916, 62, 433, 62, 1831, 13, 11299, 8, 198, 220, 220, 220, 1303, 2735, 326, 356, 423, 674, 8246, 2939, 11, 1309, 338, 1280, 340, 220, 198, 220, 220, 220, 1303, 290, 3551, 674, 4097, 290, 5062, 1438, 319, 340, 198, 220, 220, 220, 33705, 796, 7412, 13, 9654, 7203, 40916, 62, 433, 62, 1831, 13, 11134, 4943, 198, 220, 220, 220, 3197, 796, 7412, 25302, 13, 25302, 7, 9600, 8, 628, 220, 220, 220, 1303, 775, 1183, 3853, 257, 10369, 329, 674, 4097, 290, 5062, 3670, 11, 220, 198, 220, 220, 220, 1303, 1057, 36521, 43979, 1220, 14629, 14, 20077, 14, 10331, 82, 14, 83, 622, 2963, 431, 14, 2934, 73, 615, 84, 1, 287, 257, 2685, 284, 766, 644, 2073, 318, 1695, 11, 198, 220, 220, 220, 1303, 393, 4321, 534, 898, 764, 926, 69, 26806, 0, 198, 220, 220, 220, 4097, 62, 3672, 62, 10331, 796, 7412, 23252, 13, 83, 622, 2963, 431, 7203, 14, 14629, 14, 20077, 14, 10331, 82, 14, 83, 622, 2963, 431, 14, 2934, 73, 615, 84, 14, 5005, 6592, 53, 84, 50, 504, 12, 33, 727, 13, 926, 69, 1600, 1679, 8, 1303, 1495, 457, 10369, 198, 220, 220, 220, 5062, 62, 3672, 62, 10331, 796, 7412, 23252, 13, 83, 622, 2963, 431, 7203, 14, 14629, 14, 20077, 14, 10331, 82, 14, 83, 622, 2963, 431, 14, 2934, 73, 615, 84, 14, 5005, 6592, 53, 84, 50, 504, 12, 33, 727, 13, 926, 69, 1600, 1160, 8, 1303, 1160, 457, 10369, 628, 220, 220, 220, 1303, 262, 2124, 11, 88, 22715, 329, 810, 674, 5062, 1438, 290, 4097, 1438, 2420, 481, 923, 198, 220, 220, 220, 1303, 14789, 422, 262, 1353, 1364, 286, 262, 4286, 357, 259, 17848, 8, 198, 220, 220, 220, 4097, 62, 87, 11, 4097, 62, 88, 796, 2026, 11, 2026, 198, 220, 220, 220, 5062, 62, 87, 11, 5062, 62, 88, 796, 2026, 11, 7337, 628, 220, 220, 220, 1303, 3954, 2420, 815, 307, 7424, 319, 597, 2939, 13, 317, 922, 835, 198, 220, 220, 220, 1303, 286, 6424, 3929, 326, 318, 284, 779, 2330, 2420, 351, 257, 220, 198, 220, 220, 220, 1303, 2042, 4865, 13, 775, 1183, 779, 262, 8173, 3402, 994, 284, 3197, 262, 4865, 25, 198, 220, 220, 220, 1303, 3740, 1378, 4529, 13, 29412, 13, 2398, 14, 79, 9346, 4529, 14, 9060, 12, 82, 328, 14, 10531, 12, 6747, 14, 22544, 48564, 13, 6494, 198, 220, 220, 220, 19001, 62, 8043, 796, 1, 13424, 1, 628, 220, 220, 220, 3197, 13, 5239, 19510, 3903, 62, 87, 12, 16, 11, 4097, 62, 88, 12, 16, 828, 1353, 11, 10369, 28, 3903, 62, 3672, 62, 10331, 11, 6070, 28, 448, 1370, 62, 8043, 8, 198, 220, 220, 220, 3197, 13, 5239, 19510, 3903, 62, 87, 10, 16, 11, 4097, 62, 88, 12, 16, 828, 1353, 11, 10369, 28, 3903, 62, 3672, 62, 10331, 11, 6070, 28, 448, 1370, 62, 8043, 8, 198, 220, 220, 220, 3197, 13, 5239, 19510, 3903, 62, 87, 12, 16, 11, 4097, 62, 88, 10, 16, 828, 1353, 11, 10369, 28, 3903, 62, 3672, 62, 10331, 11, 6070, 28, 448, 1370, 62, 8043, 8, 198, 220, 220, 220, 3197, 13, 5239, 19510, 3903, 62, 87, 10, 16, 11, 4097, 62, 88, 10, 16, 828, 1353, 11, 10369, 28, 3903, 62, 3672, 62, 10331, 11, 6070, 28, 448, 1370, 62, 8043, 8, 628, 220, 220, 220, 3197, 13, 5239, 19510, 40916, 62, 87, 12, 16, 11, 5062, 62, 88, 12, 16, 828, 4220, 837, 10369, 28, 40916, 62, 3672, 62, 10331, 11, 6070, 28, 448, 1370, 62, 8043, 8, 198, 220, 220, 220, 3197, 13, 5239, 19510, 40916, 62, 87, 10, 16, 11, 5062, 62, 88, 12, 16, 828, 4220, 837, 10369, 28, 40916, 62, 3672, 62, 10331, 11, 6070, 28, 448, 1370, 62, 8043, 8, 198, 220, 220, 220, 3197, 13, 5239, 19510, 40916, 62, 87, 12, 16, 11, 5062, 62, 88, 10, 16, 828, 4220, 837, 10369, 28, 40916, 62, 3672, 62, 10331, 11, 6070, 28, 448, 1370, 62, 8043, 8, 198, 220, 220, 220, 3197, 13, 5239, 19510, 40916, 62, 87, 10, 16, 11, 5062, 62, 88, 10, 16, 828, 4220, 837, 10369, 28, 40916, 62, 3672, 62, 10331, 11, 6070, 28, 448, 1370, 62, 8043, 8, 628, 220, 220, 220, 3197, 13, 5239, 19510, 3903, 62, 87, 11, 3903, 62, 88, 828, 4852, 11, 7, 13381, 11, 13381, 11, 13381, 828, 10331, 28, 3903, 62, 3672, 62, 10331, 8, 198, 220, 220, 220, 3197, 13, 5239, 19510, 40916, 62, 87, 11, 5062, 62, 88, 828, 22487, 11, 7, 13381, 11, 13381, 11, 13381, 828, 10331, 28, 40916, 62, 3672, 62, 10331, 8, 628, 220, 220, 220, 1441, 33705, 628, 198, 2, 22492, 352, 8, 14365, 703, 284, 779, 262, 2163, 3359, 62, 9631, 1279, 64, 4686, 11639, 5420, 16, 6, 12240, 64, 29, 198, 198, 2, 220, 383, 2163, 12429, 13812, 62, 9631, 1174, 220, 40573, 257, 4738, 2939, 422, 3740, 1378, 79, 873, 388, 13, 24729, 14, 220, 290, 481, 1037, 514, 2208, 320, 3455, 734, 13042, 625, 262, 2939, 13, 383, 11507, 12429, 4852, 1174, 318, 262, 4731, 356, 561, 588, 284, 2208, 320, 3455, 319, 262, 1353, 286, 281, 2939, 13, 220, 383, 11507, 4220, 318, 262, 4731, 356, 561, 588, 284, 3359, 319, 262, 4220, 286, 262, 2939, 13, 220, 383, 2163, 857, 407, 1441, 262, 2939, 475, 5860, 281, 2134, 286, 2099, 220, 7412, 422, 262, 19770, 322, 5888, 26, 262, 2134, 6870, 257, 350, 4146, 2939, 13, 220, 198, 198, 2, 554, 58, 2361, 25, 198, 198, 9600, 28, 13812, 62, 9631, 7, 4852, 11639, 4852, 3256, 22487, 11639, 22487, 11537, 628, 198, 2, 1675, 3613, 262, 2939, 11, 356, 779, 262, 2446, 12429, 21928, 1174, 764, 383, 4578, 318, 262, 2393, 220, 1438, 286, 262, 2939, 220, 356, 561, 588, 284, 3613, 287, 428, 1339, 705, 39873, 12, 448, 13, 11134, 6, 198, 198, 2, 554, 58, 2361, 25, 198, 198, 9600, 13, 21928, 10786, 39873, 12, 448, 13, 11134, 11537, 628, 198, 2, 17867, 306, 356, 779, 12429, 4061, 7535, 5159, 1174, 284, 1100, 262, 2939, 2393, 290, 3359, 262, 2482, 13, 198, 2, 220, 198, 198, 2, 554, 58, 1157, 5974, 198, 198, 4061, 7535, 5159, 7, 34345, 11639, 39873, 12, 448, 13, 11134, 11537, 628, 198, 2, 12429, 24361, 352, 8, 1174, 5765, 262, 12429, 13812, 62, 9631, 1174, 2163, 284, 3359, 262, 2939, 351, 262, 1438, 11361, 319, 262, 1353, 290, 6060, 5800, 319, 262, 4220, 13, 12793, 262, 2939, 355, 12429, 6, 39873, 12, 448, 13, 11134, 6, 1174, 13, 198, 198, 2, 554, 58, 24, 5974, 198, 198, 9600, 28, 13812, 62, 9631, 7, 4852, 11639, 37906, 3256, 22487, 11639, 6601, 5800, 11537, 628, 198, 2, 554, 58, 940, 5974, 198, 198, 9600, 13, 21928, 10786, 39873, 12, 448, 13, 11134, 11537, 628, 198, 2, 22492, 2142, 362, 25, 12320, 257, 4738, 2443, 422, 15312, 220, 1279, 64, 4686, 11639, 5420, 17, 6, 12240, 64, 29, 198, 198, 2, 220, 554, 428, 1628, 11, 356, 481, 779, 262, 2581, 5888, 11, 356, 973, 340, 287, 262, 2163, 12429, 13812, 62, 9631, 1174, 11, 475, 345, 815, 1330, 262, 5888, 287, 262, 1306, 2685, 13, 198, 198, 2, 554, 58, 1065, 5974, 198, 198, 11748, 7007, 628, 198, 2, 220, 383, 1708, 318, 262, 10289, 284, 262, 220, 2443, 220, 198, 198, 2, 554, 58, 1485, 5974, 198, 198, 31266, 62, 8726, 11639, 5450, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 13409, 25, 29531, 6, 628, 198, 2, 12429, 24361, 362, 8, 1174, 3497, 15312, 2443, 318, 11513, 284, 257, 4731, 198, 198, 2, 220, 5765, 262, 2163, 12429, 1136, 1174, 422, 262, 12429, 8897, 3558, 1174, 5888, 284, 4321, 262, 15312, 2443, 1262, 262, 12429, 31266, 62, 8726, 1174, 355, 281, 4578, 13, 2195, 570, 262, 2134, 284, 262, 7885, 12429, 1831, 62, 25120, 62, 31266, 62, 7700, 1174, 13, 198, 198, 2, 554, 58, 1415, 5974, 198, 198, 2, 71, 600, 25, 7007, 13, 1136, 3419, 198, 1831, 62, 25120, 62, 31266, 62, 7700, 28, 8897, 3558, 13, 1136, 7, 31266, 62, 8726, 8, 628, 198, 2, 220, 5765, 262, 1366, 11688, 12429, 5239, 1174, 284, 7925, 262, 23735, 355, 257, 2420, 2393, 257, 4731, 290, 8333, 262, 1255, 7885, 12429, 7700, 1174, 25, 198, 198, 2, 554, 58, 1507, 5974, 198, 198, 7700, 28, 1831, 62, 25120, 62, 31266, 62, 7700, 13, 5239, 198, 4798, 7, 7700, 8, 628, 198, 2, 1303, 2142, 513, 25, 29677, 278, 262, 11851, 286, 262, 10172, 1279, 64, 4686, 11639, 5420, 18, 6, 12240, 64, 29, 220, 220, 198, 198, 2, 220, 12429, 24361, 513, 357, 3911, 352, 8, 1174, 220, 5765, 262, 3670, 286, 262, 15312, 2708, 355, 262, 3670, 286, 262, 4097, 13, 383, 3670, 286, 262, 2708, 318, 11191, 416, 262, 23735, 10139, 3670, 355, 5679, 25, 220, 12429, 5, 2528, 26, 7839, 5, 13655, 26, 7839, 532, 15312, 5, 2528, 26, 14, 7839, 29, 1174, 198, 2, 764, 1114, 1672, 11, 611, 262, 3670, 286, 262, 2708, 373, 11361, 356, 561, 766, 262, 1708, 25, 220, 12429, 5, 2528, 26, 7839, 5, 13655, 26, 37906, 532, 15312, 5, 2528, 26, 14, 7839, 29, 1174, 13, 12642, 262, 1672, 810, 262, 3670, 286, 262, 2708, 318, 21432, 496, 35319, 14152, 44356, 262, 1255, 561, 307, 25, 220, 12429, 5, 2528, 26, 7839, 5, 13655, 26, 45639, 496, 35319, 14152, 44356, 532, 15312, 5, 2528, 26, 14, 7839, 29, 1174, 13, 220, 383, 717, 2239, 318, 284, 1064, 262, 23735, 10139, 220, 12429, 5, 2528, 26, 7839, 5, 13655, 26, 1174, 290, 12429, 5, 2528, 26, 14, 7839, 5, 13655, 26, 1174, 521, 12364, 262, 923, 290, 886, 286, 262, 3670, 13, 383, 4731, 2163, 220, 12429, 19796, 1174, 3863, 7613, 11, 345, 460, 635, 779, 12782, 588, 12429, 87, 75, 19875, 1174, 13, 198, 198, 2, 554, 58, 1983, 5974, 198, 198, 7700, 13, 7839, 3419, 628, 198, 2, 220, 12429, 24361, 513, 357, 3911, 362, 8, 1174, 7406, 651, 5755, 286, 262, 3381, 12429, 532, 15312, 1174, 422, 262, 3670, 290, 8333, 262, 1255, 284, 262, 12429, 3903, 62, 7839, 1174, 220, 1114, 1672, 345, 460, 779, 262, 2163, 393, 2446, 12429, 36311, 1174, 393, 12429, 33491, 1174, 13, 220, 198, 2, 220, 198, 198, 2, 220, 198, 198, 2, 220, 12429, 24361, 604, 8, 1174, 30021, 262, 1218, 290, 2368, 2239, 11, 284, 7925, 262, 3670, 286, 257, 1218, 15312, 2708, 475, 779, 262, 1255, 284, 12429, 40916, 62, 7839, 1174, 198, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 2, 220, 1002, 345, 750, 2279, 3376, 262, 1708, 2685, 815, 3359, 262, 5062, 290, 4097, 1438, 25, 198, 2, 220, 198, 198, 2, 554, 58, 2361, 25, 198, 198, 4798, 7203, 7120, 4097, 25, 33172, 4097, 62, 7839, 8, 198, 4798, 7203, 7120, 5062, 25, 33172, 5062, 62, 7839, 8, 628, 198, 2, 22492, 2142, 604, 25, 16531, 278, 262, 23999, 17546, 220, 1279, 64, 4686, 11639, 5420, 19, 6, 12240, 64, 29, 198, 198, 2, 220, 5765, 262, 2163, 12429, 13812, 62, 9631, 1174, 284, 2208, 320, 3455, 262, 4097, 290, 5062, 3670, 625, 257, 4738, 2939, 11, 8333, 262, 1255, 284, 262, 7885, 12429, 40916, 62, 9631, 12429, 13, 198, 198, 2, 12429, 24361, 642, 8, 1174, 779, 262, 2163, 3359, 62, 9631, 220, 284, 3359, 262, 5062, 3002, 351, 734, 4738, 2708, 8714, 10200, 262, 1438, 286, 262, 4097, 290, 262, 3670, 286, 262, 5062, 13, 198, 198, 2, 554, 58, 1959, 5974, 198, 198, 40916, 62, 9631, 28, 13812, 62, 9631, 7, 4852, 11639, 37906, 3256, 22487, 11639, 6601, 5800, 11537, 628, 198, 2, 220, 5765, 262, 2446, 3613, 284, 3613, 262, 2939, 355, 12429, 39873, 12, 448, 13, 11134, 1174, 25, 198, 198, 2, 554, 58, 1270, 5974, 198, 198, 9600, 13, 21928, 10786, 39873, 12, 448, 13, 11134, 11537, 628, 198, 2, 5765, 262, 2163, 12429, 4061, 7535, 5159, 1174, 284, 3359, 262, 2939, 220, 198, 2, 220, 198, 198, 2, 554, 58, 3132, 5974, 198, 198, 4061, 7535, 5159, 7, 34345, 11639, 39873, 12, 448, 13, 11134, 11537, 628, 198, 2, 44386, 7994, 262, 46665, 25, 220, 220, 198, 2, 220, 685, 14731, 29030, 303, 16151, 3740, 1378, 2503, 13, 25614, 259, 13, 785, 14, 259, 14, 631, 303, 73, 1047, 67, 34729, 3700, 41533, 318, 257, 10442, 14044, 1788, 379, 19764, 13, 198, 2, 220, 198, 2, 220, 198, 198, 2, 220, 685, 29458, 10844, 5605, 46525, 16151, 3740, 1378, 2503, 13, 25614, 259, 13, 785, 14, 259, 14, 73, 577, 746, 12, 82, 12, 1120, 31952, 65, 20809, 34729, 468, 257, 16394, 287, 40224, 14044, 11, 465, 2267, 5670, 319, 1262, 4572, 4673, 11, 6737, 7587, 11, 290, 3644, 5761, 284, 5004, 703, 5861, 2928, 1692, 31119, 13, 7212, 468, 587, 1762, 329, 19764, 1201, 339, 5668, 465, 16394, 13, 198, 2, 220, 220, 198, 198, 2, 220, 1279, 11840, 29, 198, 2, 15069, 1222, 30073, 26, 2864, 685, 66, 46610, 4871, 13, 1872, 16151, 66, 46610, 4871, 13, 1872, 30, 26841, 62, 10459, 28, 65, 6077, 404, 4766, 8726, 5, 26841, 62, 24132, 28, 67, 2032, 65, 5, 26841, 62, 35012, 28, 65, 646, 737, 770, 20922, 290, 663, 2723, 2438, 389, 2716, 739, 262, 2846, 286, 262, 685, 36393, 13789, 16151, 5450, 1378, 14261, 7890, 403, 1608, 13, 785, 14, 2781, 12, 43085, 14, 737, 198 ]
2.95372
2,917
import os import json import argparse import pandas as pd from tqdm import tqdm from dateutil.parser import parse parser = argparse.ArgumentParser() parser.add_argument('-input') parser.add_argument('-output_dir') parser.add_argument('-override_file',type=str,default="") args = parser.parse_args() input_ = os.path.abspath(args.input) files = os.listdir(input_) files = [input_ + '/' + f for f in files] override_file = os.path.abspath(args.override_file) with open(override_file,'r') as f: override = json.load(f) feature_names = override['FEATURE_NAMES'] features = {} descriptors = {} print("using features {}".format(feature_names)) for k in feature_names: features[k] = [] print(k) for f in tqdm(files): with open(f,'r') as record: r = json.load(record) if k in r: features[k].append(r[k]) vals = list(set(features[k])) is_float = any([type(v) == float for v in vals]) is_string = any([type(v) == str for v in vals if not v == ""]) is_int = any([type(v) == int for v in vals]) is_date = any([is_date_func(v) for v in vals]) if is_date: descriptors[k] = {"type":"date"} elif is_string: descriptors[k] = {"type":"categorical", "values":vals} elif is_float: descriptors[k] = {"type":"number"} elif is_int: if len(vals) <= args.max_int_categories: descriptors[k] = {"type":"categorical", "values":vals} else: descriptors[k] = {"type":"number"} else: print("could not recognize feature {}".format(k)) for k in override.keys(): if not k == "FEATURE_NAMES": descriptors[k] = override[k] with open(args.output_dir+'/feature_descriptor.json','w') as f: json.dump(descriptors, f, indent=2, sort_keys=True)
[ 11748, 28686, 198, 11748, 33918, 198, 11748, 1822, 29572, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 6738, 3128, 22602, 13, 48610, 1330, 21136, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 15414, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 22915, 62, 15908, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 2502, 13154, 62, 7753, 3256, 4906, 28, 2536, 11, 12286, 2625, 4943, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 15414, 62, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 22046, 13, 15414, 8, 198, 198, 16624, 796, 28686, 13, 4868, 15908, 7, 15414, 62, 8, 198, 16624, 796, 685, 15414, 62, 1343, 31051, 6, 1343, 277, 329, 277, 287, 3696, 60, 628, 198, 2502, 13154, 62, 7753, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 22046, 13, 2502, 13154, 62, 7753, 8, 198, 4480, 1280, 7, 2502, 13154, 62, 7753, 4032, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 20957, 796, 33918, 13, 2220, 7, 69, 8, 198, 198, 30053, 62, 14933, 796, 20957, 17816, 15112, 40086, 62, 45, 29559, 20520, 198, 198, 40890, 220, 220, 220, 796, 23884, 198, 20147, 1968, 669, 796, 23884, 628, 198, 4798, 7203, 3500, 3033, 23884, 1911, 18982, 7, 30053, 62, 14933, 4008, 198, 198, 1640, 479, 287, 3895, 62, 14933, 25, 198, 220, 220, 220, 3033, 58, 74, 60, 796, 17635, 198, 220, 220, 220, 3601, 7, 74, 8, 198, 220, 220, 220, 329, 277, 287, 256, 80, 36020, 7, 16624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 4032, 81, 11537, 355, 1700, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 33918, 13, 2220, 7, 22105, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 374, 25, 3033, 58, 74, 4083, 33295, 7, 81, 58, 74, 12962, 628, 220, 220, 220, 410, 874, 796, 1351, 7, 2617, 7, 40890, 58, 74, 60, 4008, 198, 220, 220, 220, 318, 62, 22468, 220, 796, 597, 26933, 4906, 7, 85, 8, 6624, 12178, 329, 410, 287, 410, 874, 12962, 198, 220, 220, 220, 318, 62, 8841, 796, 597, 26933, 4906, 7, 85, 8, 6624, 965, 329, 410, 287, 410, 874, 611, 407, 410, 6624, 366, 8973, 8, 198, 220, 220, 220, 318, 62, 600, 220, 220, 220, 796, 597, 26933, 4906, 7, 85, 8, 6624, 493, 329, 410, 287, 410, 874, 12962, 198, 220, 220, 220, 318, 62, 4475, 220, 220, 796, 597, 26933, 271, 62, 4475, 62, 20786, 7, 85, 8, 329, 410, 287, 410, 874, 12962, 628, 220, 220, 220, 611, 318, 62, 4475, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12145, 669, 58, 74, 60, 796, 19779, 4906, 2404, 4475, 20662, 198, 220, 220, 220, 1288, 361, 318, 62, 8841, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12145, 669, 58, 74, 60, 796, 19779, 4906, 2404, 66, 2397, 12409, 1600, 366, 27160, 1298, 12786, 92, 198, 220, 220, 220, 1288, 361, 318, 62, 22468, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12145, 669, 58, 74, 60, 796, 19779, 4906, 2404, 17618, 20662, 198, 220, 220, 220, 1288, 361, 318, 62, 600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 12786, 8, 19841, 26498, 13, 9806, 62, 600, 62, 66, 26129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12145, 669, 58, 74, 60, 796, 19779, 4906, 2404, 66, 2397, 12409, 1600, 366, 27160, 1298, 12786, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12145, 669, 58, 74, 60, 796, 19779, 4906, 2404, 17618, 20662, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24089, 407, 7564, 3895, 23884, 1911, 18982, 7, 74, 4008, 198, 198, 1640, 479, 287, 20957, 13, 13083, 33529, 198, 220, 220, 220, 611, 407, 479, 6624, 366, 15112, 40086, 62, 45, 29559, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 12145, 669, 58, 74, 60, 796, 20957, 58, 74, 60, 198, 198, 4480, 1280, 7, 22046, 13, 22915, 62, 15908, 10, 26488, 30053, 62, 20147, 1968, 273, 13, 17752, 41707, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 33918, 13, 39455, 7, 20147, 1968, 669, 11, 277, 11, 33793, 28, 17, 11, 3297, 62, 13083, 28, 17821, 8, 198 ]
2.367454
762
""" @author: Viet Nguyen <[email protected]> """ import cv2 import numpy as np from collections import OrderedDict # https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/image_classification/quickdraw_labels.txt # Rule: key of category = index -1, with index from the link above CLASS_IDS = OrderedDict() CLASS_IDS[8] = "apple" CLASS_IDS[35] = "book" CLASS_IDS[38] = "bowtie" CLASS_IDS[58] = "candle" CLASS_IDS[74] = "cloud" CLASS_IDS[87] = "cup" CLASS_IDS[94] = "door" CLASS_IDS[104] = "envelope" CLASS_IDS[107] = "eyeglasses" CLASS_IDS[136] = "hammer" CLASS_IDS[139] = "hat" CLASS_IDS[156] = "ice cream" CLASS_IDS[167] = "leaf" CLASS_IDS[252] = "scissors" CLASS_IDS[283] = "star" CLASS_IDS[301] = "t-shirt" CLASS_IDS[209] = "pants" CLASS_IDS[323] = "tree"
[ 37811, 198, 31, 9800, 25, 8730, 42379, 1279, 77, 71, 85, 1155, 3064, 24, 31, 14816, 13, 785, 29, 198, 37811, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 2, 3740, 1378, 12567, 13, 785, 14, 83, 22854, 11125, 14, 19608, 292, 1039, 14, 2436, 672, 14, 9866, 14, 83, 22854, 11125, 62, 19608, 292, 1039, 14, 9060, 62, 4871, 2649, 14, 24209, 19334, 62, 23912, 1424, 13, 14116, 198, 2, 14330, 25, 1994, 286, 6536, 796, 6376, 532, 16, 11, 351, 6376, 422, 262, 2792, 2029, 198, 198, 31631, 62, 14255, 796, 14230, 1068, 35, 713, 3419, 198, 31631, 62, 14255, 58, 23, 60, 796, 366, 18040, 1, 198, 31631, 62, 14255, 58, 2327, 60, 796, 366, 2070, 1, 198, 31631, 62, 14255, 58, 2548, 60, 796, 366, 8176, 36224, 1, 198, 31631, 62, 14255, 58, 3365, 60, 796, 366, 46188, 293, 1, 198, 31631, 62, 14255, 58, 4524, 60, 796, 366, 17721, 1, 198, 31631, 62, 14255, 58, 5774, 60, 796, 366, 25244, 1, 198, 31631, 62, 14255, 58, 5824, 60, 796, 366, 9424, 1, 198, 31631, 62, 14255, 58, 13464, 60, 796, 366, 268, 1091, 68, 1, 198, 31631, 62, 14255, 58, 15982, 60, 796, 366, 2959, 1533, 28958, 1, 198, 31631, 62, 14255, 58, 20809, 60, 796, 366, 17980, 1, 198, 31631, 62, 14255, 58, 20219, 60, 796, 366, 5183, 1, 198, 31631, 62, 14255, 58, 21599, 60, 796, 366, 501, 8566, 1, 198, 31631, 62, 14255, 58, 21940, 60, 796, 366, 33201, 1, 198, 31631, 62, 14255, 58, 22800, 60, 796, 366, 1416, 32555, 1, 198, 31631, 62, 14255, 58, 30290, 60, 796, 366, 7364, 1, 198, 31631, 62, 14255, 58, 18938, 60, 796, 366, 83, 12, 15600, 1, 198, 31631, 62, 14255, 58, 22567, 60, 796, 366, 38895, 1, 198, 31631, 62, 14255, 58, 32637, 60, 796, 366, 21048, 1, 628, 198 ]
2.439252
321
import boto3 import botocore import os import glob import json import requests from datetime import datetime from time import sleep from time import gmtime, strftime import sys, getopt import argparse import subprocess from shutil import copyfile, rmtree import logging import configparser __CONFIG_FILE_PATH__ = "cerebro.config" __SSM_BASE_PATH__ = "/Cerebro"
[ 11748, 275, 2069, 18, 198, 11748, 10214, 420, 382, 198, 198, 11748, 28686, 198, 11748, 15095, 198, 11748, 33918, 198, 11748, 7007, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 640, 1330, 3993, 198, 6738, 640, 1330, 308, 76, 2435, 11, 965, 31387, 198, 198, 11748, 25064, 11, 651, 8738, 198, 198, 11748, 1822, 29572, 198, 198, 11748, 850, 14681, 198, 198, 6738, 4423, 346, 1330, 4866, 7753, 11, 374, 16762, 631, 198, 198, 11748, 18931, 198, 198, 11748, 4566, 48610, 198, 198, 834, 10943, 16254, 62, 25664, 62, 34219, 834, 796, 366, 344, 260, 7957, 13, 11250, 1, 198, 834, 5432, 44, 62, 33, 11159, 62, 34219, 834, 796, 12813, 34, 567, 7957, 1, 628 ]
3.144068
118
import os import sys import glob import h5py as h5 import numpy as np import math import argparse as ap import mxnet as mx from mpi4py import MPI if __name__ == "__main__": AP = ap.ArgumentParser() AP.add_argument("--input_directory", type=str, help="Directory with input files", required = True) AP.add_argument("--output_directory", type=str, help="Directory for output files", required = True) AP.add_argument("--num_files", type=int, default=None, help="Maximum number of files to convert") pargs = AP.parse_args() main(pargs)
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 15095, 198, 11748, 289, 20, 9078, 355, 289, 20, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 11748, 1822, 29572, 355, 2471, 198, 11748, 285, 87, 3262, 355, 285, 87, 198, 6738, 285, 14415, 19, 9078, 1330, 4904, 40, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3486, 796, 2471, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 3486, 13, 2860, 62, 49140, 7203, 438, 15414, 62, 34945, 1600, 2099, 28, 2536, 11, 1037, 2625, 43055, 351, 5128, 3696, 1600, 2672, 796, 6407, 8, 198, 220, 220, 220, 3486, 13, 2860, 62, 49140, 7203, 438, 22915, 62, 34945, 1600, 2099, 28, 2536, 11, 1037, 2625, 43055, 329, 5072, 3696, 1600, 2672, 796, 6407, 8, 198, 220, 220, 220, 3486, 13, 2860, 62, 49140, 7203, 438, 22510, 62, 16624, 1600, 2099, 28, 600, 11, 4277, 28, 14202, 11, 1037, 2625, 40541, 1271, 286, 3696, 284, 10385, 4943, 198, 220, 220, 220, 279, 22046, 796, 3486, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1388, 7, 79, 22046, 8, 198 ]
2.800971
206
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages setup( name='pytorch-cnn-visualization', version='0.0', description='pytorch implementation of CNN visualization techniques', packages=find_packages(), include_package_data=True, install_requires=[ 'numpy==1.14.5', 'opencv-python==3.4.1.15', 'torch==0.4.0', 'torchvision==0.2.1', ], extras_require={ 'dev': [ 'matplotlib', 'ipdb', 'flake8', 'pylint', 'pep8', 'mypy', 'pytest', 'pytest-asyncio' ], 'test': [ 'pytest', 'pytest-asyncio' ], }, )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 9078, 13165, 354, 12, 66, 20471, 12, 41464, 1634, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 3256, 198, 220, 220, 220, 6764, 11639, 9078, 13165, 354, 7822, 286, 8100, 32704, 7605, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 77, 32152, 855, 16, 13, 1415, 13, 20, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9654, 33967, 12, 29412, 855, 18, 13, 19, 13, 16, 13, 1314, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13165, 354, 855, 15, 13, 19, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13165, 354, 10178, 855, 15, 13, 17, 13, 16, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 33849, 62, 46115, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7959, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6759, 29487, 8019, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 9945, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47597, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 2645, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 431, 79, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1820, 9078, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 12, 292, 13361, 952, 6, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9288, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 12, 292, 13361, 952, 6, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 8964, 198, 8, 198 ]
1.795238
420
# -*- coding: utf-8 -*- # Copyright 2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import from __future__ import unicode_literals import copy import logging from sqlalchemy import Column from sqlalchemy import exists from sqlalchemy import String from sqlalchemy import UnicodeText from replication_handler.models.database import Base logger = logging.getLogger('replication_handler.models.mysql_dumps')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 1584, 44628, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 4866, 198, 11748, 18931, 198, 198, 6738, 44161, 282, 26599, 1330, 29201, 198, 6738, 44161, 282, 26599, 1330, 7160, 198, 6738, 44161, 282, 26599, 1330, 10903, 198, 6738, 44161, 282, 26599, 1330, 34371, 8206, 198, 198, 6738, 30330, 62, 30281, 13, 27530, 13, 48806, 1330, 7308, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 35666, 3299, 62, 30281, 13, 27530, 13, 28744, 13976, 62, 67, 8142, 11537, 628, 198 ]
3.713178
258
from __future__ import print_function import sys import warnings from types import ModuleType from contextlib import contextmanager from multiprocessing import cpu_count from distutils.version import StrictVersion from .result import Result from .._util import Capture, DummyBar from ..error import Error, Missing, MultipleFragments, DuplicatedDescriptorName from .context import Context from .._version import __version__ from .descriptor import Descriptor, MissingValueException, is_descriptor_class try: from tqdm import tqdm from .._util import NotebookWrapper except ImportError: tqdm = NotebookWrapper = DummyBar class Calculator(object): r"""descriptor calculator. Parameters: descs: see Calculator.register() method ignore_3D: see Calculator.register() method """ __slots__ = ( "_descriptors", "_name_dict", "_explicit_hydrogens", "_kekulizes", "_require_3D", "_cache", "_debug", "_progress_bar", ) @classmethod def from_json(cls, obj): """Create Calculator from json descriptor objects. Parameters: obj(list or dict): descriptors to register Returns: Calculator: calculator """ calc = cls() calc.register_json(obj) return calc def register_json(self, obj): """Register Descriptors from json descriptor objects. Parameters: obj(list or dict): descriptors to register """ if not isinstance(obj, list): obj = [obj] self.register(Descriptor.from_json(j) for j in obj) def to_json(self): """Convert descriptors to json serializable data. Returns: list: descriptors """ return [d.to_json() for d in self.descriptors] @property def descriptors(self): r"""All descriptors. you can get/set/delete descriptor. Returns: tuple[Descriptor]: registered descriptors """ return tuple(self._descriptors) @descriptors.setter @descriptors.deleter def register(self, desc, version=None, ignore_3D=False): r"""Register descriptors. Descriptor-like: * Descriptor instance: self * Descriptor class: use Descriptor.preset() method * module: use Descriptor-likes in module * Iterable: use Descriptor-likes in Iterable Parameters: desc(Descriptor-like): descriptors to register version(str): version ignore_3D(bool): ignore 3D descriptors """ if version is None: version = __version__ version = StrictVersion(version) return self._register(desc, version, ignore_3D) def __call__(self, mol, id=-1): r"""Calculate descriptors. :type mol: rdkit.Chem.Mol :param mol: molecular :type id: int :param id: conformer id :rtype: Result[scalar or Error] :returns: iterator of descriptor and value """ return self._wrap_result( mol, self._calculate(Context.from_calculator(self, mol, id)), ) @contextmanager def echo(self, s, file=sys.stdout, end="\n"): """Output message. Parameters: s(str): message to output file(file-like): output to end(str): end mark of message Return: None """ p = getattr(self, "_progress_bar", None) if p is not None: p.write(s, file=file, end="\n") return print(s, file=file, end="\n") # noqa: T003 def map(self, mols, nproc=None, nmols=None, quiet=False, ipynb=False, id=-1): r"""Calculate descriptors over mols. Parameters: mols(Iterable[rdkit.Mol]): moleculars nproc(int): number of process to use. default: multiprocessing.cpu_count() nmols(int): number of all mols to use in progress-bar. default: mols.__len__() quiet(bool): don't show progress bar. default: False ipynb(bool): use ipython notebook progress bar. default: False id(int): conformer id to use. default: -1. Returns: Iterator[Result[scalar]] """ if nproc is None: nproc = cpu_count() if hasattr(mols, "__len__"): nmols = len(mols) if nproc == 1: return self._serial(mols, nmols=nmols, quiet=quiet, ipynb=ipynb, id=id) else: return self._parallel(mols, nproc, nmols=nmols, quiet=quiet, ipynb=ipynb, id=id) def pandas(self, mols, nproc=None, nmols=None, quiet=False, ipynb=False, id=-1): r"""Calculate descriptors over mols. Returns: pandas.DataFrame """ from .pandas_module import MordredDataFrame, Series if isinstance(mols, Series): index = mols.index else: index = None return MordredDataFrame( (list(r) for r in self.map(mols, nproc, nmols, quiet, ipynb, id)), columns=[str(d) for d in self.descriptors], index=index, ) def get_descriptors_from_module(mdl, submodule=False): r"""[DEPRECATED] Get descriptors from module. Parameters: mdl(module): module to search Returns: [Descriptor] """ warnings.warn("use get_descriptors_in_module", DeprecationWarning) __all__ = getattr(mdl, "__all__", None) if __all__ is None: __all__ = dir(mdl) all_functions = (getattr(mdl, name) for name in __all__ if name[:1] != "_") if submodule: descs = [ d for fn in all_functions if is_descriptor_class(fn) or isinstance(fn, ModuleType) for d in ( [fn] if is_descriptor_class(fn) else get_descriptors_from_module(fn, submodule=True) ) ] else: descs = [ fn for fn in all_functions if is_descriptor_class(fn) ] return descs def get_descriptors_in_module(mdl, submodule=True): r"""Get descriptors in module. Parameters: mdl(module): module to search submodule(bool): search recursively Returns: Iterator[Descriptor] """ __all__ = getattr(mdl, "__all__", None) if __all__ is None: __all__ = dir(mdl) all_values = (getattr(mdl, name) for name in __all__ if name[:1] != "_") if submodule: for v in all_values: if is_descriptor_class(v): yield v if isinstance(v, ModuleType): for v in get_descriptors_in_module(v, submodule=True): yield v else: for v in all_values: if is_descriptor_class(v): yield v
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 25064, 198, 11748, 14601, 198, 6738, 3858, 1330, 19937, 6030, 198, 6738, 4732, 8019, 1330, 4732, 37153, 198, 6738, 18540, 305, 919, 278, 1330, 42804, 62, 9127, 198, 6738, 1233, 26791, 13, 9641, 1330, 520, 2012, 14815, 198, 198, 6738, 764, 20274, 1330, 25414, 198, 6738, 11485, 62, 22602, 1330, 31793, 11, 360, 13513, 10374, 198, 6738, 11485, 18224, 1330, 13047, 11, 25639, 11, 20401, 42974, 902, 11, 49821, 3474, 24564, 1968, 273, 5376, 198, 6738, 764, 22866, 1330, 30532, 198, 6738, 11485, 62, 9641, 1330, 11593, 9641, 834, 198, 6738, 764, 20147, 1968, 273, 1330, 2935, 6519, 273, 11, 25639, 11395, 16922, 11, 318, 62, 20147, 1968, 273, 62, 4871, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 256, 80, 36020, 1330, 256, 80, 36020, 198, 220, 220, 220, 422, 11485, 62, 22602, 1330, 5740, 2070, 36918, 2848, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 256, 80, 36020, 796, 5740, 2070, 36918, 2848, 796, 360, 13513, 10374, 628, 198, 4871, 43597, 7, 15252, 2599, 198, 220, 220, 220, 374, 37811, 20147, 1968, 273, 28260, 13, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 82, 25, 766, 43597, 13, 30238, 3419, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 18, 35, 25, 766, 43597, 13, 30238, 3419, 2446, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 45434, 20147, 1968, 669, 1600, 45434, 3672, 62, 11600, 1600, 45434, 20676, 3628, 62, 15511, 48686, 1600, 45434, 365, 74, 377, 4340, 1600, 45434, 46115, 62, 18, 35, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 45434, 23870, 1600, 45434, 24442, 1600, 45434, 33723, 62, 5657, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 17752, 7, 565, 82, 11, 26181, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 43597, 422, 33918, 43087, 5563, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 7, 4868, 393, 8633, 2599, 12145, 669, 284, 7881, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43597, 25, 28260, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42302, 796, 537, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 42302, 13, 30238, 62, 17752, 7, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 42302, 628, 220, 220, 220, 825, 7881, 62, 17752, 7, 944, 11, 26181, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38804, 2935, 6519, 669, 422, 33918, 43087, 5563, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 7, 4868, 393, 8633, 2599, 12145, 669, 284, 7881, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 26801, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 685, 26801, 60, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30238, 7, 24564, 1968, 273, 13, 6738, 62, 17752, 7, 73, 8, 329, 474, 287, 26181, 8, 628, 220, 220, 220, 825, 284, 62, 17752, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 12145, 669, 284, 33918, 11389, 13821, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 25, 12145, 669, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 67, 13, 1462, 62, 17752, 3419, 329, 288, 287, 2116, 13, 20147, 1968, 669, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 12145, 669, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 37811, 3237, 12145, 669, 13, 628, 220, 220, 220, 220, 220, 220, 220, 345, 460, 651, 14, 2617, 14, 33678, 43087, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46545, 58, 24564, 1968, 273, 5974, 6823, 12145, 669, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 46545, 7, 944, 13557, 20147, 1968, 669, 8, 628, 220, 220, 220, 2488, 20147, 1968, 669, 13, 2617, 353, 628, 220, 220, 220, 2488, 20147, 1968, 669, 13, 2934, 293, 353, 628, 220, 220, 220, 825, 7881, 7, 944, 11, 1715, 11, 2196, 28, 14202, 11, 8856, 62, 18, 35, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 37811, 38804, 12145, 669, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2935, 6519, 273, 12, 2339, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2935, 6519, 273, 4554, 25, 2116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2935, 6519, 273, 1398, 25, 779, 2935, 6519, 273, 13, 18302, 316, 3419, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 8265, 25, 779, 2935, 6519, 273, 12, 75, 7938, 287, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 40806, 540, 25, 779, 2935, 6519, 273, 12, 75, 7938, 287, 40806, 540, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1715, 7, 24564, 1968, 273, 12, 2339, 2599, 12145, 669, 284, 7881, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2196, 7, 2536, 2599, 2196, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 18, 35, 7, 30388, 2599, 8856, 513, 35, 12145, 669, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2196, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2196, 796, 11593, 9641, 834, 628, 220, 220, 220, 220, 220, 220, 220, 2196, 796, 520, 2012, 14815, 7, 9641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 30238, 7, 20147, 11, 2196, 11, 8856, 62, 18, 35, 8, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 18605, 11, 4686, 10779, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 37811, 9771, 3129, 378, 12145, 669, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 18605, 25, 374, 67, 15813, 13, 41829, 13, 44, 349, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18605, 25, 18955, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4686, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4686, 25, 369, 16354, 4686, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 25414, 58, 1416, 282, 283, 393, 13047, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 41313, 286, 43087, 290, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 37150, 62, 20274, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18605, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9948, 3129, 378, 7, 21947, 13, 6738, 62, 9948, 3129, 1352, 7, 944, 11, 18605, 11, 4686, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 22866, 37153, 628, 220, 220, 220, 825, 9809, 7, 944, 11, 264, 11, 2393, 28, 17597, 13, 19282, 448, 11, 886, 2625, 59, 77, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26410, 3275, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 7, 2536, 2599, 3275, 284, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 7, 7753, 12, 2339, 2599, 5072, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 7, 2536, 2599, 886, 1317, 286, 3275, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 651, 35226, 7, 944, 11, 45434, 33723, 62, 5657, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 13564, 7, 82, 11, 2393, 28, 7753, 11, 886, 2625, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 82, 11, 2393, 28, 7753, 11, 886, 2625, 59, 77, 4943, 220, 1303, 645, 20402, 25, 309, 11245, 628, 220, 220, 220, 825, 3975, 7, 944, 11, 285, 10220, 11, 299, 36942, 28, 14202, 11, 28642, 10220, 28, 14202, 11, 5897, 28, 25101, 11, 20966, 2047, 65, 28, 25101, 11, 4686, 10779, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 37811, 9771, 3129, 378, 12145, 669, 625, 285, 10220, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 10220, 7, 29993, 540, 58, 4372, 15813, 13, 44, 349, 60, 2599, 18955, 82, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 36942, 7, 600, 2599, 1271, 286, 1429, 284, 779, 13, 4277, 25, 18540, 305, 919, 278, 13, 36166, 62, 9127, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 10220, 7, 600, 2599, 1271, 286, 477, 285, 10220, 284, 779, 287, 4371, 12, 5657, 13, 4277, 25, 285, 10220, 13, 834, 11925, 834, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5897, 7, 30388, 2599, 836, 470, 905, 4371, 2318, 13, 4277, 25, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 2047, 65, 7, 30388, 2599, 779, 20966, 7535, 20922, 4371, 2318, 13, 4277, 25, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 7, 600, 2599, 369, 16354, 4686, 284, 779, 13, 4277, 25, 532, 16, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40806, 1352, 58, 23004, 58, 1416, 282, 283, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 36942, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 36942, 796, 42804, 62, 9127, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 76, 10220, 11, 366, 834, 11925, 834, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 10220, 796, 18896, 7, 76, 10220, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 299, 36942, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 46911, 7, 76, 10220, 11, 28642, 10220, 28, 21533, 10220, 11, 5897, 28, 39624, 11, 20966, 2047, 65, 28, 541, 2047, 65, 11, 4686, 28, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1845, 29363, 7, 76, 10220, 11, 299, 36942, 11, 28642, 10220, 28, 21533, 10220, 11, 5897, 28, 39624, 11, 20966, 2047, 65, 28, 541, 2047, 65, 11, 4686, 28, 312, 8, 628, 220, 220, 220, 825, 19798, 292, 7, 944, 11, 285, 10220, 11, 299, 36942, 28, 14202, 11, 28642, 10220, 28, 14202, 11, 5897, 28, 25101, 11, 20966, 2047, 65, 28, 25101, 11, 4686, 10779, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 37811, 9771, 3129, 378, 12145, 669, 625, 285, 10220, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19798, 292, 13, 6601, 19778, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 422, 764, 79, 392, 292, 62, 21412, 1330, 29548, 445, 6601, 19778, 11, 7171, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 76, 10220, 11, 7171, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 285, 10220, 13, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 29548, 445, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4868, 7, 81, 8, 329, 374, 287, 2116, 13, 8899, 7, 76, 10220, 11, 299, 36942, 11, 28642, 10220, 11, 5897, 11, 20966, 2047, 65, 11, 4686, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 41888, 2536, 7, 67, 8, 329, 288, 287, 2116, 13, 20147, 1968, 669, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4299, 651, 62, 20147, 1968, 669, 62, 6738, 62, 21412, 7, 9132, 75, 11, 850, 21412, 28, 25101, 2599, 198, 220, 220, 220, 374, 15931, 17912, 46162, 38827, 11617, 60, 3497, 12145, 669, 422, 8265, 13, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 25404, 7, 21412, 2599, 8265, 284, 2989, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 685, 24564, 1968, 273, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 14601, 13, 40539, 7203, 1904, 651, 62, 20147, 1968, 669, 62, 259, 62, 21412, 1600, 2129, 8344, 341, 20361, 8, 198, 220, 220, 220, 11593, 439, 834, 796, 651, 35226, 7, 9132, 75, 11, 366, 834, 439, 834, 1600, 6045, 8, 198, 220, 220, 220, 611, 11593, 439, 834, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 439, 834, 796, 26672, 7, 9132, 75, 8, 628, 220, 220, 220, 477, 62, 12543, 2733, 796, 357, 1136, 35226, 7, 9132, 75, 11, 1438, 8, 329, 1438, 287, 11593, 439, 834, 611, 1438, 58, 25, 16, 60, 14512, 45434, 4943, 628, 220, 220, 220, 611, 850, 21412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 287, 477, 62, 12543, 2733, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 20147, 1968, 273, 62, 4871, 7, 22184, 8, 393, 318, 39098, 7, 22184, 11, 19937, 6030, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 22184, 60, 611, 318, 62, 20147, 1968, 273, 62, 4871, 7, 22184, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 651, 62, 20147, 1968, 669, 62, 6738, 62, 21412, 7, 22184, 11, 850, 21412, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 287, 477, 62, 12543, 2733, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 20147, 1968, 273, 62, 4871, 7, 22184, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 1441, 1715, 82, 628, 198, 4299, 651, 62, 20147, 1968, 669, 62, 259, 62, 21412, 7, 9132, 75, 11, 850, 21412, 28, 17821, 2599, 198, 220, 220, 220, 374, 37811, 3855, 12145, 669, 287, 8265, 13, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 25404, 7, 21412, 2599, 8265, 284, 2989, 198, 220, 220, 220, 220, 220, 220, 220, 850, 21412, 7, 30388, 2599, 2989, 664, 1834, 2280, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40806, 1352, 58, 24564, 1968, 273, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 439, 834, 796, 651, 35226, 7, 9132, 75, 11, 366, 834, 439, 834, 1600, 6045, 8, 198, 220, 220, 220, 611, 11593, 439, 834, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 439, 834, 796, 26672, 7, 9132, 75, 8, 628, 220, 220, 220, 477, 62, 27160, 796, 357, 1136, 35226, 7, 9132, 75, 11, 1438, 8, 329, 1438, 287, 11593, 439, 834, 611, 1438, 58, 25, 16, 60, 14512, 45434, 4943, 628, 220, 220, 220, 611, 850, 21412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 477, 62, 27160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 20147, 1968, 273, 62, 4871, 7, 85, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 85, 11, 19937, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 651, 62, 20147, 1968, 669, 62, 259, 62, 21412, 7, 85, 11, 850, 21412, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 410, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 477, 62, 27160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 20147, 1968, 273, 62, 4871, 7, 85, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 410, 198 ]
2.188787
3,157
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_equality ---------------------------------- Tests for the `AnyType` __eq__ method """ import unittest from finitio.types import AnyType if __name__ == '__main__': import sys sys.exit(unittest.main())
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 9288, 62, 48203, 198, 3880, 438, 198, 198, 51, 3558, 329, 262, 4600, 7149, 6030, 63, 11593, 27363, 834, 2446, 198, 37811, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 957, 270, 952, 13, 19199, 1330, 4377, 6030, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 25064, 13, 37023, 7, 403, 715, 395, 13, 12417, 28955, 198 ]
2.744898
98
# # DQN agent # # agent hyper parameters # N_EPISODES = 2000 # how many episodes to train # MAX_T = 10000 # maximum steps per episode # EPS_START = 1.0 # start values of epsilon (for epsilon greedy exploration) # EPS_END = 0.01 # minimum value of epsilon # EPS_DECAY = 0.995 # decay rate of epsilon new_eps = old_eps * eps_decay for each step # GAMMA = 0.99 # discount factor # # # neural network hyper parameters # TAU = 1e-3 # for soft update of target parameters # LR = 5e-4 # learning rate # UPDATE_EVERY = 4 # how often to update the network # BATCH_SIZE = 64 # minibatch size # # # replay memory hyper parameters # BUFFER_SIZE = int(1e4) # replay buffer size # # # environment hyper parameters # STATE_SIZE = 37 # ACTION_SIZE = 4 # # DDQN agent (works after 609 episodes) # # agent hyper parameters # N_EPISODES = 2000 # how many episodes to train # MAX_T = 10000 # maximum steps per episode # EPS_START = 1.0 # start values of epsilon (for epsilon greedy exploration) # EPS_END = 0.01 # minimum value of epsilon # EPS_DECAY = 0.995 # decay rate of epsilon new_eps = old_eps * eps_decay for each step # GAMMA = 0.99 # discount factor # # # neural network hyper parameters # TAU = 1e-1 # for soft update of target parameters # LR = 5e-4 # learning rate # UPDATE_EVERY = 8 # how often to update the network # BATCH_SIZE = 64 # minibatch size # # # replay memory hyper parameters # BUFFER_SIZE = int(1e4) # replay buffer size # # # environment hyper parameters # STATE_SIZE = 37 # ACTION_SIZE = 4 # DDQN agent with prioritized experience replay # agent hyper parameters N_EPISODES = 2000 # how many episodes to train MAX_T = 10000 # maximum steps per episode EPS_START = 1.0 # start values of epsilon (for epsilon greedy exploration) EPS_END = 0.01 # minimum value of epsilon EPS_DECAY = 0.995 # decay rate of epsilon new_eps = old_eps * eps_decay for each step GAMMA = 0.99 # discount factor # neural network hyper parameters TAU = 1e-1 # for soft update of target parameters LR = 5e-4 # learning rate UPDATE_EVERY = 8 # how often to update the network BATCH_SIZE = 64 # minibatch size # replay memory hyper parameters BUFFER_SIZE = int(1e4) # replay buffer size PROBABILITY_EXPONENT = 0.8 # environment hyper parameters STATE_SIZE = 37 ACTION_SIZE = 4
[ 2, 1303, 360, 48, 45, 5797, 198, 2, 1303, 5797, 8718, 10007, 198, 2, 399, 62, 8905, 1797, 3727, 1546, 796, 4751, 220, 1303, 703, 867, 8640, 284, 4512, 198, 2, 25882, 62, 51, 796, 33028, 220, 1303, 5415, 4831, 583, 4471, 198, 2, 47013, 62, 2257, 7227, 796, 352, 13, 15, 220, 1303, 923, 3815, 286, 304, 862, 33576, 357, 1640, 304, 862, 33576, 31828, 13936, 8, 198, 2, 47013, 62, 10619, 796, 657, 13, 486, 220, 1303, 5288, 1988, 286, 304, 862, 33576, 198, 2, 47013, 62, 41374, 4792, 796, 657, 13, 33438, 220, 1303, 22119, 2494, 286, 304, 862, 33576, 649, 62, 25386, 796, 1468, 62, 25386, 1635, 304, 862, 62, 12501, 323, 329, 1123, 2239, 198, 2, 49965, 5673, 796, 657, 13, 2079, 220, 1303, 9780, 5766, 198, 2, 198, 2, 1303, 17019, 3127, 8718, 10007, 198, 2, 21664, 52, 796, 352, 68, 12, 18, 220, 1303, 329, 2705, 4296, 286, 2496, 10007, 198, 2, 37491, 796, 642, 68, 12, 19, 220, 1303, 4673, 2494, 198, 2, 35717, 62, 36, 5959, 56, 796, 604, 220, 1303, 703, 1690, 284, 4296, 262, 3127, 198, 2, 347, 11417, 62, 33489, 796, 5598, 220, 1303, 949, 571, 963, 2546, 198, 2, 198, 2, 1303, 24788, 4088, 8718, 10007, 198, 2, 20571, 45746, 62, 33489, 796, 493, 7, 16, 68, 19, 8, 220, 1303, 24788, 11876, 2546, 198, 2, 198, 2, 1303, 2858, 8718, 10007, 198, 2, 35454, 62, 33489, 796, 5214, 198, 2, 40282, 62, 33489, 796, 604, 198, 198, 2, 1303, 20084, 48, 45, 5797, 357, 5225, 706, 718, 2931, 8640, 8, 198, 2, 1303, 5797, 8718, 10007, 198, 2, 399, 62, 8905, 1797, 3727, 1546, 796, 4751, 220, 1303, 703, 867, 8640, 284, 4512, 198, 2, 25882, 62, 51, 796, 33028, 220, 1303, 5415, 4831, 583, 4471, 198, 2, 47013, 62, 2257, 7227, 796, 352, 13, 15, 220, 1303, 923, 3815, 286, 304, 862, 33576, 357, 1640, 304, 862, 33576, 31828, 13936, 8, 198, 2, 47013, 62, 10619, 796, 657, 13, 486, 220, 1303, 5288, 1988, 286, 304, 862, 33576, 198, 2, 47013, 62, 41374, 4792, 796, 657, 13, 33438, 220, 1303, 22119, 2494, 286, 304, 862, 33576, 649, 62, 25386, 796, 1468, 62, 25386, 1635, 304, 862, 62, 12501, 323, 329, 1123, 2239, 198, 2, 49965, 5673, 796, 657, 13, 2079, 220, 1303, 9780, 5766, 198, 2, 198, 2, 1303, 17019, 3127, 8718, 10007, 198, 2, 21664, 52, 796, 352, 68, 12, 16, 220, 1303, 329, 2705, 4296, 286, 2496, 10007, 198, 2, 37491, 796, 642, 68, 12, 19, 220, 1303, 4673, 2494, 198, 2, 35717, 62, 36, 5959, 56, 796, 807, 220, 1303, 703, 1690, 284, 4296, 262, 3127, 198, 2, 347, 11417, 62, 33489, 796, 5598, 220, 1303, 949, 571, 963, 2546, 198, 2, 198, 2, 1303, 24788, 4088, 8718, 10007, 198, 2, 20571, 45746, 62, 33489, 796, 493, 7, 16, 68, 19, 8, 220, 1303, 24788, 11876, 2546, 198, 2, 198, 2, 1303, 2858, 8718, 10007, 198, 2, 35454, 62, 33489, 796, 5214, 198, 2, 40282, 62, 33489, 796, 604, 198, 198, 2, 20084, 48, 45, 5797, 351, 19086, 1143, 1998, 24788, 198, 2, 5797, 8718, 10007, 198, 45, 62, 8905, 1797, 3727, 1546, 796, 4751, 220, 1303, 703, 867, 8640, 284, 4512, 198, 22921, 62, 51, 796, 33028, 220, 1303, 5415, 4831, 583, 4471, 198, 36, 3705, 62, 2257, 7227, 796, 352, 13, 15, 220, 1303, 923, 3815, 286, 304, 862, 33576, 357, 1640, 304, 862, 33576, 31828, 13936, 8, 198, 36, 3705, 62, 10619, 796, 657, 13, 486, 220, 1303, 5288, 1988, 286, 304, 862, 33576, 198, 36, 3705, 62, 41374, 4792, 796, 657, 13, 33438, 220, 1303, 22119, 2494, 286, 304, 862, 33576, 649, 62, 25386, 796, 1468, 62, 25386, 1635, 304, 862, 62, 12501, 323, 329, 1123, 2239, 198, 38, 2390, 5673, 796, 657, 13, 2079, 220, 1303, 9780, 5766, 198, 198, 2, 17019, 3127, 8718, 10007, 198, 5603, 52, 796, 352, 68, 12, 16, 220, 1303, 329, 2705, 4296, 286, 2496, 10007, 198, 35972, 796, 642, 68, 12, 19, 220, 1303, 4673, 2494, 198, 16977, 62, 36, 5959, 56, 796, 807, 220, 1303, 703, 1690, 284, 4296, 262, 3127, 198, 33, 11417, 62, 33489, 796, 5598, 220, 1303, 949, 571, 963, 2546, 198, 198, 2, 24788, 4088, 8718, 10007, 198, 19499, 45746, 62, 33489, 796, 493, 7, 16, 68, 19, 8, 220, 1303, 24788, 11876, 2546, 198, 31190, 4339, 25382, 62, 49864, 1340, 3525, 796, 657, 13, 23, 198, 198, 2, 2858, 8718, 10007, 198, 44724, 62, 33489, 796, 5214, 198, 44710, 62, 33489, 796, 604 ]
3.026385
758
import imutils # import dlib import cv2 import datetime import glob import sys if __name__ == '__main__': main()
[ 11748, 545, 26791, 198, 2, 1330, 288, 8019, 198, 11748, 269, 85, 17, 198, 11748, 4818, 8079, 198, 11748, 15095, 198, 11748, 25064, 198, 197, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 12417, 3419 ]
2.829268
41
from data_load import load_vocab from hyperparams import Hyperparams as hp from networks import TextEnc, AudioEnc, AudioDec, Attention, SSRN import tensorflow as tf
[ 198, 6738, 1366, 62, 2220, 1330, 3440, 62, 18893, 397, 198, 6738, 8718, 37266, 1330, 15079, 37266, 355, 27673, 198, 6738, 7686, 1330, 8255, 27195, 11, 13491, 27195, 11, 13491, 10707, 11, 47406, 11, 6723, 42336, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220 ]
3.320755
53
import dash import dash_bootstrap_components as dbc from utils import load_config config = load_config() protocol = config['protocol'] app = dash.Dash( __name__, external_stylesheets=[dbc.themes.DARKLY], suppress_callback_exceptions=True, title=f"{protocol} Playgrounds", meta_tags=[{ 'name': 'viewport', 'content': 'width=device-width, initial-scale=1.0, maximum-scale=1.2, minimum-scale=0.5,' }] )
[ 11748, 14470, 198, 11748, 14470, 62, 18769, 26418, 62, 5589, 3906, 355, 288, 15630, 198, 198, 6738, 3384, 4487, 1330, 3440, 62, 11250, 198, 198, 11250, 796, 3440, 62, 11250, 3419, 198, 11235, 4668, 796, 4566, 17816, 11235, 4668, 20520, 198, 198, 1324, 796, 14470, 13, 43041, 7, 198, 220, 220, 220, 11593, 3672, 834, 11, 198, 220, 220, 220, 7097, 62, 47720, 258, 1039, 41888, 9945, 66, 13, 1169, 6880, 13, 35, 14175, 11319, 4357, 198, 220, 220, 220, 18175, 62, 47423, 62, 1069, 11755, 28, 17821, 11, 198, 220, 220, 220, 3670, 28, 69, 1, 90, 11235, 4668, 92, 3811, 40520, 1600, 198, 220, 220, 220, 13634, 62, 31499, 41888, 90, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 1177, 634, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11299, 10354, 705, 10394, 28, 25202, 12, 10394, 11, 4238, 12, 9888, 28, 16, 13, 15, 11, 5415, 12, 9888, 28, 16, 13, 17, 11, 5288, 12, 9888, 28, 15, 13, 20, 4032, 198, 220, 220, 220, 1782, 60, 198, 8, 198 ]
2.47486
179
# Python - 3.6.0 test.assert_equals(round(circle_area(Circle(Point(10, 10), 30)), 6), 2827.433388) test.assert_equals(round(circle_area(Circle(Point(25, -70), 30)), 6), 2827.433388) test.assert_equals(round(circle_area(Circle(Point(-15, 5), 0)), 6), 0) test.assert_equals(round(circle_area(Circle(Point(-15, 5), 12.5)), 6), 490.873852)
[ 2, 11361, 532, 513, 13, 21, 13, 15, 198, 198, 9288, 13, 30493, 62, 4853, 874, 7, 744, 7, 45597, 62, 20337, 7, 31560, 293, 7, 12727, 7, 940, 11, 838, 828, 1542, 36911, 718, 828, 2579, 1983, 13, 42117, 30460, 8, 198, 9288, 13, 30493, 62, 4853, 874, 7, 744, 7, 45597, 62, 20337, 7, 31560, 293, 7, 12727, 7, 1495, 11, 532, 2154, 828, 1542, 36911, 718, 828, 2579, 1983, 13, 42117, 30460, 8, 198, 9288, 13, 30493, 62, 4853, 874, 7, 744, 7, 45597, 62, 20337, 7, 31560, 293, 7, 12727, 32590, 1314, 11, 642, 828, 657, 36911, 718, 828, 657, 8, 198, 9288, 13, 30493, 62, 4853, 874, 7, 744, 7, 45597, 62, 20337, 7, 31560, 293, 7, 12727, 32590, 1314, 11, 642, 828, 1105, 13, 20, 36911, 718, 828, 45601, 13, 5774, 2548, 4309, 8, 198 ]
2.390071
141
# coding:utf-8 # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from paddle.dataset.common import md5file from ..utils.downloader import get_path_from_url from ..utils.env import MODEL_HOME def download_file(save_dir, filename, url, md5=None): """ Download the file from the url to specified directory. Check md5 value when the file is exists, if the md5 value is the same as the existed file, just use the older file, if not, will download the file from the url. Args: save_dir(string): The specified directory saving the file. fiename(string): The specified filename saveing the file. url(string): The url downling the file. md5(string, optional): The md5 value that checking the version downloaded. """ default_root = os.path.join(MODEL_HOME, save_dir) fullname = os.path.join(default_root, filename) if os.path.exists(fullname): if md5 and (not md5file(fullname) == md5): get_path_from_url(url, default_root, md5) else: get_path_from_url(url, default_root, md5) return fullname
[ 2, 19617, 25, 40477, 12, 23, 198, 2, 15069, 357, 66, 8, 33448, 220, 350, 37382, 47, 37382, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 1, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 28686, 198, 6738, 39517, 13, 19608, 292, 316, 13, 11321, 1330, 45243, 20, 7753, 198, 6738, 11485, 26791, 13, 15002, 263, 1330, 651, 62, 6978, 62, 6738, 62, 6371, 198, 6738, 11485, 26791, 13, 24330, 1330, 19164, 3698, 62, 39069, 628, 198, 4299, 4321, 62, 7753, 7, 21928, 62, 15908, 11, 29472, 11, 19016, 11, 45243, 20, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10472, 262, 2393, 422, 262, 19016, 284, 7368, 8619, 13, 220, 198, 220, 220, 220, 6822, 45243, 20, 1988, 618, 262, 2393, 318, 7160, 11, 611, 262, 45243, 20, 1988, 318, 262, 976, 355, 262, 11196, 2393, 11, 655, 779, 220, 198, 220, 220, 220, 262, 4697, 2393, 11, 611, 407, 11, 481, 4321, 262, 2393, 422, 262, 19016, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 15908, 7, 8841, 2599, 383, 7368, 8619, 8914, 262, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 277, 2013, 480, 7, 8841, 2599, 383, 7368, 29472, 3613, 278, 262, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 8841, 2599, 383, 19016, 866, 1359, 262, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 7, 8841, 11, 11902, 2599, 383, 45243, 20, 1988, 326, 10627, 262, 2196, 15680, 13, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4277, 62, 15763, 796, 28686, 13, 6978, 13, 22179, 7, 33365, 3698, 62, 39069, 11, 3613, 62, 15908, 8, 198, 220, 220, 220, 1336, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 12286, 62, 15763, 11, 29472, 8, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 12853, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45243, 20, 290, 357, 1662, 45243, 20, 7753, 7, 12853, 3672, 8, 6624, 45243, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 6978, 62, 6738, 62, 6371, 7, 6371, 11, 4277, 62, 15763, 11, 45243, 20, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 6978, 62, 6738, 62, 6371, 7, 6371, 11, 4277, 62, 15763, 11, 45243, 20, 8, 198, 220, 220, 220, 1441, 1336, 3672, 198 ]
3.034672
548
import datetime from django import forms from django.test import TestCase from django.utils.translation import activate from institution.models import Institution from users.forms import CustomUserChangeForm from users.forms import CustomUserCreationForm from users.forms import ProfileUpdateForm from users.forms import RegisterForm from users.models import CustomUser from users.models import Profile
[ 11748, 4818, 8079, 198, 198, 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 15155, 198, 198, 6738, 9901, 13, 27530, 1330, 29426, 198, 6738, 2985, 13, 23914, 1330, 8562, 12982, 19400, 8479, 198, 6738, 2985, 13, 23914, 1330, 8562, 12982, 12443, 341, 8479, 198, 6738, 2985, 13, 23914, 1330, 13118, 10260, 8479, 198, 6738, 2985, 13, 23914, 1330, 17296, 8479, 198, 6738, 2985, 13, 27530, 1330, 8562, 12982, 198, 6738, 2985, 13, 27530, 1330, 13118, 628, 628, 198 ]
4.397849
93
#!/usr/bin/env python import sys, os, subprocess, re, platform from subprocess import PIPE, Popen from os.path import exists TOOLS_DIR = "./tools" DAFNY_PATH = "./tools/dafny/dafny" VALE_PATH = "./tools/vale/bin/vale" DAFNY_LIB_DIR = "./std_lib" DAFNY_LIB_HASH = "84d160538b6442017a5401feb91265147bf34bfc" DAFNY_ZIP_LINUX = "dafny-3.0.0-x64-ubuntu-16.04.zip" DAFNY_ZIP_MACOS = "dafny-3.0.0-x64-osx-10.14.2.zip" OT_PRINTER_DFY_PATH = "arch/otbn/printer.s.dfy" OT_SIMULATOR_DFY_PATH = "arch/otbn/simulator.i.dfy" DLL_SOURCES = {OT_PRINTER_DFY_PATH, OT_SIMULATOR_DFY_PATH} OUTPUT_ASM_PATH = "gen/arch/otbn/printer.s.dll.out" TEST_ASM_PATH = "impl/otbn/run_modexp.s" OUTPUT_ELF_PATH = "gen/impl/otbn/run_modexp.elf" NINJA_PATH = "build.ninja" CODE_DIRS = ["arch", "impl", "lib"] GEN_DIR = "gen" NL_FILES = { # "arch/riscv/vale.i.dfy", "impl/riscv/sub_mod_nl_lemmas.i.dfy", # "impl/riscv/sub_mod_lemmas.i.dfy", "lib/bv_ops_nl.dfy"} ## misc utils # run command # convert path ## separate command: setup # list dependecy VAD_INCLUDE_PATTERN = re.compile('include\s+"(.+vad)"') # list files ## main command (build) # ## separate command: dd-gen ## separate command: proc ## separate command: ver ## separate command: dll-gen ## command line interface if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 25064, 11, 28686, 11, 850, 14681, 11, 302, 11, 3859, 198, 6738, 850, 14681, 1330, 350, 4061, 36, 11, 8099, 268, 198, 6738, 28686, 13, 6978, 1330, 7160, 198, 198, 10468, 3535, 50, 62, 34720, 796, 366, 19571, 31391, 1, 198, 5631, 37, 12805, 62, 34219, 796, 366, 19571, 31391, 14, 67, 1878, 3281, 14, 67, 1878, 3281, 1, 198, 53, 21358, 62, 34219, 796, 366, 19571, 31391, 14, 41161, 14, 8800, 14, 41161, 1, 198, 5631, 37, 12805, 62, 40347, 62, 34720, 796, 366, 19571, 19282, 62, 8019, 1, 198, 198, 5631, 37, 12805, 62, 40347, 62, 39, 11211, 796, 366, 5705, 67, 1433, 2713, 2548, 65, 29173, 5539, 64, 4051, 486, 69, 1765, 24, 1065, 2996, 20198, 19881, 2682, 65, 16072, 1, 198, 198, 5631, 37, 12805, 62, 57, 4061, 62, 34509, 31235, 796, 366, 67, 1878, 3281, 12, 18, 13, 15, 13, 15, 12, 87, 2414, 12, 32230, 12, 1433, 13, 3023, 13, 13344, 1, 198, 5631, 37, 12805, 62, 57, 4061, 62, 44721, 2640, 796, 366, 67, 1878, 3281, 12, 18, 13, 15, 13, 15, 12, 87, 2414, 12, 418, 87, 12, 940, 13, 1415, 13, 17, 13, 13344, 1, 198, 198, 2394, 62, 4805, 41358, 62, 8068, 56, 62, 34219, 796, 366, 998, 14, 313, 9374, 14, 1050, 3849, 13, 82, 13, 7568, 88, 1, 198, 2394, 62, 48913, 6239, 25633, 62, 8068, 56, 62, 34219, 796, 366, 998, 14, 313, 9374, 14, 14323, 8927, 13, 72, 13, 7568, 88, 1, 198, 35, 3069, 62, 50, 2606, 7397, 1546, 796, 1391, 2394, 62, 4805, 41358, 62, 8068, 56, 62, 34219, 11, 21676, 62, 48913, 6239, 25633, 62, 8068, 56, 62, 34219, 92, 198, 198, 2606, 7250, 3843, 62, 1921, 44, 62, 34219, 796, 366, 5235, 14, 998, 14, 313, 9374, 14, 1050, 3849, 13, 82, 13, 12736, 13, 448, 1, 198, 51, 6465, 62, 1921, 44, 62, 34219, 796, 366, 23928, 14, 313, 9374, 14, 5143, 62, 4666, 11201, 13, 82, 1, 198, 2606, 7250, 3843, 62, 37738, 62, 34219, 796, 366, 5235, 14, 23928, 14, 313, 9374, 14, 5143, 62, 4666, 11201, 13, 7046, 1, 198, 198, 45, 1268, 37048, 62, 34219, 796, 366, 11249, 13, 35073, 6592, 1, 198, 34, 16820, 62, 34720, 50, 796, 14631, 998, 1600, 366, 23928, 1600, 366, 8019, 8973, 198, 35353, 62, 34720, 796, 366, 5235, 1, 628, 198, 32572, 62, 46700, 1546, 796, 1391, 198, 220, 220, 220, 1303, 366, 998, 14, 81, 2304, 85, 14, 41161, 13, 72, 13, 7568, 88, 1600, 198, 220, 220, 220, 366, 23928, 14, 81, 2304, 85, 14, 7266, 62, 4666, 62, 21283, 62, 293, 3020, 292, 13, 72, 13, 7568, 88, 1600, 198, 220, 220, 220, 1303, 366, 23928, 14, 81, 2304, 85, 14, 7266, 62, 4666, 62, 293, 3020, 292, 13, 72, 13, 7568, 88, 1600, 198, 220, 220, 220, 366, 8019, 14, 65, 85, 62, 2840, 62, 21283, 13, 7568, 88, 20662, 198, 198, 2235, 12747, 3384, 4487, 198, 198, 2, 1057, 3141, 198, 198, 2, 10385, 3108, 198, 198, 2235, 4553, 3141, 25, 9058, 198, 198, 2, 1351, 4745, 721, 88, 220, 198, 198, 53, 2885, 62, 1268, 5097, 52, 7206, 62, 47, 1404, 31800, 796, 302, 13, 5589, 576, 10786, 17256, 59, 82, 10, 18109, 13, 10, 85, 324, 16725, 11537, 198, 198, 2, 1351, 3696, 198, 198, 2235, 1388, 3141, 357, 11249, 8, 198, 198, 2, 22492, 4553, 3141, 25, 49427, 12, 5235, 198, 198, 2235, 4553, 3141, 25, 13834, 198, 198, 2235, 4553, 3141, 25, 3326, 198, 198, 2235, 4553, 3141, 25, 288, 297, 12, 5235, 198, 198, 2235, 3141, 1627, 7071, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.103503
628
import unittest from time import sleep from subprocess import run from src.Socket_Singleton import Socket_Singleton, MultipleSingletonsError if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 640, 1330, 3993, 198, 6738, 850, 14681, 1330, 1057, 198, 6738, 12351, 13, 39105, 62, 29974, 10565, 1330, 47068, 62, 29974, 10565, 11, 20401, 29974, 1616, 684, 12331, 628, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.930556
72
from tensorboard import summary from tkinter import * import wikipedia root = Tk() root.title("Wikipedia Search") root.geometry("400x400") frame = Frame(root) input = Entry(frame, width = 30) input.pack() result = "" text = Text(root, font = ("arial", 20)) button = Button(frame, text="Search", command=search) button.pack(side = RIGHT) frame.pack(side = TOP) text.pack() root.mainloop()
[ 6738, 11192, 273, 3526, 1330, 10638, 198, 6738, 256, 74, 3849, 1330, 1635, 198, 11748, 47145, 11151, 198, 198, 15763, 796, 309, 74, 3419, 198, 15763, 13, 7839, 7203, 48845, 11140, 4943, 198, 15763, 13, 469, 15748, 7203, 7029, 87, 7029, 4943, 198, 14535, 796, 25184, 7, 15763, 8, 198, 198, 15414, 796, 21617, 7, 14535, 11, 9647, 796, 1542, 8, 198, 15414, 13, 8002, 3419, 198, 20274, 796, 13538, 198, 5239, 796, 8255, 7, 15763, 11, 10369, 796, 5855, 36098, 1600, 1160, 4008, 198, 198, 16539, 796, 20969, 7, 14535, 11, 2420, 2625, 18243, 1600, 3141, 28, 12947, 8, 198, 16539, 13, 8002, 7, 1589, 796, 33621, 8, 198, 14535, 13, 8002, 7, 1589, 796, 28662, 8, 198, 5239, 13, 8002, 3419, 198, 15763, 13, 12417, 26268, 3419 ]
3.023256
129
# Generated by Django 3.1.2 on 2020-11-01 19:06 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 17, 319, 12131, 12, 1157, 12, 486, 678, 25, 3312, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
from three.mathutils.MatrixFactory import * from three.mathutils.Matrix import * from three.mathutils.Curve import * from three.mathutils.CurveFactory import * from three.mathutils.Multicurve import * from three.mathutils.Surface import * from three.mathutils.Hilbert3D import * from three.mathutils.RandomUtils import * from three.mathutils.Tween import *
[ 6738, 1115, 13, 11018, 26791, 13, 46912, 22810, 1330, 1635, 198, 6738, 1115, 13, 11018, 26791, 13, 46912, 1330, 1635, 198, 6738, 1115, 13, 11018, 26791, 13, 26628, 303, 1330, 1635, 198, 6738, 1115, 13, 11018, 26791, 13, 26628, 303, 22810, 1330, 1635, 198, 6738, 1115, 13, 11018, 26791, 13, 15205, 291, 333, 303, 1330, 1635, 198, 6738, 1115, 13, 11018, 26791, 13, 14214, 2550, 1330, 1635, 198, 6738, 1115, 13, 11018, 26791, 13, 39, 346, 4835, 18, 35, 1330, 1635, 198, 6738, 1115, 13, 11018, 26791, 13, 29531, 18274, 4487, 1330, 1635, 198, 6738, 1115, 13, 11018, 26791, 13, 51, 975, 1330, 1635, 198 ]
3.4
105
import numpy as np import scipy.ndimage.interpolation as inter import tensorflow as tf from keras import backend as K from keras import regularizers from keras.layers import * from keras.layers.convolutional import * from keras.layers.core import * from keras.models import Model, load_model from keras.optimizers import * from scipy.signal import medfilt from scipy.spatial.distance import cdist ####################################################### ## Public functions ####################################################### ####################################################### ## OpenPose data cleaning ####################################################### OP_HAND_PICKED_GOOD_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16] # COMMON_JOINTS_FROM_JHMDB = np.array([1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) - 1 COMMON_JOINTS_FROM_OP = [1, 2, 5, 9, 12, 3, 6, 10, 13, 4, 7, 11, 14] # 0-based COMMON_GOOD_JOINTS_FROM_OP = list(set(COMMON_JOINTS_FROM_OP).intersection(OP_HAND_PICKED_GOOD_JOINTS)) OP_UPPER_BODY_JOINTS = [0,1,2,3,4,5,6,7,8,15,16] def nan_helper(y): """Helper function to handle real indices and logical indices of NaNs. Input: - y, 1d numpy array with possible NaNs Output: - nans, logical indices of NaNs - index, a function, with signature indices= index(logical_indices), to convert logical indices of NaNs to 'equivalent' indices Example: >>> # linear interpolation of NaNs >>> nans, x= nan_helper(y) >>> y[nans]= np.interp(x(nans), x(~nans), y[~nans]) """ return np.isnan(y), lambda z: z.nonzero()[0] ####################################################### ## DDNet preprocessing and helper function ####################################################### def infer_DDNet(net, C, batch, *args, **kwargs): """Infer on a batch of clips Arguments: net {Model} -- a DDNet instance created by create_DDNet C {DDNetConfig} -- a config object batch {list or array} -- Each element represents the joint coordinates of a clip args, kwargs -- will be passed to Modle.predict() """ X0, X1 = preprocess_batch(batch, C) return net.predict([X0, X1], *args, **kwargs) def preprocess_point(p, C): """Preprocess a single point (a clip). WARN: NAN-preserving Arguments: p {ndarray} -- shape = (variable, C.joint_n, C.joint_d) C {DDNetConfig} -- A Config object Returns: ndarray, ndarray -- X0, X1 to input to the net """ assert p.shape[1:] == (C.joint_n, C.joint_d) p = zoom(p,target_l=C.frame_l,joints_num=C.joint_n,joints_dim=C.joint_d) # interploate to the right number of frames assert p.shape == (C.frame_l, C.joint_n, C.joint_d) M = get_CG(p, C) return M, p def preprocess_batch(batch, C, preprocess_point_fn=preprocess_point): """Preprocesss a batch of points (clips) Arguments: batch {ndarray or list or tuple} -- List of arrays as input to preprocess_point C {DDNetConfig} -- A DDNetConfig object Returns: ndarray, ndarray -- X0, X1 to input to the net """ assert type(batch) in (np.ndarray, list, tuple) X0 = [] X1 = [] for p in batch: px0, px1 = preprocess_point_fn(p, C) X0.append(px0) X1.append(px1) X0 = np.stack(X0) X1 = np.stack(X1) return X0, X1 ####################################################### ## Private functions ####################################################### ####################################################### ### Preprocessing functions ####################################################### # Interpolate the joint coordinates of a group of frames to be target_l frames def zoom(p,target_l=64,joints_num=25,joints_dim=3): """Rescale and interploate the joint coordinates of a variable number of frames to be target_l frames. Used prepare a fixed-size input to the net. Arguments: p {ndarray} -- shape = (num_frames, num_joints, joints_dim) Keyword Arguments: target_l {int} -- [description] (default: {64}) joints_num {int} -- [description] (default: {25}) joints_dim {int} -- [description] (default: {3}) Returns: ndarray -- Rescaled array of size (target_l, num_joints, joints_dim) """ l = p.shape[0] # if l == target_l: # need do nothing # return p p_new = np.empty([target_l,joints_num,joints_dim]) for m in range(joints_num): for n in range(joints_dim): p_new[:,m,n] = inter.zoom(p[:,m,n],target_l/l) p_new[:,m,n] = medfilt(p_new[:,m,n],3) return p_new def get_CG(p,C): """Compute the Joint Collection Distances (JCD, refer to the paper) of a group of frames and normalize them to 0 mean. Arguments: p {ndarray} -- size = (C.frame_l, C.num_joints, C.joints_dim) C {Config} -- [description] Returns: ndarray -- shape = (C.frame_l, C.fead_d) """ # return JCD of a point, normalized to 0 mean M = [] iu = np.triu_indices(C.joint_n,1,C.joint_n) for f in range(C.frame_l): d_m = cdist(p[f],p[f],'euclidean') d_m = d_m[iu] M.append(d_m) M = np.stack(M) M = norm_scale(M) return M ####################################################### ### Model architecture ####################################################### # used for Keras save/load model _custom_objs = { 'poses_diff': poses_diff, 'pose_motion': pose_motion, 'c1D': c1D, 'block': block, 'd1D': d1D, 'build_FM': build_FM, 'build_DD_Net': build_DD_Net }
[ 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 358, 9060, 13, 3849, 16104, 341, 355, 987, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 41927, 292, 1330, 30203, 355, 509, 198, 6738, 41927, 292, 1330, 3218, 11341, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 1635, 198, 6738, 41927, 292, 13, 75, 6962, 13, 42946, 2122, 282, 1330, 1635, 198, 6738, 41927, 292, 13, 75, 6962, 13, 7295, 1330, 1635, 198, 6738, 41927, 292, 13, 27530, 1330, 9104, 11, 3440, 62, 19849, 198, 6738, 41927, 292, 13, 40085, 11341, 1330, 1635, 198, 6738, 629, 541, 88, 13, 12683, 282, 1330, 1117, 69, 2326, 198, 6738, 629, 541, 88, 13, 2777, 34961, 13, 30246, 1330, 269, 17080, 198, 198, 29113, 14468, 4242, 21017, 198, 2235, 5094, 5499, 198, 29113, 14468, 4242, 21017, 198, 198, 29113, 14468, 4242, 21017, 198, 2235, 4946, 47, 577, 1366, 12724, 198, 29113, 14468, 4242, 21017, 198, 198, 3185, 62, 39, 6981, 62, 47, 11860, 1961, 62, 11230, 3727, 62, 45006, 1268, 4694, 796, 685, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 11, 838, 11, 1105, 11, 1511, 11, 1315, 11, 1467, 60, 198, 2, 22240, 1340, 62, 45006, 1268, 4694, 62, 10913, 2662, 62, 41, 36905, 11012, 796, 45941, 13, 18747, 26933, 16, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 11, 838, 11, 1367, 11, 1105, 11, 1511, 11, 1478, 11, 1315, 12962, 532, 352, 220, 220, 198, 9858, 27857, 62, 45006, 1268, 4694, 62, 10913, 2662, 62, 3185, 796, 685, 16, 11, 362, 11, 642, 11, 860, 11, 1105, 11, 513, 11, 718, 11, 838, 11, 1511, 11, 604, 11, 767, 11, 1367, 11, 1478, 60, 1303, 220, 657, 12, 3106, 198, 9858, 27857, 62, 11230, 3727, 62, 45006, 1268, 4694, 62, 10913, 2662, 62, 3185, 796, 1351, 7, 2617, 7, 9858, 27857, 62, 45006, 1268, 4694, 62, 10913, 2662, 62, 3185, 737, 3849, 5458, 7, 3185, 62, 39, 6981, 62, 47, 11860, 1961, 62, 11230, 3727, 62, 45006, 1268, 4694, 4008, 198, 198, 3185, 62, 8577, 18973, 62, 33, 33076, 62, 45006, 1268, 4694, 796, 685, 15, 11, 16, 11, 17, 11, 18, 11, 19, 11, 20, 11, 21, 11, 22, 11, 23, 11, 1314, 11, 1433, 60, 198, 198, 4299, 15709, 62, 2978, 525, 7, 88, 2599, 198, 220, 220, 220, 37227, 47429, 2163, 284, 5412, 1103, 36525, 290, 12219, 36525, 286, 11013, 47503, 13, 628, 220, 220, 220, 23412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 331, 11, 352, 67, 299, 32152, 7177, 351, 1744, 11013, 47503, 198, 220, 220, 220, 25235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 299, 504, 11, 12219, 36525, 286, 11013, 47503, 198, 220, 220, 220, 220, 220, 220, 220, 532, 6376, 11, 257, 2163, 11, 351, 9877, 36525, 28, 6376, 7, 6404, 605, 62, 521, 1063, 828, 198, 220, 220, 220, 220, 220, 220, 220, 284, 10385, 12219, 36525, 286, 11013, 47503, 284, 705, 4853, 29540, 6, 36525, 198, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1303, 14174, 39555, 341, 286, 11013, 47503, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 299, 504, 11, 2124, 28, 15709, 62, 2978, 525, 7, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 331, 58, 77, 504, 22241, 45941, 13, 3849, 79, 7, 87, 7, 77, 504, 828, 2124, 7, 93, 77, 504, 828, 331, 58, 93, 77, 504, 12962, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 45941, 13, 271, 12647, 7, 88, 828, 37456, 1976, 25, 1976, 13, 13159, 22570, 3419, 58, 15, 60, 628, 198, 29113, 14468, 4242, 21017, 198, 2235, 20084, 7934, 662, 36948, 290, 31904, 2163, 198, 29113, 14468, 4242, 21017, 198, 198, 4299, 13249, 62, 16458, 7934, 7, 3262, 11, 327, 11, 15458, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 818, 2232, 319, 257, 15458, 286, 19166, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 1391, 17633, 92, 1377, 257, 20084, 7934, 4554, 2727, 416, 2251, 62, 16458, 7934, 198, 220, 220, 220, 220, 220, 220, 220, 327, 1391, 16458, 7934, 16934, 92, 1377, 257, 4566, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 1391, 4868, 393, 7177, 92, 1377, 5501, 5002, 6870, 262, 6466, 22715, 286, 257, 10651, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 11, 479, 86, 22046, 1377, 481, 307, 3804, 284, 3401, 293, 13, 79, 17407, 3419, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 15, 11, 1395, 16, 796, 662, 14681, 62, 43501, 7, 43501, 11, 327, 8, 198, 220, 220, 220, 1441, 2010, 13, 79, 17407, 26933, 55, 15, 11, 1395, 16, 4357, 1635, 22046, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 662, 14681, 62, 4122, 7, 79, 11, 327, 2599, 198, 220, 220, 220, 37227, 6719, 14681, 257, 2060, 966, 357, 64, 10651, 737, 198, 220, 220, 220, 42660, 25, 399, 1565, 12, 18302, 14344, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 1391, 358, 18747, 92, 1377, 5485, 796, 357, 45286, 11, 327, 13, 73, 1563, 62, 77, 11, 327, 13, 73, 1563, 62, 67, 8, 198, 220, 220, 220, 220, 220, 220, 220, 327, 1391, 16458, 7934, 16934, 92, 1377, 317, 17056, 2134, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 11, 299, 67, 18747, 1377, 1395, 15, 11, 1395, 16, 284, 5128, 284, 262, 2010, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 279, 13, 43358, 58, 16, 47715, 6624, 357, 34, 13, 73, 1563, 62, 77, 11, 327, 13, 73, 1563, 62, 67, 8, 198, 220, 220, 220, 279, 796, 19792, 7, 79, 11, 16793, 62, 75, 28, 34, 13, 14535, 62, 75, 11, 73, 1563, 82, 62, 22510, 28, 34, 13, 73, 1563, 62, 77, 11, 73, 1563, 82, 62, 27740, 28, 34, 13, 73, 1563, 62, 67, 8, 198, 220, 220, 220, 1303, 987, 489, 78, 378, 284, 262, 826, 1271, 286, 13431, 198, 220, 220, 220, 6818, 279, 13, 43358, 6624, 357, 34, 13, 14535, 62, 75, 11, 327, 13, 73, 1563, 62, 77, 11, 327, 13, 73, 1563, 62, 67, 8, 198, 220, 220, 220, 337, 796, 651, 62, 39816, 7, 79, 11, 327, 8, 628, 220, 220, 220, 1441, 337, 11, 279, 628, 198, 4299, 662, 14681, 62, 43501, 7, 43501, 11, 327, 11, 662, 14681, 62, 4122, 62, 22184, 28, 3866, 14681, 62, 4122, 2599, 198, 220, 220, 220, 37227, 6719, 14681, 82, 257, 15458, 286, 2173, 357, 31945, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 1391, 358, 18747, 393, 1351, 393, 46545, 92, 1377, 7343, 286, 26515, 355, 5128, 284, 662, 14681, 62, 4122, 198, 220, 220, 220, 220, 220, 220, 220, 327, 1391, 16458, 7934, 16934, 92, 1377, 317, 20084, 7934, 16934, 2134, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 11, 299, 67, 18747, 1377, 1395, 15, 11, 1395, 16, 284, 5128, 284, 262, 2010, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 2099, 7, 43501, 8, 287, 357, 37659, 13, 358, 18747, 11, 1351, 11, 46545, 8, 198, 220, 220, 220, 1395, 15, 796, 17635, 198, 220, 220, 220, 1395, 16, 796, 17635, 198, 220, 220, 220, 329, 279, 287, 15458, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 87, 15, 11, 279, 87, 16, 796, 662, 14681, 62, 4122, 62, 22184, 7, 79, 11, 327, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 15, 13, 33295, 7, 8416, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 16, 13, 33295, 7, 8416, 16, 8, 198, 220, 220, 220, 1395, 15, 796, 45941, 13, 25558, 7, 55, 15, 8, 198, 220, 220, 220, 1395, 16, 796, 45941, 13, 25558, 7, 55, 16, 8, 198, 220, 220, 220, 1441, 1395, 15, 11, 1395, 16, 198, 198, 29113, 14468, 4242, 21017, 198, 2235, 15348, 5499, 198, 29113, 14468, 4242, 21017, 198, 198, 29113, 14468, 4242, 21017, 198, 21017, 3771, 36948, 5499, 198, 29113, 14468, 4242, 21017, 198, 198, 2, 4225, 16104, 378, 262, 6466, 22715, 286, 257, 1448, 286, 13431, 284, 307, 2496, 62, 75, 13431, 198, 4299, 19792, 7, 79, 11, 16793, 62, 75, 28, 2414, 11, 73, 1563, 82, 62, 22510, 28, 1495, 11, 73, 1563, 82, 62, 27740, 28, 18, 2599, 198, 220, 220, 220, 37227, 49, 3798, 1000, 290, 987, 489, 78, 378, 262, 6466, 22715, 286, 257, 7885, 1271, 286, 13431, 284, 307, 2496, 62, 75, 13431, 13, 198, 220, 220, 220, 16718, 8335, 257, 5969, 12, 7857, 5128, 284, 262, 2010, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 1391, 358, 18747, 92, 1377, 5485, 796, 357, 22510, 62, 37805, 11, 997, 62, 73, 1563, 82, 11, 24039, 62, 27740, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 7383, 4775, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 75, 1391, 600, 92, 1377, 685, 11213, 60, 357, 12286, 25, 1391, 2414, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 24039, 62, 22510, 1391, 600, 92, 1377, 685, 11213, 60, 357, 12286, 25, 1391, 1495, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 24039, 62, 27740, 1391, 600, 92, 1377, 685, 11213, 60, 357, 12286, 25, 1391, 18, 30072, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 1377, 1874, 66, 3021, 7177, 286, 2546, 357, 16793, 62, 75, 11, 997, 62, 73, 1563, 82, 11, 24039, 62, 27740, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 300, 796, 279, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 1303, 611, 300, 6624, 2496, 62, 75, 25, 1303, 761, 466, 2147, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 279, 198, 220, 220, 220, 279, 62, 3605, 796, 45941, 13, 28920, 26933, 16793, 62, 75, 11, 73, 1563, 82, 62, 22510, 11, 73, 1563, 82, 62, 27740, 12962, 220, 628, 220, 220, 220, 329, 285, 287, 2837, 7, 73, 1563, 82, 62, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 73, 1563, 82, 62, 27740, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 3605, 58, 45299, 76, 11, 77, 60, 796, 987, 13, 89, 4207, 7, 79, 58, 45299, 76, 11, 77, 4357, 16793, 62, 75, 14, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 3605, 58, 45299, 76, 11, 77, 60, 796, 1117, 69, 2326, 7, 79, 62, 3605, 58, 45299, 76, 11, 77, 4357, 18, 8, 198, 220, 220, 220, 1441, 279, 62, 3605, 198, 198, 4299, 651, 62, 39816, 7, 79, 11, 34, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 262, 16798, 12251, 4307, 1817, 357, 41, 8610, 11, 3522, 284, 262, 3348, 8, 286, 257, 1448, 286, 13431, 198, 220, 220, 220, 290, 3487, 1096, 606, 284, 657, 1612, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 1391, 358, 18747, 92, 1377, 2546, 796, 357, 34, 13, 14535, 62, 75, 11, 327, 13, 22510, 62, 73, 1563, 82, 11, 327, 13, 73, 1563, 82, 62, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 327, 1391, 16934, 92, 1377, 685, 11213, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 1377, 5485, 796, 357, 34, 13, 14535, 62, 75, 11, 327, 13, 69, 1329, 62, 67, 8, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1441, 449, 8610, 286, 257, 966, 11, 39279, 284, 657, 1612, 198, 220, 220, 220, 337, 796, 17635, 198, 220, 220, 220, 1312, 84, 796, 45941, 13, 28461, 84, 62, 521, 1063, 7, 34, 13, 73, 1563, 62, 77, 11, 16, 11, 34, 13, 73, 1563, 62, 77, 8, 198, 220, 220, 220, 329, 277, 287, 2837, 7, 34, 13, 14535, 62, 75, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 76, 796, 269, 17080, 7, 79, 58, 69, 4357, 79, 58, 69, 60, 4032, 12496, 565, 485, 272, 11537, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 76, 796, 288, 62, 76, 58, 16115, 60, 220, 198, 220, 220, 220, 220, 220, 220, 220, 337, 13, 33295, 7, 67, 62, 76, 8, 198, 220, 220, 220, 337, 796, 45941, 13, 25558, 7, 44, 8, 220, 198, 220, 220, 220, 337, 796, 2593, 62, 9888, 7, 44, 8, 198, 220, 220, 220, 1441, 337, 198, 198, 29113, 14468, 4242, 21017, 198, 21017, 9104, 10959, 198, 29113, 14468, 4242, 21017, 198, 198, 2, 973, 329, 17337, 292, 3613, 14, 2220, 2746, 198, 62, 23144, 62, 672, 8457, 796, 1391, 198, 220, 220, 220, 705, 4832, 62, 26069, 10354, 17313, 62, 26069, 11, 198, 220, 220, 220, 705, 3455, 62, 38714, 10354, 12705, 62, 38714, 11, 198, 220, 220, 220, 705, 66, 16, 35, 10354, 269, 16, 35, 11, 198, 220, 220, 220, 705, 9967, 10354, 2512, 11, 198, 220, 220, 220, 705, 67, 16, 35, 10354, 288, 16, 35, 11, 198, 220, 220, 220, 705, 11249, 62, 23264, 10354, 1382, 62, 23264, 11, 198, 220, 220, 220, 705, 11249, 62, 16458, 62, 7934, 10354, 1382, 62, 16458, 62, 7934, 198, 92, 198 ]
2.452903
2,325
# Copyright 2020 EPAM Systems # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from odahuflow.packager.flask.template import render_packager_template from odahuflow.packager.helpers.constants import ENTRYPOINT_TEMPLATE
[ 2, 220, 15069, 12131, 14724, 2390, 11998, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 198, 6738, 16298, 12196, 11125, 13, 8002, 3536, 13, 2704, 2093, 13, 28243, 1330, 8543, 62, 8002, 3536, 62, 28243, 198, 6738, 16298, 12196, 11125, 13, 8002, 3536, 13, 16794, 364, 13, 9979, 1187, 1330, 12964, 40405, 16402, 12394, 62, 51, 3620, 6489, 6158, 628 ]
3.62
200
# зодиак + Результаты последнего тиража
[ 2, 12466, 115, 25443, 112, 18849, 16142, 31583, 1343, 12466, 254, 16843, 140, 115, 35072, 30143, 45367, 20375, 16142, 20375, 45035, 12466, 123, 15166, 21727, 30143, 16843, 43666, 22177, 16843, 140, 111, 15166, 220, 20375, 18849, 21169, 16142, 140, 114, 16142, 628 ]
0.97619
42
#!/usr/bin/env python # # lobster.py - lobster # # (c) gdifiore 2018 <[email protected]> # import os import sys import json from lobster_json import * from bs4 import BeautifulSoup type = sys.argv[1] file = sys.argv[2] theme = sys.argv[3] if type == "simple": lobster_data = readJSON(file) title = getTitle(lobster_data) header = getHeader(lobster_data) content= getContent(lobster_data) writeToHTML(title, header, content) if type == "blog": lobster_data = readJSON(file) title = getTitle(lobster_data) header = getHeader(lobster_data) content= getContent(lobster_data) author = getAuthor(lobster_data) date = getDate(lobster_data) writeToHTMLBlog(title, header, content, author, date) else: print(sys.argv[1]) print("failure")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 43657, 13, 9078, 532, 43657, 198, 2, 198, 2, 357, 66, 8, 308, 67, 22238, 382, 2864, 1279, 67, 22238, 382, 70, 11231, 31, 14816, 13, 785, 29, 198, 2, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 33918, 198, 6738, 43657, 62, 17752, 1330, 1635, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 198, 4906, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 7753, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 43810, 796, 25064, 13, 853, 85, 58, 18, 60, 198, 198, 361, 2099, 6624, 366, 36439, 1298, 628, 220, 220, 220, 43657, 62, 7890, 796, 1100, 40386, 7, 7753, 8, 198, 220, 220, 220, 3670, 796, 651, 19160, 7, 75, 672, 1706, 62, 7890, 8, 198, 220, 220, 220, 13639, 796, 651, 39681, 7, 75, 672, 1706, 62, 7890, 8, 198, 220, 220, 220, 2695, 28, 651, 19746, 7, 75, 672, 1706, 62, 7890, 8, 198, 220, 220, 220, 3551, 2514, 28656, 7, 7839, 11, 13639, 11, 2695, 8, 198, 198, 361, 2099, 6624, 366, 14036, 1298, 628, 198, 220, 220, 220, 43657, 62, 7890, 796, 1100, 40386, 7, 7753, 8, 198, 220, 220, 220, 3670, 796, 651, 19160, 7, 75, 672, 1706, 62, 7890, 8, 198, 220, 220, 220, 13639, 796, 651, 39681, 7, 75, 672, 1706, 62, 7890, 8, 198, 220, 220, 220, 2695, 28, 651, 19746, 7, 75, 672, 1706, 62, 7890, 8, 198, 220, 220, 220, 1772, 796, 651, 13838, 7, 75, 672, 1706, 62, 7890, 8, 198, 220, 220, 220, 3128, 796, 651, 10430, 7, 75, 672, 1706, 62, 7890, 8, 198, 220, 220, 220, 3551, 2514, 28656, 42383, 7, 7839, 11, 13639, 11, 2695, 11, 1772, 11, 3128, 8, 198, 198, 17772, 25, 198, 220, 220, 220, 3601, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 3601, 7203, 32165, 495, 4943 ]
2.479751
321
from . import timestamp from . import contjson
[ 6738, 764, 1330, 41033, 198, 6738, 764, 1330, 542, 17752 ]
4.6
10
import pytest import random import time from torch.distributions.multivariate_normal import MultivariateNormal from matplotlib import pyplot as plt from pyrado.environment_wrappers.domain_randomization import DomainRandWrapperLive from pyrado.environments.pysim.ball_on_beam import BallOnBeamSim from pyrado.environments.pysim.quanser_ball_balancer import QBallBalancerSim from pyrado.policies.fnn import FNNPolicy from pyrado.sampling.data_format import to_format from pyrado.sampling.hyper_sphere import sample_from_hyper_sphere_surface from pyrado.sampling.parallel_sampler import ParallelSampler from pyrado.sampling.parameter_exploration_sampler import ParameterExplorationSampler from pyrado.sampling.rollout import rollout from pyrado.sampling.step_sequence import StepSequence from pyrado.sampling.sampler_pool import * from pyrado.sampling.sequences import * from pyrado.sampling.bootstrapping import bootstrap_ci from pyrado.policies.linear import LinearPolicy from pyrado.policies.features import * from pyrado.sampling.cvar_sampler import select_cvar from pyrado.utils.data_types import RenderMode from tests.conftest import m_needs_cuda @pytest.mark.parametrize( 'arg', [ [1], [2, 3], [4, 6, 2, 88, 3, 45, 7, 21, 22, 23, 24, 44, 45, 56, 67, 78, 89], ] ) @pytest.mark.sampling @pytest.mark.parametrize( 'n_threads', [1, 2, 4] ) @pytest.mark.parametrize( 'min_samples', [10, 20, 40] ) @pytest.mark.sampling @pytest.mark.parametrize( 'n_threads', [1, 2, 4] ) @pytest.mark.parametrize( 'min_samples', [10, 20, 40] ) @pytest.mark.parametrize( 'min_runs', [10, 20, 40] ) @pytest.mark.sampling @pytest.mark.parametrize( 'data_type', [ (None, None), (to.int32, np.int32), ] ) @pytest.mark.sampling @pytest.mark.parametrize( 'epsilon', [ 1, 0.5, 0.1, ] ) @pytest.mark.parametrize( 'num_ro', [ 10, 20, ] ) @pytest.mark.sampling @pytest.mark.parametrize( 'num_dim, method', [ (1, 'uniform'), (1, 'uniform'), (3, 'uniform'), (3, 'normal'), (3, 'Marsaglia'), (4, 'uniform'), (4, 'normal'), (4, 'Marsaglia'), (15, 'uniform'), (15, 'normal') ] ) @pytest.mark.sampling @pytest.mark.parametrize( 'env, policy', [ (BallOnBeamSim(dt=0.02, max_steps=100), LinearPolicy(BallOnBeamSim(dt=0.02, max_steps=100).spec, FeatureStack([const_feat, identity_feat, squared_feat]))), (QBallBalancerSim(dt=0.02, max_steps=100), LinearPolicy(QBallBalancerSim(dt=0.02, max_steps=100).spec, FeatureStack([const_feat, identity_feat, squared_feat]))) ], ids=['bob_linpol', 'qbb_linpol'] ) @pytest.mark.parametrize( 'mean, cov', [ (to.tensor([5., 7.]), to.tensor([[2., 0.], [0., 2.]])), ], ids=['2dim'] ) @pytest.mark.sampling @pytest.mark.visualization @pytest.mark.parametrize( 'sequence, x_init', [ # (sequence_const, np.array([2])), # (sequence_plus_one, np.array([2])), # (sequence_add_init, np.array([2])), # (sequence_rec_double, np.array([2])), # (sequence_rec_sqrt, np.array([2])), # (sequence_nlog2, np.array([2])), (sequence_const, np.array([1, 2, 3])), (sequence_plus_one, np.array([1, 2, 3])), (sequence_add_init, np.array([1, 2, 3])), (sequence_rec_double, np.array([1, 2, 3])), (sequence_rec_sqrt, np.array([1, 2, 3])), (sequence_nlog2, np.array([1, 2, 3])), ] ) @m_needs_cuda
[ 11748, 12972, 9288, 198, 11748, 4738, 198, 11748, 640, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 16680, 42524, 62, 11265, 1330, 7854, 42524, 26447, 198, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 6738, 279, 2417, 4533, 13, 38986, 62, 29988, 11799, 13, 27830, 62, 25120, 1634, 1330, 20021, 38918, 36918, 2848, 18947, 198, 6738, 279, 2417, 4533, 13, 268, 12103, 13, 79, 893, 320, 13, 1894, 62, 261, 62, 40045, 1330, 6932, 2202, 3856, 321, 8890, 198, 6738, 279, 2417, 4533, 13, 268, 12103, 13, 79, 893, 320, 13, 421, 504, 263, 62, 1894, 62, 6893, 8250, 1330, 16135, 439, 24597, 8250, 8890, 198, 6738, 279, 2417, 4533, 13, 79, 4160, 444, 13, 69, 20471, 1330, 376, 6144, 36727, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 7890, 62, 18982, 1330, 284, 62, 18982, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 49229, 62, 2777, 1456, 1330, 6291, 62, 6738, 62, 49229, 62, 2777, 1456, 62, 42029, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 1845, 29363, 62, 37687, 20053, 1330, 42945, 16305, 20053, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 17143, 2357, 62, 20676, 6944, 62, 37687, 20053, 1330, 25139, 2357, 18438, 6944, 16305, 20053, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 2487, 448, 1330, 38180, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 9662, 62, 43167, 1330, 5012, 44015, 594, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 37687, 20053, 62, 7742, 1330, 1635, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 3107, 3007, 1330, 1635, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 18769, 12044, 2105, 1330, 6297, 26418, 62, 979, 198, 6738, 279, 2417, 4533, 13, 79, 4160, 444, 13, 29127, 1330, 44800, 36727, 198, 6738, 279, 2417, 4533, 13, 79, 4160, 444, 13, 40890, 1330, 1635, 198, 6738, 279, 2417, 4533, 13, 37687, 11347, 13, 66, 7785, 62, 37687, 20053, 1330, 2922, 62, 66, 7785, 198, 6738, 279, 2417, 4533, 13, 26791, 13, 7890, 62, 19199, 1330, 46722, 19076, 198, 6738, 5254, 13, 1102, 701, 395, 1330, 285, 62, 50032, 62, 66, 15339, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 853, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 685, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 17, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 718, 11, 362, 11, 9193, 11, 513, 11, 4153, 11, 767, 11, 2310, 11, 2534, 11, 2242, 11, 1987, 11, 5846, 11, 4153, 11, 7265, 11, 8275, 11, 8699, 11, 9919, 4357, 198, 220, 220, 220, 2361, 198, 8, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 37687, 11347, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 77, 62, 16663, 82, 3256, 685, 16, 11, 362, 11, 604, 60, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 1084, 62, 82, 12629, 3256, 685, 940, 11, 1160, 11, 2319, 60, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 37687, 11347, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 77, 62, 16663, 82, 3256, 685, 16, 11, 362, 11, 604, 60, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 1084, 62, 82, 12629, 3256, 685, 940, 11, 1160, 11, 2319, 60, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 1084, 62, 48381, 3256, 685, 940, 11, 1160, 11, 2319, 60, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 37687, 11347, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 7890, 62, 4906, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 14202, 11, 6045, 828, 357, 1462, 13, 600, 2624, 11, 45941, 13, 600, 2624, 828, 198, 220, 220, 220, 2361, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 37687, 11347, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 538, 18217, 261, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 352, 11, 657, 13, 20, 11, 657, 13, 16, 11, 198, 220, 220, 220, 2361, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 22510, 62, 305, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 838, 11, 1160, 11, 198, 220, 220, 220, 2361, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 37687, 11347, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 22510, 62, 27740, 11, 2446, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16, 11, 705, 403, 6933, 33809, 357, 16, 11, 705, 403, 6933, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 357, 18, 11, 705, 403, 6933, 33809, 357, 18, 11, 705, 11265, 33809, 357, 18, 11, 705, 43725, 363, 24660, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19, 11, 705, 403, 6933, 33809, 357, 19, 11, 705, 11265, 33809, 357, 19, 11, 705, 43725, 363, 24660, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 357, 1314, 11, 705, 403, 6933, 33809, 357, 1314, 11, 705, 11265, 11537, 198, 220, 220, 220, 2361, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 37687, 11347, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 24330, 11, 2450, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 23410, 2202, 3856, 321, 8890, 7, 28664, 28, 15, 13, 2999, 11, 3509, 62, 20214, 28, 3064, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 44800, 36727, 7, 23410, 2202, 3856, 321, 8890, 7, 28664, 28, 15, 13, 2999, 11, 3509, 62, 20214, 28, 3064, 737, 16684, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27018, 25896, 26933, 9979, 62, 27594, 11, 5369, 62, 27594, 11, 44345, 62, 27594, 60, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 48, 23410, 24597, 8250, 8890, 7, 28664, 28, 15, 13, 2999, 11, 3509, 62, 20214, 28, 3064, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 44800, 36727, 7, 48, 23410, 24597, 8250, 8890, 7, 28664, 28, 15, 13, 2999, 11, 3509, 62, 20214, 28, 3064, 737, 16684, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27018, 25896, 26933, 9979, 62, 27594, 11, 5369, 62, 27594, 11, 44345, 62, 27594, 60, 22305, 198, 220, 220, 220, 16589, 220, 2340, 28, 17816, 65, 672, 62, 2815, 16104, 3256, 705, 80, 11848, 62, 2815, 16104, 20520, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 32604, 11, 39849, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 1462, 13, 83, 22854, 26933, 20, 1539, 767, 8183, 828, 284, 13, 83, 22854, 26933, 58, 17, 1539, 657, 13, 4357, 685, 15, 1539, 362, 8183, 12962, 828, 198, 220, 220, 220, 16589, 220, 2340, 28, 17816, 17, 27740, 20520, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 37687, 11347, 198, 31, 9078, 9288, 13, 4102, 13, 41464, 1634, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 43167, 11, 2124, 62, 15003, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 43167, 62, 9979, 11, 45941, 13, 18747, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 43167, 62, 9541, 62, 505, 11, 45941, 13, 18747, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 43167, 62, 2860, 62, 15003, 11, 45941, 13, 18747, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 43167, 62, 8344, 62, 23352, 11, 45941, 13, 18747, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 43167, 62, 8344, 62, 31166, 17034, 11, 45941, 13, 18747, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 43167, 62, 77, 6404, 17, 11, 45941, 13, 18747, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 43167, 62, 9979, 11, 45941, 13, 18747, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 43167, 62, 9541, 62, 505, 11, 45941, 13, 18747, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 43167, 62, 2860, 62, 15003, 11, 45941, 13, 18747, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 43167, 62, 8344, 62, 23352, 11, 45941, 13, 18747, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 43167, 62, 8344, 62, 31166, 17034, 11, 45941, 13, 18747, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 43167, 62, 77, 6404, 17, 11, 45941, 13, 18747, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 2361, 198, 8, 628, 628, 198, 31, 76, 62, 50032, 62, 66, 15339, 198 ]
2.202366
1,606
from setuptools import setup from Cython.Build import cythonize from distutils.extension import Extension from sys import platform as _platform import os import numpy as np #openmp_arg = '-fopenmp' #if _platform == "win32": # openmp_arg = '-openmp' extensions = [ Extension( 'nms_grid', ['nms_grid.pyx'], language="c++", include_dirs=[np.get_include(), '.','include'], extra_compile_args=['-DILOUSESTL','-DIL_STD','-std=c++11','-O3'], extra_link_args=['-std=c++11'] ) ] setup( name = 'nms_grid', ext_modules = cythonize(extensions) )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 6738, 327, 7535, 13, 15580, 1330, 3075, 400, 261, 1096, 198, 6738, 1233, 26791, 13, 2302, 3004, 1330, 27995, 198, 6738, 25064, 1330, 3859, 355, 4808, 24254, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 9654, 3149, 62, 853, 796, 705, 12, 69, 9654, 3149, 6, 198, 2, 361, 4808, 24254, 6624, 366, 5404, 2624, 1298, 198, 2, 220, 220, 220, 1280, 3149, 62, 853, 796, 705, 12, 9654, 3149, 6, 198, 198, 2302, 5736, 796, 685, 198, 220, 27995, 7, 198, 220, 220, 220, 705, 77, 907, 62, 25928, 3256, 37250, 77, 907, 62, 25928, 13, 9078, 87, 6, 4357, 198, 220, 220, 220, 3303, 2625, 66, 4880, 1600, 198, 220, 220, 220, 2291, 62, 15908, 82, 41888, 37659, 13, 1136, 62, 17256, 22784, 705, 2637, 4032, 17256, 6, 4357, 198, 220, 220, 220, 3131, 62, 5589, 576, 62, 22046, 28, 17816, 12, 35, 4146, 20958, 6465, 43, 3256, 29001, 35, 4146, 62, 32147, 3256, 29001, 19282, 28, 66, 4880, 1157, 3256, 29001, 46, 18, 6, 4357, 198, 220, 220, 220, 3131, 62, 8726, 62, 22046, 28, 17816, 12, 19282, 28, 66, 4880, 1157, 20520, 198, 220, 1267, 198, 60, 220, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 796, 705, 77, 907, 62, 25928, 3256, 198, 220, 220, 220, 1070, 62, 18170, 796, 3075, 400, 261, 1096, 7, 2302, 5736, 8, 198, 8, 198 ]
2.407563
238
# -*- mode: python: return False tab-width: 4: return False indent-tabs-mode: nil: return False python-indent-offset: 4: return False coding: utf-8 -*- import sys import scalgoproto import union from test_base import require2, require, read_in, validate_out, get_v, require_some if __name__ == "__main__": main()
[ 2, 532, 9, 12, 4235, 25, 21015, 25, 1441, 10352, 7400, 12, 10394, 25, 604, 25, 1441, 10352, 33793, 12, 8658, 82, 12, 14171, 25, 18038, 25, 1441, 10352, 21015, 12, 521, 298, 12, 28968, 25, 604, 25, 1441, 10352, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 25064, 198, 11748, 629, 14016, 404, 305, 1462, 198, 11748, 6441, 198, 6738, 1332, 62, 8692, 1330, 2421, 17, 11, 2421, 11, 1100, 62, 259, 11, 26571, 62, 448, 11, 651, 62, 85, 11, 2421, 62, 11246, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.963303
109
import sys import pandas as pd import pytest from dagster import execute_pipeline from dagster.utils import script_relative_path from dagster_pandas.examples import ( define_pandas_papermill_pandas_hello_world_pipeline, define_papermill_pandas_hello_world_pipeline, ) @pytest.mark.skip('Must ship over run id to notebook process') @notebook_test @notebook_test
[ 11748, 25064, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 12972, 9288, 198, 198, 6738, 48924, 1706, 1330, 12260, 62, 79, 541, 4470, 198, 6738, 48924, 1706, 13, 26791, 1330, 4226, 62, 43762, 62, 6978, 198, 198, 6738, 48924, 1706, 62, 79, 392, 292, 13, 1069, 12629, 1330, 357, 198, 220, 220, 220, 8160, 62, 79, 392, 292, 62, 20189, 17805, 62, 79, 392, 292, 62, 31373, 62, 6894, 62, 79, 541, 4470, 11, 198, 220, 220, 220, 8160, 62, 20189, 17805, 62, 79, 392, 292, 62, 31373, 62, 6894, 62, 79, 541, 4470, 11, 198, 8, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 10786, 34320, 4074, 625, 1057, 4686, 284, 20922, 1429, 11537, 198, 31, 11295, 2070, 62, 9288, 628, 198, 31, 11295, 2070, 62, 9288, 198 ]
2.834586
133
import csv
[ 11748, 269, 21370 ]
3.333333
3
# -*- coding: utf-8 -*- """ Created on Thu Aug 12 05:31:02 2021 @author: 14488 """ import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim from torch.autograd import Variable import torch import rrc_example_package.scripts.convolutional_rnn from torch.nn.utils.rnn import pack_padded_sequence asize = 1 ''' Generator network for 128x128 RGB images ''' ''' Discriminator network for 128x128 RGB images ''' # class CRNN(nn.Module): # def __init__(self): # super(CRNN, self).__init__() # self.main = convolutional_rnn.Conv2dLSTM(in_channels=in_channels, # Corresponds to input size # out_channels=5, # Corresponds to hidden size # kernel_size=3, # Int or List[int] # num_layers=2, # bidirectional=True, # dilation=2, stride=2, dropout=0.5, # batch_first=True)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 26223, 2447, 1105, 8870, 25, 3132, 25, 2999, 33448, 201, 198, 201, 198, 31, 9800, 25, 1478, 33646, 201, 198, 37811, 201, 198, 201, 198, 11748, 28034, 201, 198, 11748, 28034, 13, 20471, 355, 299, 77, 201, 198, 11748, 28034, 13, 20471, 13, 1845, 29363, 201, 198, 11748, 28034, 13, 40085, 355, 6436, 201, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 201, 198, 201, 198, 11748, 28034, 201, 198, 11748, 374, 6015, 62, 20688, 62, 26495, 13, 46521, 13, 42946, 2122, 282, 62, 81, 20471, 201, 198, 6738, 28034, 13, 20471, 13, 26791, 13, 81, 20471, 1330, 2353, 62, 79, 29373, 62, 43167, 201, 198, 201, 198, 292, 1096, 796, 352, 201, 198, 201, 198, 201, 198, 7061, 6, 35986, 3127, 329, 13108, 87, 12762, 25228, 4263, 705, 7061, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 7061, 6, 8444, 3036, 20900, 3127, 329, 13108, 87, 12762, 25228, 4263, 705, 7061, 201, 198, 201, 198, 2, 1398, 8740, 6144, 7, 20471, 13, 26796, 2599, 201, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 9419, 6144, 11, 2116, 737, 834, 15003, 834, 3419, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12417, 796, 3063, 2122, 282, 62, 81, 20471, 13, 3103, 85, 17, 45582, 2257, 44, 7, 259, 62, 354, 8961, 28, 259, 62, 354, 8961, 11, 220, 1303, 34428, 82, 284, 5128, 2546, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 354, 8961, 28, 20, 11, 220, 1303, 34428, 82, 284, 7104, 2546, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 220, 1303, 2558, 393, 7343, 58, 600, 60, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 75, 6962, 28, 17, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8406, 4154, 282, 28, 17821, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 10520, 28, 17, 11, 33769, 28, 17, 11, 4268, 448, 28, 15, 13, 20, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 11085, 28, 17821, 8, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198 ]
1.854975
593
# Import the gTTS module for text # to speech conversion from gtts import gTTS # This module is imported so that we can # play the converted audio from playsound import playsound # It is a text value that we want to convert to audio text_val = 'Welcome to hacktoberfest 21.Hacktoberfest, in its 8th year, is a month-long celebration of open source software run by DigitalOcean. During the month of October, we invite you to join open-source software enthusiasts, beginners, and the developer community by contributing to open-source projects. ' # Here are converting in English Language language = 'en' # Passing the text and language to the engine, # here we have assign slow=False. Which denotes # the module that the transformed audio should # have a high speed obj = gTTS(text=text_val, lang=language, slow=False) #Here we are saving the transformed audio in a mp3 file name obj.save("hactoberfest21.mp3") # Play the .mp3 file playsound("hactoberfest21.mp3")
[ 2, 17267, 262, 308, 51, 4694, 8265, 329, 2420, 220, 220, 198, 2, 284, 4046, 11315, 220, 220, 198, 6738, 308, 83, 912, 1330, 308, 51, 4694, 220, 220, 198, 220, 220, 198, 2, 770, 8265, 318, 17392, 523, 326, 356, 460, 220, 220, 198, 2, 711, 262, 11513, 6597, 220, 220, 198, 220, 220, 198, 6738, 5341, 633, 1330, 5341, 633, 220, 220, 198, 220, 220, 198, 2, 632, 318, 257, 2420, 1988, 326, 356, 765, 284, 10385, 284, 6597, 220, 220, 198, 5239, 62, 2100, 796, 705, 14618, 284, 8156, 1462, 527, 23411, 2310, 13, 32833, 1462, 527, 23411, 11, 287, 663, 807, 400, 614, 11, 318, 257, 1227, 12, 6511, 14395, 286, 1280, 2723, 3788, 1057, 416, 10231, 46607, 13, 5856, 262, 1227, 286, 3267, 11, 356, 14037, 345, 284, 4654, 1280, 12, 10459, 3788, 23099, 11, 31729, 11, 290, 262, 8517, 2055, 416, 14329, 284, 1280, 12, 10459, 4493, 13, 705, 220, 220, 198, 220, 220, 198, 2, 3423, 389, 23202, 287, 3594, 15417, 220, 220, 198, 16129, 796, 705, 268, 6, 220, 220, 198, 220, 220, 198, 2, 46389, 262, 2420, 290, 3303, 284, 262, 3113, 11, 220, 220, 198, 2, 994, 356, 423, 8333, 3105, 28, 25101, 13, 9022, 43397, 220, 220, 198, 2, 262, 8265, 326, 262, 14434, 6597, 815, 220, 220, 198, 2, 423, 257, 1029, 2866, 220, 220, 198, 26801, 796, 308, 51, 4694, 7, 5239, 28, 5239, 62, 2100, 11, 42392, 28, 16129, 11, 3105, 28, 25101, 8, 220, 220, 198, 220, 220, 198, 2, 4342, 356, 389, 8914, 262, 14434, 6597, 287, 257, 29034, 18, 2393, 1438, 220, 198, 26801, 13, 21928, 7203, 71, 529, 2023, 23411, 2481, 13, 3149, 18, 4943, 220, 220, 198, 220, 220, 198, 2, 3811, 262, 764, 3149, 18, 2393, 220, 220, 198, 26024, 633, 7203, 71, 529, 2023, 23411, 2481, 13, 3149, 18, 4943, 220, 220, 198 ]
3.251592
314
import logging from ._version import get_versions # noqa from .xml_obj import Symbol, DataType, SubItem # noqa from .xml_collector import TmcFile # noqa from . import epics # noqa logger = logging.getLogger(__name__) __version__ = get_versions()['version'] del get_versions __all__ = [ 'DataType', 'SubItem', 'Symbol', 'TmcFile', 'epics', 'logger', ]
[ 11748, 18931, 198, 198, 6738, 47540, 9641, 1330, 651, 62, 47178, 220, 1303, 645, 20402, 198, 6738, 764, 19875, 62, 26801, 1330, 38357, 11, 6060, 6030, 11, 3834, 7449, 220, 1303, 645, 20402, 198, 6738, 764, 19875, 62, 33327, 273, 1330, 309, 23209, 8979, 220, 1303, 645, 20402, 198, 6738, 764, 1330, 2462, 873, 220, 1303, 645, 20402, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 834, 9641, 834, 796, 651, 62, 47178, 3419, 17816, 9641, 20520, 198, 12381, 651, 62, 47178, 628, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 6601, 6030, 3256, 198, 220, 220, 220, 705, 7004, 7449, 3256, 198, 220, 220, 220, 705, 13940, 23650, 3256, 198, 220, 220, 220, 705, 51, 23209, 8979, 3256, 198, 220, 220, 220, 705, 538, 873, 3256, 198, 220, 220, 220, 705, 6404, 1362, 3256, 198, 60, 198 ]
2.577181
149
from pydantic import BaseModel
[ 6738, 279, 5173, 5109, 1330, 7308, 17633, 628 ]
4
8
# -*- coding: utf-8 -*- from hist import Hist, NamedHist, axis import pytest import numpy as np unp = pytest.importorskip("uncertainties.unumpy") plt = pytest.importorskip("matplotlib.pyplot") def test_general_plot1d(): """ Test general plot1d -- whether 1d-Hist can be plotted properly. """ h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10)) assert h.plot1d(color="green", ls="--", lw=3) plt.close("all") # dimension error h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10), np.random.normal(size=10)) with pytest.raises(Exception): h.plot1d() # wrong kwargs names with pytest.raises(Exception): h.project("A").plot1d(abc="red") # wrong kwargs type with pytest.raises(Exception): h.project("B").plot1d(ls="red") plt.close("all") def test_general_plot2d(): """ Test general plot2d -- whether 2d-Hist can be plotted properly. """ h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10), np.random.normal(size=10)) assert h.plot2d(cmap="cividis") # dimension error h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10), np.random.normal(size=10)) with pytest.raises(Exception): h.project("A").plot2d() # wrong kwargs names with pytest.raises(Exception): h.plot2d(abc="red") # wrong kwargs type with pytest.raises(Exception): h.plot2d(cmap=0.1) plt.close("all") def test_general_plot2d_full(): """ Test general plot2d_full -- whether 2d-Hist can be fully plotted properly. """ h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10), np.random.normal(size=10)) assert h.plot2d_full( main_cmap="cividis", top_ls="--", top_color="orange", top_lw=2, side_ls="-.", side_lw=1, side_color="steelblue", ) # dimension error h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10), np.random.normal(size=10)) with pytest.raises(Exception): h.project("A").plot2d_full() # wrong kwargs names with pytest.raises(Exception): h.plot2d_full(abc="red") with pytest.raises(Exception): h.plot2d_full(color="red") # wrong kwargs type with pytest.raises(Exception): h.plot2d_full(main_cmap=0.1, side_lw="autumn") plt.close("all") def test_general_plot(): """ Test general plot -- whether Hist can be plotted properly. """ h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10)) assert h.plot(color="green", ls="--", lw=3) h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10), np.random.normal(size=10)) assert h.plot(cmap="cividis") # dimension error h = Hist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="C", label="c [units]", underflow=False, overflow=False ), ).fill( np.random.normal(size=10), np.random.normal(size=10), np.random.normal(size=10) ) with pytest.raises(Exception): h.plot() # wrong kwargs names with pytest.raises(Exception): h.project("A").plot(abc="red") with pytest.raises(Exception): h.project("A", "C").plot(abc="red") # wrong kwargs type with pytest.raises(Exception): h.project("B").plot(ls="red") with pytest.raises(Exception): h.project("A", "C").plot(cmap=0.1) plt.close("all") def test_general_plot_pull(): """ Test general plot_pull -- whether 1d-Hist can be plotted pull properly. """ h = Hist( axis.Regular( 50, -4, 4, name="S", label="s [units]", underflow=False, overflow=False ) ).fill(np.random.normal(size=10)) assert h.plot_pull( pdf, eb_ecolor="crimson", eb_mfc="crimson", eb_mec="crimson", eb_fmt="o", eb_ms=6, eb_capsize=1, eb_capthick=2, eb_alpha=0.8, fp_c="chocolate", fp_ls="-", fp_lw=3, fp_alpha=1.0, bar_fc="orange", pp_num=6, pp_fc="orange", pp_alpha=0.618, pp_ec=None, ) # dimension error hh = Hist( axis.Regular( 50, -4, 4, name="X", label="s [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="Y", label="s [units]", underflow=False, overflow=False ), ).fill(np.random.normal(size=10), np.random.normal(size=10)) with pytest.raises(Exception): hh.plot_pull(pdf) # not callable with pytest.raises(Exception): h.plot_pull("1") with pytest.raises(Exception): h.plot_pull(1) with pytest.raises(Exception): h.plot_pull(0.1) with pytest.raises(Exception): h.plot_pull((1, 2)) with pytest.raises(Exception): h.plot_pull([1, 2]) with pytest.raises(Exception): h.plot_pull({"a": 1}) # wrong kwargs names with pytest.raises(Exception): h.plot_pull(pdf, abc="crimson", xyz="crimson") with pytest.raises(Exception): h.plot_pull(pdf, ecolor="crimson", mfc="crimson") # not disabled params h.plot_pull(pdf, eb_label="value") h.plot_pull(pdf, fp_label="value") h.plot_pull(pdf, ub_label="value") h.plot_pull(pdf, bar_label="value") h.plot_pull(pdf, pp_label="value") # disabled params with pytest.raises(Exception): h.plot_pull(pdf, bar_width="value") # wrong kwargs types with pytest.raises(Exception): h.plot_pull(pdf, eb_ecolor=1.0, eb_mfc=1.0) # kwargs should be str plt.close("all") def test_named_plot1d(): """ Test named plot1d -- whether 1d-NamedHist can be plotted properly. """ h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), ).fill(A=np.random.normal(size=10)) assert h.plot1d(color="green", ls="--", lw=3) plt.close("all") # dimension error h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(B=np.random.normal(size=10), A=np.random.normal(size=10)) with pytest.raises(Exception): h.plot1d() # wrong kwargs names with pytest.raises(Exception): h.project("A").plot1d(abc="red") # wrong kwargs type with pytest.raises(Exception): h.project("B").plot1d(ls="red") plt.close("all") def test_named_plot2d(): """ Test named plot2d -- whether 2d-NamedHist can be plotted properly. """ h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(B=np.random.normal(size=10), A=np.random.normal(size=10)) assert h.plot2d(cmap="cividis") plt.close("all") # dimension error h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(B=np.random.normal(size=10), A=np.random.normal(size=10)) with pytest.raises(Exception): h.project("A").plot2d() # wrong kwargs names with pytest.raises(Exception): h.plot2d(abc="red") # wrong kwargs type with pytest.raises(Exception): h.plot2d(cmap=0.1) plt.close("all") def test_named_plot2d_full(): """ Test named plot2d_full -- whether 2d-NamedHist can be fully plotted properly. """ h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(B=np.random.normal(size=10), A=np.random.normal(size=10)) assert h.plot2d_full( main_cmap="cividis", top_ls="--", top_color="orange", top_lw=2, side_ls="-.", side_lw=1, side_color="steelblue", ) plt.close("all") # dimension error h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(B=np.random.normal(size=10), A=np.random.normal(size=10)) with pytest.raises(Exception): h.project("A").plot2d_full() # wrong kwargs names with pytest.raises(Exception): h.plot2d_full(abc="red") with pytest.raises(Exception): h.plot2d_full(color="red") # wrong kwargs type with pytest.raises(Exception): h.plot2d_full(main_cmap=0.1, side_lw="autumn") plt.close("all") def test_named_plot(): """ Test named plot -- whether NamedHist can be plotted properly. """ h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), ).fill(A=np.random.normal(size=10)) assert h.plot(color="green", ls="--", lw=3) h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), ).fill(B=np.random.normal(size=10), A=np.random.normal(size=10)) assert h.plot(cmap="cividis") plt.close("all") # dimension error h = NamedHist( axis.Regular( 50, -5, 5, name="A", label="a [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="B", label="b [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="C", label="c [units]", underflow=False, overflow=False ), ).fill( A=np.random.normal(size=10), B=np.random.normal(size=10), C=np.random.normal(size=10), ) with pytest.raises(Exception): h.plot() # wrong kwargs names with pytest.raises(Exception): h.project("A").plot(abc="red") with pytest.raises(Exception): h.project("A", "C").plot(abc="red") # wrong kwargs type with pytest.raises(Exception): h.project("B").plot(ls="red") with pytest.raises(Exception): h.project("A", "C").plot(cmap=0.1) plt.close("all") def test_named_plot_pull(): """ Test named plot_pull -- whether 1d-NamedHist can be plotted pull properly. """ h = NamedHist( axis.Regular( 50, -4, 4, name="S", label="s [units]", underflow=False, overflow=False ) ).fill(S=np.random.normal(size=10)) assert h.plot_pull( pdf, eb_ecolor="crimson", eb_mfc="crimson", eb_mec="crimson", eb_fmt="o", eb_ms=6, eb_capsize=1, eb_capthick=2, eb_alpha=0.8, fp_c="chocolate", fp_ls="-", fp_lw=3, fp_alpha=1.0, bar_fc="orange", pp_num=6, pp_fc="orange", pp_alpha=0.618, pp_ec=None, ) # dimension error hh = NamedHist( axis.Regular( 50, -4, 4, name="X", label="s [units]", underflow=False, overflow=False ), axis.Regular( 50, -4, 4, name="Y", label="s [units]", underflow=False, overflow=False ), ).fill(X=np.random.normal(size=10), Y=np.random.normal(size=10)) with pytest.raises(Exception): hh.plot_pull(pdf) # not callable with pytest.raises(Exception): h.plot_pull("1") with pytest.raises(Exception): h.plot_pull(1) with pytest.raises(Exception): h.plot_pull(0.1) with pytest.raises(Exception): h.plot_pull((1, 2)) with pytest.raises(Exception): h.plot_pull([1, 2]) with pytest.raises(Exception): h.plot_pull({"a": 1}) plt.close("all") # wrong kwargs names with pytest.raises(Exception): h.plot_pull(pdf, abc="crimson", xyz="crimson") with pytest.raises(Exception): h.plot_pull(pdf, ecolor="crimson", mfc="crimson") # not disabled params h.plot_pull(pdf, eb_label="value") h.plot_pull(pdf, fp_label="value") h.plot_pull(pdf, ub_label="value") h.plot_pull(pdf, bar_label="value") h.plot_pull(pdf, pp_label="value") # disabled params with pytest.raises(Exception): h.plot_pull(pdf, bar_width="value") # wrong kwargs types with pytest.raises(Exception): h.plot_pull(pdf, eb_ecolor=1.0, eb_mfc=1.0) # kwargs should be str plt.close("all")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 1554, 1330, 5590, 11, 34441, 13749, 11, 16488, 198, 198, 11748, 12972, 9288, 198, 11748, 299, 32152, 355, 45941, 198, 198, 403, 79, 796, 12972, 9288, 13, 11748, 669, 74, 541, 7203, 19524, 1425, 4278, 13, 403, 32152, 4943, 198, 489, 83, 796, 12972, 9288, 13, 11748, 669, 74, 541, 7203, 6759, 29487, 8019, 13, 9078, 29487, 4943, 628, 198, 4299, 1332, 62, 24622, 62, 29487, 16, 67, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 2276, 7110, 16, 67, 1377, 1771, 352, 67, 12, 13749, 460, 307, 37515, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 16, 67, 7, 8043, 2625, 14809, 1600, 43979, 2625, 438, 1600, 300, 86, 28, 18, 8, 198, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 16, 67, 3419, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 11074, 29487, 16, 67, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 2099, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 33, 11074, 29487, 16, 67, 7, 7278, 2625, 445, 4943, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 24622, 62, 29487, 17, 67, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 2276, 7110, 17, 67, 1377, 1771, 362, 67, 12, 13749, 460, 307, 37515, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 17, 67, 7, 66, 8899, 2625, 66, 1699, 271, 4943, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 11074, 29487, 17, 67, 3419, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 2099, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 7, 66, 8899, 28, 15, 13, 16, 8, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 24622, 62, 29487, 17, 67, 62, 12853, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 2276, 7110, 17, 67, 62, 12853, 1377, 1771, 362, 67, 12, 13749, 460, 307, 3938, 37515, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 17, 67, 62, 12853, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 66, 8899, 2625, 66, 1699, 271, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 7278, 2625, 438, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 8043, 2625, 43745, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 75, 86, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 7278, 2625, 12, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 75, 86, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 8043, 2625, 44822, 17585, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 11074, 29487, 17, 67, 62, 12853, 3419, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 62, 12853, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 62, 12853, 7, 8043, 2625, 445, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 2099, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 62, 12853, 7, 12417, 62, 66, 8899, 28, 15, 13, 16, 11, 1735, 62, 75, 86, 2625, 2306, 4182, 4943, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 24622, 62, 29487, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 2276, 7110, 1377, 1771, 5590, 460, 307, 37515, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 7, 8043, 2625, 14809, 1600, 43979, 2625, 438, 1600, 300, 86, 28, 18, 8, 628, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 7, 66, 8899, 2625, 66, 1699, 271, 4943, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 34, 1600, 6167, 2625, 66, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 3419, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 11074, 29487, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 1600, 366, 34, 11074, 29487, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 2099, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 33, 11074, 29487, 7, 7278, 2625, 445, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 1600, 366, 34, 11074, 29487, 7, 66, 8899, 28, 15, 13, 16, 8, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 24622, 62, 29487, 62, 31216, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 2276, 7110, 62, 31216, 1377, 1771, 352, 67, 12, 13749, 460, 307, 37515, 2834, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 50, 1600, 6167, 2625, 82, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 62, 31216, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 721, 45621, 2625, 50086, 1559, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 76, 16072, 2625, 50086, 1559, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 76, 721, 2625, 50086, 1559, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 69, 16762, 2625, 78, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 907, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 27979, 1096, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 11128, 400, 624, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 26591, 28, 15, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 62, 66, 2625, 354, 9140, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 62, 7278, 2625, 12, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 62, 75, 86, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 62, 26591, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 16072, 2625, 43745, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 62, 22510, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 62, 16072, 2625, 43745, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 62, 26591, 28, 15, 13, 47448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 62, 721, 28, 14202, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 71, 796, 5590, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 55, 1600, 6167, 2625, 82, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 56, 1600, 6167, 2625, 82, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 45941, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 71, 13, 29487, 62, 31216, 7, 12315, 8, 628, 220, 220, 220, 1303, 407, 869, 540, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7203, 16, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 16, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 15, 13, 16, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 19510, 16, 11, 362, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 26933, 16, 11, 362, 12962, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 4895, 64, 1298, 352, 30072, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 450, 66, 2625, 50086, 1559, 1600, 2124, 45579, 2625, 50086, 1559, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 304, 8043, 2625, 50086, 1559, 1600, 285, 16072, 2625, 50086, 1559, 4943, 628, 220, 220, 220, 1303, 407, 10058, 42287, 198, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 36649, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 277, 79, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 20967, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 2318, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 9788, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 1303, 10058, 42287, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 2318, 62, 10394, 2625, 8367, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3858, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 36649, 62, 721, 45621, 28, 16, 13, 15, 11, 36649, 62, 76, 16072, 28, 16, 13, 15, 8, 220, 1303, 479, 86, 22046, 815, 307, 965, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 13190, 62, 29487, 16, 67, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 3706, 7110, 16, 67, 1377, 1771, 352, 67, 12, 45, 2434, 13749, 460, 307, 37515, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 32, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 16, 67, 7, 8043, 2625, 14809, 1600, 43979, 2625, 438, 1600, 300, 86, 28, 18, 8, 198, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 33, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 317, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 16, 67, 3419, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 11074, 29487, 16, 67, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 2099, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 33, 11074, 29487, 16, 67, 7, 7278, 2625, 445, 4943, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 13190, 62, 29487, 17, 67, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 3706, 7110, 17, 67, 1377, 1771, 362, 67, 12, 45, 2434, 13749, 460, 307, 37515, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 33, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 317, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 17, 67, 7, 66, 8899, 2625, 66, 1699, 271, 4943, 198, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 33, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 317, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 11074, 29487, 17, 67, 3419, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 2099, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 7, 66, 8899, 28, 15, 13, 16, 8, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 13190, 62, 29487, 17, 67, 62, 12853, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 3706, 7110, 17, 67, 62, 12853, 1377, 1771, 362, 67, 12, 45, 2434, 13749, 460, 307, 3938, 37515, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 33, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 317, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 17, 67, 62, 12853, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 66, 8899, 2625, 66, 1699, 271, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 7278, 2625, 438, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 8043, 2625, 43745, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 75, 86, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 7278, 2625, 12, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 75, 86, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 62, 8043, 2625, 44822, 17585, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 33, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 317, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 11074, 29487, 17, 67, 62, 12853, 3419, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 62, 12853, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 62, 12853, 7, 8043, 2625, 445, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 2099, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 17, 67, 62, 12853, 7, 12417, 62, 66, 8899, 28, 15, 13, 16, 11, 1735, 62, 75, 86, 2625, 2306, 4182, 4943, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 13190, 62, 29487, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 3706, 7110, 1377, 1771, 34441, 13749, 460, 307, 37515, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 32, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 7, 8043, 2625, 14809, 1600, 43979, 2625, 438, 1600, 300, 86, 28, 18, 8, 628, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 33, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 317, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 7, 66, 8899, 2625, 66, 1699, 271, 4943, 198, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 20, 11, 642, 11, 1438, 2625, 32, 1600, 6167, 2625, 64, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 33, 1600, 6167, 2625, 65, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 34, 1600, 6167, 2625, 66, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 198, 220, 220, 220, 220, 220, 220, 220, 317, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 198, 220, 220, 220, 220, 220, 220, 220, 347, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 198, 220, 220, 220, 220, 220, 220, 220, 327, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 3419, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 11074, 29487, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 1600, 366, 34, 11074, 29487, 7, 39305, 2625, 445, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 2099, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 33, 11074, 29487, 7, 7278, 2625, 445, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 16302, 7203, 32, 1600, 366, 34, 11074, 29487, 7, 66, 8899, 28, 15, 13, 16, 8, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 198, 4299, 1332, 62, 13190, 62, 29487, 62, 31216, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 3706, 7110, 62, 31216, 1377, 1771, 352, 67, 12, 45, 2434, 13749, 460, 307, 37515, 2834, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 50, 1600, 6167, 2625, 82, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 6739, 20797, 7, 50, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 6818, 289, 13, 29487, 62, 31216, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 721, 45621, 2625, 50086, 1559, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 76, 16072, 2625, 50086, 1559, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 76, 721, 2625, 50086, 1559, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 69, 16762, 2625, 78, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 907, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 27979, 1096, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 11128, 400, 624, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36649, 62, 26591, 28, 15, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 62, 66, 2625, 354, 9140, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 62, 7278, 2625, 12, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 62, 75, 86, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 62, 26591, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 16072, 2625, 43745, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 62, 22510, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 62, 16072, 2625, 43745, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 62, 26591, 28, 15, 13, 47448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 62, 721, 28, 14202, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 15793, 4049, 198, 220, 220, 220, 289, 71, 796, 34441, 13749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 55, 1600, 6167, 2625, 82, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 13, 40164, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 11, 532, 19, 11, 604, 11, 1438, 2625, 56, 1600, 6167, 2625, 82, 685, 41667, 60, 1600, 739, 11125, 28, 25101, 11, 30343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 6739, 20797, 7, 55, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 828, 575, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 940, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 71, 13, 29487, 62, 31216, 7, 12315, 8, 628, 220, 220, 220, 1303, 407, 869, 540, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7203, 16, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 16, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 15, 13, 16, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 19510, 16, 11, 362, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 26933, 16, 11, 362, 12962, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 4895, 64, 1298, 352, 30072, 198, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3891, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 450, 66, 2625, 50086, 1559, 1600, 2124, 45579, 2625, 50086, 1559, 4943, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 304, 8043, 2625, 50086, 1559, 1600, 285, 16072, 2625, 50086, 1559, 4943, 628, 220, 220, 220, 1303, 407, 10058, 42287, 198, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 36649, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 277, 79, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 20967, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 2318, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 9788, 62, 18242, 2625, 8367, 4943, 628, 220, 220, 220, 1303, 10058, 42287, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 2318, 62, 10394, 2625, 8367, 4943, 628, 220, 220, 220, 1303, 2642, 479, 86, 22046, 3858, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 29487, 62, 31216, 7, 12315, 11, 36649, 62, 721, 45621, 28, 16, 13, 15, 11, 36649, 62, 76, 16072, 28, 16, 13, 15, 8, 220, 1303, 479, 86, 22046, 815, 307, 965, 628, 220, 220, 220, 458, 83, 13, 19836, 7203, 439, 4943, 198 ]
2.08277
7,104
# -*- coding: utf-8 -*- """ Created on Wed Jul 20 20:21:33 2016 generate the camera's pose conditions by hand @author: sebalander """ # %% import cv2 import numpy as np import numpy.linalg as lin from scipy.linalg import sqrtm, inv import matplotlib.pyplot as plt # %% tVecFile = "PTZsheetTvecInitial.npy" rVecFile = "PTZsheetRvecInitial.npy" # %% Initial TRASLATION VECTOR tVec = np.array([[0], [0], [2.5]]) # %% ROTATION MATRIX # center of image points to grid point: center = np.array([3*0.21, 5*0.297, 0]) z = center - tVec[:,0] z /= lin.norm(z) # la tercera coordenada no la se, la dejo en cero x = np.array([6*21, -1*29.7, 0]) y = np.array([-1*21, -7*29.7, 0]) # hacer que x,y sean perp a z, agregar la tercera componente x = x - z * np.dot(x,z) # hago perpendicular a z x /= lin.norm(x) y = y - z * np.dot(y,z) # hago perpendicular a z y /= lin.norm(y) # %% test ortogonal np.dot(x,z) np.dot(y,z) np.dot(x,y) # ok if not perfectly 0 # %% make into versor matrix rMatrix = np.array([x,y,z]) # find nearest ortogonal matrix # http://stackoverflow.com/questions/13940056/orthogonalize-matrix-numpy rMatrix = rMatrix.dot(inv(sqrtm(rMatrix.T.dot(rMatrix)))) # %% SAVE PARAMETERS # convert to rodrigues vector rVec, _ = cv2.Rodrigues(rMatrix) np.save(tVecFile, tVec) np.save(rVecFile, rVec) # %% PLOT VECTORS [x,y,z] = rMatrix # get from ortogonal matrix tvec = tVec[:,0] fig = plt.figure() from mpl_toolkits.mplot3d import Axes3D ax = fig.gca(projection='3d') ax.plot([0, tvec[0]], [0, tvec[1]], [0, tvec[2]]) ax.plot([tvec[0], tvec[0] + x[0]], [tvec[1], tvec[1] + x[1]], [tvec[2], tvec[2] + x[2]]) ax.plot([tvec[0], tvec[0] + y[0]], [tvec[1], tvec[1] + y[1]], [tvec[2], tvec[2] + y[2]]) ax.plot([tvec[0], tvec[0] + z[0]], [tvec[1], tvec[1] + z[1]], [tvec[2], tvec[2] + z[2]]) #ax.legend() #ax.set_xlim3d(0, 1) #ax.set_ylim3d(0, 1) #ax.set_zlim3d(0, 1) plt.show()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 5979, 1160, 1160, 25, 2481, 25, 2091, 1584, 198, 198, 8612, 378, 262, 4676, 338, 12705, 220, 3403, 416, 1021, 198, 198, 31, 9800, 25, 384, 6893, 4066, 198, 37811, 198, 2, 43313, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 299, 32152, 13, 75, 1292, 70, 355, 9493, 198, 6738, 629, 541, 88, 13, 75, 1292, 70, 1330, 19862, 17034, 76, 11, 800, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 2, 43313, 220, 198, 83, 53, 721, 8979, 796, 366, 11571, 57, 21760, 51, 35138, 24243, 13, 77, 9078, 1, 198, 81, 53, 721, 8979, 796, 366, 11571, 57, 21760, 49, 35138, 24243, 13, 77, 9078, 1, 198, 198, 2, 43313, 20768, 7579, 1921, 43, 6234, 569, 9782, 1581, 198, 83, 53, 721, 796, 45941, 13, 18747, 26933, 58, 15, 4357, 685, 15, 4357, 685, 17, 13, 20, 11907, 8, 220, 198, 198, 2, 43313, 371, 2394, 6234, 36775, 7112, 55, 198, 2, 3641, 286, 2939, 2173, 284, 10706, 966, 25, 198, 16159, 796, 45941, 13, 18747, 26933, 18, 9, 15, 13, 2481, 11, 642, 9, 15, 13, 26561, 11, 657, 12962, 198, 89, 796, 3641, 532, 256, 53, 721, 58, 45299, 15, 60, 198, 89, 1220, 28, 9493, 13, 27237, 7, 89, 8, 198, 198, 2, 8591, 1059, 2189, 64, 6349, 268, 4763, 645, 8591, 384, 11, 8591, 390, 7639, 551, 269, 3529, 198, 87, 796, 45941, 13, 18747, 26933, 21, 9, 2481, 11, 532, 16, 9, 1959, 13, 22, 11, 657, 12962, 198, 88, 796, 45941, 13, 18747, 26933, 12, 16, 9, 2481, 11, 532, 22, 9, 1959, 13, 22, 11, 657, 12962, 198, 198, 2, 289, 11736, 8358, 2124, 11, 88, 384, 272, 583, 79, 257, 1976, 11, 556, 2301, 283, 8591, 1059, 2189, 64, 7515, 68, 220, 198, 87, 796, 2124, 532, 1976, 1635, 45941, 13, 26518, 7, 87, 11, 89, 8, 1303, 289, 3839, 47190, 257, 1976, 198, 87, 1220, 28, 9493, 13, 27237, 7, 87, 8, 220, 198, 198, 88, 796, 331, 532, 1976, 1635, 45941, 13, 26518, 7, 88, 11, 89, 8, 1303, 289, 3839, 47190, 257, 1976, 198, 88, 1220, 28, 9493, 13, 27237, 7, 88, 8, 198, 198, 2, 43313, 1332, 393, 83, 519, 20996, 198, 37659, 13, 26518, 7, 87, 11, 89, 8, 198, 37659, 13, 26518, 7, 88, 11, 89, 8, 198, 37659, 13, 26518, 7, 87, 11, 88, 8, 1303, 12876, 611, 407, 7138, 657, 198, 198, 2, 43313, 787, 656, 1646, 273, 17593, 198, 81, 46912, 796, 45941, 13, 18747, 26933, 87, 11, 88, 11, 89, 12962, 198, 198, 2, 1064, 16936, 393, 83, 519, 20996, 17593, 198, 2, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 1485, 5824, 405, 3980, 14, 1506, 519, 20996, 1096, 12, 6759, 8609, 12, 77, 32152, 198, 81, 46912, 796, 374, 46912, 13, 26518, 7, 16340, 7, 31166, 17034, 76, 7, 81, 46912, 13, 51, 13, 26518, 7, 81, 46912, 35514, 198, 198, 2, 43313, 14719, 6089, 29463, 2390, 2767, 4877, 198, 198, 2, 10385, 284, 15299, 4359, 947, 15879, 198, 81, 53, 721, 11, 4808, 796, 269, 85, 17, 13, 27917, 4359, 947, 7, 81, 46912, 8, 198, 198, 37659, 13, 21928, 7, 83, 53, 721, 8979, 11, 256, 53, 721, 8, 198, 37659, 13, 21928, 7, 81, 53, 721, 8979, 11, 374, 53, 721, 8, 198, 198, 2, 43313, 9297, 2394, 569, 9782, 20673, 198, 58, 87, 11, 88, 11, 89, 60, 796, 374, 46912, 1303, 651, 422, 393, 83, 519, 20996, 17593, 198, 83, 35138, 796, 256, 53, 721, 58, 45299, 15, 60, 198, 198, 5647, 796, 458, 83, 13, 26875, 3419, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 76, 29487, 18, 67, 1330, 12176, 274, 18, 35, 198, 198, 897, 796, 2336, 13, 70, 6888, 7, 16302, 295, 11639, 18, 67, 11537, 198, 198, 897, 13, 29487, 26933, 15, 11, 256, 35138, 58, 15, 60, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 256, 35138, 58, 16, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 256, 35138, 58, 17, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 897, 13, 29487, 26933, 83, 35138, 58, 15, 4357, 256, 35138, 58, 15, 60, 1343, 2124, 58, 15, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 83, 35138, 58, 16, 4357, 256, 35138, 58, 16, 60, 1343, 2124, 58, 16, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 83, 35138, 58, 17, 4357, 256, 35138, 58, 17, 60, 1343, 2124, 58, 17, 11907, 8, 198, 198, 897, 13, 29487, 26933, 83, 35138, 58, 15, 4357, 256, 35138, 58, 15, 60, 1343, 331, 58, 15, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 83, 35138, 58, 16, 4357, 256, 35138, 58, 16, 60, 1343, 331, 58, 16, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 83, 35138, 58, 17, 4357, 256, 35138, 58, 17, 60, 1343, 331, 58, 17, 11907, 8, 198, 198, 897, 13, 29487, 26933, 83, 35138, 58, 15, 4357, 256, 35138, 58, 15, 60, 1343, 1976, 58, 15, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 83, 35138, 58, 16, 4357, 256, 35138, 58, 16, 60, 1343, 1976, 58, 16, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 83, 35138, 58, 17, 4357, 256, 35138, 58, 17, 60, 1343, 1976, 58, 17, 11907, 8, 198, 198, 2, 897, 13, 1455, 437, 3419, 198, 2, 897, 13, 2617, 62, 87, 2475, 18, 67, 7, 15, 11, 352, 8, 198, 2, 897, 13, 2617, 62, 88, 2475, 18, 67, 7, 15, 11, 352, 8, 198, 2, 897, 13, 2617, 62, 89, 2475, 18, 67, 7, 15, 11, 352, 8, 198, 198, 489, 83, 13, 12860, 3419 ]
1.977867
994
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="clericus", version="0.0.3a27", author="Joseph L Buell V", author_email="[email protected]", description= "An async webserver focused on being predictable and self documenting.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/mrincredibuell/clericus", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Development Status :: 3 - Alpha", ], install_requires=[ "aiohttp>=3.5.4", "pyjwt>=1.7.1", "motor>=2.0.0", "python-dateutil>=2.8.0", "bcrypt>=3.1.6", "dnspython>=1.16.0", "faker>=1.0.7", "markdown>=3.1.1", "ansicolors>=1.1.8", ], )
[ 11748, 900, 37623, 10141, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 198, 198, 2617, 37623, 10141, 13, 40406, 7, 198, 220, 220, 220, 1438, 2625, 22902, 24552, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 15, 13, 18, 64, 1983, 1600, 198, 220, 220, 220, 1772, 2625, 29458, 406, 347, 518, 297, 569, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 73, 14050, 65, 518, 297, 85, 31, 14816, 13, 785, 1600, 198, 220, 220, 220, 6764, 28, 198, 220, 220, 220, 366, 2025, 30351, 2639, 18497, 5670, 319, 852, 20039, 290, 2116, 33045, 33283, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 43395, 1939, 445, 571, 518, 297, 14, 22902, 24552, 1600, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 22784, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41206, 12678, 7904, 513, 532, 12995, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 64, 952, 4023, 29, 28, 18, 13, 20, 13, 19, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9078, 73, 46569, 29, 28, 16, 13, 22, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 20965, 29, 28, 17, 13, 15, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29412, 12, 4475, 22602, 29, 28, 17, 13, 23, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15630, 6012, 29, 28, 18, 13, 16, 13, 21, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32656, 2777, 7535, 29, 28, 16, 13, 1433, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 69, 3110, 29, 28, 16, 13, 15, 13, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4102, 2902, 29, 28, 18, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 504, 27045, 669, 29, 28, 16, 13, 16, 13, 23, 1600, 198, 220, 220, 220, 16589, 198, 8 ]
2.155361
457
#!/usr/bin/env python # Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verifies *_wrapper in environment. """ import os import sys import TestGyp print "This test is currently disabled: https://crbug.com/483696." sys.exit(0) test_format = ['ninja'] os.environ['CC_wrapper'] = 'distcc' os.environ['LINK_wrapper'] = 'distlink' os.environ['CC.host_wrapper'] = 'ccache' test = TestGyp.TestGyp(formats=test_format) old_env = dict(os.environ) os.environ['GYP_CROSSCOMPILE'] = '1' test.run_gyp('wrapper.gyp') os.environ.clear() os.environ.update(old_env) if test.format == 'ninja': cc_expected = ('cc = ' + os.path.join('..', '..', 'distcc') + ' ' + os.path.join('..', '..', 'clang')) cc_host_expected = ('cc_host = ' + os.path.join('..', '..', 'ccache') + ' ' + os.path.join('..', '..', 'clang')) ld_expected = 'ld = ../../distlink $cc' if sys.platform != 'win32': ldxx_expected = 'ldxx = ../../distlink $cxx' if sys.platform == 'win32': ld_expected = 'link.exe' test.must_contain('out/Default/build.ninja', cc_expected) test.must_contain('out/Default/build.ninja', cc_host_expected) test.must_contain('out/Default/build.ninja', ld_expected) if sys.platform != 'win32': test.must_contain('out/Default/build.ninja', ldxx_expected) test.pass_test()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 15069, 357, 66, 8, 2211, 3012, 3457, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 198, 13414, 6945, 1635, 62, 48553, 287, 2858, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 6208, 38, 4464, 198, 198, 4798, 366, 1212, 1332, 318, 3058, 10058, 25, 3740, 1378, 6098, 25456, 13, 785, 14, 2780, 2623, 4846, 526, 198, 17597, 13, 37023, 7, 15, 8, 198, 198, 9288, 62, 18982, 796, 37250, 35073, 6592, 20520, 198, 198, 418, 13, 268, 2268, 17816, 4093, 62, 48553, 20520, 796, 705, 17080, 535, 6, 198, 418, 13, 268, 2268, 17816, 43, 17248, 62, 48553, 20520, 796, 705, 17080, 8726, 6, 198, 418, 13, 268, 2268, 17816, 4093, 13, 4774, 62, 48553, 20520, 796, 705, 535, 4891, 6, 198, 198, 9288, 796, 6208, 38, 4464, 13, 14402, 38, 4464, 7, 687, 1381, 28, 9288, 62, 18982, 8, 198, 198, 727, 62, 24330, 796, 8633, 7, 418, 13, 268, 2268, 8, 198, 418, 13, 268, 2268, 17816, 31212, 47, 62, 9419, 2640, 6173, 2662, 11901, 2538, 20520, 796, 705, 16, 6, 198, 9288, 13, 5143, 62, 1360, 79, 10786, 48553, 13, 1360, 79, 11537, 198, 418, 13, 268, 2268, 13, 20063, 3419, 198, 418, 13, 268, 2268, 13, 19119, 7, 727, 62, 24330, 8, 198, 198, 361, 1332, 13, 18982, 6624, 705, 35073, 6592, 10354, 198, 220, 36624, 62, 40319, 796, 19203, 535, 796, 705, 1343, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 492, 3256, 705, 17080, 535, 11537, 1343, 705, 705, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 492, 3256, 705, 565, 648, 6, 4008, 198, 220, 36624, 62, 4774, 62, 40319, 796, 19203, 535, 62, 4774, 796, 705, 1343, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 492, 3256, 705, 535, 4891, 11537, 1343, 705, 705, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 492, 3256, 705, 565, 648, 6, 4008, 198, 220, 300, 67, 62, 40319, 796, 705, 335, 796, 11485, 14, 40720, 17080, 8726, 720, 535, 6, 198, 220, 611, 25064, 13, 24254, 14512, 705, 5404, 2624, 10354, 198, 220, 220, 220, 300, 67, 5324, 62, 40319, 796, 705, 335, 5324, 796, 11485, 14, 40720, 17080, 8726, 720, 66, 5324, 6, 628, 220, 611, 25064, 13, 24254, 6624, 705, 5404, 2624, 10354, 198, 220, 220, 220, 220, 300, 67, 62, 40319, 796, 705, 8726, 13, 13499, 6, 198, 220, 1332, 13, 27238, 62, 3642, 391, 10786, 448, 14, 19463, 14, 11249, 13, 35073, 6592, 3256, 36624, 62, 40319, 8, 198, 220, 1332, 13, 27238, 62, 3642, 391, 10786, 448, 14, 19463, 14, 11249, 13, 35073, 6592, 3256, 36624, 62, 4774, 62, 40319, 8, 198, 220, 1332, 13, 27238, 62, 3642, 391, 10786, 448, 14, 19463, 14, 11249, 13, 35073, 6592, 3256, 300, 67, 62, 40319, 8, 198, 220, 611, 25064, 13, 24254, 14512, 705, 5404, 2624, 10354, 198, 220, 220, 220, 1332, 13, 27238, 62, 3642, 391, 10786, 448, 14, 19463, 14, 11249, 13, 35073, 6592, 3256, 300, 67, 5324, 62, 40319, 8, 198, 198, 9288, 13, 6603, 62, 9288, 3419, 198 ]
2.437075
588