content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
import requests
from apikey import apikey # Your API key, it's better not to store it in the program
# Enter the WoS search query to evaluate its self-citation percentage:
search_query = '(TS=("self citation*" or selfcitation*)) AND (TP==("HIGHLY CITED PAPERS"))'
headers = {
'X-APIKey': apikey
}
endpoint = "https://api.clarivate.com/api/wos"
# This will save several API queries/records received by storing the already checked citing papers locally
checked_citing_papers = [('ut', 'cited_paper')]
# This is the function that performs the self-citation calculation for every cited reference. If the self-citation event
# has been identified by the above calculation() function, then the citing document is analyzed for the number of
# references to that particular cited document. This is required because the number of citations and the number of
# citing documents are not the same thing. One citing document can have multiple cited references leading to the cited
# one, so the total amount of citations to a paper can sometimes be significantly higher than the number of citing
# records.
a = cited_papers()
b = citing_papers(a)
self_citations(a)
| [
11748,
7007,
198,
6738,
2471,
522,
88,
1330,
2471,
522,
88,
220,
220,
1303,
3406,
7824,
1994,
11,
340,
338,
1365,
407,
284,
3650,
340,
287,
262,
1430,
198,
198,
2,
6062,
262,
22173,
50,
2989,
12405,
284,
13446,
663,
2116,
12,
66,
3780,
5873,
25,
198,
12947,
62,
22766,
796,
29513,
4694,
28,
7203,
944,
27860,
9,
1,
393,
2116,
66,
3780,
9,
4008,
5357,
357,
7250,
855,
7203,
39,
3528,
6581,
56,
327,
22061,
350,
2969,
4877,
48774,
6,
198,
198,
50145,
796,
1391,
198,
220,
220,
220,
705,
55,
12,
17614,
9218,
10354,
2471,
522,
88,
198,
92,
198,
198,
437,
4122,
796,
366,
5450,
1378,
15042,
13,
565,
283,
452,
378,
13,
785,
14,
15042,
14,
86,
418,
1,
198,
198,
2,
770,
481,
3613,
1811,
7824,
20743,
14,
8344,
3669,
2722,
416,
23069,
262,
1541,
10667,
12988,
9473,
15726,
198,
26752,
62,
66,
1780,
62,
40491,
796,
685,
10786,
315,
3256,
705,
66,
863,
62,
20189,
11537,
60,
628,
628,
628,
628,
628,
628,
198,
2,
770,
318,
262,
2163,
326,
17706,
262,
2116,
12,
66,
3780,
17952,
329,
790,
9181,
4941,
13,
1002,
262,
2116,
12,
66,
3780,
1785,
198,
2,
468,
587,
5174,
416,
262,
2029,
17952,
3419,
2163,
11,
788,
262,
12988,
3188,
318,
15475,
329,
262,
1271,
286,
198,
2,
10288,
284,
326,
1948,
9181,
3188,
13,
770,
318,
2672,
780,
262,
1271,
286,
33499,
290,
262,
1271,
286,
198,
2,
12988,
4963,
389,
407,
262,
976,
1517,
13,
1881,
12988,
3188,
460,
423,
3294,
9181,
10288,
3756,
284,
262,
9181,
198,
2,
530,
11,
523,
262,
2472,
2033,
286,
33499,
284,
257,
3348,
460,
3360,
307,
5566,
2440,
621,
262,
1271,
286,
12988,
198,
2,
4406,
13,
628,
198,
198,
64,
796,
9181,
62,
40491,
3419,
198,
65,
796,
12988,
62,
40491,
7,
64,
8,
198,
944,
62,
66,
20597,
7,
64,
8,
198
] | 3.748408 | 314 |
from abc import ABCMeta
from types import TracebackType
from typing import ContextManager
from typing import List
from typing import Optional
from typing import Type
from typing import TypeVar
from typing_extensions import Literal
from typing_extensions import Protocol
from fbsrankings.common import Command
from fbsrankings.common import CommandBus
from fbsrankings.common import EventBus
from fbsrankings.common import Query
from fbsrankings.common import QueryBus
from fbsrankings.domain import RaiseBehavior
from fbsrankings.domain import ValidationError
from fbsrankings.domain import ValidationService
from fbsrankings.infrastructure import QueryManagerFactory
from fbsrankings.infrastructure import TransactionFactory
from fbsrankings.infrastructure.memory import DataSource as MemoryDataSource
from fbsrankings.infrastructure.sportsreference import SportsReference
from fbsrankings.infrastructure.sqlite import DataSource as SqliteDataSource
from fbsrankings.service.command import CommandManager
from fbsrankings.service.config import Config
from fbsrankings.service.config import ConfigStorageType
R = TypeVar("R", covariant=True)
| [
6738,
450,
66,
1330,
9738,
48526,
198,
6738,
3858,
1330,
34912,
1891,
6030,
198,
6738,
19720,
1330,
30532,
13511,
198,
6738,
19720,
1330,
7343,
198,
6738,
19720,
1330,
32233,
198,
6738,
19720,
1330,
5994,
198,
6738,
19720,
1330,
5994,
19852,
198,
198,
6738,
19720,
62,
2302,
5736,
1330,
25659,
1691,
198,
6738,
19720,
62,
2302,
5736,
1330,
20497,
198,
198,
6738,
277,
1443,
43027,
654,
13,
11321,
1330,
9455,
198,
6738,
277,
1443,
43027,
654,
13,
11321,
1330,
9455,
16286,
198,
6738,
277,
1443,
43027,
654,
13,
11321,
1330,
8558,
16286,
198,
6738,
277,
1443,
43027,
654,
13,
11321,
1330,
43301,
198,
6738,
277,
1443,
43027,
654,
13,
11321,
1330,
43301,
16286,
198,
6738,
277,
1443,
43027,
654,
13,
27830,
1330,
35123,
25267,
15759,
198,
6738,
277,
1443,
43027,
654,
13,
27830,
1330,
3254,
24765,
12331,
198,
6738,
277,
1443,
43027,
654,
13,
27830,
1330,
3254,
24765,
16177,
198,
6738,
277,
1443,
43027,
654,
13,
10745,
6410,
1330,
43301,
13511,
22810,
198,
6738,
277,
1443,
43027,
654,
13,
10745,
6410,
1330,
45389,
22810,
198,
6738,
277,
1443,
43027,
654,
13,
10745,
6410,
13,
31673,
1330,
6060,
7416,
355,
14059,
6601,
7416,
198,
6738,
277,
1443,
43027,
654,
13,
10745,
6410,
13,
32945,
35790,
1330,
7092,
26687,
198,
6738,
277,
1443,
43027,
654,
13,
10745,
6410,
13,
25410,
578,
1330,
6060,
7416,
355,
311,
13976,
578,
6601,
7416,
198,
6738,
277,
1443,
43027,
654,
13,
15271,
13,
21812,
1330,
9455,
13511,
198,
6738,
277,
1443,
43027,
654,
13,
15271,
13,
11250,
1330,
17056,
198,
6738,
277,
1443,
43027,
654,
13,
15271,
13,
11250,
1330,
17056,
31425,
6030,
198,
198,
49,
796,
5994,
19852,
7203,
49,
1600,
44829,
415,
28,
17821,
8,
628,
198
] | 4.067376 | 282 |
import inspect
import sys
import typing
from dataclasses import dataclass
if sys.version_info < (3, 9):
from typing_extensions import Annotated, get_args, get_origin
else:
from typing import Annotated, get_origin, get_args
from di.typing import get_markers_from_parameter
from xpresso._utils.typing import model_field_from_param
from xpresso.binders.api import ModelNameMap, OpenAPIBody, OpenAPIBodyMarker, Schemas
from xpresso.binders.dependants import BodyBinderMarker
from xpresso.openapi import models as openapi_models
@dataclass(frozen=True)
@dataclass(frozen=True)
| [
11748,
10104,
198,
11748,
25064,
198,
11748,
19720,
198,
6738,
4818,
330,
28958,
1330,
4818,
330,
31172,
198,
198,
361,
25064,
13,
9641,
62,
10951,
1279,
357,
18,
11,
860,
2599,
198,
220,
220,
220,
422,
19720,
62,
2302,
5736,
1330,
1052,
1662,
515,
11,
651,
62,
22046,
11,
651,
62,
47103,
198,
17772,
25,
198,
220,
220,
220,
422,
19720,
1330,
1052,
1662,
515,
11,
651,
62,
47103,
11,
651,
62,
22046,
198,
198,
6738,
2566,
13,
774,
13886,
1330,
651,
62,
4102,
364,
62,
6738,
62,
17143,
2357,
198,
198,
6738,
2124,
18302,
568,
13557,
26791,
13,
774,
13886,
1330,
2746,
62,
3245,
62,
6738,
62,
17143,
198,
6738,
2124,
18302,
568,
13,
21653,
364,
13,
15042,
1330,
9104,
5376,
13912,
11,
4946,
2969,
9865,
1118,
11,
4946,
2969,
9865,
1118,
9704,
263,
11,
1446,
4411,
292,
198,
6738,
2124,
18302,
568,
13,
21653,
364,
13,
45841,
1187,
1330,
12290,
33,
5540,
9704,
263,
198,
6738,
2124,
18302,
568,
13,
9654,
15042,
1330,
4981,
355,
1280,
15042,
62,
27530,
628,
198,
31,
19608,
330,
31172,
7,
69,
42005,
28,
17821,
8,
628,
198,
31,
19608,
330,
31172,
7,
69,
42005,
28,
17821,
8,
198
] | 2.994898 | 196 |
from operator import itemgetter
import time
import math
import random
import numpy as np
import datetime
from osgeo import ogr, osr
latlongToAlbers = getCoordConverter(4326,5070)
albersToLatlong = getCoordConverter(5070,4326)
start_date = datetime.datetime(1992,1,1)
end_date = datetime.datetime(2017,12,31)
current_date = start_date
increment = datetime.timedelta(minutes=15)
sample_point = (-41.8822705,28.4248646) # (Long, Lat)
travel_path = [sample_point]
while current_date < end_date:
# while line != "":
# line = sea_file.readline()
# point_data = line.split(',')
# try:
# print(type(point_data))
# print(type(point_data[1]))
# print(datetime.datetime.strptime(point_data[1][1],"%Y-%m-%d"))
# # sorted(point_data, key=lambda e: datetime.datetime.strptime(e[1], "%Y-%m-%d"))
# except Exception:
# print("sorting didn't work")
# print(point_data)
# line = ""
bin_file = f"ecco_{str(current_date.year).zfill(4)}-{str(current_date.month).zfill(2)}_000.npy"
curr_vector_field = np.load(f"../images/{bin_file}")
[y,x] = latlongToIndex(sample_point)
# print(f"Index: {[y,x]}")
# print(f"Possible Index: {curr_vector_field[y,x]}")
# print(f"Possible Index: {curr_vector_field[x,y]}")
# print(f"Does this shit even exist???? {curr_vector_field[360-y-1,x]}")
curr_vector = curr_vector_field[y,x]
if np.isnan(curr_vector[0]):
neighbors = get_neighbors(curr_vector_field, x, y)
if len(neighbors) is not 0:
curr_vector = random.choice(neighbors)
sample_point = move_point(sample_point, curr_vector)
travel_path.append(sample_point)
current_date += increment
| [
6738,
10088,
1330,
2378,
1136,
353,
198,
11748,
640,
198,
11748,
10688,
198,
11748,
4738,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
4818,
8079,
198,
6738,
28686,
469,
78,
1330,
267,
2164,
11,
267,
27891,
198,
198,
15460,
6511,
2514,
2348,
1213,
796,
651,
7222,
585,
3103,
332,
353,
7,
3559,
2075,
11,
1120,
2154,
8,
198,
282,
1213,
2514,
24220,
6511,
796,
651,
7222,
585,
3103,
332,
353,
7,
1120,
2154,
11,
3559,
2075,
8,
198,
198,
9688,
62,
4475,
796,
4818,
8079,
13,
19608,
8079,
7,
23847,
11,
16,
11,
16,
8,
198,
437,
62,
4475,
796,
4818,
8079,
13,
19608,
8079,
7,
5539,
11,
1065,
11,
3132,
8,
198,
198,
14421,
62,
4475,
796,
923,
62,
4475,
198,
24988,
434,
796,
4818,
8079,
13,
16514,
276,
12514,
7,
1084,
1769,
28,
1314,
8,
198,
198,
39873,
62,
4122,
796,
13841,
3901,
13,
3459,
1828,
34801,
11,
2078,
13,
19,
23045,
27720,
8,
1303,
357,
14617,
11,
5476,
8,
198,
35927,
62,
6978,
796,
685,
39873,
62,
4122,
60,
628,
628,
628,
198,
4514,
1459,
62,
4475,
1279,
886,
62,
4475,
25,
198,
2,
220,
220,
220,
981,
1627,
14512,
366,
1298,
198,
2,
220,
220,
220,
220,
220,
220,
220,
1627,
796,
5417,
62,
7753,
13,
961,
1370,
3419,
198,
2,
220,
220,
220,
220,
220,
220,
220,
966,
62,
7890,
796,
220,
1627,
13,
35312,
7,
3256,
11537,
198,
2,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
220,
220,
220,
220,
220,
220,
220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
4906,
7,
4122,
62,
7890,
4008,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
4906,
7,
4122,
62,
7890,
58,
16,
60,
4008,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
19608,
8079,
13,
19608,
8079,
13,
2536,
457,
524,
7,
4122,
62,
7890,
58,
16,
7131,
16,
17241,
4,
56,
12,
4,
76,
12,
4,
67,
48774,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
23243,
7,
4122,
62,
7890,
11,
1994,
28,
50033,
304,
25,
4818,
8079,
13,
19608,
8079,
13,
2536,
457,
524,
7,
68,
58,
16,
4357,
36521,
56,
12,
4,
76,
12,
4,
67,
48774,
198,
2,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
82,
24707,
1422,
470,
670,
4943,
198,
2,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
4122,
62,
7890,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
1627,
796,
13538,
198,
220,
220,
220,
9874,
62,
7753,
796,
277,
1,
68,
535,
78,
23330,
2536,
7,
14421,
62,
4475,
13,
1941,
737,
89,
20797,
7,
19,
38165,
12,
90,
2536,
7,
14421,
62,
4475,
13,
8424,
737,
89,
20797,
7,
17,
38165,
62,
830,
13,
77,
9078,
1,
198,
220,
220,
220,
1090,
81,
62,
31364,
62,
3245,
796,
45941,
13,
2220,
7,
69,
1,
40720,
17566,
14,
90,
8800,
62,
7753,
92,
4943,
198,
220,
220,
220,
685,
88,
11,
87,
60,
796,
3042,
6511,
2514,
15732,
7,
39873,
62,
4122,
8,
198,
220,
220,
1303,
3601,
7,
69,
1,
15732,
25,
1391,
58,
88,
11,
87,
48999,
4943,
198,
220,
220,
1303,
3601,
7,
69,
1,
47,
4733,
12901,
25,
1391,
22019,
81,
62,
31364,
62,
3245,
58,
88,
11,
87,
48999,
4943,
198,
220,
220,
1303,
3601,
7,
69,
1,
47,
4733,
12901,
25,
1391,
22019,
81,
62,
31364,
62,
3245,
58,
87,
11,
88,
48999,
4943,
198,
220,
220,
1303,
3601,
7,
69,
1,
13921,
428,
7510,
772,
2152,
9805,
1391,
22019,
81,
62,
31364,
62,
3245,
58,
15277,
12,
88,
12,
16,
11,
87,
48999,
4943,
198,
220,
220,
220,
1090,
81,
62,
31364,
796,
1090,
81,
62,
31364,
62,
3245,
58,
88,
11,
87,
60,
198,
220,
220,
220,
611,
45941,
13,
271,
12647,
7,
22019,
81,
62,
31364,
58,
15,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
12020,
796,
651,
62,
710,
394,
32289,
7,
22019,
81,
62,
31364,
62,
3245,
11,
2124,
11,
331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
710,
394,
32289,
8,
318,
407,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
81,
62,
31364,
796,
4738,
13,
25541,
7,
710,
394,
32289,
8,
198,
220,
220,
220,
6291,
62,
4122,
796,
1445,
62,
4122,
7,
39873,
62,
4122,
11,
1090,
81,
62,
31364,
8,
198,
220,
220,
220,
3067,
62,
6978,
13,
33295,
7,
39873,
62,
4122,
8,
628,
220,
220,
220,
1459,
62,
4475,
15853,
18703,
198,
220,
220,
220,
220,
198
] | 2.197484 | 795 |
from .example import my_func
| [
6738,
764,
20688,
1330,
616,
62,
20786,
201,
198
] | 3.333333 | 9 |
import time
from Xboxcmd import *
import pygame
pygame.init()
pygame.joystick.init()
#查看现在有几个遥控器
joycount = pygame.joystick.get_count()
print("joycount:"+str(joycount))
#连接第一个控制器
joystick = pygame.joystick.Joystick(0)
while True:
#接收事件
pygame.event.get()
axis = get_axis(joystick=joystick)
button = get_button(joystick=joystick)
hats = get_hats(joystick=joystick)
print("_____________")
print(" axis_value:")
print(axis)
print(" button_value")
print(button[3])
print("hat_value")
print(hats)
print("_____________")
time.sleep(3)
| [
11748,
640,
198,
6738,
9445,
28758,
1330,
1635,
198,
11748,
12972,
6057,
198,
198,
9078,
6057,
13,
15003,
3419,
198,
9078,
6057,
13,
2633,
13915,
13,
15003,
3419,
198,
198,
2,
162,
253,
98,
40367,
233,
163,
236,
108,
28839,
101,
17312,
231,
49035,
254,
10310,
103,
34402,
98,
162,
236,
100,
161,
247,
101,
198,
2633,
9127,
796,
12972,
6057,
13,
2633,
13915,
13,
1136,
62,
9127,
3419,
198,
4798,
7203,
2633,
9127,
11097,
10,
2536,
7,
2633,
9127,
4008,
198,
198,
2,
32573,
252,
162,
236,
98,
163,
105,
105,
31660,
10310,
103,
162,
236,
100,
26344,
114,
161,
247,
101,
198,
2633,
13915,
796,
12972,
6057,
13,
2633,
13915,
13,
41338,
13915,
7,
15,
8,
198,
198,
4514,
6407,
25,
198,
220,
220,
220,
1303,
162,
236,
98,
162,
242,
114,
12859,
233,
20015,
114,
198,
220,
220,
220,
12972,
6057,
13,
15596,
13,
1136,
3419,
628,
220,
220,
220,
16488,
796,
651,
62,
22704,
7,
2633,
13915,
28,
2633,
13915,
8,
198,
220,
220,
220,
4936,
796,
651,
62,
16539,
7,
2633,
13915,
28,
2633,
13915,
8,
198,
220,
220,
220,
23910,
796,
651,
62,
71,
1381,
7,
2633,
13915,
28,
2633,
13915,
8,
628,
220,
220,
220,
3601,
7203,
2602,
29343,
4943,
198,
220,
220,
220,
3601,
7203,
16488,
62,
8367,
25,
4943,
198,
220,
220,
220,
3601,
7,
22704,
8,
198,
220,
220,
220,
3601,
7203,
4936,
62,
8367,
4943,
198,
220,
220,
220,
3601,
7,
16539,
58,
18,
12962,
198,
220,
220,
220,
3601,
7203,
5183,
62,
8367,
4943,
198,
220,
220,
220,
3601,
7,
71,
1381,
8,
198,
220,
220,
220,
3601,
7203,
2602,
29343,
4943,
198,
220,
220,
220,
640,
13,
42832,
7,
18,
8,
198
] | 2.073684 | 285 |
'''
@author:yk7333
last modified:2021-4-7
language:python
'''
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
import os
if __name__ == "__main__":
os.chdir("C:\\Users\\m\\Desktop\\第四次作业")
for i in range(3,8,2): #3,5,7
img=read("test2.tif") #第一问
gaussion=Blur(img,i,"Gaussion")
median=Blur(img,i,"Median")
save("gaussion2{0}x{1}.jpg".format(i,i),gaussion)
save("medium2{0}x{1}.jpg".format(i,i),median)
for i in range(3,8,2):
print(Gaussion(i,1.5)) #第二问
print("\n")
img3=read("test3_corrupt.pgm")
img4=read("test4 copy.bmp")
#unshape masking
img3_blur=Blur(img3,5,sigma=1) #采用5x5高斯滤波进行模糊处理
img4_blur=Blur(img4,5,sigma=1)
mask3=img3-img3_blur
mask4=img4-img4_blur
save("img3_unmask.jpg",mask3)
save("img4_unmask.jpg",mask4)
#Sobel edge detector
sobelx=cv.Sobel(img3,cv.CV_64F,0,1,ksize=3)
sobelx=cv.convertScaleAbs(sobelx)
sobely=cv.Sobel(img3,cv.CV_64F,1,0,ksize=3)
sobely=cv.convertScaleAbs(sobely)
sobelxy=cv.addWeighted(sobelx,0.5,sobely,0.5,0)
save("img3_sobel.jpg",sobelxy)
sobelx=cv.Sobel(img4,cv.CV_64F,0,1,ksize=3)
sobelx=cv.convertScaleAbs(sobelx)
sobely=cv.Sobel(img4,cv.CV_64F,1,0,ksize=3)
sobely=cv.convertScaleAbs(sobely)
sobelxy=cv.addWeighted(sobelx,0.5,sobely,0.5,0)
save("img4_sobel.jpg",sobelxy)
#laplace edge detection
laplacian = cv.Laplacian(img3,cv.CV_64F)
laplacian = cv.convertScaleAbs(laplacian)
save("img3_lap.jpg",laplacian)
laplacian = cv.Laplacian(img4,cv.CV_64F)
laplacian = cv.convertScaleAbs(laplacian)
save("img4_lap.jpg",laplacian)
#canny algorithm
canny=cv.Canny(img3,50,80)
save("img3_canny.jpg",canny)
canny=cv.Canny(img4,50,80)
save("img4_canny.jpg",canny)
| [
7061,
6,
198,
31,
9800,
25,
48361,
22,
20370,
220,
198,
938,
9518,
25,
1238,
2481,
12,
19,
12,
22,
220,
220,
198,
3303,
25,
29412,
198,
7061,
6,
198,
11748,
269,
85,
17,
355,
269,
85,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
28686,
198,
220,
220,
220,
220,
220,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
28686,
13,
354,
15908,
7203,
34,
25,
6852,
14490,
6852,
76,
6852,
36881,
6852,
163,
105,
105,
32368,
249,
162,
105,
94,
43291,
10310,
248,
4943,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
18,
11,
23,
11,
17,
2599,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
18,
11,
20,
11,
22,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
28,
961,
7203,
9288,
17,
13,
49929,
4943,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
163,
105,
105,
31660,
29785,
106,
628,
220,
220,
220,
220,
220,
220,
220,
31986,
11956,
28,
3629,
333,
7,
9600,
11,
72,
553,
35389,
11956,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
14288,
28,
3629,
333,
7,
9600,
11,
72,
553,
9921,
666,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
7203,
4908,
11956,
17,
90,
15,
92,
87,
90,
16,
27422,
9479,
1911,
18982,
7,
72,
11,
72,
828,
4908,
11956,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
7203,
24132,
17,
90,
15,
92,
87,
90,
16,
27422,
9479,
1911,
18982,
7,
72,
11,
72,
828,
1150,
666,
8,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
18,
11,
23,
11,
17,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
35389,
11956,
7,
72,
11,
16,
13,
20,
4008,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
163,
105,
105,
12859,
234,
29785,
106,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
59,
77,
4943,
628,
220,
220,
220,
33705,
18,
28,
961,
7203,
9288,
18,
62,
10215,
3622,
13,
6024,
76,
4943,
198,
220,
220,
220,
33705,
19,
28,
961,
7203,
9288,
19,
4866,
13,
65,
3149,
4943,
198,
2,
403,
43358,
9335,
278,
198,
220,
220,
220,
33705,
18,
62,
2436,
333,
28,
3629,
333,
7,
9600,
18,
11,
20,
11,
82,
13495,
28,
16,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
34932,
229,
18796,
101,
20,
87,
20,
165,
45865,
23877,
107,
162,
119,
97,
37345,
95,
32573,
249,
26193,
234,
162,
101,
94,
163,
111,
232,
13783,
226,
49426,
228,
198,
220,
220,
220,
33705,
19,
62,
2436,
333,
28,
3629,
333,
7,
9600,
19,
11,
20,
11,
82,
13495,
28,
16,
8,
220,
198,
220,
220,
220,
9335,
18,
28,
9600,
18,
12,
9600,
18,
62,
2436,
333,
198,
220,
220,
220,
9335,
19,
28,
9600,
19,
12,
9600,
19,
62,
2436,
333,
198,
220,
220,
220,
3613,
7203,
9600,
18,
62,
403,
27932,
13,
9479,
1600,
27932,
18,
8,
198,
220,
220,
220,
3613,
7203,
9600,
19,
62,
403,
27932,
13,
9479,
1600,
27932,
19,
8,
198,
2,
50,
672,
417,
5743,
31029,
198,
220,
220,
220,
523,
6667,
87,
28,
33967,
13,
50,
672,
417,
7,
9600,
18,
11,
33967,
13,
33538,
62,
2414,
37,
11,
15,
11,
16,
11,
591,
1096,
28,
18,
8,
198,
220,
220,
220,
523,
6667,
87,
28,
33967,
13,
1102,
1851,
29990,
24849,
7,
568,
6667,
87,
8,
198,
220,
220,
220,
523,
1350,
306,
28,
33967,
13,
50,
672,
417,
7,
9600,
18,
11,
33967,
13,
33538,
62,
2414,
37,
11,
16,
11,
15,
11,
591,
1096,
28,
18,
8,
198,
220,
220,
220,
523,
1350,
306,
28,
33967,
13,
1102,
1851,
29990,
24849,
7,
568,
1350,
306,
8,
198,
220,
220,
220,
523,
6667,
5431,
28,
33967,
13,
2860,
25844,
276,
7,
568,
6667,
87,
11,
15,
13,
20,
11,
568,
1350,
306,
11,
15,
13,
20,
11,
15,
8,
220,
198,
220,
220,
220,
3613,
7203,
9600,
18,
62,
568,
6667,
13,
9479,
1600,
568,
6667,
5431,
8,
198,
220,
220,
220,
523,
6667,
87,
28,
33967,
13,
50,
672,
417,
7,
9600,
19,
11,
33967,
13,
33538,
62,
2414,
37,
11,
15,
11,
16,
11,
591,
1096,
28,
18,
8,
198,
220,
220,
220,
523,
6667,
87,
28,
33967,
13,
1102,
1851,
29990,
24849,
7,
568,
6667,
87,
8,
198,
220,
220,
220,
523,
1350,
306,
28,
33967,
13,
50,
672,
417,
7,
9600,
19,
11,
33967,
13,
33538,
62,
2414,
37,
11,
16,
11,
15,
11,
591,
1096,
28,
18,
8,
198,
220,
220,
220,
523,
1350,
306,
28,
33967,
13,
1102,
1851,
29990,
24849,
7,
568,
1350,
306,
8,
198,
220,
220,
220,
523,
6667,
5431,
28,
33967,
13,
2860,
25844,
276,
7,
568,
6667,
87,
11,
15,
13,
20,
11,
568,
1350,
306,
11,
15,
13,
20,
11,
15,
8,
198,
220,
220,
220,
3613,
7203,
9600,
19,
62,
568,
6667,
13,
9479,
1600,
568,
6667,
5431,
8,
198,
2,
5031,
5372,
5743,
13326,
198,
220,
220,
220,
8591,
489,
330,
666,
796,
269,
85,
13,
14772,
489,
330,
666,
7,
9600,
18,
11,
33967,
13,
33538,
62,
2414,
37,
8,
198,
220,
220,
220,
8591,
489,
330,
666,
796,
269,
85,
13,
1102,
1851,
29990,
24849,
7,
5031,
489,
330,
666,
8,
220,
198,
220,
220,
220,
3613,
7203,
9600,
18,
62,
37796,
13,
9479,
1600,
5031,
489,
330,
666,
8,
198,
220,
220,
220,
8591,
489,
330,
666,
796,
269,
85,
13,
14772,
489,
330,
666,
7,
9600,
19,
11,
33967,
13,
33538,
62,
2414,
37,
8,
198,
220,
220,
220,
8591,
489,
330,
666,
796,
269,
85,
13,
1102,
1851,
29990,
24849,
7,
5031,
489,
330,
666,
8,
220,
198,
220,
220,
220,
3613,
7203,
9600,
19,
62,
37796,
13,
9479,
1600,
5031,
489,
330,
666,
8,
198,
2,
66,
7737,
11862,
198,
220,
220,
220,
460,
3281,
28,
33967,
13,
34,
7737,
7,
9600,
18,
11,
1120,
11,
1795,
8,
198,
220,
220,
220,
3613,
7203,
9600,
18,
62,
66,
7737,
13,
9479,
1600,
66,
7737,
8,
198,
220,
220,
220,
460,
3281,
28,
33967,
13,
34,
7737,
7,
9600,
19,
11,
1120,
11,
1795,
8,
198,
220,
220,
220,
3613,
7203,
9600,
19,
62,
66,
7737,
13,
9479,
1600,
66,
7737,
8,
198
] | 1.716216 | 1,110 |
from pymongo import MongoClient
if __name__ == '__main__':
print(CustomerRepository().get_customers())
| [
6738,
279,
4948,
25162,
1330,
42591,
11792,
201,
198,
201,
198,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
201,
198,
220,
220,
220,
3601,
7,
44939,
6207,
13264,
22446,
1136,
62,
23144,
364,
28955,
201,
198
] | 2.697674 | 43 |
import os
import json
import logging
import logging.config
from telegram.ext import Updater
from telegram.ext import CommandHandler
from telegram.ext import Filters
from config import config
from jobs import JOBS_CALLBACKS
import utils as u
logger = logging.getLogger(__name__)
load_logging_config()
@u.restricted
@u.restricted
@u.restricted
if __name__ == '__main__':
main()
| [
11748,
28686,
201,
198,
11748,
33918,
201,
198,
11748,
18931,
201,
198,
11748,
18931,
13,
11250,
201,
198,
201,
198,
6738,
573,
30536,
13,
2302,
1330,
3205,
67,
729,
201,
198,
6738,
573,
30536,
13,
2302,
1330,
9455,
25060,
201,
198,
6738,
573,
30536,
13,
2302,
1330,
7066,
1010,
201,
198,
201,
198,
6738,
4566,
1330,
4566,
201,
198,
6738,
3946,
1330,
32357,
4462,
62,
34,
7036,
31098,
50,
201,
198,
11748,
3384,
4487,
355,
334,
201,
198,
201,
198,
201,
198,
201,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
201,
198,
2220,
62,
6404,
2667,
62,
11250,
3419,
201,
198,
201,
198,
201,
198,
31,
84,
13,
49343,
201,
198,
201,
198,
201,
198,
31,
84,
13,
49343,
201,
198,
201,
198,
201,
198,
31,
84,
13,
49343,
201,
198,
201,
198,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
201,
198,
220,
220,
220,
1388,
3419,
201,
198
] | 2.607362 | 163 |
import os
import re
import json
import requests
from datetime import datetime
github_headers = {'Authorization': 'token %s' % os.environ.get("GITHUB_TOKEN")}
repo_info_table = {
"vouch-proxy": {
"name": "vouch-proxy",
"type": "github",
"owner": "vouch",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"redis_exporter": {
"name": "redis_exporter",
"type": "github",
"owner": "oliver006",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"mysqld_exporter": {
"name": "mysqld_exporter",
"type": "github",
"owner": "prometheus",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"postgres_exporter": {
"name": "postgres_exporter",
"type": "github",
"owner": "prometheus-community",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"caddy": {
"name": "caddy",
"type": "github",
"owner": "caddyserver",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"envtpl": {
"name": "envtpl",
"type": "github",
"owner": "subfuzion",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"erlang": {
"name": "otp",
"type": "github",
"owner": "erlang",
"match": "^OTP-[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"fluentd": {
"name": "fluentd",
"type": "github",
"owner": "fluent",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"go": {
"name": "go",
"type": "github",
"owner": "golang",
"match": "^go[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"gosu": {
"name": "gosu",
"type": "github",
"owner": "tianon",
"match": "^[0-9]{1,}\.[0-9]{1,}$",
},
"grafana": {
"name": "grafana",
"type": "github",
"owner": "grafana",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"helm": {
"name": "helm",
"type": "github",
"owner": "helm",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"influxdb": {
"name": "influxdb",
"type": "github",
"owner": "influxdata",
"match": "^v[2-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"ini-file": {
"name": "ini-file",
"type": "github",
"owner": "bitnami",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"java": {
"name": "jdk",
"type": "github",
"owner": "openjdk",
"match": "^jdk-[0-9]{1,}\+[0-9]{1,}$",
},
"jq": {
"name": "jq",
"type": "github",
"owner": "stedolan",
"match": "^jq-[0-9]{1,}\.[0-9]{1,}\.?[0-9]{0}$",
},
"kubectl": {
"name": "kubectl",
"type": "github",
"owner": "kubernetes",
"match": "^kubernetes-[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"mariadb": {
"name": "server",
"type": "github",
"owner": "MariaDB",
"match": "^mariadb-[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"mc": {
"name": "mc",
"type": "github",
"owner": "minio",
"match": "^RELEASE\.[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}-[0-9]{2}-[0-9]{2}Z$",
},
"minio": {
"name": "minio",
"type": "github",
"owner": "minio",
"match": "^RELEASE\.[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}-[0-9]{2}-[0-9]{2}Z$",
},
"nginx": {
"name": "nginx",
"type": "github",
"owner": "nginx",
"match": "^release-[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"node": {
"name": "node",
"type": "github",
"owner": "nodejs",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"pack": {
"name": "pack",
"type": "github",
"owner": "buildpacks",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"php": {
"name": "php-src",
"type": "github",
"owner": "php",
"match": "^php-[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"podman": {
"name": "podman",
"type": "github",
"owner": "containers",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"postgresql": {
"name": "postgres",
"type": "github",
"owner": "postgres",
"match": "^REL_[0-9]{1,}_[0-9]{1,}$",
},
"python": {
"name": "cpython",
"type": "github",
"owner": "python",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"rabbitmq": {
"name": "rabbitmq-server",
"type": "github",
"owner": "rabbitmq",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"redis": {
"name": "redis",
"type": "github",
"owner": "redis",
"match": "^[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"redis-sentinel": {
"name": "redis",
"type": "github",
"owner": "redis",
"match": "^[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"registry": {
"name": "distribution",
"type": "github",
"owner": "distribution",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"ruby": {
"name": "ruby",
"type": "github",
"owner": "ruby",
"match": "^v[0-9]{1,}_[0-9]{1,}_[0-9]{1,}$",
},
"rust": {
"name": "rust",
"type": "github",
"owner": "rust-lang",
"match": "^[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"telegraf": {
"name": "telegraf",
"type": "github",
"owner": "influxdata",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"wait-for-port": {
"name": "wait-for-port",
"type": "github",
"owner": "bitnami",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
"wal-g": {
"name": "wal-g",
"type": "github",
"owner": "wal-g",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.?[0-9]{0}$",
},
"yj": {
"name": "yj",
"type": "github",
"owner": "sclevine",
"match": "^v[0-9]{1,}\.[0-9]{1,}\.[0-9]{1,}$",
},
}
github_tags_graphql = """
query {
repository(owner: "{owner}", name: "{name}") {
refs(refPrefix: "refs/tags/", first: 10, orderBy: {field: TAG_COMMIT_DATE, direction: DESC}) {
edges {
node {
name
target {
oid
... on Tag {
commitUrl
tagger {
date
}
}
}
}
}
}
}
}
"""
if __name__ == "__main__":
main()
| [
11748,
28686,
198,
11748,
302,
198,
11748,
33918,
198,
11748,
7007,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
198,
12567,
62,
50145,
796,
1391,
6,
13838,
1634,
10354,
705,
30001,
4064,
82,
6,
4064,
28686,
13,
268,
2268,
13,
1136,
7203,
38,
10554,
10526,
62,
10468,
43959,
4943,
92,
198,
198,
260,
7501,
62,
10951,
62,
11487,
796,
1391,
198,
220,
220,
220,
366,
85,
7673,
12,
36436,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
85,
7673,
12,
36436,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
85,
7673,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
445,
271,
62,
1069,
26634,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
445,
271,
62,
1069,
26634,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
349,
1428,
28041,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
28744,
80,
335,
62,
1069,
26634,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
28744,
80,
335,
62,
1069,
26634,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
16963,
36916,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
7353,
34239,
62,
1069,
26634,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
7353,
34239,
62,
1069,
26634,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
16963,
36916,
12,
28158,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
66,
13218,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
66,
13218,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
66,
2860,
893,
18497,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
24330,
83,
489,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
24330,
83,
489,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
7266,
69,
10277,
295,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
263,
17204,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
313,
79,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
263,
17204,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
2394,
47,
49146,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
69,
28216,
67,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
69,
28216,
67,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
69,
28216,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
2188,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
2188,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
70,
349,
648,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
2188,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
70,
418,
84,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
70,
418,
84,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
83,
666,
261,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
70,
32188,
2271,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
70,
32188,
2271,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
70,
32188,
2271,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
33485,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
33485,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
33485,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
10745,
22564,
9945,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
10745,
22564,
9945,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
10745,
22564,
7890,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
17,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
5362,
12,
7753,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
5362,
12,
7753,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
2545,
77,
6277,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
12355,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
73,
34388,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
9654,
73,
34388,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
73,
34388,
49146,
15,
12,
24,
60,
90,
16,
11,
32239,
10,
58,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
73,
80,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
73,
80,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
30679,
16617,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
73,
80,
49146,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
17405,
30,
58,
15,
12,
24,
60,
90,
15,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
74,
549,
478,
75,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
74,
549,
478,
75,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
74,
18478,
3262,
274,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
74,
18478,
3262,
274,
49146,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
76,
2743,
324,
65,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
15388,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
46827,
11012,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
76,
2743,
324,
65,
49146,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
23209,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
23209,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
1084,
952,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
2200,
22781,
59,
3693,
15,
12,
24,
60,
90,
19,
92,
49146,
15,
12,
24,
60,
90,
17,
92,
49146,
15,
12,
24,
60,
90,
17,
92,
51,
58,
15,
12,
24,
60,
90,
17,
92,
49146,
15,
12,
24,
60,
90,
17,
92,
49146,
15,
12,
24,
60,
90,
17,
92,
57,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
1084,
952,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
1084,
952,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
1084,
952,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
2200,
22781,
59,
3693,
15,
12,
24,
60,
90,
19,
92,
49146,
15,
12,
24,
60,
90,
17,
92,
49146,
15,
12,
24,
60,
90,
17,
92,
51,
58,
15,
12,
24,
60,
90,
17,
92,
49146,
15,
12,
24,
60,
90,
17,
92,
49146,
15,
12,
24,
60,
90,
17,
92,
57,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
782,
28413,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
782,
28413,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
782,
28413,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
20979,
49146,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
17440,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
17440,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
17440,
8457,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
8002,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
8002,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
11249,
32377,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
10121,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
10121,
12,
10677,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
10121,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
10121,
49146,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
33320,
805,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
33320,
805,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
3642,
50221,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
7353,
34239,
13976,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
7353,
34239,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
7353,
34239,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
16448,
62,
58,
15,
12,
24,
60,
90,
16,
11,
92,
62,
58,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
29412,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
13155,
7535,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
29412,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
81,
14229,
76,
80,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
81,
14229,
76,
80,
12,
15388,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
81,
14229,
76,
80,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
445,
271,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
445,
271,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
445,
271,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
445,
271,
12,
34086,
20538,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
445,
271,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
445,
271,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
2301,
4592,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
17080,
3890,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
17080,
3890,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
49137,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
49137,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
49137,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
92,
62,
58,
15,
12,
24,
60,
90,
16,
11,
92,
62,
58,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
11469,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
11469,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
11469,
12,
17204,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
660,
1455,
32188,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
660,
1455,
32188,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
10745,
22564,
7890,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
17077,
12,
1640,
12,
634,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
17077,
12,
1640,
12,
634,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
2545,
77,
6277,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
16783,
12,
70,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
16783,
12,
70,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
16783,
12,
70,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
17405,
30,
58,
15,
12,
24,
60,
90,
15,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
88,
73,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
88,
73,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
12567,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
366,
1416,
2768,
500,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15699,
1298,
366,
61,
85,
58,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
32239,
3693,
15,
12,
24,
60,
90,
16,
11,
92,
3,
1600,
198,
220,
220,
220,
8964,
198,
92,
628,
628,
198,
12567,
62,
31499,
62,
34960,
13976,
796,
37227,
198,
22766,
1391,
198,
220,
16099,
7,
18403,
25,
45144,
18403,
92,
1600,
1438,
25,
45144,
3672,
92,
4943,
1391,
198,
220,
220,
220,
1006,
82,
7,
5420,
36698,
844,
25,
366,
5420,
82,
14,
31499,
14,
1600,
717,
25,
838,
11,
1502,
3886,
25,
1391,
3245,
25,
37801,
62,
9858,
36393,
62,
35,
6158,
11,
4571,
25,
22196,
34,
30072,
1391,
198,
220,
220,
220,
220,
220,
13015,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
10139,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2496,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
267,
312,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
17467,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4589,
28165,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7621,
1362,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3128,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
1782,
198,
220,
1782,
198,
92,
198,
37811,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
1388,
3419,
198
] | 1.589418 | 4,177 |
from .args import ArgsWrapper
from .dataset import Dataset
from .consts import DATA_PATH, TRAINING_DATASET | [
6738,
764,
22046,
1330,
943,
14542,
36918,
2848,
198,
6738,
764,
19608,
292,
316,
1330,
16092,
292,
316,
198,
6738,
764,
1102,
6448,
1330,
42865,
62,
34219,
11,
29125,
1268,
2751,
62,
35,
1404,
1921,
2767
] | 2.944444 | 36 |
from Dataset import *
from datetime import *
import time
dataset = Dataset('TestData/Dados.csv')
begin_date = datetime.strptime('2021-08-2 12:00',"%Y-%m-%d %H:%M")
end_date = datetime.strptime('2021-08-7 12:00',"%Y-%m-%d %H:%M")
main_var = 'TU-11C:SS-HLS-Ax48NW5:Level-Mon'
start = time.time()
delays, corrs, names = dataset.correlate(main_var, begin_date, end_date, 0.2)
end = time.time()
print(end - start)
print(delays)
print(corrs)
| [
6738,
16092,
292,
316,
1330,
1635,
198,
6738,
4818,
8079,
1330,
1635,
198,
11748,
640,
198,
198,
19608,
292,
316,
796,
16092,
292,
316,
10786,
14402,
6601,
14,
35,
22484,
13,
40664,
11537,
198,
27471,
62,
4475,
796,
4818,
8079,
13,
2536,
457,
524,
10786,
1238,
2481,
12,
2919,
12,
17,
1105,
25,
405,
40264,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
25,
4,
44,
4943,
198,
437,
62,
4475,
796,
4818,
8079,
13,
2536,
457,
524,
10786,
1238,
2481,
12,
2919,
12,
22,
1105,
25,
405,
40264,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
25,
4,
44,
4943,
198,
12417,
62,
7785,
796,
705,
51,
52,
12,
1157,
34,
25,
5432,
12,
39,
6561,
12,
31554,
2780,
27605,
20,
25,
4971,
12,
9069,
6,
198,
198,
9688,
796,
640,
13,
2435,
3419,
198,
198,
12381,
592,
11,
1162,
3808,
11,
3891,
796,
27039,
13,
10215,
2411,
378,
7,
12417,
62,
7785,
11,
2221,
62,
4475,
11,
886,
62,
4475,
11,
657,
13,
17,
8,
198,
198,
437,
796,
640,
13,
2435,
3419,
198,
4798,
7,
437,
532,
923,
8,
198,
4798,
7,
12381,
592,
8,
198,
4798,
7,
10215,
3808,
8,
198
] | 2.211055 | 199 |
import pytest
from textx_ls_core import utils
@pytest.mark.parametrize("uri, expected_ext", [
(None, ''),
('', ''),
('/test/path/file.txt', 'txt'),
('Textxfile', 'Textxfile')
])
| [
11748,
12972,
9288,
198,
6738,
2420,
87,
62,
7278,
62,
7295,
1330,
3384,
4487,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7203,
9900,
11,
2938,
62,
2302,
1600,
685,
198,
220,
220,
220,
357,
14202,
11,
10148,
828,
198,
220,
220,
220,
19203,
3256,
10148,
828,
198,
220,
220,
220,
19203,
14,
9288,
14,
6978,
14,
7753,
13,
14116,
3256,
705,
14116,
33809,
198,
220,
220,
220,
19203,
8206,
87,
7753,
3256,
705,
8206,
87,
7753,
11537,
198,
12962,
198
] | 2.305882 | 85 |
from setuptools import setup
setup(
name='openmrsapi',
version='0.1',
description='a library for interacting with openmrs api in python',
url='https://github.com/isears/openmrsapi',
author='Isaac Sears',
author_email='[email protected]',
license='MIT',
packages=['openmrsapi'],
zip_safe=False,
install_requires=[
'requests'
]
) | [
198,
6738,
900,
37623,
10141,
1330,
9058,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
9654,
76,
3808,
15042,
3256,
198,
220,
220,
220,
2196,
11639,
15,
13,
16,
3256,
198,
220,
220,
220,
6764,
11639,
64,
5888,
329,
24986,
351,
1280,
76,
3808,
40391,
287,
21015,
3256,
198,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
271,
4127,
14,
9654,
76,
3808,
15042,
3256,
198,
220,
220,
220,
1772,
11639,
39443,
330,
36895,
3256,
198,
220,
220,
220,
1772,
62,
12888,
11639,
9160,
330,
13,
73,
13,
325,
945,
31,
14816,
13,
785,
3256,
198,
220,
220,
220,
5964,
11639,
36393,
3256,
198,
220,
220,
220,
10392,
28,
17816,
9654,
76,
3808,
15042,
6,
4357,
198,
220,
220,
220,
19974,
62,
21230,
28,
25101,
11,
198,
220,
220,
220,
2721,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
705,
8897,
3558,
6,
198,
220,
220,
220,
2361,
198,
8
] | 2.449367 | 158 |
from blogposts import app
if __name__ == '__main__':
app.run(host='192.168.43.57',debug=True)
| [
6738,
4130,
24875,
1330,
598,
201,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
201,
198,
220,
220,
220,
598,
13,
5143,
7,
4774,
11639,
17477,
13,
14656,
13,
3559,
13,
3553,
3256,
24442,
28,
17821,
8,
201,
198
] | 2.404762 | 42 |
import asyncio
import logging
import random
import time
from datetime import datetime
from typing import Any, Dict, Optional, Tuple
import reddit_adapter
import subscriptions_manager
import telegram_adapter
workers: Dict[Tuple[int, str], asyncio.Task[Any]] = {}
async def check_exceptions(refresh_period: int = 24 * 60 * 60):
"""
Check whether private or banned subs are now available
"""
while True:
unavailable_subs = subscriptions_manager.unavailable_subreddits()
for sub in unavailable_subs:
try:
try:
await reddit_adapter.new_posts(sub)
except (
reddit_adapter.SubredditPrivate,
reddit_adapter.SubredditBanned,
):
continue
old_subscribers = subscriptions_manager.get_old_subscribers(sub)
for chat_id in old_subscribers:
subscriptions_manager.subscribe(chat_id, sub, 31)
await telegram_adapter.send_message(
chat_id, f"{sub} is now available again"
)
subscriptions_manager.delete_exception(sub)
except Exception as e:
await telegram_adapter.send_exception(
e, f"Exception while checking unavailability of {sub}"
)
await asyncio.sleep(refresh_period)
| [
11748,
30351,
952,
198,
11748,
18931,
198,
11748,
4738,
198,
11748,
640,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
6738,
19720,
1330,
4377,
11,
360,
713,
11,
32233,
11,
309,
29291,
198,
198,
11748,
18374,
62,
324,
3429,
198,
11748,
35675,
62,
37153,
198,
11748,
573,
30536,
62,
324,
3429,
628,
628,
198,
22896,
25,
360,
713,
58,
51,
29291,
58,
600,
11,
965,
4357,
30351,
952,
13,
25714,
58,
7149,
11907,
796,
23884,
628,
628,
198,
198,
292,
13361,
825,
2198,
62,
1069,
11755,
7,
5420,
3447,
62,
41007,
25,
493,
796,
1987,
1635,
3126,
1635,
3126,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6822,
1771,
2839,
393,
9301,
6352,
389,
783,
1695,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
23485,
62,
7266,
82,
796,
35675,
62,
37153,
13,
403,
15182,
62,
7266,
36581,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
329,
850,
287,
23485,
62,
7266,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25507,
18374,
62,
324,
3429,
13,
3605,
62,
24875,
7,
7266,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18374,
62,
324,
3429,
13,
7004,
10748,
29067,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18374,
62,
324,
3429,
13,
7004,
10748,
33,
3577,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1468,
62,
7266,
40075,
364,
796,
35675,
62,
37153,
13,
1136,
62,
727,
62,
7266,
40075,
364,
7,
7266,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
8537,
62,
312,
287,
1468,
62,
7266,
40075,
364,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35675,
62,
37153,
13,
7266,
12522,
7,
17006,
62,
312,
11,
850,
11,
3261,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25507,
573,
30536,
62,
324,
3429,
13,
21280,
62,
20500,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8537,
62,
312,
11,
277,
1,
90,
7266,
92,
318,
783,
1695,
757,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35675,
62,
37153,
13,
33678,
62,
1069,
4516,
7,
7266,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25507,
573,
30536,
62,
324,
3429,
13,
21280,
62,
1069,
4516,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
304,
11,
277,
1,
16922,
981,
10627,
555,
47274,
286,
1391,
7266,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
30351,
952,
13,
42832,
7,
5420,
3447,
62,
41007,
8,
628
] | 2.125369 | 678 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Implementation of the Trigger Unit communication."""
import logging
import re
import socket
_log = logging.getLogger(__name__)
physical_names = {
'A2_Delay': r'Simmer_delay(1uS)',
'A4_Delay': r'Burst_delay(1uS)',
'A4_Number': r'Burst_number',
'A4_Period': r'Burst_period(1uS)',
'A5_Pulse': r'Trigger_Enable_pulse(1uS)',
'B1_Delay': r'ADC_Enable_delay(1uS)',
'B1_Pulse': r'ADC_Enable_pulse(1uS)',
'B2_Delay': r'CMOS_plasma_delay(1uS)',
'B2_Number': r'CMOS_Plasma_number',
'B2_Period': r'CMOS_Plasma_period(1uS)',
'B2_Pulse': r'CMOS_Plasma_pulse(1uS)',
'B4_Delay': r'CMOS_Laser_delay(0.1uS)',
'B4_Pulse': r'CMOS_Laser_pulse(0.1uS)',
'B5_Delay': r'II_Gate_Plasma_delay(0.1uS)',
'B5_Number': r'II_Gate_Plasma_number',
'B5_Period': r'II_Gate_Plasma_period(0.1uS)',
'B5_Pulse': r'II_Gate_Plasma_pulse(0.1uS)',
'B6_Delay': r'II_Plasma_Delay_delay(0.1uS)',
'B6_Pulse': r'II_Plasma_Delay_pulse(0.1uS)',
'B7_Delay': r'II_Gate_Laser_delay(0.1uS)',
'B7_Pulse': r'II_Gate_Laser_pulse(0.1uS)',
'B8_Delay': r'II_Flash_Bool_delay(1uS)',
'B8_Pulse': r'II_Flash_Bool_pulse(1uS)',
'B9_Delay': r'Flash_delay(1uS)',
'B9_Pulse': r'Flash_pulse(1uS)',
'B12_Delay': r'Pockels_delay(1uS)',
'B12_Number': r'Pockels_number',
'B12_Period': r'Pockels_period(1uS)',
'B12_Pulse': r'Pockels_pulse(1uS)',
'TS0_Delay': r'TS0_Delay(1uS)',
'TS0_Period': r'TS0_Period(1uS)',
'Enable_IOs': r'Enable_IOs',
'A1_SW_enable': r'A1_SW_enable',
'A2_SW_enable': r'A2_SW_enable',
'A4_SW_enable': r'A4_SW_enable',
'CMOSPOn': r'CMOSPOn',
'CMOSLOn': r'CMOSLOn'
}
try:
# For Python 3
logical_names = {v: k for k, v in physical_names.items()}
except:
# For Python 2
logical_names = dict((v, k) for k, v in physical_names.iteritems())
regex = re.compile('(\S+)[\s*]=[\s*]"(\S+)"')
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
3546,
32851,
286,
262,
24593,
11801,
6946,
526,
15931,
198,
198,
11748,
18931,
198,
11748,
302,
198,
11748,
17802,
198,
198,
62,
6404,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
198,
42854,
62,
14933,
796,
1391,
198,
220,
220,
220,
705,
32,
17,
62,
13856,
323,
10354,
374,
6,
8890,
647,
62,
40850,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
32,
19,
62,
13856,
323,
10354,
374,
6,
22991,
301,
62,
40850,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
32,
19,
62,
15057,
10354,
374,
6,
22991,
301,
62,
17618,
3256,
198,
220,
220,
220,
705,
32,
19,
62,
5990,
2101,
10354,
374,
6,
22991,
301,
62,
41007,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
32,
20,
62,
47,
9615,
10354,
374,
6,
48344,
62,
36695,
62,
79,
9615,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
16,
62,
13856,
323,
10354,
374,
6,
2885,
34,
62,
36695,
62,
40850,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
16,
62,
47,
9615,
10354,
374,
6,
2885,
34,
62,
36695,
62,
79,
9615,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
17,
62,
13856,
323,
10354,
374,
6,
24187,
2640,
62,
489,
11797,
62,
40850,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
17,
62,
15057,
10354,
374,
6,
24187,
2640,
62,
3646,
11797,
62,
17618,
3256,
198,
220,
220,
220,
705,
33,
17,
62,
5990,
2101,
10354,
374,
6,
24187,
2640,
62,
3646,
11797,
62,
41007,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
17,
62,
47,
9615,
10354,
374,
6,
24187,
2640,
62,
3646,
11797,
62,
79,
9615,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
19,
62,
13856,
323,
10354,
374,
6,
24187,
2640,
62,
43,
6005,
62,
40850,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
19,
62,
47,
9615,
10354,
374,
6,
24187,
2640,
62,
43,
6005,
62,
79,
9615,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
20,
62,
13856,
323,
10354,
374,
6,
3978,
62,
22628,
62,
3646,
11797,
62,
40850,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
20,
62,
15057,
10354,
374,
6,
3978,
62,
22628,
62,
3646,
11797,
62,
17618,
3256,
198,
220,
220,
220,
705,
33,
20,
62,
5990,
2101,
10354,
374,
6,
3978,
62,
22628,
62,
3646,
11797,
62,
41007,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
20,
62,
47,
9615,
10354,
374,
6,
3978,
62,
22628,
62,
3646,
11797,
62,
79,
9615,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
21,
62,
13856,
323,
10354,
374,
6,
3978,
62,
3646,
11797,
62,
13856,
323,
62,
40850,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
21,
62,
47,
9615,
10354,
374,
6,
3978,
62,
3646,
11797,
62,
13856,
323,
62,
79,
9615,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
22,
62,
13856,
323,
10354,
374,
6,
3978,
62,
22628,
62,
43,
6005,
62,
40850,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
22,
62,
47,
9615,
10354,
374,
6,
3978,
62,
22628,
62,
43,
6005,
62,
79,
9615,
7,
15,
13,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
23,
62,
13856,
323,
10354,
374,
6,
3978,
62,
30670,
62,
33,
970,
62,
40850,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
23,
62,
47,
9615,
10354,
374,
6,
3978,
62,
30670,
62,
33,
970,
62,
79,
9615,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
24,
62,
13856,
323,
10354,
374,
6,
30670,
62,
40850,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
24,
62,
47,
9615,
10354,
374,
6,
30670,
62,
79,
9615,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
1065,
62,
13856,
323,
10354,
374,
6,
47,
420,
365,
7278,
62,
40850,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
1065,
62,
15057,
10354,
374,
6,
47,
420,
365,
7278,
62,
17618,
3256,
198,
220,
220,
220,
705,
33,
1065,
62,
5990,
2101,
10354,
374,
6,
47,
420,
365,
7278,
62,
41007,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
33,
1065,
62,
47,
9615,
10354,
374,
6,
47,
420,
365,
7278,
62,
79,
9615,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
4694,
15,
62,
13856,
323,
10354,
374,
6,
4694,
15,
62,
13856,
323,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
4694,
15,
62,
5990,
2101,
10354,
374,
6,
4694,
15,
62,
5990,
2101,
7,
16,
84,
50,
8,
3256,
198,
220,
220,
220,
705,
36695,
62,
9399,
82,
10354,
374,
6,
36695,
62,
9399,
82,
3256,
198,
220,
220,
220,
705,
32,
16,
62,
17887,
62,
21633,
10354,
374,
6,
32,
16,
62,
17887,
62,
21633,
3256,
198,
220,
220,
220,
705,
32,
17,
62,
17887,
62,
21633,
10354,
374,
6,
32,
17,
62,
17887,
62,
21633,
3256,
198,
220,
220,
220,
705,
32,
19,
62,
17887,
62,
21633,
10354,
374,
6,
32,
19,
62,
17887,
62,
21633,
3256,
198,
220,
220,
220,
705,
24187,
47053,
2202,
10354,
374,
6,
24187,
47053,
2202,
3256,
198,
220,
220,
220,
705,
24187,
2640,
43,
2202,
10354,
374,
6,
24187,
2640,
43,
2202,
6,
198,
92,
198,
198,
28311,
25,
198,
220,
220,
220,
1303,
1114,
11361,
513,
198,
220,
220,
220,
12219,
62,
14933,
796,
1391,
85,
25,
479,
329,
479,
11,
410,
287,
3518,
62,
14933,
13,
23814,
3419,
92,
198,
16341,
25,
198,
220,
220,
220,
1303,
1114,
11361,
362,
198,
220,
220,
220,
12219,
62,
14933,
796,
8633,
19510,
85,
11,
479,
8,
329,
479,
11,
410,
287,
3518,
62,
14933,
13,
2676,
23814,
28955,
198,
198,
260,
25636,
796,
302,
13,
5589,
576,
10786,
38016,
50,
28988,
58,
59,
82,
9,
22241,
58,
59,
82,
9,
60,
18109,
59,
50,
10,
16725,
11537,
628
] | 1.815299 | 1,072 |
store.set_global_value('hotkey', '<ctrl>+e')
engine.set_return_value('<end>')
engine.run_script('chromium')
| [
8095,
13,
2617,
62,
20541,
62,
8367,
10786,
8940,
2539,
3256,
705,
27,
44755,
29,
10,
68,
11537,
198,
18392,
13,
2617,
62,
7783,
62,
8367,
10786,
27,
437,
29,
11537,
198,
18392,
13,
5143,
62,
12048,
10786,
28663,
1505,
11537,
198
] | 2.571429 | 42 |
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""Very weak testing of the basic functionality using unittest and QTest"""
from __future__ import division
__author__ = "Ivan Luchko ([email protected])"
__version__ = "1.0a1"
__date__ = "Apr 4, 2017"
__copyright__ = "Copyright (c) 2017, Ivan Luchko and Project Contributors "
import sys
import os
import subprocess
import unittest
# define pyQt version
try:
from PyQt4.QtGui import QApplication, QDialogButtonBox, QTextCursor
from PyQt4.QtTest import QTest
from PyQt4.QtCore import Qt
except ImportError:
try:
from PyQt5.QtWidgets import QApplication, QDialogButtonBox
from PyQt5.QtGui import QTextCursor
from PyQt5.QtTest import QTest
from PyQt5.QtCore import Qt
except ImportError:
raise ImportError("neither PyQt4 or PyQt5 is found")
from latticegraph_designer.app.main import MainWindow
from latticegraph_designer.app.dialogs import (DialogImportCryst, DialogDistSearch,
MyDialogPreferences, DialogEditXML)
from mpl_animationmanager import QDialogAnimManager
app = QApplication(sys.argv)
test_folder = "./latticegraph_designer/test/"
from latticegraph_designer.app.core import Vertex, Edge, UnitCell, Lattice, CrystalCluster
from latticegraph_designer.app.mpl_pane import GraphEdgesEditor
from matplotlib.backend_bases import KeyEvent, MouseEvent
import matplotlib.pyplot as plt
import numpy as np
class GeeMethodsTest(unittest.TestCase):
'''Test the mpl_pane GraphEdgesEditor methods'''
def test_USE_COLLECTIONS(self):
'''testing the usage of lineCollection for depicting edges'''
GraphEdgesEditor.USE_COLLECTIONS = True
self.setUp()
try:
self.assertEqual(self.gee.UC.num_vertices, 2)
self.assertEqual(self.gee.UC.num_edges, 6)
self.assertEqual(len(self.ax.artists), 6+1) # arrows + new edge
self.assertEqual(len(self.gee.edges_lines), 6)
# collections: vertices, lattice, edges
self.assertEqual(len(self.ax.collections), 1+1+6)
# select edge
_id = 3
self.gee.select_edge(_id)
self.assertTrue(self.gee.e_active_ind == _id)
# remove edge
self.gee.delete_active_edge_callback()
self.assertEqual(self.gee.UC.num_edges, 5)
self.assertEqual(len(self.gee.edges_lines), 5)
# collections: vertices, lattice, edges
self.assertEqual(len(self.ax.collections), 1+1+5)
# clear edges
self.gee.clearEdges_callback()
self.assertEqual(self.gee.UC.num_edges, 0)
self.assertEqual(len(self.ax.artists), 6+1) # arrows + new edge
self.assertEqual(len(self.gee.edges_lines), 0)
# collections: vertices, lattice, edges
self.assertEqual(len(self.ax.collections), 1+1+0)
# add edge
self.addEdge(0, 4)
self.assertEqual(self.gee.UC.num_edges, 1)
self.assertEqual(len(self.gee.edges_lines), 1)
# collections: vertices, lattice, edges
self.assertEqual(len(self.ax.collections), 1+1+1)
except: # we have to set USE_COLLECTIONS=False for other tests
GraphEdgesEditor.USE_COLLECTIONS = False
raise
finally:
GraphEdgesEditor.USE_COLLECTIONS = False
class GeeInteractionTest(unittest.TestCase):
'''Test the mpl_pane keybounding and mouse manipulation'''
class MainWindowTest(unittest.TestCase):
'''Test the MainWindow GUI'''
def setUp(self):
'''Create the GUI'''
self.mainWindow = MainWindow(TEXT_MODE=True)
# def test_terminalLaunch(self):
#
# p = subprocess.Popen(['graphdesigner','&'],
# stdout=subprocess.PIPE, stderr=subprocess.PIPE)
#
# output, error = p.communicate()
#
## p = subprocess.call("graphdesigner", shell=True)
# p.kill()
#
# if p.returncode == 0:
# return output
# else:
# raise Exception(error)
# return "Error"
class PreferencesTest(unittest.TestCase):
'''Test the Preferences manager'''
def setUp(self):
'''Create the GUI'''
self.mainWindow = MainWindow(TEXT_MODE=False)
class AnimaManagerTest(unittest.TestCase):
'''Test the Animation manager'''
def setUp(self):
'''Create the GUI'''
self.mainWindow = MainWindow(TEXT_MODE=False)
class CodeEditorTest(unittest.TestCase):
'''Test the Animation manager'''
def setUp(self):
'''Create the GUI'''
self.mainWindow = MainWindow(TEXT_MODE=True)
if __name__ == "__main__":
unittest.main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
17,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
16371,
4939,
4856,
286,
262,
4096,
11244,
1262,
555,
715,
395,
290,
1195,
14402,
37811,
198,
198,
6738,
11593,
37443,
834,
1330,
7297,
198,
198,
834,
9800,
834,
796,
366,
40,
10438,
406,
794,
7204,
357,
75,
794,
7204,
13,
13809,
31,
14816,
13,
785,
16725,
198,
834,
9641,
834,
796,
366,
16,
13,
15,
64,
16,
1,
198,
834,
4475,
834,
796,
366,
13680,
604,
11,
2177,
1,
198,
834,
22163,
4766,
834,
796,
366,
15269,
357,
66,
8,
2177,
11,
21798,
406,
794,
7204,
290,
4935,
25767,
669,
366,
198,
198,
11748,
25064,
198,
11748,
28686,
198,
11748,
850,
14681,
198,
11748,
555,
715,
395,
198,
198,
2,
8160,
12972,
48,
83,
2196,
198,
28311,
25,
198,
220,
220,
220,
422,
9485,
48,
83,
19,
13,
48,
83,
8205,
72,
1330,
1195,
23416,
11,
1195,
44204,
21864,
14253,
11,
1195,
8206,
34,
21471,
198,
220,
220,
220,
422,
9485,
48,
83,
19,
13,
48,
83,
14402,
1330,
1195,
14402,
198,
220,
220,
220,
422,
9485,
48,
83,
19,
13,
48,
83,
14055,
1330,
33734,
198,
220,
220,
220,
220,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
422,
9485,
48,
83,
20,
13,
48,
83,
54,
312,
11407,
1330,
1195,
23416,
11,
1195,
44204,
21864,
14253,
198,
220,
220,
220,
220,
220,
220,
220,
422,
9485,
48,
83,
20,
13,
48,
83,
8205,
72,
1330,
1195,
8206,
34,
21471,
198,
220,
220,
220,
220,
220,
220,
220,
422,
9485,
48,
83,
20,
13,
48,
83,
14402,
1330,
1195,
14402,
198,
220,
220,
220,
220,
220,
220,
220,
422,
9485,
48,
83,
20,
13,
48,
83,
14055,
1330,
33734,
628,
220,
220,
220,
2845,
17267,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
17267,
12331,
7203,
710,
1555,
9485,
48,
83,
19,
393,
9485,
48,
83,
20,
318,
1043,
4943,
198,
198,
6738,
47240,
501,
34960,
62,
26124,
263,
13,
1324,
13,
12417,
1330,
8774,
27703,
198,
6738,
47240,
501,
34960,
62,
26124,
263,
13,
1324,
13,
38969,
18463,
1330,
357,
44204,
20939,
26677,
301,
11,
21269,
519,
20344,
18243,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2011,
44204,
36698,
4972,
11,
21269,
519,
18378,
55,
5805,
8,
198,
6738,
285,
489,
62,
11227,
341,
37153,
1330,
1195,
44204,
35320,
13511,
198,
1324,
796,
1195,
23416,
7,
17597,
13,
853,
85,
8,
198,
198,
9288,
62,
43551,
796,
366,
19571,
75,
1078,
501,
34960,
62,
26124,
263,
14,
9288,
30487,
198,
198,
6738,
47240,
501,
34960,
62,
26124,
263,
13,
1324,
13,
7295,
1330,
4643,
16886,
11,
13113,
11,
11801,
28780,
11,
406,
1078,
501,
11,
12969,
2601,
5819,
198,
6738,
47240,
501,
34960,
62,
26124,
263,
13,
1324,
13,
76,
489,
62,
79,
1531,
1330,
29681,
7407,
3212,
17171,
198,
6738,
2603,
29487,
8019,
13,
1891,
437,
62,
65,
1386,
1330,
7383,
9237,
11,
21839,
9237,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
299,
32152,
355,
45941,
628,
198,
4871,
402,
1453,
46202,
14402,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
705,
7061,
14402,
262,
285,
489,
62,
79,
1531,
29681,
7407,
3212,
17171,
5050,
7061,
6,
628,
220,
220,
220,
825,
1332,
62,
19108,
62,
25154,
16779,
11053,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
33407,
262,
8748,
286,
1627,
36307,
329,
27561,
13015,
7061,
6,
628,
220,
220,
220,
220,
220,
220,
220,
29681,
7407,
3212,
17171,
13,
19108,
62,
25154,
16779,
11053,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
4933,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
944,
13,
29622,
13,
9598,
13,
22510,
62,
1851,
1063,
11,
362,
8,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
944,
13,
29622,
13,
9598,
13,
22510,
62,
276,
3212,
11,
718,
8,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
897,
13,
433,
1023,
828,
718,
10,
16,
8,
1303,
20507,
1343,
649,
5743,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
29622,
13,
276,
3212,
62,
6615,
828,
718,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
17268,
25,
9421,
1063,
11,
47240,
501,
11,
13015,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
897,
13,
4033,
26448,
828,
352,
10,
16,
10,
21,
8,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2922,
5743,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
312,
796,
513,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29622,
13,
19738,
62,
14907,
28264,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
17821,
7,
944,
13,
29622,
13,
68,
62,
5275,
62,
521,
6624,
4808,
312,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4781,
5743,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29622,
13,
33678,
62,
5275,
62,
14907,
62,
47423,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
944,
13,
29622,
13,
9598,
13,
22510,
62,
276,
3212,
11,
642,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
29622,
13,
276,
3212,
62,
6615,
828,
642,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
17268,
25,
9421,
1063,
11,
47240,
501,
11,
13015,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
897,
13,
4033,
26448,
828,
352,
10,
16,
10,
20,
8,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1598,
13015,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29622,
13,
20063,
7407,
3212,
62,
47423,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
944,
13,
29622,
13,
9598,
13,
22510,
62,
276,
3212,
11,
657,
8,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
897,
13,
433,
1023,
828,
718,
10,
16,
8,
1303,
20507,
1343,
649,
5743,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
29622,
13,
276,
3212,
62,
6615,
828,
657,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
17268,
25,
9421,
1063,
11,
47240,
501,
11,
13015,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
897,
13,
4033,
26448,
828,
352,
10,
16,
10,
15,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
5743,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2860,
37021,
7,
15,
11,
604,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
944,
13,
29622,
13,
9598,
13,
22510,
62,
276,
3212,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
29622,
13,
276,
3212,
62,
6615,
828,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
17268,
25,
9421,
1063,
11,
47240,
501,
11,
13015,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11925,
7,
944,
13,
897,
13,
4033,
26448,
828,
352,
10,
16,
10,
16,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
220,
1303,
356,
423,
284,
220,
900,
23210,
62,
25154,
16779,
11053,
28,
25101,
329,
584,
5254,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29681,
7407,
3212,
17171,
13,
19108,
62,
25154,
16779,
11053,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
3443,
25,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29681,
7407,
3212,
17171,
13,
19108,
62,
25154,
16779,
11053,
796,
10352,
198,
198,
4871,
402,
1453,
9492,
2673,
14402,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
705,
7061,
14402,
262,
285,
489,
62,
79,
1531,
1994,
7784,
278,
290,
10211,
17512,
7061,
6,
198,
220,
220,
220,
220,
220,
198,
4871,
8774,
27703,
14402,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
705,
7061,
14402,
262,
8774,
27703,
25757,
7061,
6,
198,
220,
220,
220,
825,
900,
4933,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
16447,
262,
25757,
7061,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12417,
27703,
796,
8774,
27703,
7,
32541,
62,
49058,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2,
220,
220,
220,
825,
1332,
62,
23705,
282,
38296,
7,
944,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
279,
796,
850,
14681,
13,
47,
9654,
7,
17816,
34960,
26124,
263,
41707,
5,
6,
4357,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14367,
448,
28,
7266,
14681,
13,
47,
4061,
36,
11,
336,
1082,
81,
28,
7266,
14681,
13,
47,
4061,
36,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
5072,
11,
4049,
796,
279,
13,
10709,
5344,
3419,
198,
2,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
279,
796,
850,
14681,
13,
13345,
7203,
34960,
26124,
263,
1600,
7582,
28,
17821,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
279,
13,
12728,
3419,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
611,
279,
13,
7783,
8189,
6624,
657,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5072,
198,
2,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
35528,
7,
18224,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
366,
12331,
1,
220,
220,
220,
220,
220,
220,
220,
628,
220,
198,
198,
4871,
49780,
14402,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
705,
7061,
14402,
262,
49780,
4706,
7061,
6,
198,
220,
220,
220,
825,
900,
4933,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
16447,
262,
25757,
7061,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12417,
27703,
796,
8774,
27703,
7,
32541,
62,
49058,
28,
25101,
8,
628,
198,
4871,
1052,
8083,
13511,
14402,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
705,
7061,
14402,
262,
23535,
4706,
7061,
6,
198,
220,
220,
220,
825,
900,
4933,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
16447,
262,
25757,
7061,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12417,
27703,
796,
8774,
27703,
7,
32541,
62,
49058,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
628,
198,
4871,
6127,
17171,
14402,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
705,
7061,
14402,
262,
23535,
4706,
7061,
6,
198,
220,
220,
220,
825,
900,
4933,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
16447,
262,
25757,
7061,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12417,
27703,
796,
8774,
27703,
7,
32541,
62,
49058,
28,
17821,
8,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198,
220,
220,
220,
220,
198
] | 2.152972 | 2,288 |
# file: config_gen/admin.py
from django.contrib import admin
# Register your models here.
| [
2,
2393,
25,
4566,
62,
5235,
14,
28482,
13,
9078,
198,
198,
6738,
42625,
14208,
13,
3642,
822,
1330,
13169,
198,
198,
2,
17296,
534,
4981,
994,
13,
198
] | 3.172414 | 29 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2020 Confluent Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pytest
from confluent_kafka import TopicPartition
from confluent_kafka.error import ConsumeError, ValueSerializationError
from confluent_kafka.schema_registry.json_schema import (JSONSerializer,
JSONDeserializer)
def _testProduct_to_dict(product_obj, ctx):
"""
Returns testProduct instance in dict format.
Args:
product_obj (_TestProduct): testProduct instance.
ctx (SerializationContext): Metadata pertaining to the serialization
operation.
Returns:
dict: product_obj as a dictionary.
"""
return {"productId": product_obj.product_id,
"productName": product_obj.name,
"price": product_obj.price,
"tags": product_obj.tags,
"dimensions": product_obj.dimensions,
"warehouseLocation": product_obj.location}
def _testProduct_from_dict(product_dict, ctx):
"""
Returns testProduct instance from its dict format.
Args:
product_dict (dict): testProduct in dict format.
ctx (SerializationContext): Metadata pertaining to the serialization
operation.
Returns:
_TestProduct: product_obj instance.
"""
return _TestProduct(product_dict['productId'],
product_dict['productName'],
product_dict['price'],
product_dict['tags'],
product_dict['dimensions'],
product_dict['warehouseLocation'])
def test_json_record_serialization(kafka_cluster, load_file):
"""
Tests basic JsonSerializer and JsonDeserializer basic functionality.
product.json from:
https://json-schema.org/learn/getting-started-step-by-step.html
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
load_file (callable(str)): JSON Schema file reader
"""
topic = kafka_cluster.create_topic("serialization-json")
sr = kafka_cluster.schema_registry({'url': 'http://localhost:8081'})
schema_str = load_file("product.json")
value_serializer = JSONSerializer(schema_str, sr)
value_deserializer = JSONDeserializer(schema_str)
producer = kafka_cluster.producer(value_serializer=value_serializer)
record = {"productId": 1,
"productName": "An ice sculpture",
"price": 12.50,
"tags": ["cold", "ice"],
"dimensions": {
"length": 7.0,
"width": 12.0,
"height": 9.5
},
"warehouseLocation": {
"latitude": -78.75,
"longitude": 20.4
}}
producer.produce(topic, value=record, partition=0)
producer.flush()
consumer = kafka_cluster.consumer(value_deserializer=value_deserializer)
consumer.assign([TopicPartition(topic, 0)])
msg = consumer.poll()
actual = msg.value()
assert all([actual[k] == v for k, v in record.items()])
def test_json_record_serialization_incompatible(kafka_cluster, load_file):
"""
Tests Serializer validation functionality.
product.json from:
https://json-schema.org/learn/getting-started-step-by-step.html
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
load_file (callable(str)): JSON Schema file reader
"""
topic = kafka_cluster.create_topic("serialization-json")
sr = kafka_cluster.schema_registry({'url': 'http://localhost:8081'})
schema_str = load_file("product.json")
value_serializer = JSONSerializer(schema_str, sr)
producer = kafka_cluster.producer(value_serializer=value_serializer)
record = {"contractorId": 1,
"contractorName": "David Davidson",
"contractRate": 1250,
"trades": ["mason"]}
with pytest.raises(ValueSerializationError,
match=r"(.*) is a required property"):
producer.produce(topic, value=record, partition=0)
def test_json_record_serialization_no_title(kafka_cluster, load_file):
"""
Ensures ValueError raise if JSON Schema definition lacks Title annotation.
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
load_file (callable(str)): JSON Schema file reader
"""
sr = kafka_cluster.schema_registry({'url': 'http://localhost:8081'})
schema_str = load_file('not_title.json')
with pytest.raises(ValueError,
match="Missing required JSON schema annotation title"):
JSONSerializer(schema_str, sr)
def test_json_record_serialization_custom(kafka_cluster, load_file):
"""
Ensures to_dict and from_dict hooks are properly applied by the serializer.
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
load_file (callable(str)): JSON Schema file reader
"""
topic = kafka_cluster.create_topic("serialization-json")
sr = kafka_cluster.schema_registry({'url': 'http://localhost:8081'})
schema_str = load_file("product.json")
value_serializer = JSONSerializer(schema_str, sr,
to_dict=_testProduct_to_dict)
value_deserializer = JSONDeserializer(schema_str,
from_dict=_testProduct_from_dict)
producer = kafka_cluster.producer(value_serializer=value_serializer)
record = _TestProduct(product_id=1,
name="The ice sculpture",
price=12.50,
tags=["cold", "ice"],
dimensions={"length": 7.0,
"width": 12.0,
"height": 9.5},
location={"latitude": -78.75,
"longitude": 20.4})
producer.produce(topic, value=record, partition=0)
producer.flush()
consumer = kafka_cluster.consumer(value_deserializer=value_deserializer)
consumer.assign([TopicPartition(topic, 0)])
msg = consumer.poll()
actual = msg.value()
assert all([getattr(actual, attribute) == getattr(record, attribute)
for attribute in vars(record)])
def test_json_record_deserialization_mismatch(kafka_cluster, load_file):
"""
Ensures to_dict and from_dict hooks are properly applied by the serializer.
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
load_file (callable(str)): JSON Schema file reader
"""
topic = kafka_cluster.create_topic("serialization-json")
sr = kafka_cluster.schema_registry({'url': 'http://localhost:8081'})
schema_str = load_file("contractor.json")
schema_str2 = load_file("product.json")
value_serializer = JSONSerializer(schema_str, sr)
value_deserializer = JSONDeserializer(schema_str2)
producer = kafka_cluster.producer(value_serializer=value_serializer)
record = {"contractorId": 2,
"contractorName": "Magnus Edenhill",
"contractRate": 30,
"trades": ["pickling"]}
producer.produce(topic, value=record, partition=0)
producer.flush()
consumer = kafka_cluster.consumer(value_deserializer=value_deserializer)
consumer.assign([TopicPartition(topic, 0)])
with pytest.raises(
ConsumeError,
match="'productId' is a required property"):
consumer.poll()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
198,
2,
15069,
12131,
7326,
28216,
3457,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
198,
11748,
12972,
9288,
198,
6738,
1013,
28216,
62,
74,
1878,
4914,
1330,
47373,
7841,
653,
198,
198,
6738,
1013,
28216,
62,
74,
1878,
4914,
13,
18224,
1330,
3515,
2454,
12331,
11,
11052,
32634,
1634,
12331,
198,
6738,
1013,
28216,
62,
74,
1878,
4914,
13,
15952,
2611,
62,
2301,
4592,
13,
17752,
62,
15952,
2611,
1330,
357,
40386,
32634,
7509,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19449,
5960,
48499,
7509,
8,
628,
198,
198,
4299,
4808,
9288,
15667,
62,
1462,
62,
11600,
7,
11167,
62,
26801,
11,
269,
17602,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
1332,
15667,
4554,
287,
8633,
5794,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1720,
62,
26801,
44104,
14402,
15667,
2599,
1332,
15667,
4554,
13,
628,
220,
220,
220,
220,
220,
220,
220,
269,
17602,
357,
32634,
1634,
21947,
2599,
3395,
14706,
27113,
284,
262,
11389,
1634,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4905,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
25,
1720,
62,
26801,
355,
257,
22155,
13,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
19779,
11167,
7390,
1298,
1720,
62,
26801,
13,
11167,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11167,
5376,
1298,
1720,
62,
26801,
13,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
20888,
1298,
1720,
62,
26801,
13,
20888,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
31499,
1298,
1720,
62,
26801,
13,
31499,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
27740,
5736,
1298,
1720,
62,
26801,
13,
27740,
5736,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1574,
4803,
14749,
1298,
1720,
62,
26801,
13,
24886,
92,
628,
198,
4299,
4808,
9288,
15667,
62,
6738,
62,
11600,
7,
11167,
62,
11600,
11,
269,
17602,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
1332,
15667,
4554,
422,
663,
8633,
5794,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1720,
62,
11600,
357,
11600,
2599,
1332,
15667,
287,
8633,
5794,
13,
628,
220,
220,
220,
220,
220,
220,
220,
269,
17602,
357,
32634,
1634,
21947,
2599,
3395,
14706,
27113,
284,
262,
11389,
1634,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4905,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
14402,
15667,
25,
1720,
62,
26801,
4554,
13,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
4808,
14402,
15667,
7,
11167,
62,
11600,
17816,
11167,
7390,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1720,
62,
11600,
17816,
11167,
5376,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1720,
62,
11600,
17816,
20888,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1720,
62,
11600,
17816,
31499,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1720,
62,
11600,
17816,
27740,
5736,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1720,
62,
11600,
17816,
1574,
4803,
14749,
6,
12962,
628,
198,
4299,
1332,
62,
17752,
62,
22105,
62,
46911,
1634,
7,
74,
1878,
4914,
62,
565,
5819,
11,
3440,
62,
7753,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
30307,
4096,
449,
1559,
32634,
7509,
290,
449,
1559,
5960,
48499,
7509,
4096,
11244,
13,
628,
220,
220,
220,
1720,
13,
17752,
422,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3740,
1378,
17752,
12,
15952,
2611,
13,
2398,
14,
35720,
14,
37210,
12,
46981,
12,
9662,
12,
1525,
12,
9662,
13,
6494,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
479,
1878,
4914,
62,
565,
5819,
357,
42,
1878,
4914,
2601,
5819,
37,
9602,
2599,
13946,
29220,
628,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
7753,
357,
13345,
540,
7,
2536,
8,
2599,
19449,
10011,
2611,
2393,
9173,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
7243,
796,
479,
1878,
4914,
62,
565,
5819,
13,
17953,
62,
26652,
7203,
46911,
1634,
12,
17752,
4943,
198,
220,
220,
220,
19677,
796,
479,
1878,
4914,
62,
565,
5819,
13,
15952,
2611,
62,
2301,
4592,
15090,
6,
6371,
10354,
705,
4023,
1378,
36750,
25,
1795,
6659,
6,
30072,
628,
220,
220,
220,
32815,
62,
2536,
796,
3440,
62,
7753,
7203,
11167,
13,
17752,
4943,
198,
220,
220,
220,
1988,
62,
46911,
7509,
796,
19449,
32634,
7509,
7,
15952,
2611,
62,
2536,
11,
19677,
8,
198,
220,
220,
220,
1988,
62,
8906,
48499,
7509,
796,
19449,
5960,
48499,
7509,
7,
15952,
2611,
62,
2536,
8,
628,
220,
220,
220,
9920,
796,
479,
1878,
4914,
62,
565,
5819,
13,
18230,
2189,
7,
8367,
62,
46911,
7509,
28,
8367,
62,
46911,
7509,
8,
628,
220,
220,
220,
1700,
796,
19779,
11167,
7390,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11167,
5376,
1298,
366,
2025,
4771,
26924,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
20888,
1298,
1105,
13,
1120,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
31499,
1298,
14631,
36673,
1600,
366,
501,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
27740,
5736,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
13664,
1298,
767,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
10394,
1298,
1105,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17015,
1298,
860,
13,
20,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1574,
4803,
14749,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15460,
3984,
1298,
532,
3695,
13,
2425,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6511,
3984,
1298,
1160,
13,
19,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34949,
628,
220,
220,
220,
9920,
13,
18230,
344,
7,
26652,
11,
1988,
28,
22105,
11,
18398,
28,
15,
8,
198,
220,
220,
220,
9920,
13,
25925,
3419,
628,
220,
220,
220,
7172,
796,
479,
1878,
4914,
62,
565,
5819,
13,
49827,
7,
8367,
62,
8906,
48499,
7509,
28,
8367,
62,
8906,
48499,
7509,
8,
198,
220,
220,
220,
7172,
13,
562,
570,
26933,
33221,
7841,
653,
7,
26652,
11,
657,
8,
12962,
628,
220,
220,
220,
31456,
796,
7172,
13,
30393,
3419,
198,
220,
220,
220,
4036,
796,
31456,
13,
8367,
3419,
628,
220,
220,
220,
6818,
477,
26933,
50039,
58,
74,
60,
6624,
410,
329,
479,
11,
410,
287,
1700,
13,
23814,
3419,
12962,
628,
198,
4299,
1332,
62,
17752,
62,
22105,
62,
46911,
1634,
62,
259,
38532,
7,
74,
1878,
4914,
62,
565,
5819,
11,
3440,
62,
7753,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
30307,
23283,
7509,
21201,
11244,
13,
628,
220,
220,
220,
1720,
13,
17752,
422,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3740,
1378,
17752,
12,
15952,
2611,
13,
2398,
14,
35720,
14,
37210,
12,
46981,
12,
9662,
12,
1525,
12,
9662,
13,
6494,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
479,
1878,
4914,
62,
565,
5819,
357,
42,
1878,
4914,
2601,
5819,
37,
9602,
2599,
13946,
29220,
628,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
7753,
357,
13345,
540,
7,
2536,
8,
2599,
19449,
10011,
2611,
2393,
9173,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
7243,
796,
479,
1878,
4914,
62,
565,
5819,
13,
17953,
62,
26652,
7203,
46911,
1634,
12,
17752,
4943,
198,
220,
220,
220,
19677,
796,
479,
1878,
4914,
62,
565,
5819,
13,
15952,
2611,
62,
2301,
4592,
15090,
6,
6371,
10354,
705,
4023,
1378,
36750,
25,
1795,
6659,
6,
30072,
628,
220,
220,
220,
32815,
62,
2536,
796,
3440,
62,
7753,
7203,
11167,
13,
17752,
4943,
198,
220,
220,
220,
1988,
62,
46911,
7509,
796,
19449,
32634,
7509,
7,
15952,
2611,
62,
2536,
11,
19677,
8,
198,
220,
220,
220,
9920,
796,
479,
1878,
4914,
62,
565,
5819,
13,
18230,
2189,
7,
8367,
62,
46911,
7509,
28,
8367,
62,
46911,
7509,
8,
628,
220,
220,
220,
1700,
796,
19779,
28484,
273,
7390,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
28484,
273,
5376,
1298,
366,
11006,
27905,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
28484,
32184,
1298,
1105,
1120,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2213,
2367,
1298,
14631,
76,
888,
8973,
92,
628,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
32634,
1634,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2872,
28,
81,
18109,
15885,
8,
318,
257,
2672,
3119,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
9920,
13,
18230,
344,
7,
26652,
11,
1988,
28,
22105,
11,
18398,
28,
15,
8,
628,
198,
4299,
1332,
62,
17752,
62,
22105,
62,
46911,
1634,
62,
3919,
62,
7839,
7,
74,
1878,
4914,
62,
565,
5819,
11,
3440,
62,
7753,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
48221,
942,
11052,
12331,
5298,
611,
19449,
10011,
2611,
6770,
16523,
11851,
23025,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
479,
1878,
4914,
62,
565,
5819,
357,
42,
1878,
4914,
2601,
5819,
37,
9602,
2599,
13946,
29220,
628,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
7753,
357,
13345,
540,
7,
2536,
8,
2599,
19449,
10011,
2611,
2393,
9173,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
19677,
796,
479,
1878,
4914,
62,
565,
5819,
13,
15952,
2611,
62,
2301,
4592,
15090,
6,
6371,
10354,
705,
4023,
1378,
36750,
25,
1795,
6659,
6,
30072,
198,
220,
220,
220,
32815,
62,
2536,
796,
3440,
62,
7753,
10786,
1662,
62,
7839,
13,
17752,
11537,
628,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2872,
2625,
43730,
2672,
19449,
32815,
23025,
3670,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
19449,
32634,
7509,
7,
15952,
2611,
62,
2536,
11,
19677,
8,
628,
198,
4299,
1332,
62,
17752,
62,
22105,
62,
46911,
1634,
62,
23144,
7,
74,
1878,
4914,
62,
565,
5819,
11,
3440,
62,
7753,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
48221,
942,
284,
62,
11600,
290,
422,
62,
11600,
26569,
389,
6105,
5625,
416,
262,
11389,
7509,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
479,
1878,
4914,
62,
565,
5819,
357,
42,
1878,
4914,
2601,
5819,
37,
9602,
2599,
13946,
29220,
628,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
7753,
357,
13345,
540,
7,
2536,
8,
2599,
19449,
10011,
2611,
2393,
9173,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
7243,
796,
479,
1878,
4914,
62,
565,
5819,
13,
17953,
62,
26652,
7203,
46911,
1634,
12,
17752,
4943,
198,
220,
220,
220,
19677,
796,
479,
1878,
4914,
62,
565,
5819,
13,
15952,
2611,
62,
2301,
4592,
15090,
6,
6371,
10354,
705,
4023,
1378,
36750,
25,
1795,
6659,
6,
30072,
628,
220,
220,
220,
32815,
62,
2536,
796,
3440,
62,
7753,
7203,
11167,
13,
17752,
4943,
198,
220,
220,
220,
1988,
62,
46911,
7509,
796,
19449,
32634,
7509,
7,
15952,
2611,
62,
2536,
11,
19677,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
284,
62,
11600,
28,
62,
9288,
15667,
62,
1462,
62,
11600,
8,
198,
220,
220,
220,
1988,
62,
8906,
48499,
7509,
796,
19449,
5960,
48499,
7509,
7,
15952,
2611,
62,
2536,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
422,
62,
11600,
28,
62,
9288,
15667,
62,
6738,
62,
11600,
8,
628,
220,
220,
220,
9920,
796,
479,
1878,
4914,
62,
565,
5819,
13,
18230,
2189,
7,
8367,
62,
46911,
7509,
28,
8367,
62,
46911,
7509,
8,
628,
220,
220,
220,
1700,
796,
4808,
14402,
15667,
7,
11167,
62,
312,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
2625,
464,
4771,
26924,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2756,
28,
1065,
13,
1120,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15940,
28,
14692,
36673,
1600,
366,
501,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
28,
4895,
13664,
1298,
767,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
10394,
1298,
1105,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17015,
1298,
860,
13,
20,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4067,
28,
4895,
15460,
3984,
1298,
532,
3695,
13,
2425,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6511,
3984,
1298,
1160,
13,
19,
30072,
628,
220,
220,
220,
9920,
13,
18230,
344,
7,
26652,
11,
1988,
28,
22105,
11,
18398,
28,
15,
8,
198,
220,
220,
220,
9920,
13,
25925,
3419,
628,
220,
220,
220,
7172,
796,
479,
1878,
4914,
62,
565,
5819,
13,
49827,
7,
8367,
62,
8906,
48499,
7509,
28,
8367,
62,
8906,
48499,
7509,
8,
198,
220,
220,
220,
7172,
13,
562,
570,
26933,
33221,
7841,
653,
7,
26652,
11,
657,
8,
12962,
628,
220,
220,
220,
31456,
796,
7172,
13,
30393,
3419,
198,
220,
220,
220,
4036,
796,
31456,
13,
8367,
3419,
628,
220,
220,
220,
6818,
477,
26933,
1136,
35226,
7,
50039,
11,
11688,
8,
6624,
651,
35226,
7,
22105,
11,
11688,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
11688,
287,
410,
945,
7,
22105,
8,
12962,
628,
198,
4299,
1332,
62,
17752,
62,
22105,
62,
8906,
48499,
1634,
62,
76,
1042,
963,
7,
74,
1878,
4914,
62,
565,
5819,
11,
3440,
62,
7753,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
48221,
942,
284,
62,
11600,
290,
422,
62,
11600,
26569,
389,
6105,
5625,
416,
262,
11389,
7509,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
479,
1878,
4914,
62,
565,
5819,
357,
42,
1878,
4914,
2601,
5819,
37,
9602,
2599,
13946,
29220,
628,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
7753,
357,
13345,
540,
7,
2536,
8,
2599,
19449,
10011,
2611,
2393,
9173,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
7243,
796,
479,
1878,
4914,
62,
565,
5819,
13,
17953,
62,
26652,
7203,
46911,
1634,
12,
17752,
4943,
198,
220,
220,
220,
19677,
796,
479,
1878,
4914,
62,
565,
5819,
13,
15952,
2611,
62,
2301,
4592,
15090,
6,
6371,
10354,
705,
4023,
1378,
36750,
25,
1795,
6659,
6,
30072,
628,
220,
220,
220,
32815,
62,
2536,
796,
3440,
62,
7753,
7203,
28484,
273,
13,
17752,
4943,
198,
220,
220,
220,
32815,
62,
2536,
17,
796,
3440,
62,
7753,
7203,
11167,
13,
17752,
4943,
628,
220,
220,
220,
1988,
62,
46911,
7509,
796,
19449,
32634,
7509,
7,
15952,
2611,
62,
2536,
11,
19677,
8,
198,
220,
220,
220,
1988,
62,
8906,
48499,
7509,
796,
19449,
5960,
48499,
7509,
7,
15952,
2611,
62,
2536,
17,
8,
628,
220,
220,
220,
9920,
796,
479,
1878,
4914,
62,
565,
5819,
13,
18230,
2189,
7,
8367,
62,
46911,
7509,
28,
8367,
62,
46911,
7509,
8,
628,
220,
220,
220,
1700,
796,
19779,
28484,
273,
7390,
1298,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
28484,
273,
5376,
1298,
366,
48017,
385,
23369,
12639,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
28484,
32184,
1298,
1542,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2213,
2367,
1298,
14631,
27729,
1359,
8973,
92,
628,
220,
220,
220,
9920,
13,
18230,
344,
7,
26652,
11,
1988,
28,
22105,
11,
18398,
28,
15,
8,
198,
220,
220,
220,
9920,
13,
25925,
3419,
628,
220,
220,
220,
7172,
796,
479,
1878,
4914,
62,
565,
5819,
13,
49827,
7,
8367,
62,
8906,
48499,
7509,
28,
8367,
62,
8906,
48499,
7509,
8,
198,
220,
220,
220,
7172,
13,
562,
570,
26933,
33221,
7841,
653,
7,
26652,
11,
657,
8,
12962,
628,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3515,
2454,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2872,
2625,
6,
11167,
7390,
6,
318,
257,
2672,
3119,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
7172,
13,
30393,
3419,
198
] | 2.333912 | 3,459 |
"""
pyexcel_io.utils
~~~~~~~~~~~~~~~~~~~
utility functions
:copyright: (c) 2014-2017 by Onni Software Ltd.
:license: New BSD License, see LICENSE for more details
"""
import pyexcel_io.constants as constants
XLS_PLUGIN = "pyexcel-xls"
XLSX_PLUGIN = "pyexcel-xlsx"
ODS_PLUGIN = "pyexcel-ods"
ODS3_PLUGIN = "pyexcel-ods3"
XLSXW_PLUGIN = "pyexcel-xlsxw"
IO_ITSELF = "pyexcel-io"
AVAILABLE_READERS = {
constants.FILE_FORMAT_XLS: [XLS_PLUGIN],
constants.FILE_FORMAT_XLSX: [XLS_PLUGIN, XLSX_PLUGIN],
constants.FILE_FORMAT_XLSM: [XLS_PLUGIN, XLSX_PLUGIN],
constants.FILE_FORMAT_ODS: [ODS_PLUGIN, ODS3_PLUGIN],
constants.FILE_FORMAT_CSV: [IO_ITSELF],
constants.FILE_FORMAT_TSV: [IO_ITSELF],
constants.FILE_FORMAT_CSVZ: [IO_ITSELF],
constants.FILE_FORMAT_TSVZ: [IO_ITSELF],
}
AVAILABLE_WRITERS = {
constants.FILE_FORMAT_XLS: [XLS_PLUGIN],
constants.FILE_FORMAT_XLSX: [XLSX_PLUGIN, XLSXW_PLUGIN],
constants.FILE_FORMAT_XLSM: [XLSX_PLUGIN],
constants.FILE_FORMAT_ODS: [ODS_PLUGIN, ODS3_PLUGIN],
constants.FILE_FORMAT_CSV: [IO_ITSELF],
constants.FILE_FORMAT_TSV: [IO_ITSELF],
constants.FILE_FORMAT_CSVZ: [IO_ITSELF],
constants.FILE_FORMAT_TSVZ: [IO_ITSELF],
}
def is_empty_array(array):
"""
Check if an array is an array of '' or not
"""
empty_array = [element for element in array if element != ""]
return len(empty_array) == 0
def swap_empty_string_for_none(array):
""" replace empty string fields with None """
def swap(value):
""" change empty string to None """
if value == "":
return None
else:
return value
return [swap(x) for x in array]
| [
37811,
198,
220,
220,
220,
12972,
1069,
5276,
62,
952,
13,
26791,
198,
220,
220,
220,
220,
27156,
4907,
93,
628,
220,
220,
220,
10361,
5499,
628,
220,
220,
220,
1058,
22163,
4766,
25,
357,
66,
8,
1946,
12,
5539,
416,
1550,
8461,
10442,
12052,
13,
198,
220,
220,
220,
1058,
43085,
25,
968,
347,
10305,
13789,
11,
766,
38559,
24290,
329,
517,
3307,
198,
37811,
198,
11748,
12972,
1069,
5276,
62,
952,
13,
9979,
1187,
355,
38491,
198,
198,
55,
6561,
62,
6489,
7340,
1268,
796,
366,
9078,
1069,
5276,
12,
87,
7278,
1,
198,
55,
6561,
55,
62,
6489,
7340,
1268,
796,
366,
9078,
1069,
5276,
12,
87,
7278,
87,
1,
198,
3727,
50,
62,
6489,
7340,
1268,
796,
366,
9078,
1069,
5276,
12,
12978,
1,
198,
3727,
50,
18,
62,
6489,
7340,
1268,
796,
366,
9078,
1069,
5276,
12,
12978,
18,
1,
198,
55,
6561,
55,
54,
62,
6489,
7340,
1268,
796,
366,
9078,
1069,
5276,
12,
87,
7278,
87,
86,
1,
198,
9399,
62,
29722,
37738,
796,
366,
9078,
1069,
5276,
12,
952,
1,
628,
198,
10116,
32,
4146,
17534,
62,
15675,
4877,
796,
1391,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
55,
6561,
25,
685,
55,
6561,
62,
6489,
7340,
1268,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
55,
6561,
55,
25,
685,
55,
6561,
62,
6489,
7340,
1268,
11,
1395,
6561,
55,
62,
6489,
7340,
1268,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
55,
6561,
44,
25,
685,
55,
6561,
62,
6489,
7340,
1268,
11,
1395,
6561,
55,
62,
6489,
7340,
1268,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
3727,
50,
25,
685,
3727,
50,
62,
6489,
7340,
1268,
11,
440,
5258,
18,
62,
6489,
7340,
1268,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
7902,
53,
25,
685,
9399,
62,
29722,
37738,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
4694,
53,
25,
685,
9399,
62,
29722,
37738,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
7902,
53,
57,
25,
685,
9399,
62,
29722,
37738,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
4694,
53,
57,
25,
685,
9399,
62,
29722,
37738,
4357,
198,
92,
198,
198,
10116,
32,
4146,
17534,
62,
18564,
2043,
4877,
796,
1391,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
55,
6561,
25,
685,
55,
6561,
62,
6489,
7340,
1268,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
55,
6561,
55,
25,
685,
55,
6561,
55,
62,
6489,
7340,
1268,
11,
1395,
6561,
55,
54,
62,
6489,
7340,
1268,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
55,
6561,
44,
25,
685,
55,
6561,
55,
62,
6489,
7340,
1268,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
3727,
50,
25,
685,
3727,
50,
62,
6489,
7340,
1268,
11,
440,
5258,
18,
62,
6489,
7340,
1268,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
7902,
53,
25,
685,
9399,
62,
29722,
37738,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
4694,
53,
25,
685,
9399,
62,
29722,
37738,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
7902,
53,
57,
25,
685,
9399,
62,
29722,
37738,
4357,
198,
220,
220,
220,
38491,
13,
25664,
62,
21389,
1404,
62,
4694,
53,
57,
25,
685,
9399,
62,
29722,
37738,
4357,
198,
92,
628,
198,
198,
4299,
318,
62,
28920,
62,
18747,
7,
18747,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6822,
611,
281,
7177,
318,
281,
7177,
286,
10148,
393,
407,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6565,
62,
18747,
796,
685,
30854,
329,
5002,
287,
7177,
611,
5002,
14512,
366,
8973,
198,
220,
220,
220,
1441,
18896,
7,
28920,
62,
18747,
8,
6624,
657,
628,
198,
4299,
16075,
62,
28920,
62,
8841,
62,
1640,
62,
23108,
7,
18747,
2599,
198,
220,
220,
220,
37227,
6330,
6565,
4731,
7032,
351,
6045,
37227,
628,
220,
220,
220,
825,
16075,
7,
8367,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
1487,
6565,
4731,
284,
6045,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1988,
6624,
366,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
1988,
628,
220,
220,
220,
1441,
685,
2032,
499,
7,
87,
8,
329,
2124,
287,
7177,
60,
198
] | 2.194872 | 780 |
import unittest
from cube import RubiksCube
# rename that class
# test solution funcs <- make sure the tests arent interfering with each other
# def test_bottom_layer_robustness(self, n=50):
# for _ in range(n):
# self.cube.initialize_cube()
# self.test_bottom_layer()
# print("Success")
# def test_middle_layer_robustness(self, n=50):
# for _ in range(n):
# self.cube.initialize_cube()
# self.cube._solve_mid_layer()
# def test_top_cross_robustness(self, n=50):
# for _ in range(n):
# self.cube.initialize_cube()
# self.test_top_cross()
# def test_top_face_robustness(self, n=50):
# for _ in range(n):
# self.cube.initialize_cube()
# self.test_top_face()
# def test_top_corners_robustness(self, n=50):
# for _ in range(n):
# self.cube.initialize_cube()
# self.test_top_corners()
if __name__ == '__main__':
unittest.main() | [
11748,
555,
715,
395,
198,
6738,
23441,
1330,
6256,
72,
591,
29071,
628,
198,
2,
36265,
326,
1398,
198,
198,
2,
1332,
4610,
1257,
6359,
24293,
787,
1654,
262,
5254,
389,
429,
32874,
351,
1123,
584,
628,
220,
220,
220,
1303,
825,
1332,
62,
22487,
62,
29289,
62,
22609,
436,
1108,
7,
944,
11,
299,
28,
1120,
2599,
628,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
4808,
287,
2837,
7,
77,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40296,
13,
36733,
1096,
62,
40296,
3419,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9288,
62,
22487,
62,
29289,
3419,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
33244,
4943,
628,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
825,
1332,
62,
27171,
62,
29289,
62,
22609,
436,
1108,
7,
944,
11,
299,
28,
1120,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
4808,
287,
2837,
7,
77,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40296,
13,
36733,
1096,
62,
40296,
3419,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40296,
13557,
82,
6442,
62,
13602,
62,
29289,
3419,
628,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
825,
1332,
62,
4852,
62,
19692,
62,
22609,
436,
1108,
7,
944,
11,
299,
28,
1120,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
4808,
287,
2837,
7,
77,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40296,
13,
36733,
1096,
62,
40296,
3419,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9288,
62,
4852,
62,
19692,
3419,
628,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
825,
1332,
62,
4852,
62,
2550,
62,
22609,
436,
1108,
7,
944,
11,
299,
28,
1120,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
4808,
287,
2837,
7,
77,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40296,
13,
36733,
1096,
62,
40296,
3419,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9288,
62,
4852,
62,
2550,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
825,
1332,
62,
4852,
62,
20772,
364,
62,
22609,
436,
1108,
7,
944,
11,
299,
28,
1120,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
4808,
287,
2837,
7,
77,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40296,
13,
36733,
1096,
62,
40296,
3419,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9288,
62,
4852,
62,
20772,
364,
3419,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419
] | 2.075099 | 506 |
#coding:utf-8
'''
filename:mysequence.py
chap:6
subject:20
conditions:inherit collections.abc.Sequence
新容器内的对象必须按照一定顺序排列
solution:class MySequence
'''
import collections
import numbers
class MySequence(collections.abc.Sequence):
'''必要方法 __getitem__,__len__'''
@staticmethod
def order(seq):
'''返回 按类别排序的序列'''
# print('seq:',seq)
source = list(seq)
# print('source:',source)
number_list = []
str_list = []
tuple_list = []
list_list = []
dict_list = []
set_list = []
other_list = []
d = {'numbers.Real':number_list,
'str':str_list,
'tuple':tuple_list,
'list':list_list,
'dict':dict_list,
'set':set_list}
for item in source:
for cls_string in d.keys():
if isinstance(item,eval(cls_string)):
d[cls_string].append(item)
break
else:
other_list.append(item)
# print('other_list :',other_list)
rst = []
lists = list(d.values())
for lst in lists:
# print('before sort:',lst)
lst.sort()
# print('after sort:',lst)
rst += lst
return rst+other_list
if __name__ == '__main__':
l = [1,2,(3,4,55),{'a','b'},{(11,11):111,'name':'laoqi'},(33,5),62,'python',9,'age']
a = MySequence(l)
print(l)
print(a)
print(len(a))
print(list(a))
| [
2,
66,
7656,
25,
40477,
12,
23,
198,
198,
7061,
6,
198,
220,
220,
220,
29472,
25,
1820,
43167,
13,
9078,
198,
220,
220,
220,
220,
220,
220,
220,
28022,
25,
21,
198,
220,
220,
220,
2426,
25,
1238,
198,
220,
220,
220,
3403,
25,
259,
372,
270,
17268,
13,
39305,
13,
44015,
594,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10545,
244,
108,
22522,
117,
161,
247,
101,
37863,
227,
21410,
43380,
117,
164,
109,
94,
33232,
227,
165,
94,
119,
162,
234,
231,
163,
227,
100,
31660,
22522,
21253,
94,
118,
41753,
237,
162,
236,
240,
26344,
245,
198,
220,
220,
220,
4610,
25,
4871,
2011,
44015,
594,
198,
7061,
6,
198,
198,
11748,
17268,
198,
11748,
3146,
198,
198,
4871,
2011,
44015,
594,
7,
4033,
26448,
13,
39305,
13,
44015,
594,
2599,
198,
220,
220,
220,
705,
7061,
33232,
227,
17358,
223,
43095,
37345,
243,
11593,
1136,
9186,
834,
11,
834,
11925,
834,
7061,
6,
628,
198,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
1502,
7,
41068,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
32573,
242,
32368,
252,
10545,
234,
231,
163,
109,
119,
26344,
104,
162,
236,
240,
41753,
237,
21410,
41753,
237,
26344,
245,
7061,
6,
198,
2,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
41068,
25,
3256,
41068,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2723,
796,
1351,
7,
41068,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
10459,
25,
3256,
10459,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
965,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
46545,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
1351,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
900,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
584,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
288,
796,
1391,
6,
77,
17024,
13,
15633,
10354,
17618,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2536,
10354,
2536,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
83,
29291,
10354,
83,
29291,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4868,
10354,
4868,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11600,
10354,
11600,
62,
4868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2617,
10354,
2617,
62,
4868,
92,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2378,
287,
2723,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
537,
82,
62,
8841,
287,
288,
13,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
9186,
11,
18206,
7,
565,
82,
62,
8841,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
58,
565,
82,
62,
8841,
4083,
33295,
7,
9186,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
584,
62,
4868,
13,
33295,
7,
9186,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
847,
62,
4868,
1058,
3256,
847,
62,
4868,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
301,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
8341,
796,
1351,
7,
67,
13,
27160,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
329,
300,
301,
287,
8341,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
19052,
3297,
25,
3256,
75,
301,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
300,
301,
13,
30619,
3419,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
8499,
3297,
25,
3256,
75,
301,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
301,
15853,
300,
301,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
374,
301,
10,
847,
62,
4868,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
300,
796,
685,
16,
11,
17,
11,
7,
18,
11,
19,
11,
2816,
828,
90,
6,
64,
41707,
65,
6,
5512,
90,
7,
1157,
11,
1157,
2599,
16243,
4032,
3672,
10354,
6,
5031,
78,
40603,
6,
5512,
7,
2091,
11,
20,
828,
5237,
4032,
29412,
3256,
24,
4032,
496,
20520,
198,
220,
220,
220,
257,
796,
2011,
44015,
594,
7,
75,
8,
198,
220,
220,
220,
3601,
7,
75,
8,
198,
220,
220,
220,
3601,
7,
64,
8,
198,
220,
220,
220,
3601,
7,
11925,
7,
64,
4008,
198,
220,
220,
220,
3601,
7,
4868,
7,
64,
4008,
198
] | 1.700219 | 914 |
"""starts a sync remote server
"""
import os
import getpass
import pathlib
import logging
import click
from . import cli
import paramiko
import paramiko.sftp_client
import syncro.support as support
import syncro.cli as cli
logger = logging.getLogger(__name__)
@click.command()
@click.argument("host")
@click.option('--password', hide_input=True)
@click.option('--username', default=lambda: getpass.getuser())
@cli.standard(quiet=True)
def main(host, username, password):
"hello world"
logger.debug("A")
logger.info("B")
logger.warning("C")
port = 22
print("one", username, password)
client = paramiko.client.SSHClient()
client.load_system_host_keys()
client.load_host_keys(pathlib.Path("~/.ssh/known_hosts").expanduser())
client.connect(host, port, username=username, password=password)
transport = client.get_transport()
transport.set_keepalive(2)
print(support.remote(transport, ["ls", "-la",])[1])
# @cli.add_logging()
# def two(*args, **kwargs):
# print("two", args, kwargs)
#
# @cli.add_logging(1, b=2)
# def three(*args, **kwargs):
# print("three", args, kwargs)
if __name__ == '__main__':
main()
| [
37811,
301,
5889,
257,
17510,
6569,
4382,
198,
37811,
198,
11748,
28686,
198,
11748,
651,
6603,
198,
11748,
3108,
8019,
198,
11748,
18931,
198,
198,
11748,
3904,
198,
6738,
764,
1330,
537,
72,
198,
198,
11748,
5772,
12125,
198,
11748,
5772,
12125,
13,
82,
701,
79,
62,
16366,
198,
198,
11748,
17510,
305,
13,
11284,
355,
1104,
198,
11748,
17510,
305,
13,
44506,
355,
537,
72,
628,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
628,
198,
198,
31,
12976,
13,
21812,
3419,
198,
31,
12976,
13,
49140,
7203,
4774,
4943,
198,
31,
12976,
13,
18076,
10786,
438,
28712,
3256,
7808,
62,
15414,
28,
17821,
8,
198,
31,
12976,
13,
18076,
10786,
438,
29460,
3256,
4277,
28,
50033,
25,
651,
6603,
13,
1136,
7220,
28955,
198,
31,
44506,
13,
20307,
7,
39624,
28,
17821,
8,
198,
4299,
1388,
7,
4774,
11,
20579,
11,
9206,
2599,
198,
220,
220,
220,
366,
31373,
995,
1,
198,
220,
220,
220,
49706,
13,
24442,
7203,
32,
4943,
198,
220,
220,
220,
49706,
13,
10951,
7203,
33,
4943,
198,
220,
220,
220,
49706,
13,
43917,
7203,
34,
4943,
198,
220,
220,
220,
2493,
796,
2534,
198,
220,
220,
220,
3601,
7203,
505,
1600,
20579,
11,
9206,
8,
198,
220,
220,
220,
5456,
796,
5772,
12125,
13,
16366,
13,
5432,
39,
11792,
3419,
198,
220,
220,
220,
5456,
13,
2220,
62,
10057,
62,
4774,
62,
13083,
3419,
198,
220,
220,
220,
5456,
13,
2220,
62,
4774,
62,
13083,
7,
6978,
8019,
13,
15235,
7203,
93,
11757,
45824,
14,
4002,
62,
4774,
82,
11074,
11201,
392,
7220,
28955,
198,
220,
220,
220,
5456,
13,
8443,
7,
4774,
11,
2493,
11,
20579,
28,
29460,
11,
9206,
28,
28712,
8,
628,
220,
220,
220,
4839,
796,
5456,
13,
1136,
62,
7645,
634,
3419,
198,
220,
220,
220,
4839,
13,
2617,
62,
14894,
282,
425,
7,
17,
8,
628,
220,
220,
220,
3601,
7,
11284,
13,
47960,
7,
7645,
634,
11,
14631,
7278,
1600,
27444,
5031,
1600,
12962,
58,
16,
12962,
198,
198,
2,
2488,
44506,
13,
2860,
62,
6404,
2667,
3419,
198,
2,
825,
734,
46491,
22046,
11,
12429,
46265,
22046,
2599,
198,
2,
220,
220,
220,
220,
3601,
7203,
11545,
1600,
26498,
11,
479,
86,
22046,
8,
198,
2,
198,
2,
2488,
44506,
13,
2860,
62,
6404,
2667,
7,
16,
11,
275,
28,
17,
8,
198,
2,
825,
1115,
46491,
22046,
11,
12429,
46265,
22046,
2599,
198,
2,
220,
220,
220,
220,
3601,
7203,
15542,
1600,
26498,
11,
479,
86,
22046,
8,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.684091 | 440 |
from typing import List, Tuple
#fenzhi1xiugai
def n31(a: int) -> Tuple[List[int], int]:
"""
Returns the Collatz sequence and its length of any positive integer.
>>> n31(4)
([4, 2, 1], 3)
"""
if not isinstance(a, int):
raise TypeError("Must be int, not {}".format(type(a).__name__))
if a < 1:
raise ValueError(f"Given integer must be greater than 1, not {a}")
path = [a]
while a != 1:
if a % 2 == 0:
a = a // 2
else:
a = 3 * a + 1
path += [a]
return path, len(path)
def test_n31():
"""
>>> test_n31()
"""
assert n31(4) == ([4, 2, 1], 3)
assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15)
assert n31(31) == (
[
31,
94,
47,
142,
71,
214,
107,
322,
161,
484,
242,
121,
364,
182,
91,
274,
137,
412,
206,
103,
310,
155,
466,
233,
700,
350,
175,
526,
263,
790,
395,
1186,
593,
1780,
890,
445,
1336,
668,
334,
167,
502,
251,
754,
377,
1132,
566,
283,
850,
425,
1276,
638,
319,
958,
479,
1438,
719,
2158,
1079,
3238,
1619,
4858,
2429,
7288,
3644,
1822,
911,
2734,
1367,
4102,
2051,
6154,
3077,
9232,
4616,
2308,
1154,
577,
1732,
866,
433,
1300,
650,
325,
976,
488,
244,
122,
61,
184,
92,
46,
23,
70,
35,
106,
53,
160,
80,
40,
20,
10,
5,
16,
8,
4,
2,
1,
],
107,
)
if __name__ == "__main__":
num = 4
path, length = n31(num)
print(f"The Collatz sequence of {num} took {length} steps. \nPath: {path}")
| [
6738,
19720,
1330,
7343,
11,
309,
29291,
198,
198,
2,
69,
19471,
5303,
16,
29992,
1018,
1872,
198,
4299,
299,
3132,
7,
64,
25,
493,
8,
4613,
309,
29291,
58,
8053,
58,
600,
4357,
493,
5974,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
262,
7778,
27906,
8379,
290,
663,
4129,
286,
597,
3967,
18253,
13,
198,
220,
220,
220,
13163,
299,
3132,
7,
19,
8,
198,
220,
220,
220,
29565,
19,
11,
362,
11,
352,
4357,
513,
8,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
407,
318,
39098,
7,
64,
11,
493,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
7203,
34320,
307,
493,
11,
407,
23884,
1911,
18982,
7,
4906,
7,
64,
737,
834,
3672,
834,
4008,
198,
220,
220,
220,
611,
257,
1279,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
69,
1,
15056,
18253,
1276,
307,
3744,
621,
352,
11,
407,
1391,
64,
92,
4943,
628,
220,
220,
220,
3108,
796,
685,
64,
60,
198,
220,
220,
220,
981,
257,
14512,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
257,
4064,
362,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
796,
257,
3373,
362,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
796,
513,
1635,
257,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
3108,
15853,
685,
64,
60,
198,
220,
220,
220,
1441,
3108,
11,
18896,
7,
6978,
8,
628,
198,
4299,
1332,
62,
77,
3132,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13163,
1332,
62,
77,
3132,
3419,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6818,
299,
3132,
7,
19,
8,
6624,
29565,
19,
11,
362,
11,
352,
4357,
513,
8,
198,
220,
220,
220,
6818,
299,
3132,
7,
1157,
8,
6624,
29565,
1157,
11,
4974,
11,
1596,
11,
6740,
11,
2608,
11,
1511,
11,
2319,
11,
1160,
11,
838,
11,
642,
11,
1467,
11,
807,
11,
604,
11,
362,
11,
352,
4357,
1315,
8,
198,
220,
220,
220,
6818,
299,
3132,
7,
3132,
8,
6624,
357,
198,
220,
220,
220,
220,
220,
220,
220,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3261,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10048,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6298,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25181,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9166,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28277,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16226,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38831,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4764,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34353,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20416,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44969,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28581,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
39768,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21643,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42215,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27253,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15349,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28947,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20708,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
604,
2791,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30435,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13037,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13803,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19038,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
642,
2075,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
39135,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
767,
3829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42321,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1367,
4521,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
642,
6052,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1596,
1795,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
807,
3829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
48655,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1511,
2623,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
718,
3104,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42819,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26118,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47233,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34489,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
767,
4051,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42163,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1367,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
642,
2791,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42032,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30607,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36959,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1105,
4304,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
718,
2548,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40385,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
860,
3365,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
604,
3720,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1478,
2548,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
767,
1129,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
362,
21273,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
838,
3720,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
513,
23721,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1467,
1129,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4764,
3365,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1987,
1959,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
767,
25270,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
513,
29173,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1248,
1828,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16679,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2681,
2682,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1511,
3134,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
604,
15377,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1160,
4349,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
718,
21526,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1542,
3324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
860,
24339,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6337,
1433,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18395,
23,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12279,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
642,
3324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1596,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
807,
2791,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36058,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22626,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29524,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
860,
4304,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
604,
3459,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35264,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19409,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8454,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28598,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10190,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6337,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2242,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4317,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3439,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15696,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7192,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13454,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4019,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2319,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1160,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
838,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
642,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1467,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
807,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
604,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
16226,
11,
198,
220,
220,
220,
1267,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
997,
796,
604,
198,
220,
220,
220,
3108,
11,
4129,
796,
299,
3132,
7,
22510,
8,
198,
220,
220,
220,
3601,
7,
69,
1,
464,
7778,
27906,
8379,
286,
1391,
22510,
92,
1718,
1391,
13664,
92,
4831,
13,
3467,
77,
15235,
25,
1391,
6978,
92,
4943,
198
] | 1.382968 | 2,008 |
from nltk import Tree
import nltk
import argparse
import pandas as pandas
import pandas as pd
parser = argparse.ArgumentParser()
parser.add_argument('--infile', default='./ptb-collins.merge.txt', help="preprocessing tree")
#parser.add_argument('--seed', type=int, default=2004, help="random seed for initialization")
parser.add_argument('--outfile', default='./processed_ptb-collins.merge1.txt', help="file containing logs")
if (__name__ == "__main__"):
args = parser.parse_args()
trees_file = open(args.infile, 'r')
lines = trees_file.readlines()
list_lines = [line for line in lines]
trees_file.close()
processed_lines = []
for list_line in list_lines:
ls=[]
for tokens in list_line.split():
if tokens[0] == "(":
try:
if tokens[1] in string.ascii_letters:
tokens = rmsym('-',tokens)
tokens = rmsym('=', tokens)
tokens = rmsym('|', tokens)
tokens = rmsym('$', tokens)
tokens = rmsym('#', tokens)
tokens = rmsym('+', tokens)
except:
print("some bugs")
ls.append(tokens)
processed_line = " ".join(ls)
processed_lines.append(processed_line)
f=open(args.outfile,'w')
for ele in processed_lines:
f.write(ele+'\n')
f.close()
print("Pre-processing is done") | [
6738,
299,
2528,
74,
1330,
12200,
198,
11748,
299,
2528,
74,
198,
11748,
1822,
29572,
198,
11748,
19798,
292,
355,
19798,
292,
198,
11748,
19798,
292,
355,
279,
67,
628,
220,
220,
220,
220,
198,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
259,
7753,
3256,
4277,
28,
4458,
14,
457,
65,
12,
26000,
1040,
13,
647,
469,
13,
14116,
3256,
1037,
2625,
3866,
36948,
5509,
4943,
198,
2,
48610,
13,
2860,
62,
49140,
10786,
438,
28826,
3256,
2099,
28,
600,
11,
4277,
28,
15724,
11,
1037,
2625,
25120,
9403,
329,
37588,
4943,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
448,
7753,
3256,
4277,
28,
4458,
14,
14681,
276,
62,
457,
65,
12,
26000,
1040,
13,
647,
469,
16,
13,
14116,
3256,
1037,
2625,
7753,
7268,
17259,
4943,
198,
198,
361,
357,
834,
3672,
834,
6624,
366,
834,
12417,
834,
1,
2599,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
7150,
62,
7753,
796,
1280,
7,
22046,
13,
259,
7753,
11,
705,
81,
11537,
198,
220,
220,
220,
3951,
796,
7150,
62,
7753,
13,
961,
6615,
3419,
198,
220,
220,
220,
1351,
62,
6615,
796,
685,
1370,
329,
1627,
287,
3951,
60,
198,
220,
220,
220,
7150,
62,
7753,
13,
19836,
3419,
198,
220,
220,
220,
13686,
62,
6615,
796,
17635,
198,
220,
220,
220,
329,
1351,
62,
1370,
287,
1351,
62,
6615,
25,
198,
220,
220,
220,
220,
220,
220,
220,
43979,
28,
21737,
198,
220,
220,
220,
220,
220,
220,
220,
329,
16326,
287,
1351,
62,
1370,
13,
35312,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16326,
58,
15,
60,
6624,
30629,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
16326,
58,
16,
60,
287,
4731,
13,
292,
979,
72,
62,
15653,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16326,
796,
374,
907,
4948,
10786,
12,
3256,
83,
482,
641,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16326,
796,
374,
907,
4948,
10786,
28,
3256,
16326,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16326,
796,
374,
907,
4948,
10786,
91,
3256,
16326,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16326,
796,
374,
907,
4948,
10786,
3,
3256,
16326,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16326,
796,
374,
907,
4948,
10786,
2,
3256,
16326,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16326,
796,
374,
907,
4948,
10786,
10,
3256,
16326,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
11246,
11316,
4943,
220,
220,
220,
220,
220,
220,
220,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43979,
13,
33295,
7,
83,
482,
641,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13686,
62,
1370,
796,
366,
27071,
22179,
7,
7278,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13686,
62,
6615,
13,
33295,
7,
14681,
276,
62,
1370,
8,
628,
220,
220,
220,
277,
28,
9654,
7,
22046,
13,
448,
7753,
4032,
86,
11537,
198,
220,
220,
220,
329,
9766,
287,
13686,
62,
6615,
25,
198,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7,
11129,
10,
6,
59,
77,
11537,
628,
220,
220,
220,
277,
13,
19836,
3419,
198,
220,
220,
220,
3601,
7203,
6719,
12,
36948,
318,
1760,
4943
] | 2.069156 | 723 |
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Efficient Walsh-Hadamard transform in JAX."""
import math
from typing import Tuple, Union
import jax
import jax.numpy as jnp
import scipy
from fedjax.core.typing import PRNGKey, Params
@jax.jit
def walsh_hadamard_transform(
x: jnp.ndarray,
small_n: int = 2**7,
precision: Union[jax.lax.Precision, str] = 'highest') -> jnp.ndarray:
"""Efficient Walsh-Hadamard transform in JAX.
An accelerator friendly O(n log n) Walsh-Hadamard transform.
Args:
x: A vector. len(x) must be a power of 2.
small_n: Size to break x into. The default value is tuned on TPUv3. Must be
a power of 2 and > 1.
precision: Precision for general dot products.
Returns:
Transformed vector.
"""
if small_n <= 1:
raise ValueError(f'small_n must be > 1, got {small_n}')
# Let
# - A ⊗ B be the Kronecker product of A and B;
# - flat(X) be the vector obtained by flattening the rows of X of shape
# [M, N].
#
# We can show the following:
#
# (A ⊗ B^T) flat(X) = flat(A X B)
#
# Note that the Hadamard matrix H_{2^M 2^N} = H_{2^M} ⊗ H_{2^N}, and
# Hadamard matrices are symmetrical. Therefore, for a [2^M, 2^N] matrix X,
#
# H_{2^M 2^N} flat(X) = flat(H_{2^M} X H_{2^N})
#
# The idea can be generalized by breaking a Hadamard matrix into the Kronecker
# product of many small Hadamard matrices, and reshaping the vector input into
# a many-dimensional array, and running einsum on each dimension.
#
# Let the input vector be of length D, because our "small" Hadamard matrices
# are of size at most small_n x small_n, a constant, each einsum is O(D). We
# need to run log D einsums, thus the overall time complexity is O(D log D),
# same as the classical divide and conquer algorithm.
#
# However, thanks to efficient software & hardware implementations of einsum,
# we can often achieve far better speed than the classical algorithm on
# accelerators, at the same time producing a far simpler XLA HLO graph.
n = len(x)
# Find out the shape to reshape x into.
shape = []
while n > 1:
shape.append(min(n, small_n))
n //= small_n
shape.reverse()
num_dims = len(shape)
if num_dims + 1 >= 10:
# We will run out of dimension names in einsums.
raise ValueError(f'small_n={small_n} is too small for input size {n}')
y = x.reshape(shape)
# Hadamard matrices we will need.
hadamards = dict((d, hadamard_matrix(d, x.dtype)) for d in set(shape))
# einsum on each dimension.
for i, d in enumerate(shape):
y_dims = ''.join(str(j) for j in range(num_dims))
h_dims = f'{i}{num_dims + 1}'
out_dims = y_dims.replace(str(i), str(num_dims + 1), 1)
operands = f'{y_dims},{h_dims}->{out_dims}'
y = jnp.einsum(operands, y, hadamards[d], precision=precision)
return y.flatten()
def hadamard_matrix(n: int, dtype: jnp.dtype) -> jnp.ndarray:
"""Generates the Hadamard matrix.
Because there are JAX dtypes not supported in numpy, the equivalent function
in scipy can't be used directly.
Args:
n: Number of rows/columns of the Hadamard matrix. Must be a power of 2.
dtype: Output dtype.
Returns:
The Hadamard matrix of the given size and type.
"""
return jnp.array(scipy.linalg.hadamard(n), dtype)
@jax.jit
def structured_rotation(x: jnp.ndarray,
rng: PRNGKey) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Computes HD(x)/sqrt(d).
Here H is the walsh Hadamard matrix, d is the dimensionlity of x, and D
is a random Rademacher matrix.
Args:
x: array to be rotated.
rng: PRNGKey used for rotation.
Returns:
Rotated matrix and the original shape.
"""
x_flat = jnp.reshape(x, [-1])
d = 2**math.ceil(math.log2(x_flat.size))
w = jnp.pad(x_flat, (0, d - x.size))
rademacher = jax.random.rademacher(rng, w.shape)
return walsh_hadamard_transform(w * rademacher) / jnp.sqrt(d), jnp.array(
x.shape)
def inverse_structured_rotation(x: jnp.ndarray, rng: PRNGKey,
original_shape: jnp.ndarray) -> jnp.ndarray:
"""Computes (HD)^(-1)(x)/sqrt(d).
Here where H is the walsh Hadamard matrix, d is the dimensionlity of x, and D
is a random Rademacher matrix.
Args:
x: rotated array, which needs to be unrotated.
rng: PRNGKey used for rotation.
original_shape: desired shape of the output.
Returns:
Output of (HD)^(-1)(x)/sqrt(d) with appropriate shape.
"""
rademacher = jax.random.rademacher(rng, x.shape)
w = walsh_hadamard_transform(x) * rademacher / jnp.sqrt(x.size)
original_size = jnp.prod(original_shape)
y_flat = w.take(jnp.arange(original_size))
return jnp.reshape(y_flat, original_shape)
def structured_rotation_pytree(params: Params,
rng: PRNGKey) -> Tuple[Params, Params]:
"""Applies strucuted rotation to all elements of the pytree.
Args:
params: pytree to be rotated.
rng: jax random key.
Returns:
Pytrees of rotated arrays and shapes.
"""
leaves, tree_def = jax.tree_util.tree_flatten(params)
rngs = jax.random.split(rng, len(leaves))
rotated_leaves = []
shapes = []
for l, r in zip(leaves, rngs):
leaf, shape = structured_rotation(l, r)
rotated_leaves.append(leaf)
shapes.append(shape)
rotated_pytree = jax.tree_util.tree_unflatten(tree_def, rotated_leaves)
original_shapes_pytree = jax.tree_util.tree_unflatten(tree_def, shapes)
return rotated_pytree, original_shapes_pytree
def inverse_structured_rotation_pytree(params: Params, rng: PRNGKey,
shapes: Params) -> Params:
"""Applies inverse structured rotation to all elements of the pytree.
Args:
params: pytree to be rotated.
rng: jax random key.
shapes: pytree of shapes to be rotated.
Returns:
Inversely rotated pytree whose arrays are specified by input shapes.
"""
leaves, tree_def = jax.tree_util.tree_flatten(params)
leaves_shapes, _ = jax.tree_util.tree_flatten(shapes)
rngs = jax.random.split(rng, len(leaves))
new_leaves = []
for l, r, shape in zip(leaves, rngs, leaves_shapes):
new_leaves.append(inverse_structured_rotation(l, r, shape))
return jax.tree_util.tree_unflatten(tree_def, new_leaves)
| [
2,
15069,
33448,
3012,
11419,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
37811,
36,
5632,
24104,
12,
25383,
321,
446,
6121,
287,
449,
25922,
526,
15931,
198,
198,
11748,
10688,
198,
6738,
19720,
1330,
309,
29291,
11,
4479,
198,
198,
11748,
474,
897,
198,
11748,
474,
897,
13,
77,
32152,
355,
474,
37659,
198,
11748,
629,
541,
88,
198,
6738,
11672,
73,
897,
13,
7295,
13,
774,
13886,
1330,
4810,
10503,
9218,
11,
2547,
4105,
628,
198,
31,
73,
897,
13,
45051,
198,
4299,
266,
22114,
62,
18108,
321,
446,
62,
35636,
7,
198,
220,
220,
220,
2124,
25,
474,
37659,
13,
358,
18747,
11,
198,
220,
220,
220,
1402,
62,
77,
25,
493,
796,
362,
1174,
22,
11,
198,
220,
220,
220,
15440,
25,
4479,
58,
73,
897,
13,
75,
897,
13,
6719,
16005,
11,
965,
60,
796,
705,
35323,
11537,
4613,
474,
37659,
13,
358,
18747,
25,
198,
220,
37227,
36,
5632,
24104,
12,
25383,
321,
446,
6121,
287,
449,
25922,
13,
628,
220,
1052,
44219,
8030,
440,
7,
77,
2604,
299,
8,
24104,
12,
25383,
321,
446,
6121,
13,
628,
220,
943,
14542,
25,
198,
220,
220,
220,
2124,
25,
317,
15879,
13,
18896,
7,
87,
8,
1276,
307,
257,
1176,
286,
362,
13,
198,
220,
220,
220,
1402,
62,
77,
25,
12849,
284,
2270,
2124,
656,
13,
383,
4277,
1988,
318,
16524,
319,
309,
5105,
85,
18,
13,
12039,
307,
198,
220,
220,
220,
220,
220,
257,
1176,
286,
362,
290,
1875,
352,
13,
198,
220,
220,
220,
15440,
25,
39281,
329,
2276,
16605,
3186,
13,
628,
220,
16409,
25,
198,
220,
220,
220,
3602,
12214,
15879,
13,
198,
220,
37227,
198,
220,
611,
1402,
62,
77,
19841,
352,
25,
198,
220,
220,
220,
5298,
11052,
12331,
7,
69,
338,
76,
439,
62,
77,
1276,
307,
1875,
352,
11,
1392,
1391,
17470,
62,
77,
92,
11537,
628,
220,
1303,
3914,
198,
220,
1303,
532,
220,
220,
317,
2343,
232,
245,
347,
307,
262,
13685,
505,
15280,
1720,
286,
317,
290,
347,
26,
198,
220,
1303,
532,
220,
220,
6228,
7,
55,
8,
307,
262,
15879,
6492,
416,
27172,
3101,
262,
15274,
286,
1395,
286,
5485,
198,
220,
1303,
220,
220,
220,
220,
685,
44,
11,
399,
4083,
198,
220,
1303,
198,
220,
1303,
775,
460,
905,
262,
1708,
25,
198,
220,
1303,
198,
220,
1303,
220,
220,
220,
220,
357,
32,
2343,
232,
245,
347,
61,
51,
8,
6228,
7,
55,
8,
796,
6228,
7,
32,
1395,
347,
8,
198,
220,
1303,
198,
220,
1303,
5740,
326,
262,
11161,
321,
446,
17593,
367,
23330,
17,
61,
44,
362,
61,
45,
92,
796,
367,
23330,
17,
61,
44,
92,
2343,
232,
245,
367,
23330,
17,
61,
45,
5512,
290,
198,
220,
1303,
11161,
321,
446,
2603,
45977,
389,
23606,
34546,
13,
8447,
11,
329,
257,
685,
17,
61,
44,
11,
362,
61,
45,
60,
17593,
1395,
11,
198,
220,
1303,
198,
220,
1303,
220,
220,
220,
220,
367,
23330,
17,
61,
44,
362,
61,
45,
92,
6228,
7,
55,
8,
796,
6228,
7,
39,
23330,
17,
61,
44,
92,
1395,
367,
23330,
17,
61,
45,
30072,
198,
220,
1303,
198,
220,
1303,
383,
2126,
460,
307,
38284,
416,
7163,
257,
11161,
321,
446,
17593,
656,
262,
13685,
505,
15280,
198,
220,
1303,
1720,
286,
867,
1402,
11161,
321,
446,
2603,
45977,
11,
290,
27179,
9269,
262,
15879,
5128,
656,
198,
220,
1303,
257,
867,
12,
19577,
7177,
11,
290,
2491,
304,
1040,
388,
319,
1123,
15793,
13,
198,
220,
1303,
198,
220,
1303,
3914,
262,
5128,
15879,
307,
286,
4129,
360,
11,
780,
674,
366,
17470,
1,
11161,
321,
446,
2603,
45977,
198,
220,
1303,
389,
286,
2546,
379,
749,
1402,
62,
77,
2124,
1402,
62,
77,
11,
257,
6937,
11,
1123,
304,
1040,
388,
318,
440,
7,
35,
737,
775,
198,
220,
1303,
761,
284,
1057,
2604,
360,
304,
1040,
5700,
11,
4145,
262,
4045,
640,
13357,
318,
440,
7,
35,
2604,
360,
828,
198,
220,
1303,
976,
355,
262,
15993,
14083,
290,
23875,
11862,
13,
198,
220,
1303,
198,
220,
1303,
2102,
11,
5176,
284,
6942,
3788,
1222,
6890,
25504,
286,
304,
1040,
388,
11,
198,
220,
1303,
356,
460,
1690,
4620,
1290,
1365,
2866,
621,
262,
15993,
11862,
319,
198,
220,
1303,
8320,
2024,
11,
379,
262,
976,
640,
9194,
257,
1290,
18599,
1395,
13534,
367,
21982,
4823,
13,
628,
220,
299,
796,
18896,
7,
87,
8,
628,
220,
1303,
9938,
503,
262,
5485,
284,
27179,
1758,
2124,
656,
13,
198,
220,
5485,
796,
17635,
198,
220,
981,
299,
1875,
352,
25,
198,
220,
220,
220,
5485,
13,
33295,
7,
1084,
7,
77,
11,
1402,
62,
77,
4008,
198,
220,
220,
220,
299,
3373,
28,
1402,
62,
77,
198,
220,
5485,
13,
50188,
3419,
198,
220,
997,
62,
67,
12078,
796,
18896,
7,
43358,
8,
198,
220,
611,
997,
62,
67,
12078,
1343,
352,
18189,
838,
25,
198,
220,
220,
220,
1303,
775,
481,
1057,
503,
286,
15793,
3891,
287,
304,
1040,
5700,
13,
198,
220,
220,
220,
5298,
11052,
12331,
7,
69,
338,
76,
439,
62,
77,
34758,
17470,
62,
77,
92,
318,
1165,
1402,
329,
5128,
2546,
1391,
77,
92,
11537,
198,
220,
331,
796,
2124,
13,
3447,
1758,
7,
43358,
8,
628,
220,
1303,
11161,
321,
446,
2603,
45977,
356,
481,
761,
13,
198,
220,
550,
321,
1371,
796,
8633,
19510,
67,
11,
550,
321,
446,
62,
6759,
8609,
7,
67,
11,
2124,
13,
67,
4906,
4008,
329,
288,
287,
900,
7,
43358,
4008,
628,
220,
1303,
304,
1040,
388,
319,
1123,
15793,
13,
198,
220,
329,
1312,
11,
288,
287,
27056,
378,
7,
43358,
2599,
198,
220,
220,
220,
331,
62,
67,
12078,
796,
705,
4458,
22179,
7,
2536,
7,
73,
8,
329,
474,
287,
2837,
7,
22510,
62,
67,
12078,
4008,
198,
220,
220,
220,
289,
62,
67,
12078,
796,
277,
6,
90,
72,
18477,
22510,
62,
67,
12078,
1343,
352,
92,
6,
198,
220,
220,
220,
503,
62,
67,
12078,
796,
331,
62,
67,
12078,
13,
33491,
7,
2536,
7,
72,
828,
965,
7,
22510,
62,
67,
12078,
1343,
352,
828,
352,
8,
198,
220,
220,
220,
1515,
1746,
796,
277,
6,
90,
88,
62,
67,
12078,
5512,
90,
71,
62,
67,
12078,
92,
3784,
90,
448,
62,
67,
12078,
92,
6,
198,
220,
220,
220,
331,
796,
474,
37659,
13,
68,
1040,
388,
7,
3575,
1746,
11,
331,
11,
550,
321,
1371,
58,
67,
4357,
15440,
28,
3866,
16005,
8,
198,
220,
1441,
331,
13,
2704,
41769,
3419,
628,
198,
4299,
550,
321,
446,
62,
6759,
8609,
7,
77,
25,
493,
11,
288,
4906,
25,
474,
37659,
13,
67,
4906,
8,
4613,
474,
37659,
13,
358,
18747,
25,
198,
220,
37227,
8645,
689,
262,
11161,
321,
446,
17593,
13,
628,
220,
4362,
612,
389,
449,
25922,
288,
19199,
407,
4855,
287,
299,
32152,
11,
262,
7548,
2163,
198,
220,
287,
629,
541,
88,
460,
470,
307,
973,
3264,
13,
628,
220,
943,
14542,
25,
198,
220,
220,
220,
299,
25,
7913,
286,
15274,
14,
28665,
82,
286,
262,
11161,
321,
446,
17593,
13,
12039,
307,
257,
1176,
286,
362,
13,
198,
220,
220,
220,
288,
4906,
25,
25235,
288,
4906,
13,
628,
220,
16409,
25,
198,
220,
220,
220,
383,
11161,
321,
446,
17593,
286,
262,
1813,
2546,
290,
2099,
13,
198,
220,
37227,
198,
220,
1441,
474,
37659,
13,
18747,
7,
1416,
541,
88,
13,
75,
1292,
70,
13,
18108,
321,
446,
7,
77,
828,
288,
4906,
8,
628,
198,
31,
73,
897,
13,
45051,
198,
4299,
20793,
62,
10599,
341,
7,
87,
25,
474,
37659,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
782,
25,
4810,
10503,
9218,
8,
4613,
309,
29291,
58,
73,
37659,
13,
358,
18747,
11,
474,
37659,
13,
358,
18747,
5974,
198,
220,
37227,
7293,
1769,
5572,
7,
87,
20679,
31166,
17034,
7,
67,
737,
628,
220,
3423,
367,
318,
262,
266,
22114,
11161,
321,
446,
17593,
11,
288,
318,
262,
15793,
75,
414,
286,
2124,
11,
290,
360,
198,
220,
318,
257,
4738,
5325,
368,
3493,
17593,
13,
628,
220,
943,
14542,
25,
198,
220,
220,
220,
2124,
25,
7177,
284,
307,
38375,
13,
198,
220,
220,
220,
374,
782,
25,
4810,
10503,
9218,
973,
329,
13179,
13,
628,
220,
16409,
25,
198,
220,
220,
220,
18481,
515,
17593,
290,
262,
2656,
5485,
13,
198,
220,
37227,
198,
220,
2124,
62,
38568,
796,
474,
37659,
13,
3447,
1758,
7,
87,
11,
25915,
16,
12962,
198,
220,
288,
796,
362,
1174,
11018,
13,
344,
346,
7,
11018,
13,
6404,
17,
7,
87,
62,
38568,
13,
7857,
4008,
198,
220,
266,
796,
474,
37659,
13,
15636,
7,
87,
62,
38568,
11,
357,
15,
11,
288,
532,
2124,
13,
7857,
4008,
198,
220,
2511,
368,
3493,
796,
474,
897,
13,
25120,
13,
6335,
368,
3493,
7,
81,
782,
11,
266,
13,
43358,
8,
198,
220,
1441,
266,
22114,
62,
18108,
321,
446,
62,
35636,
7,
86,
1635,
2511,
368,
3493,
8,
1220,
474,
37659,
13,
31166,
17034,
7,
67,
828,
474,
37659,
13,
18747,
7,
198,
220,
220,
220,
220,
220,
2124,
13,
43358,
8,
628,
198,
4299,
34062,
62,
7249,
1522,
62,
10599,
341,
7,
87,
25,
474,
37659,
13,
358,
18747,
11,
374,
782,
25,
4810,
10503,
9218,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2656,
62,
43358,
25,
474,
37659,
13,
358,
18747,
8,
4613,
474,
37659,
13,
358,
18747,
25,
198,
220,
37227,
7293,
1769,
357,
10227,
8,
61,
32590,
16,
5769,
87,
20679,
31166,
17034,
7,
67,
737,
628,
220,
3423,
810,
367,
318,
262,
266,
22114,
11161,
321,
446,
17593,
11,
288,
318,
262,
15793,
75,
414,
286,
2124,
11,
290,
360,
198,
220,
318,
257,
4738,
5325,
368,
3493,
17593,
13,
628,
220,
943,
14542,
25,
198,
220,
220,
220,
2124,
25,
38375,
7177,
11,
543,
2476,
284,
307,
555,
10599,
515,
13,
198,
220,
220,
220,
374,
782,
25,
4810,
10503,
9218,
973,
329,
13179,
13,
198,
220,
220,
220,
2656,
62,
43358,
25,
10348,
5485,
286,
262,
5072,
13,
628,
220,
16409,
25,
198,
220,
220,
220,
25235,
286,
357,
10227,
8,
61,
32590,
16,
5769,
87,
20679,
31166,
17034,
7,
67,
8,
351,
5035,
5485,
13,
198,
220,
37227,
198,
220,
2511,
368,
3493,
796,
474,
897,
13,
25120,
13,
6335,
368,
3493,
7,
81,
782,
11,
2124,
13,
43358,
8,
198,
220,
266,
796,
266,
22114,
62,
18108,
321,
446,
62,
35636,
7,
87,
8,
1635,
2511,
368,
3493,
1220,
474,
37659,
13,
31166,
17034,
7,
87,
13,
7857,
8,
198,
220,
2656,
62,
7857,
796,
474,
37659,
13,
1676,
67,
7,
14986,
62,
43358,
8,
198,
220,
331,
62,
38568,
796,
266,
13,
20657,
7,
73,
37659,
13,
283,
858,
7,
14986,
62,
7857,
4008,
198,
220,
1441,
474,
37659,
13,
3447,
1758,
7,
88,
62,
38568,
11,
2656,
62,
43358,
8,
628,
198,
4299,
20793,
62,
10599,
341,
62,
9078,
21048,
7,
37266,
25,
2547,
4105,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
782,
25,
4810,
10503,
9218,
8,
4613,
309,
29291,
58,
10044,
4105,
11,
2547,
4105,
5974,
198,
220,
37227,
4677,
13508,
2874,
66,
7241,
13179,
284,
477,
4847,
286,
262,
12972,
21048,
13,
628,
220,
943,
14542,
25,
198,
220,
220,
220,
42287,
25,
12972,
21048,
284,
307,
38375,
13,
198,
220,
220,
220,
374,
782,
25,
474,
897,
4738,
1994,
13,
628,
220,
16409,
25,
198,
220,
220,
220,
9485,
83,
6037,
286,
38375,
26515,
290,
15268,
13,
198,
220,
37227,
198,
220,
5667,
11,
5509,
62,
4299,
796,
474,
897,
13,
21048,
62,
22602,
13,
21048,
62,
2704,
41769,
7,
37266,
8,
198,
220,
374,
782,
82,
796,
474,
897,
13,
25120,
13,
35312,
7,
81,
782,
11,
18896,
7,
293,
3080,
4008,
198,
220,
38375,
62,
293,
3080,
796,
17635,
198,
220,
15268,
796,
17635,
198,
220,
329,
300,
11,
374,
287,
19974,
7,
293,
3080,
11,
374,
782,
82,
2599,
198,
220,
220,
220,
12835,
11,
5485,
796,
20793,
62,
10599,
341,
7,
75,
11,
374,
8,
198,
220,
220,
220,
38375,
62,
293,
3080,
13,
33295,
7,
33201,
8,
198,
220,
220,
220,
15268,
13,
33295,
7,
43358,
8,
198,
220,
38375,
62,
9078,
21048,
796,
474,
897,
13,
21048,
62,
22602,
13,
21048,
62,
403,
2704,
41769,
7,
21048,
62,
4299,
11,
38375,
62,
293,
3080,
8,
198,
220,
2656,
62,
1477,
7916,
62,
9078,
21048,
796,
474,
897,
13,
21048,
62,
22602,
13,
21048,
62,
403,
2704,
41769,
7,
21048,
62,
4299,
11,
15268,
8,
198,
220,
1441,
38375,
62,
9078,
21048,
11,
2656,
62,
1477,
7916,
62,
9078,
21048,
628,
198,
4299,
34062,
62,
7249,
1522,
62,
10599,
341,
62,
9078,
21048,
7,
37266,
25,
2547,
4105,
11,
374,
782,
25,
4810,
10503,
9218,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15268,
25,
2547,
4105,
8,
4613,
2547,
4105,
25,
198,
220,
37227,
4677,
13508,
34062,
20793,
13179,
284,
477,
4847,
286,
262,
12972,
21048,
13,
628,
220,
943,
14542,
25,
198,
220,
220,
220,
42287,
25,
12972,
21048,
284,
307,
38375,
13,
198,
220,
220,
220,
374,
782,
25,
474,
897,
4738,
1994,
13,
198,
220,
220,
220,
15268,
25,
12972,
21048,
286,
15268,
284,
307,
38375,
13,
628,
220,
16409,
25,
198,
220,
220,
220,
554,
21243,
38375,
12972,
21048,
3025,
26515,
389,
7368,
416,
5128,
15268,
13,
198,
220,
37227,
198,
220,
5667,
11,
5509,
62,
4299,
796,
474,
897,
13,
21048,
62,
22602,
13,
21048,
62,
2704,
41769,
7,
37266,
8,
198,
220,
5667,
62,
1477,
7916,
11,
4808,
796,
474,
897,
13,
21048,
62,
22602,
13,
21048,
62,
2704,
41769,
7,
1477,
7916,
8,
198,
220,
374,
782,
82,
796,
474,
897,
13,
25120,
13,
35312,
7,
81,
782,
11,
18896,
7,
293,
3080,
4008,
198,
220,
649,
62,
293,
3080,
796,
17635,
198,
220,
329,
300,
11,
374,
11,
5485,
287,
19974,
7,
293,
3080,
11,
374,
782,
82,
11,
5667,
62,
1477,
7916,
2599,
198,
220,
220,
220,
649,
62,
293,
3080,
13,
33295,
7,
259,
4399,
62,
7249,
1522,
62,
10599,
341,
7,
75,
11,
374,
11,
5485,
4008,
198,
220,
1441,
474,
897,
13,
21048,
62,
22602,
13,
21048,
62,
403,
2704,
41769,
7,
21048,
62,
4299,
11,
649,
62,
293,
3080,
8,
198
] | 2.605293 | 2,607 |
import sweeper.utils as utils
import unittest
from pprint import PrettyPrinter
from scheduler.manager import create_schedule_plan
from sweeper import Workflow
pp = PrettyPrinter(indent=1)
if __name__ == '__main__':
unittest.main()
| [
11748,
3490,
5723,
13,
26791,
355,
3384,
4487,
198,
11748,
555,
715,
395,
198,
198,
6738,
279,
4798,
1330,
20090,
6836,
3849,
198,
6738,
6038,
18173,
13,
37153,
1330,
2251,
62,
15952,
5950,
62,
11578,
198,
6738,
3490,
5723,
1330,
5521,
11125,
198,
198,
381,
796,
20090,
6836,
3849,
7,
521,
298,
28,
16,
8,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 3.037975 | 79 |
BATCH_SIZE = 128
NUM_CLASSES = 10
EPOCHS = 20
# input image dimensions
IMG_ROWS, IMG_COLS = 28, 28
# set if false if you want to use trained weights
TO_TRAIN = True
| [
33,
11417,
62,
33489,
796,
13108,
198,
41359,
62,
31631,
1546,
796,
838,
198,
8905,
46,
3398,
50,
796,
1160,
198,
198,
2,
5128,
2939,
15225,
198,
3955,
38,
62,
49,
22845,
11,
8959,
38,
62,
25154,
50,
796,
2579,
11,
2579,
198,
198,
2,
900,
611,
3991,
611,
345,
765,
284,
779,
8776,
19590,
198,
10468,
62,
51,
3861,
1268,
796,
6407,
198
] | 2.609375 | 64 |
'''
Calculates the 13C(a,n) cross section
"Free" parameters:
* partial width BGP (1/2+, neutron)
* level energy (3/2+)
* partial width (3/2+, neutron)
* partial width (3/2+, alpha)
'''
import os
import sys
from multiprocessing import Pool
import emcee
import numpy as np
from scipy import stats
import model
########################################
# We'll set up the sampler and get it started.
nw = 4*model.nd # number of walkers = 4 * number of sampled parameters
# Pick a point (theta) in parameter space around which we'll start each walker.
theta0 = [1.87, 2.3689, 35000, -0.61, 3.5002, 57500, -0.67, 3.5451, 45200,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
# Each walkers needs its own starting position.
p0 = np.zeros((nw, model.nd))
for i in range(nw):
mu = theta0
sig = np.abs(theta0) * 0.01
p0[i, :] = stats.norm(mu, sig).rvs()
# We'll store the chain in test_mcmc.h5. (See emcee Backends documentation.)
backend = emcee.backends.HDFBackend('test_mcmc.h5')
backend.reset(nw, model.nd)
nsteps = 1000 # How many steps should each walker take?
nthin = 10 # How often should the walker save a step?
nprocs = 4 # How many Python processes do you want to allocate?
# AZURE2 and emcee are both parallelized. We'll restrict AZURE2 to 1 thread to
# simplify things.
os.environ['OMP_NUM_THREADS'] = '1'
# emcee allows the user to specify the way the ensemble generates proposals.
moves = [(emcee.moves.DESnookerMove(), 0.8), (emcee.moves.DEMove(), 0.2)]
with Pool(processes=nprocs) as pool:
sampler = emcee.EnsembleSampler(nw, model.nd, model.lnP, moves=moves, pool=pool,
backend=backend)
state = sampler.run_mcmc(p0, nsteps, thin_by=nthin, progress=True, tune=True)
| [
7061,
6,
198,
220,
220,
220,
27131,
689,
262,
1511,
34,
7,
64,
11,
77,
8,
3272,
2665,
198,
220,
220,
220,
366,
11146,
1,
10007,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
13027,
9647,
347,
16960,
357,
16,
14,
17,
28200,
49810,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
1241,
2568,
357,
18,
14,
17,
28988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
13027,
9647,
357,
18,
14,
17,
28200,
49810,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
13027,
9647,
357,
18,
14,
17,
28200,
17130,
8,
198,
7061,
6,
198,
198,
11748,
28686,
198,
11748,
25064,
198,
6738,
18540,
305,
919,
278,
1330,
19850,
198,
198,
11748,
795,
344,
68,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
629,
541,
88,
1330,
9756,
198,
198,
11748,
2746,
198,
198,
29113,
7804,
198,
2,
775,
1183,
900,
510,
262,
6072,
20053,
290,
651,
340,
2067,
13,
198,
198,
47516,
796,
604,
9,
19849,
13,
358,
1303,
1271,
286,
2513,
364,
796,
604,
1635,
1271,
286,
35846,
10007,
198,
198,
2,
12346,
257,
966,
357,
1169,
8326,
8,
287,
11507,
2272,
1088,
543,
356,
1183,
923,
1123,
2513,
263,
13,
198,
1169,
8326,
15,
796,
685,
16,
13,
5774,
11,
362,
13,
2623,
4531,
11,
3439,
830,
11,
532,
15,
13,
5333,
11,
513,
13,
4059,
17,
11,
642,
2425,
405,
11,
532,
15,
13,
3134,
11,
513,
13,
20,
36330,
11,
4153,
2167,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
352,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
11,
16,
60,
198,
2,
5501,
2513,
364,
2476,
663,
898,
3599,
2292,
13,
198,
79,
15,
796,
45941,
13,
9107,
418,
19510,
47516,
11,
2746,
13,
358,
4008,
198,
1640,
1312,
287,
2837,
7,
47516,
2599,
198,
220,
220,
220,
38779,
796,
262,
8326,
15,
198,
220,
220,
220,
43237,
796,
45941,
13,
8937,
7,
1169,
8326,
15,
8,
1635,
657,
13,
486,
198,
220,
220,
220,
279,
15,
58,
72,
11,
1058,
60,
796,
9756,
13,
27237,
7,
30300,
11,
43237,
737,
81,
14259,
3419,
198,
198,
2,
775,
1183,
3650,
262,
6333,
287,
1332,
62,
76,
11215,
66,
13,
71,
20,
13,
357,
6214,
795,
344,
68,
5157,
2412,
10314,
2014,
198,
1891,
437,
796,
795,
344,
68,
13,
1891,
2412,
13,
39,
8068,
7282,
437,
10786,
9288,
62,
76,
11215,
66,
13,
71,
20,
11537,
198,
1891,
437,
13,
42503,
7,
47516,
11,
2746,
13,
358,
8,
198,
198,
77,
20214,
796,
8576,
1303,
1374,
867,
4831,
815,
1123,
2513,
263,
1011,
30,
198,
77,
40871,
796,
838,
1303,
1374,
1690,
815,
262,
2513,
263,
3613,
257,
2239,
30,
198,
77,
1676,
6359,
796,
604,
1303,
1374,
867,
11361,
7767,
466,
345,
765,
284,
31935,
30,
198,
2,
26253,
11335,
17,
290,
795,
344,
68,
389,
1111,
10730,
1143,
13,
775,
1183,
4239,
26253,
11335,
17,
284,
352,
4704,
284,
198,
2,
30276,
1243,
13,
198,
418,
13,
268,
2268,
17816,
2662,
47,
62,
41359,
62,
4221,
15675,
50,
20520,
796,
705,
16,
6,
198,
198,
2,
795,
344,
68,
3578,
262,
2836,
284,
11986,
262,
835,
262,
34549,
18616,
11628,
13,
198,
76,
5241,
796,
47527,
368,
344,
68,
13,
76,
5241,
13,
30910,
77,
566,
263,
21774,
22784,
657,
13,
23,
828,
357,
368,
344,
68,
13,
76,
5241,
13,
39429,
659,
22784,
657,
13,
17,
15437,
198,
198,
4480,
19850,
7,
14681,
274,
28,
77,
1676,
6359,
8,
355,
5933,
25,
198,
220,
220,
220,
6072,
20053,
796,
795,
344,
68,
13,
4834,
15140,
16305,
20053,
7,
47516,
11,
2746,
13,
358,
11,
2746,
13,
18755,
47,
11,
6100,
28,
76,
5241,
11,
5933,
28,
7742,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30203,
28,
1891,
437,
8,
198,
220,
220,
220,
1181,
796,
6072,
20053,
13,
5143,
62,
76,
11215,
66,
7,
79,
15,
11,
299,
20214,
11,
7888,
62,
1525,
28,
77,
40871,
11,
4371,
28,
17821,
11,
14009,
28,
17821,
8,
198
] | 2.461326 | 724 |
import subprocess
import os
import time
import re
runPath = os.path.realpath(os.path.dirname(os.path.abspath(__file__)) + '/../../')
| [
11748,
850,
14681,
198,
11748,
28686,
198,
11748,
640,
198,
11748,
302,
198,
198,
5143,
15235,
796,
28686,
13,
6978,
13,
5305,
6978,
7,
418,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
1343,
31051,
40720,
40720,
11537,
628
] | 2.755102 | 49 |
from wasmer import engine, wat2wasm, Store, Module, Instance
from wasmer_compiler_cranelift import Compiler
TEST_BYTES = wat2wasm(
"""
(module
(memory 16)
(export "memory" (memory 0)))
"""
)
| [
6738,
373,
647,
1330,
3113,
11,
4383,
17,
86,
8597,
11,
9363,
11,
19937,
11,
2262,
590,
198,
6738,
373,
647,
62,
5589,
5329,
62,
66,
2596,
417,
2135,
1330,
3082,
5329,
198,
198,
51,
6465,
62,
17513,
51,
1546,
796,
4383,
17,
86,
8597,
7,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
357,
21412,
198,
220,
220,
220,
220,
220,
220,
220,
357,
31673,
1467,
8,
198,
220,
220,
220,
220,
220,
220,
220,
357,
39344,
366,
31673,
1,
357,
31673,
657,
22305,
198,
220,
220,
220,
37227,
198,
8,
198
] | 2.340426 | 94 |
A[p]= max( A[i]+ A[i:j]+ f(j,p) + f(i,p) ) +f(1,p)
for p in range(N):
| [
198,
198,
32,
58,
79,
22241,
3509,
7,
317,
58,
72,
48688,
317,
58,
72,
25,
73,
48688,
277,
7,
73,
11,
79,
8,
1343,
277,
7,
72,
11,
79,
8,
220,
220,
1267,
1343,
69,
7,
16,
11,
79,
8,
628,
198,
1640,
279,
287,
2837,
7,
45,
2599,
628,
220,
220,
220,
220,
628,
198
] | 1.473684 | 57 |
if __name__ == '__main__':
remove_lines()
print ("done")
| [
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
4781,
62,
6615,
3419,
198,
220,
220,
220,
3601,
5855,
28060,
4943,
628
] | 2.392857 | 28 |
import numpy as np
from .observation import PyBulletObservationType
| [
11748,
299,
32152,
355,
45941,
198,
198,
6738,
764,
672,
3168,
341,
1330,
9485,
33481,
1616,
31310,
13208,
6030,
628
] | 3.5 | 20 |
from typing import List
from plenum.server.replica_freshness_checker import FreshnessChecker
from crypto.bls.bls_bft_replica import BlsBftReplica
from plenum.common.config_util import getConfig
from plenum.common.event_bus import InternalBus, ExternalBus
from plenum.common.messages.node_messages import Checkpoint
from plenum.common.stashing_router import StashingRouter
from plenum.common.timer import TimerService
from plenum.server.consensus.checkpoint_service import CheckpointService
from plenum.server.consensus.consensus_shared_data import ConsensusSharedData
from plenum.server.consensus.ordering_service import OrderingService
from plenum.server.consensus.view_change_service import ViewChangeService
from plenum.server.request_managers.write_request_manager import WriteRequestManager
from plenum.test.testing_utils import FakeSomething
class ReplicaService:
"""
This is a wrapper consensus-related services. Now it is intended mostly for
simulation tests, however in future it can replace actual Replica in plenum.
"""
| [
6738,
19720,
1330,
7343,
198,
198,
6738,
458,
44709,
13,
15388,
13,
35666,
3970,
62,
48797,
1108,
62,
9122,
263,
1330,
20138,
1108,
9787,
263,
198,
198,
6738,
21473,
13,
2436,
82,
13,
2436,
82,
62,
65,
701,
62,
35666,
3970,
1330,
1086,
82,
33,
701,
39232,
3970,
198,
6738,
458,
44709,
13,
11321,
13,
11250,
62,
22602,
1330,
651,
16934,
198,
6738,
458,
44709,
13,
11321,
13,
15596,
62,
10885,
1330,
18628,
16286,
11,
34579,
16286,
198,
6738,
458,
44709,
13,
11321,
13,
37348,
1095,
13,
17440,
62,
37348,
1095,
1330,
6822,
4122,
198,
6738,
458,
44709,
13,
11321,
13,
301,
2140,
62,
472,
353,
1330,
520,
2140,
49,
39605,
198,
6738,
458,
44709,
13,
11321,
13,
45016,
1330,
5045,
263,
16177,
198,
6738,
458,
44709,
13,
15388,
13,
5936,
7314,
13,
9122,
4122,
62,
15271,
1330,
6822,
4122,
16177,
198,
6738,
458,
44709,
13,
15388,
13,
5936,
7314,
13,
5936,
7314,
62,
28710,
62,
7890,
1330,
3515,
7314,
2484,
1144,
6601,
198,
6738,
458,
44709,
13,
15388,
13,
5936,
7314,
13,
34555,
62,
15271,
1330,
8284,
278,
16177,
198,
6738,
458,
44709,
13,
15388,
13,
5936,
7314,
13,
1177,
62,
3803,
62,
15271,
1330,
3582,
19400,
16177,
198,
6738,
458,
44709,
13,
15388,
13,
25927,
62,
805,
10321,
13,
13564,
62,
25927,
62,
37153,
1330,
19430,
18453,
13511,
198,
6738,
458,
44709,
13,
9288,
13,
33407,
62,
26791,
1330,
33482,
22210,
628,
198,
4871,
18407,
3970,
16177,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
770,
318,
257,
29908,
11529,
12,
5363,
2594,
13,
2735,
340,
318,
5292,
4632,
329,
198,
220,
220,
220,
18640,
5254,
11,
2158,
287,
2003,
340,
460,
6330,
4036,
18407,
3970,
287,
458,
44709,
13,
198,
220,
220,
220,
37227,
198
] | 3.624138 | 290 |
if __name__ == '__main__':
main()
| [
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.105263 | 19 |
'''
Utilities for training TM-Glow in parallel as well as calculating
the loss in parallel on different GPUs for memory purposes.
Original Implementation by Zhang, Rutgers University
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
=====
Distributed by: Notre Dame SCAI Lab (MIT Liscense)
- Associated publication:
url: http://aimsciences.org//article/id/3a9f3d14-3421-4947-a45f-a9cc74edd097
doi: https://dx.doi.org/10.3934/fods.2020019
github: https://github.com/zabaras/deep-turbulence
=====
'''
import threading
import functools
from itertools import chain
from typing import Optional
import torch
from torch.autograd import Variable, Function
import torch.cuda.comm as comm
from torch.nn.parallel import DistributedDataParallel
from torch.nn.parallel.data_parallel import DataParallel
from torch.nn.parallel.parallel_apply import get_a_var
from torch.nn.parallel.scatter_gather import gather
from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast
from torch._utils import ExceptionWrapper
from torch.cuda._utils import _get_device_index
torch_ver = torch.__version__[:3]
__all__ = ['allreduce', 'DataParallelCriterion']
def allreduce(*inputs):
"""Cross GPU all reduce autograd operation for calculate mean and
variance in SyncBN.
"""
return AllReduce.apply(*inputs)
class DataParallelINNModel(DataParallel):
"""Implements data parallelism at the module level.
This container parallelizes the application of the given module by
splitting the input across the specified devices by chunking in the
batch dimension.
In the forward pass, the module is replicated on each device,
and each replica handles a portion of the input. During the backwards pass,
gradients from each replica are summed into the original module.
Note that the outputs are not gathered, please use compatible
:class:`encoding.parallel.DataParallelCriterion`.
The batch size should be larger than the number of GPUs used. It should
also be an integer multiple of the number of GPUs so that each chunk is
the same size (so that each GPU processes the same number of samples).
Args:
module: module to be parallelized
device_ids: CUDA devices (default: all devices)
Reference:
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
Amit Agrawal. “Context Encoding for Semantic Segmentation.
*The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*
Example::
>>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2])
>>> y = net(x)
"""
# def gather(self, outputs, output_device):
# return outputs
def inn_parallel_apply(modules, inputs, kwargs_tup=None, devices=None, forward=True):
r"""Applies each `module` in parallel on arguments
contained in :attr:`inputs` (positional) and :attr:`kwargs_tup` (keyword)
on each of :attr:`devices`.
Args:
modules (Module): modules to be parallelized
inputs (tensor): inputs to the modules
devices (list of int or torch.device): CUDA devices
:attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and
:attr:`devices` (if given) should all have same length. Moreover, each
element of :attr:`inputs` can either be a single object as the only argument
to a module, or a collection of positional arguments.
"""
assert len(modules) == len(inputs)
if kwargs_tup is not None:
assert len(modules) == len(kwargs_tup)
else:
kwargs_tup = ({},) * len(modules)
if devices is not None:
assert len(modules) == len(devices)
else:
devices = [None] * len(modules)
devices = list(map(lambda x: _get_device_index(x, True), devices))
lock = threading.Lock()
results = {}
grad_enabled = torch.is_grad_enabled()
# Start thread for each GPU worker
# Distribute scattered inputs and arguements to each GPU
if len(modules) > 1:
threads = [threading.Thread(target=_worker,
args=(i, module, input, kwargs, device))
for i, (module, input, kwargs, device) in
enumerate(zip(modules, inputs, kwargs_tup, devices))]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
_worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0])
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, ExceptionWrapper):
output.reraise()
outputs.append(output)
return outputs
class DataParallelCriterion(DataParallel):
"""
Calculate loss in multiple-GPUs, which balance the memory usage.
The targets are splitted across the specified devices by chunking in
the batch dimension.
Reference:
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
Amit Agrawal. “Context Encoding for Semantic Segmentation.
*The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*
Example::
>>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2])
>>> criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=[0, 1, 2])
>>> y = net(x)
>>> loss = criterion(y, target)
"""
def execute_replication_callbacks(modules):
"""
Execute an replication callback `__data_parallel_replicate__` on each module created
by original replication.
The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)`
Note that, as all modules are isomorphism, we assign each sub-module with a context
(shared among multiple copies of this module on different devices).
Through this context, different copies can share some information.
We guarantee that the callback on the master copy (the first copy) will be called ahead
of calling the callback of any slave copies.
"""
master_copy = modules[0]
nr_modules = len(list(master_copy.modules()))
ctxs = [CallbackContext() for _ in range(nr_modules)]
for i, module in enumerate(modules):
for j, m in enumerate(module.modules()):
if hasattr(m, '__data_parallel_replicate__'):
m.__data_parallel_replicate__(ctxs[j], i) | [
7061,
6,
198,
18274,
2410,
329,
3047,
21232,
12,
38,
9319,
287,
10730,
355,
880,
355,
26019,
198,
1169,
2994,
287,
10730,
319,
1180,
32516,
329,
4088,
4959,
13,
198,
198,
20556,
46333,
416,
19439,
11,
30595,
2059,
198,
5450,
1378,
24132,
13,
785,
14,
71,
1018,
2667,
2550,
14,
34409,
12,
15521,
263,
12,
8664,
2052,
12,
29152,
605,
12,
41315,
12,
261,
12,
16,
12,
46999,
12,
41684,
12,
46999,
12,
17080,
6169,
12,
2617,
4739,
12,
721,
3459,
66,
18,
68,
25836,
2816,
198,
1421,
28,
198,
20344,
6169,
416,
25,
23382,
20377,
6374,
20185,
3498,
357,
36393,
406,
2304,
1072,
8,
198,
12,
10575,
9207,
25,
198,
6371,
25,
2638,
1378,
1385,
36216,
3007,
13,
2398,
1003,
20205,
14,
312,
14,
18,
64,
24,
69,
18,
67,
1415,
12,
2682,
2481,
12,
2920,
2857,
12,
64,
2231,
69,
12,
64,
24,
535,
4524,
6048,
2931,
22,
198,
34023,
25,
3740,
1378,
34350,
13,
34023,
13,
2398,
14,
940,
13,
2670,
2682,
14,
69,
12978,
13,
1238,
2167,
1129,
198,
12567,
25,
3740,
1378,
12567,
13,
785,
14,
89,
397,
283,
292,
14,
22089,
12,
83,
5945,
32401,
198,
1421,
28,
198,
7061,
6,
198,
11748,
4704,
278,
198,
11748,
1257,
310,
10141,
198,
6738,
340,
861,
10141,
1330,
6333,
198,
6738,
19720,
1330,
32233,
198,
11748,
28034,
198,
6738,
28034,
13,
2306,
519,
6335,
1330,
35748,
11,
15553,
198,
11748,
28034,
13,
66,
15339,
13,
9503,
355,
725,
198,
6738,
28034,
13,
20471,
13,
1845,
29363,
1330,
4307,
6169,
6601,
10044,
29363,
198,
6738,
28034,
13,
20471,
13,
1845,
29363,
13,
7890,
62,
1845,
29363,
1330,
6060,
10044,
29363,
198,
6738,
28034,
13,
20471,
13,
1845,
29363,
13,
1845,
29363,
62,
39014,
1330,
651,
62,
64,
62,
7785,
198,
6738,
28034,
13,
20471,
13,
1845,
29363,
13,
1416,
1436,
62,
70,
1032,
1330,
6431,
198,
6738,
28034,
13,
20471,
13,
1845,
29363,
13557,
12543,
2733,
1330,
44048,
4550,
7222,
2040,
771,
11,
44244,
198,
6738,
28034,
13557,
26791,
1330,
35528,
36918,
2848,
198,
6738,
28034,
13,
66,
15339,
13557,
26791,
1330,
4808,
1136,
62,
25202,
62,
9630,
198,
198,
13165,
354,
62,
332,
796,
28034,
13,
834,
9641,
834,
58,
25,
18,
60,
198,
198,
834,
439,
834,
796,
37250,
439,
445,
7234,
3256,
705,
6601,
10044,
29363,
18559,
28019,
20520,
198,
198,
4299,
477,
445,
7234,
46491,
15414,
82,
2599,
198,
220,
220,
220,
37227,
21544,
11362,
477,
4646,
1960,
519,
6335,
4905,
329,
15284,
1612,
290,
198,
220,
220,
220,
24198,
287,
35908,
15766,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
1439,
7738,
7234,
13,
39014,
46491,
15414,
82,
8,
628,
198,
4871,
6060,
10044,
29363,
1268,
45,
17633,
7,
6601,
10044,
29363,
2599,
198,
220,
220,
220,
37227,
3546,
1154,
902,
1366,
10730,
1042,
379,
262,
8265,
1241,
13,
198,
220,
220,
220,
770,
9290,
10730,
4340,
262,
3586,
286,
262,
1813,
8265,
416,
198,
220,
220,
220,
26021,
262,
5128,
1973,
262,
7368,
4410,
416,
16058,
278,
287,
262,
198,
220,
220,
220,
15458,
15793,
13,
198,
220,
220,
220,
554,
262,
2651,
1208,
11,
262,
8265,
318,
35108,
319,
1123,
3335,
11,
198,
220,
220,
220,
290,
1123,
30069,
17105,
257,
6903,
286,
262,
5128,
13,
5856,
262,
16196,
1208,
11,
198,
220,
220,
220,
3915,
2334,
422,
1123,
30069,
389,
32794,
656,
262,
2656,
8265,
13,
198,
220,
220,
220,
5740,
326,
262,
23862,
389,
407,
9272,
11,
3387,
779,
11670,
198,
220,
220,
220,
1058,
4871,
25,
63,
12685,
7656,
13,
1845,
29363,
13,
6601,
10044,
29363,
18559,
28019,
44646,
198,
220,
220,
220,
383,
15458,
2546,
815,
307,
4025,
621,
262,
1271,
286,
32516,
973,
13,
632,
815,
198,
220,
220,
220,
635,
307,
281,
18253,
3294,
286,
262,
1271,
286,
32516,
523,
326,
1123,
16058,
318,
198,
220,
220,
220,
262,
976,
2546,
357,
568,
326,
1123,
11362,
7767,
262,
976,
1271,
286,
8405,
737,
198,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8265,
25,
8265,
284,
307,
10730,
1143,
198,
220,
220,
220,
220,
220,
220,
220,
3335,
62,
2340,
25,
29369,
5631,
4410,
357,
12286,
25,
477,
4410,
8,
198,
220,
220,
220,
20984,
25,
198,
220,
220,
220,
220,
220,
220,
220,
24300,
19439,
11,
14912,
259,
22937,
11,
40922,
13886,
16380,
11,
10511,
506,
88,
518,
19439,
11,
22450,
519,
648,
15233,
11,
1703,
1671,
680,
7039,
18013,
11,
198,
220,
220,
220,
220,
220,
220,
220,
48148,
2449,
1831,
282,
13,
564,
250,
21947,
14711,
7656,
329,
12449,
5109,
1001,
5154,
341,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
464,
40552,
8785,
319,
13851,
19009,
290,
23939,
31517,
653,
357,
33538,
4805,
8,
2864,
9,
198,
220,
220,
220,
17934,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
2010,
796,
21004,
13,
20471,
13,
6601,
10044,
29363,
17633,
7,
19849,
11,
3335,
62,
2340,
41888,
15,
11,
352,
11,
362,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
331,
796,
2010,
7,
87,
8,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
825,
6431,
7,
944,
11,
23862,
11,
5072,
62,
25202,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1441,
23862,
198,
198,
4299,
3527,
62,
1845,
29363,
62,
39014,
7,
18170,
11,
17311,
11,
479,
86,
22046,
62,
83,
929,
28,
14202,
11,
4410,
28,
14202,
11,
2651,
28,
17821,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
1123,
4600,
21412,
63,
287,
10730,
319,
7159,
198,
220,
220,
220,
7763,
287,
1058,
35226,
25,
63,
15414,
82,
63,
357,
1930,
1859,
8,
290,
1058,
35226,
25,
63,
46265,
22046,
62,
83,
929,
63,
357,
2539,
4775,
8,
198,
220,
220,
220,
319,
1123,
286,
1058,
35226,
25,
63,
42034,
44646,
198,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
13103,
357,
26796,
2599,
13103,
284,
307,
10730,
1143,
198,
220,
220,
220,
220,
220,
220,
220,
17311,
357,
83,
22854,
2599,
17311,
284,
262,
13103,
198,
220,
220,
220,
220,
220,
220,
220,
4410,
357,
4868,
286,
493,
393,
28034,
13,
25202,
2599,
29369,
5631,
4410,
198,
220,
220,
220,
1058,
35226,
25,
63,
18170,
47671,
1058,
35226,
25,
63,
15414,
82,
47671,
1058,
35226,
25,
63,
46265,
22046,
62,
83,
929,
63,
357,
361,
1813,
828,
290,
198,
220,
220,
220,
1058,
35226,
25,
63,
42034,
63,
357,
361,
1813,
8,
815,
477,
423,
976,
4129,
13,
10968,
11,
1123,
198,
220,
220,
220,
5002,
286,
1058,
35226,
25,
63,
15414,
82,
63,
460,
2035,
307,
257,
2060,
2134,
355,
262,
691,
4578,
198,
220,
220,
220,
284,
257,
8265,
11,
393,
257,
4947,
286,
45203,
7159,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6818,
18896,
7,
18170,
8,
6624,
18896,
7,
15414,
82,
8,
198,
220,
220,
220,
611,
479,
86,
22046,
62,
83,
929,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
18896,
7,
18170,
8,
6624,
18896,
7,
46265,
22046,
62,
83,
929,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
479,
86,
22046,
62,
83,
929,
796,
37913,
5512,
8,
1635,
18896,
7,
18170,
8,
198,
220,
220,
220,
611,
4410,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
18896,
7,
18170,
8,
6624,
18896,
7,
42034,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4410,
796,
685,
14202,
60,
1635,
18896,
7,
18170,
8,
198,
220,
220,
220,
4410,
796,
1351,
7,
8899,
7,
50033,
2124,
25,
4808,
1136,
62,
25202,
62,
9630,
7,
87,
11,
6407,
828,
4410,
4008,
198,
220,
220,
220,
5793,
796,
4704,
278,
13,
25392,
3419,
198,
220,
220,
220,
2482,
796,
23884,
198,
220,
220,
220,
3915,
62,
25616,
796,
28034,
13,
271,
62,
9744,
62,
25616,
3419,
198,
220,
220,
220,
1303,
7253,
4704,
329,
1123,
11362,
8383,
198,
220,
220,
220,
1303,
4307,
4163,
16830,
17311,
290,
1822,
84,
3196,
284,
1123,
11362,
198,
220,
220,
220,
611,
18896,
7,
18170,
8,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
14390,
796,
685,
16663,
278,
13,
16818,
7,
16793,
28,
62,
28816,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26498,
16193,
72,
11,
8265,
11,
5128,
11,
479,
86,
22046,
11,
3335,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
357,
21412,
11,
5128,
11,
479,
86,
22046,
11,
3335,
8,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27056,
378,
7,
13344,
7,
18170,
11,
17311,
11,
479,
86,
22046,
62,
83,
929,
11,
4410,
4008,
60,
628,
220,
220,
220,
220,
220,
220,
220,
329,
4704,
287,
14390,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4704,
13,
9688,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4704,
287,
14390,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4704,
13,
22179,
3419,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
28816,
7,
15,
11,
13103,
58,
15,
4357,
17311,
58,
15,
4357,
479,
86,
22046,
62,
83,
929,
58,
15,
4357,
4410,
58,
15,
12962,
628,
220,
220,
220,
23862,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
11925,
7,
15414,
82,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
2482,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
22915,
11,
35528,
36918,
2848,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
13,
24420,
786,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
23862,
13,
33295,
7,
22915,
8,
198,
220,
220,
220,
1441,
23862,
198,
198,
4871,
6060,
10044,
29363,
18559,
28019,
7,
6601,
10044,
29363,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
27131,
378,
2994,
287,
3294,
12,
33346,
82,
11,
543,
5236,
262,
4088,
8748,
13,
198,
220,
220,
220,
383,
6670,
389,
4328,
2175,
1973,
262,
7368,
4410,
416,
16058,
278,
287,
198,
220,
220,
220,
262,
15458,
15793,
13,
198,
220,
220,
220,
20984,
25,
198,
220,
220,
220,
220,
220,
220,
220,
24300,
19439,
11,
14912,
259,
22937,
11,
40922,
13886,
16380,
11,
10511,
506,
88,
518,
19439,
11,
22450,
519,
648,
15233,
11,
1703,
1671,
680,
7039,
18013,
11,
198,
220,
220,
220,
220,
220,
220,
220,
48148,
2449,
1831,
282,
13,
564,
250,
21947,
14711,
7656,
329,
12449,
5109,
1001,
5154,
341,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
464,
40552,
8785,
319,
13851,
19009,
290,
23939,
31517,
653,
357,
33538,
4805,
8,
2864,
9,
198,
220,
220,
220,
17934,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
2010,
796,
21004,
13,
20471,
13,
6601,
10044,
29363,
17633,
7,
19849,
11,
3335,
62,
2340,
41888,
15,
11,
352,
11,
362,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
34054,
796,
21004,
13,
20471,
13,
6601,
10044,
29363,
18559,
28019,
7,
22213,
28019,
11,
3335,
62,
2340,
41888,
15,
11,
352,
11,
362,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
331,
796,
2010,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
2994,
796,
34054,
7,
88,
11,
2496,
8,
198,
220,
220,
220,
37227,
628,
198,
198,
4299,
12260,
62,
35666,
3299,
62,
13345,
10146,
7,
18170,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
8393,
1133,
281,
30330,
23838,
4600,
834,
7890,
62,
1845,
29363,
62,
35666,
5344,
834,
63,
319,
1123,
8265,
2727,
198,
220,
220,
220,
416,
2656,
30330,
13,
198,
220,
220,
220,
383,
23838,
481,
307,
24399,
351,
7159,
4600,
834,
7890,
62,
1845,
29363,
62,
35666,
5344,
834,
7,
49464,
11,
4866,
62,
312,
8,
63,
198,
220,
220,
220,
5740,
326,
11,
355,
477,
13103,
389,
318,
25831,
1042,
11,
356,
8333,
1123,
850,
12,
21412,
351,
257,
4732,
198,
220,
220,
220,
357,
28710,
1871,
3294,
9088,
286,
428,
8265,
319,
1180,
4410,
737,
198,
220,
220,
220,
9561,
428,
4732,
11,
1180,
9088,
460,
2648,
617,
1321,
13,
198,
220,
220,
220,
775,
9149,
326,
262,
23838,
319,
262,
4958,
4866,
357,
1169,
717,
4866,
8,
481,
307,
1444,
4058,
198,
220,
220,
220,
286,
4585,
262,
23838,
286,
597,
11778,
9088,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4958,
62,
30073,
796,
13103,
58,
15,
60,
198,
220,
220,
220,
299,
81,
62,
18170,
796,
18896,
7,
4868,
7,
9866,
62,
30073,
13,
18170,
3419,
4008,
198,
220,
220,
220,
269,
17602,
82,
796,
685,
47258,
21947,
3419,
329,
4808,
287,
2837,
7,
48624,
62,
18170,
15437,
628,
220,
220,
220,
329,
1312,
11,
8265,
287,
27056,
378,
7,
18170,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
11,
285,
287,
27056,
378,
7,
21412,
13,
18170,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
468,
35226,
7,
76,
11,
705,
834,
7890,
62,
1845,
29363,
62,
35666,
5344,
834,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
285,
13,
834,
7890,
62,
1845,
29363,
62,
35666,
5344,
834,
7,
310,
34223,
58,
73,
4357,
1312,
8
] | 2.828434 | 2,279 |
import requests
#possible creds generated by level
#one of them is valid for one of your web app
from credentials import creds
#url='http://YOUR_INTERNAL_IP/login'
urls=['http://10.138.0.58/login', 'http://10.138.0.59/login','http://10.138.0.60/login']
for url in urls:
for u in creds:
#prepare data for post request
payload={'username':u,'password':creds[u]}
#send username and password through post method to web app url
post=requests.Session().post(url, data=payload)
#check if respond text contains invalid credentails
if 'Invalid credentials' not in post.text:
#print valid username and password
print(u+' '+creds[u]+' ' + url )
| [
11748,
7007,
198,
2,
79,
4733,
2600,
82,
7560,
416,
1241,
198,
2,
505,
286,
606,
318,
4938,
329,
530,
286,
534,
3992,
598,
220,
220,
198,
6738,
18031,
1330,
2600,
82,
628,
628,
198,
198,
2,
6371,
11639,
4023,
1378,
56,
11698,
62,
1268,
31800,
1847,
62,
4061,
14,
38235,
6,
198,
6371,
82,
28,
17816,
4023,
1378,
940,
13,
20107,
13,
15,
13,
3365,
14,
38235,
3256,
705,
4023,
1378,
940,
13,
20107,
13,
15,
13,
3270,
14,
38235,
41707,
4023,
1378,
940,
13,
20107,
13,
15,
13,
1899,
14,
38235,
20520,
628,
198,
1640,
19016,
287,
2956,
7278,
25,
198,
197,
1640,
334,
287,
2600,
82,
25,
198,
197,
197,
2,
46012,
533,
1366,
329,
1281,
2581,
198,
197,
197,
15577,
2220,
34758,
6,
29460,
10354,
84,
4032,
28712,
10354,
66,
445,
82,
58,
84,
48999,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
21280,
20579,
290,
9206,
832,
1281,
2446,
284,
3992,
598,
19016,
198,
197,
197,
7353,
28,
8897,
3558,
13,
36044,
22446,
7353,
7,
6371,
11,
1366,
28,
15577,
2220,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9122,
611,
3031,
2420,
4909,
12515,
2600,
298,
1768,
198,
197,
197,
361,
705,
44651,
18031,
6,
407,
287,
220,
1281,
13,
5239,
25,
198,
197,
197,
197,
2,
4798,
4938,
20579,
290,
9206,
198,
197,
197,
197,
4798,
7,
84,
10,
6,
705,
10,
66,
445,
82,
58,
84,
48688,
6,
705,
1343,
19016,
1267,
628
] | 2.661538 | 260 |
from collections import Counter
text = "hubba bubba"
# def get_char_count(text):
# letters = {}
# for letter in text:
# letters[letter] = text.count(letter) # hidden loop in count
# return letters
print(get_char_count(text))
count = Counter(text)
print(count)
print(count.most_common())
| [
6738,
17268,
1330,
15034,
198,
5239,
796,
366,
40140,
7012,
10015,
7012,
1,
198,
2,
825,
651,
62,
10641,
62,
9127,
7,
5239,
2599,
198,
2,
220,
220,
220,
220,
7475,
796,
23884,
198,
220,
198,
2,
220,
220,
220,
220,
329,
3850,
287,
2420,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
7475,
58,
9291,
60,
796,
2420,
13,
9127,
7,
9291,
8,
220,
1303,
7104,
9052,
287,
954,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2,
220,
220,
220,
220,
1441,
7475,
198,
220,
198,
4798,
7,
1136,
62,
10641,
62,
9127,
7,
5239,
4008,
198,
198,
9127,
796,
15034,
7,
5239,
8,
198,
4798,
7,
9127,
8,
198,
4798,
7,
9127,
13,
1712,
62,
11321,
28955,
198
] | 2.507692 | 130 |
# Copyright (c) 2018 Forschungszentrum Juelich GmbH
# Author: Yann Leprince <[email protected]>
#
# This software is made available under the MIT licence, see LICENCE.txt.
import pathlib
import pytest
from neuroglancer_scripts.file_accessor import FileAccessor
from neuroglancer_scripts.accessor import (
DataAccessError,
)
@pytest.mark.parametrize("flat", [False, True])
@pytest.mark.parametrize("gzip", [False, True])
| [
2,
15069,
357,
66,
8,
2864,
27325,
354,
2150,
82,
89,
298,
6582,
449,
2731,
488,
402,
2022,
39,
198,
2,
6434,
25,
575,
1236,
42957,
81,
924,
1279,
88,
13,
293,
1050,
924,
31,
69,
89,
12,
73,
2731,
488,
13,
2934,
29,
198,
2,
198,
2,
770,
3788,
318,
925,
1695,
739,
262,
17168,
17098,
11,
766,
38559,
18310,
13,
14116,
13,
198,
198,
11748,
3108,
8019,
198,
198,
11748,
12972,
9288,
198,
198,
6738,
7669,
4743,
8250,
62,
46521,
13,
7753,
62,
15526,
273,
1330,
9220,
15457,
273,
198,
6738,
7669,
4743,
8250,
62,
46521,
13,
15526,
273,
1330,
357,
198,
220,
220,
220,
6060,
15457,
12331,
11,
198,
8,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7203,
38568,
1600,
685,
25101,
11,
6407,
12962,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7203,
70,
13344,
1600,
685,
25101,
11,
6407,
12962,
628,
628
] | 2.832258 | 155 |
// シェーダー空手のやつ
//# https://thebookofshaders.com/05/kynd.png
#define BPM 90.0
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
/* sound common */
float timeToBeat(float t) {return t / 60.0 * BPM;}
float beatToTime(float b) {return b / BPM * 60.0;}
float sine(float phase) {
return sin(TAU * phase);
}
float pitch(float scale) {
return 440.0 * pow(2.0, scale / 12.0);
}
vec2 mainSound(float time) {
float bpm = timeToBeat(time);
float tempo = sine((mod(bpm, 4.0) >= 1.0 ? 440.0 : 880.0) * time) * exp(-1e2 * fract(bpm));
float sound = 0.0;
//#float tone = sin( 6.2831 * 440.0 * time );
//#float env = fract(-bpm);
float f = fract(bpm);
float s = sin(PI * bpm / 2.0);
float tone = 0.0;
float env = 0.0;
//tone = sine(beatToTime(bpm) * pitch(0.0));
tone = sine(beatToTime(bpm) * 64.0);
env = 1.0 - pow(abs(s), 0.5);
//env = 1.0 - pow(abs(s), 1.0);
//env = 1.0 - pow(abs(s), 3.5);
//env = pow(cos(PI * s / 2.0), 0.5);
//env = pow(cos(PI * s / 2.0), 1.0);
//env = pow(cos(PI * s / 2.0), 3.5);
//env = 1.0 - pow(abs(sin(PI * s / 2.0)), 0.5);
//env = 1.0 - pow(abs(sin(PI * s / 2.0)), 1.0);
//env = 1.0 - pow(abs(sin(PI * s / 2.0)), 3.5);
//env = pow(min(cos(PI * s / 2.0), 1.0 - abs(s)), 0.5);
//env = pow(min(cos(PI * s / 2.0), 1.0 - abs(s)), 1.0);
//env = pow(min(cos(PI * s / 2.0), 1.0 - abs(s)), 3.5);
//env = 1.0 - pow(max(0.0, abs(s) * 2.0 - 1.0), 0.5);
//env = 1.0 - pow(max(0.0, abs(s) * 2.0 - 1.0), 1.0);
//env = 1.0 - pow(max(0.0, abs(s) * 2.0 - 1.0), 3.5);
float w = smoothstep(1.0, -1.0, tan(bpm * PI));
env = sin(w * TAU);
sound += tone * env;
sound += tempo;
//#if (abs(sound) > 1.0) sound /= abs(sound);
return vec2(sound);
}
| [
1003,
220,
15661,
24806,
12045,
222,
6312,
163,
102,
118,
33699,
233,
5641,
1792,
226,
2515,
97,
198,
1003,
2,
3740,
1378,
1169,
2070,
1659,
1477,
9972,
13,
785,
14,
2713,
14,
2584,
358,
13,
11134,
198,
198,
2,
13086,
347,
5868,
4101,
13,
15,
198,
9979,
12178,
30434,
796,
936,
418,
32590,
16,
13,
15,
1776,
198,
9979,
12178,
21664,
52,
796,
30434,
1635,
362,
13,
15,
26,
198,
198,
15211,
2128,
2219,
9466,
198,
22468,
640,
2514,
34979,
7,
22468,
256,
8,
1391,
7783,
256,
1220,
3126,
13,
15,
1635,
347,
5868,
46956,
198,
22468,
4405,
2514,
7575,
7,
22468,
275,
8,
1391,
7783,
275,
1220,
347,
5868,
1635,
3126,
13,
15,
46956,
198,
198,
22468,
264,
500,
7,
22468,
7108,
8,
1391,
198,
220,
1441,
7813,
7,
5603,
52,
1635,
7108,
1776,
198,
92,
628,
198,
22468,
7078,
7,
22468,
5046,
8,
1391,
198,
220,
1441,
33879,
13,
15,
1635,
7182,
7,
17,
13,
15,
11,
5046,
1220,
1105,
13,
15,
1776,
198,
92,
628,
198,
198,
35138,
17,
1388,
21369,
7,
22468,
640,
8,
1391,
198,
220,
12178,
275,
4426,
796,
640,
2514,
34979,
7,
2435,
1776,
198,
220,
12178,
28691,
796,
264,
500,
19510,
4666,
7,
65,
4426,
11,
604,
13,
15,
8,
18189,
352,
13,
15,
5633,
33879,
13,
15,
1058,
807,
1795,
13,
15,
8,
1635,
640,
8,
1635,
1033,
32590,
16,
68,
17,
1635,
12999,
7,
65,
4426,
18125,
198,
220,
220,
198,
220,
12178,
2128,
796,
657,
13,
15,
26,
198,
220,
3373,
2,
22468,
8216,
796,
7813,
7,
718,
13,
2078,
3132,
1635,
33879,
13,
15,
1635,
640,
5619,
198,
220,
3373,
2,
22468,
17365,
796,
12999,
32590,
65,
4426,
1776,
198,
220,
12178,
277,
796,
12999,
7,
65,
4426,
1776,
198,
220,
12178,
264,
796,
7813,
7,
11901,
1635,
275,
4426,
1220,
362,
13,
15,
1776,
198,
220,
220,
198,
220,
12178,
8216,
796,
657,
13,
15,
26,
198,
220,
12178,
17365,
796,
657,
13,
15,
26,
198,
220,
220,
198,
220,
3373,
41527,
796,
264,
500,
7,
12945,
2514,
7575,
7,
65,
4426,
8,
1635,
7078,
7,
15,
13,
15,
18125,
198,
220,
8216,
796,
264,
500,
7,
12945,
2514,
7575,
7,
65,
4426,
8,
1635,
5598,
13,
15,
1776,
198,
220,
220,
198,
220,
220,
198,
220,
17365,
796,
352,
13,
15,
532,
7182,
7,
8937,
7,
82,
828,
657,
13,
20,
1776,
198,
220,
3373,
24330,
796,
352,
13,
15,
532,
7182,
7,
8937,
7,
82,
828,
352,
13,
15,
1776,
198,
220,
3373,
24330,
796,
352,
13,
15,
532,
7182,
7,
8937,
7,
82,
828,
513,
13,
20,
1776,
198,
220,
220,
198,
220,
3373,
24330,
796,
7182,
7,
6966,
7,
11901,
1635,
264,
1220,
362,
13,
15,
828,
657,
13,
20,
1776,
198,
220,
3373,
24330,
796,
7182,
7,
6966,
7,
11901,
1635,
264,
1220,
362,
13,
15,
828,
352,
13,
15,
1776,
198,
220,
3373,
24330,
796,
7182,
7,
6966,
7,
11901,
1635,
264,
1220,
362,
13,
15,
828,
513,
13,
20,
1776,
198,
220,
220,
198,
220,
3373,
24330,
796,
352,
13,
15,
532,
7182,
7,
8937,
7,
31369,
7,
11901,
1635,
264,
1220,
362,
13,
15,
36911,
657,
13,
20,
1776,
198,
220,
3373,
24330,
796,
352,
13,
15,
532,
7182,
7,
8937,
7,
31369,
7,
11901,
1635,
264,
1220,
362,
13,
15,
36911,
352,
13,
15,
1776,
198,
220,
3373,
24330,
796,
352,
13,
15,
532,
7182,
7,
8937,
7,
31369,
7,
11901,
1635,
264,
1220,
362,
13,
15,
36911,
513,
13,
20,
1776,
198,
220,
220,
198,
220,
3373,
24330,
796,
7182,
7,
1084,
7,
6966,
7,
11901,
1635,
264,
1220,
362,
13,
15,
828,
352,
13,
15,
532,
2352,
7,
82,
36911,
657,
13,
20,
1776,
198,
220,
3373,
24330,
796,
7182,
7,
1084,
7,
6966,
7,
11901,
1635,
264,
1220,
362,
13,
15,
828,
352,
13,
15,
532,
2352,
7,
82,
36911,
352,
13,
15,
1776,
198,
220,
3373,
24330,
796,
7182,
7,
1084,
7,
6966,
7,
11901,
1635,
264,
1220,
362,
13,
15,
828,
352,
13,
15,
532,
2352,
7,
82,
36911,
513,
13,
20,
1776,
198,
220,
220,
198,
220,
3373,
24330,
796,
352,
13,
15,
532,
7182,
7,
9806,
7,
15,
13,
15,
11,
2352,
7,
82,
8,
1635,
362,
13,
15,
532,
352,
13,
15,
828,
657,
13,
20,
1776,
198,
220,
3373,
24330,
796,
352,
13,
15,
532,
7182,
7,
9806,
7,
15,
13,
15,
11,
2352,
7,
82,
8,
1635,
362,
13,
15,
532,
352,
13,
15,
828,
352,
13,
15,
1776,
198,
220,
3373,
24330,
796,
352,
13,
15,
532,
7182,
7,
9806,
7,
15,
13,
15,
11,
2352,
7,
82,
8,
1635,
362,
13,
15,
532,
352,
13,
15,
828,
513,
13,
20,
1776,
198,
220,
220,
198,
220,
220,
198,
220,
12178,
266,
796,
7209,
9662,
7,
16,
13,
15,
11,
532,
16,
13,
15,
11,
25706,
7,
65,
4426,
1635,
30434,
18125,
198,
220,
17365,
796,
7813,
7,
86,
1635,
21664,
52,
1776,
198,
220,
220,
198,
220,
2128,
15853,
8216,
1635,
17365,
26,
198,
220,
2128,
15853,
28691,
26,
198,
220,
220,
198,
220,
220,
198,
220,
3373,
2,
361,
357,
8937,
7,
23661,
8,
1875,
352,
13,
15,
8,
2128,
1220,
28,
2352,
7,
23661,
1776,
198,
220,
1441,
43030,
17,
7,
23661,
1776,
198,
92,
628,
198
] | 1.994337 | 883 |
"""Handles incoming ebs requests, invokes methods, returns responses."""
import json
from moto.core.responses import BaseResponse
from .models import ebs_backends
class EBSResponse(BaseResponse):
"""Handler for EBS requests and responses."""
@property
def ebs_backend(self):
"""Return backend instance specific for this region."""
return ebs_backends[self.region]
def start_snapshot(self):
"""
The following parameters are not yet implemented: ParentSnapshotId, ClientToken, Encrypted, KmsKeyArn, Timeout
"""
params = json.loads(self.body)
volume_size = params.get("VolumeSize")
tags = params.get("Tags")
description = params.get("Description")
snapshot = self.ebs_backend.start_snapshot(
volume_size=volume_size,
tags=tags,
description=description,
)
return 200, {}, json.dumps(snapshot.to_json())
def complete_snapshot(self, request, full_url, headers):
"""
The following parameters are not yet supported: ChangedBlocksCount, Checksum, ChecksumAlgorithm, ChecksumAggregationMethod
"""
self.setup_class(request, full_url, headers)
snapshot_id = full_url.split("/")[-1]
status = self.ebs_backend.complete_snapshot(snapshot_id=snapshot_id)
return 200, {}, json.dumps(status)
def put_snapshot_block(self, full_url, headers):
"""
The following parameters are currently not taken into account: DataLength, Progress.
The Checksum and ChecksumAlgorithm are taken at face-value, but no validation takes place.
"""
snapshot_id = full_url.split("/")[-3]
block_index = full_url.split("/")[-1]
block_data = self.body
headers = {k.lower(): v for k, v in headers.items()}
checksum = headers.get("x-amz-checksum")
checksum_algorithm = headers.get("x-amz-checksum-algorithm")
data_length = headers.get("x-amz-data-length")
checksum, checksum_algorithm = self.ebs_backend.put_snapshot_block(
snapshot_id=snapshot_id,
block_index=block_index,
block_data=block_data,
checksum=checksum,
checksum_algorithm=checksum_algorithm,
data_length=data_length,
)
return (
200,
{
"x-amz-Checksum": checksum,
"x-amz-Checksum-Algorithm": checksum_algorithm,
},
"{}",
)
def list_snapshot_blocks(self):
"""
The following parameters are not yet implemented: NextToken, MaxResults, StartingBlockIndex
"""
snapshot_id = self.path.split("/")[-2]
snapshot = self.ebs_backend.list_snapshot_blocks(
snapshot_id=snapshot_id,
)
blocks = [
{"BlockIndex": idx, "BlockToken": b.block_token}
for idx, b in snapshot.blocks.items()
]
return (
200,
{},
json.dumps(
dict(
Blocks=blocks,
VolumeSize=snapshot.volume_size,
BlockSize=snapshot.block_size,
)
),
)
| [
37811,
12885,
829,
15619,
304,
1443,
7007,
11,
800,
3369,
5050,
11,
5860,
9109,
526,
15931,
198,
11748,
33918,
198,
198,
6738,
285,
2069,
13,
7295,
13,
16733,
274,
1330,
7308,
31077,
198,
6738,
764,
27530,
1330,
304,
1443,
62,
1891,
2412,
628,
198,
4871,
412,
4462,
31077,
7,
14881,
31077,
2599,
198,
220,
220,
220,
37227,
25060,
329,
412,
4462,
7007,
290,
9109,
526,
15931,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
304,
1443,
62,
1891,
437,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
30203,
4554,
2176,
329,
428,
3814,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
304,
1443,
62,
1891,
2412,
58,
944,
13,
36996,
60,
628,
220,
220,
220,
825,
923,
62,
45380,
9442,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1708,
10007,
389,
407,
1865,
9177,
25,
16774,
43826,
9442,
7390,
11,
20985,
30642,
11,
14711,
15109,
11,
509,
907,
9218,
3163,
77,
11,
3862,
448,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
33918,
13,
46030,
7,
944,
13,
2618,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6115,
62,
7857,
796,
42287,
13,
1136,
7203,
31715,
10699,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
15940,
796,
42287,
13,
1136,
7203,
36142,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
6764,
796,
42287,
13,
1136,
7203,
11828,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
27479,
796,
2116,
13,
68,
1443,
62,
1891,
437,
13,
9688,
62,
45380,
9442,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6115,
62,
7857,
28,
29048,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15940,
28,
31499,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6764,
28,
11213,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
939,
11,
1391,
5512,
33918,
13,
67,
8142,
7,
45380,
9442,
13,
1462,
62,
17752,
28955,
628,
220,
220,
220,
825,
1844,
62,
45380,
9442,
7,
944,
11,
2581,
11,
1336,
62,
6371,
11,
24697,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1708,
10007,
389,
407,
1865,
4855,
25,
32068,
45356,
12332,
11,
47719,
388,
11,
47719,
388,
2348,
42289,
11,
47719,
388,
46384,
43068,
17410,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40406,
62,
4871,
7,
25927,
11,
1336,
62,
6371,
11,
24697,
8,
198,
220,
220,
220,
220,
220,
220,
220,
27479,
62,
312,
796,
1336,
62,
6371,
13,
35312,
7203,
14,
4943,
58,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3722,
796,
2116,
13,
68,
1443,
62,
1891,
437,
13,
20751,
62,
45380,
9442,
7,
45380,
9442,
62,
312,
28,
45380,
9442,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
939,
11,
1391,
5512,
33918,
13,
67,
8142,
7,
13376,
8,
628,
220,
220,
220,
825,
1234,
62,
45380,
9442,
62,
9967,
7,
944,
11,
1336,
62,
6371,
11,
24697,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1708,
10007,
389,
3058,
407,
2077,
656,
1848,
25,
6060,
24539,
11,
18387,
13,
198,
220,
220,
220,
220,
220,
220,
220,
383,
47719,
388,
290,
47719,
388,
2348,
42289,
389,
2077,
379,
1986,
12,
8367,
11,
475,
645,
21201,
2753,
1295,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
27479,
62,
312,
796,
1336,
62,
6371,
13,
35312,
7203,
14,
4943,
58,
12,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2512,
62,
9630,
796,
1336,
62,
6371,
13,
35312,
7203,
14,
4943,
58,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2512,
62,
7890,
796,
2116,
13,
2618,
198,
220,
220,
220,
220,
220,
220,
220,
24697,
796,
1391,
74,
13,
21037,
33529,
410,
329,
479,
11,
410,
287,
24697,
13,
23814,
3419,
92,
198,
220,
220,
220,
220,
220,
220,
220,
8794,
388,
796,
24697,
13,
1136,
7203,
87,
12,
321,
89,
12,
42116,
388,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
8794,
388,
62,
282,
42289,
796,
24697,
13,
1136,
7203,
87,
12,
321,
89,
12,
42116,
388,
12,
282,
42289,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
13664,
796,
24697,
13,
1136,
7203,
87,
12,
321,
89,
12,
7890,
12,
13664,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
8794,
388,
11,
8794,
388,
62,
282,
42289,
796,
2116,
13,
68,
1443,
62,
1891,
437,
13,
1996,
62,
45380,
9442,
62,
9967,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27479,
62,
312,
28,
45380,
9442,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2512,
62,
9630,
28,
9967,
62,
9630,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2512,
62,
7890,
28,
9967,
62,
7890,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8794,
388,
28,
42116,
388,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8794,
388,
62,
282,
42289,
28,
42116,
388,
62,
282,
42289,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
13664,
28,
7890,
62,
13664,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
939,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
87,
12,
321,
89,
12,
7376,
4657,
388,
1298,
8794,
388,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
87,
12,
321,
89,
12,
7376,
4657,
388,
12,
2348,
42289,
1298,
8794,
388,
62,
282,
42289,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45144,
92,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
825,
1351,
62,
45380,
9442,
62,
27372,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1708,
10007,
389,
407,
1865,
9177,
25,
7406,
30642,
11,
5436,
25468,
11,
17962,
12235,
15732,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
27479,
62,
312,
796,
2116,
13,
6978,
13,
35312,
7203,
14,
4943,
58,
12,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
27479,
796,
2116,
13,
68,
1443,
62,
1891,
437,
13,
4868,
62,
45380,
9442,
62,
27372,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27479,
62,
312,
28,
45380,
9442,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
7021,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19779,
12235,
15732,
1298,
4686,
87,
11,
366,
12235,
30642,
1298,
275,
13,
9967,
62,
30001,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
4686,
87,
11,
275,
287,
27479,
13,
27372,
13,
23814,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
939,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33918,
13,
67,
8142,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8633,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35111,
28,
27372,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14701,
10699,
28,
45380,
9442,
13,
29048,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9726,
10699,
28,
45380,
9442,
13,
9967,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198
] | 2.174116 | 1,499 |
import unittest
import torch.nn
from rl_starterpack import AC, OpenAIGym, experiment
| [
11748,
555,
715,
395,
198,
198,
11748,
28034,
13,
20471,
198,
198,
6738,
374,
75,
62,
12339,
8002,
1330,
7125,
11,
4946,
32,
3528,
4948,
11,
6306,
628
] | 3.142857 | 28 |
"""Centec OS Support"""
from netmiko.cisco_base_connection import CiscoBaseConnection
import time
| [
37811,
19085,
721,
7294,
7929,
37811,
198,
6738,
2010,
76,
12125,
13,
66,
4861,
62,
8692,
62,
38659,
1330,
28289,
14881,
32048,
198,
11748,
640,
628,
628
] | 3.740741 | 27 |
#Challenge 3
#The program asks the user to inputtheir surname and then their first name.
#The program then outputsthe user’s first name and then their surname separately.
name2 = input("please enter your surname: ")
name1 = input("please enter your first name: ")
print(name2)
print(name1)
| [
2,
41812,
3540,
513,
201,
198,
2,
464,
1430,
7893,
262,
2836,
284,
5128,
24571,
40358,
290,
788,
511,
717,
1438,
13,
201,
198,
2,
464,
1430,
788,
5072,
301,
258,
2836,
447,
247,
82,
717,
1438,
290,
788,
511,
40358,
13869,
13,
201,
198,
201,
198,
3672,
17,
796,
5128,
7203,
29688,
3802,
534,
40358,
25,
366,
8,
201,
198,
3672,
16,
796,
5128,
7203,
29688,
3802,
534,
717,
1438,
25,
366,
8,
201,
198,
4798,
7,
3672,
17,
8,
201,
198,
4798,
7,
3672,
16,
8,
201,
198,
201,
198
] | 3.271739 | 92 |
# pylint: disable=line-too-long
from __future__ import print_function
import json
import re
import traceback
import zipfile
import arrow
import pytz
from passive_data_kit.models import DataPoint
from passive_data_kit_external_data.models import annotate_field
from ..utils import hash_content, encrypt_content, create_engagement_event, queue_batch_insert, include_data
# Older format?
| [
2,
279,
2645,
600,
25,
15560,
28,
1370,
12,
18820,
12,
6511,
198,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
198,
11748,
33918,
198,
11748,
302,
198,
11748,
12854,
1891,
198,
11748,
19974,
7753,
198,
198,
11748,
15452,
198,
11748,
12972,
22877,
198,
198,
6738,
14513,
62,
7890,
62,
15813,
13,
27530,
1330,
6060,
12727,
198,
198,
6738,
14513,
62,
7890,
62,
15813,
62,
22615,
62,
7890,
13,
27530,
1330,
24708,
378,
62,
3245,
198,
198,
6738,
11485,
26791,
1330,
12234,
62,
11299,
11,
34117,
62,
11299,
11,
2251,
62,
1516,
5082,
62,
15596,
11,
16834,
62,
43501,
62,
28463,
11,
2291,
62,
7890,
198,
198,
2,
35527,
5794,
30,
198
] | 3.438596 | 114 |
from distutils.core import setup
import os
from setuptools import find_packages
DIR = os.path.dirname(__file__)
with open(os.path.join(DIR, "README.md")) as f:
readme = f.read().splitlines()
setup(
name='use_logging',
version='0.0.1',
packages=find_packages(include='use_logging*'),
url='https://github.com/GambitResearch/use_logging',
author='Daniel Royde',
author_email='[email protected]',
description=readme[6],
long_description='\n'.join(readme[3:]).lstrip(),
keywords=['Python', 'Logging'],
scripts=['bin/use_logging'],
license='MIT',
)
| [
6738,
1233,
26791,
13,
7295,
1330,
9058,
198,
198,
11748,
28686,
198,
6738,
900,
37623,
10141,
1330,
1064,
62,
43789,
198,
198,
34720,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
8,
198,
198,
4480,
1280,
7,
418,
13,
6978,
13,
22179,
7,
34720,
11,
366,
15675,
11682,
13,
9132,
48774,
355,
277,
25,
198,
197,
961,
1326,
796,
277,
13,
961,
22446,
35312,
6615,
3419,
198,
198,
40406,
7,
198,
197,
3672,
11639,
1904,
62,
6404,
2667,
3256,
198,
197,
9641,
11639,
15,
13,
15,
13,
16,
3256,
198,
197,
43789,
28,
19796,
62,
43789,
7,
17256,
11639,
1904,
62,
6404,
2667,
9,
33809,
198,
197,
6371,
11639,
5450,
1378,
12567,
13,
785,
14,
34777,
2545,
25104,
14,
1904,
62,
6404,
2667,
3256,
198,
197,
9800,
11639,
19962,
9817,
2934,
3256,
198,
197,
9800,
62,
12888,
11639,
67,
6321,
3287,
2934,
31,
14816,
13,
785,
3256,
198,
197,
11213,
28,
961,
1326,
58,
21,
4357,
198,
197,
6511,
62,
11213,
11639,
59,
77,
4458,
22179,
7,
961,
1326,
58,
18,
25,
35944,
75,
36311,
22784,
198,
197,
2539,
10879,
28,
17816,
37906,
3256,
705,
11187,
2667,
6,
4357,
198,
197,
46521,
28,
17816,
8800,
14,
1904,
62,
6404,
2667,
6,
4357,
198,
197,
43085,
11639,
36393,
3256,
198,
8,
198
] | 2.630841 | 214 |
from pathlib import Path
| [
6738,
3108,
8019,
1330,
10644,
628
] | 4.333333 | 6 |
import math
import torch
import torch.nn as nn
import models
import utils
from .models import register
@register('classifier')
@register('linear-classifier')
@register('nn-classifier')
@register('moco')
class MoCo(nn.Module):
"""
Build a MoCo model with: a query encoder, a key encoder, and a queue
https://arxiv.org/abs/1911.05722
"""
def __init__(self, encoder, encoder_args, K=65536, m=0.999, T=0.07, mlp=False):
"""
dim: feature dimension (default: 128)
K: queue size; number of negative keys (default: 65536)
m: moco momentum of updating key encoder (default: 0.999)
T: softmax temperature (default: 0.07)
"""
super(MoCo, self).__init__()
self.K = K
self.m = m
self.T = T
# create the encoders
# feature embedding size is the output fc dimension
self.encoder_q = models.make(encoder, **encoder_args)
self.encoder_k = models.make(encoder, **encoder_args)
dim = self.encoder_q.out_dim
self.encoder = self.encoder_q # use encoder_q for downstream tasks
if mlp: # hack: brute-force replacement
dim_mlp = self.encoder_q.fc.weight.shape[1]
self.encoder_q.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_q.fc)
self.encoder_k.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_k.fc)
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
# create the queue
self.register_buffer("queue", torch.randn(dim, K))
self.queue = nn.functional.normalize(self.queue, dim=0)
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
@torch.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
"""
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
@torch.no_grad()
@torch.no_grad()
def _batch_shuffle_ddp(self, x):
"""
Batch shuffle, for making use of BatchNorm.
"""
batch_size = x.shape[0]
# random shuffle index
idx_shuffle = torch.randperm(batch_size).long().cuda()
# index for restoring
idx_unshuffle = torch.argsort(idx_shuffle)
return x[idx_shuffle], idx_unshuffle
@torch.no_grad()
def _batch_unshuffle_ddp(self, x, idx_unshuffle):
"""
Undo batch shuffle.
"""
return x[idx_unshuffle]
def forward(self, im_q, im_k):
"""
Input:
im_q: a batch of query images
im_k: a batch of key images
Output:
logits, targets
"""
# compute query features
q = self.encoder_q(im_q) # queries: NxC
q = nn.functional.normalize(q, dim=1)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
# shuffle for making use of BN
im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k)
k = self.encoder_k(im_k) # keys: NxC
k = nn.functional.normalize(k, dim=1)
# undo shuffle
k = self._batch_unshuffle_ddp(k, idx_unshuffle)
# compute logits
# Einstein sum is more intuitive
# positive logits: Nx1
l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
# negative logits: NxK
l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()])
# logits: Nx(1+K)
logits = torch.cat([l_pos, l_neg], dim=1)
# apply temperature
logits /= self.T
# labels: positive key indicators
labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()
# dequeue and enqueue
self._dequeue_and_enqueue(k)
return logits, labels
| [
11748,
10688,
198,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
198,
11748,
4981,
198,
11748,
3384,
4487,
198,
6738,
764,
27530,
1330,
7881,
628,
198,
31,
30238,
10786,
4871,
7483,
11537,
628,
198,
31,
30238,
10786,
29127,
12,
4871,
7483,
11537,
628,
198,
31,
30238,
10786,
20471,
12,
4871,
7483,
11537,
628,
198,
31,
30238,
10786,
76,
25634,
11537,
198,
4871,
4270,
7222,
7,
20471,
13,
26796,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
10934,
257,
4270,
7222,
2746,
351,
25,
257,
12405,
2207,
12342,
11,
257,
1994,
2207,
12342,
11,
290,
257,
16834,
198,
220,
220,
220,
220,
220,
220,
220,
3740,
1378,
283,
87,
452,
13,
2398,
14,
8937,
14,
1129,
1157,
13,
43526,
1828,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
2207,
12342,
11,
2207,
12342,
62,
22046,
11,
509,
28,
35916,
2623,
11,
285,
28,
15,
13,
17032,
11,
309,
28,
15,
13,
2998,
11,
25962,
79,
28,
25101,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
25,
3895,
15793,
357,
12286,
25,
13108,
8,
198,
220,
220,
220,
220,
220,
220,
220,
509,
25,
16834,
2546,
26,
1271,
286,
4633,
8251,
357,
12286,
25,
45021,
2623,
8,
198,
220,
220,
220,
220,
220,
220,
220,
285,
25,
285,
25634,
12858,
286,
19698,
1994,
2207,
12342,
357,
12286,
25,
657,
13,
17032,
8,
198,
220,
220,
220,
220,
220,
220,
220,
309,
25,
2705,
9806,
5951,
357,
12286,
25,
657,
13,
2998,
8,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
7,
16632,
7222,
11,
2116,
737,
834,
15003,
834,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
42,
796,
509,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
76,
796,
285,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
51,
796,
309,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2251,
262,
2207,
375,
364,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3895,
11525,
12083,
2546,
318,
262,
5072,
277,
66,
15793,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12685,
12342,
62,
80,
796,
4981,
13,
15883,
7,
12685,
12342,
11,
12429,
12685,
12342,
62,
22046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12685,
12342,
62,
74,
796,
4981,
13,
15883,
7,
12685,
12342,
11,
12429,
12685,
12342,
62,
22046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
796,
2116,
13,
12685,
12342,
62,
80,
13,
448,
62,
27740,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12685,
12342,
796,
2116,
13,
12685,
12342,
62,
80,
220,
1303,
779,
2207,
12342,
62,
80,
329,
33218,
8861,
628,
220,
220,
220,
220,
220,
220,
220,
611,
25962,
79,
25,
220,
1303,
8156,
25,
33908,
12,
3174,
9014,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5391,
62,
4029,
79,
796,
2116,
13,
12685,
12342,
62,
80,
13,
16072,
13,
6551,
13,
43358,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12685,
12342,
62,
80,
13,
16072,
796,
299,
77,
13,
44015,
1843,
7,
20471,
13,
14993,
451,
7,
27740,
62,
4029,
79,
11,
5391,
62,
4029,
79,
828,
299,
77,
13,
3041,
41596,
22784,
2116,
13,
12685,
12342,
62,
80,
13,
16072,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
12685,
12342,
62,
74,
13,
16072,
796,
299,
77,
13,
44015,
1843,
7,
20471,
13,
14993,
451,
7,
27740,
62,
4029,
79,
11,
5391,
62,
4029,
79,
828,
299,
77,
13,
3041,
41596,
22784,
2116,
13,
12685,
12342,
62,
74,
13,
16072,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
5772,
62,
80,
11,
5772,
62,
74,
287,
19974,
7,
944,
13,
12685,
12342,
62,
80,
13,
17143,
7307,
22784,
2116,
13,
12685,
12342,
62,
74,
13,
17143,
7307,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5772,
62,
74,
13,
7890,
13,
30073,
41052,
17143,
62,
80,
13,
7890,
8,
220,
1303,
41216,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5772,
62,
74,
13,
47911,
62,
9744,
796,
10352,
220,
1303,
407,
4296,
416,
31312,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2251,
262,
16834,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30238,
62,
22252,
7203,
36560,
1600,
28034,
13,
25192,
77,
7,
27740,
11,
509,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
36560,
796,
299,
77,
13,
45124,
13,
11265,
1096,
7,
944,
13,
36560,
11,
5391,
28,
15,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30238,
62,
22252,
7203,
36560,
62,
20692,
1600,
28034,
13,
9107,
418,
7,
16,
11,
288,
4906,
28,
13165,
354,
13,
6511,
4008,
628,
220,
220,
220,
2488,
13165,
354,
13,
3919,
62,
9744,
3419,
198,
220,
220,
220,
825,
4808,
32542,
298,
388,
62,
19119,
62,
2539,
62,
12685,
12342,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
29278,
388,
4296,
286,
262,
1994,
2207,
12342,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5772,
62,
80,
11,
5772,
62,
74,
287,
19974,
7,
944,
13,
12685,
12342,
62,
80,
13,
17143,
7307,
22784,
2116,
13,
12685,
12342,
62,
74,
13,
17143,
7307,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5772,
62,
74,
13,
7890,
796,
5772,
62,
74,
13,
7890,
1635,
2116,
13,
76,
1343,
5772,
62,
80,
13,
7890,
1635,
357,
16,
13,
532,
2116,
13,
76,
8,
628,
220,
220,
220,
2488,
13165,
354,
13,
3919,
62,
9744,
3419,
628,
220,
220,
220,
2488,
13165,
354,
13,
3919,
62,
9744,
3419,
198,
220,
220,
220,
825,
4808,
43501,
62,
1477,
18137,
62,
1860,
79,
7,
944,
11,
2124,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
347,
963,
36273,
11,
329,
1642,
779,
286,
347,
963,
35393,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
15458,
62,
7857,
796,
2124,
13,
43358,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4738,
36273,
6376,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
62,
1477,
18137,
796,
28034,
13,
25192,
16321,
7,
43501,
62,
7857,
737,
6511,
22446,
66,
15339,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6376,
329,
25646,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
62,
403,
1477,
18137,
796,
28034,
13,
22046,
419,
7,
312,
87,
62,
1477,
18137,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2124,
58,
312,
87,
62,
1477,
18137,
4357,
4686,
87,
62,
403,
1477,
18137,
628,
220,
220,
220,
2488,
13165,
354,
13,
3919,
62,
9744,
3419,
198,
220,
220,
220,
825,
4808,
43501,
62,
403,
1477,
18137,
62,
1860,
79,
7,
944,
11,
2124,
11,
4686,
87,
62,
403,
1477,
18137,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
13794,
78,
15458,
36273,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2124,
58,
312,
87,
62,
403,
1477,
18137,
60,
628,
220,
220,
220,
825,
2651,
7,
944,
11,
545,
62,
80,
11,
545,
62,
74,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
23412,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
545,
62,
80,
25,
257,
15458,
286,
12405,
4263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
545,
62,
74,
25,
257,
15458,
286,
1994,
4263,
198,
220,
220,
220,
220,
220,
220,
220,
25235,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2604,
896,
11,
6670,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
24061,
12405,
3033,
198,
220,
220,
220,
220,
220,
220,
220,
10662,
796,
2116,
13,
12685,
12342,
62,
80,
7,
320,
62,
80,
8,
220,
1303,
20743,
25,
399,
87,
34,
198,
220,
220,
220,
220,
220,
220,
220,
10662,
796,
299,
77,
13,
45124,
13,
11265,
1096,
7,
80,
11,
5391,
28,
16,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
24061,
1994,
3033,
198,
220,
220,
220,
220,
220,
220,
220,
351,
28034,
13,
3919,
62,
9744,
33529,
220,
1303,
645,
31312,
284,
8251,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
32542,
298,
388,
62,
19119,
62,
2539,
62,
12685,
12342,
3419,
220,
1303,
4296,
262,
1994,
2207,
12342,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
36273,
329,
1642,
779,
286,
347,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
545,
62,
74,
11,
4686,
87,
62,
403,
1477,
18137,
796,
2116,
13557,
43501,
62,
1477,
18137,
62,
1860,
79,
7,
320,
62,
74,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
479,
796,
2116,
13,
12685,
12342,
62,
74,
7,
320,
62,
74,
8,
220,
1303,
8251,
25,
399,
87,
34,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
479,
796,
299,
77,
13,
45124,
13,
11265,
1096,
7,
74,
11,
5391,
28,
16,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
23981,
36273,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
479,
796,
2116,
13557,
43501,
62,
403,
1477,
18137,
62,
1860,
79,
7,
74,
11,
4686,
87,
62,
403,
1477,
18137,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
24061,
2604,
896,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
24572,
2160,
318,
517,
19933,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3967,
2604,
896,
25,
399,
87,
16,
198,
220,
220,
220,
220,
220,
220,
220,
300,
62,
1930,
796,
28034,
13,
68,
1040,
388,
10786,
10782,
11,
10782,
3784,
77,
3256,
685,
80,
11,
479,
35944,
13271,
421,
1453,
2736,
32590,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4633,
2604,
896,
25,
399,
87,
42,
198,
220,
220,
220,
220,
220,
220,
220,
300,
62,
12480,
796,
28034,
13,
68,
1040,
388,
10786,
10782,
11,
694,
3784,
77,
74,
3256,
685,
80,
11,
2116,
13,
36560,
13,
21018,
22446,
15255,
620,
3419,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2604,
896,
25,
399,
87,
7,
16,
10,
42,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
896,
796,
28034,
13,
9246,
26933,
75,
62,
1930,
11,
300,
62,
12480,
4357,
5391,
28,
16,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
4174,
5951,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
896,
1220,
28,
2116,
13,
51,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
14722,
25,
3967,
1994,
21337,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
28034,
13,
9107,
418,
7,
6404,
896,
13,
43358,
58,
15,
4357,
288,
4906,
28,
13165,
354,
13,
6511,
737,
66,
15339,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
390,
36560,
290,
551,
36560,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
2934,
36560,
62,
392,
62,
268,
36560,
7,
74,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2604,
896,
11,
14722,
628
] | 2.110212 | 1,978 |
#!/usr/bin/env python3
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import amulet
import re
import unittest
class TestDeploy(unittest.TestCase):
"""
Hadoop/Hive deployment and smoke test for the Apache Bigtop Hive service.
"""
@classmethod
def test_hive(self):
"""
Validate Hive by running the smoke-test action.
"""
uuid = self.hive.run_action('smoke-test')
result = self.d.action_fetch(uuid, full_output=True)
# action status=completed on success
if (result['status'] != "completed"):
self.fail('Hive smoke-test failed: %s' % result)
if __name__ == '__main__':
unittest.main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
2,
49962,
284,
262,
24843,
10442,
5693,
357,
1921,
37,
8,
739,
530,
393,
517,
198,
2,
18920,
5964,
11704,
13,
220,
4091,
262,
28536,
2393,
9387,
351,
198,
2,
428,
670,
329,
3224,
1321,
5115,
6634,
9238,
13,
198,
2,
383,
7054,
37,
16625,
428,
2393,
284,
921,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
198,
2,
357,
1169,
366,
34156,
15341,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
198,
2,
262,
13789,
13,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
11748,
38335,
198,
11748,
302,
198,
11748,
555,
715,
395,
628,
198,
4871,
6208,
49322,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
367,
4533,
404,
14,
39,
425,
14833,
290,
7523,
1332,
329,
262,
24843,
4403,
4852,
33235,
2139,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
4871,
24396,
628,
220,
220,
220,
825,
1332,
62,
71,
425,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3254,
20540,
33235,
416,
2491,
262,
7523,
12,
9288,
2223,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
334,
27112,
796,
2116,
13,
71,
425,
13,
5143,
62,
2673,
10786,
5796,
2088,
12,
9288,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
2116,
13,
67,
13,
2673,
62,
69,
7569,
7,
12303,
312,
11,
1336,
62,
22915,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2223,
3722,
28,
785,
16838,
319,
1943,
198,
220,
220,
220,
220,
220,
220,
220,
611,
357,
20274,
17816,
13376,
20520,
14512,
366,
785,
16838,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
32165,
10786,
39,
425,
7523,
12,
9288,
4054,
25,
4064,
82,
6,
4064,
1255,
8,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 3.128319 | 452 |
import pytest
from BlueKumquatAutoDiff.autodiff import *
| [
11748,
12972,
9288,
198,
6738,
4518,
42,
388,
421,
265,
27722,
28813,
13,
2306,
375,
733,
1330,
1635,
628,
628,
628
] | 2.952381 | 21 |
# -*- coding: utf-8 -*-
from aenum import Flag
from .results import Results
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
6738,
257,
44709,
1330,
19762,
198,
6738,
764,
43420,
1330,
15691,
628,
198
] | 2.888889 | 27 |
from django.core.management.base import BaseCommand
import time
from core.services.update import Updater
| [
6738,
42625,
14208,
13,
7295,
13,
27604,
13,
8692,
1330,
7308,
21575,
198,
11748,
640,
198,
198,
6738,
4755,
13,
30416,
13,
19119,
1330,
3205,
67,
729,
628
] | 3.821429 | 28 |
import nltk
import sys
sentence = """At eight o'clock on Thursday morning Arthur didn't feel very good."""
tokens = nltk.word_tokenize(sentence)
if tokens != ['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']:
sys.stderr.write("Error in tokenization")
sys.exit(1)
| [
11748,
299,
2528,
74,
198,
11748,
25064,
198,
198,
34086,
594,
796,
37227,
2953,
3624,
267,
6,
15750,
319,
3635,
3329,
13514,
1422,
470,
1254,
845,
922,
526,
15931,
198,
83,
482,
641,
796,
299,
2528,
74,
13,
4775,
62,
30001,
1096,
7,
34086,
594,
8,
198,
361,
16326,
14512,
37250,
2953,
3256,
705,
26022,
3256,
366,
78,
6,
15750,
1600,
705,
261,
3256,
705,
25381,
3256,
705,
43911,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
29874,
3256,
705,
20839,
3256,
366,
77,
470,
1600,
705,
36410,
3256,
705,
548,
3256,
705,
11274,
3256,
705,
2637,
5974,
198,
220,
220,
220,
25064,
13,
301,
1082,
81,
13,
13564,
7203,
12331,
287,
11241,
1634,
4943,
198,
220,
220,
220,
25064,
13,
37023,
7,
16,
8,
628
] | 2.57037 | 135 |
import os
_data_path_prefix = lambda name:os.sep.join(['www.VyperLogix.com',name])
| [
11748,
28686,
198,
198,
62,
7890,
62,
6978,
62,
40290,
796,
37456,
1438,
25,
418,
13,
325,
79,
13,
22179,
7,
17816,
2503,
13,
53,
88,
525,
11187,
844,
13,
785,
3256,
3672,
12962,
198
] | 2.4 | 35 |
import pathlib
import pkg_resources
from setuptools import setup, find_packages
with pathlib.Path('requirements.txt').open() as requirements_txt:
install_requires = [
str(requirement)
for requirement
in pkg_resources.parse_requirements(requirements_txt)
]
version = '0.4.2'
setup(
name='sammy',
version=version,
description="Python library for generating AWS SAM "
"(Serverless Application Model) templates with validation.",
classifiers=[
"Programming Language :: Python",
"Topic :: Software Development :: Libraries :: Python Modules",
"Environment :: Web Environment",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3 :: Only"
],
keywords='serverless, cloudformation, sam',
author='Brian Jinwright',
author_email='[email protected]',
maintainer='Brian Jinwright',
packages=find_packages(),
url='https://github.com/capless/sammy',
license='GNU General Public License v3.0',
install_requires=install_requires,
include_package_data=True,
zip_safe=False,
)
| [
11748,
3108,
8019,
198,
11748,
279,
10025,
62,
37540,
198,
6738,
900,
37623,
10141,
1330,
9058,
11,
1064,
62,
43789,
198,
198,
4480,
3108,
8019,
13,
15235,
10786,
8897,
18883,
13,
14116,
27691,
9654,
3419,
355,
5359,
62,
14116,
25,
198,
220,
220,
220,
2721,
62,
47911,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
965,
7,
8897,
24615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
9079,
198,
220,
220,
220,
220,
220,
220,
220,
287,
279,
10025,
62,
37540,
13,
29572,
62,
8897,
18883,
7,
8897,
18883,
62,
14116,
8,
198,
220,
220,
220,
2361,
198,
9641,
796,
705,
15,
13,
19,
13,
17,
6,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
37687,
1820,
3256,
198,
220,
220,
220,
2196,
28,
9641,
11,
198,
220,
220,
220,
6764,
2625,
37906,
5888,
329,
15453,
30865,
28844,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30629,
10697,
1203,
15678,
9104,
8,
24019,
351,
21201,
33283,
198,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
33221,
7904,
10442,
7712,
7904,
46267,
7904,
11361,
3401,
5028,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
31441,
7904,
5313,
9344,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
21,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
513,
7904,
5514,
1,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
26286,
11639,
15388,
1203,
11,
6279,
1161,
11,
6072,
3256,
198,
220,
220,
220,
1772,
11639,
24761,
17297,
29995,
3256,
198,
220,
220,
220,
1772,
62,
12888,
11639,
44813,
1668,
31,
541,
13880,
13,
785,
3256,
198,
220,
220,
220,
5529,
263,
11639,
24761,
17297,
29995,
3256,
198,
220,
220,
220,
10392,
28,
19796,
62,
43789,
22784,
198,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
6888,
14570,
14,
37687,
1820,
3256,
198,
220,
220,
220,
5964,
11639,
16630,
52,
3611,
5094,
13789,
410,
18,
13,
15,
3256,
198,
220,
220,
220,
2721,
62,
47911,
28,
17350,
62,
47911,
11,
198,
220,
220,
220,
2291,
62,
26495,
62,
7890,
28,
17821,
11,
198,
220,
220,
220,
19974,
62,
21230,
28,
25101,
11,
198,
8,
198
] | 2.833333 | 402 |
import numpy
import sklearn.naive_bayes
import sklearn.feature_extraction.text
import sklearn.pipeline
# New additions
import mlflow.sklearn
mlflow.set_tracking_uri("http://atrium.datmo.com")
mlflow.set_experiment("training_module")
...
train_and_evaluate_model() | [
11748,
299,
32152,
198,
11748,
1341,
35720,
13,
2616,
425,
62,
24406,
274,
198,
11748,
1341,
35720,
13,
30053,
62,
2302,
7861,
13,
5239,
198,
11748,
1341,
35720,
13,
79,
541,
4470,
198,
198,
2,
968,
19885,
198,
11748,
285,
1652,
9319,
13,
8135,
35720,
198,
76,
1652,
9319,
13,
2617,
62,
36280,
62,
9900,
7203,
4023,
1378,
265,
19172,
13,
19608,
5908,
13,
785,
4943,
198,
76,
1652,
9319,
13,
2617,
62,
23100,
3681,
7203,
34409,
62,
21412,
4943,
198,
198,
986,
198,
198,
27432,
62,
392,
62,
49786,
62,
19849,
3419
] | 2.860215 | 93 |
'''
Created on Jun 14, 2017
@author: xinguan
'''
# import mysql.connector
import mysql.connector
create_dice_jobs = (
"CREATE TABLE IF NOT EXISTS `dice_jobs` ("
" `job_unique_id` varchar(50) NOT NULL,"
" `job_title` text NOT NULL,"
" `job_url` text NOT NULL,"
" `company` text NOT NULL,"
" `post_date` date NOT NULL,"
" `job_description` text NOT NULL,"
" PRIMARY KEY (`job_unique_id`)"
") ENGINE=InnoDB")
cnx = mysql.connector.connect(user='root', password='u6a3pwhe',
host='127.0.0.1',
database='dice_test')
cursor = cnx.cursor()
try:
cursor.execute(create_dice_jobs)
cnx.commit()
except mysql.connector.Error as err:
print err
cnx.rollback()
finally:
cursor.close()
cnx.close()
| [
7061,
6,
198,
41972,
319,
7653,
1478,
11,
2177,
198,
198,
31,
9800,
25,
2124,
6680,
272,
198,
7061,
6,
198,
2,
1330,
48761,
13,
8443,
273,
198,
11748,
48761,
13,
8443,
273,
198,
198,
17953,
62,
67,
501,
62,
43863,
796,
357,
198,
220,
220,
220,
366,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
4600,
67,
501,
62,
43863,
63,
5855,
198,
220,
220,
220,
366,
220,
4600,
21858,
62,
34642,
62,
312,
63,
410,
998,
283,
7,
1120,
8,
5626,
15697,
553,
198,
220,
220,
220,
366,
220,
4600,
21858,
62,
7839,
63,
2420,
5626,
15697,
553,
198,
220,
220,
220,
366,
220,
4600,
21858,
62,
6371,
63,
2420,
5626,
15697,
553,
198,
220,
220,
220,
366,
220,
4600,
39722,
63,
2420,
5626,
15697,
553,
198,
220,
220,
220,
366,
220,
4600,
7353,
62,
4475,
63,
3128,
5626,
15697,
553,
198,
220,
220,
220,
366,
220,
4600,
21858,
62,
11213,
63,
2420,
5626,
15697,
553,
198,
220,
220,
220,
366,
220,
4810,
3955,
13153,
35374,
357,
63,
21858,
62,
34642,
62,
312,
63,
16725,
198,
220,
220,
220,
366,
8,
36924,
8881,
28,
818,
3919,
11012,
4943,
198,
198,
31522,
87,
796,
48761,
13,
8443,
273,
13,
8443,
7,
7220,
11639,
15763,
3256,
9206,
11639,
84,
21,
64,
18,
79,
12491,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2583,
11639,
16799,
13,
15,
13,
15,
13,
16,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6831,
11639,
67,
501,
62,
9288,
11537,
198,
66,
21471,
796,
269,
77,
87,
13,
66,
21471,
3419,
198,
28311,
25,
198,
220,
220,
220,
23493,
13,
41049,
7,
17953,
62,
67,
501,
62,
43863,
8,
198,
220,
220,
220,
269,
77,
87,
13,
41509,
3419,
198,
16341,
48761,
13,
8443,
273,
13,
12331,
355,
11454,
25,
198,
220,
220,
220,
3601,
11454,
198,
220,
220,
220,
269,
77,
87,
13,
2487,
1891,
3419,
198,
69,
3289,
25,
198,
220,
220,
220,
23493,
13,
19836,
3419,
198,
220,
220,
220,
269,
77,
87,
13,
19836,
3419,
198
] | 2.123037 | 382 |
# !/usr/bin/python
# -*- coding: utf-8 -*-
import os
import sys
import logging
import asyncio as aio
from multiprocessing import set_start_method
def get_logger(print_format: str = '[%(asctime)s.%(msecs)03d: %(levelname).1s %(filename)s:%(lineno)s] %(message)s',
date_format: str = '%Y-%m-%d %H:%M:%S',
print: bool = True,
save: bool = True,
save_path: str = 'upbit-trader.log'):
''' Logger Configuration'''
log = logging.getLogger()
# Setup logger level
log.setLevel(logging.INFO)
# Setup logger format
formatter = logging.Formatter(fmt=print_format, datefmt=date_format)
# Setup logger handler
if print:
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
log.addHandler(stream_handler)
if save:
if save_path == 'upbit-trader.log' and not sys.platform.startswith('win'):
file_handler = logging.FileHandler('upbit-trader.log')
else:
file_handler = logging.FileHandler(save_path)
file_handler.setFormatter(formatter)
log.addHandler(file_handler)
return log
| [
2,
5145,
14,
14629,
14,
8800,
14,
29412,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
11748,
28686,
198,
11748,
25064,
198,
11748,
18931,
198,
11748,
30351,
952,
355,
257,
952,
198,
6738,
220,
18540,
305,
919,
278,
1330,
900,
62,
9688,
62,
24396,
198,
198,
4299,
651,
62,
6404,
1362,
7,
4798,
62,
18982,
25,
965,
796,
44438,
4,
7,
292,
310,
524,
8,
82,
13,
4,
7,
76,
2363,
82,
8,
3070,
67,
25,
4064,
7,
5715,
3672,
737,
16,
82,
4064,
7,
34345,
8,
82,
25,
4,
7,
2815,
23397,
8,
82,
60,
4064,
7,
20500,
8,
82,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3128,
62,
18982,
25,
965,
796,
705,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
25,
4,
44,
25,
4,
50,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
25,
20512,
796,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
25,
20512,
796,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
6978,
25,
965,
796,
705,
929,
2545,
12,
2213,
5067,
13,
6404,
6,
2599,
198,
220,
220,
220,
705,
7061,
5972,
1362,
28373,
7061,
6,
198,
220,
220,
220,
2604,
796,
18931,
13,
1136,
11187,
1362,
3419,
198,
220,
220,
220,
1303,
31122,
49706,
1241,
198,
220,
220,
220,
2604,
13,
2617,
4971,
7,
6404,
2667,
13,
10778,
8,
198,
220,
220,
220,
1303,
31122,
49706,
5794,
198,
220,
220,
220,
1296,
1436,
796,
18931,
13,
8479,
1436,
7,
69,
16762,
28,
4798,
62,
18982,
11,
3128,
69,
16762,
28,
4475,
62,
18982,
8,
198,
220,
220,
220,
1303,
31122,
49706,
21360,
198,
220,
220,
220,
611,
3601,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4269,
62,
30281,
796,
18931,
13,
12124,
25060,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
4269,
62,
30281,
13,
2617,
8479,
1436,
7,
687,
1436,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
2860,
25060,
7,
5532,
62,
30281,
8,
198,
220,
220,
220,
611,
3613,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3613,
62,
6978,
6624,
705,
929,
2545,
12,
2213,
5067,
13,
6404,
6,
290,
407,
25064,
13,
24254,
13,
9688,
2032,
342,
10786,
5404,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
30281,
796,
18931,
13,
8979,
25060,
10786,
929,
2545,
12,
2213,
5067,
13,
6404,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
30281,
796,
18931,
13,
8979,
25060,
7,
21928,
62,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
30281,
13,
2617,
8479,
1436,
7,
687,
1436,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
2860,
25060,
7,
7753,
62,
30281,
8,
198,
220,
220,
220,
1441,
2604,
628,
628
] | 2.254335 | 519 |
import os
def load_idmap(idmap_file):
"""Load tab-separated idmap file containing label index and label string
Args:
idmap_file (str): filepath to idmap
Returns:
dict: labelmap (key=index, value=string)
"""
if not os.path.exists(idmap_file):
raise FileExistsError(idmap_file)
labelmap = {}
with open(idmap_file, "r") as rf:
for row in rf:
row = row.split("\t")
labelmap[int(row[0])] = row[1].strip()
return labelmap
| [
11748,
28686,
628,
198,
4299,
3440,
62,
312,
8899,
7,
312,
8899,
62,
7753,
2599,
198,
220,
220,
220,
37227,
8912,
7400,
12,
25512,
515,
4686,
8899,
2393,
7268,
6167,
6376,
290,
6167,
4731,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
8899,
62,
7753,
357,
2536,
2599,
2393,
6978,
284,
4686,
8899,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
25,
6167,
8899,
357,
2539,
28,
9630,
11,
1988,
28,
8841,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
312,
8899,
62,
7753,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
9220,
3109,
1023,
12331,
7,
312,
8899,
62,
7753,
8,
628,
220,
220,
220,
6167,
8899,
796,
23884,
198,
220,
220,
220,
351,
1280,
7,
312,
8899,
62,
7753,
11,
366,
81,
4943,
355,
374,
69,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5752,
287,
374,
69,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5752,
796,
5752,
13,
35312,
7203,
59,
83,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
8899,
58,
600,
7,
808,
58,
15,
12962,
60,
796,
5752,
58,
16,
4083,
36311,
3419,
198,
220,
220,
220,
1441,
6167,
8899,
628
] | 2.227074 | 229 |
from unittest import TestCase
from unittest.mock import Mock, patch
import pytest
from pytest import approx
from functions import mpc_to_mly
from voevent import VOEventFromXml, VOEventFromEventId
import tests.voevent_test_data as test_data
import ligo
from ligo.gracedb.exceptions import HTTPError
@patch("ligo.gracedb.rest.GraceDb.voevents")
@patch("ligo.gracedb.rest.GraceDb.get")
@patch("ligo.gracedb.rest.GraceDb.get")
@pytest.fixture(scope="class")
@pytest.mark.usefixtures("event_id")
@pytest.fixture(scope="class")
@pytest.mark.usefixtures("mock_event_file")
@pytest.fixture(scope="class")
@pytest.mark.usefixtures("real_event_file")
| [
6738,
555,
715,
395,
1330,
6208,
20448,
198,
6738,
555,
715,
395,
13,
76,
735,
1330,
44123,
11,
8529,
198,
198,
11748,
12972,
9288,
198,
6738,
12972,
9288,
1330,
5561,
198,
198,
6738,
5499,
1330,
285,
14751,
62,
1462,
62,
76,
306,
198,
6738,
410,
2577,
1151,
1330,
30578,
9237,
4863,
55,
4029,
11,
30578,
9237,
4863,
9237,
7390,
198,
11748,
5254,
13,
85,
2577,
1151,
62,
9288,
62,
7890,
355,
1332,
62,
7890,
198,
11748,
300,
14031,
198,
6738,
300,
14031,
13,
2164,
2286,
65,
13,
1069,
11755,
1330,
14626,
12331,
628,
198,
31,
17147,
7203,
4604,
78,
13,
2164,
2286,
65,
13,
2118,
13,
8642,
558,
43832,
13,
13038,
31534,
4943,
628,
198,
198,
31,
17147,
7203,
4604,
78,
13,
2164,
2286,
65,
13,
2118,
13,
8642,
558,
43832,
13,
1136,
4943,
628,
198,
198,
31,
17147,
7203,
4604,
78,
13,
2164,
2286,
65,
13,
2118,
13,
8642,
558,
43832,
13,
1136,
4943,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
4871,
4943,
628,
198,
31,
9078,
9288,
13,
4102,
13,
1904,
69,
25506,
7203,
15596,
62,
312,
4943,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
4871,
4943,
628,
198,
31,
9078,
9288,
13,
4102,
13,
1904,
69,
25506,
7203,
76,
735,
62,
15596,
62,
7753,
4943,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
4871,
4943,
628,
198,
31,
9078,
9288,
13,
4102,
13,
1904,
69,
25506,
7203,
5305,
62,
15596,
62,
7753,
4943,
198
] | 2.673387 | 248 |
__author__ = 'Justin McClure'
from django.test import TestCase, Client
from django.core.urlresolvers import reverse
from random import choice
from lib.api_calls import APIException
# Note: Wait view will probably be removed in the future
| [
834,
9800,
834,
796,
705,
33229,
23780,
495,
6,
198,
198,
6738,
42625,
14208,
13,
9288,
1330,
6208,
20448,
11,
20985,
198,
6738,
42625,
14208,
13,
7295,
13,
6371,
411,
349,
690,
1330,
9575,
198,
6738,
4738,
1330,
3572,
198,
6738,
9195,
13,
15042,
62,
66,
5691,
1330,
7824,
16922,
628,
628,
628,
628,
198,
220,
220,
220,
1303,
5740,
25,
16314,
1570,
481,
2192,
307,
4615,
287,
262,
2003,
628,
198
] | 3.513889 | 72 |
import requests
import lxml.html
import json
# tutorial from An Intro to Web Scraping With lxml and Python – Python Tips
# https://pythontips.com/2018/06/20/an-intro-to-web-scraping-with-lxml-and-python/
# html = requests.get("https://www.beatport.com/genre/psy-trance/13/top-100")
html = requests.get("https://store.steampowered.com/explore/new/")
doc = lxml.html.fromstring(html.content)
new_releases = doc.xpath('//div[@id="tab_newreleases_content"]')
doc = lxml.html.fromstring(html.content)
print(new_releases)
new_releases = doc.xpath('//div[@id="tab_newreleases_content"]')[0]
titles = new_releases.xpath('.//div[@class="tab_item_name"]/text()')
print(titles)
prices = new_releases.xpath(
'.//div[@class="discount_final_price"]/text()')
print(prices)
# tags = new_releases.xpath('.//div[@class="tab_item_top_tags"]')
# total_tags = []
# for tag in tags:
# total_tags.append(tag.text_content())
#
# print(total_tags)
tags = [tag.text_content() for tag in new_releases.xpath(
'.//div[@class="tab_item_top_tags"]')]
tags = [tag.split(', ') for tag in tags]
print(tags)
platforms_div = new_releases.xpath('.//div[@class="tab_item_details"]')
total_platforms = []
for game in platforms_div:
temp = game.xpath('.//span[contains(@class, "platform_img")]')
platforms = [t.get('class').split(' ')[-1] for t in temp]
if 'hmd_separator' in platforms:
platforms.remove('hmd_separator')
total_platforms.append(platforms)
print(total_platforms)
output = []
for info in zip(titles, prices, tags, total_platforms):
resp = {}
resp['title'] = info[0]
resp['price'] = info[1]
resp['tags'] = info[2]
resp['platforms'] = info[3]
output.append(resp)
print(output)
with open('output.json', 'w') as outfile:
json.dump(output, outfile)
| [
11748,
7007,
198,
11748,
300,
19875,
13,
6494,
198,
11748,
33918,
198,
198,
2,
11808,
422,
1052,
37219,
284,
5313,
1446,
2416,
278,
2080,
300,
19875,
290,
11361,
784,
11361,
27558,
198,
2,
3740,
1378,
79,
5272,
756,
2419,
13,
785,
14,
7908,
14,
3312,
14,
1238,
14,
272,
12,
600,
305,
12,
1462,
12,
12384,
12,
1416,
2416,
278,
12,
4480,
12,
75,
19875,
12,
392,
12,
29412,
14,
198,
198,
2,
27711,
796,
7007,
13,
1136,
7203,
5450,
1378,
2503,
13,
12945,
634,
13,
785,
14,
35850,
14,
13764,
12,
2213,
590,
14,
1485,
14,
4852,
12,
3064,
4943,
198,
6494,
796,
7007,
13,
1136,
7203,
5450,
1378,
8095,
13,
4169,
696,
10387,
13,
785,
14,
20676,
382,
14,
3605,
14,
4943,
198,
15390,
796,
300,
19875,
13,
6494,
13,
6738,
8841,
7,
6494,
13,
11299,
8,
198,
198,
3605,
62,
260,
29329,
796,
2205,
13,
87,
6978,
10786,
1003,
7146,
58,
31,
312,
2625,
8658,
62,
3605,
260,
29329,
62,
11299,
8973,
11537,
198,
15390,
796,
300,
19875,
13,
6494,
13,
6738,
8841,
7,
6494,
13,
11299,
8,
198,
4798,
7,
3605,
62,
260,
29329,
8,
198,
198,
3605,
62,
260,
29329,
796,
2205,
13,
87,
6978,
10786,
1003,
7146,
58,
31,
312,
2625,
8658,
62,
3605,
260,
29329,
62,
11299,
8973,
11537,
58,
15,
60,
198,
83,
30540,
796,
649,
62,
260,
29329,
13,
87,
6978,
7,
4458,
1003,
7146,
58,
31,
4871,
2625,
8658,
62,
9186,
62,
3672,
8973,
14,
5239,
3419,
11537,
198,
4798,
7,
83,
30540,
8,
198,
198,
1050,
1063,
796,
649,
62,
260,
29329,
13,
87,
6978,
7,
198,
220,
220,
220,
45302,
1003,
7146,
58,
31,
4871,
2625,
15410,
608,
62,
20311,
62,
20888,
8973,
14,
5239,
3419,
11537,
198,
4798,
7,
1050,
1063,
8,
198,
198,
2,
15940,
796,
649,
62,
260,
29329,
13,
87,
6978,
7,
4458,
1003,
7146,
58,
31,
4871,
2625,
8658,
62,
9186,
62,
4852,
62,
31499,
8973,
11537,
198,
2,
2472,
62,
31499,
796,
17635,
198,
2,
329,
7621,
287,
15940,
25,
198,
2,
220,
220,
220,
220,
2472,
62,
31499,
13,
33295,
7,
12985,
13,
5239,
62,
11299,
28955,
198,
2,
198,
2,
3601,
7,
23350,
62,
31499,
8,
198,
198,
31499,
796,
685,
12985,
13,
5239,
62,
11299,
3419,
329,
7621,
287,
649,
62,
260,
29329,
13,
87,
6978,
7,
198,
220,
220,
220,
45302,
1003,
7146,
58,
31,
4871,
2625,
8658,
62,
9186,
62,
4852,
62,
31499,
8973,
11537,
60,
198,
31499,
796,
685,
12985,
13,
35312,
7,
3256,
705,
8,
329,
7621,
287,
15940,
60,
198,
4798,
7,
31499,
8,
198,
198,
24254,
82,
62,
7146,
796,
649,
62,
260,
29329,
13,
87,
6978,
7,
4458,
1003,
7146,
58,
31,
4871,
2625,
8658,
62,
9186,
62,
36604,
8973,
11537,
198,
23350,
62,
24254,
82,
796,
17635,
198,
198,
1640,
983,
287,
9554,
62,
7146,
25,
198,
220,
220,
220,
20218,
796,
983,
13,
87,
6978,
7,
4458,
1003,
12626,
58,
3642,
1299,
7,
31,
4871,
11,
366,
24254,
62,
9600,
4943,
60,
11537,
198,
220,
220,
220,
9554,
796,
685,
83,
13,
1136,
10786,
4871,
27691,
35312,
10786,
705,
38381,
12,
16,
60,
329,
256,
287,
20218,
60,
198,
220,
220,
220,
611,
705,
71,
9132,
62,
25512,
1352,
6,
287,
9554,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9554,
13,
28956,
10786,
71,
9132,
62,
25512,
1352,
11537,
198,
220,
220,
220,
2472,
62,
24254,
82,
13,
33295,
7,
24254,
82,
8,
198,
198,
4798,
7,
23350,
62,
24254,
82,
8,
198,
198,
22915,
796,
17635,
198,
1640,
7508,
287,
19974,
7,
83,
30540,
11,
4536,
11,
15940,
11,
2472,
62,
24254,
82,
2599,
198,
220,
220,
220,
1217,
796,
23884,
198,
220,
220,
220,
1217,
17816,
7839,
20520,
796,
7508,
58,
15,
60,
198,
220,
220,
220,
1217,
17816,
20888,
20520,
796,
7508,
58,
16,
60,
198,
220,
220,
220,
1217,
17816,
31499,
20520,
796,
7508,
58,
17,
60,
198,
220,
220,
220,
1217,
17816,
24254,
82,
20520,
796,
7508,
58,
18,
60,
198,
220,
220,
220,
5072,
13,
33295,
7,
4363,
8,
198,
198,
4798,
7,
22915,
8,
198,
198,
4480,
1280,
10786,
22915,
13,
17752,
3256,
705,
86,
11537,
355,
503,
7753,
25,
198,
220,
220,
220,
33918,
13,
39455,
7,
22915,
11,
503,
7753,
8,
198
] | 2.517532 | 713 |
# flake8: noqa
from .aen import AdaptiveElasticNet
from .aencv import AdaptiveElasticNetCV
| [
2,
781,
539,
23,
25,
645,
20402,
198,
198,
6738,
764,
64,
268,
1330,
30019,
425,
9527,
3477,
7934,
198,
6738,
764,
64,
12685,
85,
1330,
30019,
425,
9527,
3477,
7934,
33538,
198
] | 2.787879 | 33 |
from ..misc import binary_digitize
import numpy as np
import pandas as pd | [
6738,
11485,
44374,
1330,
13934,
62,
27003,
1096,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67
] | 3.363636 | 22 |
# This example requires the `message_content` privileged intent for access to message content.
import discord
intents = discord.Intents.default()
intents.message_content = True
client = MyClient(intents=intents)
client.run("TOKEN")
| [
2,
770,
1672,
4433,
262,
4600,
20500,
62,
11299,
63,
21929,
6824,
329,
1895,
284,
3275,
2695,
13,
198,
198,
11748,
36446,
628,
198,
198,
600,
658,
796,
36446,
13,
5317,
658,
13,
12286,
3419,
198,
600,
658,
13,
20500,
62,
11299,
796,
6407,
198,
198,
16366,
796,
2011,
11792,
7,
600,
658,
28,
600,
658,
8,
198,
16366,
13,
5143,
7203,
10468,
43959,
4943,
198
] | 3.590909 | 66 |
import torch.nn as nn
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
from transform_file import cut
root='/home/wang/Dataset/Caltech256/'
#root='/media/this/02ff0572-4aa8-47c6-975d-16c3b8062013/Caltech256/'
| [
11748,
28034,
13,
20471,
355,
299,
77,
198,
6738,
350,
4146,
1330,
7412,
198,
6738,
28034,
13,
26791,
13,
7890,
1330,
16092,
292,
316,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
6121,
62,
7753,
1330,
2005,
198,
198,
15763,
11639,
14,
11195,
14,
47562,
14,
27354,
292,
316,
14,
9771,
13670,
11645,
14,
6,
198,
2,
15763,
11639,
14,
11431,
14,
5661,
14,
2999,
487,
2713,
4761,
12,
19,
7252,
23,
12,
2857,
66,
21,
12,
42716,
67,
12,
1433,
66,
18,
65,
37988,
6390,
14,
9771,
13670,
11645,
14,
6,
628
] | 2.580645 | 93 |
"""Data type models"""
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import datetime
import enum
from typing import Any, Dict, List, Optional
import deserialize
def iso8601parse(date_string: Optional[str]) -> Optional[datetime.datetime]:
"""Parse an ISO8601 date string into a datetime.
:param date_string: The date string to parse
:returns: The parsed datetime
"""
if date_string is None:
return None
try:
return datetime.datetime.strptime(date_string, "%Y-%m-%dT%H:%M:%SZ")
except ValueError:
return datetime.datetime.strptime(date_string, "%Y-%m-%dT%H:%M:%S.%fZ")
# pylint: disable=missing-docstring
@deserialize.parser("firstOccurrence", iso8601parse)
@deserialize.parser("lastOccurrence", iso8601parse)
@deserialize.parser("firstOccurrence", iso8601parse)
@deserialize.parser("lastOccurrence", iso8601parse)
@deserialize.parser("timestamp", iso8601parse)
@deserialize.parser("timestamp", iso8601parse)
@deserialize.parser("appLaunchTimestamp", iso8601parse)
@deserialize.key("identifier", "id")
@deserialize.key("store_type", "type")
@deserialize.key("identifier", "id")
@deserialize.parser("uploaded_at", iso8601parse)
@deserialize.key("identifier", "id")
@deserialize.parser("provisioning_profile_expiry_date", iso8601parse)
@deserialize.parser("uploaded_at", iso8601parse)
@deserialize.key("identifier", "id")
@deserialize.key("identifier", "id")
@deserialize.key("identifier", "id")
@deserialize.key("identifier", "id")
@deserialize.key("identifier", "id")
@deserialize.key("identifier", "id")
@deserialize.parser("expiration_date", iso8601parse)
@deserialize.key("identifier", "id")
@deserialize.key("identifier", "id")
@deserialize.parser("created_at", iso8601parse)
| [
37811,
6601,
2099,
4981,
37811,
198,
198,
2,
15069,
357,
66,
8,
5413,
10501,
13,
198,
2,
49962,
739,
262,
17168,
5964,
13,
198,
198,
11748,
4818,
8079,
198,
11748,
33829,
198,
6738,
19720,
1330,
4377,
11,
360,
713,
11,
7343,
11,
32233,
198,
198,
11748,
748,
48499,
1096,
628,
198,
4299,
47279,
4521,
486,
29572,
7,
4475,
62,
8841,
25,
32233,
58,
2536,
12962,
4613,
32233,
58,
19608,
8079,
13,
19608,
8079,
5974,
198,
220,
220,
220,
37227,
10044,
325,
281,
19694,
4521,
486,
3128,
4731,
656,
257,
4818,
8079,
13,
628,
220,
220,
220,
1058,
17143,
3128,
62,
8841,
25,
383,
3128,
4731,
284,
21136,
628,
220,
220,
220,
1058,
7783,
82,
25,
383,
44267,
4818,
8079,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
3128,
62,
8841,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
4818,
8079,
13,
19608,
8079,
13,
2536,
457,
524,
7,
4475,
62,
8841,
11,
36521,
56,
12,
4,
76,
12,
4,
67,
51,
4,
39,
25,
4,
44,
25,
4,
50,
57,
4943,
198,
220,
220,
220,
2845,
11052,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
4818,
8079,
13,
19608,
8079,
13,
2536,
457,
524,
7,
4475,
62,
8841,
11,
36521,
56,
12,
4,
76,
12,
4,
67,
51,
4,
39,
25,
4,
44,
25,
4,
50,
13,
4,
69,
57,
4943,
628,
198,
2,
279,
2645,
600,
25,
15560,
28,
45688,
12,
15390,
8841,
628,
628,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
11085,
29223,
33928,
1600,
47279,
4521,
486,
29572,
8,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
12957,
29223,
33928,
1600,
47279,
4521,
486,
29572,
8,
628,
198,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
11085,
29223,
33928,
1600,
47279,
4521,
486,
29572,
8,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
12957,
29223,
33928,
1600,
47279,
4521,
486,
29572,
8,
628,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
16514,
27823,
1600,
47279,
4521,
486,
29572,
8,
628,
198,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
16514,
27823,
1600,
47279,
4521,
486,
29572,
8,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
1324,
38296,
14967,
27823,
1600,
47279,
4521,
486,
29572,
8,
628,
628,
628,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
8095,
62,
4906,
1600,
366,
4906,
4943,
628,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
25850,
276,
62,
265,
1600,
47279,
4521,
486,
29572,
8,
628,
198,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
1676,
10178,
278,
62,
13317,
62,
1069,
4063,
88,
62,
4475,
1600,
47279,
4521,
486,
29572,
8,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
25850,
276,
62,
265,
1600,
47279,
4521,
486,
29572,
8,
628,
628,
198,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
628,
198,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
628,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
628,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
628,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
628,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
628,
628,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
1069,
10514,
62,
4475,
1600,
47279,
4521,
486,
29572,
8,
628,
628,
628,
198,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
628,
198,
31,
8906,
48499,
1096,
13,
2539,
7203,
738,
7483,
1600,
366,
312,
4943,
198,
31,
8906,
48499,
1096,
13,
48610,
7203,
25598,
62,
265,
1600,
47279,
4521,
486,
29572,
8,
198
] | 2.705357 | 672 |
import os
import pandas as pd
import collections
import re
import pickle
from basic_util.files import *
import argparse
if __name__ =='__main__':
parser = get_parser()
args = parser.parse_args()
imap = IMap(args.dir_path, args.base_name)
imap.learn_dic(args.count_names, args.check_names)
imap.convert_and_save(args.convert_names) | [
11748,
28686,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
17268,
198,
11748,
302,
198,
11748,
2298,
293,
198,
6738,
4096,
62,
22602,
13,
16624,
1330,
1635,
198,
11748,
1822,
29572,
628,
628,
628,
198,
361,
11593,
3672,
834,
6624,
6,
834,
12417,
834,
10354,
198,
220,
220,
220,
30751,
796,
651,
62,
48610,
3419,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
545,
499,
796,
8959,
499,
7,
22046,
13,
15908,
62,
6978,
11,
26498,
13,
8692,
62,
3672,
8,
198,
220,
220,
220,
545,
499,
13,
35720,
62,
67,
291,
7,
22046,
13,
9127,
62,
14933,
11,
26498,
13,
9122,
62,
14933,
8,
198,
220,
220,
220,
545,
499,
13,
1102,
1851,
62,
392,
62,
21928,
7,
22046,
13,
1102,
1851,
62,
14933,
8
] | 2.637037 | 135 |
# Generated by Django 3.0.3 on 2020-11-03 07:43
from django.db import migrations
| [
2,
2980,
515,
416,
37770,
513,
13,
15,
13,
18,
319,
12131,
12,
1157,
12,
3070,
8753,
25,
3559,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
628
] | 2.766667 | 30 |
import argparse
import requests
from os import getenv
import sys
from influxdb import InfluxDBClient
from datetime import datetime, timedelta
solaredge_api_url = "https://monitoringapi.solaredge.com"
required_version = dict(release="1.0.0")
if __name__ == "__main__":
main()
| [
11748,
1822,
29572,
198,
11748,
7007,
198,
6738,
28686,
1330,
651,
24330,
198,
11748,
25064,
198,
198,
6738,
25065,
9945,
1330,
4806,
22564,
11012,
11792,
198,
6738,
4818,
8079,
1330,
4818,
8079,
11,
28805,
12514,
628,
198,
34453,
1144,
469,
62,
15042,
62,
6371,
796,
366,
5450,
1378,
41143,
278,
15042,
13,
34453,
1144,
469,
13,
785,
1,
198,
35827,
62,
9641,
796,
8633,
7,
20979,
2625,
16,
13,
15,
13,
15,
4943,
628,
628,
628,
628,
628,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 3.020408 | 98 |
import urllib3
print(main())
| [
11748,
2956,
297,
571,
18,
198,
198,
4798,
7,
12417,
28955,
198
] | 2.5 | 12 |
from lib.dynamo.client import DynamoClientManager
async def table_exists(name: str) -> bool:
"""Check if table exists."""
async with DynamoClientManager() as dynamodb:
try:
await dynamodb.describe_table(TableName=name)
except dynamodb.exceptions.ResourceNotFoundException:
state = False
else:
state = True
# allow the Context Manager to exit
return state
async def ensure_table(schema: dict):
"""Ensure the table exists."""
table_name = schema.get('TableName')
if not table_name:
return
exists = await table_exists(table_name)
if exists:
return
async with DynamoClientManager() as dynamodb:
await dynamodb.create_table(**schema)
waiter = dynamodb.get_waiter('table_exists')
await waiter.wait(TableName=table_name)
async def delete_table(schema: dict):
"""Deletes the table."""
table_name = schema.get('TableName')
if not table_name:
return
exists = await table_exists(table_name)
if not exists:
return
async with DynamoClientManager() as dynamodb:
await dynamodb.delete_table(TableName=table_name)
waiter = dynamodb.get_waiter('table_not_exists')
await waiter.wait(TableName=table_name)
| [
6738,
9195,
13,
67,
4989,
78,
13,
16366,
1330,
41542,
11792,
13511,
628,
198,
292,
13361,
825,
3084,
62,
1069,
1023,
7,
3672,
25,
965,
8,
4613,
20512,
25,
198,
220,
220,
220,
37227,
9787,
611,
3084,
7160,
526,
15931,
198,
220,
220,
220,
30351,
351,
41542,
11792,
13511,
3419,
355,
6382,
375,
65,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25507,
6382,
375,
65,
13,
20147,
4892,
62,
11487,
7,
10962,
5376,
28,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
6382,
375,
65,
13,
1069,
11755,
13,
26198,
3673,
21077,
16922,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
796,
6407,
198,
220,
220,
220,
1303,
1249,
262,
30532,
9142,
284,
8420,
198,
220,
220,
220,
1441,
1181,
628,
198,
292,
13361,
825,
4155,
62,
11487,
7,
15952,
2611,
25,
8633,
2599,
198,
220,
220,
220,
37227,
4834,
19532,
262,
3084,
7160,
526,
15931,
198,
220,
220,
220,
3084,
62,
3672,
796,
32815,
13,
1136,
10786,
10962,
5376,
11537,
198,
220,
220,
220,
611,
407,
3084,
62,
3672,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
7160,
796,
25507,
3084,
62,
1069,
1023,
7,
11487,
62,
3672,
8,
198,
220,
220,
220,
611,
7160,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
30351,
351,
41542,
11792,
13511,
3419,
355,
6382,
375,
65,
25,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
6382,
375,
65,
13,
17953,
62,
11487,
7,
1174,
15952,
2611,
8,
198,
220,
220,
220,
220,
220,
220,
220,
46612,
796,
6382,
375,
65,
13,
1136,
62,
10247,
2676,
10786,
11487,
62,
1069,
1023,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
46612,
13,
17077,
7,
10962,
5376,
28,
11487,
62,
3672,
8,
628,
198,
292,
13361,
825,
12233,
62,
11487,
7,
15952,
2611,
25,
8633,
2599,
198,
220,
220,
220,
37227,
5005,
40676,
262,
3084,
526,
15931,
198,
220,
220,
220,
3084,
62,
3672,
796,
32815,
13,
1136,
10786,
10962,
5376,
11537,
198,
220,
220,
220,
611,
407,
3084,
62,
3672,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
7160,
796,
25507,
3084,
62,
1069,
1023,
7,
11487,
62,
3672,
8,
198,
220,
220,
220,
611,
407,
7160,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
30351,
351,
41542,
11792,
13511,
3419,
355,
6382,
375,
65,
25,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
6382,
375,
65,
13,
33678,
62,
11487,
7,
10962,
5376,
28,
11487,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
46612,
796,
6382,
375,
65,
13,
1136,
62,
10247,
2676,
10786,
11487,
62,
1662,
62,
1069,
1023,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
46612,
13,
17077,
7,
10962,
5376,
28,
11487,
62,
3672,
8,
198
] | 2.501923 | 520 |
import numpy as np
import torch
from lib.models.backbone.models.hypernet import _gen_supernet
def build_supernet_DP(flops_maximum=600):
"""Backbone with Dynamic output position"""
set_seed()
model, sta_num, size_factor = _gen_supernet(
flops_minimum=0,
flops_maximum=flops_maximum,
DP=True,
num_classes=1000,
drop_rate=0.0,
global_pool='avg',
resunit=False,
dil_conv=False,
slice=4)
return model, sta_num
if __name__ == '__main__':
_, sta_num = build_supernet(flops_maximum=600)
print(sta_num)
| [
11748,
299,
32152,
355,
45941,
198,
11748,
28034,
198,
6738,
9195,
13,
27530,
13,
1891,
15992,
13,
27530,
13,
49229,
3262,
1330,
4808,
5235,
62,
16668,
3262,
628,
628,
198,
4299,
1382,
62,
16668,
3262,
62,
6322,
7,
2704,
2840,
62,
47033,
28,
8054,
2599,
198,
220,
220,
220,
37227,
7282,
15992,
351,
26977,
5072,
2292,
37811,
198,
220,
220,
220,
900,
62,
28826,
3419,
198,
220,
220,
220,
2746,
11,
336,
64,
62,
22510,
11,
2546,
62,
31412,
796,
4808,
5235,
62,
16668,
3262,
7,
198,
220,
220,
220,
220,
220,
220,
220,
781,
2840,
62,
39504,
28,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
781,
2840,
62,
47033,
28,
2704,
2840,
62,
47033,
11,
198,
220,
220,
220,
220,
220,
220,
220,
27704,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
12825,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4268,
62,
4873,
28,
15,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3298,
62,
7742,
11639,
615,
70,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
581,
20850,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11844,
62,
42946,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
16416,
28,
19,
8,
628,
220,
220,
220,
1441,
2746,
11,
336,
64,
62,
22510,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
4808,
11,
336,
64,
62,
22510,
796,
1382,
62,
16668,
3262,
7,
2704,
2840,
62,
47033,
28,
8054,
8,
198,
220,
220,
220,
3601,
7,
38031,
62,
22510,
8,
198
] | 2.194853 | 272 |
"Utilities for asking for and processing Morse Code signals."
from typing import Final
from ktane import ask
__all__ = ["valid_morse", "decode", "ask_word"]
MORSE_ALPHABET: Final = {
"a": ".-",
"b": "-...",
"c": "-.-.",
"d": "-..",
"e": ".",
"f": "..-.",
"g": "--.",
"h": "....",
"i": "..",
"j": ".---",
"k": "-.-",
"l": ".-..",
"m": "--",
"n": "-.",
"o": "---",
"p": ".--.",
"q": "--.-",
"r": ".-.",
"s": "...",
"t": "-",
"u": "..-",
"v": "...-",
"w": ".--",
"x": "-..-",
"y": "-.--",
"z": "--..",
"0": "-----",
"1": ".----",
"2": "..---",
"3": "...--",
"4": "....-",
"5": ".....",
"6": "-....",
"7": "--...",
"8": "---..",
"9": "----."
}
INVERSE_MORSE_ALPHABET: Final = {v: k for k, v in MORSE_ALPHABET.items()}
def valid_morse(text: str) -> bool:
"Determine whether a string is valid Morse code."
chars = text.split()
return all(c in INVERSE_MORSE_ALPHABET for c in chars)
def decode(code: str) -> str:
"Convert a Morse code string into regular text."
chars = code.split()
return "".join(INVERSE_MORSE_ALPHABET[char] for char in chars)
def ask_word() -> str:
"Get a Morse code string from the user and convert it to a word."
code = ask.str_from_func(valid_morse)
return decode(code)
| [
1,
18274,
2410,
329,
4737,
329,
290,
7587,
44049,
6127,
10425,
526,
198,
198,
6738,
19720,
1330,
8125,
198,
198,
6738,
479,
83,
1531,
1330,
1265,
198,
198,
834,
439,
834,
796,
14631,
12102,
62,
4491,
325,
1600,
366,
12501,
1098,
1600,
366,
2093,
62,
4775,
8973,
198,
198,
44,
1581,
5188,
62,
1847,
11909,
6242,
2767,
25,
8125,
796,
1391,
198,
220,
220,
220,
366,
64,
1298,
366,
7874,
1600,
198,
220,
220,
220,
366,
65,
1298,
27444,
9313,
11,
198,
220,
220,
220,
366,
66,
1298,
27444,
7874,
33283,
198,
220,
220,
220,
366,
67,
1298,
27444,
492,
1600,
198,
220,
220,
220,
366,
68,
1298,
366,
33283,
198,
220,
220,
220,
366,
69,
1298,
366,
492,
12,
33283,
198,
220,
220,
220,
366,
70,
1298,
366,
438,
33283,
198,
220,
220,
220,
366,
71,
1298,
366,
1106,
1600,
198,
220,
220,
220,
366,
72,
1298,
366,
492,
1600,
198,
220,
220,
220,
366,
73,
1298,
27071,
6329,
1600,
198,
220,
220,
220,
366,
74,
1298,
27444,
7874,
1600,
198,
220,
220,
220,
366,
75,
1298,
366,
7874,
492,
1600,
198,
220,
220,
220,
366,
76,
1298,
366,
438,
1600,
198,
220,
220,
220,
366,
77,
1298,
27444,
33283,
198,
220,
220,
220,
366,
78,
1298,
366,
6329,
1600,
198,
220,
220,
220,
366,
79,
1298,
366,
9816,
33283,
198,
220,
220,
220,
366,
80,
1298,
366,
438,
7874,
1600,
198,
220,
220,
220,
366,
81,
1298,
366,
7874,
33283,
198,
220,
220,
220,
366,
82,
1298,
366,
9313,
11,
198,
220,
220,
220,
366,
83,
1298,
27444,
1600,
198,
220,
220,
220,
366,
84,
1298,
366,
492,
12,
1600,
198,
220,
220,
220,
366,
85,
1298,
27896,
12,
1600,
198,
220,
220,
220,
366,
86,
1298,
366,
9816,
1600,
198,
220,
220,
220,
366,
87,
1298,
27444,
492,
12,
1600,
198,
220,
220,
220,
366,
88,
1298,
27444,
9816,
1600,
198,
220,
220,
220,
366,
89,
1298,
366,
438,
492,
1600,
198,
220,
220,
220,
366,
15,
1298,
366,
30934,
1600,
198,
220,
220,
220,
366,
16,
1298,
27071,
650,
1600,
198,
220,
220,
220,
366,
17,
1298,
366,
492,
6329,
1600,
198,
220,
220,
220,
366,
18,
1298,
27896,
438,
1600,
198,
220,
220,
220,
366,
19,
1298,
366,
1106,
12,
1600,
198,
220,
220,
220,
366,
20,
1298,
366,
1106,
33283,
198,
220,
220,
220,
366,
21,
1298,
27444,
1106,
1600,
198,
220,
220,
220,
366,
22,
1298,
366,
438,
9313,
11,
198,
220,
220,
220,
366,
23,
1298,
366,
6329,
492,
1600,
198,
220,
220,
220,
366,
24,
1298,
366,
650,
526,
198,
92,
198,
198,
1268,
28884,
36,
62,
44,
1581,
5188,
62,
1847,
11909,
6242,
2767,
25,
8125,
796,
1391,
85,
25,
479,
329,
479,
11,
410,
287,
35208,
5188,
62,
1847,
11909,
6242,
2767,
13,
23814,
3419,
92,
628,
198,
4299,
4938,
62,
4491,
325,
7,
5239,
25,
965,
8,
4613,
20512,
25,
198,
220,
220,
220,
366,
35,
2357,
3810,
1771,
257,
4731,
318,
4938,
44049,
2438,
526,
198,
220,
220,
220,
34534,
796,
2420,
13,
35312,
3419,
198,
220,
220,
220,
1441,
477,
7,
66,
287,
3268,
28884,
36,
62,
44,
1581,
5188,
62,
1847,
11909,
6242,
2767,
329,
269,
287,
34534,
8,
628,
198,
4299,
36899,
7,
8189,
25,
965,
8,
4613,
965,
25,
198,
220,
220,
220,
366,
3103,
1851,
257,
44049,
2438,
4731,
656,
3218,
2420,
526,
198,
220,
220,
220,
34534,
796,
2438,
13,
35312,
3419,
198,
220,
220,
220,
1441,
366,
1911,
22179,
7,
1268,
28884,
36,
62,
44,
1581,
5188,
62,
1847,
11909,
6242,
2767,
58,
10641,
60,
329,
1149,
287,
34534,
8,
628,
198,
4299,
1265,
62,
4775,
3419,
4613,
965,
25,
198,
220,
220,
220,
366,
3855,
257,
44049,
2438,
4731,
422,
262,
2836,
290,
10385,
340,
284,
257,
1573,
526,
198,
220,
220,
220,
2438,
796,
1265,
13,
2536,
62,
6738,
62,
20786,
7,
12102,
62,
4491,
325,
8,
198,
220,
220,
220,
1441,
36899,
7,
8189,
8,
198
] | 2.08953 | 659 |
import npyscreen
import pyperclip
import createVm
import main
import popup
import selectableGrid
import virtualMachine
| [
11748,
45941,
28349,
1361,
198,
11748,
12972,
525,
15036,
198,
198,
11748,
2251,
53,
76,
198,
11748,
1388,
198,
11748,
46207,
198,
11748,
2922,
540,
41339,
198,
11748,
7166,
37573,
198
] | 3.870968 | 31 |
import hashlib
import socket
import unittest
from io import BytesIO
from os import remove as rm
from os.path import exists
from time import sleep
import tests.test_helpers as h
if __name__ == '__main__':
unittest.main()
| [
11748,
12234,
8019,
198,
11748,
17802,
198,
11748,
555,
715,
395,
198,
6738,
33245,
1330,
2750,
4879,
9399,
198,
6738,
28686,
1330,
4781,
355,
42721,
198,
6738,
28686,
13,
6978,
1330,
7160,
198,
6738,
640,
1330,
3993,
198,
198,
11748,
5254,
13,
9288,
62,
16794,
364,
355,
289,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 3.150685 | 73 |
#!/usr/bin/env python2.7
import sys
import pymongo
import os
import click
import datetime
import rvo.utils as utils
from rvo import __version__
import rvo.config
command_folder = os.path.join(os.path.dirname(__file__), 'commands')
CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help'])
# rvo command class
# base help message
@click.command(cls=rvoCommands, context_settings=CONTEXT_SETTINGS,
help="""
Manage text data on commandline
\b
888,8, Y8b Y888P e88 88e
888 " Y8b Y8P d888 888b
888 Y8b " Y888 888P
888 Y8P "88 88"
For the sake of your own data being managed
by you and only you!
""")
@click.version_option(version=__version__, prog_name="rvo")
@click.pass_context
if __name__ == '__main__':
cli()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
17,
13,
22,
198,
198,
11748,
25064,
198,
11748,
279,
4948,
25162,
198,
11748,
28686,
198,
11748,
3904,
198,
11748,
4818,
8079,
198,
11748,
374,
13038,
13,
26791,
355,
3384,
4487,
198,
6738,
374,
13038,
1330,
11593,
9641,
834,
198,
11748,
374,
13038,
13,
11250,
198,
198,
21812,
62,
43551,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
9503,
1746,
11537,
198,
10943,
32541,
62,
28480,
51,
20754,
796,
8633,
7,
16794,
62,
18076,
62,
14933,
28,
17816,
12,
71,
3256,
705,
438,
16794,
6,
12962,
198,
198,
2,
374,
13038,
3141,
1398,
198,
198,
2,
2779,
1037,
3275,
198,
31,
12976,
13,
21812,
7,
565,
82,
28,
81,
13038,
6935,
1746,
11,
4732,
62,
33692,
28,
10943,
32541,
62,
28480,
51,
20754,
11,
198,
16794,
2625,
15931,
198,
5124,
496,
2420,
1366,
319,
3141,
1370,
198,
198,
59,
65,
198,
28011,
11,
23,
11,
575,
23,
65,
575,
28011,
47,
220,
304,
3459,
9193,
68,
198,
28011,
366,
220,
220,
575,
23,
65,
575,
23,
47,
220,
288,
28011,
807,
3459,
65,
198,
28011,
220,
220,
220,
220,
220,
575,
23,
65,
366,
220,
220,
575,
28011,
807,
3459,
47,
198,
28011,
220,
220,
220,
220,
220,
220,
575,
23,
47,
220,
220,
220,
220,
366,
3459,
9193,
1,
198,
198,
1890,
262,
11060,
286,
534,
898,
1366,
852,
5257,
198,
1525,
345,
290,
691,
345,
0,
198,
198,
15931,
4943,
198,
31,
12976,
13,
9641,
62,
18076,
7,
9641,
28,
834,
9641,
834,
11,
1172,
62,
3672,
2625,
81,
13038,
4943,
198,
31,
12976,
13,
6603,
62,
22866,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
537,
72,
3419,
628
] | 2.488294 | 299 |
# -*- coding: utf-8 -*-
"""
This module contains variables that can be changed, but are not exposed to non-expert users.
"""
import os
import multiprocessing
#==============================================================================
#==============================================================================
SCENARIOS = ['india_base']
SECTORS = ['res','com','ind']
SECTOR_NAMES = {'res':'Residential','com':'Commercial','ind':'Industrial'}
TECHS = [['solar']]
TECH_MODES = ['elec']
BA_COLUMN = 'state_id' #geo id column that data is available at such as control_reg_id, state_id, district_id etc.
#==============================================================================
# get the path of the current file
#==============================================================================
MODEL_PATH = os.path.dirname(os.path.abspath(__file__))
#==============================================================================
# model start year
#==============================================================================
START_YEAR = 2016
#==============================================================================
# local cores
#==============================================================================
LOCAL_CORES = int(multiprocessing.cpu_count() / 2)
#==============================================================================
# silence some output
#==============================================================================
VERBOSE = False
#==============================================================================
# run a smaller agent_df for debugging
#==============================================================================
SAMPLE_PCT = 1
#==============================================================================
# Runtime Tests
#==============================================================================
NULL_COLUMN_EXCEPTIONS = ['state_incentives', 'pct_state_incentives', 'batt_dispatch_profile', 'export_tariff_results','carbon_price_cents_per_kwh']
# 'market_share_last_year', 'max_market_share_last_year', 'adopters_cum_last_year', 'market_value_last_year', 'initial_number_of_adopters', 'initial_pv_kw', 'initial_market_share', 'initial_market_value', 'system_kw_cum_last_year', 'new_system_kw', 'batt_kw_cum_last_year', 'batt_kwh_cum_last_year',
CHANGED_DTYPES_EXCEPTIONS = []
MISSING_COLUMN_EXCEPTIONS = [] | [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
1212,
8265,
4909,
9633,
326,
460,
307,
3421,
11,
475,
389,
407,
7362,
284,
1729,
12,
1069,
11766,
2985,
13,
198,
37811,
198,
11748,
28686,
198,
11748,
18540,
305,
919,
278,
198,
198,
2,
23926,
25609,
855,
198,
198,
2,
23926,
25609,
855,
198,
6173,
1677,
33604,
2640,
796,
37250,
521,
544,
62,
8692,
20520,
198,
50,
9782,
20673,
796,
37250,
411,
41707,
785,
41707,
521,
20520,
198,
50,
9782,
1581,
62,
45,
29559,
796,
1391,
6,
411,
10354,
6,
4965,
35599,
41707,
785,
10354,
6,
48401,
41707,
521,
10354,
6,
35848,
4454,
6,
92,
198,
51,
2943,
7998,
796,
16410,
6,
82,
6192,
6,
11907,
198,
51,
25994,
62,
33365,
1546,
796,
37250,
11129,
66,
20520,
198,
4339,
62,
25154,
5883,
45,
796,
705,
5219,
62,
312,
6,
1303,
469,
78,
4686,
5721,
326,
1366,
318,
1695,
379,
884,
355,
1630,
62,
2301,
62,
312,
11,
1181,
62,
312,
11,
4783,
62,
312,
3503,
13,
220,
198,
198,
2,
23926,
25609,
855,
198,
2,
220,
220,
651,
262,
3108,
286,
262,
1459,
2393,
198,
2,
23926,
25609,
855,
198,
33365,
3698,
62,
34219,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
198,
198,
2,
23926,
25609,
855,
198,
2,
220,
220,
2746,
923,
614,
220,
198,
2,
23926,
25609,
855,
198,
2257,
7227,
62,
56,
17133,
796,
1584,
198,
198,
2,
23926,
25609,
855,
198,
2,
220,
220,
1957,
21758,
198,
2,
23926,
25609,
855,
198,
29701,
1847,
62,
44879,
1546,
796,
493,
7,
16680,
541,
305,
919,
278,
13,
36166,
62,
9127,
3419,
1220,
362,
8,
198,
198,
2,
23926,
25609,
855,
198,
2,
220,
220,
9550,
617,
5072,
198,
2,
23926,
25609,
855,
198,
5959,
33,
14058,
796,
10352,
198,
198,
2,
23926,
25609,
855,
198,
2,
220,
220,
1057,
257,
4833,
5797,
62,
7568,
329,
28769,
198,
2,
23926,
25609,
855,
198,
49302,
16437,
62,
47,
4177,
796,
352,
198,
198,
2,
23926,
25609,
855,
198,
2,
220,
43160,
30307,
198,
2,
23926,
25609,
855,
198,
33991,
62,
25154,
5883,
45,
62,
6369,
42006,
11053,
796,
37250,
5219,
62,
42816,
1083,
3256,
705,
79,
310,
62,
5219,
62,
42816,
1083,
3256,
705,
65,
1078,
62,
6381,
17147,
62,
13317,
3256,
705,
39344,
62,
18870,
733,
62,
43420,
41707,
29255,
62,
20888,
62,
66,
658,
62,
525,
62,
74,
1929,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
705,
10728,
62,
20077,
62,
12957,
62,
1941,
3256,
705,
9806,
62,
10728,
62,
20077,
62,
12957,
62,
1941,
3256,
705,
324,
404,
1010,
62,
36340,
62,
12957,
62,
1941,
3256,
705,
10728,
62,
8367,
62,
12957,
62,
1941,
3256,
705,
36733,
62,
17618,
62,
1659,
62,
324,
404,
1010,
3256,
705,
36733,
62,
79,
85,
62,
46265,
3256,
705,
36733,
62,
10728,
62,
20077,
3256,
705,
36733,
62,
10728,
62,
8367,
3256,
705,
10057,
62,
46265,
62,
36340,
62,
12957,
62,
1941,
3256,
705,
3605,
62,
10057,
62,
46265,
3256,
705,
65,
1078,
62,
46265,
62,
36340,
62,
12957,
62,
1941,
3256,
705,
65,
1078,
62,
74,
1929,
62,
36340,
62,
12957,
62,
1941,
3256,
198,
3398,
15567,
1961,
62,
35,
9936,
47,
1546,
62,
6369,
42006,
11053,
796,
17635,
198,
44,
16744,
2751,
62,
25154,
5883,
45,
62,
6369,
42006,
11053,
796,
17635
] | 4.16323 | 582 |
from django.conf import settings
from django.core.validators import MaxValueValidator, MinValueValidator
from django.db import models
STATE_CHOICES = ((settings.NC_KEY, "North Carolina"),)
STATUS_CHOICES = (
("running", "Running"),
("error", "Error"),
("finished", "Finished"),
)
GEOGRAPHY_CHOICES = (
("county", "County"),
("place", "Place"),
)
| [
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
7295,
13,
12102,
2024,
1330,
5436,
11395,
47139,
1352,
11,
1855,
11395,
47139,
1352,
198,
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
198,
44724,
62,
44899,
34444,
796,
14808,
33692,
13,
7792,
62,
20373,
11,
366,
14157,
5913,
12340,
8,
198,
198,
35744,
2937,
62,
44899,
34444,
796,
357,
198,
220,
220,
220,
5855,
20270,
1600,
366,
28768,
12340,
198,
220,
220,
220,
5855,
18224,
1600,
366,
12331,
12340,
198,
220,
220,
220,
5855,
43952,
1600,
366,
18467,
1348,
12340,
198,
8,
198,
198,
38,
4720,
10761,
31300,
56,
62,
44899,
34444,
796,
357,
198,
220,
220,
220,
5855,
9127,
88,
1600,
366,
12332,
88,
12340,
198,
220,
220,
220,
5855,
5372,
1600,
366,
27271,
12340,
198,
8,
628,
628,
628
] | 2.791045 | 134 |
from __future__ import absolute_import
import cStringIO
import types
__name__ = 'pyrehol'
__author__ = 'James Brown <[email protected]>'
version_info = (0, 3)
__version__ = '.'.join(map(str, version_info))
INDENT_CHAR = ' '
PREDEFINED_SERVICES = frozenset([
'any', 'anystateless', 'all',
'AH', 'apcupsd', 'apcupsdnis', 'aptproxy', 'asterisk', 'cups',
'cvspserver', 'darkstat', 'daytime', 'dcc', 'dcpp', 'dhcprelay', 'dict',
'distcc', 'dns', 'echo', 'eserver', 'ESP', 'finger', 'gift', 'giftui',
'gkrellmd', 'GRE', 'h323', 'heartbeat', 'http', 'https', 'iax', 'iax2',
'icmp', 'ICMP', 'icp', 'ident', 'imap', 'imaps', 'irc', 'isakmp',
'jabber', 'jabberd', 'ldap', 'ldaps', 'lpd', 'mms', 'msn', 'msnp',
'mysql', 'netbackup', 'nfs', 'nntp', 'nntps', 'ntp', 'nut', 'nxserver', 'openvpn',
'oracle', 'OSPF', 'pop3', 'pop3s', 'portmap', 'postgres', 'privoxy',
'radius', 'radiusold', 'radiusoldproxy', 'radiusproxy', 'rdp', 'rndc',
'rsync', 'rtp', 'sip', 'smtp', 'smtps', 'snmp', 'snmptrap', 'socks',
'squid', 'ssh', 'stun', 'submission', 'sunrpc', 'swat', 'syslog', 'telnet',
'time', 'upnp', 'uucp', 'vmware', 'vmwareauth', 'vmwareweb', 'vnc',
'webcache', 'webmin', 'whois', 'xdmcp',
])
class Pyrehol(object):
"""Top-level wrapper for a Firehol config"""
def emit(self, out_fo=None):
"""Write out to a file descriptor. If one isn't passed, prints to standard out.
:param out_fo: A file-like object or None
"""
print_it = False
if out_fo is None:
out_fo = cStringIO.StringIO()
print_it = True
out_fo.write('version %d\n\n' % self.version)
if self.leader_lines:
out_fo.write('\n'.join(self.leader_lines))
out_fo.write('\n\n')
for thing in sorted(self.service_defines.values()):
thing.emit(out_fo)
out_fo.write('\n')
for thing in self.contents:
thing.emit(out_fo)
out_fo.write('\n')
if self.trailer_lines:
out_fo.write('\n'.join(self.trailer_lines))
out_fo.write('\n\n')
if print_it:
print out_fo.getvalue()
def define_service(self, service_name, server_portspec,
client_portspec='default'):
"""Add a new service to Firehol (for use in server/client blocks later).
:param service_name: Name for the service, suitable for use as a bash variable name
:param server_portspec: Port specification for the server side (example: "tcp/80 tcp/443")
:param client_portspec: Port specification for the client side (example: "any")
"""
new_define = _PyreholService(
service_name, server_portspec, client_portspec, root=self
)
if service_name in self.services:
assert new_define == self.service_defines[service_name],\
'%s != %s' % (new_define, self.service_defines[service_name])
else:
self.service_defines[service_name] = new_define
self.services.add(service_name)
| [
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
198,
11748,
269,
10100,
9399,
198,
11748,
3858,
198,
198,
834,
3672,
834,
796,
705,
9078,
260,
3937,
6,
198,
834,
9800,
834,
796,
705,
14731,
4373,
1279,
73,
33282,
31,
18478,
13,
785,
29,
6,
198,
9641,
62,
10951,
796,
357,
15,
11,
513,
8,
198,
834,
9641,
834,
796,
705,
2637,
13,
22179,
7,
8899,
7,
2536,
11,
2196,
62,
10951,
4008,
198,
198,
12115,
3525,
62,
38019,
796,
705,
220,
705,
198,
198,
4805,
1961,
36,
20032,
1961,
62,
35009,
53,
34444,
796,
8400,
8247,
316,
26933,
198,
220,
220,
220,
705,
1092,
3256,
705,
1092,
5219,
1203,
3256,
705,
439,
3256,
198,
220,
220,
220,
705,
18429,
3256,
705,
499,
66,
4739,
67,
3256,
705,
499,
66,
4739,
67,
21361,
3256,
705,
2373,
36436,
3256,
705,
1603,
1984,
3256,
705,
66,
4739,
3256,
198,
220,
220,
220,
705,
66,
14259,
862,
18497,
3256,
705,
21953,
14269,
3256,
705,
820,
2435,
3256,
705,
67,
535,
3256,
705,
17896,
381,
3256,
705,
34985,
13155,
2411,
323,
3256,
705,
11600,
3256,
198,
220,
220,
220,
705,
17080,
535,
3256,
705,
67,
5907,
3256,
705,
30328,
3256,
705,
274,
18497,
3256,
705,
1546,
47,
3256,
705,
35461,
3256,
705,
70,
2135,
3256,
705,
70,
2135,
9019,
3256,
198,
220,
220,
220,
705,
70,
74,
11252,
9132,
3256,
705,
28934,
3256,
705,
71,
32637,
3256,
705,
11499,
12945,
3256,
705,
4023,
3256,
705,
5450,
3256,
705,
544,
87,
3256,
705,
544,
87,
17,
3256,
198,
220,
220,
220,
705,
291,
3149,
3256,
705,
2149,
7378,
3256,
705,
291,
79,
3256,
705,
738,
3256,
705,
320,
499,
3256,
705,
320,
1686,
3256,
705,
1980,
3256,
705,
271,
461,
3149,
3256,
198,
220,
220,
220,
705,
27935,
527,
3256,
705,
27935,
527,
67,
3256,
705,
335,
499,
3256,
705,
335,
1686,
3256,
705,
75,
30094,
3256,
705,
76,
907,
3256,
705,
907,
77,
3256,
705,
907,
37659,
3256,
198,
220,
220,
220,
705,
28744,
13976,
3256,
705,
3262,
1891,
929,
3256,
705,
77,
9501,
3256,
705,
77,
429,
79,
3256,
705,
77,
429,
862,
3256,
705,
429,
79,
3256,
705,
14930,
3256,
705,
77,
87,
15388,
3256,
705,
9654,
85,
21999,
3256,
198,
220,
220,
220,
705,
273,
6008,
3256,
705,
2640,
42668,
3256,
705,
12924,
18,
3256,
705,
12924,
18,
82,
3256,
705,
634,
8899,
3256,
705,
7353,
34239,
3256,
705,
13776,
23536,
3256,
198,
220,
220,
220,
705,
42172,
3256,
705,
42172,
727,
3256,
705,
42172,
727,
36436,
3256,
705,
42172,
36436,
3256,
705,
4372,
79,
3256,
705,
81,
358,
66,
3256,
198,
220,
220,
220,
705,
81,
27261,
3256,
705,
17034,
79,
3256,
705,
82,
541,
3256,
705,
5796,
34788,
3256,
705,
5796,
83,
862,
3256,
705,
16184,
3149,
3256,
705,
16184,
76,
457,
2416,
3256,
705,
82,
3320,
3256,
198,
220,
220,
220,
705,
16485,
312,
3256,
705,
45824,
3256,
705,
301,
403,
3256,
705,
7266,
3411,
3256,
705,
19155,
81,
14751,
3256,
705,
2032,
265,
3256,
705,
17597,
6404,
3256,
705,
37524,
3262,
3256,
198,
220,
220,
220,
705,
2435,
3256,
705,
929,
37659,
3256,
705,
84,
1229,
79,
3256,
705,
14761,
1574,
3256,
705,
14761,
1574,
18439,
3256,
705,
14761,
1574,
12384,
3256,
705,
85,
10782,
3256,
198,
220,
220,
220,
705,
12384,
23870,
3256,
705,
12384,
1084,
3256,
705,
8727,
271,
3256,
705,
24954,
76,
13155,
3256,
198,
12962,
628,
628,
198,
4871,
9485,
260,
3937,
7,
15252,
2599,
198,
220,
220,
220,
37227,
9126,
12,
5715,
29908,
329,
257,
3764,
3937,
4566,
37811,
628,
220,
220,
220,
825,
27588,
7,
944,
11,
503,
62,
6513,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16594,
503,
284,
257,
2393,
43087,
13,
1002,
530,
2125,
470,
3804,
11,
20842,
284,
3210,
503,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
503,
62,
6513,
25,
317,
2393,
12,
2339,
2134,
393,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
62,
270,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
611,
503,
62,
6513,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
6513,
796,
269,
10100,
9399,
13,
10100,
9399,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
62,
270,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
503,
62,
6513,
13,
13564,
10786,
9641,
4064,
67,
59,
77,
59,
77,
6,
4064,
2116,
13,
9641,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
27940,
62,
6615,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
6513,
13,
13564,
10786,
59,
77,
4458,
22179,
7,
944,
13,
27940,
62,
6615,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
6513,
13,
13564,
10786,
59,
77,
59,
77,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1517,
287,
23243,
7,
944,
13,
15271,
62,
4299,
1127,
13,
27160,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1517,
13,
368,
270,
7,
448,
62,
6513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
6513,
13,
13564,
10786,
59,
77,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1517,
287,
2116,
13,
3642,
658,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1517,
13,
368,
270,
7,
448,
62,
6513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
6513,
13,
13564,
10786,
59,
77,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
9535,
5329,
62,
6615,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
6513,
13,
13564,
10786,
59,
77,
4458,
22179,
7,
944,
13,
9535,
5329,
62,
6615,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
6513,
13,
13564,
10786,
59,
77,
59,
77,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3601,
62,
270,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
503,
62,
6513,
13,
1136,
8367,
3419,
628,
220,
220,
220,
825,
8160,
62,
15271,
7,
944,
11,
2139,
62,
3672,
11,
4382,
62,
3742,
43106,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
3742,
43106,
11639,
12286,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
4550,
257,
649,
2139,
284,
3764,
3937,
357,
1640,
779,
287,
4382,
14,
16366,
7021,
1568,
737,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2139,
62,
3672,
25,
6530,
329,
262,
2139,
11,
11080,
329,
779,
355,
257,
27334,
7885,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4382,
62,
3742,
43106,
25,
4347,
20855,
329,
262,
4382,
1735,
357,
20688,
25,
366,
83,
13155,
14,
1795,
48265,
14,
34938,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
5456,
62,
3742,
43106,
25,
4347,
20855,
329,
262,
5456,
1735,
357,
20688,
25,
366,
1092,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
649,
62,
13086,
796,
4808,
20519,
260,
3937,
16177,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
3672,
11,
4382,
62,
3742,
43106,
11,
5456,
62,
3742,
43106,
11,
6808,
28,
944,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2139,
62,
3672,
287,
2116,
13,
30416,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
649,
62,
13086,
6624,
2116,
13,
15271,
62,
4299,
1127,
58,
15271,
62,
3672,
4357,
59,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4,
82,
14512,
4064,
82,
6,
4064,
357,
3605,
62,
13086,
11,
2116,
13,
15271,
62,
4299,
1127,
58,
15271,
62,
3672,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
15271,
62,
4299,
1127,
58,
15271,
62,
3672,
60,
796,
649,
62,
13086,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30416,
13,
2860,
7,
15271,
62,
3672,
8,
628,
628,
628,
628,
628,
628,
628
] | 2.185524 | 1,423 |
# Tests (scarce) for win32print module
import os
import unittest
import win32print as wprn
if __name__ == "__main__":
unittest.main()
| [
2,
30307,
357,
13034,
344,
8,
329,
1592,
2624,
4798,
8265,
198,
198,
11748,
28686,
198,
11748,
555,
715,
395,
198,
198,
11748,
1592,
2624,
4798,
355,
266,
1050,
77,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 2.648148 | 54 |
#!/usr/bin/env python3
"""
Create dataset and experiments.
A dataset is a directory with subdirectories, one subdir per class.
An experiment is a directory subdirectories, one subdir per participant.
"""
import os
from os.path import join as pjoin
from os import listdir as ld
import numpy as np
import shutil
import sys
from PIL import Image
import numpy as np
import math
from torchvision import transforms
from ..helper import human_categories as hc
from .. import constants as consts
def resize_crop_image(input_file,
resize_size,
crop_size):
"""Replace input_file with resized and cropped version (png)."""
img = Image.open(input_file)
t = transforms.Compose([transforms.Resize(resize_size),
transforms.CenterCrop(crop_size)])
new_img = t(img)
os.remove(input_file)
new_img.save(input_file.replace(".JPEG", ".png"), 'png')
def create_experiment(expt_name,
expt_abbreviation,
expt_source_dir,
expt_target_dir,
only_dnn=True,
num_subjects=1,
rng=None):
"""Create human / CNN experiment.
parameters:
- only_dnn: boolean indicating whether this is a DNN experiment
or not (if not, a human experiment will be created.)
"""
if not only_dnn:
assert rng is not None, "Please specify random number generator (rng)!"
assert("_" not in expt_name), "no '_' in experiment name!"
assert(os.path.exists(expt_source_dir)), "directory "+expt_source_dir+" does not exist."
for i in range(0, num_subjects+1):
if i==0:
subject_abbreviation = "dnn"
subject_name="dnn"
else:
subject_abbreviation = "s"+get_leading_zeros(i, 2)
subject_name = "subject-"+get_leading_zeros(i, 2)
print("Creating experiment for subject: '"+subject_name+"'")
target_dir = pjoin(expt_target_dir, expt_name,
subject_name, "session-1")
if os.path.exists(target_dir):
print("Error: target directory "+target_dir+" does already exist.")
sys.exit(1)
else:
os.makedirs(target_dir)
img_list = []
for c in sorted(hc.get_human_object_recognition_categories()):
for x in sorted(ld(pjoin(expt_source_dir, c))):
input_file = pjoin(expt_source_dir, c, x)
img_list.append(input_file)
order = np.arange(len(img_list))
if i != 0:
rng.shuffle(order)
for i, img_index in enumerate(order):
input_file = img_list[img_index]
imgname = input_file.split("/")[-1]
correct_category = input_file.split("/")[-2]
condition = "0"
target_image_path = pjoin(target_dir,
(get_leading_zeros(i+1)+"_"+
expt_abbreviation+"_"+
subject_abbreviation+"_"+
condition+"_"+
correct_category+"_"+
"00_"+
imgname))
shutil.copyfile(input_file, target_image_path)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
37811,
198,
16447,
27039,
290,
10256,
13,
198,
32,
27039,
318,
257,
8619,
351,
850,
12942,
1749,
11,
530,
850,
15908,
583,
1398,
13,
198,
2025,
6306,
318,
257,
8619,
850,
12942,
1749,
11,
530,
850,
15908,
583,
18399,
13,
198,
37811,
198,
198,
11748,
28686,
198,
6738,
28686,
13,
6978,
1330,
4654,
355,
279,
22179,
198,
6738,
28686,
1330,
1351,
15908,
355,
300,
67,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
4423,
346,
198,
11748,
25064,
198,
6738,
350,
4146,
1330,
7412,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
10688,
198,
6738,
28034,
10178,
1330,
31408,
198,
198,
6738,
11485,
2978,
525,
1330,
1692,
62,
66,
26129,
355,
289,
66,
198,
6738,
11485,
1330,
38491,
355,
1500,
82,
628,
198,
4299,
47558,
62,
31476,
62,
9060,
7,
15414,
62,
7753,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47558,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13833,
62,
7857,
2599,
198,
220,
220,
220,
37227,
3041,
5372,
5128,
62,
7753,
351,
581,
1143,
290,
48998,
2196,
357,
11134,
21387,
15931,
628,
220,
220,
220,
33705,
796,
7412,
13,
9654,
7,
15414,
62,
7753,
8,
198,
220,
220,
220,
256,
796,
31408,
13,
7293,
577,
26933,
7645,
23914,
13,
4965,
1096,
7,
411,
1096,
62,
7857,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31408,
13,
23656,
34,
1773,
7,
31476,
62,
7857,
8,
12962,
198,
220,
220,
220,
649,
62,
9600,
796,
256,
7,
9600,
8,
198,
220,
220,
220,
28686,
13,
28956,
7,
15414,
62,
7753,
8,
198,
220,
220,
220,
649,
62,
9600,
13,
21928,
7,
15414,
62,
7753,
13,
33491,
7,
1911,
12889,
7156,
1600,
27071,
11134,
12340,
705,
11134,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
4299,
2251,
62,
23100,
3681,
7,
1069,
457,
62,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
409,
457,
62,
397,
4679,
47625,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
409,
457,
62,
10459,
62,
15908,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
409,
457,
62,
16793,
62,
15908,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
691,
62,
67,
20471,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
32796,
82,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
782,
28,
14202,
2599,
198,
220,
220,
220,
37227,
16447,
1692,
1220,
8100,
6306,
13,
628,
220,
220,
220,
10007,
25,
198,
220,
220,
220,
532,
691,
62,
67,
20471,
25,
25131,
12739,
1771,
428,
318,
257,
360,
6144,
6306,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
407,
357,
361,
407,
11,
257,
1692,
6306,
481,
307,
2727,
2014,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
407,
691,
62,
67,
20471,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
374,
782,
318,
407,
6045,
11,
366,
5492,
11986,
4738,
1271,
17301,
357,
81,
782,
8,
2474,
628,
220,
220,
220,
6818,
7203,
62,
1,
407,
287,
409,
457,
62,
3672,
828,
366,
3919,
705,
62,
6,
287,
6306,
1438,
2474,
198,
220,
220,
220,
6818,
7,
418,
13,
6978,
13,
1069,
1023,
7,
1069,
457,
62,
10459,
62,
15908,
36911,
366,
34945,
43825,
1069,
457,
62,
10459,
62,
15908,
10,
1,
857,
407,
2152,
526,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
15,
11,
997,
62,
32796,
82,
10,
16,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
855,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2426,
62,
397,
4679,
47625,
796,
366,
67,
20471,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2426,
62,
3672,
2625,
67,
20471,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2426,
62,
397,
4679,
47625,
796,
366,
82,
1,
10,
1136,
62,
12294,
62,
9107,
418,
7,
72,
11,
362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2426,
62,
3672,
796,
366,
32796,
21215,
10,
1136,
62,
12294,
62,
9107,
418,
7,
72,
11,
362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
32071,
6306,
329,
2426,
25,
705,
1,
10,
32796,
62,
3672,
10,
30543,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
2496,
62,
15908,
796,
279,
22179,
7,
1069,
457,
62,
16793,
62,
15908,
11,
409,
457,
62,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2426,
62,
3672,
11,
366,
29891,
12,
16,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
611,
28686,
13,
6978,
13,
1069,
1023,
7,
16793,
62,
15908,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
12331,
25,
2496,
8619,
43825,
16793,
62,
15908,
10,
1,
857,
1541,
2152,
19570,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
76,
4335,
17062,
7,
16793,
62,
15908,
8,
628,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
4868,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
269,
287,
23243,
7,
71,
66,
13,
1136,
62,
10734,
62,
15252,
62,
26243,
653,
62,
66,
26129,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2124,
287,
23243,
7,
335,
7,
79,
22179,
7,
1069,
457,
62,
10459,
62,
15908,
11,
269,
4008,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
7753,
796,
279,
22179,
7,
1069,
457,
62,
10459,
62,
15908,
11,
269,
11,
2124,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
4868,
13,
33295,
7,
15414,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1502,
796,
45941,
13,
283,
858,
7,
11925,
7,
9600,
62,
4868,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
782,
13,
1477,
18137,
7,
2875,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
33705,
62,
9630,
287,
27056,
378,
7,
2875,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
7753,
796,
33705,
62,
4868,
58,
9600,
62,
9630,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33705,
3672,
796,
5128,
62,
7753,
13,
35312,
7203,
14,
4943,
58,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3376,
62,
22872,
796,
5128,
62,
7753,
13,
35312,
7203,
14,
4943,
58,
12,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4006,
796,
366,
15,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2496,
62,
9060,
62,
6978,
796,
279,
22179,
7,
16793,
62,
15908,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
1136,
62,
12294,
62,
9107,
418,
7,
72,
10,
16,
47762,
1,
62,
1,
10,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
409,
457,
62,
397,
4679,
47625,
10,
1,
62,
1,
10,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2426,
62,
397,
4679,
47625,
10,
1,
62,
1,
10,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4006,
10,
1,
62,
1,
10,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3376,
62,
22872,
10,
1,
62,
1,
10,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
405,
62,
1,
10,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33705,
3672,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4423,
346,
13,
30073,
7753,
7,
15414,
62,
7753,
11,
2496,
62,
9060,
62,
6978,
8,
628
] | 1.95807 | 1,741 |
# -*- coding: utf-8 -*-
"""
MIT License
Copyright (c) 2017-2018 Roxanne Gibson
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import os
import asyncio
import discord
import datetime
import youtube_dl
from math import ceil
from discord.ext import commands
import roxbot
from roxbot import guild_settings
def _clear_cache():
"""Clears the cache folder for the music bot. Ignores the ".gitignore" file to avoid deleting versioned files."""
for file in os.listdir("roxbot/cache"):
if file != ".gitignore":
os.remove("roxbot/cache/{}".format(file))
# Suppress noise about console usage from errors
youtube_dl.utils.bug_reports_message = lambda: ''
ytdl_format_options = {
'format': 'bestaudio/best',
'outtmpl': './roxbot/cache/%(extractor)s-%(id)s-%(title)s.%(ext)s',
'restrictfilenames': True,
'noplaylist': True,
'nocheckcertificate': True,
'ignoreerrors': False,
'logtostderr': False,
'quiet': True,
'no_warnings': True,
'default_search': 'auto',
}
ffmpeg_options = {
'before_options': '-nostdin',
'options': '-vn -loglevel panic --force-ipv4'
}
ytdl = youtube_dl.YoutubeDL(ytdl_format_options)
class ModifiedFFmpegPMCAudio(discord.FFmpegPCMAudio):
"""Modifies the read function of FFmpegPCMAudio to add a timer.
Thanks to eliza(nearlynon#3292) for teaching me how to do this"""
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
37811,
198,
36393,
13789,
198,
198,
15269,
357,
66,
8,
2177,
12,
7908,
34821,
21952,
20400,
198,
198,
5990,
3411,
318,
29376,
7520,
11,
1479,
286,
3877,
11,
284,
597,
1048,
16727,
257,
4866,
198,
1659,
428,
3788,
290,
3917,
10314,
3696,
357,
1169,
366,
25423,
12340,
284,
1730,
198,
259,
262,
10442,
1231,
17504,
11,
1390,
1231,
17385,
262,
2489,
198,
1462,
779,
11,
4866,
11,
13096,
11,
20121,
11,
7715,
11,
14983,
11,
850,
43085,
11,
290,
14,
273,
3677,
198,
22163,
444,
286,
262,
10442,
11,
290,
284,
8749,
6506,
284,
4150,
262,
10442,
318,
198,
69,
700,
1348,
284,
466,
523,
11,
2426,
284,
262,
1708,
3403,
25,
198,
198,
464,
2029,
6634,
4003,
290,
428,
7170,
4003,
2236,
307,
3017,
287,
477,
198,
22163,
444,
393,
8904,
16690,
286,
262,
10442,
13,
198,
198,
10970,
47466,
3180,
36592,
2389,
1961,
366,
1921,
3180,
1600,
42881,
34764,
56,
3963,
15529,
509,
12115,
11,
7788,
32761,
6375,
198,
3955,
49094,
11,
47783,
2751,
21728,
5626,
40880,
5390,
3336,
34764,
11015,
3963,
34482,
3398,
1565,
5603,
25382,
11,
198,
37,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
5357,
44521,
1268,
10913,
2751,
12529,
13,
3268,
8005,
49261,
50163,
3336,
198,
32,
24318,
20673,
6375,
27975,
38162,
9947,
367,
15173,
4877,
9348,
43031,
19146,
7473,
15529,
47666,
3955,
11,
29506,
25552,
6375,
25401,
198,
43,
3539,
25382,
11,
7655,
2767,
16879,
3268,
3537,
40282,
3963,
27342,
10659,
11,
309,
9863,
6375,
25401,
54,
24352,
11,
5923,
1797,
2751,
16034,
11,
198,
12425,
3963,
6375,
3268,
7102,
45,
24565,
13315,
3336,
47466,
6375,
3336,
23210,
6375,
25401,
5550,
1847,
20754,
3268,
3336,
198,
15821,
37485,
13,
198,
37811,
628,
198,
11748,
28686,
198,
11748,
30351,
952,
198,
11748,
36446,
198,
11748,
4818,
8079,
198,
11748,
35116,
62,
25404,
198,
6738,
10688,
1330,
2906,
346,
198,
6738,
36446,
13,
2302,
1330,
9729,
198,
198,
11748,
686,
87,
13645,
198,
6738,
686,
87,
13645,
1330,
19806,
62,
33692,
628,
198,
4299,
4808,
20063,
62,
23870,
33529,
198,
197,
37811,
34349,
945,
262,
12940,
9483,
329,
262,
2647,
10214,
13,
16583,
2850,
262,
27071,
18300,
46430,
1,
2393,
284,
3368,
34817,
2196,
276,
3696,
526,
15931,
198,
197,
1640,
2393,
287,
28686,
13,
4868,
15908,
7203,
13907,
13645,
14,
23870,
1,
2599,
198,
197,
197,
361,
2393,
14512,
27071,
18300,
46430,
1298,
198,
197,
197,
197,
418,
13,
28956,
7203,
13907,
13645,
14,
23870,
14,
90,
92,
1911,
18982,
7,
7753,
4008,
628,
198,
198,
2,
8105,
601,
7838,
546,
8624,
8748,
422,
8563,
198,
11604,
62,
25404,
13,
26791,
13,
25456,
62,
48922,
62,
20500,
796,
37456,
25,
10148,
628,
198,
88,
8671,
75,
62,
18982,
62,
25811,
796,
1391,
198,
197,
6,
18982,
10354,
705,
13466,
24051,
14,
13466,
3256,
198,
197,
6,
448,
17209,
489,
10354,
705,
19571,
13907,
13645,
14,
23870,
14,
4,
7,
2302,
40450,
8,
82,
12,
4,
7,
312,
8,
82,
12,
4,
7,
7839,
8,
82,
13,
4,
7,
2302,
8,
82,
3256,
198,
197,
821,
301,
2012,
10379,
268,
1047,
10354,
6407,
11,
198,
197,
6,
77,
404,
10724,
4868,
10354,
6407,
11,
198,
197,
6,
77,
30848,
694,
22583,
22460,
10354,
6407,
11,
198,
197,
6,
46430,
48277,
10354,
10352,
11,
198,
197,
6,
6404,
83,
455,
1082,
81,
10354,
10352,
11,
198,
197,
6,
39624,
10354,
6407,
11,
198,
197,
6,
3919,
62,
40539,
654,
10354,
6407,
11,
198,
197,
1549,
891,
1721,
62,
12947,
10354,
705,
23736,
3256,
198,
92,
198,
198,
487,
43913,
62,
25811,
796,
1391,
198,
197,
6,
19052,
62,
25811,
10354,
705,
12,
77,
455,
25194,
3256,
198,
197,
6,
25811,
10354,
705,
12,
85,
77,
532,
75,
2467,
626,
13619,
1377,
3174,
12,
541,
85,
19,
6,
198,
92,
198,
198,
88,
8671,
75,
796,
35116,
62,
25404,
13,
56,
9762,
19260,
7,
88,
8671,
75,
62,
18982,
62,
25811,
8,
628,
198,
4871,
40499,
5777,
43913,
5868,
8141,
463,
952,
7,
15410,
585,
13,
5777,
43913,
5662,
5673,
463,
952,
2599,
198,
197,
37811,
5841,
6945,
262,
1100,
2163,
286,
18402,
43913,
5662,
5673,
463,
952,
284,
751,
257,
19781,
13,
198,
197,
9690,
284,
1288,
23638,
7,
40093,
6213,
261,
2,
18,
32759,
8,
329,
7743,
502,
703,
284,
466,
428,
37811,
628,
628
] | 3.165289 | 726 |
"""
Slack Bot Untrack Command
"""
import logging
from ebr_trackerbot.bot import register_command, get_storage
def untrack_command(text, result, payload, config, commands):
"""
Slack Bot Untrack Command
"""
logging.debug("Untrack command")
test = result.group(1)
get_storage()["delete_for_user"](payload["data"]["user"], test)
payload["web_client"].chat_postMessage(
channel=payload["data"]["channel"],
text="Tracking was stopped for test *" + test + "*",
thread_ts=payload["data"]["ts"],
)
register_command(
"untrack", "Stops test tracking. Command syntax: untrack full_testname", "^untrack ([^ ]+)$", untrack_command
)
logging.info("Untrack command registered")
| [
37811,
198,
11122,
441,
18579,
26970,
39638,
9455,
198,
37811,
198,
11748,
18931,
198,
6738,
304,
1671,
62,
2213,
10735,
13645,
13,
13645,
1330,
7881,
62,
21812,
11,
651,
62,
35350,
628,
198,
4299,
1418,
39638,
62,
21812,
7,
5239,
11,
1255,
11,
21437,
11,
4566,
11,
9729,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
36256,
18579,
26970,
39638,
9455,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
18931,
13,
24442,
7203,
35792,
39638,
3141,
4943,
628,
220,
220,
220,
1332,
796,
1255,
13,
8094,
7,
16,
8,
198,
220,
220,
220,
651,
62,
35350,
3419,
14692,
33678,
62,
1640,
62,
7220,
8973,
7,
15577,
2220,
14692,
7890,
1,
7131,
1,
7220,
33116,
1332,
8,
628,
220,
220,
220,
21437,
14692,
12384,
62,
16366,
1,
4083,
17006,
62,
7353,
12837,
7,
198,
220,
220,
220,
220,
220,
220,
220,
6518,
28,
15577,
2220,
14692,
7890,
1,
7131,
1,
17620,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
2420,
2625,
2898,
5430,
373,
5025,
329,
1332,
1635,
1,
1343,
1332,
1343,
366,
9,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
4704,
62,
912,
28,
15577,
2220,
14692,
7890,
1,
7131,
1,
912,
33116,
198,
220,
220,
220,
1267,
628,
198,
30238,
62,
21812,
7,
198,
220,
220,
220,
366,
403,
11659,
1600,
366,
1273,
2840,
1332,
9646,
13,
9455,
15582,
25,
1418,
39638,
1336,
62,
9288,
3672,
1600,
366,
61,
403,
11659,
29565,
61,
2361,
28988,
3,
1600,
1418,
39638,
62,
21812,
198,
8,
198,
6404,
2667,
13,
10951,
7203,
35792,
39638,
3141,
6823,
4943,
198
] | 2.782443 | 262 |
# EGM skimmer
# Author: Rafael Lopes de Sa
import FWCore.ParameterSet.Config as cms
# Run with the 2017 detector
from Configuration.Eras.Era_Run2_2017_cff import Run2_2017
process = cms.Process('SKIM',Run2_2017)
# Import the standard packages for reconstruction and digitization
process.load('Configuration.StandardSequences.Services_cff')
process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi')
process.load('FWCore.MessageService.MessageLogger_cfi')
process.load('Configuration.EventContent.EventContent_cff')
process.load('SimGeneral.MixingModule.mixNoPU_cfi')
process.load('Configuration.StandardSequences.Digi_cff')
process.load('Configuration.StandardSequences.GeometryRecoDB_cff')
process.load('Configuration.StandardSequences.MagneticField_cff')
process.load('Configuration.StandardSequences.RawToDigi_cff')
process.load('Configuration.StandardSequences.L1Reco_cff')
process.load('Configuration.StandardSequences.Reconstruction_cff')
process.load('Configuration.StandardSequences.EndOfProcess_cff')
process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff')
process.load('RecoEgamma.EgammaMCTools.pfClusterMatchedToPhotonsSelector_cfi')
# Global Tag configuration ... just using the same as in the RelVal
from Configuration.AlCa.GlobalTag import GlobalTag
process.GlobalTag = GlobalTag(process.GlobalTag, '81X_upgrade2017_realistic_v26', '')
process.MessageLogger.cerr.threshold = 'ERROR'
process.MessageLogger.cerr.FwkReport.reportEvery = 1000
process.options = cms.untracked.PSet( allowUnscheduled = cms.untracked.bool(True) )
# This is where users have some control.
# Define which collections to save and which dataformat we are using
savedCollections = cms.untracked.vstring('drop *',
# The commented ones are large collections that can be kept for debug
# 'keep EcalRecHitsSorted_*_*_*',
# 'keep recoPFClusters_*_*_*',
# 'keep recoCaloClusters_*_*_*',
# 'keep recoSuperClusters_*_*_*',
# 'keep recoGsfElectron*_*_*_*',
# 'keep recoPhoton*_*_*_*',
# 'keep *_mix_MergedTrackTruth_*',
'keep *_reducedEcalRecHits*_*_*',
'keep double_fixedGridRho*_*_*',
'keep recoGenParticles_*_*_*',
'keep GenEventInfoProduct_*_*_*',
'keep PileupSummaryInfos_*_*_*',
'keep *_ecalDigis_*_*',
'keep *_offlinePrimaryVertices_*_*',
'keep *_particleFlowCluster*_*_*')
process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(15))
process.source = cms.Source("PoolSource",
fileNames = cms.untracked.vstring(
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/AODSIM/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/005AB6CE-27ED-E611-98CA-E0071B7A8590.root'
),
secondaryFileNames = cms.untracked.vstring(
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/0416D6B7-04ED-E611-B342-E0071B7A8550.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/14829DD8-04ED-E611-8049-A0000420FE80.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/54AFE9C4-04ED-E611-952D-A0000420FE80.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/5A32C6B9-04ED-E611-B1EB-E0071B7A8550.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/60E162B8-04ED-E611-898D-E0071B7A58F0.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/6A47DD1A-FEEC-E611-81EB-A0000420FE80.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/92B923B6-04ED-E611-9DC9-24BE05C48821.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/B40E77B4-04ED-E611-9E30-E0071B7A45D0.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/C48157B5-04ED-E611-BEC1-E0071B7A45D0.root',
'/store/mc/PhaseIFall16DR/GluGluHToGG_M-125_13TeV_powheg_pythia8/GEN-SIM-RAW/FlatPU28to62HcalNZSRAW_81X_upgrade2017_realistic_v26-v1/100000/CAED3A16-FEEC-E611-8262-24BE05CEFB41.root'
)
)
process.PFCLUSTERoutput = cms.OutputModule("PoolOutputModule",
dataset = cms.untracked.PSet(dataTier = cms.untracked.string('RECO'),
filterName = cms.untracked.string('')
),
eventAutoFlushCompressedSize = cms.untracked.int32(5242880),
fileName = cms.untracked.string('skimEGMobjects_fromRAW.root'),
outputCommands = savedCollections,
splitLevel = cms.untracked.int32(0)
)
# Run the digitizer to make the trackingparticles
process.mix.digitizers = cms.PSet(process.theDigitizersValid)
process.trackingtruth_step = cms.Path(process.pdigi_valid)
# Remake the PFClusters
process.pfclusters_step = cms.Path(process.bunchSpacingProducer *
process.ecalDigis *
process.ecalPreshowerDigis *
process.ecalPreshowerRecHit *
process.ecalMultiFitUncalibRecHit *
process.ecalDetIdToBeRecovered *
process.ecalRecHit *
process.particleFlowRecHitPS *
process.particleFlowRecHitECAL *
process.particleFlowClusterECALUncorrected *
process.particleFlowClusterPS *
process.particleFlowClusterECAL)
# Select the PFClusters we want to calibrate
process.particleFlowClusterECALMatchedToPhotons = process.pfClusterMatchedToPhotonsSelector.clone()
process.selection_step = cms.Path(process.particleFlowClusterECALMatchedToPhotons)
# Ends job and writes our output
process.endjob_step = cms.EndPath(process.endOfProcess)
process.output_step = cms.EndPath(process.PFCLUSTERoutput)
# Schedule definition, rebuilding rechits
process.schedule = cms.Schedule(process.trackingtruth_step,process.pfclusters_step,process.selection_step,process.endjob_step,process.output_step)
| [
2,
412,
15548,
1341,
10957,
198,
2,
6434,
25,
31918,
406,
13920,
390,
10318,
198,
198,
11748,
48849,
14055,
13,
36301,
7248,
13,
16934,
355,
269,
907,
198,
198,
2,
5660,
351,
262,
2177,
31029,
198,
6738,
28373,
13,
36,
8847,
13,
36,
430,
62,
10987,
17,
62,
5539,
62,
66,
487,
1330,
5660,
17,
62,
5539,
198,
14681,
796,
269,
907,
13,
18709,
10786,
18831,
3955,
3256,
10987,
17,
62,
5539,
8,
198,
198,
2,
17267,
262,
3210,
10392,
329,
25056,
290,
16839,
1634,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
31007,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
8890,
12218,
13,
39,
538,
5760,
51,
1546,
7416,
13,
79,
5272,
72,
499,
28664,
62,
66,
12463,
11537,
198,
14681,
13,
2220,
10786,
24160,
14055,
13,
12837,
16177,
13,
12837,
11187,
1362,
62,
66,
12463,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
9237,
19746,
13,
9237,
19746,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
8890,
12218,
13,
35608,
278,
26796,
13,
19816,
2949,
5105,
62,
66,
12463,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
19511,
72,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
10082,
15748,
6690,
78,
11012,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
13436,
9833,
15878,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
27369,
2514,
19511,
72,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
43,
16,
6690,
78,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
6690,
261,
15019,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
12915,
5189,
18709,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
38149,
13,
23615,
44015,
3007,
13,
25886,
959,
25559,
1756,
62,
22289,
24835,
62,
66,
487,
11537,
198,
14681,
13,
2220,
10786,
6690,
78,
36,
28483,
2611,
13,
36,
28483,
2611,
44,
4177,
10141,
13,
79,
69,
2601,
5819,
44,
14265,
2514,
27248,
684,
17563,
273,
62,
66,
12463,
11537,
198,
198,
2,
8060,
17467,
8398,
2644,
655,
1262,
262,
976,
355,
287,
262,
4718,
7762,
198,
6738,
28373,
13,
2348,
24334,
13,
22289,
24835,
1330,
8060,
24835,
198,
14681,
13,
22289,
24835,
796,
8060,
24835,
7,
14681,
13,
22289,
24835,
11,
705,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
3256,
10148,
8,
198,
198,
14681,
13,
12837,
11187,
1362,
13,
2189,
81,
13,
400,
10126,
796,
705,
24908,
6,
198,
14681,
13,
12837,
11187,
1362,
13,
2189,
81,
13,
37,
43021,
19100,
13,
13116,
6109,
796,
8576,
198,
198,
14681,
13,
25811,
796,
269,
907,
13,
403,
2213,
6021,
13,
3705,
316,
7,
1249,
3118,
1416,
704,
6309,
796,
269,
907,
13,
403,
2213,
6021,
13,
30388,
7,
17821,
8,
1267,
198,
198,
2,
770,
318,
810,
2985,
423,
617,
1630,
13,
198,
2,
2896,
500,
543,
17268,
284,
3613,
290,
543,
1366,
18982,
356,
389,
1262,
198,
82,
9586,
5216,
26448,
796,
269,
907,
13,
403,
2213,
6021,
13,
85,
8841,
10786,
14781,
1635,
3256,
198,
2,
383,
16476,
3392,
389,
1588,
17268,
326,
460,
307,
4030,
329,
14257,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
412,
9948,
6690,
39,
896,
50,
9741,
62,
9,
62,
9,
62,
9,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
664,
78,
42668,
2601,
13654,
62,
9,
62,
9,
62,
9,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
664,
78,
34,
7335,
2601,
13654,
62,
9,
62,
9,
62,
9,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
664,
78,
12442,
2601,
13654,
62,
9,
62,
9,
62,
9,
3256,
220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
664,
78,
38,
28202,
19453,
1313,
9,
62,
9,
62,
9,
62,
9,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
664,
78,
2725,
18970,
9,
62,
9,
62,
9,
62,
9,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
1635,
62,
19816,
62,
13102,
2004,
24802,
38782,
62,
9,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
1635,
62,
445,
19513,
36,
9948,
6690,
39,
896,
9,
62,
9,
62,
9,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
4274,
62,
34021,
41339,
49,
8873,
9,
62,
9,
62,
9,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
664,
78,
13746,
7841,
2983,
62,
9,
62,
9,
62,
9,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
5215,
9237,
12360,
15667,
62,
9,
62,
9,
62,
9,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
350,
576,
929,
22093,
18943,
418,
62,
9,
62,
9,
62,
9,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
1635,
62,
721,
282,
19511,
271,
62,
9,
62,
9,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
1635,
62,
2364,
1370,
35170,
42369,
1063,
62,
9,
62,
9,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14894,
1635,
62,
3911,
1548,
37535,
2601,
5819,
9,
62,
9,
62,
9,
11537,
198,
198,
14681,
13,
9806,
37103,
796,
269,
907,
13,
403,
2213,
6021,
13,
3705,
316,
7,
15414,
796,
269,
907,
13,
403,
2213,
6021,
13,
600,
2624,
7,
1314,
4008,
198,
198,
14681,
13,
10459,
796,
269,
907,
13,
7416,
7203,
27201,
7416,
1600,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
36690,
796,
269,
907,
13,
403,
2213,
6021,
13,
85,
8841,
7,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
32,
3727,
48913,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
22544,
6242,
21,
5222,
12,
1983,
1961,
12,
36,
21,
1157,
12,
4089,
8141,
12,
36,
405,
4869,
33,
22,
32,
23,
36993,
13,
15763,
6,
198,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9233,
8979,
36690,
796,
269,
907,
13,
403,
2213,
6021,
13,
85,
8841,
7,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
3023,
1433,
35,
21,
33,
22,
12,
3023,
1961,
12,
36,
21,
1157,
12,
33,
31575,
12,
36,
405,
4869,
33,
22,
32,
5332,
1120,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
18294,
1959,
16458,
23,
12,
3023,
1961,
12,
36,
21,
1157,
12,
1795,
2920,
12,
32,
2388,
27211,
15112,
1795,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
4051,
8579,
36,
24,
34,
19,
12,
3023,
1961,
12,
36,
21,
1157,
12,
49234,
35,
12,
32,
2388,
27211,
15112,
1795,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
20,
32,
2624,
34,
21,
33,
24,
12,
3023,
1961,
12,
36,
21,
1157,
12,
33,
16,
30195,
12,
36,
405,
4869,
33,
22,
32,
5332,
1120,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
1899,
36,
25061,
33,
23,
12,
3023,
1961,
12,
36,
21,
1157,
12,
23,
4089,
35,
12,
36,
405,
4869,
33,
22,
32,
3365,
37,
15,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
21,
32,
2857,
16458,
16,
32,
12,
15112,
2943,
12,
36,
21,
1157,
12,
6659,
30195,
12,
32,
2388,
27211,
15112,
1795,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
5892,
33,
24,
1954,
33,
21,
12,
3023,
1961,
12,
36,
21,
1157,
12,
24,
9697,
24,
12,
1731,
12473,
2713,
34,
33646,
2481,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
33,
1821,
36,
3324,
33,
19,
12,
3023,
1961,
12,
36,
21,
1157,
12,
24,
36,
1270,
12,
36,
405,
4869,
33,
22,
32,
2231,
35,
15,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
34,
2780,
18458,
33,
20,
12,
3023,
1961,
12,
36,
21,
1157,
12,
33,
2943,
16,
12,
36,
405,
4869,
33,
22,
32,
2231,
35,
15,
13,
15763,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
31051,
8095,
14,
23209,
14,
35645,
5064,
439,
1433,
7707,
14,
38,
2290,
38,
2290,
39,
2514,
11190,
62,
44,
12,
11623,
62,
1485,
6767,
53,
62,
79,
322,
258,
70,
62,
79,
5272,
544,
23,
14,
35353,
12,
48913,
12,
20530,
14,
7414,
265,
5105,
2078,
1462,
5237,
39,
9948,
37371,
50,
20530,
62,
6659,
55,
62,
929,
9526,
5539,
62,
5305,
2569,
62,
85,
2075,
12,
85,
16,
14,
3064,
830,
14,
8141,
1961,
18,
32,
1433,
12,
15112,
2943,
12,
36,
21,
1157,
12,
23,
29119,
12,
1731,
12473,
2713,
5222,
26001,
3901,
13,
15763,
6,
198,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
14681,
13,
47,
4851,
43,
7759,
1137,
22915,
796,
269,
907,
13,
26410,
26796,
7203,
27201,
26410,
26796,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27039,
796,
269,
907,
13,
403,
2213,
6021,
13,
3705,
316,
7,
7890,
35252,
796,
269,
907,
13,
403,
2213,
6021,
13,
8841,
10786,
2200,
8220,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8106,
5376,
796,
269,
907,
13,
403,
2213,
6021,
13,
8841,
7,
7061,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1785,
27722,
7414,
1530,
7293,
2790,
10699,
796,
269,
907,
13,
403,
2213,
6021,
13,
600,
2624,
7,
48057,
2078,
1795,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
5376,
796,
269,
907,
13,
403,
2213,
6021,
13,
8841,
10786,
8135,
320,
7156,
44,
48205,
62,
6738,
20530,
13,
15763,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
6935,
1746,
796,
7448,
5216,
26448,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6626,
4971,
796,
269,
907,
13,
403,
2213,
6021,
13,
600,
2624,
7,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
198,
2,
5660,
262,
3100,
3029,
263,
284,
787,
262,
9646,
3911,
2983,
198,
14681,
13,
19816,
13,
12894,
3029,
364,
796,
269,
907,
13,
3705,
316,
7,
14681,
13,
1169,
19511,
3029,
364,
47139,
8,
198,
14681,
13,
36280,
35310,
62,
9662,
796,
269,
907,
13,
15235,
7,
14681,
13,
79,
12894,
72,
62,
12102,
8,
198,
198,
2,
3982,
539,
262,
28223,
2601,
13654,
198,
14681,
13,
79,
69,
565,
13654,
62,
9662,
796,
269,
907,
13,
15235,
7,
14681,
13,
65,
3316,
4561,
4092,
11547,
2189,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
721,
282,
19511,
271,
1635,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
721,
282,
47,
3447,
789,
19511,
271,
1635,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
721,
282,
47,
3447,
789,
6690,
17889,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
721,
282,
29800,
31805,
3118,
9948,
571,
6690,
17889,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
721,
282,
11242,
7390,
2514,
3856,
6690,
2557,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
721,
282,
6690,
17889,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
3911,
1548,
37535,
6690,
17889,
3705,
1635,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
3911,
1548,
37535,
6690,
17889,
2943,
1847,
1635,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
3911,
1548,
37535,
2601,
5819,
2943,
1847,
3118,
30283,
276,
1635,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
3911,
1548,
37535,
2601,
5819,
3705,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
3911,
1548,
37535,
2601,
5819,
2943,
1847,
8,
198,
198,
2,
9683,
262,
28223,
2601,
13654,
356,
765,
284,
33801,
378,
198,
14681,
13,
3911,
1548,
37535,
2601,
5819,
2943,
1847,
44,
14265,
2514,
27248,
684,
796,
1429,
13,
79,
69,
2601,
5819,
44,
14265,
2514,
27248,
684,
17563,
273,
13,
21018,
3419,
198,
14681,
13,
49283,
62,
9662,
796,
269,
907,
13,
15235,
7,
14681,
13,
3911,
1548,
37535,
2601,
5819,
2943,
1847,
44,
14265,
2514,
27248,
684,
8,
198,
198,
2,
46756,
1693,
290,
6797,
674,
5072,
198,
14681,
13,
437,
21858,
62,
9662,
796,
269,
907,
13,
12915,
15235,
7,
14681,
13,
437,
5189,
18709,
8,
198,
14681,
13,
22915,
62,
9662,
796,
269,
907,
13,
12915,
15235,
7,
14681,
13,
47,
4851,
43,
7759,
1137,
22915,
8,
198,
198,
2,
19281,
6770,
11,
25448,
302,
354,
896,
198,
14681,
13,
15952,
5950,
796,
269,
907,
13,
27054,
5950,
7,
14681,
13,
36280,
35310,
62,
9662,
11,
14681,
13,
79,
69,
565,
13654,
62,
9662,
11,
14681,
13,
49283,
62,
9662,
11,
14681,
13,
437,
21858,
62,
9662,
11,
14681,
13,
22915,
62,
9662,
8,
628,
198
] | 1.878007 | 4,074 |
"""
"""
import unittest
from runesanalyzer import data
__author__ = ["Clément Besnier <[email protected]>", ]
| [
37811,
198,
198,
37811,
198,
198,
11748,
555,
715,
395,
198,
6738,
32326,
38200,
9107,
1330,
1366,
198,
198,
834,
9800,
834,
796,
14631,
2601,
2634,
434,
30837,
77,
959,
1279,
2375,
907,
979,
3007,
31,
64,
349,
13,
785,
29,
1600,
2361,
628
] | 2.659091 | 44 |
"""
spec_uploader.py
A tool for uploading apigee specs
Usage:
spec_uploader.py <apigee_org> <specs_dir> -u <username> -p <password> [-t <apigee_token>]
spec_uploader.py (-h | --help)
Options:
-h --help Show this screen
-u Which username to log in with
-p Password for login
-t Access Token from apigee
"""
import os
from docopt import docopt
from apigee_client import ApigeeClient
ENV_NAMES = {
'nhsd-prod': ['sandbox', 'dev', 'int', 'prod'],
'nhsd-nonprod': ['internal-dev', 'internal-qa-sandbox', 'internal-qa', 'ref']
}
FRIENDLY_ENV_NAMES = {
'prod': '(Production)',
'int': '(Integration Testing)',
'dev': '(Development)',
'ref': '(Reference)',
'internal-qa': '(Internal QA)',
'internal-dev': '(Internal Development)'
}
FRIENDLY_API_NAMES = {
'personal-demographics': 'Personal Demographics Service API'
}
if __name__ == "__main__":
args = docopt(__doc__)
client = ApigeeClient(args['<apigee_org>'], args['<username>'], args['<password>'], args['<apigee_token>'])
upload_specs(ENV_NAMES[args['<apigee_org>']], args['<specs_dir>'], client)
| [
37811,
198,
16684,
62,
25850,
263,
13,
9078,
198,
198,
32,
2891,
329,
33794,
2471,
328,
1453,
25274,
198,
198,
28350,
25,
198,
220,
1020,
62,
25850,
263,
13,
9078,
1279,
499,
328,
1453,
62,
2398,
29,
1279,
4125,
6359,
62,
15908,
29,
532,
84,
1279,
29460,
29,
532,
79,
1279,
28712,
29,
25915,
83,
1279,
499,
328,
1453,
62,
30001,
37981,
198,
220,
1020,
62,
25850,
263,
13,
9078,
13841,
71,
930,
1377,
16794,
8,
198,
198,
29046,
25,
198,
220,
532,
71,
1377,
16794,
220,
5438,
428,
3159,
198,
220,
532,
84,
220,
220,
220,
220,
220,
220,
220,
220,
9022,
20579,
284,
2604,
287,
351,
198,
220,
532,
79,
220,
220,
220,
220,
220,
220,
220,
220,
30275,
329,
17594,
198,
220,
532,
83,
220,
220,
220,
220,
220,
220,
220,
220,
8798,
29130,
422,
2471,
328,
1453,
198,
37811,
198,
11748,
28686,
198,
6738,
2205,
8738,
1330,
2205,
8738,
198,
6738,
2471,
328,
1453,
62,
16366,
1330,
5949,
328,
1453,
11792,
628,
198,
1677,
53,
62,
45,
29559,
796,
1391,
198,
220,
220,
220,
705,
77,
11994,
67,
12,
1676,
67,
10354,
37250,
38142,
3524,
3256,
705,
7959,
3256,
705,
600,
3256,
705,
1676,
67,
6,
4357,
198,
220,
220,
220,
705,
77,
11994,
67,
12,
13159,
1676,
67,
10354,
37250,
32538,
12,
7959,
3256,
705,
32538,
12,
20402,
12,
38142,
3524,
3256,
705,
32538,
12,
20402,
3256,
705,
5420,
20520,
198,
92,
198,
198,
37,
7112,
10619,
11319,
62,
1677,
53,
62,
45,
29559,
796,
1391,
198,
220,
220,
220,
705,
1676,
67,
10354,
29513,
35027,
8,
3256,
198,
220,
220,
220,
705,
600,
10354,
29513,
34500,
1358,
23983,
8,
3256,
198,
220,
220,
220,
705,
7959,
10354,
29513,
41206,
8,
3256,
198,
220,
220,
220,
705,
5420,
10354,
29513,
26687,
8,
3256,
198,
220,
220,
220,
705,
32538,
12,
20402,
10354,
29513,
37693,
1195,
32,
8,
3256,
198,
220,
220,
220,
705,
32538,
12,
7959,
10354,
29513,
37693,
7712,
33047,
198,
92,
198,
198,
37,
7112,
10619,
11319,
62,
17614,
62,
45,
29559,
796,
1391,
198,
220,
220,
220,
705,
22682,
12,
9536,
24188,
10354,
705,
30228,
1897,
24188,
4809,
7824,
6,
198,
92,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
26498,
796,
2205,
8738,
7,
834,
15390,
834,
8,
198,
220,
220,
220,
5456,
796,
5949,
328,
1453,
11792,
7,
22046,
17816,
27,
499,
328,
1453,
62,
2398,
29,
6,
4357,
26498,
17816,
27,
29460,
29,
6,
4357,
26498,
17816,
27,
28712,
29,
6,
4357,
26498,
17816,
27,
499,
328,
1453,
62,
30001,
29,
6,
12962,
198,
220,
220,
220,
9516,
62,
4125,
6359,
7,
1677,
53,
62,
45,
29559,
58,
22046,
17816,
27,
499,
328,
1453,
62,
2398,
29,
20520,
4357,
26498,
17816,
27,
4125,
6359,
62,
15908,
29,
6,
4357,
5456,
8,
198
] | 2.411017 | 472 |
from .simple import (
SimpleNER,
SimpleMultiLabel,
SimpleClassification,
)
from .simple_t5 import SimpleT5
| [
6738,
764,
36439,
1330,
357,
198,
220,
220,
220,
17427,
21479,
11,
198,
220,
220,
220,
17427,
29800,
33986,
11,
198,
220,
220,
220,
17427,
9487,
2649,
11,
198,
8,
198,
6738,
764,
36439,
62,
83,
20,
1330,
17427,
51,
20,
198
] | 2.833333 | 42 |
import argparse
from allennlp.common.params import Params
from allennlp.data.dataset_readers.dataset_reader import DatasetReader
from allennlp.models.archival import load_archive
from summarus.readers import *
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--archive-file', type=str, required=True)
parser.add_argument('--input-file', type=str, required=True)
parser.add_argument('--output-file', type=str, required=True)
args = parser.parse_args()
target_to_lines(**vars(args))
| [
11748,
1822,
29572,
198,
198,
6738,
477,
1697,
34431,
13,
11321,
13,
37266,
1330,
2547,
4105,
198,
6738,
477,
1697,
34431,
13,
7890,
13,
19608,
292,
316,
62,
961,
364,
13,
19608,
292,
316,
62,
46862,
1330,
16092,
292,
316,
33634,
198,
6738,
477,
1697,
34431,
13,
27530,
13,
998,
2473,
1330,
3440,
62,
17474,
198,
198,
6738,
15676,
385,
13,
961,
364,
1330,
1635,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
17474,
12,
7753,
3256,
2099,
28,
2536,
11,
2672,
28,
17821,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
15414,
12,
7753,
3256,
2099,
28,
2536,
11,
2672,
28,
17821,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
22915,
12,
7753,
3256,
2099,
28,
2536,
11,
2672,
28,
17821,
8,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
2496,
62,
1462,
62,
6615,
7,
1174,
85,
945,
7,
22046,
4008,
198
] | 2.878307 | 189 |
__author__ = 'sabe6191'
import json
import datetime
from tempest.common import rest_client
| [
834,
9800,
834,
796,
705,
82,
11231,
21,
26492,
6,
198,
198,
11748,
33918,
198,
11748,
4818,
8079,
198,
198,
6738,
20218,
395,
13,
11321,
1330,
1334,
62,
16366,
198
] | 3.1 | 30 |
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
"""
Date: 2019/11/27
Author: Xiao-Le Deng
Email: xiaoledeng at gmail.com
Function: remove duplicates in a given list
"""
# List1 = [1,1,1]
# List2 = ["John","John","John","Mark","David","David","Shalom","Shalom","Shalom"]
# print(list_remove_duplicate(List1))
# print(list_remove_duplicate(List2)) | [
2,
48443,
14629,
14,
12001,
14,
8800,
14,
29412,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
220,
220,
198,
37811,
198,
10430,
25,
13130,
14,
1157,
14,
1983,
198,
13838,
25,
28249,
12,
3123,
41985,
198,
15333,
25,
2124,
544,
45342,
1516,
379,
308,
4529,
13,
785,
198,
22203,
25,
4781,
14184,
16856,
287,
257,
1813,
1351,
198,
37811,
198,
198,
2,
7343,
16,
796,
685,
16,
11,
16,
11,
16,
60,
198,
2,
7343,
17,
796,
14631,
7554,
2430,
7554,
2430,
7554,
2430,
9704,
2430,
11006,
2430,
11006,
2430,
2484,
282,
296,
2430,
2484,
282,
296,
2430,
2484,
282,
296,
8973,
198,
198,
2,
3601,
7,
4868,
62,
28956,
62,
646,
489,
5344,
7,
8053,
16,
4008,
198,
2,
3601,
7,
4868,
62,
28956,
62,
646,
489,
5344,
7,
8053,
17,
4008
] | 2.48227 | 141 |
from django.test import TestCase
from django.contrib.auth.models import User
from .models import healthservices,neighbourhood
import datetime as dt
# Create your tests here.
| [
6738,
42625,
14208,
13,
9288,
1330,
6208,
20448,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
198,
6738,
764,
27530,
1330,
1535,
30416,
11,
710,
394,
6084,
2894,
198,
198,
11748,
4818,
8079,
355,
288,
83,
198,
2,
13610,
534,
5254,
994,
13,
628
] | 3.591837 | 49 |
#!/usr/bin/env python
from codecs import open
from ez_setup import use_setuptools
use_setuptools()
from setuptools import setup
import re
main_py = open('morfessor/__init__.py', encoding='utf-8').read()
metadata = dict(re.findall("__([a-z]+)__ = '([^']+)'", main_py))
requires = [
# 'progressbar',
]
setup(name='Morfessor',
version=metadata['version'],
author=metadata['author'],
author_email='[email protected]',
url='http://morpho.aalto.fi',
description='Morfessor',
packages=['morfessor', 'morfessor.test'],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: BSD License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Topic :: Scientific/Engineering',
],
license="BSD",
scripts=['scripts/morfessor',
'scripts/morfessor-train',
'scripts/morfessor-segment',
'scripts/morfessor-evaluate',
],
install_requires=requires,
extras_require={
'docs': [l.strip() for l in open('docs/build_requirements.txt')]
}
)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
6738,
40481,
82,
1330,
1280,
198,
6738,
304,
89,
62,
40406,
1330,
779,
62,
2617,
37623,
10141,
198,
1904,
62,
2617,
37623,
10141,
3419,
198,
198,
6738,
900,
37623,
10141,
1330,
9058,
198,
198,
11748,
302,
198,
12417,
62,
9078,
796,
1280,
10786,
4491,
69,
5987,
14,
834,
15003,
834,
13,
9078,
3256,
21004,
11639,
40477,
12,
23,
27691,
961,
3419,
198,
38993,
796,
8633,
7,
260,
13,
19796,
439,
7203,
834,
26933,
64,
12,
89,
60,
28988,
834,
796,
705,
26933,
61,
20520,
28988,
6,
1600,
1388,
62,
9078,
4008,
198,
198,
47911,
796,
685,
198,
220,
220,
220,
1303,
220,
220,
220,
705,
33723,
5657,
3256,
198,
60,
198,
198,
40406,
7,
3672,
11639,
20044,
69,
5987,
3256,
198,
220,
220,
220,
220,
220,
2196,
28,
38993,
17816,
9641,
6,
4357,
198,
220,
220,
220,
220,
220,
1772,
28,
38993,
17816,
9800,
6,
4357,
198,
220,
220,
220,
220,
220,
1772,
62,
12888,
11639,
24503,
78,
31,
64,
282,
1462,
13,
12463,
3256,
198,
220,
220,
220,
220,
220,
19016,
11639,
4023,
1378,
24503,
78,
13,
64,
282,
1462,
13,
12463,
3256,
198,
220,
220,
220,
220,
220,
6764,
11639,
20044,
69,
5987,
3256,
198,
220,
220,
220,
220,
220,
10392,
28,
17816,
4491,
69,
5987,
3256,
705,
4491,
69,
5987,
13,
9288,
6,
4357,
198,
220,
220,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
41206,
12678,
7904,
604,
532,
17993,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5317,
1631,
7591,
1240,
7904,
5800,
14,
25104,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
34156,
7904,
7294,
40,
20010,
1079,
7904,
347,
10305,
13789,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18843,
803,
4482,
7904,
7294,
13362,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
33221,
7904,
22060,
14,
13798,
1586,
3256,
198,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
5964,
2625,
21800,
1600,
198,
220,
220,
220,
220,
220,
14750,
28,
17816,
46521,
14,
4491,
69,
5987,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46521,
14,
4491,
69,
5987,
12,
27432,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46521,
14,
4491,
69,
5987,
12,
325,
5154,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46521,
14,
4491,
69,
5987,
12,
49786,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
2721,
62,
47911,
28,
47911,
11,
198,
220,
220,
220,
220,
220,
33849,
62,
46115,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
31628,
10354,
685,
75,
13,
36311,
3419,
329,
300,
287,
1280,
10786,
31628,
14,
11249,
62,
8897,
18883,
13,
14116,
11537,
60,
198,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
1267,
198
] | 2.264815 | 540 |
# -*- coding: utf-8 -*-
from yapconf.docs import build_markdown_table
# flake8: noqa
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
6738,
331,
499,
10414,
13,
31628,
1330,
1382,
62,
4102,
2902,
62,
11487,
628,
198,
2,
781,
539,
23,
25,
645,
20402,
628
] | 2.342105 | 38 |
# --depends-on channel_access
# --depends-on check_mode
# --depends-on commands
# --depends-on permissions
import enum
from src import ModuleManager, utils
| [
2,
1377,
10378,
2412,
12,
261,
6518,
62,
15526,
198,
2,
1377,
10378,
2412,
12,
261,
2198,
62,
14171,
198,
2,
1377,
10378,
2412,
12,
261,
9729,
198,
2,
1377,
10378,
2412,
12,
261,
21627,
198,
198,
11748,
33829,
198,
198,
6738,
12351,
1330,
19937,
13511,
11,
3384,
4487,
628,
628,
628,
198
] | 3.09434 | 53 |
import binascii
import csv
import gzip
import io
import sys
from sqlalchemy import MetaData, Table
from pytest_mock_resources.compat import boto3
def _parse_s3_command(statement):
"""Format, Parse and call patched 'COPY' command."""
statement = strip(statement)
params = dict()
# deleting copy
tokens = statement.split()[1:]
# Fetching table name
params["schema_name"], params["table_name"] = _split_table_name(tokens.pop(0))
# Checking for columns
if tokens[0][0] == "(":
ending_index = 0
for index, arg in enumerate(tokens):
if arg.endswith(")"):
ending_index = index
break
ending_index += 1
columns = tokens[0:ending_index]
columns[0] = columns[0].replace("(", "")
columns[-1] = columns[-1].replace(")", "")
columns = [x.replace(",", "") for x in columns]
columns = [x for x in columns if x != ""]
tokens = tokens[ending_index:]
params["columns"] = columns
# Fetching s3_uri
if tokens.pop(0).lower() != "from":
raise ValueError(
(
"Possibly malformed S3 URI Format. "
"Statement = {statement}"
"Redshift fixture only supports S3 Copy statments with the following syntax: "
"COPY <table_name> FROM [(column 1, [column2, [..]])] '<file path on S3 bucket>' "
"credentials 'aws_access_key_id=<aws_access_key_id>;"
"aws_secret_access_key=<aws_secret_access_key>'"
).format(statement=statement)
)
params["s3_uri"] = strip(tokens.pop(0))
# Fetching credentials
for token in tokens:
if "aws_access_key_id" in token.lower() or "aws_secret_access_key" in token.lower():
# This is because of the following possibiliteis:
# ... [with ]credentials[ AS] 'aws_access_key_id=x;aws_secret_access_key=y'
# OR
# ... [with ]credentials[ AS] 'aws_secret_access_key=y;aws_access_key_id=x'
# OR
# ... [with ]credentials[ AS] 'aws_secret_access_key=y;\naws_access_key_id=x'
# OR
# ... [with ]credentials[ AS] 'aws_secret_access_key=y; aws_access_key_id=x'
# Supportred AWS credentials format:
# [with ]credentials[ AS] 'aws_secret_access_key=y; aws_access_key_id=x'
# No Support for additional credential formats, eg IAM roles, etc, yet.
credentials_list = token.split(";")
for credentials in credentials_list:
if "aws_access_key_id" in credentials:
params["aws_access_key_id"] = credentials.split("=")[-1]
elif "aws_secret_access_key" in credentials:
params["aws_secret_access_key"] = credentials.split("=")[-1]
else:
raise ValueError(
(
"Possibly malformed AWS Credentials Format. "
"Statement = {statement}"
"Redshift fixture only supports S3 Copy statments with the following "
"syntax: COPY <table_name> FROM [(column 1, [column2, [..]])] '"
"<file path on S3 bucket>' "
"credentials 'aws_access_key_id=<aws_access_key_id>;"
"aws_secret_access_key=<aws_secret_access_key>' "
"Supportred AWS credentials format: "
"[with ]credentials[ AS] 'aws_secret_access_key=y; aws_access_key_id=x'"
" No Support for additional credential formats, eg IAM roles, etc, yet."
).format(statement=statement)
)
return params
def _split_table_name(table_name):
"""Split 'schema_name.table_name' to (schema_name, table_name)."""
table_name_items = table_name.split(".")
if len(table_name_items) == 1:
schema_name = None
elif len(table_name_items) == 2:
schema_name, table_name = table_name_items
else:
raise ValueError("Cannot determine schema/table name from input {}".format(table_name))
return schema_name, table_name
def _mock_s3_copy(
table_name, s3_uri, schema_name, aws_secret_access_key, aws_access_key_id, columns, engine
):
"""Execute patched 'copy' command."""
s3 = boto3.client(
"s3", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key
)
ending_index = len(s3_uri)
path_to_file = s3_uri[5:ending_index]
bucket, key = path_to_file.split("/", 1)
response = s3.get_object(Bucket=bucket, Key=key)
# the following lins of code is used to check if the file is gzipped or not.
# To do so we use magic numbers.
# A mgic number is a constant numerical or text value used to identify a file format or protocol
# The magic number for gzip compressed files is 1f 8b.
is_gzipped = binascii.hexlify(response["Body"].read(2)) == b"1f8b"
response = s3.get_object(Bucket=bucket, Key=key)
data = read_data_csv(response["Body"].read(), is_gzipped, columns)
meta = MetaData()
table = Table(table_name, meta, autoload=True, schema=schema_name, autoload_with=engine)
engine.execute(table.insert(data))
def strip(input_string):
"""Strip trailing whitespace, single/double quotes."""
return input_string.strip().rstrip(";").strip('"').strip("'")
| [
11748,
9874,
292,
979,
72,
198,
11748,
269,
21370,
198,
11748,
308,
13344,
198,
11748,
33245,
198,
11748,
25064,
198,
198,
6738,
44161,
282,
26599,
1330,
30277,
6601,
11,
8655,
198,
198,
6738,
12972,
9288,
62,
76,
735,
62,
37540,
13,
5589,
265,
1330,
275,
2069,
18,
628,
198,
198,
4299,
4808,
29572,
62,
82,
18,
62,
21812,
7,
26090,
2599,
198,
220,
220,
220,
37227,
26227,
11,
2547,
325,
290,
869,
39378,
705,
34,
3185,
56,
6,
3141,
526,
15931,
198,
220,
220,
220,
2643,
796,
10283,
7,
26090,
8,
198,
220,
220,
220,
42287,
796,
8633,
3419,
628,
220,
220,
220,
1303,
34817,
4866,
198,
220,
220,
220,
16326,
796,
2643,
13,
35312,
3419,
58,
16,
47715,
628,
220,
220,
220,
1303,
376,
7569,
278,
3084,
1438,
198,
220,
220,
220,
42287,
14692,
15952,
2611,
62,
3672,
33116,
42287,
14692,
11487,
62,
3672,
8973,
796,
4808,
35312,
62,
11487,
62,
3672,
7,
83,
482,
641,
13,
12924,
7,
15,
4008,
628,
220,
220,
220,
1303,
39432,
329,
15180,
198,
220,
220,
220,
611,
16326,
58,
15,
7131,
15,
60,
6624,
30629,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
7464,
62,
9630,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
329,
6376,
11,
1822,
287,
27056,
378,
7,
83,
482,
641,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1822,
13,
437,
2032,
342,
7,
4943,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7464,
62,
9630,
796,
6376,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
220,
220,
220,
220,
7464,
62,
9630,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
15180,
796,
16326,
58,
15,
25,
1571,
62,
9630,
60,
198,
220,
220,
220,
220,
220,
220,
220,
15180,
58,
15,
60,
796,
15180,
58,
15,
4083,
33491,
7203,
7,
1600,
366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
15180,
58,
12,
16,
60,
796,
15180,
58,
12,
16,
4083,
33491,
7,
4943,
1600,
366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
15180,
796,
685,
87,
13,
33491,
7,
2430,
11,
366,
4943,
329,
2124,
287,
15180,
60,
198,
220,
220,
220,
220,
220,
220,
220,
15180,
796,
685,
87,
329,
2124,
287,
15180,
611,
2124,
14512,
366,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
16326,
796,
16326,
58,
1571,
62,
9630,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
14692,
28665,
82,
8973,
796,
15180,
628,
220,
220,
220,
1303,
376,
7569,
278,
264,
18,
62,
9900,
198,
220,
220,
220,
611,
16326,
13,
12924,
7,
15,
737,
21037,
3419,
14512,
366,
6738,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
47,
20846,
6428,
12214,
311,
18,
43975,
18980,
13,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48682,
796,
1391,
26090,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
7738,
30846,
29220,
691,
6971,
311,
18,
17393,
1185,
902,
351,
262,
1708,
15582,
25,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
34,
3185,
56,
1279,
11487,
62,
3672,
29,
16034,
47527,
28665,
352,
11,
685,
28665,
17,
11,
685,
492,
11907,
15437,
705,
27,
7753,
3108,
319,
311,
18,
19236,
29,
6,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
66,
445,
14817,
705,
8356,
62,
15526,
62,
2539,
62,
312,
28,
27,
8356,
62,
15526,
62,
2539,
62,
312,
29,
26033,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
8356,
62,
21078,
62,
15526,
62,
2539,
28,
27,
8356,
62,
21078,
62,
15526,
62,
2539,
29,
29653,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6739,
18982,
7,
26090,
28,
26090,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
42287,
14692,
82,
18,
62,
9900,
8973,
796,
10283,
7,
83,
482,
641,
13,
12924,
7,
15,
4008,
628,
220,
220,
220,
1303,
376,
7569,
278,
18031,
198,
220,
220,
220,
329,
11241,
287,
16326,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
366,
8356,
62,
15526,
62,
2539,
62,
312,
1,
287,
11241,
13,
21037,
3419,
393,
366,
8356,
62,
21078,
62,
15526,
62,
2539,
1,
287,
11241,
13,
21037,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
770,
318,
780,
286,
262,
1708,
1184,
571,
346,
578,
271,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2644,
685,
4480,
2361,
66,
445,
14817,
58,
7054,
60,
705,
8356,
62,
15526,
62,
2539,
62,
312,
28,
87,
26,
8356,
62,
21078,
62,
15526,
62,
2539,
28,
88,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6375,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2644,
685,
4480,
2361,
66,
445,
14817,
58,
7054,
60,
705,
8356,
62,
21078,
62,
15526,
62,
2539,
28,
88,
26,
8356,
62,
15526,
62,
2539,
62,
312,
28,
87,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6375,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2644,
685,
4480,
2361,
66,
445,
14817,
58,
7054,
60,
705,
8356,
62,
21078,
62,
15526,
62,
2539,
28,
88,
26,
59,
77,
8356,
62,
15526,
62,
2539,
62,
312,
28,
87,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6375,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2644,
685,
4480,
2361,
66,
445,
14817,
58,
7054,
60,
705,
8356,
62,
21078,
62,
15526,
62,
2539,
28,
88,
26,
3253,
82,
62,
15526,
62,
2539,
62,
312,
28,
87,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
7929,
445,
30865,
18031,
5794,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
685,
4480,
2361,
66,
445,
14817,
58,
7054,
60,
705,
8356,
62,
21078,
62,
15526,
62,
2539,
28,
88,
26,
3253,
82,
62,
15526,
62,
2539,
62,
312,
28,
87,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1400,
7929,
329,
3224,
49920,
17519,
11,
29206,
314,
2390,
9176,
11,
3503,
11,
1865,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18031,
62,
4868,
796,
11241,
13,
35312,
7203,
26,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
18031,
287,
18031,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
366,
8356,
62,
15526,
62,
2539,
62,
312,
1,
287,
18031,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
14692,
8356,
62,
15526,
62,
2539,
62,
312,
8973,
796,
18031,
13,
35312,
7203,
2625,
38381,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
366,
8356,
62,
21078,
62,
15526,
62,
2539,
1,
287,
18031,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
14692,
8356,
62,
21078,
62,
15526,
62,
2539,
8973,
796,
18031,
13,
35312,
7203,
2625,
38381,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
47,
20846,
6428,
12214,
30865,
327,
445,
14817,
18980,
13,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48682,
796,
1391,
26090,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
7738,
30846,
29220,
691,
6971,
311,
18,
17393,
1185,
902,
351,
262,
1708,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1837,
41641,
25,
27975,
56,
1279,
11487,
62,
3672,
29,
16034,
47527,
28665,
352,
11,
685,
28665,
17,
11,
685,
492,
11907,
15437,
705,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33490,
7753,
3108,
319,
311,
18,
19236,
29,
6,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
66,
445,
14817,
705,
8356,
62,
15526,
62,
2539,
62,
312,
28,
27,
8356,
62,
15526,
62,
2539,
62,
312,
29,
26033,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
8356,
62,
21078,
62,
15526,
62,
2539,
28,
27,
8356,
62,
21078,
62,
15526,
62,
2539,
29,
6,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15514,
445,
30865,
18031,
5794,
25,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12878,
4480,
2361,
66,
445,
14817,
58,
7054,
60,
705,
8356,
62,
21078,
62,
15526,
62,
2539,
28,
88,
26,
3253,
82,
62,
15526,
62,
2539,
62,
312,
28,
87,
29653,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1400,
7929,
329,
3224,
49920,
17519,
11,
29206,
314,
2390,
9176,
11,
3503,
11,
1865,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6739,
18982,
7,
26090,
28,
26090,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
1441,
42287,
628,
198,
4299,
4808,
35312,
62,
11487,
62,
3672,
7,
11487,
62,
3672,
2599,
198,
220,
220,
220,
37227,
41205,
705,
15952,
2611,
62,
3672,
13,
11487,
62,
3672,
6,
284,
357,
15952,
2611,
62,
3672,
11,
3084,
62,
3672,
21387,
15931,
198,
220,
220,
220,
3084,
62,
3672,
62,
23814,
796,
3084,
62,
3672,
13,
35312,
7203,
19570,
198,
220,
220,
220,
611,
18896,
7,
11487,
62,
3672,
62,
23814,
8,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
32815,
62,
3672,
796,
6045,
198,
220,
220,
220,
1288,
361,
18896,
7,
11487,
62,
3672,
62,
23814,
8,
6624,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
32815,
62,
3672,
11,
3084,
62,
3672,
796,
3084,
62,
3672,
62,
23814,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
34,
34574,
5004,
32815,
14,
11487,
1438,
422,
5128,
23884,
1911,
18982,
7,
11487,
62,
3672,
4008,
198,
220,
220,
220,
1441,
32815,
62,
3672,
11,
3084,
62,
3672,
628,
198,
4299,
4808,
76,
735,
62,
82,
18,
62,
30073,
7,
198,
220,
220,
220,
3084,
62,
3672,
11,
264,
18,
62,
9900,
11,
32815,
62,
3672,
11,
3253,
82,
62,
21078,
62,
15526,
62,
2539,
11,
3253,
82,
62,
15526,
62,
2539,
62,
312,
11,
15180,
11,
3113,
198,
2599,
198,
220,
220,
220,
37227,
23002,
1133,
39378,
705,
30073,
6,
3141,
526,
15931,
198,
220,
220,
220,
264,
18,
796,
275,
2069,
18,
13,
16366,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
18,
1600,
3253,
82,
62,
15526,
62,
2539,
62,
312,
28,
8356,
62,
15526,
62,
2539,
62,
312,
11,
3253,
82,
62,
21078,
62,
15526,
62,
2539,
28,
8356,
62,
21078,
62,
15526,
62,
2539,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
7464,
62,
9630,
796,
18896,
7,
82,
18,
62,
9900,
8,
198,
220,
220,
220,
3108,
62,
1462,
62,
7753,
796,
264,
18,
62,
9900,
58,
20,
25,
1571,
62,
9630,
60,
198,
220,
220,
220,
19236,
11,
1994,
796,
3108,
62,
1462,
62,
7753,
13,
35312,
7203,
14,
1600,
352,
8,
198,
220,
220,
220,
2882,
796,
264,
18,
13,
1136,
62,
15252,
7,
33,
38811,
28,
27041,
316,
11,
7383,
28,
2539,
8,
628,
220,
220,
220,
1303,
262,
1708,
300,
1040,
286,
2438,
318,
973,
284,
2198,
611,
262,
2393,
318,
308,
89,
3949,
393,
407,
13,
198,
220,
220,
220,
1303,
1675,
466,
523,
356,
779,
5536,
3146,
13,
198,
220,
220,
220,
1303,
317,
10527,
291,
1271,
318,
257,
6937,
29052,
393,
2420,
1988,
973,
284,
5911,
257,
2393,
5794,
393,
8435,
198,
220,
220,
220,
1303,
383,
5536,
1271,
329,
308,
13344,
25388,
3696,
318,
352,
69,
807,
65,
13,
198,
220,
220,
220,
318,
62,
34586,
3949,
796,
9874,
292,
979,
72,
13,
33095,
75,
1958,
7,
26209,
14692,
25842,
1,
4083,
961,
7,
17,
4008,
6624,
275,
1,
16,
69,
23,
65,
1,
628,
220,
220,
220,
2882,
796,
264,
18,
13,
1136,
62,
15252,
7,
33,
38811,
28,
27041,
316,
11,
7383,
28,
2539,
8,
198,
220,
220,
220,
1366,
796,
1100,
62,
7890,
62,
40664,
7,
26209,
14692,
25842,
1,
4083,
961,
22784,
318,
62,
34586,
3949,
11,
15180,
8,
628,
220,
220,
220,
13634,
796,
30277,
6601,
3419,
198,
220,
220,
220,
3084,
796,
8655,
7,
11487,
62,
3672,
11,
13634,
11,
1960,
349,
1170,
28,
17821,
11,
32815,
28,
15952,
2611,
62,
3672,
11,
1960,
349,
1170,
62,
4480,
28,
18392,
8,
198,
220,
220,
220,
3113,
13,
41049,
7,
11487,
13,
28463,
7,
7890,
4008,
628,
198,
198,
4299,
10283,
7,
15414,
62,
8841,
2599,
198,
220,
220,
220,
37227,
1273,
5528,
25462,
13216,
10223,
11,
2060,
14,
23352,
13386,
526,
15931,
198,
220,
220,
220,
1441,
5128,
62,
8841,
13,
36311,
22446,
81,
36311,
7203,
26,
11074,
36311,
10786,
1,
27691,
36311,
7203,
6,
4943,
198
] | 2.170991 | 2,544 |
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_login import LoginManager
from flask_bcrypt import Bcrypt
from iotools.config import Config
db = SQLAlchemy()
bcrypt = Bcrypt()
login_manager = LoginManager()
login_manager.login_view = 'sessions.login'
login_manager.login_message_category = 'info'
| [
6738,
42903,
1330,
46947,
198,
6738,
42903,
62,
25410,
282,
26599,
1330,
16363,
2348,
26599,
198,
6738,
42903,
62,
38235,
1330,
23093,
13511,
198,
6738,
42903,
62,
15630,
6012,
1330,
347,
29609,
198,
6738,
1312,
313,
10141,
13,
11250,
1330,
17056,
628,
198,
9945,
796,
16363,
2348,
26599,
3419,
198,
15630,
6012,
796,
347,
29609,
3419,
198,
38235,
62,
37153,
796,
23093,
13511,
3419,
198,
38235,
62,
37153,
13,
38235,
62,
1177,
796,
705,
82,
6202,
13,
38235,
6,
198,
38235,
62,
37153,
13,
38235,
62,
20500,
62,
22872,
796,
705,
10951,
6,
628
] | 3.478723 | 94 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.