content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import unittest from partname_resolver.components.inductor import Inductor from partname_resolver.units.temperature import TemperatureRange
[ 11748, 555, 715, 395, 198, 6738, 636, 3672, 62, 411, 14375, 13, 5589, 3906, 13, 10259, 2715, 1330, 1423, 33029, 198, 6738, 636, 3672, 62, 411, 14375, 13, 41667, 13, 11498, 21069, 1330, 34467, 17257, 628 ]
3.916667
36
# -*- coding: utf-8 -*- # # Copyright (C) 2021 CESNET. # # CESNET-OpenID-Remote is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see LICENSE file for more # details. """CESNET OIDC Auth backend for OARepo""" import os from setuptools import find_packages, setup readme = open('README.md').read() history = open('CHANGES.rst').read() OAREPO_VERSION = os.environ.get('OAREPO_VERSION', '3.3.0') tests_require = [ 'pydocstyle', 'isort', 'oarepo-communities>=1.1.0', 'invenio-oauthclient==1.4.0' ] extras_require = { 'tests': [ 'oarepo[tests]~={version}'.format(version=OAREPO_VERSION), *tests_require ] } extras_require['all'] = [] for reqs in extras_require.values(): extras_require['all'].extend(reqs) setup_requires = [ ] install_requires = [ 'urnparse>=0.2.0', 'invenio-openid-connect>=2.1.0', ] packages = find_packages(exclude=['examples', 'tests']) # Get the version string. Cannot be done with import! g = {} with open(os.path.join('cesnet_openid_remote', 'version.py'), 'rt') as fp: exec(fp.read(), g) version = g['__version__'] setup( name='cesnet-openid-remote', version=version, description=__doc__, long_description=readme + '\n\n' + history, long_description_content_type='text/markdown', keywords='invenio oarepo oauth openidc auth groups', license='MIT', author='Miroslav Bauer', author_email='[email protected]', url='https://github.com/oarepo/cesnet-openid-remote', packages=packages, zip_safe=False, include_package_data=True, platforms='any', entry_points={ 'flask.commands': [ 'cesnet:group = cesnet_openid_remote.cli:cesnet_group', ], 'invenio_base.apps': [ 'cesnet_openid_remote = cesnet_openid_remote:CESNETOpenIDRemote', ], # TODO: Edit these entry points to fit your needs. # 'invenio_access.actions': [], # 'invenio_admin.actions': [], # 'invenio_assets.bundles': [], 'invenio_base.api_apps': [ 'cesnet_openid_remote = cesnet_openid_remote:CESNETOpenIDRemote', ], # 'invenio_base.api_blueprints': [], # 'invenio_base.blueprints': [], # 'invenio_celery.tasks': [], 'invenio_db.models': [ 'cesnet_openid_remote = cesnet_openid_remote.models', ], 'invenio_db.alembic': [ 'cesnet_openid_remote = cesnet_openid_remote:alembic', ], # 'invenio_pidstore.minters': [], # 'invenio_records.jsonresolver': [], }, extras_require=extras_require, install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Development Status :: 1 - Planning', ], )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 33448, 42700, 12884, 13, 198, 2, 198, 2, 42700, 12884, 12, 11505, 2389, 12, 36510, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 198, 2, 13096, 340, 739, 262, 2846, 286, 262, 17168, 13789, 26, 766, 38559, 24290, 2393, 329, 517, 198, 2, 3307, 13, 198, 198, 37811, 34, 1546, 12884, 440, 2389, 34, 26828, 30203, 329, 440, 1503, 538, 78, 37811, 198, 198, 11748, 28686, 198, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 198, 961, 1326, 796, 1280, 10786, 15675, 11682, 13, 9132, 27691, 961, 3419, 198, 23569, 796, 1280, 10786, 3398, 15567, 1546, 13, 81, 301, 27691, 961, 3419, 198, 198, 46, 1503, 8905, 46, 62, 43717, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 46, 1503, 8905, 46, 62, 43717, 3256, 705, 18, 13, 18, 13, 15, 11537, 198, 198, 41989, 62, 46115, 796, 685, 198, 220, 220, 220, 705, 79, 5173, 420, 7635, 3256, 198, 220, 220, 220, 705, 271, 419, 3256, 198, 220, 220, 220, 705, 78, 533, 7501, 12, 10709, 871, 29, 28, 16, 13, 16, 13, 15, 3256, 198, 220, 220, 220, 705, 259, 574, 952, 12, 12162, 1071, 16366, 855, 16, 13, 19, 13, 15, 6, 198, 60, 198, 198, 2302, 8847, 62, 46115, 796, 1391, 198, 220, 220, 220, 705, 41989, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 78, 533, 7501, 58, 41989, 60, 93, 34758, 9641, 92, 4458, 18982, 7, 9641, 28, 46, 1503, 8905, 46, 62, 43717, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 41989, 62, 46115, 198, 220, 220, 220, 2361, 198, 92, 198, 198, 2302, 8847, 62, 46115, 17816, 439, 20520, 796, 17635, 198, 1640, 43089, 82, 287, 33849, 62, 46115, 13, 27160, 33529, 198, 220, 220, 220, 33849, 62, 46115, 17816, 439, 6, 4083, 2302, 437, 7, 42180, 82, 8, 198, 198, 40406, 62, 47911, 796, 685, 198, 60, 198, 198, 17350, 62, 47911, 796, 685, 198, 220, 220, 220, 705, 700, 29572, 29, 28, 15, 13, 17, 13, 15, 3256, 198, 220, 220, 220, 705, 259, 574, 952, 12, 9654, 312, 12, 8443, 29, 28, 17, 13, 16, 13, 15, 3256, 198, 60, 198, 198, 43789, 796, 1064, 62, 43789, 7, 1069, 9152, 28, 17816, 1069, 12629, 3256, 705, 41989, 6, 12962, 628, 198, 2, 3497, 262, 2196, 4731, 13, 26003, 307, 1760, 351, 1330, 0, 198, 70, 796, 23884, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 10786, 728, 3262, 62, 9654, 312, 62, 47960, 3256, 705, 9641, 13, 9078, 33809, 705, 17034, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 2452, 7, 46428, 13, 961, 22784, 308, 8, 198, 220, 220, 220, 2196, 796, 308, 17816, 834, 9641, 834, 20520, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 728, 3262, 12, 9654, 312, 12, 47960, 3256, 198, 220, 220, 220, 2196, 28, 9641, 11, 198, 220, 220, 220, 6764, 28, 834, 15390, 834, 11, 198, 220, 220, 220, 890, 62, 11213, 28, 961, 1326, 1343, 705, 59, 77, 59, 77, 6, 1343, 2106, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 11639, 5239, 14, 4102, 2902, 3256, 198, 220, 220, 220, 26286, 11639, 259, 574, 952, 267, 533, 7501, 267, 18439, 1280, 312, 66, 6284, 2628, 3256, 198, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 220, 220, 220, 1772, 11639, 41541, 4951, 18809, 41971, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 65, 16261, 31, 728, 3262, 13, 26691, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 78, 533, 7501, 14, 728, 3262, 12, 9654, 312, 12, 47960, 3256, 198, 220, 220, 220, 10392, 28, 43789, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 9554, 11639, 1092, 3256, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2704, 2093, 13, 9503, 1746, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 728, 3262, 25, 8094, 796, 269, 274, 3262, 62, 9654, 312, 62, 47960, 13, 44506, 25, 728, 3262, 62, 8094, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 705, 259, 574, 952, 62, 8692, 13, 18211, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 728, 3262, 62, 9654, 312, 62, 47960, 796, 269, 274, 3262, 62, 9654, 312, 62, 47960, 25, 34, 1546, 12884, 11505, 2389, 36510, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 5312, 777, 5726, 2173, 284, 4197, 534, 2476, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 574, 952, 62, 15526, 13, 4658, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 574, 952, 62, 28482, 13, 4658, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 574, 952, 62, 19668, 13, 65, 917, 829, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 259, 574, 952, 62, 8692, 13, 15042, 62, 18211, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 728, 3262, 62, 9654, 312, 62, 47960, 796, 269, 274, 3262, 62, 9654, 312, 62, 47960, 25, 34, 1546, 12884, 11505, 2389, 36510, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 574, 952, 62, 8692, 13, 15042, 62, 17585, 17190, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 574, 952, 62, 8692, 13, 17585, 17190, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 574, 952, 62, 7015, 88, 13, 83, 6791, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 259, 574, 952, 62, 9945, 13, 27530, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 728, 3262, 62, 9654, 312, 62, 47960, 796, 269, 274, 3262, 62, 9654, 312, 62, 47960, 13, 27530, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 705, 259, 574, 952, 62, 9945, 13, 282, 24419, 291, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 728, 3262, 62, 9654, 312, 62, 47960, 796, 269, 274, 3262, 62, 9654, 312, 62, 47960, 25, 282, 24419, 291, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 574, 952, 62, 35317, 8095, 13, 1084, 1010, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 574, 952, 62, 8344, 3669, 13, 17752, 411, 14375, 10354, 685, 4357, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 33849, 62, 46115, 28, 2302, 8847, 62, 46115, 11, 198, 220, 220, 220, 2721, 62, 47911, 28, 17350, 62, 47911, 11, 198, 220, 220, 220, 9058, 62, 47911, 28, 40406, 62, 47911, 11, 198, 220, 220, 220, 5254, 62, 46115, 28, 41989, 62, 46115, 11, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31441, 7904, 5313, 9344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 34152, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18843, 803, 4482, 7904, 7294, 13362, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4455, 7904, 13505, 54, 14, 40717, 7904, 26977, 14041, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 10442, 7712, 7904, 46267, 7904, 11361, 3401, 5028, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 24, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 352, 532, 21913, 3256, 198, 220, 220, 220, 16589, 198, 8, 198 ]
2.322733
1,478
high_resource_language_list = [ 'bg', 'cs', 'da', 'de', 'en', 'es', 'eu', 'fa', 'fi', 'fr', 'he', 'hi', 'hr', 'id', 'it', 'nl', 'no', 'pl', 'pt', 'sl', 'sv' ] low_resource_language_list = [ 'el', 'et', 'ga', 'hu', 'ro', 'ta' ] extra_language_list_ud12 = [ 'ar', 'cu', 'fi_ftb', 'got', 'grc', 'grc_proiel', 'la', 'la_itt', 'la_proiel' ] extra_low_resource_language_list_ud26 = [ 'be_hse', 'cop_scriptorium', 'lt_hse', 'mr_ufal', 'ta_ttb', 'te_mtg' ]
[ 8929, 62, 31092, 62, 16129, 62, 4868, 796, 685, 198, 220, 220, 220, 705, 35904, 3256, 705, 6359, 3256, 705, 6814, 3256, 705, 2934, 3256, 705, 268, 3256, 705, 274, 3256, 705, 12496, 3256, 705, 13331, 3256, 705, 12463, 3256, 705, 8310, 3256, 705, 258, 3256, 705, 5303, 3256, 220, 198, 220, 220, 220, 705, 11840, 3256, 705, 312, 3256, 705, 270, 3256, 705, 21283, 3256, 705, 3919, 3256, 705, 489, 3256, 705, 457, 3256, 705, 6649, 3256, 705, 21370, 6, 198, 60, 198, 9319, 62, 31092, 62, 16129, 62, 4868, 796, 685, 198, 220, 220, 220, 705, 417, 3256, 705, 316, 3256, 705, 4908, 3256, 705, 13415, 3256, 705, 305, 3256, 705, 8326, 6, 198, 60, 198, 26086, 62, 16129, 62, 4868, 62, 463, 1065, 796, 685, 198, 220, 220, 220, 705, 283, 3256, 705, 27399, 3256, 220, 705, 12463, 62, 701, 65, 3256, 705, 23442, 3256, 705, 2164, 66, 3256, 705, 2164, 66, 62, 1676, 8207, 3256, 220, 198, 220, 220, 220, 705, 5031, 3256, 705, 5031, 62, 715, 3256, 705, 5031, 62, 1676, 8207, 6, 198, 60, 198, 26086, 62, 9319, 62, 31092, 62, 16129, 62, 4868, 62, 463, 2075, 796, 685, 198, 220, 220, 220, 705, 1350, 62, 71, 325, 3256, 705, 22163, 62, 12048, 273, 1505, 3256, 705, 2528, 62, 71, 325, 3256, 705, 43395, 62, 3046, 282, 3256, 705, 8326, 62, 926, 65, 3256, 705, 660, 62, 16762, 70, 6, 198, 60, 198 ]
1.991632
239
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import cast, Iterable, Optional, Set, TYPE_CHECKING, FrozenSet from cirq import circuits, value, devices, ops, protocols from cirq.ion import convert_to_ion_gates if TYPE_CHECKING: import cirq @value.value_equality class IonDevice(devices.Device): """A device with qubits placed on a line. Qubits have all-to-all connectivity. """ def __init__(self, measurement_duration: 'cirq.DURATION_LIKE', twoq_gates_duration: 'cirq.DURATION_LIKE', oneq_gates_duration: 'cirq.DURATION_LIKE', qubits: Iterable[devices.LineQubit]) -> None: """Initializes the description of an ion trap device. Args: measurement_duration: The maximum duration of a measurement. twoq_gates_duration: The maximum duration of a two qubit operation. oneq_gates_duration: The maximum duration of a single qubit operation. qubits: Qubits on the device, identified by their x, y location. """ self._measurement_duration = value.Duration(measurement_duration) self._twoq_gates_duration = value.Duration(twoq_gates_duration) self._oneq_gates_duration = value.Duration(oneq_gates_duration) self.qubits = frozenset(qubits) def at(self, position: int) -> Optional[devices.LineQubit]: """Returns the qubit at the given position, if there is one, else None. """ q = devices.LineQubit(position) return q if q in self.qubits else None def neighbors_of(self, qubit: devices.LineQubit): """Returns the qubits that the given qubit can interact with.""" possibles = [ devices.LineQubit(qubit.x + 1), devices.LineQubit(qubit.x - 1), ] return [e for e in possibles if e in self.qubits]
[ 2, 15069, 2864, 383, 21239, 80, 34152, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 19720, 1330, 3350, 11, 40806, 540, 11, 32233, 11, 5345, 11, 41876, 62, 50084, 2751, 11, 23673, 7248, 198, 198, 6738, 10774, 80, 1330, 24907, 11, 1988, 11, 4410, 11, 39628, 11, 19565, 198, 6738, 10774, 80, 13, 295, 1330, 10385, 62, 1462, 62, 295, 62, 70, 689, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 1330, 10774, 80, 628, 198, 31, 8367, 13, 8367, 62, 48203, 198, 4871, 36404, 24728, 7, 42034, 13, 24728, 2599, 198, 220, 220, 220, 37227, 32, 3335, 351, 627, 9895, 4624, 319, 257, 1627, 13, 628, 220, 220, 220, 1195, 549, 896, 423, 477, 12, 1462, 12, 439, 19843, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 15558, 62, 32257, 25, 705, 66, 343, 80, 13, 35, 4261, 6234, 62, 31271, 7336, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 734, 80, 62, 70, 689, 62, 32257, 25, 705, 66, 343, 80, 13, 35, 4261, 6234, 62, 31271, 7336, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 80, 62, 70, 689, 62, 32257, 25, 705, 66, 343, 80, 13, 35, 4261, 6234, 62, 31271, 7336, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 9895, 25, 40806, 540, 58, 42034, 13, 13949, 48, 549, 270, 12962, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 262, 6764, 286, 281, 22088, 12840, 3335, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 32257, 25, 383, 5415, 9478, 286, 257, 15558, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 734, 80, 62, 70, 689, 62, 32257, 25, 383, 5415, 9478, 286, 257, 734, 627, 2545, 4905, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 80, 62, 70, 689, 62, 32257, 25, 383, 5415, 9478, 286, 257, 2060, 627, 2545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4905, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 9895, 25, 1195, 549, 896, 319, 262, 3335, 11, 5174, 416, 511, 2124, 11, 331, 4067, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1326, 5015, 434, 62, 32257, 796, 1988, 13, 26054, 7, 1326, 5015, 434, 62, 32257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11545, 80, 62, 70, 689, 62, 32257, 796, 1988, 13, 26054, 7, 11545, 80, 62, 70, 689, 62, 32257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 505, 80, 62, 70, 689, 62, 32257, 796, 1988, 13, 26054, 7, 505, 80, 62, 70, 689, 62, 32257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 421, 9895, 796, 8400, 8247, 316, 7, 421, 9895, 8, 628, 220, 220, 220, 825, 379, 7, 944, 11, 2292, 25, 493, 8, 4613, 32233, 58, 42034, 13, 13949, 48, 549, 270, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 627, 2545, 379, 262, 1813, 2292, 11, 611, 612, 318, 530, 11, 2073, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 4410, 13, 13949, 48, 549, 270, 7, 9150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10662, 611, 10662, 287, 2116, 13, 421, 9895, 2073, 6045, 628, 220, 220, 220, 825, 12020, 62, 1659, 7, 944, 11, 627, 2545, 25, 4410, 13, 13949, 48, 549, 270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 627, 9895, 326, 262, 1813, 627, 2545, 460, 9427, 351, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1184, 18764, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4410, 13, 13949, 48, 549, 270, 7, 421, 2545, 13, 87, 1343, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4410, 13, 13949, 48, 549, 270, 7, 421, 2545, 13, 87, 532, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 68, 329, 304, 287, 1184, 18764, 611, 304, 287, 2116, 13, 421, 9895, 60, 628 ]
2.665567
909
#coding=utf-8 # Copyright (C) 2020 ATHENA AUTHORS; LanYu; # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ LJspeech dataset This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading passages from 7 non-fiction books. A transcription is provided for each clip. Clips vary in length from 1 to 10 seconds and have a total length of approximately 24 hours. detailed information can be seen on https://keithito.com/LJ-Speech-Dataset """ import os import re import sys import tarfile import inflect import urllib import tempfile import codecs import pandas from absl import logging from sklearn.model_selection import train_test_split from unidecode import unidecode import tensorflow as tf from athena import get_wave_file_length GFILE = tf.compat.v1.gfile URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" #------------normalize_numbers--------------# _INFLECT = inflect.engine() _COMMA_NUMBER_RE = re.compile(r'([0-9][0-9\,]+[0-9])') _DECIMAL_NUMBER_RE = re.compile(r'([0-9]+\.[0-9]+)') _POUNDS_RE = re.compile(r'£([0-9\,]*[0-9]+)') _DOLLARS_RE = re.compile(r'\$([0-9\.\,]*[0-9]+)') _ORDINAL_RE = re.compile(r'[0-9]+(st|nd|rd|th)') _NUMBER_RE = re.compile(r'[0-9]+') def normalize_numbers(text): """ normalize numbers in text """ text = re.sub(_COMMA_NUMBER_RE, _remove_commas, text) text = re.sub(_POUNDS_RE, r'\1 pounds', text) text = re.sub(_DOLLARS_RE, _expand_dollars, text) text = re.sub(_DECIMAL_NUMBER_RE, _expand_decimal_point, text) text = re.sub(_ORDINAL_RE, _expand_ordinal, text) text = re.sub(_NUMBER_RE, _expand_number, text) return text #---------------clean_text---------------# # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('Mrs', 'Misess'), ('Mr', 'Mister'), ('Dr', 'Doctor'), ('St', 'Saint'), ('Co', 'Company'), ('Jr', 'Junior'), ('Maj', 'Major'), ('Gen', 'General'), ('Drs', 'Doctors'), ('Rev', 'Reverend'), ('Lt', 'Lieutenant'), ('Hon', 'Honorable'), ('Sgt', 'Sergeant'), ('Capt', 'Captain'), ('Esq', 'Esquire'), ('Ltd', 'Limited'), ('Col', 'Colonel'), ('Ft', 'Fort'), ]] def expand_abbreviations(text): """ expand abbreviations in text """ for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text def collapse_whitespace(text): """ collapse whitespace in text """ return re.sub(_whitespace_re, ' ', text) # NOTE (kan-bayashi): Following functions additionally defined, not inclueded in original codes. def remove_unnecessary_symbols(text): """ remove unnecessary symbols in text """ text = re.sub(r'[\(\)\[\]\<\>\"]+', '', text) return text def expand_symbols(text): """ expand symbols in text """ text = re.sub("\;", ",", text) text = re.sub("\:", ",", text) text = re.sub("\-", " ", text) text = re.sub("\&", "and", text) return text def preprocess(text): '''Custom pipeline for English text, including number and abbreviation expansion.''' text = convert_to_ascii(text) text = normalize_numbers(text) text = expand_abbreviations(text) text = expand_symbols(text) text = remove_unnecessary_symbols(text) text = collapse_whitespace(text) return text def download_and_extract(directory, url): """Download and extract the given split of dataset. Args: directory: the directory where to extract the tarball. url: the url to download the data file. """ if not GFILE.Exists(directory): GFILE.MakeDirs(directory) _, tar_filepath = tempfile.mkstemp(suffix=".tar.bz2") try: logging.info("Downloading %s to %s" % (url, tar_filepath)) urllib.request.urlretrieve(url, tar_filepath, _progress) statinfo = os.stat(tar_filepath) logging.info( "Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size) ) with tarfile.open(tar_filepath, "r") as tar: tar.extractall(directory) logging.info("Successfully extracted data from LJSpeech-1.1.tar.bz2") finally: GFILE.Remove(tar_filepath) #----------------create total.csv----------------- def convert_audio_and_split_transcript(dataset_dir, total_csv_path): """Convert rar to WAV and split the transcript. Args: dataset_dir : the directory which holds the input dataset. total_csv_path : the resulting output csv file. LJSpeech-1.1 dir Tree structure: LJSpeech-1.1 -metadata.csv -LJ001-0002|in being comparatively modern.|in being comparatively modern. ... -wavs -LJ001-0001.wav -LJ001-0002.wav ... -LJ050-0278 -pcms -audio-LJ001-0001.s16 -audio-LJ001-0002.s16 ... """ logging.info("Processing audio and transcript for {}".format("all_files")) wav_dir = os.path.join(dataset_dir, "LJSpeech-1.1/wavs/") files = [] # ProsodyLabel ---word with codecs.open(os.path.join(dataset_dir, "LJSpeech-1.1/metadata.csv"), "r", encoding="utf-8") as f: for line in f: wav_name = line.split('|')[0] + '.wav' wav_file = os.path.join(wav_dir, wav_name) wav_length = get_wave_file_length(wav_file) #get transcript content = line.split('|')[2] clean_content = preprocess(content.rstrip()) transcript = ' '.join(list(clean_content)) transcript = transcript.replace(' ', ' <space>') transcript = 'sp1 ' + transcript + ' sil' #' sil\n' files.append((os.path.abspath(wav_file), wav_length, transcript)) # Write to txt file which contains three columns: fp = open(total_csv_path, 'w', encoding="utf-8") fp.write("wav_filename"+'\t' "wav_length_ms"+'\t' "transcript"+'\n') for i in range(len(files)): fp.write(str(files[i][0])+'\t') fp.write(str(files[i][1])+'\t') fp.write(str(files[i][2])+'\n') fp.close() logging.info("Successfully generated csv file {}".format(total_csv_path)) def processor(dircetory): """ download and process """ #logging.info("Downloading the dataset may take a long time so you can download it in another way and move it to the dircetory {}".format(dircetory)) LJSpeech = os.path.join(dircetory, "LJSpeech-1.1.tar.bz2") if os.path.exists(LJSpeech): logging.info("{} already exist".format(LJSpeech)) else: download_and_extract(dircetory, URL) # get total_csv logging.info("Processing the LJspeech total.csv in {}".format(dircetory)) total_csv_path = os.path.join(dircetory, "total.csv") convert_audio_and_split_transcript(dircetory, total_csv_path) split_train_dev_test(total_csv_path, dircetory) logging.info("Finished processing LJspeech csv ") if __name__ == "__main__": logging.set_verbosity(logging.INFO) DIR = sys.argv[1] processor(DIR)
[ 2, 66, 7656, 28, 40477, 12, 23, 198, 2, 15069, 357, 34, 8, 12131, 317, 4221, 45510, 37195, 20673, 26, 14730, 40728, 26, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 406, 41, 45862, 27039, 198, 1212, 318, 257, 1171, 7386, 4046, 27039, 17747, 286, 1511, 11, 3064, 1790, 6597, 19166, 286, 257, 2060, 10834, 198, 25782, 22674, 422, 767, 1729, 12, 24046, 3835, 13, 317, 26955, 318, 2810, 329, 1123, 10651, 13, 198, 2601, 2419, 7565, 287, 4129, 422, 352, 284, 838, 4201, 290, 423, 257, 2472, 4129, 286, 6702, 1987, 2250, 13, 198, 15255, 6255, 1321, 460, 307, 1775, 319, 3740, 1378, 365, 342, 10094, 13, 785, 14, 43, 41, 12, 5248, 3055, 12, 27354, 292, 316, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 13422, 7753, 198, 11748, 1167, 801, 198, 11748, 2956, 297, 571, 198, 11748, 20218, 7753, 198, 11748, 40481, 82, 198, 11748, 19798, 292, 198, 6738, 2352, 75, 1330, 18931, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 555, 485, 8189, 1330, 555, 485, 8189, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 379, 831, 64, 1330, 651, 62, 19204, 62, 7753, 62, 13664, 628, 198, 38, 25664, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 70, 7753, 198, 21886, 796, 366, 5450, 1378, 7890, 13, 365, 342, 10094, 13, 785, 14, 7890, 14, 45862, 14, 43, 41, 5248, 3055, 12, 16, 13, 16, 13, 18870, 13, 65, 89, 17, 1, 198, 198, 2, 10541, 11265, 1096, 62, 77, 17024, 26171, 2, 198, 62, 1268, 37, 16779, 796, 1167, 801, 13, 18392, 3419, 198, 62, 9858, 5673, 62, 41359, 13246, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 26933, 15, 12, 24, 7131, 15, 12, 24, 59, 11, 48688, 58, 15, 12, 24, 12962, 11537, 198, 62, 41374, 3955, 1847, 62, 41359, 13246, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 26933, 15, 12, 24, 48688, 59, 3693, 15, 12, 24, 60, 28988, 11537, 198, 62, 47, 19385, 5258, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 14988, 26933, 15, 12, 24, 59, 11, 60, 9, 58, 15, 12, 24, 60, 28988, 11537, 198, 62, 18227, 3069, 27415, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 3, 26933, 15, 12, 24, 17405, 59, 11, 60, 9, 58, 15, 12, 24, 60, 28988, 11537, 198, 62, 12532, 17961, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 58, 15, 12, 24, 60, 33747, 301, 91, 358, 91, 4372, 91, 400, 8, 11537, 198, 62, 41359, 13246, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 58, 15, 12, 24, 48688, 11537, 198, 198, 4299, 3487, 1096, 62, 77, 17024, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3487, 1096, 3146, 287, 2420, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 28264, 9858, 5673, 62, 41359, 13246, 62, 2200, 11, 4808, 28956, 62, 785, 5356, 11, 2420, 8, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 28264, 47, 19385, 5258, 62, 2200, 11, 374, 6, 59, 16, 8059, 3256, 2420, 8, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 28264, 18227, 3069, 27415, 62, 2200, 11, 4808, 11201, 392, 62, 67, 692, 945, 11, 2420, 8, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 28264, 41374, 3955, 1847, 62, 41359, 13246, 62, 2200, 11, 4808, 11201, 392, 62, 12501, 4402, 62, 4122, 11, 2420, 8, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 28264, 12532, 17961, 62, 2200, 11, 4808, 11201, 392, 62, 585, 1292, 11, 2420, 8, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 28264, 41359, 13246, 62, 2200, 11, 4808, 11201, 392, 62, 17618, 11, 2420, 8, 198, 220, 220, 220, 1441, 2420, 198, 198, 2, 24305, 27773, 62, 5239, 24305, 2, 198, 2, 23603, 5408, 12336, 13216, 10223, 25, 198, 62, 1929, 2737, 10223, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 82, 10, 11537, 198, 198, 2, 7343, 286, 357, 16338, 5408, 11, 9014, 8, 14729, 329, 37640, 602, 25, 198, 62, 397, 4679, 8903, 602, 796, 47527, 260, 13, 5589, 576, 10786, 6852, 65, 4, 82, 6852, 2637, 4064, 2124, 58, 15, 4357, 302, 13, 16284, 1581, 2943, 11159, 828, 2124, 58, 16, 12962, 329, 2124, 287, 685, 198, 220, 220, 220, 19203, 27034, 3256, 705, 31281, 408, 33809, 198, 220, 220, 220, 19203, 5246, 3256, 705, 44, 1694, 33809, 198, 220, 220, 220, 19203, 6187, 3256, 705, 37564, 33809, 198, 220, 220, 220, 19203, 1273, 3256, 705, 48615, 33809, 198, 220, 220, 220, 19203, 7222, 3256, 705, 39154, 33809, 198, 220, 220, 220, 19203, 50123, 3256, 705, 22396, 1504, 33809, 198, 220, 220, 220, 19203, 44, 1228, 3256, 705, 24206, 33809, 198, 220, 220, 220, 19203, 13746, 3256, 705, 12218, 33809, 198, 220, 220, 220, 19203, 35, 3808, 3256, 705, 47087, 33809, 198, 220, 220, 220, 19203, 18009, 3256, 705, 3041, 37713, 33809, 198, 220, 220, 220, 19203, 49578, 3256, 705, 47918, 15340, 33809, 198, 220, 220, 220, 19203, 29478, 3256, 705, 29478, 10475, 33809, 198, 220, 220, 220, 19203, 50, 13655, 3256, 705, 7089, 30205, 33809, 198, 220, 220, 220, 19203, 19209, 3256, 705, 27898, 33809, 198, 220, 220, 220, 19203, 23041, 80, 3256, 705, 36, 16485, 557, 33809, 198, 220, 220, 220, 19203, 43, 8671, 3256, 705, 37214, 33809, 198, 220, 220, 220, 19203, 5216, 3256, 705, 5216, 26261, 33809, 198, 220, 220, 220, 19203, 37, 83, 3256, 705, 21926, 33809, 198, 11907, 198, 198, 4299, 4292, 62, 397, 4679, 8903, 602, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4292, 37640, 602, 287, 2420, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 40364, 11, 9014, 287, 4808, 397, 4679, 8903, 602, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 302, 13, 7266, 7, 260, 25636, 11, 9014, 11, 2420, 8, 198, 220, 220, 220, 1441, 2420, 198, 198, 4299, 9807, 62, 1929, 2737, 10223, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9807, 13216, 10223, 287, 2420, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 302, 13, 7266, 28264, 1929, 2737, 10223, 62, 260, 11, 705, 46083, 2420, 8, 198, 198, 2, 24550, 357, 27541, 12, 24406, 12144, 2599, 14207, 5499, 36527, 5447, 11, 407, 13358, 1739, 276, 287, 2656, 12416, 13, 198, 4299, 4781, 62, 403, 49986, 62, 1837, 2022, 10220, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4781, 13114, 14354, 287, 2420, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 7, 81, 6, 58, 59, 38016, 19415, 58, 59, 60, 49778, 59, 29, 7879, 48688, 3256, 705, 3256, 2420, 8, 198, 220, 220, 220, 1441, 2420, 198, 198, 4299, 4292, 62, 1837, 2022, 10220, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4292, 14354, 287, 2420, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 7203, 59, 26, 1600, 366, 553, 11, 2420, 8, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 7203, 59, 25, 1600, 366, 553, 11, 2420, 8, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 7203, 41441, 1600, 366, 33172, 2420, 8, 198, 220, 220, 220, 2420, 796, 302, 13, 7266, 7203, 59, 5, 1600, 366, 392, 1600, 2420, 8, 198, 220, 220, 220, 1441, 2420, 198, 198, 4299, 662, 14681, 7, 5239, 2599, 198, 220, 220, 220, 705, 7061, 15022, 11523, 329, 3594, 2420, 11, 1390, 1271, 290, 28873, 47625, 7118, 2637, 7061, 198, 220, 220, 220, 2420, 796, 10385, 62, 1462, 62, 292, 979, 72, 7, 5239, 8, 198, 220, 220, 220, 2420, 796, 3487, 1096, 62, 77, 17024, 7, 5239, 8, 198, 220, 220, 220, 2420, 796, 4292, 62, 397, 4679, 8903, 602, 7, 5239, 8, 198, 220, 220, 220, 2420, 796, 4292, 62, 1837, 2022, 10220, 7, 5239, 8, 198, 220, 220, 220, 2420, 796, 4781, 62, 403, 49986, 62, 1837, 2022, 10220, 7, 5239, 8, 198, 220, 220, 220, 2420, 796, 9807, 62, 1929, 2737, 10223, 7, 5239, 8, 198, 220, 220, 220, 1441, 2420, 198, 198, 4299, 4321, 62, 392, 62, 2302, 974, 7, 34945, 11, 19016, 2599, 198, 220, 220, 220, 37227, 10002, 290, 7925, 262, 1813, 6626, 286, 27039, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8619, 25, 262, 8619, 810, 284, 7925, 262, 13422, 1894, 13, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 25, 262, 19016, 284, 4321, 262, 1366, 2393, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 402, 25664, 13, 3109, 1023, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 402, 25664, 13, 12050, 35, 17062, 7, 34945, 8, 628, 220, 220, 220, 4808, 11, 13422, 62, 7753, 6978, 796, 20218, 7753, 13, 28015, 927, 79, 7, 37333, 844, 28, 1911, 18870, 13, 65, 89, 17, 4943, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 10002, 278, 4064, 82, 284, 4064, 82, 1, 4064, 357, 6371, 11, 13422, 62, 7753, 6978, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2956, 297, 571, 13, 25927, 13, 6371, 1186, 30227, 7, 6371, 11, 13422, 62, 7753, 6978, 11, 4808, 33723, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1185, 10951, 796, 28686, 13, 14269, 7, 18870, 62, 7753, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33244, 2759, 15680, 4064, 82, 11, 2546, 7, 33661, 2599, 4064, 67, 1, 4064, 357, 6371, 11, 1185, 10951, 13, 301, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 351, 13422, 7753, 13, 9654, 7, 18870, 62, 7753, 6978, 11, 366, 81, 4943, 355, 13422, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13422, 13, 2302, 974, 439, 7, 34945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 33244, 2759, 21242, 1366, 422, 406, 41, 5248, 3055, 12, 16, 13, 16, 13, 18870, 13, 65, 89, 17, 4943, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 402, 25664, 13, 27914, 7, 18870, 62, 7753, 6978, 8, 198, 198, 2, 1783, 17953, 2472, 13, 40664, 1783, 12, 198, 4299, 10385, 62, 24051, 62, 392, 62, 35312, 62, 7645, 6519, 7, 19608, 292, 316, 62, 15908, 11, 2472, 62, 40664, 62, 6978, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 374, 283, 284, 370, 10116, 290, 6626, 262, 14687, 13, 198, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 27039, 62, 15908, 220, 1058, 262, 8619, 543, 6622, 262, 5128, 27039, 13, 198, 220, 220, 220, 2472, 62, 40664, 62, 6978, 1058, 262, 7186, 5072, 269, 21370, 2393, 13, 628, 220, 220, 220, 406, 41, 5248, 3055, 12, 16, 13, 16, 26672, 12200, 4645, 25, 198, 220, 220, 220, 406, 41, 5248, 3055, 12, 16, 13, 16, 198, 220, 220, 220, 220, 220, 220, 220, 532, 38993, 13, 40664, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 43, 41, 8298, 12, 34215, 91, 259, 852, 31188, 3660, 13, 91, 259, 852, 31188, 3660, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 532, 45137, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 43, 41, 8298, 12, 18005, 13, 45137, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 43, 41, 8298, 12, 34215, 13, 45137, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 43, 41, 28669, 12, 15, 25870, 198, 220, 220, 220, 220, 220, 220, 220, 532, 14751, 907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 24051, 12, 43, 41, 8298, 12, 18005, 13, 82, 1433, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 24051, 12, 43, 41, 8298, 12, 34215, 13, 82, 1433, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18931, 13, 10951, 7203, 18709, 278, 6597, 290, 14687, 329, 23884, 1911, 18982, 7203, 439, 62, 16624, 48774, 198, 220, 220, 220, 266, 615, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 19608, 292, 316, 62, 15908, 11, 366, 43, 41, 5248, 3055, 12, 16, 13, 16, 14, 45137, 82, 14, 4943, 198, 220, 220, 220, 3696, 796, 17635, 198, 220, 220, 220, 1303, 27631, 1118, 33986, 11420, 4775, 198, 220, 220, 220, 351, 40481, 82, 13, 9654, 7, 418, 13, 6978, 13, 22179, 7, 19608, 292, 316, 62, 15908, 11, 366, 43, 41, 5248, 3055, 12, 16, 13, 16, 14, 38993, 13, 40664, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 81, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 2625, 40477, 12, 23, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 615, 62, 3672, 796, 1627, 13, 35312, 10786, 91, 11537, 58, 15, 60, 1343, 45302, 45137, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 615, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 45137, 62, 15908, 11, 266, 615, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 615, 62, 13664, 796, 651, 62, 19204, 62, 7753, 62, 13664, 7, 45137, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1136, 14687, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 1627, 13, 35312, 10786, 91, 11537, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 11299, 796, 662, 14681, 7, 11299, 13, 81, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14687, 796, 705, 45302, 22179, 7, 4868, 7, 27773, 62, 11299, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14687, 796, 14687, 13, 33491, 10786, 220, 46083, 705, 1279, 13200, 29, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14687, 796, 705, 2777, 16, 705, 1343, 14687, 1343, 705, 3313, 6, 1303, 6, 3313, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 13, 33295, 19510, 418, 13, 6978, 13, 397, 2777, 776, 7, 45137, 62, 7753, 828, 266, 615, 62, 13664, 11, 14687, 4008, 628, 220, 220, 220, 1303, 19430, 284, 256, 742, 2393, 543, 4909, 1115, 15180, 25, 198, 220, 220, 220, 277, 79, 796, 1280, 7, 23350, 62, 40664, 62, 6978, 11, 705, 86, 3256, 21004, 2625, 40477, 12, 23, 4943, 198, 220, 220, 220, 277, 79, 13, 13564, 7203, 45137, 62, 34345, 1, 10, 6, 59, 83, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45137, 62, 13664, 62, 907, 1, 10, 6, 59, 83, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7645, 6519, 1, 10, 6, 59, 77, 11537, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 16624, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 13564, 7, 2536, 7, 16624, 58, 72, 7131, 15, 12962, 10, 6, 59, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 13564, 7, 2536, 7, 16624, 58, 72, 7131, 16, 12962, 10, 6, 59, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 13564, 7, 2536, 7, 16624, 58, 72, 7131, 17, 12962, 10, 6, 59, 77, 11537, 198, 220, 220, 220, 277, 79, 13, 19836, 3419, 220, 220, 220, 220, 198, 220, 220, 220, 18931, 13, 10951, 7203, 33244, 2759, 7560, 269, 21370, 2393, 23884, 1911, 18982, 7, 23350, 62, 40664, 62, 6978, 4008, 198, 198, 4299, 12649, 7, 67, 1980, 316, 652, 2599, 198, 220, 220, 220, 37227, 4321, 290, 1429, 37227, 198, 220, 220, 220, 1303, 6404, 2667, 13, 10951, 7203, 10002, 278, 262, 27039, 743, 1011, 257, 890, 640, 523, 345, 460, 4321, 340, 287, 1194, 835, 290, 1445, 340, 284, 262, 288, 1980, 316, 652, 23884, 1911, 18982, 7, 67, 1980, 316, 652, 4008, 198, 220, 220, 220, 406, 41, 5248, 3055, 796, 28686, 13, 6978, 13, 22179, 7, 67, 1980, 316, 652, 11, 366, 43, 41, 5248, 3055, 12, 16, 13, 16, 13, 18870, 13, 65, 89, 17, 4943, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 43, 41, 5248, 3055, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 90, 92, 1541, 2152, 1911, 18982, 7, 43, 41, 5248, 3055, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4321, 62, 392, 62, 2302, 974, 7, 67, 1980, 316, 652, 11, 10289, 8, 220, 220, 220, 198, 220, 220, 220, 1303, 651, 2472, 62, 40664, 198, 220, 220, 220, 18931, 13, 10951, 7203, 18709, 278, 262, 406, 41, 45862, 2472, 13, 40664, 287, 23884, 1911, 18982, 7, 67, 1980, 316, 652, 4008, 198, 220, 220, 220, 2472, 62, 40664, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 67, 1980, 316, 652, 11, 366, 23350, 13, 40664, 4943, 198, 220, 220, 220, 10385, 62, 24051, 62, 392, 62, 35312, 62, 7645, 6519, 7, 67, 1980, 316, 652, 11, 2472, 62, 40664, 62, 6978, 8, 198, 220, 220, 220, 6626, 62, 27432, 62, 7959, 62, 9288, 7, 23350, 62, 40664, 62, 6978, 11, 288, 1980, 316, 652, 8, 198, 220, 220, 220, 18931, 13, 10951, 7203, 18467, 1348, 7587, 406, 41, 45862, 269, 21370, 366, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 18931, 13, 2617, 62, 19011, 16579, 7, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 360, 4663, 796, 25064, 13, 853, 85, 58, 16, 60, 220, 198, 220, 220, 220, 12649, 7, 34720, 8, 198 ]
2.422181
3,264
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2015-12-31 16:05 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 24, 319, 1853, 12, 1065, 12, 3132, 1467, 25, 2713, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.776119
67
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-10-09 19:24 from __future__ import unicode_literals import datetime import django.db.models.deletion from django.conf import settings from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 13, 17, 319, 1584, 12, 940, 12, 2931, 678, 25, 1731, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 4818, 8079, 198, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.914634
82
""" This component provides support for Home Automation Manager (HAM). For more details about this component, please refer to the documentation at https://home-assistant.io/components/edgeos/ """ import asyncio import json import logging import re from typing import Optional from urllib.parse import urlparse import aiohttp from homeassistant.helpers.aiohttp_client import async_create_clientsession from ..helpers.const import * from ..models.config_data import ConfigData REQUIREMENTS = ["aiohttp"] _LOGGER = logging.getLogger(__name__)
[ 37811, 198, 1212, 7515, 3769, 1104, 329, 5995, 17406, 341, 9142, 357, 33363, 737, 198, 1890, 517, 3307, 546, 428, 7515, 11, 3387, 3522, 284, 262, 10314, 379, 198, 5450, 1378, 11195, 12, 562, 10167, 13, 952, 14, 5589, 3906, 14, 14907, 418, 14, 198, 37811, 198, 11748, 30351, 952, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 302, 198, 6738, 19720, 1330, 32233, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 19016, 29572, 198, 198, 11748, 257, 952, 4023, 198, 198, 6738, 1363, 562, 10167, 13, 16794, 364, 13, 64, 952, 4023, 62, 16366, 1330, 30351, 62, 17953, 62, 565, 2334, 2521, 198, 198, 6738, 11485, 16794, 364, 13, 9979, 1330, 1635, 198, 6738, 11485, 27530, 13, 11250, 62, 7890, 1330, 17056, 6601, 198, 198, 2200, 49128, 28957, 796, 14631, 64, 952, 4023, 8973, 198, 198, 62, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.592105
152
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator 2.3.33.0 # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class LinkedServiceProps(Model): """LinkedService specific properties. :param linked_service_resource_id: ResourceId of the link target of the linked service. :type linked_service_resource_id: str :param link_type: Type of the link target. Possible values include: 'Synapse' :type link_type: str or ~_restclient.models.LinkedServiceLinkType :param created_time: The creation time of the linked service. :type created_time: datetime :param modified_time: The last modified time of the linked service. :type modified_time: datetime """ _validation = { 'linked_service_resource_id': {'required': True}, } _attribute_map = { 'linked_service_resource_id': {'key': 'linkedServiceResourceId', 'type': 'str'}, 'link_type': {'key': 'linkType', 'type': 'LinkedServiceLinkType'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'}, }
[ 2, 19617, 28, 40477, 12, 23, 201, 198, 2, 16529, 35937, 201, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 201, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 201, 198, 2, 5964, 1321, 13, 201, 198, 2, 201, 198, 2, 6127, 7560, 416, 5413, 357, 49, 8, 11160, 19452, 6127, 35986, 362, 13, 18, 13, 2091, 13, 15, 201, 198, 2, 19179, 743, 2728, 11491, 4069, 290, 481, 307, 2626, 611, 262, 2438, 318, 201, 198, 2, 16935, 515, 13, 201, 198, 2, 16529, 35937, 201, 198, 201, 198, 6738, 13845, 2118, 13, 46911, 1634, 1330, 9104, 201, 198, 201, 198, 201, 198, 4871, 7502, 276, 16177, 2964, 862, 7, 17633, 2599, 201, 198, 220, 220, 220, 37227, 11280, 276, 16177, 2176, 6608, 13, 201, 198, 201, 198, 220, 220, 220, 1058, 17143, 6692, 62, 15271, 62, 31092, 62, 312, 25, 20857, 7390, 286, 262, 2792, 2496, 286, 262, 201, 198, 220, 220, 220, 220, 6692, 2139, 13, 201, 198, 220, 220, 220, 1058, 4906, 6692, 62, 15271, 62, 31092, 62, 312, 25, 965, 201, 198, 220, 220, 220, 1058, 17143, 2792, 62, 4906, 25, 5994, 286, 262, 2792, 2496, 13, 33671, 3815, 2291, 25, 201, 198, 220, 220, 220, 220, 705, 29934, 7512, 6, 201, 198, 220, 220, 220, 1058, 4906, 2792, 62, 4906, 25, 965, 393, 5299, 62, 2118, 16366, 13, 27530, 13, 11280, 276, 16177, 11280, 6030, 201, 198, 220, 220, 220, 1058, 17143, 2727, 62, 2435, 25, 383, 6282, 640, 286, 262, 6692, 2139, 13, 201, 198, 220, 220, 220, 1058, 4906, 2727, 62, 2435, 25, 4818, 8079, 201, 198, 220, 220, 220, 1058, 17143, 9518, 62, 2435, 25, 383, 938, 9518, 640, 286, 262, 6692, 2139, 13, 201, 198, 220, 220, 220, 1058, 4906, 9518, 62, 2435, 25, 4818, 8079, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 4808, 12102, 341, 796, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25614, 62, 15271, 62, 31092, 62, 312, 10354, 1391, 6, 35827, 10354, 6407, 5512, 201, 198, 220, 220, 220, 1782, 201, 198, 201, 198, 220, 220, 220, 4808, 42348, 62, 8899, 796, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25614, 62, 15271, 62, 31092, 62, 312, 10354, 1391, 6, 2539, 10354, 705, 25614, 16177, 26198, 7390, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8726, 62, 4906, 10354, 1391, 6, 2539, 10354, 705, 8726, 6030, 3256, 705, 4906, 10354, 705, 11280, 276, 16177, 11280, 6030, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25598, 62, 2435, 10354, 1391, 6, 2539, 10354, 705, 25598, 7575, 3256, 705, 4906, 10354, 705, 26786, 12, 4521, 486, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41771, 62, 2435, 10354, 1391, 6, 2539, 10354, 705, 41771, 7575, 3256, 705, 4906, 10354, 705, 26786, 12, 4521, 486, 6, 5512, 201, 198, 220, 220, 220, 1782, 201, 198 ]
3.060665
511
#!/usr/bin/env python # graph.py # Created by Vivek Gopalakrishnan on 2018-11-13. # Email: [email protected] # Copyright (c) 2018. All rights reserved. import timeit from src.features.summary import Stats from src.random.bernoulli import RandomGraph def measure_runtime(n, p, number=5): """ Calculates the runtime for a given graph. Does not time the functions: 'khop_locality', 'scan_statistic' """ # Initialize graph and stats class A = RandomGraph(int(n), p) s = Stats(A) public_method_names = [method for method in dir(s) if callable( getattr(s, method)) if not method.startswith('_')] for method in ['return_stats', 'khop_locality', 'scan_statistic']: public_method_names.remove(method) # Dictionary for holding results results = [n, p] # Runtime for method in public_method_names: results += [timeit.timeit(lambda: getattr(s, method)(), number=number)] return results
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 4823, 13, 9078, 198, 2, 15622, 416, 29237, 74, 402, 33067, 461, 37518, 12647, 319, 2864, 12, 1157, 12, 1485, 13, 198, 2, 9570, 25, 410, 70, 404, 6081, 19, 31, 73, 13415, 13, 15532, 198, 2, 15069, 357, 66, 8, 2864, 13, 1439, 2489, 10395, 13, 198, 198, 11748, 640, 270, 198, 198, 6738, 12351, 13, 40890, 13, 49736, 1330, 20595, 198, 6738, 12351, 13, 25120, 13, 33900, 280, 15516, 1330, 14534, 37065, 628, 198, 4299, 3953, 62, 43282, 7, 77, 11, 279, 11, 1271, 28, 20, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27131, 689, 262, 19124, 329, 257, 1813, 4823, 13, 198, 220, 220, 220, 8314, 407, 640, 262, 5499, 25, 705, 74, 8548, 62, 17946, 1483, 3256, 705, 35836, 62, 14269, 2569, 6, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 20768, 1096, 4823, 290, 9756, 1398, 198, 220, 220, 220, 317, 796, 14534, 37065, 7, 600, 7, 77, 828, 279, 8, 198, 220, 220, 220, 264, 796, 20595, 7, 32, 8, 628, 220, 220, 220, 1171, 62, 24396, 62, 14933, 796, 685, 24396, 329, 2446, 287, 26672, 7, 82, 8, 611, 869, 540, 7, 198, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 82, 11, 2446, 4008, 611, 407, 2446, 13, 9688, 2032, 342, 10786, 62, 11537, 60, 198, 220, 220, 220, 329, 2446, 287, 37250, 7783, 62, 34242, 3256, 705, 74, 8548, 62, 17946, 1483, 3256, 705, 35836, 62, 14269, 2569, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1171, 62, 24396, 62, 14933, 13, 28956, 7, 24396, 8, 628, 220, 220, 220, 1303, 28261, 329, 4769, 2482, 198, 220, 220, 220, 2482, 796, 685, 77, 11, 279, 60, 628, 220, 220, 220, 1303, 43160, 198, 220, 220, 220, 329, 2446, 287, 1171, 62, 24396, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 15853, 685, 2435, 270, 13, 2435, 270, 7, 50033, 25, 651, 35226, 7, 82, 11, 2446, 5769, 828, 1271, 28, 17618, 15437, 628, 220, 220, 220, 1441, 2482, 198 ]
2.735795
352
import os import numpy as np learning_rate = [0.01, 0.001] prune_ratio = 30 ADMM_times = [2,3,4,5,6,7] Total_epochs = [10,30,40,50,60] target_accuracy = 0.76 count = 0 highest_acc = 0 for i in range(len(learning_rate)): for j in range(len(ADMM_times)): for k in range(len(Total_epochs)): lr = learning_rate[i] admm = ADMM_times[j] epoch = Total_epochs[k] #linux #os.system('rm '+"log"+str(count)+".txt") #windows os.system('del '+"log"+str(count)+".txt") os.system("python train-auto-admm-tuneParameter.py" +" --target_acc="+str(target_accuracy) +" --prune_ratio="+str(prune_ratio) +" --count=" + str(count) +" --learning_rate="+str(lr) +" --ADMM="+str(admm) +" --epochs="+str(epoch) +" >>log"+str(count)+".txt") f = open("log" + str(count) + ".txt") for line2 in f: if "Finally Test set results" in line2: res = line2.split() if float(res[7]) > highest_acc: highest_acc = float(res[7]) count+=1 print("highest accuracy only train with pruned adjacency + weights: ", highest_acc)
[ 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 40684, 62, 4873, 796, 685, 15, 13, 486, 11, 657, 13, 8298, 60, 198, 1050, 1726, 62, 10366, 952, 796, 1542, 198, 2885, 12038, 62, 22355, 796, 685, 17, 11, 18, 11, 19, 11, 20, 11, 21, 11, 22, 60, 198, 14957, 62, 538, 5374, 82, 796, 685, 940, 11, 1270, 11, 1821, 11, 1120, 11, 1899, 60, 198, 16793, 62, 4134, 23843, 796, 657, 13, 4304, 198, 9127, 796, 657, 198, 35323, 62, 4134, 796, 657, 198, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 40684, 62, 4873, 8, 2599, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 7, 2885, 12038, 62, 22355, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 11925, 7, 14957, 62, 538, 5374, 82, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 81, 796, 4673, 62, 4873, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 512, 3020, 796, 5984, 12038, 62, 22355, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 796, 7472, 62, 538, 5374, 82, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23289, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 418, 13, 10057, 10786, 26224, 705, 10, 1, 6404, 1, 10, 2536, 7, 9127, 47762, 1911, 14116, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28457, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 10786, 12381, 705, 10, 1, 6404, 1, 10, 2536, 7, 9127, 47762, 1911, 14116, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 7203, 29412, 4512, 12, 23736, 12, 324, 3020, 12, 83, 1726, 36301, 13, 9078, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1, 1377, 16793, 62, 4134, 2625, 10, 2536, 7, 16793, 62, 4134, 23843, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1, 1377, 1050, 1726, 62, 10366, 952, 2625, 10, 2536, 7, 1050, 1726, 62, 10366, 952, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1, 1377, 9127, 2625, 1343, 965, 7, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1, 1377, 40684, 62, 4873, 2625, 10, 2536, 7, 14050, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1, 1377, 2885, 12038, 2625, 10, 2536, 7, 324, 3020, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1, 1377, 538, 5374, 82, 2625, 10, 2536, 7, 538, 5374, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1, 9609, 6404, 1, 10, 2536, 7, 9127, 47762, 1911, 14116, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7203, 6404, 1, 1343, 965, 7, 9127, 8, 1343, 27071, 14116, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 17, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 11158, 6208, 900, 2482, 1, 287, 1627, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 1627, 17, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12178, 7, 411, 58, 22, 12962, 1875, 4511, 62, 4134, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4511, 62, 4134, 796, 12178, 7, 411, 58, 22, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 47932, 16, 198, 198, 4798, 7203, 35323, 9922, 691, 4512, 351, 778, 40881, 9224, 330, 1387, 1343, 19590, 25, 33172, 4511, 62, 4134, 8, 198 ]
1.759379
773
from django.contrib import admin from tower import ugettext_lazy as _ from users.models import Profile, Link username = lambda u: u.user.username username.short_description = _('Username') admin.site.register(Profile, ProfileAdmin) admin.site.register(Link, LinkAdmin)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 198, 6738, 10580, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 2985, 13, 27530, 1330, 13118, 11, 7502, 628, 198, 29460, 796, 37456, 334, 25, 334, 13, 7220, 13, 29460, 198, 29460, 13, 19509, 62, 11213, 796, 4808, 10786, 5842, 13292, 11537, 628, 198, 198, 28482, 13, 15654, 13, 30238, 7, 37046, 11, 13118, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 11280, 11, 7502, 46787, 8, 198 ]
3.365854
82
#!/usr/bin/env python import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # we need to use composite data pipeline with multiblock datasets alg = vtk.vtkAlgorithm() pip = vtk.vtkCompositeDataPipeline() alg.SetDefaultExecutivePrototype(pip) #del pip Ren1 = vtk.vtkRenderer() Ren1.SetBackground(0.33, 0.35, 0.43) renWin = vtk.vtkRenderWindow() renWin.AddRenderer(Ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) Plot3D0 = vtk.vtkMultiBlockPLOT3DReader() Plot3D0.SetFileName(VTK_DATA_ROOT + "/Data/combxyz.bin") Plot3D0.SetQFileName(VTK_DATA_ROOT + "/Data/combq.bin") Plot3D0.SetBinaryFile(1) Plot3D0.SetMultiGrid(0) Plot3D0.SetHasByteCount(0) Plot3D0.SetIBlanking(0) Plot3D0.SetTwoDimensionalGeometry(0) Plot3D0.SetForceRead(0) Plot3D0.SetByteOrder(0) Plot3D0.Update() output = Plot3D0.GetOutput().GetBlock(0) Geometry5 = vtk.vtkStructuredGridOutlineFilter() Geometry5.SetInputData(output) Mapper5 = vtk.vtkPolyDataMapper() Mapper5.SetInputConnection(Geometry5.GetOutputPort()) Mapper5.SetImmediateModeRendering(1) Mapper5.UseLookupTableScalarRangeOn() Mapper5.SetScalarVisibility(0) Mapper5.SetScalarModeToDefault() Actor5 = vtk.vtkActor() Actor5.SetMapper(Mapper5) Actor5.GetProperty().SetRepresentationToSurface() Actor5.GetProperty().SetInterpolationToGouraud() Actor5.GetProperty().SetAmbient(0.15) Actor5.GetProperty().SetDiffuse(0.85) Actor5.GetProperty().SetSpecular(0.1) Actor5.GetProperty().SetSpecularPower(100) Actor5.GetProperty().SetSpecularColor(1, 1, 1) Actor5.GetProperty().SetColor(1, 1, 1) Ren1.AddActor(Actor5) ExtractGrid0 = vtk.vtkExtractGrid() ExtractGrid0.SetInputData(output) ExtractGrid0.SetVOI(0, 14, 0, 32, 0, 24) ExtractGrid0.SetSampleRate(1, 1, 1) ExtractGrid0.SetIncludeBoundary(0) ExtractGrid1 = vtk.vtkExtractGrid() ExtractGrid1.SetInputData(output) ExtractGrid1.SetVOI(14, 29, 0, 32, 0, 24) ExtractGrid1.SetSampleRate(1, 1, 1) ExtractGrid1.SetIncludeBoundary(0) ExtractGrid2 = vtk.vtkExtractGrid() ExtractGrid2.SetInputData(output) ExtractGrid2.SetVOI(29, 56, 0, 32, 0, 24) ExtractGrid2.SetSampleRate(1, 1, 1) ExtractGrid2.SetIncludeBoundary(0) LineSourceWidget0 = vtk.vtkLineSource() LineSourceWidget0.SetPoint1(3.05638, -3.00497, 28.2211) LineSourceWidget0.SetPoint2(3.05638, 3.95916, 28.2211) LineSourceWidget0.SetResolution(20) mbds = vtk.vtkMultiBlockDataSet() mbds.SetNumberOfBlocks(3) i = 0 while i < 3: eval("ExtractGrid" + str(i)).Update() exec("sg" + str(i) + " = vtk.vtkStructuredGrid()") eval("sg" + str(i)).ShallowCopy(eval("ExtractGrid" + str(i)).GetOutput()) mbds.SetBlock(i, eval("sg" + str(i))) i += 1 Stream0 = vtk.vtkStreamTracer() Stream0.SetInputData(mbds) Stream0.SetSourceConnection(LineSourceWidget0.GetOutputPort()) Stream0.SetIntegrationStepUnit(2) Stream0.SetMaximumPropagation(20) Stream0.SetInitialIntegrationStep(0.5) Stream0.SetIntegrationDirection(0) Stream0.SetIntegratorType(0) Stream0.SetMaximumNumberOfSteps(2000) Stream0.SetTerminalSpeed(1e-12) #del mbds aa = vtk.vtkAssignAttribute() aa.SetInputConnection(Stream0.GetOutputPort()) aa.Assign("Normals", "NORMALS", "POINT_DATA") Ribbon0 = vtk.vtkRibbonFilter() Ribbon0.SetInputConnection(aa.GetOutputPort()) Ribbon0.SetWidth(0.1) Ribbon0.SetAngle(0) Ribbon0.SetDefaultNormal(0, 0, 1) Ribbon0.SetVaryWidth(0) LookupTable1 = vtk.vtkLookupTable() LookupTable1.SetNumberOfTableValues(256) LookupTable1.SetHueRange(0, 0.66667) LookupTable1.SetSaturationRange(1, 1) LookupTable1.SetValueRange(1, 1) LookupTable1.SetTableRange(0.197813, 0.710419) LookupTable1.SetVectorComponent(0) LookupTable1.Build() Mapper10 = vtk.vtkPolyDataMapper() Mapper10.SetInputConnection(Ribbon0.GetOutputPort()) Mapper10.SetImmediateModeRendering(1) Mapper10.UseLookupTableScalarRangeOn() Mapper10.SetScalarVisibility(1) Mapper10.SetScalarModeToUsePointFieldData() Mapper10.SelectColorArray("Density") Mapper10.SetLookupTable(LookupTable1) Actor10 = vtk.vtkActor() Actor10.SetMapper(Mapper10) Actor10.GetProperty().SetRepresentationToSurface() Actor10.GetProperty().SetInterpolationToGouraud() Actor10.GetProperty().SetAmbient(0.15) Actor10.GetProperty().SetDiffuse(0.85) Actor10.GetProperty().SetSpecular(0) Actor10.GetProperty().SetSpecularPower(1) Actor10.GetProperty().SetSpecularColor(1, 1, 1) Ren1.AddActor(Actor10) iren.Initialize() alg.SetDefaultExecutivePrototype(None) #del alg #iren.Start()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 201, 198, 11748, 410, 30488, 201, 198, 6738, 410, 30488, 13, 9288, 1330, 23983, 201, 198, 6738, 410, 30488, 13, 22602, 13, 44374, 1330, 410, 30488, 3855, 6601, 30016, 201, 198, 36392, 42, 62, 26947, 62, 13252, 2394, 796, 410, 30488, 3855, 6601, 30016, 3419, 201, 198, 201, 198, 2, 356, 761, 284, 779, 24185, 1366, 11523, 351, 1963, 571, 5354, 40522, 201, 198, 14016, 796, 410, 30488, 13, 85, 30488, 2348, 42289, 3419, 201, 198, 79, 541, 796, 410, 30488, 13, 85, 30488, 5377, 1930, 578, 6601, 47, 541, 4470, 3419, 201, 198, 14016, 13, 7248, 19463, 43885, 19703, 8690, 7, 79, 541, 8, 201, 198, 2, 12381, 7347, 201, 198, 201, 198, 26764, 16, 796, 410, 30488, 13, 85, 30488, 49, 437, 11882, 3419, 201, 198, 26764, 16, 13, 7248, 21756, 7, 15, 13, 2091, 11, 657, 13, 2327, 11, 657, 13, 3559, 8, 201, 198, 918, 16643, 796, 410, 30488, 13, 85, 30488, 45819, 27703, 3419, 201, 198, 918, 16643, 13, 4550, 49, 437, 11882, 7, 26764, 16, 8, 201, 198, 24080, 796, 410, 30488, 13, 85, 30488, 45819, 27703, 9492, 11218, 3419, 201, 198, 24080, 13, 7248, 45819, 27703, 7, 918, 16643, 8, 201, 198, 201, 198, 43328, 18, 35, 15, 796, 410, 30488, 13, 85, 30488, 29800, 12235, 6489, 2394, 18, 35, 33634, 3419, 201, 198, 43328, 18, 35, 15, 13, 7248, 8979, 5376, 7, 36392, 42, 62, 26947, 62, 13252, 2394, 1343, 12813, 6601, 14, 24011, 5431, 89, 13, 8800, 4943, 201, 198, 43328, 18, 35, 15, 13, 7248, 48, 8979, 5376, 7, 36392, 42, 62, 26947, 62, 13252, 2394, 1343, 12813, 6601, 14, 24011, 80, 13, 8800, 4943, 201, 198, 43328, 18, 35, 15, 13, 7248, 33, 3219, 8979, 7, 16, 8, 201, 198, 43328, 18, 35, 15, 13, 7248, 29800, 41339, 7, 15, 8, 201, 198, 43328, 18, 35, 15, 13, 7248, 19242, 40778, 12332, 7, 15, 8, 201, 198, 43328, 18, 35, 15, 13, 7248, 40, 3629, 15230, 7, 15, 8, 201, 198, 43328, 18, 35, 15, 13, 7248, 7571, 35, 16198, 10082, 15748, 7, 15, 8, 201, 198, 43328, 18, 35, 15, 13, 7248, 10292, 5569, 7, 15, 8, 201, 198, 43328, 18, 35, 15, 13, 7248, 40778, 18743, 7, 15, 8, 201, 198, 43328, 18, 35, 15, 13, 10260, 3419, 201, 198, 201, 198, 22915, 796, 28114, 18, 35, 15, 13, 3855, 26410, 22446, 3855, 12235, 7, 15, 8, 201, 198, 201, 198, 10082, 15748, 20, 796, 410, 30488, 13, 85, 30488, 44909, 1522, 41339, 7975, 1370, 22417, 3419, 201, 198, 10082, 15748, 20, 13, 7248, 20560, 6601, 7, 22915, 8, 201, 198, 201, 198, 44, 11463, 20, 796, 410, 30488, 13, 85, 30488, 34220, 6601, 44, 11463, 3419, 201, 198, 44, 11463, 20, 13, 7248, 20560, 32048, 7, 10082, 15748, 20, 13, 3855, 26410, 13924, 28955, 201, 198, 44, 11463, 20, 13, 7248, 3546, 13857, 19076, 49, 437, 1586, 7, 16, 8, 201, 198, 44, 11463, 20, 13, 11041, 8567, 929, 10962, 3351, 282, 283, 17257, 2202, 3419, 201, 198, 44, 11463, 20, 13, 7248, 3351, 282, 283, 15854, 2247, 7, 15, 8, 201, 198, 44, 11463, 20, 13, 7248, 3351, 282, 283, 19076, 2514, 19463, 3419, 201, 198, 201, 198, 40277, 20, 796, 410, 30488, 13, 85, 30488, 40277, 3419, 201, 198, 40277, 20, 13, 7248, 44, 11463, 7, 44, 11463, 20, 8, 201, 198, 40277, 20, 13, 3855, 21746, 22446, 7248, 40171, 341, 2514, 14214, 2550, 3419, 201, 198, 40277, 20, 13, 3855, 21746, 22446, 7248, 9492, 16104, 341, 2514, 38, 280, 22863, 3419, 201, 198, 40277, 20, 13, 3855, 21746, 22446, 7248, 35649, 1153, 7, 15, 13, 1314, 8, 201, 198, 40277, 20, 13, 3855, 21746, 22446, 7248, 28813, 1904, 7, 15, 13, 5332, 8, 201, 198, 40277, 20, 13, 3855, 21746, 22446, 7248, 5248, 10440, 7, 15, 13, 16, 8, 201, 198, 40277, 20, 13, 3855, 21746, 22446, 7248, 5248, 10440, 13434, 7, 3064, 8, 201, 198, 40277, 20, 13, 3855, 21746, 22446, 7248, 5248, 10440, 10258, 7, 16, 11, 352, 11, 352, 8, 201, 198, 40277, 20, 13, 3855, 21746, 22446, 7248, 10258, 7, 16, 11, 352, 11, 352, 8, 201, 198, 201, 198, 26764, 16, 13, 4550, 40277, 7, 40277, 20, 8, 201, 198, 201, 198, 11627, 974, 41339, 15, 796, 410, 30488, 13, 85, 30488, 11627, 974, 41339, 3419, 201, 198, 11627, 974, 41339, 15, 13, 7248, 20560, 6601, 7, 22915, 8, 201, 198, 11627, 974, 41339, 15, 13, 7248, 29516, 40, 7, 15, 11, 1478, 11, 657, 11, 3933, 11, 657, 11, 1987, 8, 201, 198, 11627, 974, 41339, 15, 13, 7248, 36674, 32184, 7, 16, 11, 352, 11, 352, 8, 201, 198, 11627, 974, 41339, 15, 13, 7248, 818, 9152, 49646, 560, 7, 15, 8, 201, 198, 201, 198, 11627, 974, 41339, 16, 796, 410, 30488, 13, 85, 30488, 11627, 974, 41339, 3419, 201, 198, 11627, 974, 41339, 16, 13, 7248, 20560, 6601, 7, 22915, 8, 201, 198, 11627, 974, 41339, 16, 13, 7248, 29516, 40, 7, 1415, 11, 2808, 11, 657, 11, 3933, 11, 657, 11, 1987, 8, 201, 198, 11627, 974, 41339, 16, 13, 7248, 36674, 32184, 7, 16, 11, 352, 11, 352, 8, 201, 198, 11627, 974, 41339, 16, 13, 7248, 818, 9152, 49646, 560, 7, 15, 8, 201, 198, 201, 198, 11627, 974, 41339, 17, 796, 410, 30488, 13, 85, 30488, 11627, 974, 41339, 3419, 201, 198, 11627, 974, 41339, 17, 13, 7248, 20560, 6601, 7, 22915, 8, 201, 198, 11627, 974, 41339, 17, 13, 7248, 29516, 40, 7, 1959, 11, 7265, 11, 657, 11, 3933, 11, 657, 11, 1987, 8, 201, 198, 11627, 974, 41339, 17, 13, 7248, 36674, 32184, 7, 16, 11, 352, 11, 352, 8, 201, 198, 11627, 974, 41339, 17, 13, 7248, 818, 9152, 49646, 560, 7, 15, 8, 201, 198, 201, 198, 13949, 7416, 38300, 15, 796, 410, 30488, 13, 85, 30488, 13949, 7416, 3419, 201, 198, 13949, 7416, 38300, 15, 13, 7248, 12727, 16, 7, 18, 13, 2713, 21, 2548, 11, 532, 18, 13, 405, 38073, 11, 2579, 13, 1828, 1157, 8, 201, 198, 13949, 7416, 38300, 15, 13, 7248, 12727, 17, 7, 18, 13, 2713, 21, 2548, 11, 513, 13, 24, 3270, 1433, 11, 2579, 13, 1828, 1157, 8, 201, 198, 13949, 7416, 38300, 15, 13, 7248, 4965, 2122, 7, 1238, 8, 201, 198, 201, 198, 2022, 9310, 796, 410, 30488, 13, 85, 30488, 29800, 12235, 6601, 7248, 3419, 201, 198, 2022, 9310, 13, 7248, 15057, 5189, 45356, 7, 18, 8, 201, 198, 201, 198, 72, 796, 657, 201, 198, 4514, 1312, 1279, 513, 25, 201, 198, 220, 220, 220, 5418, 7203, 11627, 974, 41339, 1, 1343, 965, 7, 72, 29720, 10260, 3419, 201, 198, 220, 220, 220, 2452, 7203, 45213, 1, 1343, 965, 7, 72, 8, 1343, 366, 796, 410, 30488, 13, 85, 30488, 44909, 1522, 41339, 3419, 4943, 201, 198, 220, 220, 220, 5418, 7203, 45213, 1, 1343, 965, 7, 72, 29720, 2484, 12154, 29881, 7, 18206, 7203, 11627, 974, 41339, 1, 1343, 965, 7, 72, 29720, 3855, 26410, 28955, 201, 198, 220, 220, 220, 285, 65, 9310, 13, 7248, 12235, 7, 72, 11, 5418, 7203, 45213, 1, 1343, 965, 7, 72, 22305, 201, 198, 220, 220, 220, 1312, 15853, 352, 201, 198, 201, 198, 12124, 15, 796, 410, 30488, 13, 85, 30488, 12124, 2898, 11736, 3419, 201, 198, 12124, 15, 13, 7248, 20560, 6601, 7, 2022, 9310, 8, 201, 198, 12124, 15, 13, 7248, 7416, 32048, 7, 13949, 7416, 38300, 15, 13, 3855, 26410, 13924, 28955, 201, 198, 12124, 15, 13, 7248, 34500, 1358, 8600, 26453, 7, 17, 8, 201, 198, 12124, 15, 13, 7248, 40541, 24331, 363, 341, 7, 1238, 8, 201, 198, 12124, 15, 13, 7248, 24243, 34500, 1358, 8600, 7, 15, 13, 20, 8, 201, 198, 12124, 15, 13, 7248, 34500, 1358, 35, 4154, 7, 15, 8, 201, 198, 12124, 15, 13, 7248, 34500, 12392, 6030, 7, 15, 8, 201, 198, 12124, 15, 13, 7248, 40541, 15057, 5189, 8600, 82, 7, 11024, 8, 201, 198, 12124, 15, 13, 7248, 44798, 282, 22785, 7, 16, 68, 12, 1065, 8, 201, 198, 201, 198, 2, 12381, 285, 65, 9310, 201, 198, 201, 198, 7252, 796, 410, 30488, 13, 85, 30488, 8021, 570, 33682, 3419, 201, 198, 7252, 13, 7248, 20560, 32048, 7, 12124, 15, 13, 3855, 26410, 13924, 28955, 201, 198, 7252, 13, 8021, 570, 7203, 35393, 874, 1600, 366, 35510, 44, 23333, 1600, 366, 16402, 12394, 62, 26947, 4943, 201, 198, 201, 198, 49, 571, 4189, 15, 796, 410, 30488, 13, 85, 30488, 49, 571, 4189, 22417, 3419, 201, 198, 49, 571, 4189, 15, 13, 7248, 20560, 32048, 7, 7252, 13, 3855, 26410, 13924, 28955, 201, 198, 49, 571, 4189, 15, 13, 7248, 30916, 7, 15, 13, 16, 8, 201, 198, 49, 571, 4189, 15, 13, 7248, 13450, 293, 7, 15, 8, 201, 198, 49, 571, 4189, 15, 13, 7248, 19463, 26447, 7, 15, 11, 657, 11, 352, 8, 201, 198, 49, 571, 4189, 15, 13, 7248, 53, 560, 30916, 7, 15, 8, 201, 198, 201, 198, 8567, 929, 10962, 16, 796, 410, 30488, 13, 85, 30488, 8567, 929, 10962, 3419, 201, 198, 8567, 929, 10962, 16, 13, 7248, 15057, 5189, 10962, 40161, 7, 11645, 8, 201, 198, 8567, 929, 10962, 16, 13, 7248, 39, 518, 17257, 7, 15, 11, 657, 13, 19060, 22, 8, 201, 198, 8567, 929, 10962, 16, 13, 7248, 50, 36921, 17257, 7, 16, 11, 352, 8, 201, 198, 8567, 929, 10962, 16, 13, 7248, 11395, 17257, 7, 16, 11, 352, 8, 201, 198, 8567, 929, 10962, 16, 13, 7248, 10962, 17257, 7, 15, 13, 37950, 1485, 11, 657, 13, 22, 13464, 1129, 8, 201, 198, 8567, 929, 10962, 16, 13, 7248, 38469, 21950, 7, 15, 8, 201, 198, 8567, 929, 10962, 16, 13, 15580, 3419, 201, 198, 201, 198, 44, 11463, 940, 796, 410, 30488, 13, 85, 30488, 34220, 6601, 44, 11463, 3419, 201, 198, 44, 11463, 940, 13, 7248, 20560, 32048, 7, 49, 571, 4189, 15, 13, 3855, 26410, 13924, 28955, 201, 198, 44, 11463, 940, 13, 7248, 3546, 13857, 19076, 49, 437, 1586, 7, 16, 8, 201, 198, 44, 11463, 940, 13, 11041, 8567, 929, 10962, 3351, 282, 283, 17257, 2202, 3419, 201, 198, 44, 11463, 940, 13, 7248, 3351, 282, 283, 15854, 2247, 7, 16, 8, 201, 198, 44, 11463, 940, 13, 7248, 3351, 282, 283, 19076, 2514, 11041, 12727, 15878, 6601, 3419, 201, 198, 44, 11463, 940, 13, 17563, 10258, 19182, 7203, 35, 6377, 4943, 201, 198, 44, 11463, 940, 13, 7248, 8567, 929, 10962, 7, 8567, 929, 10962, 16, 8, 201, 198, 201, 198, 40277, 940, 796, 410, 30488, 13, 85, 30488, 40277, 3419, 201, 198, 40277, 940, 13, 7248, 44, 11463, 7, 44, 11463, 940, 8, 201, 198, 40277, 940, 13, 3855, 21746, 22446, 7248, 40171, 341, 2514, 14214, 2550, 3419, 201, 198, 40277, 940, 13, 3855, 21746, 22446, 7248, 9492, 16104, 341, 2514, 38, 280, 22863, 3419, 201, 198, 40277, 940, 13, 3855, 21746, 22446, 7248, 35649, 1153, 7, 15, 13, 1314, 8, 201, 198, 40277, 940, 13, 3855, 21746, 22446, 7248, 28813, 1904, 7, 15, 13, 5332, 8, 201, 198, 40277, 940, 13, 3855, 21746, 22446, 7248, 5248, 10440, 7, 15, 8, 201, 198, 40277, 940, 13, 3855, 21746, 22446, 7248, 5248, 10440, 13434, 7, 16, 8, 201, 198, 40277, 940, 13, 3855, 21746, 22446, 7248, 5248, 10440, 10258, 7, 16, 11, 352, 11, 352, 8, 201, 198, 201, 198, 26764, 16, 13, 4550, 40277, 7, 40277, 940, 8, 201, 198, 201, 198, 24080, 13, 24243, 1096, 3419, 201, 198, 201, 198, 14016, 13, 7248, 19463, 43885, 19703, 8690, 7, 14202, 8, 201, 198, 2, 12381, 435, 70, 201, 198, 201, 198, 2, 24080, 13, 10434, 3419, 201, 198 ]
2.349255
1,947
from __future__ import absolute_import from pdbuddy.formatters.base import BaseFormatter
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 6738, 279, 9945, 21584, 13, 18982, 1010, 13, 8692, 1330, 7308, 8479, 1436, 628 ]
3.791667
24
import vsearch as vsearch from flask import Flask, render_template, request, redirect app= Flask(__name__) # # @app.route('/') # def hello() -> str: # return redirect('/entry') @app.route('/search4', methods=['POST']) @app.route('/') @app.route('/entry') if __name__ == '__main__0': app.run(debug=True)
[ 11748, 410, 12947, 355, 410, 12947, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 2581, 11, 18941, 198, 198, 1324, 28, 46947, 7, 834, 3672, 834, 8, 198, 198, 2, 198, 2, 2488, 1324, 13, 38629, 10786, 14, 11537, 198, 2, 825, 23748, 3419, 4613, 965, 25, 198, 2, 220, 220, 220, 220, 1441, 18941, 10786, 14, 13000, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 12947, 19, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 31, 1324, 13, 38629, 10786, 14, 13000, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 15, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.614754
122
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None
[ 2, 30396, 329, 257, 13934, 5509, 10139, 13, 198, 2, 1398, 12200, 19667, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2124, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 796, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9464, 796, 6045, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3506, 796, 6045 ]
2.175676
74
import numpy as np import pandas as pd def calculate_dG(data_dict: dict, gas_constant: float, temperature: float, rxn_order: list = None) -> tuple: """ Given a dictionary representing a GRASP input file, calculates the minimum and maximum reaction dGs based on the standard dGs in thermoRxns and metabolite concentrations in thermoMets. It also calculates the mass-action ratio and the part of the dG based on the mass-action ratio. Args: data_dict: a dictionary that represents the excel file with the GRASP model. gas_constant: the gas constant to calculate the Gibbs energy. temperature: the temperature to calculate the Gibbs energy. rxn_order: a list with the reactions order (optional). Returns: Mass action ratio dataframe, dG_Q dataframe, Gibbs energies dataframe. """ dG_Q_df = pd.DataFrame() dG_df = pd.DataFrame() ma_df = pd.DataFrame() stoic_df = data_dict['stoic'] mets_conc_df = data_dict['thermoMets'] mets_conc_df['mean (M)'] = (mets_conc_df['min (M)'] + mets_conc_df['max (M)']) / 2. dG_std_df = data_dict['thermoRxns'] dG_std_df['∆Gr_mean'] = (dG_std_df['∆Gr\'_min (kJ/mol)'] + dG_std_df['∆Gr\'_max (kJ/mol)']) / 2. rxn_names = stoic_df.index.values stoic_matrix = stoic_df.values min_met_conc = mets_conc_df['min (M)'].values max_met_conc = mets_conc_df['max (M)'].values dG_list_mean, dG_Q_list_mean, ma_ratio_list_mean = _get_dG_list(rxn_names, stoic_matrix, mets_conc_df['mean (M)'].values, mets_conc_df['mean (M)'].values, dG_std_df['∆Gr_mean'].values, gas_constant, temperature) dG_list_min, dG_Q_list_min, ma_ratio_list_min = _get_dG_list(rxn_names, stoic_matrix, max_met_conc, min_met_conc, dG_std_df['∆Gr\'_min (kJ/mol)'].values, gas_constant, temperature) dG_list_max, dG_Q_list_max, ma_ratio_list_max = _get_dG_list(rxn_names, stoic_matrix, min_met_conc, max_met_conc, dG_std_df['∆Gr\'_max (kJ/mol)'].values, gas_constant, temperature) ma_df['ma_min'] = ma_ratio_list_min ma_df['ma_mean'] = ma_ratio_list_mean ma_df['ma_max'] = ma_ratio_list_max dG_Q_df['∆G_Q_min'] = dG_Q_list_min dG_Q_df['∆G_Q_mean'] = dG_Q_list_mean dG_Q_df['∆G_Q_max'] = dG_Q_list_max dG_df['∆G_min'] = dG_list_min dG_df['∆G_mean'] = dG_list_mean dG_df['∆G_max'] = dG_list_max ma_df.index = rxn_names dG_Q_df.index = rxn_names dG_df.index = rxn_names if rxn_order: ma_df = ma_df.reindex(rxn_order) dG_Q_df = dG_Q_df.reindex(rxn_order) dG_df = dG_df.reindex(rxn_order) return ma_df, dG_Q_df, dG_df def get_robust_fluxes(data_dict: dict, rxn_order: list = None) -> pd.DataFrame: """ Given a dictionary representing a GRASP input file, it calculates the robust fluxes (almost) as in GRASP, unless the system is not fully determined. Args: data_dict: path to the GRASP input file rxn_order: a list with the reactions order (optional) Returns: fluxes_df: dataframe with flux mean and std values """ fluxes_df = pd.DataFrame() stoic_balanced, rxn_list = _get_balanced_s_matrix(data_dict) # n_reactions = len(rxn_order) meas_rates_mean, meas_rates_std = _get_meas_rates(data_dict, rxn_list) v_mean, v_std = _compute_robust_fluxes(stoic_balanced, meas_rates_mean, meas_rates_std, rxn_list) fluxes_df['vref_mean (mmol/L/h)'] = v_mean fluxes_df['vref_std (mmol/L/h)'] = v_std fluxes_df.index = rxn_list if rxn_order: fluxes_df = fluxes_df.reindex(rxn_order) fluxes_df = fluxes_df.reindex(rxn_order) return fluxes_df def check_thermodynamic_feasibility(data_dict: dict) -> tuple: """ Given a dictionary representing a GRASP input file, it checks if the reaction's dG are compatible with the respective fluxes. It works both when all fluxes are specified in measRates and when robust fluxes are calculated for a fully determined system. If the fluxes are not fully specified not the system is fully determined, it doesn't work. Args: data_dict: a dictionary representing a GRASP input file. Returns: Whether or not the model is thermodynamically feasible plus fluxes and Gibbs energies dataframes. """ print('\nChecking if fluxes and Gibbs energies are compatible.\n') flag = False temperature = 298 # in K gas_constant = 8.314 * 10**-3 # in kJ K^-1 mol^-1 stoic_df = data_dict['stoic'] flux_df = data_dict['measRates'] ma_df, dG_Q_df, dG_df = calculate_dG(data_dict, gas_constant, temperature) if len(stoic_df.index) != len(flux_df.index): flux_df = get_robust_fluxes(data_dict) for rxn in flux_df.index: if flux_df.loc[rxn, 'vref_mean (mmol/L/h)'] > 0 and dG_df.loc[rxn, '∆G_min'] > 0: print(f'The flux and ∆G range seem to be incompatible for reaction {rxn}') flag = True if flux_df.loc[rxn, 'vref_mean (mmol/L/h)'] < 0 and dG_df.loc[rxn, '∆G_max'] < 0: print(f'The flux and ∆G range seem to be incompatible for reaction {rxn}') flag = True if flag is False: print('Everything seems to be OK.') return flag, flux_df, dG_df
[ 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 628, 198, 198, 4299, 15284, 62, 67, 38, 7, 7890, 62, 11600, 25, 8633, 11, 3623, 62, 9979, 415, 25, 12178, 11, 5951, 25, 12178, 11, 374, 87, 77, 62, 2875, 25, 1351, 796, 6045, 8, 4613, 46545, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 257, 22155, 10200, 257, 10863, 1921, 47, 5128, 2393, 11, 43707, 262, 5288, 290, 5415, 6317, 288, 33884, 1912, 319, 262, 198, 220, 220, 220, 3210, 288, 33884, 287, 10811, 5908, 49, 87, 5907, 290, 14623, 578, 14587, 287, 10811, 5908, 44, 1039, 13, 198, 220, 220, 220, 632, 635, 43707, 262, 2347, 12, 2673, 8064, 290, 262, 636, 286, 262, 288, 38, 1912, 319, 262, 2347, 12, 2673, 8064, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 25, 257, 22155, 326, 6870, 262, 27336, 2393, 351, 262, 10863, 1921, 47, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3623, 62, 9979, 415, 25, 262, 3623, 6937, 284, 15284, 262, 41071, 2568, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 25, 262, 5951, 284, 15284, 262, 41071, 2568, 13, 198, 220, 220, 220, 220, 220, 220, 220, 374, 87, 77, 62, 2875, 25, 257, 1351, 351, 262, 12737, 1502, 357, 25968, 737, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5674, 2223, 8064, 1366, 14535, 11, 288, 38, 62, 48, 1366, 14535, 11, 41071, 27598, 1366, 14535, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 288, 38, 62, 48, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 288, 38, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 17266, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 628, 220, 220, 220, 3995, 291, 62, 7568, 796, 1366, 62, 11600, 17816, 301, 78, 291, 20520, 628, 220, 220, 220, 285, 1039, 62, 1102, 66, 62, 7568, 796, 1366, 62, 11600, 17816, 490, 5908, 44, 1039, 20520, 198, 220, 220, 220, 285, 1039, 62, 1102, 66, 62, 7568, 17816, 32604, 357, 44, 8, 20520, 796, 357, 76, 1039, 62, 1102, 66, 62, 7568, 17816, 1084, 357, 44, 8, 20520, 1343, 285, 1039, 62, 1102, 66, 62, 7568, 17816, 9806, 357, 44, 33047, 12962, 1220, 362, 13, 628, 220, 220, 220, 288, 38, 62, 19282, 62, 7568, 796, 1366, 62, 11600, 17816, 490, 5908, 49, 87, 5907, 20520, 198, 220, 220, 220, 288, 38, 62, 19282, 62, 7568, 17816, 24861, 228, 8642, 62, 32604, 20520, 796, 357, 67, 38, 62, 19282, 62, 7568, 17816, 24861, 228, 8642, 43054, 62, 1084, 357, 74, 41, 14, 43132, 8, 20520, 1343, 288, 38, 62, 19282, 62, 7568, 17816, 24861, 228, 8642, 43054, 62, 9806, 357, 74, 41, 14, 43132, 33047, 12962, 1220, 362, 13, 628, 220, 220, 220, 374, 87, 77, 62, 14933, 796, 3995, 291, 62, 7568, 13, 9630, 13, 27160, 628, 220, 220, 220, 3995, 291, 62, 6759, 8609, 796, 3995, 291, 62, 7568, 13, 27160, 628, 220, 220, 220, 949, 62, 4164, 62, 1102, 66, 796, 285, 1039, 62, 1102, 66, 62, 7568, 17816, 1084, 357, 44, 33047, 4083, 27160, 198, 220, 220, 220, 3509, 62, 4164, 62, 1102, 66, 796, 285, 1039, 62, 1102, 66, 62, 7568, 17816, 9806, 357, 44, 33047, 4083, 27160, 628, 220, 220, 220, 288, 38, 62, 4868, 62, 32604, 11, 288, 38, 62, 48, 62, 4868, 62, 32604, 11, 17266, 62, 10366, 952, 62, 4868, 62, 32604, 796, 4808, 1136, 62, 67, 38, 62, 4868, 7, 40914, 77, 62, 14933, 11, 3995, 291, 62, 6759, 8609, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 1039, 62, 1102, 66, 62, 7568, 17816, 32604, 357, 44, 33047, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 1039, 62, 1102, 66, 62, 7568, 17816, 32604, 357, 44, 33047, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 38, 62, 19282, 62, 7568, 17816, 24861, 228, 8642, 62, 32604, 6, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3623, 62, 9979, 415, 11, 5951, 8, 198, 220, 220, 220, 288, 38, 62, 4868, 62, 1084, 11, 288, 38, 62, 48, 62, 4868, 62, 1084, 11, 17266, 62, 10366, 952, 62, 4868, 62, 1084, 796, 4808, 1136, 62, 67, 38, 62, 4868, 7, 40914, 77, 62, 14933, 11, 3995, 291, 62, 6759, 8609, 11, 3509, 62, 4164, 62, 1102, 66, 11, 949, 62, 4164, 62, 1102, 66, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 38, 62, 19282, 62, 7568, 17816, 24861, 228, 8642, 43054, 62, 1084, 357, 74, 41, 14, 43132, 33047, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3623, 62, 9979, 415, 11, 5951, 8, 198, 220, 220, 220, 288, 38, 62, 4868, 62, 9806, 11, 288, 38, 62, 48, 62, 4868, 62, 9806, 11, 17266, 62, 10366, 952, 62, 4868, 62, 9806, 796, 4808, 1136, 62, 67, 38, 62, 4868, 7, 40914, 77, 62, 14933, 11, 3995, 291, 62, 6759, 8609, 11, 949, 62, 4164, 62, 1102, 66, 11, 3509, 62, 4164, 62, 1102, 66, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 38, 62, 19282, 62, 7568, 17816, 24861, 228, 8642, 43054, 62, 9806, 357, 74, 41, 14, 43132, 33047, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3623, 62, 9979, 415, 11, 5951, 8, 628, 220, 220, 220, 17266, 62, 7568, 17816, 2611, 62, 1084, 20520, 796, 17266, 62, 10366, 952, 62, 4868, 62, 1084, 198, 220, 220, 220, 17266, 62, 7568, 17816, 2611, 62, 32604, 20520, 796, 17266, 62, 10366, 952, 62, 4868, 62, 32604, 198, 220, 220, 220, 17266, 62, 7568, 17816, 2611, 62, 9806, 20520, 796, 17266, 62, 10366, 952, 62, 4868, 62, 9806, 628, 220, 220, 220, 288, 38, 62, 48, 62, 7568, 17816, 24861, 228, 38, 62, 48, 62, 1084, 20520, 796, 288, 38, 62, 48, 62, 4868, 62, 1084, 198, 220, 220, 220, 288, 38, 62, 48, 62, 7568, 17816, 24861, 228, 38, 62, 48, 62, 32604, 20520, 796, 288, 38, 62, 48, 62, 4868, 62, 32604, 198, 220, 220, 220, 288, 38, 62, 48, 62, 7568, 17816, 24861, 228, 38, 62, 48, 62, 9806, 20520, 796, 288, 38, 62, 48, 62, 4868, 62, 9806, 628, 220, 220, 220, 288, 38, 62, 7568, 17816, 24861, 228, 38, 62, 1084, 20520, 796, 288, 38, 62, 4868, 62, 1084, 198, 220, 220, 220, 288, 38, 62, 7568, 17816, 24861, 228, 38, 62, 32604, 20520, 796, 288, 38, 62, 4868, 62, 32604, 198, 220, 220, 220, 288, 38, 62, 7568, 17816, 24861, 228, 38, 62, 9806, 20520, 796, 288, 38, 62, 4868, 62, 9806, 628, 220, 220, 220, 17266, 62, 7568, 13, 9630, 796, 374, 87, 77, 62, 14933, 198, 220, 220, 220, 288, 38, 62, 48, 62, 7568, 13, 9630, 796, 374, 87, 77, 62, 14933, 198, 220, 220, 220, 288, 38, 62, 7568, 13, 9630, 796, 374, 87, 77, 62, 14933, 628, 220, 220, 220, 611, 374, 87, 77, 62, 2875, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17266, 62, 7568, 796, 17266, 62, 7568, 13, 260, 9630, 7, 40914, 77, 62, 2875, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 38, 62, 48, 62, 7568, 796, 288, 38, 62, 48, 62, 7568, 13, 260, 9630, 7, 40914, 77, 62, 2875, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 38, 62, 7568, 796, 288, 38, 62, 7568, 13, 260, 9630, 7, 40914, 77, 62, 2875, 8, 628, 220, 220, 220, 1441, 17266, 62, 7568, 11, 288, 38, 62, 48, 62, 7568, 11, 288, 38, 62, 7568, 628, 628, 198, 198, 4299, 651, 62, 22609, 436, 62, 69, 22564, 274, 7, 7890, 62, 11600, 25, 8633, 11, 374, 87, 77, 62, 2875, 25, 1351, 796, 6045, 8, 4613, 279, 67, 13, 6601, 19778, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 257, 22155, 10200, 257, 10863, 1921, 47, 5128, 2393, 11, 340, 43707, 262, 12373, 28462, 274, 357, 28177, 8, 355, 287, 10863, 1921, 47, 11, 198, 220, 220, 220, 4556, 262, 1080, 318, 407, 3938, 5295, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 25, 3108, 284, 262, 10863, 1921, 47, 5128, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 374, 87, 77, 62, 2875, 25, 257, 1351, 351, 262, 12737, 1502, 357, 25968, 8, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 274, 62, 7568, 25, 1366, 14535, 351, 28462, 1612, 290, 14367, 3815, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 28462, 274, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 3995, 291, 62, 27753, 11, 374, 87, 77, 62, 4868, 796, 4808, 1136, 62, 27753, 62, 82, 62, 6759, 8609, 7, 7890, 62, 11600, 8, 198, 220, 220, 220, 1303, 299, 62, 260, 4658, 796, 18896, 7, 40914, 77, 62, 2875, 8, 628, 220, 220, 220, 2212, 62, 9700, 62, 32604, 11, 2212, 62, 9700, 62, 19282, 796, 4808, 1136, 62, 1326, 292, 62, 9700, 7, 7890, 62, 11600, 11, 374, 87, 77, 62, 4868, 8, 628, 220, 220, 220, 410, 62, 32604, 11, 410, 62, 19282, 796, 4808, 5589, 1133, 62, 22609, 436, 62, 69, 22564, 274, 7, 301, 78, 291, 62, 27753, 11, 2212, 62, 9700, 62, 32604, 11, 2212, 62, 9700, 62, 19282, 11, 374, 87, 77, 62, 4868, 8, 628, 220, 220, 220, 28462, 274, 62, 7568, 17816, 85, 5420, 62, 32604, 357, 3020, 349, 14, 43, 14, 71, 8, 20520, 796, 410, 62, 32604, 198, 220, 220, 220, 28462, 274, 62, 7568, 17816, 85, 5420, 62, 19282, 357, 3020, 349, 14, 43, 14, 71, 8, 20520, 796, 410, 62, 19282, 628, 220, 220, 220, 28462, 274, 62, 7568, 13, 9630, 796, 374, 87, 77, 62, 4868, 198, 220, 220, 220, 611, 374, 87, 77, 62, 2875, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 274, 62, 7568, 796, 28462, 274, 62, 7568, 13, 260, 9630, 7, 40914, 77, 62, 2875, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 274, 62, 7568, 796, 28462, 274, 62, 7568, 13, 260, 9630, 7, 40914, 77, 62, 2875, 8, 628, 220, 220, 220, 1441, 28462, 274, 62, 7568, 628, 198, 4299, 2198, 62, 490, 76, 34743, 62, 5036, 292, 2247, 7, 7890, 62, 11600, 25, 8633, 8, 4613, 46545, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 257, 22155, 10200, 257, 10863, 1921, 47, 5128, 2393, 11, 340, 8794, 611, 262, 6317, 338, 288, 38, 389, 11670, 351, 262, 198, 220, 220, 220, 11756, 28462, 274, 13, 632, 2499, 1111, 618, 477, 28462, 274, 389, 7368, 287, 2212, 49, 689, 290, 618, 12373, 28462, 274, 389, 10488, 198, 220, 220, 220, 329, 257, 3938, 5295, 1080, 13, 1002, 262, 28462, 274, 389, 407, 3938, 7368, 407, 262, 1080, 318, 3938, 5295, 11, 340, 198, 220, 220, 220, 1595, 470, 670, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 25, 257, 22155, 10200, 257, 10863, 1921, 47, 5128, 2393, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10127, 393, 407, 262, 2746, 318, 21969, 24319, 1146, 23498, 5556, 28462, 274, 290, 41071, 27598, 1366, 37805, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 3601, 10786, 59, 77, 9787, 278, 611, 28462, 274, 290, 41071, 27598, 389, 11670, 13, 59, 77, 11537, 628, 220, 220, 220, 6056, 796, 10352, 198, 220, 220, 220, 5951, 796, 37576, 220, 1303, 287, 509, 198, 220, 220, 220, 3623, 62, 9979, 415, 796, 807, 13, 33638, 1635, 838, 1174, 12, 18, 220, 1303, 287, 479, 41, 509, 61, 12, 16, 18605, 61, 12, 16, 628, 220, 220, 220, 3995, 291, 62, 7568, 796, 1366, 62, 11600, 17816, 301, 78, 291, 20520, 198, 220, 220, 220, 28462, 62, 7568, 796, 1366, 62, 11600, 17816, 1326, 292, 49, 689, 20520, 628, 220, 220, 220, 17266, 62, 7568, 11, 288, 38, 62, 48, 62, 7568, 11, 288, 38, 62, 7568, 796, 15284, 62, 67, 38, 7, 7890, 62, 11600, 11, 3623, 62, 9979, 415, 11, 5951, 8, 628, 220, 220, 220, 611, 18896, 7, 301, 78, 291, 62, 7568, 13, 9630, 8, 14512, 18896, 7, 69, 22564, 62, 7568, 13, 9630, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 62, 7568, 796, 651, 62, 22609, 436, 62, 69, 22564, 274, 7, 7890, 62, 11600, 8, 628, 220, 220, 220, 329, 374, 87, 77, 287, 28462, 62, 7568, 13, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28462, 62, 7568, 13, 17946, 58, 40914, 77, 11, 705, 85, 5420, 62, 32604, 357, 3020, 349, 14, 43, 14, 71, 8, 20520, 1875, 657, 290, 288, 38, 62, 7568, 13, 17946, 58, 40914, 77, 11, 705, 24861, 228, 38, 62, 1084, 20520, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 464, 28462, 290, 18872, 228, 38, 2837, 1283, 284, 307, 27294, 329, 6317, 1391, 40914, 77, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28462, 62, 7568, 13, 17946, 58, 40914, 77, 11, 705, 85, 5420, 62, 32604, 357, 3020, 349, 14, 43, 14, 71, 8, 20520, 1279, 657, 290, 288, 38, 62, 7568, 13, 17946, 58, 40914, 77, 11, 705, 24861, 228, 38, 62, 9806, 20520, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 464, 28462, 290, 18872, 228, 38, 2837, 1283, 284, 307, 27294, 329, 6317, 1391, 40914, 77, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 6407, 628, 220, 220, 220, 611, 6056, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19693, 2331, 284, 307, 7477, 2637, 8, 628, 220, 220, 220, 1441, 6056, 11, 28462, 62, 7568, 11, 288, 38, 62, 7568, 198 ]
2.034507
2,840
import clustering import numpy as np from sklearn import datasets import matplotlib.pyplot as plt import dionysus as dion import random if __name__ == '__main__': seed = 0 dataset = gen_data2(seed, noise=0.1, n_samples=100) diagrams = compute_diagrams(dataset) diagrams_cluster = clustering.reformat_diagrams(diagrams) r, M = clustering.pd_fuzzy(diagrams_cluster, 3, verbose=True, max_iter=20) print("Membership values") print(r) plot_dataset(dataset) plot_all_diagrams(diagrams) plot_three_clusters(M) # Other synthetic data, not used in the paper # data = gen_data(seed, noise=0.3) # plot_all(data, diagrams) # plot_clusters(M) # plot_everything(dataset, diagrams)
[ 198, 11748, 32966, 1586, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 1330, 40522, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 288, 295, 893, 385, 355, 288, 295, 198, 11748, 4738, 628, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 9403, 796, 657, 198, 220, 220, 220, 27039, 796, 2429, 62, 7890, 17, 7, 28826, 11, 7838, 28, 15, 13, 16, 11, 299, 62, 82, 12629, 28, 3064, 8, 628, 220, 220, 220, 37067, 796, 24061, 62, 10989, 6713, 82, 7, 19608, 292, 316, 8, 198, 220, 220, 220, 37067, 62, 565, 5819, 796, 32966, 1586, 13, 260, 18982, 62, 10989, 6713, 82, 7, 10989, 6713, 82, 8, 198, 220, 220, 220, 374, 11, 337, 796, 32966, 1586, 13, 30094, 62, 69, 4715, 88, 7, 10989, 6713, 82, 62, 565, 5819, 11, 513, 11, 15942, 577, 28, 17821, 11, 3509, 62, 2676, 28, 1238, 8, 628, 220, 220, 220, 3601, 7203, 25341, 1056, 3815, 4943, 198, 220, 220, 220, 3601, 7, 81, 8, 628, 220, 220, 220, 7110, 62, 19608, 292, 316, 7, 19608, 292, 316, 8, 198, 220, 220, 220, 7110, 62, 439, 62, 10989, 6713, 82, 7, 10989, 6713, 82, 8, 198, 220, 220, 220, 7110, 62, 15542, 62, 565, 13654, 7, 44, 8, 628, 220, 220, 220, 1303, 3819, 18512, 1366, 11, 407, 973, 287, 262, 3348, 198, 220, 220, 220, 1303, 1366, 796, 2429, 62, 7890, 7, 28826, 11, 7838, 28, 15, 13, 18, 8, 198, 220, 220, 220, 1303, 7110, 62, 439, 7, 7890, 11, 37067, 8, 198, 220, 220, 220, 1303, 7110, 62, 565, 13654, 7, 44, 8, 198, 220, 220, 220, 1303, 7110, 62, 37814, 7, 19608, 292, 316, 11, 37067, 8, 198 ]
2.483333
300
"""pathfinder.py - specifies paths and common filenames""" __author__ = 'Chris R. Coughlin' from models import config import os.path import sys def normalized(path_fn): """Decorator to normalize (os.path.normcase) paths""" return normalize @normalized def app_path(): """Returns the base application path.""" if hasattr(sys, 'frozen'): # Handles PyInstaller entry_point = sys.executable else: import controllers entry_point = os.path.dirname(controllers.__file__) return os.path.dirname(entry_point) @normalized def user_path(): """Returns the path for storing user data. If not already set, returns user's home directory/nditoolbox and sets the default in the config file.""" _config = config.Configure(config_path()) upath_key = "User Path" if _config.has_app_option(upath_key): return _config.get_app_option(upath_key) else: default_upath = os.path.normcase(os.path.join(os.path.expanduser('~'), 'nditoolbox')) _config.set_app_option({upath_key: default_upath}) return default_upath @normalized def docs_path(): """Returns the path to the HTML documentation.""" return os.path.join(app_path(), 'docs') @normalized def resource_path(): """Returns the path to resources - home folder for icons, bitmaps, etc.""" return os.path.join(app_path(), 'resources') @normalized def icons_path(): """Returns the path to application icons""" return os.path.join(resource_path(), 'icons') @normalized def icon_path(): """Returns the path to the application's default PNG icon""" return os.path.join(icons_path(), 'a7117_64.png') @normalized def winicon_path(): """Returns the path to the application's default .ICO icon""" return os.path.join(icons_path(), 'a7117_64.ico') @normalized def bitmap_path(): """Returns the path to application bitmaps""" return os.path.join(resource_path(), 'bitmaps') @normalized def textfiles_path(): """Returns the path to application textfiles""" return os.path.join(resource_path(), 'textfiles') @normalized def data_path(): """Returns the path to data files""" return os.path.join(user_path(), 'data') @normalized def thumbnails_path(): """Returns the path to data thumbnails""" return os.path.join(user_path(), 'thumbnails') @normalized def plugins_path(): """Returns the path to plugins""" return os.path.join(user_path(), 'plugins') @normalized def config_path(): """Returns the path to the configuration file""" return os.path.expanduser("~/nditoolbox.cfg") @normalized def log_path(): """Returns the path to the log file. If not already set, sets to user's home directory/nditoolbox.log and sets the default in the config file.""" _config = config.Configure(config_path()) logpath_key = "Log File" if _config.has_app_option(logpath_key): return _config.get_app_option(logpath_key) else: default_logpath = os.path.normcase(os.path.join(os.path.expanduser('~'), 'nditoolbox.log')) _config.set_app_option({logpath_key: default_logpath}) return default_logpath @normalized def podmodels_path(): """Returns the path to POD Toolkit models""" return os.path.join(user_path(), "podmodels") @normalized def gates_path(): """Returns the path to ultrasonic gates""" return os.path.join(user_path(), "gates") @normalized def colormaps_path(): """Returns the path to user-defined colormaps""" return os.path.join(user_path(), "colormaps") @normalized def batchoutput_path(): """Returns the path to data files produced with batch processing mode""" return os.path.join(data_path(), "batch_output")
[ 37811, 6978, 22805, 13, 9078, 532, 26052, 13532, 290, 2219, 1226, 268, 1047, 37811, 198, 834, 9800, 834, 796, 705, 15645, 371, 13, 327, 619, 2815, 6, 198, 198, 6738, 4981, 1330, 4566, 198, 11748, 28686, 13, 6978, 198, 11748, 25064, 198, 198, 4299, 39279, 7, 6978, 62, 22184, 2599, 198, 220, 220, 220, 37227, 10707, 273, 1352, 284, 3487, 1096, 357, 418, 13, 6978, 13, 27237, 7442, 8, 13532, 37811, 628, 220, 220, 220, 1441, 3487, 1096, 628, 198, 31, 11265, 1143, 198, 4299, 598, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 2779, 3586, 3108, 526, 15931, 198, 220, 220, 220, 611, 468, 35226, 7, 17597, 11, 705, 69, 42005, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7157, 829, 9485, 15798, 263, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 62, 4122, 796, 25064, 13, 18558, 18187, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 20624, 628, 220, 220, 220, 220, 220, 220, 220, 5726, 62, 4122, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 3642, 36667, 13, 834, 7753, 834, 8, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 15908, 3672, 7, 13000, 62, 4122, 8, 628, 198, 31, 11265, 1143, 198, 4299, 2836, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 329, 23069, 2836, 1366, 13, 220, 1002, 407, 1541, 900, 11, 198, 220, 220, 220, 5860, 2836, 338, 1363, 8619, 14, 358, 270, 970, 3524, 290, 5621, 262, 4277, 287, 262, 198, 220, 220, 220, 4566, 2393, 526, 15931, 198, 220, 220, 220, 4808, 11250, 796, 4566, 13, 16934, 495, 7, 11250, 62, 6978, 28955, 198, 220, 220, 220, 510, 776, 62, 2539, 796, 366, 12982, 10644, 1, 198, 220, 220, 220, 611, 4808, 11250, 13, 10134, 62, 1324, 62, 18076, 7, 929, 776, 62, 2539, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 11250, 13, 1136, 62, 1324, 62, 18076, 7, 929, 776, 62, 2539, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 929, 776, 796, 28686, 13, 6978, 13, 27237, 7442, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 33809, 705, 358, 270, 970, 3524, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11250, 13, 2617, 62, 1324, 62, 18076, 15090, 929, 776, 62, 2539, 25, 4277, 62, 929, 776, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4277, 62, 929, 776, 628, 198, 31, 11265, 1143, 198, 4299, 34165, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 262, 11532, 10314, 526, 15931, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 1324, 62, 6978, 22784, 705, 31628, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 8271, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 4133, 532, 1363, 9483, 198, 220, 220, 220, 329, 17149, 11, 1643, 31803, 11, 3503, 526, 15931, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 1324, 62, 6978, 22784, 705, 37540, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 17149, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 3586, 17149, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 31092, 62, 6978, 22784, 705, 34280, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 7196, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 262, 3586, 338, 4277, 198, 220, 220, 220, 36182, 7196, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 34280, 62, 6978, 22784, 705, 64, 22, 17657, 62, 2414, 13, 11134, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 1592, 4749, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 262, 3586, 338, 4277, 198, 220, 220, 220, 764, 22707, 7196, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 34280, 62, 6978, 22784, 705, 64, 22, 17657, 62, 2414, 13, 3713, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 1643, 8899, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 3586, 1643, 31803, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 31092, 62, 6978, 22784, 705, 2545, 31803, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 2420, 16624, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 3586, 2420, 16624, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 31092, 62, 6978, 22784, 705, 5239, 16624, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 1366, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 1366, 3696, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 7220, 62, 6978, 22784, 705, 7890, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 294, 13668, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 1366, 294, 13668, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 7220, 62, 6978, 22784, 705, 18670, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 20652, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 20652, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 7220, 62, 6978, 22784, 705, 37390, 11537, 628, 198, 31, 11265, 1143, 198, 4299, 4566, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 262, 8398, 2393, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 14, 358, 270, 970, 3524, 13, 37581, 4943, 628, 198, 31, 11265, 1143, 198, 4299, 2604, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 262, 2604, 2393, 13, 220, 1002, 407, 1541, 900, 11, 198, 220, 220, 220, 5621, 284, 2836, 338, 1363, 8619, 14, 358, 270, 970, 3524, 13, 6404, 290, 5621, 262, 4277, 287, 262, 4566, 2393, 526, 15931, 198, 220, 220, 220, 4808, 11250, 796, 4566, 13, 16934, 495, 7, 11250, 62, 6978, 28955, 198, 220, 220, 220, 2604, 6978, 62, 2539, 796, 366, 11187, 9220, 1, 198, 220, 220, 220, 611, 4808, 11250, 13, 10134, 62, 1324, 62, 18076, 7, 6404, 6978, 62, 2539, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 11250, 13, 1136, 62, 1324, 62, 18076, 7, 6404, 6978, 62, 2539, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 6404, 6978, 796, 28686, 13, 6978, 13, 27237, 7442, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 33809, 705, 358, 270, 970, 3524, 13, 6404, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11250, 13, 2617, 62, 1324, 62, 18076, 15090, 6404, 6978, 62, 2539, 25, 4277, 62, 6404, 6978, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4277, 62, 6404, 6978, 628, 198, 31, 11265, 1143, 198, 4299, 24573, 27530, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 350, 3727, 16984, 15813, 4981, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 7220, 62, 6978, 22784, 366, 33320, 27530, 4943, 628, 198, 31, 11265, 1143, 198, 4299, 17435, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 23212, 30189, 17435, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 7220, 62, 6978, 22784, 366, 70, 689, 4943, 198, 198, 31, 11265, 1143, 198, 4299, 951, 579, 1686, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 2836, 12, 23211, 951, 579, 1686, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 7220, 62, 6978, 22784, 366, 4033, 579, 1686, 4943, 198, 198, 31, 11265, 1143, 198, 4299, 15458, 22915, 62, 6978, 33529, 198, 220, 220, 220, 37227, 35561, 262, 3108, 284, 1366, 3696, 4635, 351, 15458, 7587, 4235, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 6978, 22784, 366, 43501, 62, 22915, 4943 ]
2.809274
1,337
TRANSACTION_STATUS_PENDING = 'pending' TRANSACTION_STATUS_COMPLETE = 'complete' TRANSACTION_STATUS_REFUNDED = 'refunded' TRANSACTION_STATUSES = ( (TRANSACTION_STATUS_PENDING, TRANSACTION_STATUS_PENDING), (TRANSACTION_STATUS_COMPLETE, TRANSACTION_STATUS_COMPLETE), (TRANSACTION_STATUS_REFUNDED, TRANSACTION_STATUS_REFUNDED), )
[ 5446, 15037, 44710, 62, 35744, 2937, 62, 47, 10619, 2751, 796, 705, 79, 1571, 6, 198, 5446, 15037, 44710, 62, 35744, 2937, 62, 41335, 9328, 796, 705, 20751, 6, 198, 5446, 15037, 44710, 62, 35744, 2937, 62, 31688, 4944, 35, 1961, 796, 705, 5420, 917, 276, 6, 198, 5446, 15037, 44710, 62, 35744, 2937, 1546, 796, 357, 198, 220, 220, 220, 357, 5446, 15037, 44710, 62, 35744, 2937, 62, 47, 10619, 2751, 11, 44069, 44710, 62, 35744, 2937, 62, 47, 10619, 2751, 828, 198, 220, 220, 220, 357, 5446, 15037, 44710, 62, 35744, 2937, 62, 41335, 9328, 11, 44069, 44710, 62, 35744, 2937, 62, 41335, 9328, 828, 198, 220, 220, 220, 357, 5446, 15037, 44710, 62, 35744, 2937, 62, 31688, 4944, 35, 1961, 11, 44069, 44710, 62, 35744, 2937, 62, 31688, 4944, 35, 1961, 828, 198, 8, 198 ]
2.449275
138
import numpy as np import sys import yaml import pytest import test_tools import hsbalance as hs '''This module is for testing Min_Max model solver''' # Reading the test cases from config.yaml file, to add more tests follow the rules on the file tests, tests_id, timeout = test_tools.get_tests_from_yaml('Min_max') @pytest.mark.parametrize('param, expected', tests, ids=tests_id ) @pytest.mark.timeout(timeout) def test_Min_max(param, expected): ''' Testing instantiate Min_Max model and test it against test cases ''' my_ALPHA = hs.Alpha() A = hs.convert_matrix_to_cart(param[0]['A']) weight_const = param[0]['weight_const'] A0 = [0] # It is acceptable to enter either direct_matrix or A,B,U matrices try: direct_matrix = hs.convert_matrix_to_cart(param[0]['ALPHA']) my_ALPHA.add(direct_matrix=direct_matrix) except KeyError: B = hs.convert_matrix_to_cart(param[0]['B']) U = hs.convert_matrix_to_cart(param[0]['U']) my_ALPHA.add(A=A, B=B, U=U) try: A0 = hs.convert_matrix_to_cart(param[0]['A0']) except KeyError: pass expected_W = hs.convert_matrix_to_cart(expected) my_model = hs.Min_max(A, my_ALPHA, weight_const=weight_const,name='Min_max') # Setting the model almost with no constraints W = my_model.solve() print((expected)) print('Residual Vibration rmse calculated = ', my_model.rmse()) print('Residual Vibration rmse from test_case = ', hs.rmse(hs.residual_vibration(my_ALPHA.value, expected_W, A))) print('expected_residual_vibration', hs.convert_matrix_to_math(my_model.expected_residual_vibration())) print('Correction weights', hs.convert_cart_math(W)) # Constraint Minmax algorithm was slightly inefficient in CVXPY # The rmse was marginally more than the author solution np.testing.assert_allclose(W, expected_W, rtol=0.09) # allowance 9% error
[ 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 198, 11748, 331, 43695, 198, 11748, 12972, 9288, 198, 11748, 1332, 62, 31391, 198, 11748, 289, 82, 20427, 355, 289, 82, 198, 198, 7061, 6, 1212, 8265, 318, 329, 4856, 1855, 62, 11518, 2746, 1540, 332, 7061, 6, 198, 2, 11725, 262, 1332, 2663, 422, 4566, 13, 88, 43695, 2393, 11, 284, 751, 517, 5254, 1061, 262, 3173, 319, 262, 2393, 198, 41989, 11, 5254, 62, 312, 11, 26827, 796, 1332, 62, 31391, 13, 1136, 62, 41989, 62, 6738, 62, 88, 43695, 10786, 9452, 62, 9806, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 17143, 11, 2938, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5254, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 28, 41989, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 31, 9078, 9288, 13, 4102, 13, 48678, 7, 48678, 8, 198, 4299, 1332, 62, 9452, 62, 9806, 7, 17143, 11, 2938, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 23983, 9113, 9386, 1855, 62, 11518, 2746, 290, 1332, 340, 1028, 1332, 2663, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 616, 62, 1847, 47, 7801, 796, 289, 82, 13, 38077, 3419, 198, 220, 220, 220, 317, 796, 289, 82, 13, 1102, 1851, 62, 6759, 8609, 62, 1462, 62, 26674, 7, 17143, 58, 15, 7131, 6, 32, 6, 12962, 198, 220, 220, 220, 3463, 62, 9979, 796, 5772, 58, 15, 7131, 6, 6551, 62, 9979, 20520, 198, 220, 220, 220, 317, 15, 796, 685, 15, 60, 198, 220, 220, 220, 1303, 632, 318, 10909, 284, 3802, 2035, 1277, 62, 6759, 8609, 393, 317, 11, 33, 11, 52, 2603, 45977, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1277, 62, 6759, 8609, 796, 289, 82, 13, 1102, 1851, 62, 6759, 8609, 62, 1462, 62, 26674, 7, 17143, 58, 15, 7131, 6, 1847, 47, 7801, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 616, 62, 1847, 47, 7801, 13, 2860, 7, 12942, 62, 6759, 8609, 28, 12942, 62, 6759, 8609, 8, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 347, 796, 289, 82, 13, 1102, 1851, 62, 6759, 8609, 62, 1462, 62, 26674, 7, 17143, 58, 15, 7131, 6, 33, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 471, 796, 289, 82, 13, 1102, 1851, 62, 6759, 8609, 62, 1462, 62, 26674, 7, 17143, 58, 15, 7131, 6, 52, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 616, 62, 1847, 47, 7801, 13, 2860, 7, 32, 28, 32, 11, 347, 28, 33, 11, 471, 28, 52, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 317, 15, 796, 289, 82, 13, 1102, 1851, 62, 6759, 8609, 62, 1462, 62, 26674, 7, 17143, 58, 15, 7131, 6, 32, 15, 6, 12962, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 2938, 62, 54, 796, 289, 82, 13, 1102, 1851, 62, 6759, 8609, 62, 1462, 62, 26674, 7, 40319, 8, 628, 220, 220, 220, 616, 62, 19849, 796, 289, 82, 13, 9452, 62, 9806, 7, 32, 11, 616, 62, 1847, 47, 7801, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 9979, 28, 6551, 62, 9979, 11, 3672, 11639, 9452, 62, 9806, 11537, 220, 1303, 25700, 262, 2746, 2048, 351, 645, 17778, 198, 220, 220, 220, 370, 796, 616, 62, 19849, 13, 82, 6442, 3419, 198, 220, 220, 220, 3601, 19510, 40319, 4008, 198, 220, 220, 220, 3601, 10786, 4965, 312, 723, 569, 571, 1358, 42721, 325, 10488, 796, 46083, 616, 62, 19849, 13, 26224, 325, 28955, 198, 220, 220, 220, 3601, 10786, 4965, 312, 723, 569, 571, 1358, 42721, 325, 422, 1332, 62, 7442, 796, 46083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 82, 13, 26224, 325, 7, 11994, 13, 411, 312, 723, 62, 85, 571, 1358, 7, 1820, 62, 1847, 47, 7801, 13, 8367, 11, 2938, 62, 54, 11, 317, 22305, 198, 220, 220, 220, 3601, 10786, 40319, 62, 411, 312, 723, 62, 85, 571, 1358, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 82, 13, 1102, 1851, 62, 6759, 8609, 62, 1462, 62, 11018, 7, 1820, 62, 19849, 13, 40319, 62, 411, 312, 723, 62, 85, 571, 1358, 3419, 4008, 198, 220, 220, 220, 3601, 10786, 43267, 19590, 3256, 289, 82, 13, 1102, 1851, 62, 26674, 62, 11018, 7, 54, 4008, 198, 220, 220, 220, 1303, 1482, 2536, 2913, 1855, 9806, 11862, 373, 4622, 30904, 287, 26196, 27481, 56, 198, 220, 220, 220, 1303, 383, 42721, 325, 373, 44108, 517, 621, 262, 1772, 4610, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 439, 19836, 7, 54, 11, 2938, 62, 54, 11, 374, 83, 349, 28, 15, 13, 2931, 8, 1303, 24930, 860, 4, 4049, 628, 198 ]
2.246696
908
from pymatex.listener import MatexASTVisitor from pymatex.node import *
[ 6738, 279, 4948, 378, 87, 13, 4868, 877, 1330, 24787, 87, 1921, 6849, 271, 2072, 198, 6738, 279, 4948, 378, 87, 13, 17440, 1330, 1635, 628 ]
2.807692
26
from datetime import datetime, timedelta import time from db_apis import trim_tables, create_summaries
[ 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 11748, 640, 198, 6738, 20613, 62, 499, 271, 1330, 15797, 62, 83, 2977, 11, 2251, 62, 82, 13929, 3166, 628 ]
3.466667
30
##################### QuickSort ################### from typing import List def quick_sort(nums: List[int]) -> List[int]: """ Does recursive sorting using quick sort """ if len(nums) < 2: return nums mid: int = (len(nums) - 1)//2 smaller_values: List[int] = [num for i, num in enumerate(nums) if num <= nums[mid] and i != mid] bigger_values: List[int] = [num for num in nums if num > nums[mid]] return quick_sort(smaller_values) + [nums[mid]] + quick_sort(bigger_values)
[ 14468, 4242, 2, 12029, 42758, 1303, 14468, 2235, 198, 6738, 19720, 1330, 7343, 628, 198, 4299, 2068, 62, 30619, 7, 77, 5700, 25, 7343, 58, 600, 12962, 4613, 7343, 58, 600, 5974, 198, 220, 220, 220, 37227, 8314, 45115, 29407, 1262, 2068, 3297, 37227, 198, 220, 220, 220, 611, 18896, 7, 77, 5700, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 997, 82, 198, 220, 220, 220, 3095, 25, 493, 796, 357, 11925, 7, 77, 5700, 8, 532, 352, 8, 1003, 17, 198, 220, 220, 220, 4833, 62, 27160, 25, 7343, 58, 600, 60, 796, 685, 22510, 329, 1312, 11, 997, 287, 27056, 378, 7, 77, 5700, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 997, 19841, 997, 82, 58, 13602, 60, 290, 1312, 14512, 3095, 60, 198, 220, 220, 220, 5749, 62, 27160, 25, 7343, 58, 600, 60, 796, 685, 22510, 329, 997, 287, 997, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 997, 1875, 997, 82, 58, 13602, 11907, 198, 220, 220, 220, 1441, 2068, 62, 30619, 7, 17470, 263, 62, 27160, 8, 1343, 685, 77, 5700, 58, 13602, 11907, 1343, 2068, 62, 30619, 7, 14261, 1362, 62, 27160, 8, 628 ]
2.180812
271
import numpy as np
[ 11748, 299, 32152, 355, 45941 ]
3.6
5
import pytest from models.test import StructA from models.simple import MILSTD_1553_Message from models.chapter10 import MILSTD_1553_Data_Packet_Format_1 @pytest.mark.parametrize( "struct", [StructA, MILSTD_1553_Message, MILSTD_1553_Data_Packet_Format_1] )
[ 11748, 12972, 9288, 198, 198, 6738, 4981, 13, 9288, 1330, 32112, 32, 198, 6738, 4981, 13, 36439, 1330, 31515, 32147, 62, 1314, 4310, 62, 12837, 198, 6738, 4981, 13, 43582, 940, 1330, 31515, 32147, 62, 1314, 4310, 62, 6601, 62, 47, 8317, 62, 26227, 62, 16, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 7249, 1600, 685, 44909, 32, 11, 31515, 32147, 62, 1314, 4310, 62, 12837, 11, 31515, 32147, 62, 1314, 4310, 62, 6601, 62, 47, 8317, 62, 26227, 62, 16, 60, 198, 8, 198 ]
2.75
96
from lib.base import PowerDNSClientAction class ServerListAction(PowerDNSClientAction): """ List available PowerDNS servers. """
[ 6738, 9195, 13, 8692, 1330, 4333, 35, 8035, 11792, 12502, 628, 198, 4871, 9652, 8053, 12502, 7, 13434, 35, 8035, 11792, 12502, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7343, 1695, 4333, 35, 8035, 9597, 13, 198, 220, 220, 220, 37227, 198 ]
3.177778
45
from unittest import mock from rattr.analyser.context import Call, Func, Import, Name from rattr.analyser.context.symbol import Class from rattr.analyser.results import generate_results_from_ir
[ 6738, 555, 715, 395, 1330, 15290, 198, 198, 6738, 27263, 81, 13, 272, 26266, 263, 13, 22866, 1330, 4889, 11, 11138, 66, 11, 17267, 11, 6530, 198, 6738, 27263, 81, 13, 272, 26266, 263, 13, 22866, 13, 1837, 23650, 1330, 5016, 198, 6738, 27263, 81, 13, 272, 26266, 263, 13, 43420, 1330, 7716, 62, 43420, 62, 6738, 62, 343, 628 ]
3.266667
60
# Work with Python 3.6 import discord import numpy as np import pandas as pd import random import subprocess import weather as wt from nlu_yahoo import nluservice from MorseCode import morse # from wc import noname_wc #import softalk as sf from calender import getCalender, getCalLink, getCommandList from news import getNews from matchbattle.map import getTargetMap import noname_vocabulary as nnm import traceback from logger import writelog from logger import nonamelog from bs4 import BeautifulSoup import requests import configparser config = configparser.ConfigParser() config.read('noname.ini') TOKEN = config['noname']['TOKEN'] client = discord.Client() @client.event @client.event client.run(TOKEN)
[ 2, 5521, 351, 11361, 513, 13, 21, 198, 11748, 36446, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 4738, 198, 11748, 850, 14681, 198, 11748, 6193, 355, 266, 83, 198, 6738, 299, 2290, 62, 40774, 1330, 299, 41790, 712, 501, 198, 6738, 44049, 10669, 1330, 2146, 325, 198, 2, 422, 266, 66, 1330, 1729, 480, 62, 86, 66, 198, 2, 11748, 2705, 971, 355, 264, 69, 198, 6738, 2386, 2194, 1330, 651, 9771, 2194, 11, 651, 9771, 11280, 11, 651, 21575, 8053, 198, 6738, 1705, 1330, 651, 9980, 198, 6738, 2872, 38471, 13, 8899, 1330, 651, 21745, 13912, 198, 11748, 1729, 480, 62, 18893, 22528, 355, 299, 21533, 198, 11748, 12854, 1891, 198, 6738, 49706, 1330, 1991, 417, 519, 198, 6738, 49706, 1330, 1729, 17983, 519, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 11748, 7007, 198, 198, 11748, 4566, 48610, 198, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 11250, 13, 961, 10786, 13159, 480, 13, 5362, 11537, 198, 10468, 43959, 796, 4566, 17816, 13159, 480, 6, 7131, 6, 10468, 43959, 20520, 198, 198, 16366, 796, 36446, 13, 11792, 3419, 198, 198, 31, 16366, 13, 15596, 198, 198, 31, 16366, 13, 15596, 198, 198, 16366, 13, 5143, 7, 10468, 43959, 8 ]
3.358491
212
# Copyright 2020, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file # This modules disables the Pytype analyzer, see # https://github.com/tensorflow/federated/blob/main/docs/pytype.md for more # information. """A collection of utilities for compiling TFF code for execution on IREE.""" import tempfile import iree.compiler.tf import tensorflow as tf from tensorflow_federated.proto.v0 import computation_pb2 as pb from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.common_libs import serialization_utils from tensorflow_federated.python.core.backends.iree import computation_module from tensorflow_federated.python.core.impl.types import computation_types from tensorflow_federated.python.core.impl.types import type_serialization from tensorflow_federated.python.core.impl.utils import tensorflow_utils def import_tensorflow_computation(comp, name='fn'): """Creates a `computation_module.ComputationModule` from a TF computation. WARNING: This helper function is under construction, and most capabilities are not implemented at this stage: * The parameter and result of `comp` can only be a single tensor. Named tuples, sequences, or functional types are not currently supported. * Only tensorflow code can be imported. TODO(b/153499219): Add support for named tuples, sequences, and functions. Args: comp: An instance of a `pb.Computation` with TensorFlow code to import. name: An optional `str` name of the (single) function in the IREE module. Returns: An instance of `Module` with the imported function present. Raises: TypeError: If arguments are of the wrong types, e.g., in `comp` is not a TensorFlow computation. """ py_typecheck.check_type(comp, pb.Computation) type_spec = type_serialization.deserialize_type(comp.type) if not type_spec.is_function(): type_spec = computation_types.FunctionType(None, type_spec) # TODO(b/153499219): Replace this with a recursive check of the signature # after relaxing the type restrictions and introducing nested structures. py_typecheck.check_type(type_spec.result, computation_types.TensorType) if type_spec.parameter is not None: py_typecheck.check_type(type_spec.parameter, computation_types.TensorType) which_computation = comp.WhichOneof('computation') if which_computation != 'tensorflow': raise TypeError('Expected a TensorFlow computation, found {}.'.format( which_computation)) output_tensor_names = tensorflow_utils.extract_tensor_names_from_binding( comp.tensorflow.result) if type_spec.parameter is not None: input_tensor_names = tensorflow_utils.extract_tensor_names_from_binding( comp.tensorflow.parameter) else: input_tensor_names = [] graph_def = serialization_utils.unpack_graph_def(comp.tensorflow.graph_def) init_op = comp.tensorflow.initialize_op return_elements = input_tensor_names + output_tensor_names if init_op: graph_def = tensorflow_utils.add_control_deps_for_init_op( graph_def, init_op) return_elements.append(init_op) with tf.Graph().as_default() as graph: # TODO(b/153499219): See if we can reintroduce uniquify_shared_names(). # Right now, it causes loader breakage, and unclear if still necessary. import_results = tf.graph_util.import_graph_def( graph_def, input_map={}, return_elements=return_elements, name='') if init_op: initializer = import_results[-1] import_results.pop() else: initializer = None inputs = import_results[0:len(input_tensor_names)] outputs = import_results[len(input_tensor_names):] with graph.as_default(): # TODO(b/153499219): Find a way to reflect the nested parameter and result # structure here after relaxing the restrictions. if inputs: assert len(inputs) < 2 input_dict = { 'parameter': tf.compat.v1.saved_model.utils.build_tensor_info(inputs[0]) } else: input_dict = {} assert len(outputs) == 1 output_dict = { 'result': tf.compat.v1.saved_model.utils.build_tensor_info(outputs[0]) } sig_def = tf.compat.v1.saved_model.signature_def_utils.build_signature_def( inputs=input_dict, outputs=output_dict, method_name=name) with tempfile.TemporaryDirectory() as model_dir: builder = tf.compat.v1.saved_model.Builder(model_dir) with tf.compat.v1.Session(graph=graph) as sess: builder.add_meta_graph_and_variables( sess, ['unused'], signature_def_map={name: sig_def}, legacy_init_op=initializer, strip_default_attrs=True) builder.save() iree_module = iree.compiler.tf.compile_saved_model( model_dir, import_type='SIGNATURE_DEF', import_only=True, saved_model_tags=set(['unused']), exported_names=[name]) return computation_module.ComputationModule(iree_module, name, type_spec)
[ 2, 15069, 12131, 11, 383, 309, 22854, 37535, 35089, 515, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 12972, 4906, 25, 14267, 12, 7753, 198, 2, 770, 13103, 595, 2977, 262, 9485, 4906, 4284, 9107, 11, 766, 198, 2, 3740, 1378, 12567, 13, 785, 14, 83, 22854, 11125, 14, 69, 5702, 515, 14, 2436, 672, 14, 12417, 14, 31628, 14, 9078, 4906, 13, 9132, 329, 517, 198, 2, 1321, 13, 198, 37811, 32, 4947, 286, 20081, 329, 33393, 309, 5777, 2438, 329, 9706, 319, 314, 11587, 526, 15931, 198, 198, 11748, 20218, 7753, 198, 198, 11748, 35918, 68, 13, 5589, 5329, 13, 27110, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 1676, 1462, 13, 85, 15, 1330, 29964, 62, 40842, 17, 355, 279, 65, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 11321, 62, 8019, 82, 1330, 12972, 62, 4906, 9122, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 11321, 62, 8019, 82, 1330, 11389, 1634, 62, 26791, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 7295, 13, 1891, 2412, 13, 557, 68, 1330, 29964, 62, 21412, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 7295, 13, 23928, 13, 19199, 1330, 29964, 62, 19199, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 7295, 13, 23928, 13, 19199, 1330, 2099, 62, 46911, 1634, 198, 6738, 11192, 273, 11125, 62, 69, 5702, 515, 13, 29412, 13, 7295, 13, 23928, 13, 26791, 1330, 11192, 273, 11125, 62, 26791, 628, 198, 4299, 1330, 62, 83, 22854, 11125, 62, 785, 1996, 341, 7, 5589, 11, 1438, 11639, 22184, 6, 2599, 198, 220, 37227, 16719, 274, 257, 4600, 785, 1996, 341, 62, 21412, 13, 5377, 1996, 341, 26796, 63, 422, 257, 24958, 29964, 13, 628, 220, 39410, 25, 770, 31904, 2163, 318, 739, 5103, 11, 290, 749, 9889, 389, 198, 220, 407, 9177, 379, 428, 3800, 25, 628, 220, 1635, 383, 11507, 290, 1255, 286, 4600, 5589, 63, 460, 691, 307, 257, 2060, 11192, 273, 13, 34441, 198, 220, 220, 220, 12777, 2374, 11, 16311, 11, 393, 10345, 3858, 389, 407, 3058, 4855, 13, 628, 220, 1635, 5514, 11192, 273, 11125, 2438, 460, 307, 17392, 13, 628, 220, 16926, 46, 7, 65, 14, 1314, 2682, 2079, 28896, 2599, 3060, 1104, 329, 3706, 12777, 2374, 11, 16311, 11, 290, 5499, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 552, 25, 1052, 4554, 286, 257, 4600, 40842, 13, 5377, 1996, 341, 63, 351, 309, 22854, 37535, 2438, 284, 1330, 13, 198, 220, 220, 220, 1438, 25, 1052, 11902, 4600, 2536, 63, 1438, 286, 262, 357, 29762, 8, 2163, 287, 262, 314, 11587, 8265, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 1052, 4554, 286, 4600, 26796, 63, 351, 262, 17392, 2163, 1944, 13, 628, 220, 7567, 2696, 25, 198, 220, 220, 220, 5994, 12331, 25, 1002, 7159, 389, 286, 262, 2642, 3858, 11, 304, 13, 70, 1539, 287, 4600, 5589, 63, 318, 407, 257, 198, 220, 220, 220, 220, 220, 309, 22854, 37535, 29964, 13, 198, 220, 37227, 198, 220, 12972, 62, 4906, 9122, 13, 9122, 62, 4906, 7, 5589, 11, 279, 65, 13, 5377, 1996, 341, 8, 198, 220, 2099, 62, 16684, 796, 2099, 62, 46911, 1634, 13, 8906, 48499, 1096, 62, 4906, 7, 5589, 13, 4906, 8, 198, 220, 611, 407, 2099, 62, 16684, 13, 271, 62, 8818, 33529, 198, 220, 220, 220, 2099, 62, 16684, 796, 29964, 62, 19199, 13, 22203, 6030, 7, 14202, 11, 2099, 62, 16684, 8, 628, 220, 1303, 16926, 46, 7, 65, 14, 1314, 2682, 2079, 28896, 2599, 40177, 428, 351, 257, 45115, 2198, 286, 262, 9877, 198, 220, 1303, 706, 28175, 262, 2099, 8733, 290, 16118, 28376, 8573, 13, 198, 220, 12972, 62, 4906, 9122, 13, 9122, 62, 4906, 7, 4906, 62, 16684, 13, 20274, 11, 29964, 62, 19199, 13, 51, 22854, 6030, 8, 198, 220, 611, 2099, 62, 16684, 13, 17143, 2357, 318, 407, 6045, 25, 198, 220, 220, 220, 12972, 62, 4906, 9122, 13, 9122, 62, 4906, 7, 4906, 62, 16684, 13, 17143, 2357, 11, 29964, 62, 19199, 13, 51, 22854, 6030, 8, 628, 220, 543, 62, 785, 1996, 341, 796, 552, 13, 13828, 3198, 1659, 10786, 785, 1996, 341, 11537, 198, 220, 611, 543, 62, 785, 1996, 341, 14512, 705, 83, 22854, 11125, 10354, 198, 220, 220, 220, 5298, 5994, 12331, 10786, 3109, 7254, 257, 309, 22854, 37535, 29964, 11, 1043, 23884, 2637, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 543, 62, 785, 1996, 341, 4008, 628, 220, 5072, 62, 83, 22854, 62, 14933, 796, 11192, 273, 11125, 62, 26791, 13, 2302, 974, 62, 83, 22854, 62, 14933, 62, 6738, 62, 30786, 7, 198, 220, 220, 220, 220, 220, 552, 13, 83, 22854, 11125, 13, 20274, 8, 198, 220, 611, 2099, 62, 16684, 13, 17143, 2357, 318, 407, 6045, 25, 198, 220, 220, 220, 5128, 62, 83, 22854, 62, 14933, 796, 11192, 273, 11125, 62, 26791, 13, 2302, 974, 62, 83, 22854, 62, 14933, 62, 6738, 62, 30786, 7, 198, 220, 220, 220, 220, 220, 220, 220, 552, 13, 83, 22854, 11125, 13, 17143, 2357, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 5128, 62, 83, 22854, 62, 14933, 796, 17635, 628, 220, 4823, 62, 4299, 796, 11389, 1634, 62, 26791, 13, 403, 8002, 62, 34960, 62, 4299, 7, 5589, 13, 83, 22854, 11125, 13, 34960, 62, 4299, 8, 198, 220, 2315, 62, 404, 796, 552, 13, 83, 22854, 11125, 13, 36733, 1096, 62, 404, 198, 220, 1441, 62, 68, 3639, 796, 5128, 62, 83, 22854, 62, 14933, 1343, 5072, 62, 83, 22854, 62, 14933, 198, 220, 611, 2315, 62, 404, 25, 198, 220, 220, 220, 4823, 62, 4299, 796, 11192, 273, 11125, 62, 26791, 13, 2860, 62, 13716, 62, 10378, 82, 62, 1640, 62, 15003, 62, 404, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4823, 62, 4299, 11, 2315, 62, 404, 8, 198, 220, 220, 220, 1441, 62, 68, 3639, 13, 33295, 7, 15003, 62, 404, 8, 628, 220, 351, 48700, 13, 37065, 22446, 292, 62, 12286, 3419, 355, 4823, 25, 198, 220, 220, 220, 1303, 16926, 46, 7, 65, 14, 1314, 2682, 2079, 28896, 2599, 4091, 611, 356, 460, 38368, 344, 555, 1557, 1958, 62, 28710, 62, 14933, 22446, 198, 220, 220, 220, 1303, 6498, 783, 11, 340, 5640, 40213, 2270, 496, 11, 290, 10061, 611, 991, 3306, 13, 198, 220, 220, 220, 1330, 62, 43420, 796, 48700, 13, 34960, 62, 22602, 13, 11748, 62, 34960, 62, 4299, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4823, 62, 4299, 11, 5128, 62, 8899, 34758, 5512, 1441, 62, 68, 3639, 28, 7783, 62, 68, 3639, 11, 1438, 28, 7061, 8, 628, 220, 611, 2315, 62, 404, 25, 198, 220, 220, 220, 4238, 7509, 796, 1330, 62, 43420, 58, 12, 16, 60, 198, 220, 220, 220, 1330, 62, 43420, 13, 12924, 3419, 198, 220, 2073, 25, 198, 220, 220, 220, 4238, 7509, 796, 6045, 628, 220, 17311, 796, 1330, 62, 43420, 58, 15, 25, 11925, 7, 15414, 62, 83, 22854, 62, 14933, 15437, 198, 220, 23862, 796, 1330, 62, 43420, 58, 11925, 7, 15414, 62, 83, 22854, 62, 14933, 2599, 60, 628, 220, 351, 4823, 13, 292, 62, 12286, 33529, 198, 220, 220, 220, 1303, 16926, 46, 7, 65, 14, 1314, 2682, 2079, 28896, 2599, 9938, 257, 835, 284, 4079, 262, 28376, 11507, 290, 1255, 198, 220, 220, 220, 1303, 4645, 994, 706, 28175, 262, 8733, 13, 198, 220, 220, 220, 611, 17311, 25, 198, 220, 220, 220, 220, 220, 6818, 18896, 7, 15414, 82, 8, 1279, 362, 198, 220, 220, 220, 220, 220, 5128, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17143, 2357, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 5589, 265, 13, 85, 16, 13, 82, 9586, 62, 19849, 13, 26791, 13, 11249, 62, 83, 22854, 62, 10951, 7, 15414, 82, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 5128, 62, 11600, 796, 23884, 198, 220, 220, 220, 6818, 18896, 7, 22915, 82, 8, 6624, 352, 198, 220, 220, 220, 5072, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20274, 10354, 48700, 13, 5589, 265, 13, 85, 16, 13, 82, 9586, 62, 19849, 13, 26791, 13, 11249, 62, 83, 22854, 62, 10951, 7, 22915, 82, 58, 15, 12962, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 43237, 62, 4299, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 82, 9586, 62, 19849, 13, 12683, 1300, 62, 4299, 62, 26791, 13, 11249, 62, 12683, 1300, 62, 4299, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 15414, 62, 11600, 11, 23862, 28, 22915, 62, 11600, 11, 2446, 62, 3672, 28, 3672, 8, 198, 220, 220, 220, 351, 20218, 7753, 13, 12966, 5551, 43055, 3419, 355, 2746, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 27098, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 82, 9586, 62, 19849, 13, 32875, 7, 19849, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 5589, 265, 13, 85, 16, 13, 36044, 7, 34960, 28, 34960, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27098, 13, 2860, 62, 28961, 62, 34960, 62, 392, 62, 25641, 2977, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 11, 37250, 403, 1484, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9877, 62, 4299, 62, 8899, 34758, 3672, 25, 43237, 62, 4299, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10655, 62, 15003, 62, 404, 28, 36733, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10283, 62, 12286, 62, 1078, 3808, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27098, 13, 21928, 3419, 198, 220, 220, 220, 220, 220, 35918, 68, 62, 21412, 796, 35918, 68, 13, 5589, 5329, 13, 27110, 13, 5589, 576, 62, 82, 9586, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 62, 4906, 11639, 46224, 40086, 62, 32988, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 62, 8807, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7448, 62, 19849, 62, 31499, 28, 2617, 7, 17816, 403, 1484, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29050, 62, 14933, 41888, 3672, 12962, 198, 220, 220, 220, 220, 220, 1441, 29964, 62, 21412, 13, 5377, 1996, 341, 26796, 7, 557, 68, 62, 21412, 11, 1438, 11, 2099, 62, 16684, 8, 198 ]
2.818785
1,959
from phi.fluidformat import * # for scene in scenes("~/data/control/squares"): # scene.remove() scenecount = 1000 for scene_index in range(scenecount): scene = new_scene("~/data/control/squares") start_x, start_y, end_x, end_y = np.random.randint(10, 110, 4) print(scene) scenelength = 32 vx = (end_x-start_x) / float(scenelength) vy = (end_y-start_y) / float(scenelength) for frame in range(scenelength+1): time = frame / float(scenelength) array = np.zeros([128, 128, 1], np.float32) x = int(round(start_x * (1-time) + end_x * time)) y = int(round(start_y * (1-time) + end_y * time)) array[y:y+8, x:x+8, :] = 1 velocity_array = np.empty([129, 129, 2], np.float32) velocity_array[...,0] = vx velocity_array[...,1] = vy write_sim_frame(scene.path, [array, velocity_array], ["Density", "Velocity"], frame)
[ 6738, 872, 72, 13, 35522, 312, 18982, 1330, 1635, 198, 198, 2, 329, 3715, 287, 8188, 7203, 93, 14, 7890, 14, 13716, 14, 16485, 3565, 1, 2599, 198, 2, 220, 220, 220, 220, 3715, 13, 28956, 3419, 198, 198, 1416, 268, 721, 608, 796, 8576, 198, 198, 1640, 3715, 62, 9630, 287, 2837, 7, 1416, 268, 721, 608, 2599, 198, 220, 220, 220, 3715, 796, 649, 62, 29734, 7203, 93, 14, 7890, 14, 13716, 14, 16485, 3565, 4943, 198, 220, 220, 220, 923, 62, 87, 11, 923, 62, 88, 11, 886, 62, 87, 11, 886, 62, 88, 796, 45941, 13, 25120, 13, 25192, 600, 7, 940, 11, 9796, 11, 604, 8, 198, 220, 220, 220, 3601, 7, 29734, 8, 198, 220, 220, 220, 4408, 417, 3286, 796, 3933, 198, 220, 220, 220, 410, 87, 796, 357, 437, 62, 87, 12, 9688, 62, 87, 8, 1220, 12178, 7, 1416, 268, 417, 3286, 8, 198, 220, 220, 220, 410, 88, 796, 357, 437, 62, 88, 12, 9688, 62, 88, 8, 1220, 12178, 7, 1416, 268, 417, 3286, 8, 198, 220, 220, 220, 329, 5739, 287, 2837, 7, 1416, 268, 417, 3286, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 640, 796, 5739, 1220, 12178, 7, 1416, 268, 417, 3286, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 45941, 13, 9107, 418, 26933, 12762, 11, 13108, 11, 352, 4357, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 493, 7, 744, 7, 9688, 62, 87, 1635, 357, 16, 12, 2435, 8, 1343, 886, 62, 87, 1635, 640, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 493, 7, 744, 7, 9688, 62, 88, 1635, 357, 16, 12, 2435, 8, 1343, 886, 62, 88, 1635, 640, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 58, 88, 25, 88, 10, 23, 11, 2124, 25, 87, 10, 23, 11, 1058, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 15432, 62, 18747, 796, 45941, 13, 28920, 26933, 18741, 11, 20248, 11, 362, 4357, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15432, 62, 18747, 58, 986, 11, 15, 60, 796, 410, 87, 198, 220, 220, 220, 220, 220, 220, 220, 15432, 62, 18747, 58, 986, 11, 16, 60, 796, 410, 88, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 14323, 62, 14535, 7, 29734, 13, 6978, 11, 685, 18747, 11, 15432, 62, 18747, 4357, 14631, 35, 6377, 1600, 366, 46261, 11683, 33116, 5739, 8 ]
2.153664
423
# # ⚠ Warning # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # [🥭 Mango Markets](https://mango.markets/) support is available at: # [Docs](https://docs.mango.markets/) # [Discord](https://discord.gg/67jySBhxrg) # [Twitter](https://twitter.com/mangomarkets) # [Github](https://github.com/blockworks-foundation) # [Email](mailto:[email protected]) import enum import mango import typing from solana.publickey import PublicKey from ..constants import SYSTEM_PROGRAM_ADDRESS from ..modelstate import ModelState from .modelstatebuilder import ( ModelStateBuilder, WebsocketModelStateBuilder, SerumPollingModelStateBuilder, SpotPollingModelStateBuilder, PerpPollingModelStateBuilder, ) # # 🥭 ModelStateBuilder class # # Base class for building a `ModelState` through polling or websockets. #
[ 2, 1303, 2343, 248, 254, 15932, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 8959, 49094, 11, 47783, 2751, 21728, 5626, 198, 2, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 198, 2, 8005, 49261, 50163, 3336, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 43031, 25382, 11, 198, 2, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 198, 2, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 47466, 13, 198, 2, 198, 2, 685, 8582, 98, 255, 337, 14208, 30251, 16151, 5450, 1378, 76, 14208, 13, 34162, 34729, 1104, 318, 1695, 379, 25, 198, 2, 220, 220, 685, 23579, 82, 16151, 5450, 1378, 31628, 13, 76, 14208, 13, 34162, 34729, 198, 2, 220, 220, 685, 15642, 585, 16151, 5450, 1378, 15410, 585, 13, 1130, 14, 3134, 73, 88, 16811, 71, 87, 41345, 8, 198, 2, 220, 220, 685, 14254, 16151, 5450, 1378, 6956, 13, 785, 14, 76, 648, 296, 668, 1039, 8, 198, 2, 220, 220, 685, 38, 10060, 16151, 5450, 1378, 12567, 13, 785, 14, 9967, 5225, 12, 42526, 8, 198, 2, 220, 220, 685, 15333, 16151, 4529, 1462, 25, 31373, 31, 9967, 5225, 13, 42526, 8, 198, 198, 11748, 33829, 198, 11748, 49364, 198, 11748, 19720, 198, 198, 6738, 1540, 2271, 13, 11377, 2539, 1330, 5094, 9218, 198, 198, 6738, 11485, 9979, 1187, 1330, 36230, 62, 4805, 7730, 24115, 62, 2885, 7707, 7597, 198, 6738, 11485, 19849, 5219, 1330, 9104, 9012, 198, 6738, 764, 19849, 5219, 38272, 1330, 357, 198, 220, 220, 220, 9104, 9012, 32875, 11, 198, 220, 220, 220, 47736, 5459, 17633, 9012, 32875, 11, 198, 220, 220, 220, 2930, 388, 39176, 278, 17633, 9012, 32875, 11, 198, 220, 220, 220, 15899, 39176, 278, 17633, 9012, 32875, 11, 198, 220, 220, 220, 2448, 79, 39176, 278, 17633, 9012, 32875, 11, 198, 8, 628, 198, 198, 2, 1303, 12520, 98, 255, 9104, 9012, 32875, 1398, 198, 2, 198, 2, 7308, 1398, 329, 2615, 257, 4600, 17633, 9012, 63, 832, 13985, 393, 2639, 11603, 13, 198, 2, 628, 628, 628, 198 ]
3.080292
411
# -*- coding: utf-8 -*- # ToMaTo (Topology management software) # Copyright (C) 2010 Dennis Schwerdel, University of Kaiserslautern # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> from . import run, spawn, CommandError, process from .. import util from ... import config import os _clientPid = None _clientConfig = {} _trackerPid = None
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 1675, 21467, 2514, 357, 9126, 1435, 4542, 3788, 8, 220, 198, 2, 15069, 357, 34, 8, 3050, 16902, 3059, 15448, 12381, 11, 2059, 286, 11611, 21572, 75, 2306, 1142, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 2, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 1863, 351, 428, 1430, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 198, 198, 6738, 764, 1330, 1057, 11, 10922, 11, 9455, 12331, 11, 1429, 198, 6738, 11485, 1330, 7736, 198, 6738, 2644, 1330, 4566, 198, 11748, 28686, 198, 198, 62, 16366, 47, 312, 796, 6045, 198, 62, 16366, 16934, 796, 23884, 198, 62, 2213, 10735, 47, 312, 796, 6045, 198 ]
3.635294
255
# Generated by Django 2.1.9 on 2019-07-03 04:53 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 24, 319, 13130, 12, 2998, 12, 3070, 8702, 25, 4310, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Массовая загрузка набора данных Open Images Dataset V6 python oidv6/samples/run.py <command> --classes названия_классов_или_текстовый_файл [--dataset Dataset --type_data train --limit 0 --multi_classes --yes --no_labels --hide_metadata --no_clear_shell] """ # ###################################################################################################################### # Импорт необходимых инструментов # ###################################################################################################################### from datetime import datetime # Работа со временем from types import ModuleType # Проверка объектов на модуль # Персональные import oidv6 # Массовая загрузка набора данных Open Images Dataset V6 from oidv6.OIDv6 import OIDv6 # Массовая загрузка набора данных Open Images Dataset V6 from oidv6.modules.trml.shell import Shell # Работа с Shell # ###################################################################################################################### # Сообщения # ###################################################################################################################### class Messages(OIDv6): """Класс для сообщений""" # ------------------------------------------------------------------------------------------------------------------ # Конструктор # ------------------------------------------------------------------------------------------------------------------ # ###################################################################################################################### # Выполняем только в том случае, если файл запущен сам по себе # ###################################################################################################################### class Run(Messages): """Класс для массовой загрузки набора данных Open Images Dataset V6""" # ------------------------------------------------------------------------------------------------------------------ # Конструктор # ------------------------------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------------------------------ # Внутренние методы # ------------------------------------------------------------------------------------------------------------------ # Построение аргументов командной строки def _build_args(self, conv_to_dict = True): """ Построение аргументов командной строки ([bool]) -> None or dict Аргументы: conv_to_dict - Преобразование списка аргументов командной строки в словарь Возвращает: dict если парсер командной строки окончательный, в обратном случае None """ super().build_args(False) # Выполнение функции из суперкласса # Добавление аргументов в парсер командной строки self._ap.add_argument('command', metavar = '<command> downloader', choices = self.commands, help = self._('Команда загрузки')) self._ap.add_argument('--dataset', required = False, metavar = self._('путь_к_директории'), default = self.dir, help = self._('Корневая директория для сохранения OIDv6, значение по умолчанию:') + ' %(default)s') self._ap.add_argument('--type_data', required = False, choices = list(self.type_data.keys()) + ['all'], default = 'train', metavar = 'train, validation, test ' + self._('или') + ' all', help = self._('Набор данных, значение по умолчанию:') + ' %(default)s') self._ap.add_argument('--classes', required = False, nargs = '+', metavar = self._('название_класса'), help = self._('Последовательность названий классов или текстовый файл')) self._ap.add_argument('--limit', required = False, default = 0, type = int, metavar = self._('целое_число'), help = self._('Лимит загрузки изображений, значение по умолчанию:') + ' %(default)s (' + self._('нет лимита') + ')') self._ap.add_argument('--multi_classes', required = False, action = 'store_true', help = self._('Загрузка классов в одну директорию')) self._ap.add_argument('--yes', required = False, action = 'store_true', help = self._('Автоматическая загрузка служебных файлов')) self._ap.add_argument('--no_labels', required = False, action = 'store_true', help = self._('Не формировать метки')) self._ap.add_argument('--hide_metadata', required = False, action = 'store_true', help = self._('Вывод метаданных')) self._ap.add_argument('--no_clear_shell', required = False, action = 'store_false', help = self._('Не очищать консоль перед выполнением')) # Преобразование списка аргументов командной строки в словарь if conv_to_dict is True: args, _ = self._ap.parse_known_args() return vars(args) # Преобразование списка аргументов командной строки в словарь # ------------------------------------------------------------------------------------------------------------------ # Внешние методы # ------------------------------------------------------------------------------------------------------------------ # Запуск def run(self, metadata = oidv6, out = True): """ Запуск ([module, module, bool, bool]) -> None Аргументы: out - Печатать процесс выполнения """ # Проверка аргументов if type(out) is not bool or not isinstance(metadata, ModuleType): # Вывод сообщения if out is True: print(self._invalid_arguments.format( self.red, datetime.now().strftime(self._format_time), self.end, __class__.__name__ + '.' + self.run.__name__ )) return False self._args = self._build_args() # Построение аргументов командной строки self.clear_shell(self._args['no_clear_shell']) # Очистка консоли перед выполнением # Приветствие Shell.add_line() # Добавление линии во весь экран print(self._oidv6.format(self.bold, self.blue, self.end)) Shell.add_line() # Добавление линии во весь экран # Запуск if self._args['hide_metadata'] is False: print(self._metadata.format( datetime.now().strftime(self._format_time), metadata.__author__, metadata.__email__, metadata.__maintainer__, metadata.__version__ )) Shell.add_line() # Добавление линии во весь экран self.download(self._args, out) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 140, 250, 16142, 21727, 21727, 25443, 110, 16142, 40623, 12466, 115, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 16142, 12466, 121, 16142, 140, 109, 15166, 21169, 16142, 12466, 112, 16142, 22177, 22177, 45035, 141, 227, 4946, 5382, 16092, 292, 316, 569, 21, 198, 198, 29412, 267, 312, 85, 21, 14, 82, 12629, 14, 5143, 13, 9078, 1279, 21812, 29, 1377, 37724, 12466, 121, 16142, 140, 115, 38857, 16142, 22177, 18849, 40623, 62, 31583, 30143, 16142, 21727, 21727, 25443, 110, 62, 18849, 30143, 18849, 62, 20375, 16843, 31583, 21727, 20375, 25443, 110, 45035, 140, 117, 62, 141, 226, 16142, 140, 117, 30143, 198, 220, 220, 220, 685, 438, 19608, 292, 316, 16092, 292, 316, 1377, 4906, 62, 7890, 4512, 1377, 32374, 657, 1377, 41684, 62, 37724, 1377, 8505, 1377, 3919, 62, 23912, 1424, 1377, 24717, 62, 38993, 1377, 3919, 62, 20063, 62, 29149, 60, 198, 37811, 628, 198, 2, 1303, 29113, 29113, 29113, 14468, 4242, 2, 198, 2, 12466, 246, 43108, 140, 123, 15166, 21169, 20375, 12466, 121, 16843, 25443, 109, 141, 227, 25443, 112, 18849, 43108, 45035, 141, 227, 12466, 116, 22177, 21727, 20375, 21169, 35072, 43108, 16843, 22177, 20375, 25443, 110, 198, 2, 1303, 29113, 29113, 29113, 14468, 4242, 2, 198, 6738, 4818, 8079, 1330, 4818, 8079, 220, 1303, 12466, 254, 16142, 140, 109, 15166, 20375, 16142, 220, 21727, 15166, 12466, 110, 21169, 16843, 43108, 16843, 22177, 16843, 43108, 198, 6738, 3858, 1330, 19937, 6030, 220, 1303, 12466, 253, 21169, 25443, 110, 16843, 21169, 31583, 16142, 12466, 122, 140, 109, 141, 232, 16843, 31583, 20375, 25443, 110, 12466, 121, 16142, 12466, 120, 25443, 112, 35072, 30143, 45367, 198, 198, 2, 12466, 253, 16843, 21169, 21727, 15166, 22177, 16142, 30143, 45367, 22177, 45035, 16843, 198, 11748, 267, 312, 85, 21, 220, 1303, 12466, 250, 16142, 21727, 21727, 25443, 110, 16142, 40623, 12466, 115, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 16142, 12466, 121, 16142, 140, 109, 15166, 21169, 16142, 12466, 112, 16142, 22177, 22177, 45035, 141, 227, 4946, 5382, 16092, 292, 316, 569, 21, 198, 198, 6738, 267, 312, 85, 21, 13, 46, 2389, 85, 21, 1330, 440, 2389, 85, 21, 220, 1303, 12466, 250, 16142, 21727, 21727, 25443, 110, 16142, 40623, 12466, 115, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 16142, 12466, 121, 16142, 140, 109, 15166, 21169, 16142, 12466, 112, 16142, 22177, 22177, 45035, 141, 227, 4946, 5382, 16092, 292, 316, 569, 21, 198, 6738, 267, 312, 85, 21, 13, 18170, 13, 2213, 4029, 13, 29149, 1330, 17537, 220, 1303, 12466, 254, 16142, 140, 109, 15166, 20375, 16142, 220, 21727, 17537, 628, 198, 2, 1303, 29113, 29113, 29113, 14468, 4242, 2, 198, 2, 12466, 94, 15166, 25443, 109, 141, 231, 16843, 22177, 18849, 40623, 198, 2, 1303, 29113, 29113, 29113, 14468, 4242, 2, 198, 4871, 43534, 7, 46, 2389, 85, 21, 2599, 198, 220, 220, 220, 37227, 140, 248, 30143, 16142, 21727, 21727, 12466, 112, 30143, 40623, 220, 21727, 15166, 25443, 109, 141, 231, 16843, 22177, 18849, 140, 117, 37811, 628, 220, 220, 220, 1303, 16529, 47232, 438, 198, 220, 220, 220, 1303, 12466, 248, 15166, 22177, 21727, 20375, 21169, 35072, 31583, 20375, 15166, 21169, 198, 220, 220, 220, 1303, 16529, 47232, 438, 628, 198, 2, 1303, 29113, 29113, 29113, 14468, 4242, 2, 198, 2, 12466, 240, 45035, 140, 123, 25443, 119, 22177, 40623, 16843, 43108, 220, 20375, 25443, 119, 45367, 31583, 15166, 12466, 110, 220, 20375, 25443, 120, 220, 21727, 30143, 35072, 141, 229, 16142, 16843, 11, 12466, 113, 21727, 30143, 18849, 220, 141, 226, 16142, 140, 117, 30143, 12466, 115, 16142, 140, 123, 35072, 141, 231, 16843, 22177, 220, 21727, 16142, 43108, 12466, 123, 15166, 220, 21727, 16843, 140, 109, 16843, 198, 2, 1303, 29113, 29113, 29113, 14468, 4242, 2, 198, 4871, 5660, 7, 36479, 1095, 2599, 198, 220, 220, 220, 37227, 140, 248, 30143, 16142, 21727, 21727, 12466, 112, 30143, 40623, 12466, 120, 16142, 21727, 21727, 25443, 110, 25443, 117, 12466, 115, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 18849, 12466, 121, 16142, 140, 109, 15166, 21169, 16142, 12466, 112, 16142, 22177, 22177, 45035, 141, 227, 4946, 5382, 16092, 292, 316, 569, 21, 37811, 628, 220, 220, 220, 1303, 16529, 47232, 438, 198, 220, 220, 220, 1303, 12466, 248, 15166, 22177, 21727, 20375, 21169, 35072, 31583, 20375, 15166, 21169, 198, 220, 220, 220, 1303, 16529, 47232, 438, 628, 220, 220, 220, 1303, 16529, 47232, 438, 198, 220, 220, 220, 1303, 220, 12466, 240, 22177, 35072, 20375, 21169, 16843, 22177, 22177, 18849, 16843, 12466, 120, 16843, 20375, 25443, 112, 45035, 198, 220, 220, 220, 1303, 16529, 47232, 438, 628, 220, 220, 220, 1303, 12466, 253, 15166, 21727, 20375, 21169, 15166, 16843, 22177, 18849, 16843, 12466, 108, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 25443, 110, 12466, 118, 25443, 120, 16142, 22177, 43666, 22177, 25443, 117, 220, 21727, 20375, 21169, 25443, 118, 18849, 198, 220, 220, 220, 825, 4808, 11249, 62, 22046, 7, 944, 11, 3063, 62, 1462, 62, 11600, 796, 6407, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12466, 253, 15166, 21727, 20375, 21169, 15166, 16843, 22177, 18849, 16843, 12466, 108, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 25443, 110, 12466, 118, 25443, 120, 16142, 22177, 43666, 22177, 25443, 117, 220, 21727, 20375, 21169, 25443, 118, 18849, 628, 220, 220, 220, 220, 220, 220, 220, 29565, 30388, 12962, 4613, 6045, 393, 8633, 628, 220, 220, 220, 220, 220, 220, 220, 12466, 238, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 45035, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 1462, 62, 11600, 532, 12466, 253, 21169, 16843, 25443, 109, 21169, 16142, 140, 115, 25443, 110, 16142, 22177, 18849, 16843, 220, 21727, 140, 123, 18849, 21727, 31583, 16142, 12466, 108, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 25443, 110, 12466, 118, 25443, 120, 16142, 22177, 43666, 22177, 25443, 117, 220, 21727, 20375, 21169, 25443, 118, 18849, 12466, 110, 220, 21727, 30143, 25443, 110, 16142, 21169, 45367, 628, 220, 220, 220, 220, 220, 220, 220, 12466, 240, 25443, 115, 38857, 21169, 16142, 141, 231, 16142, 16843, 20375, 25, 8633, 12466, 113, 21727, 30143, 18849, 12466, 123, 16142, 21169, 21727, 16843, 21169, 12466, 118, 25443, 120, 16142, 22177, 43666, 22177, 25443, 117, 220, 21727, 20375, 21169, 25443, 118, 18849, 12466, 122, 31583, 15166, 22177, 141, 229, 16142, 20375, 16843, 30143, 45367, 22177, 45035, 140, 117, 11, 12466, 110, 12466, 122, 140, 109, 21169, 16142, 20375, 22177, 25443, 120, 220, 21727, 30143, 35072, 141, 229, 16142, 16843, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 11249, 62, 22046, 7, 25101, 8, 220, 1303, 12466, 240, 45035, 140, 123, 25443, 119, 22177, 16843, 22177, 18849, 16843, 220, 141, 226, 35072, 22177, 31583, 141, 228, 18849, 18849, 12466, 116, 140, 115, 220, 21727, 35072, 140, 123, 16843, 21169, 31583, 30143, 16142, 21727, 21727, 16142, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12466, 242, 25443, 109, 16142, 38857, 30143, 16843, 22177, 18849, 16843, 12466, 108, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 25443, 110, 12466, 110, 12466, 123, 16142, 21169, 21727, 16843, 21169, 12466, 118, 25443, 120, 16142, 22177, 43666, 22177, 25443, 117, 220, 21727, 20375, 21169, 25443, 118, 18849, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 21812, 3256, 1138, 615, 283, 796, 705, 27, 21812, 29, 4321, 263, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 796, 2116, 13, 9503, 1746, 11, 1037, 796, 2116, 13557, 10786, 140, 248, 25443, 120, 16142, 22177, 43666, 16142, 12466, 115, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 18849, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 19608, 292, 316, 3256, 2672, 796, 10352, 11, 1138, 615, 283, 796, 2116, 13557, 10786, 140, 123, 35072, 20375, 45367, 62, 31583, 62, 43666, 18849, 21169, 16843, 31583, 20375, 15166, 21169, 18849, 18849, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 2116, 13, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 248, 15166, 21169, 22177, 16843, 38857, 16142, 40623, 12466, 112, 18849, 21169, 16843, 31583, 20375, 15166, 21169, 18849, 40623, 12466, 112, 30143, 40623, 220, 21727, 15166, 141, 227, 21169, 16142, 22177, 16843, 22177, 18849, 40623, 440, 2389, 85, 21, 11, 12466, 115, 22177, 16142, 141, 229, 16843, 22177, 18849, 16843, 12466, 123, 15166, 220, 35072, 43108, 25443, 119, 141, 229, 16142, 22177, 18849, 141, 236, 25, 11537, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4064, 7, 12286, 8, 82, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 4906, 62, 7890, 3256, 2672, 796, 10352, 11, 7747, 796, 1351, 7, 944, 13, 4906, 62, 7890, 13, 13083, 28955, 1343, 37250, 439, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 705, 27432, 3256, 1138, 615, 283, 796, 705, 27432, 11, 21201, 11, 1332, 705, 1343, 2116, 13557, 10786, 18849, 30143, 18849, 11537, 1343, 705, 477, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 251, 16142, 140, 109, 15166, 21169, 12466, 112, 16142, 22177, 22177, 45035, 141, 227, 11, 12466, 115, 22177, 16142, 141, 229, 16843, 22177, 18849, 16843, 12466, 123, 15166, 220, 35072, 43108, 25443, 119, 141, 229, 16142, 22177, 18849, 141, 236, 25, 11537, 1343, 705, 4064, 7, 12286, 8, 82, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 37724, 3256, 2672, 796, 10352, 11, 299, 22046, 796, 705, 10, 3256, 1138, 615, 283, 796, 2116, 13557, 10786, 22177, 16142, 140, 115, 38857, 16142, 22177, 18849, 16843, 62, 31583, 30143, 16142, 21727, 21727, 16142, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 253, 15166, 21727, 30143, 16843, 43666, 25443, 110, 16142, 20375, 16843, 30143, 45367, 22177, 15166, 21727, 20375, 45367, 12466, 121, 16142, 140, 115, 38857, 16142, 22177, 18849, 140, 117, 12466, 118, 30143, 16142, 21727, 21727, 25443, 110, 12466, 116, 30143, 18849, 220, 20375, 16843, 31583, 21727, 20375, 25443, 110, 45035, 140, 117, 220, 141, 226, 16142, 140, 117, 30143, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 32374, 3256, 2672, 796, 10352, 11, 4277, 796, 657, 11, 2099, 796, 493, 11, 1138, 615, 283, 796, 2116, 13557, 10786, 141, 228, 16843, 30143, 15166, 16843, 62, 141, 229, 18849, 21727, 30143, 15166, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 249, 18849, 43108, 18849, 20375, 12466, 115, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 18849, 12466, 116, 140, 115, 25443, 109, 21169, 16142, 140, 114, 16843, 22177, 18849, 140, 117, 11, 12466, 115, 22177, 16142, 141, 229, 16843, 22177, 18849, 16843, 12466, 123, 15166, 220, 35072, 43108, 25443, 119, 141, 229, 16142, 22177, 18849, 141, 236, 25, 11537, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4064, 7, 12286, 8, 82, 19203, 1343, 2116, 13557, 10786, 22177, 16843, 20375, 12466, 119, 18849, 43108, 18849, 20375, 16142, 11537, 1343, 705, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 41684, 62, 37724, 3256, 2672, 796, 10352, 11, 2223, 796, 705, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 245, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 16142, 12466, 118, 30143, 16142, 21727, 21727, 25443, 110, 12466, 110, 12466, 122, 43666, 22177, 35072, 12466, 112, 18849, 21169, 16843, 31583, 20375, 15166, 21169, 18849, 141, 236, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 8505, 3256, 2672, 796, 10352, 11, 2223, 796, 705, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 238, 38857, 20375, 25443, 120, 16142, 20375, 18849, 141, 229, 16843, 21727, 31583, 16142, 40623, 12466, 115, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 16142, 220, 21727, 30143, 35072, 140, 114, 16843, 140, 109, 22177, 45035, 141, 227, 220, 141, 226, 16142, 140, 117, 30143, 25443, 110, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 3919, 62, 23912, 1424, 3256, 2672, 796, 10352, 11, 2223, 796, 705, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 251, 16843, 220, 141, 226, 15166, 21169, 43108, 18849, 21169, 25443, 110, 16142, 20375, 45367, 12466, 120, 16843, 20375, 31583, 18849, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 24717, 62, 38993, 3256, 2672, 796, 10352, 11, 2223, 796, 705, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 240, 45035, 38857, 25443, 112, 12466, 120, 16843, 20375, 16142, 43666, 16142, 22177, 22177, 45035, 141, 227, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 499, 13, 2860, 62, 49140, 10786, 438, 3919, 62, 20063, 62, 29149, 3256, 2672, 796, 10352, 11, 2223, 796, 705, 8095, 62, 9562, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 796, 2116, 13557, 10786, 140, 251, 16843, 12466, 122, 141, 229, 18849, 141, 231, 16142, 20375, 45367, 12466, 118, 15166, 22177, 21727, 25443, 119, 45367, 12466, 123, 16843, 21169, 16843, 43666, 12466, 110, 45035, 140, 123, 25443, 119, 22177, 16843, 22177, 18849, 16843, 43108, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12466, 253, 21169, 16843, 25443, 109, 21169, 16142, 140, 115, 25443, 110, 16142, 22177, 18849, 16843, 220, 21727, 140, 123, 18849, 21727, 31583, 16142, 12466, 108, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 25443, 110, 12466, 118, 25443, 120, 16142, 22177, 43666, 22177, 25443, 117, 220, 21727, 20375, 21169, 25443, 118, 18849, 12466, 110, 220, 21727, 30143, 25443, 110, 16142, 21169, 45367, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3063, 62, 1462, 62, 11600, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 11, 4808, 796, 2116, 13557, 499, 13, 29572, 62, 4002, 62, 22046, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 410, 945, 7, 22046, 8, 220, 1303, 12466, 253, 21169, 16843, 25443, 109, 21169, 16142, 140, 115, 25443, 110, 16142, 22177, 18849, 16843, 220, 21727, 140, 123, 18849, 21727, 31583, 16142, 12466, 108, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 25443, 110, 12466, 118, 25443, 120, 16142, 22177, 43666, 22177, 25443, 117, 220, 21727, 20375, 21169, 25443, 118, 18849, 12466, 110, 220, 21727, 30143, 25443, 110, 16142, 21169, 45367, 628, 220, 220, 220, 1303, 16529, 47232, 438, 198, 220, 220, 220, 1303, 220, 12466, 240, 22177, 16843, 141, 230, 22177, 18849, 16843, 12466, 120, 16843, 20375, 25443, 112, 45035, 198, 220, 220, 220, 1303, 16529, 47232, 438, 628, 220, 220, 220, 1303, 12466, 245, 16142, 140, 123, 35072, 21727, 31583, 198, 220, 220, 220, 825, 1057, 7, 944, 11, 20150, 796, 267, 312, 85, 21, 11, 503, 796, 6407, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12466, 245, 16142, 140, 123, 35072, 21727, 31583, 628, 220, 220, 220, 220, 220, 220, 220, 29565, 21412, 11, 8265, 11, 20512, 11, 20512, 12962, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 12466, 238, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 45035, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 532, 12466, 253, 16843, 141, 229, 16142, 20375, 16142, 20375, 45367, 12466, 123, 21169, 15166, 141, 228, 16843, 21727, 21727, 12466, 110, 45035, 140, 123, 25443, 119, 22177, 16843, 22177, 18849, 40623, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12466, 253, 21169, 25443, 110, 16843, 21169, 31583, 16142, 12466, 108, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 25443, 110, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 448, 8, 318, 407, 20512, 393, 407, 318, 39098, 7, 38993, 11, 19937, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12466, 240, 45035, 38857, 25443, 112, 220, 21727, 15166, 25443, 109, 141, 231, 16843, 22177, 18849, 40623, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 503, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 944, 13557, 259, 12102, 62, 853, 2886, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 445, 11, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7, 944, 13557, 18982, 62, 2435, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 11, 11593, 4871, 834, 13, 834, 3672, 834, 1343, 705, 2637, 1343, 2116, 13, 5143, 13, 834, 3672, 834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22046, 796, 2116, 13557, 11249, 62, 22046, 3419, 220, 1303, 12466, 253, 15166, 21727, 20375, 21169, 15166, 16843, 22177, 18849, 16843, 12466, 108, 21169, 140, 111, 35072, 43108, 16843, 22177, 20375, 25443, 110, 12466, 118, 25443, 120, 16142, 22177, 43666, 22177, 25443, 117, 220, 21727, 20375, 21169, 25443, 118, 18849, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20063, 62, 29149, 7, 944, 13557, 22046, 17816, 3919, 62, 20063, 62, 29149, 6, 12962, 220, 1303, 12466, 252, 141, 229, 18849, 21727, 20375, 31583, 16142, 12466, 118, 15166, 22177, 21727, 25443, 119, 18849, 12466, 123, 16843, 21169, 16843, 43666, 12466, 110, 45035, 140, 123, 25443, 119, 22177, 16843, 22177, 18849, 16843, 43108, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12466, 253, 21169, 18849, 38857, 16843, 20375, 21727, 20375, 38857, 18849, 16843, 198, 220, 220, 220, 220, 220, 220, 220, 17537, 13, 2860, 62, 1370, 3419, 220, 1303, 12466, 242, 25443, 109, 16142, 38857, 30143, 16843, 22177, 18849, 16843, 12466, 119, 18849, 22177, 18849, 18849, 12466, 110, 15166, 12466, 110, 16843, 21727, 45367, 220, 141, 235, 31583, 21169, 16142, 22177, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 944, 13557, 1868, 85, 21, 13, 18982, 7, 944, 13, 36575, 11, 2116, 13, 17585, 11, 2116, 13, 437, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 17537, 13, 2860, 62, 1370, 3419, 220, 1303, 12466, 242, 25443, 109, 16142, 38857, 30143, 16843, 22177, 18849, 16843, 12466, 119, 18849, 22177, 18849, 18849, 12466, 110, 15166, 12466, 110, 16843, 21727, 45367, 220, 141, 235, 31583, 21169, 16142, 22177, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12466, 245, 16142, 140, 123, 35072, 21727, 31583, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 22046, 17816, 24717, 62, 38993, 20520, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 944, 13557, 38993, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7, 944, 13557, 18982, 62, 2435, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 834, 9800, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 834, 12888, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 834, 76, 2913, 10613, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 834, 9641, 834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17537, 13, 2860, 62, 1370, 3419, 220, 1303, 12466, 242, 25443, 109, 16142, 38857, 30143, 16843, 22177, 18849, 16843, 12466, 119, 18849, 22177, 18849, 18849, 12466, 110, 15166, 12466, 110, 16843, 21727, 45367, 220, 141, 235, 31583, 21169, 16142, 22177, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15002, 7, 944, 13557, 22046, 11, 503, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
1.880487
3,782
import pytest from requests import Response from py42._internal.auth_handling import AuthHandler from py42._internal.auth_handling import HeaderModifier from py42._internal.auth_handling import TokenProvider ORIGINAL_VALUE = "test-original-value" UPDATED_VALUE = "test-updated-value" CUSTOM_NAME = "Custom-Name" DEFAULT_HEADER = "Authorization" TEST_SECRET = "TEST-SECRET" @pytest.fixture @pytest.fixture
[ 11748, 12972, 9288, 198, 6738, 7007, 1330, 18261, 198, 198, 6738, 12972, 3682, 13557, 32538, 13, 18439, 62, 4993, 1359, 1330, 26828, 25060, 198, 6738, 12972, 3682, 13557, 32538, 13, 18439, 62, 4993, 1359, 1330, 48900, 5841, 7483, 198, 6738, 12972, 3682, 13557, 32538, 13, 18439, 62, 4993, 1359, 1330, 29130, 29495, 198, 198, 1581, 3528, 17961, 62, 39488, 796, 366, 9288, 12, 14986, 12, 8367, 1, 198, 52, 49316, 62, 39488, 796, 366, 9288, 12, 43162, 12, 8367, 1, 198, 34, 7759, 2662, 62, 20608, 796, 366, 15022, 12, 5376, 1, 198, 7206, 38865, 62, 37682, 1137, 796, 366, 13838, 1634, 1, 198, 198, 51, 6465, 62, 23683, 26087, 796, 366, 51, 6465, 12, 23683, 26087, 1, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 628, 628, 628, 628, 628, 198 ]
3
142
# There is probably a more efficient way to do this # Now I need to do the actual backwards function
[ 198, 220, 220, 220, 1303, 1318, 318, 2192, 257, 517, 6942, 835, 284, 466, 428, 628, 220, 220, 220, 1303, 2735, 314, 761, 284, 466, 262, 4036, 16196, 2163 ]
3.793103
29
#!/usr/bin/env python2.7 # TODO: Actual values devid = { 'p24fj256gb106': 0xFFFF , 'p18f2550': 0x1234 } targetmem = { 'int_flash': 0 , 'int_eeprom': 1 # , 'ext_flash': 2 # , 'ext_eeprom': 3 } # TODO: Actual values maxmem = { 'p24fj256gb106': {'int_flash':255*1024, 'int_eeprom':2048} , 'p18f2550': {'int_flash':255*1024, 'int_eeprom':2048} } blocksize = { 'p24fj256gb106': {'int_flash':64, 'int_eeprom':16} , 'p18f2550': {'int_flash':32, 'int_eeprom':16} } if __name__ = '__main__': import sys import argparse import os.path from intelhex import IntelHex from cStringIO import StringIO from dfu_suffix import * parser = argparse.ArgumentParser( description='Convert an Intel HEX file into a dfu file suitable for OpenPICUSB bootloader.', epilog='''Default output filename is the input filename with ".dfu" in stead of ".hex".''') action = parser.add_mutually_exclusive_group( required=True ) # parser.add_argument( '-f', '--force', help='Forcefully try to execute given command. May result in unusable files.', action='store_true', default=False ) parser.add_argument( '-p', '--processor', help='Target processor (currently only p18f2550 and p24fj256bg106)', dest='proc', nargs=1, choices=devid, required=True ) parser.add_argument( '-t', '--targetmem', help='Target memory', nargs=1, choices=targetmem, default='int_flash' ) parser.add_argument( '-o', '--output', help='Output file.', type=argparse.FileType('wb'), dest='outfile', nargs=1, metavar='file.dfu' ) parser.add_argument( 'hexfile', help='Firmware file with DFU suffix.', type=argparse.FileType('r'), nargs=1 ) parser.add_argument( 'vid', help='The Vendor ID to use.', action='store', type=int, nargs='?', default=0xFFFF ); parser.add_argument( 'pid', help='The Product ID to use.', action='store', type=int, nargs='?', default=0xFFFF ); parser.add_argument( 'did', help='The Device version to use.', action='store', type=int, nargs='?', default=0xFFFF ); args = parser.parse_args() (rootname, ext) = os.path.splitext( args.hexfile.name ) try: ih = IntelHex.fromfile(hexfile) except FileNotFoundException: print 'File "%(name)s" not found.' % args.hexfile sys.exit(1) hexfile.close(); blob = StringIO() PROC = args.proc[0] TGTMEM = args.targetmem[0] DEVID = devid[PROC] MAXMEM = maxmem[PROC][TGTMEM] BLOCKSIZE = blocksize[PROC][TGTMEM] # Construct bootloader header blob.write( 'HBL\x01' ) # Magic identifier blob.write( struct.pack('>h', DEVID ) # Device ID in big endian 16bits blob.write( struct.pack('>h', tgt_mem[TGTMEM] ) # Target memory for addr in range(0, MAXMEM, BLOCKSIZE): blob.write(struct.pack('>l', addr) ih.tobinfile(blob, start=addr, size=BLOCKSIZE) blob_suffix = Suffix._make( args.did, args.pid, args.vid, 0x0100, 'DFU', 16, 0 ) firmware = append_suffix(blob, user_suffix) if args.outfile is None: args.outfile = open( rootname + '.dfu', 'wb' ) args.outfile.write(firmware) outfile.close()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 13, 22, 198, 198, 2, 16926, 46, 25, 33520, 3815, 198, 7959, 312, 220, 220, 220, 220, 796, 1391, 705, 79, 1731, 69, 73, 11645, 22296, 15801, 10354, 657, 87, 29312, 198, 197, 197, 197, 11, 705, 79, 1507, 69, 1495, 1120, 10354, 657, 87, 1065, 2682, 198, 197, 197, 197, 92, 198, 198, 16793, 11883, 796, 1391, 705, 600, 62, 34167, 10354, 657, 198, 197, 197, 197, 11, 705, 600, 62, 68, 538, 398, 10354, 352, 198, 2, 197, 197, 197, 11, 705, 2302, 62, 34167, 10354, 362, 198, 2, 197, 197, 197, 11, 705, 2302, 62, 68, 538, 398, 10354, 513, 198, 197, 197, 197, 92, 198, 198, 2, 16926, 46, 25, 33520, 3815, 198, 9806, 11883, 220, 220, 220, 796, 1391, 705, 79, 1731, 69, 73, 11645, 22296, 15801, 10354, 197, 90, 6, 600, 62, 34167, 10354, 13381, 9, 35500, 11, 705, 600, 62, 68, 538, 398, 10354, 1238, 2780, 92, 198, 197, 197, 197, 11, 705, 79, 1507, 69, 1495, 1120, 10354, 197, 197, 90, 6, 600, 62, 34167, 10354, 13381, 9, 35500, 11, 705, 600, 62, 68, 538, 398, 10354, 1238, 2780, 92, 198, 197, 197, 197, 92, 198, 198, 27372, 1096, 796, 1391, 705, 79, 1731, 69, 73, 11645, 22296, 15801, 10354, 197, 90, 6, 600, 62, 34167, 10354, 2414, 11, 705, 600, 62, 68, 538, 398, 10354, 1433, 92, 198, 197, 197, 197, 11, 705, 79, 1507, 69, 1495, 1120, 10354, 197, 197, 90, 6, 600, 62, 34167, 10354, 2624, 11, 705, 600, 62, 68, 538, 398, 10354, 1433, 92, 198, 197, 197, 197, 92, 628, 198, 361, 11593, 3672, 834, 796, 705, 834, 12417, 834, 10354, 198, 197, 11748, 25064, 198, 197, 11748, 1822, 29572, 198, 197, 11748, 28686, 13, 6978, 198, 197, 6738, 33649, 33095, 1330, 8180, 39, 1069, 198, 197, 6738, 269, 10100, 9399, 1330, 10903, 9399, 198, 197, 6738, 288, 20942, 62, 37333, 844, 1330, 1635, 628, 197, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 6764, 11639, 3103, 1851, 281, 8180, 367, 6369, 2393, 656, 257, 288, 20942, 2393, 11080, 329, 4946, 47, 2149, 27155, 6297, 29356, 2637, 11, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 2462, 346, 519, 28, 7061, 6, 19463, 5072, 29472, 318, 262, 5128, 29472, 351, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 1911, 7568, 84, 1, 287, 7978, 286, 27071, 33095, 1911, 7061, 11537, 198, 197, 2673, 796, 30751, 13, 2860, 62, 21973, 935, 62, 41195, 62, 8094, 7, 2672, 28, 17821, 1267, 198, 2, 197, 48610, 13, 2860, 62, 49140, 7, 705, 12, 69, 3256, 705, 438, 3174, 3256, 220, 220, 220, 220, 1037, 11639, 10292, 2759, 1949, 284, 12260, 1813, 3141, 13, 1737, 1255, 287, 7242, 540, 3696, 2637, 11, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 1267, 198, 197, 48610, 13, 2860, 62, 49140, 7, 705, 12, 79, 3256, 705, 438, 41341, 3256, 1037, 11639, 21745, 12649, 357, 41745, 691, 279, 1507, 69, 1495, 1120, 290, 279, 1731, 69, 73, 11645, 35904, 15801, 8, 3256, 2244, 11639, 36942, 3256, 299, 22046, 28, 16, 11, 7747, 28, 7959, 312, 11, 2672, 28, 17821, 1267, 198, 197, 48610, 13, 2860, 62, 49140, 7, 705, 12, 83, 3256, 705, 438, 16793, 11883, 3256, 1037, 11639, 21745, 4088, 3256, 299, 22046, 28, 16, 11, 7747, 28, 16793, 11883, 11, 4277, 11639, 600, 62, 34167, 6, 1267, 198, 197, 48610, 13, 2860, 62, 49140, 7, 705, 12, 78, 3256, 705, 438, 22915, 3256, 220, 220, 220, 1037, 11639, 26410, 2393, 2637, 11, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 39346, 33809, 2244, 11639, 448, 7753, 3256, 299, 22046, 28, 16, 11, 1138, 615, 283, 11639, 7753, 13, 7568, 84, 6, 1267, 198, 197, 48610, 13, 2860, 62, 49140, 7, 705, 33095, 7753, 3256, 1037, 11639, 37, 2533, 1574, 2393, 351, 36323, 52, 35488, 2637, 11, 220, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 81, 33809, 299, 22046, 28, 16, 1267, 198, 197, 48610, 13, 2860, 62, 49140, 7, 705, 16921, 3256, 220, 220, 220, 220, 1037, 11639, 464, 39896, 4522, 284, 779, 2637, 11, 220, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 299, 22046, 11639, 30, 3256, 4277, 28, 15, 87, 29312, 5619, 198, 197, 48610, 13, 2860, 62, 49140, 7, 705, 35317, 3256, 220, 220, 220, 220, 1037, 11639, 464, 8721, 4522, 284, 779, 2637, 11, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 299, 22046, 11639, 30, 3256, 4277, 28, 15, 87, 29312, 5619, 198, 197, 48610, 13, 2860, 62, 49140, 7, 705, 20839, 3256, 220, 220, 220, 220, 1037, 11639, 464, 16232, 2196, 284, 779, 2637, 11, 220, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 299, 22046, 11639, 30, 3256, 4277, 28, 15, 87, 29312, 5619, 628, 197, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 197, 7, 15763, 3672, 11, 1070, 8, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 26498, 13, 33095, 7753, 13, 3672, 1267, 628, 197, 28311, 25, 198, 197, 197, 4449, 796, 8180, 39, 1069, 13, 6738, 7753, 7, 33095, 7753, 8, 198, 197, 16341, 9220, 3673, 21077, 16922, 25, 198, 197, 197, 4798, 705, 8979, 36521, 7, 3672, 8, 82, 1, 407, 1043, 2637, 4064, 26498, 13, 33095, 7753, 198, 197, 197, 17597, 13, 37023, 7, 16, 8, 198, 197, 33095, 7753, 13, 19836, 9783, 628, 197, 2436, 672, 796, 10903, 9399, 3419, 628, 197, 4805, 4503, 796, 26498, 13, 36942, 58, 15, 60, 198, 197, 35990, 15972, 3620, 796, 26498, 13, 16793, 11883, 58, 15, 60, 628, 197, 7206, 11008, 796, 1614, 312, 58, 4805, 4503, 60, 198, 197, 22921, 44, 3620, 796, 3509, 11883, 58, 4805, 4503, 7131, 35990, 15972, 3620, 60, 198, 197, 9148, 11290, 33489, 796, 7021, 1096, 58, 4805, 4503, 7131, 35990, 15972, 3620, 60, 198, 198, 2, 197, 42316, 6297, 29356, 13639, 198, 197, 2436, 672, 13, 13564, 7, 705, 39, 9148, 59, 87, 486, 6, 1267, 197, 197, 197, 197, 197, 197, 197, 2, 6139, 27421, 198, 197, 2436, 672, 13, 13564, 7, 2878, 13, 8002, 10786, 29, 71, 3256, 5550, 11008, 1267, 197, 197, 197, 2, 16232, 4522, 287, 1263, 886, 666, 1467, 9895, 198, 197, 2436, 672, 13, 13564, 7, 2878, 13, 8002, 10786, 29, 71, 3256, 256, 13655, 62, 11883, 58, 35990, 15972, 3620, 60, 1267, 197, 2, 12744, 4088, 628, 197, 1640, 37817, 287, 2837, 7, 15, 11, 25882, 44, 3620, 11, 9878, 11290, 33489, 2599, 198, 197, 197, 2436, 672, 13, 13564, 7, 7249, 13, 8002, 10786, 29, 75, 3256, 37817, 8, 198, 197, 197, 4449, 13, 83, 38954, 7753, 7, 2436, 672, 11, 923, 28, 29851, 11, 2546, 28, 9148, 11290, 33489, 8, 628, 197, 2436, 672, 62, 37333, 844, 796, 24974, 844, 13557, 15883, 7, 26498, 13, 20839, 11, 26498, 13, 35317, 11, 26498, 13, 16921, 11, 657, 87, 39103, 11, 705, 8068, 52, 3256, 1467, 11, 657, 1267, 198, 197, 69, 2533, 1574, 796, 24443, 62, 37333, 844, 7, 2436, 672, 11, 2836, 62, 37333, 844, 8, 198, 197, 198, 197, 361, 26498, 13, 448, 7753, 318, 6045, 25, 198, 197, 197, 22046, 13, 448, 7753, 796, 1280, 7, 6808, 3672, 1343, 45302, 7568, 84, 3256, 705, 39346, 6, 1267, 628, 197, 22046, 13, 448, 7753, 13, 13564, 7, 69, 2533, 1574, 8, 198, 197, 198, 197, 448, 7753, 13, 19836, 3419, 198 ]
2.460976
1,230
import time import copy import os import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib.animation import FuncAnimation import matplotlib.animation as animation import flowrect from flowrect.simulations.util import calculate_age, calculate_mt, eta_SRM from flowrect.simulations import particle_population, flow_rectification, quasi_renewal # Plot saving parameters save = False save_path = "" save_name = "m_t2.pdf" # Simulation parameters Lambda = np.array([33.0, 8.0]) Gamma = np.array([-8, 1.0]) N = 10 dt = 1e-4 np.random.seed(123) ts, M, spikes, A, X = particle_population( 0.18, dt, Gamma, Lambda, 0, 3, 0, 2, c=10, Gamma_ext=True, N=N ) mask = spikes.T == 1 ticks = ts[spikes.T[0] == 1] ticks_text = [r"$t^{(1)}$", r"$t^{(2)}$"] fig = plt.figure(figsize=(6, 4)) gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) # Calculate m_t spike_mask = spikes.T[0] == 1 m_t = np.zeros(len(ts)) for s in range(1, len(ts)): if spike_mask[s]: m_t[s] = M[s, 0, 1] else: m_t[s] = m_t[s - 1] # Leaky memory plot ax1 = plt.subplot(gs[0]) ax1.set_yticks([]) ax1.plot(ts, M[:, 0, 1], "-k", linewidth=0.9, label=r"$M$") ax1.plot(ts, m_t, "-r", linewidth=0.9, label=r"$m_t$") ax1.set_ylim(0, 2) ax1.legend() text = ( r"$m_t(t^{(2)}) = m_t(t^{(1)})" "\cdot e^{-\lambda (t^{(2)} - t^{(1)})} + \Gamma$" "\n" r" $= m_t(t^{(1)}) \cdot e^{-\lambda a} + \Gamma $" ) ax1.annotate( text, color="grey", xy=(0.11, 1.08), xycoords="data", xytext=(0.2, 0.9), textcoords="axes fraction", arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=-0.3"), horizontalalignment="left", verticalalignment="top", ) # Spike plot ax2 = plt.subplot(gs[1], sharex=ax1) ax2.eventplot( ts[mask[0]], lineoffsets=0.5, colors="black", linewidths=0.5, ) ax2.set_xticks(ticks) ax2.set_xticklabels(ticks_text) ax2.set_yticks([]) ax2.set_ylabel("Spikes") ax2.set_ylim(0, 1) if save: fig.savefig(os.path.join(save_path, save_name), transparent=True) plt.show()
[ 11748, 640, 198, 11748, 4866, 198, 11748, 28686, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 1330, 50000, 43106, 198, 6738, 2603, 29487, 8019, 13, 11227, 341, 1330, 11138, 66, 39520, 198, 11748, 2603, 29487, 8019, 13, 11227, 341, 355, 11034, 198, 198, 11748, 5202, 2554, 198, 198, 6738, 5202, 2554, 13, 14323, 5768, 13, 22602, 1330, 15284, 62, 496, 11, 15284, 62, 16762, 11, 2123, 64, 62, 12562, 44, 198, 6738, 5202, 2554, 13, 14323, 5768, 1330, 18758, 62, 39748, 11, 5202, 62, 2554, 2649, 11, 32551, 62, 918, 413, 282, 198, 198, 2, 28114, 8914, 10007, 198, 21928, 796, 10352, 198, 21928, 62, 6978, 796, 13538, 198, 21928, 62, 3672, 796, 366, 76, 62, 83, 17, 13, 12315, 1, 198, 198, 2, 41798, 10007, 198, 198, 43, 4131, 6814, 796, 45941, 13, 18747, 26933, 2091, 13, 15, 11, 807, 13, 15, 12962, 198, 34777, 2611, 796, 45941, 13, 18747, 26933, 12, 23, 11, 352, 13, 15, 12962, 198, 198, 45, 796, 838, 198, 28664, 796, 352, 68, 12, 19, 198, 37659, 13, 25120, 13, 28826, 7, 10163, 8, 198, 912, 11, 337, 11, 27198, 11, 317, 11, 1395, 796, 18758, 62, 39748, 7, 198, 220, 220, 220, 657, 13, 1507, 11, 288, 83, 11, 43595, 11, 21114, 6814, 11, 657, 11, 513, 11, 657, 11, 362, 11, 269, 28, 940, 11, 43595, 62, 2302, 28, 17821, 11, 399, 28, 45, 198, 8, 198, 27932, 796, 27198, 13, 51, 6624, 352, 198, 198, 83, 3378, 796, 40379, 58, 2777, 7938, 13, 51, 58, 15, 60, 6624, 352, 60, 198, 83, 3378, 62, 5239, 796, 685, 81, 1, 3, 83, 36796, 7, 16, 38165, 3, 1600, 374, 1, 3, 83, 36796, 7, 17, 38165, 3, 8973, 198, 198, 5647, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 21, 11, 604, 4008, 198, 14542, 796, 50000, 43106, 13, 41339, 22882, 7, 17, 11, 352, 11, 6001, 62, 10366, 4267, 41888, 18, 11, 352, 12962, 198, 198, 2, 27131, 378, 285, 62, 83, 198, 2777, 522, 62, 27932, 796, 27198, 13, 51, 58, 15, 60, 6624, 352, 198, 76, 62, 83, 796, 45941, 13, 9107, 418, 7, 11925, 7, 912, 4008, 198, 1640, 264, 287, 2837, 7, 16, 11, 18896, 7, 912, 8, 2599, 198, 220, 220, 220, 611, 20240, 62, 27932, 58, 82, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 83, 58, 82, 60, 796, 337, 58, 82, 11, 657, 11, 352, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 83, 58, 82, 60, 796, 285, 62, 83, 58, 82, 532, 352, 60, 198, 198, 2, 1004, 15492, 4088, 7110, 198, 897, 16, 796, 458, 83, 13, 7266, 29487, 7, 14542, 58, 15, 12962, 198, 897, 16, 13, 2617, 62, 20760, 3378, 26933, 12962, 198, 897, 16, 13, 29487, 7, 912, 11, 337, 58, 45299, 657, 11, 352, 4357, 27444, 74, 1600, 9493, 413, 5649, 28, 15, 13, 24, 11, 6167, 28, 81, 1, 3, 44, 3, 4943, 198, 897, 16, 13, 29487, 7, 912, 11, 285, 62, 83, 11, 27444, 81, 1600, 9493, 413, 5649, 28, 15, 13, 24, 11, 6167, 28, 81, 1, 3, 76, 62, 83, 3, 4943, 198, 897, 16, 13, 2617, 62, 88, 2475, 7, 15, 11, 362, 8, 198, 897, 16, 13, 1455, 437, 3419, 198, 198, 5239, 796, 357, 198, 220, 220, 220, 374, 1, 3, 76, 62, 83, 7, 83, 36796, 7, 17, 8, 30072, 796, 285, 62, 83, 7, 83, 36796, 7, 16, 38165, 16725, 198, 220, 220, 220, 37082, 10210, 313, 304, 36796, 12, 59, 50033, 357, 83, 36796, 7, 17, 38165, 532, 256, 36796, 7, 16, 8, 30072, 92, 1343, 3467, 34777, 2611, 3, 1, 198, 220, 220, 220, 37082, 77, 1, 198, 220, 220, 220, 374, 1, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 28, 285, 62, 83, 7, 83, 36796, 7, 16, 8, 30072, 3467, 10210, 313, 304, 36796, 12, 59, 50033, 257, 92, 1343, 3467, 34777, 2611, 720, 1, 198, 8, 198, 897, 16, 13, 34574, 378, 7, 198, 220, 220, 220, 2420, 11, 198, 220, 220, 220, 3124, 2625, 49502, 1600, 198, 220, 220, 220, 2124, 88, 16193, 15, 13, 1157, 11, 352, 13, 2919, 828, 198, 220, 220, 220, 2124, 88, 1073, 3669, 2625, 7890, 1600, 198, 220, 220, 220, 2124, 88, 5239, 16193, 15, 13, 17, 11, 657, 13, 24, 828, 198, 220, 220, 220, 2420, 1073, 3669, 2625, 897, 274, 13390, 1600, 198, 220, 220, 220, 15452, 1676, 862, 28, 11600, 7, 6018, 7635, 2625, 3784, 1600, 4637, 7635, 2625, 5605, 18, 11, 6335, 10779, 15, 13, 18, 12340, 198, 220, 220, 220, 16021, 282, 16747, 2625, 9464, 1600, 198, 220, 220, 220, 11723, 282, 16747, 2625, 4852, 1600, 198, 8, 198, 198, 2, 26309, 7110, 198, 897, 17, 796, 458, 83, 13, 7266, 29487, 7, 14542, 58, 16, 4357, 2648, 87, 28, 897, 16, 8, 198, 897, 17, 13, 15596, 29487, 7, 198, 220, 220, 220, 40379, 58, 27932, 58, 15, 60, 4357, 198, 220, 220, 220, 1627, 8210, 1039, 28, 15, 13, 20, 11, 198, 220, 220, 220, 7577, 2625, 13424, 1600, 198, 220, 220, 220, 9493, 413, 5649, 82, 28, 15, 13, 20, 11, 198, 8, 198, 897, 17, 13, 2617, 62, 742, 3378, 7, 83, 3378, 8, 198, 897, 17, 13, 2617, 62, 742, 624, 23912, 1424, 7, 83, 3378, 62, 5239, 8, 198, 198, 897, 17, 13, 2617, 62, 20760, 3378, 26933, 12962, 198, 897, 17, 13, 2617, 62, 2645, 9608, 7203, 4561, 7938, 4943, 198, 897, 17, 13, 2617, 62, 88, 2475, 7, 15, 11, 352, 8, 198, 361, 3613, 25, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 21928, 62, 6978, 11, 3613, 62, 3672, 828, 13245, 28, 17821, 8, 198, 489, 83, 13, 12860, 3419 ]
2.108543
995
import tkinter as tk from tkinter import ttk import tkinter.scrolledtext as st from tkinter import filedialog from functools import partial """ Вкладка "перекодировать текст" """ def init_frame(self, frame: tk.Frame): """ Инициализация вкладки "Перекодировать текст" :param tk_recoder.gui.Gui self: Основное окно программы :param frame: Контейнер вкладки :return: None """ buttons = tk.Frame(frame) buttons.pack(fill='x', padx=10, pady=(10, 0)) buttons.columnconfigure(5, weight=1) texts = tk.Frame(frame) texts.pack(fill='both', expand=1, pady=(10, 0), padx=10) self.tc_text_from = st.ScrolledText(texts, width=30, height=3) self.tc_text_from.pack(side='left', expand=1, fill='both', padx=(0, 2)) self.tc_text_from.insert(tk.INSERT, "Привет мир!") self.tc_text_to = st.ScrolledText(texts, width=30, height=3) self.tc_text_to.pack(side='right', expand=1, fill='both', padx=(2, 0)) ttk.Label(buttons, text='Исходная').grid(column=0, row=0) choices = self.recoder.text_encodings self.tc_enc_from = tk.StringVar(self) self.tc_enc_from.set(choices[0]) ttk.OptionMenu(buttons, self.tc_enc_from, self.tc_enc_from.get(), *choices).grid(column=1, row=0, padx=(10, 20)) ttk.Label(buttons, text='Конечная').grid(column=2, row=0) self.tc_enc_to = tk.StringVar(self) self.tc_enc_to.set(choices[0]) ttk.OptionMenu(buttons, self.tc_enc_to, self.tc_enc_to.get(), *choices).grid(column=3, row=0, padx=(10, 20)) enc_button = ttk.Button(buttons, text='Перекодировать', padding=(10, 3, 10, 3), command=convert) enc_button.grid(column=4, row=0) bt = tk.Menubutton(buttons, text='Сохранить как...', relief='raised', compound='right', padx=10) popup = tk.Menu(bt, tearoff=0) bt.configure(menu=popup) for enc in self.recoder.file_encodings: popup.add_command(label=enc, command=partial(save_as, enc)) frame.columnconfigure(5, weight=1) bt.grid(column=5, row=0, padx=10, sticky=tk.E)
[ 11748, 256, 74, 3849, 355, 256, 74, 198, 6738, 256, 74, 3849, 1330, 256, 30488, 198, 11748, 256, 74, 3849, 13, 1416, 8375, 5239, 355, 336, 198, 6738, 256, 74, 3849, 1330, 5717, 498, 519, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 37811, 198, 140, 240, 31583, 30143, 16142, 43666, 31583, 16142, 366, 140, 123, 16843, 21169, 16843, 31583, 25443, 112, 18849, 21169, 25443, 110, 16142, 20375, 45367, 220, 20375, 16843, 31583, 21727, 20375, 1, 220, 198, 37811, 628, 198, 4299, 2315, 62, 14535, 7, 944, 11, 5739, 25, 256, 74, 13, 19778, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 246, 22177, 18849, 141, 228, 18849, 16142, 30143, 18849, 140, 115, 16142, 141, 228, 18849, 40623, 12466, 110, 31583, 30143, 16142, 43666, 31583, 18849, 366, 140, 253, 16843, 21169, 16843, 31583, 25443, 112, 18849, 21169, 25443, 110, 16142, 20375, 45367, 220, 20375, 16843, 31583, 21727, 20375, 1, 628, 220, 220, 220, 1058, 17143, 256, 74, 62, 8344, 12342, 13, 48317, 13, 8205, 72, 2116, 25, 12466, 252, 21727, 22177, 25443, 110, 22177, 15166, 16843, 12466, 122, 31583, 22177, 15166, 12466, 123, 21169, 25443, 111, 21169, 16142, 43108, 43108, 45035, 198, 220, 220, 220, 1058, 17143, 5739, 25, 12466, 248, 15166, 22177, 20375, 16843, 140, 117, 22177, 16843, 21169, 12466, 110, 31583, 30143, 16142, 43666, 31583, 18849, 198, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12163, 796, 256, 74, 13, 19778, 7, 14535, 8, 198, 220, 220, 220, 12163, 13, 8002, 7, 20797, 11639, 87, 3256, 14841, 87, 28, 940, 11, 279, 4597, 16193, 940, 11, 657, 4008, 198, 220, 220, 220, 12163, 13, 28665, 11250, 495, 7, 20, 11, 3463, 28, 16, 8, 628, 220, 220, 220, 13399, 796, 256, 74, 13, 19778, 7, 14535, 8, 198, 220, 220, 220, 13399, 13, 8002, 7, 20797, 11639, 16885, 3256, 4292, 28, 16, 11, 279, 4597, 16193, 940, 11, 657, 828, 14841, 87, 28, 940, 8, 628, 220, 220, 220, 2116, 13, 23047, 62, 5239, 62, 6738, 796, 336, 13, 3351, 8375, 8206, 7, 5239, 82, 11, 9647, 28, 1270, 11, 6001, 28, 18, 8, 198, 220, 220, 220, 2116, 13, 23047, 62, 5239, 62, 6738, 13, 8002, 7, 1589, 11639, 9464, 3256, 4292, 28, 16, 11, 6070, 11639, 16885, 3256, 14841, 87, 16193, 15, 11, 362, 4008, 198, 220, 220, 220, 2116, 13, 23047, 62, 5239, 62, 6738, 13, 28463, 7, 30488, 13, 20913, 17395, 11, 366, 140, 253, 21169, 18849, 38857, 16843, 20375, 12466, 120, 18849, 21169, 2474, 8, 628, 220, 220, 220, 2116, 13, 23047, 62, 5239, 62, 1462, 796, 336, 13, 3351, 8375, 8206, 7, 5239, 82, 11, 9647, 28, 1270, 11, 6001, 28, 18, 8, 198, 220, 220, 220, 2116, 13, 23047, 62, 5239, 62, 1462, 13, 8002, 7, 1589, 11639, 3506, 3256, 4292, 28, 16, 11, 6070, 11639, 16885, 3256, 14841, 87, 16193, 17, 11, 657, 4008, 628, 220, 220, 220, 256, 30488, 13, 33986, 7, 4360, 27288, 11, 2420, 11639, 140, 246, 21727, 141, 227, 25443, 112, 22177, 16142, 40623, 27691, 25928, 7, 28665, 28, 15, 11, 5752, 28, 15, 8, 628, 220, 220, 220, 7747, 796, 2116, 13, 8344, 12342, 13, 5239, 62, 12685, 375, 654, 628, 220, 220, 220, 2116, 13, 23047, 62, 12685, 62, 6738, 796, 256, 74, 13, 10100, 19852, 7, 944, 8, 198, 220, 220, 220, 2116, 13, 23047, 62, 12685, 62, 6738, 13, 2617, 7, 6679, 1063, 58, 15, 12962, 198, 220, 220, 220, 256, 30488, 13, 19722, 23381, 7, 4360, 27288, 11, 2116, 13, 23047, 62, 12685, 62, 6738, 11, 2116, 13, 23047, 62, 12685, 62, 6738, 13, 1136, 22784, 1635, 6679, 1063, 737, 25928, 7, 28665, 28, 16, 11, 5752, 28, 15, 11, 14841, 87, 16193, 940, 11, 1160, 4008, 628, 220, 220, 220, 256, 30488, 13, 33986, 7, 4360, 27288, 11, 2420, 11639, 140, 248, 15166, 22177, 16843, 141, 229, 22177, 16142, 40623, 27691, 25928, 7, 28665, 28, 17, 11, 5752, 28, 15, 8, 628, 220, 220, 220, 2116, 13, 23047, 62, 12685, 62, 1462, 796, 256, 74, 13, 10100, 19852, 7, 944, 8, 198, 220, 220, 220, 2116, 13, 23047, 62, 12685, 62, 1462, 13, 2617, 7, 6679, 1063, 58, 15, 12962, 198, 220, 220, 220, 256, 30488, 13, 19722, 23381, 7, 4360, 27288, 11, 2116, 13, 23047, 62, 12685, 62, 1462, 11, 2116, 13, 23047, 62, 12685, 62, 1462, 13, 1136, 22784, 1635, 6679, 1063, 737, 25928, 7, 28665, 28, 18, 11, 5752, 28, 15, 11, 14841, 87, 16193, 940, 11, 1160, 4008, 628, 220, 220, 220, 2207, 62, 16539, 796, 256, 30488, 13, 21864, 7, 4360, 27288, 11, 2420, 11639, 140, 253, 16843, 21169, 16843, 31583, 25443, 112, 18849, 21169, 25443, 110, 16142, 20375, 45367, 3256, 24511, 16193, 940, 11, 513, 11, 838, 11, 513, 828, 3141, 28, 1102, 1851, 8, 198, 220, 220, 220, 2207, 62, 16539, 13, 25928, 7, 28665, 28, 19, 11, 5752, 28, 15, 8, 628, 220, 220, 220, 275, 83, 796, 256, 74, 13, 10418, 549, 21115, 7, 4360, 27288, 11, 2420, 11639, 140, 94, 15166, 141, 227, 21169, 16142, 22177, 18849, 20375, 45367, 12466, 118, 16142, 31583, 986, 3256, 8259, 11639, 49309, 3256, 13061, 11639, 3506, 3256, 14841, 87, 28, 940, 8, 198, 220, 220, 220, 46207, 796, 256, 74, 13, 23381, 7, 18347, 11, 11626, 2364, 28, 15, 8, 198, 220, 220, 220, 275, 83, 13, 11250, 495, 7, 26272, 28, 12924, 929, 8, 628, 220, 220, 220, 329, 2207, 287, 2116, 13, 8344, 12342, 13, 7753, 62, 12685, 375, 654, 25, 198, 220, 220, 220, 220, 220, 220, 220, 46207, 13, 2860, 62, 21812, 7, 18242, 28, 12685, 11, 3141, 28, 47172, 7, 21928, 62, 292, 11, 2207, 4008, 628, 220, 220, 220, 5739, 13, 28665, 11250, 495, 7, 20, 11, 3463, 28, 16, 8, 198, 220, 220, 220, 275, 83, 13, 25928, 7, 28665, 28, 20, 11, 5752, 28, 15, 11, 14841, 87, 28, 940, 11, 23408, 28, 30488, 13, 36, 8, 198 ]
2.029175
994
# Bigram formation # using list comprehension + enumerate() + split() # initializing list test_list = ['በሙቀት ጀምሮ በቅዝቃዜ መጨረስ የዚህ ዓለም መገለጫ ሆኗል እልልታ በኡኡታ፣ ሠርግ በግልግል፣ ማሬ የሚለው ቃል እሬቴ በሚልይለወጣል', 'ጨርሰው የማይሰሩ አሳሳቢ አይደሉም፣ አይሠሩምና። ብልሽት ያለባቸው ማሞቂያዎች ግን ሰውዬው ሲሞክራቸው ይሠራሉ '] # printing the original list print ("The original list is : " + str(test_list)) # using list comprehension + enumerate() + split() # for Bigram formation res = [(x, i.split()[j + 1]) for i in test_list for j, x in enumerate(i.split()) if j < len(i.split()) - 1] # printing result print ("The formed bigrams are : " + str(res))
[ 198, 2, 4403, 859, 9978, 198, 2, 1262, 1351, 35915, 1343, 27056, 378, 3419, 1343, 6626, 3419, 198, 198, 2, 4238, 2890, 1351, 198, 9288, 62, 4868, 796, 37250, 157, 231, 254, 157, 230, 247, 157, 231, 222, 157, 231, 113, 28053, 234, 222, 157, 230, 251, 157, 230, 106, 28053, 231, 254, 157, 231, 227, 157, 233, 251, 157, 231, 225, 157, 233, 250, 28053, 230, 246, 157, 234, 101, 157, 230, 101, 157, 230, 113, 28053, 233, 101, 157, 233, 248, 157, 230, 227, 28053, 233, 241, 157, 230, 230, 157, 230, 251, 28053, 230, 246, 157, 234, 230, 157, 230, 230, 157, 234, 104, 28053, 230, 228, 157, 232, 245, 157, 230, 235, 28053, 232, 98, 157, 230, 235, 157, 230, 235, 157, 231, 111, 28053, 231, 254, 157, 232, 94, 157, 232, 94, 157, 231, 111, 157, 235, 96, 28053, 230, 254, 157, 230, 255, 157, 234, 235, 28053, 231, 254, 157, 234, 235, 157, 230, 235, 157, 234, 235, 157, 230, 235, 157, 235, 96, 28053, 230, 249, 157, 230, 105, 28053, 233, 101, 157, 230, 248, 157, 230, 230, 157, 233, 235, 28053, 231, 225, 157, 230, 235, 28053, 232, 98, 157, 230, 105, 157, 231, 112, 28053, 231, 254, 157, 230, 248, 157, 230, 235, 157, 233, 255, 157, 230, 230, 157, 233, 230, 157, 234, 96, 157, 230, 235, 3256, 705, 157, 234, 101, 157, 230, 255, 157, 230, 108, 157, 233, 235, 28053, 233, 101, 157, 230, 249, 157, 233, 255, 157, 230, 108, 157, 230, 102, 28053, 232, 254, 157, 230, 111, 157, 230, 111, 157, 231, 95, 28053, 232, 254, 157, 233, 255, 157, 233, 108, 157, 230, 231, 157, 230, 251, 157, 235, 96, 28053, 232, 254, 157, 233, 255, 157, 230, 254, 157, 230, 102, 157, 230, 251, 157, 232, 241, 157, 235, 95, 28053, 231, 98, 157, 230, 235, 157, 230, 121, 157, 231, 113, 28053, 233, 104, 157, 230, 230, 157, 231, 96, 157, 231, 116, 157, 233, 235, 28053, 230, 249, 157, 230, 252, 157, 231, 224, 157, 233, 104, 157, 233, 236, 157, 231, 121, 28053, 234, 235, 157, 232, 243, 28053, 230, 108, 157, 233, 235, 157, 233, 105, 157, 233, 235, 28053, 230, 110, 157, 230, 252, 157, 232, 255, 157, 230, 104, 157, 231, 116, 157, 233, 235, 28053, 233, 255, 157, 230, 254, 157, 230, 104, 157, 230, 231, 705, 60, 198, 198, 2, 13570, 262, 2656, 1351, 198, 4798, 5855, 464, 2656, 1351, 318, 1058, 366, 1343, 965, 7, 9288, 62, 4868, 4008, 198, 198, 2, 1262, 1351, 35915, 1343, 27056, 378, 3419, 1343, 6626, 3419, 198, 2, 329, 4403, 859, 9978, 198, 411, 796, 47527, 87, 11, 1312, 13, 35312, 3419, 58, 73, 1343, 352, 12962, 329, 1312, 287, 1332, 62, 4868, 198, 197, 1640, 474, 11, 2124, 287, 27056, 378, 7, 72, 13, 35312, 28955, 611, 474, 1279, 18896, 7, 72, 13, 35312, 28955, 532, 352, 60, 198, 198, 2, 13570, 1255, 198, 4798, 5855, 464, 7042, 1263, 9474, 389, 1058, 366, 1343, 965, 7, 411, 4008, 198 ]
1.162109
512
from blspy import G1Element from chia.types.blockchain_format.coin import Coin from chia.types.blockchain_format.sized_bytes import bytes32 from chia.util.ints import uint32, uint64 from chia.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle import puzzle_for_pk
[ 6738, 698, 2777, 88, 1330, 402, 16, 20180, 198, 198, 6738, 442, 544, 13, 19199, 13, 9967, 7983, 62, 18982, 13, 3630, 1330, 16312, 198, 6738, 442, 544, 13, 19199, 13, 9967, 7983, 62, 18982, 13, 13982, 62, 33661, 1330, 9881, 2624, 198, 6738, 442, 544, 13, 22602, 13, 29503, 1330, 20398, 2624, 11, 20398, 2414, 198, 6738, 442, 544, 13, 44623, 13, 79, 4715, 829, 13, 79, 17, 62, 2934, 1455, 515, 62, 79, 9625, 62, 273, 62, 30342, 62, 79, 9625, 1330, 15027, 62, 1640, 62, 79, 74, 628, 628, 628, 628 ]
2.904255
94
# # from os import stat import pymongo from apps.wxs.model.m_mongodb import MMongoDb
[ 2, 201, 198, 2, 220, 201, 198, 6738, 28686, 1330, 1185, 201, 198, 11748, 279, 4948, 25162, 201, 198, 6738, 6725, 13, 86, 34223, 13, 19849, 13, 76, 62, 31059, 375, 65, 1330, 20806, 25162, 43832, 201 ]
2.432432
37
""" Workflow definition to book data """ from __future__ import division, absolute_import, print_function from datetime import datetime, timedelta from airflow import DAG from airflow.operators import ( BookData ) dag_id = "book_data" schedule_interval = None default_args = { 'owner': 'europython', 'depends_on_past': False, 'email': ['airflow@europython'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 0, 'retry_delay': timedelta(seconds=30) } dag = DAG( dag_id, start_date=datetime(2016, 12, 7), schedule_interval=schedule_interval, default_args=default_args) book = BookData(dag=dag)
[ 37811, 198, 12468, 11125, 6770, 284, 1492, 1366, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 4112, 62, 11748, 11, 3601, 62, 8818, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 198, 6738, 45771, 1330, 360, 4760, 198, 6738, 45771, 13, 3575, 2024, 1330, 357, 198, 220, 220, 220, 4897, 6601, 198, 8, 198, 198, 67, 363, 62, 312, 796, 366, 2070, 62, 7890, 1, 198, 15952, 5950, 62, 3849, 2100, 796, 6045, 198, 198, 12286, 62, 22046, 796, 1391, 198, 220, 220, 220, 705, 18403, 10354, 705, 44252, 29412, 3256, 198, 220, 220, 220, 705, 10378, 2412, 62, 261, 62, 30119, 10354, 10352, 11, 198, 220, 220, 220, 705, 12888, 10354, 37250, 958, 11125, 31, 44252, 29412, 6, 4357, 198, 220, 220, 220, 705, 12888, 62, 261, 62, 32165, 495, 10354, 10352, 11, 198, 220, 220, 220, 705, 12888, 62, 261, 62, 1186, 563, 10354, 10352, 11, 198, 220, 220, 220, 705, 1186, 1678, 10354, 657, 11, 198, 220, 220, 220, 705, 1186, 563, 62, 40850, 10354, 28805, 12514, 7, 43012, 28, 1270, 8, 198, 92, 198, 198, 67, 363, 796, 360, 4760, 7, 198, 220, 220, 220, 48924, 62, 312, 11, 198, 220, 220, 220, 923, 62, 4475, 28, 19608, 8079, 7, 5304, 11, 1105, 11, 767, 828, 198, 220, 220, 220, 7269, 62, 3849, 2100, 28, 15952, 5950, 62, 3849, 2100, 11, 198, 220, 220, 220, 4277, 62, 22046, 28, 12286, 62, 22046, 8, 198, 198, 2070, 796, 4897, 6601, 7, 67, 363, 28, 67, 363, 8, 198 ]
2.562016
258
from unittest import TestCase from alex.components.tts.voicerss import VoiceRssTTS import alex.utils.audio as audio import wave from alex.utils.config import as_project_path __author__ = 'm2rtin'
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 257, 2588, 13, 5589, 3906, 13, 83, 912, 13, 13038, 291, 364, 82, 1330, 15282, 49, 824, 51, 4694, 198, 11748, 257, 2588, 13, 26791, 13, 24051, 355, 6597, 198, 11748, 6769, 198, 6738, 257, 2588, 13, 26791, 13, 11250, 1330, 355, 62, 16302, 62, 6978, 198, 198, 834, 9800, 834, 796, 705, 76, 17, 17034, 259, 6, 198 ]
2.869565
69
""" TXA - Transfer Register X to Accumulator. A = X Copies the current contents of the X register into the accumulator and sets the zero and negative flags as appropriate. Processor Status after use: +------+-------------------+--------------------------+ | Flag | Description | State | +======+===================+==========================+ | C | Carry Flag | Not affected | +------+-------------------+--------------------------+ | Z | Zero Flag | Set is A = 0 | +------+-------------------+--------------------------+ | I | Interrupt Disable | Not affected | +------+-------------------+--------------------------+ | D | Decimal Mode Flag | Not affected | +------+-------------------+--------------------------+ | B | Break Command | Not affected | +------+-------------------+--------------------------+ | V | Overflow Flag | Not affected | +------+-------------------+--------------------------+ | N | Negative Flag | Set if bit 7 of A is set | +------+-------------------+--------------------------+ +-----------------+--------+-------+--------+ | Addressing Mode | Opcode | Bytes | Cycles | +=================+========+=======+========+ | Implied | 0x8A | 1 | 2 | +-----------------+--------+-------+--------+ See also: TAX """ import pytest import m6502 @pytest.mark.parametrize( "value, flag_n, flag_z", [ (0x0F, False, False), (0x00, False, True), (0xF0, True, False), ]) def test_cpu_ins_txa_imm(value: int, flag_n: bool, flag_z: bool) -> None: """ Transfer Accumulator, Implied. return: None """ memory = m6502.Memory() cpu = m6502.Processor(memory) cpu.reset() cpu.reg_a = 0x00 cpu.reg_x = value memory[0xFCE2] = 0x8A cpu.execute(2) assert ( cpu.program_counter, cpu.stack_pointer, cpu.cycles, cpu.flag_n, cpu.flag_z, cpu.reg_a, ) == (0xFCE3, 0x01FD, 2, flag_n, flag_z, value)
[ 37811, 198, 29551, 32, 532, 20558, 17296, 1395, 284, 6366, 388, 8927, 13, 198, 198, 32, 796, 1395, 198, 198, 13379, 444, 262, 1459, 10154, 286, 262, 1395, 7881, 656, 262, 10507, 8927, 290, 5621, 198, 1169, 6632, 290, 4633, 9701, 355, 5035, 13, 198, 198, 18709, 273, 12678, 706, 779, 25, 198, 198, 10, 23031, 10, 1783, 6329, 10, 22369, 44785, 198, 91, 19762, 930, 12489, 220, 220, 220, 220, 220, 220, 930, 1812, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 10, 50155, 10, 4770, 18604, 10, 4770, 2559, 855, 10, 198, 91, 220, 327, 220, 220, 930, 36366, 19762, 220, 220, 220, 220, 220, 220, 220, 930, 1892, 5676, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 10, 23031, 10, 1783, 6329, 10, 22369, 44785, 198, 91, 220, 1168, 220, 220, 930, 12169, 19762, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5345, 318, 317, 796, 657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 10, 23031, 10, 1783, 6329, 10, 22369, 44785, 198, 91, 220, 314, 220, 220, 930, 4225, 3622, 31529, 930, 1892, 5676, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 10, 23031, 10, 1783, 6329, 10, 22369, 44785, 198, 91, 220, 360, 220, 220, 930, 4280, 4402, 10363, 19762, 930, 1892, 5676, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 10, 23031, 10, 1783, 6329, 10, 22369, 44785, 198, 91, 220, 347, 220, 220, 930, 12243, 9455, 220, 220, 220, 220, 930, 1892, 5676, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 10, 23031, 10, 1783, 6329, 10, 22369, 44785, 198, 91, 220, 569, 220, 220, 930, 3827, 11125, 19762, 220, 220, 220, 220, 930, 1892, 5676, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 10, 23031, 10, 1783, 6329, 10, 22369, 44785, 198, 91, 220, 399, 220, 220, 930, 36183, 19762, 220, 220, 220, 220, 930, 5345, 611, 1643, 767, 286, 317, 318, 900, 930, 198, 10, 23031, 10, 1783, 6329, 10, 22369, 44785, 198, 198, 10, 1783, 19529, 982, 10, 26866, 10, 982, 10, 198, 91, 3060, 11697, 10363, 930, 8670, 8189, 930, 2750, 4879, 930, 5934, 5427, 930, 198, 10, 4770, 28, 10, 2559, 10, 1421, 18604, 10, 2559, 10, 198, 91, 34347, 798, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 657, 87, 23, 32, 220, 930, 220, 220, 352, 220, 220, 930, 220, 220, 362, 220, 220, 220, 930, 198, 10, 1783, 19529, 982, 10, 26866, 10, 982, 10, 198, 198, 6214, 635, 25, 21664, 55, 198, 37811, 198, 11748, 12972, 9288, 198, 11748, 285, 17544, 17, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 8367, 11, 6056, 62, 77, 11, 6056, 62, 89, 1600, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 87, 15, 37, 11, 10352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 87, 405, 11, 10352, 11, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 87, 37, 15, 11, 6407, 11, 10352, 828, 198, 220, 220, 220, 33761, 198, 4299, 1332, 62, 36166, 62, 1040, 62, 17602, 64, 62, 8608, 7, 8367, 25, 493, 11, 6056, 62, 77, 25, 20512, 11, 6056, 62, 89, 25, 20512, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20558, 6366, 388, 8927, 11, 34347, 798, 13, 628, 220, 220, 220, 1441, 25, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4088, 796, 285, 17544, 17, 13, 30871, 3419, 198, 220, 220, 220, 42804, 796, 285, 17544, 17, 13, 18709, 273, 7, 31673, 8, 198, 220, 220, 220, 42804, 13, 42503, 3419, 198, 220, 220, 220, 42804, 13, 2301, 62, 64, 796, 657, 87, 405, 198, 220, 220, 220, 42804, 13, 2301, 62, 87, 796, 1988, 198, 220, 220, 220, 4088, 58, 15, 87, 4851, 36, 17, 60, 796, 657, 87, 23, 32, 198, 220, 220, 220, 42804, 13, 41049, 7, 17, 8, 198, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 13, 23065, 62, 24588, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 13, 25558, 62, 29536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 13, 32503, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 13, 32109, 62, 77, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 13, 32109, 62, 89, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 13, 2301, 62, 64, 11, 198, 220, 220, 220, 1267, 6624, 357, 15, 87, 4851, 36, 18, 11, 657, 87, 486, 26009, 11, 362, 11, 6056, 62, 77, 11, 6056, 62, 89, 11, 1988, 8, 198 ]
2.543689
824
import pwn HOST, PORT = "crypto.hsctf.com", 6001 rem = pwn.remote(HOST, PORT) rem.recvline() data = rem.recvline() initial = data.decode().strip().split(':')[-1] print(initial) initial = int(initial) for i in range(10): rem.sendline(str(nextval(initial)).encode()) print(rem.recvline().decode()) initial = nextval(initial)
[ 11748, 279, 675, 198, 198, 39, 10892, 11, 350, 9863, 796, 366, 29609, 78, 13, 11994, 310, 69, 13, 785, 1600, 718, 8298, 198, 2787, 796, 279, 675, 13, 47960, 7, 39, 10892, 11, 350, 9863, 8, 198, 198, 2787, 13, 8344, 85, 1370, 3419, 198, 7890, 796, 816, 13, 8344, 85, 1370, 3419, 198, 198, 36733, 796, 1366, 13, 12501, 1098, 22446, 36311, 22446, 35312, 7, 10354, 11537, 58, 12, 16, 60, 198, 4798, 7, 36733, 8, 198, 36733, 796, 493, 7, 36733, 8, 198, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 816, 13, 21280, 1370, 7, 2536, 7, 19545, 2100, 7, 36733, 29720, 268, 8189, 28955, 198, 220, 220, 220, 3601, 7, 2787, 13, 8344, 85, 1370, 22446, 12501, 1098, 28955, 198, 220, 220, 220, 4238, 796, 1306, 2100, 7, 36733, 8, 198 ]
2.421429
140
#!/usr/bin/env python3 # Author:: Justin Flannery (mailto:[email protected]) """ YAML Utilities for Camply """ from datetime import datetime import logging import os from pathlib import Path from re import compile from typing import Dict, Tuple from yaml import load, SafeLoader from camply.config import SearchConfig from camply.containers import SearchWindow logger = logging.getLogger(__name__) def read_yml(path: str = None): """ Load a yaml configuration file_path (path) or data object (data) and resolve any environment variables. The environment variables must be in this format to be parsed: ${VAR_NAME}. Parameters ---------- path: str File Path of YAML Object to Read Examples ---------- database: host: ${HOST} port: ${PORT} ${KEY}: ${VALUE} app: log_path: "/var/${LOG_PATH}" something_else: "${AWESOME_ENV_VAR}/var/${A_SECOND_AWESOME_VAR}" """ path = os.path.abspath(path) pattern = compile(r".*?\${(\w+)}.*?") safe_loader = SafeLoader safe_loader.add_implicit_resolver(tag=None, regexp=pattern, first=None) def env_var_constructor(safe_loader: object, node: object): """ Extracts the environment variable from the node's value :param yaml.Loader safe_loader: the yaml loader :param node: the current node in the yaml :return: the parsed string that contains the value of the environment variable """ value = safe_loader.construct_scalar(node=node) match = pattern.findall(string=value) if match: full_value = value for item in match: full_value = full_value.replace( "${{{key}}}".format(key=item), os.getenv(key=item, default=item)) return full_value return value safe_loader.add_constructor(tag=None, constructor=env_var_constructor) with open(path) as conf_data: return load(stream=conf_data, Loader=safe_loader) def yaml_file_to_arguments(file_path: str) -> Tuple[str, Dict[str, object], Dict[str, object]]: """ Convert YAML File into A Dictionary to be used as **kwargs Parameters ---------- file_path: str File Path to YAML Returns ------- provider, provider_kwargs, search_kwargs: Tuple[str, Dict[str, object], Dict[str, object]] Tuple containing provider string, provider **kwargs, and search **kwargs """ yaml_search = read_yml(path=file_path) logger.info(f"YML File Parsed: {Path(file_path).name}") provider = yaml_search.get("provider", "RecreationDotGov") start_date = datetime.strptime(str(yaml_search["start_date"]), "%Y-%m-%d") end_date = datetime.strptime(str(yaml_search["end_date"]), "%Y-%m-%d") nights = int(yaml_search.get("nights", 1)) recreation_area = yaml_search.get("recreation_area", None) campgrounds = yaml_search.get("campgrounds", None) weekends_only = yaml_search.get("weekends", False) continuous = yaml_search.get("continuous", True) polling_interval = yaml_search.get("polling_interval", SearchConfig.RECOMMENDED_POLLING_INTERVAL) notify_first_try = yaml_search.get("notify_first_try", False) notification_provider = yaml_search.get("notifications", "silent") search_forever = yaml_search.get("search_forever", False) search_window = SearchWindow(start_date=start_date, end_date=end_date) provider_kwargs = dict(search_window=search_window, recreation_area=recreation_area, campgrounds=campgrounds, weekends_only=weekends_only, nights=nights) search_kwargs = dict( log=True, verbose=True, continuous=continuous, polling_interval=polling_interval, notify_first_try=notify_first_try, notification_provider=notification_provider, search_forever=search_forever) return provider, provider_kwargs, search_kwargs
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 6434, 3712, 220, 220, 220, 10799, 39016, 35865, 220, 357, 4529, 1462, 25, 14396, 701, 259, 31, 14396, 701, 259, 13, 785, 8, 198, 198, 37811, 198, 56, 2390, 43, 41086, 329, 5425, 306, 198, 37811, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 18931, 198, 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 302, 1330, 17632, 198, 6738, 19720, 1330, 360, 713, 11, 309, 29291, 198, 198, 6738, 331, 43695, 1330, 3440, 11, 19978, 17401, 198, 198, 6738, 1413, 306, 13, 11250, 1330, 11140, 16934, 198, 6738, 1413, 306, 13, 3642, 50221, 1330, 11140, 27703, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 1100, 62, 88, 4029, 7, 6978, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8778, 257, 331, 43695, 8398, 2393, 62, 6978, 357, 6978, 8, 393, 1366, 2134, 357, 7890, 8, 198, 220, 220, 220, 290, 10568, 597, 2858, 9633, 13, 383, 2858, 198, 220, 220, 220, 9633, 1276, 307, 287, 428, 5794, 284, 307, 44267, 25, 25597, 53, 1503, 62, 20608, 27422, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3108, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 9220, 10644, 286, 575, 2390, 43, 9515, 284, 4149, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 6831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 25, 25597, 39, 10892, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 25, 25597, 15490, 92, 198, 220, 220, 220, 220, 220, 220, 220, 25597, 20373, 38362, 25597, 39488, 92, 198, 220, 220, 220, 598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 6978, 25, 12813, 7785, 32624, 90, 25294, 62, 34219, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 1223, 62, 17772, 25, 17971, 90, 12298, 1546, 13649, 62, 1677, 53, 62, 53, 1503, 92, 14, 7785, 32624, 90, 32, 62, 23683, 18672, 62, 12298, 1546, 13649, 62, 53, 1503, 36786, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 6978, 8, 198, 220, 220, 220, 3912, 796, 17632, 7, 81, 1911, 9, 30, 59, 38892, 38016, 86, 28988, 92, 15885, 1701, 8, 628, 220, 220, 220, 3338, 62, 29356, 796, 19978, 17401, 198, 220, 220, 220, 3338, 62, 29356, 13, 2860, 62, 23928, 3628, 62, 411, 14375, 7, 12985, 28, 14202, 11, 40364, 79, 28, 33279, 11, 717, 28, 14202, 8, 628, 220, 220, 220, 825, 17365, 62, 7785, 62, 41571, 273, 7, 21230, 62, 29356, 25, 2134, 11, 10139, 25, 2134, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29677, 82, 262, 2858, 7885, 422, 262, 10139, 338, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 331, 43695, 13, 17401, 3338, 62, 29356, 25, 262, 331, 43695, 40213, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10139, 25, 262, 1459, 10139, 287, 262, 331, 43695, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 262, 44267, 4731, 326, 4909, 262, 1988, 286, 262, 2858, 198, 220, 220, 220, 220, 220, 220, 220, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 3338, 62, 29356, 13, 41571, 62, 1416, 282, 283, 7, 17440, 28, 17440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 3912, 13, 19796, 439, 7, 8841, 28, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 8367, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 8367, 796, 1336, 62, 8367, 13, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17971, 27007, 90, 2539, 42535, 1911, 18982, 7, 2539, 28, 9186, 828, 28686, 13, 1136, 24330, 7, 2539, 28, 9186, 11, 4277, 28, 9186, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1336, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 628, 220, 220, 220, 3338, 62, 29356, 13, 2860, 62, 41571, 273, 7, 12985, 28, 14202, 11, 23772, 28, 24330, 62, 7785, 62, 41571, 273, 8, 198, 220, 220, 220, 351, 1280, 7, 6978, 8, 355, 1013, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3440, 7, 5532, 28, 10414, 62, 7890, 11, 8778, 263, 28, 21230, 62, 29356, 8, 628, 198, 4299, 331, 43695, 62, 7753, 62, 1462, 62, 853, 2886, 7, 7753, 62, 6978, 25, 965, 8, 4613, 309, 29291, 58, 2536, 11, 360, 713, 58, 2536, 11, 2134, 4357, 360, 713, 58, 2536, 11, 2134, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 575, 2390, 43, 9220, 656, 317, 28261, 284, 307, 973, 355, 12429, 46265, 22046, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2393, 62, 6978, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 9220, 10644, 284, 575, 2390, 43, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 10131, 11, 10131, 62, 46265, 22046, 11, 2989, 62, 46265, 22046, 25, 309, 29291, 58, 2536, 11, 360, 713, 58, 2536, 11, 2134, 4357, 360, 713, 58, 2536, 11, 2134, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 309, 29291, 7268, 10131, 4731, 11, 10131, 12429, 46265, 22046, 11, 290, 2989, 12429, 46265, 22046, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 331, 43695, 62, 12947, 796, 1100, 62, 88, 4029, 7, 6978, 28, 7753, 62, 6978, 8, 198, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 56, 5805, 9220, 23042, 276, 25, 1391, 15235, 7, 7753, 62, 6978, 737, 3672, 92, 4943, 198, 220, 220, 220, 10131, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 15234, 1304, 1600, 366, 6690, 260, 341, 35, 313, 23774, 4943, 198, 220, 220, 220, 923, 62, 4475, 796, 4818, 8079, 13, 2536, 457, 524, 7, 2536, 7, 88, 43695, 62, 12947, 14692, 9688, 62, 4475, 8973, 828, 36521, 56, 12, 4, 76, 12, 4, 67, 4943, 198, 220, 220, 220, 886, 62, 4475, 796, 4818, 8079, 13, 2536, 457, 524, 7, 2536, 7, 88, 43695, 62, 12947, 14692, 437, 62, 4475, 8973, 828, 36521, 56, 12, 4, 76, 12, 4, 67, 4943, 198, 220, 220, 220, 12513, 796, 493, 7, 88, 43695, 62, 12947, 13, 1136, 7203, 77, 2337, 1600, 352, 4008, 198, 220, 220, 220, 27702, 62, 20337, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 260, 38793, 62, 20337, 1600, 6045, 8, 198, 220, 220, 220, 1413, 40520, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 16544, 40520, 1600, 6045, 8, 198, 220, 220, 220, 21511, 62, 8807, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 10464, 2412, 1600, 10352, 8, 198, 220, 220, 220, 12948, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 18487, 5623, 1600, 6407, 8, 198, 220, 220, 220, 13985, 62, 3849, 2100, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 30393, 278, 62, 3849, 2100, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11140, 16934, 13, 2200, 9858, 44, 49361, 62, 16402, 3069, 2751, 62, 41358, 23428, 8, 198, 220, 220, 220, 19361, 62, 11085, 62, 28311, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 1662, 1958, 62, 11085, 62, 28311, 1600, 10352, 8, 198, 220, 220, 220, 14483, 62, 15234, 1304, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 1662, 6637, 1600, 366, 18217, 298, 4943, 198, 220, 220, 220, 2989, 62, 754, 332, 796, 331, 43695, 62, 12947, 13, 1136, 7203, 12947, 62, 754, 332, 1600, 10352, 8, 628, 220, 220, 220, 2989, 62, 17497, 796, 11140, 27703, 7, 9688, 62, 4475, 28, 9688, 62, 4475, 11, 886, 62, 4475, 28, 437, 62, 4475, 8, 628, 220, 220, 220, 10131, 62, 46265, 22046, 796, 8633, 7, 12947, 62, 17497, 28, 12947, 62, 17497, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27702, 62, 20337, 28, 260, 38793, 62, 20337, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1413, 40520, 28, 16544, 40520, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21511, 62, 8807, 28, 10464, 2412, 62, 8807, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12513, 28, 77, 2337, 8, 198, 220, 220, 220, 2989, 62, 46265, 22046, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 28, 17821, 11, 15942, 577, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12948, 28, 18487, 5623, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13985, 62, 3849, 2100, 28, 30393, 278, 62, 3849, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19361, 62, 11085, 62, 28311, 28, 1662, 1958, 62, 11085, 62, 28311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14483, 62, 15234, 1304, 28, 1662, 2649, 62, 15234, 1304, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2989, 62, 754, 332, 28, 12947, 62, 754, 332, 8, 198, 220, 220, 220, 1441, 10131, 11, 10131, 62, 46265, 22046, 11, 2989, 62, 46265, 22046, 198 ]
2.409198
1,696
''' Created on May 23, 2016 @author: Lucas Lehnert ([email protected]) Script to generate all plots from the NIPS 2016 paper. ''' import matplotlib matplotlib.use( 'agg' ) matplotlib.rcParams['text.usetex'] = True matplotlib.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}'] import matplotlib.pyplot as plt import numpy as np import glob import os from util.numpy_json import loadJSONResults experimentDir = '../data/' plotDir = '../plot/' if not os.path.exists( plotDir ): os.makedirs( plotDir ) if __name__ == '__main__': main()
[ 7061, 6, 198, 41972, 319, 1737, 2242, 11, 1584, 198, 198, 31, 9800, 25, 15257, 1004, 21116, 861, 357, 75, 1229, 292, 13, 293, 21116, 861, 31, 4529, 13, 23209, 70, 359, 13, 6888, 8, 198, 198, 7391, 284, 7716, 477, 21528, 422, 262, 24947, 3705, 1584, 3348, 13, 198, 198, 7061, 6, 198, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 7, 705, 9460, 6, 1267, 198, 6759, 29487, 8019, 13, 6015, 10044, 4105, 17816, 5239, 13, 385, 316, 1069, 20520, 796, 6407, 198, 6759, 29487, 8019, 13, 6015, 10044, 4105, 17816, 5239, 13, 17660, 87, 13, 79, 1476, 903, 20520, 796, 685, 81, 6, 59, 1904, 26495, 90, 4105, 11018, 92, 20520, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 15095, 198, 11748, 28686, 198, 6738, 7736, 13, 77, 32152, 62, 17752, 1330, 3440, 40386, 25468, 198, 198, 23100, 3681, 35277, 796, 705, 40720, 7890, 14, 6, 198, 29487, 35277, 796, 705, 40720, 29487, 14, 6, 198, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 7110, 35277, 15179, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 7110, 35277, 1267, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.586364
220
from Support.Code.actions.Support.utils.functions_dict import get_name from django.utils.text import slugify
[ 6738, 7929, 13, 10669, 13, 4658, 13, 15514, 13, 26791, 13, 12543, 2733, 62, 11600, 1330, 651, 62, 3672, 198, 6738, 42625, 14208, 13, 26791, 13, 5239, 1330, 31065, 1958, 198 ]
3.516129
31
# Standard Library Imports from datetime import datetime from typing import List # Protean from protean.core.aggregate import BaseAggregate from protean.core.entity import BaseEntity from protean.core.field.association import HasMany, HasOne, Reference from protean.core.field.basic import Auto, DateTime, Integer, String, Text from protean.core.repository import BaseRepository # Aggregates to test Identity # Aggregates to test Subclassing # Aggregates to test Abstraction # START # # Aggregates to test Abstraction # END # # Aggregates to test Meta Info overriding # START # # Aggregates to test Meta Info overriding # END # # Aggregates to test associations # START # # Aggregates to test associations # END #
[ 2, 8997, 10074, 1846, 3742, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 7343, 198, 198, 2, 1041, 660, 272, 198, 6738, 5915, 272, 13, 7295, 13, 9460, 49373, 1330, 7308, 46384, 49373, 198, 6738, 5915, 272, 13, 7295, 13, 26858, 1330, 7308, 32398, 198, 6738, 5915, 272, 13, 7295, 13, 3245, 13, 562, 41003, 1330, 7875, 7085, 11, 7875, 3198, 11, 20984, 198, 6738, 5915, 272, 13, 7295, 13, 3245, 13, 35487, 1330, 11160, 11, 7536, 7575, 11, 34142, 11, 10903, 11, 8255, 198, 6738, 5915, 272, 13, 7295, 13, 260, 1930, 37765, 1330, 7308, 6207, 13264, 628, 628, 198, 198, 2, 19015, 2301, 689, 284, 1332, 27207, 628, 198, 198, 2, 19015, 2301, 689, 284, 1332, 3834, 4871, 278, 628, 198, 2, 19015, 2301, 689, 284, 1332, 2275, 301, 7861, 1303, 33303, 1303, 628, 628, 198, 2, 19015, 2301, 689, 284, 1332, 2275, 301, 7861, 1303, 23578, 1303, 628, 198, 2, 19015, 2301, 689, 284, 1332, 30277, 14151, 44987, 1303, 33303, 1303, 628, 628, 628, 198, 198, 2, 19015, 2301, 689, 284, 1332, 30277, 14151, 44987, 1303, 23578, 1303, 628, 198, 2, 19015, 2301, 689, 284, 1332, 15814, 1303, 33303, 1303, 628, 628, 628, 628, 628, 628, 628, 628, 198, 2, 19015, 2301, 689, 284, 1332, 15814, 1303, 23578, 1303, 198 ]
3.5
216
#!/usr/bin/env python # coding: utf-8 # In[ ]: #%load_ext autoreload #%autoreload 2 # In[ ]: import sys import torch import numpy as np import time import hashlib from os import listdir from os.path import isfile, join import pickle import argparse import json from tqdm import tqdm from copy import deepcopy import os from pytorch_pretrained_bert import BertTokenizer, BertModel PATH_SENTEVAL = './SentEval' PATH_TO_DATA = './SentEval/data/' PATH_TO_CACHE = './cache/' sys.path.insert(0, PATH_SENTEVAL) import senteval seed = 123 np.random.seed(seed) torch.manual_seed(seed) # In[ ]: def convert_sentences_to_features(sentences, seq_length, tokenizer): """Convert sentence into Tensor""" num_sent = len(sentences) input_type_ids = np.zeros((num_sent, seq_length), dtype=np.int32) input_ids = np.zeros((num_sent, seq_length), dtype=np.int32) input_mask = np.zeros((num_sent, seq_length), dtype=np.int32) for idx, sent in enumerate(sentences): tokens = tokenizer.tokenize(sent) tokens = tokens[0:min((seq_length - 2), len(tokens))] # truncate tokens longer than seq_length tokens.insert(0, "[CLS]") tokens.append("[SEP]") input_ids[idx,:len(tokens)] = np.array(tokenizer.convert_tokens_to_ids(tokens), dtype=np.int32) input_mask[idx,:len(tokens)] = np.ones(len(tokens), dtype=np.int32) assert len(input_ids[idx]) == seq_length assert len(input_mask[idx]) == seq_length assert len(input_type_ids[idx]) == seq_length return input_ids, input_type_ids, input_mask # In[ ]: # In[ ]: # In[ ]: # In[ ]: tasks = ['Length', 'WordContent', 'Depth', 'TopConstituents', 'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber', 'OddManOut', 'CoordinationInversion'] seed = 123 np.random.seed(seed) torch.manual_seed(seed) parser = argparse.ArgumentParser(description='Evaluate BERT') parser.add_argument("--device", type=list, default=[1,2]) parser.add_argument("--batch_size", type=int, default=500) parser.add_argument("--nhid", type=int, default=0) parser.add_argument("--kfold", type=int, default=5) parser.add_argument("--usepytorch", type=bool, default=True) parser.add_argument("--data_path", type=str, default='./SentEval/data/') parser.add_argument("--cache_path", type=str, default='./cache/') parser.add_argument("--result_path", type=str, default='./results/') parser.add_argument("--optim", type=str, default='rmsprop') parser.add_argument("--cbatch_size", type=int, default=512) parser.add_argument("--tenacity", type=int, default=3) parser.add_argument("--epoch_size", type=int, default=2) parser.add_argument("--model_name", type=str, default='bert-base-uncased') parser.add_argument("--task", type=int, default=0) parser.add_argument("--layer", type=int, default=[0, 11]) parser.add_argument("--head", type=int, default=[-1, 11]) parser.add_argument("--head_size", type=int, default=64) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.device) list_layer = range(args.layer[0], args.layer[1]+1) if len(args.layer) > 1 else [args.layer[0]] list_head = range(args.head[0], args.head[1]+1) if len(args.head) > 1 else [args.head[0]] num_exp = len(list(list_layer)) * len(list(list_head)) print("======= Benchmark Configuration ======") print("Device: ", args.device) print("model name: ", args.model_name) print("Task: ", tasks[args.task]) print("range layer: ", list_layer) print("range head: ", list_head) print("Total Exps: ", num_exp) print("======================================") cnt = 0 target_task = tasks[args.task] with tqdm(total=num_exp, file=sys.stdout) as pbar: for layer in list_layer: for head in list_head: args.layer = layer args.head = head print() experiment(args, target_task) pbar.set_description('processed: %d' % (1 + cnt)) pbar.update(1) cnt += 1 # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 4, 2220, 62, 2302, 1960, 382, 2220, 198, 2, 4, 2306, 382, 2220, 362, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 11748, 25064, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 12234, 8019, 198, 6738, 28686, 1330, 1351, 15908, 198, 6738, 28686, 13, 6978, 1330, 318, 7753, 11, 4654, 198, 11748, 2298, 293, 198, 11748, 1822, 29572, 198, 11748, 33918, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 4866, 1330, 2769, 30073, 198, 11748, 28686, 198, 198, 6738, 12972, 13165, 354, 62, 5310, 13363, 62, 4835, 1330, 22108, 30642, 7509, 11, 22108, 17633, 198, 198, 34219, 62, 50, 3525, 20114, 1847, 796, 705, 19571, 31837, 36, 2100, 6, 198, 34219, 62, 10468, 62, 26947, 796, 705, 19571, 31837, 36, 2100, 14, 7890, 14, 6, 198, 34219, 62, 10468, 62, 34, 2246, 13909, 796, 705, 19571, 23870, 14, 6, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 46490, 62, 50, 3525, 20114, 1847, 8, 198, 11748, 1908, 18206, 198, 198, 28826, 796, 17031, 198, 37659, 13, 25120, 13, 28826, 7, 28826, 8, 198, 13165, 354, 13, 805, 723, 62, 28826, 7, 28826, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 4299, 10385, 62, 34086, 3007, 62, 1462, 62, 40890, 7, 34086, 3007, 11, 33756, 62, 13664, 11, 11241, 7509, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 6827, 656, 309, 22854, 37811, 198, 220, 220, 220, 220, 198, 220, 220, 220, 997, 62, 34086, 796, 18896, 7, 34086, 3007, 8, 198, 220, 220, 220, 5128, 62, 4906, 62, 2340, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 34086, 11, 33756, 62, 13664, 828, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 5128, 62, 2340, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 34086, 11, 33756, 62, 13664, 828, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 5128, 62, 27932, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 34086, 11, 33756, 62, 13664, 828, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 4686, 87, 11, 1908, 287, 27056, 378, 7, 34086, 3007, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 16326, 796, 11241, 7509, 13, 30001, 1096, 7, 34086, 8, 198, 220, 220, 220, 220, 220, 220, 220, 16326, 796, 16326, 58, 15, 25, 1084, 19510, 41068, 62, 13664, 532, 362, 828, 18896, 7, 83, 482, 641, 4008, 60, 1303, 40122, 378, 16326, 2392, 621, 33756, 62, 13664, 198, 220, 220, 220, 220, 220, 220, 220, 16326, 13, 28463, 7, 15, 11, 12878, 5097, 50, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 16326, 13, 33295, 7203, 58, 5188, 47, 60, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2340, 58, 312, 87, 11, 25, 11925, 7, 83, 482, 641, 15437, 796, 45941, 13, 18747, 7, 30001, 7509, 13, 1102, 1851, 62, 83, 482, 641, 62, 1462, 62, 2340, 7, 83, 482, 641, 828, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 27932, 58, 312, 87, 11, 25, 11925, 7, 83, 482, 641, 15437, 796, 45941, 13, 1952, 7, 11925, 7, 83, 482, 641, 828, 288, 4906, 28, 37659, 13, 600, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 15414, 62, 2340, 58, 312, 87, 12962, 6624, 33756, 62, 13664, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 15414, 62, 27932, 58, 312, 87, 12962, 6624, 33756, 62, 13664, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 15414, 62, 4906, 62, 2340, 58, 312, 87, 12962, 6624, 33756, 62, 13664, 628, 220, 220, 220, 1441, 5128, 62, 2340, 11, 5128, 62, 4906, 62, 2340, 11, 5128, 62, 27932, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 83, 6791, 796, 37250, 24539, 3256, 705, 26449, 19746, 3256, 705, 48791, 3256, 705, 9126, 34184, 34272, 658, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12804, 859, 33377, 3256, 705, 51, 1072, 3256, 705, 7004, 73, 15057, 3256, 705, 49201, 15057, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46, 1860, 5124, 7975, 3256, 705, 7222, 585, 1883, 818, 9641, 20520, 198, 198, 28826, 796, 17031, 198, 37659, 13, 25120, 13, 28826, 7, 28826, 8, 198, 13165, 354, 13, 805, 723, 62, 28826, 7, 28826, 8, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 36, 2100, 4985, 347, 17395, 11537, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 25202, 1600, 2099, 28, 4868, 11, 4277, 41888, 16, 11, 17, 12962, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 43501, 62, 7857, 1600, 2099, 28, 600, 11, 4277, 28, 4059, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 77, 49675, 1600, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 74, 11379, 1600, 2099, 28, 600, 11, 4277, 28, 20, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 1904, 9078, 13165, 354, 1600, 2099, 28, 30388, 11, 4277, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 7890, 62, 6978, 1600, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 31837, 36, 2100, 14, 7890, 14, 11537, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 23870, 62, 6978, 1600, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 23870, 14, 11537, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 20274, 62, 6978, 1600, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 43420, 14, 11537, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 40085, 1600, 2099, 28, 2536, 11, 4277, 11639, 81, 907, 22930, 11537, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 21101, 963, 62, 7857, 1600, 2099, 28, 600, 11, 4277, 28, 25836, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 1452, 4355, 1600, 2099, 28, 600, 11, 4277, 28, 18, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 538, 5374, 62, 7857, 1600, 2099, 28, 600, 11, 4277, 28, 17, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 19849, 62, 3672, 1600, 2099, 28, 2536, 11, 4277, 11639, 4835, 12, 8692, 12, 19524, 839, 11537, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 35943, 1600, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 29289, 1600, 2099, 28, 600, 11, 4277, 41888, 15, 11, 1367, 12962, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 2256, 1600, 2099, 28, 600, 11, 4277, 41888, 12, 16, 11, 1367, 12962, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 2256, 62, 7857, 1600, 2099, 28, 600, 11, 4277, 28, 2414, 8, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 418, 13, 268, 2268, 14692, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 8973, 796, 705, 4032, 13, 22179, 7, 2536, 7, 87, 8, 329, 2124, 287, 26498, 13, 25202, 8, 628, 198, 4868, 62, 29289, 796, 2837, 7, 22046, 13, 29289, 58, 15, 4357, 26498, 13, 29289, 58, 16, 48688, 16, 8, 611, 18896, 7, 22046, 13, 29289, 8, 1875, 352, 2073, 685, 22046, 13, 29289, 58, 15, 11907, 198, 4868, 62, 2256, 796, 2837, 7, 22046, 13, 2256, 58, 15, 4357, 26498, 13, 2256, 58, 16, 48688, 16, 8, 611, 18896, 7, 22046, 13, 2256, 8, 1875, 352, 2073, 685, 22046, 13, 2256, 58, 15, 11907, 198, 22510, 62, 11201, 796, 18896, 7, 4868, 7, 4868, 62, 29289, 4008, 1635, 18896, 7, 4868, 7, 4868, 62, 2256, 4008, 628, 198, 4798, 7203, 1421, 18604, 25187, 4102, 28373, 29335, 2625, 8, 198, 4798, 7203, 24728, 25, 33172, 26498, 13, 25202, 8, 198, 4798, 7203, 19849, 1438, 25, 33172, 26498, 13, 19849, 62, 3672, 8, 198, 4798, 7203, 25714, 25, 33172, 8861, 58, 22046, 13, 35943, 12962, 198, 4798, 7203, 9521, 7679, 25, 33172, 1351, 62, 29289, 8, 198, 4798, 7203, 9521, 1182, 25, 33172, 1351, 62, 2256, 8, 198, 4798, 7203, 14957, 1475, 862, 25, 33172, 997, 62, 11201, 8, 198, 4798, 7203, 10052, 50155, 4943, 198, 198, 66, 429, 796, 657, 198, 16793, 62, 35943, 796, 8861, 58, 22046, 13, 35943, 60, 198, 4480, 256, 80, 36020, 7, 23350, 28, 22510, 62, 11201, 11, 2393, 28, 17597, 13, 19282, 448, 8, 355, 279, 5657, 25, 198, 220, 220, 220, 329, 7679, 287, 1351, 62, 29289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1182, 287, 1351, 62, 2256, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 29289, 796, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2256, 796, 1182, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6306, 7, 22046, 11, 2496, 62, 35943, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 2617, 62, 11213, 10786, 14681, 276, 25, 4064, 67, 6, 4064, 357, 16, 1343, 269, 429, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 19119, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 429, 15853, 352, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198 ]
2.479851
1,613
import RPi.GPIO as GPIO import time dis=0 while True: # Setup triggers and Echos of all sensors GPIO.setmode(GPIO.BOARD) TRIG=11 ECHO=13 GPIO.setup(TRIG,GPIO.OUT) GPIO.setup(3,GPIO.OUT) GPIO.setup(ECHO,GPIO.IN) GPIO.setup(5,GPIO.IN) GPIO.setup(35,GPIO.OUT) GPIO.setup(31,GPIO.OUT) GPIO.setup(33,GPIO.IN) GPIO.setup(29,GPIO.IN) GPIO.setup(38,GPIO.OUT) GPIO.setup(19,GPIO.OUT) GPIO.setup(23,GPIO.IN) GPIO.setup(21,GPIO.IN) station1() a=station1() print(str(a)+'Station 1 OK') station2() b=station2() print(str(b)+'Station 2 OK') station4() d=station4() print(str(d)+'Station 4 OK') station3() c=station3() print(str(c)+'Station 3 OK') station6() f=station6() print(str(f)+'Station 6 OK') station5() e=station5() print(str(e)+'Station 5 OK')
[ 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198, 11748, 640, 198, 198, 6381, 28, 15, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 1303, 31122, 20022, 290, 412, 354, 418, 286, 477, 15736, 198, 220, 220, 220, 50143, 13, 2617, 14171, 7, 16960, 9399, 13, 8202, 9795, 8, 198, 220, 220, 220, 7579, 3528, 28, 1157, 198, 220, 220, 220, 412, 44899, 28, 1485, 198, 220, 220, 220, 50143, 13, 40406, 7, 5446, 3528, 11, 16960, 9399, 13, 12425, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 18, 11, 16960, 9399, 13, 12425, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 25994, 46, 11, 16960, 9399, 13, 1268, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 20, 11, 16960, 9399, 13, 1268, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 2327, 11, 16960, 9399, 13, 12425, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 3132, 11, 16960, 9399, 13, 12425, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 2091, 11, 16960, 9399, 13, 1268, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 1959, 11, 16960, 9399, 13, 1268, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 2548, 11, 16960, 9399, 13, 12425, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 1129, 11, 16960, 9399, 13, 12425, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 1954, 11, 16960, 9399, 13, 1268, 8, 198, 220, 220, 220, 50143, 13, 40406, 7, 2481, 11, 16960, 9399, 13, 1268, 8, 628, 220, 220, 220, 4429, 16, 3419, 198, 220, 220, 220, 257, 28, 17529, 16, 3419, 198, 220, 220, 220, 3601, 7, 2536, 7, 64, 47762, 6, 12367, 352, 7477, 11537, 198, 220, 220, 220, 4429, 17, 3419, 198, 220, 220, 220, 275, 28, 17529, 17, 3419, 198, 220, 220, 220, 3601, 7, 2536, 7, 65, 47762, 6, 12367, 362, 7477, 11537, 628, 220, 220, 220, 4429, 19, 3419, 198, 220, 220, 220, 288, 28, 17529, 19, 3419, 198, 220, 220, 220, 3601, 7, 2536, 7, 67, 47762, 6, 12367, 604, 7477, 11537, 198, 220, 220, 220, 4429, 18, 3419, 198, 220, 220, 220, 269, 28, 17529, 18, 3419, 198, 220, 220, 220, 3601, 7, 2536, 7, 66, 47762, 6, 12367, 513, 7477, 11537, 198, 220, 220, 220, 4429, 21, 3419, 198, 220, 220, 220, 277, 28, 17529, 21, 3419, 198, 220, 220, 220, 3601, 7, 2536, 7, 69, 47762, 6, 12367, 718, 7477, 11537, 198, 220, 220, 220, 4429, 20, 3419, 198, 220, 220, 220, 304, 28, 17529, 20, 3419, 198, 220, 220, 220, 3601, 7, 2536, 7, 68, 47762, 6, 12367, 642, 7477, 11537, 198 ]
2.02069
435
""" Copyright C.C.: Emiliano Hernandez Laos https://github.com/emhlaos/ 28/02/2018 """ from urllib.request import urlopen import os from io import BytesIO from zipfile import ZipFile #LOAD FUNCTION: currentdirectory = os.getcwd() xbrldirectory = currentdirectory+"/xbrl" if not os.path.exists(xbrldirectory): os.makedirs(xbrldirectory) db = open(currentdirectory+"/babycaw.txt","r").read() matrix = {} rows = db.split("\n") matrix["R.TIME"] = {} n = 0 for t in rows[0].split(",")[1:]: matrix["R.TIME"][n] = t n=n+1 print(rows[1]," $$ ",rows[1].split(",")) for row in rows[1:]: columns = row.split(",") ticker = columns[0] matrix[ticker]={} n=0 for cell in columns[1:]: matrix[ticker][n] = cell n=n+1 #DOWNLOAD INFO: revenue_matrix = matrix allread = [] stocks = list(matrix.keys())[1:] n=len(list(matrix["R.TIME"].keys())) print(n,"\n",stocks) for stock in stocks: allread.append(stock) for m in range(n): print("Reading about "+stock) if ".zip" in matrix[stock][m]: with urlopen(matrix[stock][m]) as pzip: with ZipFile(BytesIO(pzip.read())) as zp: for file in zp.namelist(): print(file) print("Dowloading: "+ stock + "_" + matrix["R.TIME"][m] + ".json") try: pjson = open(xbrldirectory+"/" + stock + "_" + matrix["R.TIME"][m] + ".json", "wb") pjson.write(zp.read(file)) pjson.close() except Exception as args: print(args,"you got {}%".format(len(allread)/n)) teencow = open(currentdirectory+"/teencaw.txt", "w") for riadboe in allread: teencow.write(riadboe,"\n") allread=[] elif ".json" in matrix[stock][m]: jsonurl = matrix[stock][m] jsonresp = urlopen(jsonurl) with urlopen(matrix[stock][m]) as pjson: try: print("Downloading",stock + "_" + matrix["R.TIME"][m] + ".json") tempjson = open(xbrldirectory+"/" + stock + "_" + matrix["R.TIME"][m] + ".json", "wb") tempjson.write(pjson.read()) tempjson.close() except Exception as args: print(args, "you got {}%".format(len(allread) / n),"ending at a json file JSUUN") teencow = open(currentdirectory+"/teencaw.txt", "w") for riadboe in allread: teencow.write(riadboe, "\n") allread = []
[ 37811, 201, 198, 15269, 327, 13, 34, 11207, 201, 198, 220, 220, 220, 44272, 10115, 24687, 45919, 201, 198, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 368, 71, 5031, 418, 14, 201, 198, 220, 220, 220, 2579, 14, 2999, 14, 7908, 201, 198, 37811, 201, 198, 201, 198, 6738, 2956, 297, 571, 13, 25927, 1330, 19016, 9654, 201, 198, 11748, 28686, 201, 198, 6738, 33245, 1330, 2750, 4879, 9399, 201, 198, 6738, 19974, 7753, 1330, 38636, 8979, 201, 198, 201, 198, 2, 35613, 29397, 4177, 2849, 25, 201, 198, 14421, 34945, 796, 28686, 13, 1136, 66, 16993, 3419, 201, 198, 87, 1671, 335, 1060, 652, 796, 1459, 34945, 10, 1, 14, 87, 1671, 75, 1, 201, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 87, 1671, 335, 1060, 652, 2599, 28686, 13, 76, 4335, 17062, 7, 87, 1671, 335, 1060, 652, 8, 201, 198, 9945, 796, 1280, 7, 14421, 34945, 10, 1, 14, 40252, 66, 707, 13, 14116, 2430, 81, 11074, 961, 3419, 201, 198, 6759, 8609, 796, 23884, 201, 198, 8516, 796, 20613, 13, 35312, 7203, 59, 77, 4943, 201, 198, 6759, 8609, 14692, 49, 13, 34694, 8973, 796, 23884, 201, 198, 77, 796, 657, 201, 198, 1640, 256, 287, 15274, 58, 15, 4083, 35312, 7, 2430, 38381, 16, 25, 5974, 201, 198, 220, 220, 220, 17593, 14692, 49, 13, 34694, 1, 7131, 77, 60, 796, 256, 201, 198, 220, 220, 220, 299, 28, 77, 10, 16, 201, 198, 4798, 7, 8516, 58, 16, 17241, 32382, 33172, 8516, 58, 16, 4083, 35312, 7, 2430, 4008, 201, 198, 1640, 5752, 287, 15274, 58, 16, 25, 5974, 201, 198, 220, 220, 220, 15180, 796, 5752, 13, 35312, 7, 2430, 8, 201, 198, 220, 220, 220, 4378, 263, 796, 15180, 58, 15, 60, 201, 198, 220, 220, 220, 17593, 58, 83, 15799, 22241, 90, 92, 201, 198, 220, 220, 220, 299, 28, 15, 201, 198, 220, 220, 220, 329, 2685, 287, 15180, 58, 16, 25, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 58, 83, 15799, 7131, 77, 60, 796, 2685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 299, 28, 77, 10, 16, 201, 198, 201, 198, 2, 41925, 35613, 24890, 25, 201, 198, 260, 4080, 62, 6759, 8609, 796, 17593, 201, 198, 439, 961, 796, 17635, 201, 198, 29522, 796, 1351, 7, 6759, 8609, 13, 13083, 28955, 58, 16, 47715, 201, 198, 77, 28, 11925, 7, 4868, 7, 6759, 8609, 14692, 49, 13, 34694, 1, 4083, 13083, 3419, 4008, 201, 198, 4798, 7, 77, 553, 59, 77, 1600, 29522, 8, 201, 198, 1640, 4283, 287, 14420, 25, 201, 198, 220, 220, 220, 477, 961, 13, 33295, 7, 13578, 8, 201, 198, 220, 220, 220, 329, 285, 287, 2837, 7, 77, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 36120, 546, 43825, 13578, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27071, 13344, 1, 287, 17593, 58, 13578, 7131, 76, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 19016, 9654, 7, 6759, 8609, 58, 13578, 7131, 76, 12962, 355, 279, 13344, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 38636, 8979, 7, 45992, 9399, 7, 79, 13344, 13, 961, 3419, 4008, 355, 1976, 79, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 1976, 79, 13, 7402, 46331, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 35, 322, 25138, 25, 43825, 4283, 1343, 45434, 1, 1343, 17593, 14692, 49, 13, 34694, 1, 7131, 76, 60, 1343, 27071, 17752, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17752, 796, 1280, 7, 87, 1671, 335, 1060, 652, 10, 1, 30487, 1343, 4283, 1343, 45434, 1, 1343, 17593, 14692, 49, 13, 34694, 1, 7131, 76, 60, 1343, 27071, 17752, 1600, 366, 39346, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17752, 13, 13564, 7, 89, 79, 13, 961, 7, 7753, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17752, 13, 19836, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 26498, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 22046, 553, 5832, 1392, 23884, 4, 1911, 18982, 7, 11925, 7, 439, 961, 20679, 77, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6036, 8232, 796, 1280, 7, 14421, 34945, 10, 1, 14, 7821, 66, 707, 13, 14116, 1600, 366, 86, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 374, 72, 324, 2127, 68, 287, 477, 961, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6036, 8232, 13, 13564, 7, 21244, 2127, 68, 553, 59, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 961, 28, 21737, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27071, 17752, 1, 220, 287, 17593, 58, 13578, 7131, 76, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 6371, 796, 17593, 58, 13578, 7131, 76, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 4363, 796, 19016, 9654, 7, 17752, 6371, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 19016, 9654, 7, 6759, 8609, 58, 13578, 7131, 76, 12962, 355, 279, 17752, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10002, 278, 1600, 13578, 1343, 45434, 1, 1343, 17593, 14692, 49, 13, 34694, 1, 7131, 76, 60, 1343, 27071, 17752, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 17752, 796, 1280, 7, 87, 1671, 335, 1060, 652, 10, 1, 30487, 1343, 4283, 1343, 45434, 1, 1343, 17593, 14692, 49, 13, 34694, 1, 7131, 76, 60, 1343, 27071, 17752, 1600, 366, 39346, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 17752, 13, 13564, 7, 79, 17752, 13, 961, 28955, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 17752, 13, 19836, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 26498, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 22046, 11, 366, 5832, 1392, 23884, 4, 1911, 18982, 7, 11925, 7, 439, 961, 8, 1220, 299, 27267, 1571, 379, 257, 33918, 2393, 449, 12564, 4944, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6036, 8232, 796, 1280, 7, 14421, 34945, 10, 1, 14, 7821, 66, 707, 13, 14116, 1600, 366, 86, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 374, 72, 324, 2127, 68, 287, 477, 961, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6036, 8232, 13, 13564, 7, 21244, 2127, 68, 11, 37082, 77, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 961, 796, 17635, 201, 198 ]
1.821636
1,553
import six from oslo_log import log as logging from hpedockerplugin.cmd import cmd from hpedockerplugin import exception LOG = logging.getLogger(__name__)
[ 11748, 2237, 198, 198, 6738, 28686, 5439, 62, 6404, 1330, 2604, 355, 18931, 198, 198, 6738, 289, 9124, 12721, 33803, 13, 28758, 1330, 23991, 198, 6738, 289, 9124, 12721, 33803, 1330, 6631, 198, 198, 25294, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.382979
47
input = """ 1 2 3 2 3 4 5 1 3 3 2 2 4 5 1 4 3 2 2 3 5 1 5 0 0 5 6 4 3 0 2 3 4 2 2 2 1 1 1 1 6 0 4 c 3 b 2 a 0 B+ 0 B- 1 0 1 """ output = """ INCOHERENT """
[ 15414, 796, 37227, 198, 16, 362, 513, 362, 513, 604, 642, 198, 16, 513, 513, 362, 362, 604, 642, 198, 16, 604, 513, 362, 362, 513, 642, 198, 16, 642, 657, 657, 198, 20, 718, 604, 513, 657, 362, 513, 604, 362, 362, 362, 198, 16, 352, 352, 352, 718, 198, 15, 198, 19, 269, 198, 18, 275, 198, 17, 257, 198, 15, 198, 33, 10, 198, 15, 198, 33, 12, 198, 16, 198, 15, 198, 16, 198, 37811, 198, 22915, 796, 37227, 198, 1268, 8220, 16879, 3525, 198, 37811, 198 ]
1.714286
91
import os import shutil import pickle as pkl import numpy as np import SimpleITK as sitk from data_registration import RegHearts LOAD_DIR = '/pylon5/ac5616p/Data/HeartSegmentationProject/CAP_challenge/CAP_challenge_training_set/test2/brain/total/' ''' Generator function to get one pair of fixed and moving image at a time (fixed, moving) are viewed as without order. (a, b) is the same as (b, a), so (b, a) won't be registered ''' ''' Register two images and ''' if __name__ == '__main__': main()
[ 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 2298, 293, 355, 279, 41582, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 17427, 2043, 42, 355, 1650, 74, 198, 6738, 1366, 62, 2301, 33397, 1330, 3310, 1544, 5889, 198, 198, 35613, 62, 34720, 796, 31051, 79, 15158, 20, 14, 330, 3980, 1433, 79, 14, 6601, 14, 28541, 41030, 14374, 16775, 14, 33177, 62, 36747, 3540, 14, 33177, 62, 36747, 3540, 62, 34409, 62, 2617, 14, 9288, 17, 14, 27825, 14, 23350, 14, 6, 198, 198, 7061, 6, 198, 8645, 1352, 2163, 284, 651, 530, 5166, 286, 5969, 290, 3867, 2939, 379, 257, 640, 198, 7, 34021, 11, 3867, 8, 389, 9569, 355, 1231, 1502, 13, 198, 7, 64, 11, 275, 8, 318, 262, 976, 355, 357, 65, 11, 257, 828, 523, 357, 65, 11, 257, 8, 1839, 470, 307, 6823, 220, 198, 7061, 6, 198, 7061, 6, 198, 38804, 734, 4263, 290, 220, 198, 7061, 6, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.913793
174
# coding=utf-8 """ LCD1602 Plugin for Octoprint """ from __future__ import absolute_import from octoprint.printer.estimation import PrintTimeEstimator import octoprint.plugin import octoprint.events from RPLCD.i2c import CharLCD import time import datetime import os import sys from fake_rpi import printf import fake_rpi __plugin_name__ = "LCD1602 I2c display"
[ 2, 19617, 28, 40477, 12, 23, 198, 198, 37811, 198, 220, 23598, 1433, 2999, 42636, 329, 2556, 404, 22272, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 19318, 404, 22272, 13, 1050, 3849, 13, 395, 18991, 1330, 12578, 7575, 22362, 320, 1352, 198, 11748, 19318, 404, 22272, 13, 33803, 198, 11748, 19318, 404, 22272, 13, 31534, 198, 6738, 25812, 5639, 35, 13, 72, 17, 66, 1330, 3178, 5639, 35, 198, 11748, 640, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 8390, 62, 81, 14415, 1330, 30812, 198, 11748, 8390, 62, 81, 14415, 628, 628, 628, 198, 198, 834, 33803, 62, 3672, 834, 796, 366, 5639, 35, 1433, 2999, 314, 17, 66, 3359, 1, 198 ]
3.008065
124
from bangtal import * import random import copy import time setGameOption(GameOption.INVENTORY_BUTTON, False) setGameOption(GameOption.MESSAGE_BOX_BUTTON, False) main_scene = Scene("퍼즐게임", "images/backgroud.PNG") scene1 = Scene("Loopy 퍼즐", "images/backgroud.PNG") scene2 = Scene("Lion 퍼즐", "images/backgroud.PNG") help_message = showMessage("퍼즐 맞출 이미지를 클릭해주세요!!") images = ( Object('images/loopy.jpg'), Object('images/lion.jpg'), Object('images/exit_button.png'), Object('images/score.jpg'), Object('images/another.jpg') ) loopy_image = images[0] loopy_image.locate(main_scene, 150, 50) loopy_image.setScale(1.64) loopy_image.show() lion_image = images[1] lion_image.locate(main_scene, 650, 50) lion_image.setScale(0.7) lion_image.show() exit_button = images[2] exit_button.locate(main_scene, 1150, 650) exit_button.setScale(0.1) exit_button.show() blank = 8 game_board = [] init_board = [] start = 0 max_time = 987654321 loopy_max_score = 0 lion_max_score = 0 delta = [-1, 1, -3, 3] Object.onMouseActionDefault = onMouseAction_piece
[ 6738, 20188, 39240, 1330, 1635, 201, 198, 201, 198, 11748, 4738, 201, 198, 201, 198, 11748, 4866, 201, 198, 201, 198, 11748, 640, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 2617, 8777, 19722, 7, 8777, 19722, 13, 1268, 53, 3525, 15513, 62, 47526, 11357, 11, 10352, 8, 201, 198, 201, 198, 2617, 8777, 19722, 7, 8777, 19722, 13, 44, 1546, 4090, 8264, 62, 39758, 62, 47526, 11357, 11, 10352, 8, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 12417, 62, 29734, 796, 28315, 7203, 169, 235, 120, 168, 99, 238, 166, 110, 234, 168, 252, 226, 1600, 366, 17566, 14, 1891, 70, 5493, 13, 47, 10503, 4943, 201, 198, 201, 198, 29734, 16, 796, 28315, 7203, 27654, 11081, 220, 169, 235, 120, 168, 99, 238, 1600, 366, 17566, 14, 1891, 70, 5493, 13, 47, 10503, 4943, 201, 198, 201, 198, 29734, 17, 796, 28315, 7203, 43, 295, 220, 169, 235, 120, 168, 99, 238, 1600, 366, 17566, 14, 1891, 70, 5493, 13, 47, 10503, 4943, 201, 198, 201, 198, 220, 201, 198, 201, 198, 16794, 62, 20500, 796, 905, 12837, 7203, 169, 235, 120, 168, 99, 238, 31619, 100, 252, 168, 114, 250, 23821, 251, 112, 167, 107, 116, 168, 100, 222, 167, 98, 120, 220, 169, 223, 112, 167, 99, 255, 47991, 112, 168, 96, 120, 168, 226, 116, 168, 248, 242, 37160, 8, 201, 198, 201, 198, 220, 201, 198, 201, 198, 17566, 796, 357, 201, 198, 201, 198, 220, 220, 220, 9515, 10786, 17566, 14, 5439, 11081, 13, 9479, 33809, 201, 198, 201, 198, 220, 220, 220, 9515, 10786, 17566, 14, 75, 295, 13, 9479, 33809, 201, 198, 201, 198, 220, 220, 220, 9515, 10786, 17566, 14, 37023, 62, 16539, 13, 11134, 33809, 201, 198, 201, 198, 220, 220, 220, 9515, 10786, 17566, 14, 26675, 13, 9479, 33809, 201, 198, 201, 198, 220, 220, 220, 9515, 10786, 17566, 14, 29214, 13, 9479, 11537, 201, 198, 201, 198, 8, 201, 198, 201, 198, 220, 201, 198, 201, 198, 5439, 11081, 62, 9060, 796, 4263, 58, 15, 60, 201, 198, 201, 198, 5439, 11081, 62, 9060, 13, 75, 13369, 7, 12417, 62, 29734, 11, 6640, 11, 2026, 8, 201, 198, 201, 198, 5439, 11081, 62, 9060, 13, 2617, 29990, 7, 16, 13, 2414, 8, 201, 198, 201, 198, 5439, 11081, 62, 9060, 13, 12860, 3419, 201, 198, 201, 198, 220, 201, 198, 201, 198, 75, 295, 62, 9060, 796, 4263, 58, 16, 60, 201, 198, 201, 198, 75, 295, 62, 9060, 13, 75, 13369, 7, 12417, 62, 29734, 11, 22626, 11, 2026, 8, 201, 198, 201, 198, 75, 295, 62, 9060, 13, 2617, 29990, 7, 15, 13, 22, 8, 201, 198, 201, 198, 75, 295, 62, 9060, 13, 12860, 3419, 201, 198, 201, 198, 220, 201, 198, 201, 198, 37023, 62, 16539, 796, 4263, 58, 17, 60, 201, 198, 201, 198, 37023, 62, 16539, 13, 75, 13369, 7, 12417, 62, 29734, 11, 1367, 1120, 11, 22626, 8, 201, 198, 201, 198, 37023, 62, 16539, 13, 2617, 29990, 7, 15, 13, 16, 8, 201, 198, 201, 198, 37023, 62, 16539, 13, 12860, 3419, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 27190, 796, 807, 201, 198, 201, 198, 6057, 62, 3526, 796, 17635, 201, 198, 201, 198, 15003, 62, 3526, 796, 17635, 201, 198, 201, 198, 9688, 796, 657, 201, 198, 201, 198, 9806, 62, 2435, 796, 860, 5774, 2996, 3559, 2481, 201, 198, 201, 198, 5439, 11081, 62, 9806, 62, 26675, 796, 657, 201, 198, 201, 198, 75, 295, 62, 9806, 62, 26675, 796, 657, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 67, 12514, 796, 25915, 16, 11, 352, 11, 532, 18, 11, 513, 60, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 220, 201, 198, 201, 198, 10267, 13, 261, 39643, 12502, 19463, 796, 319, 39643, 12502, 62, 12239, 201, 198 ]
1.790476
735
import sys if sys.version_info < (3, 10): from importlib_metadata import entry_points else: from importlib.metadata import entry_points from . import ( cpu, devices, gpu, memory, ) __all__ = ( "cpu", "devices", "gpu", "installed_plugins", "memory", ) installed_plugins = entry_points(group=__name__)
[ 11748, 25064, 198, 198, 361, 25064, 13, 9641, 62, 10951, 1279, 357, 18, 11, 838, 2599, 198, 220, 220, 220, 422, 1330, 8019, 62, 38993, 1330, 5726, 62, 13033, 198, 17772, 25, 198, 220, 220, 220, 422, 1330, 8019, 13, 38993, 1330, 5726, 62, 13033, 198, 198, 6738, 764, 1330, 357, 198, 220, 220, 220, 42804, 11, 198, 220, 220, 220, 4410, 11, 198, 220, 220, 220, 308, 19944, 11, 198, 220, 220, 220, 4088, 11, 198, 8, 198, 198, 834, 439, 834, 796, 357, 198, 220, 220, 220, 366, 36166, 1600, 198, 220, 220, 220, 366, 42034, 1600, 198, 220, 220, 220, 366, 46999, 1600, 198, 220, 220, 220, 366, 37050, 62, 37390, 1600, 198, 220, 220, 220, 366, 31673, 1600, 198, 8, 628, 198, 37050, 62, 37390, 796, 5726, 62, 13033, 7, 8094, 28, 834, 3672, 834, 8, 198 ]
2.475177
141
from __future__ import annotations import typing import torch from torch.utils.data import DataLoader import pytorch_lightning as pl from pltools.config import Config transform_type = typing.Iterable[typing.Callable]
[ 6738, 11593, 37443, 834, 1330, 37647, 628, 198, 11748, 19720, 198, 11748, 28034, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 11748, 12972, 13165, 354, 62, 2971, 768, 355, 458, 198, 198, 6738, 458, 31391, 13, 11250, 1330, 17056, 198, 198, 35636, 62, 4906, 796, 19720, 13, 29993, 540, 58, 774, 13886, 13, 14134, 540, 60, 628, 198 ]
3.655738
61
# coding: utf-8 from datetime import timedelta from helpers import make_record def day_fill(data, fill_value=None): """Given a data set with missing day values sorted by day, adds records with value of `fill_value` """ return generic_day_fill(1, data, fill_value) def week_fill(data, fill_value=None): """Given a sorted data set with missing week keys, adds records with value of `fill_value` """ return generic_day_fill(7, data, fill_value)
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 4818, 8079, 1330, 28805, 12514, 198, 6738, 49385, 1330, 787, 62, 22105, 628, 198, 4299, 1110, 62, 20797, 7, 7890, 11, 6070, 62, 8367, 28, 14202, 2599, 198, 220, 220, 220, 37227, 15056, 257, 1366, 900, 351, 4814, 1110, 3815, 23243, 416, 1110, 11, 6673, 4406, 198, 220, 220, 220, 351, 1988, 286, 4600, 20797, 62, 8367, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 14276, 62, 820, 62, 20797, 7, 16, 11, 1366, 11, 6070, 62, 8367, 8, 628, 198, 4299, 1285, 62, 20797, 7, 7890, 11, 6070, 62, 8367, 28, 14202, 2599, 198, 220, 220, 220, 37227, 15056, 257, 23243, 1366, 900, 351, 4814, 1285, 8251, 11, 6673, 4406, 351, 198, 220, 220, 220, 1988, 286, 4600, 20797, 62, 8367, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 14276, 62, 820, 62, 20797, 7, 22, 11, 1366, 11, 6070, 62, 8367, 8, 628 ]
2.981366
161
from Foundation import NSObject from objc import * from AppKit import NSBezierPath from fieldMath import * #____________________________________________________________
[ 6738, 5693, 1330, 10896, 10267, 198, 6738, 26181, 66, 1330, 1635, 198, 6738, 2034, 20827, 1330, 10896, 3856, 89, 959, 15235, 198, 198, 6738, 2214, 37372, 1330, 1635, 198, 198, 2, 10221, 32941, 1427, 628 ]
4.914286
35
from __future__ import division as division import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import field import traceray import surface import cal_tools # test ray.py and traceray.py # define rays l1 = np.linspace(-5,5,10) Pos1 = [] for i in l1: for j in l1: if i**2+j**2<25: Pos1.append([i,j,0]) KLM = [] for i in Pos1: KLM.append([0,0,1]) # define surface surface1 = surface.Surface(number=1,radius = 10000000, thickness = 10, index = 1,STO=0) #object surface2 = surface.Surface(number=2,radius = 20, thickness = 40, index = 2,STO=0) #surface i surface3 = surface.Surface(number=3,radius = 10000000, thickness = 0, index = 1,STO=0) #image raylist1 = [] raylist2 = [] for pos,klm in zip(Pos1,KLM): ray1 = field.Field(Pos = pos, KLM = klm) raylist1.append(ray1) Pos_new_list,KLM_new_list = traceray.trace(raylist1,surface1,surface2) x = [] y = [] z = [] for i in Pos_new_list: x.append(i[0]) y.append(i[1]) z.append(i[2]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x, z, y) ax.set_xlim3d(-6, 6) ax.set_ylim3d(-6, 6) ax.set_zlim3d(-6, 6) plt.show() for pos,klm in zip(Pos_new_list,KLM_new_list): ray2 = field.Field(Pos = pos, KLM = klm) raylist2.append(ray2) Pos_new_list1,KLM_new_list1 = traceray.trace(raylist2, surface2, surface3) x2 = [] y2 = [] z2 = [] for i in Pos_new_list1: x2.append(i[0]) y2.append(i[1]) z2.append(i[2]) fig = plt.figure() plt.plot(x2,y2,'b*') plt.show() rms = cal_tools.rms(Pos_new_list1) print rms
[ 6738, 11593, 37443, 834, 1330, 7297, 355, 7297, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 76, 29487, 18, 67, 1330, 12176, 274, 18, 35, 198, 11748, 2214, 198, 11748, 491, 11736, 323, 198, 11748, 4417, 198, 11748, 2386, 62, 31391, 198, 2, 1332, 26842, 13, 9078, 290, 491, 11736, 323, 13, 9078, 198, 197, 197, 198, 198, 2, 8160, 24823, 198, 75, 16, 796, 45941, 13, 21602, 10223, 32590, 20, 11, 20, 11, 940, 8, 198, 21604, 16, 796, 17635, 198, 1640, 1312, 287, 300, 16, 25, 198, 197, 1640, 474, 287, 300, 16, 25, 198, 197, 197, 361, 1312, 1174, 17, 10, 73, 1174, 17, 27, 1495, 25, 198, 197, 197, 197, 21604, 16, 13, 33295, 26933, 72, 11, 73, 11, 15, 12962, 198, 42, 31288, 796, 17635, 198, 1640, 1312, 287, 18574, 16, 25, 198, 197, 42, 31288, 13, 33295, 26933, 15, 11, 15, 11, 16, 12962, 198, 198, 2, 8160, 4417, 198, 42029, 16, 796, 4417, 13, 14214, 2550, 7, 17618, 28, 16, 11, 42172, 796, 1802, 20483, 11, 20735, 796, 838, 11, 6376, 796, 352, 11, 2257, 46, 28, 15, 8, 1303, 15252, 198, 42029, 17, 796, 4417, 13, 14214, 2550, 7, 17618, 28, 17, 11, 42172, 796, 1160, 11, 20735, 796, 2319, 11, 6376, 796, 362, 11, 2257, 46, 28, 15, 8, 220, 1303, 42029, 1312, 198, 42029, 18, 796, 4417, 13, 14214, 2550, 7, 17618, 28, 18, 11, 42172, 796, 1802, 20483, 11, 20735, 796, 657, 11, 6376, 796, 352, 11, 2257, 46, 28, 15, 8, 1303, 9060, 198, 198, 2433, 4868, 16, 796, 17635, 198, 2433, 4868, 17, 796, 17635, 198, 198, 1640, 1426, 11, 41582, 76, 287, 19974, 7, 21604, 16, 11, 42, 31288, 2599, 198, 197, 197, 2433, 16, 796, 2214, 13, 15878, 7, 21604, 796, 1426, 11, 509, 31288, 796, 479, 75, 76, 8, 220, 198, 197, 197, 2433, 4868, 16, 13, 33295, 7, 2433, 16, 8, 198, 197, 197, 198, 21604, 62, 3605, 62, 4868, 11, 42, 31288, 62, 3605, 62, 4868, 796, 491, 11736, 323, 13, 40546, 7, 2433, 4868, 16, 11, 42029, 16, 11, 42029, 17, 8, 628, 198, 87, 796, 17635, 198, 88, 796, 17635, 198, 89, 796, 17635, 198, 1640, 1312, 287, 18574, 62, 3605, 62, 4868, 25, 198, 197, 87, 13, 33295, 7, 72, 58, 15, 12962, 198, 197, 88, 13, 33295, 7, 72, 58, 16, 12962, 198, 197, 89, 13, 33295, 7, 72, 58, 17, 12962, 198, 197, 198, 5647, 796, 458, 83, 13, 26875, 3419, 198, 897, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 16243, 11, 20128, 11639, 18, 67, 11537, 198, 897, 13, 1416, 1436, 7, 87, 11, 1976, 11, 331, 8, 198, 897, 13, 2617, 62, 87, 2475, 18, 67, 32590, 21, 11, 718, 8, 198, 897, 13, 2617, 62, 88, 2475, 18, 67, 32590, 21, 11, 718, 8, 198, 897, 13, 2617, 62, 89, 2475, 18, 67, 32590, 21, 11, 718, 8, 198, 489, 83, 13, 12860, 3419, 628, 198, 1640, 1426, 11, 41582, 76, 287, 19974, 7, 21604, 62, 3605, 62, 4868, 11, 42, 31288, 62, 3605, 62, 4868, 2599, 198, 197, 197, 2433, 17, 796, 2214, 13, 15878, 7, 21604, 796, 1426, 11, 509, 31288, 796, 479, 75, 76, 8, 220, 198, 197, 197, 2433, 4868, 17, 13, 33295, 7, 2433, 17, 8, 628, 198, 21604, 62, 3605, 62, 4868, 16, 11, 42, 31288, 62, 3605, 62, 4868, 16, 796, 491, 11736, 323, 13, 40546, 7, 2433, 4868, 17, 11, 4417, 17, 11, 4417, 18, 8, 198, 198, 87, 17, 796, 17635, 198, 88, 17, 796, 17635, 198, 89, 17, 796, 17635, 198, 1640, 1312, 287, 18574, 62, 3605, 62, 4868, 16, 25, 198, 197, 87, 17, 13, 33295, 7, 72, 58, 15, 12962, 198, 197, 88, 17, 13, 33295, 7, 72, 58, 16, 12962, 198, 197, 89, 17, 13, 33295, 7, 72, 58, 17, 12962, 198, 198, 5647, 796, 458, 83, 13, 26875, 3419, 198, 489, 83, 13, 29487, 7, 87, 17, 11, 88, 17, 4032, 65, 9, 11537, 198, 489, 83, 13, 12860, 3419, 628, 198, 198, 81, 907, 796, 2386, 62, 31391, 13, 81, 907, 7, 21604, 62, 3605, 62, 4868, 16, 8, 198, 4798, 374, 907, 628, 628, 197 ]
2.163408
716
# -*- coding: utf-8 -*- from unittest import TestCase, main from recc.mime.mime_codec_register import get_global_mime_register if __name__ == "__main__": main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 11, 1388, 198, 6738, 302, 535, 13, 76, 524, 13, 76, 524, 62, 19815, 721, 62, 30238, 1330, 651, 62, 20541, 62, 76, 524, 62, 30238, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.5
68
#!/usr/bin/env python3.7 import sys import json import signal import urllib.request as urllib import threading import pyperclip import time if __name__ == '__main__': exitflag = False try: signal.signal(signal.SIGINT, quit) signal.signal(signal.SIGTERM, quit) thread1 = Clipboard() thread2 = Outinput() thread1.setDaemon(True) thread1.start() thread2.setDaemon(True) thread2.start() thread1.join() thread2.join() print("bye!!") except: print()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 13, 22, 198, 198, 11748, 25064, 198, 11748, 33918, 198, 11748, 6737, 198, 11748, 2956, 297, 571, 13, 25927, 355, 2956, 297, 571, 198, 11748, 4704, 278, 198, 11748, 12972, 525, 15036, 198, 11748, 640, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 8420, 32109, 796, 10352, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 12394, 11, 11238, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 5781, 44, 11, 11238, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 16, 796, 42512, 3526, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 17, 796, 3806, 15414, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 4704, 16, 13, 2617, 26531, 7966, 7, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 16, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 4704, 17, 13, 2617, 26531, 7966, 7, 17821, 8, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 17, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 16, 13, 22179, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 17, 13, 22179, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 16390, 37160, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198 ]
2.060071
283
# -*- coding: utf-8 -*- #Search Wikipedia for Heart Attack import wikipedia, codecs, itertools, os, time from pprint import pprint relevant_categories = {'medical','emergencies','disease'} conditions = ["heart attack","palpitations"] #Search all related pages? make_filename = lambda aStr: aStr.replace(' ','_') for condition in conditions: findRelevantArticles(condition,data_path=os.path.join('./data/wikipedia',make_filename(condition)))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 18243, 15312, 329, 8894, 8307, 198, 11748, 47145, 11151, 11, 40481, 82, 11, 340, 861, 10141, 11, 28686, 11, 640, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 198, 49659, 62, 66, 26129, 796, 1391, 6, 41693, 41707, 368, 6422, 3976, 41707, 67, 786, 589, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 17561, 1756, 796, 14631, 11499, 1368, 2430, 18596, 15544, 602, 8973, 1303, 18243, 477, 3519, 5468, 30, 198, 15883, 62, 34345, 796, 37456, 257, 13290, 25, 257, 13290, 13, 33491, 10786, 705, 4032, 62, 11537, 220, 198, 1640, 4006, 287, 3403, 25, 198, 220, 220, 220, 1064, 3041, 14938, 8001, 2983, 7, 31448, 11, 7890, 62, 6978, 28, 418, 13, 6978, 13, 22179, 7, 4458, 14, 7890, 14, 31266, 3256, 15883, 62, 34345, 7, 31448, 22305, 198 ]
3.060403
149
from django.shortcuts import render from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.http import HttpResponseRedirect from django.urls import reverse from django.contrib.auth.decorators import login_required from datetime import datetime, timedelta from django.conf import settings from django.core.mail import EmailMultiAlternatives from django.template import Context from django.template.loader import render_to_string import random import string import requests import json from donor.models import DonorDetail as DD, NewDonor as ND from recipient.models import RecipientDetail as RD from .models import AccountPath as AP # Create your views here. @login_required(login_url='/accounts') #================= FUCTIONS =================#
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 8323, 5344, 11, 17594, 11, 2604, 448, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 7738, 1060, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 220, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 9570, 29800, 23081, 2929, 198, 6738, 42625, 14208, 13, 28243, 1330, 30532, 198, 6738, 42625, 14208, 13, 28243, 13, 29356, 1330, 8543, 62, 1462, 62, 8841, 628, 198, 11748, 4738, 198, 11748, 4731, 198, 198, 11748, 7007, 198, 11748, 33918, 198, 198, 6738, 17052, 13, 27530, 1330, 2094, 273, 11242, 603, 355, 20084, 11, 968, 3987, 273, 355, 25524, 198, 6738, 17800, 13, 27530, 1330, 3311, 48137, 11242, 603, 355, 31475, 198, 6738, 764, 27530, 1330, 10781, 15235, 355, 3486, 198, 198, 2, 13610, 534, 5009, 994, 13, 628, 628, 628, 628, 198, 198, 31, 38235, 62, 35827, 7, 38235, 62, 6371, 11639, 14, 23317, 82, 11537, 628, 198, 2, 4770, 28, 376, 18415, 11053, 36658, 2 ]
3.714932
221
import random, math N = 16 eta = 0.26 sigma = math.sqrt(eta / N / math.pi) n_runs = 100 print 'Note that this program might take a while!' for run in range(n_runs): iterations, config = direct_disks(N, sigma) print 'run',run print iterations - 1, 'tabula rasa wipe-outs before producing the following configuration' print config print
[ 11748, 4738, 11, 10688, 198, 198, 45, 796, 1467, 198, 17167, 796, 657, 13, 2075, 198, 82, 13495, 796, 10688, 13, 31166, 17034, 7, 17167, 1220, 399, 1220, 10688, 13, 14415, 8, 198, 77, 62, 48381, 796, 1802, 198, 4798, 705, 6425, 326, 428, 1430, 1244, 1011, 257, 981, 13679, 198, 1640, 1057, 287, 2837, 7, 77, 62, 48381, 2599, 198, 220, 220, 220, 34820, 11, 4566, 796, 220, 1277, 62, 6381, 591, 7, 45, 11, 264, 13495, 8, 198, 220, 220, 220, 3601, 705, 5143, 3256, 5143, 198, 220, 220, 220, 3601, 34820, 532, 352, 11, 705, 8658, 4712, 374, 15462, 19916, 12, 5269, 878, 9194, 262, 1708, 8398, 6, 198, 220, 220, 220, 3601, 4566, 198, 220, 220, 220, 3601, 628 ]
2.910569
123
import re template = r"[a-zA-Z]" username = input() match = re.match(template, username) if match: print("Thank you!") else: print("Oops! The username has to start with a letter.")
[ 11748, 302, 198, 198, 28243, 796, 374, 17912, 64, 12, 89, 32, 12, 57, 30866, 198, 29460, 796, 5128, 3419, 198, 15699, 796, 302, 13, 15699, 7, 28243, 11, 20579, 8, 198, 361, 2872, 25, 198, 220, 220, 220, 3601, 7203, 10449, 345, 2474, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 46, 2840, 0, 383, 20579, 468, 284, 923, 351, 257, 3850, 19570, 198 ]
2.835821
67
import argparse import numpy as np if __name__ == '__main__': main()
[ 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.655172
29
# -*- coding: utf-8 -*- import os import sys import signal import inspect from qtpy.QtCore import QObject, Slot
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 6737, 198, 11748, 10104, 198, 198, 6738, 10662, 83, 9078, 13, 48, 83, 14055, 1330, 1195, 10267, 11, 32026, 628 ]
2.780488
41
""" Author: David Walshe Date: 08 April 2021 """ import logging from tabulate import tabulate from sla_cli.src.db.accessors.base import Accessor logger = logging.getLogger(__name__)
[ 37811, 198, 13838, 25, 220, 220, 220, 220, 3271, 370, 874, 258, 198, 10430, 25, 220, 220, 220, 220, 220, 220, 8487, 3035, 33448, 198, 37811, 198, 198, 11748, 18931, 198, 198, 6738, 7400, 5039, 1330, 7400, 5039, 198, 198, 6738, 1017, 64, 62, 44506, 13, 10677, 13, 9945, 13, 15526, 669, 13, 8692, 1330, 8798, 273, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
2.69863
73
from collections import OrderedDict import pandas as pd import numpy as np from tia.util.decorator import lazy_property from tia.analysis.model.interface import TxnPlColumns as TPL from tia.analysis.perf import drawdown_info, drawdowns, guess_freq, downside_deviation, periodicity from tia.analysis.plots import plot_return_on_dollar from tia.util.mplot import AxesFormat from tia.util.fmt import PercentFormatter, new_percent_formatter, new_float_formatter __all__ = ['RoiiRetCalculator', 'AumRetCalculator', 'FixedAumRetCalculator', 'CumulativeRets', 'Performance'] def return_on_initial_capital(capital, period_pl, leverage=None): """Return the daily return series based on the capital""" if capital <= 0: raise ValueError('cost must be a positive number not %s' % capital) leverage = leverage or 1. eod = capital + (leverage * period_pl.cumsum()) ltd_rets = (eod / capital) - 1. dly_rets = ltd_rets dly_rets.iloc[1:] = (1. + ltd_rets).pct_change().iloc[1:] return dly_rets
[ 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 256, 544, 13, 22602, 13, 12501, 273, 1352, 1330, 16931, 62, 26745, 198, 6738, 256, 544, 13, 20930, 13, 19849, 13, 39994, 1330, 309, 87, 77, 3646, 39470, 82, 355, 309, 6489, 198, 6738, 256, 544, 13, 20930, 13, 525, 69, 1330, 3197, 2902, 62, 10951, 11, 3197, 30371, 11, 4724, 62, 19503, 80, 11, 25320, 62, 7959, 3920, 11, 2278, 8467, 198, 6738, 256, 544, 13, 20930, 13, 489, 1747, 1330, 7110, 62, 7783, 62, 261, 62, 22569, 198, 6738, 256, 544, 13, 22602, 13, 76, 29487, 1330, 12176, 274, 26227, 198, 6738, 256, 544, 13, 22602, 13, 69, 16762, 1330, 22512, 8479, 1436, 11, 649, 62, 25067, 62, 687, 1436, 11, 649, 62, 22468, 62, 687, 1436, 628, 198, 834, 439, 834, 796, 37250, 15450, 4178, 9781, 9771, 3129, 1352, 3256, 705, 32, 388, 9781, 9771, 3129, 1352, 3256, 705, 13715, 32, 388, 9781, 9771, 3129, 1352, 3256, 705, 34, 388, 13628, 49, 1039, 3256, 705, 32273, 20520, 628, 198, 4299, 1441, 62, 261, 62, 36733, 62, 27544, 7, 27544, 11, 2278, 62, 489, 11, 16094, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 262, 4445, 1441, 2168, 1912, 319, 262, 3139, 37811, 198, 220, 220, 220, 611, 3139, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 15805, 1276, 307, 257, 3967, 1271, 407, 4064, 82, 6, 4064, 3139, 8, 198, 220, 220, 220, 16094, 796, 16094, 393, 352, 13, 198, 220, 220, 220, 304, 375, 796, 3139, 1343, 357, 293, 1857, 1635, 2278, 62, 489, 13, 66, 5700, 388, 28955, 198, 220, 220, 220, 300, 8671, 62, 8004, 796, 357, 68, 375, 1220, 3139, 8, 532, 352, 13, 198, 220, 220, 220, 288, 306, 62, 8004, 796, 300, 8671, 62, 8004, 198, 220, 220, 220, 288, 306, 62, 8004, 13, 346, 420, 58, 16, 47715, 796, 357, 16, 13, 1343, 300, 8671, 62, 8004, 737, 79, 310, 62, 3803, 22446, 346, 420, 58, 16, 47715, 198, 220, 220, 220, 1441, 288, 306, 62, 8004, 628, 628, 628, 198 ]
2.834711
363
# noinspection PyUnusedLocal # friend_name = unicode string #print(hello("Mike"))
[ 201, 198, 201, 198, 2, 645, 1040, 14978, 9485, 3118, 1484, 14565, 201, 198, 2, 1545, 62, 3672, 796, 28000, 1098, 4731, 201, 198, 201, 198, 2, 4798, 7, 31373, 7203, 16073, 48774, 201, 198 ]
2.6
35
import numpy # Remark: # Real FFT with even n is faster than real FFT with odd n. # I do not know why. def realfft_col(a_mat): ''' Real Fast Fourier Transform (FFT) Independently Applied to Each Column of A Input a_mat: n-by-d dense NumPy matrix. Output c_mat: n-by-d matrix C = F * A. Here F is the n-by-n orthogonal real FFT matrix (not explicitly formed) Notice that $C^T * C = A^T * A$; however, $C * C^T = A * A^T$ is not true. ''' n_int = a_mat.shape[0] fft_mat = numpy.fft.fft(a_mat, n=None, axis=0) / numpy.sqrt(n_int) if n_int % 2 == 1: cutoff_int = int((n_int+1) / 2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int, n_int)) else: cutoff_int = int(n_int/2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int+1, n_int)) c_mat = fft_mat.real c_mat[idx_real_vec, :] *= numpy.sqrt(2) c_mat[idx_imag_vec, :] = fft_mat[idx_imag_vec, :].imag * numpy.sqrt(2) return c_mat def realfft_row(a_mat): ''' Real Fast Fourier Transform (FFT) Independently Applied to Each Row of A Input a_mat: m-by-n dense NumPy matrix. Output c_mat: m-by-n matrix C = A * F. Here F is the n-by-n orthogonal real FFT matrix (not explicitly formed) Notice that $C * C^T = A * A^T$; however, $C^T * C = A^T * A$ is not true. ''' n_int = a_mat.shape[1] fft_mat = numpy.fft.fft(a_mat, n=None, axis=1) / numpy.sqrt(n_int) if n_int % 2 == 1: cutoff_int = int((n_int+1) / 2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int, n_int)) else: cutoff_int = int(n_int/2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int+1, n_int)) c_mat = fft_mat.real c_mat[:, idx_real_vec] *= numpy.sqrt(2) c_mat[:, idx_imag_vec] = fft_mat[:, idx_imag_vec].imag * numpy.sqrt(2) return c_mat def srft(a_mat, s_int): ''' Subsampled Randomized Fourier Transform (SRFT) for Dense Matrix Input a_mat: m-by-n dense NumPy matrix; s_int: sketch size. Output c_mat: m-by-s sketch C = A * S. Here S is the sketching matrix (not explicitly formed) ''' n_int = a_mat.shape[1] sign_vec = numpy.random.choice(2, n_int) * 2 - 1 idx_vec = numpy.random.choice(n_int, s_int, replace=False) a_mat = a_mat * sign_vec.reshape(1, n_int) a_mat = realfft_row(a_mat) c_mat = a_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) return c_mat def srft2(a_mat, b_mat, s_int): ''' Subsampled Randomized Fourier Transform (SRFT) for Dense Matrix Input a_mat: m-by-n dense NumPy matrix; b_mat: d-by-n dense NumPy matrix; s_int: sketch size. Output c_mat: m-by-s sketch C = A * S; d_mat: d-by-s sketch D = B * S. Here S is the sketching matrix (not explicitly formed) ''' n_int = a_mat.shape[1] sign_vec = numpy.random.choice(2, n_int) * 2 - 1 idx_vec = numpy.random.choice(n_int, s_int, replace=False) a_mat = a_mat * sign_vec.reshape(1, n_int) a_mat = realfft_row(a_mat) c_mat = a_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) b_mat = b_mat * sign_vec.reshape(1, n_int) b_mat = realfft_row(b_mat) d_mat = b_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) return c_mat, d_mat
[ 11748, 299, 32152, 198, 198, 2, 3982, 668, 25, 198, 2, 220, 220, 6416, 376, 9792, 351, 772, 299, 318, 5443, 621, 1103, 376, 9792, 351, 5629, 299, 13, 198, 2, 220, 220, 314, 466, 407, 760, 1521, 13, 198, 198, 4299, 1103, 487, 83, 62, 4033, 7, 64, 62, 6759, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6416, 12549, 34296, 5277, 26981, 357, 5777, 51, 8, 1423, 2690, 1473, 27684, 284, 5501, 29201, 286, 317, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 6759, 25, 299, 12, 1525, 12, 67, 15715, 31835, 20519, 17593, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 25235, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 6759, 25, 299, 12, 1525, 12, 67, 17593, 327, 796, 376, 1635, 317, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3423, 376, 318, 262, 299, 12, 1525, 12, 77, 29617, 519, 20996, 1103, 376, 9792, 17593, 357, 1662, 11777, 7042, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17641, 326, 720, 34, 61, 51, 1635, 327, 796, 317, 61, 51, 1635, 317, 3, 26, 220, 198, 220, 220, 220, 2158, 11, 720, 34, 1635, 327, 61, 51, 796, 317, 1635, 317, 61, 51, 3, 318, 407, 2081, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 299, 62, 600, 796, 257, 62, 6759, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 277, 701, 62, 6759, 796, 299, 32152, 13, 487, 83, 13, 487, 83, 7, 64, 62, 6759, 11, 299, 28, 14202, 11, 16488, 28, 15, 8, 1220, 299, 32152, 13, 31166, 17034, 7, 77, 62, 600, 8, 198, 220, 220, 220, 611, 299, 62, 600, 4064, 362, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 62, 600, 796, 493, 19510, 77, 62, 600, 10, 16, 8, 1220, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 5305, 62, 35138, 796, 1351, 7, 9521, 7, 16, 11, 45616, 62, 600, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 48466, 62, 35138, 796, 1351, 7, 9521, 7, 8968, 2364, 62, 600, 11, 299, 62, 600, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 62, 600, 796, 493, 7, 77, 62, 600, 14, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 5305, 62, 35138, 796, 1351, 7, 9521, 7, 16, 11, 45616, 62, 600, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 48466, 62, 35138, 796, 1351, 7, 9521, 7, 8968, 2364, 62, 600, 10, 16, 11, 299, 62, 600, 4008, 198, 220, 220, 220, 269, 62, 6759, 796, 277, 701, 62, 6759, 13, 5305, 198, 220, 220, 220, 269, 62, 6759, 58, 312, 87, 62, 5305, 62, 35138, 11, 1058, 60, 1635, 28, 299, 32152, 13, 31166, 17034, 7, 17, 8, 198, 220, 220, 220, 269, 62, 6759, 58, 312, 87, 62, 48466, 62, 35138, 11, 1058, 60, 796, 277, 701, 62, 6759, 58, 312, 87, 62, 48466, 62, 35138, 11, 1058, 4083, 48466, 1635, 299, 32152, 13, 31166, 17034, 7, 17, 8, 198, 220, 220, 220, 1441, 269, 62, 6759, 628, 198, 4299, 1103, 487, 83, 62, 808, 7, 64, 62, 6759, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6416, 12549, 34296, 5277, 26981, 357, 5777, 51, 8, 1423, 2690, 1473, 27684, 284, 5501, 11314, 286, 317, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 6759, 25, 285, 12, 1525, 12, 77, 15715, 31835, 20519, 17593, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 25235, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 6759, 25, 285, 12, 1525, 12, 77, 17593, 327, 796, 317, 1635, 376, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3423, 376, 318, 262, 299, 12, 1525, 12, 77, 29617, 519, 20996, 1103, 376, 9792, 17593, 357, 1662, 11777, 7042, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17641, 326, 720, 34, 1635, 327, 61, 51, 796, 317, 1635, 317, 61, 51, 3, 26, 220, 198, 220, 220, 220, 2158, 11, 720, 34, 61, 51, 1635, 327, 796, 317, 61, 51, 1635, 317, 3, 318, 407, 2081, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 299, 62, 600, 796, 257, 62, 6759, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 277, 701, 62, 6759, 796, 299, 32152, 13, 487, 83, 13, 487, 83, 7, 64, 62, 6759, 11, 299, 28, 14202, 11, 16488, 28, 16, 8, 1220, 299, 32152, 13, 31166, 17034, 7, 77, 62, 600, 8, 198, 220, 220, 220, 611, 299, 62, 600, 4064, 362, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 62, 600, 796, 493, 19510, 77, 62, 600, 10, 16, 8, 1220, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 5305, 62, 35138, 796, 1351, 7, 9521, 7, 16, 11, 45616, 62, 600, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 48466, 62, 35138, 796, 1351, 7, 9521, 7, 8968, 2364, 62, 600, 11, 299, 62, 600, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 62, 600, 796, 493, 7, 77, 62, 600, 14, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 5305, 62, 35138, 796, 1351, 7, 9521, 7, 16, 11, 45616, 62, 600, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 48466, 62, 35138, 796, 1351, 7, 9521, 7, 8968, 2364, 62, 600, 10, 16, 11, 299, 62, 600, 4008, 198, 220, 220, 220, 269, 62, 6759, 796, 277, 701, 62, 6759, 13, 5305, 198, 220, 220, 220, 269, 62, 6759, 58, 45299, 4686, 87, 62, 5305, 62, 35138, 60, 1635, 28, 299, 32152, 13, 31166, 17034, 7, 17, 8, 198, 220, 220, 220, 269, 62, 6759, 58, 45299, 4686, 87, 62, 48466, 62, 35138, 60, 796, 277, 701, 62, 6759, 58, 45299, 4686, 87, 62, 48466, 62, 35138, 4083, 48466, 1635, 299, 32152, 13, 31166, 17034, 7, 17, 8, 198, 220, 220, 220, 1441, 269, 62, 6759, 628, 220, 220, 220, 220, 198, 4299, 19677, 701, 7, 64, 62, 6759, 11, 264, 62, 600, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3834, 37687, 10137, 14534, 1143, 34296, 5277, 26981, 357, 12562, 9792, 8, 329, 360, 1072, 24936, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 6759, 25, 285, 12, 1525, 12, 77, 15715, 31835, 20519, 17593, 26, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 600, 25, 17548, 2546, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 25235, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 6759, 25, 285, 12, 1525, 12, 82, 17548, 327, 796, 317, 1635, 311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3423, 311, 318, 262, 17548, 278, 17593, 357, 1662, 11777, 7042, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 299, 62, 600, 796, 257, 62, 6759, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 1051, 62, 35138, 796, 299, 32152, 13, 25120, 13, 25541, 7, 17, 11, 299, 62, 600, 8, 1635, 362, 532, 352, 198, 220, 220, 220, 4686, 87, 62, 35138, 796, 299, 32152, 13, 25120, 13, 25541, 7, 77, 62, 600, 11, 264, 62, 600, 11, 6330, 28, 25101, 8, 198, 220, 220, 220, 257, 62, 6759, 796, 257, 62, 6759, 1635, 1051, 62, 35138, 13, 3447, 1758, 7, 16, 11, 299, 62, 600, 8, 198, 220, 220, 220, 257, 62, 6759, 796, 1103, 487, 83, 62, 808, 7, 64, 62, 6759, 8, 198, 220, 220, 220, 269, 62, 6759, 796, 257, 62, 6759, 58, 45299, 4686, 87, 62, 35138, 60, 1635, 299, 32152, 13, 31166, 17034, 7, 77, 62, 600, 1220, 264, 62, 600, 8, 198, 220, 220, 220, 1441, 269, 62, 6759, 628, 220, 220, 220, 220, 198, 4299, 19677, 701, 17, 7, 64, 62, 6759, 11, 275, 62, 6759, 11, 264, 62, 600, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3834, 37687, 10137, 14534, 1143, 34296, 5277, 26981, 357, 12562, 9792, 8, 329, 360, 1072, 24936, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 6759, 25, 285, 12, 1525, 12, 77, 15715, 31835, 20519, 17593, 26, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 6759, 25, 288, 12, 1525, 12, 77, 15715, 31835, 20519, 17593, 26, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 600, 25, 17548, 2546, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 25235, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 6759, 25, 285, 12, 1525, 12, 82, 17548, 327, 796, 317, 1635, 311, 26, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 6759, 25, 288, 12, 1525, 12, 82, 17548, 360, 796, 347, 1635, 311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3423, 311, 318, 262, 17548, 278, 17593, 357, 1662, 11777, 7042, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 299, 62, 600, 796, 257, 62, 6759, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 1051, 62, 35138, 796, 299, 32152, 13, 25120, 13, 25541, 7, 17, 11, 299, 62, 600, 8, 1635, 362, 532, 352, 198, 220, 220, 220, 4686, 87, 62, 35138, 796, 299, 32152, 13, 25120, 13, 25541, 7, 77, 62, 600, 11, 264, 62, 600, 11, 6330, 28, 25101, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 257, 62, 6759, 796, 257, 62, 6759, 1635, 1051, 62, 35138, 13, 3447, 1758, 7, 16, 11, 299, 62, 600, 8, 198, 220, 220, 220, 257, 62, 6759, 796, 1103, 487, 83, 62, 808, 7, 64, 62, 6759, 8, 198, 220, 220, 220, 269, 62, 6759, 796, 257, 62, 6759, 58, 45299, 4686, 87, 62, 35138, 60, 1635, 299, 32152, 13, 31166, 17034, 7, 77, 62, 600, 1220, 264, 62, 600, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 275, 62, 6759, 796, 275, 62, 6759, 1635, 1051, 62, 35138, 13, 3447, 1758, 7, 16, 11, 299, 62, 600, 8, 198, 220, 220, 220, 275, 62, 6759, 796, 1103, 487, 83, 62, 808, 7, 65, 62, 6759, 8, 198, 220, 220, 220, 288, 62, 6759, 796, 275, 62, 6759, 58, 45299, 4686, 87, 62, 35138, 60, 1635, 299, 32152, 13, 31166, 17034, 7, 77, 62, 600, 1220, 264, 62, 600, 8, 198, 220, 220, 220, 1441, 269, 62, 6759, 11, 288, 62, 6759, 198 ]
1.959534
1,804
from urldl import download from pycallisto import fitsfile callisto_archives = 'http://soleil80.cs.technik.fhnw.ch/' \ 'solarradio/data/2002-20yy_Callisto/' filelist = [ "BLEN7M_20110216_133009_24.fit.gz", "BLEN7M_20110216_134510_24.fit.gz", "BLEN7M_20110216_140011_24.fit.gz", "BLEN7M_20110216_141512_24.fit.gz", "BLEN7M_20110216_143014_24.fit.gz", "BLEN7M_20110216_144515_24.fit.gz", "BLEN7M_20110216_150016_24.fit.gz", "BLEN7M_20110216_151517_24.fit.gz", "BLEN7M_20110216_153019_24.fit.gz"] for filename in filelist: fits_year = filename.split('_')[1][:4] fits_month = filename.split('_')[1][4:6] fits_day = filename.split('_')[1][-2:] fits_url = f'{callisto_archives}/{fits_year}/{fits_month}/' \ f'{fits_day}/{filename}' download(fits_url) title = "Flare classe M1.6, 16/02/2011 (BLEN7M)" plot_filename = "for_publication" fitsfile.ECallistoFitsFile.plot_fits_files_list(filelist, title=title, plot_filename=plot_filename, show=True)
[ 6738, 2956, 335, 75, 1330, 4321, 198, 6738, 12972, 13345, 396, 78, 1330, 11414, 7753, 628, 198, 13345, 396, 78, 62, 48814, 796, 705, 4023, 1378, 6753, 346, 1795, 13, 6359, 13, 23873, 1134, 13, 69, 21116, 86, 13, 354, 14, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34453, 3258, 324, 952, 14, 7890, 14, 16942, 12, 1238, 22556, 62, 14134, 396, 78, 14, 6, 198, 7753, 4868, 796, 685, 198, 220, 220, 220, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 1485, 6200, 24, 62, 1731, 13, 11147, 13, 34586, 1600, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 1485, 2231, 940, 62, 1731, 13, 11147, 13, 34586, 1600, 198, 220, 220, 220, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 1415, 405, 1157, 62, 1731, 13, 11147, 13, 34586, 1600, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 1415, 1314, 1065, 62, 1731, 13, 11147, 13, 34586, 1600, 198, 220, 220, 220, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 1415, 18938, 19, 62, 1731, 13, 11147, 13, 34586, 1600, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 1415, 2231, 1314, 62, 1731, 13, 11147, 13, 34586, 1600, 198, 220, 220, 220, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 33698, 1433, 62, 1731, 13, 11147, 13, 34586, 1600, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 1314, 1314, 1558, 62, 1731, 13, 11147, 13, 34586, 1600, 198, 220, 220, 220, 366, 9148, 1677, 22, 44, 62, 1264, 15377, 1433, 62, 1314, 18938, 24, 62, 1731, 13, 11147, 13, 34586, 8973, 198, 198, 1640, 29472, 287, 2393, 4868, 25, 198, 220, 220, 220, 11414, 62, 1941, 796, 29472, 13, 35312, 10786, 62, 11537, 58, 16, 7131, 25, 19, 60, 198, 220, 220, 220, 11414, 62, 8424, 796, 29472, 13, 35312, 10786, 62, 11537, 58, 16, 7131, 19, 25, 21, 60, 198, 220, 220, 220, 11414, 62, 820, 796, 29472, 13, 35312, 10786, 62, 11537, 58, 16, 7131, 12, 17, 47715, 198, 220, 220, 220, 11414, 62, 6371, 796, 277, 6, 90, 13345, 396, 78, 62, 48814, 92, 14, 90, 21013, 62, 1941, 92, 14, 90, 21013, 62, 8424, 92, 14, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 90, 21013, 62, 820, 92, 14, 90, 34345, 92, 6, 198, 220, 220, 220, 4321, 7, 21013, 62, 6371, 8, 198, 198, 7839, 796, 366, 7414, 533, 537, 21612, 337, 16, 13, 21, 11, 1467, 14, 2999, 14, 9804, 357, 9148, 1677, 22, 44, 16725, 198, 29487, 62, 34345, 796, 366, 1640, 62, 11377, 341, 1, 198, 21013, 7753, 13, 2943, 439, 396, 78, 37, 896, 8979, 13, 29487, 62, 21013, 62, 16624, 62, 4868, 7, 7753, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 34345, 28, 29487, 62, 34345, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 28, 17821, 8, 198 ]
1.807154
643
import logging import yaml from detectime.detectime import detectron from definitions import ROOT_DIR from detectime.utils import convert_dict_to_tuple log = logging.getLogger(__name__) CONFIG_PATH = 'config.yml' if __name__ == '__main__': main()
[ 11748, 18931, 198, 11748, 331, 43695, 198, 6738, 4886, 524, 13, 15255, 478, 524, 1330, 4886, 1313, 198, 6738, 17336, 1330, 15107, 2394, 62, 34720, 198, 6738, 4886, 524, 13, 26791, 1330, 10385, 62, 11600, 62, 1462, 62, 83, 29291, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 10943, 16254, 62, 34219, 796, 705, 11250, 13, 88, 4029, 6, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.942529
87
#!/usr/bin/env python """Clone wars simulator. Simulates the growth of clones in a 2D space. Mutations are induced by button presses. Currently untested. """ import splash splash.splashScreen("CloneWars!",rotation=270) import signal import sys import RPi.GPIO as GPIO try: import numpy as np except ImportError: import numpyReplace as np from UnicornWF import UnicornSimulator # Need to check the pin numbers RED_BUTTON_GPIO = 21 BLUE_BUTTON_GPIO = 16 GREEN_BUTTON_GPIO = 12 BLACK_BUTTON_GPIO = 25 GPIO.setmode(GPIO.BCM) buttons = [RED_BUTTON_GPIO, BLUE_BUTTON_GPIO, GREEN_BUTTON_GPIO, BLACK_BUTTON_GPIO] class DecayMutation(UnicornSimulator): """Random mutation turns cells black""" def mutate(self, colour=0): """Select a random cell and change fitness and colour to black.""" cell = np.random.randint(0, self.population) self.fitness[cell] += np.random.normal(loc=self.advantage, scale=0.1) if colour == None: self.colour[cell] = self.mutantColour else: self.colour[cell] = colour self.colourUpdate() if __name__ == "__main__": for BUTTON_GPIO in buttons: GPIO.setup(BUTTON_GPIO, GPIO.IN, pull_up_down=GPIO.PUD_UP) grid = DecayMutation(16, 30, 0.1, advantage=0.1) print("setup buttons") GPIO.add_event_detect(RED_BUTTON_GPIO, GPIO.FALLING, callback=redMutation, bouncetime=50) GPIO.add_event_detect(BLUE_BUTTON_GPIO, GPIO.FALLING, callback=blueMutation, bouncetime=50) GPIO.add_event_detect(GREEN_BUTTON_GPIO, GPIO.FALLING, callback=greenMutation, bouncetime=50) GPIO.add_event_detect(BLACK_BUTTON_GPIO, GPIO.FALLING, callback=blackMutation, bouncetime=50) print("enter loop") grid.runAndProject() GPIO.cleanup()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 2601, 505, 9976, 35375, 13, 198, 198, 8890, 15968, 262, 3349, 286, 32498, 287, 257, 362, 35, 2272, 13, 198, 44, 32855, 389, 18268, 416, 4936, 31048, 13, 198, 198, 21327, 1418, 7287, 13, 198, 37811, 198, 198, 11748, 22870, 198, 22018, 1077, 13, 22018, 1077, 23901, 7203, 2601, 505, 41508, 40754, 10599, 341, 28, 20233, 8, 198, 198, 11748, 6737, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 11748, 25064, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 299, 32152, 3041, 5372, 355, 45941, 198, 198, 6738, 39481, 48397, 1330, 39481, 8890, 8927, 198, 198, 2, 10664, 284, 2198, 262, 6757, 3146, 198, 22083, 62, 47526, 11357, 62, 16960, 9399, 796, 2310, 198, 9148, 8924, 62, 47526, 11357, 62, 16960, 9399, 796, 1467, 198, 43016, 62, 47526, 11357, 62, 16960, 9399, 796, 1105, 198, 9148, 8120, 62, 47526, 11357, 62, 16960, 9399, 796, 1679, 198, 198, 16960, 9399, 13, 2617, 14171, 7, 16960, 9399, 13, 2749, 44, 8, 198, 4360, 27288, 796, 685, 22083, 62, 47526, 11357, 62, 16960, 9399, 11, 9878, 8924, 62, 47526, 11357, 62, 16960, 9399, 11, 47606, 62, 47526, 11357, 62, 16960, 9399, 11, 31963, 62, 47526, 11357, 62, 16960, 9399, 60, 198, 198, 4871, 39087, 44, 7094, 7, 3118, 291, 1211, 8890, 8927, 2599, 198, 220, 220, 220, 37227, 29531, 15148, 4962, 4778, 2042, 37811, 198, 220, 220, 220, 825, 4517, 378, 7, 944, 11, 9568, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17563, 257, 4738, 2685, 290, 1487, 13547, 290, 9568, 284, 2042, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2685, 796, 45941, 13, 25120, 13, 25192, 600, 7, 15, 11, 2116, 13, 39748, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 3659, 58, 3846, 60, 15853, 45941, 13, 25120, 13, 11265, 7, 17946, 28, 944, 13, 13461, 496, 11, 5046, 28, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9568, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 49903, 58, 3846, 60, 796, 2116, 13, 21973, 415, 5216, 454, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 49903, 58, 3846, 60, 796, 9568, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 49903, 10260, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 329, 21728, 11357, 62, 16960, 9399, 287, 12163, 25, 198, 220, 220, 220, 220, 220, 220, 220, 50143, 13, 40406, 7, 47526, 11357, 62, 16960, 9399, 11, 50143, 13, 1268, 11, 2834, 62, 929, 62, 2902, 28, 16960, 9399, 13, 5105, 35, 62, 8577, 8, 198, 220, 220, 220, 10706, 796, 39087, 44, 7094, 7, 1433, 11, 1542, 11, 657, 13, 16, 11, 4621, 28, 15, 13, 16, 8, 198, 220, 220, 220, 3601, 7203, 40406, 12163, 4943, 198, 220, 220, 220, 50143, 13, 2860, 62, 15596, 62, 15255, 478, 7, 22083, 62, 47526, 11357, 62, 16960, 9399, 11, 50143, 13, 37, 7036, 2751, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23838, 28, 445, 44, 7094, 11, 31283, 66, 8079, 28, 1120, 8, 198, 220, 220, 220, 50143, 13, 2860, 62, 15596, 62, 15255, 478, 7, 9148, 8924, 62, 47526, 11357, 62, 16960, 9399, 11, 50143, 13, 37, 7036, 2751, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23838, 28, 17585, 44, 7094, 11, 31283, 66, 8079, 28, 1120, 8, 198, 220, 220, 220, 50143, 13, 2860, 62, 15596, 62, 15255, 478, 7, 43016, 62, 47526, 11357, 62, 16960, 9399, 11, 50143, 13, 37, 7036, 2751, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23838, 28, 14809, 44, 7094, 11, 31283, 66, 8079, 28, 1120, 8, 198, 220, 220, 220, 50143, 13, 2860, 62, 15596, 62, 15255, 478, 7, 9148, 8120, 62, 47526, 11357, 62, 16960, 9399, 11, 50143, 13, 37, 7036, 2751, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23838, 28, 13424, 44, 7094, 11, 31283, 66, 8079, 28, 1120, 8, 198, 220, 220, 220, 3601, 7203, 9255, 9052, 4943, 198, 220, 220, 220, 10706, 13, 5143, 1870, 16775, 3419, 198, 198, 16960, 9399, 13, 27773, 929, 3419, 198 ]
2.364341
774
# Generated by Django 4.0.2 on 2022-02-06 09:41 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 604, 13, 15, 13, 17, 319, 33160, 12, 2999, 12, 3312, 7769, 25, 3901, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
3.019231
52
import numpy as np
[ 11748, 299, 32152, 355, 45941 ]
3.6
5
from EMAlgorithm import EmAlgorithm import numpy as np def create_data(mu0, sigma0, mu1, sigma1, alpha0, alpha1): ''' 初始化数据集 这里通过服从高斯分布的随机函数来伪造数据集 :param mu0: 高斯0的均值 :param sigma0: 高斯0的方差 :param mu1: 高斯1的均值 :param sigma1: 高斯1的方差 :param alpha0: 高斯0的系数 :param alpha1: 高斯1的系数 :return: 混合了两个高斯分布的数据 ''' #定义数据集长度为1000 length = 1000 #初始化第一个高斯分布,生成数据,数据长度为length * alpha系数,以此来 #满足alpha的作用 data0 = np.random.normal(mu0, sigma0, int(length * alpha0)) #第二个高斯分布的数据 data1 = np.random.normal(mu1, sigma1, int(length * alpha1)) #初始化总数据集 #两个高斯分布的数据混合后会放在该数据集中返回 dataSet = [] #将第一个数据集的内容添加进去 dataSet.extend(data0) #添加第二个数据集的数据 dataSet.extend(data1) #返回伪造好的数据集 return dataSet data = create_data(2, 2, 4, 2, 0.6, 0.4) e = EmAlgorithm(data, 2) e.train() # a = e.compute_gama() # e.update()
[ 6738, 17228, 2348, 42289, 1330, 2295, 2348, 42289, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4299, 2251, 62, 7890, 7, 30300, 15, 11, 264, 13495, 15, 11, 38779, 16, 11, 264, 13495, 16, 11, 17130, 15, 11, 17130, 16, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 10263, 230, 251, 34650, 233, 44293, 244, 46763, 108, 162, 235, 106, 37239, 228, 198, 220, 220, 220, 5525, 123, 247, 34932, 234, 34460, 248, 32573, 229, 17312, 235, 20015, 236, 165, 45865, 23877, 107, 26344, 228, 30585, 225, 21410, 49694, 237, 17312, 118, 49035, 121, 46763, 108, 30266, 98, 27670, 103, 34460, 254, 46763, 108, 162, 235, 106, 37239, 228, 198, 220, 220, 220, 1058, 17143, 38779, 15, 25, 16268, 45865, 23877, 107, 15, 21410, 161, 251, 229, 161, 222, 120, 198, 220, 220, 220, 1058, 17143, 264, 13495, 15, 25, 16268, 45865, 23877, 107, 15, 21410, 43095, 32432, 106, 198, 220, 220, 220, 1058, 17143, 38779, 16, 25, 16268, 45865, 23877, 107, 16, 21410, 161, 251, 229, 161, 222, 120, 198, 220, 220, 220, 1058, 17143, 264, 13495, 16, 25, 16268, 45865, 23877, 107, 16, 21410, 43095, 32432, 106, 198, 220, 220, 220, 1058, 17143, 17130, 15, 25, 16268, 45865, 23877, 107, 15, 21410, 163, 111, 119, 46763, 108, 198, 220, 220, 220, 1058, 17143, 17130, 16, 25, 16268, 45865, 23877, 107, 16, 21410, 163, 111, 119, 46763, 108, 198, 220, 220, 220, 1058, 7783, 25, 10545, 115, 115, 28938, 230, 12859, 228, 10310, 97, 10310, 103, 165, 45865, 23877, 107, 26344, 228, 30585, 225, 21410, 46763, 108, 162, 235, 106, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 22522, 248, 20046, 231, 46763, 108, 162, 235, 106, 37239, 228, 165, 243, 123, 41753, 99, 10310, 118, 12825, 198, 220, 220, 220, 4129, 796, 8576, 628, 220, 220, 220, 1303, 26344, 251, 34650, 233, 44293, 244, 163, 105, 105, 31660, 10310, 103, 165, 45865, 23877, 107, 26344, 228, 30585, 225, 171, 120, 234, 37955, 22755, 238, 46763, 108, 162, 235, 106, 171, 120, 234, 46763, 108, 162, 235, 106, 165, 243, 123, 41753, 99, 10310, 118, 13664, 1635, 17130, 163, 111, 119, 46763, 108, 171, 120, 234, 20015, 98, 29826, 97, 30266, 98, 198, 220, 220, 220, 1303, 162, 119, 94, 164, 114, 111, 26591, 21410, 43291, 18796, 101, 198, 220, 220, 220, 1366, 15, 796, 45941, 13, 25120, 13, 11265, 7, 30300, 15, 11, 264, 13495, 15, 11, 493, 7, 13664, 1635, 17130, 15, 4008, 198, 220, 220, 220, 1303, 163, 105, 105, 12859, 234, 10310, 103, 165, 45865, 23877, 107, 26344, 228, 30585, 225, 21410, 46763, 108, 162, 235, 106, 198, 220, 220, 220, 1366, 16, 796, 45941, 13, 25120, 13, 11265, 7, 30300, 16, 11, 264, 13495, 16, 11, 493, 7, 13664, 1635, 17130, 16, 4008, 628, 220, 220, 220, 1303, 26344, 251, 34650, 233, 44293, 244, 45250, 119, 46763, 108, 162, 235, 106, 37239, 228, 198, 220, 220, 220, 1303, 10310, 97, 10310, 103, 165, 45865, 23877, 107, 26344, 228, 30585, 225, 21410, 46763, 108, 162, 235, 106, 162, 115, 115, 28938, 230, 28938, 236, 27670, 248, 162, 242, 122, 28839, 101, 46237, 98, 46763, 108, 162, 235, 106, 37239, 228, 40792, 32573, 242, 32368, 252, 198, 220, 220, 220, 1366, 7248, 796, 17635, 198, 220, 220, 220, 1303, 49546, 163, 105, 105, 31660, 10310, 103, 46763, 108, 162, 235, 106, 37239, 228, 21410, 37863, 227, 22522, 117, 162, 115, 119, 27950, 254, 32573, 249, 43889, 119, 198, 220, 220, 220, 1366, 7248, 13, 2302, 437, 7, 7890, 15, 8, 198, 220, 220, 220, 1303, 162, 115, 119, 27950, 254, 163, 105, 105, 12859, 234, 10310, 103, 46763, 108, 162, 235, 106, 37239, 228, 21410, 46763, 108, 162, 235, 106, 198, 220, 220, 220, 1366, 7248, 13, 2302, 437, 7, 7890, 16, 8, 628, 220, 220, 220, 1303, 32573, 242, 32368, 252, 27670, 103, 34460, 254, 25001, 121, 21410, 46763, 108, 162, 235, 106, 37239, 228, 198, 220, 220, 220, 1441, 1366, 7248, 628, 198, 7890, 796, 2251, 62, 7890, 7, 17, 11, 362, 11, 604, 11, 362, 11, 657, 13, 21, 11, 657, 13, 19, 8, 198, 68, 796, 2295, 2348, 42289, 7, 7890, 11, 362, 8, 198, 68, 13, 27432, 3419, 198, 2, 257, 796, 304, 13, 5589, 1133, 62, 70, 1689, 3419, 198, 2, 304, 13, 19119, 3419 ]
1.227462
721
import os xmldir = '/media/e813/E/dataset/eccv/eccv/VisDrone2018-VID-val/xmlannotations' # datasetdir = '/media/e813/E/dataset/eccv/eccv/VisDrone2018-VID-train' # file = os.path.join(datasetdir,'index.txt') # f = open(file,'w') count=0 for seq in os.listdir(xmldir): seqpath = os.path.join(xmldir,seq) for n,xml_name in enumerate(os.listdir(seqpath)): count += 1 if n%4==0: name = xml_name[:-4] # f.write('{} {}\n'.format(seq,name)) print(count) # f.close() # with open(file) as f: # xmls = f.readlines() # xmls =[x.strip("\n") for x in xmls] # xmls = [x.split(' ') for x in xmls] # print(xmls[1:10])
[ 11748, 28686, 198, 87, 76, 335, 343, 796, 31051, 11431, 14, 68, 23, 1485, 14, 36, 14, 19608, 292, 316, 14, 68, 535, 85, 14, 68, 535, 85, 14, 15854, 6187, 505, 7908, 12, 11008, 12, 2100, 14, 19875, 34574, 602, 6, 198, 2, 27039, 15908, 796, 31051, 11431, 14, 68, 23, 1485, 14, 36, 14, 19608, 292, 316, 14, 68, 535, 85, 14, 68, 535, 85, 14, 15854, 6187, 505, 7908, 12, 11008, 12, 27432, 6, 198, 2, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 19608, 292, 316, 15908, 4032, 9630, 13, 14116, 11537, 198, 2, 277, 796, 1280, 7, 7753, 4032, 86, 11537, 198, 9127, 28, 15, 198, 1640, 33756, 287, 28686, 13, 4868, 15908, 7, 87, 76, 335, 343, 2599, 198, 220, 220, 220, 33756, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 87, 76, 335, 343, 11, 41068, 8, 198, 220, 220, 220, 329, 299, 11, 19875, 62, 3672, 287, 27056, 378, 7, 418, 13, 4868, 15908, 7, 41068, 6978, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 4, 19, 855, 15, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 35555, 62, 3672, 58, 21912, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 277, 13, 13564, 10786, 90, 92, 23884, 59, 77, 4458, 18982, 7, 41068, 11, 3672, 4008, 198, 4798, 7, 9127, 8, 198, 2, 277, 13, 19836, 3419, 198, 2, 351, 1280, 7, 7753, 8, 355, 277, 25, 198, 2, 220, 220, 220, 220, 35555, 82, 796, 277, 13, 961, 6615, 3419, 198, 2, 220, 220, 220, 220, 35555, 82, 796, 58, 87, 13, 36311, 7203, 59, 77, 4943, 329, 2124, 287, 35555, 82, 60, 198, 2, 220, 220, 220, 220, 35555, 82, 796, 685, 87, 13, 35312, 10786, 705, 8, 329, 2124, 287, 35555, 82, 60, 198, 2, 3601, 7, 19875, 82, 58, 16, 25, 940, 12962, 198 ]
1.976119
335
import textwrap from asyncio import Future from prompt_toolkit.layout.containers import HSplit from prompt_toolkit.layout.dimension import D from prompt_toolkit.widgets import Button, Label from prompt_toolkit.widgets.dialogs import Dialog from pepys_admin.maintenance.utils import get_system_name_mappings from pepys_admin.maintenance.widgets.entry_edit_widget import EntryEditWidget
[ 11748, 2420, 37150, 198, 6738, 30351, 952, 1330, 10898, 198, 198, 6738, 6152, 62, 25981, 15813, 13, 39786, 13, 3642, 50221, 1330, 18070, 489, 270, 198, 6738, 6152, 62, 25981, 15813, 13, 39786, 13, 46156, 1330, 360, 198, 6738, 6152, 62, 25981, 15813, 13, 28029, 11407, 1330, 20969, 11, 36052, 198, 6738, 6152, 62, 25981, 15813, 13, 28029, 11407, 13, 38969, 18463, 1330, 21269, 519, 198, 198, 6738, 279, 538, 893, 62, 28482, 13, 12417, 8219, 13, 26791, 1330, 651, 62, 10057, 62, 3672, 62, 76, 39242, 198, 6738, 279, 538, 893, 62, 28482, 13, 12417, 8219, 13, 28029, 11407, 13, 13000, 62, 19312, 62, 42655, 1330, 21617, 18378, 38300, 628 ]
3.495495
111
# @param {integer[]} nums1 # @param {integer} m # @param {integer[]} nums2 # @param {integer} n # @return {void} Do not return anything, modify nums1 in-place instead.
[ 220, 220, 220, 1303, 2488, 17143, 1391, 41433, 21737, 92, 997, 82, 16, 198, 220, 220, 220, 1303, 2488, 17143, 1391, 41433, 92, 285, 198, 220, 220, 220, 1303, 2488, 17143, 1391, 41433, 21737, 92, 997, 82, 17, 198, 220, 220, 220, 1303, 2488, 17143, 1391, 41433, 92, 299, 198, 220, 220, 220, 1303, 2488, 7783, 1391, 19382, 92, 2141, 407, 1441, 1997, 11, 13096, 997, 82, 16, 287, 12, 5372, 2427, 13 ]
2.561644
73
from ansible.parsing.dataloader import DataLoader from ansible.template import Templar import json import pytest import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') @pytest.fixture() def get_vars(host): """ """ base_dir, molecule_dir = base_directory() distribution = host.system_info.distribution if distribution in ['debian', 'ubuntu']: os = "debian" elif distribution in ['redhat', 'ol', 'centos', 'rocky', 'almalinux']: os = "redhat" elif distribution in ['arch']: os = "archlinux" print(" -> {} / {}".format(distribution, os)) file_defaults = "file={}/defaults/main.yml name=role_defaults".format(base_dir) file_vars = "file={}/vars/main.yml name=role_vars".format(base_dir) file_molecule = "file={}/group_vars/all/vars.yml name=test_vars".format(molecule_dir) file_distibution = "file={}/vars/{}.yml name=role_distibution".format(base_dir, os) defaults_vars = host.ansible("include_vars", file_defaults).get("ansible_facts").get("role_defaults") vars_vars = host.ansible("include_vars", file_vars).get("ansible_facts").get("role_vars") distibution_vars = host.ansible("include_vars", file_distibution).get("ansible_facts").get("role_distibution") molecule_vars = host.ansible("include_vars", file_molecule).get("ansible_facts").get("test_vars") ansible_vars = defaults_vars ansible_vars.update(vars_vars) ansible_vars.update(distibution_vars) ansible_vars.update(molecule_vars) templar = Templar(loader=DataLoader(), variables=ansible_vars) result = templar.template(ansible_vars, fail_on_undefined=False) return result def test_directories(host, get_vars): """ used config directory debian based: /etc/mysql redhat based: /etc/my.cnf.d arch based : /etc/my.cnf.d """ pp_json(get_vars) directories = [ "/etc/postfix", "/etc/postfix/maps.d", "/etc/postfix/postfix-files.d", "/etc/postfix/dynamicmaps.cf.d" ] directories.append(get_vars.get("postfix_config_directory")) for dirs in directories: d = host.file(dirs) assert d.is_directory def test_files(host, get_vars): """ created config files """ files = [ "/etc/postfix/main.cf", "/etc/postfix/master.cf", "/etc/postfix/maps.d/generic", "/etc/postfix/maps.d/header_checks", "/etc/postfix/maps.d/sender_canonical_maps", ] files.append(get_vars.get("postfix_mailname_file")) files.append(get_vars.get("postfix_aliases_file")) for _file in files: f = host.file(_file) assert f.is_file def test_user(host, get_vars): """ created user """ shell = '/usr/sbin/nologin' distribution = host.system_info.distribution if distribution in ['redhat', 'ol', 'centos', 'rocky', 'almalinux']: shell = "/sbin/nologin" elif distribution == "arch": shell = "/usr/bin/nologin" user_name = "postfix" u = host.user(user_name) g = host.group(user_name) assert g.exists assert u.exists assert user_name in u.groups assert u.shell == shell def test_service_running_and_enabled(host, get_vars): """ running service """ service_name = "postfix" service = host.service(service_name) assert service.is_running assert service.is_enabled def test_listening_socket(host, get_vars): """ """ listening = host.socket.get_listening_sockets() interfaces = host.interface.names() eth = [] if "eth0" in interfaces: eth = host.interface("eth0").addresses for i in listening: print(i) for i in interfaces: print(i) for i in eth: print(i) distribution = host.system_info.distribution release = host.system_info.release bind_address = eth[0] bind_port = 25 socket_name = "private/smtp" listen = [] listen.append("tcp://{}:{}".format(bind_address, bind_port)) if not (distribution == 'ubuntu' and release == '18.04'): listen.append("unix://{}".format(socket_name)) for spec in listen: socket = host.socket(spec) assert socket.is_listening
[ 198, 6738, 9093, 856, 13, 79, 945, 278, 13, 67, 10254, 1170, 263, 1330, 6060, 17401, 198, 6738, 9093, 856, 13, 28243, 1330, 41741, 198, 198, 11748, 33918, 198, 11748, 12972, 9288, 198, 11748, 28686, 198, 198, 11748, 1332, 10745, 430, 13, 26791, 13, 504, 856, 62, 16737, 628, 198, 9288, 10745, 430, 62, 4774, 82, 796, 1332, 10745, 430, 13, 26791, 13, 504, 856, 62, 16737, 13, 2025, 82, 856, 49493, 7, 198, 220, 220, 220, 28686, 13, 268, 2268, 17816, 11770, 2538, 34, 24212, 62, 1268, 53, 3525, 15513, 62, 25664, 20520, 737, 1136, 62, 4774, 82, 10786, 439, 11537, 628, 628, 198, 31, 9078, 9288, 13, 69, 9602, 3419, 198, 4299, 651, 62, 85, 945, 7, 4774, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 15908, 11, 27756, 62, 15908, 796, 2779, 62, 34945, 3419, 198, 220, 220, 220, 6082, 796, 2583, 13, 10057, 62, 10951, 13, 17080, 3890, 628, 220, 220, 220, 611, 6082, 287, 37250, 24689, 3256, 705, 32230, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 796, 366, 24689, 1, 198, 220, 220, 220, 1288, 361, 6082, 287, 37250, 445, 5183, 3256, 705, 349, 3256, 705, 1087, 418, 3256, 705, 10823, 88, 3256, 705, 282, 7617, 259, 2821, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 796, 366, 445, 5183, 1, 198, 220, 220, 220, 1288, 361, 6082, 287, 37250, 998, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 796, 366, 998, 23289, 1, 628, 220, 220, 220, 3601, 7203, 4613, 23884, 1220, 23884, 1911, 18982, 7, 17080, 3890, 11, 28686, 4008, 628, 220, 220, 220, 2393, 62, 12286, 82, 796, 366, 7753, 34758, 92, 14, 12286, 82, 14, 12417, 13, 88, 4029, 1438, 28, 18090, 62, 12286, 82, 1911, 18982, 7, 8692, 62, 15908, 8, 198, 220, 220, 220, 2393, 62, 85, 945, 796, 366, 7753, 34758, 92, 14, 85, 945, 14, 12417, 13, 88, 4029, 1438, 28, 18090, 62, 85, 945, 1911, 18982, 7, 8692, 62, 15908, 8, 198, 220, 220, 220, 2393, 62, 76, 2305, 23172, 796, 366, 7753, 34758, 92, 14, 8094, 62, 85, 945, 14, 439, 14, 85, 945, 13, 88, 4029, 1438, 28, 9288, 62, 85, 945, 1911, 18982, 7, 76, 2305, 23172, 62, 15908, 8, 198, 220, 220, 220, 2393, 62, 17080, 571, 1009, 796, 366, 7753, 34758, 92, 14, 85, 945, 14, 90, 27422, 88, 4029, 1438, 28, 18090, 62, 17080, 571, 1009, 1911, 18982, 7, 8692, 62, 15908, 11, 28686, 8, 628, 220, 220, 220, 26235, 62, 85, 945, 796, 2583, 13, 504, 856, 7203, 17256, 62, 85, 945, 1600, 2393, 62, 12286, 82, 737, 1136, 7203, 504, 856, 62, 37473, 11074, 1136, 7203, 18090, 62, 12286, 82, 4943, 198, 220, 220, 220, 410, 945, 62, 85, 945, 796, 2583, 13, 504, 856, 7203, 17256, 62, 85, 945, 1600, 2393, 62, 85, 945, 737, 1136, 7203, 504, 856, 62, 37473, 11074, 1136, 7203, 18090, 62, 85, 945, 4943, 198, 220, 220, 220, 1233, 571, 1009, 62, 85, 945, 796, 2583, 13, 504, 856, 7203, 17256, 62, 85, 945, 1600, 2393, 62, 17080, 571, 1009, 737, 1136, 7203, 504, 856, 62, 37473, 11074, 1136, 7203, 18090, 62, 17080, 571, 1009, 4943, 198, 220, 220, 220, 27756, 62, 85, 945, 796, 2583, 13, 504, 856, 7203, 17256, 62, 85, 945, 1600, 2393, 62, 76, 2305, 23172, 737, 1136, 7203, 504, 856, 62, 37473, 11074, 1136, 7203, 9288, 62, 85, 945, 4943, 628, 220, 220, 220, 9093, 856, 62, 85, 945, 796, 26235, 62, 85, 945, 198, 220, 220, 220, 9093, 856, 62, 85, 945, 13, 19119, 7, 85, 945, 62, 85, 945, 8, 198, 220, 220, 220, 9093, 856, 62, 85, 945, 13, 19119, 7, 17080, 571, 1009, 62, 85, 945, 8, 198, 220, 220, 220, 9093, 856, 62, 85, 945, 13, 19119, 7, 76, 2305, 23172, 62, 85, 945, 8, 628, 220, 220, 220, 2169, 489, 283, 796, 41741, 7, 29356, 28, 6601, 17401, 22784, 9633, 28, 504, 856, 62, 85, 945, 8, 198, 220, 220, 220, 1255, 796, 2169, 489, 283, 13, 28243, 7, 504, 856, 62, 85, 945, 11, 2038, 62, 261, 62, 917, 18156, 28, 25101, 8, 628, 220, 220, 220, 1441, 1255, 628, 198, 4299, 1332, 62, 12942, 1749, 7, 4774, 11, 651, 62, 85, 945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 973, 4566, 8619, 628, 220, 220, 220, 220, 220, 50001, 1912, 25, 1220, 14784, 14, 28744, 13976, 198, 220, 220, 220, 220, 220, 2266, 5183, 1912, 25, 1220, 14784, 14, 1820, 13, 31522, 69, 13, 67, 198, 220, 220, 220, 220, 220, 3934, 1912, 220, 1058, 1220, 14784, 14, 1820, 13, 31522, 69, 13, 67, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9788, 62, 17752, 7, 1136, 62, 85, 945, 8, 628, 220, 220, 220, 29196, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 14, 31803, 13, 67, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 14, 7353, 13049, 12, 16624, 13, 67, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 14, 67, 28995, 31803, 13, 12993, 13, 67, 1, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 29196, 13, 33295, 7, 1136, 62, 85, 945, 13, 1136, 7203, 7353, 13049, 62, 11250, 62, 34945, 48774, 628, 220, 220, 220, 329, 288, 17062, 287, 29196, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 2583, 13, 7753, 7, 15908, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 288, 13, 271, 62, 34945, 628, 198, 4299, 1332, 62, 16624, 7, 4774, 11, 651, 62, 85, 945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 2727, 4566, 3696, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3696, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 14, 12417, 13, 12993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 14, 9866, 13, 12993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 14, 31803, 13, 67, 14, 41357, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 14, 31803, 13, 67, 14, 25677, 62, 42116, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 14784, 14, 7353, 13049, 14, 31803, 13, 67, 14, 82, 2194, 62, 49883, 605, 62, 31803, 1600, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 3696, 13, 33295, 7, 1136, 62, 85, 945, 13, 1136, 7203, 7353, 13049, 62, 4529, 3672, 62, 7753, 48774, 198, 220, 220, 220, 3696, 13, 33295, 7, 1136, 62, 85, 945, 13, 1136, 7203, 7353, 13049, 62, 7344, 1386, 62, 7753, 48774, 628, 220, 220, 220, 329, 4808, 7753, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 2583, 13, 7753, 28264, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 13, 271, 62, 7753, 628, 198, 4299, 1332, 62, 7220, 7, 4774, 11, 651, 62, 85, 945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 2727, 2836, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7582, 796, 31051, 14629, 14, 82, 8800, 14, 77, 928, 259, 6, 628, 220, 220, 220, 6082, 796, 2583, 13, 10057, 62, 10951, 13, 17080, 3890, 628, 220, 220, 220, 611, 6082, 287, 37250, 445, 5183, 3256, 705, 349, 3256, 705, 1087, 418, 3256, 705, 10823, 88, 3256, 705, 282, 7617, 259, 2821, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 7582, 796, 12813, 82, 8800, 14, 77, 928, 259, 1, 198, 220, 220, 220, 1288, 361, 6082, 6624, 366, 998, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 7582, 796, 12813, 14629, 14, 8800, 14, 77, 928, 259, 1, 628, 220, 220, 220, 2836, 62, 3672, 796, 366, 7353, 13049, 1, 198, 220, 220, 220, 334, 796, 2583, 13, 7220, 7, 7220, 62, 3672, 8, 198, 220, 220, 220, 308, 796, 2583, 13, 8094, 7, 7220, 62, 3672, 8, 628, 220, 220, 220, 6818, 308, 13, 1069, 1023, 198, 220, 220, 220, 6818, 334, 13, 1069, 1023, 198, 220, 220, 220, 6818, 2836, 62, 3672, 287, 334, 13, 24432, 198, 220, 220, 220, 6818, 334, 13, 29149, 6624, 7582, 628, 198, 4299, 1332, 62, 15271, 62, 20270, 62, 392, 62, 25616, 7, 4774, 11, 651, 62, 85, 945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 2491, 2139, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2139, 62, 3672, 796, 366, 7353, 13049, 1, 628, 220, 220, 220, 2139, 796, 2583, 13, 15271, 7, 15271, 62, 3672, 8, 198, 220, 220, 220, 6818, 2139, 13, 271, 62, 20270, 198, 220, 220, 220, 6818, 2139, 13, 271, 62, 25616, 628, 198, 4299, 1332, 62, 4868, 3101, 62, 44971, 7, 4774, 11, 651, 62, 85, 945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8680, 796, 2583, 13, 44971, 13, 1136, 62, 4868, 3101, 62, 82, 11603, 3419, 198, 220, 220, 220, 20314, 796, 2583, 13, 39994, 13, 14933, 3419, 198, 220, 220, 220, 4555, 796, 17635, 628, 220, 220, 220, 611, 366, 2788, 15, 1, 287, 20314, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4555, 796, 2583, 13, 39994, 7203, 2788, 15, 11074, 2860, 16746, 628, 220, 220, 220, 329, 1312, 287, 8680, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 72, 8, 628, 220, 220, 220, 329, 1312, 287, 20314, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 72, 8, 628, 220, 220, 220, 329, 1312, 287, 4555, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 72, 8, 628, 220, 220, 220, 6082, 796, 2583, 13, 10057, 62, 10951, 13, 17080, 3890, 198, 220, 220, 220, 2650, 796, 2583, 13, 10057, 62, 10951, 13, 20979, 628, 220, 220, 220, 11007, 62, 21975, 796, 4555, 58, 15, 60, 198, 220, 220, 220, 11007, 62, 634, 796, 1679, 198, 220, 220, 220, 17802, 62, 3672, 796, 366, 19734, 14, 5796, 34788, 1, 628, 220, 220, 220, 6004, 796, 17635, 198, 220, 220, 220, 6004, 13, 33295, 7203, 83, 13155, 1378, 90, 92, 29164, 92, 1911, 18982, 7, 21653, 62, 21975, 11, 11007, 62, 634, 4008, 628, 220, 220, 220, 611, 407, 357, 17080, 3890, 6624, 705, 32230, 6, 290, 2650, 6624, 705, 1507, 13, 3023, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6004, 13, 33295, 7203, 403, 844, 1378, 90, 92, 1911, 18982, 7, 44971, 62, 3672, 4008, 628, 220, 220, 220, 329, 1020, 287, 6004, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17802, 796, 2583, 13, 44971, 7, 16684, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 17802, 13, 271, 62, 4868, 3101, 198 ]
2.372752
1,835
import sys if (sys.version_info >= (2,7)): import unittest else: import unittest2 as unittest import pydevtest_sessions as s from pydevtest_common import assertiCmd, assertiCmdFail, interruptiCmd from resource_suite import ResourceBase import commands import os, stat import datetime import time import shutil import random
[ 11748, 25064, 198, 361, 357, 17597, 13, 9641, 62, 10951, 18189, 357, 17, 11, 22, 8, 2599, 198, 220, 220, 220, 1330, 555, 715, 395, 198, 17772, 25, 198, 220, 220, 220, 1330, 555, 715, 395, 17, 355, 555, 715, 395, 198, 11748, 279, 5173, 1990, 9288, 62, 82, 6202, 355, 264, 198, 6738, 279, 5173, 1990, 9288, 62, 11321, 1330, 6818, 72, 40109, 11, 6818, 72, 40109, 39044, 11, 11313, 72, 40109, 198, 6738, 8271, 62, 2385, 578, 1330, 20857, 14881, 198, 11748, 9729, 198, 11748, 28686, 11, 1185, 198, 11748, 4818, 8079, 198, 11748, 640, 198, 11748, 4423, 346, 198, 11748, 4738, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198 ]
1.394783
575
from sqlalchemy import Column, ForeignKey, Integer, String, Enum, Float, DateTime, func from sqlalchemy.orm import relationship import enum from app.database import Base
[ 6738, 44161, 282, 26599, 1330, 29201, 11, 8708, 9218, 11, 34142, 11, 10903, 11, 2039, 388, 11, 48436, 11, 7536, 7575, 11, 25439, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 198, 11748, 33829, 198, 6738, 598, 13, 48806, 1330, 7308, 628, 628, 628, 198 ]
3.826087
46
# Embedded file name: c:\Jenkins\live\output\win_32_static\Release\midi-remote-scripts\Push\MelodicComponent.py from __future__ import with_statement from _Framework.Util import forward_property, find_if from _Framework.SubjectSlot import subject_slot from _Framework.ModesComponent import ModesComponent, LayerMode from MessageBoxComponent import Messenger from MatrixMaps import FEEDBACK_CHANNELS, NON_FEEDBACK_CHANNEL from InstrumentComponent import InstrumentComponent from NoteEditorComponent import NoteEditorComponent from PlayheadComponent import PlayheadComponent from MelodicPattern import pitch_index_to_string from LoopSelectorComponent import LoopSelectorComponent from NoteEditorPaginator import NoteEditorPaginator NUM_NOTE_EDITORS = 7
[ 2, 13302, 47238, 2393, 1438, 25, 269, 7479, 44875, 5331, 59, 12583, 59, 22915, 59, 5404, 62, 2624, 62, 12708, 59, 26362, 59, 13602, 72, 12, 47960, 12, 46521, 59, 49222, 59, 21102, 29512, 21950, 13, 9078, 198, 6738, 11593, 37443, 834, 1330, 351, 62, 26090, 198, 6738, 4808, 21055, 6433, 13, 18274, 346, 1330, 2651, 62, 26745, 11, 1064, 62, 361, 198, 6738, 4808, 21055, 6433, 13, 19776, 38963, 1330, 2426, 62, 43384, 198, 6738, 4808, 21055, 6433, 13, 44, 4147, 21950, 1330, 42082, 21950, 11, 34398, 19076, 198, 6738, 16000, 14253, 21950, 1330, 24306, 198, 6738, 24936, 47010, 1330, 18630, 1961, 31098, 62, 3398, 22846, 37142, 11, 44521, 62, 15112, 1961, 31098, 62, 3398, 22846, 3698, 198, 6738, 42410, 21950, 1330, 42410, 21950, 198, 6738, 5740, 17171, 21950, 1330, 5740, 17171, 21950, 198, 6738, 3811, 2256, 21950, 1330, 3811, 2256, 21950, 198, 6738, 5616, 29512, 47546, 1330, 7078, 62, 9630, 62, 1462, 62, 8841, 198, 6738, 26304, 17563, 273, 21950, 1330, 26304, 17563, 273, 21950, 198, 6738, 5740, 17171, 47, 363, 20900, 1330, 5740, 17171, 47, 363, 20900, 198, 41359, 62, 16580, 62, 24706, 20673, 796, 767 ]
3.968254
189
# MIT License # Copyright (c) 2021 xadrianzetx # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from enum import Enum
[ 2, 17168, 13789, 198, 198, 2, 15069, 357, 66, 8, 33448, 2124, 324, 4484, 89, 316, 87, 198, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 198, 6738, 33829, 1330, 2039, 388, 628, 628 ]
3.823729
295
import os import prody as pr # Manipulate rcsb file def organize_rcsb_file(workdir = "/mnt/e/DesignData/ligands/NI_rcsb/"): ''' The .csv files downloaded from rcsb database will be combined first, then generate tab deliminated txt file. ''' all_lines = [] for file in os.listdir(workdir): if file.endswith(".csv"): with open(workdir + file, 'r') as f: all_lines.extend(f.readlines()) with open(workdir + 'all_rcsb.txt', 'w') as f: f.write('\t'.join(all_lines[0].split(','))) for r in all_lines: if 'Entry ID' not in r and r.split(',')[0]!= '': f.write('\t'.join(r.split(','))) # download rcsb pdb files
[ 11748, 28686, 198, 11748, 386, 9892, 355, 778, 628, 198, 2, 35045, 5039, 374, 6359, 65, 2393, 198, 198, 4299, 16481, 62, 6015, 36299, 62, 7753, 7, 1818, 15908, 796, 12813, 76, 429, 14, 68, 14, 23067, 6601, 14, 4604, 1746, 14, 22125, 62, 6015, 36299, 30487, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 383, 764, 40664, 3696, 15680, 422, 374, 6359, 65, 6831, 481, 307, 5929, 717, 11, 220, 198, 220, 220, 220, 788, 7716, 7400, 46728, 3898, 256, 742, 2393, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 477, 62, 6615, 796, 17635, 198, 220, 220, 220, 329, 2393, 287, 28686, 13, 4868, 15908, 7, 1818, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 13, 437, 2032, 342, 7, 1911, 40664, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 1818, 15908, 1343, 2393, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 6615, 13, 2302, 437, 7, 69, 13, 961, 6615, 28955, 198, 220, 220, 220, 351, 1280, 7, 1818, 15908, 1343, 705, 439, 62, 6015, 36299, 13, 14116, 3256, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 59, 83, 4458, 22179, 7, 439, 62, 6615, 58, 15, 4083, 35312, 7, 41707, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 329, 374, 287, 477, 62, 6615, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 30150, 4522, 6, 407, 287, 374, 290, 374, 13, 35312, 7, 3256, 11537, 58, 15, 60, 0, 28, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 59, 83, 4458, 22179, 7, 81, 13, 35312, 7, 41707, 22305, 198, 198, 2, 4321, 374, 6359, 65, 279, 9945, 3696, 628 ]
2.159639
332
import os import json import boto3 REGION = 'us-east-2' session = boto3.session.Session(profile_name='sandbox') #iam = boto3.resource('iam', region_name=REGION) policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "ec2:DeleteVolume", "Resource": "arn:aws:ec2:us-east-2:xxxxx:volume/*" }, { "Effect": "Allow", "Action": "ec2:DeleteSnapshot", "Resource": "arn:aws:ec2:us-east-2:xxxxx:snapshot/*" }, { "Effect": "Allow", "Action": [ "ec2:DescribeInstances", "autoscaling:SetDesiredCapacity", "ssm:DescribeParameters", "autoscaling:DescribeAutoScalingGroups", "ec2:DescribeVolumes", "ec2:DescribeSnapshots" ], "Resource": "*" }, { "Effect": "Allow", "Action": "ssm:GetParameters", "Resource": "arn:aws:ssm:us-east-2:xxxxx:parameter/mysandbox/*" }, { "Effect": "Allow", "Action": "ssm:PutParameter", "Resource": "arn:aws:ssm:us-east-2:xxxxx:parameter/mysandbox/*" }, { "Effect": "Allow", "Action": [ "ec2:TerminateInstances", "ec2:StopInstances" ], "Resource": "arn:aws:ec2:us-east-2:xxxxx:instance/*" } ] } parameterRoot = '/AccountCleaner/' retentionDays = 7 ssm = session.client('ssm', region_name=REGION) ssm.put_parameter( Name=parameterRoot + 'retentionDays', Description='Days to retain snapsots', Value=str(retentionDays), Type='String', Overwrite=True) ssm.put_parameter( Name=parameterRoot + 'Enalbed', Description='Flag to turn off cleaner lambdas globally', Value='True', Type='String', Overwrite=True) ssm.put_parameter( Name=parameterRoot + 'DryRun', Description='Flag to turn dry run on for cleaner lambdas globally', Value='False', Type='String', Overwrite=True)
[ 11748, 28686, 198, 11748, 33918, 198, 11748, 275, 2069, 18, 198, 198, 31553, 2849, 796, 705, 385, 12, 23316, 12, 17, 6, 198, 198, 29891, 796, 275, 2069, 18, 13, 29891, 13, 36044, 7, 13317, 62, 3672, 11639, 38142, 3524, 11537, 198, 198, 2, 1789, 796, 275, 2069, 18, 13, 31092, 10786, 1789, 3256, 3814, 62, 3672, 28, 31553, 2849, 8, 198, 198, 30586, 796, 1391, 198, 220, 220, 220, 366, 14815, 1298, 366, 6999, 12, 940, 12, 1558, 1600, 198, 220, 220, 220, 366, 48682, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18610, 1298, 366, 35265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12502, 1298, 366, 721, 17, 25, 38727, 31715, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26198, 1298, 366, 1501, 25, 8356, 25, 721, 17, 25, 385, 12, 23316, 12, 17, 25, 12343, 87, 25, 29048, 15211, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18610, 1298, 366, 35265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12502, 1298, 366, 721, 17, 25, 38727, 43826, 9442, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26198, 1298, 366, 1501, 25, 8356, 25, 721, 17, 25, 385, 12, 23316, 12, 17, 25, 12343, 87, 25, 45380, 9442, 15211, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18610, 1298, 366, 35265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12502, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 721, 17, 25, 24564, 4892, 6310, 1817, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2306, 17500, 4272, 25, 7248, 5960, 1202, 15610, 4355, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 824, 76, 25, 24564, 4892, 48944, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2306, 17500, 4272, 25, 24564, 4892, 27722, 3351, 4272, 38, 14459, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 721, 17, 25, 24564, 4892, 16598, 8139, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 721, 17, 25, 24564, 4892, 43826, 20910, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26198, 1298, 366, 9, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18610, 1298, 366, 35265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12502, 1298, 366, 824, 76, 25, 3855, 48944, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26198, 1298, 366, 1501, 25, 8356, 25, 824, 76, 25, 385, 12, 23316, 12, 17, 25, 12343, 87, 25, 17143, 2357, 14, 28744, 392, 3524, 15211, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18610, 1298, 366, 35265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12502, 1298, 366, 824, 76, 25, 11588, 36301, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26198, 1298, 366, 1501, 25, 8356, 25, 824, 76, 25, 385, 12, 23316, 12, 17, 25, 12343, 87, 25, 17143, 2357, 14, 28744, 392, 3524, 15211, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18610, 1298, 366, 35265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12502, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 721, 17, 25, 44798, 378, 6310, 1817, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 721, 17, 25, 19485, 6310, 1817, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26198, 1298, 366, 1501, 25, 8356, 25, 721, 17, 25, 385, 12, 23316, 12, 17, 25, 12343, 87, 25, 39098, 15211, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 2361, 198, 92, 198, 198, 17143, 2357, 30016, 796, 31051, 30116, 32657, 263, 14, 6, 198, 1186, 1463, 38770, 796, 767, 198, 198, 824, 76, 796, 6246, 13, 16366, 10786, 824, 76, 3256, 3814, 62, 3672, 28, 31553, 2849, 8, 198, 824, 76, 13, 1996, 62, 17143, 2357, 7, 198, 220, 220, 220, 6530, 28, 17143, 2357, 30016, 1343, 705, 1186, 1463, 38770, 3256, 198, 220, 220, 220, 12489, 11639, 38770, 284, 12377, 23429, 1747, 3256, 198, 220, 220, 220, 11052, 28, 2536, 7, 1186, 1463, 38770, 828, 198, 220, 220, 220, 5994, 11639, 10100, 3256, 198, 220, 220, 220, 3827, 13564, 28, 17821, 8, 198, 198, 824, 76, 13, 1996, 62, 17143, 2357, 7, 198, 220, 220, 220, 6530, 28, 17143, 2357, 30016, 1343, 705, 4834, 282, 3077, 3256, 198, 220, 220, 220, 12489, 11639, 34227, 284, 1210, 572, 21723, 19343, 67, 292, 18309, 3256, 198, 220, 220, 220, 11052, 11639, 17821, 3256, 198, 220, 220, 220, 5994, 11639, 10100, 3256, 198, 220, 220, 220, 3827, 13564, 28, 17821, 8, 198, 198, 824, 76, 13, 1996, 62, 17143, 2357, 7, 198, 220, 220, 220, 6530, 28, 17143, 2357, 30016, 1343, 705, 35, 563, 10987, 3256, 198, 220, 220, 220, 12489, 11639, 34227, 284, 1210, 5894, 1057, 319, 329, 21723, 19343, 67, 292, 18309, 3256, 198, 220, 220, 220, 11052, 11639, 25101, 3256, 198, 220, 220, 220, 5994, 11639, 10100, 3256, 198, 220, 220, 220, 3827, 13564, 28, 17821, 8 ]
1.945603
1,103
""" Dauphin is wrapper module around graphene meant to provide a couple additional features. Most importantly is a type registry. Instead of referring to the class that corresponds to the GraphQL type everywhere, you are instead allows to use the GraphQL string. This solves an immediate short term problem in that it is quite irritating to manage dependencies in a graphql schema where the types refer to each other in cyclic fashion. Breaking up a schema into multiple files without this feature (Python has no notion of forward declarations) is difficult. Dauphin is meant to totally wrap graphene. That means if you are viewing a code sample online or within the graphene docs, one should be be able use dauphin.ChooseYourClass instead of graphene.ChooseYourClass. We also use dauphin as disintermediation layer between our application code and graphene in places where we want additional strictness or more convenient idioms. e.g. dauphin.non_null_list(dauphin.String) as opposed to graphene.NonNull(graphene.List(graphene.NonNull(graphene.String))) """ from functools import partial import graphene from graphene.types.definitions import GrapheneGraphQLType, GrapheneObjectType, GrapheneUnionType from graphene.types.enum import EnumMeta from graphene.types.generic import GenericScalar from graphene.types.typemap import TypeMap as GrapheneTypeMap from graphene.types.typemap import resolve_type from graphene.utils.subclass_with_meta import SubclassWithMeta_Meta from graphql.type.introspection import IntrospectionSchema GRAPHENE_TYPES = [ graphene.ObjectType, graphene.InputObjectType, graphene.Interface, graphene.Scalar, ] GRAPHENE_BUILT_IN = [ graphene.String, graphene.Int, graphene.Float, graphene.Boolean, graphene.ID, GenericScalar, ] # we change map to map_ in construct_union override because of collision with built-in # pylint: disable=W0221
[ 37811, 198, 35, 559, 746, 259, 318, 29908, 8265, 1088, 42463, 4001, 284, 2148, 257, 3155, 3224, 198, 40890, 13, 4042, 11003, 318, 257, 2099, 20478, 13, 5455, 286, 9759, 284, 198, 1169, 1398, 326, 24866, 284, 262, 29681, 9711, 2099, 8347, 11, 345, 389, 2427, 198, 47205, 284, 779, 262, 29681, 9711, 4731, 13, 770, 39107, 281, 7103, 1790, 3381, 1917, 198, 259, 326, 340, 318, 2407, 42010, 284, 6687, 20086, 287, 257, 4823, 13976, 32815, 198, 3003, 262, 3858, 3522, 284, 1123, 584, 287, 11700, 291, 6977, 13, 24942, 510, 257, 32815, 198, 20424, 3294, 3696, 1231, 428, 3895, 357, 37906, 468, 645, 9495, 286, 2651, 198, 32446, 24355, 8, 318, 2408, 13, 198, 198, 35, 559, 746, 259, 318, 4001, 284, 6635, 14441, 42463, 13, 1320, 1724, 611, 345, 389, 11681, 257, 2438, 198, 39873, 2691, 393, 1626, 262, 42463, 34165, 11, 530, 815, 307, 307, 1498, 779, 198, 67, 559, 746, 259, 13, 31851, 7120, 9487, 2427, 286, 42463, 13, 31851, 7120, 9487, 13, 198, 198, 1135, 635, 779, 288, 559, 746, 259, 355, 595, 3849, 2379, 341, 7679, 1022, 674, 3586, 2438, 290, 198, 70, 2416, 29473, 287, 4113, 810, 356, 765, 3224, 7646, 1108, 393, 517, 11282, 46205, 3150, 13, 198, 198, 68, 13, 70, 13, 198, 198, 67, 559, 746, 259, 13, 13159, 62, 8423, 62, 4868, 7, 67, 559, 746, 259, 13, 10100, 8, 198, 198, 292, 6886, 284, 198, 198, 70, 2416, 29473, 13, 15419, 35067, 7, 70, 2416, 29473, 13, 8053, 7, 70, 2416, 29473, 13, 15419, 35067, 7, 70, 2416, 29473, 13, 10100, 22305, 198, 198, 37811, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 11748, 42463, 198, 6738, 42463, 13, 19199, 13, 4299, 50101, 1330, 402, 2416, 29473, 37065, 9711, 6030, 11, 402, 2416, 29473, 10267, 6030, 11, 402, 2416, 29473, 38176, 6030, 198, 6738, 42463, 13, 19199, 13, 44709, 1330, 2039, 388, 48526, 198, 6738, 42463, 13, 19199, 13, 41357, 1330, 42044, 3351, 282, 283, 198, 6738, 42463, 13, 19199, 13, 28004, 368, 499, 1330, 5994, 13912, 355, 402, 2416, 29473, 6030, 13912, 198, 6738, 42463, 13, 19199, 13, 28004, 368, 499, 1330, 10568, 62, 4906, 198, 6738, 42463, 13, 26791, 13, 7266, 4871, 62, 4480, 62, 28961, 1330, 3834, 4871, 3152, 48526, 62, 48526, 198, 6738, 4823, 13976, 13, 4906, 13, 600, 305, 31308, 1330, 37219, 31308, 27054, 2611, 198, 198, 10761, 31300, 39267, 62, 9936, 47, 1546, 796, 685, 198, 220, 220, 220, 42463, 13, 10267, 6030, 11, 198, 220, 220, 220, 42463, 13, 20560, 10267, 6030, 11, 198, 220, 220, 220, 42463, 13, 39317, 11, 198, 220, 220, 220, 42463, 13, 3351, 282, 283, 11, 198, 60, 198, 198, 10761, 31300, 39267, 62, 19499, 4146, 51, 62, 1268, 796, 685, 198, 220, 220, 220, 42463, 13, 10100, 11, 198, 220, 220, 220, 42463, 13, 5317, 11, 198, 220, 220, 220, 42463, 13, 43879, 11, 198, 220, 220, 220, 42463, 13, 46120, 13087, 11, 198, 220, 220, 220, 42463, 13, 2389, 11, 198, 220, 220, 220, 42044, 3351, 282, 283, 11, 198, 60, 198, 198, 2, 356, 1487, 3975, 284, 3975, 62, 287, 5678, 62, 24592, 20957, 780, 286, 17661, 351, 3170, 12, 259, 198, 2, 279, 2645, 600, 25, 15560, 28, 54, 15, 26115, 628, 628, 628, 628, 628, 628, 628 ]
3.516423
548
#!python3.6 print("int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)) print("int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42))
[ 2, 0, 29412, 18, 13, 21, 198, 4798, 7203, 600, 25, 1391, 15, 25, 67, 19629, 220, 17910, 25, 1391, 15, 25, 87, 19629, 220, 19318, 25, 1391, 15, 25, 78, 19629, 220, 9874, 25, 1391, 15, 25, 65, 92, 1911, 18982, 7, 3682, 4008, 198, 4798, 7203, 600, 25, 1391, 15, 25, 67, 19629, 220, 17910, 25, 1391, 15, 43922, 87, 19629, 220, 19318, 25, 1391, 15, 43922, 78, 19629, 220, 9874, 25, 1391, 15, 43922, 65, 92, 1911, 18982, 7, 3682, 4008, 198 ]
1.823529
85
from flask import Flask, request from waitress import serve from src.config.appConfig import loadAppConfig from src.logs.loggerFactory import getFileLogger from src.services.smsSender import SmsApi # get application config appConf = loadAppConfig() # setup logging based on application config backUpCount = appConf["backUpCount"] fileRollingHrs = appConf["fileRollingHrs"] logFilePath = appConf["logFilePath"] logger = getFileLogger( "app_logger", logFilePath, backUpCount, fileRollingHrs) # create webhook server app = Flask(__name__) app.secret_key = appConf['flaskSecret'] app.logger = logger # initialize sms api sender with required parameters from application config smsApi = SmsApi(appConf["smsUsername"], appConf["smsPassword"], appConf["persons"], appConf["groups"]) @app.route('/') @app.route('/api/send-sms/<grpName>', methods=['POST']) if __name__ == '__main__': serverMode: str = appConf['mode'] if serverMode.lower() == 'd': app.run(host=appConf["flaskHost"], port=int( appConf["flaskPort"]), debug=True) else: serve(app, host=appConf["flaskHost"], port=int( appConf["flaskPort"]), threads=1)
[ 6738, 42903, 1330, 46947, 11, 2581, 198, 6738, 44511, 1330, 4691, 198, 198, 6738, 12351, 13, 11250, 13, 1324, 16934, 1330, 3440, 4677, 16934, 198, 6738, 12351, 13, 6404, 82, 13, 6404, 1362, 22810, 1330, 651, 8979, 11187, 1362, 198, 6738, 12351, 13, 30416, 13, 82, 907, 50, 2194, 1330, 311, 907, 32, 14415, 198, 198, 2, 651, 3586, 4566, 198, 1324, 18546, 796, 3440, 4677, 16934, 3419, 198, 198, 2, 9058, 18931, 1912, 319, 3586, 4566, 198, 1891, 4933, 12332, 796, 598, 18546, 14692, 1891, 4933, 12332, 8973, 198, 7753, 26869, 278, 39, 3808, 796, 598, 18546, 14692, 7753, 26869, 278, 39, 3808, 8973, 198, 6404, 8979, 15235, 796, 598, 18546, 14692, 6404, 8979, 15235, 8973, 198, 6404, 1362, 796, 651, 8979, 11187, 1362, 7, 198, 220, 220, 220, 366, 1324, 62, 6404, 1362, 1600, 2604, 8979, 15235, 11, 736, 4933, 12332, 11, 2393, 26869, 278, 39, 3808, 8, 198, 198, 2, 2251, 3992, 25480, 4382, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 21078, 62, 2539, 796, 598, 18546, 17816, 2704, 2093, 23725, 20520, 198, 1324, 13, 6404, 1362, 796, 49706, 198, 198, 2, 41216, 895, 82, 40391, 29788, 351, 2672, 10007, 422, 3586, 4566, 198, 82, 907, 32, 14415, 796, 311, 907, 32, 14415, 7, 1324, 18546, 14692, 82, 907, 5842, 13292, 33116, 598, 18546, 14692, 82, 907, 35215, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 18546, 14692, 19276, 684, 33116, 598, 18546, 14692, 24432, 8973, 8, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 15042, 14, 21280, 12, 82, 907, 14, 27, 2164, 79, 5376, 29, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4382, 19076, 25, 965, 796, 598, 18546, 17816, 14171, 20520, 198, 220, 220, 220, 611, 4382, 19076, 13, 21037, 3419, 6624, 705, 67, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 5143, 7, 4774, 28, 1324, 18546, 14692, 2704, 2093, 17932, 33116, 2493, 28, 600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 18546, 14692, 2704, 2093, 13924, 8973, 828, 14257, 28, 17821, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4691, 7, 1324, 11, 2583, 28, 1324, 18546, 14692, 2704, 2093, 17932, 33116, 2493, 28, 600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 18546, 14692, 2704, 2093, 13924, 8973, 828, 14390, 28, 16, 8, 198 ]
2.729358
436
import torch from torchvision import transforms, datasets from torch.utils.data import DataLoader device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') training_data = datasets.CIFAR10(root="data", train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ])) validation_data = datasets.CIFAR10(root="data", train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ])) #Hyper parameters batch_size = 128 d_lr = 2e-4 #learning rate of discriminator g_lr = 2e-4 #learning rate of generator epochs = 20 train_shape = training_data.data.shape[0] training_loader = DataLoader(training_data,batch_size=batch_size, shuffle=True,pin_memory=True) validation_loader = DataLoader(validation_data,batch_size=16,shuffle=True,pin_memory=True)
[ 11748, 28034, 201, 198, 6738, 28034, 10178, 1330, 31408, 11, 40522, 201, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 201, 198, 25202, 796, 28034, 13, 25202, 10786, 66, 15339, 6, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 705, 36166, 11537, 201, 198, 201, 198, 201, 198, 34409, 62, 7890, 796, 40522, 13, 34, 5064, 1503, 940, 7, 15763, 2625, 7890, 1600, 4512, 28, 17821, 11, 4321, 28, 17821, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 7645, 23914, 13, 7293, 577, 26933, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 26447, 1096, 19510, 15, 13, 20, 11, 15, 13, 20, 11, 15, 13, 20, 828, 357, 15, 13, 20, 11, 15, 13, 20, 11, 15, 13, 20, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 4008, 201, 198, 201, 198, 12102, 341, 62, 7890, 796, 40522, 13, 34, 5064, 1503, 940, 7, 15763, 2625, 7890, 1600, 4512, 28, 25101, 11, 4321, 28, 17821, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 7645, 23914, 13, 7293, 577, 26933, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 26447, 1096, 19510, 15, 13, 20, 11, 15, 13, 20, 11, 15, 13, 20, 828, 357, 15, 13, 20, 11, 15, 13, 20, 11, 15, 13, 20, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 4008, 201, 198, 201, 198, 2, 38197, 10007, 201, 198, 43501, 62, 7857, 796, 13108, 201, 198, 67, 62, 14050, 796, 362, 68, 12, 19, 1303, 40684, 2494, 286, 6534, 20900, 201, 198, 70, 62, 14050, 796, 362, 68, 12, 19, 1303, 40684, 2494, 286, 17301, 201, 198, 538, 5374, 82, 796, 1160, 201, 198, 201, 198, 27432, 62, 43358, 796, 3047, 62, 7890, 13, 7890, 13, 43358, 58, 15, 60, 201, 198, 34409, 62, 29356, 796, 6060, 17401, 7, 34409, 62, 7890, 11, 43501, 62, 7857, 28, 43501, 62, 7857, 11, 36273, 28, 17821, 11, 11635, 62, 31673, 28, 17821, 8, 201, 198, 12102, 341, 62, 29356, 796, 6060, 17401, 7, 12102, 341, 62, 7890, 11, 43501, 62, 7857, 28, 1433, 11, 1477, 18137, 28, 17821, 11, 11635, 62, 31673, 28, 17821, 8 ]
1.9408
625
# Copyright 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """helper.py This file defines a class to implement the various storage service operations on the lmdb file. """ import base64 import hashlib import lmdb import struct import time import pdo.common.keys as keys from pdo.service_client.storage import StorageException import logging logger = logging.getLogger(__name__) class BlockMetadata(object) : """Implements a wrapper for block metadata. """ minimum_expiration_time = 60 @classmethod class BlockStoreManager(object) : """Implements the storage service operations in a way that provides symmetry with the storage service client. """ map_size = 1 << 40 def __init__(self, block_store_file, service_keys = None, create_block_store=False) : """Initialize storage service class instance :param block_store_file string: name of the lmdb file used for block storage :param service_keys ServiceKeys: ECDSA keys used to sign storage contracts :param create_block_store boolean: flag to note that missing blockstore file should be created """ self.service_keys = service_keys if self.service_keys is None : self.service_keys = keys.ServiceKeys.create_service_keys() self.block_store_env = lmdb.open( block_store_file, create=create_block_store, max_dbs=2, subdir=False, sync=False, map_size=self.map_size) def close(self) : """Sync the database to disk and close the handles """ self.block_store_env.sync() self.block_store_env.close() self.block_store_env = None def get_service_info(self) : """Return useful information about the service :return dict: dictionary of information about the storage service """ return {'verifying_key' : self.service_keys.verifying_key } def list_blocks(self, encoding='b64') : """Return a list of all block identifiers currently stored in the database; mostly for debugging purposes :param encoding string: encoding to use for block identifiers, raw/b64 :return list of string: list of block identifiers """ encoding_fn = lambda x : x if encoding == 'b64' : encoding_fn = lambda x : base64.urlsafe_b64encode(x).decode() mdb = self.block_store_env.open_db(b'meta_data') block_ids = [] with self.block_store_env.begin() as txn : cursor = txn.cursor(db=mdb) for key, value in cursor : block_ids.append(encoding_fn(key)) return block_ids def get_block(self, block_id, encoding='b64') : """Return the data for a block given the hash of the block :param block_id string: block identifier :param encoding string: encoding to use for block identifiers, raw/b64 :return string: block data """ decoding_fn = lambda x : x if encoding == 'b64' : decoding_fn = lambda x : base64.urlsafe_b64decode(x) block_hash = decoding_fn(block_id) bdb = self.block_store_env.open_db(b'block_data') with self.block_store_env.begin() as txn : block_data = txn.get(block_hash, db=bdb) return block_data # return block_data_list def get_blocks(self, block_ids, encoding='b64') : """Return the data for a list of blocks """ # the iterator means that we don't have to use as much memory # for operations that can process the blocks one at a time return self.__block_iterator__(block_ids, encoding) def store_block(self, block_data, expiration=60, encoding='b64') : """Add a new data block to the store :param block_data string: binary content of the block :param encoding string: encoding to use for block identifiers, raw/b64 :return string: block identifier """ return self.store_blocks([block_data], expiration, encoding) def store_blocks(self, block_data_list, expiration=60, encoding='b64') : """Save a list of blocks in the store :param iterable block_data_list: iterable collection of blocks to store :param expiration int: number of seconds to use for expiration :param encoding string: encoding to use for block identifiers, raw/b64 :return list of string: list of block identifiers """ encoding_fn = lambda x : x if encoding == 'b64' : encoding_fn = lambda x : base64.urlsafe_b64encode(x).decode() current_time = int(time.time()) expiration_time = current_time + expiration mdb = self.block_store_env.open_db(b'meta_data') bdb = self.block_store_env.open_db(b'block_data') block_hashes = [] # this might keep the database locked for too long for a write transaction # might want to flip the order, one transaction per update with self.block_store_env.begin(write=True) as txn : for block_data in block_data_list : block_hash = hashlib.sha256(block_data).digest() block_hashes.append(block_hash) # need to check to see if the block already exists, if it # does then just extend the expiration time if necessary raw_metadata = txn.get(block_hash, db=mdb) if raw_metadata : metadata = BlockMetadata.unpack(raw_metadata) if expiration_time > metadata.expiration_time : metadata.expiration_time = expiration_time if not txn.put(block_hash, metadata.pack(), db=mdb, overwrite=True) : raise StorageException("failed to update metadata") continue # this is a new block that needs to be added metadata = BlockMetadata() metadata.block_size = len(block_data) metadata.create_time = current_time metadata.expiration_time = expiration_time metadata.mark = 0 if not txn.put(block_hash, metadata.pack(), db=mdb) : raise StorageException("failed to save metadata") if not txn.put(block_hash, block_data, db=bdb) : raise StorageException("failed to save block data") try : # going to just concatenate all hashes, safe since these are all fixed size signing_hash_accumulator = expiration.to_bytes(32, byteorder='big', signed=False) signing_hash_accumulator += b''.join(block_hashes) signing_hash = hashlib.sha256(signing_hash_accumulator).digest() signature = self.service_keys.sign(signing_hash, encoding=encoding) except Exception as e : logger.error("unknown exception packing response (BlockStatus); %s", str(e)) return StorageException('signature failed') result = dict() result['signature'] = signature result['block_ids'] = list(map(encoding_fn, block_hashes)) return result def check_blocks(self, block_ids, encoding='b64') : """Check status of a list of block :param block_ids list of string: block identifiers :param encoding string: encoding to use for block identifiers, raw/b64 :return list of dict: list of block status """ decoding_fn = lambda x : x if encoding == 'b64' : decoding_fn = lambda x : base64.urlsafe_b64decode(x) current_time = int(time.time()) mdb = self.block_store_env.open_db(b'meta_data') block_status_list = [] with self.block_store_env.begin() as txn : for block_id in block_ids : # use the input format for the output block identifier block_status = { 'block_id' : block_id, 'size' : 0, 'expiration' : 0 } block_hash = decoding_fn(block_id) raw_metadata = txn.get(block_hash, db=mdb) if raw_metadata : metadata = BlockMetadata.unpack(raw_metadata) block_status['size'] = metadata.block_size block_status['expiration'] = metadata.expiration_time - current_time if block_status['expiration'] < 0 : block_status['expiration'] = 0 block_status_list.append(block_status) return block_status_list def expire_blocks(self) : """Delete data and metadata for blocks that have expired """ try : mdb = self.block_store_env.open_db(b'meta_data') bdb = self.block_store_env.open_db(b'block_data') current_time = int(time.time()) count = 0 with self.block_store_env.begin() as txn : cursor = txn.cursor(db=mdb) for key, value in cursor : metadata = BlockMetadata.unpack(value) if metadata.expiration_time < current_time : logger.debug('expire block %s',base64.urlsafe_b64encode(key).decode()) count += 1 with self.block_store_env.begin(write=True) as dtxn : assert dtxn.delete(key, db=bdb) assert dtxn.delete(key, db=mdb) logger.info('expired %d blocks', count) except Exception as e : logger.error('garbage collection failed; %s', str(e)) return None return count
[ 2, 15069, 13130, 8180, 10501, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 2978, 525, 13, 9078, 198, 198, 1212, 2393, 15738, 257, 1398, 284, 3494, 262, 2972, 6143, 2139, 198, 3575, 602, 319, 262, 300, 9132, 65, 2393, 13, 198, 37811, 198, 198, 11748, 2779, 2414, 198, 11748, 12234, 8019, 198, 11748, 300, 9132, 65, 198, 11748, 2878, 198, 11748, 640, 198, 198, 11748, 279, 4598, 13, 11321, 13, 13083, 355, 8251, 198, 6738, 279, 4598, 13, 15271, 62, 16366, 13, 35350, 1330, 20514, 16922, 198, 198, 11748, 18931, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 4871, 9726, 9171, 14706, 7, 15252, 8, 1058, 198, 220, 220, 220, 37227, 3546, 1154, 902, 257, 29908, 329, 2512, 20150, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 5288, 62, 1069, 10514, 62, 2435, 796, 3126, 628, 220, 220, 220, 2488, 4871, 24396, 198, 198, 4871, 9726, 22658, 13511, 7, 15252, 8, 1058, 198, 220, 220, 220, 37227, 3546, 1154, 902, 262, 6143, 2139, 4560, 287, 257, 835, 326, 3769, 198, 220, 220, 220, 40686, 351, 262, 6143, 2139, 5456, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3975, 62, 7857, 796, 352, 9959, 2319, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2512, 62, 8095, 62, 7753, 11, 2139, 62, 13083, 796, 6045, 11, 2251, 62, 9967, 62, 8095, 28, 25101, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 6143, 2139, 1398, 4554, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2512, 62, 8095, 62, 7753, 4731, 25, 1438, 286, 262, 300, 9132, 65, 2393, 973, 329, 2512, 6143, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2139, 62, 13083, 4809, 40729, 25, 412, 8610, 4090, 8251, 973, 284, 1051, 6143, 8592, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2251, 62, 9967, 62, 8095, 25131, 25, 6056, 284, 3465, 326, 4814, 2512, 8095, 2393, 815, 307, 2727, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15271, 62, 13083, 796, 2139, 62, 13083, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 15271, 62, 13083, 318, 6045, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15271, 62, 13083, 796, 8251, 13, 16177, 40729, 13, 17953, 62, 15271, 62, 13083, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9967, 62, 8095, 62, 24330, 796, 300, 9132, 65, 13, 9654, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 8095, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 28, 17953, 62, 9967, 62, 8095, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 67, 1443, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 15908, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17510, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 7857, 28, 944, 13, 8899, 62, 7857, 8, 628, 220, 220, 220, 825, 1969, 7, 944, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 28985, 262, 6831, 284, 11898, 290, 1969, 262, 17105, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 27261, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9967, 62, 8095, 62, 24330, 796, 6045, 628, 220, 220, 220, 825, 651, 62, 15271, 62, 10951, 7, 944, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 4465, 1321, 546, 262, 2139, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 8633, 25, 22155, 286, 1321, 546, 262, 6143, 2139, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 332, 4035, 62, 2539, 6, 1058, 2116, 13, 15271, 62, 13083, 13, 332, 4035, 62, 2539, 1782, 628, 220, 220, 220, 825, 1351, 62, 27372, 7, 944, 11, 21004, 11639, 65, 2414, 11537, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 1351, 286, 477, 2512, 42814, 3058, 198, 220, 220, 220, 220, 220, 220, 220, 8574, 287, 262, 6831, 26, 4632, 329, 28769, 4959, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21004, 4731, 25, 21004, 284, 779, 329, 2512, 42814, 11, 8246, 14, 65, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 1351, 286, 4731, 25, 1351, 286, 2512, 42814, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 22184, 796, 37456, 2124, 1058, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21004, 6624, 705, 65, 2414, 6, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 22184, 796, 37456, 2124, 1058, 2779, 2414, 13, 6371, 21230, 62, 65, 2414, 268, 8189, 7, 87, 737, 12501, 1098, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 285, 9945, 796, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 9654, 62, 9945, 7, 65, 1101, 17167, 62, 7890, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 2340, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 27471, 3419, 355, 27765, 77, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23493, 796, 27765, 77, 13, 66, 21471, 7, 9945, 28, 9132, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 23493, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 2340, 13, 33295, 7, 12685, 7656, 62, 22184, 7, 2539, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2512, 62, 2340, 628, 220, 220, 220, 825, 651, 62, 9967, 7, 944, 11, 2512, 62, 312, 11, 21004, 11639, 65, 2414, 11537, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1366, 329, 257, 2512, 1813, 262, 12234, 286, 262, 2512, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2512, 62, 312, 4731, 25, 2512, 27421, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21004, 4731, 25, 21004, 284, 779, 329, 2512, 42814, 11, 8246, 14, 65, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 4731, 25, 2512, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 39938, 62, 22184, 796, 37456, 2124, 1058, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21004, 6624, 705, 65, 2414, 6, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39938, 62, 22184, 796, 37456, 2124, 1058, 2779, 2414, 13, 6371, 21230, 62, 65, 2414, 12501, 1098, 7, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 17831, 796, 39938, 62, 22184, 7, 9967, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 9945, 796, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 9654, 62, 9945, 7, 65, 6, 9967, 62, 7890, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 27471, 3419, 355, 27765, 77, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 7890, 796, 27765, 77, 13, 1136, 7, 9967, 62, 17831, 11, 20613, 28, 65, 9945, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2512, 62, 7890, 628, 220, 220, 220, 1303, 1441, 2512, 62, 7890, 62, 4868, 628, 220, 220, 220, 825, 651, 62, 27372, 7, 944, 11, 2512, 62, 2340, 11, 21004, 11639, 65, 2414, 11537, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1366, 329, 257, 1351, 286, 7021, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 41313, 1724, 326, 356, 836, 470, 423, 284, 779, 355, 881, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 4560, 326, 460, 1429, 262, 7021, 530, 379, 257, 640, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 9967, 62, 48727, 834, 7, 9967, 62, 2340, 11, 21004, 8, 628, 220, 220, 220, 825, 3650, 62, 9967, 7, 944, 11, 2512, 62, 7890, 11, 28385, 28, 1899, 11, 21004, 11639, 65, 2414, 11537, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 649, 1366, 2512, 284, 262, 3650, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2512, 62, 7890, 4731, 25, 13934, 2695, 286, 262, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21004, 4731, 25, 21004, 284, 779, 329, 2512, 42814, 11, 8246, 14, 65, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 4731, 25, 2512, 27421, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 8095, 62, 27372, 26933, 9967, 62, 7890, 4357, 28385, 11, 21004, 8, 628, 220, 220, 220, 825, 3650, 62, 27372, 7, 944, 11, 2512, 62, 7890, 62, 4868, 11, 28385, 28, 1899, 11, 21004, 11639, 65, 2414, 11537, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16928, 257, 1351, 286, 7021, 287, 262, 3650, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 11629, 540, 2512, 62, 7890, 62, 4868, 25, 11629, 540, 4947, 286, 7021, 284, 3650, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 28385, 493, 25, 1271, 286, 4201, 284, 779, 329, 28385, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21004, 4731, 25, 21004, 284, 779, 329, 2512, 42814, 11, 8246, 14, 65, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 1351, 286, 4731, 25, 1351, 286, 2512, 42814, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 22184, 796, 37456, 2124, 1058, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21004, 6624, 705, 65, 2414, 6, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 22184, 796, 37456, 2124, 1058, 2779, 2414, 13, 6371, 21230, 62, 65, 2414, 268, 8189, 7, 87, 737, 12501, 1098, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 2435, 796, 493, 7, 2435, 13, 2435, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 796, 1459, 62, 2435, 1343, 28385, 628, 220, 220, 220, 220, 220, 220, 220, 285, 9945, 796, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 9654, 62, 9945, 7, 65, 1101, 17167, 62, 7890, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 275, 9945, 796, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 9654, 62, 9945, 7, 65, 6, 9967, 62, 7890, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 71, 7465, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 1244, 1394, 262, 6831, 8970, 329, 1165, 890, 329, 257, 3551, 8611, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1244, 765, 284, 14283, 262, 1502, 11, 530, 8611, 583, 4296, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 27471, 7, 13564, 28, 17821, 8, 355, 27765, 77, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2512, 62, 7890, 287, 2512, 62, 7890, 62, 4868, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 17831, 796, 12234, 8019, 13, 26270, 11645, 7, 9967, 62, 7890, 737, 12894, 395, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 71, 7465, 13, 33295, 7, 9967, 62, 17831, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 761, 284, 2198, 284, 766, 611, 262, 2512, 1541, 7160, 11, 611, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 857, 788, 655, 9117, 262, 28385, 640, 611, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 38993, 796, 27765, 77, 13, 1136, 7, 9967, 62, 17831, 11, 20613, 28, 9132, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8246, 62, 38993, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 796, 9726, 9171, 14706, 13, 403, 8002, 7, 1831, 62, 38993, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28385, 62, 2435, 1875, 20150, 13, 1069, 10514, 62, 2435, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 1069, 10514, 62, 2435, 796, 28385, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 27765, 77, 13, 1996, 7, 9967, 62, 17831, 11, 20150, 13, 8002, 22784, 20613, 28, 9132, 65, 11, 49312, 28, 17821, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20514, 16922, 7203, 47904, 284, 4296, 20150, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 318, 257, 649, 2512, 326, 2476, 284, 307, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 796, 9726, 9171, 14706, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 9967, 62, 7857, 796, 18896, 7, 9967, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 17953, 62, 2435, 796, 1459, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 1069, 10514, 62, 2435, 796, 28385, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 13, 4102, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 27765, 77, 13, 1996, 7, 9967, 62, 17831, 11, 20150, 13, 8002, 22784, 20613, 28, 9132, 65, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20514, 16922, 7203, 47904, 284, 3613, 20150, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 27765, 77, 13, 1996, 7, 9967, 62, 17831, 11, 2512, 62, 7890, 11, 20613, 28, 65, 9945, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20514, 16922, 7203, 47904, 284, 3613, 2512, 1366, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1016, 284, 655, 1673, 36686, 378, 477, 46621, 11, 3338, 1201, 777, 389, 477, 5969, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 17831, 62, 4134, 388, 8927, 796, 28385, 13, 1462, 62, 33661, 7, 2624, 11, 18022, 2875, 11639, 14261, 3256, 4488, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 17831, 62, 4134, 388, 8927, 15853, 275, 35384, 22179, 7, 9967, 62, 71, 7465, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 17831, 796, 12234, 8019, 13, 26270, 11645, 7, 12683, 278, 62, 17831, 62, 4134, 388, 8927, 737, 12894, 395, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9877, 796, 2116, 13, 15271, 62, 13083, 13, 12683, 7, 12683, 278, 62, 17831, 11, 21004, 28, 12685, 7656, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 34680, 6631, 24157, 2882, 357, 12235, 19580, 1776, 4064, 82, 1600, 965, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 20514, 16922, 10786, 12683, 1300, 4054, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 17816, 12683, 1300, 20520, 796, 9877, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 17816, 9967, 62, 2340, 20520, 796, 1351, 7, 8899, 7, 12685, 7656, 62, 22184, 11, 2512, 62, 71, 7465, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 2198, 62, 27372, 7, 944, 11, 2512, 62, 2340, 11, 21004, 11639, 65, 2414, 11537, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 3722, 286, 257, 1351, 286, 2512, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2512, 62, 2340, 1351, 286, 4731, 25, 2512, 42814, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21004, 4731, 25, 21004, 284, 779, 329, 2512, 42814, 11, 8246, 14, 65, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 1351, 286, 8633, 25, 1351, 286, 2512, 3722, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 39938, 62, 22184, 796, 37456, 2124, 1058, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21004, 6624, 705, 65, 2414, 6, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39938, 62, 22184, 796, 37456, 2124, 1058, 2779, 2414, 13, 6371, 21230, 62, 65, 2414, 12501, 1098, 7, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 2435, 796, 493, 7, 2435, 13, 2435, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 285, 9945, 796, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 9654, 62, 9945, 7, 65, 1101, 17167, 62, 7890, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 13376, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 27471, 3419, 355, 27765, 77, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2512, 62, 312, 287, 2512, 62, 2340, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 262, 5128, 5794, 329, 262, 5072, 2512, 27421, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 13376, 796, 1391, 705, 9967, 62, 312, 6, 1058, 2512, 62, 312, 11, 705, 7857, 6, 1058, 657, 11, 705, 1069, 10514, 6, 1058, 657, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 17831, 796, 39938, 62, 22184, 7, 9967, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 38993, 796, 27765, 77, 13, 1136, 7, 9967, 62, 17831, 11, 20613, 28, 9132, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8246, 62, 38993, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 796, 9726, 9171, 14706, 13, 403, 8002, 7, 1831, 62, 38993, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 13376, 17816, 7857, 20520, 796, 20150, 13, 9967, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 13376, 17816, 1069, 10514, 20520, 796, 20150, 13, 1069, 10514, 62, 2435, 532, 1459, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2512, 62, 13376, 17816, 1069, 10514, 20520, 1279, 657, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 13376, 17816, 1069, 10514, 20520, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 13376, 62, 4868, 13, 33295, 7, 9967, 62, 13376, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2512, 62, 13376, 62, 4868, 628, 220, 220, 220, 825, 24264, 62, 27372, 7, 944, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 1366, 290, 20150, 329, 7021, 326, 423, 21350, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 9945, 796, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 9654, 62, 9945, 7, 65, 1101, 17167, 62, 7890, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 9945, 796, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 9654, 62, 9945, 7, 65, 6, 9967, 62, 7890, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 2435, 796, 493, 7, 2435, 13, 2435, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 27471, 3419, 355, 27765, 77, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23493, 796, 27765, 77, 13, 66, 21471, 7, 9945, 28, 9132, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 23493, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 796, 9726, 9171, 14706, 13, 403, 8002, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20150, 13, 1069, 10514, 62, 2435, 1279, 1459, 62, 2435, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 1069, 5111, 2512, 4064, 82, 3256, 8692, 2414, 13, 6371, 21230, 62, 65, 2414, 268, 8189, 7, 2539, 737, 12501, 1098, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 9967, 62, 8095, 62, 24330, 13, 27471, 7, 13564, 28, 17821, 8, 355, 288, 17602, 77, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 288, 17602, 77, 13, 33678, 7, 2539, 11, 20613, 28, 65, 9945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 288, 17602, 77, 13, 33678, 7, 2539, 11, 20613, 28, 9132, 65, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 1069, 6474, 4064, 67, 7021, 3256, 954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 10786, 4563, 13866, 4947, 4054, 26, 4064, 82, 3256, 965, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 954, 198 ]
2.37895
4,304
import pymc as pm import pymc.gp as gp from pymc.gp.cov_funs import matern import numpy as np import matplotlib.pyplot as pl from numpy.random import normal x = np.arange(-1.,1.,.1) # Prior parameters of C diff_degree = pm.Uniform('diff_degree', .1, 3) amp = pm.Lognormal('amp', mu=.4, tau=1.) scale = pm.Lognormal('scale', mu=.5, tau=1.) # The covariance dtrm C is valued as a Covariance object. @pm.deterministic # Prior parameters of M a = pm.Normal('a', mu=1., tau=1.) b = pm.Normal('b', mu=.5, tau=1.) c = pm.Normal('c', mu=2., tau=1.) # The mean M is valued as a Mean object. @pm.deterministic # The GP itself fmesh = np.linspace(-np.pi/3.3,np.pi/3.3,4) f = gp.GP(name="f", M=M, C=C, mesh=fmesh, init_mesh_vals = 0.*fmesh) # Observation precision # V = Gamma('V', alpha=3., beta=3./.002, value=.002) V = .0001 # The data d is just array-valued. It's normally distributed about GP.f(obs_x). @pm.observed @pm.stochastic def d(value=np.random.normal(size=len(fmesh)), mu=f, V=V): """ Data """ mu_eval = mu(fmesh) return pm.flib.normal(value, mu_eval, 1./V)
[ 11748, 279, 4948, 66, 355, 9114, 198, 11748, 279, 4948, 66, 13, 31197, 355, 27809, 198, 6738, 279, 4948, 66, 13, 31197, 13, 66, 709, 62, 12543, 82, 1330, 285, 9205, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 198, 198, 6738, 299, 32152, 13, 25120, 1330, 3487, 628, 198, 198, 87, 796, 45941, 13, 283, 858, 32590, 16, 1539, 16, 1539, 13, 16, 8, 198, 198, 2, 14481, 10007, 286, 327, 198, 26069, 62, 16863, 796, 9114, 13, 3118, 6933, 10786, 26069, 62, 16863, 3256, 764, 16, 11, 513, 8, 198, 696, 796, 9114, 13, 43, 2360, 6636, 10786, 696, 3256, 38779, 28, 13, 19, 11, 256, 559, 28, 16, 2014, 198, 9888, 796, 9114, 13, 43, 2360, 6636, 10786, 9888, 3256, 38779, 28, 13, 20, 11, 256, 559, 28, 16, 2014, 198, 198, 2, 383, 44829, 590, 288, 2213, 76, 327, 318, 17560, 355, 257, 39751, 2743, 590, 2134, 13, 198, 31, 4426, 13, 67, 2357, 49228, 628, 198, 2, 14481, 10007, 286, 337, 198, 64, 796, 9114, 13, 26447, 10786, 64, 3256, 38779, 28, 16, 1539, 256, 559, 28, 16, 2014, 198, 65, 796, 9114, 13, 26447, 10786, 65, 3256, 38779, 28, 13, 20, 11, 256, 559, 28, 16, 2014, 198, 66, 796, 9114, 13, 26447, 10786, 66, 3256, 38779, 28, 17, 1539, 256, 559, 28, 16, 2014, 198, 198, 2, 383, 1612, 337, 318, 17560, 355, 257, 22728, 2134, 13, 198, 31, 4426, 13, 67, 2357, 49228, 628, 198, 2, 383, 14714, 2346, 198, 38353, 5069, 796, 45941, 13, 21602, 10223, 32590, 37659, 13, 14415, 14, 18, 13, 18, 11, 37659, 13, 14415, 14, 18, 13, 18, 11, 19, 8, 198, 69, 796, 27809, 13, 16960, 7, 3672, 2625, 69, 1600, 337, 28, 44, 11, 327, 28, 34, 11, 19609, 28, 38353, 5069, 11, 2315, 62, 76, 5069, 62, 12786, 796, 657, 15885, 38353, 5069, 8, 628, 198, 2, 11086, 13208, 15440, 198, 2, 569, 796, 43595, 10786, 53, 3256, 17130, 28, 18, 1539, 12159, 28, 18, 13, 11757, 21601, 11, 1988, 28, 13, 21601, 8, 198, 53, 796, 764, 18005, 198, 198, 2, 383, 1366, 288, 318, 655, 7177, 12, 39728, 13, 632, 338, 7685, 9387, 546, 14714, 13, 69, 7, 8158, 62, 87, 737, 198, 31, 4426, 13, 672, 45852, 198, 31, 4426, 13, 301, 5374, 3477, 198, 4299, 288, 7, 8367, 28, 37659, 13, 25120, 13, 11265, 7, 7857, 28, 11925, 7, 38353, 5069, 36911, 38779, 28, 69, 11, 569, 28, 53, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6060, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38779, 62, 18206, 796, 38779, 7, 38353, 5069, 8, 198, 220, 220, 220, 1441, 9114, 13, 2704, 571, 13, 11265, 7, 8367, 11, 38779, 62, 18206, 11, 352, 19571, 53, 8, 198 ]
2.332623
469
import maxflow # Create a graph with integer capacities. g = maxflow.Graph[int](2, 2) # Add two (non-terminal) nodes. Get the index to the first one. nodes = g.add_nodes(2) # Create two edges (forwards and backwards) with the given capacities. # The indices of the nodes are always consecutive. g.add_edge(nodes[0], nodes[1], 1, 2) # Set the capacities of the terminal edges... # ...for the first node. g.add_tedge(nodes[0], 2, 5) # ...for the second node. g.add_tedge(nodes[1], 9, 4) # Find the maxflow. flow = g.maxflow() print("Maximum flow: {}".format(flow)) # Print the segment of each node. print("Segment of the node 0: {}".format(g.get_segment(nodes[0]))) print("Segment of the node 1: {}".format(g.get_segment(nodes[1])))
[ 11748, 3509, 11125, 198, 198, 2, 13610, 257, 4823, 351, 18253, 32484, 13, 198, 70, 796, 3509, 11125, 13, 37065, 58, 600, 16151, 17, 11, 362, 8, 198, 2, 3060, 734, 357, 13159, 12, 23705, 282, 8, 13760, 13, 3497, 262, 6376, 284, 262, 717, 530, 13, 198, 77, 4147, 796, 308, 13, 2860, 62, 77, 4147, 7, 17, 8, 198, 2, 13610, 734, 13015, 357, 1640, 2017, 290, 16196, 8, 351, 262, 1813, 32484, 13, 198, 2, 383, 36525, 286, 262, 13760, 389, 1464, 12785, 13, 198, 70, 13, 2860, 62, 14907, 7, 77, 4147, 58, 15, 4357, 13760, 58, 16, 4357, 352, 11, 362, 8, 198, 2, 5345, 262, 32484, 286, 262, 12094, 13015, 986, 198, 2, 2644, 1640, 262, 717, 10139, 13, 198, 70, 13, 2860, 62, 1513, 469, 7, 77, 4147, 58, 15, 4357, 362, 11, 642, 8, 198, 2, 2644, 1640, 262, 1218, 10139, 13, 198, 70, 13, 2860, 62, 1513, 469, 7, 77, 4147, 58, 16, 4357, 860, 11, 604, 8, 198, 198, 2, 9938, 262, 3509, 11125, 13, 198, 11125, 796, 308, 13, 9806, 11125, 3419, 198, 4798, 7203, 40541, 5202, 25, 23884, 1911, 18982, 7, 11125, 4008, 198, 198, 2, 12578, 262, 10618, 286, 1123, 10139, 13, 198, 4798, 7203, 41030, 434, 286, 262, 10139, 657, 25, 23884, 1911, 18982, 7, 70, 13, 1136, 62, 325, 5154, 7, 77, 4147, 58, 15, 60, 22305, 198, 4798, 7203, 41030, 434, 286, 262, 10139, 352, 25, 23884, 1911, 18982, 7, 70, 13, 1136, 62, 325, 5154, 7, 77, 4147, 58, 16, 60, 22305, 198 ]
2.823077
260
#!/usr/bin/env python """ Analyze FRC data. Hazen 01/18 """ import glob import storm_analysis.frc.frc_calc2d as frcCalc2d dirs = sorted(glob.glob("test*")) total_time = 0.0 for a_dir in dirs: print() print("Analyzing:", a_dir) print() hdf5 = a_dir + "/test.hdf5" frc_text = a_dir + "/frc.txt" # Run FRC analysis. frcCalc2d.frcCalc2d(hdf5, frc_text) print()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 37702, 2736, 376, 7397, 1366, 13, 198, 198, 39, 1031, 268, 5534, 14, 1507, 198, 37811, 198, 11748, 15095, 198, 198, 11748, 6388, 62, 20930, 13, 69, 6015, 13, 69, 6015, 62, 9948, 66, 17, 67, 355, 1216, 66, 9771, 66, 17, 67, 198, 198, 15908, 82, 796, 23243, 7, 4743, 672, 13, 4743, 672, 7203, 9288, 9, 48774, 198, 23350, 62, 2435, 796, 657, 13, 15, 198, 1640, 257, 62, 15908, 287, 288, 17062, 25, 198, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 3601, 7203, 37702, 9510, 25, 1600, 257, 62, 15908, 8, 198, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 289, 7568, 20, 796, 257, 62, 15908, 1343, 12813, 9288, 13, 71, 7568, 20, 1, 198, 220, 220, 220, 1216, 66, 62, 5239, 796, 257, 62, 15908, 1343, 12813, 69, 6015, 13, 14116, 1, 628, 220, 220, 220, 1303, 5660, 376, 7397, 3781, 13, 198, 220, 220, 220, 1216, 66, 9771, 66, 17, 67, 13, 69, 6015, 9771, 66, 17, 67, 7, 71, 7568, 20, 11, 1216, 66, 62, 5239, 8, 198, 198, 4798, 3419, 198 ]
1.994949
198