content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from unittest import TestCase
[ 6738, 555, 715, 395, 1330, 6208, 20448, 628 ]
3.875
8
greeting_message = ''' Hi John, We have received your purchase request successfully. We'll email you when after the package is dispatched. Thanks, Support Team ''' print(greeting_message)
[ 70, 2871, 278, 62, 20500, 796, 705, 7061, 198, 198, 17250, 1757, 11, 198, 198, 1135, 423, 2722, 534, 5001, 2581, 7675, 13, 775, 1183, 3053, 345, 618, 706, 262, 5301, 318, 26562, 13, 198, 198, 9690, 11, 198, 15514, 4816, 198, 198, 7061, 6, 198, 198, 4798, 7, 70, 2871, 278, 62, 20500, 8, 198 ]
3.446429
56
import numpy as np import pandas as pd from sklearn.model_selection import KFold, train_test_split, GroupShuffleSplit def split_test(df, test_method='fo', test_size=.2): """ method of splitting data into training data and test data Parameters ---------- df : pd.DataFrame raw data waiting for test set splitting test_method : str, way to split test set 'fo': split by ratio 'tfo': split by ratio with timestamp 'tloo': leave one out with timestamp 'loo': leave one out 'ufo': split by ratio in user level 'utfo': time-aware split by ratio in user level test_size : float, size of test set Returns ------- train_set : pd.DataFrame training dataset test_set : pd.DataFrame test dataset """ train_set, test_set = pd.DataFrame(), pd.DataFrame() if test_method == 'ufo': # driver_ids = df['user'] # _, driver_indices = np.unique(np.array(driver_ids), return_inverse=True) # gss = GroupShuffleSplit(n_splits=1, test_size=test_size, random_state=2020) # for train_idx, test_idx in gss.split(df, groups=driver_indices): # train_set, test_set = df.loc[train_idx, :].copy(), df.loc[test_idx, :].copy() test_idx = df.groupby('user').apply( lambda x: x.sample(frac=test_size).index ).explode().values train_set = df[~df.index.isin(test_idx)] test_set = df.iloc[test_idx] elif test_method == 'utfo': df = df.sort_values(['user', 'timestamp']).reset_index(drop=True) test_index = df.groupby('user').apply(time_split).explode().values test_set = df.loc[test_index, :] train_set = df[~df.index.isin(test_index)] elif test_method == 'tfo': # df = df.sample(frac=1) df = df.sort_values(['timestamp']).reset_index(drop=True) split_idx = int(np.ceil(len(df) * (1 - test_size))) train_set, test_set = df.iloc[:split_idx, :].copy(), df.iloc[split_idx:, :].copy() elif test_method == 'fo': train_set, test_set = train_test_split(df, test_size=test_size, random_state=2019) elif test_method == 'tloo': # df = df.sample(frac=1) df = df.sort_values(['timestamp']).reset_index(drop=True) df['rank_latest'] = df.groupby(['user'])['timestamp'].rank(method='first', ascending=False) train_set, test_set = df[df['rank_latest'] > 1].copy(), df[df['rank_latest'] == 1].copy() del train_set['rank_latest'], test_set['rank_latest'] elif test_method == 'loo': # # slow method # test_set = df.groupby(['user']).apply(pd.DataFrame.sample, n=1).reset_index(drop=True) # test_key = test_set[['user', 'item']].copy() # train_set = df.set_index(['user', 'item']).drop(pd.MultiIndex.from_frame(test_key)).reset_index().copy() # # quick method test_index = df.groupby(['user']).apply(lambda grp: np.random.choice(grp.index)) test_set = df.loc[test_index, :].copy() train_set = df[~df.index.isin(test_index)].copy() else: raise ValueError('Invalid data_split value, expect: loo, fo, tloo, tfo') train_set, test_set = train_set.reset_index(drop=True), test_set.reset_index(drop=True) return train_set, test_set def split_validation(train_set, val_method='fo', fold_num=1, val_size=.1): """ method of split data into training data and validation data. (Currently, this method returns list of train & validation set, but I'll change it to index list or generator in future so as to save memory space) TODO Parameters ---------- train_set : pd.DataFrame train set waiting for split validation val_method : str, way to split validation 'cv': combine with fold_num => fold_num-CV 'fo': combine with fold_num & val_size => fold_num-Split by ratio(9:1) 'tfo': Split by ratio with timestamp, combine with val_size => 1-Split by ratio(9:1) 'tloo': Leave one out with timestamp => 1-Leave one out 'loo': combine with fold_num => fold_num-Leave one out 'ufo': split by ratio in user level with K-fold 'utfo': time-aware split by ratio in user level fold_num : int, the number of folder need to be validated, only work when val_method is 'cv', 'loo', or 'fo' val_size: float, the size of validation dataset Returns ------- train_set_list : List, list of generated training datasets val_set_list : List, list of generated validation datasets cnt : cnt: int, the number of train-validation pair """ if val_method in ['tloo', 'tfo', 'utfo']: cnt = 1 elif val_method in ['cv', 'loo', 'fo', 'ufo']: cnt = fold_num else: raise ValueError('Invalid val_method value, expect: cv, loo, tloo, tfo') train_set_list, val_set_list = [], [] if val_method == 'ufo': driver_ids = train_set['user'] _, driver_indices = np.unique(np.array(driver_ids), return_inverse=True) gss = GroupShuffleSplit(n_splits=fold_num, test_size=val_size, random_state=2020) for train_idx, val_idx in gss.split(train_set, groups=driver_indices): train_set_list.append(train_set.loc[train_idx, :]) val_set_list.append(train_set.loc[val_idx, :]) if val_method == 'utfo': train_set = train_set.sort_values(['user', 'timestamp']).reset_index(drop=True) val_index = train_set.groupby('user').apply(time_split).explode().values val_set = train_set.loc[val_index, :] train_set = train_set[~train_set.index.isin(val_index)] train_set_list.append(train_set) val_set_list.append(val_set) if val_method == 'cv': kf = KFold(n_splits=fold_num, shuffle=False, random_state=2019) for train_index, val_index in kf.split(train_set): train_set_list.append(train_set.loc[train_index, :]) val_set_list.append(train_set.loc[val_index, :]) if val_method == 'fo': for _ in range(fold_num): train, validation = train_test_split(train_set, test_size=val_size) train_set_list.append(train) val_set_list.append(validation) elif val_method == 'tfo': # train_set = train_set.sample(frac=1) train_set = train_set.sort_values(['timestamp']).reset_index(drop=True) split_idx = int(np.ceil(len(train_set) * (1 - val_size))) train_set_list.append(train_set.iloc[:split_idx, :]) val_set_list.append(train_set.iloc[split_idx:, :]) elif val_method == 'loo': for _ in range(fold_num): val_index = train_set.groupby(['user']).apply(lambda grp: np.random.choice(grp.index)) val_set = train_set.loc[val_index, :].reset_index(drop=True).copy() sub_train_set = train_set[~train_set.index.isin(val_index)].reset_index(drop=True).copy() train_set_list.append(sub_train_set) val_set_list.append(val_set) elif val_method == 'tloo': # train_set = train_set.sample(frac=1) train_set = train_set.sort_values(['timestamp']).reset_index(drop=True) train_set['rank_latest'] = train_set.groupby(['user'])['timestamp'].rank(method='first', ascending=False) new_train_set = train_set[train_set['rank_latest'] > 1].copy() val_set = train_set[train_set['rank_latest'] == 1].copy() del new_train_set['rank_latest'], val_set['rank_latest'] train_set_list.append(new_train_set) val_set_list.append(val_set) return train_set_list, val_set_list, cnt
[ 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 509, 37, 727, 11, 4512, 62, 9288, 62, 35312, 11, 4912, 2484, 18137, 41205, 198, 198, 4299, 6626, 62, 9288, 7, 7568, 11, 1332, 62, 24396, 11639, 6513, 3256, 1332, 62, 7857, 28, 13, 17, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2446, 286, 26021, 1366, 656, 3047, 1366, 290, 1332, 1366, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 47764, 1058, 279, 67, 13, 6601, 19778, 8246, 1366, 4953, 329, 1332, 900, 26021, 198, 220, 220, 220, 1332, 62, 24396, 1058, 965, 11, 835, 284, 6626, 1332, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6513, 10354, 6626, 416, 8064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 6513, 10354, 6626, 416, 8064, 351, 41033, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28781, 2238, 10354, 2666, 530, 503, 351, 41033, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29680, 10354, 2666, 530, 503, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3046, 78, 10354, 6626, 416, 8064, 287, 2836, 1241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 315, 6513, 10354, 640, 12, 9685, 6626, 416, 8064, 287, 2836, 1241, 198, 220, 220, 220, 1332, 62, 7857, 1058, 12178, 11, 2546, 286, 1332, 900, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4512, 62, 2617, 1058, 279, 67, 13, 6601, 19778, 3047, 27039, 198, 220, 220, 220, 1332, 62, 2617, 1058, 279, 67, 13, 6601, 19778, 1332, 27039, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 4512, 62, 2617, 11, 1332, 62, 2617, 796, 279, 67, 13, 6601, 19778, 22784, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 611, 1332, 62, 24396, 6624, 705, 3046, 78, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4639, 62, 2340, 796, 47764, 17816, 7220, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4808, 11, 4639, 62, 521, 1063, 796, 45941, 13, 34642, 7, 37659, 13, 18747, 7, 26230, 62, 2340, 828, 1441, 62, 259, 4399, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 824, 796, 4912, 2484, 18137, 41205, 7, 77, 62, 22018, 896, 28, 16, 11, 1332, 62, 7857, 28, 9288, 62, 7857, 11, 4738, 62, 5219, 28, 42334, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 4512, 62, 312, 87, 11, 1332, 62, 312, 87, 287, 308, 824, 13, 35312, 7, 7568, 11, 2628, 28, 26230, 62, 521, 1063, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 4512, 62, 2617, 11, 1332, 62, 2617, 796, 47764, 13, 17946, 58, 27432, 62, 312, 87, 11, 1058, 4083, 30073, 22784, 47764, 13, 17946, 58, 9288, 62, 312, 87, 11, 1058, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 312, 87, 796, 47764, 13, 8094, 1525, 10786, 7220, 27691, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 2124, 13, 39873, 7, 31944, 28, 9288, 62, 7857, 737, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 20676, 1098, 22446, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 47764, 58, 93, 7568, 13, 9630, 13, 45763, 7, 9288, 62, 312, 87, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2617, 796, 47764, 13, 346, 420, 58, 9288, 62, 312, 87, 60, 628, 220, 220, 220, 1288, 361, 1332, 62, 24396, 6624, 705, 315, 6513, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 30619, 62, 27160, 7, 17816, 7220, 3256, 705, 16514, 27823, 20520, 737, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 9630, 796, 47764, 13, 8094, 1525, 10786, 7220, 27691, 39014, 7, 2435, 62, 35312, 737, 20676, 1098, 22446, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2617, 796, 47764, 13, 17946, 58, 9288, 62, 9630, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 47764, 58, 93, 7568, 13, 9630, 13, 45763, 7, 9288, 62, 9630, 15437, 628, 220, 220, 220, 1288, 361, 1332, 62, 24396, 6624, 705, 83, 6513, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47764, 796, 47764, 13, 39873, 7, 31944, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 30619, 62, 27160, 7, 17816, 16514, 27823, 20520, 737, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 312, 87, 796, 493, 7, 37659, 13, 344, 346, 7, 11925, 7, 7568, 8, 1635, 357, 16, 532, 1332, 62, 7857, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 11, 1332, 62, 2617, 796, 47764, 13, 346, 420, 58, 25, 35312, 62, 312, 87, 11, 1058, 4083, 30073, 22784, 47764, 13, 346, 420, 58, 35312, 62, 312, 87, 45299, 1058, 4083, 30073, 3419, 628, 220, 220, 220, 1288, 361, 1332, 62, 24396, 6624, 705, 6513, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 11, 1332, 62, 2617, 796, 4512, 62, 9288, 62, 35312, 7, 7568, 11, 1332, 62, 7857, 28, 9288, 62, 7857, 11, 4738, 62, 5219, 28, 23344, 8, 628, 220, 220, 220, 1288, 361, 1332, 62, 24396, 6624, 705, 28781, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47764, 796, 47764, 13, 39873, 7, 31944, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 30619, 62, 27160, 7, 17816, 16514, 27823, 20520, 737, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 17816, 43027, 62, 42861, 20520, 796, 47764, 13, 8094, 1525, 7, 17816, 7220, 6, 12962, 17816, 16514, 27823, 6, 4083, 43027, 7, 24396, 11639, 11085, 3256, 41988, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 11, 1332, 62, 2617, 796, 47764, 58, 7568, 17816, 43027, 62, 42861, 20520, 1875, 352, 4083, 30073, 22784, 47764, 58, 7568, 17816, 43027, 62, 42861, 20520, 6624, 352, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 4512, 62, 2617, 17816, 43027, 62, 42861, 6, 4357, 1332, 62, 2617, 17816, 43027, 62, 42861, 20520, 628, 220, 220, 220, 1288, 361, 1332, 62, 24396, 6624, 705, 29680, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1303, 3105, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1332, 62, 2617, 796, 47764, 13, 8094, 1525, 7, 17816, 7220, 20520, 737, 39014, 7, 30094, 13, 6601, 19778, 13, 39873, 11, 299, 28, 16, 737, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1332, 62, 2539, 796, 1332, 62, 2617, 58, 17816, 7220, 3256, 705, 9186, 20520, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4512, 62, 2617, 796, 47764, 13, 2617, 62, 9630, 7, 17816, 7220, 3256, 705, 9186, 20520, 737, 14781, 7, 30094, 13, 29800, 15732, 13, 6738, 62, 14535, 7, 9288, 62, 2539, 29720, 42503, 62, 9630, 22446, 30073, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1303, 2068, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 9630, 796, 47764, 13, 8094, 1525, 7, 17816, 7220, 20520, 737, 39014, 7, 50033, 1036, 79, 25, 45941, 13, 25120, 13, 25541, 7, 2164, 79, 13, 9630, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2617, 796, 47764, 13, 17946, 58, 9288, 62, 9630, 11, 1058, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 47764, 58, 93, 7568, 13, 9630, 13, 45763, 7, 9288, 62, 9630, 25295, 30073, 3419, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 44651, 1366, 62, 35312, 1988, 11, 1607, 25, 300, 2238, 11, 11511, 11, 256, 29680, 11, 256, 6513, 11537, 628, 220, 220, 220, 4512, 62, 2617, 11, 1332, 62, 2617, 796, 4512, 62, 2617, 13, 42503, 62, 9630, 7, 14781, 28, 17821, 828, 1332, 62, 2617, 13, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 628, 220, 220, 220, 1441, 4512, 62, 2617, 11, 1332, 62, 2617, 628, 198, 4299, 6626, 62, 12102, 341, 7, 27432, 62, 2617, 11, 1188, 62, 24396, 11639, 6513, 3256, 5591, 62, 22510, 28, 16, 11, 1188, 62, 7857, 28, 13, 16, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2446, 286, 6626, 1366, 656, 3047, 1366, 290, 21201, 1366, 13, 198, 220, 220, 220, 357, 21327, 11, 428, 2446, 5860, 1351, 286, 4512, 1222, 21201, 900, 11, 475, 314, 1183, 1487, 220, 198, 220, 220, 220, 340, 284, 6376, 1351, 393, 17301, 287, 2003, 523, 355, 284, 3613, 4088, 2272, 8, 16926, 46, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4512, 62, 2617, 1058, 279, 67, 13, 6601, 19778, 4512, 900, 4953, 329, 6626, 21201, 198, 220, 220, 220, 1188, 62, 24396, 1058, 965, 11, 835, 284, 6626, 21201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33967, 10354, 12082, 351, 5591, 62, 22510, 5218, 5591, 62, 22510, 12, 33538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6513, 10354, 12082, 351, 5591, 62, 22510, 1222, 1188, 62, 7857, 5218, 5591, 62, 22510, 12, 41205, 416, 8064, 7, 24, 25, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 6513, 10354, 27758, 416, 8064, 351, 41033, 11, 12082, 351, 1188, 62, 7857, 5218, 352, 12, 41205, 416, 8064, 7, 24, 25, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28781, 2238, 10354, 17446, 530, 503, 351, 41033, 5218, 352, 12, 35087, 530, 503, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29680, 10354, 12082, 351, 5591, 62, 22510, 5218, 5591, 62, 22510, 12, 35087, 530, 503, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3046, 78, 10354, 6626, 416, 8064, 287, 2836, 1241, 351, 509, 12, 11379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 315, 6513, 10354, 640, 12, 9685, 6626, 416, 8064, 287, 2836, 1241, 198, 220, 220, 220, 5591, 62, 22510, 1058, 493, 11, 262, 1271, 286, 9483, 761, 284, 307, 31031, 11, 691, 670, 618, 1188, 62, 24396, 318, 705, 33967, 3256, 705, 29680, 3256, 393, 705, 6513, 6, 198, 220, 220, 220, 1188, 62, 7857, 25, 12178, 11, 262, 2546, 286, 21201, 27039, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4512, 62, 2617, 62, 4868, 1058, 7343, 11, 1351, 286, 7560, 3047, 40522, 198, 220, 220, 220, 1188, 62, 2617, 62, 4868, 1058, 7343, 11, 1351, 286, 7560, 21201, 40522, 198, 220, 220, 220, 269, 429, 1058, 269, 429, 25, 493, 11, 262, 1271, 286, 4512, 12, 12102, 341, 5166, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1188, 62, 24396, 287, 37250, 28781, 2238, 3256, 705, 83, 6513, 3256, 705, 315, 6513, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 796, 352, 198, 220, 220, 220, 1288, 361, 1188, 62, 24396, 287, 37250, 33967, 3256, 705, 29680, 3256, 705, 6513, 3256, 705, 3046, 78, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 796, 5591, 62, 22510, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 44651, 1188, 62, 24396, 1988, 11, 1607, 25, 269, 85, 11, 300, 2238, 11, 256, 29680, 11, 256, 6513, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 4512, 62, 2617, 62, 4868, 11, 1188, 62, 2617, 62, 4868, 796, 685, 4357, 17635, 198, 220, 220, 220, 611, 1188, 62, 24396, 6624, 705, 3046, 78, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 62, 2340, 796, 4512, 62, 2617, 17816, 7220, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 4639, 62, 521, 1063, 796, 45941, 13, 34642, 7, 37659, 13, 18747, 7, 26230, 62, 2340, 828, 1441, 62, 259, 4399, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 824, 796, 4912, 2484, 18137, 41205, 7, 77, 62, 22018, 896, 28, 11379, 62, 22510, 11, 1332, 62, 7857, 28, 2100, 62, 7857, 11, 4738, 62, 5219, 28, 42334, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4512, 62, 312, 87, 11, 1188, 62, 312, 87, 287, 308, 824, 13, 35312, 7, 27432, 62, 2617, 11, 2628, 28, 26230, 62, 521, 1063, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 62, 4868, 13, 33295, 7, 27432, 62, 2617, 13, 17946, 58, 27432, 62, 312, 87, 11, 1058, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 62, 4868, 13, 33295, 7, 27432, 62, 2617, 13, 17946, 58, 2100, 62, 312, 87, 11, 1058, 12962, 198, 220, 220, 220, 611, 1188, 62, 24396, 6624, 705, 315, 6513, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 4512, 62, 2617, 13, 30619, 62, 27160, 7, 17816, 7220, 3256, 705, 16514, 27823, 20520, 737, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 9630, 796, 4512, 62, 2617, 13, 8094, 1525, 10786, 7220, 27691, 39014, 7, 2435, 62, 35312, 737, 20676, 1098, 22446, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 4512, 62, 2617, 13, 17946, 58, 2100, 62, 9630, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 4512, 62, 2617, 58, 93, 27432, 62, 2617, 13, 9630, 13, 45763, 7, 2100, 62, 9630, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 62, 4868, 13, 33295, 7, 27432, 62, 2617, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 62, 4868, 13, 33295, 7, 2100, 62, 2617, 8, 198, 220, 220, 220, 611, 1188, 62, 24396, 6624, 705, 33967, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 479, 69, 796, 509, 37, 727, 7, 77, 62, 22018, 896, 28, 11379, 62, 22510, 11, 36273, 28, 25101, 11, 4738, 62, 5219, 28, 23344, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4512, 62, 9630, 11, 1188, 62, 9630, 287, 479, 69, 13, 35312, 7, 27432, 62, 2617, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 62, 4868, 13, 33295, 7, 27432, 62, 2617, 13, 17946, 58, 27432, 62, 9630, 11, 1058, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 62, 4868, 13, 33295, 7, 27432, 62, 2617, 13, 17946, 58, 2100, 62, 9630, 11, 1058, 12962, 198, 220, 220, 220, 611, 1188, 62, 24396, 6624, 705, 6513, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 11379, 62, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 11, 21201, 796, 4512, 62, 9288, 62, 35312, 7, 27432, 62, 2617, 11, 1332, 62, 7857, 28, 2100, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 62, 4868, 13, 33295, 7, 27432, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 62, 4868, 13, 33295, 7, 12102, 341, 8, 198, 220, 220, 220, 1288, 361, 1188, 62, 24396, 6624, 705, 83, 6513, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4512, 62, 2617, 796, 4512, 62, 2617, 13, 39873, 7, 31944, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 4512, 62, 2617, 13, 30619, 62, 27160, 7, 17816, 16514, 27823, 20520, 737, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 312, 87, 796, 493, 7, 37659, 13, 344, 346, 7, 11925, 7, 27432, 62, 2617, 8, 1635, 357, 16, 532, 1188, 62, 7857, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 62, 4868, 13, 33295, 7, 27432, 62, 2617, 13, 346, 420, 58, 25, 35312, 62, 312, 87, 11, 1058, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 62, 4868, 13, 33295, 7, 27432, 62, 2617, 13, 346, 420, 58, 35312, 62, 312, 87, 45299, 1058, 12962, 198, 220, 220, 220, 1288, 361, 1188, 62, 24396, 6624, 705, 29680, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 11379, 62, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 9630, 796, 4512, 62, 2617, 13, 8094, 1525, 7, 17816, 7220, 20520, 737, 39014, 7, 50033, 1036, 79, 25, 45941, 13, 25120, 13, 25541, 7, 2164, 79, 13, 9630, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 4512, 62, 2617, 13, 17946, 58, 2100, 62, 9630, 11, 1058, 4083, 42503, 62, 9630, 7, 14781, 28, 17821, 737, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 62, 27432, 62, 2617, 796, 4512, 62, 2617, 58, 93, 27432, 62, 2617, 13, 9630, 13, 45763, 7, 2100, 62, 9630, 25295, 42503, 62, 9630, 7, 14781, 28, 17821, 737, 30073, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 62, 4868, 13, 33295, 7, 7266, 62, 27432, 62, 2617, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 62, 4868, 13, 33295, 7, 2100, 62, 2617, 8, 198, 220, 220, 220, 1288, 361, 1188, 62, 24396, 6624, 705, 28781, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4512, 62, 2617, 796, 4512, 62, 2617, 13, 39873, 7, 31944, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 4512, 62, 2617, 13, 30619, 62, 27160, 7, 17816, 16514, 27823, 20520, 737, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 17816, 43027, 62, 42861, 20520, 796, 4512, 62, 2617, 13, 8094, 1525, 7, 17816, 7220, 6, 12962, 17816, 16514, 27823, 6, 4083, 43027, 7, 24396, 11639, 11085, 3256, 41988, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27432, 62, 2617, 796, 4512, 62, 2617, 58, 27432, 62, 2617, 17816, 43027, 62, 42861, 20520, 1875, 352, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 4512, 62, 2617, 58, 27432, 62, 2617, 17816, 43027, 62, 42861, 20520, 6624, 352, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 649, 62, 27432, 62, 2617, 17816, 43027, 62, 42861, 6, 4357, 1188, 62, 2617, 17816, 43027, 62, 42861, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 62, 4868, 13, 33295, 7, 3605, 62, 27432, 62, 2617, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 62, 4868, 13, 33295, 7, 2100, 62, 2617, 8, 628, 220, 220, 220, 1441, 4512, 62, 2617, 62, 4868, 11, 1188, 62, 2617, 62, 4868, 11, 269, 429, 628 ]
2.282301
3,390
import requests import os from collections import defaultdict import pandas as pd from io import StringIO from nearest_dict import NearestDict from utils import load_stats_endpoint if __name__ == '__main__': EthereumStats(verbose=True, update=True)
[ 11748, 7007, 198, 11748, 28686, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 33245, 1330, 10903, 9399, 198, 6738, 16936, 62, 11600, 1330, 3169, 12423, 35, 713, 198, 6738, 3384, 4487, 1330, 3440, 62, 34242, 62, 437, 4122, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 20313, 29668, 7, 19011, 577, 28, 17821, 11, 4296, 28, 17821, 8 ]
3.465753
73
# coding: utf-8 from enum import Enum from six import string_types, iteritems from bitmovin_api_sdk.common.poscheck import poscheck_model
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 2237, 1330, 4731, 62, 19199, 11, 11629, 23814, 198, 6738, 1643, 76, 709, 259, 62, 15042, 62, 21282, 74, 13, 11321, 13, 1930, 9122, 1330, 1426, 9122, 62, 19849, 628 ]
3.043478
46
# alias to keep the 'bytecode' variable free import bytecode as _bytecode from bytecode.instr import UNSET, Label, SetLineno, Instr
[ 2, 16144, 284, 1394, 262, 705, 26327, 8189, 6, 7885, 1479, 198, 11748, 18022, 8189, 355, 4808, 26327, 8189, 198, 6738, 18022, 8189, 13, 259, 2536, 1330, 4725, 28480, 11, 36052, 11, 5345, 14993, 23397, 11, 27901, 628, 628 ]
3.461538
39
#!/usr/bin/env python # encoding: utf-8 """ db.py Created by José Sánchez-Gallego on 25 Oct 2015. Licensed under a 3-clause BSD license. Revision history: 25 Oct 2015 J. Sánchez-Gallego Initial version """ from __future__ import division, print_function from SDSSconnect import DatabaseConnection from Totoro import config def getConfigurationProfiles(): """Returns a dictionary with all currently configured DB profiles.""" profiles = {} for kk in config: if 'dbConnection' in kk and kk != 'dbConnection': profileName = config[kk]['name'].lower() profiles[profileName] = config[kk] if 'password' not in profiles[profileName]: profiles[profileName]['password'] = '' return profiles def getConnection(profile=None): """Returns a connection. If `profile=None`, the default connection is returned.""" # To avoid circular import errors from Totoro.utils.utils import checkOpenSession configProfiles = getConfigurationProfiles() if len(DatabaseConnection.listConnections()) > 0 and profile is None: return DatabaseConnection.getDefaultConnection() elif len(DatabaseConnection.listConnections()) == 0 and profile is None: # Creates the default DB connection databaseConnectionString = ( 'postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}' .format(**config['dbConnection'])) dbConn = DatabaseConnection( databaseConnectionString=databaseConnectionString, new=True, name=config['dbConnection']['name'], default=True) checkOpenSession() return dbConn else: if profile.lower() in DatabaseConnection.listConnections(): return DatabaseConnection.getConnection(profile.lower()) else: if profile.lower() in configProfiles: databaseConnectionString = ('postgresql+psycopg2://{user}:{password}@' '{host}:{port}/{database}' .format(**configProfiles[profile.lower()])) dbConn = DatabaseConnection( databaseConnectionString=databaseConnectionString, new=True, name=profile.lower()) checkOpenSession() return dbConn else: raise ValueError('profile {0} does not exist'.format(profile)) def getConnectionFull(profile=None): """Returns a connection, its session, plateDB and mangaDB.""" dbConn = getConnection(profile=profile) return dbConn, dbConn.Session, dbConn.plateDB, dbConn.mangaDB def setDefaulProfile(profile): """Sets a profile as default.""" if len(DatabaseConnection.listConnections()) > 0: if DatabaseConnection.getDefaultConnectionName() == 'profile': return if profile not in getConfigurationProfiles(): raise ValueError('profile {0} does not exist'.format(profile)) if profile in DatabaseConnection.listConnections(): DatabaseConnection.setDefaultConnection(profile) else: db = getConnection(profile=profile) db.setDefaultConnection(profile)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 37811, 198, 198, 9945, 13, 9078, 198, 198, 41972, 416, 36997, 311, 21162, 2395, 89, 12, 26552, 1455, 78, 319, 1679, 2556, 1853, 13, 198, 26656, 15385, 739, 257, 513, 12, 565, 682, 347, 10305, 5964, 13, 198, 198, 18009, 1166, 2106, 25, 198, 220, 220, 220, 1679, 2556, 1853, 449, 13, 311, 21162, 2395, 89, 12, 26552, 1455, 78, 198, 220, 220, 220, 220, 220, 20768, 2196, 198, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 198, 198, 6738, 311, 5258, 50, 8443, 1330, 24047, 32048, 198, 6738, 20323, 16522, 1330, 4566, 628, 198, 4299, 651, 38149, 15404, 2915, 33529, 198, 220, 220, 220, 37227, 35561, 257, 22155, 351, 477, 3058, 17839, 20137, 16545, 526, 15931, 628, 220, 220, 220, 16545, 796, 23884, 198, 220, 220, 220, 329, 479, 74, 287, 4566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 9945, 32048, 6, 287, 479, 74, 290, 479, 74, 14512, 705, 9945, 32048, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7034, 5376, 796, 4566, 58, 28747, 7131, 6, 3672, 6, 4083, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16545, 58, 13317, 5376, 60, 796, 4566, 58, 28747, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 28712, 6, 407, 287, 16545, 58, 13317, 5376, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16545, 58, 13317, 5376, 7131, 6, 28712, 20520, 796, 10148, 628, 220, 220, 220, 1441, 16545, 628, 198, 4299, 651, 32048, 7, 13317, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 4637, 13, 628, 220, 220, 220, 1002, 4600, 13317, 28, 14202, 47671, 262, 4277, 4637, 318, 4504, 526, 15931, 628, 220, 220, 220, 1303, 1675, 3368, 18620, 1330, 8563, 198, 220, 220, 220, 422, 20323, 16522, 13, 26791, 13, 26791, 1330, 2198, 11505, 36044, 628, 220, 220, 220, 4566, 15404, 2915, 796, 651, 38149, 15404, 2915, 3419, 628, 220, 220, 220, 611, 18896, 7, 38105, 32048, 13, 4868, 13313, 507, 28955, 1875, 657, 290, 7034, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 24047, 32048, 13, 1136, 19463, 32048, 3419, 198, 220, 220, 220, 1288, 361, 18896, 7, 38105, 32048, 13, 4868, 13313, 507, 28955, 6624, 657, 290, 7034, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7921, 274, 262, 4277, 20137, 4637, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 32048, 10100, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7353, 34239, 13976, 10, 13764, 22163, 70, 17, 1378, 90, 7220, 92, 29164, 28712, 92, 31, 90, 4774, 92, 29164, 634, 92, 14, 90, 48806, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 18982, 7, 1174, 11250, 17816, 9945, 32048, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 37321, 796, 24047, 32048, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6831, 32048, 10100, 28, 48806, 32048, 10100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 11250, 17816, 9945, 32048, 6, 7131, 6, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 11505, 36044, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 20613, 37321, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7034, 13, 21037, 3419, 287, 24047, 32048, 13, 4868, 13313, 507, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 24047, 32048, 13, 1136, 32048, 7, 13317, 13, 21037, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7034, 13, 21037, 3419, 287, 4566, 15404, 2915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6831, 32048, 10100, 796, 19203, 7353, 34239, 13976, 10, 13764, 22163, 70, 17, 1378, 90, 7220, 92, 29164, 28712, 92, 31, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 4774, 92, 29164, 634, 92, 14, 90, 48806, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 18982, 7, 1174, 11250, 15404, 2915, 58, 13317, 13, 21037, 3419, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 37321, 796, 24047, 32048, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6831, 32048, 10100, 28, 48806, 32048, 10100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 13317, 13, 21037, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 11505, 36044, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 20613, 37321, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 13317, 1391, 15, 92, 857, 407, 2152, 4458, 18982, 7, 13317, 4008, 628, 198, 4299, 651, 32048, 13295, 7, 13317, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 4637, 11, 663, 6246, 11, 7480, 11012, 290, 15911, 11012, 526, 15931, 628, 220, 220, 220, 20613, 37321, 796, 651, 32048, 7, 13317, 28, 13317, 8, 198, 220, 220, 220, 1441, 20613, 37321, 11, 20613, 37321, 13, 36044, 11, 20613, 37321, 13, 6816, 11012, 11, 20613, 37321, 13, 76, 16484, 11012, 628, 198, 4299, 900, 7469, 2518, 37046, 7, 13317, 2599, 198, 220, 220, 220, 37227, 50, 1039, 257, 7034, 355, 4277, 526, 15931, 628, 220, 220, 220, 611, 18896, 7, 38105, 32048, 13, 4868, 13313, 507, 28955, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24047, 32048, 13, 1136, 19463, 32048, 5376, 3419, 6624, 705, 13317, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 611, 7034, 407, 287, 651, 38149, 15404, 2915, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 13317, 1391, 15, 92, 857, 407, 2152, 4458, 18982, 7, 13317, 4008, 628, 220, 220, 220, 611, 7034, 287, 24047, 32048, 13, 4868, 13313, 507, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 24047, 32048, 13, 2617, 19463, 32048, 7, 13317, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 796, 651, 32048, 7, 13317, 28, 13317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 2617, 19463, 32048, 7, 13317, 8, 198 ]
2.541505
1,289
# Modifique as funções que form criadas no desafio 107 para que elas aceitem um parâmetro a mais, # informando se o valor retornado por elas vai ser ou não formatado pela função moeda(), desenvolvida no desafio 108. import moeda #Programa Principal valor = float(input('Digite o preço:R$ ')) print(f' A aumentando 10% de {moeda.moeda(valor)} é igual à: {moeda.aumentar(valor, formatado=True)}')# isso são parametros do pacote de moedas. print(f' Diminuindo 10% de {moeda.moeda(valor)} é igual à: {moeda.diminuir(valor, True)}') print(f' O dobro de {moeda.moeda(valor)} é igual à: R${moeda.dobro(valor, True)}') print(f' A metade de {moeda.moeda(valor)}: é {moeda.metade(valor, True)}')
[ 2, 3401, 361, 2350, 355, 1257, 16175, 127, 113, 274, 8358, 1296, 269, 21244, 292, 645, 748, 1878, 952, 16226, 31215, 8358, 1288, 292, 31506, 9186, 23781, 1582, 22940, 4164, 305, 257, 285, 15152, 11, 201, 198, 2, 220, 4175, 25440, 384, 267, 1188, 273, 1005, 1211, 4533, 16964, 1288, 292, 410, 1872, 1055, 267, 84, 299, 28749, 5794, 4533, 279, 10304, 1257, 16175, 28749, 6941, 18082, 22784, 748, 268, 10396, 85, 3755, 645, 748, 1878, 952, 15495, 13, 201, 198, 11748, 6941, 18082, 201, 198, 201, 198, 2, 15167, 64, 32641, 201, 198, 2100, 273, 796, 12178, 7, 15414, 10786, 19511, 578, 267, 662, 16175, 78, 25, 49, 3, 705, 4008, 201, 198, 4798, 7, 69, 6, 317, 257, 1713, 25440, 838, 4, 220, 390, 1391, 5908, 18082, 13, 5908, 18082, 7, 2100, 273, 38165, 38251, 45329, 723, 28141, 25, 1391, 5908, 18082, 13, 64, 1713, 283, 7, 2100, 273, 11, 5794, 4533, 28, 17821, 38165, 11537, 2, 318, 568, 264, 28749, 5772, 316, 4951, 466, 23503, 1258, 390, 6941, 276, 292, 13, 201, 198, 4798, 7, 69, 6, 14048, 259, 84, 521, 78, 838, 4, 220, 390, 1391, 5908, 18082, 13, 5908, 18082, 7, 2100, 273, 38165, 38251, 45329, 723, 28141, 25, 1391, 5908, 18082, 13, 27740, 259, 84, 343, 7, 2100, 273, 11, 6407, 38165, 11537, 201, 198, 4798, 7, 69, 6, 440, 466, 7957, 390, 1391, 5908, 18082, 13, 5908, 18082, 7, 2100, 273, 38165, 38251, 45329, 723, 28141, 25, 371, 38892, 5908, 18082, 13, 67, 672, 305, 7, 2100, 273, 11, 6407, 38165, 11537, 201, 198, 4798, 7, 69, 6, 317, 1138, 671, 390, 1391, 5908, 18082, 13, 5908, 18082, 7, 2100, 273, 38165, 25, 38251, 1391, 5908, 18082, 13, 4164, 671, 7, 2100, 273, 11, 6407, 38165, 11537, 201, 198 ]
2.364865
296
import treq from mk2.events import EventPriority, ServerEvent, ServerStarted, ServerStopped, ServerStopping, ServerStarting from mk2.plugins import Plugin from mk2.shared import decode_if_bytes class WebhookObject(dict): """ Custom dict object that represents a discord webhook object """ def add_embed(self, title, fields=[]): """ Creates an embed object with the specified title and optional list of fields""" self.embeds.append({"title": title, "fields": fields}) def add_embed_field(self, title, name, value, inline=False): """ Adds a field to the embed matching the title given """ for embed in self.embeds: if embed["title"] == title: embed["fields"].append({"name": name, "value": value, "inline": inline}) break
[ 11748, 2054, 80, 198, 198, 6738, 33480, 17, 13, 31534, 1330, 8558, 22442, 414, 11, 9652, 9237, 11, 9652, 10434, 276, 11, 9652, 1273, 38333, 11, 9652, 1273, 33307, 11, 9652, 22851, 198, 6738, 33480, 17, 13, 37390, 1330, 42636, 198, 6738, 33480, 17, 13, 28710, 1330, 36899, 62, 361, 62, 33661, 628, 198, 4871, 5313, 25480, 10267, 7, 11600, 2599, 198, 220, 220, 220, 37227, 8562, 8633, 2134, 326, 6870, 257, 36446, 3992, 25480, 2134, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 751, 62, 20521, 7, 944, 11, 3670, 11, 7032, 28, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7921, 274, 281, 11525, 2134, 351, 262, 7368, 3670, 290, 11902, 1351, 286, 7032, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20521, 82, 13, 33295, 7, 4895, 7839, 1298, 3670, 11, 366, 25747, 1298, 7032, 30072, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 751, 62, 20521, 62, 3245, 7, 944, 11, 3670, 11, 1438, 11, 1988, 11, 26098, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34333, 257, 2214, 284, 262, 11525, 12336, 262, 3670, 1813, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 11525, 287, 2116, 13, 20521, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11525, 14692, 7839, 8973, 6624, 3670, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 14692, 25747, 1, 4083, 33295, 7, 4895, 3672, 1298, 1438, 11, 366, 8367, 1298, 1988, 11, 366, 45145, 1298, 26098, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 198 ]
2.819113
293
# -*- coding: utf-8 -*- """ Analysis tools """ import sciplot import numpy as np import matplotlib.pyplot as plt from .functions import _hist_init def plot_flatness(sig, tag, bins=None, ax=None, xrange=None, percent_step=5): """ Plotting differences of sig distribution in percentiles of tag distribution Args: sig: tag: bins: ax: xrange: percent_step: Returns: """ if ax is None: fix, ax = plt.subplots() xaxis = _hist_init(sig, bins=bins, xrange=xrange) colormap = plt.get_cmap('magma') orig, x = np.histogram(sig, bins=xaxis, range=xrange, normed=True, ) bin_center = ((x + np.roll(x, 1)) / 2)[1:] tmp = orig/orig ax.plot(bin_center, tmp, color='black', lw=1) for quantil in np.arange(5, 100, percent_step): cut = np.percentile(tag, quantil) sel = tag >= cut y, x = np.histogram(sig[sel], bins=x, range=xrange, normed=True, ) y /= orig ax.fill_between(bin_center, tmp, y, color=colormap(quantil/100.0)) tmp = y def ratio(y1, y2, y1_err=None, y2_err= None): """ calculate the ratio between two histograms y1/y2 Args: y1: y values of first histogram y2: y values of second histogram y1_err: (optional) error of first y2_err: (optional) error of second Returns: ratio, ratio_error """ assert len(y1) == len(y2), "y1 and y2 length does not match" y1e = np.sqrt(y1) if y1_err is None else y1_err y2e = np.sqrt(y2) if y2_err is None else y2_err r = y1/y2 re = np.sqrt((y1/(1.0*y2*y2))*(y1/(1.0*y2*y2))*y2e*y2e+(1/(1.0*y2))*(1/(1.0*y2))*y1e*y1e) return r, re def data_mc_ratio(data, mc, label_data='Data', label_mc="MC", y_label=None, figsize=None, ratio_range=(0, 2), *args, **kwarg): """ Plot a comparison between two sets of data Args: data: mc: label_data: label_mc: y_label: figsize: ratio_range: *args: **kwarg: Returns: """ f, axes = plt.subplots(2, 1, gridspec_kw={"height_ratios": [3, 1]}, sharex=True, figsize=figsize) ax0 = axes[0] hm = sciplot.hist(mc, lw=2, ax=ax0, label=label_mc, *args, **kwarg) hd = sciplot.errorhist(data, ax=ax0, label=label_data, color='black') ax0.legend() ax1 = axes[1] ry, rye = ratio(hd[0], hm[0]) sciplot.errorbar(hd[1], ry, rye, ax=ax1, color='grey') ax1.axhline(1, color='grey', lw=0.5, ls='--') f.subplots_adjust(hspace=0.1) ax1.set_ylim(*ratio_range) sciplot.xlim() if y_label is not None: ax0.set_ylabel(y_label) ax1.set_ylabel("Ratio") ax1.yaxis.set_label_coords(-0.08, 0.5) ax0.yaxis.set_label_coords(-0.08, 0.5)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 14691, 4899, 198, 198, 37811, 198, 11748, 20681, 29487, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 764, 12543, 2733, 1330, 4808, 10034, 62, 15003, 628, 198, 4299, 7110, 62, 38568, 1108, 7, 82, 328, 11, 7621, 11, 41701, 28, 14202, 11, 7877, 28, 14202, 11, 2124, 9521, 28, 14202, 11, 1411, 62, 9662, 28, 20, 2599, 198, 220, 220, 220, 37227, 28114, 889, 5400, 286, 43237, 6082, 287, 1411, 2915, 286, 7621, 6082, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 43237, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41701, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 9521, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 62, 9662, 25, 628, 220, 220, 220, 16409, 25, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 7877, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4259, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 628, 220, 220, 220, 2124, 22704, 796, 4808, 10034, 62, 15003, 7, 82, 328, 11, 41701, 28, 65, 1040, 11, 2124, 9521, 28, 87, 9521, 8, 628, 220, 220, 220, 951, 579, 499, 796, 458, 83, 13, 1136, 62, 66, 8899, 10786, 19726, 2611, 11537, 198, 220, 220, 220, 1796, 11, 2124, 796, 45941, 13, 10034, 21857, 7, 82, 328, 11, 41701, 28, 87, 22704, 11, 2837, 28, 87, 9521, 11, 2593, 276, 28, 17821, 11, 1267, 198, 220, 220, 220, 9874, 62, 16159, 796, 14808, 87, 1343, 45941, 13, 2487, 7, 87, 11, 352, 4008, 1220, 362, 38381, 16, 47715, 198, 220, 220, 220, 45218, 796, 1796, 14, 11612, 198, 220, 220, 220, 7877, 13, 29487, 7, 8800, 62, 16159, 11, 45218, 11, 3124, 11639, 13424, 3256, 300, 86, 28, 16, 8, 198, 220, 220, 220, 329, 5554, 346, 287, 45941, 13, 283, 858, 7, 20, 11, 1802, 11, 1411, 62, 9662, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2005, 796, 45941, 13, 25067, 576, 7, 12985, 11, 5554, 346, 8, 198, 220, 220, 220, 220, 220, 220, 220, 384, 75, 796, 7621, 18189, 2005, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11, 2124, 796, 45941, 13, 10034, 21857, 7, 82, 328, 58, 741, 4357, 41701, 28, 87, 11, 2837, 28, 87, 9521, 11, 2593, 276, 28, 17821, 11, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1220, 28, 1796, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 20797, 62, 23395, 7, 8800, 62, 16159, 11, 45218, 11, 331, 11, 3124, 28, 4033, 579, 499, 7, 40972, 346, 14, 3064, 13, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 331, 628, 198, 198, 4299, 8064, 7, 88, 16, 11, 331, 17, 11, 331, 16, 62, 8056, 28, 14202, 11, 331, 17, 62, 8056, 28, 6045, 2599, 198, 220, 220, 220, 37227, 15284, 262, 8064, 1022, 734, 1554, 26836, 331, 16, 14, 88, 17, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 16, 25, 331, 3815, 286, 717, 1554, 21857, 198, 220, 220, 220, 220, 220, 220, 220, 331, 17, 25, 331, 3815, 286, 1218, 1554, 21857, 198, 220, 220, 220, 220, 220, 220, 220, 331, 16, 62, 8056, 25, 357, 25968, 8, 4049, 286, 717, 198, 220, 220, 220, 220, 220, 220, 220, 331, 17, 62, 8056, 25, 357, 25968, 8, 4049, 286, 1218, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8064, 11, 8064, 62, 18224, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 18896, 7, 88, 16, 8, 6624, 18896, 7, 88, 17, 828, 366, 88, 16, 290, 331, 17, 4129, 857, 407, 2872, 1, 198, 220, 220, 220, 331, 16, 68, 796, 45941, 13, 31166, 17034, 7, 88, 16, 8, 611, 331, 16, 62, 8056, 318, 6045, 2073, 331, 16, 62, 8056, 198, 220, 220, 220, 331, 17, 68, 796, 45941, 13, 31166, 17034, 7, 88, 17, 8, 611, 331, 17, 62, 8056, 318, 6045, 2073, 331, 17, 62, 8056, 198, 220, 220, 220, 374, 796, 331, 16, 14, 88, 17, 198, 220, 220, 220, 302, 796, 45941, 13, 31166, 17034, 19510, 88, 16, 29006, 16, 13, 15, 9, 88, 17, 9, 88, 17, 4008, 9, 7, 88, 16, 29006, 16, 13, 15, 9, 88, 17, 9, 88, 17, 4008, 9, 88, 17, 68, 9, 88, 17, 68, 33747, 16, 29006, 16, 13, 15, 9, 88, 17, 4008, 9, 7, 16, 29006, 16, 13, 15, 9, 88, 17, 4008, 9, 88, 16, 68, 9, 88, 16, 68, 8, 198, 220, 220, 220, 1441, 374, 11, 302, 628, 198, 4299, 1366, 62, 23209, 62, 10366, 952, 7, 7890, 11, 36650, 11, 6167, 62, 7890, 11639, 6601, 3256, 6167, 62, 23209, 2625, 9655, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 18242, 28, 14202, 11, 2336, 7857, 28, 14202, 11, 8064, 62, 9521, 16193, 15, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 11, 12429, 46265, 853, 2599, 198, 220, 220, 220, 37227, 28114, 257, 7208, 1022, 734, 5621, 286, 1366, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 36650, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 23209, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 18242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8064, 62, 9521, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 853, 25, 628, 220, 220, 220, 16409, 25, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 11, 34197, 796, 458, 83, 13, 7266, 489, 1747, 7, 17, 11, 352, 11, 50000, 43106, 62, 46265, 28, 4895, 17015, 62, 10366, 4267, 1298, 685, 18, 11, 352, 60, 5512, 2648, 87, 28, 17821, 11, 2336, 7857, 28, 5647, 7857, 8, 198, 220, 220, 220, 7877, 15, 796, 34197, 58, 15, 60, 628, 220, 220, 220, 289, 76, 796, 20681, 29487, 13, 10034, 7, 23209, 11, 300, 86, 28, 17, 11, 7877, 28, 897, 15, 11, 6167, 28, 18242, 62, 23209, 11, 1635, 22046, 11, 12429, 46265, 853, 8, 198, 220, 220, 220, 289, 67, 796, 20681, 29487, 13, 18224, 10034, 7, 7890, 11, 7877, 28, 897, 15, 11, 6167, 28, 18242, 62, 7890, 11, 3124, 11639, 13424, 11537, 198, 220, 220, 220, 7877, 15, 13, 1455, 437, 3419, 628, 220, 220, 220, 7877, 16, 796, 34197, 58, 16, 60, 198, 220, 220, 220, 374, 88, 11, 47553, 796, 8064, 7, 31298, 58, 15, 4357, 289, 76, 58, 15, 12962, 198, 220, 220, 220, 20681, 29487, 13, 18224, 5657, 7, 31298, 58, 16, 4357, 374, 88, 11, 47553, 11, 7877, 28, 897, 16, 11, 3124, 11639, 49502, 11537, 198, 220, 220, 220, 7877, 16, 13, 897, 71, 1370, 7, 16, 11, 3124, 11639, 49502, 3256, 300, 86, 28, 15, 13, 20, 11, 43979, 11639, 438, 11537, 198, 220, 220, 220, 277, 13, 7266, 489, 1747, 62, 23032, 7, 71, 13200, 28, 15, 13, 16, 8, 628, 220, 220, 220, 7877, 16, 13, 2617, 62, 88, 2475, 46491, 10366, 952, 62, 9521, 8, 198, 220, 220, 220, 20681, 29487, 13, 87, 2475, 3419, 198, 220, 220, 220, 611, 331, 62, 18242, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 15, 13, 2617, 62, 2645, 9608, 7, 88, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 16, 13, 2617, 62, 2645, 9608, 7203, 29665, 952, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 16, 13, 88, 22704, 13, 2617, 62, 18242, 62, 1073, 3669, 32590, 15, 13, 2919, 11, 657, 13, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 15, 13, 88, 22704, 13, 2617, 62, 18242, 62, 1073, 3669, 32590, 15, 13, 2919, 11, 657, 13, 20, 8, 198 ]
1.991525
1,416
import string import random from set1.Aes_cipher import * from set2.PkcsPadding import pkcs7_pad_check from set1.Xor import xorPlain KEY = ''.join([chr(random.randint(0,255)) for i in range(16)]) IV = ''.join([chr(random.randint(0,255)) for i in range(16)]) if __name__ == '__main__': # replace d with ; and second d with = enc = format_string('dadmindtrue') print 'Before:', is_admin(str(enc)) # https://upload.wikimedia.org/wikipedia/commons/thumb/2/2a/CBC_decryption.svg/601px-CBC_decryption.svg.png # we know that 'comment1=cooking%20MCs;userdata='+user_input+';comment2=%20like%20a%20pound%20of%20bacon' # is being encrypted so split it into block of 16 and determine in which block our input falls into. # Take the previous encrypted block xor with the plain input to get the output of the AES cipher of the current block # then xor it with the desired output and make the previous block equal to that # in my case it was 2nd block enc2 = enc[0:16] + getBitFlippedBlock(enc[16:32], 'dadmindtrue;comm', ';admin=true;comm') + enc[32:] print 'After:', is_admin(str(enc2))
[ 11748, 4731, 198, 11748, 4738, 198, 6738, 900, 16, 13, 32, 274, 62, 66, 10803, 1330, 1635, 198, 6738, 900, 17, 13, 47, 74, 6359, 47, 26872, 1330, 279, 74, 6359, 22, 62, 15636, 62, 9122, 198, 6738, 900, 16, 13, 55, 273, 1330, 2124, 273, 3646, 391, 198, 198, 20373, 796, 705, 4458, 22179, 26933, 354, 81, 7, 25120, 13, 25192, 600, 7, 15, 11, 13381, 4008, 329, 1312, 287, 2837, 7, 1433, 8, 12962, 198, 3824, 796, 705, 4458, 22179, 26933, 354, 81, 7, 25120, 13, 25192, 600, 7, 15, 11, 13381, 4008, 329, 1312, 287, 2837, 7, 1433, 8, 12962, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 6330, 288, 351, 2162, 290, 1218, 288, 351, 796, 198, 220, 220, 220, 2207, 796, 5794, 62, 8841, 10786, 47984, 10155, 7942, 11537, 198, 220, 220, 220, 3601, 705, 8421, 25, 3256, 318, 62, 28482, 7, 2536, 7, 12685, 4008, 628, 220, 220, 220, 1303, 3740, 1378, 25850, 13, 20763, 20626, 13, 2398, 14, 31266, 14, 9503, 684, 14, 400, 2178, 14, 17, 14, 17, 64, 14, 29208, 62, 12501, 13168, 13, 21370, 70, 14, 41706, 8416, 12, 29208, 62, 12501, 13168, 13, 21370, 70, 13, 11134, 198, 220, 220, 220, 1303, 356, 760, 326, 705, 23893, 16, 28, 27916, 278, 4, 1238, 9655, 82, 26, 7220, 7890, 11639, 10, 7220, 62, 15414, 10, 17020, 23893, 17, 28, 4, 1238, 2339, 4, 1238, 64, 4, 1238, 19568, 4, 1238, 1659, 4, 1238, 65, 7807, 6, 198, 220, 220, 220, 1303, 318, 852, 19365, 523, 6626, 340, 656, 2512, 286, 1467, 290, 5004, 287, 543, 2512, 674, 5128, 8953, 656, 13, 198, 220, 220, 220, 1303, 7214, 262, 2180, 19365, 2512, 2124, 273, 351, 262, 8631, 5128, 284, 651, 262, 5072, 286, 262, 34329, 38012, 286, 262, 1459, 2512, 198, 220, 220, 220, 1303, 788, 2124, 273, 340, 351, 262, 10348, 5072, 290, 787, 262, 2180, 2512, 4961, 284, 326, 628, 220, 220, 220, 1303, 287, 616, 1339, 340, 373, 362, 358, 2512, 198, 220, 220, 220, 2207, 17, 796, 2207, 58, 15, 25, 1433, 60, 1343, 651, 13128, 7414, 3949, 12235, 7, 12685, 58, 1433, 25, 2624, 4357, 705, 47984, 10155, 7942, 26, 9503, 3256, 705, 26, 28482, 28, 7942, 26, 9503, 11537, 1343, 2207, 58, 2624, 47715, 198, 220, 220, 220, 3601, 705, 3260, 25, 3256, 318, 62, 28482, 7, 2536, 7, 12685, 17, 4008, 198 ]
2.755501
409
import torch import torch.nn as nn import torch.nn.functional as F from networks.layers import NoisyLinear from networks.network_bodies import SimpleBody, AtariBody device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ########Recurrent Architectures######### ########Actor Critic Architectures#########
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 6738, 7686, 13, 75, 6962, 1330, 1400, 13560, 14993, 451, 198, 6738, 7686, 13, 27349, 62, 65, 5042, 1330, 17427, 25842, 11, 35884, 25842, 198, 25202, 796, 28034, 13, 25202, 7203, 66, 15339, 1, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 366, 36166, 4943, 628, 628, 628, 628, 198, 198, 7804, 6690, 6657, 17340, 942, 7804, 2, 628, 198, 7804, 40277, 10056, 291, 17340, 942, 7804, 2, 198 ]
3.569892
93
import sys from PyQt5 import QtGui, QtWidgets from PyQt5.QtCore import QRect from PyQt5.QtWidgets import QApplication, QFileDialog from Shadow import ShadowTools as ST from orangewidget import gui from oasys.widgets import gui as oasysgui, widget from oasys.util.oasys_util import EmittingStream from orangecontrib.wofry.util.wofry_objects import WofryData from orangecontrib.wofry.widgets.gui.python_script import PythonScript if __name__ == "__main__": import sys from PyQt5.QtWidgets import QApplication a = QApplication(sys.argv) ow = OWWOInfo() ow.show() a.exec_() ow.saveSettings()
[ 11748, 25064, 198, 198, 6738, 9485, 48, 83, 20, 1330, 33734, 8205, 72, 11, 33734, 54, 312, 11407, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 42137, 478, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 23416, 11, 1195, 8979, 44204, 198, 6738, 8843, 1330, 8843, 33637, 355, 3563, 198, 6738, 393, 648, 413, 17484, 1330, 11774, 198, 6738, 267, 292, 893, 13, 28029, 11407, 1330, 11774, 355, 267, 292, 893, 48317, 11, 26295, 198, 6738, 267, 292, 893, 13, 22602, 13, 78, 292, 893, 62, 22602, 1330, 2295, 2535, 12124, 198, 198, 6738, 10912, 3642, 822, 13, 86, 1659, 563, 13, 22602, 13, 86, 1659, 563, 62, 48205, 1330, 370, 1659, 563, 6601, 198, 6738, 10912, 3642, 822, 13, 86, 1659, 563, 13, 28029, 11407, 13, 48317, 13, 29412, 62, 12048, 1330, 11361, 7391, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 422, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 23416, 628, 220, 220, 220, 257, 796, 1195, 23416, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 12334, 796, 440, 17947, 46, 12360, 3419, 628, 198, 220, 220, 220, 12334, 13, 12860, 3419, 198, 220, 220, 220, 257, 13, 18558, 62, 3419, 198, 220, 220, 220, 12334, 13, 21928, 26232, 3419 ]
2.681034
232
import os basePath = './install_root' RLGlue_Files = [] pythonTemplateFileName='uninstall-rlglue-template.py' pythonUninstallFileName='uninstall-resources/uninstall-rlglue.py' for root, dirs, files in os.walk(basePath): for f in files: if f.endswith('.h') or f.endswith('.dylib') or f.endswith('a'): thisName=os.path.join(root, f) nameWithoutBase=thisName[len(basePath):] RLGlue_Files.append(nameWithoutBase) subs={} subs['RLGLUE_FILE_REPLACE_HERE']=str(RLGlue_Files) f = file(pythonTemplateFileName) newlines = [] for line in f: for key,value in subs.iteritems(): if key in line: line=line.replace(key,value) newlines.append(line) outfile = file(pythonUninstallFileName, 'w') outfile.writelines(newlines)
[ 11748, 28686, 198, 8692, 15235, 796, 705, 19571, 17350, 62, 15763, 6, 198, 7836, 9861, 518, 62, 25876, 796, 17635, 198, 198, 29412, 30800, 8979, 5376, 11639, 403, 17350, 12, 45895, 4743, 518, 12, 28243, 13, 9078, 6, 198, 29412, 3118, 17350, 8979, 5376, 11639, 403, 17350, 12, 37540, 14, 403, 17350, 12, 45895, 4743, 518, 13, 9078, 6, 198, 198, 1640, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 8692, 15235, 2599, 198, 197, 1640, 277, 287, 3696, 25, 198, 197, 197, 361, 277, 13, 437, 2032, 342, 7, 4458, 71, 11537, 393, 277, 13, 437, 2032, 342, 7, 4458, 31739, 11537, 393, 277, 13, 437, 2032, 342, 10786, 64, 6, 2599, 198, 197, 197, 197, 5661, 5376, 28, 418, 13, 6978, 13, 22179, 7, 15763, 11, 277, 8, 198, 197, 197, 197, 3672, 16249, 14881, 28, 5661, 5376, 58, 11925, 7, 8692, 15235, 2599, 60, 198, 197, 197, 197, 7836, 9861, 518, 62, 25876, 13, 33295, 7, 3672, 16249, 14881, 8, 198, 198, 7266, 82, 34758, 92, 198, 7266, 82, 17816, 7836, 8763, 8924, 62, 25664, 62, 2200, 6489, 11598, 62, 39, 9338, 20520, 28, 2536, 7, 7836, 9861, 518, 62, 25876, 8, 198, 69, 796, 2393, 7, 29412, 30800, 8979, 5376, 8, 198, 3605, 6615, 796, 17635, 198, 1640, 1627, 287, 277, 25, 198, 197, 1640, 1994, 11, 8367, 287, 6352, 13, 2676, 23814, 33529, 198, 197, 197, 361, 1994, 287, 1627, 25, 198, 197, 197, 197, 1370, 28, 1370, 13, 33491, 7, 2539, 11, 8367, 8, 198, 197, 3605, 6615, 13, 33295, 7, 1370, 8, 198, 198, 448, 7753, 796, 2393, 7, 29412, 3118, 17350, 8979, 5376, 11, 705, 86, 11537, 198, 448, 7753, 13, 8933, 20655, 7, 3605, 6615, 8 ]
2.527778
288
# Krishan Patel # Bank Account Class """Chaper 14: Objects From Hello World! Computer Programming for Kids and Beginners Copyright Warren and Carter Sande, 2009-2013 """ # Chapter 14 - Try it out class BankAccount: """Creates a bank account""" def display_balance(self): """Displays the balance of the bank account""" print("Balance:", self.balance) def deposit(self, money_deposit): """Makes a deposit into bank account (adds more money to balance)""" self.balance += money_deposit def withdraw(self, money_withdraw): """Withdraws money from bank account (reduces balance)""" self.balance -= money_withdraw class InterestAccount(BankAccount): """Type of bank account that earns interest""" def add_interest(self, rate): """Adds interest to bank account""" interest = self.balance*rate self.deposit(interest) # Testing out BankAccount class print("----------Testing BankAccount----------") bankAccount = BankAccount("Krishan Patel", 123456) print(bankAccount) print() bankAccount.display_balance() print() bankAccount.deposit(34.52) print(bankAccount) print() bankAccount.withdraw(12.25) print(bankAccount) print() bankAccount.withdraw(30.18) print(bankAccount) print() # Testing out InterestAccount class print("----------Testing InterestAccount----------") interestAccount = InterestAccount("Krishan Patel", 234567) print(interestAccount) print() interestAccount.display_balance() print() interestAccount.deposit(34.52) print(interestAccount) print() interestAccount.add_interest(0.11) print(interestAccount)
[ 2, 31372, 272, 33110, 198, 2, 5018, 10781, 5016, 198, 198, 37811, 1925, 2136, 1478, 25, 35832, 198, 4863, 18435, 2159, 0, 13851, 30297, 329, 17476, 290, 16623, 2741, 198, 15269, 11328, 290, 10831, 3837, 68, 11, 3717, 12, 6390, 198, 37811, 198, 198, 2, 7006, 1478, 532, 9993, 340, 503, 198, 4871, 5018, 30116, 25, 198, 220, 220, 220, 37227, 16719, 274, 257, 3331, 1848, 37811, 628, 220, 220, 220, 825, 3359, 62, 20427, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7279, 26024, 262, 5236, 286, 262, 3331, 1848, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 45866, 25, 1600, 2116, 13, 20427, 8, 628, 220, 220, 220, 825, 14667, 7, 944, 11, 1637, 62, 10378, 7434, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44, 1124, 257, 14667, 656, 3331, 1848, 357, 2860, 82, 517, 1637, 284, 5236, 8, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20427, 15853, 1637, 62, 10378, 7434, 628, 220, 220, 220, 825, 8399, 7, 944, 11, 1637, 62, 4480, 19334, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3152, 19334, 82, 1637, 422, 3331, 1848, 357, 445, 26873, 5236, 8, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20427, 48185, 1637, 62, 4480, 19334, 198, 198, 4871, 12033, 30116, 7, 28650, 30116, 2599, 198, 220, 220, 220, 37227, 6030, 286, 3331, 1848, 326, 29339, 1393, 37811, 198, 220, 220, 220, 825, 751, 62, 9446, 7, 944, 11, 2494, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46245, 1393, 284, 3331, 1848, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1393, 796, 2116, 13, 20427, 9, 4873, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10378, 7434, 7, 9446, 8, 198, 198, 2, 23983, 503, 5018, 30116, 1398, 198, 4798, 7203, 35937, 44154, 5018, 30116, 35937, 4943, 198, 17796, 30116, 796, 5018, 30116, 7203, 42, 37518, 272, 33110, 1600, 17031, 29228, 8, 198, 4798, 7, 17796, 30116, 8, 198, 4798, 3419, 198, 198, 17796, 30116, 13, 13812, 62, 20427, 3419, 198, 4798, 3419, 198, 198, 17796, 30116, 13, 10378, 7434, 7, 2682, 13, 4309, 8, 198, 4798, 7, 17796, 30116, 8, 198, 4798, 3419, 198, 198, 17796, 30116, 13, 4480, 19334, 7, 1065, 13, 1495, 8, 198, 4798, 7, 17796, 30116, 8, 198, 4798, 3419, 198, 198, 17796, 30116, 13, 4480, 19334, 7, 1270, 13, 1507, 8, 198, 4798, 7, 17796, 30116, 8, 198, 4798, 3419, 198, 198, 2, 23983, 503, 12033, 30116, 1398, 198, 4798, 7203, 35937, 44154, 12033, 30116, 35937, 4943, 198, 9446, 30116, 796, 12033, 30116, 7203, 42, 37518, 272, 33110, 1600, 2242, 2231, 3134, 8, 198, 4798, 7, 9446, 30116, 8, 198, 4798, 3419, 198, 198, 9446, 30116, 13, 13812, 62, 20427, 3419, 198, 4798, 3419, 198, 198, 9446, 30116, 13, 10378, 7434, 7, 2682, 13, 4309, 8, 198, 4798, 7, 9446, 30116, 8, 198, 4798, 3419, 198, 198, 9446, 30116, 13, 2860, 62, 9446, 7, 15, 13, 1157, 8, 198, 4798, 7, 9446, 30116, 8, 198 ]
3.174168
511
import platform import textwrap import termios import struct import fcntl import sys from accessories import ( as_subprocess, TestTerminal, many_columns, all_terms, ) import pytest def test_SequenceWrapper_invalid_width(): """Test exception thrown from invalid width""" WIDTH = -3 @as_subprocess child() def test_SequenceWrapper_drop_whitespace_subsequent_indent(): """Test that text wrapping matches internal extra options.""" WIDTH = 10 @as_subprocess child() @pytest.mark.skipif(platform.python_implementation() == 'PyPy', reason='PyPy fails TIOCSWINSZ') def test_SequenceWrapper(all_terms, many_columns): """Test that text wrapping accounts for sequences correctly.""" @as_subprocess child(kind=all_terms, lines=25, cols=many_columns) def test_SequenceWrapper_27(all_terms): """Test that text wrapping accounts for sequences correctly.""" WIDTH = 27 @as_subprocess child(kind=all_terms)
[ 11748, 3859, 198, 11748, 2420, 37150, 198, 11748, 3381, 4267, 198, 11748, 2878, 198, 11748, 277, 66, 429, 75, 198, 11748, 25064, 198, 198, 6738, 18199, 1330, 357, 198, 220, 220, 220, 355, 62, 7266, 14681, 11, 198, 220, 220, 220, 6208, 44798, 282, 11, 198, 220, 220, 220, 867, 62, 28665, 82, 11, 198, 220, 220, 220, 477, 62, 38707, 11, 198, 8, 198, 198, 11748, 12972, 9288, 628, 198, 4299, 1332, 62, 44015, 594, 36918, 2848, 62, 259, 12102, 62, 10394, 33529, 198, 220, 220, 220, 37227, 14402, 6631, 8754, 422, 12515, 9647, 37811, 198, 220, 220, 220, 370, 2389, 4221, 796, 532, 18, 628, 220, 220, 220, 2488, 292, 62, 7266, 14681, 628, 220, 220, 220, 1200, 3419, 628, 198, 4299, 1332, 62, 44015, 594, 36918, 2848, 62, 14781, 62, 1929, 2737, 10223, 62, 7266, 44399, 62, 521, 298, 33529, 198, 220, 220, 220, 37227, 14402, 326, 2420, 27074, 7466, 5387, 3131, 3689, 526, 15931, 198, 220, 220, 220, 370, 2389, 4221, 796, 838, 628, 220, 220, 220, 2488, 292, 62, 7266, 14681, 628, 220, 220, 220, 1200, 3419, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 24254, 13, 29412, 62, 320, 32851, 3419, 6624, 705, 20519, 20519, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1738, 11639, 20519, 20519, 10143, 31598, 4503, 17887, 20913, 57, 11537, 198, 4299, 1332, 62, 44015, 594, 36918, 2848, 7, 439, 62, 38707, 11, 867, 62, 28665, 82, 2599, 198, 220, 220, 220, 37227, 14402, 326, 2420, 27074, 5504, 329, 16311, 9380, 526, 15931, 198, 220, 220, 220, 2488, 292, 62, 7266, 14681, 628, 220, 220, 220, 1200, 7, 11031, 28, 439, 62, 38707, 11, 3951, 28, 1495, 11, 951, 82, 28, 21834, 62, 28665, 82, 8, 628, 198, 4299, 1332, 62, 44015, 594, 36918, 2848, 62, 1983, 7, 439, 62, 38707, 2599, 198, 220, 220, 220, 37227, 14402, 326, 2420, 27074, 5504, 329, 16311, 9380, 526, 15931, 198, 220, 220, 220, 370, 2389, 4221, 796, 2681, 628, 220, 220, 220, 2488, 292, 62, 7266, 14681, 628, 220, 220, 220, 1200, 7, 11031, 28, 439, 62, 38707, 8, 198 ]
2.758242
364
from logging import getLogger from os import system from discord.ext import commands import discord from src.constants import Colours from src.exts.utils.converter import acute_remover log = getLogger(__name__) class Commands(commands.Cog): """A couple of simple commands.""" @commands.command(name="hello", aliases=("hey", "hlo", "test")) @commands.is_owner() @commands.command(name="eval", aliases=("e", )) @commands.is_owner() @commands.command(name="cmd", aliases=("os", "shell", "bash", )) @commands.command(name='devil', aliases=("mr_devil",))
[ 6738, 18931, 1330, 651, 11187, 1362, 198, 6738, 28686, 1330, 1080, 198, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 11748, 36446, 198, 198, 6738, 12351, 13, 9979, 1187, 1330, 1623, 4662, 198, 6738, 12351, 13, 2302, 82, 13, 26791, 13, 1102, 332, 353, 1330, 14352, 62, 2787, 2502, 628, 198, 6404, 796, 651, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 49505, 7, 9503, 1746, 13, 34, 519, 2599, 198, 220, 220, 220, 37227, 32, 3155, 286, 2829, 9729, 526, 15931, 628, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 7, 3672, 2625, 31373, 1600, 47217, 28, 7203, 20342, 1600, 366, 71, 5439, 1600, 366, 9288, 48774, 628, 220, 220, 220, 2488, 9503, 1746, 13, 271, 62, 18403, 3419, 198, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 7, 3672, 2625, 18206, 1600, 47217, 28, 7203, 68, 1600, 15306, 628, 220, 220, 220, 2488, 9503, 1746, 13, 271, 62, 18403, 3419, 198, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 7, 3672, 2625, 28758, 1600, 47217, 28, 7203, 418, 1600, 366, 29149, 1600, 366, 41757, 1600, 15306, 628, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 7, 3672, 11639, 7959, 346, 3256, 47217, 28, 7203, 43395, 62, 7959, 346, 1600, 4008, 628 ]
2.873171
205
#나누어 떨어지는 숫자 배열 ''' 채점을 시작합니다. 정확성 테스트 테스트 1 〉 통과 (0.02ms, 10.2MB) 테스트 2 〉 통과 (0.01ms, 10.3MB) 테스트 3 〉 통과 (0.02ms, 10.2MB) 테스트 4 〉 통과 (0.02ms, 10.2MB) 테스트 5 〉 통과 (0.01ms, 10.1MB) 테스트 6 〉 통과 (3.22ms, 13.4MB) 테스트 7 〉 통과 (0.27ms, 10.3MB) 테스트 8 〉 통과 (0.00ms, 10.2MB) 테스트 9 〉 통과 (0.19ms, 10.2MB) 테스트 10 〉 통과 (0.13ms, 10.2MB) 테스트 11 〉 통과 (0.06ms, 10.2MB) 테스트 12 〉 통과 (0.06ms, 10.1MB) 테스트 13 〉 통과 (0.44ms, 10.3MB) 테스트 14 〉 통과 (0.28ms, 10.3MB) 테스트 15 〉 통과 (0.14ms, 10.3MB) 테스트 16 〉 통과 (0.04ms, 10.2MB) 채점 결과 정확성: 100.0 합계: 100.0 / 100.0 '''
[ 2, 167, 224, 246, 167, 230, 226, 168, 244, 112, 31619, 244, 101, 168, 244, 112, 168, 100, 222, 167, 232, 242, 23821, 230, 104, 168, 252, 238, 31619, 108, 108, 168, 245, 112, 628, 198, 7061, 6, 198, 168, 109, 226, 168, 254, 238, 35975, 226, 23821, 233, 250, 168, 252, 239, 47991, 102, 46695, 230, 46695, 97, 13, 198, 168, 254, 243, 169, 247, 243, 168, 226, 109, 220, 220, 169, 227, 234, 168, 232, 97, 169, 232, 116, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 352, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 2999, 907, 11, 838, 13, 17, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 362, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 486, 907, 11, 838, 13, 18, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 513, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 2999, 907, 11, 838, 13, 17, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 604, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 2999, 907, 11, 838, 13, 17, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 642, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 486, 907, 11, 838, 13, 16, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 718, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 18, 13, 1828, 907, 11, 1511, 13, 19, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 767, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 1983, 907, 11, 838, 13, 18, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 807, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 405, 907, 11, 838, 13, 17, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 860, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 1129, 907, 11, 838, 13, 17, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 838, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 1485, 907, 11, 838, 13, 17, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 1367, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 3312, 907, 11, 838, 13, 17, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 1105, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 3312, 907, 11, 838, 13, 16, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 1511, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 2598, 907, 11, 838, 13, 18, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 1478, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 2078, 907, 11, 838, 13, 18, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 1315, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 1415, 907, 11, 838, 13, 18, 10744, 8, 198, 169, 227, 234, 168, 232, 97, 169, 232, 116, 1467, 220, 5099, 231, 197, 169, 228, 113, 166, 111, 120, 357, 15, 13, 3023, 907, 11, 838, 13, 17, 10744, 8, 198, 168, 109, 226, 168, 254, 238, 220, 166, 110, 108, 166, 111, 120, 198, 168, 254, 243, 169, 247, 243, 168, 226, 109, 25, 1802, 13, 15, 198, 47991, 102, 166, 111, 226, 25, 1802, 13, 15, 1220, 1802, 13, 15, 198, 7061, 6 ]
0.838558
638
# -*- coding: utf-8 -*- """ Class for the ogs FUNCTION file. .. currentmodule:: ogs5py.fileclasses.fct File Class ^^^^^^^^^^ .. autosummary:: FCT ---- """ from ogs5py.fileclasses.fct.core import FCT __all__ = ["FCT"]
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 9487, 329, 262, 267, 14542, 29397, 4177, 2849, 2393, 13, 198, 198, 492, 1459, 21412, 3712, 267, 14542, 20, 9078, 13, 7753, 37724, 13, 69, 310, 198, 198, 8979, 5016, 198, 39397, 39397, 18237, 198, 198, 492, 44619, 388, 6874, 3712, 198, 220, 220, 376, 4177, 198, 198, 650, 198, 37811, 198, 6738, 267, 14542, 20, 9078, 13, 7753, 37724, 13, 69, 310, 13, 7295, 1330, 376, 4177, 198, 198, 834, 439, 834, 796, 14631, 37, 4177, 8973, 198 ]
2.368421
95
#! /usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (c) 2014, Dionach Ltd. All rights reserved. See LICENSE file. # # PANhunt: search directories and sub directories for documents with PANs # By BB import os import sys import re import argparse import time import hashlib import platform import colorama import configparser import filehunt import psutil from pathlib import Path home = str(Path.home()) if sys.version_info[0] >= 3: unicode = str app_version = '1.2.2' # defaults defaults = { 'search_dir': home, 'output_file': u'panhunt_%s.txt' % time.strftime("%Y-%m-%d-%H%M%S"), 'excluded_directories_string': u'C:\\Windows,C:\\Program Files,C:\\Program Files (x86)', 'text_extensions_string': u'.doc,.xls,.xml,.txt,.csv,.log,.tmp,.bak,.rtf,.csv,.htm,.html,.js,.css,.md', 'zip_extensions_string': u'.docx,.xlsx,.zip', 'special_extensions_string': u'.msg', 'mail_extensions_string': u'.pst', 'other_extensions_string': u'.ost,.accdb,.mdb', # checks for existence of files that can't be checked automatically 'excluded_pans_string': '', 'config_file': u'panhunt.ini' } search_dir = defaults['search_dir'] output_file = defaults['output_file'] excluded_directories_string = defaults['excluded_directories_string'] text_extensions_string = defaults['text_extensions_string'] zip_extensions_string = defaults['zip_extensions_string'] special_extensions_string = defaults['special_extensions_string'] mail_extensions_string = defaults['mail_extensions_string'] other_extensions_string = defaults['other_extensions_string'] excluded_pans_string = defaults['excluded_pans_string'] config_file = defaults['config_file'] excluded_directories = None excluded_pans = [] search_extensions = {} pan_regexs = {'Mastercard': re.compile('(?:\D|^)(5[1-5][0-9]{2}(?:\ |\-|)[0-9]{4}(?:\ |\-|)[0-9]{4}(?:\ |\-|)[0-9]{4})(?:\D|$)'), 'Visa': re.compile('(?:\D|^)(4[0-9]{3}(?:\ |\-|)[0-9]{4}(?:\ |\-|)[0-9]{4}(?:\ |\-|)[0-9]{4})(?:\D|$)'), 'AMEX': re.compile('(?:\D|^)((?:34|37)[0-9]{2}(?:\ |\-|)[0-9]{6}(?:\ |\-|)[0-9]{5})(?:\D|$)')} ################################################################################################################################### # ____ _ # / ___| | __ _ ___ ___ ___ ___ # | | | |/ _` / __/ __|/ _ \/ __| # | |___| | (_| \__ \__ \ __/\__ \ # \____|_|\__,_|___/___/\___||___/ # ################################################################################################################################### class PANFile(filehunt.AFile): """ PANFile: class for a file that can check itself for PANs""" def check_text_regexs(self, text, regexs, sub_path): """Uses regular expressions to check for PANs in text""" for brand, regex in regexs.items(): pans = regex.findall(text.decode('utf-8', 'replace')) if pans: for pan in pans: if PAN.is_valid_luhn_checksum(pan) and not PAN.is_excluded(pan): self.matches.append(PAN(self.path, sub_path, brand, pan)) class PAN: """PAN: A class for recording PANs, their brand and where they were found""" @staticmethod @staticmethod ################################################################################################################################### # __ __ _ _ _____ _ _ # | \/ | ___ __| |_ _| | ___ | ___| _ _ __ ___| |_(_) ___ _ __ ___ # | |\/| |/ _ \ / _` | | | | |/ _ \ | |_ | | | | '_ \ / __| __| |/ _ \| '_ \/ __| # | | | | (_) | (_| | |_| | | __/ | _|| |_| | | | | (__| |_| | (_) | | | \__ \ # |_| |_|\___/ \__,_|\__,_|_|\___| |_| \__,_|_| |_|\___|\__|_|\___/|_| |_|___/ # ################################################################################################################################### ################################################################################################################################### # __ __ _ # | \/ | __ _(_)_ __ # | |\/| |/ _` | | '_ \ # | | | | (_| | | | | | # |_| |_|\__,_|_|_| |_| # ################################################################################################################################### if __name__ == "__main__": colorama.init() # Command Line Arguments arg_parser = argparse.ArgumentParser(prog='panhunt', description='PAN Hunt v%s: search directories and sub directories for documents containing PANs.' % (app_version), formatter_class=argparse.ArgumentDefaultsHelpFormatter) arg_parser.add_argument('-s', dest='search', default=search_dir, help='base directory to search in') arg_parser.add_argument('-x', dest='exclude', default=excluded_directories_string, help='directories to exclude from the search') arg_parser.add_argument('-t', dest='textfiles', default=text_extensions_string, help='text file extensions to search') arg_parser.add_argument('-z', dest='zipfiles', default=zip_extensions_string, help='zip file extensions to search') arg_parser.add_argument('-e', dest='specialfiles', default=special_extensions_string, help='special file extensions to search') arg_parser.add_argument('-m', dest='mailfiles', default=mail_extensions_string, help='email file extensions to search') arg_parser.add_argument('-l', dest='otherfiles', default=other_extensions_string, help='other file extensions to list') arg_parser.add_argument('-o', dest='outfile', default=output_file, help='output file name for PAN report') arg_parser.add_argument('-u', dest='unmask', action='store_true', default=False, help='unmask PANs in output') arg_parser.add_argument('-C', dest='config', default=config_file, help='configuration file to use') arg_parser.add_argument('-X', dest='excludepan', default=excluded_pans_string, help='PAN to exclude from search') arg_parser.add_argument('-c', dest='checkfilehash', help=argparse.SUPPRESS) # hidden argument arg_parser.add_argument('-N', dest='nice', action='store_false', default=True, help='reduce priority and scheduling class') args = arg_parser.parse_args() if args.checkfilehash: check_file_hash(args.checkfilehash) sys.exit() search_dir = unicode(args.search) output_file = unicode(args.outfile) excluded_directories_string = unicode(args.exclude) text_extensions_string = unicode(args.textfiles) zip_extensions_string = unicode(args.zipfiles) special_extensions_string = unicode(args.specialfiles) mail_extensions_string = unicode(args.mailfiles) other_extensions_string = unicode(args.otherfiles) mask_pans = not args.unmask excluded_pans_string = unicode(args.excludepan) config_file = unicode(args.config) load_config_file() set_global_parameters() if args.nice: p = psutil.Process(os.getpid()) if sys.platform == 'win32': p.nice(psutil.BELOW_NORMAL_PRIORITY_CLASS) else: p.nice(10) total_files_searched, pans_found, all_files = hunt_pans() # report findings output_report(search_dir, excluded_directories_string, all_files, total_files_searched, pans_found, output_file, mask_pans)
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 66, 8, 1946, 11, 29628, 620, 12052, 13, 1439, 2489, 10395, 13, 4091, 38559, 24290, 2393, 13, 198, 2, 198, 2, 40468, 35060, 25, 2989, 29196, 290, 850, 29196, 329, 4963, 351, 40468, 82, 198, 2, 2750, 12597, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 302, 198, 11748, 1822, 29572, 198, 11748, 640, 198, 11748, 12234, 8019, 198, 11748, 3859, 198, 11748, 3124, 1689, 198, 11748, 4566, 48610, 198, 11748, 2393, 35060, 198, 11748, 26692, 22602, 198, 198, 6738, 3108, 8019, 1330, 10644, 198, 11195, 796, 965, 7, 15235, 13, 11195, 28955, 198, 198, 361, 25064, 13, 9641, 62, 10951, 58, 15, 60, 18189, 513, 25, 198, 220, 220, 220, 28000, 1098, 796, 965, 198, 198, 1324, 62, 9641, 796, 705, 16, 13, 17, 13, 17, 6, 198, 198, 2, 26235, 198, 12286, 82, 796, 1391, 198, 220, 220, 220, 705, 12947, 62, 15908, 10354, 1363, 11, 198, 220, 220, 220, 705, 22915, 62, 7753, 10354, 334, 6, 6839, 35060, 62, 4, 82, 13, 14116, 6, 4064, 640, 13, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 12, 4, 39, 4, 44, 4, 50, 12340, 198, 220, 220, 220, 705, 1069, 10341, 62, 12942, 1749, 62, 8841, 10354, 334, 6, 34, 25, 6852, 11209, 11, 34, 25, 6852, 15167, 13283, 11, 34, 25, 6852, 15167, 13283, 357, 87, 4521, 8, 3256, 198, 220, 220, 220, 705, 5239, 62, 2302, 5736, 62, 8841, 10354, 334, 4458, 15390, 38508, 87, 7278, 38508, 19875, 38508, 14116, 38508, 40664, 38508, 6404, 38508, 22065, 38508, 65, 461, 38508, 17034, 69, 38508, 40664, 38508, 19211, 38508, 6494, 38508, 8457, 38508, 25471, 38508, 9132, 3256, 198, 220, 220, 220, 705, 13344, 62, 2302, 5736, 62, 8841, 10354, 334, 4458, 15390, 87, 38508, 87, 7278, 87, 38508, 13344, 3256, 198, 220, 220, 220, 705, 20887, 62, 2302, 5736, 62, 8841, 10354, 334, 4458, 19662, 3256, 198, 220, 220, 220, 705, 4529, 62, 2302, 5736, 62, 8841, 10354, 334, 4458, 79, 301, 3256, 198, 220, 220, 220, 705, 847, 62, 2302, 5736, 62, 8841, 10354, 334, 4458, 455, 38508, 4134, 9945, 38508, 9132, 65, 3256, 220, 1303, 8794, 329, 6224, 286, 3696, 326, 460, 470, 307, 10667, 6338, 198, 220, 220, 220, 705, 1069, 10341, 62, 79, 504, 62, 8841, 10354, 705, 3256, 198, 220, 220, 220, 705, 11250, 62, 7753, 10354, 334, 6, 6839, 35060, 13, 5362, 6, 198, 92, 198, 12947, 62, 15908, 796, 26235, 17816, 12947, 62, 15908, 20520, 198, 22915, 62, 7753, 796, 26235, 17816, 22915, 62, 7753, 20520, 198, 1069, 10341, 62, 12942, 1749, 62, 8841, 796, 26235, 17816, 1069, 10341, 62, 12942, 1749, 62, 8841, 20520, 198, 5239, 62, 2302, 5736, 62, 8841, 796, 26235, 17816, 5239, 62, 2302, 5736, 62, 8841, 20520, 198, 13344, 62, 2302, 5736, 62, 8841, 796, 26235, 17816, 13344, 62, 2302, 5736, 62, 8841, 20520, 198, 20887, 62, 2302, 5736, 62, 8841, 796, 26235, 17816, 20887, 62, 2302, 5736, 62, 8841, 20520, 198, 4529, 62, 2302, 5736, 62, 8841, 796, 26235, 17816, 4529, 62, 2302, 5736, 62, 8841, 20520, 198, 847, 62, 2302, 5736, 62, 8841, 796, 26235, 17816, 847, 62, 2302, 5736, 62, 8841, 20520, 198, 1069, 10341, 62, 79, 504, 62, 8841, 796, 26235, 17816, 1069, 10341, 62, 79, 504, 62, 8841, 20520, 198, 11250, 62, 7753, 796, 26235, 17816, 11250, 62, 7753, 20520, 198, 198, 1069, 10341, 62, 12942, 1749, 796, 6045, 198, 1069, 10341, 62, 79, 504, 796, 17635, 198, 12947, 62, 2302, 5736, 796, 23884, 198, 198, 6839, 62, 260, 25636, 82, 796, 1391, 6, 18254, 9517, 10354, 302, 13, 5589, 576, 10786, 7, 30, 7479, 35, 91, 61, 5769, 20, 58, 16, 12, 20, 7131, 15, 12, 24, 60, 90, 17, 92, 7, 30, 7479, 930, 59, 22831, 38381, 15, 12, 24, 60, 90, 19, 92, 7, 30, 7479, 930, 59, 22831, 38381, 15, 12, 24, 60, 90, 19, 92, 7, 30, 7479, 930, 59, 22831, 38381, 15, 12, 24, 60, 90, 19, 92, 5769, 30, 7479, 35, 91, 3, 33047, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 53, 9160, 10354, 302, 13, 5589, 576, 10786, 7, 30, 7479, 35, 91, 61, 5769, 19, 58, 15, 12, 24, 60, 90, 18, 92, 7, 30, 7479, 930, 59, 22831, 38381, 15, 12, 24, 60, 90, 19, 92, 7, 30, 7479, 930, 59, 22831, 38381, 15, 12, 24, 60, 90, 19, 92, 7, 30, 7479, 930, 59, 22831, 38381, 15, 12, 24, 60, 90, 19, 92, 5769, 30, 7479, 35, 91, 3, 33047, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2390, 6369, 10354, 302, 13, 5589, 576, 10786, 7, 30, 7479, 35, 91, 61, 5769, 7, 27514, 2682, 91, 2718, 38381, 15, 12, 24, 60, 90, 17, 92, 7, 30, 7479, 930, 59, 22831, 38381, 15, 12, 24, 60, 90, 21, 92, 7, 30, 7479, 930, 59, 22831, 38381, 15, 12, 24, 60, 90, 20, 92, 5769, 30, 7479, 35, 91, 3, 8, 11537, 92, 628, 198, 29113, 29113, 29113, 29113, 21017, 198, 2, 220, 220, 220, 1427, 4808, 198, 2, 220, 1220, 46444, 91, 930, 11593, 4808, 46444, 46444, 220, 46444, 220, 46444, 198, 2, 930, 930, 220, 220, 930, 930, 14, 4808, 63, 1220, 11593, 14, 11593, 91, 14, 4808, 3467, 14, 11593, 91, 198, 2, 930, 930, 17569, 91, 930, 44104, 91, 3467, 834, 3467, 834, 3467, 220, 11593, 14, 59, 834, 3467, 198, 2, 220, 3467, 1427, 91, 62, 91, 59, 834, 11, 62, 91, 17569, 14, 17569, 14, 59, 17569, 15886, 17569, 14, 198, 2, 198, 29113, 29113, 29113, 29113, 21017, 628, 198, 4871, 40468, 8979, 7, 7753, 35060, 13, 8579, 576, 2599, 198, 220, 220, 220, 37227, 40468, 8979, 25, 1398, 329, 257, 2393, 326, 460, 2198, 2346, 329, 40468, 82, 37811, 628, 220, 220, 220, 825, 2198, 62, 5239, 62, 260, 25636, 82, 7, 944, 11, 2420, 11, 40364, 82, 11, 850, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5842, 274, 3218, 14700, 284, 2198, 329, 40468, 82, 287, 2420, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 329, 4508, 11, 40364, 287, 40364, 82, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36209, 796, 40364, 13, 19796, 439, 7, 5239, 13, 12501, 1098, 10786, 40477, 12, 23, 3256, 705, 33491, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36209, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3425, 287, 36209, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 40468, 13, 271, 62, 12102, 62, 2290, 21116, 62, 42116, 388, 7, 6839, 8, 290, 407, 40468, 13, 271, 62, 1069, 10341, 7, 6839, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6759, 2052, 13, 33295, 7, 47, 1565, 7, 944, 13, 6978, 11, 850, 62, 6978, 11, 4508, 11, 3425, 4008, 628, 198, 4871, 40468, 25, 198, 220, 220, 220, 37227, 47, 1565, 25, 317, 1398, 329, 8296, 40468, 82, 11, 511, 4508, 290, 810, 484, 547, 1043, 37811, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 29113, 29113, 29113, 29113, 21017, 198, 2, 220, 11593, 220, 11593, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 220, 220, 220, 220, 220, 220, 4808, 220, 220, 220, 220, 220, 220, 220, 220, 29343, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 220, 220, 4808, 198, 2, 930, 220, 3467, 14, 220, 930, 46444, 220, 220, 11593, 91, 930, 62, 220, 220, 4808, 91, 930, 46444, 220, 930, 220, 46444, 91, 220, 220, 4808, 4808, 11593, 220, 220, 46444, 91, 930, 62, 28264, 8, 46444, 220, 4808, 11593, 220, 46444, 198, 2, 930, 930, 11139, 91, 930, 14, 4808, 3467, 1220, 4808, 63, 930, 930, 930, 930, 930, 14, 4808, 3467, 930, 930, 62, 930, 930, 930, 930, 705, 62, 3467, 1220, 11593, 91, 11593, 91, 930, 14, 4808, 3467, 91, 705, 62, 3467, 14, 11593, 91, 198, 2, 930, 930, 220, 930, 930, 44104, 8, 930, 44104, 91, 930, 930, 62, 91, 930, 930, 220, 11593, 14, 930, 220, 4808, 15886, 930, 62, 91, 930, 930, 930, 930, 357, 834, 91, 930, 62, 91, 930, 44104, 8, 930, 930, 930, 3467, 834, 3467, 198, 2, 930, 62, 91, 220, 930, 62, 91, 59, 17569, 14, 3467, 834, 11, 62, 91, 59, 834, 11, 62, 91, 62, 91, 59, 17569, 91, 930, 62, 91, 220, 220, 3467, 834, 11, 62, 91, 62, 91, 930, 62, 91, 59, 17569, 91, 59, 834, 91, 62, 91, 59, 17569, 14, 91, 62, 91, 930, 62, 91, 17569, 14, 198, 2, 198, 29113, 29113, 29113, 29113, 21017, 628, 628, 628, 628, 198, 198, 29113, 29113, 29113, 29113, 21017, 198, 2, 220, 11593, 220, 11593, 220, 220, 220, 220, 220, 220, 4808, 198, 2, 930, 220, 3467, 14, 220, 930, 11593, 4808, 28264, 8, 62, 11593, 198, 2, 930, 930, 11139, 91, 930, 14, 4808, 63, 930, 930, 705, 62, 3467, 198, 2, 930, 930, 220, 930, 930, 44104, 91, 930, 930, 930, 930, 930, 198, 2, 930, 62, 91, 220, 930, 62, 91, 59, 834, 11, 62, 91, 62, 91, 62, 91, 930, 62, 91, 198, 2, 198, 29113, 29113, 29113, 29113, 21017, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 3124, 1689, 13, 15003, 3419, 628, 220, 220, 220, 1303, 9455, 6910, 20559, 2886, 198, 220, 220, 220, 1822, 62, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 1676, 70, 11639, 6839, 35060, 3256, 6764, 11639, 47, 1565, 12937, 410, 4, 82, 25, 2989, 29196, 290, 850, 29196, 329, 4963, 7268, 40468, 82, 2637, 4064, 357, 1324, 62, 9641, 828, 1296, 1436, 62, 4871, 28, 853, 29572, 13, 28100, 1713, 7469, 13185, 22087, 8479, 1436, 8, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 82, 3256, 2244, 11639, 12947, 3256, 4277, 28, 12947, 62, 15908, 11, 1037, 11639, 8692, 8619, 284, 2989, 287, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 87, 3256, 2244, 11639, 1069, 9152, 3256, 4277, 28, 1069, 10341, 62, 12942, 1749, 62, 8841, 11, 1037, 11639, 12942, 1749, 284, 19607, 422, 262, 2989, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 83, 3256, 2244, 11639, 5239, 16624, 3256, 4277, 28, 5239, 62, 2302, 5736, 62, 8841, 11, 1037, 11639, 5239, 2393, 18366, 284, 2989, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 89, 3256, 2244, 11639, 13344, 16624, 3256, 4277, 28, 13344, 62, 2302, 5736, 62, 8841, 11, 1037, 11639, 13344, 2393, 18366, 284, 2989, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 68, 3256, 2244, 11639, 20887, 16624, 3256, 4277, 28, 20887, 62, 2302, 5736, 62, 8841, 11, 1037, 11639, 20887, 2393, 18366, 284, 2989, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 76, 3256, 2244, 11639, 4529, 16624, 3256, 4277, 28, 4529, 62, 2302, 5736, 62, 8841, 11, 1037, 11639, 12888, 2393, 18366, 284, 2989, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 75, 3256, 2244, 11639, 847, 16624, 3256, 4277, 28, 847, 62, 2302, 5736, 62, 8841, 11, 1037, 11639, 847, 2393, 18366, 284, 1351, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 78, 3256, 2244, 11639, 448, 7753, 3256, 4277, 28, 22915, 62, 7753, 11, 1037, 11639, 22915, 2393, 1438, 329, 40468, 989, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 84, 3256, 2244, 11639, 403, 27932, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 1037, 11639, 403, 27932, 40468, 82, 287, 5072, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 34, 3256, 2244, 11639, 11250, 3256, 4277, 28, 11250, 62, 7753, 11, 1037, 11639, 11250, 3924, 2393, 284, 779, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 55, 3256, 2244, 11639, 1069, 758, 538, 272, 3256, 4277, 28, 1069, 10341, 62, 79, 504, 62, 8841, 11, 1037, 11639, 47, 1565, 284, 19607, 422, 2989, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 66, 3256, 2244, 11639, 9122, 7753, 17831, 3256, 1037, 28, 853, 29572, 13, 40331, 32761, 8, 220, 1303, 7104, 4578, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 45, 3256, 2244, 11639, 44460, 3256, 2223, 11639, 8095, 62, 9562, 3256, 4277, 28, 17821, 11, 1037, 11639, 445, 7234, 8475, 290, 26925, 1398, 11537, 628, 220, 220, 220, 26498, 796, 1822, 62, 48610, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 26498, 13, 9122, 7753, 17831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 7753, 62, 17831, 7, 22046, 13, 9122, 7753, 17831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 628, 220, 220, 220, 2989, 62, 15908, 796, 28000, 1098, 7, 22046, 13, 12947, 8, 198, 220, 220, 220, 5072, 62, 7753, 796, 28000, 1098, 7, 22046, 13, 448, 7753, 8, 198, 220, 220, 220, 15009, 62, 12942, 1749, 62, 8841, 796, 28000, 1098, 7, 22046, 13, 1069, 9152, 8, 198, 220, 220, 220, 2420, 62, 2302, 5736, 62, 8841, 796, 28000, 1098, 7, 22046, 13, 5239, 16624, 8, 198, 220, 220, 220, 19974, 62, 2302, 5736, 62, 8841, 796, 28000, 1098, 7, 22046, 13, 13344, 16624, 8, 198, 220, 220, 220, 2041, 62, 2302, 5736, 62, 8841, 796, 28000, 1098, 7, 22046, 13, 20887, 16624, 8, 198, 220, 220, 220, 6920, 62, 2302, 5736, 62, 8841, 796, 28000, 1098, 7, 22046, 13, 4529, 16624, 8, 198, 220, 220, 220, 584, 62, 2302, 5736, 62, 8841, 796, 28000, 1098, 7, 22046, 13, 847, 16624, 8, 198, 220, 220, 220, 9335, 62, 79, 504, 796, 407, 26498, 13, 403, 27932, 198, 220, 220, 220, 15009, 62, 79, 504, 62, 8841, 796, 28000, 1098, 7, 22046, 13, 1069, 758, 538, 272, 8, 198, 220, 220, 220, 4566, 62, 7753, 796, 28000, 1098, 7, 22046, 13, 11250, 8, 198, 220, 220, 220, 3440, 62, 11250, 62, 7753, 3419, 628, 220, 220, 220, 900, 62, 20541, 62, 17143, 7307, 3419, 628, 220, 220, 220, 611, 26498, 13, 44460, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 26692, 22602, 13, 18709, 7, 418, 13, 1136, 35317, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25064, 13, 24254, 6624, 705, 5404, 2624, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 44460, 7, 862, 22602, 13, 33, 3698, 3913, 62, 35510, 42126, 62, 4805, 41254, 9050, 62, 31631, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 44460, 7, 940, 8, 628, 220, 220, 220, 2472, 62, 16624, 62, 325, 283, 1740, 11, 36209, 62, 9275, 11, 477, 62, 16624, 796, 12601, 62, 79, 504, 3419, 628, 220, 220, 220, 1303, 989, 6373, 198, 220, 220, 220, 5072, 62, 13116, 7, 12947, 62, 15908, 11, 15009, 62, 12942, 1749, 62, 8841, 11, 477, 62, 16624, 11, 2472, 62, 16624, 62, 325, 283, 1740, 11, 36209, 62, 9275, 11, 5072, 62, 7753, 11, 9335, 62, 79, 504, 8, 198 ]
2.723019
2,650
self.description = "server failover after 404" self.require_capability("curl") p1 = pmpkg('pkg') self.addpkg2db('sync', p1) url_broke = self.add_simple_http_server({ '/{}'.format(p1.filename()): { 'code': 404, 'body': 'a', } }) url_good = self.add_simple_http_server({ '/{}'.format(p1.filename()): p1.makepkg_bytes(), }) self.db['sync'].option['Server'] = [ url_broke, url_good ] self.db['sync'].syncdir = False self.cachepkgs = False self.args = '-S pkg' self.addrule("PACMAN_RETCODE=0") self.addrule("PKG_EXIST=pkg")
[ 944, 13, 11213, 796, 366, 15388, 2038, 2502, 706, 32320, 1, 198, 944, 13, 46115, 62, 11128, 1799, 7203, 66, 6371, 4943, 198, 198, 79, 16, 796, 279, 3149, 10025, 10786, 35339, 11537, 198, 944, 13, 2860, 35339, 17, 9945, 10786, 27261, 3256, 279, 16, 8, 198, 198, 6371, 62, 7957, 365, 796, 2116, 13, 2860, 62, 36439, 62, 4023, 62, 15388, 15090, 198, 220, 220, 220, 31051, 90, 92, 4458, 18982, 7, 79, 16, 13, 34345, 3419, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 32320, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2618, 10354, 705, 64, 3256, 198, 220, 220, 220, 1782, 198, 30072, 198, 6371, 62, 11274, 796, 2116, 13, 2860, 62, 36439, 62, 4023, 62, 15388, 15090, 198, 220, 220, 220, 31051, 90, 92, 4458, 18982, 7, 79, 16, 13, 34345, 3419, 2599, 279, 16, 13, 15883, 35339, 62, 33661, 22784, 198, 30072, 198, 198, 944, 13, 9945, 17816, 27261, 6, 4083, 18076, 17816, 10697, 20520, 796, 685, 19016, 62, 7957, 365, 11, 19016, 62, 11274, 2361, 198, 944, 13, 9945, 17816, 27261, 6, 4083, 28869, 10210, 343, 796, 10352, 198, 944, 13, 23870, 35339, 82, 796, 10352, 198, 198, 944, 13, 22046, 796, 705, 12, 50, 279, 10025, 6, 198, 198, 944, 13, 2860, 25135, 7203, 44938, 10725, 62, 2200, 4825, 16820, 28, 15, 4943, 198, 944, 13, 2860, 25135, 7203, 40492, 38, 62, 6369, 8808, 28, 35339, 4943, 198 ]
2.271605
243
from bidict import bidict
[ 6738, 8406, 713, 1330, 8406, 713, 628 ]
3.857143
7
/home/wai/anaconda3/lib/python3.6/hmac.py
[ 14, 11195, 14, 86, 1872, 14, 272, 330, 13533, 18, 14, 8019, 14, 29412, 18, 13, 21, 14, 71, 20285, 13, 9078 ]
1.863636
22
""" # ================================== # AUTHOR : Yan Li, Qiong Wang # CREATE DATE : 02.10.2020 # Contact : [email protected] # ================================== # Change History: None # ================================== """ ########## Import python libs ########## import os ########## Import third-party libs ########## import numpy as np import cv2 ########## light field camera/micro-lens array IDs ########## ########## light field scene path list ########## ########## load light field images ########## ########## load light field data ########## ########## prepare preds data ########## ########## get prediction data ##########
[ 37811, 201, 198, 2, 46111, 28, 201, 198, 2, 44746, 1058, 10642, 7455, 11, 1195, 295, 70, 15233, 201, 198, 2, 29244, 6158, 360, 6158, 1058, 7816, 13, 940, 13, 42334, 201, 198, 2, 14039, 1058, 7649, 4121, 87, 666, 1129, 31, 14816, 13, 785, 201, 198, 2, 46111, 28, 201, 198, 2, 9794, 7443, 25, 6045, 201, 198, 2, 46111, 28, 201, 198, 37811, 201, 198, 7804, 2235, 17267, 21015, 9195, 82, 1303, 7804, 2, 201, 198, 11748, 28686, 201, 198, 201, 198, 7804, 2235, 17267, 2368, 12, 10608, 9195, 82, 1303, 7804, 2, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 269, 85, 17, 201, 198, 201, 198, 201, 198, 201, 198, 7804, 2235, 1657, 2214, 4676, 14, 24055, 12, 75, 641, 7177, 32373, 1303, 7804, 2, 201, 198, 201, 198, 7804, 2235, 1657, 2214, 3715, 3108, 1351, 1303, 7804, 2, 201, 198, 201, 198, 7804, 2235, 3440, 1657, 2214, 4263, 1303, 7804, 2, 201, 198, 201, 198, 7804, 2235, 3440, 1657, 2214, 1366, 1303, 7804, 2, 201, 198, 201, 198, 7804, 2235, 8335, 2747, 82, 1366, 1303, 7804, 2, 201, 198, 201, 198, 7804, 2235, 651, 17724, 1366, 1303, 7804, 2, 201, 198 ]
3.449495
198
from typing import Optional from .base import Base, Condition, DayTime, PhenomCondition, PrecipitationType, Season, WindDir
[ 6738, 19720, 1330, 32233, 198, 198, 6738, 764, 8692, 1330, 7308, 11, 24295, 11, 3596, 7575, 11, 34828, 296, 48362, 11, 28737, 541, 3780, 6030, 11, 7369, 11, 3086, 35277, 628 ]
4.064516
31
with open("README.md", "r") as fh: long_description = fh.read() from setuptools import setup, find_packages setup( name='lcd-controller2', version='', packages=find_packages('src'), package_dir={'': 'src'}, url='', license='', author='Lukas Brennauer, Samuel Kroiss', author_email='', description=long_description, install_requires=[ 'setuptools', ], )
[ 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 628, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 75, 10210, 12, 36500, 17, 3256, 198, 220, 220, 220, 2196, 11639, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 10786, 10677, 33809, 198, 220, 220, 220, 5301, 62, 15908, 34758, 7061, 25, 705, 10677, 6, 5512, 198, 220, 220, 220, 19016, 11639, 3256, 198, 220, 220, 220, 5964, 11639, 3256, 198, 220, 220, 220, 1772, 11639, 43, 2724, 292, 20465, 77, 16261, 11, 17100, 30088, 747, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 3256, 198, 220, 220, 220, 6764, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2617, 37623, 10141, 3256, 198, 220, 220, 220, 16589, 198, 8, 198 ]
2.452381
168
# -*- coding: utf-8 -*- """ Created on Mon Feb 24 01:14:06 2020 Github: https://github.com/tjczec01 @author: Travis J Czechorski E-mail: [email protected] """ import sympy as sp from sympy import diff, Matrix, symbols, Add, Mul, Pow, Symbol, Integer, latex, exp, simplify from sympy.matrices.dense import matrix2numpy import matplotlib as mpl import matplotlib.pyplot as plt from IPython.display import display, Latex from tkinter import Tk, ttk, IntVar, StringVar, N, W, E, S, Checkbutton, Label, Entry, Button from tkinter.ttk import Combobox import pickle import os import subprocess from shutil import which import warnings __all__ = ["gui", "symbolgen", "kJtoJ", "create_pdf"] warnings.filterwarnings("ignore") # ,category=matplotlib.cbook.mplDeprecation plt.rcParams['text.usetex'] = True plt.rcParams['axes.grid'] = False plt.rcParams['text.latex.preamble'] = [r'\usepackage{mathtools}', r'\usepackage{bm}'] # Generates all necessary lists and values. # chemical_names, number_of_reactions, Initial_reactions, Equation_list, indvdf, filepath, kvalues, ea_values, r_gas = gui.fullgui() # Generates all necessary lists and values. # Calculates the jacobian and all other desired functions # for key, value in locals().items(): # if callable(value) and value.__module__ == __name__: # l.append(key) # C_Symbols, KKS, EAS, reacts, prods, equations, slat, dlat, chem, chemD, chemw, rhs, rhsf, jac, jacnumpy, Jacmath, JacSimple, lm, latexmatrix, jacsy, jacnumpysy, jacmathsy, jacsimplesy, lmsy, latexmatrixsy = symbolgen.fullgen(chemical_names, number_of_reactions, Initial_reactions, Equation_list, indvdf, filepath, kvalues, ea_values, r_gas, chemical_names)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 2892, 3158, 1987, 5534, 25, 1415, 25, 3312, 12131, 201, 198, 201, 198, 38, 10060, 25, 3740, 1378, 12567, 13, 785, 14, 83, 73, 26691, 721, 486, 201, 198, 201, 198, 31, 9800, 25, 19804, 449, 16639, 669, 4106, 201, 198, 201, 198, 36, 12, 4529, 25, 256, 73, 26691, 721, 486, 31, 14816, 13, 785, 201, 198, 201, 198, 37811, 201, 198, 201, 198, 11748, 10558, 88, 355, 599, 201, 198, 6738, 10558, 88, 1330, 814, 11, 24936, 11, 14354, 11, 3060, 11, 17996, 11, 14120, 11, 38357, 11, 34142, 11, 47038, 11, 1033, 11, 30276, 201, 198, 6738, 10558, 88, 13, 6759, 45977, 13, 67, 1072, 1330, 17593, 17, 77, 32152, 201, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 6738, 6101, 7535, 13, 13812, 1330, 3359, 11, 18319, 87, 201, 198, 6738, 256, 74, 3849, 1330, 309, 74, 11, 256, 30488, 11, 2558, 19852, 11, 10903, 19852, 11, 399, 11, 370, 11, 412, 11, 311, 11, 6822, 16539, 11, 36052, 11, 21617, 11, 20969, 201, 198, 6738, 256, 74, 3849, 13, 926, 74, 1330, 14336, 672, 1140, 201, 198, 11748, 2298, 293, 201, 198, 11748, 28686, 201, 198, 11748, 850, 14681, 201, 198, 6738, 4423, 346, 1330, 543, 201, 198, 11748, 14601, 201, 198, 201, 198, 834, 439, 834, 796, 14631, 48317, 1600, 366, 1837, 23650, 5235, 1600, 366, 74, 41, 1462, 41, 1600, 366, 17953, 62, 12315, 8973, 201, 198, 201, 198, 40539, 654, 13, 24455, 40539, 654, 7203, 46430, 4943, 220, 1303, 837, 22872, 28, 6759, 29487, 8019, 13, 66, 2070, 13, 76, 489, 12156, 8344, 341, 201, 198, 489, 83, 13, 6015, 10044, 4105, 17816, 5239, 13, 385, 316, 1069, 20520, 796, 6407, 201, 198, 489, 83, 13, 6015, 10044, 4105, 17816, 897, 274, 13, 25928, 20520, 796, 10352, 201, 198, 489, 83, 13, 6015, 10044, 4105, 17816, 5239, 13, 17660, 87, 13, 79, 1476, 903, 20520, 796, 685, 81, 6, 59, 1904, 26495, 90, 11018, 31391, 92, 3256, 374, 6, 59, 1904, 26495, 90, 20475, 92, 20520, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 2, 2980, 689, 477, 3306, 8341, 290, 3815, 13, 201, 198, 201, 198, 201, 198, 2, 5931, 62, 14933, 11, 1271, 62, 1659, 62, 260, 4658, 11, 20768, 62, 260, 4658, 11, 7889, 341, 62, 4868, 11, 773, 85, 7568, 11, 2393, 6978, 11, 479, 27160, 11, 304, 64, 62, 27160, 11, 374, 62, 22649, 796, 11774, 13, 12853, 48317, 3419, 220, 1303, 2980, 689, 477, 3306, 8341, 290, 3815, 13, 201, 198, 201, 198, 2, 27131, 689, 262, 474, 330, 672, 666, 290, 477, 584, 10348, 5499, 201, 198, 201, 198, 2, 329, 1994, 11, 1988, 287, 17205, 22446, 23814, 33529, 201, 198, 2, 220, 220, 220, 220, 611, 869, 540, 7, 8367, 8, 290, 1988, 13, 834, 21412, 834, 6624, 11593, 3672, 834, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 300, 13, 33295, 7, 2539, 8, 201, 198, 2, 327, 62, 13940, 2022, 10220, 11, 509, 27015, 11, 412, 1921, 11, 30174, 11, 386, 9310, 11, 27490, 11, 1017, 265, 11, 288, 15460, 11, 4607, 11, 4607, 35, 11, 4607, 86, 11, 9529, 82, 11, 9529, 28202, 11, 474, 330, 11, 474, 330, 77, 32152, 11, 8445, 11018, 11, 8445, 26437, 11, 300, 76, 11, 47038, 6759, 8609, 11, 474, 330, 1837, 11, 474, 330, 77, 931, 893, 88, 11, 474, 330, 11018, 1837, 11, 474, 330, 14323, 2374, 88, 11, 300, 907, 88, 11, 47038, 6759, 8609, 1837, 796, 6194, 5235, 13, 12853, 5235, 7, 31379, 62, 14933, 11, 1271, 62, 1659, 62, 260, 4658, 11, 20768, 62, 260, 4658, 11, 7889, 341, 62, 4868, 11, 773, 85, 7568, 11, 2393, 6978, 11, 479, 27160, 11, 304, 64, 62, 27160, 11, 374, 62, 22649, 11, 5931, 62, 14933, 8, 201, 198 ]
2.602392
669
import json import multiprocessing as mp import os import pkgutil import shutil import subprocess import tarfile import tempfile from random import randint from typing import Tuple, cast import pytest import requests from ethereum.base_types import Uint from ethereum.crypto import keccak256 from ethereum.ethash import ( EPOCH_SIZE, HASH_BYTES, MIX_BYTES, cache_size, dataset_size, epoch, generate_cache, generate_dataset_item, generate_seed, ) from ethereum.utils.numeric import is_prime @pytest.mark.parametrize( "block_number, expected_epoch", [ (Uint(0), Uint(0)), (Uint(29999), Uint(0)), (Uint(30000), Uint(1)), ], ) # # Geth DAG related functionalities for fuzz testing # def test_dataset_generation_random_epoch(tmpdir: str) -> None: """ Generate a random epoch and obtain the DAG for that epoch from geth. Then ensure the following 2 test scenarios: 1. The first 100 dataset indices are same when the python implementation is compared with the DAG dataset. 2. Randomly take 500 indices between [101, `dataset size in words` - 1] and ensure that the values are same between python implementation and DAG dataset. """ download_geth(tmpdir) epoch_number = Uint(randint(0, 100)) block_number = epoch_number * EPOCH_SIZE + randint(0, EPOCH_SIZE - 1) generate_dag_via_geth(f"{tmpdir}/geth", block_number, f"{tmpdir}/.ethash") seed = generate_seed(block_number) dag_dataset = fetch_dag_data(f"{tmpdir}/.ethash", seed) cache = generate_cache(block_number) dataset_size_bytes = dataset_size(block_number) dataset_size_words = dataset_size_bytes // HASH_BYTES assert len(dag_dataset) == dataset_size_words assert generate_dataset_item(cache, Uint(0)) == dag_dataset[0] for i in range(100): assert generate_dataset_item(cache, Uint(i)) == dag_dataset[i] # Then for this dataset randomly take 5000 indices and check the # data obtained from our implementation with geth DAG for _ in range(500): index = Uint(randint(101, dataset_size_words - 1)) dataset_item = generate_dataset_item(cache, index) assert dataset_item == dag_dataset[index], index # Manually forcing the dataset out of the memory incase the gc # doesn't kick in immediately del dag_dataset
[ 11748, 33918, 198, 11748, 18540, 305, 919, 278, 355, 29034, 198, 11748, 28686, 198, 11748, 279, 10025, 22602, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 13422, 7753, 198, 11748, 20218, 7753, 198, 6738, 4738, 1330, 43720, 600, 198, 6738, 19720, 1330, 309, 29291, 11, 3350, 198, 198, 11748, 12972, 9288, 198, 11748, 7007, 198, 198, 6738, 304, 17733, 13, 8692, 62, 19199, 1330, 471, 600, 198, 6738, 304, 17733, 13, 29609, 78, 1330, 885, 535, 461, 11645, 198, 6738, 304, 17733, 13, 2788, 1077, 1330, 357, 198, 220, 220, 220, 14724, 46, 3398, 62, 33489, 11, 198, 220, 220, 220, 367, 11211, 62, 17513, 51, 1546, 11, 198, 220, 220, 220, 337, 10426, 62, 17513, 51, 1546, 11, 198, 220, 220, 220, 12940, 62, 7857, 11, 198, 220, 220, 220, 27039, 62, 7857, 11, 198, 220, 220, 220, 36835, 11, 198, 220, 220, 220, 7716, 62, 23870, 11, 198, 220, 220, 220, 7716, 62, 19608, 292, 316, 62, 9186, 11, 198, 220, 220, 220, 7716, 62, 28826, 11, 198, 8, 198, 6738, 304, 17733, 13, 26791, 13, 77, 39223, 1330, 318, 62, 35505, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 9967, 62, 17618, 11, 2938, 62, 538, 5374, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 52, 600, 7, 15, 828, 471, 600, 7, 15, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 357, 52, 600, 7, 1959, 17032, 828, 471, 600, 7, 15, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 357, 52, 600, 7, 18, 2388, 828, 471, 600, 7, 16, 36911, 198, 220, 220, 220, 16589, 198, 8, 628, 628, 628, 628, 628, 198, 198, 2, 198, 2, 402, 2788, 360, 4760, 3519, 10345, 871, 329, 26080, 4856, 198, 2, 628, 628, 198, 198, 4299, 1332, 62, 19608, 292, 316, 62, 20158, 62, 25120, 62, 538, 5374, 7, 22065, 15908, 25, 965, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 257, 4738, 36835, 290, 7330, 262, 360, 4760, 329, 326, 36835, 422, 651, 71, 13, 198, 220, 220, 220, 3244, 4155, 262, 1708, 362, 1332, 13858, 25, 198, 220, 220, 220, 220, 220, 220, 220, 352, 13, 383, 717, 1802, 27039, 36525, 389, 976, 618, 262, 21015, 198, 220, 220, 220, 220, 220, 220, 220, 7822, 318, 3688, 351, 262, 360, 4760, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 14534, 306, 1011, 5323, 36525, 1022, 198, 220, 220, 220, 220, 220, 220, 220, 685, 8784, 11, 4600, 19608, 292, 316, 2546, 287, 2456, 63, 532, 352, 60, 290, 4155, 326, 262, 3815, 389, 198, 220, 220, 220, 220, 220, 220, 220, 976, 1022, 21015, 7822, 290, 360, 4760, 27039, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4321, 62, 1136, 71, 7, 22065, 15908, 8, 628, 220, 220, 220, 36835, 62, 17618, 796, 471, 600, 7, 25192, 600, 7, 15, 11, 1802, 4008, 198, 220, 220, 220, 2512, 62, 17618, 796, 36835, 62, 17618, 1635, 14724, 46, 3398, 62, 33489, 1343, 43720, 600, 7, 15, 11, 14724, 46, 3398, 62, 33489, 532, 352, 8, 198, 220, 220, 220, 7716, 62, 67, 363, 62, 8869, 62, 1136, 71, 7, 69, 1, 90, 22065, 15908, 92, 14, 1136, 71, 1600, 2512, 62, 17618, 11, 277, 1, 90, 22065, 15908, 92, 11757, 2788, 1077, 4943, 198, 220, 220, 220, 9403, 796, 7716, 62, 28826, 7, 9967, 62, 17618, 8, 198, 220, 220, 220, 48924, 62, 19608, 292, 316, 796, 21207, 62, 67, 363, 62, 7890, 7, 69, 1, 90, 22065, 15908, 92, 11757, 2788, 1077, 1600, 9403, 8, 628, 220, 220, 220, 12940, 796, 7716, 62, 23870, 7, 9967, 62, 17618, 8, 198, 220, 220, 220, 27039, 62, 7857, 62, 33661, 796, 27039, 62, 7857, 7, 9967, 62, 17618, 8, 198, 220, 220, 220, 27039, 62, 7857, 62, 10879, 796, 27039, 62, 7857, 62, 33661, 3373, 367, 11211, 62, 17513, 51, 1546, 628, 220, 220, 220, 6818, 18896, 7, 67, 363, 62, 19608, 292, 316, 8, 6624, 27039, 62, 7857, 62, 10879, 628, 220, 220, 220, 6818, 7716, 62, 19608, 292, 316, 62, 9186, 7, 23870, 11, 471, 600, 7, 15, 4008, 6624, 48924, 62, 19608, 292, 316, 58, 15, 60, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7716, 62, 19608, 292, 316, 62, 9186, 7, 23870, 11, 471, 600, 7, 72, 4008, 6624, 48924, 62, 19608, 292, 316, 58, 72, 60, 628, 220, 220, 220, 1303, 3244, 329, 428, 27039, 15456, 1011, 23336, 36525, 290, 2198, 262, 198, 220, 220, 220, 1303, 1366, 6492, 422, 674, 7822, 351, 651, 71, 360, 4760, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 471, 600, 7, 25192, 600, 7, 8784, 11, 27039, 62, 7857, 62, 10879, 532, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 9186, 796, 7716, 62, 19608, 292, 316, 62, 9186, 7, 23870, 11, 6376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 27039, 62, 9186, 6624, 48924, 62, 19608, 292, 316, 58, 9630, 4357, 6376, 628, 220, 220, 220, 1303, 1869, 935, 10833, 262, 27039, 503, 286, 262, 4088, 753, 589, 262, 308, 66, 198, 220, 220, 220, 1303, 1595, 470, 4829, 287, 3393, 198, 220, 220, 220, 1619, 48924, 62, 19608, 292, 316, 198 ]
2.632096
916
__author__ = 'thorn' import logging import sys LOGGER = logging.getLogger()
[ 834, 9800, 834, 796, 705, 400, 1211, 6, 198, 11748, 18931, 198, 11748, 25064, 198, 198, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 3419, 198 ]
2.961538
26
import json import logging from os import environ as env import requests from dotenv import load_dotenv # Get environment load_dotenv() DATASERVICE_PUBLISHER_HOST_URL = env.get("DATASERVICE_PUBLISHER_HOST_URL") ADMIN_USERNAME = env.get("ADMIN_USERNAME", "admin") ADMIN_PASSWORD = env.get("ADMIN_PASSWORD") INPUT_FILE = env.get("INPUT_FILE") def login() -> str: """Logs in to get an access_token.""" url = f"{DATASERVICE_PUBLISHER_HOST_URL}/login" try: headers = {"Content-Type": "application/json"} data = dict(username=ADMIN_USERNAME, password=ADMIN_PASSWORD) response = requests.post(url, json=data, headers=headers) if response.status_code == 200: data = response.json() token = data["access_token"] print(f"Successful login. Token >{token}<") return token else: logging.error(f"Unsuccessful login : {response.status_code}") return None except Exception as e: logging.error("Got exception", e) return None def delete_catalog(access_token, catalog) -> bool: """Tries to delete the catalog.""" headers = { "Authorization": f"Bearer {access_token}", } url = catalog["identifier"] response = requests.delete(url, headers=headers) if response.status_code == 204: print(f"Deleted catalog {url}") return True elif response.status_code == 404: print(f"Catalog {url} does not exist. Safe to proceed") return True else: logging.error(f"Unsuccessful, status_code: {response.status_code}") # msg = json.loads(response.content)["msg"] # logging.error(f"Unsuccessful, msg : {msg}") logging.error(response.content) return False def load_catalog(access_token, catalog) -> bool: """Loads the catalog and returns True if successful.""" url = f"{DATASERVICE_PUBLISHER_HOST_URL}/catalogs" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {access_token}", } response = requests.post(url, json=catalog, headers=headers) if response.status_code == 200: print( f"loaded from file {json_file.name}", ) return True else: logging.error(f"Unsuccessful, status_code: {response.status_code}") # msg = json.loads(response.content)["msg"] # logging.error(f"Unsuccessful, msg : {msg}") logging.error(response.content) return False if __name__ == "__main__": access_token = login() if access_token: with open(INPUT_FILE) as json_file: catalog = json.load(json_file) delete_catalog(access_token, catalog) result = load_catalog(access_token, catalog) if result: print(f"Successfully loaded content of {INPUT_FILE}.")
[ 11748, 33918, 198, 11748, 18931, 198, 6738, 28686, 1330, 551, 2268, 355, 17365, 198, 11748, 7007, 198, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 198, 198, 2, 3497, 2858, 198, 2220, 62, 26518, 24330, 3419, 198, 35, 1404, 1921, 1137, 27389, 62, 5105, 9148, 1797, 16879, 62, 39, 10892, 62, 21886, 796, 17365, 13, 1136, 7203, 35, 1404, 1921, 1137, 27389, 62, 5105, 9148, 1797, 16879, 62, 39, 10892, 62, 21886, 4943, 198, 2885, 23678, 62, 29904, 20608, 796, 17365, 13, 1136, 7203, 2885, 23678, 62, 29904, 20608, 1600, 366, 28482, 4943, 198, 2885, 23678, 62, 47924, 54, 12532, 796, 17365, 13, 1136, 7203, 2885, 23678, 62, 47924, 54, 12532, 4943, 198, 1268, 30076, 62, 25664, 796, 17365, 13, 1136, 7203, 1268, 30076, 62, 25664, 4943, 628, 198, 4299, 17594, 3419, 4613, 965, 25, 198, 220, 220, 220, 37227, 11187, 82, 287, 284, 651, 281, 1895, 62, 30001, 526, 15931, 198, 220, 220, 220, 19016, 796, 277, 1, 90, 35, 1404, 1921, 1137, 27389, 62, 5105, 9148, 1797, 16879, 62, 39, 10892, 62, 21886, 92, 14, 38235, 1, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 19779, 19746, 12, 6030, 1298, 366, 31438, 14, 17752, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 8633, 7, 29460, 28, 2885, 23678, 62, 29904, 20608, 11, 9206, 28, 2885, 23678, 62, 47924, 54, 12532, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 7353, 7, 6371, 11, 33918, 28, 7890, 11, 24697, 28, 50145, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2882, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 1366, 14692, 15526, 62, 30001, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 33244, 913, 17594, 13, 29130, 1875, 90, 30001, 92, 27, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 69, 1, 3118, 17212, 17594, 1058, 1391, 26209, 13, 13376, 62, 8189, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7203, 30074, 6631, 1600, 304, 8, 198, 220, 220, 220, 1441, 6045, 628, 198, 4299, 12233, 62, 9246, 11794, 7, 15526, 62, 30001, 11, 18388, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 51, 1678, 284, 12233, 262, 18388, 526, 15931, 198, 220, 220, 220, 24697, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13838, 1634, 1298, 277, 1, 3856, 11258, 1391, 15526, 62, 30001, 92, 1600, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 19016, 796, 18388, 14692, 738, 7483, 8973, 198, 220, 220, 220, 2882, 796, 7007, 13, 33678, 7, 6371, 11, 24697, 28, 50145, 8, 198, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 26956, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 5005, 33342, 18388, 1391, 6371, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 1288, 361, 2882, 13, 13376, 62, 8189, 6624, 32320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 49015, 1391, 6371, 92, 857, 407, 2152, 13, 19978, 284, 5120, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 69, 1, 3118, 17212, 11, 3722, 62, 8189, 25, 1391, 26209, 13, 13376, 62, 8189, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 31456, 796, 33918, 13, 46030, 7, 26209, 13, 11299, 8, 14692, 19662, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18931, 13, 18224, 7, 69, 1, 3118, 17212, 11, 31456, 1058, 1391, 19662, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 26209, 13, 11299, 8, 198, 220, 220, 220, 1441, 10352, 628, 198, 4299, 3440, 62, 9246, 11794, 7, 15526, 62, 30001, 11, 18388, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 8912, 82, 262, 18388, 290, 5860, 6407, 611, 4388, 526, 15931, 198, 220, 220, 220, 19016, 796, 277, 1, 90, 35, 1404, 1921, 1137, 27389, 62, 5105, 9148, 1797, 16879, 62, 39, 10892, 62, 21886, 92, 14, 9246, 11794, 82, 1, 198, 220, 220, 220, 24697, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19746, 12, 6030, 1298, 366, 31438, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13838, 1634, 1298, 277, 1, 3856, 11258, 1391, 15526, 62, 30001, 92, 1600, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 2882, 796, 7007, 13, 7353, 7, 6371, 11, 33918, 28, 9246, 11794, 11, 24697, 28, 50145, 8, 198, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14578, 422, 2393, 1391, 17752, 62, 7753, 13, 3672, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 69, 1, 3118, 17212, 11, 3722, 62, 8189, 25, 1391, 26209, 13, 13376, 62, 8189, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 31456, 796, 33918, 13, 46030, 7, 26209, 13, 11299, 8, 14692, 19662, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18931, 13, 18224, 7, 69, 1, 3118, 17212, 11, 31456, 1058, 1391, 19662, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 26209, 13, 11299, 8, 198, 220, 220, 220, 1441, 10352, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1895, 62, 30001, 796, 17594, 3419, 198, 220, 220, 220, 611, 1895, 62, 30001, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 1268, 30076, 62, 25664, 8, 355, 33918, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18388, 796, 33918, 13, 2220, 7, 17752, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12233, 62, 9246, 11794, 7, 15526, 62, 30001, 11, 18388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 3440, 62, 9246, 11794, 7, 15526, 62, 30001, 11, 18388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 33244, 2759, 9639, 2695, 286, 1391, 1268, 30076, 62, 25664, 92, 19570, 198 ]
2.386345
1,201
# Import our libraries # Import pandas and numpy import pandas as pd import numpy as np import pickle import matplotlib.pyplot as plt # Helper function to split our data from sklearn.model_selection import train_test_split # Import our Logistic Regression model from sklearn.linear_model import LogisticRegression # Import helper functions to evaluate our model from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, f1_score, roc_auc_score # Import z-score helper function import scipy.stats as stats from IPython.display import Image # Import helper functipn for hyper-parameter tuning from sklearn.model_selection import GridSearchCV # Import Decision Tree # from sklearn.tree import DecisionTreeClassifier # Import Random Forest from sklearn.ensemble import RandomForestClassifier # Import metrics to score our model from sklearn import metrics # LOAD IN AND CLEAN UP THE DATA BEFORE MERGING # Load in the first stroke dataset df = pd.read_csv('https://raw.githubusercontent.com/shenalt/tissera_yasser_DS_project/main/healthcare-dataset-stroke-data.csv') # Drop the id column df.drop(columns=['id'], inplace=True) # Fill the bmi null values in df df['bmi'] = df.bmi.fillna(df.bmi.mean()) # Remove entries with gender Other from df df = df[df['gender'] != 'Other'] # Normalize our numerical features to ensure they have equal weight when I build my classifiers # Create a new column for normalized age df['age_norm']=(df['age']-df['age'].min())/(df['age'].max()-df['age'].min()) # Create a new column for normalized avg glucose level df['avg_glucose_level_norm']=(df['avg_glucose_level']-df['avg_glucose_level'].min())/(df['avg_glucose_level'].max()-df['avg_glucose_level'].min()) # Create a new column for normalized bmi df['bmi_norm']=(df['bmi']-df['bmi'].min())/(df['bmi'].max()-df['bmi'].min()) # Load in the second stroke dataset df2 = pd.read_csv('https://raw.githubusercontent.com/shenalt/tissera_yasser_DS_project/main/train_strokes.csv') # Drop the id column df2.drop(columns=['id'], inplace=True) # Fill the bmi null values in df2 df2['bmi'] = df2.bmi.fillna(df2.bmi.mean()) # Create a new category for the smoking null values df2['smoking_status'] = df2['smoking_status'].fillna('not known') # Remove entries with gender Other from df2 df2 = df2[df2['gender'] != 'Other'] # Normalize our numerical features to ensure they have equal weight when I build my classifiers # Create a new column for normalized age df2['age_norm']=(df2['age']-df2['age'].min())/(df2['age'].max()-df2['age'].min()) # Create a new column for normalized avg glucose level df2['avg_glucose_level_norm']=(df2['avg_glucose_level']-df2['avg_glucose_level'].min())/(df2['avg_glucose_level'].max()-df2['avg_glucose_level'].min()) # Create a new column for normalized bmi df2['bmi_norm']=(df2['bmi']-df2['bmi'].min())/(df2['bmi'].max()-df2['bmi'].min()) # Merge the two df's df_master = df.merge(df2, how='outer') # EXTRACT ALL STROKE ENTRIES AND ISOLATE 1000 RANDOM NON-STROKE ENTRIES INTO A DF # Create a df from dataset with just the stroke entries s_df = df_master.loc[df_master['stroke'] == 1] # Remove age outliers from s_df s_df = s_df.loc[s_df['age'] >= 45] # Create a df from the dataset with the no stroke entries n_df = df_master.sample(n=1100, random_state=30) n_df = n_df.loc[n_df['stroke'] == 0] # Merge them df_final = s_df.merge(n_df, how='outer') # FEATURE ENGINEERING TIME # Convert certain features into numerical values df_final = pd.get_dummies(df_final, columns=['gender', 'Residence_type', 'smoking_status', 'ever_married', 'work_type']) # Begin to train our model selected_features = ['age', 'bmi', 'avg_glucose_level', 'hypertension', 'heart_disease'] X = df_final[selected_features] y = df_final['stroke'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=30) # RANDOM FOREST CLASSIFIER # Init our Random Forest Classifier Model #model = RandomForestClassifier() params = { 'n_estimators' : [10, 50, 100], 'criterion' : ['gini', 'entropy'], 'max_depth': [5, 10, 100, None], 'min_samples_split': [2, 10, 100], 'max_features': ['auto', 'sqrt', 'log2'] } grid_search_cv = GridSearchCV( estimator=RandomForestClassifier(), param_grid=params, scoring='accuracy' ) # fit all combination of trees. grid_search_cv.fit(X_train, y_train) # the highest accuracy-score. model = grid_search_cv.best_estimator_ # Fit our model model.fit(X_train, y_train) # Save our model using pickle pickle.dump(model, open('models/rfc.pkl', 'wb') )
[ 2, 17267, 674, 12782, 198, 198, 2, 17267, 19798, 292, 290, 299, 32152, 220, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 2298, 293, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 2, 5053, 525, 2163, 284, 6626, 674, 1366, 220, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 220, 198, 198, 2, 17267, 674, 5972, 2569, 3310, 2234, 2746, 220, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 198, 198, 2, 17267, 31904, 5499, 284, 13446, 674, 2746, 220, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 9922, 62, 26675, 11, 15440, 62, 26675, 11, 10014, 62, 26675, 11, 10802, 62, 6759, 8609, 11, 277, 16, 62, 26675, 11, 686, 66, 62, 14272, 62, 26675, 198, 198, 2, 17267, 1976, 12, 26675, 31904, 2163, 198, 11748, 629, 541, 88, 13, 34242, 355, 9756, 198, 198, 6738, 6101, 7535, 13, 13812, 1330, 7412, 198, 198, 2, 17267, 31904, 1257, 310, 541, 77, 329, 8718, 12, 17143, 2357, 24549, 220, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 24846, 18243, 33538, 198, 198, 2, 17267, 26423, 12200, 198, 2, 422, 1341, 35720, 13, 21048, 1330, 26423, 27660, 9487, 7483, 198, 198, 2, 17267, 14534, 9115, 220, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 198, 198, 2, 17267, 20731, 284, 4776, 674, 2746, 220, 198, 6738, 1341, 35720, 1330, 20731, 198, 198, 2, 17579, 2885, 3268, 5357, 30301, 1565, 15958, 3336, 42865, 38331, 34482, 38, 2751, 198, 2, 8778, 287, 262, 717, 14000, 27039, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 82, 831, 2501, 14, 83, 747, 8607, 62, 88, 24929, 62, 5258, 62, 16302, 14, 12417, 14, 13948, 6651, 12, 19608, 292, 316, 12, 30757, 12, 7890, 13, 40664, 11537, 198, 198, 2, 14258, 262, 4686, 5721, 198, 7568, 13, 14781, 7, 28665, 82, 28, 17816, 312, 6, 4357, 287, 5372, 28, 17821, 8, 198, 198, 2, 27845, 262, 275, 11632, 9242, 3815, 287, 47764, 198, 7568, 17816, 65, 11632, 20520, 796, 47764, 13, 65, 11632, 13, 20797, 2616, 7, 7568, 13, 65, 11632, 13, 32604, 28955, 198, 198, 2, 17220, 12784, 351, 5279, 3819, 422, 47764, 220, 198, 7568, 796, 47764, 58, 7568, 17816, 8388, 20520, 14512, 705, 6395, 20520, 198, 198, 2, 14435, 1096, 674, 29052, 3033, 284, 4155, 484, 423, 4961, 3463, 618, 314, 1382, 616, 1398, 13350, 198, 2, 13610, 257, 649, 5721, 329, 39279, 2479, 198, 7568, 17816, 496, 62, 27237, 20520, 16193, 7568, 17816, 496, 20520, 12, 7568, 17816, 496, 6, 4083, 1084, 3419, 20679, 7, 7568, 17816, 496, 6, 4083, 9806, 3419, 12, 7568, 17816, 496, 6, 4083, 1084, 28955, 198, 198, 2, 13610, 257, 649, 5721, 329, 39279, 42781, 15701, 1241, 198, 7568, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 62, 27237, 20520, 16193, 7568, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 20520, 12, 7568, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 6, 4083, 1084, 3419, 20679, 7, 7568, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 6, 4083, 9806, 3419, 12, 7568, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 6, 4083, 1084, 28955, 198, 198, 2, 13610, 257, 649, 5721, 329, 39279, 275, 11632, 198, 7568, 17816, 65, 11632, 62, 27237, 20520, 16193, 7568, 17816, 65, 11632, 20520, 12, 7568, 17816, 65, 11632, 6, 4083, 1084, 3419, 20679, 7, 7568, 17816, 65, 11632, 6, 4083, 9806, 3419, 12, 7568, 17816, 65, 11632, 6, 4083, 1084, 28955, 198, 198, 2, 8778, 287, 262, 1218, 14000, 27039, 198, 7568, 17, 796, 279, 67, 13, 961, 62, 40664, 10786, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 82, 831, 2501, 14, 83, 747, 8607, 62, 88, 24929, 62, 5258, 62, 16302, 14, 12417, 14, 27432, 62, 20661, 5209, 13, 40664, 11537, 198, 198, 2, 14258, 262, 4686, 5721, 198, 7568, 17, 13, 14781, 7, 28665, 82, 28, 17816, 312, 6, 4357, 287, 5372, 28, 17821, 8, 198, 198, 2, 27845, 262, 275, 11632, 9242, 3815, 287, 47764, 17, 198, 7568, 17, 17816, 65, 11632, 20520, 796, 47764, 17, 13, 65, 11632, 13, 20797, 2616, 7, 7568, 17, 13, 65, 11632, 13, 32604, 28955, 198, 198, 2, 13610, 257, 649, 6536, 329, 262, 9216, 9242, 3815, 198, 7568, 17, 17816, 48783, 62, 13376, 20520, 796, 47764, 17, 17816, 48783, 62, 13376, 6, 4083, 20797, 2616, 10786, 1662, 1900, 11537, 198, 198, 2, 17220, 12784, 351, 5279, 3819, 422, 47764, 17, 198, 7568, 17, 796, 47764, 17, 58, 7568, 17, 17816, 8388, 20520, 14512, 705, 6395, 20520, 198, 198, 2, 14435, 1096, 674, 29052, 3033, 284, 4155, 484, 423, 4961, 3463, 618, 314, 1382, 616, 1398, 13350, 198, 2, 13610, 257, 649, 5721, 329, 39279, 2479, 198, 7568, 17, 17816, 496, 62, 27237, 20520, 16193, 7568, 17, 17816, 496, 20520, 12, 7568, 17, 17816, 496, 6, 4083, 1084, 3419, 20679, 7, 7568, 17, 17816, 496, 6, 4083, 9806, 3419, 12, 7568, 17, 17816, 496, 6, 4083, 1084, 28955, 198, 198, 2, 13610, 257, 649, 5721, 329, 39279, 42781, 15701, 1241, 198, 7568, 17, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 62, 27237, 20520, 16193, 7568, 17, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 20520, 12, 7568, 17, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 6, 4083, 1084, 3419, 20679, 7, 7568, 17, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 6, 4083, 9806, 3419, 12, 7568, 17, 17816, 615, 70, 62, 4743, 1229, 577, 62, 5715, 6, 4083, 1084, 28955, 198, 198, 2, 13610, 257, 649, 5721, 329, 39279, 275, 11632, 198, 7568, 17, 17816, 65, 11632, 62, 27237, 20520, 16193, 7568, 17, 17816, 65, 11632, 20520, 12, 7568, 17, 17816, 65, 11632, 6, 4083, 1084, 3419, 20679, 7, 7568, 17, 17816, 65, 11632, 6, 4083, 9806, 3419, 12, 7568, 17, 17816, 65, 11632, 6, 4083, 1084, 28955, 198, 198, 2, 39407, 262, 734, 47764, 338, 198, 7568, 62, 9866, 796, 47764, 13, 647, 469, 7, 7568, 17, 11, 703, 11639, 39605, 11537, 220, 628, 198, 2, 7788, 5446, 10659, 11096, 3563, 13252, 7336, 12964, 5446, 11015, 5357, 3180, 3535, 6158, 8576, 46920, 2662, 44521, 12, 2257, 13252, 7336, 12964, 5446, 11015, 39319, 317, 36323, 198, 2, 13610, 257, 47764, 422, 27039, 351, 655, 262, 14000, 12784, 220, 198, 82, 62, 7568, 796, 47764, 62, 9866, 13, 17946, 58, 7568, 62, 9866, 17816, 30757, 20520, 6624, 352, 60, 198, 198, 2, 17220, 2479, 41528, 3183, 422, 264, 62, 7568, 198, 82, 62, 7568, 796, 264, 62, 7568, 13, 17946, 58, 82, 62, 7568, 17816, 496, 20520, 18189, 4153, 60, 198, 198, 2, 13610, 257, 47764, 422, 262, 27039, 351, 262, 645, 14000, 12784, 220, 198, 77, 62, 7568, 796, 47764, 62, 9866, 13, 39873, 7, 77, 28, 42060, 11, 4738, 62, 5219, 28, 1270, 8, 198, 77, 62, 7568, 796, 299, 62, 7568, 13, 17946, 58, 77, 62, 7568, 17816, 30757, 20520, 6624, 657, 60, 220, 198, 198, 2, 39407, 606, 198, 7568, 62, 20311, 796, 264, 62, 7568, 13, 647, 469, 7, 77, 62, 7568, 11, 703, 11639, 39605, 11537, 198, 198, 2, 18630, 40086, 36924, 8881, 1137, 2751, 20460, 198, 2, 38240, 1728, 3033, 656, 29052, 3815, 198, 7568, 62, 20311, 796, 279, 67, 13, 1136, 62, 67, 39578, 7, 7568, 62, 20311, 11, 15180, 28, 17816, 8388, 3256, 705, 4965, 1704, 62, 4906, 3256, 705, 48783, 62, 13376, 3256, 705, 964, 62, 30526, 3256, 705, 1818, 62, 4906, 6, 12962, 198, 198, 2, 16623, 284, 4512, 674, 2746, 198, 34213, 62, 40890, 796, 37250, 496, 3256, 705, 65, 11632, 3256, 705, 615, 70, 62, 4743, 1229, 577, 62, 5715, 3256, 705, 12114, 11766, 3004, 3256, 705, 11499, 62, 67, 786, 589, 20520, 198, 198, 55, 796, 47764, 62, 20311, 58, 34213, 62, 40890, 60, 198, 198, 88, 796, 47764, 62, 20311, 17816, 30757, 20520, 198, 198, 55, 62, 27432, 11, 1395, 62, 9288, 11, 331, 62, 27432, 11, 331, 62, 9288, 796, 4512, 62, 9288, 62, 35312, 7, 55, 11, 331, 11, 1332, 62, 7857, 28, 15, 13, 17, 11, 4738, 62, 5219, 28, 1270, 8, 628, 1303, 46920, 2662, 7473, 6465, 42715, 5064, 38311, 198, 1303, 44707, 674, 14534, 9115, 5016, 7483, 9104, 220, 198, 2, 19849, 796, 14534, 34605, 9487, 7483, 3419, 198, 198, 37266, 796, 1391, 198, 220, 220, 220, 705, 77, 62, 395, 320, 2024, 6, 1058, 685, 940, 11, 2026, 11, 1802, 4357, 198, 220, 220, 220, 705, 22213, 28019, 6, 1058, 37250, 1655, 72, 3256, 705, 298, 28338, 6, 4357, 198, 220, 220, 220, 705, 9806, 62, 18053, 10354, 685, 20, 11, 838, 11, 1802, 11, 6045, 4357, 220, 198, 220, 220, 220, 705, 1084, 62, 82, 12629, 62, 35312, 10354, 685, 17, 11, 838, 11, 1802, 4357, 198, 220, 220, 220, 705, 9806, 62, 40890, 10354, 37250, 23736, 3256, 705, 31166, 17034, 3256, 705, 6404, 17, 20520, 198, 92, 198, 198, 25928, 62, 12947, 62, 33967, 796, 24846, 18243, 33538, 7, 220, 198, 220, 220, 220, 3959, 1352, 28, 29531, 34605, 9487, 7483, 22784, 220, 198, 220, 220, 220, 5772, 62, 25928, 28, 37266, 11, 198, 220, 220, 220, 9689, 11639, 4134, 23843, 6, 1267, 198, 198, 2, 4197, 477, 6087, 286, 7150, 13, 220, 198, 25928, 62, 12947, 62, 33967, 13, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 8, 198, 198, 2, 220, 262, 4511, 9922, 12, 26675, 13, 220, 198, 19849, 796, 10706, 62, 12947, 62, 33967, 13, 13466, 62, 395, 320, 1352, 62, 198, 198, 2, 25048, 674, 2746, 220, 198, 19849, 13, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 8, 198, 198, 2, 12793, 674, 2746, 1262, 2298, 293, 198, 27729, 293, 13, 39455, 7, 19849, 11, 1280, 10786, 27530, 14, 81, 16072, 13, 79, 41582, 3256, 705, 39346, 11537, 1267, 198 ]
2.784029
1,653
import contextlib from multiprocessing import connection import os import queue import threading from porcupine import dirs _ADDRESS_FILE = os.path.join(dirs.cachedir, 'ipc_address.txt') # the addresses contain random junk so they are very unlikely to # conflict with each other # example addresses: r'\\.\pipe\pyc-1412-1-7hyryfd_', # '/tmp/pymp-_lk54sed/listener-4o8n1xrc', def send(objects): """Send objects from an iterable to a process running session(). Raise ConnectionRefusedError if session() is not running. """ raise ConnectionRefusedError # reading the address file, connecting to a windows named pipe and # connecting to an AF_UNIX socket all raise FileNotFoundError :D try: with open(_ADDRESS_FILE, 'r') as file: address = file.read().strip() client = connection.Client(address) except FileNotFoundError: raise ConnectionRefusedError("session() is not running") from None with client: for message in objects: client.send(message) def _listener2queue(listener, object_queue): """Accept connections. Receive and queue objects.""" while True: try: client = listener.accept() except OSError: # it's closed break with client: while True: try: object_queue.put(client.recv()) except EOFError: break @contextlib.contextmanager def session(): """Context manager that listens for send(). Use this as a context manager: # the queue will contain objects from send() with session() as message_queue: # start something that processes items in the queue and run # the application """ message_queue = queue.Queue() with connection.Listener() as listener: with open(_ADDRESS_FILE, 'w') as file: print(listener.address, file=file) thread = threading.Thread(target=_listener2queue, args=[listener, message_queue], daemon=True) thread.start() yield message_queue if __name__ == '__main__': # simple test try: send([1, 2, 3]) print("a server is running, a message was sent to it") except ConnectionRefusedError: print("a server is not running, let's become the server...") with session() as message_queue: while True: print(message_queue.get())
[ 11748, 4732, 8019, 198, 6738, 18540, 305, 919, 278, 1330, 4637, 198, 11748, 28686, 198, 11748, 16834, 198, 11748, 4704, 278, 198, 198, 6738, 16964, 25244, 500, 1330, 288, 17062, 198, 198, 62, 2885, 7707, 7597, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 82, 13, 66, 2317, 343, 11, 705, 541, 66, 62, 21975, 13, 14116, 11537, 628, 198, 2, 262, 9405, 3994, 4738, 18556, 523, 484, 389, 845, 7485, 284, 198, 2, 5358, 351, 1123, 584, 198, 2, 1672, 9405, 25, 374, 6, 6852, 13, 59, 34360, 59, 9078, 66, 12, 1415, 1065, 12, 16, 12, 22, 12114, 563, 16344, 62, 3256, 198, 2, 31051, 22065, 14, 9078, 3149, 12, 62, 75, 74, 4051, 36622, 14, 4868, 877, 12, 19, 78, 23, 77, 16, 87, 6015, 3256, 198, 4299, 3758, 7, 48205, 2599, 198, 220, 220, 220, 37227, 25206, 5563, 422, 281, 11629, 540, 284, 257, 1429, 2491, 6246, 22446, 628, 220, 220, 220, 35123, 26923, 8134, 1484, 12331, 611, 6246, 3419, 318, 407, 2491, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5298, 26923, 8134, 1484, 12331, 198, 220, 220, 220, 1303, 3555, 262, 2209, 2393, 11, 14320, 284, 257, 9168, 3706, 12656, 290, 198, 220, 220, 220, 1303, 14320, 284, 281, 12341, 62, 4944, 10426, 17802, 477, 5298, 9220, 3673, 21077, 12331, 1058, 35, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 28264, 2885, 7707, 7597, 62, 25664, 11, 705, 81, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 796, 2393, 13, 961, 22446, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 796, 4637, 13, 11792, 7, 21975, 8, 198, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 26923, 8134, 1484, 12331, 7203, 29891, 3419, 318, 407, 2491, 4943, 422, 6045, 628, 220, 220, 220, 351, 5456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3275, 287, 5563, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 21280, 7, 20500, 8, 628, 198, 4299, 4808, 4868, 877, 17, 36560, 7, 4868, 877, 11, 2134, 62, 36560, 2599, 198, 220, 220, 220, 37227, 38855, 8787, 13, 797, 15164, 290, 16834, 5563, 526, 15931, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 796, 24783, 13, 13635, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 338, 4838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 351, 5456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 36560, 13, 1996, 7, 16366, 13, 8344, 85, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 412, 19238, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 198, 31, 22866, 8019, 13, 22866, 37153, 198, 4299, 6246, 33529, 198, 220, 220, 220, 37227, 21947, 4706, 326, 35019, 329, 3758, 22446, 628, 220, 220, 220, 5765, 428, 355, 257, 4732, 4706, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 16834, 481, 3994, 5563, 422, 3758, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 6246, 3419, 355, 3275, 62, 36560, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 923, 1223, 326, 7767, 3709, 287, 262, 16834, 290, 1057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 3586, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3275, 62, 36560, 796, 16834, 13, 34991, 3419, 198, 220, 220, 220, 351, 4637, 13, 33252, 3419, 355, 24783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 28264, 2885, 7707, 7597, 62, 25664, 11, 705, 86, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 4868, 877, 13, 21975, 11, 2393, 28, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 796, 4704, 278, 13, 16818, 7, 16793, 28, 62, 4868, 877, 17, 36560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 41888, 4868, 877, 11, 3275, 62, 36560, 4357, 33386, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 3275, 62, 36560, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 2829, 1332, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3758, 26933, 16, 11, 362, 11, 513, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 64, 4382, 318, 2491, 11, 257, 3275, 373, 1908, 284, 340, 4943, 198, 220, 220, 220, 2845, 26923, 8134, 1484, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 64, 4382, 318, 407, 2491, 11, 1309, 338, 1716, 262, 4382, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 6246, 3419, 355, 3275, 62, 36560, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20500, 62, 36560, 13, 1136, 28955, 198 ]
2.482178
1,010
# -*- coding: utf-8 -*- from Physics import eps_0, mu_0 from math import pi, sqrt resistivity = {'copper': 1.7e-8, 'aluminum': 2.8e-8, 'iron': 1e-7, 'steel-electrical': 4.6e-7, 'steel-stainless': 6.9e-7, 'gold': 2.44e-8, 'silver': 1.68e-8, 'graphite-min': 2.5e-6, 'graphite-max': 5e-6} permeability = {'steel-electrical': 5e-3, 'steel-stainless': 1000*mu_0, 'steel-carbon': 8.75e-4, 'copper': mu_0, 'aluminum': mu_0} permittivity = {'metal': eps_0} def skin_depth(omega, rho, mu=mu_0, eps=eps_0): """ Depth of the current layer in a conductor subject to AC fields:: J = J exp(-d/delta) S where J is the surface current density and delta is the skin depth:: S Resistivity is defined so that the resistance of a bulk conductor is:: rho R = --- L A where A is the cross-sectional area and L is the length. @param omega : angular frequency (rad/s) @type omega : float @param mu : magnetic permeability (H/m) @type mu : float @param eps : electric permittivity (F/m) @type eps : float @param rho : resistivity (ohm-m) @type rho : float @return: m (float) """ return 1/omega/sqrt( (mu*eps/2) * (sqrt(1+(1/(rho*omega*eps))**2) -1) ) def skin_resistance(freq, rho, diam): """ Resistance in a 1-m thin wire. A metal wire is assumed. @param freq : Hz @type freq : float @param rho : material resistivity, ohm-m @type rho : float @param diam : diameter, m @type diam : float @return: ohm/m """ omega = 2*pi*freq delta = skin_depth(omega, rho) return rho/(pi*(diam-delta)*delta)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 23123, 1330, 304, 862, 62, 15, 11, 38779, 62, 15, 198, 6738, 10688, 1330, 31028, 11, 19862, 17034, 198, 198, 35119, 3458, 796, 1391, 6, 1073, 2848, 10354, 352, 13, 22, 68, 12, 23, 11, 705, 282, 13074, 10354, 362, 13, 23, 68, 12, 23, 11, 705, 1934, 10354, 352, 68, 12, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 44822, 12, 9509, 8143, 10354, 604, 13, 21, 68, 12, 22, 11, 705, 44822, 12, 301, 391, 1203, 10354, 718, 13, 24, 68, 12, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24267, 10354, 362, 13, 2598, 68, 12, 23, 11, 705, 40503, 10354, 352, 13, 3104, 68, 12, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34960, 578, 12, 1084, 10354, 362, 13, 20, 68, 12, 21, 11, 705, 34960, 578, 12, 9806, 10354, 642, 68, 12, 21, 92, 198, 198, 525, 1326, 1799, 796, 1391, 6, 44822, 12, 9509, 8143, 10354, 642, 68, 12, 18, 11, 705, 44822, 12, 301, 391, 1203, 10354, 8576, 9, 30300, 62, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 44822, 12, 29255, 10354, 807, 13, 2425, 68, 12, 19, 11, 705, 1073, 2848, 10354, 38779, 62, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 282, 13074, 10354, 38779, 62, 15, 92, 198, 198, 16321, 715, 3458, 796, 1391, 6, 28469, 10354, 304, 862, 62, 15, 92, 198, 198, 4299, 4168, 62, 18053, 7, 462, 4908, 11, 374, 8873, 11, 38779, 28, 30300, 62, 15, 11, 304, 862, 28, 25386, 62, 15, 2599, 198, 220, 37227, 198, 220, 36350, 286, 262, 1459, 7679, 287, 257, 39206, 2426, 284, 7125, 7032, 3712, 198, 220, 220, 449, 796, 449, 220, 1033, 32590, 67, 14, 67, 12514, 8, 198, 220, 220, 220, 220, 220, 220, 220, 311, 198, 220, 220, 220, 198, 220, 810, 449, 220, 318, 262, 4417, 1459, 12109, 290, 25979, 318, 262, 4168, 6795, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 198, 220, 220, 198, 220, 36136, 3458, 318, 5447, 523, 326, 262, 6625, 286, 257, 11963, 39206, 318, 3712, 198, 220, 220, 198, 220, 220, 220, 220, 220, 220, 374, 8873, 198, 220, 220, 371, 796, 11420, 406, 198, 220, 220, 220, 220, 220, 220, 220, 317, 198, 220, 220, 198, 220, 810, 317, 318, 262, 3272, 12, 44330, 1989, 290, 406, 318, 262, 4129, 13, 198, 220, 220, 198, 220, 2488, 17143, 37615, 1058, 32558, 8373, 357, 6335, 14, 82, 8, 198, 220, 2488, 4906, 220, 37615, 1058, 12178, 198, 220, 220, 198, 220, 2488, 17143, 38779, 1058, 14091, 29298, 1799, 357, 39, 14, 76, 8, 198, 220, 2488, 4906, 220, 38779, 1058, 12178, 198, 220, 220, 198, 220, 2488, 17143, 304, 862, 1058, 5186, 9943, 715, 3458, 357, 37, 14, 76, 8, 198, 220, 2488, 4906, 220, 304, 862, 1058, 12178, 198, 220, 220, 198, 220, 2488, 17143, 374, 8873, 1058, 4180, 3458, 357, 34028, 12, 76, 8, 198, 220, 2488, 4906, 220, 374, 8873, 1058, 12178, 198, 220, 220, 198, 220, 2488, 7783, 25, 285, 357, 22468, 8, 198, 220, 37227, 198, 220, 1441, 352, 14, 462, 4908, 14, 31166, 17034, 7, 357, 30300, 9, 25386, 14, 17, 8, 1635, 357, 31166, 17034, 7, 16, 33747, 16, 29006, 81, 8873, 9, 462, 4908, 9, 25386, 4008, 1174, 17, 8, 532, 16, 8, 1267, 198, 198, 4299, 4168, 62, 411, 9311, 7, 19503, 80, 11, 374, 8873, 11, 48428, 2599, 198, 220, 37227, 198, 220, 17363, 287, 257, 352, 12, 76, 7888, 6503, 13, 198, 220, 220, 198, 220, 317, 6147, 6503, 318, 9672, 13, 198, 220, 220, 198, 220, 2488, 17143, 2030, 80, 1058, 26109, 198, 220, 2488, 4906, 220, 2030, 80, 1058, 12178, 198, 220, 220, 198, 220, 2488, 17143, 374, 8873, 1058, 2587, 4180, 3458, 11, 11752, 76, 12, 76, 198, 220, 2488, 4906, 220, 374, 8873, 1058, 12178, 198, 220, 220, 198, 220, 2488, 17143, 48428, 1058, 14753, 11, 285, 198, 220, 2488, 4906, 220, 48428, 1058, 12178, 198, 220, 220, 198, 220, 2488, 7783, 25, 11752, 76, 14, 76, 198, 220, 37227, 198, 220, 37615, 796, 362, 9, 14415, 9, 19503, 80, 198, 220, 25979, 796, 4168, 62, 18053, 7, 462, 4908, 11, 374, 8873, 8, 198, 220, 1441, 374, 8873, 29006, 14415, 9, 7, 67, 1789, 12, 67, 12514, 27493, 67, 12514, 8, 198 ]
2.173913
782
#!/usr/bin/env python3 import random from mytcputils import * from mytcp import Servidor foi_aceita = False rede = CamadaRede() dst_port = random.randint(10, 1023) servidor = Servidor(rede, dst_port) servidor.registrar_monitor_de_conexoes_aceitas(conexao_aceita) src_port = random.randint(1024, 0xffff) seq_no = random.randint(0, 0xffff) src_addr, dst_addr = '10.0.0.%d'%random.randint(1, 10), '10.0.0.%d'%random.randint(11, 20) assert rede.fila == [] rede.callback(src_addr, dst_addr, fix_checksum(make_header(src_port, dst_port, seq_no, 0, FLAGS_SYN), src_addr, dst_addr)) assert foi_aceita, 'O monitor de conexões aceitas deveria ter sido chamado' assert len(rede.fila) == 1 segmento, dst_addr2 = rede.fila[0] assert fix_checksum(segmento, src_addr, dst_addr) == segmento src_port2, dst_port2, seq_no2, ack_no2, flags2, _, _, _ = read_header(segmento) assert 4*(flags2>>12) == len(segmento), 'O SYN+ACK não deveria ter payload' assert dst_addr2 == src_addr assert src_port2 == dst_port assert dst_port2 == src_port assert ack_no2 == seq_no + 1 assert flags2 & (FLAGS_SYN|FLAGS_ACK) == (FLAGS_SYN|FLAGS_ACK) assert flags2 & (FLAGS_FIN|FLAGS_RST) == 0 rede.fila.clear() src_port3 = src_port while src_port3 == src_port: src_port3 = random.randint(1024, 0xffff) rede.callback(src_addr, dst_addr, fix_checksum(make_header(src_port3, dst_port, seq_no, 0, FLAGS_SYN), src_addr, dst_addr)) assert len(rede.fila) == 1 segmento, dst_addr4 = rede.fila[0] assert fix_checksum(segmento, src_addr, dst_addr) == segmento src_port4, dst_port4, seq_no4, ack_no4, flags4, _, _, _ = read_header(segmento) assert 4*(flags4>>12) == len(segmento), 'O SYN+ACK não deveria ter payload' assert dst_addr4 == src_addr assert src_port4 == dst_port assert dst_port4 == src_port3 assert ack_no4 == seq_no + 1 assert seq_no4 != seq_no2, 'O primeiro número de sequência usado em uma conexão deveria ser aleatório' assert flags4 & (FLAGS_SYN|FLAGS_ACK) == (FLAGS_SYN|FLAGS_ACK) assert flags4 & (FLAGS_FIN|FLAGS_RST) == 0
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 4738, 198, 6738, 616, 23047, 1996, 4487, 1330, 1635, 198, 6738, 616, 83, 13155, 1330, 3116, 312, 273, 198, 198, 6513, 72, 62, 558, 5350, 796, 10352, 198, 198, 445, 68, 796, 7298, 4763, 7738, 68, 3419, 198, 67, 301, 62, 634, 796, 4738, 13, 25192, 600, 7, 940, 11, 838, 1954, 8, 198, 3168, 312, 273, 796, 3116, 312, 273, 7, 445, 68, 11, 29636, 62, 634, 8, 198, 3168, 312, 273, 13, 2301, 396, 20040, 62, 41143, 62, 2934, 62, 49180, 87, 3028, 62, 558, 21416, 7, 49180, 87, 5488, 62, 558, 5350, 8, 198, 198, 10677, 62, 634, 796, 4738, 13, 25192, 600, 7, 35500, 11, 657, 87, 12927, 8, 198, 41068, 62, 3919, 796, 4738, 13, 25192, 600, 7, 15, 11, 657, 87, 12927, 8, 198, 10677, 62, 29851, 11, 29636, 62, 29851, 796, 705, 940, 13, 15, 13, 15, 13, 4, 67, 6, 4, 25120, 13, 25192, 600, 7, 16, 11, 838, 828, 705, 940, 13, 15, 13, 15, 13, 4, 67, 6, 4, 25120, 13, 25192, 600, 7, 1157, 11, 1160, 8, 198, 30493, 21459, 13, 69, 10102, 6624, 17635, 198, 445, 68, 13, 47423, 7, 10677, 62, 29851, 11, 29636, 62, 29851, 11, 4259, 62, 42116, 388, 7, 15883, 62, 25677, 7, 10677, 62, 634, 11, 29636, 62, 634, 11, 33756, 62, 3919, 11, 657, 11, 9977, 4760, 50, 62, 23060, 45, 828, 12351, 62, 29851, 11, 29636, 62, 29851, 4008, 198, 30493, 11511, 72, 62, 558, 5350, 11, 705, 46, 5671, 390, 369, 1069, 127, 113, 274, 31506, 21416, 390, 332, 544, 1059, 9785, 78, 442, 321, 4533, 6, 198, 30493, 18896, 7, 445, 68, 13, 69, 10102, 8, 6624, 352, 198, 325, 5154, 78, 11, 29636, 62, 29851, 17, 796, 21459, 13, 69, 10102, 58, 15, 60, 198, 30493, 4259, 62, 42116, 388, 7, 325, 5154, 78, 11, 12351, 62, 29851, 11, 29636, 62, 29851, 8, 6624, 10618, 78, 198, 10677, 62, 634, 17, 11, 29636, 62, 634, 17, 11, 33756, 62, 3919, 17, 11, 257, 694, 62, 3919, 17, 11, 9701, 17, 11, 4808, 11, 4808, 11, 4808, 796, 1100, 62, 25677, 7, 325, 5154, 78, 8, 198, 30493, 604, 9, 7, 33152, 17, 4211, 1065, 8, 6624, 18896, 7, 325, 5154, 78, 828, 705, 46, 19704, 45, 10, 8120, 299, 28749, 390, 332, 544, 1059, 21437, 6, 198, 30493, 29636, 62, 29851, 17, 6624, 12351, 62, 29851, 198, 30493, 12351, 62, 634, 17, 6624, 29636, 62, 634, 198, 30493, 29636, 62, 634, 17, 6624, 12351, 62, 634, 198, 30493, 257, 694, 62, 3919, 17, 6624, 33756, 62, 3919, 1343, 352, 198, 30493, 9701, 17, 1222, 357, 38948, 50, 62, 23060, 45, 91, 38948, 50, 62, 8120, 8, 6624, 357, 38948, 50, 62, 23060, 45, 91, 38948, 50, 62, 8120, 8, 198, 30493, 9701, 17, 1222, 357, 38948, 50, 62, 20032, 91, 38948, 50, 62, 49, 2257, 8, 6624, 657, 198, 198, 445, 68, 13, 69, 10102, 13, 20063, 3419, 198, 10677, 62, 634, 18, 796, 12351, 62, 634, 198, 4514, 12351, 62, 634, 18, 6624, 12351, 62, 634, 25, 198, 220, 220, 220, 12351, 62, 634, 18, 796, 4738, 13, 25192, 600, 7, 35500, 11, 657, 87, 12927, 8, 198, 445, 68, 13, 47423, 7, 10677, 62, 29851, 11, 29636, 62, 29851, 11, 4259, 62, 42116, 388, 7, 15883, 62, 25677, 7, 10677, 62, 634, 18, 11, 29636, 62, 634, 11, 33756, 62, 3919, 11, 657, 11, 9977, 4760, 50, 62, 23060, 45, 828, 12351, 62, 29851, 11, 29636, 62, 29851, 4008, 198, 30493, 18896, 7, 445, 68, 13, 69, 10102, 8, 6624, 352, 198, 325, 5154, 78, 11, 29636, 62, 29851, 19, 796, 21459, 13, 69, 10102, 58, 15, 60, 198, 30493, 4259, 62, 42116, 388, 7, 325, 5154, 78, 11, 12351, 62, 29851, 11, 29636, 62, 29851, 8, 6624, 10618, 78, 198, 10677, 62, 634, 19, 11, 29636, 62, 634, 19, 11, 33756, 62, 3919, 19, 11, 257, 694, 62, 3919, 19, 11, 9701, 19, 11, 4808, 11, 4808, 11, 4808, 796, 1100, 62, 25677, 7, 325, 5154, 78, 8, 198, 30493, 604, 9, 7, 33152, 19, 4211, 1065, 8, 6624, 18896, 7, 325, 5154, 78, 828, 705, 46, 19704, 45, 10, 8120, 299, 28749, 390, 332, 544, 1059, 21437, 6, 198, 30493, 29636, 62, 29851, 19, 6624, 12351, 62, 29851, 198, 30493, 12351, 62, 634, 19, 6624, 29636, 62, 634, 198, 30493, 29636, 62, 634, 19, 6624, 12351, 62, 634, 18, 198, 30493, 257, 694, 62, 3919, 19, 6624, 33756, 62, 3919, 1343, 352, 198, 30493, 33756, 62, 3919, 19, 14512, 33756, 62, 3919, 17, 11, 705, 46, 6994, 7058, 299, 21356, 647, 78, 390, 4726, 25792, 10782, 544, 514, 4533, 795, 334, 2611, 369, 1069, 28749, 390, 332, 544, 1055, 31341, 265, 10205, 27250, 6, 198, 30493, 9701, 19, 1222, 357, 38948, 50, 62, 23060, 45, 91, 38948, 50, 62, 8120, 8, 6624, 357, 38948, 50, 62, 23060, 45, 91, 38948, 50, 62, 8120, 8, 198, 30493, 9701, 19, 1222, 357, 38948, 50, 62, 20032, 91, 38948, 50, 62, 49, 2257, 8, 6624, 657, 198 ]
2.350176
851
"""Video stream client for Raspberry Pi-powered dash cam.""" import signal import sys from pathlib import Path from typing import Any, Optional import arrow import cv2 from loguru import logger from vidgear.gears import VideoGear, WriteGear from minigugl import annotation, config from minigugl.log import setup_logging if config.settings.enable_gps: from minigugl import location # noqa: WPS433 setup_logging( log_level=config.settings.log_level, log_format=config.settings.log_format, ) opencv_options = { 'CAP_PROP_FRAME_WIDTH': config.settings.video_width, 'CAP_PROP_FRAME_HEIGHT': config.settings.video_height, 'CAP_PROP_FPS': config.settings.video_framerate, } stream = VideoGear( source=config.settings.video_source, **opencv_options, ).start() # https://trac.ffmpeg.org/wiki/Encode/H.264 # https://www.ffmpeg.org/ffmpeg-all.html#Codec-Options ffmpeg_options = { '-c:v': config.settings.video_codec, '-map': 0, # map all streams from the first input to output '-segment_time': config.settings.video_segment_length_sec, '-g': config.settings.video_framerate, # group of picture (GOP) size = fps '-sc_threshold': 0, # disable scene detection '-force_key_frames': 'expr:gte(t,n_forced*{0})'.format( # force key frame every x seconds config.settings.video_segment_length_sec, ), # use `-clones` for `-f` parameter since WriteGear internally applies # critical '-f rawvideo' parameter to every FFmpeg pipeline '-clones': ['-f', 'segment'], # enable segment muxer '-input_framerate': config.settings.video_framerate, '-r': config.settings.video_framerate, # output framerate '-pix_fmt': 'yuv420p', # for output to work in QuickTime '-reset_timestamps': 1, # reset timestamps at beginning of each segment '-strftime': 1, # expand the segment filename with localtime } if config.settings.video_codec == 'libx264': ffmpeg_options.update({ '-crf': 22, # constant rate factor, decides quality '-preset': 'fast', # preset for encoding speed/compression ratio '-tune': 'zerolatency', # fast encoding and low-latency streaming }) Path(config.settings.output_dir).mkdir(parents=True, exist_ok=True) writer = WriteGear( # Example: video_2021-04-14_20-15-30.mp4 # April 14th, 2021, at 8:15:30pm output_filename=str( Path( config.settings.output_dir, ) / 'video_%Y-%m-%d_%H-%M-%S.mp4', # noqa: WPS323 ), logging=True, **ffmpeg_options, ) def _signal_handler(signalnum: int, _: Any) -> None: """Handle signal from user interruption (e.g. CTRL+C). Logs an error message and exits with non-zero exit code. Args are ignored. Args: signalnum: Recevied signal number. """ logger.info('Received signal: {0}', signal.Signals(signalnum).name) # safely close video stream & writer stream.stop() writer.close() sys.exit(0) # Register handler for (keyboard) interrupts signal.signal(signal.SIGINT, _signal_handler) signal.signal(signal.SIGTERM, _signal_handler) if __name__ == '__main__': if config.settings.enable_gps: gps_coordinates = location.start_gps_thread() while True: frame = stream.read() # read frames from stream # check for frame if None-type if frame is None: break # explicit conversion of color space because of # https://github.com/opencv/opencv/issues/18120 img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # add text annotations: timestamp and optionally GPS coordinates img = _add_text_annotations( img, bottom_left=arrow.now().format(arrow.FORMAT_RFC2822), bottom_right=( str(gps_coordinates) if config.settings.enable_gps else None ), ) # conversion back to original color space img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) writer.write(img)
[ 37811, 10798, 4269, 5456, 329, 24244, 13993, 12, 12293, 14470, 12172, 526, 15931, 198, 11748, 6737, 198, 11748, 25064, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 4377, 11, 32233, 198, 198, 11748, 15452, 198, 11748, 269, 85, 17, 198, 6738, 2604, 14717, 1330, 49706, 198, 6738, 410, 312, 31763, 13, 70, 4127, 1330, 7623, 38141, 11, 19430, 38141, 198, 198, 6738, 949, 328, 1018, 75, 1330, 23025, 11, 4566, 198, 6738, 949, 328, 1018, 75, 13, 6404, 1330, 9058, 62, 6404, 2667, 198, 198, 361, 4566, 13, 33692, 13, 21633, 62, 70, 862, 25, 198, 220, 220, 220, 422, 949, 328, 1018, 75, 1330, 4067, 220, 1303, 645, 20402, 25, 370, 3705, 42117, 198, 198, 40406, 62, 6404, 2667, 7, 198, 220, 220, 220, 2604, 62, 5715, 28, 11250, 13, 33692, 13, 6404, 62, 5715, 11, 198, 220, 220, 220, 2604, 62, 18982, 28, 11250, 13, 33692, 13, 6404, 62, 18982, 11, 198, 8, 198, 198, 9654, 33967, 62, 25811, 796, 1391, 198, 220, 220, 220, 705, 33177, 62, 4805, 3185, 62, 10913, 10067, 62, 54, 2389, 4221, 10354, 4566, 13, 33692, 13, 15588, 62, 10394, 11, 198, 220, 220, 220, 705, 33177, 62, 4805, 3185, 62, 10913, 10067, 62, 13909, 9947, 10354, 4566, 13, 33692, 13, 15588, 62, 17015, 11, 198, 220, 220, 220, 705, 33177, 62, 4805, 3185, 62, 37, 3705, 10354, 4566, 13, 33692, 13, 15588, 62, 19298, 21620, 11, 198, 92, 198, 5532, 796, 7623, 38141, 7, 198, 220, 220, 220, 2723, 28, 11250, 13, 33692, 13, 15588, 62, 10459, 11, 198, 220, 220, 220, 12429, 9654, 33967, 62, 25811, 11, 198, 737, 9688, 3419, 198, 198, 2, 3740, 1378, 2213, 330, 13, 487, 43913, 13, 2398, 14, 15466, 14, 4834, 8189, 14, 39, 13, 18897, 198, 2, 3740, 1378, 2503, 13, 487, 43913, 13, 2398, 14, 487, 43913, 12, 439, 13, 6494, 2, 43806, 721, 12, 29046, 198, 487, 43913, 62, 25811, 796, 1391, 198, 220, 220, 220, 705, 12, 66, 25, 85, 10354, 4566, 13, 33692, 13, 15588, 62, 19815, 721, 11, 198, 220, 220, 220, 705, 12, 8899, 10354, 657, 11, 220, 1303, 3975, 477, 15190, 422, 262, 717, 5128, 284, 5072, 198, 220, 220, 220, 705, 12, 325, 5154, 62, 2435, 10354, 4566, 13, 33692, 13, 15588, 62, 325, 5154, 62, 13664, 62, 2363, 11, 198, 220, 220, 220, 705, 12, 70, 10354, 4566, 13, 33692, 13, 15588, 62, 19298, 21620, 11, 220, 1303, 1448, 286, 4286, 357, 44962, 8, 2546, 796, 32977, 198, 220, 220, 220, 705, 12, 1416, 62, 400, 10126, 10354, 657, 11, 220, 1303, 15560, 3715, 13326, 198, 220, 220, 220, 705, 12, 3174, 62, 2539, 62, 37805, 10354, 705, 31937, 25, 70, 660, 7, 83, 11, 77, 62, 12072, 9, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2700, 1994, 5739, 790, 2124, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 33692, 13, 15588, 62, 325, 5154, 62, 13664, 62, 2363, 11, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 779, 4600, 12, 565, 1952, 63, 329, 4600, 12, 69, 63, 11507, 1201, 19430, 38141, 20947, 8991, 198, 220, 220, 220, 1303, 4688, 705, 12, 69, 8246, 15588, 6, 11507, 284, 790, 18402, 43913, 11523, 198, 220, 220, 220, 705, 12, 565, 1952, 10354, 685, 29001, 69, 3256, 705, 325, 5154, 6, 4357, 220, 1303, 7139, 10618, 285, 2821, 263, 198, 220, 220, 220, 705, 12, 15414, 62, 19298, 21620, 10354, 4566, 13, 33692, 13, 15588, 62, 19298, 21620, 11, 198, 220, 220, 220, 705, 12, 81, 10354, 4566, 13, 33692, 13, 15588, 62, 19298, 21620, 11, 220, 1303, 5072, 5346, 21620, 198, 220, 220, 220, 705, 12, 79, 844, 62, 69, 16762, 10354, 705, 88, 14795, 27211, 79, 3256, 220, 1303, 329, 5072, 284, 670, 287, 12029, 7575, 198, 220, 220, 220, 705, 12, 42503, 62, 16514, 395, 9430, 10354, 352, 11, 220, 1303, 13259, 4628, 395, 9430, 379, 3726, 286, 1123, 10618, 198, 220, 220, 220, 705, 12, 2536, 31387, 10354, 352, 11, 220, 1303, 4292, 262, 10618, 29472, 351, 1957, 2435, 198, 92, 198, 361, 4566, 13, 33692, 13, 15588, 62, 19815, 721, 6624, 705, 8019, 87, 18897, 10354, 198, 220, 220, 220, 31246, 43913, 62, 25811, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12, 6098, 69, 10354, 2534, 11, 220, 1303, 6937, 2494, 5766, 11, 13267, 3081, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12, 18302, 316, 10354, 705, 7217, 3256, 220, 1303, 38266, 329, 21004, 2866, 14, 5589, 2234, 8064, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12, 83, 1726, 10354, 705, 9107, 349, 265, 1387, 3256, 220, 1303, 3049, 21004, 290, 1877, 12, 15460, 1387, 11305, 198, 220, 220, 220, 32092, 198, 15235, 7, 11250, 13, 33692, 13, 22915, 62, 15908, 737, 28015, 15908, 7, 23743, 28, 17821, 11, 2152, 62, 482, 28, 17821, 8, 198, 16002, 796, 19430, 38141, 7, 198, 220, 220, 220, 1303, 17934, 25, 2008, 62, 1238, 2481, 12, 3023, 12, 1415, 62, 1238, 12, 1314, 12, 1270, 13, 3149, 19, 198, 220, 220, 220, 1303, 3035, 1478, 400, 11, 33448, 11, 379, 807, 25, 1314, 25, 1270, 4426, 198, 220, 220, 220, 5072, 62, 34345, 28, 2536, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 33692, 13, 22915, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 705, 15588, 62, 4, 56, 12, 4, 76, 12, 4, 67, 62, 4, 39, 12, 4, 44, 12, 4, 50, 13, 3149, 19, 3256, 220, 1303, 645, 20402, 25, 370, 3705, 32637, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 18931, 28, 17821, 11, 198, 220, 220, 220, 12429, 487, 43913, 62, 25811, 11, 198, 8, 628, 198, 4299, 4808, 12683, 282, 62, 30281, 7, 12683, 282, 22510, 25, 493, 11, 4808, 25, 4377, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 37508, 6737, 422, 2836, 41728, 357, 68, 13, 70, 13, 45249, 10, 34, 737, 628, 220, 220, 220, 5972, 82, 281, 4049, 3275, 290, 30151, 351, 1729, 12, 22570, 8420, 2438, 13, 943, 14542, 389, 9514, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 22510, 25, 19520, 85, 798, 6737, 1271, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 13, 10951, 10786, 3041, 6471, 6737, 25, 1391, 15, 92, 3256, 6737, 13, 11712, 874, 7, 12683, 282, 22510, 737, 3672, 8, 198, 220, 220, 220, 1303, 11512, 1969, 2008, 4269, 1222, 6260, 198, 220, 220, 220, 4269, 13, 11338, 3419, 198, 220, 220, 220, 6260, 13, 19836, 3419, 198, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 628, 198, 2, 17296, 21360, 329, 357, 2539, 3526, 8, 48237, 198, 12683, 282, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 12394, 11, 4808, 12683, 282, 62, 30281, 8, 198, 12683, 282, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 5781, 44, 11, 4808, 12683, 282, 62, 30281, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 611, 4566, 13, 33692, 13, 21633, 62, 70, 862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 308, 862, 62, 37652, 17540, 796, 4067, 13, 9688, 62, 70, 862, 62, 16663, 3419, 628, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 4269, 13, 961, 3419, 220, 1303, 1100, 13431, 422, 4269, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 329, 5739, 611, 6045, 12, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7952, 11315, 286, 3124, 2272, 780, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3740, 1378, 12567, 13, 785, 14, 9654, 33967, 14, 9654, 33967, 14, 37165, 14, 1507, 10232, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 14535, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 36982, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 2420, 37647, 25, 41033, 290, 42976, 15472, 22715, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 4808, 2860, 62, 5239, 62, 34574, 602, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4220, 62, 9464, 28, 6018, 13, 2197, 22446, 18982, 7, 6018, 13, 21389, 1404, 62, 41150, 2078, 1828, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4220, 62, 3506, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 70, 862, 62, 37652, 17540, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4566, 13, 33692, 13, 21633, 62, 70, 862, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11315, 736, 284, 2656, 3124, 2272, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9600, 11, 269, 85, 17, 13, 46786, 62, 36982, 17, 33, 10761, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 7, 9600, 8, 198 ]
2.485802
1,620
from sanic import response, Sanic import asyncio import timeit # MaryJane is an mjpeg server - it works by fetching *the same* jpeg image over and over from a ram drive # MIT license # copyright 2021 Andrew Stuart [email protected] app = Sanic(__name__) @app.route('/maryjane/') if __name__ == '__main__': try: app.run(host="0.0.0.0", port=8080) except KeyboardInterrupt: print("Received KeyboardInterrupt, exiting")
[ 6738, 5336, 291, 1330, 2882, 11, 2986, 291, 198, 11748, 30351, 952, 198, 11748, 640, 270, 198, 198, 2, 5335, 41083, 318, 281, 285, 73, 22071, 4382, 532, 340, 2499, 416, 21207, 278, 1635, 1169, 976, 9, 474, 22071, 2939, 625, 290, 625, 422, 257, 15770, 3708, 198, 2, 17168, 5964, 198, 2, 6634, 33448, 6858, 22559, 290, 1809, 13, 301, 19986, 31, 16668, 19815, 364, 13, 785, 13, 559, 198, 198, 1324, 796, 2986, 291, 7, 834, 3672, 834, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 6874, 73, 1531, 14, 11537, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 5143, 7, 4774, 2625, 15, 13, 15, 13, 15, 13, 15, 1600, 2493, 28, 1795, 1795, 8, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3041, 6471, 31973, 9492, 3622, 11, 33895, 4943, 198 ]
2.754491
167
GET_PACKAGE_ADT_XML='''<?xml version="1.0" encoding="utf-8"?> <pak:package xmlns:pak="http://www.sap.com/adt/packages" xmlns:adtcore="http://www.sap.com/adt/core" adtcore:masterLanguage="EN" adtcore:name="$IAMTHEKING" adtcore:type="DEVC/K" adtcore:changedAt="2019-01-29T23:00:00Z" adtcore:version="active" adtcore:createdAt="2019-01-29T23:00:00Z" adtcore:changedBy="DEVELOPER" adtcore:description="This is a package" adtcore:descriptionTextLimit="60" adtcore:language="EN"> <atom:link xmlns:atom="http://www.w3.org/2005/Atom" href="/sap/bc/adt/vit/wb/object_type/devck/object_name/%24IAMTHEKING" rel="self" type="application/vnd.sap.sapgui" title="Representation in SAP Gui"/> <atom:link xmlns:atom="http://www.w3.org/2005/Atom" href="/sap/bc/adt/packages/valuehelps/applicationcomponents" rel="applicationcomponents" type="application/vnd.sap.adt.nameditems.v1+xml" title="Application Components Value Help"/> <atom:link xmlns:atom="http://www.w3.org/2005/Atom" href="/sap/bc/adt/packages/valuehelps/softwarecomponents" rel="softwarecomponents" type="application/vnd.sap.adt.nameditems.v1+xml" title="Software Components Value Help"/> <atom:link xmlns:atom="http://www.w3.org/2005/Atom" href="/sap/bc/adt/packages/valuehelps/transportlayers" rel="transportlayers" type="application/vnd.sap.adt.nameditems.v1+xml" title="Transport Layers Value Help"/> <atom:link xmlns:atom="http://www.w3.org/2005/Atom" href="/sap/bc/adt/packages/valuehelps/translationrelevances" rel="translationrelevances" type="application/vnd.sap.adt.nameditems.v1+xml" title="Transport Relevances Value Help"/> <pak:attributes pak:packageType="development" pak:isPackageTypeEditable="false" pak:isAddingObjectsAllowed="false" pak:isAddingObjectsAllowedEditable="true" pak:isEncapsulated="false" pak:isEncapsulationEditable="false" pak:recordChanges="false" pak:isRecordChangesEditable="false" pak:isSwitchVisible="false"/> <pak:superPackage/> <pak:applicationComponent pak:name="-" pak:description="No application component assigned" pak:isVisible="true" pak:isEditable="false"/> <pak:transport> <pak:softwareComponent pak:name="LOCAL" pak:description="" pak:isVisible="true" pak:isEditable="false"/> <pak:transportLayer pak:name="" pak:description="" pak:isVisible="false" pak:isEditable="false"/> </pak:transport> <pak:useAccesses pak:isVisible="false"/> <pak:packageInterfaces pak:isVisible="false"/> <pak:subPackages> <pak:packageRef adtcore:uri="/sap/bc/adt/packages/%24iamtheking_doc" adtcore:type="DEVC/K" adtcore:name="$IAMTHEKING_DOC" adtcore:description="Documentation stuff"/> <pak:packageRef adtcore:uri="/sap/bc/adt/packages/%24iamtheking_src" adtcore:type="DEVC/K" adtcore:name="$IAMTHEKING_SRC" adtcore:description="Production source codes"/> <pak:packageRef adtcore:uri="/sap/bc/adt/packages/%24iamtheking_tests" adtcore:type="DEVC/K" adtcore:name="$IAMTHEKING_TESTS" adtcore:description="Package with Tests"/> </pak:subPackages> </pak:package> ''' GET_PACKAGE_ADT_XML_NOT_FOUND='''<?xml version="1.0" encoding="utf-8"?> <exc:exception xmlns:exc="http://www.sap.com/abapxml/types/communicationframework"> <namespace id="com.sap.adt"/> <type id="ExceptionResourceNotFound"/> <message lang="EN">Error while importing object PKG_NAME from the database.</message> <localizedMessage lang="EN">Error while importing object PKG_NAME from the database.</localizedMessage> <properties/> </exc:exception> '''.replace('\n', '').replace('\r', '')
[ 18851, 62, 47, 8120, 11879, 62, 2885, 51, 62, 55, 5805, 28, 7061, 6, 47934, 19875, 2196, 2625, 16, 13, 15, 1, 21004, 2625, 40477, 12, 23, 13984, 29, 198, 27, 41091, 25, 26495, 35555, 5907, 25, 41091, 2625, 4023, 1378, 2503, 13, 82, 499, 13, 785, 14, 324, 83, 14, 43789, 1, 35555, 5907, 25, 324, 83, 7295, 2625, 4023, 1378, 2503, 13, 82, 499, 13, 785, 14, 324, 83, 14, 7295, 1, 512, 83, 7295, 25, 9866, 32065, 2625, 1677, 1, 512, 83, 7295, 25, 3672, 2625, 3, 40, 2390, 10970, 37286, 1, 512, 83, 7295, 25, 4906, 2625, 7206, 15922, 14, 42, 1, 512, 83, 7295, 25, 40985, 2953, 2625, 23344, 12, 486, 12, 1959, 51, 1954, 25, 405, 25, 405, 57, 1, 512, 83, 7295, 25, 9641, 2625, 5275, 1, 512, 83, 7295, 25, 25598, 2953, 2625, 23344, 12, 486, 12, 1959, 51, 1954, 25, 405, 25, 405, 57, 1, 512, 83, 7295, 25, 40985, 3886, 2625, 7206, 18697, 31054, 1, 512, 83, 7295, 25, 11213, 2625, 1212, 318, 257, 5301, 1, 512, 83, 7295, 25, 11213, 8206, 39184, 2625, 1899, 1, 512, 83, 7295, 25, 16129, 2625, 1677, 5320, 198, 220, 1279, 37696, 25, 8726, 35555, 5907, 25, 37696, 2625, 4023, 1378, 2503, 13, 86, 18, 13, 2398, 14, 14315, 14, 2953, 296, 1, 13291, 35922, 82, 499, 14, 15630, 14, 324, 83, 14, 85, 270, 14, 39346, 14, 15252, 62, 4906, 14, 7959, 694, 14, 15252, 62, 3672, 14, 4, 1731, 40, 2390, 10970, 37286, 1, 823, 2625, 944, 1, 2099, 2625, 31438, 14, 85, 358, 13, 82, 499, 13, 82, 499, 48317, 1, 3670, 2625, 40171, 341, 287, 48323, 1962, 72, 26700, 198, 220, 1279, 37696, 25, 8726, 35555, 5907, 25, 37696, 2625, 4023, 1378, 2503, 13, 86, 18, 13, 2398, 14, 14315, 14, 2953, 296, 1, 13291, 35922, 82, 499, 14, 15630, 14, 324, 83, 14, 43789, 14, 8367, 35194, 14, 31438, 5589, 3906, 1, 823, 2625, 31438, 5589, 3906, 1, 2099, 2625, 31438, 14, 85, 358, 13, 82, 499, 13, 324, 83, 13, 13190, 23814, 13, 85, 16, 10, 19875, 1, 3670, 2625, 23416, 36109, 11052, 10478, 26700, 198, 220, 1279, 37696, 25, 8726, 35555, 5907, 25, 37696, 2625, 4023, 1378, 2503, 13, 86, 18, 13, 2398, 14, 14315, 14, 2953, 296, 1, 13291, 35922, 82, 499, 14, 15630, 14, 324, 83, 14, 43789, 14, 8367, 35194, 14, 43776, 5589, 3906, 1, 823, 2625, 43776, 5589, 3906, 1, 2099, 2625, 31438, 14, 85, 358, 13, 82, 499, 13, 324, 83, 13, 13190, 23814, 13, 85, 16, 10, 19875, 1, 3670, 2625, 25423, 36109, 11052, 10478, 26700, 198, 220, 1279, 37696, 25, 8726, 35555, 5907, 25, 37696, 2625, 4023, 1378, 2503, 13, 86, 18, 13, 2398, 14, 14315, 14, 2953, 296, 1, 13291, 35922, 82, 499, 14, 15630, 14, 324, 83, 14, 43789, 14, 8367, 35194, 14, 7645, 634, 75, 6962, 1, 823, 2625, 7645, 634, 75, 6962, 1, 2099, 2625, 31438, 14, 85, 358, 13, 82, 499, 13, 324, 83, 13, 13190, 23814, 13, 85, 16, 10, 19875, 1, 3670, 2625, 8291, 634, 406, 6962, 11052, 10478, 26700, 198, 220, 1279, 37696, 25, 8726, 35555, 5907, 25, 37696, 2625, 4023, 1378, 2503, 13, 86, 18, 13, 2398, 14, 14315, 14, 2953, 296, 1, 13291, 35922, 82, 499, 14, 15630, 14, 324, 83, 14, 43789, 14, 8367, 35194, 14, 41519, 260, 2768, 1817, 1, 823, 2625, 41519, 260, 2768, 1817, 1, 2099, 2625, 31438, 14, 85, 358, 13, 82, 499, 13, 324, 83, 13, 13190, 23814, 13, 85, 16, 10, 19875, 1, 3670, 2625, 8291, 634, 797, 2768, 1817, 11052, 10478, 26700, 198, 220, 1279, 41091, 25, 1078, 7657, 279, 461, 25, 26495, 6030, 2625, 31267, 1, 279, 461, 25, 271, 27813, 6030, 7407, 4674, 2625, 9562, 1, 279, 461, 25, 271, 32901, 10267, 82, 3237, 6972, 2625, 9562, 1, 279, 461, 25, 271, 32901, 10267, 82, 3237, 6972, 7407, 4674, 2625, 7942, 1, 279, 461, 25, 271, 27195, 1686, 4817, 2625, 9562, 1, 279, 461, 25, 271, 27195, 1686, 1741, 7407, 4674, 2625, 9562, 1, 279, 461, 25, 22105, 29238, 2625, 9562, 1, 279, 461, 25, 271, 23739, 29238, 7407, 4674, 2625, 9562, 1, 279, 461, 25, 271, 38978, 53, 12843, 2625, 9562, 26700, 198, 220, 1279, 41091, 25, 16668, 27813, 15913, 198, 220, 1279, 41091, 25, 31438, 21950, 279, 461, 25, 3672, 2625, 21215, 279, 461, 25, 11213, 2625, 2949, 3586, 7515, 8686, 1, 279, 461, 25, 271, 53, 12843, 2625, 7942, 1, 279, 461, 25, 271, 7407, 4674, 2625, 9562, 26700, 198, 220, 1279, 41091, 25, 7645, 634, 29, 198, 220, 220, 220, 1279, 41091, 25, 43776, 21950, 279, 461, 25, 3672, 2625, 29701, 1847, 1, 279, 461, 25, 11213, 33151, 279, 461, 25, 271, 53, 12843, 2625, 7942, 1, 279, 461, 25, 271, 7407, 4674, 2625, 9562, 26700, 198, 220, 220, 220, 1279, 41091, 25, 7645, 634, 49925, 279, 461, 25, 3672, 33151, 279, 461, 25, 11213, 33151, 279, 461, 25, 271, 53, 12843, 2625, 9562, 1, 279, 461, 25, 271, 7407, 4674, 2625, 9562, 26700, 198, 220, 7359, 41091, 25, 7645, 634, 29, 198, 220, 1279, 41091, 25, 1904, 15457, 274, 279, 461, 25, 271, 53, 12843, 2625, 9562, 26700, 198, 220, 1279, 41091, 25, 26495, 9492, 32186, 279, 461, 25, 271, 53, 12843, 2625, 9562, 26700, 198, 220, 1279, 41091, 25, 7266, 11869, 1095, 29, 198, 220, 220, 220, 1279, 41091, 25, 26495, 8134, 512, 83, 7295, 25, 9900, 35922, 82, 499, 14, 15630, 14, 324, 83, 14, 43789, 14, 4, 1731, 1789, 1169, 3364, 62, 15390, 1, 512, 83, 7295, 25, 4906, 2625, 7206, 15922, 14, 42, 1, 512, 83, 7295, 25, 3672, 2625, 3, 40, 2390, 10970, 37286, 62, 38715, 1, 512, 83, 7295, 25, 11213, 2625, 24941, 341, 3404, 26700, 198, 220, 220, 220, 1279, 41091, 25, 26495, 8134, 512, 83, 7295, 25, 9900, 35922, 82, 499, 14, 15630, 14, 324, 83, 14, 43789, 14, 4, 1731, 1789, 1169, 3364, 62, 10677, 1, 512, 83, 7295, 25, 4906, 2625, 7206, 15922, 14, 42, 1, 512, 83, 7295, 25, 3672, 2625, 3, 40, 2390, 10970, 37286, 62, 50, 7397, 1, 512, 83, 7295, 25, 11213, 2625, 35027, 2723, 12416, 26700, 198, 220, 220, 220, 1279, 41091, 25, 26495, 8134, 512, 83, 7295, 25, 9900, 35922, 82, 499, 14, 15630, 14, 324, 83, 14, 43789, 14, 4, 1731, 1789, 1169, 3364, 62, 41989, 1, 512, 83, 7295, 25, 4906, 2625, 7206, 15922, 14, 42, 1, 512, 83, 7295, 25, 3672, 2625, 3, 40, 2390, 10970, 37286, 62, 51, 1546, 4694, 1, 512, 83, 7295, 25, 11213, 2625, 27813, 351, 30307, 26700, 198, 220, 7359, 41091, 25, 7266, 11869, 1095, 29, 198, 3556, 41091, 25, 26495, 29, 198, 7061, 6, 198, 198, 18851, 62, 47, 8120, 11879, 62, 2885, 51, 62, 55, 5805, 62, 11929, 62, 37, 15919, 28, 7061, 6, 47934, 19875, 2196, 2625, 16, 13, 15, 1, 21004, 2625, 40477, 12, 23, 13984, 29, 198, 27, 41194, 25, 1069, 4516, 35555, 5907, 25, 41194, 2625, 4023, 1378, 2503, 13, 82, 499, 13, 785, 14, 397, 499, 19875, 14, 19199, 14, 32560, 30604, 5320, 198, 220, 1279, 14933, 10223, 4686, 2625, 785, 13, 82, 499, 13, 324, 83, 26700, 198, 220, 1279, 4906, 4686, 2625, 16922, 26198, 3673, 21077, 26700, 198, 220, 1279, 20500, 42392, 2625, 1677, 5320, 12331, 981, 33332, 2134, 29673, 38, 62, 20608, 422, 262, 6831, 25970, 20500, 29, 198, 220, 1279, 12001, 1143, 12837, 42392, 2625, 1677, 5320, 12331, 981, 33332, 2134, 29673, 38, 62, 20608, 422, 262, 6831, 25970, 12001, 1143, 12837, 29, 198, 220, 1279, 48310, 15913, 198, 3556, 41194, 25, 1069, 4516, 29, 198, 7061, 4458, 33491, 10786, 59, 77, 3256, 10148, 737, 33491, 10786, 59, 81, 3256, 10148, 8, 198 ]
2.714731
1,283
################################################################# # Code written by Edward Choi ([email protected]) # For bug report, please contact author using the email address ################################################################# import sys, random import numpy as np import cPickle as pickle from collections import OrderedDict import argparse import theano import theano.tensor as T from theano import config from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams if __name__ == '__main__': parser = argparse.ArgumentParser() args = parse_arguments(parser) hiddenDimSize = [int(strDim) for strDim in args.hidden_dim_size[1:-1].split(',')] if args.predict_time and args.time_file == '': print 'Cannot predict time duration without time file' sys.exit() train_doctorAI( seqFile=args.seq_file, inputDimSize=args.n_input_codes, labelFile=args.label_file, numClass=args.n_output_codes, outFile=args.out_file, timeFile=args.time_file, predictTime=args.predict_time, tradeoff=args.tradeoff, useLogTime=args.use_log_time, embFile=args.embed_file, embSize=args.embed_size, embFineTune=args.embed_finetune, hiddenDimSize=hiddenDimSize, batchSize=args.batch_size, max_epochs=args.n_epochs, L2_output=args.L2_softmax, L2_time=args.L2_time, dropout_rate=args.dropout_rate, logEps=args.log_eps, verbose=args.verbose )
[ 29113, 29113, 2, 198, 2, 6127, 3194, 416, 10443, 42198, 357, 3149, 2078, 6052, 31, 10494, 354, 13, 15532, 8, 198, 2, 1114, 5434, 989, 11, 3387, 2800, 1772, 1262, 262, 3053, 2209, 198, 29113, 29113, 2, 198, 198, 11748, 25064, 11, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 31686, 293, 355, 2298, 293, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 1822, 29572, 198, 198, 11748, 262, 5733, 198, 11748, 262, 5733, 13, 83, 22854, 355, 309, 198, 6738, 262, 5733, 1330, 4566, 198, 6738, 262, 5733, 13, 38142, 3524, 13, 81, 782, 62, 76, 41345, 1330, 17242, 38, 62, 29531, 12124, 82, 355, 14534, 12124, 82, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 197, 22046, 796, 21136, 62, 853, 2886, 7, 48610, 8, 198, 197, 30342, 29271, 10699, 796, 685, 600, 7, 2536, 29271, 8, 329, 965, 29271, 287, 26498, 13, 30342, 62, 27740, 62, 7857, 58, 16, 21912, 16, 4083, 35312, 7, 3256, 11537, 60, 628, 197, 361, 26498, 13, 79, 17407, 62, 2435, 290, 26498, 13, 2435, 62, 7753, 6624, 10148, 25, 198, 197, 197, 4798, 705, 34, 34574, 4331, 640, 9478, 1231, 640, 2393, 6, 198, 197, 197, 17597, 13, 37023, 3419, 628, 197, 27432, 62, 35580, 20185, 7, 198, 197, 197, 41068, 8979, 28, 22046, 13, 41068, 62, 7753, 11, 220, 198, 197, 197, 15414, 29271, 10699, 28, 22046, 13, 77, 62, 15414, 62, 40148, 11, 220, 198, 197, 197, 18242, 8979, 28, 22046, 13, 18242, 62, 7753, 11, 220, 198, 197, 197, 22510, 9487, 28, 22046, 13, 77, 62, 22915, 62, 40148, 11, 220, 198, 197, 197, 448, 8979, 28, 22046, 13, 448, 62, 7753, 11, 220, 198, 197, 197, 2435, 8979, 28, 22046, 13, 2435, 62, 7753, 11, 220, 198, 197, 197, 79, 17407, 7575, 28, 22046, 13, 79, 17407, 62, 2435, 11, 198, 197, 197, 25351, 2364, 28, 22046, 13, 25351, 2364, 11, 198, 197, 197, 1904, 11187, 7575, 28, 22046, 13, 1904, 62, 6404, 62, 2435, 11, 198, 197, 197, 24419, 8979, 28, 22046, 13, 20521, 62, 7753, 11, 220, 198, 197, 197, 24419, 10699, 28, 22046, 13, 20521, 62, 7857, 11, 220, 198, 197, 197, 24419, 34389, 51, 1726, 28, 22046, 13, 20521, 62, 15643, 316, 1726, 11, 220, 198, 197, 197, 30342, 29271, 10699, 28, 30342, 29271, 10699, 11, 198, 197, 197, 43501, 10699, 28, 22046, 13, 43501, 62, 7857, 11, 220, 198, 197, 197, 9806, 62, 538, 5374, 82, 28, 22046, 13, 77, 62, 538, 5374, 82, 11, 220, 198, 197, 197, 43, 17, 62, 22915, 28, 22046, 13, 43, 17, 62, 4215, 9806, 11, 220, 198, 197, 197, 43, 17, 62, 2435, 28, 22046, 13, 43, 17, 62, 2435, 11, 220, 198, 197, 197, 14781, 448, 62, 4873, 28, 22046, 13, 14781, 448, 62, 4873, 11, 220, 198, 197, 197, 6404, 36, 862, 28, 22046, 13, 6404, 62, 25386, 11, 220, 198, 197, 197, 19011, 577, 28, 22046, 13, 19011, 577, 198, 197, 8, 198 ]
2.753425
511
#! /usr/bin/env python # # This file is part of pySerial - Cross platform serial port support for Python # (C) 2001-2015 Chris Liechti <[email protected]> # # SPDX-License-Identifier: BSD-3-Clause """\ Some tests for the serial module. Part of pyserial (http://pyserial.sf.net) (C)2001-2009 [email protected] Intended to be run on different platforms, to ensure portability of the code. This modules contains test for the interaction between Serial and the io library. This only works on Python 2.6+ that introduced the io library. For all these tests a simple hardware is required. Loopback HW adapter: Shortcut these pin pairs: TX <-> RX RTS <-> CTS DTR <-> DSR On a 9 pole DSUB these are the pins (2-3) (4-6) (7-8) """ import unittest import sys if __name__ == '__main__' and sys.version_info < (2, 6): sys.stderr.write("""\ ============================================================================== WARNING: this test is intended for Python 2.6 and newer where the io library is available. This seems to be an older version of Python running. Continuing anyway... ============================================================================== """) import io import serial # trick to make that this test run under 2.6 and 3.x without modification. # problem is, io library on 2.6 does NOT accept type 'str' and 3.x doesn't # like u'nicode' strings with the prefix and it is not providing an unicode # function ('str' is now what 'unicode' used to be) if sys.version_info >= (3, 0): # on which port should the tests be performed: PORT = 0 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if __name__ == '__main__': import sys sys.stdout.write(__doc__) if len(sys.argv) > 1: PORT = sys.argv[1] sys.stdout.write("Testing port: %r\n" % PORT) sys.argv[1:] = ['-v'] # When this module is executed from the command-line, it runs all its tests unittest.main()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 12972, 32634, 532, 6372, 3859, 11389, 2493, 1104, 329, 11361, 198, 2, 357, 34, 8, 5878, 12, 4626, 5180, 12060, 354, 20259, 1279, 565, 494, 354, 20259, 31, 70, 36802, 13, 3262, 29, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 220, 220, 220, 347, 10305, 12, 18, 12, 2601, 682, 198, 37811, 59, 198, 4366, 5254, 329, 262, 11389, 8265, 13, 198, 7841, 286, 279, 893, 48499, 357, 4023, 1378, 79, 893, 48499, 13, 28202, 13, 3262, 8, 220, 357, 34, 8, 14585, 12, 10531, 537, 494, 354, 20259, 31, 70, 36802, 13, 3262, 198, 198, 5317, 1631, 284, 307, 1057, 319, 1180, 9554, 11, 284, 4155, 2493, 1799, 286, 198, 1169, 2438, 13, 198, 198, 1212, 13103, 4909, 1332, 329, 262, 10375, 1022, 23283, 290, 262, 33245, 198, 32016, 13, 770, 691, 2499, 319, 11361, 362, 13, 21, 10, 326, 5495, 262, 33245, 5888, 13, 198, 198, 1890, 477, 777, 5254, 257, 2829, 6890, 318, 2672, 13, 198, 39516, 1891, 44884, 21302, 25, 198, 16438, 8968, 777, 6757, 14729, 25, 198, 15326, 220, 1279, 3784, 24202, 198, 371, 4694, 1279, 3784, 327, 4694, 198, 360, 5446, 1279, 3784, 360, 12562, 198, 198, 2202, 257, 860, 16825, 17400, 10526, 777, 389, 262, 20567, 357, 17, 12, 18, 8, 357, 19, 12, 21, 8, 357, 22, 12, 23, 8, 198, 37811, 198, 198, 11748, 555, 715, 395, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 6, 220, 290, 25064, 13, 9641, 62, 10951, 1279, 357, 17, 11, 718, 2599, 198, 220, 220, 220, 25064, 13, 301, 1082, 81, 13, 13564, 7203, 15931, 59, 198, 23926, 25609, 855, 198, 31502, 25, 428, 1332, 318, 5292, 329, 11361, 362, 13, 21, 290, 15064, 810, 262, 33245, 5888, 198, 271, 1695, 13, 770, 2331, 284, 307, 281, 4697, 2196, 286, 11361, 2491, 13, 198, 17875, 4250, 6949, 986, 198, 23926, 25609, 855, 198, 15931, 4943, 198, 198, 11748, 33245, 198, 11748, 11389, 198, 198, 2, 6908, 284, 787, 326, 428, 1332, 1057, 739, 362, 13, 21, 290, 513, 13, 87, 1231, 17613, 13, 198, 2, 1917, 318, 11, 33245, 5888, 319, 362, 13, 21, 857, 5626, 2453, 2099, 705, 2536, 6, 290, 513, 13, 87, 1595, 470, 198, 2, 588, 334, 6, 6988, 1098, 6, 13042, 351, 262, 21231, 290, 340, 318, 407, 4955, 281, 28000, 1098, 198, 2, 2163, 19203, 2536, 6, 318, 783, 644, 705, 46903, 1098, 6, 973, 284, 307, 8, 198, 361, 25064, 13, 9641, 62, 10951, 18189, 357, 18, 11, 657, 2599, 628, 198, 2, 319, 543, 2493, 815, 262, 5254, 307, 6157, 25, 198, 15490, 796, 657, 198, 198, 2, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 834, 15390, 834, 8, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 350, 9863, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7203, 44154, 2493, 25, 4064, 81, 59, 77, 1, 4064, 350, 9863, 8, 198, 220, 220, 220, 25064, 13, 853, 85, 58, 16, 47715, 796, 685, 29001, 85, 20520, 198, 220, 220, 220, 1303, 1649, 428, 8265, 318, 10945, 422, 262, 3141, 12, 1370, 11, 340, 4539, 477, 663, 5254, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.062893
636
from django.shortcuts import render from django.shortcuts import redirect from django.contrib.auth.decorators import login_required from django.http import JsonResponse from django.core import serializers # Create your views here. from django.http import HttpResponse from django.template import loader from django.views.generic import ListView from models import * @login_required(login_url="/settings/")
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 18941, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 42625, 14208, 13, 4023, 1330, 449, 1559, 31077, 198, 6738, 42625, 14208, 13, 7295, 1330, 11389, 11341, 198, 2, 13610, 534, 5009, 994, 13, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 28243, 1330, 40213, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 7343, 7680, 198, 6738, 4981, 1330, 1635, 198, 198, 31, 38235, 62, 35827, 7, 38235, 62, 6371, 35922, 33692, 14, 4943, 628 ]
3.743119
109
with open("tinder_api/utils/token.txt", "r") as f: tinder_token = f.read() # it is best for you to write in the token to save yourself the file I/O # especially if you have python byte code off #tinder_token = "" headers = { 'app_version': '6.9.4', 'platform': 'ios', 'content-type': 'application/json', 'User-agent': 'Tinder/7.5.3 (iPohone; iOS 10.3.2; Scale/2.00)', 'X-Auth-Token': 'enter_auth_token', } host = 'https://api.gotinder.com' if __name__ == '__main__': pass
[ 4480, 1280, 7203, 83, 5540, 62, 15042, 14, 26791, 14, 30001, 13, 14116, 1600, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 256, 5540, 62, 30001, 796, 277, 13, 961, 3419, 198, 198, 2, 340, 318, 1266, 329, 345, 284, 3551, 287, 262, 11241, 284, 3613, 3511, 262, 2393, 314, 14, 46, 198, 2, 2592, 611, 345, 423, 21015, 18022, 2438, 572, 198, 2, 83, 5540, 62, 30001, 796, 13538, 198, 198, 50145, 796, 1391, 198, 220, 220, 220, 705, 1324, 62, 9641, 10354, 705, 21, 13, 24, 13, 19, 3256, 198, 220, 220, 220, 705, 24254, 10354, 705, 4267, 3256, 198, 220, 220, 220, 705, 11299, 12, 4906, 10354, 705, 31438, 14, 17752, 3256, 198, 220, 220, 220, 705, 12982, 12, 25781, 10354, 705, 51, 5540, 14, 22, 13, 20, 13, 18, 357, 72, 47, 1219, 505, 26, 8969, 838, 13, 18, 13, 17, 26, 21589, 14, 17, 13, 405, 8, 3256, 198, 220, 220, 220, 705, 55, 12, 30515, 12, 30642, 10354, 705, 9255, 62, 18439, 62, 30001, 3256, 198, 92, 198, 198, 4774, 796, 705, 5450, 1378, 15042, 13, 23442, 5540, 13, 785, 6, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1208, 198 ]
2.434783
207
from ..remote import RemoteModel from infoblox_netmri.utils.utils import check_api_availability class IssueListDeviceRemote(RemoteModel): """ This table list out the entries of issues in the device. | ``IssueTimestamp:`` The date and time this issue list device record was collected or calculated. | ``attribute type:`` datetime | ``DeviceID:`` The internal NetMRI identifier for the device from which issue list device information was collected. | ``attribute type:`` number | ``DataSourceID:`` The internal NetMRI identifier for the collector NetMRI that collected this data record. | ``attribute type:`` number | ``Count:`` The total number of issues in the list device captured within NetMRI. | ``attribute type:`` number | ``Adds:`` Added a new type of issue in the list device. | ``attribute type:`` string | ``Deletes:`` Remove an issue from the list device. | ``attribute type:`` string | ``Same:`` Maintain the issues as in the list device. | ``attribute type:`` string | ``Suppressed:`` A flag indicating whether this issue is suppressed or not. | ``attribute type:`` string | ``FirstSeen:`` The timestamp of when NetMRI first discovered this interface. | ``attribute type:`` string | ``Timestamp:`` The date and time this record was collected or calculated. | ``attribute type:`` datetime | ``EndTime:`` The date and time the record was last modified in NetMRI. | ``attribute type:`` datetime | ``TotalCount:`` The total number of issues occured in each device. | ``attribute type:`` number | ``Component:`` The issue component (Devices, Configuration, VLANs, etc.). | ``attribute type:`` string | ``SeverityID:`` The issue severity ID (1 = Error, 2 = Warning, 3 = Info). Useful for sorting. | ``attribute type:`` number | ``SeverityName:`` The severity name in the issue list device. | ``attribute type:`` string | ``Correctness:`` The correctness contribution for this issue. | ``attribute type:`` string | ``Stability:`` The stability contribution for this issue. | ``attribute type:`` string | ``Status:`` A status of the issues in the device. | ``attribute type:`` string """ properties = ("IssueTimestamp", "DeviceID", "DataSourceID", "Count", "Adds", "Deletes", "Same", "Suppressed", "FirstSeen", "Timestamp", "EndTime", "TotalCount", "Component", "SeverityID", "SeverityName", "Correctness", "Stability", "Status", ) @property @check_api_availability def data_source(self): """ The collector NetMRI that collected this data record. ``attribute type:`` model """ return self.broker.data_source(**{"DeviceID": self.DeviceID})
[ 6738, 11485, 47960, 1330, 21520, 17633, 198, 6738, 1167, 45292, 1140, 62, 3262, 76, 380, 13, 26791, 13, 26791, 1330, 2198, 62, 15042, 62, 47274, 628, 198, 4871, 18232, 8053, 24728, 36510, 7, 36510, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 3084, 1351, 503, 262, 12784, 286, 2428, 287, 262, 3335, 13, 628, 198, 220, 220, 220, 930, 220, 7559, 45147, 14967, 27823, 25, 15506, 383, 3128, 290, 640, 428, 2071, 1351, 3335, 1700, 373, 7723, 393, 10488, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4818, 8079, 628, 220, 220, 220, 930, 220, 7559, 24728, 2389, 25, 15506, 383, 5387, 3433, 40952, 27421, 329, 262, 3335, 422, 543, 2071, 1351, 3335, 1321, 373, 7723, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 1271, 628, 220, 220, 220, 930, 220, 7559, 6601, 7416, 2389, 25, 15506, 383, 5387, 3433, 40952, 27421, 329, 262, 22967, 3433, 40952, 326, 7723, 428, 1366, 1700, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 1271, 628, 198, 220, 220, 220, 930, 220, 7559, 12332, 25, 15506, 383, 2472, 1271, 286, 2428, 287, 262, 1351, 3335, 7907, 1626, 3433, 40952, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 1271, 628, 220, 220, 220, 930, 220, 7559, 46245, 25, 15506, 10687, 257, 649, 2099, 286, 2071, 287, 262, 1351, 3335, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 5005, 40676, 25, 15506, 17220, 281, 2071, 422, 262, 1351, 3335, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 30556, 25, 15506, 337, 32725, 262, 2428, 355, 287, 262, 1351, 3335, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 15979, 2790, 25, 15506, 220, 317, 6056, 12739, 1771, 428, 2071, 318, 25822, 393, 407, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 5962, 4653, 268, 25, 15506, 383, 41033, 286, 618, 3433, 40952, 717, 5071, 428, 7071, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 14967, 27823, 25, 15506, 383, 3128, 290, 640, 428, 1700, 373, 7723, 393, 10488, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4818, 8079, 628, 220, 220, 220, 930, 220, 7559, 12915, 7575, 25, 15506, 383, 3128, 290, 640, 262, 1700, 373, 938, 9518, 287, 3433, 40952, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4818, 8079, 628, 220, 220, 220, 930, 220, 7559, 14957, 12332, 25, 15506, 383, 2472, 1271, 286, 2428, 1609, 1522, 287, 1123, 3335, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 1271, 628, 220, 220, 220, 930, 220, 7559, 21950, 25, 15506, 383, 2071, 7515, 357, 13603, 1063, 11, 28373, 11, 569, 25697, 82, 11, 3503, 15729, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 50, 964, 414, 2389, 25, 15506, 383, 2071, 19440, 4522, 357, 16, 796, 13047, 11, 362, 796, 15932, 11, 513, 796, 14151, 737, 49511, 329, 29407, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 1271, 628, 220, 220, 220, 930, 220, 7559, 50, 964, 414, 5376, 25, 15506, 383, 19440, 1438, 287, 262, 2071, 1351, 3335, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 42779, 1108, 25, 15506, 383, 29409, 10156, 329, 428, 2071, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 1273, 1799, 25, 15506, 383, 10159, 10156, 329, 428, 2071, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 930, 220, 7559, 19580, 25, 15506, 317, 3722, 286, 262, 2428, 287, 262, 3335, 13, 198, 220, 220, 220, 930, 220, 7559, 42348, 2099, 25, 15506, 4731, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 6608, 796, 5855, 45147, 14967, 27823, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24728, 2389, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6601, 7416, 2389, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12332, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46245, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5005, 40676, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30556, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15979, 2790, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5962, 4653, 268, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14967, 27823, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12915, 7575, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14957, 12332, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21950, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 50, 964, 414, 2389, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 50, 964, 414, 5376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 42779, 1108, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1273, 1799, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19580, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 2488, 9122, 62, 15042, 62, 47274, 198, 220, 220, 220, 825, 1366, 62, 10459, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 22967, 3433, 40952, 326, 7723, 428, 1366, 1700, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 42348, 2099, 25, 15506, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7957, 6122, 13, 7890, 62, 10459, 7, 1174, 4895, 24728, 2389, 1298, 2116, 13, 24728, 2389, 30072, 198 ]
2.595868
1,210
""" """ from revibe.exceptions import RevibeException # -----------------------------------------------------------------------------
[ 37811, 198, 37811, 198, 198, 6738, 2710, 32438, 13, 1069, 11755, 1330, 5416, 32438, 16922, 198, 198, 2, 16529, 32501, 198 ]
6.47619
21
""" Automatically shutdown windows after a user defined time period """ import subprocess from time import sleep print("") print("Auto Shutdown Windows") print("=====================") print("") seconds = float(raw_input("Specify time in minutes: ")) * 60.0 print("") print(">>> Computer will force shutdown automatically in %s minutes") %(seconds/60.0) sleep(seconds) subprocess.call(["shutdown", "/s", "/f"])
[ 37811, 198, 38062, 4142, 18325, 9168, 706, 257, 2836, 5447, 640, 2278, 198, 37811, 198, 198, 11748, 850, 14681, 198, 6738, 640, 1330, 3993, 198, 198, 4798, 7203, 4943, 198, 4798, 7203, 27722, 40411, 3964, 4943, 198, 4798, 7203, 4770, 1421, 2625, 8, 198, 4798, 7203, 4943, 198, 43012, 796, 12178, 7, 1831, 62, 15414, 7203, 22882, 1958, 640, 287, 2431, 25, 366, 4008, 1635, 3126, 13, 15, 198, 4798, 7203, 4943, 198, 4798, 7203, 33409, 13851, 481, 2700, 18325, 6338, 287, 4064, 82, 2431, 4943, 4064, 7, 43012, 14, 1899, 13, 15, 8, 198, 42832, 7, 43012, 8, 198, 7266, 14681, 13, 13345, 7, 14692, 49625, 2902, 1600, 12813, 82, 1600, 12813, 69, 8973, 8, 198 ]
3.529915
117
""" 744. Find Smallest Letter Greater Than Target Input: letters = ["c", "f", "j"] target = "a" Output: "c" Input: letters = ["c", "f", "j"] target = "c" Output: "f" Input: letters = ["c", "f", "j"] target = "d" Output: "f" Input: letters = ["c", "f", "j"] target = "g" Output: "j" Input: letters = ["c", "f", "j"] target = "j" Output: "c" Input: letters = ["c", "f", "j"] target = "k" Output: "c" """
[ 37811, 201, 198, 22, 2598, 13, 9938, 10452, 395, 18121, 18169, 17924, 12744, 201, 198, 201, 198, 20560, 25, 201, 198, 15653, 796, 14631, 66, 1600, 366, 69, 1600, 366, 73, 8973, 201, 198, 16793, 796, 366, 64, 1, 201, 198, 26410, 25, 366, 66, 1, 201, 198, 201, 198, 20560, 25, 201, 198, 15653, 796, 14631, 66, 1600, 366, 69, 1600, 366, 73, 8973, 201, 198, 16793, 796, 366, 66, 1, 201, 198, 26410, 25, 366, 69, 1, 201, 198, 201, 198, 20560, 25, 201, 198, 15653, 796, 14631, 66, 1600, 366, 69, 1600, 366, 73, 8973, 201, 198, 16793, 796, 366, 67, 1, 201, 198, 26410, 25, 366, 69, 1, 201, 198, 201, 198, 20560, 25, 201, 198, 15653, 796, 14631, 66, 1600, 366, 69, 1600, 366, 73, 8973, 201, 198, 16793, 796, 366, 70, 1, 201, 198, 26410, 25, 366, 73, 1, 201, 198, 201, 198, 20560, 25, 201, 198, 15653, 796, 14631, 66, 1600, 366, 69, 1600, 366, 73, 8973, 201, 198, 16793, 796, 366, 73, 1, 201, 198, 26410, 25, 366, 66, 1, 201, 198, 201, 198, 20560, 25, 201, 198, 15653, 796, 14631, 66, 1600, 366, 69, 1600, 366, 73, 8973, 201, 198, 16793, 796, 366, 74, 1, 201, 198, 26410, 25, 366, 66, 1, 201, 198, 201, 198, 37811, 201 ]
2.036866
217
# -*- coding: utf-8 -*- import nuke import edgeNode SantoshMenu.addCommand("edgeNode/Jump to First", "edgeNode.jump_to_edge_node('top')") SantoshMenu.addCommand("edgeNode/Jump to Last", "edgeNode.jump_to_edge_node('bottom')") SantoshMenu.addCommand("edgeNode/View First", "edgeNode.view_edge_node('top')") SantoshMenu.addCommand("edgeNode/View Last", "edgeNode.view_edge_node('bottom')")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 299, 4649, 198, 11748, 5743, 19667, 198, 198, 50, 415, 3768, 23381, 13, 2860, 21575, 7203, 14907, 19667, 14, 36046, 284, 3274, 1600, 366, 14907, 19667, 13, 43327, 62, 1462, 62, 14907, 62, 17440, 10786, 4852, 11537, 4943, 198, 50, 415, 3768, 23381, 13, 2860, 21575, 7203, 14907, 19667, 14, 36046, 284, 4586, 1600, 366, 14907, 19667, 13, 43327, 62, 1462, 62, 14907, 62, 17440, 10786, 22487, 11537, 4943, 198, 50, 415, 3768, 23381, 13, 2860, 21575, 7203, 14907, 19667, 14, 7680, 3274, 1600, 366, 14907, 19667, 13, 1177, 62, 14907, 62, 17440, 10786, 4852, 11537, 4943, 198, 50, 415, 3768, 23381, 13, 2860, 21575, 7203, 14907, 19667, 14, 7680, 4586, 1600, 366, 14907, 19667, 13, 1177, 62, 14907, 62, 17440, 10786, 22487, 11537, 4943 ]
2.771429
140
#Python 3 #Usage: python3 UDPClient3.py localhost 12000 #coding: utf-8 from socket import * import sys # The argument of client servername = sys.argv[1] serverPort = sys.argv[2] udpPort = sys.argv[3] serverPort = int(serverPort) clientSocket = socket(AF_INET, SOCK_STREAM) clientSocket.connect((servername, serverPort)) ifloged = authenticate() while ifloged: print("Welcome to TOOM!") allcommand = input("Enter one of the following commands (MSG, DLT, EDT, RDM, ATU, OUT, UPD):") command = allcommand[0:3] if command == 'MSG': if allcommand == 'MSG': print("Error! Need message after MSG command\n") else: clientSocket.sendall('MSG'.encode('utf-8')) msg(allcommand[4::]) elif command == 'DLT': # We need to check the usage of DLT if allcommand == 'DLT': print("Error! Need seq number and timestamp after DLT command\n") else: clientSocket.sendall('DLT'.encode('utf-8')) info = allcommand[4::] lists = info.split() if len(lists) <= 2: print("Error! Need seq number and timestamp after DLT command\n") else: clientSocket.sendall(info.encode('utf-8')) recev = clientSocket.recv(2048).decode('utf-8') dlt(recev) elif command == 'EDT': if allcommand == 'EDT': print("Error! Need seq number, timestamp, and modified message after EDT command\n") else: clientSocket.sendall('EDT'.encode('utf-8')) info = allcommand[4::] lists = info.split() if len(lists) <= 2: print("Error! Need seq number, timestamp, and modified message after EDT command\n") else: clientSocket.sendall(info.encode('utf-8')) recev = clientSocket.recv(2048).decode('utf-8') edt(recev) elif command == 'RDM': if allcommand == 'RDM': print("Error! Need timestamp after EDT command\n") else: clientSocket.sendall('RDM'.encode('utf-8')) info = allcommand[4::] clientSocket.sendall(info.encode('utf-8')) recev = clientSocket.recv(2048).decode('utf-8') print(recev) elif command == 'ATU': if allcommand == command: clientSocket.sendall('ATU'.encode('utf-8')) print('The active user list returned: \n') info = clientSocket.recv(2048).decode('utf-8') print(info) else: print("Error! ATU command does not take any argument.\n") elif command == 'UPD': pass elif command == 'OUT': if allcommand == command: clientSocket.sendall('OUT'.encode('utf-8')) info = clientSocket.recv(2048).encode('utf-8') print("Thank you for using. You have logged out.\n") break else: print("Error! OUT command does not take any argument.\n") else: print("This command is invalid. Please try again with either one of MSG, DLT, EDT, RDM, ATU, OUT and UPD\n") clientSocket.close()
[ 2, 37906, 513, 201, 198, 2, 28350, 25, 21015, 18, 36428, 11792, 18, 13, 9078, 1957, 4774, 1105, 830, 201, 198, 2, 66, 7656, 25, 3384, 69, 12, 23, 201, 198, 6738, 17802, 1330, 1635, 201, 198, 11748, 25064, 201, 198, 201, 198, 2, 383, 4578, 286, 5456, 201, 198, 2655, 933, 480, 796, 25064, 13, 853, 85, 58, 16, 60, 201, 198, 15388, 13924, 796, 25064, 13, 853, 85, 58, 17, 60, 201, 198, 463, 79, 13924, 796, 25064, 13, 853, 85, 58, 18, 60, 201, 198, 15388, 13924, 796, 493, 7, 15388, 13924, 8, 201, 198, 201, 198, 16366, 39105, 796, 17802, 7, 8579, 62, 1268, 2767, 11, 311, 11290, 62, 2257, 32235, 8, 201, 198, 16366, 39105, 13, 8443, 19510, 2655, 933, 480, 11, 4382, 13924, 4008, 201, 198, 201, 198, 361, 6404, 276, 796, 8323, 5344, 3419, 201, 198, 4514, 611, 6404, 276, 25, 201, 198, 220, 220, 220, 3601, 7203, 14618, 284, 5390, 2662, 2474, 8, 201, 198, 220, 220, 220, 477, 21812, 796, 5128, 7203, 17469, 530, 286, 262, 1708, 9729, 357, 5653, 38, 11, 23641, 51, 11, 15693, 11, 371, 23127, 11, 5161, 52, 11, 16289, 11, 471, 5760, 2599, 4943, 201, 198, 220, 220, 220, 3141, 796, 477, 21812, 58, 15, 25, 18, 60, 201, 198, 220, 220, 220, 611, 3141, 6624, 705, 5653, 38, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 21812, 6624, 705, 5653, 38, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 0, 10664, 3275, 706, 49064, 3141, 59, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 10786, 5653, 38, 4458, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 7, 439, 21812, 58, 19, 3712, 12962, 201, 198, 220, 220, 220, 1288, 361, 3141, 6624, 705, 19260, 51, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 761, 284, 2198, 262, 8748, 286, 23641, 51, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 21812, 6624, 705, 19260, 51, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 0, 10664, 33756, 1271, 290, 41033, 706, 23641, 51, 3141, 59, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 10786, 19260, 51, 4458, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 477, 21812, 58, 19, 3712, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8341, 796, 7508, 13, 35312, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20713, 8, 19841, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 0, 10664, 33756, 1271, 290, 41033, 706, 23641, 51, 3141, 59, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 7, 10951, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1407, 85, 796, 5456, 39105, 13, 8344, 85, 7, 1238, 2780, 737, 12501, 1098, 10786, 40477, 12, 23, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 2528, 7, 260, 344, 85, 8, 201, 198, 201, 198, 220, 220, 220, 1288, 361, 3141, 6624, 705, 1961, 51, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 21812, 6624, 705, 1961, 51, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 0, 10664, 33756, 1271, 11, 41033, 11, 290, 9518, 3275, 706, 15693, 3141, 59, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 10786, 1961, 51, 4458, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 477, 21812, 58, 19, 3712, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8341, 796, 7508, 13, 35312, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20713, 8, 19841, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 0, 10664, 33756, 1271, 11, 41033, 11, 290, 9518, 3275, 706, 15693, 3141, 59, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 7, 10951, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1407, 85, 796, 5456, 39105, 13, 8344, 85, 7, 1238, 2780, 737, 12501, 1098, 10786, 40477, 12, 23, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1225, 83, 7, 260, 344, 85, 8, 201, 198, 220, 220, 220, 1288, 361, 3141, 6624, 705, 49, 23127, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 21812, 6624, 705, 49, 23127, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 0, 10664, 41033, 706, 15693, 3141, 59, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 10786, 49, 23127, 4458, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 477, 21812, 58, 19, 3712, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 7, 10951, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1407, 85, 796, 5456, 39105, 13, 8344, 85, 7, 1238, 2780, 737, 12501, 1098, 10786, 40477, 12, 23, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 260, 344, 85, 8, 201, 198, 220, 220, 220, 1288, 361, 3141, 6624, 705, 1404, 52, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 21812, 6624, 3141, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 10786, 1404, 52, 4458, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 464, 4075, 2836, 1351, 4504, 25, 3467, 77, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 5456, 39105, 13, 8344, 85, 7, 1238, 2780, 737, 12501, 1098, 10786, 40477, 12, 23, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 10951, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 0, 5161, 52, 3141, 857, 407, 1011, 597, 4578, 13, 59, 77, 4943, 201, 198, 220, 220, 220, 1288, 361, 3141, 6624, 705, 52, 5760, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 1288, 361, 3141, 6624, 705, 12425, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 21812, 6624, 3141, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 39105, 13, 21280, 439, 10786, 12425, 4458, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 5456, 39105, 13, 8344, 85, 7, 1238, 2780, 737, 268, 8189, 10786, 40477, 12, 23, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10449, 345, 329, 1262, 13, 921, 423, 18832, 503, 13, 59, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 0, 16289, 3141, 857, 407, 1011, 597, 4578, 13, 59, 77, 4943, 201, 198, 201, 198, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1212, 3141, 318, 12515, 13, 4222, 1949, 757, 351, 2035, 530, 286, 49064, 11, 23641, 51, 11, 15693, 11, 371, 23127, 11, 5161, 52, 11, 16289, 290, 471, 5760, 59, 77, 4943, 201, 198, 201, 198, 201, 198, 201, 198, 16366, 39105, 13, 19836, 3419 ]
2.063763
1,584
from django.utils.translation import ugettext_lazy as _ import horizon horizon.register(Techbk_Head)
[ 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 11748, 17810, 628, 198, 198, 17899, 8637, 13, 30238, 7, 17760, 65, 74, 62, 13847, 8, 198 ]
3
35
from django import forms from django.utils.encoding import force_text from orchestra.admin.utils import admin_link from orchestra.forms.widgets import SpanWidget
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 26791, 13, 12685, 7656, 1330, 2700, 62, 5239, 198, 198, 6738, 40095, 13, 28482, 13, 26791, 1330, 13169, 62, 8726, 198, 6738, 40095, 13, 23914, 13, 28029, 11407, 1330, 49101, 38300, 628, 628 ]
3.860465
43
import os import argparse import time import torch.nn.functional as F import torch.nn.parallel import torch.optim from sklearn.metrics import confusion_matrix, accuracy_score import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from dataset import TBNDataSet from DA_model import TBN from transforms import * import pickle import save_csv as sc #label 正解ラベル if __name__ == '__main__': main()
[ 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 640, 198, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 13, 20471, 13, 1845, 29363, 198, 11748, 28034, 13, 40085, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 10802, 62, 6759, 8609, 11, 9922, 62, 26675, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 27039, 1330, 309, 15766, 6601, 7248, 198, 6738, 17051, 62, 19849, 1330, 309, 15766, 198, 6738, 31408, 1330, 1635, 198, 11748, 2298, 293, 198, 11748, 3613, 62, 40664, 355, 629, 628, 198, 198, 2, 18242, 10545, 255, 96, 164, 100, 96, 9263, 35604, 9202, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.014184
141
import pytest import napari_morphodynamics import napari_morphodynamics.napari_gui from morphodynamics.data import synth import numpy as np import h5py import napari_morphodynamics @pytest.fixture(scope="session") def dataset(tmp_path_factory): """Create a dataset for testing.""" new_path = tmp_path_factory.mktemp("dataset") im, sigs = synth.generate_dataset(height=100, width=100, steps=40, step_reverse=20, displacement=0.5, radius=10, shifts=[3,7]) for ind, s in enumerate([im]+sigs): h5_name = new_path.joinpath(f'synth_ch{ind+1}.h5') with h5py.File(h5_name, "w") as f_out: dset = f_out.create_dataset("volume", data=s, chunks=True, compression="gzip", compression_opts=1) return new_path @pytest.fixture def test_data_exist(dataset): """Test that the data exists.""" assert dataset.joinpath("synth_ch1.h5").is_file() assert dataset.joinpath("synth_ch2.h5").is_file() assert dataset.joinpath("synth_ch3.h5").is_file() def test_set_dataset(mywidget, dataset): """Test that the dataset is updated.""" mywidget.file_list.update_from_path(dataset) channels = [mywidget.segm_channel.item(i).text() for i in range(mywidget.segm_channel.count())] for i in range(3): assert f'synth_ch{i+1}.h5' in channels assert mywidget.param.data_folder == dataset
[ 11748, 12972, 9288, 198, 11748, 25422, 2743, 62, 24503, 44124, 198, 11748, 25422, 2743, 62, 24503, 44124, 13, 77, 499, 2743, 62, 48317, 198, 6738, 17488, 44124, 13, 7890, 1330, 33549, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 289, 20, 9078, 198, 198, 11748, 25422, 2743, 62, 24503, 44124, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 29891, 4943, 198, 4299, 27039, 7, 22065, 62, 6978, 62, 69, 9548, 2599, 198, 220, 220, 220, 37227, 16447, 257, 27039, 329, 4856, 526, 15931, 628, 220, 220, 220, 649, 62, 6978, 796, 45218, 62, 6978, 62, 69, 9548, 13, 28015, 29510, 7203, 19608, 292, 316, 4943, 198, 220, 220, 220, 545, 11, 264, 9235, 796, 33549, 13, 8612, 378, 62, 19608, 292, 316, 7, 17015, 28, 3064, 11, 9647, 28, 3064, 11, 4831, 28, 1821, 11, 2239, 62, 50188, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29358, 28, 15, 13, 20, 11, 16874, 28, 940, 11, 15381, 41888, 18, 11, 22, 12962, 628, 220, 220, 220, 329, 773, 11, 264, 287, 27056, 378, 26933, 320, 48688, 82, 9235, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 20, 62, 3672, 796, 649, 62, 6978, 13, 22179, 6978, 7, 69, 338, 2047, 400, 62, 354, 90, 521, 10, 16, 27422, 71, 20, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 71, 20, 62, 3672, 11, 366, 86, 4943, 355, 277, 62, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 2617, 796, 277, 62, 448, 13, 17953, 62, 19608, 292, 316, 7203, 29048, 1600, 1366, 28, 82, 11, 22716, 28, 17821, 11, 19794, 2625, 70, 13344, 1600, 19794, 62, 404, 912, 28, 16, 8, 628, 220, 220, 220, 1441, 649, 62, 6978, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 4299, 1332, 62, 7890, 62, 38476, 7, 19608, 292, 316, 2599, 198, 220, 220, 220, 37227, 14402, 326, 262, 1366, 7160, 526, 15931, 198, 220, 220, 220, 6818, 27039, 13, 22179, 6978, 7203, 28869, 400, 62, 354, 16, 13, 71, 20, 11074, 271, 62, 7753, 3419, 198, 220, 220, 220, 6818, 27039, 13, 22179, 6978, 7203, 28869, 400, 62, 354, 17, 13, 71, 20, 11074, 271, 62, 7753, 3419, 198, 220, 220, 220, 6818, 27039, 13, 22179, 6978, 7203, 28869, 400, 62, 354, 18, 13, 71, 20, 11074, 271, 62, 7753, 3419, 198, 198, 4299, 1332, 62, 2617, 62, 19608, 292, 316, 7, 1820, 42655, 11, 27039, 2599, 198, 220, 220, 220, 37227, 14402, 326, 262, 27039, 318, 6153, 526, 15931, 628, 220, 220, 220, 616, 42655, 13, 7753, 62, 4868, 13, 19119, 62, 6738, 62, 6978, 7, 19608, 292, 316, 8, 198, 220, 220, 220, 9619, 796, 685, 1820, 42655, 13, 325, 39870, 62, 17620, 13, 9186, 7, 72, 737, 5239, 3419, 329, 1312, 287, 2837, 7, 1820, 42655, 13, 325, 39870, 62, 17620, 13, 9127, 3419, 15437, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 338, 2047, 400, 62, 354, 90, 72, 10, 16, 27422, 71, 20, 6, 287, 9619, 628, 220, 220, 220, 6818, 616, 42655, 13, 17143, 13, 7890, 62, 43551, 6624, 27039 ]
2.43662
568
import numpy as np from enthought.mayavi import mlab import Image if __name__ == '__main__': import dipy.core.qball as qball from dipy.io.bvectxt import read_bvec_file filename='/Users/bagrata/HARDI/E1322S8I1.nii.gz' grad_table_filename='/Users/bagrata/HARDI/E1322S8I1.bvec' from nipy import load_image, save_image grad_table, b_values = read_bvec_file(grad_table_filename) img = load_image(filename) print 'input dimensions: ' print img.ndim print 'image size: ' print img.shape print 'image affine: ' print img.affine print 'images has pixels with size: ' print np.dot(img.affine, np.eye(img.ndim+1)).diagonal()[0:3] data = np.asarray(img) theta, phi = np.mgrid[0:2*np.pi:64*1j, 0:np.pi:32*1j] odf_i = qball.ODF(data[188:192,188:192,22:24,:],4,grad_table,b_values) disp_odf(odf_i[0:1,0:2,0:2])
[ 11748, 299, 32152, 355, 45941, 198, 6738, 920, 71, 2917, 13, 11261, 15820, 1330, 285, 23912, 198, 11748, 7412, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 19550, 88, 13, 7295, 13, 80, 1894, 355, 10662, 1894, 198, 220, 220, 220, 422, 19550, 88, 13, 952, 13, 65, 303, 310, 742, 1330, 1100, 62, 65, 35138, 62, 7753, 198, 220, 220, 220, 29472, 11639, 14, 14490, 14, 21454, 81, 1045, 14, 39, 9795, 40, 14, 36, 1485, 1828, 50, 23, 40, 16, 13, 77, 4178, 13, 34586, 6, 198, 220, 220, 220, 3915, 62, 11487, 62, 34345, 11639, 14, 14490, 14, 21454, 81, 1045, 14, 39, 9795, 40, 14, 36, 1485, 1828, 50, 23, 40, 16, 13, 65, 35138, 6, 198, 220, 220, 220, 422, 299, 541, 88, 1330, 3440, 62, 9060, 11, 3613, 62, 9060, 628, 220, 220, 220, 3915, 62, 11487, 11, 275, 62, 27160, 796, 1100, 62, 65, 35138, 62, 7753, 7, 9744, 62, 11487, 62, 34345, 8, 198, 220, 220, 220, 33705, 796, 3440, 62, 9060, 7, 34345, 8, 198, 220, 220, 220, 3601, 705, 15414, 15225, 25, 705, 198, 220, 220, 220, 3601, 33705, 13, 358, 320, 198, 220, 220, 220, 3601, 705, 9060, 2546, 25, 705, 198, 220, 220, 220, 3601, 33705, 13, 43358, 198, 220, 220, 220, 3601, 705, 9060, 1527, 500, 25, 705, 198, 220, 220, 220, 3601, 33705, 13, 2001, 500, 198, 220, 220, 220, 3601, 705, 17566, 468, 17848, 351, 2546, 25, 705, 198, 220, 220, 220, 3601, 45941, 13, 26518, 7, 9600, 13, 2001, 500, 11, 45941, 13, 25379, 7, 9600, 13, 358, 320, 10, 16, 29720, 10989, 27923, 3419, 58, 15, 25, 18, 60, 198, 220, 220, 220, 1366, 796, 45941, 13, 292, 18747, 7, 9600, 8, 628, 220, 220, 220, 262, 8326, 11, 872, 72, 796, 45941, 13, 76, 25928, 58, 15, 25, 17, 9, 37659, 13, 14415, 25, 2414, 9, 16, 73, 11, 657, 25, 37659, 13, 14415, 25, 2624, 9, 16, 73, 60, 198, 220, 220, 220, 267, 7568, 62, 72, 796, 10662, 1894, 13, 3727, 37, 7, 7890, 58, 20356, 25, 17477, 11, 20356, 25, 17477, 11, 1828, 25, 1731, 11, 25, 4357, 19, 11, 9744, 62, 11487, 11, 65, 62, 27160, 8, 198, 220, 220, 220, 4596, 62, 375, 69, 7, 375, 69, 62, 72, 58, 15, 25, 16, 11, 15, 25, 17, 11, 15, 25, 17, 12962, 628 ]
2.162963
405
import re reg_ex = re.compile(r"^[a-z][a-z]*[a-z]$") no_reg_ex = re.compile(r".*[0-9].*") mc_reg_ex = re.compile(r".*[A-Z].*[A-Z].*") def containsNumber(text): """包含数字.""" return no_reg_ex.match(text) def containsMultiCapital(text): """包含多个大写字母.""" return mc_reg_ex.match(text) def can_spellcheck(w: str): """检查是否需要进行拼写检查.""" # return not ((not reg_ex.match(w)) or containsMultiCapital(w) or containsNumber if reg_ex.match(w): return True else: return False
[ 11748, 302, 198, 198, 2301, 62, 1069, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 58, 64, 12, 89, 7131, 64, 12, 89, 60, 9, 58, 64, 12, 89, 60, 3, 4943, 198, 3919, 62, 2301, 62, 1069, 796, 302, 13, 5589, 576, 7, 81, 1911, 9, 58, 15, 12, 24, 4083, 9, 4943, 198, 23209, 62, 2301, 62, 1069, 796, 302, 13, 5589, 576, 7, 81, 1911, 9, 58, 32, 12, 57, 4083, 9, 58, 32, 12, 57, 4083, 9, 4943, 628, 198, 4299, 4909, 15057, 7, 5239, 2599, 198, 220, 220, 220, 37227, 44293, 227, 28938, 104, 46763, 108, 27764, 245, 526, 15931, 198, 220, 220, 220, 1441, 645, 62, 2301, 62, 1069, 13, 15699, 7, 5239, 8, 628, 198, 4299, 4909, 29800, 39315, 7, 5239, 2599, 198, 220, 220, 220, 37227, 44293, 227, 28938, 104, 13783, 248, 10310, 103, 32014, 37863, 247, 27764, 245, 162, 107, 235, 526, 15931, 198, 220, 220, 220, 1441, 36650, 62, 2301, 62, 1069, 13, 15699, 7, 5239, 8, 628, 198, 4299, 460, 62, 46143, 9122, 7, 86, 25, 965, 2599, 198, 220, 220, 220, 37227, 162, 96, 222, 162, 253, 98, 42468, 28938, 99, 165, 250, 222, 17358, 223, 32573, 249, 26193, 234, 162, 233, 120, 37863, 247, 162, 96, 222, 162, 253, 98, 526, 15931, 198, 220, 220, 220, 1303, 1441, 407, 14808, 1662, 842, 62, 1069, 13, 15699, 7, 86, 4008, 393, 4909, 29800, 39315, 7, 86, 8, 393, 4909, 15057, 198, 220, 220, 220, 611, 842, 62, 1069, 13, 15699, 7, 86, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198 ]
1.812721
283
from pandas.core.algorithms import isin import pytest from ncmw.utils import get_models import numpy as np from pandas import DataFrame from ncmw.community.community_models import ( BagOfReactionsModel, ShuttleCommunityModel, create_stoichiometry_matrix, ) MODELS = get_models("models") COMMUNITY_MODELS = [BagOfReactionsModel, ShuttleCommunityModel] @pytest.mark.slow @pytest.mark.parametrize("community", COMMUNITY_MODELS) @pytest.mark.parametrize("model", MODELS)
[ 6738, 19798, 292, 13, 7295, 13, 282, 7727, 907, 1330, 318, 259, 201, 198, 11748, 12972, 9288, 201, 198, 201, 198, 201, 198, 6738, 299, 11215, 86, 13, 26791, 1330, 651, 62, 27530, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 19798, 292, 1330, 6060, 19778, 201, 198, 201, 198, 6738, 299, 11215, 86, 13, 28158, 13, 28158, 62, 27530, 1330, 357, 201, 198, 220, 220, 220, 20127, 5189, 3041, 4658, 17633, 11, 201, 198, 220, 220, 220, 35143, 20012, 17633, 11, 201, 198, 220, 220, 220, 2251, 62, 301, 78, 16590, 15748, 62, 6759, 8609, 11, 201, 198, 8, 201, 198, 201, 198, 33365, 37142, 796, 651, 62, 27530, 7203, 27530, 4943, 201, 198, 9858, 44, 4944, 9050, 62, 33365, 37142, 796, 685, 33, 363, 5189, 3041, 4658, 17633, 11, 35143, 20012, 17633, 60, 201, 198, 201, 198, 201, 198, 31, 9078, 9288, 13, 4102, 13, 38246, 201, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 28158, 1600, 48811, 9050, 62, 33365, 37142, 8, 201, 198, 201, 198, 201, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 19849, 1600, 19164, 37142, 8, 201, 198 ]
2.615385
195
# -*- coding: utf-8 -*- """ Automatically detect rotation and line spacing of an image of text using Radon transform If image is rotated by the inverse of the output, the lines will be horizontal (though they may be upside-down depending on the original image) It doesn't work with black borders Courtesy: https://gist.github.com/endolith/334196bac1cac45a4893# """ from __future__ import division, print_function import warnings warnings.filterwarnings("ignore") import sys from PIL import Image from skimage.transform import radon from numpy import asarray, mean, array, sqrt, mean try: # More accurate peak finding from # https://gist.github.com/endolith/255291#file-parabolic-py from parabolic import parabolic except ImportError: from numpy import argmax if __name__ == "__main__": main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 38062, 4142, 4886, 13179, 290, 1627, 31050, 286, 281, 2939, 286, 2420, 1262, 198, 15546, 261, 6121, 198, 1532, 2939, 318, 38375, 416, 262, 34062, 286, 262, 5072, 11, 262, 3951, 481, 307, 198, 17899, 38342, 357, 2016, 484, 743, 307, 17196, 12, 2902, 6906, 319, 262, 2656, 2939, 8, 198, 1026, 1595, 470, 670, 351, 2042, 11637, 198, 198, 31825, 25, 3740, 1378, 70, 396, 13, 12567, 13, 785, 14, 437, 21446, 14, 31380, 25272, 65, 330, 16, 66, 330, 2231, 64, 2780, 6052, 2, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 7203, 46430, 4943, 198, 11748, 25064, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 1341, 9060, 13, 35636, 1330, 2511, 261, 198, 6738, 299, 32152, 1330, 355, 18747, 11, 1612, 11, 7177, 11, 19862, 17034, 11, 1612, 198, 28311, 25, 198, 220, 220, 220, 1303, 3125, 7187, 9103, 4917, 422, 198, 220, 220, 220, 1303, 3740, 1378, 70, 396, 13, 12567, 13, 785, 14, 437, 21446, 14, 13381, 33551, 2, 7753, 12, 1845, 29304, 12, 9078, 198, 220, 220, 220, 422, 1582, 29304, 1330, 1582, 29304, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 299, 32152, 1330, 1822, 9806, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
3.326531
245
from yapapi.runner import Engine, Task, vm from yapapi.runner.ctx import WorkContext from yapapi.log import log_summary, log_event_repr from datetime import timedelta import json import uuid from core import TranscodingData, TranscodingTask, GolemParameters, SubtaskFinishedEvent # image hash of the geomandel docker image uploaded to golem # _IMAGE_LINK = "896909125d8dc19918dc73fe7540ca45cfe87f434ed37f51edb20a4e" # geomandel image # _IMAGE_LINK = "47cd0f045333d837304d61f74266a1bcd49ad3cb0690a10f08d37bf4" # ubuntu ffmpeg _IMAGE_LINK = "febcd478b3e00b3d40a6d2a69a4932eedcc4440a1fe7658fbb626264" class YagnaContext: """Holds information about the docker image and constraints for all the tasks to be executed in this context.""" def __create_engine(self): """Creates yagna engine""" return Engine( package=self.package, max_workers=self.max_workers, budget=self.budget, timeout=timedelta(minutes=25), subnet_tag=self.subnet_tag, # By passing `event_emitter=log_summary()` we enable summary logging. # See the documentation of the `yapapi.log` module on how to set # the level of detail and format of the logged information. event_emitter=log_summary(log_event_repr), ) async def execute(self, tasks: [Task], worker_function, on_task_complete): """Executes a set of tasks on a preconfigured docker image. Parameters ---------- tasks : [Task] Yagna tasks worker_function : (ctx: WorkContext, tasks) -> [Work] Function returning a sequence of instructions for each of the provided tasks. on_task_complete : (task: Task) -> None Callback executed when a task has been processed. """ async with self.__create_engine() as engine: async for task in engine.map(worker_function, tasks): on_task_complete(task) # docker image path to JSON file with task parameters _TASK_INPUT_REMOTE_PATH = "/golem/work/input" # minimal provider node memory constraint, not configurable _MINIMAL_MEMORY = 0.5 # minimal provider node storage constraint, not configurable _MINIMAL_STORAGE = 2.0 class TranscodingEngine: """Converts geomandel subtasks to yagna subtasks and sends them to Yagna Engine""" @staticmethod async def instance(golem_parameters: GolemParameters): """Creates an instance of TranscodingEngine. Static factory.""" repository = ImageRepository() # retrieve the image link to ffmpeg docker image together with constraints package = await repository.get_image(_MINIMAL_MEMORY, _MINIMAL_STORAGE) # prepares the yagna engine yagna = YagnaContext(package, golem_parameters.max_workers, golem_parameters.budget, golem_parameters.subnet_tag) # wraps it in transcoding layer return TranscodingEngine(yagna) async def execute(self, tasks: [TranscodingData]): """Translates subtasks into Yagna format and executes them.""" wrapped_tasks = self.__wrap_in_yagna_task(tasks) await self.yagna.execute(wrapped_tasks, self.__transcode_remote, self.__log_completion) async def __transcode_remote(self, ctx: WorkContext, tasks: [TranscodingTask]): """Creates a set of instructions for each subtask""" async for task in tasks: remote_output_path: str = f"/golem/work/output.{task.data.extension}" # Send input video to remote node ctx.send_file(task.data.input, _TASK_INPUT_REMOTE_PATH) # Execute ffmpeg command. ctx.run("/usr/bin/ffmpeg", "-i", _TASK_INPUT_REMOTE_PATH, remote_output_path) # Download the output file. ctx.download_file(remote_output_path, task.data.output) # Return a sequence of commands to be executed when remote node agrees to process a task. yield ctx.commit() task.accept_task() def __wrap_in_yagna_task(self, data: []): """Converts any task data sequence to Yagna wrapper""" for item in data: yield Task(data=item)
[ 6738, 331, 499, 15042, 13, 16737, 1330, 7117, 11, 15941, 11, 45887, 198, 6738, 331, 499, 15042, 13, 16737, 13, 49464, 1330, 5521, 21947, 198, 6738, 331, 499, 15042, 13, 6404, 1330, 2604, 62, 49736, 11, 2604, 62, 15596, 62, 260, 1050, 198, 6738, 4818, 8079, 1330, 28805, 12514, 198, 11748, 33918, 198, 11748, 334, 27112, 198, 198, 6738, 4755, 1330, 3602, 66, 7656, 6601, 11, 3602, 66, 7656, 25714, 11, 27167, 48944, 11, 3834, 35943, 18467, 1348, 9237, 198, 198, 2, 2939, 12234, 286, 262, 4903, 296, 33134, 36253, 2939, 19144, 284, 467, 10671, 198, 2, 4808, 3955, 11879, 62, 43, 17248, 796, 366, 4531, 3388, 2931, 11623, 67, 23, 17896, 19104, 1507, 17896, 4790, 5036, 2425, 1821, 6888, 2231, 66, 5036, 5774, 69, 47101, 276, 2718, 69, 4349, 276, 65, 1238, 64, 19, 68, 1, 198, 2, 4903, 296, 33134, 2939, 198, 2, 4808, 3955, 11879, 62, 43, 17248, 796, 366, 2857, 10210, 15, 69, 40350, 20370, 67, 23, 2718, 21288, 67, 5333, 69, 4524, 25540, 64, 16, 65, 10210, 2920, 324, 18, 21101, 3312, 3829, 64, 940, 69, 2919, 67, 2718, 19881, 19, 1, 198, 2, 20967, 11157, 31246, 43913, 198, 62, 3955, 11879, 62, 43, 17248, 796, 366, 69, 1765, 10210, 29059, 65, 18, 68, 405, 65, 18, 67, 1821, 64, 21, 67, 17, 64, 3388, 64, 2920, 2624, 2308, 535, 2598, 1821, 64, 16, 5036, 29143, 23, 69, 11848, 45191, 18897, 1, 628, 198, 198, 4871, 575, 48669, 21947, 25, 198, 220, 220, 220, 37227, 39, 10119, 1321, 546, 262, 36253, 2939, 290, 17778, 329, 477, 262, 8861, 284, 307, 10945, 287, 428, 4732, 526, 15931, 628, 220, 220, 220, 825, 11593, 17953, 62, 18392, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16719, 274, 331, 48669, 3113, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7117, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5301, 28, 944, 13, 26495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22896, 28, 944, 13, 9806, 62, 22896, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4466, 28, 944, 13, 37315, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 16514, 276, 12514, 7, 1084, 1769, 28, 1495, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 3262, 62, 12985, 28, 944, 13, 7266, 3262, 62, 12985, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2750, 6427, 4600, 15596, 62, 368, 1967, 28, 6404, 62, 49736, 3419, 63, 356, 7139, 10638, 18931, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 262, 10314, 286, 262, 4600, 88, 499, 15042, 13, 6404, 63, 8265, 319, 703, 284, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1241, 286, 3703, 290, 5794, 286, 262, 18832, 1321, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 368, 1967, 28, 6404, 62, 49736, 7, 6404, 62, 15596, 62, 260, 1050, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 220, 220, 220, 628, 220, 220, 220, 30351, 825, 12260, 7, 944, 11, 8861, 25, 685, 25714, 4357, 8383, 62, 8818, 11, 319, 62, 35943, 62, 20751, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23002, 1769, 257, 900, 286, 8861, 319, 257, 662, 11250, 1522, 36253, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 8861, 1058, 685, 25714, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 48669, 8861, 198, 220, 220, 220, 220, 220, 220, 220, 8383, 62, 8818, 1058, 357, 49464, 25, 5521, 21947, 11, 8861, 8, 4613, 685, 12468, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15553, 8024, 257, 8379, 286, 7729, 329, 1123, 286, 262, 2810, 8861, 13, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 35943, 62, 20751, 1058, 357, 35943, 25, 15941, 8, 4613, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4889, 1891, 10945, 618, 257, 4876, 468, 587, 13686, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 2116, 13, 834, 17953, 62, 18392, 3419, 355, 3113, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 329, 4876, 287, 3113, 13, 8899, 7, 28816, 62, 8818, 11, 8861, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 62, 35943, 62, 20751, 7, 35943, 8, 628, 198, 2, 36253, 2939, 3108, 284, 19449, 2393, 351, 4876, 10007, 198, 62, 51, 1921, 42, 62, 1268, 30076, 62, 40726, 23051, 62, 34219, 796, 12813, 2188, 10671, 14, 1818, 14, 15414, 1, 198, 198, 2, 10926, 10131, 10139, 4088, 32315, 11, 407, 4566, 11970, 198, 62, 23678, 3955, 1847, 62, 44, 3620, 15513, 796, 657, 13, 20, 198, 2, 10926, 10131, 10139, 6143, 32315, 11, 407, 4566, 11970, 198, 62, 23678, 3955, 1847, 62, 2257, 1581, 11879, 796, 362, 13, 15, 628, 198, 4871, 3602, 66, 7656, 13798, 25, 198, 220, 220, 220, 37227, 3103, 24040, 4903, 296, 33134, 13284, 6791, 284, 331, 48669, 13284, 6791, 290, 12800, 606, 284, 575, 48669, 7117, 37811, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 30351, 825, 4554, 7, 2188, 10671, 62, 17143, 7307, 25, 27167, 48944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16719, 274, 281, 4554, 286, 3602, 66, 7656, 13798, 13, 36125, 8860, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 16099, 796, 7412, 6207, 13264, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19818, 262, 2939, 2792, 284, 31246, 43913, 36253, 2939, 1978, 351, 17778, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 796, 25507, 16099, 13, 1136, 62, 9060, 28264, 23678, 3955, 1847, 62, 44, 3620, 15513, 11, 4808, 23678, 3955, 1847, 62, 2257, 1581, 11879, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25978, 262, 331, 48669, 3113, 198, 220, 220, 220, 220, 220, 220, 220, 331, 48669, 796, 575, 48669, 21947, 7, 26495, 11, 467, 10671, 62, 17143, 7307, 13, 9806, 62, 22896, 11, 467, 10671, 62, 17143, 7307, 13, 37315, 11, 467, 10671, 62, 17143, 7307, 13, 7266, 3262, 62, 12985, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27521, 340, 287, 23589, 7656, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3602, 66, 7656, 13798, 7, 88, 48669, 8, 628, 220, 220, 220, 30351, 825, 12260, 7, 944, 11, 8861, 25, 685, 8291, 66, 7656, 6601, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8291, 75, 689, 13284, 6791, 656, 575, 48669, 5794, 290, 42985, 606, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 12908, 62, 83, 6791, 796, 2116, 13, 834, 37150, 62, 259, 62, 88, 48669, 62, 35943, 7, 83, 6791, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13, 88, 48669, 13, 41049, 7, 29988, 1496, 62, 83, 6791, 11, 2116, 13, 834, 7645, 8189, 62, 47960, 11, 2116, 13, 834, 6404, 62, 785, 24547, 8, 628, 220, 220, 220, 30351, 825, 11593, 7645, 8189, 62, 47960, 7, 944, 11, 269, 17602, 25, 5521, 21947, 11, 8861, 25, 685, 8291, 66, 7656, 25714, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16719, 274, 257, 900, 286, 7729, 329, 1123, 13284, 2093, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 30351, 329, 4876, 287, 8861, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 22915, 62, 6978, 25, 965, 796, 277, 1, 14, 2188, 10671, 14, 1818, 14, 22915, 13, 90, 35943, 13, 7890, 13, 2302, 3004, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16290, 5128, 2008, 284, 6569, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 21280, 62, 7753, 7, 35943, 13, 7890, 13, 15414, 11, 4808, 51, 1921, 42, 62, 1268, 30076, 62, 40726, 23051, 62, 34219, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8393, 1133, 31246, 43913, 3141, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 5143, 7203, 14, 14629, 14, 8800, 14, 487, 43913, 1600, 27444, 72, 1600, 4808, 51, 1921, 42, 62, 1268, 30076, 62, 40726, 23051, 62, 34219, 11, 6569, 62, 22915, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10472, 262, 5072, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 15002, 62, 7753, 7, 47960, 62, 22915, 62, 6978, 11, 4876, 13, 7890, 13, 22915, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8229, 257, 8379, 286, 9729, 284, 307, 10945, 618, 6569, 10139, 14386, 284, 1429, 257, 4876, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 269, 17602, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 13, 13635, 62, 35943, 3419, 628, 220, 220, 220, 825, 11593, 37150, 62, 259, 62, 88, 48669, 62, 35943, 7, 944, 11, 1366, 25, 17635, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 24040, 597, 4876, 1366, 8379, 284, 575, 48669, 29908, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 15941, 7, 7890, 28, 9186, 8, 198 ]
2.526823
1,659
#!/usr/bin/env python3 """ Take a polyglot from mitra, generate a OFB ciphertext which decrypts correctly under two different keys. iv = dec(c0 ^ p0) """ import binascii import os import argparse import re from Crypto.Cipher import AES from Crypto.Util.number import long_to_bytes,bytes_to_long from Crypto.Util.number import long_to_bytes as l2b from Crypto.Util.number import bytes_to_long as b2l BLOCKLEN = 16 pad16 = lambda s: s + b"\0" * (16-len(s)) b2a = lambda b: repr(b)[2:-1] dir_path = os.path.dirname(os.path.realpath(__file__)) ivsfn = os.path.join(dir_path, "ivs.txt") with open(ivsfn, "r") as f: iv_data = f.readlines() IVS = {} for l in iv_data: if l.count("#") > 0: l = l[:l.find("#")] l = l.strip() if l == "": continue l = re.split(r'\s+', l) if len(l) != 6: continue iv,types,header1, header2, key1, key2 = l if len(header1) != len(header2): continue if len(key1) != len(key2): continue header1 = binascii.unhexlify(header1) header2 = binascii.unhexlify(header2) key1 = binascii.unhexlify(key1) key2 = binascii.unhexlify(key2) iv = binascii.unhexlify(iv) xor_hdr = xor(header1, header2) IVS[(xor_hdr, key1, key2)] = iv if __name__=='__main__': parser = argparse.ArgumentParser(description="Turn a non-overlapping polyglot into a dual AES-OFB ciphertext.") parser.add_argument('polyglot', help="input polyglot - requires special naming like 'P(10-5c).png.rar'.") parser.add_argument('output', help="generated file.") parser.add_argument('-i', '--iv', default=b"0", help="nonce - default: 0.") parser.add_argument('-k', '--keys', nargs=2, default=[b"Now?", b"L4t3r!!!"], help="encryption keys - default: Now? / L4t3r!!!.") args = parser.parse_args() fnmix = args.polyglot fnpoc = args.output key1, key2 = args.keys iv = args.iv iv = pad16(unhextry(iv)) key1 = pad16(unhextry(key1)) key2 = pad16(unhextry(key2)) with open(fnmix, "rb") as file: dIn = file.read() dIn = pad(dIn, BLOCKLEN) # the padding will break with formats not supporting appended data assert not key1 == key2 # fnmix should come from Mitra and # has a naming convention like "P(14-89)-ID3v2[Zip].4d01e2fb.mp3.zip" swaps = [int(i, 16) for i in fnmix[fnmix.find("(") + 1:fnmix.find(")")].split("-")] exts = fnmix[-9:].split(".")[-2:] if fnmix.startswith("O") and \ "{" in fnmix and \ "}" in fnmix: print("Overlap file found") iv = BruteIv(fnmix) print("IV: %s" % b2a(binascii.hexlify(iv))) assert len(dIn) % 16 == 0 bCount = len(dIn) // 16 ks1 = getKS(key1, iv, bCount) ks2 = getKS(key2, iv, bCount) dCrypt1 = xor(dIn, ks1[:len(dIn)]) dCrypt2 = xor(dIn, ks2[:len(dIn)]) dOut = mix(dCrypt1, dCrypt2, swaps) print("key 1:", b2a(key1.strip(b"\0"))) print("key 2:", b2a(key2.strip(b"\0"))) ctxt = dOut output = "\n".join([ "key1: %s" % b2a(binascii.hexlify(key1)), "key2: %s" % b2a(binascii.hexlify(key2)), "iv: %s" % b2a(binascii.hexlify(iv)), "ciphertext: %s" % b2a(binascii.hexlify(ctxt)), "exts: %s" % " ".join(exts), "origin: %s" % fnmix, ]) with open(fnpoc, "wb") as fpoc: fpoc.write(output.encode()) fpoc.close()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 37811, 198, 12322, 257, 7514, 4743, 313, 422, 10255, 430, 11, 198, 8612, 378, 257, 3963, 33, 38012, 5239, 543, 42797, 82, 9380, 739, 734, 1180, 8251, 13, 198, 198, 452, 796, 875, 7, 66, 15, 10563, 279, 15, 8, 198, 37811, 198, 198, 11748, 9874, 292, 979, 72, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 302, 198, 6738, 36579, 13, 34, 10803, 1330, 34329, 198, 6738, 36579, 13, 18274, 346, 13, 17618, 1330, 890, 62, 1462, 62, 33661, 11, 33661, 62, 1462, 62, 6511, 198, 6738, 36579, 13, 18274, 346, 13, 17618, 1330, 890, 62, 1462, 62, 33661, 355, 300, 17, 65, 198, 6738, 36579, 13, 18274, 346, 13, 17618, 1330, 9881, 62, 1462, 62, 6511, 355, 275, 17, 75, 628, 198, 9148, 11290, 43, 1677, 796, 1467, 198, 198, 15636, 1433, 796, 37456, 264, 25, 264, 1343, 275, 1, 59, 15, 1, 1635, 357, 1433, 12, 11925, 7, 82, 4008, 198, 65, 17, 64, 796, 37456, 275, 25, 41575, 7, 65, 38381, 17, 21912, 16, 60, 628, 628, 628, 198, 198, 15908, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 4008, 198, 452, 82, 22184, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 62, 6978, 11, 366, 452, 82, 13, 14116, 4943, 198, 4480, 1280, 7, 452, 82, 22184, 11, 366, 81, 4943, 355, 277, 25, 198, 197, 452, 62, 7890, 796, 277, 13, 961, 6615, 3419, 198, 3824, 50, 796, 23884, 198, 1640, 300, 287, 21628, 62, 7890, 25, 198, 197, 361, 300, 13, 9127, 7203, 2, 4943, 1875, 657, 25, 198, 197, 197, 75, 796, 300, 58, 25, 75, 13, 19796, 7203, 2, 4943, 60, 198, 197, 75, 796, 300, 13, 36311, 3419, 198, 197, 361, 300, 6624, 366, 1298, 198, 197, 197, 43043, 198, 197, 75, 796, 302, 13, 35312, 7, 81, 6, 59, 82, 10, 3256, 300, 8, 198, 197, 361, 18896, 7, 75, 8, 14512, 718, 25, 198, 197, 197, 43043, 198, 197, 452, 11, 19199, 11, 25677, 16, 11, 13639, 17, 11, 1994, 16, 11, 1994, 17, 796, 300, 198, 197, 361, 18896, 7, 25677, 16, 8, 14512, 18896, 7, 25677, 17, 2599, 198, 197, 197, 43043, 198, 197, 361, 18896, 7, 2539, 16, 8, 14512, 18896, 7, 2539, 17, 2599, 198, 197, 197, 43043, 198, 197, 25677, 16, 796, 9874, 292, 979, 72, 13, 403, 33095, 75, 1958, 7, 25677, 16, 8, 198, 197, 25677, 17, 796, 9874, 292, 979, 72, 13, 403, 33095, 75, 1958, 7, 25677, 17, 8, 198, 197, 2539, 16, 796, 9874, 292, 979, 72, 13, 403, 33095, 75, 1958, 7, 2539, 16, 8, 198, 197, 2539, 17, 796, 9874, 292, 979, 72, 13, 403, 33095, 75, 1958, 7, 2539, 17, 8, 198, 197, 452, 796, 9874, 292, 979, 72, 13, 403, 33095, 75, 1958, 7, 452, 8, 198, 197, 87, 273, 62, 71, 7109, 796, 2124, 273, 7, 25677, 16, 11, 13639, 17, 8, 198, 197, 3824, 50, 58, 7, 87, 273, 62, 71, 7109, 11, 1994, 16, 11, 1994, 17, 15437, 796, 21628, 628, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 197, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 17278, 257, 1729, 12, 2502, 75, 5912, 7514, 4743, 313, 656, 257, 10668, 34329, 12, 19238, 33, 38012, 5239, 19570, 198, 197, 48610, 13, 2860, 62, 49140, 10786, 35428, 4743, 313, 3256, 198, 197, 197, 16794, 2625, 15414, 7514, 4743, 313, 532, 4433, 2041, 19264, 588, 705, 47, 7, 940, 12, 20, 66, 737, 11134, 13, 20040, 6, 19570, 198, 197, 48610, 13, 2860, 62, 49140, 10786, 22915, 3256, 198, 197, 197, 16794, 2625, 27568, 2393, 19570, 198, 197, 48610, 13, 2860, 62, 49140, 10786, 12, 72, 3256, 705, 438, 452, 3256, 4277, 28, 65, 1, 15, 1600, 198, 197, 197, 16794, 2625, 13159, 344, 532, 4277, 25, 657, 19570, 198, 197, 48610, 13, 2860, 62, 49140, 10786, 12, 74, 3256, 705, 438, 13083, 3256, 299, 22046, 28, 17, 11, 4277, 41888, 65, 1, 3844, 35379, 275, 1, 43, 19, 83, 18, 81, 3228, 2474, 4357, 198, 197, 197, 16794, 2625, 12685, 13168, 8251, 532, 4277, 25, 2735, 30, 1220, 406, 19, 83, 18, 81, 10185, 19570, 628, 197, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 197, 22184, 19816, 796, 26498, 13, 35428, 4743, 313, 198, 197, 22184, 79, 420, 796, 26498, 13, 22915, 198, 197, 2539, 16, 11, 1994, 17, 796, 26498, 13, 13083, 198, 197, 452, 796, 26498, 13, 452, 628, 197, 452, 796, 14841, 1433, 7, 403, 258, 742, 563, 7, 452, 4008, 198, 197, 2539, 16, 796, 14841, 1433, 7, 403, 258, 742, 563, 7, 2539, 16, 4008, 198, 197, 2539, 17, 796, 14841, 1433, 7, 403, 258, 742, 563, 7, 2539, 17, 4008, 628, 197, 4480, 1280, 7, 22184, 19816, 11, 366, 26145, 4943, 355, 2393, 25, 198, 197, 197, 67, 818, 796, 2393, 13, 961, 3419, 198, 197, 67, 818, 796, 14841, 7, 67, 818, 11, 9878, 11290, 43, 1677, 8, 1303, 262, 24511, 481, 2270, 351, 17519, 407, 6493, 598, 1631, 1366, 628, 197, 30493, 407, 1994, 16, 6624, 1994, 17, 628, 198, 197, 2, 24714, 19816, 815, 1282, 422, 11707, 430, 290, 198, 197, 2, 468, 257, 19264, 9831, 588, 366, 47, 7, 1415, 12, 4531, 13219, 2389, 18, 85, 17, 58, 41729, 4083, 19, 67, 486, 68, 17, 21855, 13, 3149, 18, 13, 13344, 1, 198, 197, 2032, 1686, 796, 685, 600, 7, 72, 11, 1467, 8, 329, 1312, 287, 24714, 19816, 58, 22184, 19816, 13, 19796, 7203, 7, 4943, 1343, 352, 25, 22184, 19816, 13, 19796, 7, 4943, 4943, 4083, 35312, 7203, 12, 4943, 60, 198, 197, 2302, 82, 796, 24714, 19816, 58, 12, 24, 25, 4083, 35312, 7203, 19570, 58, 12, 17, 47715, 198, 197, 628, 628, 197, 361, 24714, 19816, 13, 9688, 2032, 342, 7203, 46, 4943, 290, 3467, 198, 197, 197, 1, 4895, 287, 24714, 19816, 290, 3467, 198, 197, 197, 20662, 1, 287, 24714, 19816, 25, 198, 197, 197, 4798, 7203, 5886, 37796, 2393, 1043, 4943, 198, 197, 197, 452, 796, 1709, 1133, 45766, 7, 22184, 19816, 8, 198, 197, 197, 4798, 7203, 3824, 25, 4064, 82, 1, 4064, 275, 17, 64, 7, 8800, 292, 979, 72, 13, 33095, 75, 1958, 7, 452, 22305, 628, 198, 197, 30493, 18896, 7, 67, 818, 8, 4064, 1467, 6624, 657, 198, 197, 65, 12332, 796, 18896, 7, 67, 818, 8, 3373, 1467, 628, 197, 591, 16, 796, 651, 27015, 7, 2539, 16, 11, 21628, 11, 275, 12332, 8, 198, 197, 591, 17, 796, 651, 27015, 7, 2539, 17, 11, 21628, 11, 275, 12332, 8, 628, 197, 67, 23919, 16, 796, 2124, 273, 7, 67, 818, 11, 479, 82, 16, 58, 25, 11925, 7, 67, 818, 8, 12962, 198, 197, 67, 23919, 17, 796, 2124, 273, 7, 67, 818, 11, 479, 82, 17, 58, 25, 11925, 7, 67, 818, 8, 12962, 198, 197, 67, 7975, 796, 5022, 7, 67, 23919, 16, 11, 288, 23919, 17, 11, 43997, 8, 628, 197, 4798, 7203, 2539, 352, 25, 1600, 275, 17, 64, 7, 2539, 16, 13, 36311, 7, 65, 1, 59, 15, 1, 22305, 198, 197, 4798, 7203, 2539, 362, 25, 1600, 275, 17, 64, 7, 2539, 17, 13, 36311, 7, 65, 1, 59, 15, 1, 22305, 628, 197, 310, 742, 796, 288, 7975, 628, 197, 22915, 796, 37082, 77, 1911, 22179, 26933, 198, 197, 197, 197, 1, 2539, 16, 25, 4064, 82, 1, 4064, 275, 17, 64, 7, 8800, 292, 979, 72, 13, 33095, 75, 1958, 7, 2539, 16, 36911, 198, 197, 197, 197, 1, 2539, 17, 25, 4064, 82, 1, 4064, 275, 17, 64, 7, 8800, 292, 979, 72, 13, 33095, 75, 1958, 7, 2539, 17, 36911, 198, 197, 197, 197, 1, 452, 25, 4064, 82, 1, 4064, 275, 17, 64, 7, 8800, 292, 979, 72, 13, 33095, 75, 1958, 7, 452, 36911, 198, 197, 197, 197, 1, 66, 10803, 5239, 25, 4064, 82, 1, 4064, 275, 17, 64, 7, 8800, 292, 979, 72, 13, 33095, 75, 1958, 7, 310, 742, 36911, 198, 197, 197, 220, 366, 2302, 82, 25, 4064, 82, 1, 4064, 366, 27071, 22179, 7, 2302, 82, 828, 198, 197, 197, 220, 366, 47103, 25, 4064, 82, 1, 4064, 24714, 19816, 11, 198, 197, 197, 12962, 198, 197, 4480, 1280, 7, 22184, 79, 420, 11, 366, 39346, 4943, 355, 277, 79, 420, 25, 198, 197, 197, 46428, 420, 13, 13564, 7, 22915, 13, 268, 8189, 28955, 198, 197, 197, 46428, 420, 13, 19836, 3419, 198 ]
2.199019
1,427
from __future__ import annotations import inspect import threading import weakref from types import MethodType from typing import ( Any, Callable, Generic, Iterator, List, MutableSet, Optional, Type, TypeVar, cast, ) __all__ = ["EventIterator", "Event"] _TResult = TypeVar("_TResult") _TCallable = TypeVar("_TCallable", bound=Callable[..., Any]) _TEvent = TypeVar("_TEvent")
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 11748, 10104, 198, 11748, 4704, 278, 198, 11748, 4939, 5420, 198, 6738, 3858, 1330, 11789, 6030, 198, 6738, 19720, 1330, 357, 198, 220, 220, 220, 4377, 11, 198, 220, 220, 220, 4889, 540, 11, 198, 220, 220, 220, 42044, 11, 198, 220, 220, 220, 40806, 1352, 11, 198, 220, 220, 220, 7343, 11, 198, 220, 220, 220, 13859, 540, 7248, 11, 198, 220, 220, 220, 32233, 11, 198, 220, 220, 220, 5994, 11, 198, 220, 220, 220, 5994, 19852, 11, 198, 220, 220, 220, 3350, 11, 198, 8, 198, 198, 834, 439, 834, 796, 14631, 9237, 37787, 1600, 366, 9237, 8973, 198, 198, 62, 51, 23004, 796, 5994, 19852, 7203, 62, 51, 23004, 4943, 198, 62, 4825, 439, 540, 796, 5994, 19852, 7203, 62, 4825, 439, 540, 1600, 5421, 28, 14134, 540, 58, 986, 11, 4377, 12962, 628, 628, 198, 198, 62, 51, 9237, 796, 5994, 19852, 7203, 62, 51, 9237, 4943, 628, 628 ]
2.62963
162
from typing import Dict, Any import tensorflow as tf from tensorflow.keras.utils import plot_model from kashgari_local.abc_feature_model import ABCClassificationModel from kashgari.layers import L
[ 6738, 19720, 1330, 360, 713, 11, 4377, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 26791, 1330, 7110, 62, 19849, 198, 6738, 479, 1077, 70, 2743, 62, 12001, 13, 39305, 62, 30053, 62, 19849, 1330, 9738, 9487, 2649, 17633, 198, 6738, 479, 1077, 70, 2743, 13, 75, 6962, 1330, 406, 628 ]
3.316667
60
""" Stiny - A home automation assistant """ import os import posixpath import calendar import datetime import json import logging import requests from collections import defaultdict from pyramid.authentication import AuthTktAuthenticationPolicy from pyramid.authorization import ACLAuthorizationPolicy from pyramid.config import Configurator from pyramid.httpexceptions import exception_response from pyramid.renderers import JSON, render, render_to_response from pyramid.settings import asbool, aslist from pyramid_beaker import session_factory_from_settings from twilio.util import RequestValidator from .gutil import Calendar, normalize_email LOG = logging.getLogger(__name__) def to_json(value): """ A json filter for jinja2 """ return render('json', value) json_renderer = JSON() # pylint: disable=C0103 json_renderer.add_adapter(datetime.datetime, lambda obj, r: 1000 * calendar.timegm(obj.utctimetuple())) json_renderer.add_adapter(datetime.date, lambda obj, _: obj.isoformat()) json_renderer.add_adapter(defaultdict, lambda obj, _: dict(obj)) json_renderer.add_adapter(Exception, lambda e, _: str(e)) def _error(request, error, message='Unknown error', status_code=500): """ Construct an error response Parameters ---------- error : str Identifying error key message : str, optional Human-readable error message status_code : int, optional HTTP return code (default 500) """ data = { 'error': error, 'msg': message, } LOG.error("%s: %s", error, message) request.response.status_code = status_code return render_to_response('json', data, request, response=request.response) def _raise_error(request, error, message='Unknown error', status_code=500): """ Raise an error response. Use this when you need to return an error to the client from inside of nested function calls. Parameters ---------- error : str Identifying error key message : str, optional Human-readable error message status_code : int, optional HTTP return code (default 500) """ err = exception_response(status_code, detail=message) err.error = error raise err def _auth_callback(userid, request): """ Get permissions for a user with an email. """ n_userid = normalize_email(userid) perms = [] # If permissions are declared in the config.ini file, just use those. setting = request.registry.settings.get('auth.' + n_userid) if setting is not None: principals = aslist(setting) else: principals = [] if request.cal.is_guest(n_userid): principals.append('unlock') perms.extend(principals) return perms def includeme(config): """ Set up and configure the app """ settings = config.get_settings() config.include('pyramid_beaker') config.include('pyramid_duh') config.include('pyramid_webpack') config.include('stiny.route') config.add_renderer('json', json_renderer) # Jinja2 configuration settings['jinja2.filters'] = { 'static_url': 'pyramid_jinja2.filters:static_url_filter', 'json': to_json, } settings['jinja2.directories'] = ['stiny:templates'] settings['jinja2.extensions'] = ['pyramid_webpack.jinja2ext:WebpackExtension'] config.include('pyramid_jinja2') config.commit() # Beaker configuration settings.setdefault('session.type', 'cookie') settings.setdefault('session.httponly', 'true') config.set_session_factory(session_factory_from_settings(settings)) config.set_default_csrf_options(require_csrf=True, token=None) # Set admins from environment variable for local development if 'STINY_ADMINS' in os.environ: for email in aslist(os.environ['STINY_ADMINS']): email = normalize_email(email) settings['auth.' + email] = 'admin' # Set guests from environment variable for local development if 'STINY_GUESTS' in os.environ: for email in aslist(os.environ['STINY_GUESTS']): email = normalize_email(email) settings['auth.' + email] = 'unlock' # Special request methods config.add_request_method(_error, name='error') config.add_request_method(_raise_error, name='raise_error') config.add_request_method(lambda r, *a, **k: r.route_url('root', *a, **k), name='rooturl') config.add_request_method(lambda r, u: _auth_callback(u, r), name='user_principals') config.add_request_method(lambda r: r.registry.settings.get('google.client_id'), name='google_client_id', reify=True) config.registry.phone_access = aslist(settings.get('phone_access', [])) config.add_static_view(name='static', path='stiny:static', cache_max_age=10 * 365 * 24 * 60 * 60) # Auth config.set_authorization_policy(ACLAuthorizationPolicy()) config.set_authentication_policy(AuthTktAuthenticationPolicy( secret=settings['authtkt.secret'], cookie_name=settings.get('auth.cookie_name', 'auth_tkt'), secure=asbool(settings.get('auth.secure', False)), timeout=int(settings.get('auth.timeout', 60 * 60 * 24 * 30)), reissue_time=int(settings.get('auth.reissue_time', 60 * 60 * 24 * 15)), max_age=int(settings.get('auth.max_age', 60 * 60 * 24 * 30)), http_only=asbool(settings.get('auth.http_only', True)), hashalg='sha512', callback=_auth_callback, )) config.set_default_permission('default') # Calendar config.registry.GOOGLE_WEB_CLIENT_ID = settings.setdefault( 'google.client_id', os.environ.get('STINY_DEV_CLIENT_GOOGLE_CLIENT_ID')) server_client_id = settings.get('google.server_client_id') if server_client_id is None: server_client_id = os.environ['STINY_SERVER_GOOGLE_CLIENT_ID'] config.registry.GOOGLE_CLIENT_ID = server_client_id client_secret = settings.get('google.server_client_secret') if client_secret is None: client_secret = os.environ['STINY_SERVER_GOOGLE_CLIENT_SECRET'] cal_id = settings.get('google.calendar_id') if cal_id is None: cal_id = os.environ['STINY_CAL_ID'] cal = Calendar(server_client_id, client_secret, calendar_id=cal_id) config.registry.calendar = cal config.add_request_method(lambda r: r.registry.calendar, 'cal', reify=True) twilio_token = settings.get('twilio.auth_token') if twilio_token is None: twilio_token = os.environ['STINY_TWILIO_AUTH_TOKEN'] config.registry.twilio_validator = RequestValidator(twilio_token) config.add_request_method(_validate_twilio, name='validate_twilio') config.add_request_method(_call_worker, name='call_worker') config.scan() def main(config, **settings): """ This function returns a Pyramid WSGI application. """ config = Configurator(settings=settings) config.include('stiny') return config.make_wsgi_app()
[ 37811, 520, 3541, 532, 317, 1363, 22771, 8796, 37227, 198, 11748, 28686, 198, 11748, 1426, 844, 6978, 198, 198, 11748, 11845, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 7007, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 27944, 13, 41299, 3299, 1330, 26828, 51, 21841, 47649, 3299, 36727, 198, 6738, 27944, 13, 9800, 1634, 1330, 17382, 13838, 1634, 36727, 198, 6738, 27944, 13, 11250, 1330, 17056, 333, 1352, 198, 6738, 27944, 13, 2804, 24900, 11755, 1330, 6631, 62, 26209, 198, 6738, 27944, 13, 10920, 19288, 1330, 19449, 11, 8543, 11, 8543, 62, 1462, 62, 26209, 198, 6738, 27944, 13, 33692, 1330, 355, 30388, 11, 355, 4868, 198, 6738, 27944, 62, 1350, 3110, 1330, 6246, 62, 69, 9548, 62, 6738, 62, 33692, 198, 6738, 665, 346, 952, 13, 22602, 1330, 19390, 47139, 1352, 198, 198, 6738, 764, 70, 22602, 1330, 26506, 11, 3487, 1096, 62, 12888, 628, 198, 25294, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 284, 62, 17752, 7, 8367, 2599, 198, 220, 220, 220, 37227, 317, 33918, 8106, 329, 474, 259, 6592, 17, 37227, 198, 220, 220, 220, 1441, 8543, 10786, 17752, 3256, 1988, 8, 198, 198, 17752, 62, 10920, 11882, 796, 19449, 3419, 220, 1303, 279, 2645, 600, 25, 15560, 28, 34, 486, 3070, 198, 17752, 62, 10920, 11882, 13, 2860, 62, 324, 3429, 7, 19608, 8079, 13, 19608, 8079, 11, 37456, 26181, 11, 374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8576, 1635, 11845, 13, 2435, 39870, 7, 26801, 13, 315, 310, 38813, 29291, 3419, 4008, 198, 17752, 62, 10920, 11882, 13, 2860, 62, 324, 3429, 7, 19608, 8079, 13, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 26181, 11, 4808, 25, 26181, 13, 26786, 18982, 28955, 198, 17752, 62, 10920, 11882, 13, 2860, 62, 324, 3429, 7, 12286, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 26181, 11, 4808, 25, 8633, 7, 26801, 4008, 198, 17752, 62, 10920, 11882, 13, 2860, 62, 324, 3429, 7, 16922, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 304, 11, 4808, 25, 965, 7, 68, 4008, 628, 198, 4299, 4808, 18224, 7, 25927, 11, 4049, 11, 3275, 11639, 20035, 4049, 3256, 3722, 62, 8189, 28, 4059, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28407, 281, 4049, 2882, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4049, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11440, 4035, 4049, 1994, 198, 220, 220, 220, 3275, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 5524, 12, 46155, 4049, 3275, 198, 220, 220, 220, 3722, 62, 8189, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 14626, 1441, 2438, 357, 12286, 5323, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18224, 10354, 4049, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19662, 10354, 3275, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 41605, 13, 18224, 7203, 4, 82, 25, 4064, 82, 1600, 4049, 11, 3275, 8, 198, 220, 220, 220, 2581, 13, 26209, 13, 13376, 62, 8189, 796, 3722, 62, 8189, 198, 220, 220, 220, 1441, 8543, 62, 1462, 62, 26209, 10786, 17752, 3256, 1366, 11, 2581, 11, 2882, 28, 25927, 13, 26209, 8, 628, 198, 4299, 4808, 40225, 62, 18224, 7, 25927, 11, 4049, 11, 3275, 11639, 20035, 4049, 3256, 3722, 62, 8189, 28, 4059, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35123, 281, 4049, 2882, 13, 628, 220, 220, 220, 5765, 428, 618, 345, 761, 284, 1441, 281, 4049, 284, 262, 5456, 422, 2641, 286, 198, 220, 220, 220, 28376, 2163, 3848, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4049, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11440, 4035, 4049, 1994, 198, 220, 220, 220, 3275, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 5524, 12, 46155, 4049, 3275, 198, 220, 220, 220, 3722, 62, 8189, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 14626, 1441, 2438, 357, 12286, 5323, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 11454, 796, 6631, 62, 26209, 7, 13376, 62, 8189, 11, 3703, 28, 20500, 8, 198, 220, 220, 220, 11454, 13, 18224, 796, 4049, 198, 220, 220, 220, 5298, 11454, 628, 198, 4299, 4808, 18439, 62, 47423, 7, 7220, 312, 11, 2581, 2599, 198, 220, 220, 220, 37227, 3497, 21627, 329, 257, 2836, 351, 281, 3053, 13, 37227, 198, 220, 220, 220, 299, 62, 7220, 312, 796, 3487, 1096, 62, 12888, 7, 7220, 312, 8, 198, 220, 220, 220, 583, 907, 796, 17635, 198, 220, 220, 220, 1303, 1002, 21627, 389, 6875, 287, 262, 4566, 13, 5362, 2393, 11, 655, 779, 883, 13, 198, 220, 220, 220, 4634, 796, 2581, 13, 2301, 4592, 13, 33692, 13, 1136, 10786, 18439, 2637, 1343, 299, 62, 7220, 312, 8, 198, 220, 220, 220, 611, 4634, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44998, 796, 355, 4868, 7, 33990, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44998, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2581, 13, 9948, 13, 271, 62, 5162, 395, 7, 77, 62, 7220, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44998, 13, 33295, 10786, 403, 5354, 11537, 628, 220, 220, 220, 583, 907, 13, 2302, 437, 7, 1050, 1939, 541, 874, 8, 198, 220, 220, 220, 1441, 583, 907, 628, 628, 198, 4299, 846, 34755, 7, 11250, 2599, 198, 220, 220, 220, 37227, 5345, 510, 290, 17425, 262, 598, 37227, 198, 220, 220, 220, 6460, 796, 4566, 13, 1136, 62, 33692, 3419, 198, 220, 220, 220, 4566, 13, 17256, 10786, 9078, 20255, 62, 1350, 3110, 11537, 198, 220, 220, 220, 4566, 13, 17256, 10786, 9078, 20255, 62, 646, 71, 11537, 198, 220, 220, 220, 4566, 13, 17256, 10786, 9078, 20255, 62, 12384, 8002, 11537, 198, 220, 220, 220, 4566, 13, 17256, 10786, 301, 3541, 13, 38629, 11537, 198, 220, 220, 220, 4566, 13, 2860, 62, 10920, 11882, 10786, 17752, 3256, 33918, 62, 10920, 11882, 8, 628, 220, 220, 220, 1303, 17297, 6592, 17, 8398, 198, 220, 220, 220, 6460, 17816, 18594, 6592, 17, 13, 10379, 1010, 20520, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12708, 62, 6371, 10354, 705, 9078, 20255, 62, 18594, 6592, 17, 13, 10379, 1010, 25, 12708, 62, 6371, 62, 24455, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17752, 10354, 284, 62, 17752, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 6460, 17816, 18594, 6592, 17, 13, 12942, 1749, 20520, 796, 37250, 301, 3541, 25, 11498, 17041, 20520, 198, 220, 220, 220, 6460, 17816, 18594, 6592, 17, 13, 2302, 5736, 20520, 796, 37250, 9078, 20255, 62, 12384, 8002, 13, 18594, 6592, 17, 2302, 25, 13908, 8002, 11627, 3004, 20520, 198, 220, 220, 220, 4566, 13, 17256, 10786, 9078, 20255, 62, 18594, 6592, 17, 11537, 198, 220, 220, 220, 4566, 13, 41509, 3419, 628, 220, 220, 220, 1303, 1355, 3110, 8398, 198, 220, 220, 220, 6460, 13, 2617, 12286, 10786, 29891, 13, 4906, 3256, 705, 44453, 11537, 198, 220, 220, 220, 6460, 13, 2617, 12286, 10786, 29891, 13, 4023, 8807, 3256, 705, 7942, 11537, 198, 220, 220, 220, 4566, 13, 2617, 62, 29891, 62, 69, 9548, 7, 29891, 62, 69, 9548, 62, 6738, 62, 33692, 7, 33692, 4008, 198, 220, 220, 220, 4566, 13, 2617, 62, 12286, 62, 6359, 41871, 62, 25811, 7, 46115, 62, 6359, 41871, 28, 17821, 11, 11241, 28, 14202, 8, 628, 220, 220, 220, 1303, 5345, 44563, 422, 2858, 7885, 329, 1957, 2478, 198, 220, 220, 220, 611, 705, 2257, 1268, 56, 62, 2885, 44, 20913, 6, 287, 28686, 13, 268, 2268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3053, 287, 355, 4868, 7, 418, 13, 268, 2268, 17816, 2257, 1268, 56, 62, 2885, 44, 20913, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 796, 3487, 1096, 62, 12888, 7, 12888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6460, 17816, 18439, 2637, 1343, 3053, 60, 796, 705, 28482, 6, 628, 220, 220, 220, 1303, 5345, 10650, 422, 2858, 7885, 329, 1957, 2478, 198, 220, 220, 220, 611, 705, 2257, 1268, 56, 62, 38, 35409, 4694, 6, 287, 28686, 13, 268, 2268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3053, 287, 355, 4868, 7, 418, 13, 268, 2268, 17816, 2257, 1268, 56, 62, 38, 35409, 4694, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 796, 3487, 1096, 62, 12888, 7, 12888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6460, 17816, 18439, 2637, 1343, 3053, 60, 796, 705, 403, 5354, 6, 628, 220, 220, 220, 1303, 6093, 2581, 5050, 198, 220, 220, 220, 4566, 13, 2860, 62, 25927, 62, 24396, 28264, 18224, 11, 1438, 11639, 18224, 11537, 198, 220, 220, 220, 4566, 13, 2860, 62, 25927, 62, 24396, 28264, 40225, 62, 18224, 11, 1438, 11639, 40225, 62, 18224, 11537, 198, 220, 220, 220, 4566, 13, 2860, 62, 25927, 62, 24396, 7, 50033, 374, 11, 1635, 64, 11, 12429, 74, 25, 374, 13, 38629, 62, 6371, 10786, 15763, 3256, 1635, 64, 11, 12429, 74, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 15763, 6371, 11537, 198, 220, 220, 220, 4566, 13, 2860, 62, 25927, 62, 24396, 7, 50033, 374, 11, 334, 25, 4808, 18439, 62, 47423, 7, 84, 11, 374, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 7220, 62, 1050, 1939, 541, 874, 11537, 198, 220, 220, 220, 4566, 13, 2860, 62, 25927, 62, 24396, 7, 50033, 374, 25, 374, 13, 2301, 4592, 13, 33692, 13, 1136, 10786, 13297, 13, 16366, 62, 312, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 13297, 62, 16366, 62, 312, 3256, 302, 1958, 28, 17821, 8, 628, 220, 220, 220, 4566, 13, 2301, 4592, 13, 4862, 62, 15526, 796, 355, 4868, 7, 33692, 13, 1136, 10786, 4862, 62, 15526, 3256, 17635, 4008, 628, 220, 220, 220, 4566, 13, 2860, 62, 12708, 62, 1177, 7, 3672, 11639, 12708, 3256, 3108, 11639, 301, 3541, 25, 12708, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 9806, 62, 496, 28, 940, 1635, 21268, 1635, 1987, 1635, 3126, 1635, 3126, 8, 628, 220, 220, 220, 1303, 26828, 198, 220, 220, 220, 4566, 13, 2617, 62, 9800, 1634, 62, 30586, 7, 2246, 13534, 1457, 1634, 36727, 28955, 198, 220, 220, 220, 4566, 13, 2617, 62, 41299, 3299, 62, 30586, 7, 30515, 51, 21841, 47649, 3299, 36727, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3200, 28, 33692, 17816, 18439, 83, 21841, 13, 21078, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 19751, 62, 3672, 28, 33692, 13, 1136, 10786, 18439, 13, 44453, 62, 3672, 3256, 705, 18439, 62, 83, 21841, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 5713, 28, 292, 30388, 7, 33692, 13, 1136, 10786, 18439, 13, 22390, 3256, 10352, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 600, 7, 33692, 13, 1136, 10786, 18439, 13, 48678, 3256, 3126, 1635, 3126, 1635, 1987, 1635, 1542, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 302, 21949, 62, 2435, 28, 600, 7, 33692, 13, 1136, 10786, 18439, 13, 260, 21949, 62, 2435, 3256, 3126, 1635, 3126, 1635, 1987, 1635, 1315, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 496, 28, 600, 7, 33692, 13, 1136, 10786, 18439, 13, 9806, 62, 496, 3256, 3126, 1635, 3126, 1635, 1987, 1635, 1542, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 8807, 28, 292, 30388, 7, 33692, 13, 1136, 10786, 18439, 13, 4023, 62, 8807, 3256, 6407, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 12234, 14016, 11639, 26270, 25836, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 23838, 28, 62, 18439, 62, 47423, 11, 198, 220, 220, 220, 15306, 198, 220, 220, 220, 4566, 13, 2617, 62, 12286, 62, 525, 3411, 10786, 12286, 11537, 628, 220, 220, 220, 1303, 26506, 198, 220, 220, 220, 4566, 13, 2301, 4592, 13, 38, 6684, 38, 2538, 62, 8845, 33, 62, 5097, 28495, 62, 2389, 796, 6460, 13, 2617, 12286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13297, 13, 16366, 62, 312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 13, 1136, 10786, 2257, 1268, 56, 62, 39345, 62, 5097, 28495, 62, 38, 6684, 38, 2538, 62, 5097, 28495, 62, 2389, 6, 4008, 198, 220, 220, 220, 4382, 62, 16366, 62, 312, 796, 6460, 13, 1136, 10786, 13297, 13, 15388, 62, 16366, 62, 312, 11537, 198, 220, 220, 220, 611, 4382, 62, 16366, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 62, 16366, 62, 312, 796, 28686, 13, 268, 2268, 17816, 2257, 1268, 56, 62, 35009, 5959, 62, 38, 6684, 38, 2538, 62, 5097, 28495, 62, 2389, 20520, 198, 220, 220, 220, 4566, 13, 2301, 4592, 13, 38, 6684, 38, 2538, 62, 5097, 28495, 62, 2389, 796, 4382, 62, 16366, 62, 312, 198, 220, 220, 220, 5456, 62, 21078, 796, 6460, 13, 1136, 10786, 13297, 13, 15388, 62, 16366, 62, 21078, 11537, 198, 220, 220, 220, 611, 5456, 62, 21078, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 21078, 796, 28686, 13, 268, 2268, 17816, 2257, 1268, 56, 62, 35009, 5959, 62, 38, 6684, 38, 2538, 62, 5097, 28495, 62, 23683, 26087, 20520, 198, 220, 220, 220, 2386, 62, 312, 796, 6460, 13, 1136, 10786, 13297, 13, 9948, 9239, 62, 312, 11537, 198, 220, 220, 220, 611, 2386, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2386, 62, 312, 796, 28686, 13, 268, 2268, 17816, 2257, 1268, 56, 62, 34, 1847, 62, 2389, 20520, 198, 220, 220, 220, 2386, 796, 26506, 7, 15388, 62, 16366, 62, 312, 11, 5456, 62, 21078, 11, 11845, 62, 312, 28, 9948, 62, 312, 8, 198, 220, 220, 220, 4566, 13, 2301, 4592, 13, 9948, 9239, 796, 2386, 198, 220, 220, 220, 4566, 13, 2860, 62, 25927, 62, 24396, 7, 50033, 374, 25, 374, 13, 2301, 4592, 13, 9948, 9239, 11, 705, 9948, 3256, 302, 1958, 28, 17821, 8, 628, 220, 220, 220, 665, 346, 952, 62, 30001, 796, 6460, 13, 1136, 10786, 4246, 346, 952, 13, 18439, 62, 30001, 11537, 198, 220, 220, 220, 611, 665, 346, 952, 62, 30001, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 665, 346, 952, 62, 30001, 796, 28686, 13, 268, 2268, 17816, 2257, 1268, 56, 62, 34551, 4146, 9399, 62, 32, 24318, 62, 10468, 43959, 20520, 198, 220, 220, 220, 4566, 13, 2301, 4592, 13, 4246, 346, 952, 62, 12102, 1352, 796, 19390, 47139, 1352, 7, 4246, 346, 952, 62, 30001, 8, 198, 220, 220, 220, 4566, 13, 2860, 62, 25927, 62, 24396, 28264, 12102, 378, 62, 4246, 346, 952, 11, 1438, 11639, 12102, 378, 62, 4246, 346, 952, 11537, 628, 220, 220, 220, 4566, 13, 2860, 62, 25927, 62, 24396, 28264, 13345, 62, 28816, 11, 1438, 11639, 13345, 62, 28816, 11537, 628, 220, 220, 220, 4566, 13, 35836, 3419, 628, 198, 4299, 1388, 7, 11250, 11, 12429, 33692, 2599, 198, 220, 220, 220, 37227, 770, 2163, 5860, 257, 41450, 25290, 18878, 3586, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4566, 796, 17056, 333, 1352, 7, 33692, 28, 33692, 8, 198, 220, 220, 220, 4566, 13, 17256, 10786, 301, 3541, 11537, 198, 220, 220, 220, 1441, 4566, 13, 15883, 62, 18504, 12397, 62, 1324, 3419, 198 ]
2.552425
2,804
""" Creates a URL to search jobs on specific filters. """ from typing import Dict, Union import config experience = { 'No': 'noExperience', '1-3': 'between1And3', '3-6': 'between3And6', 'More 6': 'moreThan6' } areas = { 'Moscow': '1', 'StPetersburg': '2', 'Krasnodar': '53' }
[ 37811, 198, 16719, 274, 257, 10289, 284, 2989, 3946, 319, 2176, 16628, 13, 198, 37811, 198, 198, 6738, 19720, 1330, 360, 713, 11, 4479, 198, 198, 11748, 4566, 198, 198, 23100, 1240, 796, 1391, 198, 220, 220, 220, 705, 2949, 10354, 705, 3919, 44901, 3256, 198, 220, 220, 220, 705, 16, 12, 18, 10354, 705, 23395, 16, 1870, 18, 3256, 198, 220, 220, 220, 705, 18, 12, 21, 10354, 705, 23395, 18, 1870, 21, 3256, 198, 220, 220, 220, 705, 5167, 718, 10354, 705, 3549, 817, 272, 21, 6, 198, 92, 198, 198, 533, 292, 796, 1391, 198, 220, 220, 220, 705, 49757, 10354, 705, 16, 3256, 198, 220, 220, 220, 705, 1273, 47, 7307, 7423, 10354, 705, 17, 3256, 198, 220, 220, 220, 705, 42, 8847, 77, 375, 283, 10354, 705, 4310, 6, 198, 92, 628 ]
2.255474
137
from beaker.cache import cache_region as Cache, region_invalidate as Invalidate from Houdini.Handlers import Handlers, XT from Houdini.Handlers.Play.Moderation import cheatBan from Houdini.Data.Penguin import Inventory cardStarterDeckId = 821 fireBoosterDeckId = 8006 waterBoosterDeckId = 8010 boosterDecks = { cardStarterDeckId: [1, 6, 9, 14, 17, 20, 22, 23, 26, 73, 89, 81], fireBoosterDeckId: [3, 18, 216, 222, 229, 303, 304, 314, 319, 250, 352], waterBoosterDeckId: [202, 204, 305, 15, 13, 312, 218, 220, 29, 90] } @Handlers.Handle(XT.BuyInventory) @Handlers.Handle(XT.GetInventory) @Handlers.Throttle(-1) @Cache('houdini', 'pins') @Cache('houdini', 'awards') @Handlers.Handle(XT.GetPlayerPins) @Handlers.Throttle() @Handlers.Handle(XT.GetPlayerAwards) @Handlers.Throttle()
[ 6738, 307, 3110, 13, 23870, 1330, 12940, 62, 36996, 355, 34088, 11, 3814, 62, 259, 12102, 378, 355, 17665, 378, 198, 198, 6738, 367, 2778, 5362, 13, 12885, 8116, 1330, 7157, 8116, 11, 44235, 198, 6738, 367, 2778, 5362, 13, 12885, 8116, 13, 11002, 13, 5841, 263, 341, 1330, 22705, 30457, 198, 6738, 367, 2778, 5362, 13, 6601, 13, 47, 13561, 259, 1330, 35772, 198, 198, 9517, 1273, 2571, 5005, 694, 7390, 796, 807, 2481, 198, 6495, 16635, 6197, 5005, 694, 7390, 796, 10460, 21, 198, 7050, 16635, 6197, 5005, 694, 7390, 796, 807, 20943, 198, 198, 2127, 6197, 10707, 591, 796, 1391, 198, 220, 220, 220, 2657, 1273, 2571, 5005, 694, 7390, 25, 685, 16, 11, 718, 11, 860, 11, 1478, 11, 1596, 11, 1160, 11, 2534, 11, 2242, 11, 2608, 11, 8854, 11, 9919, 11, 9773, 4357, 198, 220, 220, 220, 2046, 16635, 6197, 5005, 694, 7390, 25, 685, 18, 11, 1248, 11, 26881, 11, 27795, 11, 31064, 11, 30727, 11, 31672, 11, 34085, 11, 40385, 11, 8646, 11, 44063, 4357, 198, 220, 220, 220, 1660, 16635, 6197, 5005, 694, 7390, 25, 685, 19004, 11, 26956, 11, 32747, 11, 1315, 11, 1511, 11, 34465, 11, 29217, 11, 15629, 11, 2808, 11, 4101, 60, 198, 92, 198, 198, 31, 12885, 8116, 13, 37508, 7, 25010, 13, 14518, 818, 17158, 8, 198, 198, 31, 12885, 8116, 13, 37508, 7, 25010, 13, 3855, 818, 17158, 8, 198, 31, 12885, 8116, 13, 817, 305, 23296, 32590, 16, 8, 628, 198, 31, 30562, 10786, 71, 2778, 5362, 3256, 705, 49556, 11537, 628, 198, 31, 30562, 10786, 71, 2778, 5362, 3256, 705, 707, 1371, 11537, 628, 198, 31, 12885, 8116, 13, 37508, 7, 25010, 13, 3855, 14140, 47, 1040, 8, 198, 31, 12885, 8116, 13, 817, 305, 23296, 3419, 628, 198, 31, 12885, 8116, 13, 37508, 7, 25010, 13, 3855, 14140, 32, 2017, 8, 198, 31, 12885, 8116, 13, 817, 305, 23296, 3419 ]
2.514107
319
from flask import Flask, request, render_template, redirect, url_for, flash, abort, send_from_directory from flask_bootstrap import Bootstrap from flask_ckeditor import CKEditor from datetime import date from werkzeug.security import generate_password_hash, check_password_hash from flask_sqlalchemy import SQLAlchemy from sqlalchemy.orm import relationship from flask_login import UserMixin, login_user, LoginManager, current_user, logout_user from forms import SettingsForm, CreatePostForm, RegisterForm, LoginForm, CommentForm from flask_gravatar import Gravatar from functools import wraps import os import requests from errors import * from wallpapers import WALLPAPERS from dotenv import load_dotenv from PyPDF2 import PdfFileMerger, PdfFileReader import os import requests from random import choice import json from flask_weasyprint import HTML, render_pdf, CSS from time import sleep load_dotenv() # ==================================================================================================================== # HASHING_METHOD = "pbkdf2:sha256" SALT_TIMES = 8 APP_SECRET_KEY = os.environ.get("APP_SECRET_KEY") DATABASE_URL = os.environ.get("DATABASE_URL", "sqlite:///blog.db") NEWS_API_KEY = os.environ.get("NEWS_API_KEY") ENDPOINT = "http://newsapi.org/v2/top-headlines" DEFAULT_BG = "https://images.unsplash.com/photo-1464802686167-b939a6910659?crop=entropy&cs=srgb&fm=jpg&ixid" \ "=MnwyMTQyMTB8MHwxfHNlYXJjaHwxfHxzcGFjZXxlbnwwfDB8fHwxNjE1ODQzNjk2&ixlib=rb-1.2.1&q=85" wallpapers = [wallpaper["urls"]["regular"] for wallpaper in WALLPAPERS[:50]] # ==================================================================================================================== # app = Flask(__name__) app.config['SECRET_KEY'] = APP_SECRET_KEY ckeditor = CKEditor(app) Bootstrap(app) # ==================================================================================================================== # # CONNECT TO DB app.config['SQLALCHEMY_DATABASE_URI'] = DATABASE_URL app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) # ==================================================================================================================== # gravatar = Gravatar(app, size=100, rating='g', default='retro', force_default=False, force_lower=False, use_ssl=False, base_url=None) # ==================================================================================================================== # login_manager = LoginManager() login_manager.init_app(app) # ==================================================================================================================== # # Functions # ==================================================================================================================== # # CONFIGURE TABLES # ==================================================================================================================== # @login_manager.user_loader # db.create_all() # ==================================================================================================================== # @app.route('/register', methods=["GET", "POST"]) @app.route('/login', methods=["GET", "POST"]) @app.route('/logout') @app.route("/delete_user/<user_id>", methods=["POST", "GET"]) @app.route("/user-settings/<int:user_id>", methods=["POST", "GET"]) @app.route("/transfer_to_settings") @app.route("/setwallpaper/<int:wallpaper_number>") @app.route("/magazine", methods=["GET", "POST"]) # ==================================================================================================================== # # Home page featured_posts = get_top_news() @app.route("/") @app.route("/refresh-news") @app.route("/flash-news") # ==================================================================================================================== # @app.route('/blog') @app.route("/blog/post/<int:post_id>", methods=["GET", "POST"]) @app.route("/blog/new-post", methods=["POST", "GET"]) @admin_only # ==================================================================================================================== # # ==================================================================================================================== # # ==================================================================================================================== # # Admin Panel # # ==================================================================================================================== # # ==================================================================================================================== # # ==================================================================================================================== # @app.route("/admin_panel") @admin_only @app.route("/acess/<acess_type>/<action>/<user_id>") @admin_only @app.route("/edit-post/<int:post_id>", methods=["GET", "POST"]) @admin_only @app.route("/delete/<int:post_id>") @admin_only # ==================================================================================================================== # # ==================================================================================================================== # # ==================================================================================================================== # # ==================================================================================================================== # # ==================================================================================================================== # # ==================================================================================================================== # # ==================================================================================================================== # # Not found pages @app.errorhandler(404) @app.errorhandler(403) @app.errorhandler(500) # ==================================================================================================================== # if __name__ == "__main__": app.run(debug=True)
[ 6738, 42903, 1330, 46947, 11, 2581, 11, 8543, 62, 28243, 11, 18941, 11, 19016, 62, 1640, 11, 7644, 11, 15614, 11, 3758, 62, 6738, 62, 34945, 201, 198, 6738, 42903, 62, 18769, 26418, 1330, 18892, 26418, 201, 198, 6738, 42903, 62, 694, 35352, 1330, 327, 7336, 67, 2072, 201, 198, 6738, 4818, 8079, 1330, 3128, 201, 198, 6738, 266, 9587, 2736, 1018, 13, 12961, 1330, 7716, 62, 28712, 62, 17831, 11, 2198, 62, 28712, 62, 17831, 201, 198, 6738, 42903, 62, 25410, 282, 26599, 1330, 16363, 2348, 26599, 201, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 201, 198, 6738, 42903, 62, 38235, 1330, 11787, 35608, 259, 11, 17594, 62, 7220, 11, 23093, 13511, 11, 1459, 62, 7220, 11, 2604, 448, 62, 7220, 201, 198, 6738, 5107, 1330, 16163, 8479, 11, 13610, 6307, 8479, 11, 17296, 8479, 11, 23093, 8479, 11, 18957, 8479, 201, 198, 6738, 42903, 62, 70, 4108, 9459, 1330, 32599, 9459, 201, 198, 6738, 1257, 310, 10141, 1330, 27521, 201, 198, 11748, 28686, 201, 198, 11748, 7007, 201, 198, 6738, 8563, 1330, 1635, 201, 198, 6738, 3355, 40491, 1330, 370, 7036, 47, 2969, 4877, 201, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 201, 198, 6738, 9485, 20456, 17, 1330, 350, 7568, 8979, 13102, 1362, 11, 350, 7568, 8979, 33634, 201, 198, 11748, 28686, 201, 198, 11748, 7007, 201, 198, 6738, 4738, 1330, 3572, 201, 198, 11748, 33918, 201, 198, 6738, 42903, 62, 732, 4107, 4798, 1330, 11532, 11, 8543, 62, 12315, 11, 17391, 201, 198, 6738, 640, 1330, 3993, 201, 198, 201, 198, 2220, 62, 26518, 24330, 3419, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 39, 11211, 2751, 62, 49273, 796, 366, 40842, 74, 7568, 17, 25, 26270, 11645, 1, 201, 198, 50, 31429, 62, 51, 3955, 1546, 796, 807, 201, 198, 201, 198, 24805, 62, 23683, 26087, 62, 20373, 796, 28686, 13, 268, 2268, 13, 1136, 7203, 24805, 62, 23683, 26087, 62, 20373, 4943, 201, 198, 35, 1404, 6242, 11159, 62, 21886, 796, 28686, 13, 268, 2268, 13, 1136, 7203, 35, 1404, 6242, 11159, 62, 21886, 1600, 366, 25410, 578, 1378, 14, 14036, 13, 9945, 4943, 201, 198, 49597, 62, 17614, 62, 20373, 796, 28686, 13, 268, 2268, 13, 1136, 7203, 49597, 62, 17614, 62, 20373, 4943, 201, 198, 1677, 6322, 46, 12394, 796, 366, 4023, 1378, 10827, 15042, 13, 2398, 14, 85, 17, 14, 4852, 12, 2256, 6615, 1, 201, 198, 7206, 38865, 62, 40469, 796, 366, 5450, 1378, 17566, 13, 13271, 489, 1077, 13, 785, 14, 23074, 12, 1415, 2414, 1795, 2075, 4521, 21940, 12, 65, 24, 2670, 64, 3388, 940, 36445, 30, 31476, 28, 298, 28338, 5, 6359, 28, 27891, 22296, 5, 38353, 28, 9479, 5, 844, 312, 1, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28, 44, 77, 21768, 13752, 48, 88, 13752, 33, 23, 36208, 86, 26152, 39, 45, 75, 56, 55, 41, 6592, 39, 86, 26152, 39, 87, 89, 66, 21713, 73, 40692, 87, 75, 9374, 1383, 69, 11012, 23, 69, 39, 49345, 45, 73, 36, 16, 3727, 48, 89, 45, 73, 74, 17, 5, 844, 8019, 28, 26145, 12, 16, 13, 17, 13, 16, 5, 80, 28, 5332, 1, 201, 198, 201, 198, 11930, 40491, 796, 685, 11930, 20189, 14692, 6371, 82, 1, 7131, 1, 16338, 8973, 329, 39328, 287, 370, 7036, 47, 2969, 4877, 58, 25, 1120, 11907, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 201, 198, 1324, 13, 11250, 17816, 23683, 26087, 62, 20373, 20520, 796, 43504, 62, 23683, 26087, 62, 20373, 201, 198, 694, 35352, 796, 327, 7336, 67, 2072, 7, 1324, 8, 201, 198, 36476, 26418, 7, 1324, 8, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 7102, 48842, 5390, 20137, 201, 198, 1324, 13, 11250, 17816, 17861, 1847, 3398, 3620, 56, 62, 35, 1404, 6242, 11159, 62, 47269, 20520, 796, 360, 1404, 6242, 11159, 62, 21886, 201, 198, 1324, 13, 11250, 17816, 17861, 1847, 3398, 3620, 56, 62, 5446, 8120, 62, 33365, 30643, 18421, 20520, 796, 10352, 201, 198, 9945, 796, 16363, 2348, 26599, 7, 1324, 8, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 201, 198, 70, 4108, 9459, 796, 32599, 9459, 7, 1324, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 3064, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7955, 11639, 70, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 1186, 305, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 12286, 28, 25101, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 21037, 28, 25101, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 45163, 28, 25101, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 6371, 28, 14202, 8, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 201, 198, 201, 198, 38235, 62, 37153, 796, 23093, 13511, 3419, 201, 198, 38235, 62, 37153, 13, 15003, 62, 1324, 7, 1324, 8, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 40480, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 25626, 11335, 309, 6242, 28378, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 201, 198, 201, 198, 31, 38235, 62, 37153, 13, 7220, 62, 29356, 201, 198, 201, 198, 201, 198, 2, 20613, 13, 17953, 62, 439, 3419, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 10786, 14, 30238, 3256, 5050, 28, 14692, 18851, 1600, 366, 32782, 8973, 8, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 10786, 14, 38235, 3256, 5050, 28, 14692, 18851, 1600, 366, 32782, 8973, 8, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 10786, 14, 6404, 448, 11537, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 33678, 62, 7220, 14, 27, 7220, 62, 312, 29, 1600, 5050, 28, 14692, 32782, 1600, 366, 18851, 8973, 8, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 7220, 12, 33692, 14, 27, 600, 25, 7220, 62, 312, 29, 1600, 5050, 28, 14692, 32782, 1600, 366, 18851, 8973, 8, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 39437, 62, 1462, 62, 33692, 4943, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 2617, 11930, 20189, 14, 27, 600, 25, 11930, 20189, 62, 17618, 29, 4943, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 19726, 4994, 1600, 5050, 28, 14692, 18851, 1600, 366, 32782, 8973, 8, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 201, 198, 2, 5995, 2443, 201, 198, 69, 20980, 62, 24875, 796, 651, 62, 4852, 62, 10827, 3419, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 4943, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 5420, 3447, 12, 10827, 4943, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 34167, 12, 10827, 4943, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 201, 198, 31, 1324, 13, 38629, 10786, 14, 14036, 11537, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 14036, 14, 7353, 14, 27, 600, 25, 7353, 62, 312, 29, 1600, 5050, 28, 14692, 18851, 1600, 366, 32782, 8973, 8, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 14036, 14, 3605, 12, 7353, 1600, 5050, 28, 14692, 32782, 1600, 366, 18851, 8973, 8, 201, 198, 31, 28482, 62, 8807, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32053, 18810, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 31, 1324, 13, 38629, 7203, 14, 28482, 62, 35330, 4943, 201, 198, 31, 28482, 62, 8807, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 330, 408, 14, 27, 330, 408, 62, 4906, 29, 14, 27, 2673, 29, 14, 27, 7220, 62, 312, 29, 4943, 201, 198, 31, 28482, 62, 8807, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 19312, 12, 7353, 14, 27, 600, 25, 7353, 62, 312, 29, 1600, 5050, 28, 14692, 18851, 1600, 366, 32782, 8973, 8, 201, 198, 31, 28482, 62, 8807, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 38629, 7203, 14, 33678, 14, 27, 600, 25, 7353, 62, 312, 29, 4943, 201, 198, 31, 28482, 62, 8807, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 201, 198, 2, 1892, 1043, 5468, 201, 198, 31, 1324, 13, 18224, 30281, 7, 26429, 8, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 18224, 30281, 7, 31552, 8, 201, 198, 201, 198, 201, 198, 31, 1324, 13, 18224, 30281, 7, 4059, 8, 201, 198, 201, 198, 201, 198, 2, 38093, 10052, 4770, 18604, 1303, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8, 201, 198 ]
3.58114
1,824
import os import yaml folders = [] files = [] for entry in os.scandir('./lambda_functions/source/'): if entry.is_dir(): if "asset." not in entry.path: print("WARN: Skipping path...") else: folders.append(entry.path) templateStream = open('./templates/AwsBiotechBlueprint.template.yml', 'r') templateData = yaml.safe_load(templateStream) taskcatConfigStream = open('./.taskcat.yml', 'r') taskcatConfig = yaml.safe_load(taskcatConfigStream) for assetFolder in folders: assetFolderComponents = assetFolder.split('asset.') assetId = assetFolderComponents[1] for parameter in templateData['Parameters']: if assetId in parameter: if 'S3Bucket' in parameter: templateData['Parameters'][parameter]['Default'] = "aws-quickstart" taskcatConfig['tests']['default']['parameters'][parameter] = '$[taskcat_autobucket]' templateData['Conditions'][f'UsingDefaultQuickstartBucket{assetId}'] = { "Fn::Equals" : [{"Ref" : parameter}, "aws-quickstart"] } if 'VersionKey' in parameter: templateData['Parameters'][parameter]['Default'] = f"quickstart-aws-biotech-blueprint-cdk/lambda_functions/packages/asset{assetId}/||lambda.zip" taskcatConfig['tests']['default']['parameters'][parameter] = f"quickstart-aws-biotech-blueprint-cdk/lambda_functions/packages/asset{assetId}/||lambda.zip" if 'ArtifactHash' in parameter: templateData['Parameters'][parameter]['Default'] = assetId taskcatConfig['tests']['default']['parameters'][parameter] = assetId for resource in templateData['Resources']: resourceType = templateData['Resources'][resource]['Type'] if resourceType == 'AWS::Lambda::Function': if "S3Bucket" in templateData['Resources'][resource]['Properties']['Code']: if assetId in templateData['Resources'][resource]['Properties']['Code']['S3Bucket']['Ref']: bucketParamName = templateData['Resources'][resource]['Properties']['Code']['S3Bucket']['Ref'] templateData['Resources'][resource]['Properties']['Code']['S3Bucket'] = { "Fn::If": [f'UsingDefaultQuickstartBucket{assetId}', { "Fn::Join" : ['-', [ {"Ref": bucketParamName} , {"Ref": 'AWS::Region'} ] ] } , {"Ref": bucketParamName}] } os.replace(assetFolder, f"./lambda_functions/source/asset{assetId}") with open('./templates/AwsBiotechBlueprint.template.quickstart.yml', 'w') as yaml_file: yaml_file.write( yaml.dump(templateData, default_flow_style=False)) with open('./.taskcat.yml', 'w') as yaml_file: yaml_file.write( yaml.dump(taskcatConfig, default_flow_style=False))
[ 11748, 28686, 198, 11748, 331, 43695, 220, 198, 198, 11379, 364, 796, 17635, 198, 16624, 796, 17635, 198, 1640, 5726, 287, 28686, 13, 1416, 392, 343, 7, 4458, 14, 50033, 62, 12543, 2733, 14, 10459, 14, 6, 2599, 198, 220, 220, 220, 611, 5726, 13, 271, 62, 15908, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 562, 316, 526, 407, 287, 5726, 13, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37771, 25, 3661, 4501, 3108, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24512, 13, 33295, 7, 13000, 13, 6978, 8, 198, 198, 28243, 12124, 796, 1280, 7, 4458, 14, 11498, 17041, 14, 32, 18504, 23286, 32469, 14573, 4798, 13, 28243, 13, 88, 4029, 3256, 705, 81, 11537, 198, 28243, 6601, 796, 331, 43695, 13, 21230, 62, 2220, 7, 28243, 12124, 8, 198, 198, 35943, 9246, 16934, 12124, 796, 1280, 7, 4458, 11757, 35943, 9246, 13, 88, 4029, 3256, 705, 81, 11537, 198, 35943, 9246, 16934, 796, 331, 43695, 13, 21230, 62, 2220, 7, 35943, 9246, 16934, 12124, 8, 628, 198, 1640, 11171, 41092, 287, 24512, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 11171, 41092, 7293, 3906, 796, 11171, 41092, 13, 35312, 10786, 562, 316, 2637, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 11171, 7390, 796, 11171, 41092, 7293, 3906, 58, 16, 60, 198, 220, 220, 220, 220, 628, 220, 220, 220, 329, 11507, 287, 11055, 6601, 17816, 48944, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 11171, 7390, 287, 11507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 50, 18, 33, 38811, 6, 287, 11507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 6601, 17816, 48944, 6, 7131, 17143, 2357, 7131, 6, 19463, 20520, 796, 366, 8356, 12, 24209, 9688, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 9246, 16934, 17816, 41989, 6, 7131, 6, 12286, 6, 7131, 6, 17143, 7307, 6, 7131, 17143, 2357, 60, 796, 705, 3, 58, 35943, 9246, 62, 2306, 672, 38811, 49946, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 6601, 17816, 25559, 1756, 6, 7131, 69, 6, 12814, 19463, 21063, 9688, 33, 38811, 90, 562, 316, 7390, 92, 20520, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37, 77, 3712, 23588, 874, 1, 1058, 685, 4895, 8134, 1, 1058, 11507, 5512, 366, 8356, 12, 24209, 9688, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 14815, 9218, 6, 287, 11507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 6601, 17816, 48944, 6, 7131, 17143, 2357, 7131, 6, 19463, 20520, 796, 277, 1, 24209, 9688, 12, 8356, 12, 8482, 32469, 12, 17585, 4798, 12, 10210, 74, 14, 50033, 62, 12543, 2733, 14, 43789, 14, 562, 316, 90, 562, 316, 7390, 92, 14, 15886, 50033, 13, 13344, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 9246, 16934, 17816, 41989, 6, 7131, 6, 12286, 6, 7131, 6, 17143, 7307, 6, 7131, 17143, 2357, 60, 796, 277, 1, 24209, 9688, 12, 8356, 12, 8482, 32469, 12, 17585, 4798, 12, 10210, 74, 14, 50033, 62, 12543, 2733, 14, 43789, 14, 562, 316, 90, 562, 316, 7390, 92, 14, 15886, 50033, 13, 13344, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 8001, 29660, 26257, 6, 287, 11507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 6601, 17816, 48944, 6, 7131, 17143, 2357, 7131, 6, 19463, 20520, 796, 11171, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 9246, 16934, 17816, 41989, 6, 7131, 6, 12286, 6, 7131, 6, 17143, 7307, 6, 7131, 17143, 2357, 60, 796, 11171, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 8271, 287, 11055, 6601, 17816, 33236, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 8271, 6030, 796, 11055, 6601, 17816, 33236, 6, 7131, 31092, 7131, 6, 6030, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8271, 6030, 6624, 705, 12298, 50, 3712, 43, 4131, 6814, 3712, 22203, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 50, 18, 33, 38811, 1, 287, 11055, 6601, 17816, 33236, 6, 7131, 31092, 7131, 6, 2964, 18200, 6, 7131, 6, 10669, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11171, 7390, 287, 11055, 6601, 17816, 33236, 6, 7131, 31092, 7131, 6, 2964, 18200, 6, 7131, 6, 10669, 6, 7131, 6, 50, 18, 33, 38811, 6, 7131, 6, 8134, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19236, 22973, 5376, 796, 11055, 6601, 17816, 33236, 6, 7131, 31092, 7131, 6, 2964, 18200, 6, 7131, 6, 10669, 6, 7131, 6, 50, 18, 33, 38811, 6, 7131, 6, 8134, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 6601, 17816, 33236, 6, 7131, 31092, 7131, 6, 2964, 18200, 6, 7131, 6, 10669, 6, 7131, 6, 50, 18, 33, 38811, 20520, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37, 77, 3712, 1532, 1298, 685, 69, 6, 12814, 19463, 21063, 9688, 33, 38811, 90, 562, 316, 7390, 92, 3256, 1391, 366, 37, 77, 3712, 18234, 1, 1058, 685, 29001, 3256, 685, 19779, 8134, 1298, 19236, 22973, 5376, 92, 837, 19779, 8134, 1298, 705, 12298, 50, 3712, 47371, 6, 92, 2361, 2361, 1782, 837, 19779, 8134, 1298, 19236, 22973, 5376, 92, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 28686, 13, 33491, 7, 562, 316, 41092, 11, 277, 1911, 14, 50033, 62, 12543, 2733, 14, 10459, 14, 562, 316, 90, 562, 316, 7390, 92, 4943, 628, 220, 220, 220, 220, 198, 4480, 1280, 7, 4458, 14, 11498, 17041, 14, 32, 18504, 23286, 32469, 14573, 4798, 13, 28243, 13, 24209, 9688, 13, 88, 4029, 3256, 705, 86, 11537, 355, 331, 43695, 62, 7753, 25, 198, 220, 220, 220, 331, 43695, 62, 7753, 13, 13564, 7, 331, 43695, 13, 39455, 7, 28243, 6601, 11, 4277, 62, 11125, 62, 7635, 28, 25101, 4008, 198, 220, 220, 220, 220, 198, 198, 4480, 1280, 7, 4458, 11757, 35943, 9246, 13, 88, 4029, 3256, 705, 86, 11537, 355, 331, 43695, 62, 7753, 25, 198, 220, 220, 220, 331, 43695, 62, 7753, 13, 13564, 7, 331, 43695, 13, 39455, 7, 35943, 9246, 16934, 11, 4277, 62, 11125, 62, 7635, 28, 25101, 4008 ]
2.156764
1,397
import os import uuid from azure.storage.blob import BlobServiceClient
[ 198, 11748, 28686, 198, 11748, 334, 27112, 198, 198, 6738, 35560, 495, 13, 35350, 13, 2436, 672, 1330, 1086, 672, 16177, 11792, 198 ]
3.173913
23
from .cnmf import napari_experimental_provide_dock_widget
[ 6738, 764, 66, 21533, 69, 1330, 25422, 2743, 62, 23100, 9134, 62, 15234, 485, 62, 67, 735, 62, 42655 ]
3
19
# -*- coding: utf-8 -*- """ Created on Thu Jul 16 08:39:36 2020 @author: abhi0 """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 26223, 5979, 1467, 8487, 25, 2670, 25, 2623, 12131, 201, 198, 201, 198, 31, 9800, 25, 450, 5303, 15, 201, 198, 37811, 201 ]
2.069767
43
# web_app/__init__.py from flask import Flask import os from dotenv import load_dotenv from web_app.routes.home_routes import home_routes from web_app.routes.stats_routes import stats_routes if __name__ == "__main__": my_app = create_app() my_app.run(debug=True)
[ 2, 3992, 62, 1324, 14, 834, 15003, 834, 13, 9078, 198, 6738, 42903, 1330, 46947, 198, 11748, 28686, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 198, 198, 6738, 3992, 62, 1324, 13, 81, 448, 274, 13, 11195, 62, 81, 448, 274, 1330, 1363, 62, 81, 448, 274, 198, 6738, 3992, 62, 1324, 13, 81, 448, 274, 13, 34242, 62, 81, 448, 274, 1330, 9756, 62, 81, 448, 274, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 616, 62, 1324, 796, 2251, 62, 1324, 3419, 198, 220, 220, 220, 616, 62, 1324, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.5
110
import numpy as np import tensorflow as tf from PIL import Image import glob import os # import tensorflow.contrib.slim as slim import tensorflow.keras as keras def get_feature_extracting_model(input_tensor=None,input_shape=(480,640,3),model_name='resnet50',layer_index=[6,38,80,142,174]): """ input_shape : the input size of the image model_name : which backbone model to be used for feature extraction layer_names : the names of the layer from which the outputs are to be returned Return: keras model with outputs of the given layers for the given model **Note** : Currently only works for resnet, and layer_names provided should be valid, for resnet50 the results from the last layer of each block are returned """ if model_name=='resnet50': model_i = keras.applications.ResNet50(include_top=False,weights='imagenet',input_tensor=input_tensor,input_shape=input_shape,pooling=None) else: print("Currently only support for resnet50") return C = [] for i in layer_index: C.append(model_i.get_layer(model_i.layers[i].name).output) # model = keras.models.Model(inputs = model_i.input,outputs=C) return C
[ 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 15095, 198, 11748, 28686, 198, 2, 1330, 11192, 273, 11125, 13, 3642, 822, 13, 82, 2475, 355, 18862, 198, 11748, 11192, 273, 11125, 13, 6122, 292, 355, 41927, 292, 198, 198, 4299, 651, 62, 30053, 62, 2302, 974, 278, 62, 19849, 7, 15414, 62, 83, 22854, 28, 14202, 11, 15414, 62, 43358, 16193, 22148, 11, 31102, 11, 18, 828, 19849, 62, 3672, 11639, 411, 3262, 1120, 3256, 29289, 62, 9630, 41888, 21, 11, 2548, 11, 1795, 11, 23726, 11, 22985, 60, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5128, 62, 43358, 1058, 262, 5128, 2546, 286, 262, 2939, 220, 198, 220, 220, 220, 2746, 62, 3672, 1058, 543, 32774, 2746, 284, 307, 973, 329, 3895, 22236, 198, 220, 220, 220, 7679, 62, 14933, 1058, 262, 3891, 286, 262, 7679, 422, 543, 262, 23862, 389, 284, 307, 4504, 198, 220, 220, 220, 8229, 25, 41927, 292, 2746, 351, 23862, 286, 262, 1813, 11685, 329, 262, 1813, 2746, 198, 220, 220, 220, 12429, 6425, 1174, 1058, 16888, 691, 2499, 329, 581, 3262, 11, 290, 7679, 62, 14933, 2810, 815, 307, 4938, 11, 329, 581, 3262, 1120, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 422, 262, 938, 7679, 286, 1123, 2512, 389, 4504, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2746, 62, 3672, 855, 6, 411, 3262, 1120, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 72, 796, 41927, 292, 13, 1324, 677, 602, 13, 4965, 7934, 1120, 7, 17256, 62, 4852, 28, 25101, 11, 43775, 11639, 320, 11286, 316, 3256, 15414, 62, 83, 22854, 28, 15414, 62, 83, 22854, 11, 15414, 62, 43358, 28, 15414, 62, 43358, 11, 7742, 278, 28, 14202, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 21327, 691, 1104, 329, 581, 3262, 1120, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 327, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 7679, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 327, 13, 33295, 7, 19849, 62, 72, 13, 1136, 62, 29289, 7, 19849, 62, 72, 13, 75, 6962, 58, 72, 4083, 3672, 737, 22915, 8, 198, 220, 220, 220, 1303, 2746, 796, 41927, 292, 13, 27530, 13, 17633, 7, 15414, 82, 796, 2746, 62, 72, 13, 15414, 11, 22915, 82, 28, 34, 8, 198, 220, 220, 220, 1441, 327 ]
2.804196
429
#!/usr/bin/env python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Android system-wide tracing utility. This is a tool for capturing a trace that includes data from both userland and the kernel. It creates an HTML file for visualizing the trace. """ import errno, optparse, os, select, subprocess, sys, time, zlib, signal import re import tempfile import math import json from regression import * #from simple import * #from simple1 import * # for testing this tester per se """ test configuration """ config_tput_min = 100 config_tput_max = 50000 config_tput_resolution = 100 config_output_timeout_sec = 10 # can be floating pt config_max_runtime_sec = 60 # give up """ default args """ #config_default_cores = [4, 12, 32, 56] config_default_records = 1000 * 1000 # records per epoch ''' global vars ''' the_output_dir = "" """ test cases """ """ { "name" : "grep", "exec" : "./test-grep.bin", #"cores" : [4, 12, 32, 56], "cores" : [56], "records" : 1000, "record_size" : 2000, "target_ms" : 1000, "input_file" : "/ssd/1g.txt", # --- optional --- # "tput_hint" : 4000, }, """ """ app_list = [ "test-grep", "test-wc", "test-wingrep", "test-join", "test-join-2", "networklatency", "test-distinct", "test-tweet" ] """ """ sample line: dump markers: >>>>>>>>>>>>>>>>>>>>>>>>>>>>total 7 ms # return: delay in ms """ """ sample line (for backward compatibility; future sources should have same name): unbounded-inmem 19.07 19.07 19.53 19.53 [unbounded] 20.35 20.35 2604.17 2604.17 [netsource] 31.79 31.79 813.80 813.80 return: tput in krec/s (floating) """ # stateless # @delays: a list of all historical delays # return: DECIDE_FAIL = 1 # failed. abort. DECIDE_CONT = 2 # should continue DECIDE_OK = 3 # target_delay is met #DECIDE_DUNNO = 4 # can't decide yet DECIDE_EXCEPTION = 5 # what happened? decide_descs = ["", "fail", "cont", "ok", "dunno", "exception"] # XXX catch c-c signal to ensure all test programs killed XXX is_stop = False ''' return (status, tput) tput is floating pt. <0 if none achieved ''' # @core == -1 if unspecified on cmdline # return: actual_tput # XXX only support one core now. but that's fine if __name__ == '__main__': signal.signal(signal.SIGINT, stop_test_handler) the_output_dir = tempfile.mkdtemp() # results will be inserted in place into @all_tests ''' check & print all test info ''' test_names = {} # detect duplicate test names for test in all_tests: if test_names.has_key(test["name"]): print >> sys.stderr, "abort: duplicate test names:", test["name"]; sys.exit(1) test_names[test["name"]] = 1 # remember to check duplicates if test.has_key("softdelay_maxbad_ms") and test["softdelay_maxbad_ms"] < test["target_ms"]: print >> sys.stderr, "abort: config err: [%s] softdelay maxbad ms < target ms" %test["name"] sys.exit(-1) ''' print menu ''' print "========================================" print "select tests to run (enter to run all)" for i, test in enumerate(all_tests): print i, test["name"]; try: choice = int(raw_input('Enter your input:')) print "Okay ... Will run test", all_tests[choice]["name"] all_tests = [all_tests[choice]] except ValueError: print "Okay ... Will run all tests." for test in all_tests: atput = launch_one_test(test) if atput < 0: print "%s exception: can't get the tput." %test["name"] test["actual_tput"] = -1 # is this okay? else: test["actual_tput"] = atput print "%s completes: actual tput %d krec/s target_delay %d ms" %(test["name"], atput, test["target_ms"]) print "========================================" print "%20s %10s %10s %10s %6s %15s" %("test", "target_ms", "tput/krecs", "base/krecs", "improve%", "elapsed/sec") for test in all_tests: tput_inc = -999.99 tput_inc_str = "--" tput_baseline_str = "--" if test.has_key("disable") and test["disable"]: #if not test.has_key("elapsed_sec"): # test never executed? print "%10s -- skipped -- " %(test["name"]) continue if test.has_key("tput_baseline"): tput_inc = 100.0 * (test["actual_tput"] - test["tput_baseline"]) / test["tput_baseline"] tput_inc_str = "%.2f" %(tput_inc) tput_baseline_str = "%d" %(test["tput_baseline"]) #print "baseline is", test["tput_baseline"] print "%20s %10d %10d %10s %6s %15.2f" \ %(test["name"], test["target_ms"], test["actual_tput"], tput_baseline_str, tput_inc_str, test["elapsed_sec"]) print "========================================" print "diff=-999 means no baseline provided" print "all done. check result dir:\n ls ", the_output_dir
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 15069, 357, 66, 8, 2813, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 25934, 1080, 12, 4421, 35328, 10361, 13, 198, 198, 1212, 318, 257, 2891, 329, 21430, 257, 12854, 326, 3407, 1366, 422, 1111, 2836, 1044, 290, 198, 1169, 9720, 13, 197, 1026, 8075, 281, 11532, 2393, 329, 5874, 2890, 262, 12854, 13, 198, 37811, 198, 198, 11748, 11454, 3919, 11, 2172, 29572, 11, 28686, 11, 2922, 11, 850, 14681, 11, 25064, 11, 640, 11, 1976, 8019, 11, 6737, 198, 11748, 302, 198, 11748, 20218, 7753, 198, 11748, 10688, 198, 11748, 33918, 198, 198, 6738, 20683, 1330, 1635, 198, 2, 6738, 2829, 1330, 1635, 198, 2, 6738, 2829, 16, 1330, 1635, 197, 197, 2, 329, 4856, 428, 256, 7834, 583, 384, 198, 198, 37811, 198, 9288, 8398, 198, 37811, 198, 11250, 62, 83, 1996, 62, 1084, 796, 1802, 198, 11250, 62, 83, 1996, 62, 9806, 796, 642, 2388, 198, 11250, 62, 83, 1996, 62, 29268, 796, 1802, 198, 11250, 62, 22915, 62, 48678, 62, 2363, 796, 838, 220, 1303, 460, 307, 12462, 42975, 198, 11250, 62, 9806, 62, 43282, 62, 2363, 796, 3126, 220, 197, 2, 1577, 510, 220, 198, 198, 37811, 198, 12286, 26498, 198, 37811, 198, 2, 11250, 62, 12286, 62, 66, 2850, 796, 685, 19, 11, 1105, 11, 3933, 11, 7265, 60, 198, 11250, 62, 12286, 62, 8344, 3669, 796, 8576, 1635, 8576, 197, 2, 4406, 583, 36835, 198, 198, 7061, 6, 198, 20541, 410, 945, 198, 7061, 6, 198, 1169, 62, 22915, 62, 15908, 796, 13538, 198, 198, 37811, 198, 9288, 2663, 198, 37811, 198, 198, 37811, 198, 197, 90, 198, 197, 197, 1, 3672, 1, 1058, 366, 70, 7856, 1600, 198, 197, 197, 1, 18558, 1, 1058, 366, 19571, 9288, 12, 70, 7856, 13, 8800, 1600, 220, 198, 197, 197, 2, 1, 66, 2850, 1, 1058, 685, 19, 11, 1105, 11, 3933, 11, 7265, 4357, 198, 197, 197, 1, 66, 2850, 1, 1058, 685, 3980, 4357, 198, 197, 197, 1, 8344, 3669, 1, 1058, 8576, 11, 198, 197, 197, 1, 22105, 62, 7857, 1, 1058, 4751, 11, 198, 197, 197, 1, 16793, 62, 907, 1, 1058, 8576, 11, 198, 197, 197, 1, 15414, 62, 7753, 1, 1058, 12813, 824, 67, 14, 16, 70, 13, 14116, 1600, 198, 197, 197, 2, 11420, 11902, 11420, 1303, 198, 197, 197, 1, 83, 1996, 62, 71, 600, 1, 1058, 30123, 11, 220, 198, 197, 5512, 198, 37811, 198, 198, 37811, 198, 1324, 62, 4868, 796, 685, 198, 197, 197, 1, 9288, 12, 70, 7856, 1600, 220, 198, 197, 197, 1, 9288, 12, 86, 66, 1600, 198, 197, 197, 1, 9288, 12, 5469, 7856, 1600, 198, 197, 197, 1, 9288, 12, 22179, 1600, 198, 197, 197, 1, 9288, 12, 22179, 12, 17, 1600, 198, 197, 197, 1, 27349, 15460, 1387, 1600, 198, 197, 197, 1, 9288, 12, 17080, 4612, 1600, 198, 197, 197, 1, 9288, 12, 83, 7277, 1, 198, 197, 197, 60, 198, 37811, 198, 198, 37811, 198, 39873, 1627, 25, 198, 39455, 19736, 25, 13163, 33717, 33717, 33717, 29, 23350, 767, 13845, 198, 2, 1441, 25, 5711, 287, 13845, 198, 37811, 198, 198, 37811, 198, 39873, 1627, 357, 1640, 19528, 17764, 26, 2003, 4237, 815, 423, 976, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22619, 6302, 12, 259, 11883, 220, 220, 220, 220, 678, 13, 2998, 220, 220, 220, 220, 678, 13, 2998, 220, 220, 220, 220, 678, 13, 4310, 220, 220, 220, 220, 678, 13, 4310, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 403, 65, 6302, 60, 220, 220, 220, 220, 1160, 13, 2327, 220, 220, 220, 220, 1160, 13, 2327, 220, 220, 21148, 19, 13, 1558, 220, 220, 21148, 19, 13, 1558, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 45938, 1668, 60, 220, 220, 220, 220, 3261, 13, 3720, 220, 220, 220, 220, 3261, 13, 3720, 220, 220, 220, 807, 1485, 13, 1795, 220, 220, 220, 807, 1485, 13, 1795, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 7783, 25, 256, 1996, 287, 479, 8344, 14, 82, 357, 48679, 803, 8, 198, 37811, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2, 1181, 1203, 220, 198, 2, 2488, 12381, 592, 25, 257, 1351, 286, 477, 6754, 16119, 198, 2, 1441, 25, 220, 198, 198, 41374, 14114, 62, 7708, 4146, 220, 197, 28, 352, 197, 197, 2, 4054, 13, 15614, 13, 198, 41374, 14114, 62, 37815, 220, 197, 28, 362, 197, 197, 2, 815, 2555, 198, 41374, 14114, 62, 11380, 220, 197, 28, 513, 197, 197, 2, 2496, 62, 40850, 318, 1138, 198, 2, 41374, 14114, 62, 35, 4944, 15285, 220, 197, 28, 604, 197, 197, 2, 460, 470, 5409, 1865, 198, 41374, 14114, 62, 6369, 42006, 2849, 220, 197, 28, 642, 197, 197, 2, 644, 3022, 30, 198, 198, 12501, 485, 62, 20147, 82, 796, 14631, 1600, 366, 32165, 1600, 366, 3642, 1600, 366, 482, 1600, 366, 67, 403, 3919, 1600, 366, 1069, 4516, 8973, 198, 198, 2, 27713, 4929, 269, 12, 66, 6737, 284, 4155, 477, 1332, 4056, 2923, 27713, 198, 198, 271, 62, 11338, 796, 10352, 198, 198, 7061, 6, 198, 7783, 357, 13376, 11, 256, 1996, 8, 198, 83, 1996, 318, 12462, 42975, 13, 1279, 15, 611, 4844, 8793, 198, 7061, 6, 198, 198, 2, 2488, 7295, 6624, 532, 16, 611, 29547, 319, 23991, 1370, 198, 198, 2, 1441, 25, 4036, 62, 83, 1996, 198, 2, 27713, 691, 1104, 530, 4755, 783, 13, 475, 326, 338, 3734, 198, 197, 198, 197, 197, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 12683, 282, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 12394, 11, 2245, 62, 9288, 62, 30281, 8, 198, 197, 198, 197, 1169, 62, 22915, 62, 15908, 796, 20218, 7753, 13, 28015, 67, 29510, 3419, 198, 197, 198, 197, 2, 2482, 481, 307, 18846, 287, 1295, 656, 2488, 439, 62, 41989, 198, 197, 198, 197, 7061, 6, 2198, 1222, 3601, 477, 1332, 7508, 705, 7061, 198, 197, 9288, 62, 14933, 796, 23884, 198, 197, 2, 4886, 23418, 1332, 3891, 220, 198, 197, 1640, 1332, 287, 477, 62, 41989, 25, 198, 197, 197, 361, 1332, 62, 14933, 13, 10134, 62, 2539, 7, 9288, 14692, 3672, 8973, 2599, 198, 197, 197, 197, 4798, 9609, 25064, 13, 301, 1082, 81, 11, 366, 397, 419, 25, 23418, 1332, 3891, 25, 1600, 1332, 14692, 3672, 8973, 26, 198, 197, 197, 197, 17597, 13, 37023, 7, 16, 8, 198, 197, 197, 9288, 62, 14933, 58, 9288, 14692, 3672, 8973, 60, 796, 352, 220, 1303, 3505, 284, 2198, 14184, 16856, 198, 197, 198, 197, 197, 361, 1332, 13, 10134, 62, 2539, 7203, 4215, 40850, 62, 9806, 14774, 62, 907, 4943, 290, 1332, 14692, 4215, 40850, 62, 9806, 14774, 62, 907, 8973, 1279, 1332, 14692, 16793, 62, 907, 1, 5974, 198, 197, 197, 197, 4798, 9609, 25064, 13, 301, 1082, 81, 11, 366, 397, 419, 25, 4566, 11454, 25, 685, 4, 82, 60, 2705, 40850, 3509, 14774, 13845, 1279, 2496, 13845, 1, 4064, 9288, 14692, 3672, 8973, 198, 197, 197, 197, 17597, 13, 37023, 32590, 16, 8, 628, 197, 7061, 6, 3601, 6859, 705, 7061, 198, 197, 4798, 366, 10052, 2559, 1, 198, 197, 4798, 366, 19738, 5254, 284, 1057, 357, 9255, 284, 1057, 477, 16725, 198, 197, 1640, 1312, 11, 1332, 287, 27056, 378, 7, 439, 62, 41989, 2599, 198, 197, 197, 4798, 1312, 11, 1332, 14692, 3672, 8973, 26, 198, 197, 28311, 25, 198, 197, 197, 25541, 796, 493, 7, 1831, 62, 15414, 10786, 17469, 534, 5128, 32105, 4008, 198, 197, 197, 4798, 366, 16454, 2644, 2561, 1057, 1332, 1600, 477, 62, 41989, 58, 25541, 7131, 1, 3672, 8973, 198, 197, 197, 439, 62, 41989, 796, 685, 439, 62, 41989, 58, 25541, 11907, 198, 197, 16341, 11052, 12331, 25, 198, 197, 197, 4798, 366, 16454, 2644, 2561, 1057, 477, 5254, 526, 628, 197, 1640, 1332, 287, 477, 62, 41989, 25, 198, 197, 197, 265, 1996, 796, 4219, 62, 505, 62, 9288, 7, 9288, 8, 198, 197, 197, 361, 379, 1996, 1279, 657, 25, 198, 197, 197, 197, 4798, 36521, 82, 6631, 25, 460, 470, 651, 262, 256, 1996, 526, 4064, 9288, 14692, 3672, 8973, 198, 197, 197, 197, 9288, 14692, 50039, 62, 83, 1996, 8973, 796, 532, 16, 220, 1303, 318, 428, 8788, 30, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 9288, 14692, 50039, 62, 83, 1996, 8973, 796, 379, 1996, 198, 197, 197, 197, 4798, 36521, 82, 32543, 25, 4036, 256, 1996, 4064, 67, 479, 8344, 14, 82, 2496, 62, 40850, 4064, 67, 13845, 1, 4064, 7, 9288, 14692, 3672, 33116, 379, 1996, 11, 1332, 14692, 16793, 62, 907, 8973, 8, 198, 197, 198, 197, 4798, 366, 10052, 2559, 1, 198, 197, 4798, 36521, 1238, 82, 4064, 940, 82, 4064, 940, 82, 4064, 940, 82, 4064, 21, 82, 4064, 1314, 82, 1, 4064, 7203, 9288, 1600, 366, 16793, 62, 907, 1600, 366, 83, 1996, 14, 74, 260, 6359, 1600, 366, 8692, 14, 74, 260, 6359, 1600, 366, 49453, 4, 1600, 366, 417, 28361, 14, 2363, 4943, 197, 198, 197, 1640, 1332, 287, 477, 62, 41989, 25, 198, 197, 197, 83, 1996, 62, 1939, 796, 532, 17032, 13, 2079, 198, 197, 197, 83, 1996, 62, 1939, 62, 2536, 796, 366, 438, 1, 198, 197, 197, 83, 1996, 62, 12093, 4470, 62, 2536, 796, 366, 438, 1, 198, 197, 197, 198, 197, 197, 361, 1332, 13, 10134, 62, 2539, 7203, 40223, 4943, 290, 1332, 14692, 40223, 1, 5974, 198, 197, 197, 2, 361, 407, 1332, 13, 10134, 62, 2539, 7203, 417, 28361, 62, 2363, 1, 2599, 1303, 1332, 1239, 10945, 30, 198, 197, 197, 197, 4798, 36521, 940, 82, 1377, 26684, 1377, 366, 4064, 7, 9288, 14692, 3672, 8973, 8, 198, 197, 197, 197, 43043, 198, 197, 197, 361, 1332, 13, 10134, 62, 2539, 7203, 83, 1996, 62, 12093, 4470, 1, 2599, 198, 197, 197, 197, 83, 1996, 62, 1939, 796, 1802, 13, 15, 1635, 357, 9288, 14692, 50039, 62, 83, 1996, 8973, 532, 1332, 14692, 83, 1996, 62, 12093, 4470, 8973, 8, 1220, 1332, 14692, 83, 1996, 62, 12093, 4470, 8973, 198, 197, 197, 197, 83, 1996, 62, 1939, 62, 2536, 796, 366, 7225, 17, 69, 1, 4064, 7, 83, 1996, 62, 1939, 8, 198, 197, 197, 197, 83, 1996, 62, 12093, 4470, 62, 2536, 796, 36521, 67, 1, 4064, 7, 9288, 14692, 83, 1996, 62, 12093, 4470, 8973, 8, 198, 197, 197, 197, 2, 4798, 366, 12093, 4470, 318, 1600, 1332, 14692, 83, 1996, 62, 12093, 4470, 8973, 198, 197, 197, 197, 198, 197, 197, 4798, 36521, 1238, 82, 4064, 940, 67, 4064, 940, 67, 4064, 940, 82, 4064, 21, 82, 4064, 1314, 13, 17, 69, 1, 220, 3467, 198, 197, 197, 197, 197, 4, 7, 9288, 14692, 3672, 33116, 1332, 14692, 16793, 62, 907, 33116, 1332, 14692, 50039, 62, 83, 1996, 33116, 256, 1996, 62, 12093, 4470, 62, 2536, 11, 256, 1996, 62, 1939, 62, 2536, 11, 1332, 14692, 417, 28361, 62, 2363, 8973, 8, 198, 197, 4798, 366, 10052, 2559, 1, 198, 197, 4798, 366, 26069, 10779, 17032, 1724, 645, 14805, 2810, 1, 198, 197, 198, 197, 4798, 366, 439, 1760, 13, 2198, 1255, 26672, 7479, 77, 43979, 33172, 262, 62, 22915, 62, 15908, 628, 198 ]
2.516883
1,925
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD from sklearn import preprocessing, model_selection, metrics import lightgbm as lgb import gc train_df = pd.read_csv('../input/train.csv', parse_dates=["activation_date"]) test_df = pd.read_csv('../input/test.csv', parse_dates=["activation_date"]) import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns import random #x = train_df.copy()#[['price', 'deal_probability', 'image_top_1']] train_df = genFeatures(train_df) test_df = genFeatures(test_df) groupCols = ['region', 'city', 'parent_category_name', 'category_name', 'user_type'] X = train_df[groupCols + ['deal_probability']].groupby(groupCols, as_index=False).agg([len,np.mean]) X.columns = ['_'.join(col).strip() for col in X.columns.values] X['Group_weight1'] = (X.deal_probability_mean + 1e-6) * np.log1p(X.deal_probability_len) X.drop(['deal_probability_mean', 'deal_probability_len'], axis = 1, inplace = True) X.reset_index(inplace = True) train_df = train_df.merge(X, on = groupCols, how = 'left') test_df = test_df.merge(X, on = groupCols, how = 'left') catCols = ['region', 'city', 'parent_category_name', 'category_name', 'param_1', 'param_2', 'param_3', 'user_type'] dftrainnum = train_df[list(set(train_df.columns)-set(catCols+['user_id']))] dftestnum = test_df[list(set(test_df.columns)-set(catCols+['user_id']))] train, test,= = catEncode(train_df[catCols].copy(), test_df[catCols].copy(), train_df.deal_probability.values, nbag = 10, nfold = 20, minCount = 1) train_df = pd.concat((dftrainnum, train), axis =1) test_df = pd.concat((dftestnum, test), axis =1) del(dftrainnum, train); gc.collect() del(dftestnum, test); gc.collect()
[ 11748, 299, 32152, 355, 45941, 1303, 14174, 37139, 198, 11748, 19798, 292, 355, 279, 67, 1303, 1366, 7587, 11, 44189, 2393, 314, 14, 46, 357, 68, 13, 70, 13, 279, 67, 13, 961, 62, 40664, 8, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 1341, 35720, 13, 30053, 62, 2302, 7861, 13, 5239, 1330, 309, 69, 312, 69, 38469, 7509, 11, 2764, 38469, 7509, 198, 6738, 1341, 35720, 13, 12501, 296, 9150, 1330, 833, 19524, 515, 50, 8898, 198, 6738, 1341, 35720, 1330, 662, 36948, 11, 2746, 62, 49283, 11, 20731, 198, 11748, 1657, 70, 20475, 355, 300, 22296, 198, 11748, 308, 66, 198, 198, 27432, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 15414, 14, 27432, 13, 40664, 3256, 220, 21136, 62, 19581, 28, 14692, 48545, 62, 4475, 8973, 8, 198, 9288, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 15414, 14, 9288, 13, 40664, 3256, 220, 21136, 62, 19581, 28, 14692, 48545, 62, 4475, 8973, 8, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 220, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 4738, 220, 198, 198, 2, 87, 796, 4512, 62, 7568, 13, 30073, 3419, 2, 58, 17816, 20888, 3256, 705, 31769, 62, 1676, 65, 1799, 3256, 705, 9060, 62, 4852, 62, 16, 6, 11907, 198, 220, 220, 220, 220, 198, 27432, 62, 7568, 796, 2429, 23595, 7, 27432, 62, 7568, 8, 198, 9288, 62, 7568, 796, 2429, 23595, 7, 9288, 62, 7568, 8, 198, 198, 8094, 5216, 82, 796, 37250, 36996, 3256, 705, 19205, 3256, 705, 8000, 62, 22872, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 22872, 62, 3672, 3256, 705, 7220, 62, 4906, 20520, 198, 55, 796, 4512, 62, 7568, 58, 8094, 5216, 82, 1343, 37250, 31769, 62, 1676, 65, 1799, 20520, 4083, 8094, 1525, 7, 8094, 5216, 82, 11, 355, 62, 9630, 28, 25101, 737, 9460, 26933, 11925, 11, 37659, 13, 32604, 12962, 198, 55, 13, 28665, 82, 796, 37250, 62, 4458, 22179, 7, 4033, 737, 36311, 3419, 329, 951, 287, 1395, 13, 28665, 82, 13, 27160, 60, 198, 55, 17816, 13247, 62, 6551, 16, 20520, 796, 357, 55, 13, 31769, 62, 1676, 65, 1799, 62, 32604, 1343, 352, 68, 12, 21, 8, 1635, 45941, 13, 6404, 16, 79, 7, 55, 13, 31769, 62, 1676, 65, 1799, 62, 11925, 8, 220, 198, 55, 13, 14781, 7, 17816, 31769, 62, 1676, 65, 1799, 62, 32604, 3256, 705, 31769, 62, 1676, 65, 1799, 62, 11925, 6, 4357, 16488, 796, 352, 11, 287, 5372, 796, 6407, 8, 198, 55, 13, 42503, 62, 9630, 7, 259, 5372, 796, 6407, 8, 198, 27432, 62, 7568, 796, 4512, 62, 7568, 13, 647, 469, 7, 55, 11, 319, 796, 1448, 5216, 82, 11, 703, 796, 705, 9464, 11537, 198, 9288, 62, 7568, 796, 1332, 62, 7568, 13, 647, 469, 7, 55, 11, 319, 796, 1448, 5216, 82, 11, 703, 796, 705, 9464, 11537, 628, 198, 9246, 5216, 82, 796, 37250, 36996, 3256, 705, 19205, 3256, 705, 8000, 62, 22872, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 22872, 62, 3672, 3256, 705, 17143, 62, 16, 3256, 705, 17143, 62, 17, 3256, 705, 17143, 62, 18, 3256, 705, 7220, 62, 4906, 20520, 198, 198, 67, 701, 3201, 22510, 796, 4512, 62, 7568, 58, 4868, 7, 2617, 7, 27432, 62, 7568, 13, 28665, 82, 13219, 2617, 7, 9246, 5216, 82, 10, 17816, 7220, 62, 312, 20520, 4008, 60, 198, 67, 701, 395, 22510, 796, 1332, 62, 7568, 58, 4868, 7, 2617, 7, 9288, 62, 7568, 13, 28665, 82, 13219, 2617, 7, 9246, 5216, 82, 10, 17816, 7220, 62, 312, 20520, 4008, 60, 198, 198, 27432, 11, 1332, 11, 28, 796, 3797, 4834, 8189, 7, 27432, 62, 7568, 58, 9246, 5216, 82, 4083, 30073, 22784, 1332, 62, 7568, 58, 9246, 5216, 82, 4083, 30073, 22784, 4512, 62, 7568, 13, 31769, 62, 1676, 65, 1799, 13, 27160, 11, 299, 21454, 796, 838, 11, 299, 11379, 796, 1160, 11, 949, 12332, 796, 352, 8, 198, 198, 27432, 62, 7568, 796, 279, 67, 13, 1102, 9246, 19510, 67, 701, 3201, 22510, 11, 4512, 828, 16488, 796, 16, 8, 198, 9288, 62, 7568, 796, 279, 67, 13, 1102, 9246, 19510, 67, 701, 395, 22510, 11, 1332, 828, 16488, 796, 16, 8, 198, 198, 12381, 7, 67, 701, 3201, 22510, 11, 4512, 1776, 308, 66, 13, 33327, 3419, 198, 12381, 7, 67, 701, 395, 22510, 11, 1332, 1776, 308, 66, 13, 33327, 3419, 628, 628, 198 ]
2.537255
765
# spec for webdriver processors class WebDriverProcessor(object): """Allows outside users to have the final say on things like capabilities that are used to instantiate WebDriver. """ def process_capabilities(self, capabilities): """Process capabilities passed in and return the final dict. :type capabilities: dict :rtype: dict """ pass
[ 2, 1020, 329, 3992, 26230, 20399, 198, 198, 4871, 5313, 32103, 18709, 273, 7, 15252, 2599, 198, 220, 220, 220, 37227, 34934, 2354, 2985, 284, 423, 262, 2457, 910, 319, 1243, 588, 9889, 198, 220, 220, 220, 326, 389, 973, 284, 9113, 9386, 5313, 32103, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1429, 62, 11128, 5738, 7, 944, 11, 9889, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18709, 9889, 3804, 287, 290, 1441, 262, 2457, 8633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 9889, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
3.069767
129
constants.physical_constants["atomic unit of electric field"]
[ 9979, 1187, 13, 42854, 62, 9979, 1187, 14692, 47116, 4326, 286, 5186, 2214, 8973 ]
4.357143
14
# -*- coding: utf-8 -*- from django.shortcuts import render_to_response from django.http import HttpResponseServerError from django.template import RequestContext from freechess.models import ChessGame from dateutil.relativedelta import relativedelta import datetime
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 62, 1462, 62, 26209, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 10697, 12331, 198, 6738, 42625, 14208, 13, 28243, 1330, 19390, 21947, 198, 6738, 1479, 2395, 824, 13, 27530, 1330, 25774, 8777, 198, 6738, 3128, 22602, 13, 2411, 265, 1572, 12514, 1330, 48993, 1572, 12514, 198, 11748, 4818, 8079, 628 ]
3.573333
75
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import hashlib from cli_tools.flakiness_cli import api from cli_tools.flakiness_cli import frames def GetBuilders(): """Get the builders data frame and keep a cached copy.""" return frames.GetWithCache( 'builders.pkl', make_frame, expires_after=datetime.timedelta(hours=12)) def GetTestResults(master, builder, test_type): """Get a test results data frame and keep a cached copy.""" basename = hashlib.md5('/'.join([master, builder, test_type])).hexdigest() return frames.GetWithCache( basename + '.pkl', make_frame, expires_after=datetime.timedelta(hours=3))
[ 2, 15069, 2864, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 11748, 4818, 8079, 198, 11748, 12234, 8019, 198, 198, 6738, 537, 72, 62, 31391, 13, 2704, 461, 1272, 62, 44506, 1330, 40391, 198, 6738, 537, 72, 62, 31391, 13, 2704, 461, 1272, 62, 44506, 1330, 13431, 628, 198, 4299, 3497, 15580, 364, 33529, 198, 220, 37227, 3855, 262, 31606, 1366, 5739, 290, 1394, 257, 39986, 4866, 526, 15931, 628, 220, 1441, 13431, 13, 3855, 3152, 30562, 7, 198, 220, 220, 220, 220, 220, 705, 50034, 13, 79, 41582, 3256, 787, 62, 14535, 11, 27396, 62, 8499, 28, 19608, 8079, 13, 16514, 276, 12514, 7, 24425, 28, 1065, 4008, 628, 198, 4299, 3497, 14402, 25468, 7, 9866, 11, 27098, 11, 1332, 62, 4906, 2599, 198, 220, 37227, 3855, 257, 1332, 2482, 1366, 5739, 290, 1394, 257, 39986, 4866, 526, 15931, 628, 220, 1615, 12453, 796, 12234, 8019, 13, 9132, 20, 10786, 14, 4458, 22179, 26933, 9866, 11, 27098, 11, 1332, 62, 4906, 12962, 737, 33095, 12894, 395, 3419, 198, 220, 1441, 13431, 13, 3855, 3152, 30562, 7, 198, 220, 220, 220, 220, 220, 1615, 12453, 1343, 45302, 79, 41582, 3256, 787, 62, 14535, 11, 27396, 62, 8499, 28, 19608, 8079, 13, 16514, 276, 12514, 7, 24425, 28, 18, 4008, 198 ]
3.186722
241
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.RpaCrawlerTaskVO import RpaCrawlerTaskVO
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 33918, 198, 198, 6738, 435, 541, 323, 13, 64, 404, 13, 15042, 13, 26209, 13, 2348, 541, 323, 31077, 1330, 978, 541, 323, 31077, 198, 6738, 435, 541, 323, 13, 64, 404, 13, 15042, 13, 27830, 13, 49, 8957, 34, 39464, 25714, 29516, 1330, 371, 8957, 34, 39464, 25714, 29516, 628 ]
2.586667
75
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is govered by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """This file exists so that code in gRPC *_pb2.py files is importable. The protoc compiler for gRPC .proto files produces Python code which contains two separate code-paths. One codepath just requires importing grpc.py; the other uses the beta interface. Since we are relying on the former codepath, this file doesn't need to contain any actual implementation. It just needs to contain the symbols that the _pb2.py file expects to find when it imports the module. """
[ 2, 15069, 1584, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 467, 21917, 416, 257, 347, 10305, 12, 7635, 198, 2, 5964, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 393, 379, 198, 2, 3740, 1378, 16244, 364, 13, 13297, 13, 785, 14, 9654, 12, 10459, 14, 677, 4541, 14, 1443, 67, 198, 198, 37811, 1212, 2393, 7160, 523, 326, 2438, 287, 308, 49, 5662, 1635, 62, 40842, 17, 13, 9078, 3696, 318, 1330, 540, 13, 198, 198, 464, 1237, 420, 17050, 329, 308, 49, 5662, 764, 1676, 1462, 3696, 11073, 11361, 2438, 543, 4909, 198, 11545, 4553, 2438, 12, 6978, 82, 13, 1881, 14873, 538, 776, 655, 4433, 33332, 1036, 14751, 13, 9078, 26, 262, 198, 847, 3544, 262, 12159, 7071, 13, 4619, 356, 389, 17965, 319, 262, 1966, 14873, 538, 776, 11, 198, 5661, 2393, 1595, 470, 761, 284, 3994, 597, 4036, 7822, 13, 632, 655, 2476, 198, 1462, 3994, 262, 14354, 326, 262, 4808, 40842, 17, 13, 9078, 2393, 13423, 284, 1064, 618, 340, 17944, 198, 1169, 8265, 13, 198, 37811, 628, 628 ]
3.741935
186
import requests import argparse import colorama import os import csv import pandas as pd from bs4 import BeautifulSoup as soup if __name__ == '__main__': colorama.init() url = 'https://github.com' parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description="Views Public Repositories of Users") parser.add_argument('-c', '--clone', nargs='+', metavar='CLONE', action='store', help="Clones and Views Public Repositories from the user/s. (e.g -c KungPaoChick uname2 uname3)") parser.add_argument('-u', '--username', nargs='+', metavar='USERNAMES', action='store', help="Views Public Repositories from the user/s. (e.g -u KungPaoChick uname2 uname3)") args = parser.parse_args() if args.clone or args.username: for name in args.username or args.clone: if not os.path.exists(name): os.mkdir(name) conn(name, url)
[ 11748, 7007, 198, 11748, 1822, 29572, 198, 11748, 3124, 1689, 198, 11748, 28686, 198, 11748, 269, 21370, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 355, 17141, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3124, 1689, 13, 15003, 3419, 198, 220, 220, 220, 19016, 796, 705, 5450, 1378, 12567, 13, 785, 6, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 687, 1436, 62, 4871, 28, 853, 29572, 13, 27369, 8206, 22087, 8479, 1436, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 7680, 82, 5094, 1432, 35061, 286, 18987, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 66, 3256, 705, 438, 21018, 3256, 299, 22046, 11639, 10, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 5097, 11651, 3256, 2223, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 2601, 1952, 290, 29978, 5094, 1432, 35061, 422, 262, 2836, 14, 82, 13, 357, 68, 13, 70, 532, 66, 44753, 47, 5488, 1925, 624, 555, 480, 17, 555, 480, 18, 8, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 84, 3256, 705, 438, 29460, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 11639, 10, 3256, 1138, 615, 283, 11639, 2937, 28778, 29559, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7680, 82, 5094, 1432, 35061, 422, 262, 2836, 14, 82, 13, 357, 68, 13, 70, 532, 84, 44753, 47, 5488, 1925, 624, 555, 480, 17, 555, 480, 18, 8, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 611, 26498, 13, 21018, 393, 26498, 13, 29460, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 26498, 13, 29460, 393, 26498, 13, 21018, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48260, 7, 3672, 11, 19016, 8, 628 ]
2.138067
507
import pytest from vakt.rules.string import PairsEqual, StringPairsEqualRule @pytest.mark.parametrize('against, result', [ ([[]], False), ([], True), ("not-list", False), ([['a']], False), ([['a', 'a']], True), ([['й', 'й']], True), ([[1, '1']], False), ([['1', 1]], False), ([[1, 1]], False), ([[1.0, 1.0]], False), ([['a', 'b']], False), ([['a', 'b', 'c']], False), ([['a', 'a'], ['b', 'b']], True), ([['a', 'a'], ['b', 'c']], False), ])
[ 11748, 12972, 9288, 198, 198, 6738, 410, 461, 83, 13, 38785, 13, 8841, 1330, 350, 3468, 36, 13255, 11, 10903, 47, 3468, 36, 13255, 31929, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 32826, 11, 1255, 3256, 685, 198, 220, 220, 220, 29565, 21737, 4357, 10352, 828, 198, 220, 220, 220, 29565, 4357, 6407, 828, 198, 220, 220, 220, 5855, 1662, 12, 4868, 1600, 10352, 828, 198, 220, 220, 220, 29565, 17816, 64, 20520, 4357, 10352, 828, 198, 220, 220, 220, 29565, 17816, 64, 3256, 705, 64, 20520, 4357, 6407, 828, 198, 220, 220, 220, 29565, 17816, 140, 117, 3256, 705, 140, 117, 20520, 4357, 6407, 828, 198, 220, 220, 220, 29565, 58, 16, 11, 705, 16, 20520, 4357, 10352, 828, 198, 220, 220, 220, 29565, 17816, 16, 3256, 352, 60, 4357, 10352, 828, 198, 220, 220, 220, 29565, 58, 16, 11, 352, 60, 4357, 10352, 828, 198, 220, 220, 220, 29565, 58, 16, 13, 15, 11, 352, 13, 15, 60, 4357, 10352, 828, 198, 220, 220, 220, 29565, 17816, 64, 3256, 705, 65, 20520, 4357, 10352, 828, 198, 220, 220, 220, 29565, 17816, 64, 3256, 705, 65, 3256, 705, 66, 20520, 4357, 10352, 828, 198, 220, 220, 220, 29565, 17816, 64, 3256, 705, 64, 6, 4357, 37250, 65, 3256, 705, 65, 20520, 4357, 6407, 828, 198, 220, 220, 220, 29565, 17816, 64, 3256, 705, 64, 6, 4357, 37250, 65, 3256, 705, 66, 20520, 4357, 10352, 828, 198, 12962, 198 ]
2.036735
245
from functools import reduce from pathlib import Path from code_scanner.enums import FileType from code_scanner.file_info import FileInfo from code_scanner.filter_utils import IFileFilter
[ 6738, 1257, 310, 10141, 1330, 4646, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 2438, 62, 35836, 1008, 13, 268, 5700, 1330, 9220, 6030, 198, 6738, 2438, 62, 35836, 1008, 13, 7753, 62, 10951, 1330, 9220, 12360, 198, 6738, 2438, 62, 35836, 1008, 13, 24455, 62, 26791, 1330, 314, 8979, 22417, 628, 628, 198 ]
3.555556
54
# Generated by Django 3.2.8 on 2021-11-11 09:19 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 23, 319, 33448, 12, 1157, 12, 1157, 7769, 25, 1129, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
import time import numpy as np import solver board = np.array([ [0,0,0,0,9,0,8,2,3], [0,8,0,0,3,2,0,7,5], [3,0,2,5,8,0,4,9,0], [0,2,7,0,0,0,0,0,4], [0,9,0,2,1,4,0,8,0], [4,0,0,0,0,0,2,0,0], [0,4,0,0,7,1,0,0,2], [2,0,0,9,4,0,0,5,0], [0,0,6,0,2,5,0,4,0] ]) b = solver.SudokuSolver(board) t1 = time.time() b.solve() t2 = time.time() - t1 assert b.valid_board() print(f"Time: {t2} seconds") print(f"Steps: {b.num_steps}") print(b.board)
[ 11748, 640, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 1540, 332, 628, 198, 3526, 796, 45941, 13, 18747, 26933, 198, 220, 220, 220, 685, 15, 11, 15, 11, 15, 11, 15, 11, 24, 11, 15, 11, 23, 11, 17, 11, 18, 4357, 198, 220, 220, 220, 685, 15, 11, 23, 11, 15, 11, 15, 11, 18, 11, 17, 11, 15, 11, 22, 11, 20, 4357, 198, 220, 220, 220, 685, 18, 11, 15, 11, 17, 11, 20, 11, 23, 11, 15, 11, 19, 11, 24, 11, 15, 4357, 198, 220, 220, 220, 685, 15, 11, 17, 11, 22, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 19, 4357, 198, 220, 220, 220, 685, 15, 11, 24, 11, 15, 11, 17, 11, 16, 11, 19, 11, 15, 11, 23, 11, 15, 4357, 198, 220, 220, 220, 685, 19, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 17, 11, 15, 11, 15, 4357, 198, 220, 220, 220, 685, 15, 11, 19, 11, 15, 11, 15, 11, 22, 11, 16, 11, 15, 11, 15, 11, 17, 4357, 198, 220, 220, 220, 685, 17, 11, 15, 11, 15, 11, 24, 11, 19, 11, 15, 11, 15, 11, 20, 11, 15, 4357, 198, 220, 220, 220, 685, 15, 11, 15, 11, 21, 11, 15, 11, 17, 11, 20, 11, 15, 11, 19, 11, 15, 60, 198, 12962, 198, 198, 65, 796, 1540, 332, 13, 50, 463, 11601, 50, 14375, 7, 3526, 8, 198, 198, 83, 16, 796, 640, 13, 2435, 3419, 198, 198, 65, 13, 82, 6442, 3419, 198, 198, 83, 17, 796, 640, 13, 2435, 3419, 532, 256, 16, 198, 198, 30493, 275, 13, 12102, 62, 3526, 3419, 198, 198, 4798, 7, 69, 1, 7575, 25, 1391, 83, 17, 92, 4201, 4943, 198, 4798, 7, 69, 1, 8600, 82, 25, 1391, 65, 13, 22510, 62, 20214, 92, 4943, 198, 4798, 7, 65, 13, 3526, 8, 198 ]
1.492212
321
#!/usr/bin/env python # Root topic rootTopic = "truck1" # Broker configuration mqttBroker = "192.168.1.126" mqttPort = "1883" mqttUser = " " mqttPasswd = " " # Components configuration componentDic = { "imuClass": "Imu", "proximityClass": "ProximitySensor", "motorClass": "Motor", "cameraClass": "Camera"} componentsSamplingIntevalInSeconds = { "imuClass": 0.1, "proximityClass": 0.4, "motorClass": 10.0, "cameraClass": 100.0}
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 20410, 7243, 198, 15763, 33221, 796, 366, 83, 30915, 16, 1, 198, 198, 2, 2806, 6122, 8398, 198, 76, 80, 926, 15783, 6122, 796, 366, 17477, 13, 14656, 13, 16, 13, 19420, 1, 198, 76, 80, 926, 13924, 796, 366, 1507, 5999, 1, 198, 198, 76, 80, 926, 12982, 796, 366, 366, 198, 76, 80, 926, 14478, 16993, 796, 366, 366, 198, 198, 2, 36109, 8398, 198, 42895, 35, 291, 796, 1391, 198, 220, 220, 220, 366, 320, 84, 9487, 1298, 366, 3546, 84, 1600, 198, 220, 220, 220, 366, 1676, 87, 18853, 9487, 1298, 366, 2964, 87, 18853, 47864, 1600, 198, 220, 220, 220, 366, 76, 20965, 9487, 1298, 366, 34919, 1600, 198, 220, 220, 220, 366, 25695, 9487, 1298, 366, 35632, 20662, 198, 198, 5589, 3906, 16305, 11347, 5317, 18206, 818, 12211, 82, 796, 1391, 198, 220, 220, 220, 366, 320, 84, 9487, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 366, 1676, 87, 18853, 9487, 1298, 657, 13, 19, 11, 198, 220, 220, 220, 366, 76, 20965, 9487, 1298, 838, 13, 15, 11, 198, 220, 220, 220, 366, 25695, 9487, 1298, 1802, 13, 15, 92, 198 ]
2.308458
201
import time import RPi.GPIO as gpio pin = 33 pin_wheel = 35 while True: print 'go straight ' gpio.setmode(gpio.BOARD) gpio.setup(pin, gpio.OUT) gpio.setup(pin_wheel, gpio.OUT) gpio.output(pin_wheel, gpio.HIGH) p = gpio.PWM(pin, 400) p.start(0) dc = 10 for i in range(40): dc += 2 print 'dc:', dc p.ChangeDutyCycle(dc) time.sleep(0.3); p.stop() gpio.cleanup() print 'done'
[ 11748, 640, 198, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 27809, 952, 198, 198, 11635, 796, 4747, 198, 11635, 62, 22001, 796, 3439, 198, 4514, 6407, 25, 198, 220, 220, 220, 3601, 705, 2188, 3892, 705, 198, 220, 220, 220, 27809, 952, 13, 2617, 14171, 7, 31197, 952, 13, 8202, 9795, 8, 198, 220, 220, 220, 27809, 952, 13, 40406, 7, 11635, 11, 27809, 952, 13, 12425, 8, 198, 220, 220, 220, 27809, 952, 13, 40406, 7, 11635, 62, 22001, 11, 27809, 952, 13, 12425, 8, 198, 220, 220, 220, 27809, 952, 13, 22915, 7, 11635, 62, 22001, 11, 27809, 952, 13, 39, 18060, 8, 198, 220, 220, 220, 279, 796, 27809, 952, 13, 47, 22117, 7, 11635, 11, 7337, 8, 198, 220, 220, 220, 279, 13, 9688, 7, 15, 8, 198, 220, 220, 220, 30736, 796, 838, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 1821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 30736, 15853, 362, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 17896, 25, 3256, 30736, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 19400, 35, 3935, 20418, 2375, 7, 17896, 8, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 18, 1776, 198, 220, 220, 220, 279, 13, 11338, 3419, 198, 220, 220, 220, 27809, 952, 13, 27773, 929, 3419, 198, 220, 220, 220, 3601, 705, 28060, 6, 198 ]
1.923729
236
# Bài tập 2. Sử dụng thư viện pandas đọc vào file Iris.csv được biến bộ nhớ df. # 2a. Hiển thị df. # 2b. Chuyển cột nhãn y Species thành dạng dữ liệu mã hóa OHE. Hiển thị dữ liệu được mã hóa. # 2c. Tạo ra cột vector đầu vào x, và cột nhãn vector đầu ra y của df. Hiển thị x và y. # G: import pandas as pd # 2a df = pd.read_csv("../data/Iris.csv") print(df) # 2b one_hot_encoded_data = pd.get_dummies(df, columns=['Species']) print(one_hot_encoded_data) # 2c x = df[['SepalWidthCm', 'SepalLengthCm', 'PetalLengthCm', 'PetalWidthCm']] print(x) y = one_hot_encoded_data[['Species_Iris-setosa', 'Species_Iris-versicolor', 'Species_Iris-virginica']] print(y)
[ 2, 347, 24247, 72, 256, 157, 118, 255, 79, 362, 13, 311, 157, 119, 255, 288, 157, 119, 98, 782, 294, 130, 108, 25357, 157, 119, 229, 77, 19798, 292, 34754, 239, 157, 119, 235, 66, 410, 24247, 78, 2393, 34230, 13, 40664, 34754, 239, 130, 108, 157, 119, 96, 66, 3182, 157, 118, 123, 77, 275, 157, 119, 247, 299, 71, 157, 119, 249, 47764, 13, 198, 2, 362, 64, 13, 15902, 157, 119, 225, 77, 294, 157, 119, 233, 47764, 13, 198, 2, 362, 65, 13, 609, 4669, 157, 119, 225, 77, 269, 157, 119, 247, 83, 299, 71, 26102, 77, 331, 28540, 294, 24247, 77, 71, 288, 157, 118, 94, 782, 288, 157, 119, 107, 7649, 157, 119, 229, 84, 285, 26102, 289, 10205, 64, 440, 13909, 13, 15902, 157, 119, 225, 77, 294, 157, 119, 233, 288, 157, 119, 107, 7649, 157, 119, 229, 84, 34754, 239, 130, 108, 157, 119, 96, 66, 285, 26102, 289, 10205, 64, 13, 198, 2, 362, 66, 13, 309, 157, 118, 94, 78, 2179, 269, 157, 119, 247, 83, 15879, 34754, 239, 157, 118, 100, 84, 410, 24247, 78, 2124, 11, 410, 24247, 269, 157, 119, 247, 83, 299, 71, 26102, 77, 15879, 34754, 239, 157, 118, 100, 84, 2179, 331, 269, 157, 119, 100, 64, 47764, 13, 15902, 157, 119, 225, 77, 294, 157, 119, 233, 2124, 410, 24247, 331, 13, 198, 2, 402, 25, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 362, 64, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7203, 40720, 7890, 14, 40, 2442, 13, 40664, 4943, 198, 4798, 7, 7568, 8, 198, 2, 362, 65, 198, 505, 62, 8940, 62, 12685, 9043, 62, 7890, 796, 279, 67, 13, 1136, 62, 67, 39578, 7, 7568, 11, 15180, 28, 17816, 5248, 3171, 6, 12962, 198, 4798, 7, 505, 62, 8940, 62, 12685, 9043, 62, 7890, 8, 198, 2, 362, 66, 198, 87, 796, 47764, 58, 17816, 19117, 282, 30916, 34, 76, 3256, 705, 19117, 282, 24539, 34, 76, 3256, 705, 25803, 282, 24539, 34, 76, 3256, 705, 25803, 282, 30916, 34, 76, 6, 11907, 198, 4798, 7, 87, 8, 198, 88, 796, 530, 62, 8940, 62, 12685, 9043, 62, 7890, 58, 17816, 5248, 3171, 62, 40, 2442, 12, 2617, 8546, 3256, 705, 5248, 3171, 62, 40, 2442, 12, 690, 27045, 273, 3256, 705, 5248, 3171, 62, 40, 2442, 12, 85, 4672, 3970, 6, 11907, 198, 4798, 7, 88, 8, 198 ]
1.605392
408
import pathlib from functools import reduce from typing import List, Tuple if __name__ == "__main__": main()
[ 11748, 3108, 8019, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 6738, 19720, 1330, 7343, 11, 309, 29291, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.025
40
# Start of file import bpy bpy.context.scene.render.engine = 'CYCLES' bpy.context.scene.render.resolution_x = 320 bpy.context.scene.render.resolution_y = 208 bpy.context.scene.render.resolution_percentage = 100 bpy.context.scene.render.image_settings.file_format = 'BMP' bpy.context.scene.render.tile_x = 16 bpy.context.scene.render.tile_y = 16 bpy.context.scene.render.use_persistent_data = True bpy.context.scene.cycles.use_progressive_refine = True bpy.context.scene.render.use_save_buffers = True bpy.context.scene.render.use_border = True bpy.context.scene.cycles.device = 'CPU' bpy.context.scene.cycles.max_bounces = 2 bpy.context.scene.cycles.min_bounces = 0 bpy.context.scene.cycles.diffuse_bounces = 0 bpy.context.scene.cycles.glossy_bounces = 0 bpy.context.scene.cycles.transmission_bounces = 2 bpy.context.scene.cycles.transparent_max_bounces = 0 bpy.context.scene.cycles.transparent_min_bounces = 0 bpy.context.scene.cycles.caustics_reflective = False bpy.context.scene.cycles.caustics_refractive = False bpy.context.scene.cycles.use_square_samples = True bpy.context.scene.cycles.samples = 4 bpy.context.scene.cycles.debug_use_spatial_splits = True bpy.context.scene.world.cycles.max_bounces = 1 bpy.context.object.data.cycles.is_portal = True bpy.context.scene.cycles.debug_use_hair_bvh = False bpy.data.scenes['Scene'].render.filepath = './0.bmp' bpy.ops.object.delete(use_global=False) bpy.ops.mesh.primitive_monkey_add() bpy.ops.transform.translate(value=(0.0,1.0,1.0)) bpy.ops.object.shade_smooth() bpy.ops.mesh.primitive_plane_add() bpy.ops.transform.resize(value=(8.0,8.0,8.0)) bpy.data.objects['Lamp'].select = True bpy.context.scene.objects.active = bpy.data.objects['Lamp'] bpy.data.lamps['Lamp'].type = "SUN" bpy.data.lamps['Lamp'].use_nodes = True bpy.data.lamps['Lamp'].node_tree.nodes['Emission'].inputs['Strength'].default_value = 5 bpy.data.lamps['Lamp'].node_tree.nodes["Emission"].inputs["Color"].default_value = (1.0,0.80,0.50,1.0) bpy.data.objects['Suzanne'].select = True bpy.context.scene.objects.active = bpy.data.objects['Suzanne'] bpy.data.materials.new('Glass') bpy.data.materials['Glass'].use_nodes = True bpy.data.materials['Glass'].node_tree.nodes.new(type="ShaderNodeBsdfGlass") inp = bpy.data.materials['Glass'].node_tree.nodes["Material Output"].inputs["Surface"] outp = bpy.data.materials['Glass'].node_tree.nodes["Glass BSDF"].outputs["BSDF"] bpy.data.materials['Glass'].node_tree.links.new(inp,outp) bpy.data.objects['Suzanne'].active_material = bpy.data.materials['Glass'] bpy.data.materials['Glass'].node_tree.nodes["Glass BSDF"].inputs["Color"].default_value = (1.0,0.80,0.50,1.0) bpy.ops.mesh.primitive_monkey_add() bpy.ops.transform.translate(value=(3.0,1.0,1.0)) bpy.ops.object.shade_smooth() bpy.data.materials.new('Glossy') bpy.data.materials['Glossy'].use_nodes = True bpy.data.materials['Glossy'].node_tree.nodes.new(type="ShaderNodeBsdfGlossy") inp = bpy.data.materials['Glossy'].node_tree.nodes["Material Output"].inputs["Surface"] outp = bpy.data.materials['Glossy'].node_tree.nodes["Glossy BSDF"].outputs["BSDF"] bpy.data.materials['Glossy'].node_tree.links.new(inp,outp) bpy.data.objects['Suzanne.001'].active_material = bpy.data.materials['Glossy'] bpy.data.objects['Plane'].active_material = bpy.data.materials['Glossy'] bpy.data.materials['Glossy'].node_tree.nodes["Glossy BSDF"].inputs["Color"].default_value = (1.0,0.80,0.50,1.0) bpy.ops.mesh.primitive_monkey_add() bpy.ops.transform.translate(value=(-3.0,1.0,1.0)) bpy.ops.object.shade_smooth() bpy.data.materials.new('Deffuse') bpy.data.materials['Deffuse'].use_nodes = True bpy.data.materials['Deffuse'].node_tree.nodes.new(type="ShaderNodeBsdfDiffuse") inp = bpy.data.materials['Deffuse'].node_tree.nodes["Material Output"].inputs["Surface"] outp = bpy.data.materials['Deffuse'].node_tree.nodes["Diffuse BSDF"].outputs["BSDF"] bpy.data.materials['Deffuse'].node_tree.links.new(inp,outp) bpy.data.objects['Suzanne.002'].active_material = bpy.data.materials['Deffuse'] bpy.data.materials['Deffuse'].node_tree.nodes["Diffuse BSDF"].inputs["Color"].default_value = (1.0,0.80,0.50,1.0) bpy.ops.render.render(use_viewport = True, write_still=True) # End of file
[ 2, 7253, 286, 2393, 198, 11748, 275, 9078, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 18392, 796, 705, 34, 56, 5097, 1546, 6, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 29268, 62, 87, 796, 20959, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 29268, 62, 88, 796, 27121, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 29268, 62, 25067, 496, 796, 1802, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 9060, 62, 33692, 13, 7753, 62, 18982, 796, 705, 33, 7378, 6, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 87, 796, 1467, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 40927, 62, 88, 796, 1467, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 1904, 62, 19276, 7609, 62, 7890, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 1904, 62, 1676, 19741, 62, 5420, 500, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 1904, 62, 21928, 62, 36873, 364, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 13287, 13, 1904, 62, 20192, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 25202, 796, 705, 36037, 6, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 9806, 62, 65, 45982, 796, 362, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 1084, 62, 65, 45982, 796, 657, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 26069, 1904, 62, 65, 45982, 796, 657, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 4743, 793, 88, 62, 65, 45982, 796, 657, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 7645, 3411, 62, 65, 45982, 796, 362, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 7645, 8000, 62, 9806, 62, 65, 45982, 796, 657, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 7645, 8000, 62, 1084, 62, 65, 45982, 796, 657, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 6888, 436, 873, 62, 35051, 425, 796, 10352, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 6888, 436, 873, 62, 5420, 35587, 796, 10352, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 1904, 62, 23415, 62, 82, 12629, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 82, 12629, 796, 604, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 24442, 62, 1904, 62, 2777, 34961, 62, 22018, 896, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 6894, 13, 32503, 13, 9806, 62, 65, 45982, 796, 352, 198, 65, 9078, 13, 22866, 13, 15252, 13, 7890, 13, 32503, 13, 271, 62, 634, 282, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 32503, 13, 24442, 62, 1904, 62, 27108, 62, 65, 85, 71, 796, 10352, 198, 65, 9078, 13, 7890, 13, 28123, 17816, 36542, 6, 4083, 13287, 13, 7753, 6978, 796, 705, 19571, 15, 13, 65, 3149, 6, 198, 65, 9078, 13, 2840, 13, 15252, 13, 33678, 7, 1904, 62, 20541, 28, 25101, 8, 198, 65, 9078, 13, 2840, 13, 76, 5069, 13, 19795, 1800, 62, 49572, 62, 2860, 3419, 198, 65, 9078, 13, 2840, 13, 35636, 13, 7645, 17660, 7, 8367, 16193, 15, 13, 15, 11, 16, 13, 15, 11, 16, 13, 15, 4008, 198, 65, 9078, 13, 2840, 13, 15252, 13, 1477, 671, 62, 5796, 5226, 3419, 198, 65, 9078, 13, 2840, 13, 76, 5069, 13, 19795, 1800, 62, 14382, 62, 2860, 3419, 198, 65, 9078, 13, 2840, 13, 35636, 13, 411, 1096, 7, 8367, 16193, 23, 13, 15, 11, 23, 13, 15, 11, 23, 13, 15, 4008, 198, 65, 9078, 13, 7890, 13, 48205, 17816, 43, 696, 6, 4083, 19738, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 48205, 13, 5275, 796, 275, 9078, 13, 7890, 13, 48205, 17816, 43, 696, 20520, 198, 65, 9078, 13, 7890, 13, 75, 9430, 17816, 43, 696, 6, 4083, 4906, 796, 366, 50, 4944, 1, 198, 65, 9078, 13, 7890, 13, 75, 9430, 17816, 43, 696, 6, 4083, 1904, 62, 77, 4147, 796, 6407, 198, 65, 9078, 13, 7890, 13, 75, 9430, 17816, 43, 696, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 17816, 36, 3411, 6, 4083, 15414, 82, 17816, 45027, 6, 4083, 12286, 62, 8367, 796, 642, 198, 65, 9078, 13, 7890, 13, 75, 9430, 17816, 43, 696, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 36, 3411, 1, 4083, 15414, 82, 14692, 10258, 1, 4083, 12286, 62, 8367, 796, 357, 16, 13, 15, 11, 15, 13, 1795, 11, 15, 13, 1120, 11, 16, 13, 15, 8, 198, 65, 9078, 13, 7890, 13, 48205, 17816, 5606, 38395, 6, 4083, 19738, 796, 6407, 198, 65, 9078, 13, 22866, 13, 29734, 13, 48205, 13, 5275, 796, 275, 9078, 13, 7890, 13, 48205, 17816, 5606, 38395, 20520, 198, 65, 9078, 13, 7890, 13, 33665, 82, 13, 3605, 10786, 47698, 11537, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 47698, 6, 4083, 1904, 62, 77, 4147, 796, 6407, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 47698, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 13, 3605, 7, 4906, 2625, 2484, 5067, 19667, 37000, 7568, 47698, 4943, 198, 259, 79, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 47698, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 17518, 25235, 1, 4083, 15414, 82, 14692, 14214, 2550, 8973, 198, 448, 79, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 47698, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 47698, 24218, 8068, 1, 4083, 22915, 82, 14692, 4462, 8068, 8973, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 47698, 6, 4083, 17440, 62, 21048, 13, 28751, 13, 3605, 7, 259, 79, 11, 448, 79, 8, 198, 65, 9078, 13, 7890, 13, 48205, 17816, 5606, 38395, 6, 4083, 5275, 62, 33665, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 47698, 20520, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 47698, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 47698, 24218, 8068, 1, 4083, 15414, 82, 14692, 10258, 1, 4083, 12286, 62, 8367, 796, 357, 16, 13, 15, 11, 15, 13, 1795, 11, 15, 13, 1120, 11, 16, 13, 15, 8, 198, 65, 9078, 13, 2840, 13, 76, 5069, 13, 19795, 1800, 62, 49572, 62, 2860, 3419, 198, 65, 9078, 13, 2840, 13, 35636, 13, 7645, 17660, 7, 8367, 16193, 18, 13, 15, 11, 16, 13, 15, 11, 16, 13, 15, 4008, 198, 65, 9078, 13, 2840, 13, 15252, 13, 1477, 671, 62, 5796, 5226, 3419, 198, 65, 9078, 13, 7890, 13, 33665, 82, 13, 3605, 10786, 9861, 793, 88, 11537, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 9861, 793, 88, 6, 4083, 1904, 62, 77, 4147, 796, 6407, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 9861, 793, 88, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 13, 3605, 7, 4906, 2625, 2484, 5067, 19667, 37000, 7568, 9861, 793, 88, 4943, 198, 259, 79, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 9861, 793, 88, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 17518, 25235, 1, 4083, 15414, 82, 14692, 14214, 2550, 8973, 198, 448, 79, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 9861, 793, 88, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 9861, 793, 88, 24218, 8068, 1, 4083, 22915, 82, 14692, 4462, 8068, 8973, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 9861, 793, 88, 6, 4083, 17440, 62, 21048, 13, 28751, 13, 3605, 7, 259, 79, 11, 448, 79, 8, 198, 65, 9078, 13, 7890, 13, 48205, 17816, 5606, 38395, 13, 8298, 6, 4083, 5275, 62, 33665, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 9861, 793, 88, 20520, 198, 65, 9078, 13, 7890, 13, 48205, 17816, 3646, 1531, 6, 4083, 5275, 62, 33665, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 9861, 793, 88, 20520, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 9861, 793, 88, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 9861, 793, 88, 24218, 8068, 1, 4083, 15414, 82, 14692, 10258, 1, 4083, 12286, 62, 8367, 796, 357, 16, 13, 15, 11, 15, 13, 1795, 11, 15, 13, 1120, 11, 16, 13, 15, 8, 198, 65, 9078, 13, 2840, 13, 76, 5069, 13, 19795, 1800, 62, 49572, 62, 2860, 3419, 198, 65, 9078, 13, 2840, 13, 35636, 13, 7645, 17660, 7, 8367, 16193, 12, 18, 13, 15, 11, 16, 13, 15, 11, 16, 13, 15, 4008, 198, 65, 9078, 13, 2840, 13, 15252, 13, 1477, 671, 62, 5796, 5226, 3419, 198, 65, 9078, 13, 7890, 13, 33665, 82, 13, 3605, 10786, 5005, 487, 1904, 11537, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 5005, 487, 1904, 6, 4083, 1904, 62, 77, 4147, 796, 6407, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 5005, 487, 1904, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 13, 3605, 7, 4906, 2625, 2484, 5067, 19667, 37000, 7568, 28813, 1904, 4943, 198, 259, 79, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 5005, 487, 1904, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 17518, 25235, 1, 4083, 15414, 82, 14692, 14214, 2550, 8973, 198, 448, 79, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 5005, 487, 1904, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 28813, 1904, 24218, 8068, 1, 4083, 22915, 82, 14692, 4462, 8068, 8973, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 5005, 487, 1904, 6, 4083, 17440, 62, 21048, 13, 28751, 13, 3605, 7, 259, 79, 11, 448, 79, 8, 198, 65, 9078, 13, 7890, 13, 48205, 17816, 5606, 38395, 13, 21601, 6, 4083, 5275, 62, 33665, 796, 275, 9078, 13, 7890, 13, 33665, 82, 17816, 5005, 487, 1904, 20520, 198, 65, 9078, 13, 7890, 13, 33665, 82, 17816, 5005, 487, 1904, 6, 4083, 17440, 62, 21048, 13, 77, 4147, 14692, 28813, 1904, 24218, 8068, 1, 4083, 15414, 82, 14692, 10258, 1, 4083, 12286, 62, 8367, 796, 357, 16, 13, 15, 11, 15, 13, 1795, 11, 15, 13, 1120, 11, 16, 13, 15, 8, 198, 65, 9078, 13, 2840, 13, 13287, 13, 13287, 7, 1904, 62, 1177, 634, 796, 6407, 11, 3551, 62, 24219, 28, 17821, 8, 198, 2, 5268, 286, 2393, 628 ]
2.44386
1,710
import os from kivy.uix.image import Image print("Warning: this module will be removed in future") ASSET_PATH = os.path.dirname(__file__) SIZE_MOD = 32 tiles = { 'grass': lambda **kwargs: tile_factory("grass.png", **kwargs), 'settlement': lambda **kwargs: tile_factory("settlement.png", **kwargs), 'forest': lambda **kwargs: tile_factory("forest.png", **kwargs), 'hill': lambda **kwargs: tile_factory("hill.png", **kwargs), 'mountain': lambda **kwargs: tile_factory("mountain.png", **kwargs), 'wood_bridge': lambda **kwargs: tile_factory("wood_bridge.png", **kwargs), 'river': lambda **kwargs: tile_factory("river.png", **kwargs), } Troop = lambda pos, **kwargs: Image( source=os.path.join(ASSET_PATH, "troop.png"), size_hint=(None, None), size=(SIZE_MOD, SIZE_MOD), pos=(pos[0] * SIZE_MOD, pos[1] * SIZE_MOD,), **kwargs ) Target = lambda pos, **kwargs: Image( source=os.path.join(ASSET_PATH, "target.png"), size_hint=(None, None), size=(SIZE_MOD, SIZE_MOD), pos=(pos[0] * SIZE_MOD, pos[1] * SIZE_MOD,), color=[1, 1, 1, 1], **kwargs )
[ 198, 198, 11748, 28686, 198, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 9060, 1330, 7412, 628, 198, 4798, 7203, 20361, 25, 428, 8265, 481, 307, 4615, 287, 2003, 4943, 628, 198, 10705, 2767, 62, 34219, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 33489, 62, 33365, 796, 3933, 628, 198, 198, 83, 2915, 796, 1391, 198, 220, 220, 220, 705, 29815, 10354, 37456, 12429, 46265, 22046, 25, 17763, 62, 69, 9548, 7203, 29815, 13, 11134, 1600, 12429, 46265, 22046, 828, 198, 220, 220, 220, 705, 17744, 1732, 10354, 37456, 12429, 46265, 22046, 25, 17763, 62, 69, 9548, 7203, 17744, 1732, 13, 11134, 1600, 12429, 46265, 22046, 828, 198, 220, 220, 220, 705, 29623, 10354, 37456, 12429, 46265, 22046, 25, 17763, 62, 69, 9548, 7203, 29623, 13, 11134, 1600, 12429, 46265, 22046, 828, 198, 220, 220, 220, 705, 12639, 10354, 37456, 12429, 46265, 22046, 25, 17763, 62, 69, 9548, 7203, 12639, 13, 11134, 1600, 12429, 46265, 22046, 828, 198, 220, 220, 220, 705, 14948, 391, 10354, 37456, 12429, 46265, 22046, 25, 17763, 62, 69, 9548, 7203, 14948, 391, 13, 11134, 1600, 12429, 46265, 22046, 828, 198, 220, 220, 220, 705, 3822, 62, 9458, 10354, 37456, 12429, 46265, 22046, 25, 17763, 62, 69, 9548, 7203, 3822, 62, 9458, 13, 11134, 1600, 12429, 46265, 22046, 828, 198, 220, 220, 220, 705, 38291, 10354, 37456, 12429, 46265, 22046, 25, 17763, 62, 69, 9548, 7203, 38291, 13, 11134, 1600, 12429, 46265, 22046, 828, 198, 92, 198, 44095, 404, 796, 37456, 1426, 11, 12429, 46265, 22046, 25, 7412, 7, 198, 220, 220, 220, 2723, 28, 418, 13, 6978, 13, 22179, 7, 10705, 2767, 62, 34219, 11, 366, 23528, 404, 13, 11134, 12340, 198, 220, 220, 220, 2546, 62, 71, 600, 16193, 14202, 11, 6045, 828, 198, 220, 220, 220, 2546, 16193, 33489, 62, 33365, 11, 311, 35400, 62, 33365, 828, 198, 220, 220, 220, 1426, 16193, 1930, 58, 15, 60, 1635, 311, 35400, 62, 33365, 11, 1426, 58, 16, 60, 1635, 311, 35400, 62, 33365, 11, 828, 198, 220, 220, 220, 12429, 46265, 22046, 198, 8, 198, 21745, 796, 37456, 1426, 11, 12429, 46265, 22046, 25, 7412, 7, 198, 220, 220, 220, 2723, 28, 418, 13, 6978, 13, 22179, 7, 10705, 2767, 62, 34219, 11, 366, 16793, 13, 11134, 12340, 198, 220, 220, 220, 2546, 62, 71, 600, 16193, 14202, 11, 6045, 828, 198, 220, 220, 220, 2546, 16193, 33489, 62, 33365, 11, 311, 35400, 62, 33365, 828, 198, 220, 220, 220, 1426, 16193, 1930, 58, 15, 60, 1635, 311, 35400, 62, 33365, 11, 1426, 58, 16, 60, 1635, 311, 35400, 62, 33365, 11, 828, 198, 220, 220, 220, 3124, 41888, 16, 11, 352, 11, 352, 11, 352, 4357, 198, 220, 220, 220, 12429, 46265, 22046, 198, 8, 198 ]
2.428261
460
"""Sanity check.""" import os import sys from pathlib import Path from time import sleep import requests from subprocess import Popen import portalocker from logzero import logger # start the server if not already started lockfile = f'{Path(__file__).parent.parent / "deepl_fastapi" / "deepl_server.py.portalocker.lock"}' logger.info("lockfile: %s", lockfile) file = open(lockfile, "r+") try: portalocker.lock(file, portalocker.LOCK_EX | portalocker.LOCK_NB) locked = False portalocker.unlock(file) except Exception: locked = True logger.debug("locked: %s", locked) if not locked: cwd = Path(__file__).absolute().parent.as_posix() executable = f"{sys.executable}" if os.name in ["posix"]: # linux and friends cmd = f"nohup python -m deepl_fastapi.run_uvicorn > {cwd}" "/server.out 2>&1 &" Popen(cmd, shell=True) logger.info( "fastapi server running in background, output logged to: %s/server.out", cwd, ) else: try: Popen(f"{executable} -m deepl_fastapi.run_uvicorn", shell=True) logger.info( "\n\t [%s] fastapi server running in background\n", "deepl_fastapi.run_uvicorn", ) except Exception as exc: logger.debug(exc) # wait for server to come up sleep(20)
[ 37811, 15017, 414, 2198, 526, 15931, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 640, 1330, 3993, 198, 198, 11748, 7007, 198, 6738, 850, 14681, 1330, 8099, 268, 198, 11748, 17898, 12721, 198, 6738, 2604, 22570, 1330, 49706, 198, 198, 2, 923, 262, 4382, 611, 407, 1541, 2067, 198, 198, 5354, 7753, 796, 277, 6, 90, 15235, 7, 834, 7753, 834, 737, 8000, 13, 8000, 1220, 366, 67, 1453, 489, 62, 7217, 15042, 1, 1220, 366, 67, 1453, 489, 62, 15388, 13, 9078, 13, 634, 282, 12721, 13, 5354, 20662, 6, 198, 6404, 1362, 13, 10951, 7203, 5354, 7753, 25, 4064, 82, 1600, 5793, 7753, 8, 198, 7753, 796, 1280, 7, 5354, 7753, 11, 366, 81, 10, 4943, 198, 28311, 25, 198, 220, 220, 220, 17898, 12721, 13, 5354, 7, 7753, 11, 17898, 12721, 13, 36840, 62, 6369, 930, 17898, 12721, 13, 36840, 62, 32819, 8, 198, 220, 220, 220, 8970, 796, 10352, 198, 220, 220, 220, 17898, 12721, 13, 403, 5354, 7, 7753, 8, 198, 16341, 35528, 25, 198, 220, 220, 220, 8970, 796, 6407, 198, 198, 6404, 1362, 13, 24442, 7203, 24162, 25, 4064, 82, 1600, 8970, 8, 198, 361, 407, 8970, 25, 198, 220, 220, 220, 269, 16993, 796, 10644, 7, 834, 7753, 834, 737, 48546, 22446, 8000, 13, 292, 62, 1930, 844, 3419, 198, 220, 220, 220, 28883, 796, 277, 1, 90, 17597, 13, 18558, 18187, 36786, 198, 220, 220, 220, 611, 28686, 13, 3672, 287, 14631, 1930, 844, 1, 5974, 220, 1303, 32639, 290, 2460, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 277, 1, 77, 1219, 929, 21015, 532, 76, 390, 68, 489, 62, 7217, 15042, 13, 5143, 62, 14795, 291, 1211, 1875, 1391, 66, 16993, 36786, 12813, 15388, 13, 448, 362, 29, 5, 16, 1222, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8099, 268, 7, 28758, 11, 7582, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7217, 15042, 4382, 2491, 287, 4469, 11, 5072, 18832, 284, 25, 4064, 82, 14, 15388, 13, 448, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 16993, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8099, 268, 7, 69, 1, 90, 18558, 18187, 92, 532, 76, 390, 68, 489, 62, 7217, 15042, 13, 5143, 62, 14795, 291, 1211, 1600, 7582, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37082, 77, 59, 83, 685, 4, 82, 60, 3049, 15042, 4382, 2491, 287, 4469, 59, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 67, 1453, 489, 62, 7217, 15042, 13, 5143, 62, 14795, 291, 1211, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 41194, 8, 628, 220, 220, 220, 1303, 4043, 329, 4382, 284, 1282, 510, 198, 220, 220, 220, 3993, 7, 1238, 8, 628 ]
2.32363
584
import logging import numpy as np
[ 11748, 18931, 198, 198, 11748, 299, 32152, 355, 45941, 628 ]
3.6
10
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.utils import timezone import plotly.offline as plotly import plotly.graph_objs as go from core.utils import duration_parts from reports import utils def sleep_totals(instances): """ Create a graph showing total time sleeping for each day. :param instances: a QuerySet of Sleep instances. :returns: a tuple of the the graph's html and javascript. """ totals = {} for instance in instances: start = timezone.localtime(instance.start) end = timezone.localtime(instance.end) if start.date() not in totals.keys(): totals[start.date()] = timezone.timedelta(seconds=0) if end.date() not in totals.keys(): totals[end.date()] = timezone.timedelta(seconds=0) # Account for dates crossing midnight. if start.date() != end.date(): totals[start.date()] += end.replace( year=start.year, month=start.month, day=start.day, hour=23, minute=59, second=59) - start totals[end.date()] += end - start.replace( year=end.year, month=end.month, day=end.day, hour=0, minute=0, second=0) else: totals[start.date()] += instance.duration trace = go.Bar( name='Total sleep', x=list(totals.keys()), y=[td.seconds/3600 for td in totals.values()], hoverinfo='text', textposition='outside', text=[_duration_string_short(td) for td in totals.values()] ) layout_args = utils.default_graph_layout_options() layout_args['barmode'] = 'stack' layout_args['title'] = '<b>Sleep Totals</b>' layout_args['xaxis']['title'] = 'Date' layout_args['xaxis']['rangeselector'] = utils.rangeselector_date() layout_args['yaxis']['title'] = 'Hours of sleep' fig = go.Figure({ 'data': [trace], 'layout': go.Layout(**layout_args) }) output = plotly.plot(fig, output_type='div', include_plotlyjs=False) return utils.split_graph_output(output) def _duration_string_short(duration): """ Format a "short" duration string without seconds precision. This is intended to fit better in smaller spaces on a graph. :returns: a string of the form XhXm. """ h, m, s = duration_parts(duration) return '{}h{}m'.format(h, m)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 198, 11748, 7110, 306, 13, 2364, 1370, 355, 7110, 306, 198, 11748, 7110, 306, 13, 34960, 62, 672, 8457, 355, 467, 198, 198, 6738, 4755, 13, 26791, 1330, 9478, 62, 42632, 198, 198, 6738, 3136, 1330, 3384, 4487, 628, 198, 4299, 3993, 62, 83, 313, 874, 7, 8625, 1817, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 4823, 4478, 2472, 640, 11029, 329, 1123, 1110, 13, 198, 220, 220, 220, 1058, 17143, 10245, 25, 257, 43301, 7248, 286, 17376, 10245, 13, 198, 220, 220, 220, 1058, 7783, 82, 25, 257, 46545, 286, 262, 262, 4823, 338, 27711, 290, 44575, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26310, 796, 23884, 198, 220, 220, 220, 329, 4554, 287, 10245, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 640, 11340, 13, 12001, 2435, 7, 39098, 13, 9688, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 640, 11340, 13, 12001, 2435, 7, 39098, 13, 437, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 923, 13, 4475, 3419, 407, 287, 26310, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26310, 58, 9688, 13, 4475, 3419, 60, 796, 640, 11340, 13, 16514, 276, 12514, 7, 43012, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 886, 13, 4475, 3419, 407, 287, 26310, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26310, 58, 437, 13, 4475, 3419, 60, 796, 640, 11340, 13, 16514, 276, 12514, 7, 43012, 28, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10781, 329, 9667, 12538, 15896, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 923, 13, 4475, 3419, 14512, 886, 13, 4475, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26310, 58, 9688, 13, 4475, 3419, 60, 15853, 886, 13, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 28, 9688, 13, 1941, 11, 1227, 28, 9688, 13, 8424, 11, 1110, 28, 9688, 13, 820, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 28, 1954, 11, 5664, 28, 3270, 11, 1218, 28, 3270, 8, 532, 923, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26310, 58, 437, 13, 4475, 3419, 60, 15853, 886, 532, 923, 13, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 28, 437, 13, 1941, 11, 1227, 28, 437, 13, 8424, 11, 1110, 28, 437, 13, 820, 11, 1711, 28, 15, 11, 5664, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1218, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26310, 58, 9688, 13, 4475, 3419, 60, 15853, 4554, 13, 32257, 628, 220, 220, 220, 12854, 796, 467, 13, 10374, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 14957, 3993, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 4868, 7, 83, 313, 874, 13, 13083, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 8671, 13, 43012, 14, 2623, 405, 329, 41560, 287, 26310, 13, 27160, 3419, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 20599, 10951, 11639, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 9150, 11639, 43435, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 28, 29795, 32257, 62, 8841, 62, 19509, 7, 8671, 8, 329, 41560, 287, 26310, 13, 27160, 3419, 60, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 12461, 62, 22046, 796, 3384, 4487, 13, 12286, 62, 34960, 62, 39786, 62, 25811, 3419, 198, 220, 220, 220, 12461, 62, 22046, 17816, 65, 1670, 1098, 20520, 796, 705, 25558, 6, 198, 220, 220, 220, 12461, 62, 22046, 17816, 7839, 20520, 796, 705, 27, 65, 29, 40555, 20323, 874, 3556, 65, 29, 6, 198, 220, 220, 220, 12461, 62, 22046, 17816, 87, 22704, 6, 7131, 6, 7839, 20520, 796, 705, 10430, 6, 198, 220, 220, 220, 12461, 62, 22046, 17816, 87, 22704, 6, 7131, 6, 36985, 2771, 801, 273, 20520, 796, 3384, 4487, 13, 36985, 2771, 801, 273, 62, 4475, 3419, 198, 220, 220, 220, 12461, 62, 22046, 17816, 88, 22704, 6, 7131, 6, 7839, 20520, 796, 705, 39792, 286, 3993, 6, 628, 220, 220, 220, 2336, 796, 467, 13, 11337, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 685, 40546, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39786, 10354, 467, 13, 32517, 7, 1174, 39786, 62, 22046, 8, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 5072, 796, 7110, 306, 13, 29487, 7, 5647, 11, 5072, 62, 4906, 11639, 7146, 3256, 2291, 62, 29487, 306, 8457, 28, 25101, 8, 198, 220, 220, 220, 1441, 3384, 4487, 13, 35312, 62, 34960, 62, 22915, 7, 22915, 8, 628, 198, 4299, 4808, 32257, 62, 8841, 62, 19509, 7, 32257, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18980, 257, 366, 19509, 1, 9478, 4731, 1231, 4201, 15440, 13, 770, 318, 198, 220, 220, 220, 5292, 284, 4197, 1365, 287, 4833, 9029, 319, 257, 4823, 13, 198, 220, 220, 220, 1058, 7783, 82, 25, 257, 4731, 286, 262, 1296, 1395, 71, 55, 76, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 289, 11, 285, 11, 264, 796, 9478, 62, 42632, 7, 32257, 8, 198, 220, 220, 220, 1441, 705, 90, 92, 71, 90, 92, 76, 4458, 18982, 7, 71, 11, 285, 8, 198 ]
2.409274
992
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import unittest from ovm.exceptions import OVMError from ovm.drivers.driver_loader import DriverLoader from ovm.drivers.storage.lvm import LvmDriver from ovm.drivers.storage.file import FileDriver from ovm.drivers.network.bridge import BridgeDriver
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 267, 14761, 13, 1069, 11755, 1330, 440, 15996, 12331, 198, 6738, 267, 14761, 13, 36702, 13, 26230, 62, 29356, 1330, 12434, 17401, 198, 6738, 267, 14761, 13, 36702, 13, 35350, 13, 6780, 76, 1330, 406, 14761, 32103, 198, 6738, 267, 14761, 13, 36702, 13, 35350, 13, 7753, 1330, 9220, 32103, 198, 6738, 267, 14761, 13, 36702, 13, 27349, 13, 9458, 1330, 10290, 32103, 628 ]
3.114583
96
from parameterized import parameterized from api.proquest.identifier import ProQuestIdentifierParser from core.model import Identifier
[ 6738, 11507, 1143, 1330, 11507, 1143, 198, 198, 6738, 40391, 13, 1676, 6138, 13, 738, 7483, 1330, 1041, 12166, 33234, 7483, 46677, 198, 6738, 4755, 13, 19849, 1330, 11440, 7483, 628 ]
4.419355
31
import functools import operator from enum import Enum from itertools import combinations from typing import Any, Sequence, Tuple import geopandas as gpd import numpy as np import pygeos import shapely.geometry as sg IntArray = np.ndarray FloatArray = np.ndarray coord_dtype = np.dtype([("x", np.float64), ("y", np.float64)]) def overlap_shortlist(features: gpd.GeoSeries) -> Tuple[IntArray, IntArray]: """ Create a shortlist of polygons or linestrings indices to check against each other using their bounding boxes. """ bounds = features.bounds index_a, index_b = ( np.array(index) for index in zip(*combinations(features.index, 2)) ) df_a = bounds.loc[index_a] df_b = bounds.loc[index_b] # Convert to dict to get rid of clashing index. a = {k: df_a[k].values for k in df_a} b = {k: df_b[k].values for k in df_b} # Touching does not count as overlap here. overlap = ( (a["maxx"] >= b["minx"]) & (b["maxx"] >= a["minx"]) & (a["maxy"] >= b["miny"]) & (b["maxy"] >= a["miny"]) ) return index_a[overlap], index_b[overlap] def check_features(features: gpd.GeoSeries, feature_type) -> None: """ Features should: * be simple: no self-intersection * not intersect with other features """ # Note: make sure to call geopandas functions rather than shapely or pygeos # where possible. Otherwise, either conversion is required, or duplicate # implementations, one with shapely and one with pygeos. # Check valid are_simple = features.is_simple n_complex = (~are_simple).sum() if n_complex > 0: raise ValueError( f"{n_complex} cases of complex {feature_type} detected: these " " features contain self intersections" ) if len(features) <= 1: return check_intersection(features, feature_type) return def check_linestrings( linestrings: gpd.GeoSeries, polygons: gpd.GeoSeries, ) -> None: """ Check whether linestrings are fully contained in a single polygon. """ check_features(linestrings, "linestring") intersects = gpd.GeoDataFrame(geometry=linestrings).sjoin( df=gpd.GeoDataFrame(geometry=polygons), predicate="within", ) n_diff = len(linestrings) - len(intersects) if n_diff != 0: raise ValueError( "The same linestring detected in multiple polygons or " "linestring detected outside of any polygon; " "a linestring must be fully contained by a single polygon." ) return def check_points( points: gpd.GeoSeries, polygons: gpd.GeoSeries, ) -> None: """ Check whether points are contained by a polygon. """ within = gpd.GeoDataFrame(geometry=points).sjoin( df=gpd.GeoDataFrame(geometry=polygons), predicate="within", ) n_outside = len(points) - len(within) if n_outside != 0: raise ValueError(f"{n_outside} points detected outside of a polygon") return
[ 11748, 1257, 310, 10141, 198, 11748, 10088, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 340, 861, 10141, 1330, 17790, 198, 6738, 19720, 1330, 4377, 11, 45835, 11, 309, 29291, 198, 198, 11748, 30324, 392, 292, 355, 27809, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 469, 418, 198, 11748, 5485, 306, 13, 469, 15748, 355, 264, 70, 198, 198, 5317, 19182, 796, 45941, 13, 358, 18747, 198, 43879, 19182, 796, 45941, 13, 358, 18747, 198, 37652, 62, 67, 4906, 796, 45941, 13, 67, 4906, 26933, 7203, 87, 1600, 45941, 13, 22468, 2414, 828, 5855, 88, 1600, 45941, 13, 22468, 2414, 8, 12962, 628, 628, 628, 198, 198, 4299, 21721, 62, 19509, 4868, 7, 40890, 25, 27809, 67, 13, 10082, 78, 27996, 8, 4613, 309, 29291, 58, 5317, 19182, 11, 2558, 19182, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 1790, 4868, 286, 25052, 684, 393, 9493, 395, 33173, 36525, 284, 2198, 1028, 1123, 198, 220, 220, 220, 584, 1262, 511, 5421, 278, 10559, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22303, 796, 3033, 13, 65, 3733, 198, 220, 220, 220, 6376, 62, 64, 11, 6376, 62, 65, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 7, 9630, 8, 329, 6376, 287, 19974, 46491, 24011, 7352, 7, 40890, 13, 9630, 11, 362, 4008, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 47764, 62, 64, 796, 22303, 13, 17946, 58, 9630, 62, 64, 60, 198, 220, 220, 220, 47764, 62, 65, 796, 22303, 13, 17946, 58, 9630, 62, 65, 60, 198, 220, 220, 220, 1303, 38240, 284, 8633, 284, 651, 5755, 286, 537, 2140, 6376, 13, 198, 220, 220, 220, 257, 796, 1391, 74, 25, 47764, 62, 64, 58, 74, 4083, 27160, 329, 479, 287, 47764, 62, 64, 92, 198, 220, 220, 220, 275, 796, 1391, 74, 25, 47764, 62, 65, 58, 74, 4083, 27160, 329, 479, 287, 47764, 62, 65, 92, 198, 220, 220, 220, 1303, 15957, 278, 857, 407, 954, 355, 21721, 994, 13, 198, 220, 220, 220, 21721, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 357, 64, 14692, 9806, 87, 8973, 18189, 275, 14692, 1084, 87, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1222, 357, 65, 14692, 9806, 87, 8973, 18189, 257, 14692, 1084, 87, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1222, 357, 64, 14692, 76, 6969, 8973, 18189, 275, 14692, 1084, 88, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1222, 357, 65, 14692, 76, 6969, 8973, 18189, 257, 14692, 1084, 88, 8973, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1441, 6376, 62, 64, 58, 2502, 37796, 4357, 6376, 62, 65, 58, 2502, 37796, 60, 628, 628, 198, 4299, 2198, 62, 40890, 7, 40890, 25, 27809, 67, 13, 10082, 78, 27996, 11, 3895, 62, 4906, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17571, 815, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 307, 2829, 25, 645, 2116, 12, 3849, 5458, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 407, 36177, 351, 584, 3033, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 5740, 25, 787, 1654, 284, 869, 30324, 392, 292, 5499, 2138, 621, 5485, 306, 393, 12972, 469, 418, 198, 220, 220, 220, 1303, 810, 1744, 13, 15323, 11, 2035, 11315, 318, 2672, 11, 393, 23418, 198, 220, 220, 220, 1303, 25504, 11, 530, 351, 5485, 306, 290, 530, 351, 12972, 469, 418, 13, 628, 220, 220, 220, 1303, 6822, 4938, 198, 220, 220, 220, 389, 62, 36439, 796, 3033, 13, 271, 62, 36439, 198, 220, 220, 220, 299, 62, 41887, 796, 31034, 533, 62, 36439, 737, 16345, 3419, 198, 220, 220, 220, 611, 299, 62, 41887, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 77, 62, 41887, 92, 2663, 286, 3716, 1391, 30053, 62, 4906, 92, 12326, 25, 777, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3033, 3994, 2116, 42085, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 611, 18896, 7, 40890, 8, 19841, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 2198, 62, 3849, 5458, 7, 40890, 11, 3895, 62, 4906, 8, 198, 220, 220, 220, 1441, 628, 198, 198, 4299, 2198, 62, 2815, 395, 33173, 7, 198, 220, 220, 220, 9493, 395, 33173, 25, 27809, 67, 13, 10082, 78, 27996, 11, 198, 220, 220, 220, 25052, 684, 25, 27809, 67, 13, 10082, 78, 27996, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 1771, 9493, 395, 33173, 389, 3938, 7763, 287, 257, 2060, 7514, 14520, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2198, 62, 40890, 7, 2815, 395, 33173, 11, 366, 2815, 395, 1806, 4943, 628, 220, 220, 220, 36177, 82, 796, 27809, 67, 13, 10082, 78, 6601, 19778, 7, 469, 15748, 28, 2815, 395, 33173, 737, 82, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 70, 30094, 13, 10082, 78, 6601, 19778, 7, 469, 15748, 28, 35428, 70, 684, 828, 198, 220, 220, 220, 220, 220, 220, 220, 44010, 2625, 33479, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 299, 62, 26069, 796, 18896, 7, 2815, 395, 33173, 8, 532, 18896, 7, 3849, 8831, 82, 8, 198, 220, 220, 220, 611, 299, 62, 26069, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 464, 976, 9493, 395, 1806, 12326, 287, 3294, 25052, 684, 393, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2815, 395, 1806, 12326, 2354, 286, 597, 7514, 14520, 26, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 64, 9493, 395, 1806, 1276, 307, 3938, 7763, 416, 257, 2060, 7514, 14520, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 628, 198, 4299, 2198, 62, 13033, 7, 198, 220, 220, 220, 2173, 25, 27809, 67, 13, 10082, 78, 27996, 11, 198, 220, 220, 220, 25052, 684, 25, 27809, 67, 13, 10082, 78, 27996, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 1771, 2173, 389, 7763, 416, 257, 7514, 14520, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1626, 796, 27809, 67, 13, 10082, 78, 6601, 19778, 7, 469, 15748, 28, 13033, 737, 82, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 70, 30094, 13, 10082, 78, 6601, 19778, 7, 469, 15748, 28, 35428, 70, 684, 828, 198, 220, 220, 220, 220, 220, 220, 220, 44010, 2625, 33479, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 299, 62, 43435, 796, 18896, 7, 13033, 8, 532, 18896, 7, 33479, 8, 198, 220, 220, 220, 611, 299, 62, 43435, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 90, 77, 62, 43435, 92, 2173, 12326, 2354, 286, 257, 7514, 14520, 4943, 198, 220, 220, 220, 1441, 628, 628 ]
2.504085
1,224
import time import DFL168A SuccessFresh=False
[ 11748, 640, 201, 198, 11748, 360, 3697, 14656, 32, 201, 198, 33244, 35857, 28, 25101, 201 ]
3
16
import numpy as np import logging import cv2 import os from torch.utils.data import Dataset
[ 11748, 299, 32152, 355, 45941, 198, 11748, 18931, 198, 11748, 269, 85, 17, 198, 11748, 28686, 198, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 628 ]
3.241379
29
####################################### # Copyright 2019 PMP SA. # # SPDX-License-Identifier: Apache-2.0 # ####################################### import os import pytest from rpackutils.config import Config
[ 29113, 4242, 21017, 198, 2, 15069, 13130, 3122, 47, 14719, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 1303, 198, 29113, 4242, 21017, 198, 198, 11748, 28686, 198, 11748, 12972, 9288, 198, 6738, 374, 8002, 26791, 13, 11250, 1330, 17056, 628 ]
3.539683
63
import pandas as pd import numpy as nm import sqlite3 from scipy.sparse.linalg import svds from sqlalchemy import create_engine engine=create_engine("postgres://postgres:25736534@localhost:5432/postgres") print(user_row_number) sorted_user_predictions = predictions_df.iloc[user_row_number].sort_values(ascending=False) user_data = original_ratings_df[original_ratings_df.account_id == (userID)] user_full = (user_data.merge(movies_df, how = 'left', left_on = 'movie_id', right_on = 'movie_id'). sort_values(['rating'], ascending=False)) recommendations = (movies_df[~movies_df['movie_id'].isin(user_full['movie_id'])]. merge(pd.DataFrame(sorted_user_predictions).reset_index(), how = 'left', left_on = 'movie_id', right_on = 'movie_id'). rename(columns = {user_row_number: 'Predictions'}). sort_values('Predictions', ascending = False). iloc[:num_recommendations, :-1] ) return recommendations
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 28642, 198, 11748, 44161, 578, 18, 198, 6738, 629, 541, 88, 13, 82, 29572, 13, 75, 1292, 70, 1330, 38487, 9310, 198, 6738, 44161, 282, 26599, 1330, 2251, 62, 18392, 198, 18392, 28, 17953, 62, 18392, 7203, 7353, 34239, 1378, 7353, 34239, 25, 28676, 24760, 2682, 31, 36750, 25, 4051, 2624, 14, 7353, 34239, 4943, 198, 220, 220, 220, 3601, 7, 7220, 62, 808, 62, 17618, 8, 198, 197, 82, 9741, 62, 7220, 62, 28764, 9278, 796, 16277, 62, 7568, 13, 346, 420, 58, 7220, 62, 808, 62, 17618, 4083, 30619, 62, 27160, 7, 3372, 1571, 28, 25101, 8, 198, 197, 7220, 62, 7890, 796, 2656, 62, 10366, 654, 62, 7568, 58, 14986, 62, 10366, 654, 62, 7568, 13, 23317, 62, 312, 6624, 357, 7220, 2389, 15437, 198, 197, 7220, 62, 12853, 796, 357, 7220, 62, 7890, 13, 647, 469, 7, 76, 20526, 62, 7568, 11, 703, 796, 705, 9464, 3256, 1364, 62, 261, 796, 705, 41364, 62, 312, 3256, 826, 62, 261, 796, 705, 41364, 62, 312, 27691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 27160, 7, 17816, 8821, 6, 4357, 41988, 28, 25101, 4008, 198, 197, 47335, 437, 602, 796, 357, 76, 20526, 62, 7568, 58, 93, 76, 20526, 62, 7568, 17816, 41364, 62, 312, 6, 4083, 45763, 7, 7220, 62, 12853, 17816, 41364, 62, 312, 6, 12962, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 20121, 7, 30094, 13, 6601, 19778, 7, 82, 9741, 62, 7220, 62, 28764, 9278, 737, 42503, 62, 9630, 22784, 703, 796, 705, 9464, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 62, 261, 796, 705, 41364, 62, 312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 826, 62, 261, 796, 705, 41364, 62, 312, 27691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36265, 7, 28665, 82, 796, 1391, 7220, 62, 808, 62, 17618, 25, 705, 39156, 9278, 6, 92, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 27160, 10786, 39156, 9278, 3256, 41988, 796, 10352, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4229, 420, 58, 25, 22510, 62, 47335, 437, 602, 11, 1058, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 197, 7783, 10763, 628, 198 ]
2.328054
442
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\gsi_handlers\buff_handlers.py # Compiled at: 2014-05-30 02:11:42 # Size of source mod 2**32: 4843 bytes from gsi_handlers.gameplay_archiver import GameplayArchiver from sims4.gsi.schema import GsiGridSchema, GsiFieldVisualizers import services from protocolbuffers import Sims_pb2 sim_buff_log_schema = GsiGridSchema(label='Buffs Log', sim_specific=True) sim_buff_log_schema.add_field('buff_id', label='Buff ID', type=(GsiFieldVisualizers.INT), width=0.5) sim_buff_log_schema.add_field('buff_name', label='Name', width=2) sim_buff_log_schema.add_field('equipped', label='Equip', width=1) sim_buff_log_schema.add_field('buff_reason', label='Reason', width=1) sim_buff_log_schema.add_field('timeout', label='Timeout', width=2) sim_buff_log_schema.add_field('rate', label='Rate', width=2) sim_buff_log_schema.add_field('is_mood_buff', label='Is Mood Buff', width=2) sim_buff_log_schema.add_field('progress_arrow', label='Progress Arrow', width=2) sim_buff_log_schema.add_field('commodity_guid', label='Commodity Guid', type=(GsiFieldVisualizers.INT), hidden=True) sim_buff_log_schema.add_field('transition_into_buff_id', label='Next Buff ID', type=(GsiFieldVisualizers.INT), hidden=True) sim_buff_log_archiver = GameplayArchiver('sim_buff_log', sim_buff_log_schema) sim_mood_log_schema = GsiGridSchema(label='Mood Log', sim_specific=True) sim_mood_log_schema.add_field('mood_id', label='Mood ID', type=(GsiFieldVisualizers.INT), width=0.5) sim_mood_log_schema.add_field('mood_name', label='Name', width=2) sim_mood_log_schema.add_field('mood_intensity', label='Intensity', width=2) with sim_mood_log_schema.add_has_many('active_buffs', GsiGridSchema, label='Buffs at update') as (sub_schema): sub_schema.add_field('buff_id', label='Buff ID') sub_schema.add_field('buff_name', label='Buff name') sub_schema.add_field('buff_mood', label='Buff Mood') sub_schema.add_field('buff_mood_override', label='Mood Override (current)') sub_schema.add_field('buff_mood_override_pending', label='Mood Override (pending)') sim_mood_log_archiver = GameplayArchiver('sim_mood_log', sim_mood_log_schema)
[ 2, 34318, 2349, 21, 2196, 513, 13, 22, 13, 19, 198, 2, 11361, 18022, 8189, 513, 13, 22, 357, 2091, 5824, 8, 198, 2, 4280, 3361, 3902, 422, 25, 11361, 513, 13, 22, 13, 24, 357, 31499, 14, 85, 18, 13, 22, 13, 24, 25, 1485, 66, 24, 2857, 2857, 66, 22, 11, 2447, 1596, 12131, 11, 1248, 25, 3365, 25, 1507, 8, 685, 5653, 34, 410, 13, 48104, 5598, 1643, 357, 28075, 2414, 15437, 198, 2, 13302, 47238, 2393, 1438, 25, 309, 7479, 818, 8777, 59, 43241, 59, 7391, 82, 59, 10697, 59, 70, 13396, 62, 4993, 8116, 59, 36873, 62, 4993, 8116, 13, 9078, 198, 2, 3082, 3902, 379, 25, 1946, 12, 2713, 12, 1270, 7816, 25, 1157, 25, 3682, 198, 2, 12849, 286, 2723, 953, 362, 1174, 2624, 25, 4764, 3559, 9881, 198, 6738, 308, 13396, 62, 4993, 8116, 13, 6057, 1759, 62, 998, 1428, 1330, 3776, 1759, 19895, 1428, 198, 6738, 985, 82, 19, 13, 70, 13396, 13, 15952, 2611, 1330, 402, 13396, 41339, 27054, 2611, 11, 402, 13396, 15878, 36259, 11341, 198, 11748, 2594, 198, 6738, 8435, 36873, 364, 1330, 25343, 62, 40842, 17, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 796, 402, 13396, 41339, 27054, 2611, 7, 18242, 11639, 33, 18058, 5972, 3256, 985, 62, 11423, 28, 17821, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 36873, 62, 312, 3256, 6167, 11639, 36474, 4522, 3256, 2099, 16193, 38, 13396, 15878, 36259, 11341, 13, 12394, 828, 9647, 28, 15, 13, 20, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 36873, 62, 3672, 3256, 6167, 11639, 5376, 3256, 9647, 28, 17, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 40617, 3256, 6167, 11639, 23588, 541, 3256, 9647, 28, 16, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 36873, 62, 41181, 3256, 6167, 11639, 45008, 3256, 9647, 28, 16, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 48678, 3256, 6167, 11639, 48031, 3256, 9647, 28, 17, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 4873, 3256, 6167, 11639, 32184, 3256, 9647, 28, 17, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 271, 62, 76, 702, 62, 36873, 3256, 6167, 11639, 3792, 25723, 8792, 3256, 9647, 28, 17, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 33723, 62, 6018, 3256, 6167, 11639, 32577, 19408, 3256, 9647, 28, 17, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 785, 4666, 414, 62, 5162, 312, 3256, 6167, 11639, 6935, 375, 414, 37026, 3256, 2099, 16193, 38, 13396, 15878, 36259, 11341, 13, 12394, 828, 7104, 28, 17821, 8, 198, 14323, 62, 36873, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 7645, 653, 62, 20424, 62, 36873, 62, 312, 3256, 6167, 11639, 10019, 8792, 4522, 3256, 2099, 16193, 38, 13396, 15878, 36259, 11341, 13, 12394, 828, 7104, 28, 17821, 8, 198, 14323, 62, 36873, 62, 6404, 62, 998, 1428, 796, 3776, 1759, 19895, 1428, 10786, 14323, 62, 36873, 62, 6404, 3256, 985, 62, 36873, 62, 6404, 62, 15952, 2611, 8, 628, 198, 14323, 62, 76, 702, 62, 6404, 62, 15952, 2611, 796, 402, 13396, 41339, 27054, 2611, 7, 18242, 11639, 44, 702, 5972, 3256, 985, 62, 11423, 28, 17821, 8, 198, 14323, 62, 76, 702, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 76, 702, 62, 312, 3256, 6167, 11639, 44, 702, 4522, 3256, 2099, 16193, 38, 13396, 15878, 36259, 11341, 13, 12394, 828, 9647, 28, 15, 13, 20, 8, 198, 14323, 62, 76, 702, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 76, 702, 62, 3672, 3256, 6167, 11639, 5376, 3256, 9647, 28, 17, 8, 198, 14323, 62, 76, 702, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 76, 702, 62, 47799, 3256, 6167, 11639, 5317, 6377, 3256, 9647, 28, 17, 8, 198, 4480, 985, 62, 76, 702, 62, 6404, 62, 15952, 2611, 13, 2860, 62, 10134, 62, 21834, 10786, 5275, 62, 65, 18058, 3256, 402, 13396, 41339, 27054, 2611, 11, 6167, 11639, 33, 18058, 379, 4296, 11537, 355, 357, 7266, 62, 15952, 2611, 2599, 198, 220, 220, 220, 850, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 36873, 62, 312, 3256, 6167, 11639, 36474, 4522, 11537, 198, 220, 220, 220, 850, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 36873, 62, 3672, 3256, 6167, 11639, 36474, 1438, 11537, 198, 220, 220, 220, 850, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 36873, 62, 76, 702, 3256, 6167, 11639, 36474, 25723, 11537, 198, 220, 220, 220, 850, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 36873, 62, 76, 702, 62, 2502, 13154, 3256, 6167, 11639, 44, 702, 3827, 13154, 357, 14421, 8, 11537, 198, 220, 220, 220, 850, 62, 15952, 2611, 13, 2860, 62, 3245, 10786, 36873, 62, 76, 702, 62, 2502, 13154, 62, 79, 1571, 3256, 6167, 11639, 44, 702, 3827, 13154, 357, 79, 1571, 8, 11537, 198, 14323, 62, 76, 702, 62, 6404, 62, 998, 1428, 796, 3776, 1759, 19895, 1428, 10786, 14323, 62, 76, 702, 62, 6404, 3256, 985, 62, 76, 702, 62, 6404, 62, 15952, 2611, 8 ]
2.605381
892
keyboard.send_keys("<shift>+<right>")
[ 2539, 3526, 13, 21280, 62, 13083, 7203, 27, 30846, 29, 10, 27, 3506, 29, 4943 ]
2.466667
15