content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import pickle from firebase import firebase import pyautogui import time firebase = firebase.FirebaseApplication('https://sleep-tight-8a6df.firebaseio.com/', None) id2 = pickle.load(open("chrome","rb")) X = firebase.get('/sleep-tight-8a6df/Chrome/'+ str(id2) , 'CX' ) Y = firebase.get('/sleep-tight-8a6df/Chrome/'+ str(id2) , 'CY' ) pyautogui.click(X, Y) time.sleep(5) pyautogui.write('https://cuchd.blackboard.com/ultra/course') pyautogui.keyDown('enter') time.sleep(10) id2 = pickle.load(open("sign","rb")) X = firebase.get('/sleep-tight-8a6df/signin/'+ str(id2) , 'SX' ) Y = firebase.get('/sleep-tight-8a6df/signin/'+ str(id2) , 'SY' ) pyautogui.click(X, Y) time.sleep(15) st = "ELT" i = pickle.load(open(st,"rb")) saq = int(i) space(saq) slass(st) pyautogui.alert('After clicking ok move your mouse on join session and wait for another prompt.') time.sleep(5) currentMouseX, currentMouseY = pyautogui.position() pyautogui.alert('Done!!!') time.sleep(2) pyautogui.click(currentMouseX, currentMouseY) data = { 'X': currentMouseX, 'Y': currentMouseY } result = firebase.post('/sleep-tight-8a6df/jssion/',data) final = ''.join(key + str(val) for key, val in result.items()) data = str(final) proxy = data[4:24] pickle.dump(proxy, open("jesi","wb")) pyautogui.alert('After clicking ok move your mouse on course room and wait for another prompt.') time.sleep(4) currentMouseX, currentMouseY = pyautogui.position() pyautogui.alert('Done!!!') time.sleep(2) data = { 'X': currentMouseX, 'Y': currentMouseY } result = firebase.post('/sleep-tight-8a6df/jssion1/',data) final = ''.join(key + str(val) for key, val in result.items()) data = str(final) proxy = data[4:24] pickle.dump(proxy, open("jesin","wb")) pyautogui.alert('Now Run tropy.py using the command given in github README.md file.')
[ 11748, 2298, 293, 198, 6738, 2046, 8692, 1330, 2046, 8692, 198, 11748, 12972, 2306, 519, 9019, 198, 11748, 640, 198, 198, 6495, 8692, 796, 2046, 8692, 13, 13543, 8692, 23416, 10786, 5450, 1378, 42832, 12, 33464, 12, 23, 64, 21, 7568, 13, 6495, 8692, 952, 13, 785, 14, 3256, 6045, 8, 628, 198, 312, 17, 796, 2298, 293, 13, 2220, 7, 9654, 7203, 46659, 2430, 26145, 48774, 198, 55, 796, 2046, 8692, 13, 1136, 10786, 14, 42832, 12, 33464, 12, 23, 64, 21, 7568, 14, 1925, 5998, 14, 6, 10, 965, 7, 312, 17, 8, 837, 705, 34, 55, 6, 1267, 198, 56, 796, 2046, 8692, 13, 1136, 10786, 14, 42832, 12, 33464, 12, 23, 64, 21, 7568, 14, 1925, 5998, 14, 6, 10, 965, 7, 312, 17, 8, 837, 705, 34, 56, 6, 1267, 198, 9078, 2306, 519, 9019, 13, 12976, 7, 55, 11, 575, 8, 198, 198, 2435, 13, 42832, 7, 20, 8, 198, 9078, 2306, 519, 9019, 13, 13564, 10786, 5450, 1378, 66, 794, 67, 13, 13424, 3526, 13, 785, 14, 586, 430, 14, 17319, 11537, 198, 9078, 2306, 519, 9019, 13, 2539, 8048, 10786, 9255, 11537, 198, 198, 2435, 13, 42832, 7, 940, 8, 198, 312, 17, 796, 2298, 293, 13, 2220, 7, 9654, 7203, 12683, 2430, 26145, 48774, 198, 55, 796, 2046, 8692, 13, 1136, 10786, 14, 42832, 12, 33464, 12, 23, 64, 21, 7568, 14, 12683, 259, 14, 6, 10, 965, 7, 312, 17, 8, 837, 705, 50, 55, 6, 1267, 198, 56, 796, 2046, 8692, 13, 1136, 10786, 14, 42832, 12, 33464, 12, 23, 64, 21, 7568, 14, 12683, 259, 14, 6, 10, 965, 7, 312, 17, 8, 837, 705, 23060, 6, 1267, 198, 9078, 2306, 519, 9019, 13, 12976, 7, 55, 11, 575, 8, 198, 198, 2435, 13, 42832, 7, 1314, 8, 198, 198, 301, 796, 366, 3698, 51, 1, 198, 72, 796, 2298, 293, 13, 2220, 7, 9654, 7, 301, 553, 26145, 48774, 198, 11400, 80, 796, 493, 7, 72, 8, 198, 13200, 7, 11400, 80, 8, 198, 6649, 562, 7, 301, 8, 198, 198, 9078, 2306, 519, 9019, 13, 44598, 10786, 3260, 12264, 12876, 1445, 534, 10211, 319, 4654, 6246, 290, 4043, 329, 1194, 6152, 2637, 8, 198, 2435, 13, 42832, 7, 20, 8, 198, 14421, 39643, 55, 11, 1459, 39643, 56, 796, 12972, 2306, 519, 9019, 13, 9150, 3419, 628, 198, 9078, 2306, 519, 9019, 13, 44598, 10786, 45677, 10185, 11537, 198, 2435, 13, 42832, 7, 17, 8, 198, 9078, 2306, 519, 9019, 13, 12976, 7, 14421, 39643, 55, 11, 1459, 39643, 56, 8, 198, 198, 7890, 796, 220, 1391, 220, 198, 220, 220, 220, 705, 55, 10354, 1459, 39643, 55, 11, 198, 220, 220, 220, 705, 56, 10354, 1459, 39643, 56, 198, 220, 220, 220, 1782, 198, 20274, 796, 2046, 8692, 13, 7353, 10786, 14, 42832, 12, 33464, 12, 23, 64, 21, 7568, 14, 73, 824, 295, 14, 3256, 7890, 8, 198, 20311, 796, 705, 4458, 22179, 7, 2539, 1343, 965, 7, 2100, 8, 329, 1994, 11, 1188, 287, 1255, 13, 23814, 28955, 198, 7890, 796, 965, 7, 20311, 8, 198, 36436, 796, 1366, 58, 19, 25, 1731, 60, 198, 27729, 293, 13, 39455, 7, 36436, 11, 1280, 7203, 73, 46551, 2430, 39346, 48774, 628, 198, 198, 9078, 2306, 519, 9019, 13, 44598, 10786, 3260, 12264, 12876, 1445, 534, 10211, 319, 1781, 2119, 290, 4043, 329, 1194, 6152, 2637, 8, 198, 2435, 13, 42832, 7, 19, 8, 198, 14421, 39643, 55, 11, 1459, 39643, 56, 796, 12972, 2306, 519, 9019, 13, 9150, 3419, 628, 198, 9078, 2306, 519, 9019, 13, 44598, 10786, 45677, 10185, 11537, 198, 2435, 13, 42832, 7, 17, 8, 198, 198, 7890, 796, 220, 1391, 220, 198, 220, 220, 220, 705, 55, 10354, 1459, 39643, 55, 11, 198, 220, 220, 220, 705, 56, 10354, 1459, 39643, 56, 198, 220, 220, 220, 1782, 198, 20274, 796, 2046, 8692, 13, 7353, 10786, 14, 42832, 12, 33464, 12, 23, 64, 21, 7568, 14, 73, 824, 295, 16, 14, 3256, 7890, 8, 198, 20311, 796, 705, 4458, 22179, 7, 2539, 1343, 965, 7, 2100, 8, 329, 1994, 11, 1188, 287, 1255, 13, 23814, 28955, 198, 7890, 796, 965, 7, 20311, 8, 198, 36436, 796, 1366, 58, 19, 25, 1731, 60, 198, 27729, 293, 13, 39455, 7, 36436, 11, 1280, 7203, 73, 274, 259, 2430, 39346, 48774, 198, 9078, 2306, 519, 9019, 13, 44598, 10786, 3844, 5660, 14673, 88, 13, 9078, 1262, 262, 3141, 1813, 287, 33084, 20832, 11682, 13, 9132, 2393, 2637, 8 ]
2.461022
744
import pytest _EXPECTED = { "data": { "dog": { "name": "Dog", "nickname": "Doggo", "barkVolume": 2, "doesKnowCommand": True, "isHousetrained": False, "owner": {"name": "Hooman"}, } } } @pytest.mark.asyncio @pytest.mark.ttftt_engine( resolvers={ "Query.dog": resolve_query_dog, "Dog.doesKnowCommand": resolve_dog_does_know_command, "Dog.isHousetrained": resolve_dog_is_housetrained, "Dog.owner": resolve_dog_owner, "Dog.friends": resolve_dog_friends, "Query.cat": resolve_query_cat, "Cat.doesKnowCommand": resolve_cat_does_know_command, "Query.human": resolve_query_human, "Query.catOrDog": resolve_query_cat_or_dog, } ) @pytest.mark.parametrize( "operation_name,query,variables,expected", [ ( None, """ query { dog { name nickname barkVolume doesKnowCommand(dogCommand: DOWN) isHousetrained(atOtherHomes: true) owner { name } } } """, None, _EXPECTED, ), ( "Dog", """ fragment HumanFields on Human { ... on Human { name } } fragment LightCatOrDogFields on CatOrDog { ... on Cat { name nickname } ... on Dog { name nickname } } fragment LightDogFields on Dog { name barkVolume } fragment DogFields on Dog { name doesKnowCommand(dogCommand: DOWN) isHousetrained(atOtherHomes: true) owner { ... on Human { ...HumanFields } } friends { ...LightCatOrDogFields } } fragment CatFields on Cat { name } fragment QueryDogFields on Query { ... on Query { ... { dog { ... on Dog { ...DogFields } } dog { name nickname barkVolume } dog { ...LightDogFields } } } } query Dog { ... on Query { ...QueryDogFields } } query Cat { cat { ...CatFields } } """, None, { "data": { "dog": { "name": "Dog", "doesKnowCommand": True, "isHousetrained": False, "owner": {"name": "Hooman"}, "friends": [ {"name": "Dog", "nickname": "Doggo"}, {"name": "Cat", "nickname": "Catto"}, ], "nickname": "Doggo", "barkVolume": 2, } } }, ), ( None, """ query CatOrDog { catOrDog(id: 1) { ... on Dog { name } ... on Dog { nickname } ... on Cat { name } } } """, None, {"data": {"catOrDog": {"name": "Dog", "nickname": "Doggo"}}}, ), ], )
[ 11748, 12972, 9288, 628, 628, 628, 628, 628, 198, 198, 62, 49864, 9782, 1961, 796, 1391, 198, 220, 220, 220, 366, 7890, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9703, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 32942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17172, 3672, 1298, 366, 32942, 2188, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 668, 31715, 1298, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22437, 23812, 21575, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 39, 516, 316, 13363, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18403, 1298, 19779, 3672, 1298, 366, 39, 4207, 272, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 92, 628, 198, 31, 9078, 9288, 13, 4102, 13, 292, 13361, 952, 198, 31, 9078, 9288, 13, 4102, 13, 926, 701, 83, 62, 18392, 7, 198, 220, 220, 220, 581, 349, 690, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20746, 13, 9703, 1298, 10568, 62, 22766, 62, 9703, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32942, 13, 22437, 23812, 21575, 1298, 10568, 62, 9703, 62, 22437, 62, 16275, 62, 21812, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32942, 13, 271, 39, 516, 316, 13363, 1298, 10568, 62, 9703, 62, 271, 62, 71, 516, 316, 13363, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32942, 13, 18403, 1298, 10568, 62, 9703, 62, 18403, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32942, 13, 36154, 1298, 10568, 62, 9703, 62, 36154, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20746, 13, 9246, 1298, 10568, 62, 22766, 62, 9246, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21979, 13, 22437, 23812, 21575, 1298, 10568, 62, 9246, 62, 22437, 62, 16275, 62, 21812, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20746, 13, 10734, 1298, 10568, 62, 22766, 62, 10734, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20746, 13, 9246, 5574, 32942, 1298, 10568, 62, 22766, 62, 9246, 62, 273, 62, 9703, 11, 198, 220, 220, 220, 1782, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 27184, 62, 3672, 11, 22766, 11, 25641, 2977, 11, 40319, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3290, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21405, 31715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 857, 23812, 21575, 7, 9703, 21575, 25, 30320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 39, 516, 316, 13363, 7, 265, 6395, 39, 2586, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4870, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 49864, 9782, 1961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 5524, 15878, 82, 319, 5524, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 5524, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 4401, 21979, 5574, 32942, 15878, 82, 319, 5181, 5574, 32942, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 5181, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 8532, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 4401, 32942, 15878, 82, 319, 8532, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21405, 31715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 8532, 15878, 82, 319, 8532, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 857, 23812, 21575, 7, 9703, 21575, 25, 30320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 39, 516, 316, 13363, 7, 265, 6395, 39, 2586, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4870, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 5524, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 20490, 15878, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2460, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 15047, 21979, 5574, 32942, 15878, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 5181, 15878, 82, 319, 5181, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 43301, 32942, 15878, 82, 319, 43301, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 43301, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3290, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 8532, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 32942, 15878, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3290, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21405, 31715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3290, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 15047, 32942, 15878, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 8532, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 43301, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 20746, 32942, 15878, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 5181, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3797, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 21979, 15878, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9703, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 32942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22437, 23812, 21575, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 39, 516, 316, 13363, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18403, 1298, 19779, 3672, 1298, 366, 39, 4207, 272, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36154, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 3672, 1298, 366, 32942, 1600, 366, 17172, 3672, 1298, 366, 32942, 2188, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 3672, 1298, 366, 21979, 1600, 366, 17172, 3672, 1298, 366, 34, 45807, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17172, 3672, 1298, 366, 32942, 2188, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 668, 31715, 1298, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 5181, 5574, 32942, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3797, 5574, 32942, 7, 312, 25, 352, 8, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 8532, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 8532, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 319, 5181, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 7890, 1298, 19779, 9246, 5574, 32942, 1298, 19779, 3672, 1298, 366, 32942, 1600, 366, 17172, 3672, 1298, 366, 32942, 2188, 1, 11709, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 16589, 198, 8, 198 ]
1.488431
2,766
# Copyright (c) Microsoft Corporation. All Rights Reserved. # Licensed under the MIT license. See LICENSE file on the project webpage for details. """Setup for azure_media_services XBlock.""" import os from setuptools import setup def package_data(pkg, roots): """Generic function to find package_data. All of the files under each of the `roots` will be declared as package data for package `pkg`. """ data = [] for root in roots: for dirname, __, files in os.walk(os.path.join(pkg, root)): for fname in files: data.append(os.path.relpath(os.path.join(dirname, fname), pkg)) return {pkg: data} setup( name='azure_media_services-xblock', version='0.0.1', description='This XBlock implements a video player that utilizes the Azure Media Services.', packages=[ 'azure_media_services', ], include_package_data=True, dependency_links=[ # At the moment of writing PyPI hosts outdated version of xblock-utils, hence git # Replace dependency links with numbered versions when it's released on PyPI 'git+https://github.com/edx/[email protected]#egg=xblock-utils==1.0.5', ], install_requires=[ 'PyJWT', 'bleach', 'mako', 'requests>=2.9.1,<3.0.0', 'XBlock>=0.4.10,<2.0.0', 'xblock-utils>=1.0.2,<=1.0.5', ], entry_points={ 'xblock.v1': [ 'azure_media_services = azure_media_services:AMSXBlock', ] }, package_data=package_data("azure_media_services", ["static", "templates", "public", "translations"]), )
[ 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 6923, 33876, 13, 198, 2, 49962, 739, 262, 17168, 5964, 13, 4091, 38559, 24290, 2393, 319, 262, 1628, 35699, 329, 3307, 13, 198, 198, 37811, 40786, 329, 35560, 495, 62, 11431, 62, 30416, 1395, 12235, 526, 15931, 198, 198, 11748, 28686, 198, 6738, 900, 37623, 10141, 1330, 9058, 628, 198, 4299, 5301, 62, 7890, 7, 35339, 11, 11135, 2599, 198, 220, 220, 220, 37227, 46189, 2163, 284, 1064, 5301, 62, 7890, 13, 628, 220, 220, 220, 1439, 286, 262, 3696, 739, 1123, 286, 262, 4600, 19150, 63, 481, 307, 6875, 355, 5301, 198, 220, 220, 220, 1366, 329, 5301, 4600, 35339, 44646, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 329, 6808, 287, 11135, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 3672, 11, 11593, 11, 3696, 287, 28686, 13, 11152, 7, 418, 13, 6978, 13, 22179, 7, 35339, 11, 6808, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 277, 3672, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 418, 13, 6978, 13, 2411, 6978, 7, 418, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 277, 3672, 828, 279, 10025, 4008, 628, 220, 220, 220, 1441, 1391, 35339, 25, 1366, 92, 628, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 1031, 495, 62, 11431, 62, 30416, 12, 87, 9967, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 13, 16, 3256, 198, 220, 220, 220, 6764, 11639, 1212, 1395, 12235, 23986, 257, 2008, 2137, 326, 34547, 262, 22134, 6343, 6168, 2637, 11, 198, 220, 220, 220, 10392, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1031, 495, 62, 11431, 62, 30416, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 20203, 62, 28751, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1629, 262, 2589, 286, 3597, 9485, 11901, 11453, 23572, 2196, 286, 2124, 9967, 12, 26791, 11, 12891, 17606, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 40177, 20203, 6117, 351, 25840, 6300, 618, 340, 338, 2716, 319, 9485, 11901, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18300, 10, 5450, 1378, 12567, 13, 785, 14, 276, 87, 14, 87, 9967, 12, 26791, 13, 18300, 31, 85, 16, 13, 15, 13, 20, 2, 33856, 28, 87, 9967, 12, 26791, 855, 16, 13, 15, 13, 20, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20519, 41, 39386, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 903, 620, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 76, 25496, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8897, 3558, 29, 28, 17, 13, 24, 13, 16, 11, 27, 18, 13, 15, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 55, 12235, 29, 28, 15, 13, 19, 13, 940, 11, 27, 17, 13, 15, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 87, 9967, 12, 26791, 29, 28, 16, 13, 15, 13, 17, 11, 27, 28, 16, 13, 15, 13, 20, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 87, 9967, 13, 85, 16, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1031, 495, 62, 11431, 62, 30416, 796, 35560, 495, 62, 11431, 62, 30416, 25, 40834, 55, 12235, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 5301, 62, 7890, 28, 26495, 62, 7890, 7203, 1031, 495, 62, 11431, 62, 30416, 1600, 14631, 12708, 1600, 366, 11498, 17041, 1600, 366, 11377, 1600, 366, 7645, 49905, 8973, 828, 198, 8, 628 ]
2.432191
671
from biostuff import BlastLine, BlastFile some_attrs = ('qstart', 'qstop', 'sstart', 'sstop', 'pctid', 'score', 'query', 'subject')
[ 6738, 3182, 455, 1648, 1330, 20641, 13949, 11, 20641, 8979, 198, 198, 11246, 62, 1078, 3808, 796, 19203, 80, 9688, 3256, 705, 80, 11338, 3256, 705, 82, 9688, 3256, 705, 82, 11338, 3256, 705, 79, 310, 312, 3256, 705, 26675, 3256, 705, 22766, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32796, 11537, 198, 220, 220, 220, 220, 628 ]
2.409836
61
import pygame from pygame.sprite import Sprite # a class to represent a single enemy in the fleet # init the enemy and it's starting position # function to check if enemy is at edge of screen # enemy update function
[ 11748, 12972, 6057, 198, 6738, 12972, 6057, 13, 34975, 578, 1330, 33132, 198, 198, 2, 257, 1398, 284, 2380, 257, 2060, 4472, 287, 262, 11026, 628, 220, 220, 220, 1303, 2315, 262, 4472, 290, 340, 338, 3599, 2292, 628, 220, 220, 220, 1303, 2163, 284, 2198, 611, 4472, 318, 379, 5743, 286, 3159, 628, 220, 220, 220, 1303, 4472, 4296, 2163, 628, 198 ]
3.714286
63
import copy import logging import re import uuid from django.conf import settings from raven import Client logger = logging.getLogger(__name__) REPORTS_BASE_URL = 'http://qa.orange.biolab.si/errors/{}' PYTHON_FOLDERS = [ "site-packages", "dist-packages", "Python34.lib", "anaconda3.lib", "lib.python3.4", "orange3", ] ORANGE_ADDONS = [ 'orangecontrib', 'lekbf', '_textable', 'orangebiodepot', ] FRAMES_RE = re.compile('File "([^"]+)", line (\d+), in ([^ ]+) (.*)') DEVICE_RE = re.compile('Python ([\d\.]+) on ([^ ]+) ([^ ]+) (.+) ([^ ]+)$') # Modules that should not be grouped by GENERAL_MODULES = [ "Orange.data.domain:232", # domain.index(attr_name) "sklearn.utils.validation:424", # check_array "Orange.util:141", # attrgetter(attr)(obj) "Orange.statistics.util:52", # bincount ] ORANGE3_DATASETS = ('Orange3-Datasets', "https://2cb16c369f474e799ae384045dbf489e:[email protected]/167538") ORANGE_SPECTROSCOPY = "https://1cb3697dbfc04f748bae548865f1b1a8:[email protected]/176038" DSN_3RDPARTY = "https://d077c44bbab1407595c9838ace02aea5:[email protected]/176069" DSN_TEXTABLE = "https://489e53f2068441f48d0d7bb3f5f066d5:[email protected]/207453" SINGLE_CELL = "https://3acf738fd9a3458ab76cabcfaa072dcf:[email protected]/209789" DSN_ORANGE = "https://6f0311046ad2438598ae121cdabd878f:[email protected]/124497" # For addons with separate DSNs mapping from namespace to addon name # must be provided for reporting addon version as release. NAMESPACE_TO_ADDON = { 'associate': ('Orange3-Associate', "https://cde61b47c74c4f98931264c1112b1bc2:[email protected]/167541"), 'bioinformatics': ('Orange3-Bioinformatics', "https://[email protected]/1311211"), 'conformal': ('Orange3-Conformal-Prediction', "https://3cf0bca1e5ed4b6a811c9980f27ed8ee:[email protected]/167539"), 'datafusion': ('Orange3-DataFusion', "https://894bd2e1f47a4271834b8fbc019fc90b:[email protected]/167542"), 'wbd': ORANGE3_DATASETS, 'datasets': ORANGE3_DATASETS, 'educational': ('Orange3-Educational', "https://93323bc17a094974a830b25abbae01b5:[email protected]/167545"), 'geo': ('Orange3-Geo', "https://f3b7d23593d14247808b70ff964b3956:[email protected]/167528"), 'imageanalytics': ('Orange3-ImageAnalytics', "https://cc2ef6171aad4b6ba344e2851169db7d:[email protected]/161064"), 'network': ('Orange3-Network', "https://14706c0ff3e047d999cff64e6100eb25:[email protected]/167534"), 'prototypes': ('Orange3-Prototypes', "https://d7440097e7f64e4cbff90dd31fc8876e:[email protected]/167530"), 'recommendation': ('Orange3-Recommendation', "https://e447ddb4e80149289bca679121359c03:[email protected]/167543"), 'text': ('Orange3-Text', "https://38ffabded40c46b9952b2acebc726866:[email protected]/128443"), 'timeseries': ('Orange3-Timeseries', "https://e8f30f9dbaf74635bb10e37abe0b5354:[email protected]/161065"), 'testing': ('', "https://261797e8fa4544ffb931bc495157d2e3:[email protected]/128442"), 'lekbf': ('lekbf', "https://7da121cc693045c688d5ffd2d320e65b:[email protected]/174357"), 'infrared': ('Orange-Infrared', ORANGE_SPECTROSCOPY), 'spectroscopy': ('Orange-Spectroscopy', ORANGE_SPECTROSCOPY), 'monroe_anal': ('monroe-anal', "https://26940ac80e9f4cf095dd6c90e7e7e674:[email protected]/242335"), 'spark': ('Orange3-spark', DSN_3RDPARTY), 'tomwer': ('tomwer', DSN_3RDPARTY), 'textable_prototypes': ('Orange3-Textable-Prototypes', DSN_TEXTABLE), 'orangebiodepot': ('orangebiodepot', DSN_3RDPARTY), '_textable': ('Orange3-Textable', DSN_TEXTABLE), 'variants': ('Orange3-Variants', SINGLE_CELL), 'single_cell': ('Orange3-SingleCell', SINGLE_CELL), 'chem': ('Orange3-Chemoinformatics', "https://a2cfd734538c4892ad3c02679891fa44:[email protected]/275477"), }
[ 11748, 4866, 198, 11748, 18931, 198, 11748, 302, 198, 11748, 334, 27112, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 37735, 1330, 20985, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 35316, 33002, 62, 33, 11159, 62, 21886, 796, 705, 4023, 1378, 20402, 13, 43745, 13, 65, 1669, 397, 13, 13396, 14, 48277, 14, 90, 92, 6, 198, 198, 47, 56, 4221, 1340, 62, 37, 15173, 4877, 796, 685, 198, 220, 220, 220, 366, 15654, 12, 43789, 1600, 198, 220, 220, 220, 366, 17080, 12, 43789, 1600, 198, 220, 220, 220, 366, 37906, 2682, 13, 8019, 1600, 198, 220, 220, 220, 366, 272, 330, 13533, 18, 13, 8019, 1600, 198, 220, 220, 220, 366, 8019, 13, 29412, 18, 13, 19, 1600, 198, 220, 220, 220, 366, 43745, 18, 1600, 198, 60, 198, 198, 1581, 27746, 62, 29266, 19213, 796, 685, 198, 220, 220, 220, 705, 43745, 3642, 822, 3256, 198, 220, 220, 220, 705, 293, 74, 19881, 3256, 198, 220, 220, 220, 705, 62, 5239, 540, 3256, 198, 220, 220, 220, 705, 43745, 65, 2101, 538, 313, 3256, 198, 60, 198, 198, 10913, 29559, 62, 2200, 796, 302, 13, 5589, 576, 10786, 8979, 366, 26933, 61, 8973, 28988, 1600, 1627, 357, 59, 67, 10, 828, 287, 29565, 61, 2361, 28988, 357, 15885, 8, 11537, 198, 7206, 27389, 62, 2200, 796, 302, 13, 5589, 576, 10786, 37906, 29565, 59, 67, 59, 8183, 28988, 319, 29565, 61, 2361, 28988, 29565, 61, 2361, 28988, 20262, 28988, 29565, 61, 2361, 28988, 3, 11537, 198, 198, 2, 3401, 5028, 326, 815, 407, 307, 32824, 416, 198, 35353, 27130, 62, 33365, 6239, 1546, 796, 685, 198, 220, 220, 220, 366, 40141, 13, 7890, 13, 27830, 25, 24339, 1600, 220, 220, 220, 220, 220, 220, 220, 1303, 7386, 13, 9630, 7, 35226, 62, 3672, 8, 198, 220, 220, 220, 366, 8135, 35720, 13, 26791, 13, 12102, 341, 25, 40090, 1600, 220, 1303, 2198, 62, 18747, 198, 220, 220, 220, 366, 40141, 13, 22602, 25, 23756, 1600, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 708, 81, 1136, 353, 7, 35226, 5769, 26801, 8, 198, 220, 220, 220, 366, 40141, 13, 14269, 3969, 13, 22602, 25, 4309, 1600, 220, 220, 220, 220, 1303, 275, 1939, 608, 198, 60, 198, 198, 1581, 27746, 18, 62, 35, 1404, 1921, 32716, 796, 19203, 40141, 18, 12, 27354, 292, 1039, 3256, 366, 5450, 1378, 17, 21101, 1433, 66, 30803, 69, 38652, 68, 45455, 3609, 2548, 1821, 2231, 9945, 69, 35890, 68, 25, 65, 2327, 69, 19, 68, 2670, 67, 23, 65, 1415, 1558, 19782, 64, 1765, 32576, 68, 23, 66, 18, 7568, 15, 64, 31, 82, 13000, 13, 952, 14, 1433, 2425, 2548, 4943, 198, 1581, 27746, 62, 48451, 5446, 2640, 34, 3185, 56, 796, 366, 5450, 1378, 16, 21101, 2623, 5607, 9945, 16072, 3023, 69, 48246, 65, 3609, 20, 33646, 2996, 69, 16, 65, 16, 64, 23, 25, 1765, 15, 65, 22, 2075, 68, 40256, 65, 2598, 31128, 64, 27019, 66, 5607, 66, 23, 66, 21, 3132, 69, 17, 31, 82, 13000, 13, 952, 14, 1558, 1899, 2548, 1, 198, 5258, 45, 62, 18, 49, 6322, 7227, 56, 796, 366, 5450, 1378, 67, 2998, 22, 66, 2598, 11848, 397, 15187, 2425, 3865, 66, 4089, 2548, 558, 2999, 44705, 20, 25, 69, 18, 69, 47101, 16817, 18213, 2598, 68, 15, 64, 24, 68, 5333, 66, 39322, 6888, 1314, 17544, 20, 31, 82, 13000, 13, 952, 14, 1558, 1899, 3388, 1, 198, 5258, 45, 62, 51, 6369, 38148, 796, 366, 5450, 1378, 35890, 68, 4310, 69, 1238, 3104, 39710, 69, 2780, 67, 15, 67, 22, 11848, 18, 69, 20, 69, 15, 2791, 67, 20, 25, 22579, 29088, 324, 2857, 64, 15187, 7568, 64, 1453, 1238, 3682, 64, 21, 11848, 19, 18638, 69, 31, 82, 13000, 13, 952, 14, 22745, 36625, 1, 198, 50, 2751, 2538, 62, 5222, 3069, 796, 366, 5450, 1378, 18, 330, 69, 22, 2548, 16344, 24, 64, 27712, 23, 397, 4304, 66, 397, 12993, 7252, 2998, 17, 67, 12993, 25, 21, 65, 26912, 2414, 65, 23, 64, 3134, 39226, 2548, 1959, 4521, 10210, 30460, 2934, 24, 2996, 65, 31, 82, 13000, 13, 952, 14, 22567, 40401, 1, 198, 198, 5258, 45, 62, 1581, 27746, 796, 366, 5450, 1378, 21, 69, 3070, 11442, 3510, 324, 1731, 2548, 41292, 3609, 19244, 10210, 397, 67, 23, 3695, 69, 25, 7568, 8784, 65, 20, 21626, 18213, 19, 66, 4531, 64, 6469, 16072, 16, 69, 20, 6814, 22, 2548, 4521, 67, 31, 82, 13000, 13, 952, 14, 1065, 2598, 5607, 1, 198, 2, 1114, 751, 684, 351, 4553, 360, 15571, 82, 16855, 422, 25745, 284, 48557, 1438, 198, 2, 1276, 307, 2810, 329, 6447, 48557, 2196, 355, 2650, 13, 198, 45, 29559, 47, 11598, 62, 10468, 62, 29266, 1340, 796, 1391, 198, 220, 220, 220, 705, 562, 47615, 10354, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 8021, 47615, 3256, 366, 5450, 1378, 66, 2934, 5333, 65, 2857, 66, 4524, 66, 19, 69, 4089, 6052, 1065, 2414, 66, 1157, 1065, 65, 16, 15630, 17, 25, 940, 12993, 65, 18, 65, 4304, 64, 23237, 2791, 21855, 2996, 5999, 64, 3720, 4309, 66, 39885, 64, 23, 31, 82, 13000, 13, 952, 14, 1433, 2425, 3901, 12340, 198, 220, 220, 220, 705, 65, 952, 259, 18982, 873, 10354, 220, 220, 19203, 40141, 18, 12, 42787, 259, 18982, 873, 3256, 366, 5450, 1378, 17, 68, 3064, 13331, 2816, 65, 23, 2682, 2624, 68, 5999, 7252, 3023, 17896, 44966, 5237, 68, 20, 69, 31, 82, 13000, 13, 952, 14, 1485, 14686, 1157, 12340, 198, 220, 220, 220, 705, 1102, 687, 282, 10354, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 3103, 687, 282, 12, 39156, 2867, 3256, 366, 5450, 1378, 18, 12993, 15, 65, 6888, 16, 68, 20, 276, 19, 65, 21, 64, 23, 1157, 66, 2079, 1795, 69, 1983, 276, 23, 1453, 25, 5824, 25150, 276, 49561, 65, 3023, 17457, 21101, 19, 6814, 17, 66, 2327, 69, 15, 67, 48156, 69, 23, 31, 82, 13000, 13, 952, 14, 1433, 2425, 2670, 12340, 198, 220, 220, 220, 705, 7890, 69, 4241, 10354, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 6601, 37, 4241, 3256, 366, 5450, 1378, 4531, 19, 17457, 17, 68, 16, 69, 2857, 64, 42363, 1507, 2682, 65, 23, 69, 15630, 30484, 16072, 3829, 65, 25, 68, 24, 67, 4309, 1765, 65, 23, 1485, 4051, 6888, 15, 65, 5705, 13331, 27720, 1731, 69, 2548, 6469, 64, 31, 82, 13000, 13, 952, 14, 1433, 2425, 3682, 12340, 198, 220, 220, 220, 705, 86, 17457, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6375, 27746, 18, 62, 35, 1404, 1921, 32716, 11, 198, 220, 220, 220, 705, 19608, 292, 1039, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 6375, 27746, 18, 62, 35, 1404, 1921, 32716, 11, 198, 220, 220, 220, 705, 18123, 864, 10354, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 33380, 864, 3256, 366, 5450, 1378, 24, 2091, 1954, 15630, 1558, 64, 2931, 2920, 4524, 64, 48341, 65, 1495, 6485, 3609, 486, 65, 20, 25, 19, 16344, 20, 68, 22, 66, 49721, 68, 2682, 1878, 67, 5607, 344, 6888, 2919, 276, 19, 69, 46712, 67, 31, 82, 13000, 13, 952, 14, 1433, 2425, 2231, 12340, 198, 220, 220, 220, 705, 469, 78, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 10082, 78, 3256, 366, 5450, 1378, 69, 18, 65, 22, 67, 1954, 49051, 67, 1415, 23753, 28362, 65, 2154, 487, 24, 2414, 65, 2670, 3980, 25, 487, 1495, 66, 16, 67, 1954, 67, 18, 64, 19, 31047, 23, 2920, 11785, 66, 22, 3132, 66, 23, 4524, 67, 24, 31, 82, 13000, 13, 952, 14, 1433, 2425, 2078, 12340, 198, 220, 220, 220, 705, 9060, 38200, 14094, 10354, 220, 220, 19203, 40141, 18, 12, 5159, 37702, 14094, 3256, 366, 5450, 1378, 535, 17, 891, 21, 27192, 64, 324, 19, 65, 21, 7012, 33535, 68, 26279, 1157, 3388, 9945, 22, 67, 25, 10210, 2481, 276, 18, 68, 1795, 3609, 19, 69, 19, 27203, 65, 3132, 64, 1731, 68, 15, 67, 48597, 12993, 31, 82, 13000, 13, 952, 14, 1433, 940, 2414, 12340, 198, 220, 220, 220, 705, 27349, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 26245, 3256, 366, 5450, 1378, 1415, 35402, 66, 15, 487, 18, 68, 48000, 67, 17032, 66, 487, 2414, 68, 21, 3064, 1765, 1495, 25, 16, 1860, 22, 65, 5705, 67, 15, 1878, 66, 31911, 48910, 1558, 3553, 68, 2327, 1238, 65, 15, 66, 17, 31, 82, 13000, 13, 952, 14, 1433, 2425, 2682, 12340, 198, 220, 220, 220, 705, 11235, 13567, 10354, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 19703, 13567, 3256, 366, 5450, 1378, 67, 22, 2598, 405, 5607, 68, 22, 69, 2414, 68, 19, 21101, 487, 3829, 1860, 3132, 16072, 3459, 4304, 68, 25, 1860, 68, 2931, 69, 22, 7012, 24, 1558, 3559, 1507, 5705, 65, 22, 1765, 3023, 66, 23, 1415, 65, 23, 1731, 31, 82, 13000, 13, 952, 14, 1433, 2425, 1270, 12340, 198, 220, 220, 220, 705, 47335, 437, 341, 10354, 220, 220, 19203, 40141, 18, 12, 41248, 341, 3256, 366, 5450, 1378, 68, 34825, 1860, 65, 19, 68, 41531, 2920, 27693, 65, 6888, 37601, 1065, 1485, 3270, 66, 3070, 25, 68, 19, 65, 24, 64, 15, 69, 16, 64, 1415, 1415, 69, 22, 67, 24, 3312, 68, 3980, 65, 23, 68, 2078, 1350, 24, 535, 31, 82, 13000, 13, 952, 14, 1433, 2425, 3559, 12340, 198, 220, 220, 220, 705, 5239, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 8206, 3256, 366, 5450, 1378, 2548, 487, 397, 9395, 1821, 66, 3510, 65, 2079, 4309, 65, 17, 558, 15630, 22, 25022, 2791, 25, 20198, 67, 21, 64, 20, 9423, 13331, 26429, 2079, 65, 21, 67, 3720, 68, 23, 3365, 21855, 21, 891, 16, 31, 82, 13000, 13, 952, 14, 12762, 34938, 12340, 198, 220, 220, 220, 705, 22355, 10640, 10354, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 28595, 10640, 3256, 366, 5450, 1378, 68, 23, 69, 1270, 69, 24, 9945, 1878, 22, 3510, 2327, 11848, 940, 68, 2718, 11231, 15, 65, 20, 32182, 25, 1731, 3695, 64, 3901, 68, 17, 69, 3865, 38380, 9945, 23, 344, 1765, 69, 1765, 41322, 535, 2079, 31, 82, 13000, 13, 952, 14, 1433, 940, 2996, 12340, 198, 220, 220, 220, 705, 33407, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 3256, 366, 5450, 1378, 2075, 1558, 5607, 68, 23, 13331, 2231, 2598, 487, 65, 24, 3132, 15630, 33781, 18458, 67, 17, 68, 18, 25, 2598, 68, 1270, 65, 6052, 69, 24, 69, 1415, 5066, 64, 24, 39251, 1495, 69, 6469, 6888, 15259, 2670, 31, 82, 13000, 13, 952, 14, 12762, 39506, 12340, 198, 220, 220, 220, 705, 293, 74, 19881, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 293, 74, 19881, 3256, 366, 5450, 1378, 22, 6814, 19244, 535, 3388, 1270, 2231, 66, 34427, 67, 20, 487, 67, 17, 67, 19504, 68, 2996, 65, 25, 16, 68, 17, 65, 18, 68, 47512, 66, 23, 4051, 2718, 7012, 23, 69, 405, 1120, 2327, 48724, 65, 18, 65, 22, 31, 82, 13000, 13, 952, 14, 22985, 27277, 12340, 198, 220, 220, 220, 705, 10745, 25122, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 12, 18943, 25122, 3256, 6375, 27746, 62, 48451, 5446, 2640, 34, 3185, 56, 828, 198, 220, 220, 220, 705, 4443, 45943, 11081, 10354, 220, 220, 220, 220, 19203, 40141, 12, 49738, 45943, 11081, 3256, 6375, 27746, 62, 48451, 5446, 2640, 34, 3185, 56, 828, 198, 220, 220, 220, 705, 2144, 20646, 62, 272, 282, 10354, 220, 220, 220, 220, 220, 19203, 2144, 20646, 12, 272, 282, 3256, 366, 5450, 1378, 26276, 1821, 330, 1795, 68, 24, 69, 19, 12993, 2931, 20, 1860, 21, 66, 3829, 68, 22, 68, 22, 68, 45385, 25, 2718, 67, 24, 3070, 69, 1860, 5066, 2414, 67, 4309, 1350, 21, 68, 35638, 1415, 67, 20, 12993, 535, 69, 31, 82, 13000, 13, 952, 14, 1731, 1954, 2327, 12340, 198, 220, 220, 220, 705, 2777, 668, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 2777, 668, 3256, 360, 15571, 62, 18, 49, 6322, 7227, 56, 828, 198, 220, 220, 220, 705, 39532, 15448, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39532, 15448, 3256, 360, 15571, 62, 18, 49, 6322, 7227, 56, 828, 198, 220, 220, 220, 705, 5239, 540, 62, 11235, 13567, 10354, 19203, 40141, 18, 12, 8206, 540, 12, 19703, 13567, 3256, 360, 15571, 62, 51, 6369, 38148, 828, 198, 220, 220, 220, 705, 43745, 65, 2101, 538, 313, 10354, 220, 220, 19203, 43745, 65, 2101, 538, 313, 3256, 360, 15571, 62, 18, 49, 6322, 7227, 56, 828, 198, 220, 220, 220, 705, 62, 5239, 540, 10354, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 8206, 540, 3256, 360, 15571, 62, 51, 6369, 38148, 828, 198, 220, 220, 220, 705, 25641, 1187, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 23907, 1187, 3256, 311, 2751, 2538, 62, 5222, 3069, 828, 198, 220, 220, 220, 705, 29762, 62, 3846, 10354, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 28008, 28780, 3256, 311, 2751, 2538, 62, 5222, 3069, 828, 198, 220, 220, 220, 705, 15245, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 40141, 18, 12, 41829, 36743, 18982, 873, 3256, 366, 5450, 1378, 64, 17, 12993, 67, 4790, 2231, 2548, 66, 2780, 5892, 324, 18, 66, 45987, 3720, 4531, 16, 13331, 2598, 25, 16, 69, 1860, 17, 66, 17457, 20, 65, 891, 19, 66, 3695, 5607, 67, 16, 64, 3064, 3324, 68, 24, 2934, 5607, 31, 82, 13000, 13, 952, 14, 23195, 32883, 12340, 198, 92, 628, 628, 628, 628, 628, 198 ]
1.953399
2,339
# Copyright 2006-2007 Virtutech AB import sim_commands sim_commands.new_pci_header_command('AM79C973', None) sim_commands.new_info_command('AM79C973', get_info) sim_commands.new_status_command('AM79C973', get_status)
[ 2, 15069, 4793, 12, 12726, 11285, 1133, 354, 9564, 198, 198, 11748, 985, 62, 9503, 1746, 198, 198, 14323, 62, 9503, 1746, 13, 3605, 62, 79, 979, 62, 25677, 62, 21812, 10786, 2390, 3720, 34, 24, 4790, 3256, 6045, 8, 198, 14323, 62, 9503, 1746, 13, 3605, 62, 10951, 62, 21812, 10786, 2390, 3720, 34, 24, 4790, 3256, 651, 62, 10951, 8, 198, 14323, 62, 9503, 1746, 13, 3605, 62, 13376, 62, 21812, 10786, 2390, 3720, 34, 24, 4790, 3256, 651, 62, 13376, 8, 198 ]
2.576471
85
#!usr/bin/env python3 # -*- coding: utf-8 -*- """ pytest setup_module() and teardown_module() demo. Assumption: creating a user is a very resource-consuming process => Thus, we don't want to do user creation every time we run a test. """ __author__ = 'Ziang Lu' import pytest from pytest_for_python.src.codes import User, is_member, is_prime_member user = None
[ 2, 0, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 9078, 9288, 9058, 62, 21412, 3419, 290, 573, 446, 593, 62, 21412, 3419, 13605, 13, 198, 198, 8021, 24098, 25, 4441, 257, 2836, 318, 257, 845, 8271, 12, 35873, 1429, 198, 14804, 6660, 11, 356, 836, 470, 765, 284, 466, 2836, 6282, 790, 640, 356, 1057, 257, 1332, 13, 198, 37811, 198, 198, 834, 9800, 834, 796, 705, 57, 15483, 6026, 6, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 12972, 9288, 62, 1640, 62, 29412, 13, 10677, 13, 40148, 1330, 11787, 11, 318, 62, 19522, 11, 318, 62, 35505, 62, 19522, 198, 198, 7220, 796, 6045, 628, 628, 198 ]
2.92126
127
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import socket import errno from getpass import getpass from optparse import OptionParser from sassh.connectionlib import Library, Connection from sassh.sshclient import SSHClient from paramiko import SSHException try: import pygtk pygtk.require('2.0') import gtk GTK_AVAILABLE = True except ImportError: GTK_AVAILABLE = False EXTRA_HELP = """\ While connected the following key binds are available: 'CTRL-X' followed by 'p' to send the connection password (e.g. for sudo) ; 'CTRL-X' followed by 'n' to generate new password (e.g. when password expired) """ class Main(): """ Main class for the application """ def parse_args(self): """ Parse command line arguments """ parser = OptionParser(epilog=EXTRA_HELP) parser.add_option("-a", "--add-connection", action="store", type="string", dest="add_connection", help="Add connection to the configuration database") parser.add_option("-d", "--del-connection", action="store_true", dest="del_connection", help="Delete host from the configuration database") parser.add_option("-g", "--get", action="store", type="string", dest="get_file", help="Get file from server") parser.add_option("--put", action="store", type="string", dest="put_file", help="Put file from server") parser.add_option("-k", "--use-key", action="store_true", dest="set_use_key", help="Set connection to use key based authentication") parser.add_option("-l", "--list", action="store_true", dest="list", help="List configured connections names") parser.add_option("-L", "--long-list", action="store_true", dest="long_list", help="List configured connections (with details)") parser.add_option("-p", "--set-password", action="store", type="string", dest="set_password", help="Set connection password") parser.add_option("-r", "--run", action="store", type="string", dest="run_command", help="Run command and exit") parser.add_option("-R", "--run-su", action="store", type="string", dest="run_su_script", help="Run script with super user privileges") parser.add_option("--reset", action="store_true", dest="reset", help="Change password for connection") parser.add_option("-s", "--set-connection", action="store", type="string", dest="set_connection", help="Set login information for connection") parser.add_option("-S", "--set-step-stone", action="store", type="string", dest="set_step_stone", help="Set stepping stone connection") parser.add_option("-t", "--change-tags", action="store", type="string", dest="change_tags", help="Change connection tags") parser.add_option("--super", action="store_true", dest="super", help="Perform 'sudo su -' after logging in") parser.add_option("-w", "--show-connection", action="store_true", dest="show_connection", help="Show connection information") self.options, self.args = parser.parse_args() def _get_sassh_gpg_pub_key(self): """ Check that the environment variable SASSH_GPG_PUB_KEY is defined """ sassh_gpg_pub_key = os.getenv('SASSH_GPG_PUB_KEY') if not sassh_gpg_pub_key: print """ sassh uses a GPG encrypted file to store connection passwords. You must generate a GPG keypair with "gpg --gen-key" . YOU SHOULD PROTECT THE KEY WITH A PASSPHRASE . Then set your shell's SASSH_GPG_PUB_KEY variable to to the public id as displayed from "gpg --list-keys", e.g: pub 4096R/7FD63AB0 export SASSH_GPG_PUB_KEY="7FD63AB0" """ sys.exit(1) self.sassh_gpg_pub_key = sassh_gpg_pub_key def _list_connections(self, pattern, long_list): """ List all the configured connections """ library = self.host_library for connection_name in library.connections: connection = None if pattern and pattern[0] == '+': connection = library.getbyname(connection_name) if not connection.tags or pattern not in connection.tags: continue else: if not connection_name.lower().startswith(pattern.lower()): continue if long_list: connection = connection or library.getbyname(connection_name) show_fields = connection.name+" " show_fields += "-a "+connection.url+" " if connection.use_key: show_fields += "-k " if connection.step_stone: show_fields += "-S "+connection.step_stone+" " if connection.tags and len(connection.tags) > 1: show_fields += "-t "+connection.tags print show_fields else: print connection_name sys.exit(0) def _process_args(self): """ Return connection definition after processing cmd arguments """ options, args = self.options, self.args # Check connection availability and management options if len(args) < 1 and not (options.list or options.long_list): print "Usage:" print " %s connection_name [options]" % sys.argv[0] print " %s --list" % sys.argv[0] sys.exit(2) library = self.host_library if (options.list or options.long_list): pattern = args[0] if len(args) > 0 else '' self._list_connections(pattern, options.long_list) connection_name = args[0].lower() if options.set_step_stone: try: library.getbyname(options.set_step_stone) except IOError: print 'No connection with name %s !' % options.set_step_stone sys.exit(4) try: connection = library.getbyname(connection_name) except IOError: if not options.add_connection: print 'No connection with name %s !' % connection_name print 'If you want to add it use "--add-connection"' sys.exit(3) else: connection = Connection(connection_name) else: if options.add_connection: print "Connection with name %s is already stored!" % \ connection_name sys.exit(4) if options.del_connection: library.remove(connection) sys.exit(0) if options.show_connection: print "URL", connection.url if GTK_AVAILABLE: show_password = '(Copied to th clipboard)' clipboard = gtk.clipboard_get() clipboard.set_text(connection.password) clipboard.store() else: show_password = connection.password print "PASSWORD", show_password if connection.use_key: print "USING KEY" print connection.tags or '+' sys.exit(0) if options.reset: options.set_connection = connection.url options.password = None if options.change_tags: if options.change_tags[0] != '+': print "Tags format is: +tag1+tag2...+tagN" sys.exit(4) connection.change_tags(options.change_tags) if options.set_step_stone: connection.step_stone = options.set_step_stone if options.set_password: if options.set_use_key: sys.stderr.write('You are already setting to key authentication!\n') sys.exit(5) else: connection.use_key = False connection.password = options.set_password if options.set_use_key: connection.use_key = True # Ask for login password if setting a connection url new_connection_url = options.add_connection or options.set_connection if new_connection_url: connection.url = new_connection_url if not connection.password and not connection.use_key: options.set_password = True while True: print "Type the password for connection %s [%s]: " \ % (connection_name, connection.url) password1 = getpass() if len(password1) < 1: print "Password must be at least 1 chars long!" print continue print "Re-type the password for connection %s [%s]: " \ % (connection_name, connection.url) password2 = getpass() if password1 != password2: print "Passwords do not match!" print else: break connection.password = password1 only_save = new_connection_url \ or options.set_step_stone \ or options.change_tags \ or options.set_password \ or options.set_use_key if only_save: library.save(connection) return None else: return connection def run(self): """ parse arguments and call the corresponding execution logic """ stderr = sys.stderr self.parse_args() connection = self._process_args() options = self.options if not connection: # Connection was changed return sshclient = SSHClient(connection, self.host_library) if options.run_command or options.get_file or options.put_file or options.run_su_script: sshclient.verbose = False try: sshclient.connect() except SSHException, err: stderr.write( "SSH error connecting to %s - %s\n" % (connection.name, err.args[0])) sys.exit(4) except socket.timeout: stderr.write("Connection timeout - unable to connect to %s !\n" % connection.name) sys.exit(2) except socket.error, err: errorcode = err[0] if errorcode == errno.ECONNREFUSED: stderr.write("Connection refused - unable to connect to %s !\n" % connection.name) sys.exit(3) else: raise if options.super: sshclient.perform_sudo() if options.run_su_script: sshclient.run_su_script(options.run_su_script) elif options.run_command: sshclient.run_command(options.run_command) elif options.get_file: sshclient.get_file(options.get_file) elif options.put_file: sshclient.put_file(options.put_file) else: sshclient.interactive_shell()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 17802, 198, 11748, 11454, 3919, 198, 6738, 651, 6603, 1330, 651, 6603, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 6738, 264, 562, 71, 13, 38659, 8019, 1330, 10074, 11, 26923, 198, 6738, 264, 562, 71, 13, 45824, 16366, 1330, 33825, 11792, 198, 6738, 5772, 12125, 1330, 33825, 16922, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 12972, 13655, 74, 198, 220, 220, 220, 12972, 13655, 74, 13, 46115, 10786, 17, 13, 15, 11537, 198, 220, 220, 220, 1330, 308, 30488, 198, 220, 220, 220, 7963, 42, 62, 10116, 32, 4146, 17534, 796, 6407, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 7963, 42, 62, 10116, 32, 4146, 17534, 796, 10352, 198, 198, 13918, 3861, 62, 39, 3698, 47, 796, 37227, 59, 198, 3633, 5884, 262, 1708, 1994, 37354, 389, 1695, 25, 198, 6, 4177, 7836, 12, 55, 6, 3940, 416, 705, 79, 6, 284, 3758, 262, 4637, 9206, 357, 68, 13, 70, 13, 329, 21061, 8, 198, 26, 705, 4177, 7836, 12, 55, 6, 3940, 416, 705, 77, 6, 284, 7716, 649, 9206, 357, 68, 13, 70, 13, 618, 9206, 21350, 8, 198, 37811, 628, 198, 4871, 8774, 33529, 198, 220, 220, 220, 37227, 8774, 1398, 329, 262, 3586, 37227, 628, 220, 220, 220, 825, 21136, 62, 22046, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2547, 325, 3141, 1627, 7159, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 796, 16018, 46677, 7, 538, 346, 519, 28, 13918, 3861, 62, 39, 3698, 47, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 64, 1600, 366, 438, 2860, 12, 38659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 2860, 62, 38659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 4550, 4637, 284, 262, 8398, 6831, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 67, 1600, 366, 438, 12381, 12, 38659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 2244, 2625, 12381, 62, 38659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 38727, 2583, 422, 262, 8398, 6831, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 70, 1600, 366, 438, 1136, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 1136, 62, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 3855, 2393, 422, 4382, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 438, 1996, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 1996, 62, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 11588, 2393, 422, 4382, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 74, 1600, 366, 438, 1904, 12, 2539, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 2244, 2625, 2617, 62, 1904, 62, 2539, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7248, 4637, 284, 779, 1994, 1912, 18239, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 75, 1600, 366, 438, 4868, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 2244, 2625, 4868, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8053, 17839, 8787, 3891, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 43, 1600, 366, 438, 6511, 12, 4868, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 2244, 2625, 6511, 62, 4868, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8053, 17839, 8787, 357, 4480, 3307, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 79, 1600, 366, 438, 2617, 12, 28712, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 2617, 62, 28712, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7248, 4637, 9206, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 81, 1600, 366, 438, 5143, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 5143, 62, 21812, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 10987, 3141, 290, 8420, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 49, 1600, 366, 438, 5143, 12, 2385, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 5143, 62, 2385, 62, 12048, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 10987, 4226, 351, 2208, 2836, 18850, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 438, 42503, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 2244, 2625, 42503, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 19400, 9206, 329, 4637, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 82, 1600, 366, 438, 2617, 12, 38659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 2617, 62, 38659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7248, 17594, 1321, 329, 4637, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 50, 1600, 366, 438, 2617, 12, 9662, 12, 6440, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 2617, 62, 9662, 62, 6440, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7248, 17413, 7815, 4637, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 83, 1600, 366, 438, 3803, 12, 31499, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 2099, 2625, 8841, 1600, 2244, 2625, 3803, 62, 31499, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 19400, 4637, 15940, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 438, 16668, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 2244, 2625, 16668, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 5990, 687, 705, 24032, 424, 532, 6, 706, 18931, 287, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 86, 1600, 366, 438, 12860, 12, 38659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 2244, 2625, 12860, 62, 38659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15307, 4637, 1321, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25811, 11, 2116, 13, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 825, 4808, 1136, 62, 82, 562, 71, 62, 70, 6024, 62, 12984, 62, 2539, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 262, 2858, 7885, 35516, 9693, 62, 38, 6968, 62, 5105, 33, 62, 20373, 318, 5447, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 264, 562, 71, 62, 70, 6024, 62, 12984, 62, 2539, 796, 28686, 13, 1136, 24330, 10786, 50, 1921, 9693, 62, 38, 6968, 62, 5105, 33, 62, 20373, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 264, 562, 71, 62, 70, 6024, 62, 12984, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 37227, 198, 82, 562, 71, 3544, 257, 402, 6968, 19365, 2393, 284, 3650, 4637, 21442, 13, 198, 1639, 1276, 7716, 257, 402, 6968, 1994, 24874, 351, 366, 70, 6024, 1377, 5235, 12, 2539, 1, 764, 198, 36981, 40312, 48006, 9782, 3336, 35374, 13315, 317, 350, 1921, 4303, 17184, 11159, 764, 198, 6423, 900, 534, 7582, 338, 35516, 9693, 62, 38, 6968, 62, 5105, 33, 62, 20373, 7885, 284, 284, 262, 1171, 4686, 355, 198, 13812, 276, 422, 366, 70, 6024, 1377, 4868, 12, 13083, 1600, 304, 13, 70, 25, 2240, 220, 220, 42479, 49, 14, 22, 26009, 5066, 6242, 15, 198, 220, 220, 220, 10784, 35516, 9693, 62, 38, 6968, 62, 5105, 33, 62, 20373, 2625, 22, 26009, 5066, 6242, 15, 1, 198, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 562, 71, 62, 70, 6024, 62, 12984, 62, 2539, 796, 264, 562, 71, 62, 70, 6024, 62, 12984, 62, 2539, 628, 198, 220, 220, 220, 825, 4808, 4868, 62, 8443, 507, 7, 944, 11, 3912, 11, 890, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7343, 477, 262, 17839, 8787, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5888, 796, 2116, 13, 4774, 62, 32016, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4637, 62, 3672, 287, 5888, 13, 8443, 507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3912, 290, 3912, 58, 15, 60, 6624, 705, 10, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 796, 5888, 13, 1136, 1525, 3672, 7, 38659, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4637, 13, 31499, 393, 3912, 407, 287, 4637, 13, 31499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4637, 62, 3672, 13, 21037, 22446, 9688, 2032, 342, 7, 33279, 13, 21037, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 890, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 796, 4637, 393, 5888, 13, 1136, 1525, 3672, 7, 38659, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 25747, 796, 4637, 13, 3672, 10, 1, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 25747, 15853, 27444, 64, 43825, 38659, 13, 6371, 10, 1, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4637, 13, 1904, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 25747, 15853, 27444, 74, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4637, 13, 9662, 62, 6440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 25747, 15853, 27444, 50, 43825, 38659, 13, 9662, 62, 6440, 10, 1, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4637, 13, 31499, 290, 18896, 7, 38659, 13, 31499, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 25747, 15853, 27444, 83, 43825, 38659, 13, 31499, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 905, 62, 25747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 4637, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 628, 220, 220, 220, 825, 4808, 14681, 62, 22046, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8229, 4637, 6770, 706, 7587, 23991, 7159, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 3689, 11, 26498, 796, 2116, 13, 25811, 11, 2116, 13, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4637, 11500, 290, 4542, 3689, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 22046, 8, 1279, 352, 290, 407, 357, 25811, 13, 4868, 393, 3689, 13, 6511, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 28350, 11097, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 220, 4064, 82, 4637, 62, 3672, 685, 25811, 30866, 4064, 25064, 13, 853, 85, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 220, 4064, 82, 1377, 4868, 1, 4064, 25064, 13, 853, 85, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5888, 796, 220, 2116, 13, 4774, 62, 32016, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 25811, 13, 4868, 393, 3689, 13, 6511, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3912, 796, 26498, 58, 15, 60, 611, 18896, 7, 22046, 8, 1875, 657, 2073, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4868, 62, 8443, 507, 7, 33279, 11, 3689, 13, 6511, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4637, 62, 3672, 796, 26498, 58, 15, 4083, 21037, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 2617, 62, 9662, 62, 6440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5888, 13, 1136, 1525, 3672, 7, 25811, 13, 2617, 62, 9662, 62, 6440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 2949, 4637, 351, 1438, 4064, 82, 5145, 6, 4064, 3689, 13, 2617, 62, 9662, 62, 6440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 796, 5888, 13, 1136, 1525, 3672, 7, 38659, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3689, 13, 2860, 62, 38659, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 2949, 4637, 351, 1438, 4064, 82, 5145, 6, 4064, 4637, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 1532, 345, 765, 284, 751, 340, 779, 366, 438, 2860, 12, 38659, 30543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 796, 26923, 7, 38659, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 2860, 62, 38659, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 32048, 351, 1438, 4064, 82, 318, 1541, 8574, 2474, 4064, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 12381, 62, 38659, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5888, 13, 28956, 7, 38659, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 12860, 62, 38659, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 21886, 1600, 4637, 13, 6371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7963, 42, 62, 10116, 32, 4146, 17534, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 28712, 796, 29513, 13379, 798, 284, 294, 47999, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47999, 796, 308, 30488, 13, 15036, 3526, 62, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47999, 13, 2617, 62, 5239, 7, 38659, 13, 28712, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47999, 13, 8095, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 28712, 796, 4637, 13, 28712, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 47924, 54, 12532, 1600, 905, 62, 28712, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4637, 13, 1904, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 2937, 2751, 35374, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 4637, 13, 31499, 393, 705, 10, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 42503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 13, 2617, 62, 38659, 796, 4637, 13, 6371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 13, 28712, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 3803, 62, 31499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 3803, 62, 31499, 58, 15, 60, 14512, 705, 10, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 36142, 5794, 318, 25, 1343, 12985, 16, 10, 12985, 17, 986, 10, 12985, 45, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 3803, 62, 31499, 7, 25811, 13, 3803, 62, 31499, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 220, 3689, 13, 2617, 62, 9662, 62, 6440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 9662, 62, 6440, 796, 3689, 13, 2617, 62, 9662, 62, 6440, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 2617, 62, 28712, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 2617, 62, 1904, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 301, 1082, 81, 13, 13564, 10786, 1639, 389, 1541, 4634, 284, 1994, 18239, 0, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 1904, 62, 2539, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 28712, 796, 3689, 13, 2617, 62, 28712, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 2617, 62, 1904, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 1904, 62, 2539, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16981, 329, 17594, 9206, 611, 4634, 257, 4637, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 38659, 62, 6371, 796, 3689, 13, 2860, 62, 38659, 393, 3689, 13, 2617, 62, 38659, 198, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 38659, 62, 6371, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 6371, 796, 649, 62, 38659, 62, 6371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4637, 13, 28712, 290, 407, 4637, 13, 1904, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 13, 2617, 62, 28712, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 6030, 262, 9206, 329, 4637, 4064, 82, 685, 4, 82, 5974, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 38659, 62, 3672, 11, 4637, 13, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 16, 796, 651, 6603, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 28712, 16, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 35215, 1276, 307, 379, 1551, 352, 34534, 890, 2474, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 3041, 12, 4906, 262, 9206, 329, 4637, 4064, 82, 685, 4, 82, 5974, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 38659, 62, 3672, 11, 4637, 13, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 17, 796, 651, 6603, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9206, 16, 14512, 9206, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 14478, 10879, 466, 407, 2872, 2474, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 28712, 796, 9206, 16, 628, 220, 220, 220, 220, 220, 220, 220, 691, 62, 21928, 796, 220, 649, 62, 38659, 62, 6371, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 3689, 13, 2617, 62, 9662, 62, 6440, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 3689, 13, 3803, 62, 31499, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 3689, 13, 2617, 62, 28712, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 3689, 13, 2617, 62, 1904, 62, 2539, 628, 220, 220, 220, 220, 220, 220, 220, 611, 220, 691, 62, 21928, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5888, 13, 21928, 7, 38659, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4637, 628, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 21136, 7159, 290, 869, 262, 11188, 9706, 9156, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 796, 25064, 13, 301, 1082, 81, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 796, 2116, 13557, 14681, 62, 22046, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 796, 2116, 13, 25811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4637, 25, 1303, 26923, 373, 3421, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 796, 33825, 11792, 7, 38659, 11, 2116, 13, 4774, 62, 32016, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 5143, 62, 21812, 393, 3689, 13, 1136, 62, 7753, 393, 3689, 13, 1996, 62, 7753, 220, 393, 3689, 13, 5143, 62, 2385, 62, 12048, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 13, 19011, 577, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 13, 8443, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 33825, 16922, 11, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 13, 13564, 7, 366, 5432, 39, 4049, 14320, 284, 4064, 82, 532, 4064, 82, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 38659, 13, 3672, 11, 11454, 13, 22046, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 17802, 13, 48678, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 13, 13564, 7203, 32048, 26827, 532, 5906, 220, 284, 2018, 284, 4064, 82, 5145, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 4637, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 17802, 13, 18224, 11, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 8189, 796, 11454, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4049, 8189, 6624, 11454, 3919, 13, 2943, 1340, 45, 31688, 2937, 1961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 13, 13564, 7203, 32048, 6520, 532, 5906, 284, 2018, 284, 4064, 82, 5145, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 4637, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 16668, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 13, 525, 687, 62, 24032, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 5143, 62, 2385, 62, 12048, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 13, 5143, 62, 2385, 62, 12048, 7, 25811, 13, 5143, 62, 2385, 62, 12048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3689, 13, 5143, 62, 21812, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 13, 5143, 62, 21812, 7, 25811, 13, 5143, 62, 21812, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3689, 13, 1136, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 13, 1136, 62, 7753, 7, 25811, 13, 1136, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3689, 13, 1996, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 13, 1996, 62, 7753, 7, 25811, 13, 1996, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 16366, 13, 3849, 5275, 62, 29149, 3419, 198 ]
2.024307
5,842
import asyncio import logging import os import json import etl.io_config.server_protocol as protocol alert_dns = '127.0.0.1' predictor_dns = '0.0.0.0' SRV_LOG_FMT = '%(asctime)s|%(name)s|%(process)s-%(thread)s|%(levelname)s|%(message)s' logging.basicConfig(level=logging.INFO, format=SRV_LOG_FMT) loop = asyncio.get_event_loop() coro = asyncio.start_server(notification_loop, predictor_dns, 8182, loop=loop) server = loop.run_until_complete(coro) # Serve requests until Ctrl+C is pressed logging.info('Serving on {}'.format(server.sockets[0].getsockname())) try: loop.run_forever() except KeyboardInterrupt: pass # Close the server server.close() loop.run_until_complete(server.wait_closed()) loop.close()
[ 11748, 30351, 952, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 2123, 75, 13, 952, 62, 11250, 13, 15388, 62, 11235, 4668, 355, 8435, 198, 198, 44598, 62, 67, 5907, 796, 705, 16799, 13, 15, 13, 15, 13, 16, 6, 198, 79, 17407, 273, 62, 67, 5907, 796, 705, 15, 13, 15, 13, 15, 13, 15, 6, 198, 12562, 53, 62, 25294, 62, 37, 13752, 796, 705, 4, 7, 292, 310, 524, 8, 82, 91, 4, 7, 3672, 8, 82, 91, 4, 7, 14681, 8, 82, 12, 4, 7, 16663, 8, 82, 91, 4, 7, 5715, 3672, 8, 82, 91, 4, 7, 20500, 8, 82, 6, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 11, 5794, 28, 12562, 53, 62, 25294, 62, 37, 13752, 8, 628, 628, 198, 198, 26268, 796, 30351, 952, 13, 1136, 62, 15596, 62, 26268, 3419, 198, 10215, 78, 796, 30351, 952, 13, 9688, 62, 15388, 7, 1662, 2649, 62, 26268, 11, 41568, 62, 67, 5907, 11, 807, 24294, 11, 9052, 28, 26268, 8, 198, 15388, 796, 9052, 13, 5143, 62, 28446, 62, 20751, 7, 10215, 78, 8, 198, 198, 2, 35557, 7007, 1566, 19212, 10, 34, 318, 12070, 198, 6404, 2667, 13, 10951, 10786, 11838, 278, 319, 23884, 4458, 18982, 7, 15388, 13, 82, 11603, 58, 15, 4083, 11407, 735, 3672, 3419, 4008, 198, 28311, 25, 198, 220, 9052, 13, 5143, 62, 754, 332, 3419, 198, 16341, 31973, 9492, 3622, 25, 198, 220, 1208, 198, 198, 2, 13872, 262, 4382, 198, 15388, 13, 19836, 3419, 198, 26268, 13, 5143, 62, 28446, 62, 20751, 7, 15388, 13, 17077, 62, 20225, 28955, 198, 26268, 13, 19836, 3419, 198 ]
2.573477
279
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """Standard set of plugins.""" import base64 import datetime import os import sys import netaddr from oslo_config import cfg from oslo_utils import units import six from ironic_inspector.common.i18n import _, _LC, _LE, _LI, _LW from ironic_inspector import conf from ironic_inspector.plugins import base from ironic_inspector import utils CONF = cfg.CONF LOG = utils.getProcessingLogger('ironic_inspector.plugins.standard') class RootDiskSelectionHook(base.ProcessingHook): """Smarter root disk selection using Ironic root device hints. This hook must always go before SchedulerHook, otherwise root_disk field might not be updated. """ def before_update(self, introspection_data, node_info, **kwargs): """Detect root disk from root device hints and IPA inventory.""" hints = node_info.node().properties.get('root_device') if not hints: LOG.debug('Root device hints are not provided', node_info=node_info, data=introspection_data) return inventory = introspection_data.get('inventory') if not inventory: raise utils.Error( _('Root device selection requires ironic-python-agent ' 'as an inspection ramdisk'), node_info=node_info, data=introspection_data) disks = inventory.get('disks', []) if not disks: raise utils.Error(_('No disks found'), node_info=node_info, data=introspection_data) for disk in disks: properties = disk.copy() # Root device hints are in GiB, data from IPA is in bytes properties['size'] //= units.Gi for name, value in hints.items(): actual = properties.get(name) if actual != value: LOG.debug('Disk %(disk)s does not satisfy hint ' '%(name)s=%(value)s, actual value is %(actual)s', {'disk': disk.get('name'), 'name': name, 'value': value, 'actual': actual}, node_info=node_info, data=introspection_data) break else: LOG.debug('Disk %(disk)s of size %(size)s satisfies ' 'root device hints', {'disk': disk.get('name'), 'size': disk['size']}, node_info=node_info, data=introspection_data) introspection_data['root_disk'] = disk return raise utils.Error(_('No disks satisfied root device hints'), node_info=node_info, data=introspection_data) class SchedulerHook(base.ProcessingHook): """Nova scheduler required properties.""" KEYS = ('cpus', 'cpu_arch', 'memory_mb', 'local_gb') def before_update(self, introspection_data, node_info, **kwargs): """Update node with scheduler properties.""" inventory = introspection_data.get('inventory') errors = [] root_disk = introspection_data.get('root_disk') if root_disk: introspection_data['local_gb'] = root_disk['size'] // units.Gi if CONF.processing.disk_partitioning_spacing: introspection_data['local_gb'] -= 1 elif inventory: errors.append(_('root disk is not supplied by the ramdisk and ' 'root_disk_selection hook is not enabled')) if inventory: try: introspection_data['cpus'] = int(inventory['cpu']['count']) introspection_data['cpu_arch'] = six.text_type( inventory['cpu']['architecture']) except (KeyError, ValueError, TypeError): errors.append(_('malformed or missing CPU information: %s') % inventory.get('cpu')) try: introspection_data['memory_mb'] = int( inventory['memory']['physical_mb']) except (KeyError, ValueError, TypeError): errors.append(_('malformed or missing memory information: %s; ' 'introspection requires physical memory size ' 'from dmidecode') % inventory.get('memory')) else: LOG.warning(_LW('No inventory provided: using old bash ramdisk ' 'is deprecated, please switch to ' 'ironic-python-agent'), node_info=node_info, data=introspection_data) missing = [key for key in self.KEYS if not introspection_data.get(key)] if missing: raise utils.Error( _('The following required parameters are missing: %s') % missing, node_info=node_info, data=introspection_data) if errors: raise utils.Error(_('The following problems encountered: %s') % '; '.join(errors), node_info=node_info, data=introspection_data) LOG.info(_LI('Discovered data: CPUs: %(cpus)s %(cpu_arch)s, ' 'memory %(memory_mb)s MiB, disk %(local_gb)s GiB'), {key: introspection_data.get(key) for key in self.KEYS}, node_info=node_info, data=introspection_data) overwrite = CONF.processing.overwrite_existing properties = {key: str(introspection_data[key]) for key in self.KEYS if overwrite or not node_info.node().properties.get(key)} node_info.update_properties(**properties) class ValidateInterfacesHook(base.ProcessingHook): """Hook to validate network interfaces.""" def _get_interfaces(self, data=None): """Convert inventory to a dict with interfaces. :return: dict interface name -> dict with keys 'mac' and 'ip' """ result = {} inventory = data.get('inventory', {}) if inventory: for iface in inventory.get('interfaces', ()): name = iface.get('name') mac = iface.get('mac_address') ip = iface.get('ipv4_address') if not name: LOG.error(_LE('Malformed interface record: %s'), iface, data=data) continue LOG.debug('Found interface %(name)s with MAC "%(mac)s" and ' 'IP address "%(ip)s"', {'name': name, 'mac': mac, 'ip': ip}, data=data) result[name] = {'ip': ip, 'mac': mac} else: LOG.warning(_LW('No inventory provided: using old bash ramdisk ' 'is deprecated, please switch to ' 'ironic-python-agent'), data=data) result = data.get('interfaces') return result def _validate_interfaces(self, interfaces, data=None): """Validate interfaces on correctness and suitability. :return: dict interface name -> dict with keys 'mac' and 'ip' """ if not interfaces: raise utils.Error(_('No interfaces supplied by the ramdisk'), data=data) pxe_mac = utils.get_pxe_mac(data) if not pxe_mac and CONF.processing.add_ports == 'pxe': LOG.warning(_LW('No boot interface provided in the introspection ' 'data, will add all ports with IP addresses')) result = {} for name, iface in interfaces.items(): mac = iface.get('mac') ip = iface.get('ip') if not mac: LOG.debug('Skipping interface %s without link information', name, data=data) continue if not utils.is_valid_mac(mac): LOG.warning(_LW('MAC %(mac)s for interface %(name)s is not ' 'valid, skipping'), {'mac': mac, 'name': name}, data=data) continue mac = mac.lower() if name == 'lo' or (ip and netaddr.IPAddress(ip).is_loopback()): LOG.debug('Skipping local interface %s', name, data=data) continue if (CONF.processing.add_ports == 'pxe' and pxe_mac and mac != pxe_mac): LOG.debug('Skipping interface %s as it was not PXE booting', name, data=data) continue elif CONF.processing.add_ports != 'all' and not ip: LOG.debug('Skipping interface %s as it did not have ' 'an IP address assigned during the ramdisk run', name, data=data) continue result[name] = {'ip': ip, 'mac': mac.lower()} if not result: raise utils.Error(_('No suitable interfaces found in %s') % interfaces, data=data) return result def before_processing(self, introspection_data, **kwargs): """Validate information about network interfaces.""" bmc_address = utils.get_ipmi_address_from_data(introspection_data) if bmc_address: introspection_data['ipmi_address'] = bmc_address else: LOG.debug('No BMC address provided in introspection data, ' 'assuming virtual environment', data=introspection_data) all_interfaces = self._get_interfaces(introspection_data) interfaces = self._validate_interfaces(all_interfaces, introspection_data) LOG.info(_LI('Using network interface(s): %s'), ', '.join('%s %s' % (name, items) for (name, items) in interfaces.items()), data=introspection_data) introspection_data['all_interfaces'] = all_interfaces introspection_data['interfaces'] = interfaces valid_macs = [iface['mac'] for iface in interfaces.values()] introspection_data['macs'] = valid_macs def before_update(self, introspection_data, node_info, **kwargs): """Drop ports that are not present in the data.""" if CONF.processing.keep_ports == 'present': expected_macs = { iface['mac'] for iface in introspection_data['all_interfaces'].values() } elif CONF.processing.keep_ports == 'added': expected_macs = set(introspection_data['macs']) else: return # list is required as we modify underlying dict for port in list(node_info.ports().values()): if port.address not in expected_macs: LOG.info(_LI("Deleting port %(port)s as its MAC %(mac)s is " "not in expected MAC list %(expected)s"), {'port': port.uuid, 'mac': port.address, 'expected': list(sorted(expected_macs))}, node_info=node_info, data=introspection_data) node_info.delete_port(port) class RamdiskErrorHook(base.ProcessingHook): """Hook to process error send from the ramdisk.""" DATETIME_FORMAT = '%Y.%m.%d_%H.%M.%S_%f'
[ 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 198, 2, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 23615, 900, 286, 20652, 526, 15931, 198, 198, 11748, 2779, 2414, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 2010, 29851, 198, 6738, 28686, 5439, 62, 11250, 1330, 30218, 70, 198, 6738, 28686, 5439, 62, 26791, 1330, 4991, 198, 11748, 2237, 198, 198, 6738, 25304, 62, 1040, 806, 273, 13, 11321, 13, 72, 1507, 77, 1330, 4808, 11, 4808, 5639, 11, 4808, 2538, 11, 4808, 31271, 11, 4808, 43, 54, 198, 6738, 25304, 62, 1040, 806, 273, 1330, 1013, 198, 6738, 25304, 62, 1040, 806, 273, 13, 37390, 1330, 2779, 198, 6738, 25304, 62, 1040, 806, 273, 1330, 3384, 4487, 198, 198, 10943, 37, 796, 30218, 70, 13, 10943, 37, 628, 198, 25294, 796, 3384, 4487, 13, 1136, 18709, 278, 11187, 1362, 10786, 1934, 291, 62, 1040, 806, 273, 13, 37390, 13, 20307, 11537, 628, 198, 4871, 20410, 40961, 4653, 1564, 39, 566, 7, 8692, 13, 18709, 278, 39, 566, 2599, 198, 220, 220, 220, 37227, 7556, 2571, 6808, 11898, 6356, 1262, 314, 4565, 6808, 3335, 20269, 13, 628, 220, 220, 220, 770, 8011, 1276, 1464, 467, 878, 27774, 18173, 39, 566, 11, 4306, 6808, 62, 39531, 2214, 198, 220, 220, 220, 1244, 407, 307, 6153, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 878, 62, 19119, 7, 944, 11, 18951, 31308, 62, 7890, 11, 10139, 62, 10951, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47504, 6808, 11898, 422, 6808, 3335, 20269, 290, 27966, 13184, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 20269, 796, 10139, 62, 10951, 13, 17440, 22446, 48310, 13, 1136, 10786, 15763, 62, 25202, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 20269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 30016, 3335, 20269, 389, 407, 2810, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 13184, 796, 18951, 31308, 62, 7890, 13, 1136, 10786, 24807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 13184, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3384, 4487, 13, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 10786, 30016, 3335, 6356, 4433, 25304, 12, 29412, 12, 25781, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 292, 281, 15210, 15770, 39531, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 32505, 796, 13184, 13, 1136, 10786, 6381, 591, 3256, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 32505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3384, 4487, 13, 12331, 28264, 10786, 2949, 32505, 1043, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 11898, 287, 32505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 796, 11898, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20410, 3335, 20269, 389, 287, 8118, 33, 11, 1366, 422, 27966, 318, 287, 9881, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 17816, 7857, 20520, 3373, 28, 4991, 13, 33704, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 1988, 287, 20269, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4036, 796, 6608, 13, 1136, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4036, 14512, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 40961, 4064, 7, 39531, 8, 82, 857, 407, 15959, 9254, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 7, 3672, 8, 82, 28, 4, 7, 8367, 8, 82, 11, 4036, 1988, 318, 4064, 7, 50039, 8, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 39531, 10354, 11898, 13, 1136, 10786, 3672, 33809, 705, 3672, 10354, 1438, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 1988, 11, 705, 50039, 10354, 4036, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 40961, 4064, 7, 39531, 8, 82, 286, 2546, 4064, 7, 7857, 8, 82, 45104, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15763, 3335, 20269, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 39531, 10354, 11898, 13, 1136, 10786, 3672, 33809, 705, 7857, 10354, 11898, 17816, 7857, 20520, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 15763, 62, 39531, 20520, 796, 11898, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 5298, 3384, 4487, 13, 12331, 28264, 10786, 2949, 32505, 11378, 6808, 3335, 20269, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 198, 4871, 27774, 18173, 39, 566, 7, 8692, 13, 18709, 278, 39, 566, 2599, 198, 220, 220, 220, 37227, 45, 10071, 6038, 18173, 2672, 6608, 526, 15931, 628, 220, 220, 220, 47134, 16309, 796, 19203, 13155, 385, 3256, 705, 36166, 62, 998, 3256, 705, 31673, 62, 2022, 3256, 705, 12001, 62, 22296, 11537, 628, 220, 220, 220, 825, 878, 62, 19119, 7, 944, 11, 18951, 31308, 62, 7890, 11, 10139, 62, 10951, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 10139, 351, 6038, 18173, 6608, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 13184, 796, 18951, 31308, 62, 7890, 13, 1136, 10786, 24807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8563, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 39531, 796, 18951, 31308, 62, 7890, 13, 1136, 10786, 15763, 62, 39531, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6808, 62, 39531, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 12001, 62, 22296, 20520, 796, 6808, 62, 39531, 17816, 7857, 20520, 3373, 4991, 13, 33704, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7102, 37, 13, 36948, 13, 39531, 62, 3911, 653, 278, 62, 2777, 4092, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 12001, 62, 22296, 20520, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 13184, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8563, 13, 33295, 28264, 10786, 15763, 11898, 318, 407, 14275, 416, 262, 15770, 39531, 290, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15763, 62, 39531, 62, 49283, 8011, 318, 407, 9343, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 13184, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 13155, 385, 20520, 796, 493, 7, 24807, 17816, 36166, 6, 7131, 6, 9127, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 36166, 62, 998, 20520, 796, 2237, 13, 5239, 62, 4906, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13184, 17816, 36166, 6, 7131, 6, 998, 5712, 495, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 9218, 12331, 11, 11052, 12331, 11, 5994, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8563, 13, 33295, 28264, 10786, 7617, 12214, 393, 4814, 9135, 1321, 25, 4064, 82, 11537, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13184, 13, 1136, 10786, 36166, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 31673, 62, 2022, 20520, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13184, 17816, 31673, 6, 7131, 6, 42854, 62, 2022, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 9218, 12331, 11, 11052, 12331, 11, 5994, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8563, 13, 33295, 28264, 10786, 7617, 12214, 393, 4814, 4088, 1321, 25, 4064, 82, 26, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 600, 305, 31308, 4433, 3518, 4088, 2546, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6738, 288, 76, 485, 8189, 11537, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13184, 13, 1136, 10786, 31673, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 43917, 28264, 43, 54, 10786, 2949, 13184, 2810, 25, 1262, 1468, 27334, 15770, 39531, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 39224, 11, 3387, 5078, 284, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1934, 291, 12, 29412, 12, 25781, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 796, 685, 2539, 329, 1994, 287, 2116, 13, 7336, 16309, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18951, 31308, 62, 7890, 13, 1136, 7, 2539, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4814, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3384, 4487, 13, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 10786, 464, 1708, 2672, 10007, 389, 4814, 25, 4064, 82, 11537, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 8563, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3384, 4487, 13, 12331, 28264, 10786, 464, 1708, 2761, 12956, 25, 4064, 82, 11537, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26, 45302, 22179, 7, 48277, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 10951, 28264, 31271, 10786, 15642, 2557, 1366, 25, 32340, 25, 4064, 7, 13155, 385, 8, 82, 4064, 7, 36166, 62, 998, 8, 82, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31673, 4064, 7, 31673, 62, 2022, 8, 82, 13756, 33, 11, 11898, 4064, 7, 12001, 62, 22296, 8, 82, 8118, 33, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 2539, 25, 18951, 31308, 62, 7890, 13, 1136, 7, 2539, 8, 329, 1994, 287, 2116, 13, 7336, 16309, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 49312, 796, 7102, 37, 13, 36948, 13, 2502, 13564, 62, 25687, 198, 220, 220, 220, 220, 220, 220, 220, 6608, 796, 1391, 2539, 25, 965, 7, 600, 305, 31308, 62, 7890, 58, 2539, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 7336, 16309, 611, 49312, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 10139, 62, 10951, 13, 17440, 22446, 48310, 13, 1136, 7, 2539, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 13, 19119, 62, 48310, 7, 1174, 48310, 8, 628, 198, 4871, 3254, 20540, 9492, 32186, 39, 566, 7, 8692, 13, 18709, 278, 39, 566, 2599, 198, 220, 220, 220, 37227, 39, 566, 284, 26571, 3127, 20314, 526, 15931, 628, 220, 220, 220, 825, 4808, 1136, 62, 3849, 32186, 7, 944, 11, 1366, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 13184, 284, 257, 8633, 351, 20314, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 8633, 7071, 1438, 4613, 8633, 351, 8251, 705, 20285, 6, 290, 705, 541, 6, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 13184, 796, 1366, 13, 1136, 10786, 24807, 3256, 23884, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 13184, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 611, 558, 287, 13184, 13, 1136, 10786, 3849, 32186, 3256, 7499, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 611, 558, 13, 1136, 10786, 3672, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 796, 611, 558, 13, 1136, 10786, 20285, 62, 21975, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 796, 611, 558, 13, 1136, 10786, 541, 85, 19, 62, 21975, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 18224, 28264, 2538, 10786, 15029, 12214, 7071, 1700, 25, 4064, 82, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 558, 11, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 21077, 7071, 4064, 7, 3672, 8, 82, 351, 20582, 36521, 7, 20285, 8, 82, 1, 290, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4061, 2209, 36521, 7, 541, 8, 82, 1, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 3672, 10354, 1438, 11, 705, 20285, 10354, 8352, 11, 705, 541, 10354, 20966, 5512, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 3672, 60, 796, 1391, 6, 541, 10354, 20966, 11, 705, 20285, 10354, 8352, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 43917, 28264, 43, 54, 10786, 2949, 13184, 2810, 25, 1262, 1468, 27334, 15770, 39531, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 39224, 11, 3387, 5078, 284, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1934, 291, 12, 29412, 12, 25781, 33809, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1366, 13, 1136, 10786, 3849, 32186, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 4808, 12102, 378, 62, 3849, 32186, 7, 944, 11, 20314, 11, 1366, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7762, 20540, 20314, 319, 29409, 290, 6050, 1799, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 8633, 7071, 1438, 4613, 8633, 351, 8251, 705, 20285, 6, 290, 705, 541, 6, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 20314, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3384, 4487, 13, 12331, 28264, 10786, 2949, 20314, 14275, 416, 262, 15770, 39531, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 279, 27705, 62, 20285, 796, 3384, 4487, 13, 1136, 62, 8416, 68, 62, 20285, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 279, 27705, 62, 20285, 290, 7102, 37, 13, 36948, 13, 2860, 62, 3742, 6624, 705, 8416, 68, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 43917, 28264, 43, 54, 10786, 2949, 6297, 7071, 2810, 287, 262, 18951, 31308, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 11, 481, 751, 477, 14090, 351, 6101, 9405, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 611, 558, 287, 20314, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 796, 611, 558, 13, 1136, 10786, 20285, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 796, 611, 558, 13, 1136, 10786, 541, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 50, 4106, 2105, 7071, 4064, 82, 1231, 2792, 1321, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3384, 4487, 13, 271, 62, 12102, 62, 20285, 7, 20285, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 43917, 28264, 43, 54, 10786, 44721, 4064, 7, 20285, 8, 82, 329, 7071, 4064, 7, 3672, 8, 82, 318, 407, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12102, 11, 31017, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 20285, 10354, 8352, 11, 705, 3672, 10354, 1438, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 796, 8352, 13, 21037, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6624, 705, 5439, 6, 393, 357, 541, 290, 2010, 29851, 13, 4061, 20231, 7, 541, 737, 271, 62, 26268, 1891, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 50, 4106, 2105, 1957, 7071, 4064, 82, 3256, 1438, 11, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10943, 37, 13, 36948, 13, 2860, 62, 3742, 6624, 705, 8416, 68, 6, 290, 279, 27705, 62, 20285, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 8352, 14512, 279, 27705, 62, 20285, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 50, 4106, 2105, 7071, 4064, 82, 355, 340, 373, 407, 350, 55, 36, 6297, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7102, 37, 13, 36948, 13, 2860, 62, 3742, 14512, 705, 439, 6, 290, 407, 20966, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 50, 4106, 2105, 7071, 4064, 82, 355, 340, 750, 407, 423, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 272, 6101, 2209, 8686, 1141, 262, 15770, 39531, 1057, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 3672, 60, 796, 1391, 6, 541, 10354, 20966, 11, 705, 20285, 10354, 8352, 13, 21037, 3419, 92, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3384, 4487, 13, 12331, 28264, 10786, 2949, 11080, 20314, 1043, 287, 4064, 82, 11537, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20314, 11, 1366, 28, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 878, 62, 36948, 7, 944, 11, 18951, 31308, 62, 7890, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7762, 20540, 1321, 546, 3127, 20314, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 275, 23209, 62, 21975, 796, 3384, 4487, 13, 1136, 62, 541, 11632, 62, 21975, 62, 6738, 62, 7890, 7, 600, 305, 31308, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 275, 23209, 62, 21975, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 541, 11632, 62, 21975, 20520, 796, 275, 23209, 62, 21975, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 10786, 2949, 40714, 2209, 2810, 287, 18951, 31308, 1366, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32935, 7166, 2858, 3256, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 3849, 32186, 796, 2116, 13557, 1136, 62, 3849, 32186, 7, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 20314, 796, 2116, 13557, 12102, 378, 62, 3849, 32186, 7, 439, 62, 3849, 32186, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 10951, 28264, 31271, 10786, 12814, 3127, 7071, 7, 82, 2599, 4064, 82, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46083, 45302, 22179, 10786, 4, 82, 4064, 82, 6, 4064, 357, 3672, 11, 3709, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 3672, 11, 3709, 8, 287, 20314, 13, 23814, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 600, 305, 31308, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 439, 62, 3849, 32186, 20520, 796, 477, 62, 3849, 32186, 198, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 3849, 32186, 20520, 796, 20314, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 76, 16436, 796, 685, 361, 558, 17816, 20285, 20520, 329, 611, 558, 287, 20314, 13, 27160, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 18951, 31308, 62, 7890, 17816, 76, 16436, 20520, 796, 4938, 62, 76, 16436, 628, 220, 220, 220, 825, 878, 62, 19119, 7, 944, 11, 18951, 31308, 62, 7890, 11, 10139, 62, 10951, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26932, 14090, 326, 389, 407, 1944, 287, 262, 1366, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7102, 37, 13, 36948, 13, 14894, 62, 3742, 6624, 705, 25579, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 76, 16436, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 558, 17816, 20285, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 611, 558, 287, 18951, 31308, 62, 7890, 17816, 439, 62, 3849, 32186, 6, 4083, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7102, 37, 13, 36948, 13, 14894, 62, 3742, 6624, 705, 29373, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 76, 16436, 796, 900, 7, 600, 305, 31308, 62, 7890, 17816, 76, 16436, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1351, 318, 2672, 355, 356, 13096, 10238, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2493, 287, 1351, 7, 17440, 62, 10951, 13, 3742, 22446, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2493, 13, 21975, 407, 287, 2938, 62, 76, 16436, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 10951, 28264, 31271, 7203, 5005, 293, 889, 2493, 4064, 7, 634, 8, 82, 355, 663, 20582, 4064, 7, 20285, 8, 82, 318, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1662, 287, 2938, 20582, 1351, 4064, 7, 40319, 8, 82, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 634, 10354, 2493, 13, 12303, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20285, 10354, 2493, 13, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 10354, 1351, 7, 82, 9741, 7, 40319, 62, 76, 16436, 4008, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 28, 17440, 62, 10951, 11, 1366, 28, 600, 305, 31308, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 10951, 13, 33678, 62, 634, 7, 634, 8, 628, 198, 4871, 7431, 39531, 12331, 39, 566, 7, 8692, 13, 18709, 278, 39, 566, 2599, 198, 220, 220, 220, 37227, 39, 566, 284, 1429, 4049, 3758, 422, 262, 15770, 39531, 526, 15931, 628, 220, 220, 220, 360, 1404, 2767, 12789, 62, 21389, 1404, 796, 705, 4, 56, 13, 4, 76, 13, 4, 67, 62, 4, 39, 13, 4, 44, 13, 4, 50, 62, 4, 69, 6, 198 ]
2.078603
5,814
from .cgevolver import CGEvolver from .eulerevolver import EulerEvolver from .rungekuttaevolver import RungeKuttaEvolver from .spintevolver import SpinTEvolver from .spinxferevolver import SpinXferEvolver from .uhh_thetaevolver import UHH_ThetaEvolver from .xf_thermheunevolver import Xf_ThermHeunEvolver from .xf_thermspinxferevolver import Xf_ThermSpinXferEvolver
[ 6738, 764, 66, 469, 10396, 332, 1330, 327, 8264, 10396, 332, 198, 6738, 764, 68, 2261, 260, 10396, 332, 1330, 412, 18173, 36, 10396, 332, 198, 6738, 764, 5143, 469, 74, 315, 8326, 1990, 14375, 1330, 5660, 469, 42, 315, 8326, 36, 10396, 332, 198, 6738, 764, 2777, 600, 1990, 14375, 1330, 28002, 9328, 10396, 332, 198, 6738, 764, 39706, 26152, 567, 10396, 332, 1330, 28002, 55, 2232, 36, 10396, 332, 198, 6738, 764, 7456, 71, 62, 1169, 8326, 1990, 14375, 1330, 471, 16768, 62, 464, 8326, 36, 10396, 332, 198, 6738, 764, 26152, 62, 490, 76, 258, 1726, 10396, 332, 1330, 1395, 69, 62, 35048, 76, 1544, 403, 36, 10396, 332, 198, 6738, 764, 26152, 62, 490, 907, 11635, 26152, 567, 10396, 332, 1330, 1395, 69, 62, 35048, 76, 4561, 259, 55, 2232, 36, 10396, 332, 198 ]
2.652174
138
from django.conf import settings from django.http import HttpResponseForbidden target_methods = settings.METHOD_ORIGIN.keys() http_methods = ['CONNECT', 'DELETE', 'GET', 'HEAD', 'OPTIONS', 'POST', 'PUT']
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 1890, 37978, 198, 198, 16793, 62, 24396, 82, 796, 6460, 13, 49273, 62, 1581, 3528, 1268, 13, 13083, 3419, 198, 198, 4023, 62, 24396, 82, 796, 37250, 10943, 48842, 3256, 705, 7206, 2538, 9328, 3256, 705, 18851, 3256, 705, 37682, 3256, 705, 3185, 51, 11053, 3256, 705, 32782, 3256, 705, 30076, 20520 ]
2.971014
69
''' Crie um programa onde o usuário possa digitar sete valores numéricos e cadastre-os em uma lista única que mantenha separados os valores pares e ímpares. No final, mostre os valores pares e ímpares em ordem crescente.''' '''princ = [] impar= [] par= [] for c in range (0,7): n = int(input('Digite um número: ')) if n % 2 == 0: par.append(n) else: impar.append(n) princ.append(sorted(impar[:])) princ.append(sorted(par[:])) print(f'Os valores pares digitados foram: {princ[0]}\n' f'Os valores ímpares digitados foram: {princ[1]}')''' #guanabara methods núm = [[], []] valor = 0 for c in range (1,8): valor = int(input(f'Digite o {c}ª valor: ')) if valor %2 ==0: núm[0].append(valor) else: núm[1].append(valor) print('~'*30) núm[0].sort() núm[1].sort() print(f'Os valores pares digitados foram: {núm[0]}') print(f'Os valores ímpares digitados foram: {núm[1]}')
[ 7061, 6, 327, 5034, 23781, 1430, 64, 319, 2934, 267, 514, 84, 6557, 27250, 1184, 64, 3100, 7940, 900, 68, 1188, 2850, 997, 2634, 1173, 418, 304, 20603, 459, 260, 12, 418, 198, 368, 334, 2611, 1351, 64, 6184, 118, 77, 3970, 8358, 24818, 268, 3099, 2880, 22484, 28686, 1188, 2850, 279, 3565, 304, 6184, 255, 3149, 3565, 13, 198, 2949, 2457, 11, 749, 260, 28686, 1188, 2850, 279, 3565, 304, 6184, 255, 3149, 3565, 795, 2760, 368, 269, 26505, 68, 2637, 7061, 198, 198, 7061, 6, 1050, 1939, 796, 17635, 198, 320, 1845, 28, 17635, 198, 1845, 28, 17635, 198, 1640, 269, 287, 2837, 357, 15, 11, 22, 2599, 198, 220, 220, 220, 299, 796, 493, 7, 15414, 10786, 19511, 578, 23781, 299, 21356, 647, 78, 25, 705, 4008, 198, 220, 220, 220, 611, 299, 4064, 362, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1582, 13, 33295, 7, 77, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 848, 283, 13, 33295, 7, 77, 8, 198, 1050, 1939, 13, 33295, 7, 82, 9741, 7, 320, 1845, 58, 47715, 4008, 198, 1050, 1939, 13, 33295, 7, 82, 9741, 7, 1845, 58, 47715, 4008, 198, 198, 4798, 7, 69, 6, 16748, 1188, 2850, 279, 3565, 16839, 22484, 329, 321, 25, 1391, 1050, 1939, 58, 15, 60, 32239, 77, 6, 198, 220, 220, 220, 220, 220, 277, 6, 16748, 1188, 2850, 6184, 255, 3149, 3565, 16839, 22484, 329, 321, 25, 220, 1391, 1050, 1939, 58, 16, 48999, 11537, 7061, 6, 198, 198, 2, 5162, 272, 397, 3301, 5050, 198, 198, 77, 21356, 76, 796, 16410, 4357, 685, 11907, 198, 2100, 273, 796, 657, 198, 1640, 269, 287, 2837, 357, 16, 11, 23, 2599, 198, 220, 220, 220, 1188, 273, 796, 493, 7, 15414, 7, 69, 6, 19511, 578, 267, 1391, 66, 92, 126, 103, 1188, 273, 25, 705, 4008, 198, 220, 220, 220, 611, 1188, 273, 4064, 17, 6624, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 21356, 76, 58, 15, 4083, 33295, 7, 2100, 273, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 21356, 76, 58, 16, 4083, 33295, 7, 2100, 273, 8, 198, 4798, 10786, 93, 6, 9, 1270, 8, 198, 77, 21356, 76, 58, 15, 4083, 30619, 3419, 198, 77, 21356, 76, 58, 16, 4083, 30619, 3419, 198, 4798, 7, 69, 6, 16748, 1188, 2850, 279, 3565, 16839, 22484, 329, 321, 25, 1391, 77, 21356, 76, 58, 15, 48999, 11537, 198, 4798, 7, 69, 6, 16748, 1188, 2850, 6184, 255, 3149, 3565, 16839, 22484, 329, 321, 25, 1391, 77, 21356, 76, 58, 16, 48999, 11537 ]
2.076063
447
import time from slackclient import SlackClient import common import config if __name__ == '__main__': conn = SlackConn(config.slack_token) conn.upload_img('/Users/omibot/data/omibot/sentry/Dienstag, 31. Oktober 2017 um 14:15:51/Image2.jpeg', '#allgemein')
[ 11748, 640, 198, 198, 6738, 30740, 16366, 1330, 36256, 11792, 198, 198, 11748, 2219, 198, 11748, 4566, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 48260, 796, 36256, 37321, 7, 11250, 13, 6649, 441, 62, 30001, 8, 198, 220, 220, 220, 48260, 13, 25850, 62, 9600, 10786, 14, 14490, 14, 296, 571, 313, 14, 7890, 14, 296, 571, 313, 14, 82, 13000, 14, 35, 2013, 301, 363, 11, 3261, 13, 6762, 1462, 527, 2177, 23781, 1478, 25, 1314, 25, 4349, 14, 5159, 17, 13, 73, 22071, 3256, 705, 2, 439, 24090, 68, 259, 11537, 198 ]
2.596154
104
import os from datetime import datetime
[ 11748, 28686, 198, 6738, 4818, 8079, 1330, 4818, 8079, 628 ]
4.1
10
""" File: draw_line.py Name: Kevin Fang ------------------------- TODO: """ from campy.graphics.gobjects import GOval, GLine from campy.graphics.gwindow import GWindow from campy.gui.events.mouse import onmouseclicked # Assign window as constant to create canvas window = GWindow() SIZE = 10 # a, b ,c ,d are global variables, so define them as 0 value a = b = c = d = 0 def main(): """ This program creates lines on an instance of GWindow class. There is a circle indicating the user’s first click. A line appears at the condition where the circle disappears as the user clicks on the canvas for the second time. """ onmouseclicked(set_point) if __name__ == "__main__": main()
[ 37811, 201, 198, 8979, 25, 3197, 62, 1370, 13, 9078, 201, 198, 5376, 25, 7939, 24468, 201, 198, 22369, 12, 201, 198, 51, 3727, 46, 25, 201, 198, 37811, 201, 198, 6738, 1413, 88, 13, 70, 11549, 13, 70, 48205, 1330, 10351, 2100, 11, 10188, 500, 201, 198, 6738, 1413, 88, 13, 70, 11549, 13, 70, 17497, 1330, 402, 27703, 201, 198, 6738, 1413, 88, 13, 48317, 13, 31534, 13, 35888, 1330, 319, 35888, 565, 9484, 201, 198, 201, 198, 2, 2195, 570, 4324, 355, 6937, 284, 2251, 21978, 201, 198, 17497, 796, 402, 27703, 3419, 201, 198, 33489, 796, 838, 201, 198, 2, 257, 11, 275, 837, 66, 837, 67, 389, 3298, 9633, 11, 523, 8160, 606, 355, 657, 1988, 201, 198, 64, 796, 275, 796, 269, 796, 288, 796, 657, 201, 198, 201, 198, 201, 198, 4299, 1388, 33529, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 770, 1430, 8075, 3951, 319, 281, 4554, 286, 402, 27703, 1398, 13, 201, 198, 220, 220, 220, 1318, 318, 257, 9197, 12739, 262, 2836, 447, 247, 82, 717, 3904, 13, 317, 1627, 3568, 201, 198, 220, 220, 220, 379, 262, 4006, 810, 262, 9197, 27934, 355, 262, 2836, 25785, 201, 198, 220, 220, 220, 319, 262, 21978, 329, 262, 1218, 640, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 319, 35888, 565, 9484, 7, 2617, 62, 4122, 8, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
2.858238
261
from flask import get_flashed_messages from flask_login import current_user from app.auth.services.registration import ( AutoActivateUserPostProcessor, AutologinPostProcessor, SendActivationPostProcessor, ) from app.core.auth.activation import AccountActivator from app.utils.settings import app_config
[ 6738, 42903, 1330, 651, 62, 2704, 5263, 62, 37348, 1095, 198, 6738, 42903, 62, 38235, 1330, 1459, 62, 7220, 198, 198, 6738, 598, 13, 18439, 13, 30416, 13, 2301, 33397, 1330, 357, 198, 220, 220, 220, 11160, 25526, 378, 12982, 6307, 18709, 273, 11, 198, 220, 220, 220, 5231, 928, 259, 6307, 18709, 273, 11, 198, 220, 220, 220, 16290, 25526, 341, 6307, 18709, 273, 11, 198, 8, 198, 6738, 598, 13, 7295, 13, 18439, 13, 48545, 1330, 10781, 25526, 1352, 198, 6738, 598, 13, 26791, 13, 33692, 1330, 598, 62, 11250, 628, 628 ]
3.393617
94
""" This function should return a string like "There are NUM planets in the solar system" where NUM is provided as an argument.""" # Should equal "There are 8 planets in the solar system" ss1 = solar_system(8) # Should equal "There are 9 planets in the solar system" ss2 = solar_system(9) """ This function should return a string of the format "On the DAYth day of MONTH in the year YEAR" where DAY, MONTH, and YEAR are provided. """ # Should equal "On the 8th day of July in the year 2019" date1 = fancy_date("July", 8, 2019) # Should equal "On the 24th day of June in the year 1984" date2 = fancy_date("June", 24, 1984) """ This function should return a string which starts with the provided place, then has an @ sign, then the comma-separated lat and lng""" # Should equal "Tilden Farm @ 37.91, -122.29" loc1 = location("Tilden Farm", 37.91, -122.29) # Should equal "Salton Sea @ 33.309, -115.979" loc2 = location("Salton Sea", 33.309,-115.979) """ This function should return a string which starts with the provided item, then a colon, then a $ sign and the provided cost.""" # Should equal "Avocado toast: $9.99" menu1 = menu("Avocado toast", 9.99) # Should equal "Cronut: $3.99" menu2 = menu("Cronut", 3.99)
[ 37811, 770, 2163, 815, 1441, 257, 4731, 588, 198, 1, 1858, 389, 36871, 14705, 287, 262, 6591, 1080, 1, 198, 3003, 36871, 318, 2810, 355, 281, 4578, 526, 15931, 198, 198, 2, 10358, 4961, 366, 1858, 389, 807, 14705, 287, 262, 6591, 1080, 1, 198, 824, 16, 796, 6591, 62, 10057, 7, 23, 8, 198, 198, 2, 10358, 4961, 366, 1858, 389, 860, 14705, 287, 262, 6591, 1080, 1, 198, 824, 17, 796, 6591, 62, 10057, 7, 24, 8, 198, 198, 37811, 770, 2163, 815, 1441, 257, 4731, 286, 262, 5794, 198, 1, 2202, 262, 24644, 400, 1110, 286, 25000, 4221, 287, 262, 614, 32914, 1, 198, 3003, 24644, 11, 25000, 4221, 11, 290, 32914, 389, 2810, 13, 198, 37811, 198, 198, 2, 10358, 4961, 366, 2202, 262, 807, 400, 1110, 286, 2901, 287, 262, 614, 13130, 1, 198, 4475, 16, 796, 14996, 62, 4475, 7203, 16157, 1600, 807, 11, 13130, 8, 198, 2, 10358, 4961, 366, 2202, 262, 1987, 400, 1110, 286, 2795, 287, 262, 614, 12844, 1, 198, 4475, 17, 796, 14996, 62, 4475, 7203, 15749, 1600, 1987, 11, 12844, 8, 628, 198, 37811, 770, 2163, 815, 1441, 257, 4731, 198, 4758, 4940, 351, 262, 2810, 1295, 11, 788, 198, 10134, 281, 2488, 1051, 11, 788, 262, 39650, 12, 25512, 515, 3042, 290, 300, 782, 37811, 198, 198, 2, 10358, 4961, 366, 51, 688, 268, 11272, 2488, 5214, 13, 6420, 11, 532, 18376, 13, 1959, 1, 198, 17946, 16, 796, 4067, 7203, 51, 688, 268, 11272, 1600, 5214, 13, 6420, 11, 532, 18376, 13, 1959, 8, 198, 2, 10358, 4961, 366, 19221, 1122, 6896, 2488, 4747, 13, 26895, 11, 532, 15363, 13, 24, 3720, 1, 198, 17946, 17, 796, 4067, 7203, 19221, 1122, 6896, 1600, 4747, 13, 26895, 12095, 15363, 13, 24, 3720, 8, 628, 198, 37811, 770, 2163, 815, 1441, 257, 4731, 198, 4758, 4940, 351, 262, 2810, 2378, 11, 198, 8524, 257, 7633, 11, 788, 257, 720, 1051, 290, 262, 2810, 1575, 526, 15931, 198, 198, 2, 10358, 4961, 366, 7355, 33441, 27805, 25, 720, 24, 13, 2079, 1, 198, 26272, 16, 796, 6859, 7203, 7355, 33441, 27805, 1600, 860, 13, 2079, 8, 198, 2, 10358, 4961, 366, 34, 1313, 315, 25, 720, 18, 13, 2079, 1, 198, 26272, 17, 796, 6859, 7203, 34, 1313, 315, 1600, 513, 13, 2079, 8 ]
3.176623
385
import logging import vlc import xml.etree.ElementTree as ET import os import sys import re from threading import Timer from time import sleep @vlc.CallbackDecorators.LogCb
[ 11748, 18931, 198, 11748, 410, 44601, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 302, 198, 6738, 4704, 278, 1330, 5045, 263, 198, 6738, 640, 1330, 3993, 628, 198, 31, 19279, 66, 13, 47258, 10707, 273, 2024, 13, 11187, 34, 65, 628 ]
3.320755
53
from django.contrib import admin from user import models # Register your models here. admin.site.register(models.User) admin.site.register(models.Staff) admin.site.register(models.CourseAdviser) admin.site.register(models.Student) admin.site.register(models.Biodata) admin.site.register(models.AcademicData) admin.site.register(models.AcademicHistory) admin.site.register(models.HealthData) admin.site.register(models.FamilyData)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 2836, 1330, 4981, 198, 198, 2, 17296, 534, 4981, 994, 13, 628, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 12982, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 31449, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 49046, 2782, 4703, 263, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 38778, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 33, 2101, 1045, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 12832, 49113, 6601, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 12832, 49113, 18122, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 18081, 6601, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 24094, 6601, 8, 198 ]
3.255639
133
line = input() sides = {} while line != "Lumpawaroo": if " | " in line: args = line.split(" | ") side = args[0] user = args[1] # TODO If you receive forceSide | forceUser, you should check if such forceUser already exists, and if not, add him/her to the corresponding side if side not in sides: sides[side] = [] all_values = [] for current_list in sides.values(): all_values += current_list if user not in all_values: sides[side].append(user) else: args = line.split(" -> ") user = args[0] side = args[1] old_side = "" for key, value in sides.items(): if user in value: old_side = key break if old_side != "": sides[old_side].remove(user) if side not in sides: sides[side] = [] sides[side].append(user) else: if side not in sides: sides[side] = [] sides[side].append(user) print(f"{user} joins the {side} side!") line = input() sides = dict(sorted(sides.items(), key=lambda x: (-len(x[1]), x[0]))) for side, users in sides.items(): if len(users) == 0: continue print(f"Side: {side}, Members: {len(users)}") for user in sorted(users): print(f"! {user}")
[ 1370, 796, 5128, 3419, 198, 82, 1460, 796, 23884, 198, 198, 4514, 1627, 14512, 366, 43, 931, 707, 38049, 1298, 198, 220, 220, 220, 611, 366, 930, 366, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 1627, 13, 35312, 7203, 930, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 796, 26498, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 26498, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 1002, 345, 3328, 2700, 24819, 930, 2700, 12982, 11, 345, 815, 2198, 611, 884, 2700, 12982, 1541, 7160, 11, 290, 611, 407, 11, 751, 683, 14, 372, 284, 262, 11188, 1735, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1735, 407, 287, 5389, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5389, 58, 1589, 60, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 27160, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1459, 62, 4868, 287, 5389, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 27160, 15853, 1459, 62, 4868, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 407, 287, 477, 62, 27160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5389, 58, 1589, 4083, 33295, 7, 7220, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 1627, 13, 35312, 7203, 4613, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 26498, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 796, 26498, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 1589, 796, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 5389, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 287, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 1589, 796, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1468, 62, 1589, 14512, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5389, 58, 727, 62, 1589, 4083, 28956, 7, 7220, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1735, 407, 287, 5389, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5389, 58, 1589, 60, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5389, 58, 1589, 4083, 33295, 7, 7220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1735, 407, 287, 5389, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5389, 58, 1589, 60, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5389, 58, 1589, 4083, 33295, 7, 7220, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 7220, 92, 15449, 262, 1391, 1589, 92, 1735, 2474, 8, 628, 220, 220, 220, 1627, 796, 5128, 3419, 198, 198, 82, 1460, 796, 8633, 7, 82, 9741, 7, 82, 1460, 13, 23814, 22784, 1994, 28, 50033, 2124, 25, 13841, 11925, 7, 87, 58, 16, 46570, 2124, 58, 15, 60, 22305, 198, 198, 1640, 1735, 11, 2985, 287, 5389, 13, 23814, 33529, 198, 220, 220, 220, 611, 18896, 7, 18417, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 3601, 7, 69, 1, 24819, 25, 1391, 1589, 5512, 12688, 25, 1391, 11925, 7, 18417, 38165, 4943, 628, 220, 220, 220, 329, 2836, 287, 23243, 7, 18417, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 40484, 1391, 7220, 92, 4943, 198 ]
2.065982
682
import requests import os url = 'http://admin:SuperAdminPasssword6742344234!!@localhost:8080/'#'http://admin:SuperAdminPasssword6742344234!!@a18e-2601-182-ce00-c860-3c42-c8b2-be91-176.ngrok.io/' #resp = requests.post(url, data={'newUser': True, 'username': 'new_user', 'password': 'test_pass'}) ## makefile : filename ## writefile : filename, data : str ## deletefile : filename ## readfile : filename (gotten from GET request) ## makefolder : foldername ## deletefolder : foldername ## listfolder : foldername ## changedir : foldername ## renamefile : filename, newname : str ## renamefolder : foldername, newname : str ## """requests.put(url, data={'deletefile': "4.png"}) img = Image.open('shitpost.png') requests.post(url, data={'makefile': "4.png"}) resp = requests.put(url, data={"writefile": "4.png", "authToken": "new_user_user_1", "username": "new_user", "data": img.tobytes()}) resp = requests.get(url + "4.png") image = Image.frombytes('RGBA', img.size, resp.content) img.save('4.png', format='PNG')""" #req = requests.post(url, data={"makefile": "test2.txt"}) #print(req.content) #req = requests.put(url, data={"writefile": "test2.txt", "authToken": "admin_super_0", "username": "admin_super_0", "data": "test helfgsdfgsdfglo world"}) #print(req.content) req = requests.get(url + "test2.txt") print(req.content)
[ 11748, 7007, 201, 198, 11748, 28686, 201, 198, 201, 198, 6371, 796, 705, 4023, 1378, 28482, 25, 12442, 46787, 14478, 30553, 3134, 43356, 2598, 24409, 3228, 31, 36750, 25, 1795, 1795, 14, 6, 2, 6, 4023, 1378, 28482, 25, 12442, 46787, 14478, 30553, 3134, 43356, 2598, 24409, 3228, 31, 64, 1507, 68, 12, 2075, 486, 12, 24294, 12, 344, 405, 12, 66, 45039, 12, 18, 66, 3682, 12, 66, 23, 65, 17, 12, 1350, 6420, 12, 24096, 13, 782, 305, 74, 13, 952, 14, 6, 201, 198, 201, 198, 201, 198, 2, 4363, 796, 7007, 13, 7353, 7, 6371, 11, 1366, 34758, 6, 3605, 12982, 10354, 6407, 11, 705, 29460, 10354, 705, 3605, 62, 7220, 3256, 705, 28712, 10354, 705, 9288, 62, 6603, 6, 30072, 201, 198, 2235, 787, 7753, 1058, 29472, 201, 198, 2235, 3551, 7753, 1058, 29472, 11, 1366, 1058, 965, 201, 198, 2235, 12233, 7753, 1058, 29472, 201, 198, 2235, 1100, 7753, 1058, 29472, 357, 21646, 422, 17151, 2581, 8, 201, 198, 2235, 787, 43551, 1058, 5591, 13292, 201, 198, 2235, 12233, 43551, 1058, 5591, 13292, 201, 198, 2235, 1351, 43551, 1058, 5591, 13292, 201, 198, 2235, 3421, 343, 1058, 5591, 13292, 201, 198, 2235, 36265, 7753, 1058, 29472, 11, 649, 3672, 1058, 965, 201, 198, 2235, 36265, 43551, 1058, 5591, 13292, 11, 649, 3672, 1058, 965, 201, 198, 2235, 201, 198, 201, 198, 37811, 8897, 3558, 13, 1996, 7, 6371, 11, 1366, 34758, 6, 33678, 7753, 10354, 366, 19, 13, 11134, 20662, 8, 201, 198, 9600, 796, 7412, 13, 9654, 10786, 16211, 7353, 13, 11134, 11537, 201, 198, 8897, 3558, 13, 7353, 7, 6371, 11, 1366, 34758, 6, 15883, 7753, 10354, 366, 19, 13, 11134, 20662, 8, 201, 198, 4363, 796, 7007, 13, 1996, 7, 6371, 11, 1366, 28, 4895, 13564, 7753, 1298, 366, 19, 13, 11134, 1600, 366, 18439, 30642, 1298, 366, 3605, 62, 7220, 62, 7220, 62, 16, 1600, 366, 29460, 1298, 366, 3605, 62, 7220, 1600, 366, 7890, 1298, 33705, 13, 83, 26730, 4879, 3419, 30072, 201, 198, 201, 198, 4363, 796, 7007, 13, 1136, 7, 6371, 1343, 366, 19, 13, 11134, 4943, 201, 198, 201, 198, 9060, 796, 7412, 13, 6738, 33661, 10786, 48192, 4339, 3256, 33705, 13, 7857, 11, 1217, 13, 11299, 8, 201, 198, 9600, 13, 21928, 10786, 19, 13, 11134, 3256, 5794, 11639, 47, 10503, 11537, 37811, 201, 198, 201, 198, 2, 42180, 796, 7007, 13, 7353, 7, 6371, 11, 1366, 28, 4895, 15883, 7753, 1298, 366, 9288, 17, 13, 14116, 20662, 8, 201, 198, 2, 4798, 7, 42180, 13, 11299, 8, 201, 198, 201, 198, 2, 42180, 796, 7007, 13, 1996, 7, 6371, 11, 1366, 28, 4895, 13564, 7753, 1298, 366, 9288, 17, 13, 14116, 1600, 366, 18439, 30642, 1298, 366, 28482, 62, 16668, 62, 15, 1600, 366, 29460, 1298, 366, 28482, 62, 16668, 62, 15, 1600, 366, 7890, 1298, 366, 9288, 932, 69, 14542, 7568, 14542, 7568, 4743, 78, 995, 20662, 8, 201, 198, 2, 4798, 7, 42180, 13, 11299, 8, 201, 198, 201, 198, 42180, 796, 7007, 13, 1136, 7, 6371, 1343, 366, 9288, 17, 13, 14116, 4943, 201, 198, 4798, 7, 42180, 13, 11299, 8 ]
2.630769
520
############################################## # Switching Linear Dynamical System # Code for both SLDS generative model as well # as variational inference code ############################################## import torch import torch.nn as nn import numpy as np import math from torch.autograd import Variable import itertools import torch.nn.functional as F import utils from masked_cross_entropy import masked_cross_entropy from EncDec import Encoder, Decoder, gather_last, sequence_mask from data_utils import EOS_TOK, SOS_TOK, PAD_TOK, transform
[ 29113, 7804, 4242, 2235, 198, 2, 220, 220, 220, 14645, 278, 44800, 14970, 605, 4482, 220, 198, 2, 220, 220, 220, 6127, 329, 1111, 12419, 5258, 1152, 876, 2746, 355, 880, 198, 2, 220, 220, 220, 355, 5553, 864, 32278, 2438, 198, 29113, 7804, 4242, 2235, 198, 11748, 28034, 220, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 11748, 340, 861, 10141, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 3384, 4487, 198, 6738, 29229, 62, 19692, 62, 298, 28338, 1330, 29229, 62, 19692, 62, 298, 28338, 198, 6738, 14711, 10707, 1330, 14711, 12342, 11, 34580, 11, 6431, 62, 12957, 11, 8379, 62, 27932, 198, 6738, 1366, 62, 26791, 1330, 412, 2640, 62, 10468, 42, 11, 42707, 62, 10468, 42, 11, 350, 2885, 62, 10468, 42, 11, 6121, 628, 628, 198 ]
3.69281
153
import torch from torch import nn from houttuynia.nn import init __all__ = [ 'Conv1d', 'Conv2d', 'Conv3d', 'GramConv1', ]
[ 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 198, 6738, 289, 448, 28047, 2047, 544, 13, 20471, 1330, 2315, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 3103, 85, 16, 67, 3256, 705, 3103, 85, 17, 67, 3256, 705, 3103, 85, 18, 67, 3256, 705, 38, 859, 3103, 85, 16, 3256, 198, 60, 628, 628, 198 ]
2.163934
61
from enum import Enum from typing import Dict, List, Optional import click from pygments.lexers.shell import BashLexer from prompt_toolkit import prompt, print_formatted_text, PromptSession from prompt_toolkit.lexers import PygmentsLexer from prompt_toolkit.auto_suggest import AutoSuggestFromHistory from prompt_toolkit.shortcuts import ProgressBar from prompt_toolkit.application import run_in_terminal from . import color confirmStrToSwitch: Dict[str, SwitchState] = { "y": SwitchState.Yes, "n": SwitchState.No, "o": SwitchState.OK, "c": SwitchState.Cancel } switchToConfirmStr: Dict[SwitchState, str] = { v: k for k, v in confirmStrToSwitch.items()} defaultInputCommandSession = PromptSession( message="> ", lexer=PygmentsLexer(BashLexer), auto_suggest=AutoSuggestFromHistory())
[ 6738, 33829, 1330, 2039, 388, 198, 6738, 19720, 1330, 360, 713, 11, 7343, 11, 32233, 198, 11748, 3904, 198, 6738, 12972, 11726, 13, 2588, 364, 13, 29149, 1330, 15743, 45117, 263, 198, 6738, 6152, 62, 25981, 15813, 1330, 6152, 11, 3601, 62, 687, 16898, 62, 5239, 11, 45965, 36044, 198, 6738, 6152, 62, 25981, 15813, 13, 2588, 364, 1330, 9485, 11726, 45117, 263, 198, 6738, 6152, 62, 25981, 15813, 13, 23736, 62, 47811, 1330, 11160, 43857, 4863, 18122, 198, 6738, 6152, 62, 25981, 15813, 13, 19509, 23779, 1330, 18387, 10374, 198, 6738, 6152, 62, 25981, 15813, 13, 31438, 1330, 1057, 62, 259, 62, 23705, 282, 198, 6738, 764, 1330, 3124, 628, 198, 198, 10414, 2533, 13290, 2514, 38978, 25, 360, 713, 58, 2536, 11, 14645, 9012, 60, 796, 1391, 198, 220, 220, 220, 366, 88, 1298, 14645, 9012, 13, 5297, 11, 198, 220, 220, 220, 366, 77, 1298, 14645, 9012, 13, 2949, 11, 198, 220, 220, 220, 366, 78, 1298, 14645, 9012, 13, 11380, 11, 198, 220, 220, 220, 366, 66, 1298, 14645, 9012, 13, 34, 21130, 198, 92, 198, 198, 31943, 2514, 18546, 2533, 13290, 25, 360, 713, 58, 38978, 9012, 11, 965, 60, 796, 1391, 198, 220, 220, 220, 410, 25, 479, 329, 479, 11, 410, 287, 6216, 13290, 2514, 38978, 13, 23814, 3419, 92, 198, 198, 12286, 20560, 21575, 36044, 796, 45965, 36044, 7, 198, 220, 220, 220, 3275, 2625, 29, 33172, 31191, 263, 28, 20519, 11726, 45117, 263, 7, 33, 1077, 45117, 263, 828, 8295, 62, 47811, 28, 27722, 43857, 4863, 18122, 28955, 628 ]
3.151163
258
# -------------- ##File path for the file file_path #Code starts here sample_message= str(read_file(file_path)) print(sample_message) # -------------- #Code starts here file_path_1 file_path_2 message_1=read_file(file_path_1) message_2=read_file(file_path_2) print("message1", message_1) print("message2",message_2) #print(int(message_2)//int(message_1)) secret_msg_1 = fuse_msg(message_1,message_2) print(secret_msg_1) # -------------- #Code starts here file_path_3 message_3 = read_file(file_path_3) print("message 3:", message_3) secret_msg_2=substitute_msg(message_3) print("secret msg2 :",secret_msg_2) # -------------- # File path for message 4 and message 5 file_path_4 file_path_5 #Code starts here message_4 = str(read_file(file_path_4)) message_5 = str(read_file(file_path_5)) print("message 4:",message_4) print("message 5:",message_5) secret_msg_3 = str(compare_msg(message_4, message_5)) print("secret msg3 :", secret_msg_3) # -------------- #Code starts here file_path_6 message_6= str(read_file(file_path_6)) print("message 6 :",message_6) secret_msg_4 = extract_msg(message_6) print("secret msg 4:",secret_msg_4) # -------------- #Secret message parts in the correct order message_parts=[secret_msg_3, secret_msg_1, secret_msg_4, secret_msg_2] final_path= user_data_dir + '/secret_message.txt' #Code starts here secret_msg = " ".join(message_parts) secret_message = write_file(secret_msg,final_path) print("secret_msg :")
[ 2, 220, 26171, 198, 2235, 8979, 3108, 329, 262, 2393, 220, 201, 198, 7753, 62, 6978, 220, 201, 198, 201, 198, 2, 10669, 4940, 994, 201, 198, 201, 198, 201, 198, 39873, 62, 20500, 28, 965, 7, 961, 62, 7753, 7, 7753, 62, 6978, 4008, 201, 198, 4798, 7, 39873, 62, 20500, 8, 201, 198, 220, 220, 220, 220, 201, 628, 198, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 7753, 62, 6978, 62, 16, 201, 198, 7753, 62, 6978, 62, 17, 201, 198, 201, 198, 20500, 62, 16, 28, 961, 62, 7753, 7, 7753, 62, 6978, 62, 16, 8, 201, 198, 20500, 62, 17, 28, 961, 62, 7753, 7, 7753, 62, 6978, 62, 17, 8, 201, 198, 201, 198, 4798, 7203, 20500, 16, 1600, 3275, 62, 16, 8, 201, 198, 4798, 7203, 20500, 17, 1600, 20500, 62, 17, 8, 201, 198, 201, 198, 2, 4798, 7, 600, 7, 20500, 62, 17, 8, 1003, 600, 7, 20500, 62, 16, 4008, 201, 198, 201, 198, 21078, 62, 19662, 62, 16, 796, 32738, 62, 19662, 7, 20500, 62, 16, 11, 20500, 62, 17, 8, 201, 198, 4798, 7, 21078, 62, 19662, 62, 16, 8, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 628, 198, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 7753, 62, 6978, 62, 18, 201, 198, 201, 198, 20500, 62, 18, 796, 1100, 62, 7753, 7, 7753, 62, 6978, 62, 18, 8, 201, 198, 201, 198, 4798, 7203, 20500, 513, 25, 1600, 3275, 62, 18, 8, 201, 198, 201, 198, 21078, 62, 19662, 62, 17, 28, 7266, 301, 3678, 62, 19662, 7, 20500, 62, 18, 8, 201, 198, 4798, 7203, 21078, 31456, 17, 1058, 1600, 21078, 62, 19662, 62, 17, 8, 628, 198, 2, 220, 26171, 198, 2, 9220, 3108, 329, 3275, 604, 220, 290, 3275, 642, 201, 198, 7753, 62, 6978, 62, 19, 201, 198, 7753, 62, 6978, 62, 20, 201, 198, 201, 198, 2, 10669, 4940, 994, 201, 198, 201, 198, 20500, 62, 19, 796, 965, 7, 961, 62, 7753, 7, 7753, 62, 6978, 62, 19, 4008, 201, 198, 20500, 62, 20, 796, 965, 7, 961, 62, 7753, 7, 7753, 62, 6978, 62, 20, 4008, 201, 198, 201, 198, 4798, 7203, 20500, 604, 25, 1600, 20500, 62, 19, 8, 201, 198, 4798, 7203, 20500, 642, 25, 1600, 20500, 62, 20, 8, 201, 198, 201, 198, 21078, 62, 19662, 62, 18, 796, 965, 7, 5589, 533, 62, 19662, 7, 20500, 62, 19, 11, 3275, 62, 20, 4008, 201, 198, 4798, 7203, 21078, 31456, 18, 1058, 1600, 3200, 62, 19662, 62, 18, 8, 201, 198, 220, 220, 220, 220, 201, 198, 201, 628, 198, 198, 2, 220, 26171, 198, 2, 10669, 4940, 994, 201, 198, 7753, 62, 6978, 62, 21, 201, 198, 20500, 62, 21, 28, 965, 7, 961, 62, 7753, 7, 7753, 62, 6978, 62, 21, 4008, 201, 198, 201, 198, 4798, 7203, 20500, 718, 1058, 1600, 20500, 62, 21, 8, 201, 198, 201, 198, 21078, 62, 19662, 62, 19, 796, 7925, 62, 19662, 7, 20500, 62, 21, 8, 201, 198, 4798, 7203, 21078, 31456, 604, 25, 1600, 21078, 62, 19662, 62, 19, 8, 201, 628, 198, 198, 2, 220, 26171, 198, 2, 23725, 3275, 3354, 287, 262, 3376, 1502, 201, 198, 20500, 62, 42632, 41888, 21078, 62, 19662, 62, 18, 11, 3200, 62, 19662, 62, 16, 11, 3200, 62, 19662, 62, 19, 11, 3200, 62, 19662, 62, 17, 60, 201, 198, 201, 198, 201, 198, 20311, 62, 6978, 28, 2836, 62, 7890, 62, 15908, 1343, 31051, 21078, 62, 20500, 13, 14116, 6, 201, 198, 201, 198, 2, 10669, 4940, 994, 201, 198, 21078, 62, 19662, 796, 366, 27071, 22179, 7, 20500, 62, 42632, 8, 201, 198, 201, 198, 21078, 62, 20500, 796, 3551, 62, 7753, 7, 21078, 62, 19662, 11, 20311, 62, 6978, 8, 201, 198, 4798, 7203, 21078, 62, 19662, 1058, 4943, 628, 198 ]
2.407066
651
"""Test string """ import ARgorithmToolkit algo = ARgorithmToolkit.StateSet() st = ARgorithmToolkit.String('st', algo, "Hello world! 1234") def test_body(): """Test string contents """ assert st.body == "Hello world! 1234" last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_declare' assert last_state.content["state_def"]["body"] == "Hello world! 1234" def test_append(): """Test string append """ global st st.append(" Hahaha") assert st.body == "Hello world! 1234 Hahaha" last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_append' assert last_state.content["state_def"]["element"] == " Hahaha" st+='xyz' assert st.body == "Hello world! 1234 Hahahaxyz" last_state = algo.states[-1] second_last_state = algo.states[-2] assert last_state.content["state_type"] == 'string_append' assert last_state.content["state_def"]["element"] == "xyz" assert second_last_state.content["state_type"] == 'string_declare' assert second_last_state.content["state_def"]["body"] == "Hello world! 1234 Hahaha" assert second_last_state.content["state_def"]["variable_name"] == "st_super" def test_indexing(): """Test string indexing """ assert st[1] == st.body[1] last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_iter' assert last_state.content["state_def"]["index"] == 1 subst = st[1:3] assert isinstance(subst,ARgorithmToolkit.String) last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_declare' assert last_state.content["state_def"]["variable_name"] == 'st_super_sub' assert last_state.content["state_def"]["body"] == st.body[1:3] def test_iteration(): """Test string iteration """ for i,(a,b) in enumerate(zip(st,st.body)): assert a==b last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_iter' assert last_state.content["state_def"]["index"] == i
[ 37811, 14402, 4731, 198, 37811, 198, 11748, 5923, 42289, 25391, 15813, 198, 198, 282, 2188, 796, 5923, 42289, 25391, 15813, 13, 9012, 7248, 3419, 198, 301, 796, 5923, 42289, 25391, 15813, 13, 10100, 10786, 301, 3256, 435, 2188, 11, 366, 15496, 995, 0, 1105, 2682, 4943, 198, 198, 4299, 1332, 62, 2618, 33529, 198, 220, 220, 220, 37227, 14402, 4731, 10154, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 336, 13, 2618, 6624, 366, 15496, 995, 0, 1105, 2682, 1, 198, 220, 220, 220, 938, 62, 5219, 796, 435, 2188, 13, 27219, 58, 12, 16, 60, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4906, 8973, 6624, 705, 8841, 62, 32446, 533, 6, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 2618, 8973, 6624, 366, 15496, 995, 0, 1105, 2682, 1, 198, 198, 4299, 1332, 62, 33295, 33529, 198, 220, 220, 220, 37227, 14402, 4731, 24443, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 336, 198, 220, 220, 220, 336, 13, 33295, 7203, 367, 993, 12236, 4943, 198, 220, 220, 220, 6818, 336, 13, 2618, 6624, 366, 15496, 995, 0, 1105, 2682, 367, 993, 12236, 1, 198, 220, 220, 220, 938, 62, 5219, 796, 435, 2188, 13, 27219, 58, 12, 16, 60, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4906, 8973, 6624, 705, 8841, 62, 33295, 6, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 30854, 8973, 6624, 366, 367, 993, 12236, 1, 198, 220, 220, 220, 336, 10, 11639, 5431, 89, 6, 198, 220, 220, 220, 6818, 336, 13, 2618, 6624, 366, 15496, 995, 0, 1105, 2682, 367, 36225, 6969, 89, 1, 198, 220, 220, 220, 938, 62, 5219, 796, 435, 2188, 13, 27219, 58, 12, 16, 60, 198, 220, 220, 220, 1218, 62, 12957, 62, 5219, 796, 435, 2188, 13, 27219, 58, 12, 17, 60, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4906, 8973, 6624, 705, 8841, 62, 33295, 6, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 30854, 8973, 6624, 366, 5431, 89, 1, 198, 220, 220, 220, 6818, 1218, 62, 12957, 62, 5219, 13, 11299, 14692, 5219, 62, 4906, 8973, 6624, 705, 8841, 62, 32446, 533, 6, 198, 220, 220, 220, 6818, 1218, 62, 12957, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 2618, 8973, 6624, 366, 15496, 995, 0, 1105, 2682, 367, 993, 12236, 1, 198, 220, 220, 220, 6818, 1218, 62, 12957, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 45286, 62, 3672, 8973, 6624, 366, 301, 62, 16668, 1, 198, 198, 4299, 1332, 62, 9630, 278, 33529, 198, 220, 220, 220, 37227, 14402, 4731, 6376, 278, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 336, 58, 16, 60, 6624, 336, 13, 2618, 58, 16, 60, 198, 220, 220, 220, 938, 62, 5219, 796, 435, 2188, 13, 27219, 58, 12, 16, 60, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4906, 8973, 6624, 705, 8841, 62, 2676, 6, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 9630, 8973, 6624, 352, 628, 220, 220, 220, 3293, 796, 336, 58, 16, 25, 18, 60, 198, 220, 220, 220, 6818, 318, 39098, 7, 7266, 301, 11, 1503, 42289, 25391, 15813, 13, 10100, 8, 198, 220, 220, 220, 938, 62, 5219, 796, 435, 2188, 13, 27219, 58, 12, 16, 60, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4906, 8973, 6624, 705, 8841, 62, 32446, 533, 6, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 45286, 62, 3672, 8973, 6624, 705, 301, 62, 16668, 62, 7266, 6, 198, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 2618, 8973, 6624, 336, 13, 2618, 58, 16, 25, 18, 60, 628, 198, 4299, 1332, 62, 2676, 341, 33529, 198, 220, 220, 220, 37227, 14402, 4731, 24415, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 1312, 11, 7, 64, 11, 65, 8, 287, 27056, 378, 7, 13344, 7, 301, 11, 301, 13, 2618, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 855, 65, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 5219, 796, 435, 2188, 13, 27219, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4906, 8973, 6624, 705, 8841, 62, 2676, 6, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 938, 62, 5219, 13, 11299, 14692, 5219, 62, 4299, 1, 7131, 1, 9630, 8973, 6624, 1312, 198 ]
2.549383
810
from logzero import logger import logzero import logging import glob import pandas as pd # Scrapy packages import scrapy import requests from scrapy.selector import Selector from TA_scrapy.items import ReviewRestoItem, RestoItem, UserItem from TA_scrapy.spiders import get_info # Chromedriver package and options from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-dev-shm-usage')
[ 198, 6738, 2604, 22570, 1330, 49706, 198, 11748, 2604, 22570, 198, 11748, 18931, 198, 11748, 15095, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 1446, 2416, 88, 10392, 198, 11748, 15881, 88, 198, 11748, 7007, 198, 6738, 15881, 88, 13, 19738, 273, 1330, 9683, 273, 198, 6738, 21664, 62, 1416, 2416, 88, 13, 23814, 1330, 6602, 19452, 78, 7449, 11, 8324, 78, 7449, 11, 11787, 7449, 198, 6738, 21664, 62, 1416, 2416, 88, 13, 2777, 4157, 1330, 651, 62, 10951, 198, 198, 2, 18255, 276, 38291, 5301, 290, 3689, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 3992, 26230, 62, 37153, 13, 46659, 1330, 13282, 32103, 13511, 198, 46659, 62, 25811, 796, 3992, 26230, 13, 1925, 5998, 29046, 3419, 198, 46659, 62, 25811, 13, 2860, 62, 49140, 10786, 438, 2256, 1203, 11537, 198, 46659, 62, 25811, 13, 2860, 62, 49140, 10786, 438, 3919, 12, 38142, 3524, 11537, 198, 46659, 62, 25811, 13, 2860, 62, 49140, 10786, 438, 40223, 12, 7959, 12, 1477, 76, 12, 26060, 11537, 628 ]
3.444444
171
# Copyright 2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import sqlalchemy as sql from sqlalchemy import orm from keystone import config CONF = config.CONF
[ 2, 15069, 2211, 4946, 25896, 5693, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 33918, 198, 198, 11748, 44161, 282, 26599, 355, 44161, 198, 6738, 44161, 282, 26599, 1330, 393, 76, 198, 198, 6738, 1994, 6440, 1330, 4566, 628, 198, 10943, 37, 796, 4566, 13, 10943, 37, 628, 198 ]
3.411215
214
"""测试场景组件的使用""" from manimlib.imports import * class Graph2DExample(GraphScene): """二维坐标图实例""" CONFIG = { "x_min": -1, "x_max": 6, "x_axis_width": 10, "x_axis_label": "time", #"x_label_color": RED, "y_min": -1, "y_max": 20, "y_axis_height": 8, "y_axis_label": "amp", #"y_label_color": YELLOW, "y_tick_frequency": 1, } class ThreeDExample(ThreeDScene): """三维场景实例""" class MovingCameraExample(MovingCameraScene): """运动摄像机实例""" class SampleSpaceExample(SampleSpaceScene): """概率采样空间实例""" class ZoomedExample(ZoomedScene): """缩放摄像机实例""" class VectorExample(LinearTransformationScene): """向量场实例""" class ConfigSceneExample(Scene): """CONFIG参数修改设置实例""" CONFIG = { "camera_config": { "frame_rate": 30, }, } class UpdateExample(Scene): """更新器设置实例""" class CoorExample(Scene): """三维坐标轴例程"""
[ 37811, 38184, 233, 46237, 243, 28839, 118, 162, 247, 107, 163, 119, 226, 20015, 114, 21410, 45635, 18796, 101, 37811, 198, 198, 6738, 582, 320, 8019, 13, 320, 3742, 1330, 1635, 198, 198, 4871, 29681, 17, 35, 16281, 7, 37065, 36542, 2599, 198, 220, 220, 220, 37227, 12859, 234, 163, 119, 112, 161, 251, 238, 43718, 229, 32368, 122, 22522, 252, 160, 122, 233, 37811, 628, 220, 220, 220, 25626, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 87, 62, 1084, 1298, 532, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 87, 62, 9806, 1298, 718, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 87, 62, 22704, 62, 10394, 1298, 838, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 87, 62, 22704, 62, 18242, 1298, 366, 2435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 87, 62, 18242, 62, 8043, 1298, 23848, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 88, 62, 1084, 1298, 532, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 88, 62, 9806, 1298, 1160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 88, 62, 22704, 62, 17015, 1298, 807, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 88, 62, 22704, 62, 18242, 1298, 366, 696, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 88, 62, 18242, 62, 8043, 1298, 575, 23304, 3913, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 88, 62, 42298, 62, 35324, 1298, 352, 11, 198, 220, 220, 220, 1782, 198, 198, 4871, 7683, 35, 16281, 7, 12510, 35, 36542, 2599, 198, 220, 220, 220, 37227, 49011, 163, 119, 112, 28839, 118, 162, 247, 107, 22522, 252, 160, 122, 233, 37811, 198, 198, 4871, 26768, 35632, 16281, 7, 33622, 35632, 36542, 2599, 198, 220, 220, 220, 37227, 32573, 238, 27950, 101, 162, 239, 226, 161, 225, 237, 17312, 118, 22522, 252, 160, 122, 233, 37811, 198, 198, 4871, 27565, 14106, 16281, 7, 36674, 14106, 36542, 2599, 198, 220, 220, 220, 37227, 162, 99, 224, 163, 236, 229, 34932, 229, 43718, 115, 163, 102, 118, 29785, 112, 22522, 252, 160, 122, 233, 37811, 198, 198, 4871, 40305, 276, 16281, 7, 57, 4207, 276, 36542, 2599, 198, 220, 220, 220, 37227, 163, 120, 102, 162, 242, 122, 162, 239, 226, 161, 225, 237, 17312, 118, 22522, 252, 160, 122, 233, 37811, 198, 198, 4871, 20650, 16281, 7, 14993, 451, 8291, 1161, 36542, 2599, 198, 220, 220, 220, 37227, 28938, 239, 34932, 237, 28839, 118, 22522, 252, 160, 122, 233, 37811, 628, 198, 4871, 17056, 36542, 16281, 7, 36542, 2599, 198, 220, 220, 220, 37227, 10943, 16254, 20998, 224, 46763, 108, 46479, 106, 162, 242, 117, 164, 106, 122, 163, 121, 106, 22522, 252, 160, 122, 233, 37811, 628, 220, 220, 220, 25626, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25695, 62, 11250, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14535, 62, 4873, 1298, 1542, 11, 220, 198, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 198, 4871, 10133, 16281, 7, 36542, 2599, 198, 220, 220, 220, 37227, 162, 249, 112, 23877, 108, 161, 247, 101, 164, 106, 122, 163, 121, 106, 22522, 252, 160, 122, 233, 37811, 198, 198, 4871, 1766, 273, 16281, 7, 36542, 2599, 198, 220, 220, 220, 37227, 49011, 163, 119, 112, 161, 251, 238, 43718, 229, 164, 121, 112, 160, 122, 233, 163, 101, 233, 37811 ]
1.631579
589
# Copyright (c) 2020-2021 impersonator.org authors (Wen Liu and Zhixin Piao). All rights reserved. import cv2 import torch import numpy as np import math from operator import itemgetter from .dataset import normalize, pad_width def infer_fast_post_process(net_outputs, PoseClass): """ Args: net_outputs (dict): the output of the networks, and it contains, --heatmaps: --pafs: PoseClass (type of tools.human_pose2d_estimators.utils.pose_utils.OpenPoseBody25): Returns: outputs (dict): the output results, and it contains the followings keys, --pose_entries: --all_keypoints: --current_poses: """ heatmaps = net_outputs["heatmaps"] pafs = net_outputs["pafs"] pad = net_outputs["pad"] scale = net_outputs["scale"] stride = net_outputs["stride"] upsample_ratio = net_outputs["upsample_ratio"] height, width = net_outputs["orig_shape"] num_keypoints = PoseClass.num_kpts total_keypoints_num = 0 all_keypoints_by_type = [] for kpt_idx in range(num_keypoints): # 19th for bg total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num) pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs, PoseClass, demo=True) for kpt_id in range(all_keypoints.shape[0]): all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale if len(all_keypoints): all_keypoints[:, 0] = np.clip(all_keypoints[:, 0], 0, width) all_keypoints[:, 1] = np.clip(all_keypoints[:, 1], 0, height) current_poses = [] for n in range(len(pose_entries)): if len(pose_entries[n]) == 0: continue pose_keypoints = np.zeros((num_keypoints, 3), dtype=all_keypoints.dtype) for kpt_id in range(num_keypoints): kpt_num_id = int(pose_entries[n][kpt_id]) if kpt_num_id != -1: # keypoint was found pose_keypoints[kpt_id] = all_keypoints[kpt_num_id, 0:3] else: pose_keypoints[kpt_id, 0:2] = -1.0 # print(n, pose_keypoints) pose = PoseClass(pose_keypoints, pose_entries[n][-2]) current_poses.append(pose) outputs = { "pose_entries": pose_entries, "all_keypoints": all_keypoints, "current_poses": current_poses } return outputs
[ 2, 15069, 357, 66, 8, 12131, 12, 1238, 2481, 28671, 1352, 13, 2398, 7035, 357, 54, 268, 18258, 290, 10511, 844, 259, 350, 13481, 737, 1439, 2489, 10395, 13, 198, 198, 11748, 269, 85, 17, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 6738, 10088, 1330, 2378, 1136, 353, 198, 198, 6738, 764, 19608, 292, 316, 1330, 3487, 1096, 11, 14841, 62, 10394, 628, 628, 628, 198, 198, 4299, 13249, 62, 7217, 62, 7353, 62, 14681, 7, 3262, 62, 22915, 82, 11, 37557, 9487, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 62, 22915, 82, 357, 11600, 2599, 262, 5072, 286, 262, 7686, 11, 290, 340, 4909, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 25080, 31803, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 79, 1878, 82, 25, 628, 220, 220, 220, 220, 220, 220, 220, 37557, 9487, 357, 4906, 286, 4899, 13, 10734, 62, 3455, 17, 67, 62, 395, 320, 2024, 13, 26791, 13, 3455, 62, 26791, 13, 11505, 47, 577, 25842, 1495, 2599, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23862, 357, 11600, 2599, 262, 5072, 2482, 11, 290, 340, 4909, 262, 1061, 654, 8251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 3455, 62, 298, 1678, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 439, 62, 2539, 13033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 14421, 62, 4832, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4894, 31803, 796, 2010, 62, 22915, 82, 14692, 25080, 31803, 8973, 198, 220, 220, 220, 279, 1878, 82, 796, 2010, 62, 22915, 82, 14692, 79, 1878, 82, 8973, 198, 220, 220, 220, 14841, 796, 2010, 62, 22915, 82, 14692, 15636, 8973, 198, 220, 220, 220, 5046, 796, 2010, 62, 22915, 82, 14692, 9888, 8973, 198, 220, 220, 220, 33769, 796, 2010, 62, 22915, 82, 14692, 2536, 485, 8973, 198, 220, 220, 220, 19649, 1403, 62, 10366, 952, 796, 2010, 62, 22915, 82, 14692, 4739, 1403, 62, 10366, 952, 8973, 198, 220, 220, 220, 6001, 11, 9647, 796, 2010, 62, 22915, 82, 14692, 11612, 62, 43358, 8973, 628, 220, 220, 220, 997, 62, 2539, 13033, 796, 37557, 9487, 13, 22510, 62, 74, 457, 82, 628, 220, 220, 220, 2472, 62, 2539, 13033, 62, 22510, 796, 657, 198, 220, 220, 220, 477, 62, 2539, 13033, 62, 1525, 62, 4906, 796, 17635, 198, 220, 220, 220, 329, 479, 457, 62, 312, 87, 287, 2837, 7, 22510, 62, 2539, 13033, 2599, 220, 1303, 678, 400, 329, 275, 70, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 2539, 13033, 62, 22510, 15853, 7925, 62, 2539, 13033, 7, 25080, 31803, 58, 45299, 1058, 11, 479, 457, 62, 312, 87, 4357, 477, 62, 2539, 13033, 62, 1525, 62, 4906, 11, 2472, 62, 2539, 13033, 62, 22510, 8, 628, 220, 220, 220, 12705, 62, 298, 1678, 11, 477, 62, 2539, 13033, 796, 1448, 62, 2539, 13033, 7, 439, 62, 2539, 13033, 62, 1525, 62, 4906, 11, 279, 1878, 82, 11, 37557, 9487, 11, 13605, 28, 17821, 8, 628, 220, 220, 220, 329, 479, 457, 62, 312, 287, 2837, 7, 439, 62, 2539, 13033, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 2539, 13033, 58, 74, 457, 62, 312, 11, 657, 60, 796, 357, 439, 62, 2539, 13033, 58, 74, 457, 62, 312, 11, 657, 60, 1635, 33769, 1220, 19649, 1403, 62, 10366, 952, 532, 14841, 58, 16, 12962, 1220, 5046, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 2539, 13033, 58, 74, 457, 62, 312, 11, 352, 60, 796, 357, 439, 62, 2539, 13033, 58, 74, 457, 62, 312, 11, 352, 60, 1635, 33769, 1220, 19649, 1403, 62, 10366, 952, 532, 14841, 58, 15, 12962, 1220, 5046, 628, 220, 220, 220, 611, 18896, 7, 439, 62, 2539, 13033, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 2539, 13033, 58, 45299, 657, 60, 796, 45941, 13, 15036, 7, 439, 62, 2539, 13033, 58, 45299, 657, 4357, 657, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 2539, 13033, 58, 45299, 352, 60, 796, 45941, 13, 15036, 7, 439, 62, 2539, 13033, 58, 45299, 352, 4357, 657, 11, 6001, 8, 628, 220, 220, 220, 1459, 62, 4832, 796, 17635, 198, 220, 220, 220, 329, 299, 287, 2837, 7, 11925, 7, 3455, 62, 298, 1678, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 3455, 62, 298, 1678, 58, 77, 12962, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 12705, 62, 2539, 13033, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2539, 13033, 11, 513, 828, 288, 4906, 28, 439, 62, 2539, 13033, 13, 67, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 457, 62, 312, 287, 2837, 7, 22510, 62, 2539, 13033, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 457, 62, 22510, 62, 312, 796, 493, 7, 3455, 62, 298, 1678, 58, 77, 7131, 74, 457, 62, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 457, 62, 22510, 62, 312, 14512, 532, 16, 25, 220, 1303, 1994, 4122, 373, 1043, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12705, 62, 2539, 13033, 58, 74, 457, 62, 312, 60, 796, 477, 62, 2539, 13033, 58, 74, 457, 62, 22510, 62, 312, 11, 657, 25, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12705, 62, 2539, 13033, 58, 74, 457, 62, 312, 11, 657, 25, 17, 60, 796, 532, 16, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 77, 11, 12705, 62, 2539, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12705, 796, 37557, 9487, 7, 3455, 62, 2539, 13033, 11, 12705, 62, 298, 1678, 58, 77, 7131, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 4832, 13, 33295, 7, 3455, 8, 628, 220, 220, 220, 23862, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3455, 62, 298, 1678, 1298, 12705, 62, 298, 1678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 439, 62, 2539, 13033, 1298, 477, 62, 2539, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 14421, 62, 4832, 1298, 1459, 62, 4832, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1441, 23862, 628, 198 ]
2.222511
1,155
import numpy as np import pymc as pm from matplotlib import pyplot as plt challenger_data = np.genfromtxt("challenger_data.csv", skip_header=1, usecols=[1, 2], missing_values="NA", delimiter=",") # drop the NA values challenger_data = challenger_data[~np.isnan(challenger_data[:, 1])] temperature = challenger_data[:, 0] D = challenger_data[:, 1] # defect or not? # notice the`value` here. We explain why below. beta = pm.Normal("beta", 0, 0.001, value=0) alpha = pm.Normal("alpha", 0, 0.001, value=0) @pm.deterministic # connect the probabilities in `p` with our observations through a # Bernoulli random variable. observed = pm.Bernoulli("bernoulli_obs", p, value=D, observed=True) model = pm.Model([observed, beta, alpha]) # Mysterious code to be explained in Chapter 3 map_ = pm.MAP(model) map_.fit() mcmc = pm.MCMC(model) mcmc.sample(120000, 100000, 2) alpha_samples = mcmc.trace('alpha')[:, None] # best to make them 1d beta_samples = mcmc.trace('beta')[:, None] # histogram of the samples: plt.subplot(211) plt.title(r"Posterior distributions of the variables $\alpha, \beta$") plt.hist(beta_samples, histtype='stepfilled', bins=35, alpha=0.85, label=r"posterior of $\beta$", color="#7A68A6", normed=True) plt.legend() plt.subplot(212) plt.hist(alpha_samples, histtype='stepfilled', bins=35, alpha=0.85, label=r"posterior of $\alpha$", color="#A60628", normed=True) plt.legend() plt.show() prob_31 = logistic(31, beta_samples, alpha_samples) plt.xlim(0.995, 1) plt.hist(prob_31, bins=1000, normed=True, histtype='stepfilled') plt.title("Posterior distribution of probability of defect, given $t = 31$") plt.xlabel("probability of defect occurring in O-ring") plt.show()
[ 11748, 299, 32152, 355, 45941, 201, 198, 11748, 279, 4948, 66, 355, 9114, 201, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 201, 198, 201, 198, 36747, 6540, 62, 7890, 796, 45941, 13, 5235, 6738, 14116, 7203, 36747, 6540, 62, 7890, 13, 40664, 1600, 14267, 62, 25677, 28, 16, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 4033, 82, 41888, 16, 11, 362, 4357, 4814, 62, 27160, 2625, 4535, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46728, 2676, 28, 2430, 8, 201, 198, 2, 4268, 262, 11746, 3815, 201, 198, 36747, 6540, 62, 7890, 796, 32127, 62, 7890, 58, 93, 37659, 13, 271, 12647, 7, 36747, 6540, 62, 7890, 58, 45299, 352, 12962, 60, 198, 201, 198, 11498, 21069, 796, 32127, 62, 7890, 58, 45299, 657, 60, 201, 198, 35, 796, 32127, 62, 7890, 58, 45299, 352, 60, 220, 1303, 11855, 393, 407, 30, 201, 198, 201, 198, 2, 4003, 262, 63, 8367, 63, 994, 13, 775, 4727, 1521, 2174, 13, 201, 198, 31361, 796, 9114, 13, 26447, 7203, 31361, 1600, 657, 11, 657, 13, 8298, 11, 1988, 28, 15, 8, 201, 198, 26591, 796, 9114, 13, 26447, 7203, 26591, 1600, 657, 11, 657, 13, 8298, 11, 1988, 28, 15, 8, 201, 198, 201, 198, 201, 198, 31, 4426, 13, 67, 2357, 49228, 201, 198, 201, 198, 2, 2018, 262, 39522, 287, 4600, 79, 63, 351, 674, 13050, 832, 257, 201, 198, 2, 6206, 280, 15516, 4738, 7885, 13, 201, 198, 672, 45852, 796, 9114, 13, 23927, 280, 15516, 7203, 33900, 280, 15516, 62, 8158, 1600, 279, 11, 1988, 28, 35, 11, 6515, 28, 17821, 8, 201, 198, 201, 198, 19849, 796, 9114, 13, 17633, 26933, 672, 45852, 11, 12159, 11, 17130, 12962, 201, 198, 201, 198, 2, 40981, 2438, 284, 307, 4893, 287, 7006, 513, 201, 198, 8899, 62, 796, 9114, 13, 33767, 7, 19849, 8, 201, 198, 8899, 44807, 11147, 3419, 201, 198, 76, 11215, 66, 796, 9114, 13, 9655, 9655, 7, 19849, 8, 201, 198, 76, 11215, 66, 13, 39873, 7, 1065, 2388, 11, 1802, 830, 11, 362, 8, 201, 198, 201, 198, 26591, 62, 82, 12629, 796, 285, 11215, 66, 13, 40546, 10786, 26591, 11537, 58, 45299, 6045, 60, 220, 1303, 1266, 284, 787, 606, 352, 67, 201, 198, 31361, 62, 82, 12629, 796, 285, 11215, 66, 13, 40546, 10786, 31361, 11537, 58, 45299, 6045, 60, 201, 198, 201, 198, 2, 1554, 21857, 286, 262, 8405, 25, 201, 198, 489, 83, 13, 7266, 29487, 7, 21895, 8, 201, 198, 489, 83, 13, 7839, 7, 81, 1, 47, 6197, 1504, 24570, 286, 262, 9633, 39280, 26591, 11, 3467, 31361, 3, 4943, 201, 198, 489, 83, 13, 10034, 7, 31361, 62, 82, 12629, 11, 1554, 4906, 11639, 9662, 20286, 3256, 41701, 28, 2327, 11, 17130, 28, 15, 13, 5332, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 81, 1, 79, 6197, 1504, 286, 39280, 31361, 3, 1600, 3124, 25698, 22, 32, 3104, 32, 21, 1600, 2593, 276, 28, 17821, 8, 201, 198, 489, 83, 13, 1455, 437, 3419, 201, 198, 201, 198, 489, 83, 13, 7266, 29487, 7, 21777, 8, 201, 198, 489, 83, 13, 10034, 7, 26591, 62, 82, 12629, 11, 1554, 4906, 11639, 9662, 20286, 3256, 41701, 28, 2327, 11, 17130, 28, 15, 13, 5332, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 81, 1, 79, 6197, 1504, 286, 39280, 26591, 3, 1600, 3124, 25698, 32, 33206, 2078, 1600, 2593, 276, 28, 17821, 8, 201, 198, 489, 83, 13, 1455, 437, 3419, 201, 198, 489, 83, 13, 12860, 3419, 201, 198, 201, 198, 1676, 65, 62, 3132, 796, 2604, 2569, 7, 3132, 11, 12159, 62, 82, 12629, 11, 17130, 62, 82, 12629, 8, 201, 198, 201, 198, 489, 83, 13, 87, 2475, 7, 15, 13, 33438, 11, 352, 8, 201, 198, 489, 83, 13, 10034, 7, 1676, 65, 62, 3132, 11, 41701, 28, 12825, 11, 2593, 276, 28, 17821, 11, 1554, 4906, 11639, 9662, 20286, 11537, 201, 198, 489, 83, 13, 7839, 7203, 47, 6197, 1504, 6082, 286, 12867, 286, 11855, 11, 1813, 720, 83, 796, 3261, 3, 4943, 201, 198, 489, 83, 13, 87, 18242, 7203, 1676, 65, 1799, 286, 11855, 14963, 287, 440, 12, 1806, 4943, 201, 198, 489, 83, 13, 12860, 3419, 201, 198 ]
2.380208
768
from tkinter import * window = Tk() window.geometry("600x500+30+20") window.title("Welcome to Python Programming") btn = Button(window, text = "Click to add name", fg ="blue") btn.place(x= 80, y= 100) lbl = Label(window, text = "Student Personal Information", fg = "Blue", bg = "orange") lbl.place(relx=.5, y =50, anchor="center") lbl2 = Label(window, text ="Gender", fg="red") lbl2.place(x= 80,y = 150) txtfld = Entry(window, bd = 3, font = ("verdana",16)) txtfld.place(x=150,y=100) v1 = StringVar() v2 = StringVar() v1.set(1) r1 = Radiobutton(window, text="Male",variable=v1) r1.place(x=80,y=200) r2 = Radiobutton(window, text="Female",variable=v2) r2.place(x=200,y=200) v3 = IntVar() v4 = IntVar() v5 = IntVar() chkbox = Checkbutton(window, text="basketball",variable=v3) chkbox2 = Checkbutton(window, text="volleyball",variable=v4) chkbox3 = Checkbutton(window, text="swimming",variable=v5) chkbox.place(x=80, y=300) chkbox2.place(x=250, y=300) chkbox3.place(x=350, y=300) lbl3 = Label(window, text ="Sports") lbl3.place(x=80,y=250) lbl4 = Label(window, text ="Subjects") lbl4.place(x=80,y=350) data1 ="arithmetric" data2 ="writing" data3 ="math" lstbox = Listbox(window, height=5, selectmode="multiple") lstbox.insert(END,data1,data2,data3) lstbox.place(x=80, y=400) window.mainloop()
[ 6738, 256, 74, 3849, 1330, 1635, 201, 198, 17497, 796, 309, 74, 3419, 201, 198, 201, 198, 17497, 13, 469, 15748, 7203, 8054, 87, 4059, 10, 1270, 10, 1238, 4943, 201, 198, 17497, 13, 7839, 7203, 14618, 284, 11361, 30297, 4943, 201, 198, 201, 198, 46118, 796, 20969, 7, 17497, 11, 2420, 796, 366, 8164, 284, 751, 1438, 1600, 277, 70, 796, 1, 17585, 4943, 201, 198, 46118, 13, 5372, 7, 87, 28, 4019, 11, 331, 28, 1802, 8, 201, 198, 201, 198, 75, 2436, 796, 36052, 7, 17497, 11, 2420, 796, 366, 38778, 15644, 6188, 1600, 277, 70, 796, 366, 14573, 1600, 275, 70, 796, 366, 43745, 4943, 201, 198, 75, 2436, 13, 5372, 7, 2411, 87, 28, 13, 20, 11, 331, 796, 1120, 11, 18021, 2625, 16159, 4943, 201, 198, 75, 2436, 17, 796, 36052, 7, 17497, 11, 2420, 796, 1, 41394, 1600, 277, 70, 2625, 445, 4943, 201, 198, 75, 2436, 17, 13, 5372, 7, 87, 28, 4019, 11, 88, 796, 6640, 8, 201, 198, 201, 198, 14116, 69, 335, 796, 21617, 7, 17497, 11, 275, 67, 796, 513, 11, 10369, 796, 5855, 332, 67, 2271, 1600, 1433, 4008, 201, 198, 14116, 69, 335, 13, 5372, 7, 87, 28, 8628, 11, 88, 28, 3064, 8, 201, 198, 201, 198, 85, 16, 796, 10903, 19852, 3419, 201, 198, 85, 17, 796, 10903, 19852, 3419, 201, 198, 85, 16, 13, 2617, 7, 16, 8, 201, 198, 81, 16, 796, 5325, 72, 672, 21115, 7, 17497, 11, 2420, 2625, 25486, 1600, 45286, 28, 85, 16, 8, 201, 198, 81, 16, 13, 5372, 7, 87, 28, 1795, 11, 88, 28, 2167, 8, 201, 198, 81, 17, 796, 5325, 72, 672, 21115, 7, 17497, 11, 2420, 2625, 27273, 1600, 45286, 28, 85, 17, 8, 201, 198, 81, 17, 13, 5372, 7, 87, 28, 2167, 11, 88, 28, 2167, 8, 201, 198, 201, 198, 85, 18, 796, 2558, 19852, 3419, 201, 198, 85, 19, 796, 2558, 19852, 3419, 201, 198, 85, 20, 796, 2558, 19852, 3419, 201, 198, 354, 74, 3524, 796, 6822, 16539, 7, 17497, 11, 2420, 2625, 21265, 1600, 45286, 28, 85, 18, 8, 201, 198, 354, 74, 3524, 17, 796, 6822, 16539, 7, 17497, 11, 2420, 2625, 10396, 1636, 1894, 1600, 45286, 28, 85, 19, 8, 201, 198, 354, 74, 3524, 18, 796, 6822, 16539, 7, 17497, 11, 2420, 2625, 2032, 27428, 1600, 45286, 28, 85, 20, 8, 201, 198, 201, 198, 354, 74, 3524, 13, 5372, 7, 87, 28, 1795, 11, 331, 28, 6200, 8, 201, 198, 354, 74, 3524, 17, 13, 5372, 7, 87, 28, 9031, 11, 331, 28, 6200, 8, 201, 198, 354, 74, 3524, 18, 13, 5372, 7, 87, 28, 14877, 11, 331, 28, 6200, 8, 201, 198, 201, 198, 75, 2436, 18, 796, 36052, 7, 17497, 11, 2420, 796, 1, 18153, 4943, 201, 198, 75, 2436, 18, 13, 5372, 7, 87, 28, 1795, 11, 88, 28, 9031, 8, 201, 198, 201, 198, 75, 2436, 19, 796, 36052, 7, 17497, 11, 2420, 796, 1, 19776, 82, 4943, 201, 198, 75, 2436, 19, 13, 5372, 7, 87, 28, 1795, 11, 88, 28, 14877, 8, 201, 198, 201, 198, 7890, 16, 796, 1, 283, 342, 4164, 1173, 1, 201, 198, 7890, 17, 796, 1, 16502, 1, 201, 198, 7890, 18, 796, 1, 11018, 1, 201, 198, 75, 301, 3524, 796, 7343, 3524, 7, 17497, 11, 6001, 28, 20, 11, 2922, 14171, 2625, 48101, 4943, 201, 198, 75, 301, 3524, 13, 28463, 7, 10619, 11, 7890, 16, 11, 7890, 17, 11, 7890, 18, 8, 201, 198, 75, 301, 3524, 13, 5372, 7, 87, 28, 1795, 11, 331, 28, 7029, 8, 201, 198, 201, 198, 17497, 13, 12417, 26268, 3419, 201, 198 ]
2.207516
612
from collections import defaultdict forward, reverse = build_mapping_from_input() # Part 1 print(len(can_contain('shiny gold'))) # Part 2 print(count_bags('shiny gold'))
[ 6738, 17268, 1330, 4277, 11600, 628, 198, 198, 11813, 11, 9575, 796, 1382, 62, 76, 5912, 62, 6738, 62, 15414, 3419, 628, 198, 2, 2142, 352, 628, 198, 4798, 7, 11925, 7, 5171, 62, 3642, 391, 10786, 1477, 3541, 3869, 6, 22305, 628, 198, 2, 2142, 362, 628, 198, 4798, 7, 9127, 62, 34005, 10786, 1477, 3541, 3869, 6, 4008, 198 ]
2.967213
61
import itertools import numpy as np from draw import Draw from replay import Replay from config import WHITELIST class Comparer: """ A class for managing a set of replay comparisons. Attributes: List replays1: A list of Replay instances to compare against replays2. List replays2: A list of Replay instances to be compared against. Optional, defaulting to None. No attempt to error check this is made - if a compare() call is made, the program will throw an AttributeError. Be sure to only call methods that involve the first set of replays if this argument is not passed. Integer threshold: If a comparison scores below this value, the result is printed. See Also: Investigator """ def __init__(self, threshold, replays1, replays2=None): """ Initializes a Comparer instance. Note that the order of the two replay lists has no effect; they are only numbered for consistency. Comparing 1 to 2 is the same as comparing 2 to 1. Args: List replays1: A list of Replay instances to compare against replays2. List replays2: A list of Replay instances to be compared against. Optional, defaulting to None. No attempt to error check this is made - if a compare() call is made, the program will throw an AttributeError. Be sure to only call methods that involve the first set of replays. Integer threshold: If a comparison scores below this value, the result is printed. """ self.replays1 = replays1 self.replays2 = replays2 self.threshold = threshold def compare(self, mode): """ If mode is "double", compares all replays in replays1 against all replays in replays2. If mode is "single", compares all replays in replays1 against all other replays in replays1 (len(replays1) choose 2 comparisons). In both cases, prints the result of each comparison according to _print_result. Args: String mode: One of either "double" or "single", determining how to choose which replays to compare. """ iterator = itertools.product(self.replays1, self.replays2) if mode == "double" else itertools.combinations(self.replays1, 2) for replay1, replay2 in iterator: if(self.check_names(replay1.player_name, replay2.player_name)): continue result = Comparer._compare_two_replays(replay1, replay2) self._print_result(result, replay1, replay2) def check_names(self, player1, player2): """ Returns True if both players are in the whitelist or are the same name, False otherwise. Args: String player1: The name of the first player. String player2: The name of the second player. """ return ((player1 in WHITELIST and player2 in WHITELIST) or (player1 == player2)) def _print_result(self, result, replay1, replay2): """ Prints a human readable version of the result if the average distance is below the threshold set from the command line. Args: Tuple result: A tuple containing (average distance, standard deviation) of a comparison. Replay replay1: The replay to print the name of and to draw against replay2 Replay replay2: The replay to print the name of and to draw against replay1 """ mean = result[0] sigma = result[1] if(mean > self.threshold): return print("{:.1f} similarity, {:.1f} std deviation ({} vs {})".format(mean, sigma, replay1.player_name, replay2.player_name)) answer = input("Would you like to see a visualization of both replays? ") if answer[0].lower() == "y": animation = Draw.draw_replays(replay1, replay2) @staticmethod def _compare_two_replays(replay1, replay2): """ Compares two Replays and return their average distance and standard deviation of distances. """ # get all coordinates in numpy arrays so that they're arranged like: # [ x_1 x_2 ... x_n # y_1 y_2 ... y_n ] # indexed by columns first. data1 = replay1.as_list_with_timestamps() data2 = replay2.as_list_with_timestamps() # interpolate (data1, data2) = Replay.interpolate(data1, data2) # remove time from each tuple data1 = [d[1:] for d in data1] data2 = [d[1:] for d in data2] (mu, sigma) = Comparer._compute_data_similarity(data1, data2) return (mu, sigma) @staticmethod def _compute_data_similarity(data1, data2): """ Finds the similarity and standard deviation between two datasets. Args: List data1: A list of tuples containing the (x, y) coordinate of points List data2: A list of tuples containing the (x, y) coordinate of points Returns: A tuple containing (similarity value, standard deviation) between the two datasets """ data1 = np.array(data1) data2 = np.array(data2) # switch if the second is longer, so that data1 is always the longest. if len(data2) > len(data1): (data1, data2) = (data2, data1) shortest = len(data2) distance = data1[:shortest] - data2 # square all numbers and sum over the second axis (add row 2 to row 1), # finally take the square root of each number to get all distances. # [ x_1 x_2 ... x_n => [ x_1 ** 2 ... x_n ** 2 # y_1 y_2 ... y_n ] => y_1 ** 2 ... y_n ** 2 ] # => [ x_1 ** 2 + y_1 ** 2 ... x_n ** 2 + y_n ** 2 ] # => [ d_1 ... d_2 ] distance = (distance ** 2).sum(axis=1) ** 0.5 mu, sigma = distance.mean(), distance.std() return (mu, sigma)
[ 11748, 340, 861, 10141, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 3197, 1330, 15315, 198, 6738, 24788, 1330, 23635, 198, 6738, 4566, 1330, 7655, 2043, 3698, 8808, 198, 198, 4871, 3082, 11258, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1398, 329, 11149, 257, 900, 286, 24788, 17909, 13, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 2186, 592, 16, 25, 317, 1351, 286, 23635, 10245, 284, 8996, 1028, 2186, 592, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 2186, 592, 17, 25, 317, 1351, 286, 23635, 10245, 284, 307, 3688, 1028, 13, 32233, 11, 4277, 278, 284, 6045, 13, 1400, 2230, 284, 4049, 2198, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 318, 925, 532, 611, 257, 8996, 3419, 869, 318, 925, 11, 262, 1430, 481, 3714, 281, 3460, 4163, 12331, 13, 1355, 1654, 284, 691, 869, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5050, 326, 6211, 262, 717, 900, 286, 2186, 592, 611, 428, 4578, 318, 407, 3804, 13, 198, 220, 220, 220, 220, 220, 220, 220, 34142, 11387, 25, 1002, 257, 7208, 8198, 2174, 428, 1988, 11, 262, 1255, 318, 10398, 13, 628, 220, 220, 220, 4091, 4418, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49499, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 11387, 11, 2186, 592, 16, 11, 2186, 592, 17, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 4340, 257, 3082, 11258, 4554, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 262, 1502, 286, 262, 734, 24788, 8341, 468, 645, 1245, 26, 484, 389, 691, 25840, 329, 15794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1723, 352, 284, 362, 318, 262, 976, 355, 14176, 362, 284, 352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 2186, 592, 16, 25, 317, 1351, 286, 23635, 10245, 284, 8996, 1028, 2186, 592, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 2186, 592, 17, 25, 317, 1351, 286, 23635, 10245, 284, 307, 3688, 1028, 13, 32233, 11, 4277, 278, 284, 6045, 13, 1400, 2230, 284, 4049, 2198, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 318, 925, 532, 611, 257, 8996, 3419, 869, 318, 925, 11, 262, 1430, 481, 3714, 281, 3460, 4163, 12331, 13, 1355, 1654, 284, 691, 869, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5050, 326, 6211, 262, 717, 900, 286, 2186, 592, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34142, 11387, 25, 1002, 257, 7208, 8198, 2174, 428, 1988, 11, 262, 1255, 318, 10398, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 26024, 16, 796, 2186, 592, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 26024, 17, 796, 2186, 592, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 400, 10126, 796, 11387, 628, 220, 220, 220, 825, 8996, 7, 944, 11, 4235, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 4235, 318, 366, 23352, 1600, 23008, 477, 2186, 592, 287, 2186, 592, 16, 1028, 477, 2186, 592, 287, 2186, 592, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 4235, 318, 366, 29762, 1600, 23008, 477, 2186, 592, 287, 2186, 592, 16, 1028, 477, 584, 2186, 592, 287, 2186, 592, 16, 357, 11925, 7, 260, 26024, 16, 8, 3853, 362, 17909, 737, 198, 220, 220, 220, 220, 220, 220, 220, 554, 1111, 2663, 11, 20842, 262, 1255, 286, 1123, 7208, 1864, 284, 4808, 4798, 62, 20274, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10903, 4235, 25, 1881, 286, 2035, 366, 23352, 1, 393, 366, 29762, 1600, 13213, 703, 284, 3853, 543, 2186, 592, 284, 8996, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 41313, 796, 340, 861, 10141, 13, 11167, 7, 944, 13, 260, 26024, 16, 11, 2116, 13, 260, 26024, 17, 8, 611, 4235, 6624, 366, 23352, 1, 2073, 340, 861, 10141, 13, 24011, 7352, 7, 944, 13, 260, 26024, 16, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 24788, 16, 11, 24788, 17, 287, 41313, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 944, 13, 9122, 62, 14933, 7, 260, 1759, 16, 13, 7829, 62, 3672, 11, 24788, 17, 13, 7829, 62, 3672, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 3082, 11258, 13557, 5589, 533, 62, 11545, 62, 260, 26024, 7, 260, 1759, 16, 11, 24788, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4798, 62, 20274, 7, 20274, 11, 24788, 16, 11, 24788, 17, 8, 628, 220, 220, 220, 825, 2198, 62, 14933, 7, 944, 11, 2137, 16, 11, 2137, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 6407, 611, 1111, 1938, 389, 287, 262, 20542, 46331, 393, 389, 262, 976, 1438, 11, 10352, 4306, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10903, 2137, 16, 25, 383, 1438, 286, 262, 717, 2137, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10903, 2137, 17, 25, 383, 1438, 286, 262, 1218, 2137, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 14808, 7829, 16, 287, 7655, 2043, 3698, 8808, 290, 2137, 17, 287, 7655, 2043, 3698, 8808, 8, 393, 357, 7829, 16, 6624, 2137, 17, 4008, 628, 220, 220, 220, 825, 4808, 4798, 62, 20274, 7, 944, 11, 1255, 11, 24788, 16, 11, 24788, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12578, 82, 257, 1692, 31744, 2196, 286, 262, 1255, 611, 262, 2811, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 318, 2174, 262, 11387, 900, 422, 262, 3141, 1627, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 29291, 1255, 25, 317, 46545, 7268, 357, 23913, 5253, 11, 3210, 28833, 8, 286, 257, 7208, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23635, 24788, 16, 25, 383, 24788, 284, 3601, 262, 1438, 286, 290, 284, 3197, 1028, 24788, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23635, 24788, 17, 25, 383, 24788, 284, 3601, 262, 1438, 286, 290, 284, 3197, 1028, 24788, 16, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1612, 796, 1255, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 1255, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 32604, 1875, 2116, 13, 400, 10126, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 25, 13, 16, 69, 92, 26789, 11, 46110, 13, 16, 69, 92, 14367, 28833, 37913, 92, 3691, 23884, 8, 1911, 18982, 7, 32604, 11, 264, 13495, 11, 24788, 16, 13, 7829, 62, 3672, 11, 24788, 17, 13, 7829, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3280, 796, 5128, 7203, 17353, 345, 588, 284, 766, 257, 32704, 286, 1111, 2186, 592, 30, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3280, 58, 15, 4083, 21037, 3419, 6624, 366, 88, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11034, 796, 15315, 13, 19334, 62, 260, 26024, 7, 260, 1759, 16, 11, 24788, 17, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 5589, 533, 62, 11545, 62, 260, 26024, 7, 260, 1759, 16, 11, 24788, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 3565, 734, 18407, 592, 290, 1441, 511, 2811, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 290, 3210, 28833, 286, 18868, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 477, 22715, 287, 299, 32152, 26515, 523, 326, 484, 821, 14921, 588, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 2124, 62, 16, 2124, 62, 17, 2644, 2124, 62, 77, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 331, 62, 16, 331, 62, 17, 2644, 331, 62, 77, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41497, 416, 15180, 717, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 16, 796, 24788, 16, 13, 292, 62, 4868, 62, 4480, 62, 16514, 395, 9430, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17, 796, 24788, 17, 13, 292, 62, 4868, 62, 4480, 62, 16514, 395, 9430, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 39555, 378, 198, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 16, 11, 1366, 17, 8, 796, 23635, 13, 3849, 16104, 378, 7, 7890, 16, 11, 1366, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4781, 640, 422, 1123, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 16, 796, 685, 67, 58, 16, 47715, 329, 288, 287, 1366, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17, 796, 685, 67, 58, 16, 47715, 329, 288, 287, 1366, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 357, 30300, 11, 264, 13495, 8, 796, 3082, 11258, 13557, 5589, 1133, 62, 7890, 62, 38610, 414, 7, 7890, 16, 11, 1366, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 30300, 11, 264, 13495, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 5589, 1133, 62, 7890, 62, 38610, 414, 7, 7890, 16, 11, 1366, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9938, 82, 262, 26789, 290, 3210, 28833, 1022, 734, 40522, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 1366, 16, 25, 317, 1351, 286, 12777, 2374, 7268, 262, 357, 87, 11, 331, 8, 20435, 286, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 1366, 17, 25, 317, 1351, 286, 12777, 2374, 7268, 262, 357, 87, 11, 331, 8, 20435, 286, 2173, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 46545, 7268, 357, 38610, 414, 1988, 11, 3210, 28833, 8, 1022, 262, 734, 40522, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 16, 796, 45941, 13, 18747, 7, 7890, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17, 796, 45941, 13, 18747, 7, 7890, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5078, 611, 262, 1218, 318, 2392, 11, 523, 326, 1366, 16, 318, 1464, 262, 14069, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7890, 17, 8, 1875, 18896, 7, 7890, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 16, 11, 1366, 17, 8, 796, 357, 7890, 17, 11, 1366, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 35581, 796, 18896, 7, 7890, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5253, 796, 1366, 16, 58, 25, 19509, 395, 60, 532, 1366, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6616, 477, 3146, 290, 2160, 625, 262, 1218, 16488, 357, 2860, 5752, 362, 284, 5752, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3443, 1011, 262, 6616, 6808, 286, 1123, 1271, 284, 651, 477, 18868, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 2124, 62, 16, 2124, 62, 17, 2644, 2124, 62, 77, 220, 220, 5218, 685, 2124, 62, 16, 12429, 362, 2644, 2124, 62, 77, 12429, 362, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 331, 62, 16, 331, 62, 17, 2644, 331, 62, 77, 2361, 5218, 220, 220, 331, 62, 16, 12429, 362, 2644, 331, 62, 77, 12429, 362, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5218, 685, 2124, 62, 16, 12429, 362, 1343, 331, 62, 16, 12429, 362, 2644, 2124, 62, 77, 12429, 362, 1343, 331, 62, 77, 12429, 362, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5218, 685, 288, 62, 16, 2644, 288, 62, 17, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 5253, 796, 357, 30246, 12429, 362, 737, 16345, 7, 22704, 28, 16, 8, 12429, 657, 13, 20, 628, 220, 220, 220, 220, 220, 220, 220, 38779, 11, 264, 13495, 796, 5253, 13, 32604, 22784, 5253, 13, 19282, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 30300, 11, 264, 13495, 8, 198 ]
2.50693
2,381
from setuptools import setup setup( name='proximal', version='0.1.7', packages=['proximal', 'proximal.prox_fns', 'proximal.lin_ops', 'proximal.algorithms', 'proximal.utils', 'proximal.halide', 'proximal.tests', 'proximal.tests.data'], package_dir={'proximal': 'proximal'}, package_data={'proximal.tests.data': ['angela.jpg'], 'proximal.halide': ['src/*.cpp', 'src/core/*', 'src/external/*', 'src/fft/*', 'subprojects/halide.wrap', 'subprojects/pybind11.wrap', 'subprojects/packagefiles/halide/meson.build', 'meson.build']}, url='http://github.com/comp-imaging/ProxImaL/', install_requires=["numpy >= 1.9", "scipy >= 0.15", "numexpr", "Pillow", "meson >= 0.54"], use_2to3=True, )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 1676, 87, 4402, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 16, 13, 22, 3256, 198, 220, 220, 220, 10392, 28, 17816, 1676, 87, 4402, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1676, 87, 4402, 13, 1676, 87, 62, 69, 5907, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1676, 87, 4402, 13, 2815, 62, 2840, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1676, 87, 4402, 13, 282, 7727, 907, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1676, 87, 4402, 13, 26791, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1676, 87, 4402, 13, 14201, 485, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1676, 87, 4402, 13, 41989, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1676, 87, 4402, 13, 41989, 13, 7890, 6, 4357, 198, 220, 220, 220, 5301, 62, 15908, 34758, 6, 1676, 87, 4402, 10354, 705, 1676, 87, 4402, 6, 5512, 198, 220, 220, 220, 5301, 62, 7890, 34758, 6, 1676, 87, 4402, 13, 41989, 13, 7890, 10354, 37250, 8368, 64, 13, 9479, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1676, 87, 4402, 13, 14201, 485, 10354, 37250, 10677, 15211, 13, 20322, 3256, 705, 10677, 14, 7295, 15211, 3256, 705, 10677, 14, 22615, 15211, 3256, 705, 10677, 14, 487, 83, 15211, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 42068, 14, 14201, 485, 13, 37150, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 42068, 14, 9078, 21653, 1157, 13, 37150, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 42068, 14, 26495, 16624, 14, 14201, 485, 14, 6880, 261, 13, 11249, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6880, 261, 13, 11249, 20520, 5512, 198, 220, 220, 220, 19016, 11639, 4023, 1378, 12567, 13, 785, 14, 5589, 12, 320, 3039, 14, 2964, 87, 40, 2611, 43, 14, 3256, 198, 220, 220, 220, 2721, 62, 47911, 28, 14692, 77, 32152, 18189, 352, 13, 24, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1416, 541, 88, 18189, 657, 13, 1314, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 31937, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 359, 322, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6880, 261, 18189, 657, 13, 4051, 33116, 198, 220, 220, 220, 779, 62, 17, 1462, 18, 28, 17821, 11, 198, 8, 198 ]
1.690236
594
import math import numpy as np import subprocess import re import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import astropy.units as units from astropy.cosmology import Planck15 as cosmo,z_at_value from matplotlib.backends.backend_pdf import PdfPages flare_dir="../flare" Ms=1.5e4*10**(np.arange(16)/3.0) #Ms=2.0e5*10**(np.arange(13)/3.0) print "Ms=",Ms SNRstudy(Ms,[1,2,4,10],[10,100,1000],300) #logz = np.arange(10)/2.5 #print "logz=",logz #print [10**x for x in logz] #logD = [cosmo.luminosity_distance(1+10**lz)/units.Mpc for lz in logz] #print logD #plt.clf() #plot=plt.plot(logz,logD) #plt.show()
[ 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 850, 14681, 198, 11748, 302, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 8071, 2052, 1330, 48599, 9248, 198, 11748, 6468, 28338, 13, 41667, 355, 4991, 198, 6738, 6468, 28338, 13, 6966, 29126, 1330, 5224, 694, 1314, 355, 8615, 5908, 11, 89, 62, 265, 62, 8367, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 12315, 1330, 350, 7568, 47798, 628, 198, 220, 220, 220, 220, 198, 2704, 533, 62, 15908, 2625, 40720, 2704, 533, 1, 198, 10128, 28, 16, 13, 20, 68, 19, 9, 940, 1174, 7, 37659, 13, 283, 858, 7, 1433, 20679, 18, 13, 15, 8, 198, 2, 10128, 28, 17, 13, 15, 68, 20, 9, 940, 1174, 7, 37659, 13, 283, 858, 7, 1485, 20679, 18, 13, 15, 8, 198, 4798, 366, 10128, 28, 1600, 10128, 198, 15571, 49, 44517, 7, 10128, 17414, 16, 11, 17, 11, 19, 11, 940, 38430, 940, 11, 3064, 11, 12825, 4357, 6200, 8, 198, 2, 6404, 89, 796, 45941, 13, 283, 858, 7, 940, 20679, 17, 13, 20, 198, 2, 4798, 366, 6404, 89, 28, 1600, 6404, 89, 198, 2, 4798, 685, 940, 1174, 87, 329, 2124, 287, 2604, 89, 60, 198, 2, 6404, 35, 796, 685, 6966, 5908, 13, 75, 7230, 16579, 62, 30246, 7, 16, 10, 940, 1174, 75, 89, 20679, 41667, 13, 44, 14751, 329, 300, 89, 287, 2604, 89, 60, 198, 2, 4798, 2604, 35, 198, 2, 489, 83, 13, 565, 69, 3419, 198, 2, 29487, 28, 489, 83, 13, 29487, 7, 6404, 89, 11, 6404, 35, 8, 198, 2, 489, 83, 13, 12860, 3419, 198 ]
2.244681
282
""" Schema for event objects. """ from .common import sources, extras media_schema = { "description": ("This \"special\" schema is used in two places in the Event" " schema, on the top level and inside the agenda item. This is an" " optional component that may be omited entirely from a document."), "items": { "properties": { "name": { "type": "string", "description": ('name of the media link, such as "Recording of' ' the meeting" or "Discussion of construction' ' near the watershed"'), }, "type": { "type": "string", "description": ('type of the set of recordings, such as' ' "recording" or "testimony".'), }, "date": { "pattern": "^[0-9]{4}(-[0-9]{2}){0,2}$", "type": ["string", "null"], "description": "date of the recording.", }, "offset": { "type": ["number", "null"], "description": ("Offset where the related part starts. This is" " optional and may be ommited entirely."), }, "links": { "description": ("List of links to the same media item, each" " with a different MIME type."), "items": { "properties": { "mimetype": { "description": ("Mimetype of the media, such" " as video/mp4 or audio/webm"), "type": ["string", "null"] }, "url": { "type": "string", "description": "URL where this media may be accessed", }, }, "type": "object" }, "type": "array" }, }, "type": "object" }, "type": "array" } schema = { "description": "event data", "_order": ( ('Basics', ('_type', 'name', 'description', 'when', 'end', 'status', 'location')), ('Linked Entities', ('media', 'links', 'participants', 'agenda', 'documents',)), ('Common Fields', ['updated_at', 'created_at', 'sources']), ), "properties": { "_type": { "enum": ["event"], "type": "string", "description": ("All events must have a _type field set to one of" " the entries in the enum below."), }, "name": { "type": "string", "description": ('A simple name of the event, such as "Fiscal' ' subcommittee hearing on pudding cups"') }, "all_day": { "type": ["boolean"], "description": ("Indicates if the event is an all-day event"), }, "type": { "type": ["string"], "description": ("type of event"), }, # TODO: turn into enum "updated_at": { "type": ["string", "datetime"], "required": False, "description": "the time that this object was last updated.", }, "created_at": { "type": ["string", "datetime"], "required": False, "description": "the time that this object was first created.", }, "description": { "type": ["string", "null"], "description": ('A longer description describing the event. As an' ' example, "Topics for discussion include this that' ' and the other thing. In addition, lunch will be' ' served".'), }, "when": { "type": ["datetime"], "description": ("Starting date / time of the event. This should be" " fully timezone qualified."), }, "end": { "type": ["datetime", "null"], "description": ("Ending date / time of the event. This should" " be fully timezone qualified."), }, "status": { "type": ["string", "null"], "enum": ["cancelled", "tentative", "confirmed", "passed"], "description": ("String that denotes the status of the meeting." " This is useful for showing the meeting is cancelled" " in a machine-readable way."), }, "location": { "description": "Where the event will take place.", "type": "object", "properties": { "name": { "type": "string", "description": ('name of the location, such as "City Hall,' ' Boston, MA, USA", or "Room E201, Dolan' ' Science Center, 20700 North Park Blvd' ' University Heights Ohio, 44118"'), }, "note": { "type": ["string", "null"], "description": ('human readable notes regarding the location,' ' something like "The meeting will take place' ' at the Minority Whip\'s desk on the floor"') }, "url": { "required": False, "type": "string", "description": "URL of the location, if applicable.", }, "coordinates": { "description": ('coordinates where this event will take' ' place. If the location hasn\'t (or isn\'t)' ' geolocated or geocodable, than this should' ' be set to null.'), "type": ["object", "null"], "properties": { "latitude": { "type": "string", "description": "latitude of the location, if any", }, "longitude": { "type": "string", "description": "longitude of the location, if any", } } }, }, }, "media": media_schema, "documents": { "description": ("Links to related documents for the event. Usually," " this includes things like pre-written testimony," " spreadsheets or a slide deck that a presenter will" " use."), "items": { "properties": { "name": { "type": "string", "description": ('name of the document. Something like' ' "Fiscal Report" or "John Smith\'s' ' Slides".'), }, "url": { "type": "string", "description": "URL where the content may be found.", }, "mimetype": { "type": "string", "description": "Mimetype of the document.", }, }, "type": "object" }, "type": "array" }, "links": { "description": ("Links related to the event that are not documents" " or items in the Agenda. This is filled with helpful" " links for the event, such as a committee's homepage," " reference material or links to learn more about subjects" " related to the event."), "items": { "properties": { "note": { "description": ('Human-readable name of the link. Something' ' like "Historical precedent for popsicle procurement"'), "type": "string", "blank": True, }, "url": { "description": "A URL for a link about the event", "format": "uri", "type": "string" } }, "type": "object" }, "type": "array" }, "participants": { "description": ("List of participants in the event. This includes" " committees invited, legislators chairing the event" " or people who are attending."), "items": { "properties": { "chamber": { "type": ["string", "null"], "description": ("Optional field storing the chamber of" " the related participant."), }, "name": { "type": "string", "description": "Human readable name of the entitity.", }, "id": { "type": ["string", "null"], "description": "ID of the participant", }, "type": { "enum": ["organization", "person"], "type": "string", "description": ("What type of entity is this? `person`" " may be used if the person is not a Legislator," " butattending the event, such as an" " invited speaker or one who is offering" " testimony."), }, "note": { "type": "string", "description": ("Note regarding the relationship, such" " as `chair` for the chair of a meeting."), }, }, "type": "object" }, "type": "array" }, "agenda": { "description": ("Agenda of the event, if any. This contains information" " about the meeting's agenda, such as bills to" " discuss or people to present."), "items": { "properties": { "description": { "type": "string", "description": ("Human-readable string that represents this" " agenda item. A good example would be something like" " The Committee will consider SB 2339, HB 100"), }, "order": { "type": ["string", "null"], "description": ("order of this item, useful for re-creating" " meeting minutes. This may be ommited entirely." " It may also optionally contains \"dots\"" " to denote nested agenda items, such as \"1.1.2.1\"" " or \"2\", which may go on as needed."), }, "subjects": { "description": ("List of related topics of this agenda" " item relates to."), "items": {"type": "string"}, "type": "array" }, "media": media_schema, "notes": { "description": ("List of notes taken during this agenda" " item, may be used to construct meeting minutes."), "items": { "properties": { "description": { "type": "string", "description": ("simple string containing the" " content of the note."), }, }, "type": "object" }, "type": "array" }, "related_entities": { "description": ("Entities that relate to this agenda" " item, such as presenters, legislative" " instruments, or committees."), "items": { "properties": { "type": { "type": "string", "description": ("type of the related object, like" " `bill` or `organization`."), }, "id": { "type": ["string", "null"], "description": "ID of the related entity", }, "name": { "type": "string", "description": ("human readable string" " representing the entity," " such as `John Q. Smith`."), }, "note": { "type": ["string", "null"], "description": ("human readable string (if any) noting" " the relationship between the entity and" " the agenda item, such as \"Jeff" " will be presenting on the effects" " of too much cookie dough\""), }, }, "type": "object", }, "minItems": 0, "type": "array", }, }, "type": "object" }, "minItems": 0, "type": "array" }, "sources": sources, "extras": extras, }, "type": "object" }
[ 37811, 198, 220, 220, 220, 10011, 2611, 329, 1785, 5563, 13, 198, 37811, 198, 198, 6738, 764, 11321, 1330, 4237, 11, 33849, 198, 198, 11431, 62, 15952, 2611, 796, 1391, 198, 220, 220, 220, 366, 11213, 1298, 5855, 1212, 19990, 20887, 7879, 32815, 318, 973, 287, 734, 4113, 287, 262, 8558, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32815, 11, 319, 262, 1353, 1241, 290, 2641, 262, 8666, 2378, 13, 770, 318, 281, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11902, 7515, 326, 743, 307, 39030, 863, 5000, 422, 257, 3188, 526, 828, 198, 220, 220, 220, 366, 23814, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 3672, 286, 262, 2056, 2792, 11, 884, 355, 366, 6690, 1284, 286, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 262, 3249, 1, 393, 366, 34255, 286, 5103, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1474, 262, 42640, 30543, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 4906, 286, 262, 900, 286, 18813, 11, 884, 355, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 366, 8344, 1284, 1, 393, 366, 9288, 33969, 1911, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4475, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33279, 1298, 366, 61, 58, 15, 12, 24, 60, 90, 19, 92, 32590, 58, 15, 12, 24, 60, 90, 17, 92, 19953, 15, 11, 17, 92, 3, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 4475, 286, 262, 8296, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28968, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 17618, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 34519, 810, 262, 3519, 636, 4940, 13, 770, 318, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11902, 290, 743, 307, 267, 3020, 863, 5000, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 8053, 286, 6117, 284, 262, 976, 2056, 2378, 11, 1123, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 351, 257, 1180, 337, 12789, 2099, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23814, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 76, 320, 2963, 431, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 44, 320, 2963, 431, 286, 262, 2056, 11, 884, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 355, 2008, 14, 3149, 19, 393, 6597, 14, 12384, 76, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 21886, 810, 428, 2056, 743, 307, 17535, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1, 198, 92, 198, 198, 15952, 2611, 796, 1391, 198, 220, 220, 220, 366, 11213, 1298, 366, 15596, 1366, 1600, 628, 220, 220, 220, 45434, 2875, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15522, 873, 3256, 19203, 62, 4906, 3256, 705, 3672, 3256, 705, 11213, 3256, 705, 12518, 3256, 705, 437, 3256, 705, 13376, 3256, 705, 24886, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 11280, 276, 7232, 871, 3256, 19203, 11431, 3256, 705, 28751, 3256, 705, 48013, 1187, 3256, 705, 363, 7438, 3256, 705, 15390, 2886, 3256, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 17227, 23948, 3256, 37250, 43162, 62, 265, 3256, 705, 25598, 62, 265, 3256, 705, 82, 2203, 20520, 828, 198, 220, 220, 220, 10612, 628, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 45434, 4906, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44709, 1298, 14631, 15596, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 3237, 2995, 1276, 423, 257, 4808, 4906, 2214, 900, 284, 530, 286, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 262, 12784, 287, 262, 33829, 2174, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 32, 2829, 1438, 286, 262, 1785, 11, 884, 355, 366, 37, 7860, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47014, 4854, 319, 44670, 14180, 1, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 439, 62, 820, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 2127, 21052, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 5497, 16856, 611, 262, 1785, 318, 281, 477, 12, 820, 1785, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 4906, 286, 1785, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 1210, 656, 33829, 628, 220, 220, 220, 220, 220, 220, 220, 366, 43162, 62, 265, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 19608, 8079, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 1169, 640, 326, 428, 2134, 373, 938, 6153, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 25598, 62, 265, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 19608, 8079, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 1169, 640, 326, 428, 2134, 373, 717, 2727, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 32, 2392, 6764, 12059, 262, 1785, 13, 1081, 281, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1672, 11, 366, 25902, 329, 5114, 2291, 428, 326, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 290, 262, 584, 1517, 13, 554, 3090, 11, 9965, 481, 307, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4983, 1911, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 12518, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 19608, 8079, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 22851, 3128, 1220, 640, 286, 262, 1785, 13, 770, 815, 307, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3938, 640, 11340, 10617, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 437, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 19608, 8079, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 12915, 278, 3128, 1220, 640, 286, 262, 1785, 13, 770, 815, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 307, 3938, 640, 11340, 10617, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44709, 1298, 14631, 66, 590, 3353, 1600, 366, 83, 298, 876, 1600, 366, 36349, 1600, 366, 6603, 276, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 10100, 326, 43397, 262, 3722, 286, 262, 3249, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 770, 318, 4465, 329, 4478, 262, 3249, 318, 16769, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 287, 257, 4572, 12, 46155, 835, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 24886, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 8496, 262, 1785, 481, 1011, 1295, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 3672, 286, 262, 4067, 11, 884, 355, 366, 14941, 4789, 4032, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6182, 11, 8779, 11, 4916, 1600, 393, 366, 41178, 412, 1264, 11, 360, 16617, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5800, 3337, 11, 1160, 9879, 2258, 3250, 29402, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2059, 20365, 6835, 11, 5846, 16817, 30543, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11295, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 10734, 31744, 4710, 5115, 262, 4067, 4032, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1223, 588, 366, 464, 3249, 481, 1011, 1295, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 379, 262, 29980, 40930, 43054, 82, 6915, 319, 262, 4314, 1, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 21886, 286, 262, 4067, 11, 611, 9723, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37652, 17540, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 37652, 17540, 810, 428, 1785, 481, 1011, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1295, 13, 1002, 262, 4067, 5818, 43054, 83, 357, 273, 2125, 43054, 83, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4903, 349, 10533, 393, 4903, 420, 375, 540, 11, 621, 428, 815, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 307, 900, 284, 9242, 2637, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 15252, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15460, 3984, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 15460, 3984, 286, 262, 4067, 11, 611, 597, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6511, 3984, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 6511, 3984, 286, 262, 4067, 11, 611, 597, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 11431, 1298, 2056, 62, 15952, 2611, 11, 628, 220, 220, 220, 220, 220, 220, 220, 366, 15390, 2886, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 31815, 284, 3519, 4963, 329, 262, 1785, 13, 19672, 553, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 428, 3407, 1243, 588, 662, 12, 15266, 9709, 553, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4104, 42011, 393, 257, 10649, 6203, 326, 257, 39597, 481, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 779, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23814, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 3672, 286, 262, 3188, 13, 13742, 588, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 366, 37, 7860, 6358, 1, 393, 366, 7554, 4176, 43054, 82, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3454, 1460, 1911, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 21886, 810, 262, 2695, 743, 307, 1043, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 76, 320, 2963, 431, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 44, 320, 2963, 431, 286, 262, 3188, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 31815, 3519, 284, 262, 1785, 326, 389, 407, 4963, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 393, 3709, 287, 262, 37029, 13, 770, 318, 5901, 351, 7613, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6117, 329, 262, 1785, 11, 884, 355, 257, 5583, 338, 34940, 553, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4941, 2587, 393, 6117, 284, 2193, 517, 546, 7481, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3519, 284, 262, 1785, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23814, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11295, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 19203, 20490, 12, 46155, 1438, 286, 262, 2792, 13, 13742, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 588, 366, 13749, 12409, 19719, 329, 26384, 1548, 31156, 30543, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27190, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 32, 10289, 329, 257, 2792, 546, 262, 1785, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18982, 1298, 366, 9900, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 48013, 1187, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 8053, 286, 6809, 287, 262, 1785, 13, 770, 3407, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17460, 9392, 11, 19964, 5118, 278, 262, 1785, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 393, 661, 508, 389, 11969, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23814, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 7789, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 30719, 2214, 23069, 262, 11847, 286, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 262, 3519, 18399, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 20490, 31744, 1438, 286, 262, 26189, 414, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 2389, 286, 262, 18399, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44709, 1298, 14631, 9971, 1634, 1600, 366, 6259, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 2061, 2099, 286, 9312, 318, 428, 30, 4600, 6259, 63, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 743, 307, 973, 611, 262, 1048, 318, 407, 257, 12288, 1352, 553, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 475, 1078, 1571, 262, 1785, 11, 884, 355, 281, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9392, 10834, 393, 530, 508, 318, 6011, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9709, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11295, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 6425, 5115, 262, 2776, 11, 884, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 355, 4600, 16337, 63, 329, 262, 5118, 286, 257, 3249, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 366, 363, 7438, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 10262, 7438, 286, 262, 1785, 11, 611, 597, 13, 770, 4909, 1321, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 546, 262, 3249, 338, 8666, 11, 884, 355, 9024, 284, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2112, 393, 661, 284, 1944, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23814, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 20490, 12, 46155, 4731, 326, 6870, 428, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8666, 2378, 13, 317, 922, 1672, 561, 307, 1223, 588, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 383, 4606, 481, 2074, 18056, 362, 29626, 11, 25997, 1802, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2875, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 2875, 286, 428, 2378, 11, 4465, 329, 302, 12, 20123, 278, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3249, 2431, 13, 770, 743, 307, 267, 3020, 863, 5000, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 632, 743, 635, 42976, 4909, 19990, 67, 1747, 7879, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 42685, 28376, 8666, 3709, 11, 884, 355, 19990, 16, 13, 16, 13, 17, 13, 16, 7879, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 393, 19990, 17, 34607, 543, 743, 467, 319, 355, 2622, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32796, 82, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 8053, 286, 3519, 10233, 286, 428, 8666, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2378, 18436, 284, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23814, 1298, 19779, 4906, 1298, 366, 8841, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11431, 1298, 2056, 62, 15952, 2611, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17815, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 8053, 286, 4710, 2077, 1141, 428, 8666, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2378, 11, 743, 307, 973, 284, 5678, 3249, 2431, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23814, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 36439, 4731, 7268, 262, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2695, 286, 262, 3465, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5363, 62, 298, 871, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 14539, 871, 326, 15124, 284, 428, 8666, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2378, 11, 884, 355, 1944, 364, 11, 10828, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12834, 11, 393, 17460, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23814, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 4906, 286, 262, 3519, 2134, 11, 588, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4600, 35546, 63, 393, 4600, 9971, 1634, 63, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 2389, 286, 262, 3519, 9312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 10734, 31744, 4731, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10200, 262, 9312, 553, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 884, 355, 4600, 7554, 1195, 13, 4176, 63, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11295, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 14631, 8841, 1600, 366, 8423, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 5855, 10734, 31744, 4731, 357, 361, 597, 8, 10820, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 262, 2776, 1022, 262, 9312, 290, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 262, 8666, 2378, 11, 884, 355, 19990, 19139, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 481, 307, 17728, 319, 262, 3048, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 286, 1165, 881, 19751, 15756, 7879, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 23022, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 23022, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 18747, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2203, 1298, 4237, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2302, 8847, 1298, 33849, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 92, 198 ]
1.660739
9,223
from django.contrib.auth import views as auth_views from django.views.generic.base import TemplateView from django.conf.urls import patterns, include, url from django.contrib import admin from django.conf.urls.static import static from django.conf import settings from django.views.generic import RedirectView from fileupload.views import * app_name='fileupload' urlpatterns = [ #~ url(r'^list/$', 'fileupload.views.list_files', name='list'), url(r'^create_report/', 'fileupload.views.create_report', name='create_report'), url(r'^(?P<report_id>[0-9]+)/', 'fileupload.views.view_report', name='view_report'), url(r'^browse/$', 'fileupload.views.browse', name='browse'), url(r'^user_reports/(?P<id>[0-9]+)/$', 'fileupload.views.user_reports', name='user_reports'), url(r'^inbox/$', 'fileupload.views.inbox', name='inbox'), url(r'^create_message/$', 'fileupload.views.create_message', name='create_message'), url(r'^trash/$', 'fileupload.views.trash', name='trash'), url(r'^delete_report/(?P<report_id>[0-9]+)/$', 'fileupload.views.delete_report', name='delete_report'), url(r'^edit_report/(?P<report_id>[0-9]+)/$', 'fileupload.views.edit_report', name='edit_report'), url(r'^view_message/(?P<message_id>[0-9]+)/', 'fileupload.views.view_message', name='view_message'), url(r'^reply_message/(?P<message_id>[0-9]+)/', 'fileupload.views.reply_message', name='reply_message'), url(r'^create_folder/$', 'fileupload.views.create_folder', name='create_folder'), url(r'^edit_folder/(?P<folder_id>[0-9]+)/', 'fileupload.views.edit_folder', name='edit_folder'), url(r'^delete_folder/(?P<folder_id>[0-9]+)/', 'fileupload.views.delete_folder', name='delete_folder'), ]
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 5009, 355, 6284, 62, 33571, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 8692, 1330, 37350, 7680, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 7572, 11, 2291, 11, 19016, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 13, 12708, 1330, 9037, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 2297, 1060, 7680, 198, 6738, 2393, 25850, 13, 33571, 1330, 1635, 198, 198, 1324, 62, 3672, 11639, 7753, 25850, 6, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 1303, 93, 19016, 7, 81, 6, 61, 4868, 32624, 3256, 705, 7753, 25850, 13, 33571, 13, 4868, 62, 16624, 3256, 1438, 11639, 4868, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 17953, 62, 13116, 14, 3256, 705, 7753, 25850, 13, 33571, 13, 17953, 62, 13116, 3256, 1438, 11639, 17953, 62, 13116, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 47, 27, 13116, 62, 312, 36937, 15, 12, 24, 48688, 20679, 3256, 705, 7753, 25850, 13, 33571, 13, 1177, 62, 13116, 3256, 1438, 11639, 1177, 62, 13116, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 25367, 325, 32624, 3256, 705, 7753, 25850, 13, 33571, 13, 25367, 325, 3256, 1438, 11639, 25367, 325, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7220, 62, 48922, 29006, 30, 47, 27, 312, 36937, 15, 12, 24, 48688, 20679, 3, 3256, 705, 7753, 25850, 13, 33571, 13, 7220, 62, 48922, 3256, 1438, 11639, 7220, 62, 48922, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 259, 3524, 32624, 3256, 705, 7753, 25850, 13, 33571, 13, 259, 3524, 3256, 1438, 11639, 259, 3524, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 17953, 62, 20500, 32624, 3256, 705, 7753, 25850, 13, 33571, 13, 17953, 62, 20500, 3256, 1438, 11639, 17953, 62, 20500, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 2213, 1077, 32624, 3256, 705, 7753, 25850, 13, 33571, 13, 2213, 1077, 3256, 1438, 11639, 2213, 1077, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 33678, 62, 13116, 29006, 30, 47, 27, 13116, 62, 312, 36937, 15, 12, 24, 48688, 20679, 3, 3256, 705, 7753, 25850, 13, 33571, 13, 33678, 62, 13116, 3256, 1438, 11639, 33678, 62, 13116, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 19312, 62, 13116, 29006, 30, 47, 27, 13116, 62, 312, 36937, 15, 12, 24, 48688, 20679, 3, 3256, 705, 7753, 25850, 13, 33571, 13, 19312, 62, 13116, 3256, 1438, 11639, 19312, 62, 13116, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1177, 62, 20500, 29006, 30, 47, 27, 20500, 62, 312, 36937, 15, 12, 24, 48688, 20679, 3256, 705, 7753, 25850, 13, 33571, 13, 1177, 62, 20500, 3256, 1438, 11639, 1177, 62, 20500, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 47768, 62, 20500, 29006, 30, 47, 27, 20500, 62, 312, 36937, 15, 12, 24, 48688, 20679, 3256, 705, 7753, 25850, 13, 33571, 13, 47768, 62, 20500, 3256, 1438, 11639, 47768, 62, 20500, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 17953, 62, 43551, 32624, 3256, 705, 7753, 25850, 13, 33571, 13, 17953, 62, 43551, 3256, 1438, 11639, 17953, 62, 43551, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 19312, 62, 43551, 29006, 30, 47, 27, 43551, 62, 312, 36937, 15, 12, 24, 48688, 20679, 3256, 705, 7753, 25850, 13, 33571, 13, 19312, 62, 43551, 3256, 1438, 11639, 19312, 62, 43551, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 33678, 62, 43551, 29006, 30, 47, 27, 43551, 62, 312, 36937, 15, 12, 24, 48688, 20679, 3256, 705, 7753, 25850, 13, 33571, 13, 33678, 62, 43551, 3256, 1438, 11639, 33678, 62, 43551, 33809, 198, 60, 198 ]
2.670295
643
#!/usr/bin/env python3 # encoding: utf-8 """Choices are enumeration values you can choose, by selecting index number. It is a special TabStop, its content are taken literally, thus said, they will not be parsed recursively. """ from UltiSnips import vim_helper from UltiSnips.position import Position from UltiSnips.text_objects.tabstop import TabStop from UltiSnips.snippet.parsing.lexer import ChoicesToken class Choices(TabStop): """See module docstring."""
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 37811, 22164, 1063, 389, 27056, 341, 3815, 345, 460, 3853, 11, 416, 17246, 6376, 1271, 13, 198, 1026, 318, 257, 2041, 16904, 19485, 11, 663, 2695, 389, 2077, 7360, 11, 4145, 531, 11, 484, 481, 407, 307, 44267, 664, 1834, 2280, 13, 198, 37811, 198, 198, 6738, 6172, 72, 16501, 2419, 1330, 43907, 62, 2978, 525, 198, 6738, 6172, 72, 16501, 2419, 13, 9150, 1330, 23158, 198, 6738, 6172, 72, 16501, 2419, 13, 5239, 62, 48205, 13, 8658, 11338, 1330, 16904, 19485, 198, 6738, 6172, 72, 16501, 2419, 13, 16184, 3974, 316, 13, 79, 945, 278, 13, 2588, 263, 1330, 10031, 1063, 30642, 628, 198, 4871, 10031, 1063, 7, 33349, 19485, 2599, 198, 220, 220, 220, 37227, 6214, 8265, 2205, 8841, 526, 15931, 198 ]
3.27972
143
import pytest from mltk.utils.test_helper import run_model_operation, generate_run_model_params @pytest.mark.parametrize(*generate_run_model_params()) @pytest.mark.parametrize(*generate_run_model_params())
[ 198, 11748, 12972, 9288, 198, 6738, 285, 2528, 74, 13, 26791, 13, 9288, 62, 2978, 525, 1330, 1057, 62, 19849, 62, 27184, 11, 7716, 62, 5143, 62, 19849, 62, 37266, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 46491, 8612, 378, 62, 5143, 62, 19849, 62, 37266, 28955, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 46491, 8612, 378, 62, 5143, 62, 19849, 62, 37266, 28955 ]
2.824324
74
name = str(input('Type your name: ')).strip() print('Uppercase name: {}'.format(name.upper())) print('Lowercase name: {}'.format(name.lower())) print('Total letters: {}'.format(len(name) - name.count(' '))) #print('First name has {} letters. '.format(name.find(' '))) s = name.split() print('First name has {} letters.'.format(len(s[0])))
[ 3672, 796, 965, 7, 15414, 10786, 6030, 534, 1438, 25, 705, 29720, 36311, 3419, 198, 4798, 10786, 52, 39921, 589, 1438, 25, 23884, 4458, 18982, 7, 3672, 13, 45828, 3419, 4008, 198, 4798, 10786, 31426, 7442, 1438, 25, 23884, 4458, 18982, 7, 3672, 13, 21037, 3419, 4008, 198, 4798, 10786, 14957, 7475, 25, 23884, 4458, 18982, 7, 11925, 7, 3672, 8, 532, 1438, 13, 9127, 10786, 705, 22305, 198, 2, 4798, 10786, 5962, 1438, 468, 23884, 7475, 13, 45302, 18982, 7, 3672, 13, 19796, 10786, 705, 22305, 198, 82, 796, 1438, 13, 35312, 3419, 198, 4798, 10786, 5962, 1438, 468, 23884, 7475, 2637, 13, 18982, 7, 11925, 7, 82, 58, 15, 60, 22305 ]
2.99115
113
#==================================================== # MODULES #==================================================== import pandas as pd import ROOT import matplotlib.pyplot as plt import numpy as np #==================================================== # DATA PREPARATION #==================================================== model_outputs = pd.read_csv('model_outputs.csv') model_outputs['Label'] = pd.read_csv('dataset_higgs_challenge.csv')['Label'] model_outputs['KaggleWeight'] = pd.read_csv('dataset_higgs_challenge.csv')['KaggleWeight'] model_outputs['KaggleSet'] = pd.read_csv('dataset_higgs_challenge.csv')['KaggleSet'] predictions_train = model_outputs['Predictions'][model_outputs['KaggleSet'] == 't'] predictions_test = model_outputs['Predictions'][model_outputs['KaggleSet'] == 'v'] weights_train = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 't'] weights_test = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 'v'] labels_train = model_outputs['Label'][model_outputs['KaggleSet'] == 't'] labels_test = model_outputs['Label'][model_outputs['KaggleSet'] == 'v'] predictions_train = (predictions_train - min(predictions_train)) / (max(predictions_train) - min(predictions_train)) predictions_test = (predictions_test - min(predictions_test)) / (max(predictions_test) - min(predictions_test)) train_signal = predictions_train[model_outputs['KaggleSet'] == 't'][model_outputs['Label']=='s'] train_bkg = predictions_train[model_outputs['KaggleSet'] == 't'][model_outputs['Label']=='b'] test_signal = predictions_test[model_outputs['KaggleSet'] == 'v'][model_outputs['Label']=='s'] test_bkg = predictions_test[model_outputs['KaggleSet'] == 'v'][model_outputs['Label']=='b'] weights_train_signal = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 't'][model_outputs['Label']=='s'] weights_train_bkg = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 't'][model_outputs['Label']=='b'] weights_test_signal = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 'v'][model_outputs['Label']=='s'] weights_test_bkg = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 'v'][model_outputs['Label']=='b'] #==================================================== # STYLE SETTINGS #==================================================== ROOT.gROOT.SetStyle("ATLAS") c = ROOT.TCanvas("c", "", 750, 700) bins = 20 hist_train_s = ROOT.TH1D("hist_train_s", "train signal", bins, 0, 1) hist_test_s = ROOT.TH1D("hist_test_s", "test signal", bins, 0, 1) hist_train_b = ROOT.TH1D("hist_train_b", "train bkg", bins, 0, 1) hist_test_b = ROOT.TH1D("hist_test_b", "test bkg", bins, 0, 1) #==================================================== # FIRST UNWEIGHTED AND NORMALIZED TO UNITY #==================================================== for i in range(len(train_signal)): hist_train_s.Fill(train_signal.values[i]) for i in range(len(test_signal)): hist_test_s.Fill(test_signal.values[i]) for i in range(len(train_bkg)): hist_train_b.Fill(train_bkg.values[i]) for i in range(len(test_bkg)): hist_test_b.Fill(test_bkg.values[i]) for hist in [hist_test_s, hist_test_b]: for i in range(1, hist.GetNbinsX()+1): hist.SetBinError(i, np.sqrt(hist.GetBinContent(i))) for hist in [hist_train_s, hist_test_s, hist_train_b, hist_test_b]: hist.Scale(1/hist.Integral(), 'nosw2') #Plot settings: hist_train_b.SetAxisRange(3e-3, 5, 'Y') hist_train_b.GetYaxis().SetLabelSize(0.04) hist_train_b.GetYaxis().SetTitleSize(0.04) hist_train_b.GetYaxis().SetTitle('Event Fraction') hist_train_b.GetXaxis().SetLabelSize(0.04) hist_train_b.GetXaxis().SetTitleSize(0.04) hist_train_b.GetXaxis().SetTitle('Model Output') hist_train_b.SetLineColor(ROOT.kRed) hist_train_b.SetLineWidth(3) hist_train_b.Draw('HIST') hist_test_b.SetMarkerSize(1.3) hist_test_b.SetMarkerStyle(3) hist_test_b.Draw('same') hist_train_s.SetLineColor(ROOT.kBlue) hist_train_s.SetLineWidth(3) hist_train_s.Draw('hist same') hist_test_s.SetMarkerSize(1.3) hist_test_s.SetMarkerStyle(8) hist_test_s.Draw('same') c.SetLogy() #Add legend: legend = ROOT.TLegend(0.52, 0.75, 0.92, 0.9) legend.SetTextFont(42) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextSize(0.04) legend.SetTextAlign(12) legend.AddEntry(hist_train_s, "Signal (Training)", "lf") legend.AddEntry(hist_test_s, "Signal (Test)", "pe") legend.AddEntry(hist_train_b, "Background (Training)" ,"l") legend.AddEntry(hist_test_b, "Background (Test)", "ep") legend.Draw("SAME") text = ROOT.TLatex() text.SetNDC() text.SetTextFont(42) text.SetTextSize(0.04) text.DrawLatex(0.23, 0.87, "Simulation") text.DrawLatex(0.23, 0.83, "H #rightarrow #tau^{+}#tau^{-}") text.DrawLatex(0.23, 0.79, "#sqrt{s} = 8 TeV") c.Draw() #Set marker: marker_types = ROOT.TCanvas('marker_types', '', 0,0,500,200) marker = ROOT.TMarker() marker.DisplayMarkerTypes() marker_types.Draw() #==================================================== # NOW THE WEIGHTED DISTRIBUTION #==================================================== c2 = ROOT.TCanvas("c2", "", 750, 700) bins = 10 hist_train_sw = ROOT.TH1D("hist_train_sw", "train signal", bins, 0, 1) hist_train_bw = ROOT.TH1D("hist_train_bw", "train bkg", bins, 0, 1) hist_test_w = ROOT.TH1D("hist_test_w", "test bkg", bins, 0, 1) for i in range(len(train_signal)): hist_train_sw.Fill(train_signal.values[i], weights_train_signal.values[i]) for i in range(len(train_bkg)): hist_train_bw.Fill(train_bkg.values[i], weights_train_bkg.values[i]) for i in range(len(predictions_test)): hist_test_w.Fill(predictions_test.values[i], weights_test.values[i]) for hist in [hist_train_sw, hist_train_bw, hist_test_w]: for i in range(1, hist.GetNbinsX()+1): hist.SetBinError(i, np.sqrt(hist.GetBinContent(i))) hist_train_sw.SetFillColorAlpha(ROOT.kAzure-1,.6) hist_train_bw.SetFillColorAlpha(ROOT.kRed-4, .9) hist_train_sw.SetLineWidth(1) hist_train_bw.SetLineWidth(1) #Axes hist_train_bw.GetYaxis().SetLabelSize(0.04) hist_train_bw.GetYaxis().SetTitleSize(0.04) hist_train_bw.GetYaxis().SetTitle('Events') hist_train_bw.GetXaxis().SetLabelSize(0.04) hist_train_bw.GetXaxis().SetTitleSize(0.04) hist_train_bw.GetXaxis().SetTitle('Model Output') hist_train_bw.Draw() #Stack hs = ROOT.THStack("hs", "Weighted Distributions") hs.Add(hist_train_sw) hs.Add(hist_train_bw) hs.SetMinimum(20) hs.SetMaximum(1e7) hs.Draw('hist') hs.SetHistogram(hist_train_bw) hist_test_w.Draw('same') #Legend legend = ROOT.TLegend(0.5, 0.75, 0.8, 0.9) legend.SetTextFont(42) legend.SetFillStyle(0) legend.SetBorderSize(0) legend.SetTextSize(0.04) legend.SetTextAlign(12) legend.AddEntry(hist_train_sw, "Signal (Training)", "f") legend.AddEntry(hist_train_bw, "Background (Training)", "f") legend.AddEntry(hist_test_w, "Test", "pe") legend.Draw("SAME") #Text text = ROOT.TLatex() text.SetNDC() text.SetTextFont(42) text.SetTextSize(0.04) text.DrawLatex(0.23, 0.87, "Simulation") text.DrawLatex(0.23, 0.83, "H #rightarrow #tau^{+}#tau^{-}") text.DrawLatex(0.23, 0.79, "#sqrt{s} = 8 TeV") c2.SetLogy() c2.Draw() #==================================================== # SAVE CANVAS #==================================================== c2.SaveAs('weighted.png') c2.SaveAs('weighted.pdf') w = ROOT.TColorWheel() cw = ROOT.TCanvas("cw","cw",0,0,800,800) w.SetCanvas(cw) w.Draw() cw.Draw() #==================================================== # RATIO PLOT #==================================================== bins = 10 hist_train_sw = ROOT.TH1D("hist_train_sw", "train signal", bins, 0, 1) hist_train_bw = ROOT.TH1D("hist_train_bw", "train bkg", bins, 0, 1) hist_test_w = ROOT.TH1D("hist_test_w", "test bkg", bins, 0, 1) for i in range(len(train_signal)): hist_train_sw.Fill(train_signal.values[i], weights_train_signal.values[i]) for i in range(len(train_bkg)): hist_train_bw.Fill(train_bkg.values[i], weights_train_bkg.values[i]) for i in range(len(predictions_test)): hist_test_w.Fill(predictions_test.values[i], weights_test.values[i]) for hist in [hist_train_sw, hist_train_bw, hist_test_w]: for i in range(1, hist.GetNbinsX()+1): hist.SetBinError(i, np.sqrt(hist.GetBinContent(i))) c3 = ROOT.TCanvas("c3", "Ratio Plot", 700, 750) upper_pad = ROOT.TPad("upper_pad", "", 0, 0.25, 1, 1) lower_pad = ROOT.TPad("lower_pad", "", 0, 0, 1, 0.25) for pad in [upper_pad, lower_pad]: pad.SetLeftMargin(0.14) pad.SetRightMargin(0.05) pad.SetTickx(True) pad.SetTicky(True) upper_pad.SetBottomMargin(0) lower_pad.SetTopMargin(0) lower_pad.SetBottomMargin(0.3) upper_pad.Draw() lower_pad.Draw() c3.Draw()
[ 2, 10052, 4770, 1421, 198, 2, 220, 220, 220, 220, 19164, 6239, 1546, 198, 2, 10052, 4770, 1421, 198, 11748, 19798, 292, 355, 279, 67, 220, 198, 11748, 15107, 2394, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 628, 198, 2, 10052, 4770, 1421, 198, 2, 220, 220, 220, 220, 42865, 22814, 27082, 6234, 198, 2, 10052, 4770, 1421, 198, 19849, 62, 22915, 82, 796, 279, 67, 13, 961, 62, 40664, 10786, 19849, 62, 22915, 82, 13, 40664, 11537, 198, 19849, 62, 22915, 82, 17816, 33986, 20520, 796, 279, 67, 13, 961, 62, 40664, 10786, 19608, 292, 316, 62, 71, 20340, 62, 36747, 3540, 13, 40664, 11537, 17816, 33986, 20520, 198, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 25844, 20520, 796, 279, 67, 13, 961, 62, 40664, 10786, 19608, 292, 316, 62, 71, 20340, 62, 36747, 3540, 13, 40664, 11537, 17816, 42, 9460, 293, 25844, 20520, 198, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 796, 279, 67, 13, 961, 62, 40664, 10786, 19608, 292, 316, 62, 71, 20340, 62, 36747, 3540, 13, 40664, 11537, 17816, 42, 9460, 293, 7248, 20520, 198, 198, 28764, 9278, 62, 27432, 796, 2746, 62, 22915, 82, 17816, 39156, 9278, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 83, 20520, 198, 28764, 9278, 62, 9288, 796, 2746, 62, 22915, 82, 17816, 39156, 9278, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 85, 20520, 198, 43775, 62, 27432, 796, 2746, 62, 22915, 82, 17816, 42, 9460, 293, 25844, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 83, 20520, 198, 43775, 62, 9288, 796, 2746, 62, 22915, 82, 17816, 42, 9460, 293, 25844, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 85, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 23912, 1424, 62, 27432, 796, 2746, 62, 22915, 82, 17816, 33986, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 83, 20520, 198, 23912, 1424, 62, 9288, 796, 2746, 62, 22915, 82, 17816, 33986, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 85, 20520, 198, 198, 28764, 9278, 62, 27432, 796, 357, 28764, 9278, 62, 27432, 532, 949, 7, 28764, 9278, 62, 27432, 4008, 1220, 357, 9806, 7, 28764, 9278, 62, 27432, 8, 532, 949, 7, 28764, 9278, 62, 27432, 4008, 198, 28764, 9278, 62, 9288, 796, 357, 28764, 9278, 62, 9288, 532, 949, 7, 28764, 9278, 62, 9288, 4008, 1220, 357, 9806, 7, 28764, 9278, 62, 9288, 8, 532, 949, 7, 28764, 9278, 62, 9288, 4008, 198, 198, 27432, 62, 12683, 282, 796, 16277, 62, 27432, 58, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 83, 6, 7131, 19849, 62, 22915, 82, 17816, 33986, 20520, 855, 6, 82, 20520, 198, 27432, 62, 65, 10025, 796, 16277, 62, 27432, 58, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 83, 6, 7131, 19849, 62, 22915, 82, 17816, 33986, 20520, 855, 6, 65, 20520, 198, 9288, 62, 12683, 282, 796, 16277, 62, 9288, 58, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 85, 6, 7131, 19849, 62, 22915, 82, 17816, 33986, 20520, 855, 6, 82, 20520, 198, 9288, 62, 65, 10025, 796, 16277, 62, 9288, 58, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 85, 6, 7131, 19849, 62, 22915, 82, 17816, 33986, 20520, 855, 6, 65, 20520, 198, 198, 43775, 62, 27432, 62, 12683, 282, 796, 2746, 62, 22915, 82, 17816, 42, 9460, 293, 25844, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 83, 6, 7131, 19849, 62, 22915, 82, 17816, 33986, 20520, 855, 6, 82, 20520, 198, 43775, 62, 27432, 62, 65, 10025, 796, 2746, 62, 22915, 82, 17816, 42, 9460, 293, 25844, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 83, 6, 7131, 19849, 62, 22915, 82, 17816, 33986, 20520, 855, 6, 65, 20520, 198, 43775, 62, 9288, 62, 12683, 282, 796, 2746, 62, 22915, 82, 17816, 42, 9460, 293, 25844, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 85, 6, 7131, 19849, 62, 22915, 82, 17816, 33986, 20520, 855, 6, 82, 20520, 198, 43775, 62, 9288, 62, 65, 10025, 796, 2746, 62, 22915, 82, 17816, 42, 9460, 293, 25844, 6, 7131, 19849, 62, 22915, 82, 17816, 42, 9460, 293, 7248, 20520, 6624, 705, 85, 6, 7131, 19849, 62, 22915, 82, 17816, 33986, 20520, 855, 6, 65, 20520, 628, 198, 2, 10052, 4770, 1421, 198, 2, 220, 220, 220, 220, 3563, 56, 2538, 25823, 51, 20754, 198, 2, 10052, 4770, 1421, 198, 13252, 2394, 13, 70, 13252, 2394, 13, 7248, 21466, 7203, 1404, 43, 1921, 4943, 198, 198, 66, 796, 15107, 2394, 13, 4825, 272, 11017, 7203, 66, 1600, 366, 1600, 19683, 11, 13037, 8, 198, 198, 65, 1040, 796, 1160, 198, 10034, 62, 27432, 62, 82, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 27432, 62, 82, 1600, 366, 27432, 6737, 1600, 41701, 11, 657, 11, 352, 8, 198, 10034, 62, 9288, 62, 82, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 9288, 62, 82, 1600, 366, 9288, 6737, 1600, 41701, 11, 657, 11, 352, 8, 198, 10034, 62, 27432, 62, 65, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 27432, 62, 65, 1600, 366, 27432, 275, 10025, 1600, 41701, 11, 657, 11, 352, 8, 198, 10034, 62, 9288, 62, 65, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 9288, 62, 65, 1600, 366, 9288, 275, 10025, 1600, 41701, 11, 657, 11, 352, 8, 628, 198, 2, 10052, 4770, 1421, 198, 2, 220, 220, 220, 220, 31328, 4725, 8845, 9947, 1961, 5357, 25273, 42126, 14887, 1961, 5390, 4725, 9050, 198, 2, 10052, 4770, 1421, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 27432, 62, 12683, 282, 8, 2599, 198, 220, 220, 220, 1554, 62, 27432, 62, 82, 13, 33762, 7, 27432, 62, 12683, 282, 13, 27160, 58, 72, 12962, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 9288, 62, 12683, 282, 8, 2599, 198, 220, 220, 220, 1554, 62, 9288, 62, 82, 13, 33762, 7, 9288, 62, 12683, 282, 13, 27160, 58, 72, 12962, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 27432, 62, 65, 10025, 8, 2599, 198, 220, 220, 220, 1554, 62, 27432, 62, 65, 13, 33762, 7, 27432, 62, 65, 10025, 13, 27160, 58, 72, 12962, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 9288, 62, 65, 10025, 8, 2599, 198, 220, 220, 220, 1554, 62, 9288, 62, 65, 13, 33762, 7, 9288, 62, 65, 10025, 13, 27160, 58, 72, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 1640, 1554, 287, 685, 10034, 62, 9288, 62, 82, 11, 1554, 62, 9288, 62, 65, 5974, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 1554, 13, 3855, 45, 65, 1040, 55, 3419, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 7248, 33, 259, 12331, 7, 72, 11, 45941, 13, 31166, 17034, 7, 10034, 13, 3855, 33, 259, 19746, 7, 72, 22305, 198, 1640, 1554, 287, 685, 10034, 62, 27432, 62, 82, 11, 1554, 62, 9288, 62, 82, 11, 1554, 62, 27432, 62, 65, 11, 1554, 62, 9288, 62, 65, 5974, 198, 220, 220, 220, 1554, 13, 29990, 7, 16, 14, 10034, 13, 34500, 1373, 22784, 705, 39369, 86, 17, 11537, 198, 220, 220, 220, 220, 198, 2, 43328, 6460, 25, 198, 10034, 62, 27432, 62, 65, 13, 7248, 31554, 271, 17257, 7, 18, 68, 12, 18, 11, 642, 11, 705, 56, 11537, 198, 10034, 62, 27432, 62, 65, 13, 3855, 56, 22704, 22446, 7248, 33986, 10699, 7, 15, 13, 3023, 8, 198, 10034, 62, 27432, 62, 65, 13, 3855, 56, 22704, 22446, 7248, 19160, 10699, 7, 15, 13, 3023, 8, 198, 10034, 62, 27432, 62, 65, 13, 3855, 56, 22704, 22446, 7248, 19160, 10786, 9237, 376, 7861, 11537, 198, 10034, 62, 27432, 62, 65, 13, 3855, 55, 22704, 22446, 7248, 33986, 10699, 7, 15, 13, 3023, 8, 198, 10034, 62, 27432, 62, 65, 13, 3855, 55, 22704, 22446, 7248, 19160, 10699, 7, 15, 13, 3023, 8, 198, 10034, 62, 27432, 62, 65, 13, 3855, 55, 22704, 22446, 7248, 19160, 10786, 17633, 25235, 11537, 198, 10034, 62, 27432, 62, 65, 13, 7248, 13949, 10258, 7, 13252, 2394, 13, 74, 7738, 8, 198, 10034, 62, 27432, 62, 65, 13, 7248, 13949, 30916, 7, 18, 8, 198, 10034, 62, 27432, 62, 65, 13, 25302, 10786, 39, 8808, 11537, 198, 198, 10034, 62, 9288, 62, 65, 13, 7248, 9704, 263, 10699, 7, 16, 13, 18, 8, 198, 10034, 62, 9288, 62, 65, 13, 7248, 9704, 263, 21466, 7, 18, 8, 198, 10034, 62, 9288, 62, 65, 13, 25302, 10786, 31642, 11537, 198, 198, 10034, 62, 27432, 62, 82, 13, 7248, 13949, 10258, 7, 13252, 2394, 13, 74, 14573, 8, 198, 10034, 62, 27432, 62, 82, 13, 7248, 13949, 30916, 7, 18, 8, 198, 10034, 62, 27432, 62, 82, 13, 25302, 10786, 10034, 976, 11537, 198, 198, 10034, 62, 9288, 62, 82, 13, 7248, 9704, 263, 10699, 7, 16, 13, 18, 8, 198, 10034, 62, 9288, 62, 82, 13, 7248, 9704, 263, 21466, 7, 23, 8, 198, 10034, 62, 9288, 62, 82, 13, 25302, 10786, 31642, 11537, 198, 198, 66, 13, 7248, 43, 9868, 3419, 198, 198, 2, 4550, 8177, 25, 198, 1455, 437, 796, 15107, 2394, 13, 51, 21351, 7, 15, 13, 4309, 11, 657, 13, 2425, 11, 657, 13, 5892, 11, 657, 13, 24, 8, 198, 1455, 437, 13, 7248, 8206, 23252, 7, 3682, 8, 198, 1455, 437, 13, 7248, 33762, 21466, 7, 15, 8, 198, 1455, 437, 13, 7248, 34189, 10699, 7, 15, 8, 198, 1455, 437, 13, 7248, 8206, 10699, 7, 15, 13, 3023, 8, 198, 1455, 437, 13, 7248, 8206, 2348, 570, 7, 1065, 8, 198, 1455, 437, 13, 4550, 30150, 7, 10034, 62, 27432, 62, 82, 11, 366, 11712, 282, 357, 44357, 42501, 366, 1652, 4943, 198, 1455, 437, 13, 4550, 30150, 7, 10034, 62, 9288, 62, 82, 11, 366, 11712, 282, 357, 14402, 42501, 366, 431, 4943, 198, 1455, 437, 13, 4550, 30150, 7, 10034, 62, 27432, 62, 65, 11, 366, 21756, 357, 44357, 16725, 42911, 75, 4943, 198, 1455, 437, 13, 4550, 30150, 7, 10034, 62, 9288, 62, 65, 11, 366, 21756, 357, 14402, 42501, 366, 538, 4943, 198, 1455, 437, 13, 25302, 7203, 50, 10067, 4943, 198, 198, 5239, 796, 15107, 2394, 13, 14990, 378, 87, 3419, 198, 5239, 13, 7248, 8575, 34, 3419, 198, 5239, 13, 7248, 8206, 23252, 7, 3682, 8, 198, 5239, 13, 7248, 8206, 10699, 7, 15, 13, 3023, 8, 198, 5239, 13, 25302, 26302, 87, 7, 15, 13, 1954, 11, 657, 13, 5774, 11, 366, 8890, 1741, 4943, 198, 5239, 13, 25302, 26302, 87, 7, 15, 13, 1954, 11, 657, 13, 5999, 11, 366, 39, 1303, 3506, 6018, 1303, 83, 559, 36796, 10, 92, 2, 83, 559, 36796, 12, 92, 4943, 198, 5239, 13, 25302, 26302, 87, 7, 15, 13, 1954, 11, 657, 13, 3720, 11, 25113, 31166, 17034, 90, 82, 92, 796, 807, 1665, 53, 4943, 198, 198, 66, 13, 25302, 3419, 198, 198, 2, 7248, 18364, 25, 198, 4102, 263, 62, 19199, 796, 15107, 2394, 13, 4825, 272, 11017, 10786, 4102, 263, 62, 19199, 3256, 705, 3256, 657, 11, 15, 11, 4059, 11, 2167, 8, 198, 4102, 263, 796, 15107, 2394, 13, 51, 9704, 263, 3419, 198, 4102, 263, 13, 23114, 9704, 263, 31431, 3419, 198, 4102, 263, 62, 19199, 13, 25302, 3419, 628, 198, 2, 10052, 4770, 1421, 198, 2, 220, 220, 220, 220, 20229, 3336, 12887, 9947, 1961, 34957, 9865, 35354, 198, 2, 10052, 4770, 1421, 198, 66, 17, 796, 15107, 2394, 13, 4825, 272, 11017, 7203, 66, 17, 1600, 366, 1600, 19683, 11, 13037, 8, 198, 198, 65, 1040, 796, 838, 198, 10034, 62, 27432, 62, 2032, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 27432, 62, 2032, 1600, 366, 27432, 6737, 1600, 41701, 11, 657, 11, 352, 8, 198, 10034, 62, 27432, 62, 65, 86, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 27432, 62, 65, 86, 1600, 366, 27432, 275, 10025, 1600, 41701, 11, 657, 11, 352, 8, 198, 10034, 62, 9288, 62, 86, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 9288, 62, 86, 1600, 366, 9288, 275, 10025, 1600, 41701, 11, 657, 11, 352, 8, 198, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 27432, 62, 12683, 282, 8, 2599, 198, 220, 220, 220, 1554, 62, 27432, 62, 2032, 13, 33762, 7, 27432, 62, 12683, 282, 13, 27160, 58, 72, 4357, 19590, 62, 27432, 62, 12683, 282, 13, 27160, 58, 72, 12962, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 27432, 62, 65, 10025, 8, 2599, 198, 220, 220, 220, 1554, 62, 27432, 62, 65, 86, 13, 33762, 7, 27432, 62, 65, 10025, 13, 27160, 58, 72, 4357, 19590, 62, 27432, 62, 65, 10025, 13, 27160, 58, 72, 12962, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 28764, 9278, 62, 9288, 8, 2599, 198, 220, 220, 220, 1554, 62, 9288, 62, 86, 13, 33762, 7, 28764, 9278, 62, 9288, 13, 27160, 58, 72, 4357, 19590, 62, 9288, 13, 27160, 58, 72, 12962, 198, 220, 220, 220, 220, 198, 1640, 1554, 287, 685, 10034, 62, 27432, 62, 2032, 11, 1554, 62, 27432, 62, 65, 86, 11, 1554, 62, 9288, 62, 86, 5974, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 1554, 13, 3855, 45, 65, 1040, 55, 3419, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 7248, 33, 259, 12331, 7, 72, 11, 45941, 13, 31166, 17034, 7, 10034, 13, 3855, 33, 259, 19746, 7, 72, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 10034, 62, 27432, 62, 2032, 13, 7248, 33762, 10258, 38077, 7, 13252, 2394, 13, 74, 26903, 495, 12, 16, 38508, 21, 8, 198, 10034, 62, 27432, 62, 65, 86, 13, 7248, 33762, 10258, 38077, 7, 13252, 2394, 13, 74, 7738, 12, 19, 11, 764, 24, 8, 198, 10034, 62, 27432, 62, 2032, 13, 7248, 13949, 30916, 7, 16, 8, 198, 10034, 62, 27432, 62, 65, 86, 13, 7248, 13949, 30916, 7, 16, 8, 198, 198, 2, 31554, 274, 198, 10034, 62, 27432, 62, 65, 86, 13, 3855, 56, 22704, 22446, 7248, 33986, 10699, 7, 15, 13, 3023, 8, 198, 10034, 62, 27432, 62, 65, 86, 13, 3855, 56, 22704, 22446, 7248, 19160, 10699, 7, 15, 13, 3023, 8, 198, 10034, 62, 27432, 62, 65, 86, 13, 3855, 56, 22704, 22446, 7248, 19160, 10786, 37103, 11537, 198, 10034, 62, 27432, 62, 65, 86, 13, 3855, 55, 22704, 22446, 7248, 33986, 10699, 7, 15, 13, 3023, 8, 198, 10034, 62, 27432, 62, 65, 86, 13, 3855, 55, 22704, 22446, 7248, 19160, 10699, 7, 15, 13, 3023, 8, 198, 10034, 62, 27432, 62, 65, 86, 13, 3855, 55, 22704, 22446, 7248, 19160, 10786, 17633, 25235, 11537, 198, 10034, 62, 27432, 62, 65, 86, 13, 25302, 3419, 198, 198, 2, 25896, 198, 11994, 796, 15107, 2394, 13, 4221, 25896, 7203, 11994, 1600, 366, 25844, 276, 46567, 507, 4943, 198, 11994, 13, 4550, 7, 10034, 62, 27432, 62, 2032, 8, 198, 11994, 13, 4550, 7, 10034, 62, 27432, 62, 65, 86, 8, 198, 11994, 13, 7248, 44046, 7, 1238, 8, 198, 11994, 13, 7248, 40541, 7, 16, 68, 22, 8, 198, 11994, 13, 25302, 10786, 10034, 11537, 198, 11994, 13, 7248, 13749, 21857, 7, 10034, 62, 27432, 62, 65, 86, 8, 198, 198, 10034, 62, 9288, 62, 86, 13, 25302, 10786, 31642, 11537, 198, 198, 2, 21351, 198, 1455, 437, 796, 15107, 2394, 13, 51, 21351, 7, 15, 13, 20, 11, 657, 13, 2425, 11, 657, 13, 23, 11, 657, 13, 24, 8, 198, 1455, 437, 13, 7248, 8206, 23252, 7, 3682, 8, 198, 1455, 437, 13, 7248, 33762, 21466, 7, 15, 8, 198, 1455, 437, 13, 7248, 34189, 10699, 7, 15, 8, 198, 1455, 437, 13, 7248, 8206, 10699, 7, 15, 13, 3023, 8, 198, 1455, 437, 13, 7248, 8206, 2348, 570, 7, 1065, 8, 198, 1455, 437, 13, 4550, 30150, 7, 10034, 62, 27432, 62, 2032, 11, 366, 11712, 282, 357, 44357, 42501, 366, 69, 4943, 198, 1455, 437, 13, 4550, 30150, 7, 10034, 62, 27432, 62, 65, 86, 11, 366, 21756, 357, 44357, 42501, 366, 69, 4943, 198, 1455, 437, 13, 4550, 30150, 7, 10034, 62, 9288, 62, 86, 11, 366, 14402, 1600, 366, 431, 4943, 198, 1455, 437, 13, 25302, 7203, 50, 10067, 4943, 198, 198, 2, 8206, 198, 5239, 796, 15107, 2394, 13, 14990, 378, 87, 3419, 198, 5239, 13, 7248, 8575, 34, 3419, 198, 5239, 13, 7248, 8206, 23252, 7, 3682, 8, 198, 5239, 13, 7248, 8206, 10699, 7, 15, 13, 3023, 8, 198, 5239, 13, 25302, 26302, 87, 7, 15, 13, 1954, 11, 657, 13, 5774, 11, 366, 8890, 1741, 4943, 198, 5239, 13, 25302, 26302, 87, 7, 15, 13, 1954, 11, 657, 13, 5999, 11, 366, 39, 1303, 3506, 6018, 1303, 83, 559, 36796, 10, 92, 2, 83, 559, 36796, 12, 92, 4943, 198, 5239, 13, 25302, 26302, 87, 7, 15, 13, 1954, 11, 657, 13, 3720, 11, 25113, 31166, 17034, 90, 82, 92, 796, 807, 1665, 53, 4943, 198, 198, 66, 17, 13, 7248, 43, 9868, 3419, 198, 66, 17, 13, 25302, 3419, 628, 198, 2, 10052, 4770, 1421, 198, 2, 220, 220, 220, 220, 14719, 6089, 15628, 53, 1921, 198, 2, 10052, 4770, 1421, 198, 66, 17, 13, 16928, 1722, 10786, 6551, 276, 13, 11134, 11537, 198, 66, 17, 13, 16928, 1722, 10786, 6551, 276, 13, 12315, 11537, 198, 198, 86, 796, 15107, 2394, 13, 4825, 45621, 45307, 3419, 198, 66, 86, 796, 15107, 2394, 13, 4825, 272, 11017, 7203, 66, 86, 2430, 66, 86, 1600, 15, 11, 15, 11, 7410, 11, 7410, 8, 198, 86, 13, 7248, 6090, 11017, 7, 66, 86, 8, 198, 86, 13, 25302, 3419, 198, 66, 86, 13, 25302, 3419, 628, 198, 2, 10052, 4770, 1421, 198, 2, 220, 220, 220, 220, 371, 1404, 9399, 9297, 2394, 198, 2, 10052, 4770, 1421, 198, 65, 1040, 796, 838, 198, 198, 10034, 62, 27432, 62, 2032, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 27432, 62, 2032, 1600, 366, 27432, 6737, 1600, 41701, 11, 657, 11, 352, 8, 198, 10034, 62, 27432, 62, 65, 86, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 27432, 62, 65, 86, 1600, 366, 27432, 275, 10025, 1600, 41701, 11, 657, 11, 352, 8, 198, 10034, 62, 9288, 62, 86, 796, 15107, 2394, 13, 4221, 16, 35, 7203, 10034, 62, 9288, 62, 86, 1600, 366, 9288, 275, 10025, 1600, 41701, 11, 657, 11, 352, 8, 198, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 27432, 62, 12683, 282, 8, 2599, 198, 220, 220, 220, 1554, 62, 27432, 62, 2032, 13, 33762, 7, 27432, 62, 12683, 282, 13, 27160, 58, 72, 4357, 19590, 62, 27432, 62, 12683, 282, 13, 27160, 58, 72, 12962, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 27432, 62, 65, 10025, 8, 2599, 198, 220, 220, 220, 1554, 62, 27432, 62, 65, 86, 13, 33762, 7, 27432, 62, 65, 10025, 13, 27160, 58, 72, 4357, 19590, 62, 27432, 62, 65, 10025, 13, 27160, 58, 72, 12962, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 28764, 9278, 62, 9288, 8, 2599, 198, 220, 220, 220, 1554, 62, 9288, 62, 86, 13, 33762, 7, 28764, 9278, 62, 9288, 13, 27160, 58, 72, 4357, 19590, 62, 9288, 13, 27160, 58, 72, 12962, 198, 220, 220, 220, 220, 198, 1640, 1554, 287, 685, 10034, 62, 27432, 62, 2032, 11, 1554, 62, 27432, 62, 65, 86, 11, 1554, 62, 9288, 62, 86, 5974, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 1554, 13, 3855, 45, 65, 1040, 55, 3419, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1554, 13, 7248, 33, 259, 12331, 7, 72, 11, 45941, 13, 31166, 17034, 7, 10034, 13, 3855, 33, 259, 19746, 7, 72, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 66, 18, 796, 15107, 2394, 13, 4825, 272, 11017, 7203, 66, 18, 1600, 366, 29665, 952, 28114, 1600, 13037, 11, 19683, 8, 198, 198, 45828, 62, 15636, 796, 15107, 2394, 13, 7250, 324, 7203, 45828, 62, 15636, 1600, 366, 1600, 657, 11, 657, 13, 1495, 11, 352, 11, 352, 8, 198, 21037, 62, 15636, 796, 15107, 2394, 13, 7250, 324, 7203, 21037, 62, 15636, 1600, 366, 1600, 657, 11, 657, 11, 352, 11, 657, 13, 1495, 8, 198, 1640, 14841, 287, 685, 45828, 62, 15636, 11, 2793, 62, 15636, 5974, 198, 220, 220, 220, 14841, 13, 7248, 18819, 24428, 259, 7, 15, 13, 1415, 8, 198, 220, 220, 220, 14841, 13, 7248, 11028, 24428, 259, 7, 15, 13, 2713, 8, 198, 220, 220, 220, 14841, 13, 7248, 51, 624, 87, 7, 17821, 8, 198, 220, 220, 220, 14841, 13, 7248, 51, 17479, 7, 17821, 8, 198, 45828, 62, 15636, 13, 7248, 34104, 24428, 259, 7, 15, 8, 198, 21037, 62, 15636, 13, 7248, 9126, 24428, 259, 7, 15, 8, 198, 21037, 62, 15636, 13, 7248, 34104, 24428, 259, 7, 15, 13, 18, 8, 198, 198, 45828, 62, 15636, 13, 25302, 3419, 198, 21037, 62, 15636, 13, 25302, 3419, 198, 66, 18, 13, 25302, 3419 ]
2.422098
3,575
import unittest from katas.kyu_7.filter_list import filter_list
[ 11748, 555, 715, 395, 198, 198, 6738, 479, 265, 292, 13, 2584, 84, 62, 22, 13, 24455, 62, 4868, 1330, 8106, 62, 4868, 628 ]
2.75
24
#coding:utf-8 PURPLE = '\033[35m' RED = '\033[31m' CYAN = '\033[36m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' import csv import sys import codecs from urllib.parse import urlparse #URL --> Domain from time import sleep dict_web_id = {} dict_url = {} dict_topic = {} dict_suggest = {} dict_sub = {} dict_bin = {} domains =set() urls =set() ###################サブトピックリストの読み込み################### a = open('sub_list.csv', 'r') set_subtopic_keys = set() for line in a: LINE = line.rstrip().split(',') web_id = LINE[0] url = LINE[1] topic = LINE[2] sub_id = LINE[3] Domain = '{uri.scheme}://{uri.netloc}/'.format(uri=urlparse(url)) domains.add(Domain) dict_web_id.setdefault(Domain, set()).add(web_id) dict_sub.setdefault(Domain, set()).add(sub_id) dict_topic.setdefault(Domain, set()).add(topic) set_topic=dict_topic[Domain] set_sub=dict_sub[Domain] set_subtopic_keys=dict_sub.keys() #dict_subのkeyの集合 a.close() #################ビンリストの読み込み########################### A = open('bin_list.csv','r') set_bin_keys = set() for line in A: LINE = line.rstrip().split(',') web_id = LINE[0] url = LINE[1] topic = LINE[2] bin_id = LINE[3] Domain = '{uri.scheme}://{uri.netloc}/'.format(uri=urlparse(url)) domains.add(Domain) dict_web_id.setdefault(Domain, set()).add(web_id) dict_topic.setdefault(Domain, set()).add(topic) dict_bin.setdefault(Domain, set()).add(bin_id) set_topic = dict_topic[Domain] set_bin = dict_bin[Domain] set_bin_keys = dict_bin.keys() A.close() ###################ノウハウサイトの読み込み###################### b = open('know-how.csv','r') count = 0 set_know_how = set() dict_title = {} dict_predict={} dict_confidence={} dict_truth={} for line in b: count = count + 1 print(line) LINE = line.rstrip().split(',') Domain = LINE[2] Domain = Domain + '/' Title = LINE[3] predict= LINE[4] confidence=LINE[5] truth=LINE[1] set_know_how.add(Domain) dict_title[Domain] = Title dict_predict[Domain]=predict dict_confidence[Domain]=confidence dict_truth[Domain]=truth b.close() ####################ドメインごとにHTMLを作成##################### p = open('result.csv','w') p.write('domain_id\ttitle\tpredict\tconfidence\tsum_page\tsum_topic\ttopics\ttruth\n') make_domain_dict() #suggest_id() p.close() print (len(set_know_how)) print (RED + 'Prgram ended' + ENDC)
[ 2, 66, 7656, 25, 40477, 12, 23, 198, 47, 4261, 16437, 220, 796, 705, 59, 44427, 58, 2327, 76, 6, 198, 22083, 220, 220, 220, 220, 796, 705, 59, 44427, 58, 3132, 76, 6, 198, 34, 56, 1565, 220, 220, 220, 796, 705, 59, 44427, 58, 2623, 76, 6, 198, 11380, 9148, 8924, 220, 796, 705, 59, 44427, 58, 5824, 76, 6, 198, 11380, 43016, 796, 705, 59, 44427, 58, 5892, 76, 6, 198, 31502, 796, 705, 59, 44427, 58, 6052, 76, 6, 198, 7708, 4146, 220, 220, 220, 796, 705, 59, 44427, 58, 6420, 76, 6, 198, 1677, 9697, 220, 220, 220, 796, 705, 59, 44427, 58, 15, 76, 6, 198, 198, 11748, 269, 21370, 198, 11748, 25064, 198, 11748, 40481, 82, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 19016, 29572, 1303, 21886, 14610, 20021, 198, 6738, 640, 1330, 3993, 198, 198, 11600, 62, 12384, 62, 312, 220, 796, 23884, 198, 11600, 62, 6371, 220, 220, 220, 220, 796, 23884, 220, 198, 11600, 62, 26652, 220, 220, 796, 23884, 198, 11600, 62, 47811, 796, 23884, 198, 11600, 62, 7266, 220, 220, 220, 220, 796, 23884, 198, 11600, 62, 8800, 220, 220, 220, 220, 796, 23884, 198, 3438, 1299, 220, 220, 220, 220, 220, 796, 2617, 3419, 198, 6371, 82, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2617, 3419, 198, 198, 14468, 21017, 26503, 24001, 13298, 1209, 242, 35702, 12675, 43302, 5641, 45739, 255, 2515, 123, 164, 122, 120, 2515, 123, 14468, 21017, 198, 64, 796, 1280, 10786, 7266, 62, 4868, 13, 40664, 3256, 705, 81, 11537, 198, 2617, 62, 7266, 26652, 62, 13083, 796, 900, 3419, 198, 1640, 1627, 287, 257, 25, 198, 197, 24027, 796, 1627, 13, 81, 36311, 22446, 35312, 7, 3256, 11537, 198, 197, 12384, 62, 312, 796, 48920, 58, 15, 60, 198, 197, 6371, 220, 220, 220, 796, 48920, 58, 16, 60, 198, 197, 26652, 220, 796, 48920, 58, 17, 60, 198, 197, 7266, 62, 312, 796, 48920, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 197, 43961, 796, 705, 90, 9900, 13, 15952, 1326, 92, 1378, 90, 9900, 13, 3262, 17946, 92, 14, 4458, 18982, 7, 9900, 28, 6371, 29572, 7, 6371, 4008, 198, 197, 3438, 1299, 13, 2860, 7, 43961, 8, 198, 197, 11600, 62, 12384, 62, 312, 13, 2617, 12286, 7, 43961, 11, 900, 3419, 737, 2860, 7, 12384, 62, 312, 8, 198, 197, 11600, 62, 7266, 13, 2617, 12286, 7, 43961, 11, 900, 3419, 737, 2860, 7, 7266, 62, 312, 8, 198, 197, 11600, 62, 26652, 13, 2617, 12286, 7, 43961, 11, 900, 3419, 737, 2860, 7, 26652, 8, 198, 197, 2617, 62, 26652, 28, 11600, 62, 26652, 58, 43961, 60, 198, 197, 2617, 62, 7266, 28, 11600, 62, 7266, 58, 43961, 60, 198, 197, 2617, 62, 7266, 26652, 62, 13083, 28, 11600, 62, 7266, 13, 13083, 3419, 1303, 11600, 62, 7266, 5641, 2539, 33426, 249, 228, 28938, 230, 198, 64, 13, 19836, 3419, 628, 198, 198, 14468, 2, 36922, 6527, 12675, 43302, 5641, 45739, 255, 2515, 123, 164, 122, 120, 2515, 123, 14468, 7804, 21017, 198, 32, 796, 1280, 10786, 8800, 62, 4868, 13, 40664, 41707, 81, 11537, 198, 2617, 62, 8800, 62, 13083, 796, 900, 3419, 198, 1640, 1627, 287, 317, 25, 198, 197, 24027, 796, 1627, 13, 81, 36311, 22446, 35312, 7, 3256, 11537, 198, 197, 12384, 62, 312, 796, 48920, 58, 15, 60, 198, 197, 6371, 220, 220, 220, 796, 48920, 58, 16, 60, 198, 197, 26652, 220, 796, 48920, 58, 17, 60, 198, 197, 8800, 62, 312, 796, 48920, 58, 18, 60, 198, 197, 43961, 796, 705, 90, 9900, 13, 15952, 1326, 92, 1378, 90, 9900, 13, 3262, 17946, 92, 14, 4458, 18982, 7, 9900, 28, 6371, 29572, 7, 6371, 4008, 198, 197, 3438, 1299, 13, 2860, 7, 43961, 8, 198, 197, 11600, 62, 12384, 62, 312, 13, 2617, 12286, 7, 43961, 11, 900, 3419, 737, 2860, 7, 12384, 62, 312, 8, 198, 197, 11600, 62, 26652, 13, 2617, 12286, 7, 43961, 11, 900, 3419, 737, 2860, 7, 26652, 8, 198, 197, 11600, 62, 8800, 13, 2617, 12286, 7, 43961, 11, 900, 3419, 737, 2860, 7, 8800, 62, 312, 8, 198, 197, 2617, 62, 26652, 220, 220, 220, 220, 220, 220, 220, 220, 796, 8633, 62, 26652, 58, 43961, 60, 198, 197, 2617, 62, 8800, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 8633, 62, 8800, 58, 43961, 60, 198, 197, 2617, 62, 8800, 62, 13083, 796, 8633, 62, 8800, 13, 13083, 3419, 198, 32, 13, 19836, 3419, 628, 628, 628, 198, 14468, 21017, 25053, 16165, 37412, 16165, 26503, 42396, 5641, 45739, 255, 2515, 123, 164, 122, 120, 2515, 123, 14468, 4242, 2235, 198, 65, 796, 1280, 10786, 16275, 12, 4919, 13, 40664, 41707, 81, 11537, 198, 9127, 796, 657, 198, 2617, 62, 16275, 62, 4919, 796, 900, 3419, 198, 11600, 62, 7839, 796, 23884, 198, 11600, 62, 79, 17407, 34758, 92, 198, 11600, 62, 39745, 34758, 92, 198, 11600, 62, 35310, 34758, 92, 198, 1640, 1627, 287, 275, 25, 198, 197, 9127, 796, 954, 1343, 352, 198, 197, 4798, 7, 1370, 8, 198, 197, 24027, 796, 1627, 13, 81, 36311, 22446, 35312, 7, 3256, 11537, 198, 197, 43961, 796, 48920, 58, 17, 60, 198, 197, 43961, 796, 20021, 1343, 31051, 6, 198, 197, 19160, 220, 796, 48920, 58, 18, 60, 198, 197, 79, 17407, 28, 48920, 58, 19, 60, 198, 197, 39745, 28, 24027, 58, 20, 60, 198, 197, 35310, 28, 24027, 58, 16, 60, 198, 197, 2617, 62, 16275, 62, 4919, 13, 2860, 7, 43961, 8, 198, 197, 11600, 62, 7839, 58, 43961, 60, 796, 11851, 198, 197, 11600, 62, 79, 17407, 58, 43961, 22241, 79, 17407, 198, 197, 11600, 62, 39745, 58, 43961, 22241, 39745, 198, 197, 11600, 62, 35310, 58, 43961, 22241, 35310, 198, 65, 13, 19836, 3419, 628, 628, 628, 198, 198, 14468, 4242, 13765, 26998, 11482, 6527, 2515, 242, 30201, 28618, 28656, 31758, 43291, 22755, 238, 14468, 4242, 2, 198, 79, 796, 1280, 10786, 20274, 13, 40664, 41707, 86, 11537, 198, 79, 13, 13564, 10786, 27830, 62, 312, 59, 926, 2578, 59, 34788, 17407, 59, 83, 39745, 59, 912, 388, 62, 7700, 59, 912, 388, 62, 26652, 59, 926, 404, 873, 59, 926, 81, 1071, 59, 77, 11537, 198, 197, 628, 198, 198, 15883, 62, 27830, 62, 11600, 3419, 198, 2, 47811, 62, 312, 3419, 198, 79, 13, 19836, 3419, 628, 198, 4798, 357, 11925, 7, 2617, 62, 16275, 62, 4919, 4008, 198, 4798, 357, 22083, 1343, 705, 6836, 4546, 4444, 6, 1343, 23578, 34, 8, 198 ]
2.242647
1,088
#personaldetails print("NAME:Wealth Okete \nE-MAIL: [email protected] \nSLACK USERNAME: @Wealth \nBIOSTACK: Genomics \nTwitter Handle: @Wealty") print(hamming_distance('@Wealth','@Wealty'))
[ 2, 6259, 1940, 316, 1768, 201, 198, 4798, 7203, 20608, 25, 1135, 1094, 6762, 14471, 3467, 77, 36, 12, 5673, 4146, 25, 5129, 13, 482, 14471, 31, 14816, 13, 785, 3467, 77, 8634, 8120, 1294, 1137, 20608, 25, 2488, 1135, 1094, 3467, 77, 3483, 10892, 8120, 25, 5215, 31994, 3467, 77, 14254, 33141, 25, 2488, 1135, 6017, 4943, 201, 198, 201, 198, 4798, 7, 2763, 2229, 62, 30246, 10786, 31, 1135, 1094, 41707, 31, 1135, 6017, 6, 4008, 201, 198 ]
2.5
80
conditional statement in python: this performs different computations or actions depending on whatever a specific boolean expression evaluaates to true or false. they are handled by if statements in python. from maths: equals: a==b not equals: a != b less than: a<b greater than: a>b greater than or equals to: a>=b example of if statement: ade_height= 6.25 oyin_height= 5.75 if ade_height > oyin_height: print("ade is taller tham oyin") The elif keyword: the elif keyword is python way of saying "if the previous condition were not true, then try this condition" example- boys score=24.77 girls score=25.01 if boys score>girls score: print("boys win, girls lose") elif girls score>boys score: print("girls win, boys lose") the else keyword: if the else keyword catches anything which isnt caught by the preceding conditions. example- #program to calc the longer journey #between lagos-ibadan and lagos london lb_max_time=2.5 ll_max_time=6 if lb_max_time>ll_max_time: print("lagos to ibadan takes more time") elif lb_max_time<ll_max_time: print("lagos to london takes more time") else: print("both take equal time") using logical operators: you can use operators 'and,or and not' in python conditional statements. for example: x=200 y=33 z=500 if x> y and z>x: print("both condition are true") the pass keyword if statements cannot be empty, but if you for some reason have an if statement with no content, put in the pass statement to avoid getting an error. example boys=17 if boys==17: pass
[ 17561, 1859, 2643, 287, 21015, 25, 201, 198, 5661, 17706, 1180, 2653, 602, 393, 4028, 6906, 319, 4232, 257, 2176, 25131, 5408, 5418, 6413, 689, 284, 2081, 393, 3991, 13, 201, 198, 9930, 389, 12118, 416, 611, 6299, 287, 21015, 13, 201, 198, 6738, 47761, 25, 201, 198, 4853, 874, 25, 257, 855, 65, 201, 198, 1662, 21767, 25, 257, 14512, 275, 201, 198, 1203, 621, 25, 257, 27, 65, 201, 198, 18223, 263, 621, 25, 257, 29, 65, 201, 198, 18223, 263, 621, 393, 21767, 284, 25, 257, 29, 28, 65, 201, 198, 201, 198, 20688, 286, 611, 2643, 25, 201, 198, 201, 198, 671, 62, 17015, 28, 718, 13, 1495, 201, 198, 726, 259, 62, 17015, 28, 642, 13, 2425, 201, 198, 361, 512, 68, 62, 17015, 1875, 35104, 259, 62, 17015, 25, 201, 198, 220, 220, 220, 3601, 7203, 671, 318, 25242, 294, 321, 35104, 259, 4943, 201, 198, 201, 198, 464, 1288, 361, 21179, 25, 201, 198, 201, 198, 1169, 1288, 361, 21179, 318, 21015, 835, 286, 2282, 366, 361, 262, 2180, 4006, 547, 407, 2081, 11, 788, 1949, 428, 4006, 1, 201, 198, 20688, 12, 201, 198, 13202, 4776, 28, 1731, 13, 3324, 201, 198, 36960, 4776, 28, 1495, 13, 486, 201, 198, 361, 6510, 4776, 29, 36960, 4776, 25, 201, 198, 220, 220, 220, 3601, 7203, 13202, 1592, 11, 4813, 4425, 4943, 201, 198, 417, 361, 4813, 4776, 29, 13202, 4776, 25, 201, 198, 220, 220, 220, 3601, 7203, 36960, 1592, 11, 6510, 4425, 4943, 201, 198, 201, 198, 1169, 2073, 21179, 25, 201, 198, 201, 198, 361, 220, 201, 198, 1169, 2073, 21179, 17591, 1997, 543, 318, 429, 4978, 416, 262, 18148, 3403, 13, 201, 198, 20688, 12, 201, 198, 2, 23065, 284, 42302, 262, 2392, 7002, 201, 198, 2, 23395, 19470, 418, 12, 571, 29157, 290, 19470, 418, 300, 3391, 201, 198, 23160, 62, 9806, 62, 2435, 28, 17, 13, 20, 201, 198, 297, 62, 9806, 62, 2435, 28, 21, 201, 198, 361, 18360, 62, 9806, 62, 2435, 29, 297, 62, 9806, 62, 2435, 25, 201, 198, 220, 220, 220, 3601, 7203, 30909, 418, 284, 24283, 29157, 2753, 517, 640, 4943, 201, 198, 417, 361, 18360, 62, 9806, 62, 2435, 27, 297, 62, 9806, 62, 2435, 25, 201, 198, 220, 220, 220, 3601, 7203, 30909, 418, 284, 300, 3391, 2753, 517, 640, 4943, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 3601, 7203, 16885, 1011, 4961, 640, 4943, 201, 198, 201, 198, 3500, 12219, 12879, 25, 201, 198, 5832, 460, 779, 12879, 705, 392, 11, 273, 290, 407, 6, 287, 21015, 26340, 6299, 13, 201, 198, 1640, 1672, 25, 201, 198, 87, 28, 2167, 201, 198, 88, 28, 2091, 201, 198, 89, 28, 4059, 201, 198, 361, 2124, 29, 331, 290, 1976, 29, 87, 25, 201, 198, 220, 3601, 7203, 16885, 4006, 389, 2081, 4943, 201, 198, 201, 198, 201, 198, 1169, 1208, 21179, 201, 198, 361, 6299, 2314, 307, 6565, 11, 475, 611, 345, 329, 617, 1738, 423, 281, 611, 2643, 351, 645, 2695, 11, 1234, 287, 262, 1208, 2643, 284, 3368, 1972, 281, 4049, 13, 201, 198, 20688, 201, 198, 13202, 28, 1558, 201, 198, 361, 6510, 855, 1558, 25, 201, 198, 220, 220, 220, 1208, 201, 198 ]
2.957328
539
""" sentry.event_manager ~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import, print_function import logging import math import six from datetime import datetime, timedelta from collections import OrderedDict from django.conf import settings from django.db import connection, IntegrityError, router, transaction from django.db.models import Q from django.utils import timezone from django.utils.encoding import force_bytes from hashlib import md5 from uuid import uuid4 from sentry import eventtypes from sentry.app import buffer, tsdb from sentry.constants import ( CLIENT_RESERVED_ATTRS, LOG_LEVELS, DEFAULT_LOGGER_NAME, MAX_CULPRIT_LENGTH ) from sentry.interfaces.base import get_interface, iter_interfaces from sentry.models import ( Activity, Event, EventMapping, EventUser, Group, GroupHash, GroupResolution, GroupStatus, Project, Release, TagKey, UserReport ) from sentry.plugins import plugins from sentry.signals import first_event_received, regression_signal from sentry.utils.logging import suppress_exceptions from sentry.tasks.merge import merge_group from sentry.tasks.post_process import post_process_group from sentry.utils.cache import default_cache from sentry.utils.db import get_db_engine from sentry.utils.safe import safe_execute, trim, trim_dict from sentry.utils.strings import truncatechars from sentry.utils.validators import validate_ip if not settings.SENTRY_SAMPLE_DATA: else:
[ 37811, 198, 82, 13000, 13, 15596, 62, 37153, 198, 27156, 8728, 198, 198, 25, 22163, 4766, 25, 357, 66, 8, 3050, 12, 4967, 416, 262, 11352, 563, 4816, 11, 766, 37195, 20673, 329, 517, 3307, 13, 198, 25, 43085, 25, 347, 10305, 11, 766, 38559, 24290, 329, 517, 3307, 13, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 198, 198, 11748, 18931, 198, 11748, 10688, 198, 11748, 2237, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 4637, 11, 39348, 12331, 11, 20264, 11, 8611, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 1195, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 6738, 42625, 14208, 13, 26791, 13, 12685, 7656, 1330, 2700, 62, 33661, 198, 6738, 12234, 8019, 1330, 45243, 20, 198, 6738, 334, 27112, 1330, 334, 27112, 19, 198, 198, 6738, 1908, 563, 1330, 1785, 19199, 198, 6738, 1908, 563, 13, 1324, 1330, 11876, 11, 40379, 9945, 198, 6738, 1908, 563, 13, 9979, 1187, 1330, 357, 198, 220, 220, 220, 45148, 62, 19535, 1137, 53, 1961, 62, 1404, 5446, 50, 11, 41605, 62, 2538, 18697, 50, 11, 5550, 38865, 62, 25294, 30373, 62, 20608, 11, 25882, 62, 34, 6239, 4805, 2043, 62, 43, 49494, 198, 8, 198, 6738, 1908, 563, 13, 3849, 32186, 13, 8692, 1330, 651, 62, 39994, 11, 11629, 62, 3849, 32186, 198, 6738, 1908, 563, 13, 27530, 1330, 357, 198, 220, 220, 220, 24641, 11, 8558, 11, 8558, 44, 5912, 11, 8558, 12982, 11, 4912, 11, 4912, 26257, 11, 4912, 4965, 2122, 11, 198, 220, 220, 220, 4912, 19580, 11, 4935, 11, 13868, 11, 17467, 9218, 11, 11787, 19100, 198, 8, 198, 6738, 1908, 563, 13, 37390, 1330, 20652, 198, 6738, 1908, 563, 13, 12683, 874, 1330, 717, 62, 15596, 62, 47844, 11, 20683, 62, 12683, 282, 198, 6738, 1908, 563, 13, 26791, 13, 6404, 2667, 1330, 18175, 62, 1069, 11755, 198, 6738, 1908, 563, 13, 83, 6791, 13, 647, 469, 1330, 20121, 62, 8094, 198, 6738, 1908, 563, 13, 83, 6791, 13, 7353, 62, 14681, 1330, 1281, 62, 14681, 62, 8094, 198, 6738, 1908, 563, 13, 26791, 13, 23870, 1330, 4277, 62, 23870, 198, 6738, 1908, 563, 13, 26791, 13, 9945, 1330, 651, 62, 9945, 62, 18392, 198, 6738, 1908, 563, 13, 26791, 13, 21230, 1330, 3338, 62, 41049, 11, 15797, 11, 15797, 62, 11600, 198, 6738, 1908, 563, 13, 26791, 13, 37336, 1330, 40122, 40340, 945, 198, 6738, 1908, 563, 13, 26791, 13, 12102, 2024, 1330, 26571, 62, 541, 628, 628, 628, 628, 628, 198, 198, 361, 407, 6460, 13, 50, 3525, 18276, 62, 49302, 16437, 62, 26947, 25, 198, 17772, 25, 628, 628, 198 ]
3.366953
466
__author__ = "RADICAL-SAGA Development Team" __copyright__ = "Copyright 2013, RADICAL" __license__ = "MIT" import os import radical.utils as ru # ------------------------------------------------------------------------------ # import utils # ------------------------------------------------------------------------------ # from .constants import * from .task import Task, Container from .attributes import Attributes, Callback from .session import Session, DefaultSession from .context import Context from .url import Url from .exceptions import SagaException from .exceptions import NotImplemented from .exceptions import IncorrectURL from .exceptions import BadParameter from .exceptions import AlreadyExists from .exceptions import DoesNotExist from .exceptions import IncorrectState from .exceptions import PermissionDenied from .exceptions import AuthorizationFailed from .exceptions import AuthenticationFailed from .exceptions import Timeout from .exceptions import NoSuccess from . import job from . import filesystem from . import replica from . import advert from . import resource # import radical.saga.messages # ------------------------------------------------------------------------------ # pwd = os.path.dirname (__file__) version_short, version_detail, version_base, version_branch, \ sdist_name, sdist_path = ru.get_version ([pwd]) version = version_short # FIXME: the logger init will require a 'classical' ini based config, which is # different from the json based config we use now. May need updating once the # radical configuration system has changed to json _logger = ru.Logger('radical.saga') _logger.info ('radical.saga version: %s' % version_detail) # ------------------------------------------------------------------------------
[ 198, 834, 9800, 834, 220, 220, 220, 796, 366, 49, 2885, 20151, 12, 4090, 9273, 7712, 4816, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 2211, 11, 33540, 20151, 1, 198, 834, 43085, 834, 220, 220, 796, 366, 36393, 1, 628, 198, 11748, 28686, 198, 11748, 7702, 13, 26791, 355, 7422, 628, 198, 2, 16529, 26171, 198, 2, 198, 11748, 3384, 4487, 628, 198, 2, 16529, 26171, 198, 2, 198, 6738, 220, 220, 764, 9979, 1187, 220, 1330, 1635, 198, 198, 6738, 220, 220, 764, 35943, 220, 220, 220, 220, 220, 220, 1330, 15941, 11, 43101, 198, 6738, 220, 220, 764, 1078, 7657, 1330, 49213, 11, 4889, 1891, 198, 6738, 220, 220, 764, 29891, 220, 220, 220, 1330, 23575, 11, 15161, 36044, 198, 6738, 220, 220, 764, 22866, 220, 220, 220, 1330, 30532, 198, 6738, 220, 220, 764, 6371, 220, 220, 220, 220, 220, 220, 220, 1330, 8799, 75, 198, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 19743, 16922, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 1892, 3546, 1154, 12061, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 3457, 47315, 21886, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 7772, 36301, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 27511, 3109, 1023, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 8314, 3673, 3109, 396, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 3457, 47315, 9012, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 2448, 3411, 21306, 798, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 35263, 37, 6255, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 48191, 37, 6255, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 3862, 448, 198, 6738, 220, 220, 764, 1069, 11755, 1330, 1400, 33244, 198, 198, 6738, 220, 220, 764, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 1693, 198, 6738, 220, 220, 764, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 29905, 198, 6738, 220, 220, 764, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 30069, 198, 6738, 220, 220, 764, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 6728, 198, 6738, 220, 220, 764, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 8271, 198, 2, 1330, 7702, 13, 82, 8126, 13, 37348, 1095, 628, 198, 2, 16529, 26171, 198, 2, 198, 79, 16993, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 15908, 3672, 357, 834, 7753, 834, 8, 198, 9641, 62, 19509, 11, 2196, 62, 49170, 11, 2196, 62, 8692, 11, 2196, 62, 1671, 3702, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 17080, 62, 3672, 11, 264, 17080, 62, 6978, 796, 7422, 13, 1136, 62, 9641, 29565, 79, 16993, 12962, 198, 9641, 796, 2196, 62, 19509, 628, 198, 2, 44855, 11682, 25, 262, 49706, 2315, 481, 2421, 257, 705, 4871, 605, 6, 287, 72, 1912, 4566, 11, 543, 318, 198, 2, 1180, 422, 262, 33918, 1912, 4566, 356, 779, 783, 13, 220, 220, 1737, 761, 19698, 1752, 262, 198, 2, 7702, 8398, 1080, 468, 3421, 284, 33918, 198, 62, 6404, 1362, 796, 7422, 13, 11187, 1362, 10786, 42325, 13, 82, 8126, 11537, 198, 62, 6404, 1362, 13, 10951, 19203, 42325, 13, 82, 8126, 220, 220, 220, 220, 220, 220, 220, 220, 2196, 25, 4064, 82, 6, 4064, 2196, 62, 49170, 8, 628, 198, 2, 16529, 26171, 628 ]
3.413121
564
import json from .utils import Utils utils = Utils()
[ 11748, 33918, 198, 6738, 764, 26791, 1330, 7273, 4487, 198, 198, 26791, 796, 7273, 4487, 3419, 198 ]
3.176471
17
# -*- coding: utf-8 -*- if __name__ == '__main__': main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2
32
# -*- coding: utf-8 -*- from django.test.client import Client from networkapi.test.test_case import NetworkApiTestCase from networkapi.util.geral import mount_url
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 9288, 13, 16366, 1330, 20985, 198, 198, 6738, 3127, 15042, 13, 9288, 13, 9288, 62, 7442, 1330, 7311, 32, 14415, 14402, 20448, 198, 6738, 3127, 15042, 13, 22602, 13, 1362, 282, 1330, 3817, 62, 6371, 628, 198 ]
3.018182
55
## -*- coding: utf-8 -*- ## (C) 2018 Muthiah Annamalai, <[email protected]> import codecs import os from .resources import get_data_dir
[ 2235, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2235, 357, 34, 8, 2864, 337, 1071, 9520, 5506, 321, 282, 1872, 11, 1279, 8471, 12639, 648, 31, 14816, 13, 785, 29, 198, 198, 11748, 40481, 82, 198, 11748, 28686, 198, 6738, 764, 37540, 1330, 651, 62, 7890, 62, 15908, 628 ]
2.545455
55
import os, sys from math import sqrt import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions.laplace import Laplace from torch.distributions.normal import Normal from torch.optim import Adam from einops import rearrange, reduce, repeat from advbench import perturbations from advbench.lib.manifool.functions.algorithms.manifool import manifool from advbench.datasets import FFCV_AVAILABLE torch.backends.cudnn.benchmark = True
[ 11748, 28686, 11, 25064, 198, 6738, 10688, 1330, 19862, 17034, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 5031, 5372, 1330, 4689, 5372, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 11265, 1330, 14435, 198, 6738, 28034, 13, 40085, 1330, 7244, 198, 6738, 304, 259, 2840, 1330, 37825, 858, 11, 4646, 11, 9585, 198, 198, 6738, 1354, 26968, 1330, 22146, 5945, 602, 198, 6738, 1354, 26968, 13, 8019, 13, 805, 361, 970, 13, 12543, 2733, 13, 282, 7727, 907, 13, 805, 361, 970, 1330, 19871, 970, 198, 6738, 1354, 26968, 13, 19608, 292, 1039, 1330, 376, 4851, 53, 62, 10116, 32, 4146, 17534, 198, 198, 13165, 354, 13, 1891, 2412, 13, 66, 463, 20471, 13, 26968, 4102, 796, 6407, 628, 220, 220, 220, 220, 198 ]
3.245033
151
#!/usr/bin/env python from __future__ import division, absolute_import, print_function import os import sys import argparse import redmapper if __name__ == '__main__': parser = argparse.ArgumentParser(description='Compute the zred background for all galaxies') parser.add_argument('-c', '--configfile', action='store', type=str, required=True, help='YAML config file') args = parser.parse_args() config = redmapper.Configuration(args.configfile) zb = redmapper.ZredBackgroundGenerator(config) zb.run()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 4112, 62, 11748, 11, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 11748, 2266, 76, 11463, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 7293, 1133, 262, 1976, 445, 4469, 329, 477, 27982, 11537, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 66, 3256, 705, 438, 11250, 7753, 3256, 2223, 11639, 8095, 3256, 2099, 28, 2536, 11, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 56, 2390, 43, 4566, 2393, 11537, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 4566, 796, 2266, 76, 11463, 13, 38149, 7, 22046, 13, 11250, 7753, 8, 198, 220, 220, 220, 1976, 65, 796, 2266, 76, 11463, 13, 57, 445, 21756, 8645, 1352, 7, 11250, 8, 198, 220, 220, 220, 1976, 65, 13, 5143, 3419, 628, 628 ]
2.823232
198
import socket import uuid from struct import pack
[ 11748, 17802, 198, 11748, 334, 27112, 198, 6738, 2878, 1330, 2353, 198 ]
4.166667
12
from setuptools import setup setup( name='pythonthegathering', packages=['pythonthegathering'], version='1.2.1', description='Replaces everything good and practical about Python with MTG!', author='Theo Hamilton/linky00', author_email='[email protected]', url='https://github.com/linky00/pythonthegathering', download_url='https://github.com/linky00/pythonthegathering/archive/v1.2.1.tar.gz', keywords='decorators mtg', classifiers=[ 'Development Status :: 3 - Alpha', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6' ], license='MIT' )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 79, 5272, 756, 258, 70, 25545, 3256, 198, 220, 220, 220, 10392, 28, 17816, 79, 5272, 756, 258, 70, 25545, 6, 4357, 198, 220, 220, 220, 2196, 11639, 16, 13, 17, 13, 16, 3256, 198, 220, 220, 220, 6764, 11639, 3041, 23625, 2279, 922, 290, 8472, 546, 11361, 351, 19308, 38, 0, 3256, 198, 220, 220, 220, 1772, 11639, 464, 78, 11582, 14, 8726, 88, 405, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 8726, 88, 405, 31, 489, 849, 349, 395, 463, 4267, 13, 785, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 8726, 88, 405, 14, 79, 5272, 756, 258, 70, 25545, 3256, 198, 220, 220, 220, 4321, 62, 6371, 11639, 5450, 1378, 12567, 13, 785, 14, 8726, 88, 405, 14, 79, 5272, 756, 258, 70, 25545, 14, 17474, 14, 85, 16, 13, 17, 13, 16, 13, 18870, 13, 34586, 3256, 198, 220, 220, 220, 26286, 11639, 12501, 273, 2024, 285, 25297, 3256, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 513, 532, 12995, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 20, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 6, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 5964, 11639, 36393, 6, 198, 8, 198 ]
2.568493
292
from . import common
[ 6738, 764, 1330, 2219, 628 ]
4.4
5
# -*- coding: utf-8 -*- def default_params(): ''' Description: It defines the default parameters of the program. Args: None Return: defaults_dict ''' defaults_dict = {} defaults_dict['program_name'] = 'MATSDP' defaults_dict['version'] = '0.2.4' defaults_dict['logfile'] = 'matsdp.log' defaults_dict['output_dir_name'] = 'outputs' defaults_dict['projects_dir_name'] = 'projects' defaults_dict['projects_summary_dir_name'] = 'projects_summary' defaults_dict['task_summary_dir_name'] = 'task_summary' defaults_dict['test_dir_name'] = 'test' defaults_dict['greek_capital_letter_list'] = ['Alpha', 'Beta', 'Gamma', 'Delta', 'Epsilon', 'Zeta', 'Eta', 'Theta', 'Iota', 'Kappa', 'Lambda', 'Mu', 'Nu', 'Xi', 'Omicron', 'Pi', 'Rho', 'Sigma', 'Tau', 'Upsilon', 'Phi', 'Chi', 'Psi', 'Omega'] defaults_dict['greek_small_letter_list'] = ['alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lambda', 'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi', 'chi', 'psi', 'omega'] return defaults_dict
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 4299, 4277, 62, 37266, 33529, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 12489, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 632, 15738, 262, 4277, 10007, 286, 262, 1430, 13, 201, 198, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 201, 198, 220, 220, 220, 8229, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 26235, 62, 11600, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 26235, 62, 11600, 796, 23884, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 23065, 62, 3672, 20520, 796, 705, 44, 33586, 6322, 6, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 9641, 20520, 796, 705, 15, 13, 17, 13, 19, 6, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 6404, 7753, 20520, 796, 705, 76, 1381, 26059, 13, 6404, 6, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 22915, 62, 15908, 62, 3672, 20520, 796, 705, 22915, 82, 6, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 42068, 62, 15908, 62, 3672, 20520, 796, 705, 42068, 6, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 42068, 62, 49736, 62, 15908, 62, 3672, 20520, 796, 705, 42068, 62, 49736, 6, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 35943, 62, 49736, 62, 15908, 62, 3672, 20520, 796, 705, 35943, 62, 49736, 6, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 9288, 62, 15908, 62, 3672, 20520, 796, 705, 9288, 6, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 70, 10316, 62, 27544, 62, 9291, 62, 4868, 20520, 796, 37250, 38077, 3256, 705, 43303, 3256, 705, 34777, 2611, 3256, 705, 42430, 3256, 705, 36, 862, 33576, 3256, 705, 57, 17167, 3256, 705, 36, 8326, 3256, 705, 464, 8326, 3256, 705, 40, 4265, 3256, 705, 42, 20975, 3256, 705, 43, 4131, 6814, 3256, 705, 33239, 3256, 705, 45, 84, 3256, 705, 42528, 3256, 705, 46, 9383, 1313, 3256, 705, 38729, 3256, 705, 49, 8873, 3256, 705, 50, 13495, 3256, 705, 51, 559, 3256, 705, 52, 862, 33576, 3256, 705, 2725, 72, 3256, 705, 1925, 72, 3256, 705, 12016, 72, 3256, 705, 46, 13731, 20520, 201, 198, 220, 220, 220, 26235, 62, 11600, 17816, 70, 10316, 62, 17470, 62, 9291, 62, 4868, 20520, 796, 37250, 26591, 3256, 705, 31361, 3256, 705, 28483, 2611, 3256, 705, 67, 12514, 3256, 705, 538, 18217, 261, 3256, 705, 89, 17167, 3256, 705, 17167, 3256, 705, 1169, 8326, 3256, 705, 72, 4265, 3256, 705, 74, 20975, 3256, 705, 50033, 3256, 705, 30300, 3256, 705, 28803, 3256, 705, 29992, 3256, 705, 10179, 1313, 3256, 705, 14415, 3256, 705, 81, 8873, 3256, 705, 82, 13495, 3256, 705, 83, 559, 3256, 705, 4739, 33576, 3256, 705, 34846, 3256, 705, 11072, 3256, 705, 862, 72, 3256, 705, 462, 4908, 20520, 201, 198, 220, 220, 220, 1441, 26235, 62, 11600, 201, 198 ]
2.319277
498
import scrapy
[ 11748, 15881, 88 ]
4.333333
3
#!/usr/bin/python # -*- coding: utf-8 -*- # ==================================================================== # @author: Joe Del Rocco # @since: 11/02/2017 # @summary: A module with angle and coordinate transformations. # @note: Parts of this file came from angle_utilities.py written by Dan Knowlton of PCG at Cornell. # Redistributed with permission. # ==================================================================== # Provides functionality to convert between UV coordinates and angles as well # as other useful angle utilities. # # Copyright 2014-2015 Program of Computer Graphics, Cornell University # 580 Rhodes Hall # Cornell University # Ithaca NY 14853 # Web: http://www.graphics.cornell.edu/ # # Not for commercial use. Do not redistribute without permission. # ==================================================================== import math import numpy as np import common ''' Convert a sky coordinate (azimuth, altitude) to fisheye UV coordinate (0-1, 0-1). Note that images in this application were taken with North facing downward, so we must account for this in UV. Note sampling pattern coordinates in this application were measured in altitude, but calculation below requires zenith. Note altering of zenith to account for warp of lens used: http://paulbourke.net/dome/fisheyecorrect/ ''' ''' Convert a fisheye UV coordinate (0-1, 0-1) to a sky coordinate (azimuth, altitude). ''' ''' Convert an image pixel coordinate to a fisheye UV coordinate (0-1, 0-1). ''' ''' Take in a pair of (azimuth, altitude) sky coordintes and return the corresponding central angle between them. https://en.wikipedia.org/wiki/Great-circle_distance#Formulas '''
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 38093, 18604, 198, 2, 2488, 9800, 25, 5689, 4216, 13545, 1073, 198, 2, 2488, 20777, 25, 1367, 14, 2999, 14, 5539, 198, 2, 2488, 49736, 25, 317, 8265, 351, 9848, 290, 20435, 38226, 13, 198, 2, 2488, 11295, 25, 22349, 286, 428, 2393, 1625, 422, 9848, 62, 315, 2410, 13, 9078, 3194, 416, 6035, 9365, 75, 1122, 286, 4217, 38, 379, 27119, 13, 198, 2, 2297, 396, 6169, 351, 7170, 13, 198, 2, 38093, 18604, 198, 2, 47081, 11244, 284, 10385, 1022, 22033, 22715, 290, 18333, 355, 880, 198, 2, 220, 220, 355, 584, 4465, 9848, 20081, 13, 198, 2, 198, 2, 220, 15069, 1946, 12, 4626, 6118, 286, 13851, 19840, 11, 27119, 2059, 198, 2, 220, 220, 220, 220, 41234, 25656, 4789, 198, 2, 220, 220, 220, 220, 27119, 2059, 198, 2, 220, 220, 220, 220, 314, 400, 22260, 6645, 22613, 4310, 198, 2, 220, 5313, 25, 2638, 1378, 2503, 13, 70, 11549, 13, 20772, 695, 13, 15532, 14, 198, 2, 198, 2, 220, 1892, 329, 5068, 779, 13, 2141, 407, 17678, 4163, 1231, 7170, 13, 198, 2, 38093, 18604, 198, 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2219, 628, 198, 7061, 6, 198, 3103, 1851, 257, 6766, 20435, 357, 1031, 320, 1071, 11, 20334, 8, 284, 277, 271, 258, 5948, 22033, 20435, 357, 15, 12, 16, 11, 657, 12, 16, 737, 198, 6425, 326, 4263, 287, 428, 3586, 547, 2077, 351, 2258, 6476, 20841, 11, 523, 356, 1276, 1848, 329, 428, 287, 22033, 13, 198, 6425, 19232, 3912, 22715, 287, 428, 3586, 547, 8630, 287, 20334, 11, 475, 17952, 2174, 4433, 1976, 268, 342, 13, 198, 6425, 29057, 286, 1976, 268, 342, 284, 1848, 329, 25825, 286, 10317, 973, 25, 198, 4023, 1378, 79, 2518, 6084, 365, 13, 3262, 14, 67, 462, 14, 69, 271, 20342, 721, 47315, 14, 198, 7061, 6, 198, 198, 7061, 6, 198, 3103, 1851, 257, 277, 271, 258, 5948, 22033, 20435, 357, 15, 12, 16, 11, 657, 12, 16, 8, 284, 257, 6766, 20435, 357, 1031, 320, 1071, 11, 20334, 737, 198, 7061, 6, 198, 198, 7061, 6, 198, 3103, 1851, 281, 2939, 17465, 20435, 284, 257, 277, 271, 258, 5948, 22033, 20435, 357, 15, 12, 16, 11, 657, 12, 16, 737, 198, 7061, 6, 198, 198, 7061, 6, 198, 12322, 287, 257, 5166, 286, 357, 1031, 320, 1071, 11, 20334, 8, 6766, 6349, 600, 274, 290, 1441, 262, 11188, 4318, 9848, 1022, 606, 13, 198, 5450, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 13681, 12, 45597, 62, 30246, 2, 8479, 25283, 198, 7061, 6, 198 ]
3.747228
451
from .base import * import os MINIMUM_SAMPLE_SIZE = 3 TRANSCRIPT_PHRASE_POSITIVE_CONFIDENCE_LIMIT = .51 TRANSCRIPT_PHRASE_NEGATIVE_CONFIDENCE_LIMIT = -.51 TRANSCRIPT_PHRASE_CORRECTION_LOWER_LIMIT = .51 TRANSCRIPT_PHRASE_CORRECTION_UPPER_LIMIT = .66 INSTALLED_APPS += ('storages',) SECRET_KEY = os.environ['SECRET_KEY'] DEBUG = False ADMINS = [(os.environ['ADMIN_NAME'], os.environ['ADMIN_EMAIL'])] ALLOWED_HOSTS = ['fixit.americanarchive.org', 'fixit.wgbh-mla.org'] LOG_DIRECTORY = '/home/wgbh/logs' GA_CODE = os.environ['GA_CODE'] AWS_HEADERS = { 'Expires': 'Thu, 31 Dec 2099 20:00:00 GMT', 'Cache-Control': 'max-age=94608000', } AWS_STORAGE_BUCKET_NAME = os.environ['S3_BUCKET_NAME'] AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID'] AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY'] AWS_S3_CUSTOM_DOMAIN = 's3.amazonaws.com/{}'.format( AWS_STORAGE_BUCKET_NAME ) STATIC_URL = 'https://s3.amazonaws.com/{}/'.format(AWS_S3_CUSTOM_DOMAIN) STATICFILES_STORAGE = 'storages.backends.s3boto.S3BotoStorage' REST_FRAMEWORK['DEFAULT_RENDERER_CLASSES'] = ( 'rest_framework.renderers.JSONRenderer', ) NEWRELIC_CONFIG_PATH = os.environ['NEWRELIC_CONFIG_PATH'] NEWRELIC_ENV = os.environ['NEWRELIC_ENV'] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ['PG_HOST'], 'NAME': 'mla', 'USER': 'mla', 'PASSWORD': os.environ['PG_PASS'], }, } CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.PyLibMCCache', 'LOCATION': '127.0.0.1:11211', } } LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'file': { 'level': 'INFO', 'class': 'logging.FileHandler', 'filename': '{}/django.log'.format(LOG_DIRECTORY), }, 'metadata_errors': { 'level': 'INFO', 'class': 'logging.FileHandler', 'filename': '{}/metadata_error.log'.format(LOG_DIRECTORY), }, }, 'loggers': { 'django': { 'handlers': ['file'], 'level': 'DEBUG', 'propagate': True, }, 'metadata_errors': { 'handlers': ['metadata_errors'], 'level': 'DEBUG', 'propagate': True, }, }, }
[ 6738, 764, 8692, 1330, 1635, 198, 11748, 28686, 198, 198, 23678, 3955, 5883, 62, 49302, 16437, 62, 33489, 796, 513, 198, 198, 5446, 1565, 6173, 46023, 62, 11909, 49, 11159, 62, 37997, 2043, 9306, 62, 10943, 37, 2389, 18310, 62, 43, 3955, 2043, 796, 764, 4349, 198, 5446, 1565, 6173, 46023, 62, 11909, 49, 11159, 62, 45, 7156, 37045, 62, 10943, 37, 2389, 18310, 62, 43, 3955, 2043, 796, 532, 13, 4349, 198, 5446, 1565, 6173, 46023, 62, 11909, 49, 11159, 62, 44879, 23988, 2849, 62, 43, 36048, 62, 43, 3955, 2043, 796, 764, 4349, 198, 5446, 1565, 6173, 46023, 62, 11909, 49, 11159, 62, 44879, 23988, 2849, 62, 8577, 18973, 62, 43, 3955, 2043, 796, 764, 2791, 198, 198, 38604, 7036, 1961, 62, 2969, 3705, 15853, 19203, 301, 273, 1095, 3256, 8, 198, 198, 23683, 26087, 62, 20373, 796, 28686, 13, 268, 2268, 17816, 23683, 26087, 62, 20373, 20520, 198, 198, 30531, 796, 10352, 198, 198, 2885, 44, 20913, 796, 47527, 418, 13, 268, 2268, 17816, 2885, 23678, 62, 20608, 6, 4357, 28686, 13, 268, 2268, 17816, 2885, 23678, 62, 27630, 4146, 6, 12962, 60, 198, 198, 7036, 3913, 1961, 62, 39, 10892, 50, 796, 37250, 13049, 270, 13, 2382, 7490, 17474, 13, 2398, 3256, 705, 13049, 270, 13, 86, 22296, 71, 12, 4029, 64, 13, 2398, 20520, 198, 198, 25294, 62, 17931, 23988, 15513, 796, 31051, 11195, 14, 86, 22296, 71, 14, 6404, 82, 6, 198, 198, 9273, 62, 34, 16820, 796, 28686, 13, 268, 2268, 17816, 9273, 62, 34, 16820, 20520, 198, 198, 12298, 50, 62, 37682, 4877, 796, 1391, 198, 220, 220, 220, 705, 16870, 2387, 10354, 705, 39902, 11, 3261, 4280, 1160, 2079, 1160, 25, 405, 25, 405, 16987, 3256, 198, 220, 220, 220, 705, 30562, 12, 15988, 10354, 705, 9806, 12, 496, 28, 5824, 28688, 830, 3256, 198, 92, 198, 12298, 50, 62, 2257, 1581, 11879, 62, 33, 16696, 2767, 62, 20608, 796, 28686, 13, 268, 2268, 17816, 50, 18, 62, 33, 16696, 2767, 62, 20608, 20520, 198, 12298, 50, 62, 26861, 7597, 62, 20373, 62, 2389, 796, 28686, 13, 268, 2268, 17816, 12298, 50, 62, 26861, 7597, 62, 20373, 62, 2389, 20520, 198, 12298, 50, 62, 23683, 26087, 62, 26861, 7597, 62, 20373, 796, 28686, 13, 268, 2268, 17816, 12298, 50, 62, 23683, 26087, 62, 26861, 7597, 62, 20373, 20520, 198, 198, 12298, 50, 62, 50, 18, 62, 34, 7759, 2662, 62, 39170, 29833, 796, 705, 82, 18, 13, 33103, 8356, 13, 785, 14, 90, 92, 4458, 18982, 7, 198, 220, 220, 220, 30865, 62, 2257, 1581, 11879, 62, 33, 16696, 2767, 62, 20608, 198, 8, 198, 198, 35744, 2149, 62, 21886, 796, 705, 5450, 1378, 82, 18, 13, 33103, 8356, 13, 785, 14, 90, 92, 14, 4458, 18982, 7, 12298, 50, 62, 50, 18, 62, 34, 7759, 2662, 62, 39170, 29833, 8, 198, 35744, 2149, 46700, 1546, 62, 2257, 1581, 11879, 796, 705, 301, 273, 1095, 13, 1891, 2412, 13, 82, 18, 65, 2069, 13, 50, 18, 33, 2069, 31425, 6, 198, 198, 49, 6465, 62, 10913, 2390, 6217, 14670, 17816, 7206, 38865, 62, 49, 10619, 1137, 1137, 62, 31631, 1546, 20520, 796, 357, 198, 220, 220, 220, 705, 2118, 62, 30604, 13, 10920, 19288, 13, 40386, 49, 437, 11882, 3256, 198, 8, 198, 198, 13965, 16448, 2149, 62, 10943, 16254, 62, 34219, 796, 28686, 13, 268, 2268, 17816, 13965, 16448, 2149, 62, 10943, 16254, 62, 34219, 20520, 198, 13965, 16448, 2149, 62, 1677, 53, 796, 28686, 13, 268, 2268, 17816, 13965, 16448, 2149, 62, 1677, 53, 20520, 198, 198, 35, 1404, 6242, 1921, 1546, 796, 1391, 198, 220, 220, 220, 705, 12286, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26808, 8881, 10354, 705, 28241, 14208, 13, 9945, 13, 1891, 2412, 13, 7353, 34239, 13976, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39, 10892, 10354, 28686, 13, 268, 2268, 17816, 6968, 62, 39, 10892, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 10354, 705, 4029, 64, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29904, 10354, 705, 4029, 64, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47924, 54, 12532, 10354, 28686, 13, 268, 2268, 17816, 6968, 62, 47924, 6, 4357, 198, 220, 220, 220, 8964, 198, 92, 198, 198, 34, 16219, 1546, 796, 1391, 198, 220, 220, 220, 705, 12286, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31098, 10619, 10354, 705, 28241, 14208, 13, 7295, 13, 23870, 13, 1891, 2412, 13, 11883, 66, 2317, 13, 20519, 25835, 44, 4093, 4891, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29701, 6234, 10354, 705, 16799, 13, 15, 13, 15, 13, 16, 25, 14686, 1157, 3256, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 25294, 38, 2751, 796, 1391, 198, 220, 220, 220, 705, 9641, 10354, 352, 11, 198, 220, 220, 220, 705, 40223, 62, 25687, 62, 6404, 5355, 10354, 10352, 11, 198, 220, 220, 220, 705, 4993, 8116, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7753, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5715, 10354, 705, 10778, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 10354, 705, 6404, 2667, 13, 8979, 25060, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34345, 10354, 705, 90, 92, 14, 28241, 14208, 13, 6404, 4458, 18982, 7, 25294, 62, 17931, 23988, 15513, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 705, 38993, 62, 48277, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5715, 10354, 705, 10778, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 10354, 705, 6404, 2667, 13, 8979, 25060, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34345, 10354, 705, 90, 92, 14, 38993, 62, 18224, 13, 6404, 4458, 18982, 7, 25294, 62, 17931, 23988, 15513, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 6404, 5355, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 28241, 14208, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4993, 8116, 10354, 37250, 7753, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5715, 10354, 705, 30531, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22930, 37861, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 705, 38993, 62, 48277, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4993, 8116, 10354, 37250, 38993, 62, 48277, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5715, 10354, 705, 30531, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22930, 37861, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 8964, 198, 92, 198 ]
1.954128
1,199
import urllib.request import os import pandas as pd import numpy as np from nltk.tokenize import RegexpTokenizer from nltk.stem.porter import PorterStemmer from nltk.corpus import stopwords df = pd.read_csv('../data/raw/movie_data.csv',encoding='utf-8') #print(df.head(3)) # init Objects tokenizer=RegexpTokenizer(r'\w+') en_stopwords=set(stopwords.words('english')) ps=PorterStemmer() df['review'].apply(getStemmedReview) #df.to_csv(r'../data/processed/movie_data[clean].csv') # X_train = df.loc[:35000, 'review'].values # y_train = df.loc[:35000, 'sentiment'].values # X_test = df.loc[35000:, 'review'].values # y_test = df.loc[35000:, 'sentiment'].values # # from sklearn.feature_extraction.text import TfidfVectorizer # vectorizer = TfidfVectorizer(sublinear_tf=True, encoding='utf-8',decode_error='ignore') # vectorizer.fit(X_train) # X_train=vectorizer.transform(X_train) # X_test=vectorizer.transform(X_test) # # from sklearn.linear_model import LogisticRegression # model=LogisticRegression(solver='liblinear') # model.fit(X_train,y_train) # print("Score on training data is: "+str(model.score(X_train,y_train))) # print("Score on testing data is: "+str(model.score(X_test,y_test))) # # import sklearn.externals # import joblib # joblib.dump(en_stopwords,'stopwords.pkl') # joblib.dump(model,'model.pkl') # joblib.dump(vectorizer,'vectorizer.pkl')
[ 11748, 2956, 297, 571, 13, 25927, 198, 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 797, 25636, 79, 30642, 7509, 198, 6738, 299, 2528, 74, 13, 927, 13, 26634, 1330, 20890, 1273, 368, 647, 198, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 2245, 10879, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 7890, 14, 1831, 14, 41364, 62, 7890, 13, 40664, 3256, 12685, 7656, 11639, 40477, 12, 23, 11537, 198, 2, 4798, 7, 7568, 13, 2256, 7, 18, 4008, 198, 198, 2, 2315, 35832, 198, 30001, 7509, 28, 3041, 25636, 79, 30642, 7509, 7, 81, 6, 59, 86, 10, 11537, 198, 268, 62, 11338, 10879, 28, 2617, 7, 11338, 10879, 13, 10879, 10786, 39126, 6, 4008, 198, 862, 28, 47, 4337, 1273, 368, 647, 3419, 198, 7568, 17816, 19023, 6, 4083, 39014, 7, 1136, 1273, 368, 1150, 14832, 8, 198, 2, 7568, 13, 1462, 62, 40664, 7, 81, 6, 40720, 7890, 14, 14681, 276, 14, 41364, 62, 7890, 58, 27773, 4083, 40664, 11537, 198, 198, 2, 1395, 62, 27432, 796, 47764, 13, 17946, 58, 25, 2327, 830, 11, 705, 19023, 6, 4083, 27160, 198, 2, 331, 62, 27432, 796, 47764, 13, 17946, 58, 25, 2327, 830, 11, 705, 34086, 3681, 6, 4083, 27160, 198, 2, 1395, 62, 9288, 796, 47764, 13, 17946, 58, 2327, 830, 45299, 705, 19023, 6, 4083, 27160, 198, 2, 331, 62, 9288, 796, 47764, 13, 17946, 58, 2327, 830, 45299, 705, 34086, 3681, 6, 4083, 27160, 198, 2, 198, 2, 422, 1341, 35720, 13, 30053, 62, 2302, 7861, 13, 5239, 1330, 309, 69, 312, 69, 38469, 7509, 198, 2, 15879, 7509, 796, 309, 69, 312, 69, 38469, 7509, 7, 7266, 29127, 62, 27110, 28, 17821, 11, 21004, 11639, 40477, 12, 23, 3256, 12501, 1098, 62, 18224, 11639, 46430, 11537, 198, 2, 15879, 7509, 13, 11147, 7, 55, 62, 27432, 8, 198, 2, 1395, 62, 27432, 28, 31364, 7509, 13, 35636, 7, 55, 62, 27432, 8, 198, 2, 1395, 62, 9288, 28, 31364, 7509, 13, 35636, 7, 55, 62, 9288, 8, 198, 2, 198, 2, 422, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 198, 2, 2746, 28, 11187, 2569, 8081, 2234, 7, 82, 14375, 11639, 8019, 29127, 11537, 198, 2, 2746, 13, 11147, 7, 55, 62, 27432, 11, 88, 62, 27432, 8, 198, 2, 3601, 7203, 26595, 319, 3047, 1366, 318, 25, 43825, 2536, 7, 19849, 13, 26675, 7, 55, 62, 27432, 11, 88, 62, 27432, 22305, 198, 2, 3601, 7203, 26595, 319, 4856, 1366, 318, 25, 43825, 2536, 7, 19849, 13, 26675, 7, 55, 62, 9288, 11, 88, 62, 9288, 22305, 198, 2, 198, 2, 1330, 1341, 35720, 13, 1069, 759, 874, 198, 2, 1330, 1693, 8019, 198, 2, 1693, 8019, 13, 39455, 7, 268, 62, 11338, 10879, 4032, 11338, 10879, 13, 79, 41582, 11537, 198, 2, 1693, 8019, 13, 39455, 7, 19849, 4032, 19849, 13, 79, 41582, 11537, 198, 2, 1693, 8019, 13, 39455, 7, 31364, 7509, 4032, 31364, 7509, 13, 79, 41582, 11537, 198 ]
2.633721
516
import numpy as np ######################################## # Jeong approximate functions ########################################
[ 11748, 299, 32152, 355, 45941, 198, 198, 29113, 7804, 198, 2, 220, 220, 220, 220, 3852, 506, 27665, 5499, 198, 29113, 7804, 628, 628 ]
5.791667
24
from rest_framework.decorators import api_view from fastrunner.utils import loader,newloader from rest_framework.response import Response from fastrunner.utils.parser import Format from fastrunner import models from django.conf import settings import os,time,sys from httprunner.utils import create_scaffold from fastrunner.utils import runner import traceback from fastrunner.utils.newrunner import RunSingleApi,RunTree,RunSingleApiInStep,RunSingleApiInCase """运行方式 """ import logging logger = logging.getLogger('httprunner') @api_view(['GET']) def run_api_pk(request, **kwargs): """run api by pk """ run_test_path = settings.RUN_TEST_PATH timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime()) projectPath = os.path.join(run_test_path, timedir) create_scaffold(projectPath) if ('debugtalk' in sys.modules.keys()): del sys.modules['debugtalk'] debugApi = RunSingleApi(projectPath=projectPath, config=request.query_params['config'], apiId=kwargs['pk'], type="singleapi") debugApi.serializeTestCase() debugApi.serializeTestSuite() debugApi.serializeDebugtalk() debugApi.generateMapping() debugApi.run() return Response(debugApi.summary) @api_view(["POST"]) def run_testsuite(request): """debug testsuite { name: str, body: dict } """ body = request.data["body"] project = request.data["project"] name = request.data["name"] testcase_list = [] config = None for test in body: test = loader.load_test(test, project=project) if "base_url" in test["request"].keys(): config = test continue testcase_list.append(test) summary = loader.debug_api(testcase_list, project, name=name, config=config) return Response(summary) @api_view(["POST"]) def run_test(request): """debug single test { body: dict } """ body = request.data["body"] summary = loader.debug_api(loader.load_test(body), request.data["project"]) return Response(summary) @api_view(["GET"]) def run_testsuite_pk(request, **kwargs): """run testsuite by pk { project: int, name: str } """ pk = kwargs["pk"] test_list = models.CaseStep.objects. \ filter(case__id=pk).order_by("step").values("body") project = request.query_params["project"] name = request.query_params["name"] testcase_list = [] config = None for content in test_list: body = eval(content["body"]) if "base_url" in body["request"].keys(): config = eval(models.Config.objects.get(name=body["name"], project__id=project).body) continue testcase_list.append(body) summary = loader.debug_api(testcase_list, project, name=name, config=config) return Response(summary) @api_view(['POST']) @api_view(['POST']) @api_view(['POST']) @api_view(['POST']) @api_view(['POST']) def run_api(request): """ run api by body """ api = Format(request.data) api.parse() run_test_path = settings.RUN_TEST_PATH timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime()) projectPath = os.path.join(run_test_path, timedir) if ('debugtalk' in sys.modules.keys()): del sys.modules['debugtalk'] create_scaffold(projectPath) debugApi = RunSingleApi(project=api.project,projectPath=projectPath,config=request.data['config'], apiBody=api.testcase,type="debugapi") debugApi.serializeTestCase() debugApi.serializeTestSuite() debugApi.serializeDebugtalk() debugApi.generateMapping() debugApi.run() return Response(debugApi.summary) @api_view(['POST']) @api_view(['POST']) def run_casesinglestep(request): """run testsuite by tree { project: int relation: list name: str async: bool } """ # order by id default run_test_path = settings.RUN_TEST_PATH timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime()) projectPath = os.path.join(run_test_path, timedir) create_scaffold(projectPath) if ('debugtalk' in sys.modules.keys()): del sys.modules['debugtalk'] singleStep = '' if('apiId' in request.data.keys()): singleStep = RunSingleApiInCase(config=request.data['config'], project=request.data['project'], apiId=request.data['apiId'], index=request.data['index'], projectPath=projectPath,relation = request.data['relation'][0]) elif('suiteId' in request.data.keys()): #TODO:这里的实现只是个临时方案,还要重写的 singleStep = RunSingleApiInCase(config=request.data['config'], project=request.data['project'], suiteId=request.data['suiteId'], index=request.data['index'], projectPath=projectPath, relation=request.data['relation'][0]) singleStep.serializeApi() singleStep.serializeDebugtalk() singleStep.generateMapping() singleStep.serializeTestCase() singleStep.serializeTestSuite() singleStep.run() return Response(singleStep.summary) @api_view(['POST']) def run_DebugSuiteStep(request): """ run suitestep by body """ run_test_path = settings.RUN_TEST_PATH timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime()) projectPath = os.path.join(run_test_path, timedir) create_scaffold(projectPath) if ('debugtalk' in sys.modules.keys()): del sys.modules['debugtalk'] debugApi = RunSingleApiInStep(config=request.data['config'],project=request.data['project'],apiId=request.data['apiId'], apiBody=request.data, projectPath=projectPath) debugApi.serializeApi() debugApi.serializeDebugtalk() debugApi.generateMapping() debugApi.serializeTestCase() debugApi.serializeTestSuite() debugApi.run() if ('debugtalk' in sys.modules.keys()): del sys.modules['debugtalk'] return Response(debugApi.summary) @api_view(['POST']) def run_DebugCaseStep(request): """ run casestep by body """ run_test_path = settings.RUN_TEST_PATH timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime()) projectPath = os.path.join(run_test_path, timedir) create_scaffold(projectPath) if ('debugtalk' in sys.modules.keys()): del sys.modules['debugtalk'] debugApi = RunSingleApiInStep(config=request.data['config'],project=request.data['project'],apiId=request.data['apiId'], apiBody=request.data, projectPath=projectPath) debugApi.serializeApi() debugApi.serializeDebugtalk() debugApi.generateMapping() debugApi.serializeTestCase() debugApi.run() return Response(debugApi.summary)
[ 6738, 1334, 62, 30604, 13, 12501, 273, 2024, 1330, 40391, 62, 1177, 198, 6738, 3049, 16737, 13, 26791, 1330, 40213, 11, 3605, 29356, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 3049, 16737, 13, 26791, 13, 48610, 1330, 18980, 198, 6738, 3049, 16737, 1330, 4981, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 11748, 28686, 11, 2435, 11, 17597, 198, 6738, 1841, 1050, 403, 1008, 13, 26791, 1330, 2251, 62, 1416, 2001, 727, 198, 6738, 3049, 16737, 13, 26791, 1330, 17490, 198, 11748, 12854, 1891, 198, 6738, 3049, 16737, 13, 26791, 13, 3605, 16737, 1330, 5660, 28008, 32, 14415, 11, 10987, 27660, 11, 10987, 28008, 32, 14415, 818, 8600, 11, 10987, 28008, 32, 14415, 818, 20448, 198, 198, 37811, 32573, 238, 26193, 234, 43095, 28156, 237, 198, 37811, 198, 11748, 18931, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 2804, 1050, 403, 1008, 11537, 628, 198, 31, 15042, 62, 1177, 7, 17816, 18851, 6, 12962, 198, 4299, 1057, 62, 15042, 62, 79, 74, 7, 25927, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 5143, 40391, 416, 279, 74, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1057, 62, 9288, 62, 6978, 796, 6460, 13, 49, 4944, 62, 51, 6465, 62, 34219, 198, 220, 220, 220, 28805, 343, 796, 640, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 12, 4, 44, 12, 4, 50, 3256, 640, 13, 12001, 2435, 28955, 198, 220, 220, 220, 1628, 15235, 796, 28686, 13, 6978, 13, 22179, 7, 5143, 62, 9288, 62, 6978, 11, 28805, 343, 8, 198, 220, 220, 220, 2251, 62, 1416, 2001, 727, 7, 16302, 15235, 8, 198, 220, 220, 220, 611, 19203, 24442, 16620, 6, 287, 25064, 13, 18170, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 25064, 13, 18170, 17816, 24442, 16620, 20520, 628, 220, 220, 220, 14257, 32, 14415, 796, 5660, 28008, 32, 14415, 7, 16302, 15235, 28, 16302, 15235, 11, 4566, 28, 25927, 13, 22766, 62, 37266, 17816, 11250, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 7390, 28, 46265, 22046, 17816, 79, 74, 6, 4357, 2099, 2625, 29762, 15042, 4943, 628, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 14402, 20448, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 14402, 5606, 578, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 27509, 16620, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 8612, 378, 44, 5912, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 5143, 3419, 628, 220, 220, 220, 1441, 18261, 7, 24442, 32, 14415, 13, 49736, 8, 628, 198, 31, 15042, 62, 1177, 7, 14692, 32782, 8973, 8, 198, 4299, 1057, 62, 9288, 2385, 578, 7, 25927, 2599, 198, 220, 220, 220, 37227, 24442, 1332, 2385, 578, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1767, 25, 8633, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1767, 796, 2581, 13, 7890, 14692, 2618, 8973, 198, 220, 220, 220, 1628, 796, 2581, 13, 7890, 14692, 16302, 8973, 198, 220, 220, 220, 1438, 796, 2581, 13, 7890, 14692, 3672, 8973, 628, 220, 220, 220, 1332, 7442, 62, 4868, 796, 17635, 198, 220, 220, 220, 4566, 796, 6045, 628, 220, 220, 220, 329, 1332, 287, 1767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 796, 40213, 13, 2220, 62, 9288, 7, 9288, 11, 1628, 28, 16302, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 8692, 62, 6371, 1, 287, 1332, 14692, 25927, 1, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 7442, 62, 4868, 13, 33295, 7, 9288, 8, 628, 220, 220, 220, 220, 220, 220, 220, 10638, 796, 40213, 13, 24442, 62, 15042, 7, 9288, 7442, 62, 4868, 11, 1628, 11, 1438, 28, 3672, 11, 4566, 28, 11250, 8, 628, 220, 220, 220, 1441, 18261, 7, 49736, 8, 628, 198, 31, 15042, 62, 1177, 7, 14692, 32782, 8973, 8, 198, 4299, 1057, 62, 9288, 7, 25927, 2599, 198, 220, 220, 220, 37227, 24442, 2060, 1332, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1767, 25, 8633, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1767, 796, 2581, 13, 7890, 14692, 2618, 8973, 198, 220, 220, 220, 10638, 796, 40213, 13, 24442, 62, 15042, 7, 29356, 13, 2220, 62, 9288, 7, 2618, 828, 2581, 13, 7890, 14692, 16302, 8973, 8, 198, 220, 220, 220, 1441, 18261, 7, 49736, 8, 628, 198, 31, 15042, 62, 1177, 7, 14692, 18851, 8973, 8, 198, 4299, 1057, 62, 9288, 2385, 578, 62, 79, 74, 7, 25927, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 5143, 1332, 2385, 578, 416, 279, 74, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1628, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 279, 74, 796, 479, 86, 22046, 14692, 79, 74, 8973, 628, 220, 220, 220, 1332, 62, 4868, 796, 4981, 13, 20448, 8600, 13, 48205, 13, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 7, 7442, 834, 312, 28, 79, 74, 737, 2875, 62, 1525, 7203, 9662, 11074, 27160, 7203, 2618, 4943, 628, 220, 220, 220, 1628, 796, 2581, 13, 22766, 62, 37266, 14692, 16302, 8973, 198, 220, 220, 220, 1438, 796, 2581, 13, 22766, 62, 37266, 14692, 3672, 8973, 628, 220, 220, 220, 1332, 7442, 62, 4868, 796, 17635, 198, 220, 220, 220, 4566, 796, 6045, 628, 220, 220, 220, 329, 2695, 287, 1332, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1767, 796, 5418, 7, 11299, 14692, 2618, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 8692, 62, 6371, 1, 287, 1767, 14692, 25927, 1, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 5418, 7, 27530, 13, 16934, 13, 48205, 13, 1136, 7, 3672, 28, 2618, 14692, 3672, 33116, 1628, 834, 312, 28, 16302, 737, 2618, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 7442, 62, 4868, 13, 33295, 7, 2618, 8, 628, 220, 220, 220, 10638, 796, 40213, 13, 24442, 62, 15042, 7, 9288, 7442, 62, 4868, 11, 1628, 11, 1438, 28, 3672, 11, 4566, 28, 11250, 8, 628, 220, 220, 220, 1441, 18261, 7, 49736, 8, 628, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 198, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 198, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 198, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 628, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 198, 4299, 1057, 62, 15042, 7, 25927, 2599, 198, 220, 220, 220, 37227, 1057, 40391, 416, 1767, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40391, 796, 18980, 7, 25927, 13, 7890, 8, 198, 220, 220, 220, 40391, 13, 29572, 3419, 628, 220, 220, 220, 1057, 62, 9288, 62, 6978, 796, 6460, 13, 49, 4944, 62, 51, 6465, 62, 34219, 198, 220, 220, 220, 28805, 343, 796, 640, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 12, 4, 44, 12, 4, 50, 3256, 640, 13, 12001, 2435, 28955, 198, 220, 220, 220, 1628, 15235, 796, 28686, 13, 6978, 13, 22179, 7, 5143, 62, 9288, 62, 6978, 11, 28805, 343, 8, 198, 220, 220, 220, 611, 19203, 24442, 16620, 6, 287, 25064, 13, 18170, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 25064, 13, 18170, 17816, 24442, 16620, 20520, 198, 220, 220, 220, 2251, 62, 1416, 2001, 727, 7, 16302, 15235, 8, 198, 220, 220, 220, 14257, 32, 14415, 796, 5660, 28008, 32, 14415, 7, 16302, 28, 15042, 13, 16302, 11, 16302, 15235, 28, 16302, 15235, 11, 11250, 28, 25927, 13, 7890, 17816, 11250, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 25842, 28, 15042, 13, 9288, 7442, 11, 4906, 2625, 24442, 15042, 4943, 628, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 14402, 20448, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 14402, 5606, 578, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 27509, 16620, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 8612, 378, 44, 5912, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 5143, 3419, 198, 220, 220, 220, 1441, 18261, 7, 24442, 32, 14415, 13, 49736, 8, 628, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 198, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 198, 4299, 1057, 62, 33964, 278, 32712, 538, 7, 25927, 2599, 198, 220, 220, 220, 37227, 5143, 1332, 2385, 578, 416, 5509, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1628, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8695, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 30351, 25, 20512, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1502, 416, 4686, 4277, 198, 220, 220, 220, 1057, 62, 9288, 62, 6978, 796, 6460, 13, 49, 4944, 62, 51, 6465, 62, 34219, 198, 220, 220, 220, 28805, 343, 796, 640, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 12, 4, 44, 12, 4, 50, 3256, 640, 13, 12001, 2435, 28955, 198, 220, 220, 220, 1628, 15235, 796, 28686, 13, 6978, 13, 22179, 7, 5143, 62, 9288, 62, 6978, 11, 28805, 343, 8, 198, 220, 220, 220, 2251, 62, 1416, 2001, 727, 7, 16302, 15235, 8, 198, 220, 220, 220, 611, 19203, 24442, 16620, 6, 287, 25064, 13, 18170, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 25064, 13, 18170, 17816, 24442, 16620, 20520, 198, 220, 220, 220, 2060, 8600, 796, 10148, 198, 220, 220, 220, 611, 10786, 15042, 7390, 6, 287, 2581, 13, 7890, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2060, 8600, 796, 5660, 28008, 32, 14415, 818, 20448, 7, 11250, 28, 25927, 13, 7890, 17816, 11250, 6, 4357, 1628, 28, 25927, 13, 7890, 17816, 16302, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 7390, 28, 25927, 13, 7890, 17816, 15042, 7390, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 25927, 13, 7890, 17816, 9630, 6, 4357, 1628, 15235, 28, 16302, 15235, 11, 49501, 796, 2581, 13, 7890, 17816, 49501, 6, 7131, 15, 12962, 198, 220, 220, 220, 1288, 361, 10786, 2385, 578, 7390, 6, 287, 2581, 13, 7890, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 51, 3727, 46, 25, 32573, 247, 34932, 234, 21410, 22522, 252, 163, 236, 108, 20998, 103, 42468, 10310, 103, 10310, 112, 33768, 114, 43095, 162, 94, 230, 171, 120, 234, 32573, 246, 17358, 223, 34932, 235, 37863, 247, 21410, 198, 220, 220, 220, 220, 220, 220, 220, 2060, 8600, 796, 5660, 28008, 32, 14415, 818, 20448, 7, 11250, 28, 25927, 13, 7890, 17816, 11250, 6, 4357, 1628, 28, 25927, 13, 7890, 17816, 16302, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18389, 7390, 28, 25927, 13, 7890, 17816, 2385, 578, 7390, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 25927, 13, 7890, 17816, 9630, 6, 4357, 1628, 15235, 28, 16302, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8695, 28, 25927, 13, 7890, 17816, 49501, 6, 7131, 15, 12962, 198, 220, 220, 220, 2060, 8600, 13, 46911, 1096, 32, 14415, 3419, 198, 220, 220, 220, 2060, 8600, 13, 46911, 1096, 27509, 16620, 3419, 198, 220, 220, 220, 2060, 8600, 13, 8612, 378, 44, 5912, 3419, 198, 220, 220, 220, 2060, 8600, 13, 46911, 1096, 14402, 20448, 3419, 198, 220, 220, 220, 2060, 8600, 13, 46911, 1096, 14402, 5606, 578, 3419, 198, 220, 220, 220, 2060, 8600, 13, 5143, 3419, 198, 220, 220, 220, 1441, 18261, 7, 29762, 8600, 13, 49736, 8, 198, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 198, 4299, 1057, 62, 27509, 5606, 578, 8600, 7, 25927, 2599, 198, 220, 220, 220, 37227, 1057, 6050, 395, 538, 416, 1767, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1057, 62, 9288, 62, 6978, 796, 6460, 13, 49, 4944, 62, 51, 6465, 62, 34219, 198, 220, 220, 220, 28805, 343, 796, 640, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 12, 4, 44, 12, 4, 50, 3256, 640, 13, 12001, 2435, 28955, 198, 220, 220, 220, 1628, 15235, 796, 28686, 13, 6978, 13, 22179, 7, 5143, 62, 9288, 62, 6978, 11, 28805, 343, 8, 198, 220, 220, 220, 2251, 62, 1416, 2001, 727, 7, 16302, 15235, 8, 198, 220, 220, 220, 611, 19203, 24442, 16620, 6, 287, 25064, 13, 18170, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 25064, 13, 18170, 17816, 24442, 16620, 20520, 198, 220, 220, 220, 14257, 32, 14415, 796, 5660, 28008, 32, 14415, 818, 8600, 7, 11250, 28, 25927, 13, 7890, 17816, 11250, 6, 4357, 16302, 28, 25927, 13, 7890, 17816, 16302, 6, 4357, 15042, 7390, 28, 25927, 13, 7890, 17816, 15042, 7390, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 25842, 28, 25927, 13, 7890, 11, 1628, 15235, 28, 16302, 15235, 8, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 32, 14415, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 27509, 16620, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 8612, 378, 44, 5912, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 14402, 20448, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 14402, 5606, 578, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 5143, 3419, 198, 220, 220, 220, 611, 19203, 24442, 16620, 6, 287, 25064, 13, 18170, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 25064, 13, 18170, 17816, 24442, 16620, 20520, 198, 220, 220, 220, 1441, 18261, 7, 24442, 32, 14415, 13, 49736, 8, 628, 198, 31, 15042, 62, 1177, 7, 17816, 32782, 6, 12962, 198, 4299, 1057, 62, 27509, 20448, 8600, 7, 25927, 2599, 198, 220, 220, 220, 37227, 1057, 6124, 395, 538, 416, 1767, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1057, 62, 9288, 62, 6978, 796, 6460, 13, 49, 4944, 62, 51, 6465, 62, 34219, 198, 220, 220, 220, 28805, 343, 796, 640, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 12, 4, 44, 12, 4, 50, 3256, 640, 13, 12001, 2435, 28955, 198, 220, 220, 220, 1628, 15235, 796, 28686, 13, 6978, 13, 22179, 7, 5143, 62, 9288, 62, 6978, 11, 28805, 343, 8, 198, 220, 220, 220, 2251, 62, 1416, 2001, 727, 7, 16302, 15235, 8, 198, 220, 220, 220, 611, 19203, 24442, 16620, 6, 287, 25064, 13, 18170, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 25064, 13, 18170, 17816, 24442, 16620, 20520, 198, 220, 220, 220, 14257, 32, 14415, 796, 5660, 28008, 32, 14415, 818, 8600, 7, 11250, 28, 25927, 13, 7890, 17816, 11250, 6, 4357, 16302, 28, 25927, 13, 7890, 17816, 16302, 6, 4357, 15042, 7390, 28, 25927, 13, 7890, 17816, 15042, 7390, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 25842, 28, 25927, 13, 7890, 11, 1628, 15235, 28, 16302, 15235, 8, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 32, 14415, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 27509, 16620, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 8612, 378, 44, 5912, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 46911, 1096, 14402, 20448, 3419, 198, 220, 220, 220, 14257, 32, 14415, 13, 5143, 3419, 198, 220, 220, 220, 1441, 18261, 7, 24442, 32, 14415, 13, 49736, 8, 198 ]
2.32344
2,965
from math import floor print(count_by([6.1,4.2,6.3], floor)) print(count_by(['one', 'two', 'three'], len))
[ 198, 6738, 10688, 1330, 4314, 198, 198, 4798, 7, 9127, 62, 1525, 26933, 21, 13, 16, 11, 19, 13, 17, 11, 21, 13, 18, 4357, 4314, 4008, 198, 4798, 7, 9127, 62, 1525, 7, 17816, 505, 3256, 705, 11545, 3256, 705, 15542, 6, 4357, 18896, 4008, 628 ]
2.340426
47
from lifelines.datasets import load_rossi from lifelines import CoxPHFitter rossi_dataset = load_rossi() cph = CoxPHFitter() cph.fit(rossi_dataset, duration_col='week', event_col='arrest', show_progress=True) cph.print_summary() # access the results using cph.summary
[ 6738, 3868, 20655, 13, 19608, 292, 1039, 1330, 3440, 62, 1214, 72, 198, 6738, 3868, 20655, 1330, 18014, 11909, 37, 1967, 198, 198, 1214, 72, 62, 19608, 292, 316, 796, 3440, 62, 1214, 72, 3419, 198, 66, 746, 796, 18014, 11909, 37, 1967, 3419, 198, 66, 746, 13, 11147, 7, 1214, 72, 62, 19608, 292, 316, 11, 9478, 62, 4033, 11639, 10464, 3256, 1785, 62, 4033, 11639, 283, 2118, 3256, 905, 62, 33723, 28, 17821, 8, 198, 198, 66, 746, 13, 4798, 62, 49736, 3419, 220, 1303, 1895, 262, 2482, 1262, 269, 746, 13, 49736 ]
2.842105
95
# ==================================================================== # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==================================================================== from lia.common.LiaTestCase import LiaTestCase from lucene import \ WhitespaceAnalyzer, StandardAnalyzer, Term, QueryParser, Locale, \ BooleanQuery, FuzzyQuery, IndexSearcher, TermRangeQuery, TermQuery, \ BooleanClause, Version
[ 2, 38093, 18604, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 198, 2, 38093, 18604, 198, 198, 6738, 35388, 13, 11321, 13, 43, 544, 14402, 20448, 1330, 49520, 14402, 20448, 198, 198, 6738, 17115, 1734, 1330, 3467, 198, 220, 220, 220, 220, 29290, 10223, 37702, 9107, 11, 8997, 37702, 9107, 11, 35118, 11, 43301, 46677, 11, 15181, 1000, 11, 3467, 198, 220, 220, 220, 220, 41146, 20746, 11, 376, 4715, 88, 20746, 11, 12901, 50, 50194, 11, 35118, 17257, 20746, 11, 35118, 20746, 11, 3467, 198, 220, 220, 220, 220, 41146, 2601, 682, 11, 10628, 628 ]
3.861789
246
import h5py import numpy as np # @staticmethod # def _preprocess_group_value(group): # data = group['data'][:] # labels = group['labels'][:] # result = [(data[i][np.newaxis], labels[i, 0]) for i in range(data.shape[0])] # return result # @staticmethod # def _preprocess_set_value(value): # data = np.vstack([v[0] for v in value]) # labels = np.vstack([v[1] for v in value]) # return data, labels
[ 11748, 289, 20, 9078, 198, 11748, 299, 32152, 355, 45941, 628, 628, 220, 220, 220, 1303, 2488, 12708, 24396, 198, 220, 220, 220, 1303, 825, 4808, 3866, 14681, 62, 8094, 62, 8367, 7, 8094, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1366, 796, 1448, 17816, 7890, 6, 7131, 47715, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 14722, 796, 1448, 17816, 23912, 1424, 6, 7131, 47715, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1255, 796, 47527, 7890, 58, 72, 7131, 37659, 13, 3605, 22704, 4357, 14722, 58, 72, 11, 657, 12962, 329, 1312, 287, 2837, 7, 7890, 13, 43358, 58, 15, 12962, 60, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 1303, 2488, 12708, 24396, 198, 220, 220, 220, 1303, 825, 4808, 3866, 14681, 62, 2617, 62, 8367, 7, 8367, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1366, 796, 45941, 13, 85, 25558, 26933, 85, 58, 15, 60, 329, 410, 287, 1988, 12962, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 14722, 796, 45941, 13, 85, 25558, 26933, 85, 58, 16, 60, 329, 410, 287, 1988, 12962, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 1366, 11, 14722, 198 ]
2.269231
208
import itertools import unittest from typing import List, Optional, Union, Tuple from . import children_entity_parser from .predicate import Predicate from ..most_general_unifier import MostGeneralUnifier class Clause(object): """ Class for keeping predicates together and some several multi-predicate supported functionality """ def has_tautology(self) -> bool: """ Tautology checking procedure in the list of predicates :return: Boolean flag representing whether the list has tautology or not. In case of having tautology True will be returned, otherwise False. """ # Group each predicate by their name for key, group in itertools.groupby(self.predicates, lambda predicate: predicate.get_name()): # Separate them by their negation and test all the unification results of permutations of paired predicates non_negated_predicates, negated_predicates = Clause._predicate_separator_by_sign(group) for non_negated_predicate in non_negated_predicates: for negated_predicate in negated_predicates: unification, _ = MostGeneralUnifier.unify(non_negated_predicate.get_child(), negated_predicate.get_child()) # If any of them can be unified, it means we got tautology if unification: return True # If not achieved any tautology, it means we have no tautology return False def does_subsume(self, other: 'Clause') -> bool: """ Subsumption controlling function where the function tries to find whether the other clause is more specific than the current clause :param other: Other clause to check subsumption :return: Boolean flag representing that the current clause subsumes the other clause """ # If no meet naming and negation match as a subset then immediately return False since subsumption cannot occur fast_check_result = Clause._fast_check_by_negation_and_name(self, other) if fast_check_result: # Group by both name and negation first_group = {key: list(group) for key, group in itertools.groupby(self.predicates, lambda p: (p.get_name(), p.is_negated))} second_group = {key: list(group) for key, group in itertools.groupby(other.predicates, lambda p: (p.get_name(), p.is_negated))} # Take common keys of each dict so that we can check if there exists any substitution which unifies them common_keys = first_group.keys() & second_group.keys() # And filter common predicates filtered_first_group = [first_group[key] for key in common_keys] filtered_second_group = [second_group[key] for key in common_keys] # Then take multiplication of them for multiplication in itertools.product(itertools.product(*filtered_first_group), itertools.product(*filtered_second_group)): # Each of the predicates must be the same or be less specific than the other's predicates result = all(child == other_child or child.is_less_specific(other_child) for child, other_child in zip(multiplication[0], multiplication[1])) if result: return True # If none of them holds the condition, then return False return False else: # If fast check fails return False def resolve_with(self, other: 'Clause') -> Tuple[Union['Clause', None], Union['Clause', None]]: """ Function to resolve two clauses :param other: Other clause :return: Resolvent clause in case of resolution otherwise None """ for predicate1, predicate2 in itertools.product(self.predicates, other.predicates): # Try to unify them if they represent the same predicate but they have different negation states if predicate1.get_name() == predicate2.get_name() and predicate1.is_negated != predicate2.is_negated: result, substitutions = MostGeneralUnifier.unify(predicate1.get_child(), predicate2.get_child()) # Compose new predicate with combined predicates of both clauses except for resolvent predicates new_clause_children = [Predicate.build(str(predicate)) for predicate in self.predicates] new_clause_children.extend([Predicate.build(str(predicate)) for predicate in other.predicates]) new_clause_children.remove(predicate1) new_clause_children.remove(predicate2) # Return composed clause return Clause(MostGeneralUnifier.apply_substitution(new_clause_children, substitutions)), substitutions # If none of them can be resolved, return none return None, None @staticmethod def _predicate_separator_by_sign(predicates): """ Grouping functionality of predicates """ non_negated, negated = [], [] for predicate in predicates: (non_negated, negated)[predicate.is_negated].append(predicate) return non_negated, negated @staticmethod def _fast_check_by_negation_and_name(clause1: 'Clause', clause2: 'Clause') -> bool: """ Fast subsumption check procedure which try to check there is any different predicate exists in other clause so that the first clause cannot subsume :param clause1: Clause to check subsume onto other clause :param clause2: Clause which assumed to be subsumed by the first clause :return: Boolean flag representing all predicates in the first clause are subset of that for second clause """ clause1 = set(map(lambda predicate: (predicate.is_negated, predicate.get_name()), clause1.predicates)) clause2 = set(map(lambda predicate: (predicate.is_negated, predicate.get_name()), clause2.predicates)) return clause1.issubset(clause2)
[ 11748, 340, 861, 10141, 198, 11748, 555, 715, 395, 198, 198, 6738, 19720, 1330, 7343, 11, 32233, 11, 4479, 11, 309, 29291, 198, 198, 6738, 764, 1330, 1751, 62, 26858, 62, 48610, 198, 6738, 764, 28764, 5344, 1330, 14322, 5344, 198, 6738, 11485, 1712, 62, 24622, 62, 403, 7483, 1330, 4042, 12218, 3118, 7483, 628, 198, 4871, 28081, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 329, 5291, 2747, 16856, 1978, 290, 617, 1811, 5021, 12, 28764, 5344, 4855, 11244, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 468, 62, 83, 2306, 1435, 7, 944, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 309, 2306, 1435, 10627, 8771, 287, 262, 1351, 286, 2747, 16856, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 41146, 6056, 10200, 1771, 262, 1351, 468, 256, 2306, 1435, 393, 407, 13, 554, 1339, 286, 1719, 256, 2306, 1435, 6407, 481, 198, 220, 220, 220, 220, 220, 220, 220, 307, 4504, 11, 4306, 10352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4912, 1123, 44010, 416, 511, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1448, 287, 340, 861, 10141, 13, 8094, 1525, 7, 944, 13, 28764, 16856, 11, 37456, 44010, 25, 44010, 13, 1136, 62, 3672, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8621, 30748, 606, 416, 511, 2469, 341, 290, 1332, 477, 262, 49080, 2482, 286, 9943, 32855, 286, 20312, 2747, 16856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 62, 12480, 515, 62, 28764, 16856, 11, 2469, 515, 62, 28764, 16856, 796, 28081, 13557, 28764, 5344, 62, 25512, 1352, 62, 1525, 62, 12683, 7, 8094, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1729, 62, 12480, 515, 62, 28764, 5344, 287, 1729, 62, 12480, 515, 62, 28764, 16856, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2469, 515, 62, 28764, 5344, 287, 2469, 515, 62, 28764, 16856, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49080, 11, 4808, 796, 4042, 12218, 3118, 7483, 13, 403, 1958, 7, 13159, 62, 12480, 515, 62, 28764, 5344, 13, 1136, 62, 9410, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2469, 515, 62, 28764, 5344, 13, 1136, 62, 9410, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 597, 286, 606, 460, 307, 22706, 11, 340, 1724, 356, 1392, 256, 2306, 1435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 49080, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 407, 8793, 597, 256, 2306, 1435, 11, 340, 1724, 356, 423, 645, 256, 2306, 1435, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 857, 62, 7266, 82, 2454, 7, 944, 11, 584, 25, 705, 2601, 682, 11537, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3834, 16345, 1159, 12755, 2163, 810, 262, 2163, 8404, 284, 1064, 198, 220, 220, 220, 220, 220, 220, 220, 1771, 262, 584, 13444, 318, 517, 2176, 621, 262, 1459, 13444, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 3819, 13444, 284, 2198, 6352, 24098, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 41146, 6056, 10200, 326, 262, 1459, 13444, 6352, 8139, 262, 584, 13444, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 645, 1826, 19264, 290, 2469, 341, 2872, 355, 257, 24637, 788, 3393, 1441, 10352, 1201, 6352, 24098, 2314, 3051, 198, 220, 220, 220, 220, 220, 220, 220, 3049, 62, 9122, 62, 20274, 796, 28081, 13557, 7217, 62, 9122, 62, 1525, 62, 12480, 341, 62, 392, 62, 3672, 7, 944, 11, 584, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3049, 62, 9122, 62, 20274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4912, 416, 1111, 1438, 290, 2469, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 8094, 796, 1391, 2539, 25, 1351, 7, 8094, 8, 329, 1994, 11, 1448, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 861, 10141, 13, 8094, 1525, 7, 944, 13, 28764, 16856, 11, 37456, 279, 25, 357, 79, 13, 1136, 62, 3672, 22784, 279, 13, 271, 62, 12480, 515, 4008, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1218, 62, 8094, 796, 1391, 2539, 25, 1351, 7, 8094, 8, 329, 1994, 11, 1448, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 861, 10141, 13, 8094, 1525, 7, 847, 13, 28764, 16856, 11, 37456, 279, 25, 357, 79, 13, 1136, 62, 3672, 22784, 279, 13, 271, 62, 12480, 515, 4008, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7214, 2219, 8251, 286, 1123, 8633, 523, 326, 356, 460, 2198, 611, 612, 7160, 597, 32097, 543, 555, 6945, 606, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2219, 62, 13083, 796, 717, 62, 8094, 13, 13083, 3419, 1222, 1218, 62, 8094, 13, 13083, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 843, 8106, 2219, 2747, 16856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 11085, 62, 8094, 796, 685, 11085, 62, 8094, 58, 2539, 60, 329, 1994, 287, 2219, 62, 13083, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 12227, 62, 8094, 796, 685, 12227, 62, 8094, 58, 2539, 60, 329, 1994, 287, 2219, 62, 13083, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3244, 1011, 48473, 286, 606, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 48473, 287, 340, 861, 10141, 13, 11167, 7, 270, 861, 10141, 13, 11167, 46491, 10379, 4400, 62, 11085, 62, 8094, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 861, 10141, 13, 11167, 46491, 10379, 4400, 62, 12227, 62, 8094, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5501, 286, 262, 2747, 16856, 1276, 307, 262, 976, 393, 307, 1342, 2176, 621, 262, 584, 338, 2747, 16856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 477, 7, 9410, 6624, 584, 62, 9410, 393, 1200, 13, 271, 62, 1203, 62, 11423, 7, 847, 62, 9410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1200, 11, 584, 62, 9410, 287, 19974, 7, 47945, 3299, 58, 15, 4357, 48473, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 4844, 286, 606, 6622, 262, 4006, 11, 788, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 3049, 2198, 10143, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 10568, 62, 4480, 7, 944, 11, 584, 25, 705, 2601, 682, 11537, 4613, 309, 29291, 58, 38176, 17816, 2601, 682, 3256, 6045, 4357, 4479, 17816, 2601, 682, 3256, 6045, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 10568, 734, 31485, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 3819, 13444, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1874, 349, 1151, 13444, 287, 1339, 286, 6323, 4306, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 44010, 16, 11, 44010, 17, 287, 340, 861, 10141, 13, 11167, 7, 944, 13, 28764, 16856, 11, 584, 13, 28764, 16856, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 284, 555, 1958, 606, 611, 484, 2380, 262, 976, 44010, 475, 484, 423, 1180, 2469, 341, 2585, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 44010, 16, 13, 1136, 62, 3672, 3419, 6624, 44010, 17, 13, 1136, 62, 3672, 3419, 290, 44010, 16, 13, 271, 62, 12480, 515, 14512, 44010, 17, 13, 271, 62, 12480, 515, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 11, 21436, 3508, 796, 4042, 12218, 3118, 7483, 13, 403, 1958, 7, 28764, 5344, 16, 13, 1136, 62, 9410, 22784, 44010, 17, 13, 1136, 62, 9410, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 577, 649, 44010, 351, 5929, 2747, 16856, 286, 1111, 31485, 2845, 329, 581, 349, 1151, 2747, 16856, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 565, 682, 62, 17197, 796, 685, 39156, 5344, 13, 11249, 7, 2536, 7, 28764, 5344, 4008, 329, 44010, 287, 2116, 13, 28764, 16856, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 565, 682, 62, 17197, 13, 2302, 437, 26933, 39156, 5344, 13, 11249, 7, 2536, 7, 28764, 5344, 4008, 329, 44010, 287, 584, 13, 28764, 16856, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 565, 682, 62, 17197, 13, 28956, 7, 28764, 5344, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 565, 682, 62, 17197, 13, 28956, 7, 28764, 5344, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8229, 13160, 13444, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 28081, 7, 6943, 12218, 3118, 7483, 13, 39014, 62, 7266, 301, 2738, 7, 3605, 62, 565, 682, 62, 17197, 11, 21436, 3508, 36911, 21436, 3508, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 4844, 286, 606, 460, 307, 12939, 11, 1441, 4844, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 11, 6045, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 28764, 5344, 62, 25512, 1352, 62, 1525, 62, 12683, 7, 28764, 16856, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4912, 278, 11244, 286, 2747, 16856, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1729, 62, 12480, 515, 11, 2469, 515, 796, 685, 4357, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 44010, 287, 2747, 16856, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 13159, 62, 12480, 515, 11, 2469, 515, 38381, 28764, 5344, 13, 271, 62, 12480, 515, 4083, 33295, 7, 28764, 5344, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1729, 62, 12480, 515, 11, 2469, 515, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 7217, 62, 9122, 62, 1525, 62, 12480, 341, 62, 392, 62, 3672, 7, 565, 682, 16, 25, 705, 2601, 682, 3256, 13444, 17, 25, 705, 2601, 682, 11537, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12549, 6352, 24098, 2198, 8771, 543, 1949, 284, 2198, 612, 318, 597, 1180, 44010, 7160, 287, 584, 13444, 198, 220, 220, 220, 220, 220, 220, 220, 523, 326, 262, 717, 13444, 2314, 6352, 2454, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13444, 16, 25, 28081, 284, 2198, 6352, 2454, 4291, 584, 13444, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13444, 17, 25, 28081, 543, 9672, 284, 307, 6352, 18940, 416, 262, 717, 13444, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 41146, 6056, 10200, 477, 2747, 16856, 287, 262, 717, 13444, 389, 24637, 286, 326, 329, 1218, 13444, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13444, 16, 796, 900, 7, 8899, 7, 50033, 44010, 25, 357, 28764, 5344, 13, 271, 62, 12480, 515, 11, 44010, 13, 1136, 62, 3672, 3419, 828, 13444, 16, 13, 28764, 16856, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13444, 17, 796, 900, 7, 8899, 7, 50033, 44010, 25, 357, 28764, 5344, 13, 271, 62, 12480, 515, 11, 44010, 13, 1136, 62, 3672, 3419, 828, 13444, 17, 13, 28764, 16856, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 13444, 16, 13, 747, 549, 2617, 7, 565, 682, 17, 8, 628 ]
2.540541
2,442
import PySimpleGUI as sg import app_state as app import dashboard import backend import os from loguru import logger import traceback import arus
[ 11748, 9485, 26437, 40156, 355, 264, 70, 198, 11748, 598, 62, 5219, 355, 598, 198, 11748, 30415, 198, 11748, 30203, 198, 11748, 28686, 198, 6738, 2604, 14717, 1330, 49706, 198, 11748, 12854, 1891, 198, 11748, 610, 385, 628, 198 ]
3.794872
39
import time import timeit from handlerPdf import getPDFname, getLocalTime from pathlib import Path, PurePath
[ 11748, 640, 198, 11748, 640, 270, 198, 6738, 21360, 47, 7568, 1330, 651, 20456, 3672, 11, 651, 14565, 7575, 198, 6738, 3108, 8019, 1330, 10644, 11, 17129, 15235, 628, 628 ]
3.733333
30
import unittest import random import axelrod C, D = axelrod.Actions.C, axelrod.Actions.D
[ 11748, 555, 715, 395, 198, 11748, 4738, 198, 11748, 7877, 417, 14892, 198, 198, 34, 11, 360, 796, 7877, 417, 14892, 13, 32, 2733, 13, 34, 11, 7877, 417, 14892, 13, 32, 2733, 13, 35, 198 ]
2.5
36
import numpy as np import pytest import torch from supermariopy.ptutils import nn
[ 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 9288, 198, 11748, 28034, 198, 6738, 2208, 76, 2743, 11081, 13, 457, 26791, 1330, 299, 77, 628, 628, 628, 628, 628, 628, 628, 628 ]
3.03125
32
from dimagi.ext.couchdbkit import DecimalProperty, Document, StringProperty from corehq.apps.cachehq.mixins import CachedCouchDocumentMixin TYPE_DOMAIN = 'domain' TYPE_PRODUCT = 'product' TYPE_SUPPLY_POINT_TYPE = 'supply-point-type' TYPE_SUPPLY_POINT = 'supply-point' class DefaultConsumption(CachedCouchDocumentMixin, Document): """ Model for setting the default consumption value of an entity """ type = StringProperty() # 'domain', 'product', 'supply-point-type', 'supply-point' domain = StringProperty() product_id = StringProperty() supply_point_type = StringProperty() supply_point_id = StringProperty() default_consumption = DecimalProperty() @classmethod @classmethod @classmethod @classmethod
[ 6738, 5391, 18013, 13, 2302, 13, 66, 7673, 9945, 15813, 1330, 4280, 4402, 21746, 11, 16854, 11, 10903, 21746, 198, 198, 6738, 4755, 71, 80, 13, 18211, 13, 23870, 71, 80, 13, 19816, 1040, 1330, 327, 2317, 34, 7673, 24941, 35608, 259, 198, 198, 25216, 62, 39170, 29833, 796, 705, 27830, 6, 198, 25216, 62, 4805, 28644, 796, 705, 11167, 6, 198, 25216, 62, 40331, 6489, 56, 62, 16402, 12394, 62, 25216, 796, 705, 18608, 306, 12, 4122, 12, 4906, 6, 198, 25216, 62, 40331, 6489, 56, 62, 16402, 12394, 796, 705, 18608, 306, 12, 4122, 6, 628, 198, 4871, 15161, 9444, 24098, 7, 34, 2317, 34, 7673, 24941, 35608, 259, 11, 16854, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9104, 329, 4634, 262, 4277, 7327, 1988, 286, 281, 9312, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2099, 796, 10903, 21746, 3419, 220, 1303, 705, 27830, 3256, 705, 11167, 3256, 705, 18608, 306, 12, 4122, 12, 4906, 3256, 705, 18608, 306, 12, 4122, 6, 198, 220, 220, 220, 7386, 796, 10903, 21746, 3419, 198, 220, 220, 220, 1720, 62, 312, 796, 10903, 21746, 3419, 198, 220, 220, 220, 5127, 62, 4122, 62, 4906, 796, 10903, 21746, 3419, 198, 220, 220, 220, 5127, 62, 4122, 62, 312, 796, 10903, 21746, 3419, 198, 220, 220, 220, 4277, 62, 5936, 24098, 796, 4280, 4402, 21746, 3419, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 198 ]
2.968872
257
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python [conda env:bandit_38] # language: python # name: conda-env-bandit_38-py # --- # %% language="javascript" # IPython.notebook.kernel.restart() # %% import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd # %% # %% headwater = '0259' hw_suffix = '' workdir = f'/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHW_sample/HW{headwater}{hw_suffix}/RESULTS' ofs_file = f'{workdir}/objfun_{headwater}' df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True) x_vars = df.columns.tolist()[3:] ncols = 3 numrows = int(round(len(x_vars) / float(ncols) + 0.5)) cstep = 4 # of_var = 'of_som' # Layout info at: https://matplotlib.org/stable/tutorials/intermediate/constrainedlayout_guide.html fig, axes = plt.subplots(nrows=numrows, ncols=ncols, figsize=(10, 10), constrained_layout=True) fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0.1, wspace=0.2) ax = axes.flatten() for ii,of in enumerate(x_vars): ax[ii].set_title(f'of_prms vs {of}') step_df = df[df.step == cstep] step_df.plot(ax=ax[ii], kind='scatter', x=of, y='of_prms', color='red', alpha=0.2) df_final = step_df.iloc[[-1]] df_final.plot(ax=ax[ii], kind='scatter', x=of, y='of_prms', color='black') # precal_ns_ref_df.plot(ax=ax[0], x='OF', y=precal_ns_ref_df.columns[1], ylim=(0.0, 1.0), color=calib_color, # label='PRECAL-ref') # ax = plt.gca() # step_df = df[df.step == cstep] # df_final = step_df.iloc[[-1]] # step_df.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='red', alpha=0.2) # df_final.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='black') # step_two = df[df.step == 2] # step_two.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='green', alpha=0.2) # step_three = df[df.step == 3] # step_three.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='blue', alpha=0.2) # step_four = df[df.step == 4] # step_four.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='yellow', alpha=0.2) # df_final = step_one.iloc[[-1]] # df_final.plot(kind='scatter', x='ofRUN', y='prmsOF', ax=ax, color='black') # df_final.plot(kind='scatter', x='ofAET', y='prmsOF', ax=ax, color='black') # df_final.plot(kind='scatter', x='ofSCA', y='prmsOF', ax=ax, color='black') # df_final.plot(kind='scatter', x='ofRCH', y='prmsOF', ax=ax, color='black') # df_final.plot(kind='scatter', x='ofSOM', y='prmsOF', ax=ax, color='black') # %% len(df.columns.tolist()[2:]) # %% colors = ['red', 'green', 'blue', 'yellow'] ncols = 3 numrows = int(round(len(x_vars) / float(ncols) + 0.5)) rnd = 3 # of_var = 'of_som' df = df[df.loc[:, 'round'] == rnd] # Layout info at: https://matplotlib.org/stable/tutorials/intermediate/constrainedlayout_guide.html fig, axes = plt.subplots(nrows=numrows, ncols=ncols, figsize=(15, 15), constrained_layout=True) fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0.1, wspace=0.2) ax = axes.flatten() for ii,of in enumerate(x_vars): ax[ii].set_title(f'of_prms vs {of}') for xx in range(1, 5): p_df = df[df.step == xx] p_df.plot(ax=ax[ii], kind='scatter', x=of, y='of_prms', color=colors[xx-1], alpha=0.2) df_final = p_df.iloc[[-1]] df_final.plot(ax=ax[ii], kind='scatter', x=of, y='of_prms', color='black') # %% df[df.loc[:, 'round'] == 1] # %% df.head() # %% df.info() # %% # %% # %% # %% # %% x_vars # %% [markdown] # ### Plot OFS from the original byHRU calibration # %% workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run1/RESULTS' ofs_file = f'{workdir}/OFS_HRU3505' df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0) # df.plot(kind='scatter',x='num_children',y='num_pets',color='red') ax = plt.gca() df.plot(kind='scatter', x='ofRUN', y='prmsOF', ax=ax, color='red', alpha=0.2) df.plot(kind='scatter', x='ofAET', y='prmsOF', ax=ax, color='green', alpha=0.2) df.plot(kind='scatter', x='ofSCA', y='prmsOF', ax=ax, color='blue', alpha=0.2) df.plot(kind='scatter', x='ofRCH', y='prmsOF', ax=ax, color='yellow', alpha=0.2) df.plot(kind='scatter', x='ofSOM', y='prmsOF', ax=ax, color='purple', alpha=0.2) df_final = df.iloc[[-1]] df_final.plot(kind='scatter', x='ofRUN', y='prmsOF', ax=ax, color='black') df_final.plot(kind='scatter', x='ofAET', y='prmsOF', ax=ax, color='black') df_final.plot(kind='scatter', x='ofSCA', y='prmsOF', ax=ax, color='black') df_final.plot(kind='scatter', x='ofRCH', y='prmsOF', ax=ax, color='black') df_final.plot(kind='scatter', x='ofSOM', y='prmsOF', ax=ax, color='black') # %% # %% [markdown] # ### Plot params # %% workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run2/RESULTS' ofs_file = f'{workdir}/PARAMS_HRU3505' df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0) ax = plt.gca() df.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='red', alpha=0.2) df.plot(kind='scatter', x='fastcoef_lin', y='RUN', ax=ax, color='green', alpha=0.2) df.plot(kind='scatter', x='freeh2o_cap', y='RUN', ax=ax, color='blue', alpha=0.2) df.plot(kind='scatter', x='gwflow_coef', y='RUN', ax=ax, color='yellow', alpha=0.2) df.plot(kind='scatter', x='jh_coef', y='RUN', ax=ax, color='purple', alpha=0.2) df_final = df.iloc[[-1]] df_final.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x='fastcoef_lin', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x='freeh2o_cap', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x='gwflow_coef', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x='jh_coef', y='RUN', ax=ax, color='black') # %% [markdown] # ### Plot params from original calibration # %% workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run1/RESULTS' ofs_file = f'{workdir}/PARAMS_HRU3505' df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0) ax = plt.gca() df.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='red', alpha=0.2) df.plot(kind='scatter', x='fastcoef_lin', y='RUN', ax=ax, color='green', alpha=0.2) df.plot(kind='scatter', x='freeh2o_cap', y='RUN', ax=ax, color='blue', alpha=0.2) df.plot(kind='scatter', x='gwflow_coef', y='RUN', ax=ax, color='yellow', alpha=0.2) df.plot(kind='scatter', x='jh_coef', y='RUN', ax=ax, color='purple', alpha=0.2) df_final = df.iloc[[-1]] df_final.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x='fastcoef_lin', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x='freeh2o_cap', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x='gwflow_coef', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x='jh_coef', y='RUN', ax=ax, color='black') # %% ax = plt.gca() df.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='red', alpha=0.2) df_final = df.iloc[[-1]] df_final.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='black') # %% df.columns # %% # %% # %% var = 'tmin_cbh_adj' workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run2/RESULTS' ofs_file = f'{workdir}/PARAMS_HRU3505' df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0) ax = plt.gca() df.plot(kind='scatter', x=f'{var}', y='RUN', ax=ax, color='red', alpha=0.2) df.plot(kind='scatter', x=f'{var}.1', y='RUN', ax=ax, color='green', alpha=0.2) df.plot(kind='scatter', x=f'{var}.2', y='RUN', ax=ax, color='blue', alpha=0.2) df.plot(kind='scatter', x=f'{var}.3', y='RUN', ax=ax, color='purple', alpha=0.2) df_final = df.iloc[[-1]] df_final.plot(kind='scatter', x=f'{var}', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x=f'{var}.1', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x=f'{var}.2', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x=f'{var}.3', y='RUN', ax=ax, color='black') # %% # %% var = 'tmin_cbh_adj' workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run1/RESULTS' ofs_file = f'{workdir}/PARAMS_HRU3505' df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0) ax = plt.gca() df.plot(kind='scatter', x=f'{var}', y='RUN', ax=ax, color='red', alpha=0.2) df.plot(kind='scatter', x=f'{var}.1', y='RUN', ax=ax, color='green', alpha=0.2) df.plot(kind='scatter', x=f'{var}.2', y='RUN', ax=ax, color='blue', alpha=0.2) df.plot(kind='scatter', x=f'{var}.3', y='RUN', ax=ax, color='purple', alpha=0.2) df_final = df.iloc[[-1]] df_final.plot(kind='scatter', x=f'{var}', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x=f'{var}.1', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x=f'{var}.2', y='RUN', ax=ax, color='black') df_final.plot(kind='scatter', x=f'{var}.3', y='RUN', ax=ax, color='black') # %%
[ 2, 11420, 198, 2, 474, 929, 88, 353, 25, 198, 2, 220, 220, 474, 929, 88, 5239, 25, 198, 2, 220, 220, 220, 220, 17519, 25, 20966, 2047, 65, 11, 9078, 25, 25067, 198, 2, 220, 220, 220, 220, 2420, 62, 15603, 341, 25, 198, 2, 220, 220, 220, 220, 220, 220, 7552, 25, 764, 9078, 198, 2, 220, 220, 220, 220, 220, 220, 5794, 62, 3672, 25, 1411, 198, 2, 220, 220, 220, 220, 220, 220, 5794, 62, 9641, 25, 705, 16, 13, 18, 6, 198, 2, 220, 220, 220, 220, 220, 220, 474, 929, 88, 5239, 62, 9641, 25, 352, 13, 1485, 13, 22, 198, 2, 220, 220, 50207, 43106, 25, 198, 2, 220, 220, 220, 220, 3359, 62, 3672, 25, 11361, 685, 66, 13533, 17365, 25, 3903, 270, 62, 2548, 60, 198, 2, 220, 220, 220, 220, 3303, 25, 21015, 198, 2, 220, 220, 220, 220, 1438, 25, 1779, 64, 12, 24330, 12, 3903, 270, 62, 2548, 12, 9078, 198, 2, 11420, 198, 198, 2, 43313, 3303, 2625, 37495, 1, 198, 2, 6101, 7535, 13, 11295, 2070, 13, 33885, 13, 2118, 433, 3419, 198, 198, 2, 43313, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 43313, 198, 198, 2, 43313, 198, 2256, 7050, 796, 705, 15, 25191, 6, 198, 36599, 62, 37333, 844, 796, 10148, 198, 1818, 15908, 796, 277, 26488, 14490, 14, 21999, 419, 261, 14, 16775, 82, 14, 16186, 62, 40436, 31142, 62, 17633, 14, 9948, 2889, 602, 14, 33863, 44, 85, 1157, 14, 1525, 39, 54, 62, 39873, 14, 39, 54, 90, 2256, 7050, 18477, 36599, 62, 37333, 844, 92, 14, 46274, 6, 198, 1659, 82, 62, 7753, 796, 277, 6, 90, 1818, 15908, 92, 14, 26801, 12543, 23330, 2256, 7050, 92, 6, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 1659, 82, 62, 7753, 11, 41767, 11639, 59, 82, 10, 3256, 14267, 36733, 13200, 28, 17821, 8, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 87, 62, 85, 945, 796, 47764, 13, 28665, 82, 13, 83, 349, 396, 3419, 58, 18, 47715, 198, 198, 77, 4033, 82, 796, 513, 198, 22510, 8516, 796, 493, 7, 744, 7, 11925, 7, 87, 62, 85, 945, 8, 1220, 12178, 7, 77, 4033, 82, 8, 1343, 657, 13, 20, 4008, 198, 198, 66, 9662, 796, 604, 198, 2, 286, 62, 7785, 796, 705, 1659, 62, 82, 296, 6, 198, 198, 2, 47639, 7508, 379, 25, 3740, 1378, 6759, 29487, 8019, 13, 2398, 14, 31284, 14, 83, 44917, 82, 14, 3849, 13857, 14, 1102, 2536, 1328, 39786, 62, 41311, 13, 6494, 198, 5647, 11, 34197, 796, 458, 83, 13, 7266, 489, 1747, 7, 77, 8516, 28, 22510, 8516, 11, 299, 4033, 82, 28, 77, 4033, 82, 11, 2336, 7857, 16193, 940, 11, 838, 828, 31070, 62, 39786, 28, 17821, 8, 198, 5647, 13, 2617, 62, 1102, 2536, 1328, 62, 39786, 62, 79, 5643, 7, 86, 62, 15636, 28, 19, 1220, 7724, 11, 289, 62, 15636, 28, 19, 1220, 7724, 11, 289, 13200, 28, 15, 13, 16, 11, 266, 13200, 28, 15, 13, 17, 8, 198, 897, 796, 34197, 13, 2704, 41769, 3419, 198, 198, 1640, 21065, 11, 1659, 287, 27056, 378, 7, 87, 62, 85, 945, 2599, 198, 220, 220, 220, 7877, 58, 4178, 4083, 2617, 62, 7839, 7, 69, 6, 1659, 62, 1050, 907, 3691, 1391, 1659, 92, 11537, 198, 220, 220, 220, 2239, 62, 7568, 796, 47764, 58, 7568, 13, 9662, 6624, 269, 9662, 60, 198, 220, 220, 220, 2239, 62, 7568, 13, 29487, 7, 897, 28, 897, 58, 4178, 4357, 1611, 11639, 1416, 1436, 3256, 2124, 28, 1659, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 3124, 11639, 445, 3256, 17130, 28, 15, 13, 17, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 47764, 62, 20311, 796, 2239, 62, 7568, 13, 346, 420, 30109, 12, 16, 11907, 198, 220, 220, 220, 47764, 62, 20311, 13, 29487, 7, 897, 28, 897, 58, 4178, 4357, 1611, 11639, 1416, 1436, 3256, 2124, 28, 1659, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 3124, 11639, 13424, 11537, 198, 220, 220, 220, 220, 198, 2, 220, 220, 220, 220, 3718, 282, 62, 5907, 62, 5420, 62, 7568, 13, 29487, 7, 897, 28, 897, 58, 15, 4357, 2124, 11639, 19238, 3256, 331, 28, 3866, 9948, 62, 5907, 62, 5420, 62, 7568, 13, 28665, 82, 58, 16, 4357, 331, 2475, 16193, 15, 13, 15, 11, 352, 13, 15, 828, 3124, 28, 9948, 571, 62, 8043, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 11639, 47, 38827, 1847, 12, 5420, 11537, 628, 198, 2, 7877, 796, 458, 83, 13, 70, 6888, 3419, 198, 2, 2239, 62, 7568, 796, 47764, 58, 7568, 13, 9662, 6624, 269, 9662, 60, 198, 2, 47764, 62, 20311, 796, 2239, 62, 7568, 13, 346, 420, 30109, 12, 16, 11907, 198, 2, 2239, 62, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 1659, 62, 7785, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 7877, 28, 897, 11, 3124, 11639, 445, 3256, 17130, 28, 15, 13, 17, 8, 198, 2, 47764, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 1659, 62, 7785, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 628, 628, 198, 2, 2239, 62, 11545, 796, 47764, 58, 7568, 13, 9662, 6624, 362, 60, 198, 2, 2239, 62, 11545, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 1659, 62, 7785, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 7877, 28, 897, 11, 3124, 11639, 14809, 3256, 17130, 28, 15, 13, 17, 8, 198, 198, 2, 2239, 62, 15542, 796, 47764, 58, 7568, 13, 9662, 6624, 513, 60, 198, 2, 2239, 62, 15542, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 1659, 62, 7785, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 7877, 28, 897, 11, 3124, 11639, 17585, 3256, 17130, 28, 15, 13, 17, 8, 198, 198, 2, 2239, 62, 14337, 796, 47764, 58, 7568, 13, 9662, 6624, 604, 60, 198, 2, 2239, 62, 14337, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 1659, 62, 7785, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 7877, 28, 897, 11, 3124, 11639, 36022, 3256, 17130, 28, 15, 13, 17, 8, 198, 198, 2, 47764, 62, 20311, 796, 2239, 62, 505, 13, 346, 420, 30109, 12, 16, 11907, 198, 2, 47764, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 49, 4944, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 2, 47764, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 32, 2767, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 2, 47764, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 6173, 32, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 2, 47764, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 49, 3398, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 2, 47764, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 50, 2662, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 628, 198, 2, 43313, 198, 11925, 7, 7568, 13, 28665, 82, 13, 83, 349, 396, 3419, 58, 17, 25, 12962, 198, 198, 2, 43313, 198, 4033, 669, 796, 37250, 445, 3256, 705, 14809, 3256, 705, 17585, 3256, 705, 36022, 20520, 198, 198, 77, 4033, 82, 796, 513, 198, 22510, 8516, 796, 493, 7, 744, 7, 11925, 7, 87, 62, 85, 945, 8, 1220, 12178, 7, 77, 4033, 82, 8, 1343, 657, 13, 20, 4008, 198, 198, 81, 358, 796, 513, 198, 2, 286, 62, 7785, 796, 705, 1659, 62, 82, 296, 6, 198, 7568, 796, 47764, 58, 7568, 13, 17946, 58, 45299, 705, 744, 20520, 6624, 374, 358, 60, 198, 198, 2, 47639, 7508, 379, 25, 3740, 1378, 6759, 29487, 8019, 13, 2398, 14, 31284, 14, 83, 44917, 82, 14, 3849, 13857, 14, 1102, 2536, 1328, 39786, 62, 41311, 13, 6494, 198, 5647, 11, 34197, 796, 458, 83, 13, 7266, 489, 1747, 7, 77, 8516, 28, 22510, 8516, 11, 299, 4033, 82, 28, 77, 4033, 82, 11, 2336, 7857, 16193, 1314, 11, 1315, 828, 31070, 62, 39786, 28, 17821, 8, 198, 5647, 13, 2617, 62, 1102, 2536, 1328, 62, 39786, 62, 79, 5643, 7, 86, 62, 15636, 28, 19, 1220, 7724, 11, 289, 62, 15636, 28, 19, 1220, 7724, 11, 289, 13200, 28, 15, 13, 16, 11, 266, 13200, 28, 15, 13, 17, 8, 198, 897, 796, 34197, 13, 2704, 41769, 3419, 198, 198, 1640, 21065, 11, 1659, 287, 27056, 378, 7, 87, 62, 85, 945, 2599, 198, 220, 220, 220, 7877, 58, 4178, 4083, 2617, 62, 7839, 7, 69, 6, 1659, 62, 1050, 907, 3691, 1391, 1659, 92, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 31383, 287, 2837, 7, 16, 11, 642, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 7568, 796, 47764, 58, 7568, 13, 9662, 6624, 31383, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 7568, 13, 29487, 7, 897, 28, 897, 58, 4178, 4357, 1611, 11639, 1416, 1436, 3256, 2124, 28, 1659, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 3124, 28, 4033, 669, 58, 5324, 12, 16, 4357, 17130, 28, 15, 13, 17, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 47764, 62, 20311, 796, 279, 62, 7568, 13, 346, 420, 30109, 12, 16, 11907, 198, 220, 220, 220, 47764, 62, 20311, 13, 29487, 7, 897, 28, 897, 58, 4178, 4357, 1611, 11639, 1416, 1436, 3256, 2124, 28, 1659, 11, 331, 11639, 1659, 62, 1050, 907, 3256, 3124, 11639, 13424, 11537, 198, 198, 2, 43313, 198, 7568, 58, 7568, 13, 17946, 58, 45299, 705, 744, 20520, 6624, 352, 60, 198, 198, 2, 43313, 198, 7568, 13, 2256, 3419, 198, 198, 2, 43313, 198, 7568, 13, 10951, 3419, 198, 198, 2, 43313, 198, 198, 2, 43313, 198, 198, 2, 43313, 198, 198, 2, 43313, 198, 198, 2, 43313, 198, 87, 62, 85, 945, 198, 198, 2, 43313, 685, 4102, 2902, 60, 198, 2, 44386, 28114, 3963, 50, 422, 262, 2656, 416, 17184, 52, 36537, 198, 198, 2, 43313, 198, 1818, 15908, 796, 31051, 14490, 14, 21999, 419, 261, 14, 16775, 82, 14, 16186, 62, 40436, 31142, 62, 17633, 14, 9948, 2889, 602, 14, 33863, 44, 85, 1157, 14, 1525, 17184, 52, 62, 39873, 14, 17184, 52, 14877, 20, 62, 5143, 16, 14, 46274, 6, 198, 1659, 82, 62, 7753, 796, 277, 6, 90, 1818, 15908, 92, 14, 46, 10652, 62, 17184, 52, 14877, 20, 6, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 1659, 82, 62, 7753, 11, 41767, 11639, 59, 82, 10, 3256, 14267, 36733, 13200, 28, 17821, 11, 13639, 28, 15, 8, 220, 220, 220, 220, 220, 198, 198, 2, 47764, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 87, 11639, 22510, 62, 17197, 3256, 88, 11639, 22510, 62, 79, 1039, 3256, 8043, 11639, 445, 11537, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 198, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 49, 4944, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 445, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 32, 2767, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 14809, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 6173, 32, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 17585, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 49, 3398, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 36022, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 50, 2662, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 14225, 1154, 3256, 17130, 28, 15, 13, 17, 8, 198, 198, 7568, 62, 20311, 796, 47764, 13, 346, 420, 30109, 12, 16, 11907, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 49, 4944, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 32, 2767, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 6173, 32, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 49, 3398, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 1659, 50, 2662, 3256, 331, 11639, 1050, 907, 19238, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 198, 2, 43313, 198, 198, 2, 43313, 685, 4102, 2902, 60, 198, 2, 44386, 28114, 42287, 198, 198, 2, 43313, 198, 1818, 15908, 796, 31051, 14490, 14, 21999, 419, 261, 14, 16775, 82, 14, 16186, 62, 40436, 31142, 62, 17633, 14, 9948, 2889, 602, 14, 33863, 44, 85, 1157, 14, 1525, 17184, 52, 62, 39873, 14, 17184, 52, 14877, 20, 62, 5143, 17, 14, 46274, 6, 198, 1659, 82, 62, 7753, 796, 277, 6, 90, 1818, 15908, 92, 14, 27082, 40834, 62, 17184, 52, 14877, 20, 6, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 1659, 82, 62, 7753, 11, 41767, 11639, 59, 82, 10, 3256, 14267, 36733, 13200, 28, 17821, 11, 13639, 28, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 198, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 6651, 64, 62, 9806, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 445, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 7217, 1073, 891, 62, 2815, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 14809, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 5787, 71, 17, 78, 62, 11128, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 17585, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 70, 86, 11125, 62, 1073, 891, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 36022, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 73, 71, 62, 1073, 891, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 14225, 1154, 3256, 17130, 28, 15, 13, 17, 8, 198, 198, 7568, 62, 20311, 796, 47764, 13, 346, 420, 30109, 12, 16, 11907, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 6651, 64, 62, 9806, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 7217, 1073, 891, 62, 2815, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 5787, 71, 17, 78, 62, 11128, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 70, 86, 11125, 62, 1073, 891, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 73, 71, 62, 1073, 891, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 198, 2, 43313, 685, 4102, 2902, 60, 198, 2, 44386, 28114, 42287, 422, 2656, 36537, 198, 198, 2, 43313, 198, 1818, 15908, 796, 31051, 14490, 14, 21999, 419, 261, 14, 16775, 82, 14, 16186, 62, 40436, 31142, 62, 17633, 14, 9948, 2889, 602, 14, 33863, 44, 85, 1157, 14, 1525, 17184, 52, 62, 39873, 14, 17184, 52, 14877, 20, 62, 5143, 16, 14, 46274, 6, 198, 1659, 82, 62, 7753, 796, 277, 6, 90, 1818, 15908, 92, 14, 27082, 40834, 62, 17184, 52, 14877, 20, 6, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 1659, 82, 62, 7753, 11, 41767, 11639, 59, 82, 10, 3256, 14267, 36733, 13200, 28, 17821, 11, 13639, 28, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 198, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 6651, 64, 62, 9806, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 445, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 7217, 1073, 891, 62, 2815, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 14809, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 5787, 71, 17, 78, 62, 11128, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 17585, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 70, 86, 11125, 62, 1073, 891, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 36022, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 73, 71, 62, 1073, 891, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 14225, 1154, 3256, 17130, 28, 15, 13, 17, 8, 198, 198, 7568, 62, 20311, 796, 47764, 13, 346, 420, 30109, 12, 16, 11907, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 6651, 64, 62, 9806, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 7217, 1073, 891, 62, 2815, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 5787, 71, 17, 78, 62, 11128, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 70, 86, 11125, 62, 1073, 891, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 73, 71, 62, 1073, 891, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 198, 2, 43313, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 198, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 6651, 64, 62, 9806, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 445, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 62, 20311, 796, 47764, 13, 346, 420, 30109, 12, 16, 11907, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 11639, 6651, 64, 62, 9806, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 198, 2, 43313, 198, 7568, 13, 28665, 82, 198, 198, 2, 43313, 198, 198, 2, 43313, 198, 198, 2, 43313, 198, 7785, 796, 705, 83, 1084, 62, 21101, 71, 62, 41255, 6, 198, 1818, 15908, 796, 31051, 14490, 14, 21999, 419, 261, 14, 16775, 82, 14, 16186, 62, 40436, 31142, 62, 17633, 14, 9948, 2889, 602, 14, 33863, 44, 85, 1157, 14, 1525, 17184, 52, 62, 39873, 14, 17184, 52, 14877, 20, 62, 5143, 17, 14, 46274, 6, 198, 1659, 82, 62, 7753, 796, 277, 6, 90, 1818, 15908, 92, 14, 27082, 40834, 62, 17184, 52, 14877, 20, 6, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 1659, 82, 62, 7753, 11, 41767, 11639, 59, 82, 10, 3256, 14267, 36733, 13200, 28, 17821, 11, 13639, 28, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 198, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 92, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 445, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 16, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 14809, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 17, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 17585, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 18, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 14225, 1154, 3256, 17130, 28, 15, 13, 17, 8, 198, 198, 7568, 62, 20311, 796, 47764, 13, 346, 420, 30109, 12, 16, 11907, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 92, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 16, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 17, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 18, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 198, 2, 43313, 198, 198, 2, 43313, 198, 7785, 796, 705, 83, 1084, 62, 21101, 71, 62, 41255, 6, 198, 1818, 15908, 796, 31051, 14490, 14, 21999, 419, 261, 14, 16775, 82, 14, 16186, 62, 40436, 31142, 62, 17633, 14, 9948, 2889, 602, 14, 33863, 44, 85, 1157, 14, 1525, 17184, 52, 62, 39873, 14, 17184, 52, 14877, 20, 62, 5143, 16, 14, 46274, 6, 198, 1659, 82, 62, 7753, 796, 277, 6, 90, 1818, 15908, 92, 14, 27082, 40834, 62, 17184, 52, 14877, 20, 6, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 1659, 82, 62, 7753, 11, 41767, 11639, 59, 82, 10, 3256, 14267, 36733, 13200, 28, 17821, 11, 13639, 28, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 198, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 92, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 445, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 16, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 14809, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 17, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 17585, 3256, 17130, 28, 15, 13, 17, 8, 198, 7568, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 18, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 14225, 1154, 3256, 17130, 28, 15, 13, 17, 8, 198, 198, 7568, 62, 20311, 796, 47764, 13, 346, 420, 30109, 12, 16, 11907, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 92, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 16, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 17, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 7568, 62, 20311, 13, 29487, 7, 11031, 11639, 1416, 1436, 3256, 2124, 28, 69, 6, 90, 7785, 27422, 18, 3256, 331, 11639, 49, 4944, 3256, 7877, 28, 897, 11, 3124, 11639, 13424, 11537, 198, 198, 2, 43313, 198 ]
2.157093
4,265
import argparse import json import os import re import sys from configparser import ConfigParser from configparser import NoOptionError from configparser import NoSectionError from configparser import ParsingError from typing import Union, Dict from oelint_parser.cls_stash import Stash from oelint_parser.constants import CONSTANTS from oelint_adv.cls_rule import load_rules from oelint_adv.color import set_colorize from oelint_adv.rule_file import set_messageformat from oelint_adv.rule_file import set_noinfo from oelint_adv.rule_file import set_nowarn from oelint_adv.rule_file import set_relpaths from oelint_adv.rule_file import set_rulefile from oelint_adv.rule_file import set_suppressions sys.path.append(os.path.abspath(os.path.join(__file__, '..'))) def deserialize_boolean_options(options: Dict) -> Dict[str, Union[str, bool]]: """Converts strings in `options` that are either 'True' or 'False' to their boolean representations. """ for k, v in options.items(): if isinstance(v, str): if v.strip() == 'False': options[k] = False elif v.strip() == 'True': options[k] = True return options if __name__ == '__main__': main() # pragma: no cover
[ 11748, 1822, 29572, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 25064, 198, 6738, 4566, 48610, 1330, 17056, 46677, 198, 6738, 4566, 48610, 1330, 1400, 19722, 12331, 198, 6738, 4566, 48610, 1330, 1400, 16375, 12331, 198, 6738, 4566, 48610, 1330, 23042, 278, 12331, 198, 6738, 19720, 1330, 4479, 11, 360, 713, 198, 198, 6738, 267, 417, 600, 62, 48610, 13, 565, 82, 62, 301, 1077, 1330, 520, 1077, 198, 6738, 267, 417, 600, 62, 48610, 13, 9979, 1187, 1330, 7102, 2257, 1565, 4694, 198, 198, 6738, 267, 417, 600, 62, 32225, 13, 565, 82, 62, 25135, 1330, 3440, 62, 38785, 198, 6738, 267, 417, 600, 62, 32225, 13, 8043, 1330, 900, 62, 8043, 1096, 198, 6738, 267, 417, 600, 62, 32225, 13, 25135, 62, 7753, 1330, 900, 62, 20500, 18982, 198, 6738, 267, 417, 600, 62, 32225, 13, 25135, 62, 7753, 1330, 900, 62, 3919, 10951, 198, 6738, 267, 417, 600, 62, 32225, 13, 25135, 62, 7753, 1330, 900, 62, 2197, 1501, 198, 6738, 267, 417, 600, 62, 32225, 13, 25135, 62, 7753, 1330, 900, 62, 2411, 6978, 82, 198, 6738, 267, 417, 600, 62, 32225, 13, 25135, 62, 7753, 1330, 900, 62, 25135, 7753, 198, 6738, 267, 417, 600, 62, 32225, 13, 25135, 62, 7753, 1330, 900, 62, 18608, 601, 507, 198, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 834, 7753, 834, 11, 705, 492, 6, 22305, 628, 198, 198, 4299, 748, 48499, 1096, 62, 2127, 21052, 62, 25811, 7, 25811, 25, 360, 713, 8, 4613, 360, 713, 58, 2536, 11, 4479, 58, 2536, 11, 20512, 60, 5974, 198, 220, 220, 220, 37227, 3103, 24040, 13042, 287, 4600, 25811, 63, 326, 389, 2035, 705, 17821, 6, 393, 705, 25101, 6, 284, 511, 25131, 198, 220, 220, 220, 24612, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 479, 11, 410, 287, 3689, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 85, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 13, 36311, 3419, 6624, 705, 25101, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 58, 74, 60, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 410, 13, 36311, 3419, 6624, 705, 17821, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 58, 74, 60, 796, 6407, 628, 220, 220, 220, 1441, 3689, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 220, 1303, 23864, 2611, 25, 645, 3002, 198 ]
2.715517
464
#!/usr/bin/env python # -*- coding: utf-8 -*- """ String manipulate. """ # left strip assert " Hello ".lstrip() == "Hello " # right strip assert " Hello ".rstrip() == " Hello" # strip assert " Hello ".strip() == "Hello" # upper case assert "Hello".upper() == "HELLO" # lower case assert "Hello".lower() == "hello" # swap case assert "Hello".swapcase() == "hELLO" # titlize assert "this is so good".title() == "This Is So Good" # center assert "Hello".center(9, "-") == "--Hello--" # index assert "this is so good".index("is") == 2 # replace assert "this is so good".replace("is", "are") == "thare are so good" # find assert "this is so good".find("is") == 2 # count assert "this is so good".count("o") == 3 # split assert "This is so good".split(" ") == ["This", "is", "so", "good"] # join assert ", ".join(["a", "b", "c"]) == "a, b, c" # ascii code to string assert chr(88) == "X" # string to ascii code assert ord("X") == 88 # partition assert "this is so good".partition("is") == ("th", "is", " is so good") # make translate table and translate table = str.maketrans("abc", "xyz") assert "abc".translate(table) == "xyz" # concatenate assert "hello" + " " + "world" == "hello world"
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 10100, 18510, 13, 198, 37811, 198, 198, 2, 1364, 10283, 198, 30493, 366, 220, 18435, 220, 27071, 75, 36311, 3419, 6624, 366, 15496, 220, 366, 198, 198, 2, 826, 10283, 198, 30493, 366, 220, 18435, 220, 27071, 81, 36311, 3419, 6624, 366, 220, 18435, 1, 198, 198, 2, 10283, 198, 30493, 366, 220, 18435, 220, 27071, 36311, 3419, 6624, 366, 15496, 1, 198, 198, 2, 6727, 1339, 198, 30493, 366, 15496, 1911, 45828, 3419, 6624, 366, 13909, 3069, 46, 1, 198, 198, 2, 2793, 1339, 198, 30493, 366, 15496, 1911, 21037, 3419, 6624, 366, 31373, 1, 198, 198, 2, 16075, 1339, 198, 30493, 366, 15496, 1911, 2032, 499, 7442, 3419, 6624, 366, 71, 23304, 46, 1, 198, 198, 2, 5259, 75, 1096, 198, 30493, 366, 5661, 318, 523, 922, 1911, 7839, 3419, 6624, 366, 1212, 1148, 1406, 4599, 1, 198, 198, 2, 3641, 198, 30493, 366, 15496, 1911, 16159, 7, 24, 11, 27444, 4943, 6624, 366, 438, 15496, 438, 1, 198, 198, 2, 6376, 198, 30493, 366, 5661, 318, 523, 922, 1911, 9630, 7203, 271, 4943, 6624, 362, 198, 198, 2, 6330, 198, 30493, 366, 5661, 318, 523, 922, 1911, 33491, 7203, 271, 1600, 366, 533, 4943, 6624, 366, 400, 533, 389, 523, 922, 1, 198, 198, 2, 1064, 198, 30493, 366, 5661, 318, 523, 922, 1911, 19796, 7203, 271, 4943, 6624, 362, 198, 198, 2, 954, 198, 30493, 366, 5661, 318, 523, 922, 1911, 9127, 7203, 78, 4943, 6624, 513, 198, 198, 2, 6626, 198, 30493, 366, 1212, 318, 523, 922, 1911, 35312, 7203, 366, 8, 6624, 14631, 1212, 1600, 366, 271, 1600, 366, 568, 1600, 366, 11274, 8973, 198, 198, 2, 4654, 198, 30493, 33172, 27071, 22179, 7, 14692, 64, 1600, 366, 65, 1600, 366, 66, 8973, 8, 6624, 366, 64, 11, 275, 11, 269, 1, 198, 198, 2, 355, 979, 72, 2438, 284, 4731, 198, 30493, 442, 81, 7, 3459, 8, 6624, 366, 55, 1, 198, 198, 2, 4731, 284, 355, 979, 72, 2438, 198, 30493, 2760, 7203, 55, 4943, 6624, 9193, 198, 198, 2, 18398, 198, 30493, 366, 5661, 318, 523, 922, 1911, 3911, 653, 7203, 271, 4943, 6624, 5855, 400, 1600, 366, 271, 1600, 366, 318, 523, 922, 4943, 198, 198, 2, 787, 15772, 3084, 290, 15772, 198, 11487, 796, 965, 13, 76, 461, 21879, 504, 7203, 39305, 1600, 366, 5431, 89, 4943, 198, 30493, 366, 39305, 1911, 7645, 17660, 7, 11487, 8, 6624, 366, 5431, 89, 1, 198, 198, 2, 1673, 36686, 378, 198, 30493, 366, 31373, 1, 1343, 366, 366, 1343, 366, 6894, 1, 6624, 366, 31373, 995, 1, 198 ]
2.677704
453
""" This file contains unittests for the api app. Use test_settings when running this: ./manage.py test --settings=dyanote.test_settings api This will use sqlite and other settings to make test execution faster. Command used to create test database. ./manage.py dumpdata --indent=4 --natural -e admin -e sessions -e contenttypes -e auth.Permission -e south.migrationhistory > api/fixtures/test-db.json To see test coverage use: coverage run ./manage.py test --settings=dyanote.test_settings api coverage report -m --include=api/* coverage html """ import unittest import re from urllib.parse import quote from json import loads as load_json from django.core.urlresolvers import reverse from django.test import TestCase from django.contrib.auth.models import User from django.core import mail from django.core.exceptions import ValidationError from rest_framework.test import APITestCase, APIClient from rest_framework import status from django.core.urlresolvers import get_script_prefix, resolve from api.models import Page, ActivationKey from api import utils # Costant values found in the test database fixture USERNAME = '[email protected]' PASSWORD = 'pwd' CLIENT_ID = 'bb05c6ab017f50116084' CLIENT_SECRET = '4063c2648cdd7f2e4dae563da80a516f2eb6ebb6' ACCESS_TOKEN = '1b24279ad7d5986301583538804e5240c3e588af' ADMIN_USERNAME = 'admin' ADMIN_PASSWORD = 'admin' # Model test # Utils tests # User testing
[ 37811, 198, 1212, 2393, 4909, 555, 715, 3558, 329, 262, 40391, 598, 13, 198, 198, 11041, 1332, 62, 33692, 618, 2491, 428, 25, 198, 19571, 805, 496, 13, 9078, 1332, 1377, 33692, 28, 67, 4121, 1258, 13, 9288, 62, 33692, 40391, 198, 1212, 481, 779, 44161, 578, 290, 584, 6460, 284, 787, 1332, 9706, 5443, 13, 198, 198, 21575, 973, 284, 2251, 1332, 6831, 13, 198, 19571, 805, 496, 13, 9078, 10285, 7890, 1377, 521, 298, 28, 19, 198, 220, 220, 220, 1377, 11802, 198, 220, 220, 220, 532, 68, 13169, 198, 220, 220, 220, 532, 68, 10991, 198, 220, 220, 220, 532, 68, 2695, 19199, 198, 220, 220, 220, 532, 68, 6284, 13, 5990, 3411, 198, 220, 220, 220, 532, 68, 5366, 13, 76, 4254, 23569, 1875, 40391, 14, 69, 25506, 14, 9288, 12, 9945, 13, 17752, 198, 198, 2514, 766, 1332, 5197, 779, 25, 198, 1073, 1857, 1057, 24457, 805, 496, 13, 9078, 1332, 1377, 33692, 28, 67, 4121, 1258, 13, 9288, 62, 33692, 40391, 198, 1073, 1857, 989, 532, 76, 1377, 17256, 28, 15042, 15211, 198, 1073, 1857, 27711, 198, 37811, 198, 198, 11748, 555, 715, 395, 198, 11748, 302, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 9577, 198, 6738, 33918, 1330, 15989, 355, 3440, 62, 17752, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 7295, 1330, 6920, 198, 6738, 42625, 14208, 13, 7295, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2043, 395, 20448, 11, 3486, 2149, 75, 1153, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 651, 62, 12048, 62, 40290, 11, 10568, 198, 6738, 40391, 13, 27530, 1330, 7873, 11, 13144, 341, 9218, 198, 6738, 40391, 1330, 3384, 4487, 628, 198, 2, 6446, 415, 3815, 1043, 287, 262, 1332, 6831, 29220, 198, 29904, 20608, 796, 705, 9288, 31, 67, 4121, 1258, 13, 785, 6, 198, 47924, 54, 12532, 796, 705, 79, 16993, 6, 198, 5097, 28495, 62, 2389, 796, 705, 11848, 2713, 66, 21, 397, 29326, 69, 33548, 1433, 2919, 19, 6, 198, 5097, 28495, 62, 23683, 26087, 796, 705, 1821, 5066, 66, 2075, 2780, 66, 1860, 22, 69, 17, 68, 19, 67, 3609, 46572, 6814, 1795, 64, 47493, 69, 17, 1765, 21, 1765, 65, 21, 6, 198, 26861, 7597, 62, 10468, 43959, 796, 705, 16, 65, 1731, 26050, 324, 22, 67, 3270, 4521, 18938, 3365, 2327, 2548, 36088, 68, 20, 16102, 66, 18, 68, 39118, 1878, 6, 198, 2885, 23678, 62, 29904, 20608, 796, 705, 28482, 6, 220, 198, 2885, 23678, 62, 47924, 54, 12532, 796, 705, 28482, 6, 628, 198, 2, 9104, 1332, 628, 198, 2, 7273, 4487, 5254, 628, 198, 2, 11787, 4856, 628, 198 ]
2.965092
487
import pytest import shutil import tempfile import os import pipes import ujson as json CORPUS = { "docs": [ { "url": "http://www.douglasadams.com/", "content": """ <title>xxxxuniquecontent</title> """ }, { "url": "http://www.example.com/page1", "content": """ <title>xxxxuniquecontent2</title> """ } ], "block": "1" } @pytest.mark.elasticsearch
[ 11748, 12972, 9288, 198, 11748, 4423, 346, 198, 11748, 20218, 7753, 198, 11748, 28686, 198, 11748, 19860, 198, 11748, 334, 17752, 355, 33918, 198, 198, 44879, 47, 2937, 796, 1391, 198, 220, 220, 220, 366, 31628, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 366, 4023, 1378, 2503, 13, 67, 280, 14391, 324, 4105, 13, 785, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11299, 1298, 37227, 1279, 7839, 29, 12343, 403, 1557, 721, 38564, 3556, 7839, 29, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 366, 4023, 1378, 2503, 13, 20688, 13, 785, 14, 7700, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11299, 1298, 37227, 1279, 7839, 29, 12343, 403, 1557, 721, 38564, 17, 3556, 7839, 29, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 366, 9967, 1298, 366, 16, 1, 198, 92, 628, 198, 31, 9078, 9288, 13, 4102, 13, 417, 3477, 12947, 628 ]
2.046296
216
import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils from h2o.estimators.glm import H2OGeneralizedLinearEstimator if __name__ == "__main__": pyunit_utils.standalone_test(glm_mean_residual_deviance) else: glm_mean_residual_deviance()
[ 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 16, 553, 40720, 40720, 40720, 4943, 198, 11748, 289, 17, 78, 198, 6738, 5254, 1330, 12972, 20850, 62, 26791, 198, 6738, 289, 17, 78, 13, 395, 320, 2024, 13, 4743, 76, 1330, 367, 17, 7730, 877, 282, 1143, 14993, 451, 22362, 320, 1352, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 12972, 20850, 62, 26791, 13, 1481, 17749, 62, 9288, 7, 4743, 76, 62, 32604, 62, 411, 312, 723, 62, 7959, 3610, 8, 198, 17772, 25, 198, 220, 1278, 76, 62, 32604, 62, 411, 312, 723, 62, 7959, 3610, 3419, 198 ]
2.542056
107
from ScopeFoundry import HardwareComponent from ScopeFoundryHW.ni_daq.devices.NI_Daq import NI_DacTask
[ 6738, 41063, 21077, 563, 1330, 28715, 21950, 198, 6738, 41063, 21077, 563, 39, 54, 13, 8461, 62, 48539, 13, 42034, 13, 22125, 62, 26531, 80, 1330, 24947, 62, 35, 330, 25714 ]
3.290323
31
"""cli.alerter -- control alerter With ``alerter`` command you can control the :py:mod:`~elastico.alerter` module. For more help on a command, run:: elastico alerter <command> -h """ from .cli import command, opt, arg from ..alerter import Alerter from ..connection import elasticsearch from ..util import write_output from ..server import Server import pyaml, logging, time, yaml, sys logger = logging.getLogger('elastico.cli.alerter') alerter_command = command.add_subcommands('alerter', description=__doc__) @alerter_command("expand-rules", arg("--list", '-l', choices=['names', 'keys', 'types', 'alerts'], default=None), arg("--format", '-f', default=None), ) def alerter_expand_rules(config): """Expand rules, that you can check, if they are correct This command expands the rules like in a regular alerter run and prints them to stdout in YAML format. This way you can check, if all variables and defaults are expanded as expected. """ expanded_rules = Alerter.expand_rules(config) if config['alerter.expand-rules.list']: expand = config['alerter.expand-rules.list'] if expand in ('names', 'keys', 'types'): for name in set([ rule[expand[:-1]] for rule in expanded_rules ]): print(name) if expand == 'alerts': for name in set([ "%s-%s" % (rule['type'], rule['key']) for rule in expanded_rules ]): print(name) elif config['alerter.expand-rules.format']: for rule in expanded_rules: print(config['alerter.expand-rules.format'].format(**rule)) else: pyaml.p(expanded_rules) @alerter_command('check', arg('--status', "-s", choices=['ok', 'alert', 'error'], default='ok'), arg('alert', nargs="*", default=[]), ) # need a command, where I simulate the data input for the checks, such that # you can check, if messages are created correctly # need a command to display dependency tree of alert rules and alerts @alerter_command('deps') @alerter_command('status', opt('--all')) #, arg("rule")) @alerter_command('show', arg('item', choices=('rules', 'alerts'), help="choose what to display"), opt('--details', '--all', '-a', help="display rule details") ) @alerter_command("run") def alerter_run(config): """run alerter""" alerter = Alerter(elasticsearch(config), config) alerter.check_alerts() @alerter_command("serve", arg('--sleep-seconds', '-s', type=float, default=60, config="serve.sleep_seconds"), arg('--count', '-c', type=int, default=0, config="serve.count"), ) def alerter_serve(config): """run alerter""" server = Server(config, run=_run) server.run() @alerter_command("query") def alerter_run(config): """run alerter""" pass
[ 37811, 44506, 13, 36213, 353, 1377, 1630, 435, 263, 353, 198, 198, 3152, 7559, 36213, 353, 15506, 3141, 345, 460, 1630, 262, 1058, 9078, 25, 4666, 25, 63, 93, 417, 3477, 78, 13, 36213, 353, 63, 198, 21412, 13, 198, 198, 1890, 517, 1037, 319, 257, 3141, 11, 1057, 3712, 628, 220, 220, 27468, 78, 435, 263, 353, 1279, 21812, 29, 532, 71, 198, 198, 37811, 198, 6738, 764, 44506, 1330, 3141, 11, 2172, 11, 1822, 198, 6738, 11485, 36213, 353, 1330, 978, 263, 353, 198, 6738, 11485, 38659, 1330, 27468, 12947, 198, 6738, 11485, 22602, 1330, 3551, 62, 22915, 198, 6738, 11485, 15388, 1330, 9652, 198, 198, 11748, 12972, 43695, 11, 18931, 11, 640, 11, 331, 43695, 11, 25064, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 417, 3477, 78, 13, 44506, 13, 36213, 353, 11537, 198, 198, 36213, 353, 62, 21812, 796, 3141, 13, 2860, 62, 7266, 9503, 1746, 10786, 36213, 353, 3256, 6764, 28, 834, 15390, 834, 8, 628, 198, 31, 36213, 353, 62, 21812, 7203, 11201, 392, 12, 38785, 1600, 198, 220, 220, 220, 1822, 7203, 438, 4868, 1600, 705, 12, 75, 3256, 7747, 28, 17816, 14933, 3256, 705, 13083, 3256, 705, 19199, 3256, 705, 44598, 82, 6, 4357, 4277, 28, 14202, 828, 198, 220, 220, 220, 1822, 7203, 438, 18982, 1600, 705, 12, 69, 3256, 4277, 28, 14202, 828, 198, 220, 220, 220, 1267, 198, 4299, 435, 263, 353, 62, 11201, 392, 62, 38785, 7, 11250, 2599, 198, 220, 220, 220, 37227, 16870, 392, 3173, 11, 326, 345, 460, 2198, 11, 611, 484, 389, 3376, 628, 220, 220, 220, 770, 3141, 27513, 262, 3173, 588, 287, 257, 3218, 435, 263, 353, 1057, 290, 20842, 198, 220, 220, 220, 606, 284, 14367, 448, 287, 575, 2390, 43, 5794, 13, 220, 770, 835, 345, 460, 2198, 11, 611, 477, 9633, 198, 220, 220, 220, 290, 26235, 389, 9902, 355, 2938, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9902, 62, 38785, 796, 978, 263, 353, 13, 11201, 392, 62, 38785, 7, 11250, 8, 198, 220, 220, 220, 611, 4566, 17816, 36213, 353, 13, 11201, 392, 12, 38785, 13, 4868, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 4292, 796, 4566, 17816, 36213, 353, 13, 11201, 392, 12, 38785, 13, 4868, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4292, 287, 19203, 14933, 3256, 705, 13083, 3256, 705, 19199, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 900, 26933, 3896, 58, 11201, 392, 58, 21912, 16, 11907, 329, 3896, 287, 9902, 62, 38785, 2361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4292, 6624, 705, 44598, 82, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 900, 26933, 36521, 82, 12, 4, 82, 1, 4064, 357, 25135, 17816, 4906, 6, 4357, 3896, 17816, 2539, 6, 12962, 329, 3896, 287, 9902, 62, 38785, 2361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 3672, 8, 628, 220, 220, 220, 1288, 361, 4566, 17816, 36213, 353, 13, 11201, 392, 12, 38785, 13, 18982, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3896, 287, 9902, 62, 38785, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 11250, 17816, 36213, 353, 13, 11201, 392, 12, 38785, 13, 18982, 6, 4083, 18982, 7, 1174, 25135, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 43695, 13, 79, 7, 11201, 12249, 62, 38785, 8, 628, 198, 31, 36213, 353, 62, 21812, 10786, 9122, 3256, 198, 220, 220, 220, 1822, 10786, 438, 13376, 3256, 27444, 82, 1600, 7747, 28, 17816, 482, 3256, 705, 44598, 3256, 705, 18224, 6, 4357, 4277, 11639, 482, 33809, 198, 220, 220, 220, 1822, 10786, 44598, 3256, 299, 22046, 2625, 9, 1600, 4277, 28, 21737, 828, 198, 220, 220, 220, 1267, 198, 198, 2, 761, 257, 3141, 11, 810, 314, 29308, 262, 1366, 5128, 329, 262, 8794, 11, 884, 326, 198, 2, 345, 460, 2198, 11, 611, 6218, 389, 2727, 9380, 198, 198, 2, 761, 257, 3141, 284, 3359, 20203, 5509, 286, 7995, 3173, 290, 21675, 198, 198, 31, 36213, 353, 62, 21812, 10786, 10378, 82, 11537, 198, 198, 31, 36213, 353, 62, 21812, 10786, 13376, 3256, 2172, 10786, 438, 439, 6, 4008, 1303, 11, 1822, 7203, 25135, 48774, 628, 198, 31, 36213, 353, 62, 21812, 10786, 12860, 3256, 198, 220, 220, 220, 1822, 10786, 9186, 3256, 7747, 28, 10786, 38785, 3256, 705, 44598, 82, 33809, 1037, 2625, 6679, 577, 644, 284, 3359, 12340, 198, 220, 220, 220, 2172, 10786, 438, 36604, 3256, 705, 438, 439, 3256, 705, 12, 64, 3256, 1037, 2625, 13812, 3896, 3307, 4943, 198, 8, 628, 198, 31, 36213, 353, 62, 21812, 7203, 5143, 4943, 198, 4299, 435, 263, 353, 62, 5143, 7, 11250, 2599, 198, 220, 220, 220, 37227, 5143, 435, 263, 353, 37811, 198, 220, 220, 220, 435, 263, 353, 796, 978, 263, 353, 7, 417, 3477, 12947, 7, 11250, 828, 4566, 8, 198, 220, 220, 220, 435, 263, 353, 13, 9122, 62, 44598, 82, 3419, 198, 198, 31, 36213, 353, 62, 21812, 7203, 2655, 303, 1600, 198, 220, 220, 220, 1822, 10786, 438, 42832, 12, 43012, 3256, 705, 12, 82, 3256, 2099, 28, 22468, 11, 4277, 28, 1899, 11, 4566, 2625, 2655, 303, 13, 42832, 62, 43012, 12340, 198, 220, 220, 220, 1822, 10786, 438, 9127, 3256, 705, 12, 66, 3256, 2099, 28, 600, 11, 4277, 28, 15, 11, 4566, 2625, 2655, 303, 13, 9127, 12340, 198, 220, 220, 220, 1267, 198, 4299, 435, 263, 353, 62, 2655, 303, 7, 11250, 2599, 198, 220, 220, 220, 37227, 5143, 435, 263, 353, 37811, 628, 220, 220, 220, 4382, 796, 9652, 7, 11250, 11, 1057, 28, 62, 5143, 8, 198, 220, 220, 220, 4382, 13, 5143, 3419, 198, 198, 31, 36213, 353, 62, 21812, 7203, 22766, 4943, 198, 4299, 435, 263, 353, 62, 5143, 7, 11250, 2599, 198, 220, 220, 220, 37227, 5143, 435, 263, 353, 37811, 198, 220, 220, 220, 1208, 198 ]
2.677885
1,040
import time import uuid from ...config import AppConfig from ...middleware.interface import MiddlewareBase from ...session.interfaces import ISessionProvider from ...util import md5, b64
[ 11748, 640, 201, 198, 11748, 334, 27112, 201, 198, 201, 198, 6738, 2644, 11250, 1330, 2034, 16934, 201, 198, 6738, 2644, 27171, 1574, 13, 39994, 1330, 6046, 1574, 14881, 201, 198, 6738, 2644, 29891, 13, 3849, 32186, 1330, 3180, 2521, 29495, 201, 198, 6738, 2644, 22602, 1330, 45243, 20, 11, 275, 2414, 201, 198, 201, 198 ]
3.517857
56
LATESTMFILE = 'last_id.txt' LOGFILE = "twitterbot_log.txt" verbose = False twitterName = "ui_cer_bot" # Liste de terme qui servent pour répondre answers = ['ahah :)' , 'YO' , 'O_O', 'stoi' , 'TG' , 'MER IL ET FOU'] # Liste des terme qui servent a repondre "stoi xxxx" bad_words = {'boloss' : 'le boloss', 'boulette' : 'la boulette', 'accident' :"l'accident" , 'youtube':"le tube" , 'facebook':"le bouc" , 'dément': "qui ment"} # Liste des terme relou ou le bot repond TG avec un mention paritculiere pour @infredwetrust :) boring_words = {'#old' , 'oscours', '#oscours', "twitpic", "selfie" } # Liste des termes qui enclenche une reponse tg_list = ['tg','ta gueule', 'tg.', 'tg!', 'ta gueule.', 'ta gueule!'] #Liste des phrase que le bot tweete de lui-emme talk = {"Sinon SAVA ?", "c'est l'amour à la plage, aoum tcha tcha tcha", "Je vous trouve très beau, surtout moi" , "y a quoi de beau à la télé ce soir ?", "sim est mort. #rip"}
[ 171, 119, 123, 43, 1404, 6465, 44, 25664, 796, 705, 12957, 62, 312, 13, 14116, 6, 198, 25294, 25664, 796, 366, 6956, 13645, 62, 6404, 13, 14116, 1, 198, 19011, 577, 796, 10352, 198, 6956, 5376, 796, 366, 9019, 62, 2189, 62, 13645, 1, 198, 198, 2, 7343, 68, 390, 1059, 1326, 45567, 1113, 298, 12797, 40560, 79, 623, 260, 198, 504, 86, 364, 796, 37250, 36225, 14373, 6, 837, 705, 56, 46, 6, 837, 705, 46, 62, 46, 3256, 705, 301, 23013, 6, 837, 705, 35990, 6, 837, 705, 29296, 14639, 12152, 376, 2606, 20520, 198, 198, 2, 7343, 68, 748, 1059, 1326, 45567, 1113, 298, 257, 1128, 623, 260, 366, 301, 23013, 2124, 31811, 1, 198, 14774, 62, 10879, 796, 1391, 6, 28984, 793, 6, 1058, 705, 293, 11572, 793, 3256, 705, 65, 280, 21348, 6, 1058, 705, 5031, 35833, 21348, 3256, 705, 4134, 738, 6, 1058, 1, 75, 6, 4134, 738, 1, 837, 705, 11604, 10354, 1, 293, 12403, 1, 837, 705, 19024, 10354, 1, 293, 35833, 66, 1, 837, 705, 67, 2634, 434, 10354, 366, 421, 72, 6229, 20662, 198, 198, 2, 7343, 68, 748, 1059, 1326, 823, 280, 267, 84, 443, 10214, 1128, 623, 44121, 257, 35138, 555, 3068, 1582, 270, 3129, 13235, 12797, 2488, 10745, 445, 86, 316, 11469, 14373, 198, 2865, 278, 62, 10879, 796, 1391, 6, 2, 727, 6, 837, 705, 17500, 4662, 3256, 705, 2, 17500, 4662, 3256, 366, 4246, 270, 16564, 1600, 366, 944, 494, 1, 1782, 198, 198, 2, 7343, 68, 748, 3381, 274, 45567, 13507, 268, 2395, 17809, 1128, 2591, 198, 25297, 62, 4868, 796, 37250, 25297, 41707, 8326, 308, 518, 2261, 3256, 705, 25297, 2637, 11, 705, 25297, 0, 3256, 705, 8326, 308, 518, 2261, 2637, 11, 705, 8326, 308, 518, 2261, 13679, 60, 198, 198, 2, 8053, 68, 748, 9546, 8358, 443, 10214, 6126, 68, 390, 300, 9019, 12, 368, 1326, 198, 16620, 796, 19779, 46200, 261, 311, 10116, 32, 5633, 1600, 366, 66, 6, 395, 300, 6, 321, 454, 28141, 8591, 458, 496, 11, 257, 280, 76, 256, 11693, 256, 11693, 256, 11693, 1600, 366, 40932, 410, 516, 4057, 303, 491, 14064, 82, 307, 559, 11, 969, 83, 448, 6941, 72, 1, 837, 366, 88, 257, 18658, 72, 390, 307, 559, 28141, 8591, 256, 2634, 45031, 2906, 523, 343, 5633, 1600, 366, 14323, 1556, 5596, 13, 1303, 5528, 20662, 198 ]
2.379747
395
from dsa.data_structures import LinkedList, ListNode l = [1, 2, 3] ll = LinkedList(l, doubly=False) mid_n = ll.head.next_node delete_middle_node(mid_n) str(ll)
[ 6738, 288, 11400, 13, 7890, 62, 7249, 942, 1330, 7502, 276, 8053, 11, 7343, 19667, 628, 198, 198, 75, 796, 685, 16, 11, 362, 11, 513, 60, 198, 297, 796, 7502, 276, 8053, 7, 75, 11, 3385, 306, 28, 25101, 8, 198, 13602, 62, 77, 796, 32660, 13, 2256, 13, 19545, 62, 17440, 198, 33678, 62, 27171, 62, 17440, 7, 13602, 62, 77, 8, 198, 2536, 7, 297, 8, 198 ]
2.328571
70
from django.db import models from django.db.models.deletion import CASCADE # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 1330, 35106, 34, 19266, 198, 198, 2, 13610, 534, 4981, 994, 13 ]
3.290323
31
#!/usr/bin/env python3 from collections import defaultdict if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('csv', nargs='?', default=None, help='the CSV format callgraph to transform') args = parser.parse_args() import sys with (open(args.csv) if args.csv else sys.stdin) as infile: callgraph = read_callgraph(infile) print_callgraph(callgraph)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 17268, 1330, 4277, 11600, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 1822, 29572, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 40664, 3256, 299, 22046, 11639, 30, 3256, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 1169, 44189, 5794, 869, 34960, 284, 6121, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 351, 357, 9654, 7, 22046, 13, 40664, 8, 611, 26498, 13, 40664, 2073, 25064, 13, 19282, 259, 8, 355, 1167, 576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 869, 34960, 796, 1100, 62, 13345, 34960, 7, 259, 7753, 8, 198, 220, 220, 220, 3601, 62, 13345, 34960, 7, 13345, 34960, 8, 628 ]
2.563536
181
#!/usr/bin/env python3 # Copyright 2021 Canonical Ltd. # See LICENSE file for licensing details. import logging from charms.operator_libs_linux.v0 import passwd from helpers import lines_in_file logger = logging.getLogger(__name__)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 33448, 19507, 605, 12052, 13, 198, 2, 4091, 38559, 24290, 2393, 329, 15665, 3307, 13, 628, 198, 11748, 18931, 198, 198, 6738, 41700, 13, 46616, 62, 8019, 82, 62, 23289, 13, 85, 15, 1330, 1208, 16993, 198, 6738, 49385, 1330, 3951, 62, 259, 62, 7753, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 628, 198 ]
3.184211
76
# !/usr/bin/python3 import string import time import random import json import yaml import ssl import base64 import logging from logging.config import fileConfig import importlib import argparse import os import re from rich.logging import RichHandler from datetime import datetime import paho.mqtt.client as mqtt from MessageConverters.MessageConverter import MessageConverter LOGGING_CONFIG = 'logging.conf' CONVERTERS_DIR = 'MessageConverters' # list to store all mqtt connection infos brokers = [] ''' def translate_to_tb_format(payload): tb_payload = {} measurements = [] measurement = {} measurement['ts'] = payload.get('ts') measurement['values'] = payload.get('fields') deviceid = payload.get('tags').get('deviceid') measurements.append(measurement) tb_payload[deviceid] = measurements return tb_payload ''' if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-v", "--verbose", help="increase output verbosity", action="store_true") parser.add_argument( "--conf_file", help="configuration file", type=str, default="config.yaml") args = parser.parse_args() path_log_config_file = os.path.join(os.path.dirname( os.path.realpath(__file__)), 'conf', LOGGING_CONFIG) print(f'logging config file: {path_log_config_file}') fileConfig(path_log_config_file) logger = logging.getLogger(__name__) logger.info("using logging conf from {}".format(path_log_config_file)) if args.verbose: logging.getLogger().setLevel(logging.DEBUG) logger.info("verbosity turned on") # load config path_config_file = os.path.join(os.path.dirname( os.path.realpath(__file__)), 'conf', args.conf_file) with open(path_config_file) as yaml_conf_file: configuration = yaml.full_load(yaml_conf_file) logger.info("loaded config: {}".format(configuration)) # start all mqtt connections logger.info('starting mqtt connections...') # list to stor all active vlients active_clients = {} # dictionary to store all dynamically loaded converters converters = {} for name, conf in configuration.get("brokers").items(): logger.info( f'starting client for broker {name}, connecting to host {conf.get("host")}') client = connect_mqtt(name, conf) if client: # Bind function to callback client.on_publish = on_publish client.on_log = on_log client.on_message = on_message client.on_connect = on_connect client.on_disconnect = on_disconnect client.loop_start() client.enable_logger(logger) # create converter and routing info converter_and_routing_info = {} converter_and_routing_info['name'] = name subscribe_converter = conf.get('subscribe-converter') converter_and_routing_info['subscribe-converter'] = subscribe_converter if subscribe_converter: _load_converter(subscribe_converter) publish_converter = conf.get('publish-converter') converter_and_routing_info['publish-converter'] = publish_converter if publish_converter: _load_converter(publish_converter) converter_and_routing_info['routes'] = [] for route in configuration.get("routing"): if route["subscribe-broker"] == name: converter_and_routing_info['routes'].append(route) payload_converter = route.get('payload-converter') if payload_converter: _load_converter( payload_converter) logger.debug(f"added route {route['name']}") client.user_data_set(converter_and_routing_info) active_clients[name] = client try: while True: time.sleep(1) except KeyboardInterrupt: logger.info('interrupted!') for name, client in active_clients.items(): disconnect_mqtt(client)
[ 2, 5145, 14, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 4731, 198, 11748, 640, 198, 11748, 4738, 198, 11748, 33918, 198, 11748, 331, 43695, 198, 11748, 264, 6649, 198, 11748, 2779, 2414, 198, 11748, 18931, 198, 6738, 18931, 13, 11250, 1330, 2393, 16934, 198, 11748, 1330, 8019, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 302, 198, 6738, 5527, 13, 6404, 2667, 1330, 3998, 25060, 628, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 279, 17108, 13, 76, 80, 926, 13, 16366, 355, 285, 80, 926, 198, 198, 6738, 16000, 3103, 332, 1010, 13, 12837, 3103, 332, 353, 1330, 16000, 3103, 332, 353, 198, 198, 25294, 38, 2751, 62, 10943, 16254, 796, 705, 6404, 2667, 13, 10414, 6, 198, 10943, 15858, 4877, 62, 34720, 796, 705, 12837, 3103, 332, 1010, 6, 198, 198, 2, 1351, 284, 3650, 477, 285, 80, 926, 4637, 1167, 418, 198, 7957, 15949, 796, 17635, 628, 220, 220, 220, 220, 628, 628, 198, 7061, 6, 198, 4299, 15772, 62, 1462, 62, 83, 65, 62, 18982, 7, 15577, 2220, 2599, 198, 220, 220, 220, 256, 65, 62, 15577, 2220, 796, 23884, 198, 220, 220, 220, 13871, 796, 17635, 198, 220, 220, 220, 15558, 796, 23884, 198, 220, 220, 220, 15558, 17816, 912, 20520, 796, 21437, 13, 1136, 10786, 912, 11537, 198, 220, 220, 220, 15558, 17816, 27160, 20520, 796, 21437, 13, 1136, 10786, 25747, 11537, 198, 220, 220, 220, 3335, 312, 796, 21437, 13, 1136, 10786, 31499, 27691, 1136, 10786, 25202, 312, 11537, 198, 220, 220, 220, 13871, 13, 33295, 7, 1326, 5015, 434, 8, 220, 220, 220, 220, 198, 220, 220, 220, 256, 65, 62, 15577, 2220, 58, 25202, 312, 60, 796, 13871, 198, 220, 220, 220, 1441, 256, 65, 62, 15577, 2220, 198, 7061, 6, 628, 628, 628, 198, 220, 220, 220, 220, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 85, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 19011, 577, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 24988, 589, 5072, 15942, 16579, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 10414, 62, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 11250, 3924, 2393, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 11250, 13, 88, 43695, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 3108, 62, 6404, 62, 11250, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 705, 10414, 3256, 41605, 38, 2751, 62, 10943, 16254, 8, 198, 220, 220, 220, 3601, 7, 69, 6, 6404, 2667, 4566, 2393, 25, 1391, 6978, 62, 6404, 62, 11250, 62, 7753, 92, 11537, 198, 220, 220, 220, 2393, 16934, 7, 6978, 62, 6404, 62, 11250, 62, 7753, 8, 198, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 49706, 13, 10951, 7203, 3500, 18931, 1013, 422, 23884, 1911, 18982, 7, 6978, 62, 6404, 62, 11250, 62, 7753, 4008, 198, 220, 220, 220, 611, 26498, 13, 19011, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 22446, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 19011, 16579, 2900, 319, 4943, 628, 220, 220, 220, 1303, 3440, 4566, 198, 220, 220, 220, 3108, 62, 11250, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 705, 10414, 3256, 26498, 13, 10414, 62, 7753, 8, 198, 220, 220, 220, 351, 1280, 7, 6978, 62, 11250, 62, 7753, 8, 355, 331, 43695, 62, 10414, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8398, 796, 331, 43695, 13, 12853, 62, 2220, 7, 88, 43695, 62, 10414, 62, 7753, 8, 628, 220, 220, 220, 49706, 13, 10951, 7203, 14578, 4566, 25, 23884, 1911, 18982, 7, 11250, 3924, 4008, 628, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 923, 477, 285, 80, 926, 8787, 198, 220, 220, 220, 49706, 13, 10951, 10786, 38690, 285, 80, 926, 8787, 986, 11537, 198, 220, 220, 220, 1303, 1351, 284, 336, 273, 477, 4075, 410, 75, 2334, 198, 220, 220, 220, 4075, 62, 565, 2334, 796, 23884, 198, 220, 220, 220, 1303, 22155, 284, 3650, 477, 32366, 9639, 6718, 1010, 198, 220, 220, 220, 6718, 1010, 796, 23884, 198, 220, 220, 220, 329, 1438, 11, 1013, 287, 8398, 13, 1136, 7203, 7957, 15949, 11074, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 338, 83, 433, 278, 5456, 329, 20426, 1391, 3672, 5512, 14320, 284, 2583, 1391, 10414, 13, 1136, 7203, 4774, 4943, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 796, 2018, 62, 76, 80, 926, 7, 3672, 11, 1013, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41211, 2163, 284, 23838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 261, 62, 12984, 1836, 796, 319, 62, 12984, 1836, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 261, 62, 6404, 796, 319, 62, 6404, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 261, 62, 20500, 796, 319, 62, 20500, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 261, 62, 8443, 796, 319, 62, 8443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 261, 62, 6381, 8443, 796, 319, 62, 6381, 8443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 26268, 62, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 21633, 62, 6404, 1362, 7, 6404, 1362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 38394, 290, 28166, 7508, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 62, 392, 62, 81, 13660, 62, 10951, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 62, 392, 62, 81, 13660, 62, 10951, 17816, 3672, 20520, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12383, 62, 1102, 332, 353, 796, 1013, 13, 1136, 10786, 7266, 12522, 12, 1102, 332, 353, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 62, 392, 62, 81, 13660, 62, 10951, 17816, 7266, 12522, 12, 1102, 332, 353, 20520, 796, 12383, 62, 1102, 332, 353, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12383, 62, 1102, 332, 353, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2220, 62, 1102, 332, 353, 7, 7266, 12522, 62, 1102, 332, 353, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7715, 62, 1102, 332, 353, 796, 1013, 13, 1136, 10786, 12984, 1836, 12, 1102, 332, 353, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 62, 392, 62, 81, 13660, 62, 10951, 17816, 12984, 1836, 12, 1102, 332, 353, 20520, 796, 7715, 62, 1102, 332, 353, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7715, 62, 1102, 332, 353, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2220, 62, 1102, 332, 353, 7, 12984, 1836, 62, 1102, 332, 353, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 62, 392, 62, 81, 13660, 62, 10951, 17816, 81, 448, 274, 20520, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6339, 287, 8398, 13, 1136, 7203, 81, 13660, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6339, 14692, 7266, 12522, 12, 7957, 6122, 8973, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38394, 62, 392, 62, 81, 13660, 62, 10951, 17816, 81, 448, 274, 6, 4083, 33295, 7, 38629, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 62, 1102, 332, 353, 796, 6339, 13, 1136, 10786, 15577, 2220, 12, 1102, 332, 353, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21437, 62, 1102, 332, 353, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2220, 62, 1102, 332, 353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 62, 1102, 332, 353, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 29373, 6339, 1391, 38629, 17816, 3672, 20520, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 7220, 62, 7890, 62, 2617, 7, 1102, 332, 353, 62, 392, 62, 81, 13660, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4075, 62, 565, 2334, 58, 3672, 60, 796, 5456, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 46037, 0, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 5456, 287, 4075, 62, 565, 2334, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22837, 62, 76, 80, 926, 7, 16366, 8, 198 ]
2.295628
1,830
# Author-Patrick Rainsberry # Description-Simplified Slicer for Fusion 360 # Importing sample Fusion Command # Could import multiple Command definitions here from .FusionSlicerLTCommand import FusionSlicerLTCommand, FusionSlicerLTCommand2 commands = [] command_definitions = [] # Define parameters for 1st command cmd = { 'cmd_name': 'Fusion Slicer LT', 'cmd_description': 'Simplified Fusion Slicing App', 'cmd_id': 'cmdID_slicer_lt', 'cmd_resources': './resources', 'workspace': 'FusionSolidEnvironment', 'toolbar_panel_id': 'SolidScriptsAddinsPanel', 'class': FusionSlicerLTCommand } command_definitions.append(cmd) # Define parameters for 1st command cmd = { 'cmd_name': 'Fusion Slicer LT 2', 'cmd_description': 'Simplified Fusion Slicing App', 'cmd_id': 'cmdID_slicer_lt2', 'cmd_resources': './resources', 'workspace': 'FusionSolidEnvironment', 'toolbar_panel_id': 'SolidScriptsAddinsPanel', 'command_visible': False, 'class': FusionSlicerLTCommand2 } command_definitions.append(cmd) # Set to True to display various useful messages when debugging your app debug = False # Don't change anything below here: for cmd_def in command_definitions: command = cmd_def['class'](cmd_def, debug) commands.append(command)
[ 2, 6434, 12, 32718, 371, 1299, 8396, 198, 2, 12489, 12, 8890, 489, 1431, 311, 677, 263, 329, 21278, 11470, 198, 198, 2, 17267, 278, 6291, 21278, 9455, 198, 2, 10347, 1330, 3294, 9455, 17336, 994, 198, 6738, 764, 37, 4241, 50, 677, 263, 43, 4825, 2002, 392, 1330, 21278, 50, 677, 263, 43, 4825, 2002, 392, 11, 21278, 50, 677, 263, 43, 4825, 2002, 392, 17, 198, 198, 9503, 1746, 796, 17635, 198, 21812, 62, 4299, 50101, 796, 17635, 198, 198, 2, 2896, 500, 10007, 329, 352, 301, 3141, 198, 28758, 796, 1391, 198, 220, 220, 220, 705, 28758, 62, 3672, 10354, 705, 37, 4241, 311, 677, 263, 34146, 3256, 198, 220, 220, 220, 705, 28758, 62, 11213, 10354, 705, 8890, 489, 1431, 21278, 311, 677, 278, 2034, 3256, 198, 220, 220, 220, 705, 28758, 62, 312, 10354, 705, 28758, 2389, 62, 82, 677, 263, 62, 2528, 3256, 198, 220, 220, 220, 705, 28758, 62, 37540, 10354, 705, 19571, 37540, 3256, 198, 220, 220, 220, 705, 5225, 10223, 10354, 705, 37, 4241, 46933, 31441, 3256, 198, 220, 220, 220, 705, 25981, 5657, 62, 35330, 62, 312, 10354, 705, 46933, 7391, 82, 4550, 1040, 26639, 3256, 198, 220, 220, 220, 705, 4871, 10354, 21278, 50, 677, 263, 43, 4825, 2002, 392, 198, 92, 198, 21812, 62, 4299, 50101, 13, 33295, 7, 28758, 8, 198, 198, 2, 2896, 500, 10007, 329, 352, 301, 3141, 198, 28758, 796, 1391, 198, 220, 220, 220, 705, 28758, 62, 3672, 10354, 705, 37, 4241, 311, 677, 263, 34146, 362, 3256, 198, 220, 220, 220, 705, 28758, 62, 11213, 10354, 705, 8890, 489, 1431, 21278, 311, 677, 278, 2034, 3256, 198, 220, 220, 220, 705, 28758, 62, 312, 10354, 705, 28758, 2389, 62, 82, 677, 263, 62, 2528, 17, 3256, 198, 220, 220, 220, 705, 28758, 62, 37540, 10354, 705, 19571, 37540, 3256, 198, 220, 220, 220, 705, 5225, 10223, 10354, 705, 37, 4241, 46933, 31441, 3256, 198, 220, 220, 220, 705, 25981, 5657, 62, 35330, 62, 312, 10354, 705, 46933, 7391, 82, 4550, 1040, 26639, 3256, 198, 220, 220, 220, 705, 21812, 62, 23504, 10354, 10352, 11, 198, 220, 220, 220, 705, 4871, 10354, 21278, 50, 677, 263, 43, 4825, 2002, 392, 17, 198, 92, 198, 21812, 62, 4299, 50101, 13, 33295, 7, 28758, 8, 198, 198, 2, 5345, 284, 6407, 284, 3359, 2972, 4465, 6218, 618, 28769, 534, 598, 198, 24442, 796, 10352, 628, 198, 2, 2094, 470, 1487, 1997, 2174, 994, 25, 198, 1640, 23991, 62, 4299, 287, 3141, 62, 4299, 50101, 25, 198, 220, 220, 220, 3141, 796, 23991, 62, 4299, 17816, 4871, 6, 16151, 28758, 62, 4299, 11, 14257, 8, 198, 220, 220, 220, 9729, 13, 33295, 7, 21812, 8, 628, 198 ]
2.864745
451
import subprocess import tempfile from pathlib import Path import requests from mutagen.easyid3 import EasyID3 from mutagen.id3 import APIC, ID3 from mutagen.mp3 import MP3 from pathvalidate import sanitize_filename from PyQt5.QtCore import QThread from vk_api.audio import VkAudio from entities.album import VkAlbum from entities.session import VkSession from entities.song import VkSong from utils import get_tracklist_iter
[ 11748, 850, 14681, 198, 11748, 20218, 7753, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 7007, 198, 6738, 4517, 11286, 13, 38171, 312, 18, 1330, 16789, 2389, 18, 198, 6738, 4517, 11286, 13, 312, 18, 1330, 3486, 2149, 11, 4522, 18, 198, 6738, 4517, 11286, 13, 3149, 18, 1330, 4904, 18, 198, 6738, 3108, 12102, 378, 1330, 5336, 270, 1096, 62, 34345, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1195, 16818, 198, 6738, 410, 74, 62, 15042, 13, 24051, 1330, 569, 74, 21206, 198, 198, 6738, 12066, 13, 40916, 1330, 569, 74, 2348, 4435, 198, 6738, 12066, 13, 29891, 1330, 569, 74, 36044, 198, 6738, 12066, 13, 34050, 1330, 569, 74, 44241, 198, 6738, 3384, 4487, 1330, 651, 62, 11659, 4868, 62, 2676, 628 ]
3.325581
129
import h5py import math import time import numpy import sys from functools import reduce from keras.models import Sequential from keras.layers import GRU, LSTM, Dropout, Dense from keras.layers.wrappers import TimeDistributed from keras.callbacks import ModelCheckpoint from keras.utils import np_utils with open('./data/fb_news_comments.txt', 'r', encoding='utf-8') as file: comments = file.read() chars = list(sorted(set(comments))) # print(''.join(chars)) # print([ord(x) for x in chars]) # exit() start = 0 seq_length = 100 items = 200000 char_to_int = dict((c, i) for i, c in enumerate(chars)) int_to_char = dict((i, c) for i, c in enumerate(chars)) n_vocab = len(chars) n_patterns = items model = Sequential() model.add(GRU(512, input_shape=(seq_length, 1), return_sequences=True)) model.add(Dropout(0.2)) model.add(GRU(256)) model.add(Dropout(0.2)) model.add(Dense(n_vocab, activation='softmax')) model.load_weights("./results/test_6/weights-improvement-60-1.7856.hdf5") model.compile(loss='categorical_crossentropy', optimizer='adam') filepath="./results/test_6/weights-improvement-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, mode='min') callbacks_list = [checkpoint] for i in range(33, 100): dataX = [] dataY = [] generate() exit() print() for j in range(start + items * i, start + items * (i + 1)): seq_in = comments[j:j + seq_length] seq_out = comments[j + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) X = numpy.reshape(dataX, (n_patterns, seq_length, 1)) X = X / float(n_vocab) y = np_utils.to_categorical(dataY) model.fit(X, y, epochs=i * 2 + 2, initial_epoch=i * 2, batch_size=128, callbacks=callbacks_list)
[ 11748, 289, 20, 9078, 198, 11748, 10688, 198, 11748, 640, 198, 11748, 299, 32152, 198, 11748, 25064, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 10863, 52, 11, 406, 2257, 44, 11, 14258, 448, 11, 360, 1072, 198, 6738, 41927, 292, 13, 75, 6962, 13, 29988, 11799, 1330, 3862, 20344, 6169, 198, 6738, 41927, 292, 13, 13345, 10146, 1330, 9104, 9787, 4122, 198, 6738, 41927, 292, 13, 26791, 1330, 45941, 62, 26791, 198, 198, 4480, 1280, 7, 4458, 14, 7890, 14, 21855, 62, 10827, 62, 15944, 13, 14116, 3256, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 2393, 25, 198, 220, 220, 220, 3651, 796, 2393, 13, 961, 3419, 198, 198, 354, 945, 796, 1351, 7, 82, 9741, 7, 2617, 7, 15944, 22305, 198, 198, 2, 3601, 10786, 4458, 22179, 7, 354, 945, 4008, 198, 2, 3601, 26933, 585, 7, 87, 8, 329, 2124, 287, 34534, 12962, 198, 2, 8420, 3419, 198, 198, 9688, 796, 657, 198, 41068, 62, 13664, 796, 1802, 198, 23814, 796, 939, 830, 198, 198, 10641, 62, 1462, 62, 600, 796, 8633, 19510, 66, 11, 1312, 8, 329, 1312, 11, 269, 287, 27056, 378, 7, 354, 945, 4008, 198, 600, 62, 1462, 62, 10641, 796, 8633, 19510, 72, 11, 269, 8, 329, 1312, 11, 269, 287, 27056, 378, 7, 354, 945, 4008, 198, 198, 77, 62, 18893, 397, 796, 18896, 7, 354, 945, 8, 198, 77, 62, 33279, 82, 796, 3709, 198, 198, 19849, 796, 24604, 1843, 3419, 198, 198, 19849, 13, 2860, 7, 10761, 52, 7, 25836, 11, 5128, 62, 43358, 16193, 41068, 62, 13664, 11, 352, 828, 1441, 62, 3107, 3007, 28, 17821, 4008, 198, 19849, 13, 2860, 7, 26932, 448, 7, 15, 13, 17, 4008, 198, 19849, 13, 2860, 7, 10761, 52, 7, 11645, 4008, 198, 19849, 13, 2860, 7, 26932, 448, 7, 15, 13, 17, 4008, 198, 19849, 13, 2860, 7, 35, 1072, 7, 77, 62, 18893, 397, 11, 14916, 11639, 4215, 9806, 6, 4008, 198, 19849, 13, 2220, 62, 43775, 7, 1911, 14, 43420, 14, 9288, 62, 21, 14, 43775, 12, 49453, 434, 12, 1899, 12, 16, 13, 3695, 3980, 13, 71, 7568, 20, 4943, 198, 19849, 13, 5589, 576, 7, 22462, 11639, 66, 2397, 12409, 62, 19692, 298, 28338, 3256, 6436, 7509, 11639, 324, 321, 11537, 198, 198, 7753, 6978, 28, 1911, 14, 43420, 14, 9288, 62, 21, 14, 43775, 12, 49453, 434, 12, 90, 538, 5374, 25, 2999, 67, 92, 12, 90, 22462, 25, 13, 19, 69, 27422, 71, 7568, 20, 1, 198, 9122, 4122, 796, 9104, 9787, 4122, 7, 7753, 6978, 11, 5671, 11639, 22462, 3256, 15942, 577, 28, 16, 11, 4235, 11639, 1084, 11537, 198, 13345, 10146, 62, 4868, 796, 685, 9122, 4122, 60, 198, 198, 1640, 1312, 287, 2837, 7, 2091, 11, 1802, 2599, 198, 220, 220, 220, 1366, 55, 796, 17635, 198, 220, 220, 220, 1366, 56, 796, 17635, 628, 220, 220, 220, 7716, 3419, 198, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 3601, 3419, 628, 220, 220, 220, 329, 474, 287, 2837, 7, 9688, 1343, 3709, 1635, 1312, 11, 923, 1343, 3709, 1635, 357, 72, 1343, 352, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 259, 796, 3651, 58, 73, 25, 73, 1343, 33756, 62, 13664, 60, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 448, 796, 3651, 58, 73, 1343, 33756, 62, 13664, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 55, 13, 33295, 26933, 10641, 62, 1462, 62, 600, 58, 10641, 60, 329, 1149, 287, 33756, 62, 259, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 56, 13, 33295, 7, 10641, 62, 1462, 62, 600, 58, 41068, 62, 448, 12962, 628, 220, 220, 220, 1395, 796, 299, 32152, 13, 3447, 1758, 7, 7890, 55, 11, 357, 77, 62, 33279, 82, 11, 33756, 62, 13664, 11, 352, 4008, 198, 220, 220, 220, 1395, 796, 1395, 1220, 12178, 7, 77, 62, 18893, 397, 8, 198, 220, 220, 220, 331, 796, 45941, 62, 26791, 13, 1462, 62, 66, 2397, 12409, 7, 7890, 56, 8, 628, 220, 220, 220, 2746, 13, 11147, 7, 55, 11, 331, 11, 36835, 82, 28, 72, 1635, 362, 1343, 362, 11, 4238, 62, 538, 5374, 28, 72, 1635, 362, 11, 15458, 62, 7857, 28, 12762, 11, 869, 10146, 28, 13345, 10146, 62, 4868, 8, 198 ]
2.476839
734
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class RClue(RPackage): """Cluster Ensembles.""" cran = "clue" version('0.3-61', sha256='71311b16ce380fd9a8834be95b55b3d1b47e4ee2b8acb35b8d481138c314dc31') version('0.3-60', sha256='6d21ddfd0d621ed3bac861890c600884b6ed5ff7d2a36c9778b892636dbbef2a') version('0.3-58', sha256='2ab6662eaa1103a7b633477e8ebd266b262ed54fac6f9326b160067a2ded9ce7') version('0.3-57', sha256='6e369d07b464a9624209a06b5078bf988f01f7963076e946649d76aea0622d17') depends_on('[email protected]:', type=('build', 'run')) depends_on('r-cluster', type=('build', 'run'))
[ 2, 15069, 2211, 12, 1238, 1828, 13914, 45036, 3549, 2351, 4765, 11, 11419, 290, 584, 198, 2, 1338, 441, 4935, 34152, 13, 4091, 262, 1353, 12, 5715, 27975, 38162, 9947, 2393, 329, 3307, 13, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 357, 25189, 4891, 12, 17, 13, 15, 6375, 17168, 8, 198, 198, 6738, 599, 441, 13, 26495, 1330, 1635, 628, 198, 4871, 371, 2601, 518, 7, 49, 27813, 2599, 198, 220, 220, 220, 37227, 2601, 5819, 2039, 4428, 829, 526, 15931, 628, 220, 220, 220, 41286, 796, 366, 565, 518, 1, 628, 220, 220, 220, 2196, 10786, 15, 13, 18, 12, 5333, 3256, 427, 64, 11645, 11639, 50055, 1157, 65, 1433, 344, 23734, 16344, 24, 64, 3459, 2682, 1350, 3865, 65, 2816, 65, 18, 67, 16, 65, 2857, 68, 19, 1453, 17, 65, 23, 330, 65, 2327, 65, 23, 67, 2780, 1157, 2548, 66, 33638, 17896, 3132, 11537, 198, 220, 220, 220, 2196, 10786, 15, 13, 18, 12, 1899, 3256, 427, 64, 11645, 11639, 21, 67, 2481, 1860, 16344, 15, 67, 21, 2481, 276, 18, 65, 330, 4521, 1507, 3829, 66, 8054, 40353, 65, 21, 276, 20, 487, 22, 67, 17, 64, 2623, 66, 24, 39761, 65, 4531, 2075, 2623, 9945, 65, 891, 17, 64, 11537, 198, 220, 220, 220, 2196, 10786, 15, 13, 18, 12, 3365, 3256, 427, 64, 11645, 11639, 17, 397, 2791, 5237, 68, 7252, 11442, 18, 64, 22, 65, 21, 2091, 32883, 68, 23, 1765, 67, 25540, 65, 29119, 276, 4051, 38942, 21, 69, 6052, 2075, 65, 36150, 3134, 64, 17, 9395, 24, 344, 22, 11537, 198, 220, 220, 220, 2196, 10786, 15, 13, 18, 12, 3553, 3256, 427, 64, 11645, 11639, 21, 68, 30803, 67, 2998, 65, 44578, 64, 4846, 1731, 22567, 64, 3312, 65, 1120, 3695, 19881, 24, 3459, 69, 486, 69, 3720, 30005, 4304, 68, 24, 3510, 33300, 67, 4304, 44705, 3312, 1828, 67, 1558, 11537, 628, 220, 220, 220, 8338, 62, 261, 10786, 81, 31, 18, 13, 17, 13, 15, 25, 3256, 2099, 28, 10786, 11249, 3256, 705, 5143, 6, 4008, 198, 220, 220, 220, 8338, 62, 261, 10786, 81, 12, 565, 5819, 3256, 2099, 28, 10786, 11249, 3256, 705, 5143, 6, 4008, 198 ]
2.146739
368
print(min(a,b,c))
[ 4798, 7, 1084, 7, 64, 11, 65, 11, 66, 4008, 198 ]
1.636364
11
import nltk from nltk import tokenize from nltk.util import ngrams import os from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer from readability import Readability import collections from nltk.stem.porter import * from nltk import word_tokenize import string import pickle ### This File contains functions for each type of feature. Use Compute_All_Features.py to run. DIRNAME = os.path.dirname(__file__)
[ 11748, 299, 2528, 74, 201, 198, 6738, 299, 2528, 74, 1330, 11241, 1096, 201, 198, 6738, 299, 2528, 74, 13, 22602, 1330, 299, 4546, 82, 201, 198, 11748, 28686, 201, 198, 6738, 410, 5067, 31837, 3681, 13, 85, 5067, 31837, 3681, 1330, 11352, 3681, 5317, 6377, 37702, 9107, 201, 198, 6738, 1100, 1799, 1330, 4149, 1799, 201, 198, 11748, 17268, 201, 198, 6738, 299, 2528, 74, 13, 927, 13, 26634, 1330, 1635, 201, 198, 6738, 299, 2528, 74, 1330, 1573, 62, 30001, 1096, 201, 198, 11748, 4731, 201, 198, 11748, 2298, 293, 201, 198, 201, 198, 21017, 770, 9220, 4909, 5499, 329, 1123, 2099, 286, 3895, 13, 5765, 3082, 1133, 62, 3237, 62, 23595, 13, 9078, 284, 1057, 13, 201, 198, 201, 198, 34720, 20608, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201 ]
2.807229
166
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2017 Romain Boman # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # example of PyQt (QMainWindow) + vtk (QVTKRenderWindowInteractor) from PyQt5.QtCore import * from PyQt5.QtWidgets import * print("Qt %s loaded!" % QT_VERSION_STR) import vtk from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor import sys if __name__ == "__main__": app = QApplication(sys.argv) window = SimpleView() window.show() window.widget.Initialize() # This is the line we need app.exec_()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 220, 220, 15069, 2177, 3570, 391, 347, 5185, 198, 2, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 198, 198, 2, 1672, 286, 9485, 48, 83, 357, 48, 13383, 27703, 8, 1343, 410, 30488, 357, 48, 36392, 30758, 2194, 27703, 9492, 11218, 8, 198, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 4798, 7203, 48, 83, 4064, 82, 9639, 2474, 4064, 1195, 51, 62, 43717, 62, 18601, 8, 198, 11748, 410, 30488, 198, 6738, 410, 30488, 13, 39568, 13, 48, 36392, 30758, 2194, 27703, 9492, 11218, 1330, 1195, 36392, 30758, 2194, 27703, 9492, 11218, 198, 198, 11748, 25064, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 796, 1195, 23416, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 4324, 796, 17427, 7680, 3419, 198, 220, 220, 220, 4324, 13, 12860, 3419, 198, 220, 220, 220, 4324, 13, 42655, 13, 24243, 1096, 3419, 220, 1303, 770, 318, 262, 1627, 356, 761, 198, 220, 220, 220, 598, 13, 18558, 62, 3419, 198 ]
2.964674
368
import h5py import os
[ 11748, 289, 20, 9078, 198, 11748, 28686, 220, 198 ]
2.555556
9
import tensorflow as tf import numpy as np from sklearn.feature_extraction import text from sklearn import feature_selection from tensorflow.python.util import nest from autokeras import const from autokeras.hypermodel import hyper_block as hb_module class HyperPreprocessor(hb_module.HyperBlock): """Hyper preprocessing block base class.""" def build(self, hp, inputs=None): """Build into part of a Keras Model. Since they are for preprocess data before feeding into the Keras Model, they are not part of the Keras Model. They only pass the inputs directly to outputs. """ return inputs def set_hp(self, hp): """Set Hyperparameters for the Preprocessor. Since the `update` and `transform` function are all for single training instances instead of the entire dataset, the Hyperparameters needs to be set in advance of call them. Args: hp: Hyperparameters. The hyperparameters for tuning the preprocessor. """ self._hp = hp def update(self, x): """Incrementally fit the preprocessor with a single training instance. Args: x: EagerTensor. A single instance in the training dataset. """ raise NotImplementedError def transform(self, x): """Incrementally fit the preprocessor with a single training instance. Args: x: EagerTensor. A single instance in the training dataset. Returns: A transformed instanced which can be converted to a tf.Tensor. """ raise NotImplementedError def output_types(self): """The output types of the transformed data, e.g. tf.int64. The output types are required by tf.py_function, which is used for transform the dataset into a new one with a map function. Returns: A tuple of data types. """ raise NotImplementedError def output_shape(self): """The output shape of the transformed data. The output shape is needed to build the Keras Model from the AutoModel. The output shape of the preprocessor is the input shape of the Keras Model. Returns: A tuple of ints or a TensorShape. """ raise NotImplementedError def finalize(self): """Training process of the preprocessor after update with all instances.""" pass class OneHotEncoder(object): """A class that can format data. This class provides ways to transform data's classification label into vector. Attributes: data: The input data num_classes: The number of classes in the classification problem. labels: The number of labels. label_to_vec: Mapping from label to vector. int_to_label: Mapping from int to label. """ def __init__(self): """Initialize a OneHotEncoder""" self.data = None self.num_classes = 0 self.labels = None self.label_to_vec = {} self.int_to_label = {} def fit(self, data): """Create mapping from label to vector, and vector to label.""" data = np.array(data).flatten() self.labels = set(data) self.num_classes = len(self.labels) for index, label in enumerate(self.labels): vec = np.array([0] * self.num_classes) vec[index] = 1 self.label_to_vec[label] = vec self.int_to_label[index] = label def transform(self, data): """Get vector for every element in the data array.""" data = np.array(data) if len(data.shape) > 1: data = data.flatten() return np.array(list(map(lambda x: self.label_to_vec[x], data))) def inverse_transform(self, data): """Get label for every element in data.""" return np.array(list(map(lambda x: self.int_to_label[x], np.argmax(np.array(data), axis=1)))) class Normalize(HyperPreprocessor): """ Perform basic image transformation and augmentation. # Attributes mean: Tensor. The mean value. Shape: (data last dimension length,) std: Tensor. The standard deviation. Shape is the same as mean. """ def transform(self, x): """ Transform the test data, perform normalization. # Arguments data: Tensorflow Dataset. The data to be transformed. # Returns A DataLoader instance. """ x = nest.flatten(x)[0] return (x - self.mean) / self.std class TextToIntSequence(HyperPreprocessor): """Convert raw texts to sequences of word indices.""" class TextToNgramVector(HyperPreprocessor): """Convert raw texts to n-gram vectors."""
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 30053, 62, 2302, 7861, 1330, 2420, 198, 6738, 1341, 35720, 1330, 3895, 62, 49283, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 22602, 1330, 16343, 198, 198, 6738, 1960, 11020, 292, 1330, 1500, 198, 6738, 1960, 11020, 292, 13, 49229, 19849, 1330, 8718, 62, 9967, 355, 289, 65, 62, 21412, 628, 198, 4871, 15079, 6719, 41341, 7, 71, 65, 62, 21412, 13, 38197, 12235, 2599, 198, 220, 220, 220, 37227, 38197, 662, 36948, 2512, 2779, 1398, 526, 15931, 628, 220, 220, 220, 825, 1382, 7, 944, 11, 27673, 11, 17311, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 656, 636, 286, 257, 17337, 292, 9104, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4619, 484, 389, 329, 662, 14681, 1366, 878, 13017, 656, 262, 17337, 292, 9104, 11, 198, 220, 220, 220, 220, 220, 220, 220, 484, 389, 407, 636, 286, 262, 17337, 292, 9104, 13, 1119, 691, 1208, 262, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 3264, 284, 23862, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17311, 628, 220, 220, 220, 825, 900, 62, 24831, 7, 944, 11, 27673, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 15079, 17143, 7307, 329, 262, 3771, 41341, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4619, 262, 4600, 19119, 63, 290, 4600, 35636, 63, 2163, 389, 477, 329, 2060, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 10245, 2427, 286, 262, 2104, 27039, 11, 262, 15079, 17143, 7307, 2476, 284, 307, 198, 220, 220, 220, 220, 220, 220, 220, 900, 287, 5963, 286, 869, 606, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27673, 25, 15079, 17143, 7307, 13, 383, 8718, 17143, 7307, 329, 24549, 262, 662, 41341, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 24831, 796, 27673, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15562, 434, 453, 4197, 262, 662, 41341, 351, 257, 2060, 3047, 4554, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 25, 412, 3536, 51, 22854, 13, 317, 2060, 4554, 287, 262, 3047, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 6121, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15562, 434, 453, 4197, 262, 662, 41341, 351, 257, 2060, 3047, 4554, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 25, 412, 3536, 51, 22854, 13, 317, 2060, 4554, 287, 262, 3047, 27039, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 14434, 916, 2903, 543, 460, 307, 11513, 284, 257, 48700, 13, 51, 22854, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 5072, 62, 19199, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 5072, 3858, 286, 262, 14434, 1366, 11, 304, 13, 70, 13, 48700, 13, 600, 2414, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 3858, 389, 2672, 416, 48700, 13, 9078, 62, 8818, 11, 543, 318, 973, 329, 6121, 198, 220, 220, 220, 220, 220, 220, 220, 262, 27039, 656, 257, 649, 530, 351, 257, 3975, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 46545, 286, 1366, 3858, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 5072, 62, 43358, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 5072, 5485, 286, 262, 14434, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 5485, 318, 2622, 284, 1382, 262, 17337, 292, 9104, 422, 262, 11160, 17633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 5485, 286, 262, 662, 41341, 318, 262, 5128, 5485, 286, 262, 17337, 292, 9104, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 46545, 286, 493, 82, 393, 257, 309, 22854, 33383, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 2457, 1096, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44357, 1429, 286, 262, 662, 41341, 706, 4296, 351, 477, 10245, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 4871, 1881, 21352, 27195, 12342, 7, 15252, 2599, 198, 220, 220, 220, 37227, 32, 1398, 326, 460, 5794, 1366, 13, 628, 220, 220, 220, 770, 1398, 3769, 2842, 284, 6121, 1366, 338, 17923, 6167, 656, 198, 220, 220, 220, 15879, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 25, 383, 5128, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 25, 383, 1271, 286, 6097, 287, 262, 17923, 1917, 13, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 25, 383, 1271, 286, 14722, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 1462, 62, 35138, 25, 337, 5912, 422, 6167, 284, 15879, 13, 198, 220, 220, 220, 220, 220, 220, 220, 493, 62, 1462, 62, 18242, 25, 337, 5912, 422, 493, 284, 6167, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 257, 1881, 21352, 27195, 12342, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 37724, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23912, 1424, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18242, 62, 1462, 62, 35138, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 600, 62, 1462, 62, 18242, 796, 23884, 628, 220, 220, 220, 825, 4197, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 16855, 422, 6167, 284, 15879, 11, 290, 15879, 284, 6167, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 45941, 13, 18747, 7, 7890, 737, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23912, 1424, 796, 900, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 37724, 796, 18896, 7, 944, 13, 23912, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 6167, 287, 27056, 378, 7, 944, 13, 23912, 1424, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43030, 796, 45941, 13, 18747, 26933, 15, 60, 1635, 2116, 13, 22510, 62, 37724, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43030, 58, 9630, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18242, 62, 1462, 62, 35138, 58, 18242, 60, 796, 43030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 600, 62, 1462, 62, 18242, 58, 9630, 60, 796, 6167, 628, 220, 220, 220, 825, 6121, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 15879, 329, 790, 5002, 287, 262, 1366, 7177, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 45941, 13, 18747, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7890, 13, 43358, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 13, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 7, 4868, 7, 8899, 7, 50033, 2124, 25, 2116, 13, 18242, 62, 1462, 62, 35138, 58, 87, 4357, 1366, 22305, 628, 220, 220, 220, 825, 34062, 62, 35636, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 6167, 329, 790, 5002, 287, 1366, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 7, 4868, 7, 8899, 7, 50033, 2124, 25, 2116, 13, 600, 62, 1462, 62, 18242, 58, 87, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 853, 9806, 7, 37659, 13, 18747, 7, 7890, 828, 16488, 28, 16, 35514, 628, 198, 4871, 14435, 1096, 7, 38197, 6719, 41341, 2599, 198, 220, 220, 220, 37227, 35006, 4096, 2939, 13389, 290, 16339, 14374, 13, 628, 220, 220, 220, 1303, 49213, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 25, 309, 22854, 13, 383, 1612, 1988, 13, 25959, 25, 357, 7890, 938, 15793, 4129, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 14367, 25, 309, 22854, 13, 383, 3210, 28833, 13, 25959, 318, 262, 976, 355, 1612, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 6121, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26981, 262, 1332, 1366, 11, 1620, 3487, 1634, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20559, 2886, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 25, 309, 22854, 11125, 16092, 292, 316, 13, 383, 1366, 284, 307, 14434, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 6060, 17401, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 16343, 13, 2704, 41769, 7, 87, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 87, 532, 2116, 13, 32604, 8, 1220, 2116, 13, 19282, 628, 198, 4871, 8255, 2514, 5317, 44015, 594, 7, 38197, 6719, 41341, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 8246, 13399, 284, 16311, 286, 1573, 36525, 526, 15931, 628, 198, 4871, 8255, 2514, 45, 4546, 38469, 7, 38197, 6719, 41341, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 8246, 13399, 284, 299, 12, 4546, 30104, 526, 15931, 198 ]
2.585405
1,850