content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
import pickle
from firebase import firebase
import pyautogui
import time
firebase = firebase.FirebaseApplication('https://sleep-tight-8a6df.firebaseio.com/', None)
id2 = pickle.load(open("chrome","rb"))
X = firebase.get('/sleep-tight-8a6df/Chrome/'+ str(id2) , 'CX' )
Y = firebase.get('/sleep-tight-8a6df/Chrome/'+ str(id2) , 'CY' )
pyautogui.click(X, Y)
time.sleep(5)
pyautogui.write('https://cuchd.blackboard.com/ultra/course')
pyautogui.keyDown('enter')
time.sleep(10)
id2 = pickle.load(open("sign","rb"))
X = firebase.get('/sleep-tight-8a6df/signin/'+ str(id2) , 'SX' )
Y = firebase.get('/sleep-tight-8a6df/signin/'+ str(id2) , 'SY' )
pyautogui.click(X, Y)
time.sleep(15)
st = "ELT"
i = pickle.load(open(st,"rb"))
saq = int(i)
space(saq)
slass(st)
pyautogui.alert('After clicking ok move your mouse on join session and wait for another prompt.')
time.sleep(5)
currentMouseX, currentMouseY = pyautogui.position()
pyautogui.alert('Done!!!')
time.sleep(2)
pyautogui.click(currentMouseX, currentMouseY)
data = {
'X': currentMouseX,
'Y': currentMouseY
}
result = firebase.post('/sleep-tight-8a6df/jssion/',data)
final = ''.join(key + str(val) for key, val in result.items())
data = str(final)
proxy = data[4:24]
pickle.dump(proxy, open("jesi","wb"))
pyautogui.alert('After clicking ok move your mouse on course room and wait for another prompt.')
time.sleep(4)
currentMouseX, currentMouseY = pyautogui.position()
pyautogui.alert('Done!!!')
time.sleep(2)
data = {
'X': currentMouseX,
'Y': currentMouseY
}
result = firebase.post('/sleep-tight-8a6df/jssion1/',data)
final = ''.join(key + str(val) for key, val in result.items())
data = str(final)
proxy = data[4:24]
pickle.dump(proxy, open("jesin","wb"))
pyautogui.alert('Now Run tropy.py using the command given in github README.md file.') | [
11748,
2298,
293,
198,
6738,
2046,
8692,
1330,
2046,
8692,
198,
11748,
12972,
2306,
519,
9019,
198,
11748,
640,
198,
198,
6495,
8692,
796,
2046,
8692,
13,
13543,
8692,
23416,
10786,
5450,
1378,
42832,
12,
33464,
12,
23,
64,
21,
7568,
13,
6495,
8692,
952,
13,
785,
14,
3256,
6045,
8,
628,
198,
312,
17,
796,
2298,
293,
13,
2220,
7,
9654,
7203,
46659,
2430,
26145,
48774,
198,
55,
796,
2046,
8692,
13,
1136,
10786,
14,
42832,
12,
33464,
12,
23,
64,
21,
7568,
14,
1925,
5998,
14,
6,
10,
965,
7,
312,
17,
8,
837,
705,
34,
55,
6,
1267,
198,
56,
796,
2046,
8692,
13,
1136,
10786,
14,
42832,
12,
33464,
12,
23,
64,
21,
7568,
14,
1925,
5998,
14,
6,
10,
965,
7,
312,
17,
8,
837,
705,
34,
56,
6,
1267,
198,
9078,
2306,
519,
9019,
13,
12976,
7,
55,
11,
575,
8,
198,
198,
2435,
13,
42832,
7,
20,
8,
198,
9078,
2306,
519,
9019,
13,
13564,
10786,
5450,
1378,
66,
794,
67,
13,
13424,
3526,
13,
785,
14,
586,
430,
14,
17319,
11537,
198,
9078,
2306,
519,
9019,
13,
2539,
8048,
10786,
9255,
11537,
198,
198,
2435,
13,
42832,
7,
940,
8,
198,
312,
17,
796,
2298,
293,
13,
2220,
7,
9654,
7203,
12683,
2430,
26145,
48774,
198,
55,
796,
2046,
8692,
13,
1136,
10786,
14,
42832,
12,
33464,
12,
23,
64,
21,
7568,
14,
12683,
259,
14,
6,
10,
965,
7,
312,
17,
8,
837,
705,
50,
55,
6,
1267,
198,
56,
796,
2046,
8692,
13,
1136,
10786,
14,
42832,
12,
33464,
12,
23,
64,
21,
7568,
14,
12683,
259,
14,
6,
10,
965,
7,
312,
17,
8,
837,
705,
23060,
6,
1267,
198,
9078,
2306,
519,
9019,
13,
12976,
7,
55,
11,
575,
8,
198,
198,
2435,
13,
42832,
7,
1314,
8,
198,
198,
301,
796,
366,
3698,
51,
1,
198,
72,
796,
2298,
293,
13,
2220,
7,
9654,
7,
301,
553,
26145,
48774,
198,
11400,
80,
796,
493,
7,
72,
8,
198,
13200,
7,
11400,
80,
8,
198,
6649,
562,
7,
301,
8,
198,
198,
9078,
2306,
519,
9019,
13,
44598,
10786,
3260,
12264,
12876,
1445,
534,
10211,
319,
4654,
6246,
290,
4043,
329,
1194,
6152,
2637,
8,
198,
2435,
13,
42832,
7,
20,
8,
198,
14421,
39643,
55,
11,
1459,
39643,
56,
796,
12972,
2306,
519,
9019,
13,
9150,
3419,
628,
198,
9078,
2306,
519,
9019,
13,
44598,
10786,
45677,
10185,
11537,
198,
2435,
13,
42832,
7,
17,
8,
198,
9078,
2306,
519,
9019,
13,
12976,
7,
14421,
39643,
55,
11,
1459,
39643,
56,
8,
198,
198,
7890,
796,
220,
1391,
220,
198,
220,
220,
220,
705,
55,
10354,
1459,
39643,
55,
11,
198,
220,
220,
220,
705,
56,
10354,
1459,
39643,
56,
198,
220,
220,
220,
1782,
198,
20274,
796,
2046,
8692,
13,
7353,
10786,
14,
42832,
12,
33464,
12,
23,
64,
21,
7568,
14,
73,
824,
295,
14,
3256,
7890,
8,
198,
20311,
796,
705,
4458,
22179,
7,
2539,
1343,
965,
7,
2100,
8,
329,
1994,
11,
1188,
287,
1255,
13,
23814,
28955,
198,
7890,
796,
965,
7,
20311,
8,
198,
36436,
796,
1366,
58,
19,
25,
1731,
60,
198,
27729,
293,
13,
39455,
7,
36436,
11,
1280,
7203,
73,
46551,
2430,
39346,
48774,
628,
198,
198,
9078,
2306,
519,
9019,
13,
44598,
10786,
3260,
12264,
12876,
1445,
534,
10211,
319,
1781,
2119,
290,
4043,
329,
1194,
6152,
2637,
8,
198,
2435,
13,
42832,
7,
19,
8,
198,
14421,
39643,
55,
11,
1459,
39643,
56,
796,
12972,
2306,
519,
9019,
13,
9150,
3419,
628,
198,
9078,
2306,
519,
9019,
13,
44598,
10786,
45677,
10185,
11537,
198,
2435,
13,
42832,
7,
17,
8,
198,
198,
7890,
796,
220,
1391,
220,
198,
220,
220,
220,
705,
55,
10354,
1459,
39643,
55,
11,
198,
220,
220,
220,
705,
56,
10354,
1459,
39643,
56,
198,
220,
220,
220,
1782,
198,
20274,
796,
2046,
8692,
13,
7353,
10786,
14,
42832,
12,
33464,
12,
23,
64,
21,
7568,
14,
73,
824,
295,
16,
14,
3256,
7890,
8,
198,
20311,
796,
705,
4458,
22179,
7,
2539,
1343,
965,
7,
2100,
8,
329,
1994,
11,
1188,
287,
1255,
13,
23814,
28955,
198,
7890,
796,
965,
7,
20311,
8,
198,
36436,
796,
1366,
58,
19,
25,
1731,
60,
198,
27729,
293,
13,
39455,
7,
36436,
11,
1280,
7203,
73,
274,
259,
2430,
39346,
48774,
198,
9078,
2306,
519,
9019,
13,
44598,
10786,
3844,
5660,
14673,
88,
13,
9078,
1262,
262,
3141,
1813,
287,
33084,
20832,
11682,
13,
9132,
2393,
2637,
8
] | 2.461022 | 744 |
import pytest
_EXPECTED = {
"data": {
"dog": {
"name": "Dog",
"nickname": "Doggo",
"barkVolume": 2,
"doesKnowCommand": True,
"isHousetrained": False,
"owner": {"name": "Hooman"},
}
}
}
@pytest.mark.asyncio
@pytest.mark.ttftt_engine(
resolvers={
"Query.dog": resolve_query_dog,
"Dog.doesKnowCommand": resolve_dog_does_know_command,
"Dog.isHousetrained": resolve_dog_is_housetrained,
"Dog.owner": resolve_dog_owner,
"Dog.friends": resolve_dog_friends,
"Query.cat": resolve_query_cat,
"Cat.doesKnowCommand": resolve_cat_does_know_command,
"Query.human": resolve_query_human,
"Query.catOrDog": resolve_query_cat_or_dog,
}
)
@pytest.mark.parametrize(
"operation_name,query,variables,expected",
[
(
None,
"""
query {
dog {
name
nickname
barkVolume
doesKnowCommand(dogCommand: DOWN)
isHousetrained(atOtherHomes: true)
owner {
name
}
}
}
""",
None,
_EXPECTED,
),
(
"Dog",
"""
fragment HumanFields on Human {
... on Human {
name
}
}
fragment LightCatOrDogFields on CatOrDog {
... on Cat {
name
nickname
}
... on Dog {
name
nickname
}
}
fragment LightDogFields on Dog {
name
barkVolume
}
fragment DogFields on Dog {
name
doesKnowCommand(dogCommand: DOWN)
isHousetrained(atOtherHomes: true)
owner {
... on Human {
...HumanFields
}
}
friends {
...LightCatOrDogFields
}
}
fragment CatFields on Cat {
name
}
fragment QueryDogFields on Query {
... on Query {
... {
dog {
... on Dog {
...DogFields
}
}
dog {
name
nickname
barkVolume
}
dog {
...LightDogFields
}
}
}
}
query Dog {
... on Query {
...QueryDogFields
}
}
query Cat {
cat {
...CatFields
}
}
""",
None,
{
"data": {
"dog": {
"name": "Dog",
"doesKnowCommand": True,
"isHousetrained": False,
"owner": {"name": "Hooman"},
"friends": [
{"name": "Dog", "nickname": "Doggo"},
{"name": "Cat", "nickname": "Catto"},
],
"nickname": "Doggo",
"barkVolume": 2,
}
}
},
),
(
None,
"""
query CatOrDog {
catOrDog(id: 1) {
... on Dog {
name
}
... on Dog {
nickname
}
... on Cat {
name
}
}
}
""",
None,
{"data": {"catOrDog": {"name": "Dog", "nickname": "Doggo"}}},
),
],
)
| [
11748,
12972,
9288,
628,
628,
628,
628,
628,
198,
198,
62,
49864,
9782,
1961,
796,
1391,
198,
220,
220,
220,
366,
7890,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9703,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
32942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17172,
3672,
1298,
366,
32942,
2188,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
65,
668,
31715,
1298,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
22437,
23812,
21575,
1298,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
271,
39,
516,
316,
13363,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
19779,
3672,
1298,
366,
39,
4207,
272,
25719,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
1782,
198,
92,
628,
198,
31,
9078,
9288,
13,
4102,
13,
292,
13361,
952,
198,
31,
9078,
9288,
13,
4102,
13,
926,
701,
83,
62,
18392,
7,
198,
220,
220,
220,
581,
349,
690,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20746,
13,
9703,
1298,
10568,
62,
22766,
62,
9703,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
32942,
13,
22437,
23812,
21575,
1298,
10568,
62,
9703,
62,
22437,
62,
16275,
62,
21812,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
32942,
13,
271,
39,
516,
316,
13363,
1298,
10568,
62,
9703,
62,
271,
62,
71,
516,
316,
13363,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
32942,
13,
18403,
1298,
10568,
62,
9703,
62,
18403,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
32942,
13,
36154,
1298,
10568,
62,
9703,
62,
36154,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20746,
13,
9246,
1298,
10568,
62,
22766,
62,
9246,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21979,
13,
22437,
23812,
21575,
1298,
10568,
62,
9246,
62,
22437,
62,
16275,
62,
21812,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20746,
13,
10734,
1298,
10568,
62,
22766,
62,
10734,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20746,
13,
9246,
5574,
32942,
1298,
10568,
62,
22766,
62,
9246,
62,
273,
62,
9703,
11,
198,
220,
220,
220,
1782,
198,
8,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
27184,
62,
3672,
11,
22766,
11,
25641,
2977,
11,
40319,
1600,
198,
220,
220,
220,
685,
198,
220,
220,
220,
220,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12405,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3290,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21814,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21405,
31715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
857,
23812,
21575,
7,
9703,
21575,
25,
30320,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
39,
516,
316,
13363,
7,
265,
6395,
39,
2586,
25,
2081,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4870,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13538,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
49864,
9782,
1961,
11,
198,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
32942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
5524,
15878,
82,
319,
5524,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
5524,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
4401,
21979,
5574,
32942,
15878,
82,
319,
5181,
5574,
32942,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
5181,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21814,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
8532,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21814,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
4401,
32942,
15878,
82,
319,
8532,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21405,
31715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
8532,
15878,
82,
319,
8532,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
857,
23812,
21575,
7,
9703,
21575,
25,
30320,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
39,
516,
316,
13363,
7,
265,
6395,
39,
2586,
25,
2081,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4870,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
5524,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
20490,
15878,
82,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2460,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
15047,
21979,
5574,
32942,
15878,
82,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
5181,
15878,
82,
319,
5181,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
43301,
32942,
15878,
82,
319,
43301,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
43301,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3290,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
8532,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
32942,
15878,
82,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3290,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21814,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21405,
31715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3290,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
15047,
32942,
15878,
82,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12405,
8532,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
43301,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
20746,
32942,
15878,
82,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12405,
5181,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3797,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
21979,
15878,
82,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13538,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
7890,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9703,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
32942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
22437,
23812,
21575,
1298,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
271,
39,
516,
316,
13363,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
18403,
1298,
19779,
3672,
1298,
366,
39,
4207,
272,
25719,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
36154,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19779,
3672,
1298,
366,
32942,
1600,
366,
17172,
3672,
1298,
366,
32942,
2188,
25719,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19779,
3672,
1298,
366,
21979,
1600,
366,
17172,
3672,
1298,
366,
34,
45807,
25719,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17172,
3672,
1298,
366,
32942,
2188,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
65,
668,
31715,
1298,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12405,
5181,
5574,
32942,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3797,
5574,
32942,
7,
312,
25,
352,
8,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
8532,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
8532,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21814,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2644,
319,
5181,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13538,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19779,
7890,
1298,
19779,
9246,
5574,
32942,
1298,
19779,
3672,
1298,
366,
32942,
1600,
366,
17172,
3672,
1298,
366,
32942,
2188,
1,
11709,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
16589,
198,
8,
198
] | 1.488431 | 2,766 |
# Copyright (c) Microsoft Corporation. All Rights Reserved.
# Licensed under the MIT license. See LICENSE file on the project webpage for details.
"""Setup for azure_media_services XBlock."""
import os
from setuptools import setup
def package_data(pkg, roots):
"""Generic function to find package_data.
All of the files under each of the `roots` will be declared as package
data for package `pkg`.
"""
data = []
for root in roots:
for dirname, __, files in os.walk(os.path.join(pkg, root)):
for fname in files:
data.append(os.path.relpath(os.path.join(dirname, fname), pkg))
return {pkg: data}
setup(
name='azure_media_services-xblock',
version='0.0.1',
description='This XBlock implements a video player that utilizes the Azure Media Services.',
packages=[
'azure_media_services',
],
include_package_data=True,
dependency_links=[
# At the moment of writing PyPI hosts outdated version of xblock-utils, hence git
# Replace dependency links with numbered versions when it's released on PyPI
'git+https://github.com/edx/[email protected]#egg=xblock-utils==1.0.5',
],
install_requires=[
'PyJWT',
'bleach',
'mako',
'requests>=2.9.1,<3.0.0',
'XBlock>=0.4.10,<2.0.0',
'xblock-utils>=1.0.2,<=1.0.5',
],
entry_points={
'xblock.v1': [
'azure_media_services = azure_media_services:AMSXBlock',
]
},
package_data=package_data("azure_media_services", ["static", "templates", "public", "translations"]),
)
| [
2,
15069,
357,
66,
8,
5413,
10501,
13,
1439,
6923,
33876,
13,
198,
2,
49962,
739,
262,
17168,
5964,
13,
4091,
38559,
24290,
2393,
319,
262,
1628,
35699,
329,
3307,
13,
198,
198,
37811,
40786,
329,
35560,
495,
62,
11431,
62,
30416,
1395,
12235,
526,
15931,
198,
198,
11748,
28686,
198,
6738,
900,
37623,
10141,
1330,
9058,
628,
198,
4299,
5301,
62,
7890,
7,
35339,
11,
11135,
2599,
198,
220,
220,
220,
37227,
46189,
2163,
284,
1064,
5301,
62,
7890,
13,
628,
220,
220,
220,
1439,
286,
262,
3696,
739,
1123,
286,
262,
4600,
19150,
63,
481,
307,
6875,
355,
5301,
198,
220,
220,
220,
1366,
329,
5301,
4600,
35339,
44646,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1366,
796,
17635,
198,
220,
220,
220,
329,
6808,
287,
11135,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
26672,
3672,
11,
11593,
11,
3696,
287,
28686,
13,
11152,
7,
418,
13,
6978,
13,
22179,
7,
35339,
11,
6808,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
277,
3672,
287,
3696,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
33295,
7,
418,
13,
6978,
13,
2411,
6978,
7,
418,
13,
6978,
13,
22179,
7,
15908,
3672,
11,
277,
3672,
828,
279,
10025,
4008,
628,
220,
220,
220,
1441,
1391,
35339,
25,
1366,
92,
628,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
1031,
495,
62,
11431,
62,
30416,
12,
87,
9967,
3256,
198,
220,
220,
220,
2196,
11639,
15,
13,
15,
13,
16,
3256,
198,
220,
220,
220,
6764,
11639,
1212,
1395,
12235,
23986,
257,
2008,
2137,
326,
34547,
262,
22134,
6343,
6168,
2637,
11,
198,
220,
220,
220,
10392,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
705,
1031,
495,
62,
11431,
62,
30416,
3256,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
2291,
62,
26495,
62,
7890,
28,
17821,
11,
198,
220,
220,
220,
20203,
62,
28751,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1629,
262,
2589,
286,
3597,
9485,
11901,
11453,
23572,
2196,
286,
2124,
9967,
12,
26791,
11,
12891,
17606,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
40177,
20203,
6117,
351,
25840,
6300,
618,
340,
338,
2716,
319,
9485,
11901,
198,
220,
220,
220,
220,
220,
220,
220,
705,
18300,
10,
5450,
1378,
12567,
13,
785,
14,
276,
87,
14,
87,
9967,
12,
26791,
13,
18300,
31,
85,
16,
13,
15,
13,
20,
2,
33856,
28,
87,
9967,
12,
26791,
855,
16,
13,
15,
13,
20,
3256,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
2721,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
705,
20519,
41,
39386,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
903,
620,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
76,
25496,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
8897,
3558,
29,
28,
17,
13,
24,
13,
16,
11,
27,
18,
13,
15,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
55,
12235,
29,
28,
15,
13,
19,
13,
940,
11,
27,
17,
13,
15,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
87,
9967,
12,
26791,
29,
28,
16,
13,
15,
13,
17,
11,
27,
28,
16,
13,
15,
13,
20,
3256,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
5726,
62,
13033,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
705,
87,
9967,
13,
85,
16,
10354,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1031,
495,
62,
11431,
62,
30416,
796,
35560,
495,
62,
11431,
62,
30416,
25,
40834,
55,
12235,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
5301,
62,
7890,
28,
26495,
62,
7890,
7203,
1031,
495,
62,
11431,
62,
30416,
1600,
14631,
12708,
1600,
366,
11498,
17041,
1600,
366,
11377,
1600,
366,
7645,
49905,
8973,
828,
198,
8,
628
] | 2.432191 | 671 |
from biostuff import BlastLine, BlastFile
some_attrs = ('qstart', 'qstop', 'sstart', 'sstop', 'pctid', 'score', 'query',
'subject')
| [
6738,
3182,
455,
1648,
1330,
20641,
13949,
11,
20641,
8979,
198,
198,
11246,
62,
1078,
3808,
796,
19203,
80,
9688,
3256,
705,
80,
11338,
3256,
705,
82,
9688,
3256,
705,
82,
11338,
3256,
705,
79,
310,
312,
3256,
705,
26675,
3256,
705,
22766,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
32796,
11537,
198,
220,
220,
220,
220,
628
] | 2.409836 | 61 |
import pygame
from pygame.sprite import Sprite
# a class to represent a single enemy in the fleet
# init the enemy and it's starting position
# function to check if enemy is at edge of screen
# enemy update function
| [
11748,
12972,
6057,
198,
6738,
12972,
6057,
13,
34975,
578,
1330,
33132,
198,
198,
2,
257,
1398,
284,
2380,
257,
2060,
4472,
287,
262,
11026,
628,
220,
220,
220,
1303,
2315,
262,
4472,
290,
340,
338,
3599,
2292,
628,
220,
220,
220,
1303,
2163,
284,
2198,
611,
4472,
318,
379,
5743,
286,
3159,
628,
220,
220,
220,
1303,
4472,
4296,
2163,
628,
198
] | 3.714286 | 63 |
import copy
import logging
import re
import uuid
from django.conf import settings
from raven import Client
logger = logging.getLogger(__name__)
REPORTS_BASE_URL = 'http://qa.orange.biolab.si/errors/{}'
PYTHON_FOLDERS = [
"site-packages",
"dist-packages",
"Python34.lib",
"anaconda3.lib",
"lib.python3.4",
"orange3",
]
ORANGE_ADDONS = [
'orangecontrib',
'lekbf',
'_textable',
'orangebiodepot',
]
FRAMES_RE = re.compile('File "([^"]+)", line (\d+), in ([^ ]+) (.*)')
DEVICE_RE = re.compile('Python ([\d\.]+) on ([^ ]+) ([^ ]+) (.+) ([^ ]+)$')
# Modules that should not be grouped by
GENERAL_MODULES = [
"Orange.data.domain:232", # domain.index(attr_name)
"sklearn.utils.validation:424", # check_array
"Orange.util:141", # attrgetter(attr)(obj)
"Orange.statistics.util:52", # bincount
]
ORANGE3_DATASETS = ('Orange3-Datasets', "https://2cb16c369f474e799ae384045dbf489e:[email protected]/167538")
ORANGE_SPECTROSCOPY = "https://1cb3697dbfc04f748bae548865f1b1a8:[email protected]/176038"
DSN_3RDPARTY = "https://d077c44bbab1407595c9838ace02aea5:[email protected]/176069"
DSN_TEXTABLE = "https://489e53f2068441f48d0d7bb3f5f066d5:[email protected]/207453"
SINGLE_CELL = "https://3acf738fd9a3458ab76cabcfaa072dcf:[email protected]/209789"
DSN_ORANGE = "https://6f0311046ad2438598ae121cdabd878f:[email protected]/124497"
# For addons with separate DSNs mapping from namespace to addon name
# must be provided for reporting addon version as release.
NAMESPACE_TO_ADDON = {
'associate': ('Orange3-Associate', "https://cde61b47c74c4f98931264c1112b1bc2:[email protected]/167541"),
'bioinformatics': ('Orange3-Bioinformatics', "https://[email protected]/1311211"),
'conformal': ('Orange3-Conformal-Prediction', "https://3cf0bca1e5ed4b6a811c9980f27ed8ee:[email protected]/167539"),
'datafusion': ('Orange3-DataFusion', "https://894bd2e1f47a4271834b8fbc019fc90b:[email protected]/167542"),
'wbd': ORANGE3_DATASETS,
'datasets': ORANGE3_DATASETS,
'educational': ('Orange3-Educational', "https://93323bc17a094974a830b25abbae01b5:[email protected]/167545"),
'geo': ('Orange3-Geo', "https://f3b7d23593d14247808b70ff964b3956:[email protected]/167528"),
'imageanalytics': ('Orange3-ImageAnalytics', "https://cc2ef6171aad4b6ba344e2851169db7d:[email protected]/161064"),
'network': ('Orange3-Network', "https://14706c0ff3e047d999cff64e6100eb25:[email protected]/167534"),
'prototypes': ('Orange3-Prototypes', "https://d7440097e7f64e4cbff90dd31fc8876e:[email protected]/167530"),
'recommendation': ('Orange3-Recommendation', "https://e447ddb4e80149289bca679121359c03:[email protected]/167543"),
'text': ('Orange3-Text', "https://38ffabded40c46b9952b2acebc726866:[email protected]/128443"),
'timeseries': ('Orange3-Timeseries', "https://e8f30f9dbaf74635bb10e37abe0b5354:[email protected]/161065"),
'testing': ('', "https://261797e8fa4544ffb931bc495157d2e3:[email protected]/128442"),
'lekbf': ('lekbf', "https://7da121cc693045c688d5ffd2d320e65b:[email protected]/174357"),
'infrared': ('Orange-Infrared', ORANGE_SPECTROSCOPY),
'spectroscopy': ('Orange-Spectroscopy', ORANGE_SPECTROSCOPY),
'monroe_anal': ('monroe-anal', "https://26940ac80e9f4cf095dd6c90e7e7e674:[email protected]/242335"),
'spark': ('Orange3-spark', DSN_3RDPARTY),
'tomwer': ('tomwer', DSN_3RDPARTY),
'textable_prototypes': ('Orange3-Textable-Prototypes', DSN_TEXTABLE),
'orangebiodepot': ('orangebiodepot', DSN_3RDPARTY),
'_textable': ('Orange3-Textable', DSN_TEXTABLE),
'variants': ('Orange3-Variants', SINGLE_CELL),
'single_cell': ('Orange3-SingleCell', SINGLE_CELL),
'chem': ('Orange3-Chemoinformatics', "https://a2cfd734538c4892ad3c02679891fa44:[email protected]/275477"),
}
| [
11748,
4866,
198,
11748,
18931,
198,
11748,
302,
198,
11748,
334,
27112,
198,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
37735,
1330,
20985,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
198,
35316,
33002,
62,
33,
11159,
62,
21886,
796,
705,
4023,
1378,
20402,
13,
43745,
13,
65,
1669,
397,
13,
13396,
14,
48277,
14,
90,
92,
6,
198,
198,
47,
56,
4221,
1340,
62,
37,
15173,
4877,
796,
685,
198,
220,
220,
220,
366,
15654,
12,
43789,
1600,
198,
220,
220,
220,
366,
17080,
12,
43789,
1600,
198,
220,
220,
220,
366,
37906,
2682,
13,
8019,
1600,
198,
220,
220,
220,
366,
272,
330,
13533,
18,
13,
8019,
1600,
198,
220,
220,
220,
366,
8019,
13,
29412,
18,
13,
19,
1600,
198,
220,
220,
220,
366,
43745,
18,
1600,
198,
60,
198,
198,
1581,
27746,
62,
29266,
19213,
796,
685,
198,
220,
220,
220,
705,
43745,
3642,
822,
3256,
198,
220,
220,
220,
705,
293,
74,
19881,
3256,
198,
220,
220,
220,
705,
62,
5239,
540,
3256,
198,
220,
220,
220,
705,
43745,
65,
2101,
538,
313,
3256,
198,
60,
198,
198,
10913,
29559,
62,
2200,
796,
302,
13,
5589,
576,
10786,
8979,
366,
26933,
61,
8973,
28988,
1600,
1627,
357,
59,
67,
10,
828,
287,
29565,
61,
2361,
28988,
357,
15885,
8,
11537,
198,
7206,
27389,
62,
2200,
796,
302,
13,
5589,
576,
10786,
37906,
29565,
59,
67,
59,
8183,
28988,
319,
29565,
61,
2361,
28988,
29565,
61,
2361,
28988,
20262,
28988,
29565,
61,
2361,
28988,
3,
11537,
198,
198,
2,
3401,
5028,
326,
815,
407,
307,
32824,
416,
198,
35353,
27130,
62,
33365,
6239,
1546,
796,
685,
198,
220,
220,
220,
366,
40141,
13,
7890,
13,
27830,
25,
24339,
1600,
220,
220,
220,
220,
220,
220,
220,
1303,
7386,
13,
9630,
7,
35226,
62,
3672,
8,
198,
220,
220,
220,
366,
8135,
35720,
13,
26791,
13,
12102,
341,
25,
40090,
1600,
220,
1303,
2198,
62,
18747,
198,
220,
220,
220,
366,
40141,
13,
22602,
25,
23756,
1600,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
708,
81,
1136,
353,
7,
35226,
5769,
26801,
8,
198,
220,
220,
220,
366,
40141,
13,
14269,
3969,
13,
22602,
25,
4309,
1600,
220,
220,
220,
220,
1303,
275,
1939,
608,
198,
60,
198,
198,
1581,
27746,
18,
62,
35,
1404,
1921,
32716,
796,
19203,
40141,
18,
12,
27354,
292,
1039,
3256,
366,
5450,
1378,
17,
21101,
1433,
66,
30803,
69,
38652,
68,
45455,
3609,
2548,
1821,
2231,
9945,
69,
35890,
68,
25,
65,
2327,
69,
19,
68,
2670,
67,
23,
65,
1415,
1558,
19782,
64,
1765,
32576,
68,
23,
66,
18,
7568,
15,
64,
31,
82,
13000,
13,
952,
14,
1433,
2425,
2548,
4943,
198,
1581,
27746,
62,
48451,
5446,
2640,
34,
3185,
56,
796,
366,
5450,
1378,
16,
21101,
2623,
5607,
9945,
16072,
3023,
69,
48246,
65,
3609,
20,
33646,
2996,
69,
16,
65,
16,
64,
23,
25,
1765,
15,
65,
22,
2075,
68,
40256,
65,
2598,
31128,
64,
27019,
66,
5607,
66,
23,
66,
21,
3132,
69,
17,
31,
82,
13000,
13,
952,
14,
1558,
1899,
2548,
1,
198,
5258,
45,
62,
18,
49,
6322,
7227,
56,
796,
366,
5450,
1378,
67,
2998,
22,
66,
2598,
11848,
397,
15187,
2425,
3865,
66,
4089,
2548,
558,
2999,
44705,
20,
25,
69,
18,
69,
47101,
16817,
18213,
2598,
68,
15,
64,
24,
68,
5333,
66,
39322,
6888,
1314,
17544,
20,
31,
82,
13000,
13,
952,
14,
1558,
1899,
3388,
1,
198,
5258,
45,
62,
51,
6369,
38148,
796,
366,
5450,
1378,
35890,
68,
4310,
69,
1238,
3104,
39710,
69,
2780,
67,
15,
67,
22,
11848,
18,
69,
20,
69,
15,
2791,
67,
20,
25,
22579,
29088,
324,
2857,
64,
15187,
7568,
64,
1453,
1238,
3682,
64,
21,
11848,
19,
18638,
69,
31,
82,
13000,
13,
952,
14,
22745,
36625,
1,
198,
50,
2751,
2538,
62,
5222,
3069,
796,
366,
5450,
1378,
18,
330,
69,
22,
2548,
16344,
24,
64,
27712,
23,
397,
4304,
66,
397,
12993,
7252,
2998,
17,
67,
12993,
25,
21,
65,
26912,
2414,
65,
23,
64,
3134,
39226,
2548,
1959,
4521,
10210,
30460,
2934,
24,
2996,
65,
31,
82,
13000,
13,
952,
14,
22567,
40401,
1,
198,
198,
5258,
45,
62,
1581,
27746,
796,
366,
5450,
1378,
21,
69,
3070,
11442,
3510,
324,
1731,
2548,
41292,
3609,
19244,
10210,
397,
67,
23,
3695,
69,
25,
7568,
8784,
65,
20,
21626,
18213,
19,
66,
4531,
64,
6469,
16072,
16,
69,
20,
6814,
22,
2548,
4521,
67,
31,
82,
13000,
13,
952,
14,
1065,
2598,
5607,
1,
198,
2,
1114,
751,
684,
351,
4553,
360,
15571,
82,
16855,
422,
25745,
284,
48557,
1438,
198,
2,
1276,
307,
2810,
329,
6447,
48557,
2196,
355,
2650,
13,
198,
45,
29559,
47,
11598,
62,
10468,
62,
29266,
1340,
796,
1391,
198,
220,
220,
220,
705,
562,
47615,
10354,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
8021,
47615,
3256,
366,
5450,
1378,
66,
2934,
5333,
65,
2857,
66,
4524,
66,
19,
69,
4089,
6052,
1065,
2414,
66,
1157,
1065,
65,
16,
15630,
17,
25,
940,
12993,
65,
18,
65,
4304,
64,
23237,
2791,
21855,
2996,
5999,
64,
3720,
4309,
66,
39885,
64,
23,
31,
82,
13000,
13,
952,
14,
1433,
2425,
3901,
12340,
198,
220,
220,
220,
705,
65,
952,
259,
18982,
873,
10354,
220,
220,
19203,
40141,
18,
12,
42787,
259,
18982,
873,
3256,
366,
5450,
1378,
17,
68,
3064,
13331,
2816,
65,
23,
2682,
2624,
68,
5999,
7252,
3023,
17896,
44966,
5237,
68,
20,
69,
31,
82,
13000,
13,
952,
14,
1485,
14686,
1157,
12340,
198,
220,
220,
220,
705,
1102,
687,
282,
10354,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
3103,
687,
282,
12,
39156,
2867,
3256,
366,
5450,
1378,
18,
12993,
15,
65,
6888,
16,
68,
20,
276,
19,
65,
21,
64,
23,
1157,
66,
2079,
1795,
69,
1983,
276,
23,
1453,
25,
5824,
25150,
276,
49561,
65,
3023,
17457,
21101,
19,
6814,
17,
66,
2327,
69,
15,
67,
48156,
69,
23,
31,
82,
13000,
13,
952,
14,
1433,
2425,
2670,
12340,
198,
220,
220,
220,
705,
7890,
69,
4241,
10354,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
6601,
37,
4241,
3256,
366,
5450,
1378,
4531,
19,
17457,
17,
68,
16,
69,
2857,
64,
42363,
1507,
2682,
65,
23,
69,
15630,
30484,
16072,
3829,
65,
25,
68,
24,
67,
4309,
1765,
65,
23,
1485,
4051,
6888,
15,
65,
5705,
13331,
27720,
1731,
69,
2548,
6469,
64,
31,
82,
13000,
13,
952,
14,
1433,
2425,
3682,
12340,
198,
220,
220,
220,
705,
86,
17457,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6375,
27746,
18,
62,
35,
1404,
1921,
32716,
11,
198,
220,
220,
220,
705,
19608,
292,
1039,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
6375,
27746,
18,
62,
35,
1404,
1921,
32716,
11,
198,
220,
220,
220,
705,
18123,
864,
10354,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
33380,
864,
3256,
366,
5450,
1378,
24,
2091,
1954,
15630,
1558,
64,
2931,
2920,
4524,
64,
48341,
65,
1495,
6485,
3609,
486,
65,
20,
25,
19,
16344,
20,
68,
22,
66,
49721,
68,
2682,
1878,
67,
5607,
344,
6888,
2919,
276,
19,
69,
46712,
67,
31,
82,
13000,
13,
952,
14,
1433,
2425,
2231,
12340,
198,
220,
220,
220,
705,
469,
78,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
10082,
78,
3256,
366,
5450,
1378,
69,
18,
65,
22,
67,
1954,
49051,
67,
1415,
23753,
28362,
65,
2154,
487,
24,
2414,
65,
2670,
3980,
25,
487,
1495,
66,
16,
67,
1954,
67,
18,
64,
19,
31047,
23,
2920,
11785,
66,
22,
3132,
66,
23,
4524,
67,
24,
31,
82,
13000,
13,
952,
14,
1433,
2425,
2078,
12340,
198,
220,
220,
220,
705,
9060,
38200,
14094,
10354,
220,
220,
19203,
40141,
18,
12,
5159,
37702,
14094,
3256,
366,
5450,
1378,
535,
17,
891,
21,
27192,
64,
324,
19,
65,
21,
7012,
33535,
68,
26279,
1157,
3388,
9945,
22,
67,
25,
10210,
2481,
276,
18,
68,
1795,
3609,
19,
69,
19,
27203,
65,
3132,
64,
1731,
68,
15,
67,
48597,
12993,
31,
82,
13000,
13,
952,
14,
1433,
940,
2414,
12340,
198,
220,
220,
220,
705,
27349,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
26245,
3256,
366,
5450,
1378,
1415,
35402,
66,
15,
487,
18,
68,
48000,
67,
17032,
66,
487,
2414,
68,
21,
3064,
1765,
1495,
25,
16,
1860,
22,
65,
5705,
67,
15,
1878,
66,
31911,
48910,
1558,
3553,
68,
2327,
1238,
65,
15,
66,
17,
31,
82,
13000,
13,
952,
14,
1433,
2425,
2682,
12340,
198,
220,
220,
220,
705,
11235,
13567,
10354,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
19703,
13567,
3256,
366,
5450,
1378,
67,
22,
2598,
405,
5607,
68,
22,
69,
2414,
68,
19,
21101,
487,
3829,
1860,
3132,
16072,
3459,
4304,
68,
25,
1860,
68,
2931,
69,
22,
7012,
24,
1558,
3559,
1507,
5705,
65,
22,
1765,
3023,
66,
23,
1415,
65,
23,
1731,
31,
82,
13000,
13,
952,
14,
1433,
2425,
1270,
12340,
198,
220,
220,
220,
705,
47335,
437,
341,
10354,
220,
220,
19203,
40141,
18,
12,
41248,
341,
3256,
366,
5450,
1378,
68,
34825,
1860,
65,
19,
68,
41531,
2920,
27693,
65,
6888,
37601,
1065,
1485,
3270,
66,
3070,
25,
68,
19,
65,
24,
64,
15,
69,
16,
64,
1415,
1415,
69,
22,
67,
24,
3312,
68,
3980,
65,
23,
68,
2078,
1350,
24,
535,
31,
82,
13000,
13,
952,
14,
1433,
2425,
3559,
12340,
198,
220,
220,
220,
705,
5239,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
8206,
3256,
366,
5450,
1378,
2548,
487,
397,
9395,
1821,
66,
3510,
65,
2079,
4309,
65,
17,
558,
15630,
22,
25022,
2791,
25,
20198,
67,
21,
64,
20,
9423,
13331,
26429,
2079,
65,
21,
67,
3720,
68,
23,
3365,
21855,
21,
891,
16,
31,
82,
13000,
13,
952,
14,
12762,
34938,
12340,
198,
220,
220,
220,
705,
22355,
10640,
10354,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
28595,
10640,
3256,
366,
5450,
1378,
68,
23,
69,
1270,
69,
24,
9945,
1878,
22,
3510,
2327,
11848,
940,
68,
2718,
11231,
15,
65,
20,
32182,
25,
1731,
3695,
64,
3901,
68,
17,
69,
3865,
38380,
9945,
23,
344,
1765,
69,
1765,
41322,
535,
2079,
31,
82,
13000,
13,
952,
14,
1433,
940,
2996,
12340,
198,
220,
220,
220,
705,
33407,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
3256,
366,
5450,
1378,
2075,
1558,
5607,
68,
23,
13331,
2231,
2598,
487,
65,
24,
3132,
15630,
33781,
18458,
67,
17,
68,
18,
25,
2598,
68,
1270,
65,
6052,
69,
24,
69,
1415,
5066,
64,
24,
39251,
1495,
69,
6469,
6888,
15259,
2670,
31,
82,
13000,
13,
952,
14,
12762,
39506,
12340,
198,
220,
220,
220,
705,
293,
74,
19881,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
293,
74,
19881,
3256,
366,
5450,
1378,
22,
6814,
19244,
535,
3388,
1270,
2231,
66,
34427,
67,
20,
487,
67,
17,
67,
19504,
68,
2996,
65,
25,
16,
68,
17,
65,
18,
68,
47512,
66,
23,
4051,
2718,
7012,
23,
69,
405,
1120,
2327,
48724,
65,
18,
65,
22,
31,
82,
13000,
13,
952,
14,
22985,
27277,
12340,
198,
220,
220,
220,
705,
10745,
25122,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
12,
18943,
25122,
3256,
6375,
27746,
62,
48451,
5446,
2640,
34,
3185,
56,
828,
198,
220,
220,
220,
705,
4443,
45943,
11081,
10354,
220,
220,
220,
220,
19203,
40141,
12,
49738,
45943,
11081,
3256,
6375,
27746,
62,
48451,
5446,
2640,
34,
3185,
56,
828,
198,
220,
220,
220,
705,
2144,
20646,
62,
272,
282,
10354,
220,
220,
220,
220,
220,
19203,
2144,
20646,
12,
272,
282,
3256,
366,
5450,
1378,
26276,
1821,
330,
1795,
68,
24,
69,
19,
12993,
2931,
20,
1860,
21,
66,
3829,
68,
22,
68,
22,
68,
45385,
25,
2718,
67,
24,
3070,
69,
1860,
5066,
2414,
67,
4309,
1350,
21,
68,
35638,
1415,
67,
20,
12993,
535,
69,
31,
82,
13000,
13,
952,
14,
1731,
1954,
2327,
12340,
198,
220,
220,
220,
705,
2777,
668,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
2777,
668,
3256,
360,
15571,
62,
18,
49,
6322,
7227,
56,
828,
198,
220,
220,
220,
705,
39532,
15448,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
39532,
15448,
3256,
360,
15571,
62,
18,
49,
6322,
7227,
56,
828,
198,
220,
220,
220,
705,
5239,
540,
62,
11235,
13567,
10354,
19203,
40141,
18,
12,
8206,
540,
12,
19703,
13567,
3256,
360,
15571,
62,
51,
6369,
38148,
828,
198,
220,
220,
220,
705,
43745,
65,
2101,
538,
313,
10354,
220,
220,
19203,
43745,
65,
2101,
538,
313,
3256,
360,
15571,
62,
18,
49,
6322,
7227,
56,
828,
198,
220,
220,
220,
705,
62,
5239,
540,
10354,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
8206,
540,
3256,
360,
15571,
62,
51,
6369,
38148,
828,
198,
220,
220,
220,
705,
25641,
1187,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
23907,
1187,
3256,
311,
2751,
2538,
62,
5222,
3069,
828,
198,
220,
220,
220,
705,
29762,
62,
3846,
10354,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
28008,
28780,
3256,
311,
2751,
2538,
62,
5222,
3069,
828,
198,
220,
220,
220,
705,
15245,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
40141,
18,
12,
41829,
36743,
18982,
873,
3256,
366,
5450,
1378,
64,
17,
12993,
67,
4790,
2231,
2548,
66,
2780,
5892,
324,
18,
66,
45987,
3720,
4531,
16,
13331,
2598,
25,
16,
69,
1860,
17,
66,
17457,
20,
65,
891,
19,
66,
3695,
5607,
67,
16,
64,
3064,
3324,
68,
24,
2934,
5607,
31,
82,
13000,
13,
952,
14,
23195,
32883,
12340,
198,
92,
628,
628,
628,
628,
628,
198
] | 1.953399 | 2,339 |
# Copyright 2006-2007 Virtutech AB
import sim_commands
sim_commands.new_pci_header_command('AM79C973', None)
sim_commands.new_info_command('AM79C973', get_info)
sim_commands.new_status_command('AM79C973', get_status)
| [
2,
15069,
4793,
12,
12726,
11285,
1133,
354,
9564,
198,
198,
11748,
985,
62,
9503,
1746,
198,
198,
14323,
62,
9503,
1746,
13,
3605,
62,
79,
979,
62,
25677,
62,
21812,
10786,
2390,
3720,
34,
24,
4790,
3256,
6045,
8,
198,
14323,
62,
9503,
1746,
13,
3605,
62,
10951,
62,
21812,
10786,
2390,
3720,
34,
24,
4790,
3256,
651,
62,
10951,
8,
198,
14323,
62,
9503,
1746,
13,
3605,
62,
13376,
62,
21812,
10786,
2390,
3720,
34,
24,
4790,
3256,
651,
62,
13376,
8,
198
] | 2.576471 | 85 |
#!usr/bin/env python3
# -*- coding: utf-8 -*-
"""
pytest setup_module() and teardown_module() demo.
Assumption: creating a user is a very resource-consuming process
=> Thus, we don't want to do user creation every time we run a test.
"""
__author__ = 'Ziang Lu'
import pytest
from pytest_for_python.src.codes import User, is_member, is_prime_member
user = None
| [
2,
0,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
37811,
198,
9078,
9288,
9058,
62,
21412,
3419,
290,
573,
446,
593,
62,
21412,
3419,
13605,
13,
198,
198,
8021,
24098,
25,
4441,
257,
2836,
318,
257,
845,
8271,
12,
35873,
1429,
198,
14804,
6660,
11,
356,
836,
470,
765,
284,
466,
2836,
6282,
790,
640,
356,
1057,
257,
1332,
13,
198,
37811,
198,
198,
834,
9800,
834,
796,
705,
57,
15483,
6026,
6,
198,
198,
11748,
12972,
9288,
198,
198,
6738,
12972,
9288,
62,
1640,
62,
29412,
13,
10677,
13,
40148,
1330,
11787,
11,
318,
62,
19522,
11,
318,
62,
35505,
62,
19522,
198,
198,
7220,
796,
6045,
628,
628,
198
] | 2.92126 | 127 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
import os
import socket
import errno
from getpass import getpass
from optparse import OptionParser
from sassh.connectionlib import Library, Connection
from sassh.sshclient import SSHClient
from paramiko import SSHException
try:
import pygtk
pygtk.require('2.0')
import gtk
GTK_AVAILABLE = True
except ImportError:
GTK_AVAILABLE = False
EXTRA_HELP = """\
While connected the following key binds are available:
'CTRL-X' followed by 'p' to send the connection password (e.g. for sudo)
; 'CTRL-X' followed by 'n' to generate new password (e.g. when password expired)
"""
class Main():
""" Main class for the application """
def parse_args(self):
""" Parse command line arguments """
parser = OptionParser(epilog=EXTRA_HELP)
parser.add_option("-a", "--add-connection",
action="store", type="string", dest="add_connection",
help="Add connection to the configuration database")
parser.add_option("-d", "--del-connection",
action="store_true", dest="del_connection",
help="Delete host from the configuration database")
parser.add_option("-g", "--get",
action="store", type="string", dest="get_file",
help="Get file from server")
parser.add_option("--put",
action="store", type="string", dest="put_file",
help="Put file from server")
parser.add_option("-k", "--use-key",
action="store_true", dest="set_use_key",
help="Set connection to use key based authentication")
parser.add_option("-l", "--list",
action="store_true", dest="list",
help="List configured connections names")
parser.add_option("-L", "--long-list",
action="store_true", dest="long_list",
help="List configured connections (with details)")
parser.add_option("-p", "--set-password",
action="store", type="string", dest="set_password",
help="Set connection password")
parser.add_option("-r", "--run",
action="store", type="string", dest="run_command",
help="Run command and exit")
parser.add_option("-R", "--run-su",
action="store", type="string", dest="run_su_script",
help="Run script with super user privileges")
parser.add_option("--reset",
action="store_true", dest="reset",
help="Change password for connection")
parser.add_option("-s", "--set-connection",
action="store", type="string", dest="set_connection",
help="Set login information for connection")
parser.add_option("-S", "--set-step-stone",
action="store", type="string", dest="set_step_stone",
help="Set stepping stone connection")
parser.add_option("-t", "--change-tags",
action="store", type="string", dest="change_tags",
help="Change connection tags")
parser.add_option("--super",
action="store_true", dest="super",
help="Perform 'sudo su -' after logging in")
parser.add_option("-w", "--show-connection",
action="store_true", dest="show_connection",
help="Show connection information")
self.options, self.args = parser.parse_args()
def _get_sassh_gpg_pub_key(self):
""" Check that the environment variable SASSH_GPG_PUB_KEY is defined """
sassh_gpg_pub_key = os.getenv('SASSH_GPG_PUB_KEY')
if not sassh_gpg_pub_key:
print """
sassh uses a GPG encrypted file to store connection passwords.
You must generate a GPG keypair with "gpg --gen-key" .
YOU SHOULD PROTECT THE KEY WITH A PASSPHRASE .
Then set your shell's SASSH_GPG_PUB_KEY variable to to the public id as
displayed from "gpg --list-keys", e.g: pub 4096R/7FD63AB0
export SASSH_GPG_PUB_KEY="7FD63AB0"
"""
sys.exit(1)
self.sassh_gpg_pub_key = sassh_gpg_pub_key
def _list_connections(self, pattern, long_list):
""" List all the configured connections """
library = self.host_library
for connection_name in library.connections:
connection = None
if pattern and pattern[0] == '+':
connection = library.getbyname(connection_name)
if not connection.tags or pattern not in connection.tags:
continue
else:
if not connection_name.lower().startswith(pattern.lower()):
continue
if long_list:
connection = connection or library.getbyname(connection_name)
show_fields = connection.name+" "
show_fields += "-a "+connection.url+" "
if connection.use_key:
show_fields += "-k "
if connection.step_stone:
show_fields += "-S "+connection.step_stone+" "
if connection.tags and len(connection.tags) > 1:
show_fields += "-t "+connection.tags
print show_fields
else:
print connection_name
sys.exit(0)
def _process_args(self):
""" Return connection definition after processing cmd arguments """
options, args = self.options, self.args
# Check connection availability and management options
if len(args) < 1 and not (options.list or options.long_list):
print "Usage:"
print " %s connection_name [options]" % sys.argv[0]
print " %s --list" % sys.argv[0]
sys.exit(2)
library = self.host_library
if (options.list or options.long_list):
pattern = args[0] if len(args) > 0 else ''
self._list_connections(pattern, options.long_list)
connection_name = args[0].lower()
if options.set_step_stone:
try:
library.getbyname(options.set_step_stone)
except IOError:
print 'No connection with name %s !' % options.set_step_stone
sys.exit(4)
try:
connection = library.getbyname(connection_name)
except IOError:
if not options.add_connection:
print 'No connection with name %s !' % connection_name
print 'If you want to add it use "--add-connection"'
sys.exit(3)
else:
connection = Connection(connection_name)
else:
if options.add_connection:
print "Connection with name %s is already stored!" % \
connection_name
sys.exit(4)
if options.del_connection:
library.remove(connection)
sys.exit(0)
if options.show_connection:
print "URL", connection.url
if GTK_AVAILABLE:
show_password = '(Copied to th clipboard)'
clipboard = gtk.clipboard_get()
clipboard.set_text(connection.password)
clipboard.store()
else:
show_password = connection.password
print "PASSWORD", show_password
if connection.use_key:
print "USING KEY"
print connection.tags or '+'
sys.exit(0)
if options.reset:
options.set_connection = connection.url
options.password = None
if options.change_tags:
if options.change_tags[0] != '+':
print "Tags format is: +tag1+tag2...+tagN"
sys.exit(4)
connection.change_tags(options.change_tags)
if options.set_step_stone:
connection.step_stone = options.set_step_stone
if options.set_password:
if options.set_use_key:
sys.stderr.write('You are already setting to key authentication!\n')
sys.exit(5)
else:
connection.use_key = False
connection.password = options.set_password
if options.set_use_key:
connection.use_key = True
# Ask for login password if setting a connection url
new_connection_url = options.add_connection or options.set_connection
if new_connection_url:
connection.url = new_connection_url
if not connection.password and not connection.use_key:
options.set_password = True
while True:
print "Type the password for connection %s [%s]: " \
% (connection_name, connection.url)
password1 = getpass()
if len(password1) < 1:
print "Password must be at least 1 chars long!"
print
continue
print "Re-type the password for connection %s [%s]: " \
% (connection_name, connection.url)
password2 = getpass()
if password1 != password2:
print "Passwords do not match!"
print
else:
break
connection.password = password1
only_save = new_connection_url \
or options.set_step_stone \
or options.change_tags \
or options.set_password \
or options.set_use_key
if only_save:
library.save(connection)
return None
else:
return connection
def run(self):
""" parse arguments and call the corresponding execution logic """
stderr = sys.stderr
self.parse_args()
connection = self._process_args()
options = self.options
if not connection: # Connection was changed
return
sshclient = SSHClient(connection, self.host_library)
if options.run_command or options.get_file or options.put_file or options.run_su_script:
sshclient.verbose = False
try:
sshclient.connect()
except SSHException, err:
stderr.write( "SSH error connecting to %s - %s\n"
% (connection.name, err.args[0]))
sys.exit(4)
except socket.timeout:
stderr.write("Connection timeout - unable to connect to %s !\n"
% connection.name)
sys.exit(2)
except socket.error, err:
errorcode = err[0]
if errorcode == errno.ECONNREFUSED:
stderr.write("Connection refused - unable to connect to %s !\n"
% connection.name)
sys.exit(3)
else:
raise
if options.super:
sshclient.perform_sudo()
if options.run_su_script:
sshclient.run_su_script(options.run_su_script)
elif options.run_command:
sshclient.run_command(options.run_command)
elif options.get_file:
sshclient.get_file(options.get_file)
elif options.put_file:
sshclient.put_file(options.put_file)
else:
sshclient.interactive_shell()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
11748,
25064,
198,
11748,
28686,
198,
11748,
17802,
198,
11748,
11454,
3919,
198,
6738,
651,
6603,
1330,
651,
6603,
198,
6738,
2172,
29572,
1330,
16018,
46677,
198,
6738,
264,
562,
71,
13,
38659,
8019,
1330,
10074,
11,
26923,
198,
6738,
264,
562,
71,
13,
45824,
16366,
1330,
33825,
11792,
198,
6738,
5772,
12125,
1330,
33825,
16922,
198,
198,
28311,
25,
198,
220,
220,
220,
1330,
12972,
13655,
74,
198,
220,
220,
220,
12972,
13655,
74,
13,
46115,
10786,
17,
13,
15,
11537,
198,
220,
220,
220,
1330,
308,
30488,
198,
220,
220,
220,
7963,
42,
62,
10116,
32,
4146,
17534,
796,
6407,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
7963,
42,
62,
10116,
32,
4146,
17534,
796,
10352,
198,
198,
13918,
3861,
62,
39,
3698,
47,
796,
37227,
59,
198,
3633,
5884,
262,
1708,
1994,
37354,
389,
1695,
25,
198,
6,
4177,
7836,
12,
55,
6,
3940,
416,
705,
79,
6,
284,
3758,
262,
4637,
9206,
357,
68,
13,
70,
13,
329,
21061,
8,
198,
26,
705,
4177,
7836,
12,
55,
6,
3940,
416,
705,
77,
6,
284,
7716,
649,
9206,
357,
68,
13,
70,
13,
618,
9206,
21350,
8,
198,
37811,
628,
198,
4871,
8774,
33529,
198,
220,
220,
220,
37227,
8774,
1398,
329,
262,
3586,
37227,
628,
220,
220,
220,
825,
21136,
62,
22046,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
2547,
325,
3141,
1627,
7159,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
796,
16018,
46677,
7,
538,
346,
519,
28,
13918,
3861,
62,
39,
3698,
47,
8,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
64,
1600,
366,
438,
2860,
12,
38659,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
2860,
62,
38659,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
4550,
4637,
284,
262,
8398,
6831,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
67,
1600,
366,
438,
12381,
12,
38659,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
2244,
2625,
12381,
62,
38659,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
38727,
2583,
422,
262,
8398,
6831,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
70,
1600,
366,
438,
1136,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
1136,
62,
7753,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
3855,
2393,
422,
4382,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
438,
1996,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
1996,
62,
7753,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
11588,
2393,
422,
4382,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
74,
1600,
366,
438,
1904,
12,
2539,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
2244,
2625,
2617,
62,
1904,
62,
2539,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
7248,
4637,
284,
779,
1994,
1912,
18239,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
75,
1600,
366,
438,
4868,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
2244,
2625,
4868,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
8053,
17839,
8787,
3891,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
43,
1600,
366,
438,
6511,
12,
4868,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
2244,
2625,
6511,
62,
4868,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
8053,
17839,
8787,
357,
4480,
3307,
8,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
79,
1600,
366,
438,
2617,
12,
28712,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
2617,
62,
28712,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
7248,
4637,
9206,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
81,
1600,
366,
438,
5143,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
5143,
62,
21812,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
10987,
3141,
290,
8420,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
49,
1600,
366,
438,
5143,
12,
2385,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
5143,
62,
2385,
62,
12048,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
10987,
4226,
351,
2208,
2836,
18850,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
438,
42503,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
2244,
2625,
42503,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
19400,
9206,
329,
4637,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
82,
1600,
366,
438,
2617,
12,
38659,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
2617,
62,
38659,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
7248,
17594,
1321,
329,
4637,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
50,
1600,
366,
438,
2617,
12,
9662,
12,
6440,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
2617,
62,
9662,
62,
6440,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
7248,
17413,
7815,
4637,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
83,
1600,
366,
438,
3803,
12,
31499,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
1600,
2099,
2625,
8841,
1600,
2244,
2625,
3803,
62,
31499,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
19400,
4637,
15940,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
438,
16668,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
2244,
2625,
16668,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
5990,
687,
705,
24032,
424,
532,
6,
706,
18931,
287,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
2860,
62,
18076,
7203,
12,
86,
1600,
366,
438,
12860,
12,
38659,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
2244,
2625,
12860,
62,
38659,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
15307,
4637,
1321,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
25811,
11,
2116,
13,
22046,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
825,
4808,
1136,
62,
82,
562,
71,
62,
70,
6024,
62,
12984,
62,
2539,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
6822,
326,
262,
2858,
7885,
35516,
9693,
62,
38,
6968,
62,
5105,
33,
62,
20373,
318,
5447,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
264,
562,
71,
62,
70,
6024,
62,
12984,
62,
2539,
796,
28686,
13,
1136,
24330,
10786,
50,
1921,
9693,
62,
38,
6968,
62,
5105,
33,
62,
20373,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
264,
562,
71,
62,
70,
6024,
62,
12984,
62,
2539,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
37227,
198,
82,
562,
71,
3544,
257,
402,
6968,
19365,
2393,
284,
3650,
4637,
21442,
13,
198,
1639,
1276,
7716,
257,
402,
6968,
1994,
24874,
351,
366,
70,
6024,
1377,
5235,
12,
2539,
1,
764,
198,
36981,
40312,
48006,
9782,
3336,
35374,
13315,
317,
350,
1921,
4303,
17184,
11159,
764,
198,
6423,
900,
534,
7582,
338,
35516,
9693,
62,
38,
6968,
62,
5105,
33,
62,
20373,
7885,
284,
284,
262,
1171,
4686,
355,
198,
13812,
276,
422,
366,
70,
6024,
1377,
4868,
12,
13083,
1600,
304,
13,
70,
25,
2240,
220,
220,
42479,
49,
14,
22,
26009,
5066,
6242,
15,
198,
220,
220,
220,
10784,
35516,
9693,
62,
38,
6968,
62,
5105,
33,
62,
20373,
2625,
22,
26009,
5066,
6242,
15,
1,
198,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
82,
562,
71,
62,
70,
6024,
62,
12984,
62,
2539,
796,
264,
562,
71,
62,
70,
6024,
62,
12984,
62,
2539,
628,
198,
220,
220,
220,
825,
4808,
4868,
62,
8443,
507,
7,
944,
11,
3912,
11,
890,
62,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
7343,
477,
262,
17839,
8787,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5888,
796,
2116,
13,
4774,
62,
32016,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4637,
62,
3672,
287,
5888,
13,
8443,
507,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3912,
290,
3912,
58,
15,
60,
6624,
705,
10,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
796,
5888,
13,
1136,
1525,
3672,
7,
38659,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
4637,
13,
31499,
393,
3912,
407,
287,
4637,
13,
31499,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
4637,
62,
3672,
13,
21037,
22446,
9688,
2032,
342,
7,
33279,
13,
21037,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
890,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
796,
4637,
393,
5888,
13,
1136,
1525,
3672,
7,
38659,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
25747,
796,
4637,
13,
3672,
10,
1,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
25747,
15853,
27444,
64,
43825,
38659,
13,
6371,
10,
1,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4637,
13,
1904,
62,
2539,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
25747,
15853,
27444,
74,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4637,
13,
9662,
62,
6440,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
25747,
15853,
27444,
50,
43825,
38659,
13,
9662,
62,
6440,
10,
1,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4637,
13,
31499,
290,
18896,
7,
38659,
13,
31499,
8,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
25747,
15853,
27444,
83,
43825,
38659,
13,
31499,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
905,
62,
25747,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
4637,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
15,
8,
628,
220,
220,
220,
825,
4808,
14681,
62,
22046,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
8229,
4637,
6770,
706,
7587,
23991,
7159,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
3689,
11,
26498,
796,
2116,
13,
25811,
11,
2116,
13,
22046,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
4637,
11500,
290,
4542,
3689,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
22046,
8,
1279,
352,
290,
407,
357,
25811,
13,
4868,
393,
3689,
13,
6511,
62,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
28350,
11097,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
220,
4064,
82,
4637,
62,
3672,
685,
25811,
30866,
4064,
25064,
13,
853,
85,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
220,
4064,
82,
1377,
4868,
1,
4064,
25064,
13,
853,
85,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
5888,
796,
220,
2116,
13,
4774,
62,
32016,
628,
220,
220,
220,
220,
220,
220,
220,
611,
357,
25811,
13,
4868,
393,
3689,
13,
6511,
62,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3912,
796,
26498,
58,
15,
60,
611,
18896,
7,
22046,
8,
1875,
657,
2073,
10148,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4868,
62,
8443,
507,
7,
33279,
11,
3689,
13,
6511,
62,
4868,
8,
628,
220,
220,
220,
220,
220,
220,
220,
4637,
62,
3672,
796,
26498,
58,
15,
4083,
21037,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
2617,
62,
9662,
62,
6440,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5888,
13,
1136,
1525,
3672,
7,
25811,
13,
2617,
62,
9662,
62,
6440,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
24418,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
2949,
4637,
351,
1438,
4064,
82,
5145,
6,
4064,
3689,
13,
2617,
62,
9662,
62,
6440,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
796,
5888,
13,
1136,
1525,
3672,
7,
38659,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
24418,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
3689,
13,
2860,
62,
38659,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
2949,
4637,
351,
1438,
4064,
82,
5145,
6,
4064,
4637,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
1532,
345,
765,
284,
751,
340,
779,
366,
438,
2860,
12,
38659,
30543,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
796,
26923,
7,
38659,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
2860,
62,
38659,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
32048,
351,
1438,
4064,
82,
318,
1541,
8574,
2474,
4064,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
12381,
62,
38659,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5888,
13,
28956,
7,
38659,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
12860,
62,
38659,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
21886,
1600,
4637,
13,
6371,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
7963,
42,
62,
10116,
32,
4146,
17534,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
28712,
796,
29513,
13379,
798,
284,
294,
47999,
33047,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47999,
796,
308,
30488,
13,
15036,
3526,
62,
1136,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47999,
13,
2617,
62,
5239,
7,
38659,
13,
28712,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47999,
13,
8095,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
28712,
796,
4637,
13,
28712,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
47924,
54,
12532,
1600,
905,
62,
28712,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4637,
13,
1904,
62,
2539,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
2937,
2751,
35374,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
4637,
13,
31499,
393,
705,
10,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
42503,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3689,
13,
2617,
62,
38659,
796,
4637,
13,
6371,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3689,
13,
28712,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
3803,
62,
31499,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
3803,
62,
31499,
58,
15,
60,
14512,
705,
10,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
36142,
5794,
318,
25,
1343,
12985,
16,
10,
12985,
17,
986,
10,
12985,
45,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
13,
3803,
62,
31499,
7,
25811,
13,
3803,
62,
31499,
8,
628,
198,
220,
220,
220,
220,
220,
220,
220,
611,
220,
3689,
13,
2617,
62,
9662,
62,
6440,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
13,
9662,
62,
6440,
796,
3689,
13,
2617,
62,
9662,
62,
6440,
628,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
2617,
62,
28712,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
2617,
62,
1904,
62,
2539,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
301,
1082,
81,
13,
13564,
10786,
1639,
389,
1541,
4634,
284,
1994,
18239,
0,
59,
77,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
20,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
13,
1904,
62,
2539,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
13,
28712,
796,
3689,
13,
2617,
62,
28712,
628,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
2617,
62,
1904,
62,
2539,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
13,
1904,
62,
2539,
796,
6407,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16981,
329,
17594,
9206,
611,
4634,
257,
4637,
19016,
198,
220,
220,
220,
220,
220,
220,
220,
649,
62,
38659,
62,
6371,
796,
3689,
13,
2860,
62,
38659,
393,
3689,
13,
2617,
62,
38659,
198,
220,
220,
220,
220,
220,
220,
220,
611,
649,
62,
38659,
62,
6371,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
13,
6371,
796,
649,
62,
38659,
62,
6371,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
4637,
13,
28712,
290,
407,
4637,
13,
1904,
62,
2539,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3689,
13,
2617,
62,
28712,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
6030,
262,
9206,
329,
4637,
4064,
82,
685,
4,
82,
5974,
366,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
357,
38659,
62,
3672,
11,
4637,
13,
6371,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9206,
16,
796,
651,
6603,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
28712,
16,
8,
1279,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
35215,
1276,
307,
379,
1551,
352,
34534,
890,
2474,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
3041,
12,
4906,
262,
9206,
329,
4637,
4064,
82,
685,
4,
82,
5974,
366,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
357,
38659,
62,
3672,
11,
4637,
13,
6371,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9206,
17,
796,
651,
6603,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
9206,
16,
14512,
9206,
17,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
14478,
10879,
466,
407,
2872,
2474,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4637,
13,
28712,
796,
9206,
16,
628,
220,
220,
220,
220,
220,
220,
220,
691,
62,
21928,
796,
220,
649,
62,
38659,
62,
6371,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
3689,
13,
2617,
62,
9662,
62,
6440,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
3689,
13,
3803,
62,
31499,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
3689,
13,
2617,
62,
28712,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
3689,
13,
2617,
62,
1904,
62,
2539,
628,
220,
220,
220,
220,
220,
220,
220,
611,
220,
691,
62,
21928,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5888,
13,
21928,
7,
38659,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
4637,
628,
220,
220,
220,
825,
1057,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
21136,
7159,
290,
869,
262,
11188,
9706,
9156,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
336,
1082,
81,
796,
25064,
13,
301,
1082,
81,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
4637,
796,
2116,
13557,
14681,
62,
22046,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3689,
796,
2116,
13,
25811,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
4637,
25,
1303,
26923,
373,
3421,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
198,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
796,
33825,
11792,
7,
38659,
11,
2116,
13,
4774,
62,
32016,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
5143,
62,
21812,
393,
3689,
13,
1136,
62,
7753,
393,
3689,
13,
1996,
62,
7753,
220,
393,
3689,
13,
5143,
62,
2385,
62,
12048,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
13,
19011,
577,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
13,
8443,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
33825,
16922,
11,
11454,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
336,
1082,
81,
13,
13564,
7,
366,
5432,
39,
4049,
14320,
284,
4064,
82,
532,
4064,
82,
59,
77,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
357,
38659,
13,
3672,
11,
11454,
13,
22046,
58,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
17802,
13,
48678,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
336,
1082,
81,
13,
13564,
7203,
32048,
26827,
532,
5906,
220,
284,
2018,
284,
4064,
82,
5145,
59,
77,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
4637,
13,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
17802,
13,
18224,
11,
11454,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4049,
8189,
796,
11454,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4049,
8189,
6624,
11454,
3919,
13,
2943,
1340,
45,
31688,
2937,
1961,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
336,
1082,
81,
13,
13564,
7203,
32048,
6520,
532,
5906,
284,
2018,
284,
4064,
82,
5145,
59,
77,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
4637,
13,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
16668,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
13,
525,
687,
62,
24032,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3689,
13,
5143,
62,
2385,
62,
12048,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
13,
5143,
62,
2385,
62,
12048,
7,
25811,
13,
5143,
62,
2385,
62,
12048,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3689,
13,
5143,
62,
21812,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
13,
5143,
62,
21812,
7,
25811,
13,
5143,
62,
21812,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3689,
13,
1136,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
13,
1136,
62,
7753,
7,
25811,
13,
1136,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3689,
13,
1996,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
13,
1996,
62,
7753,
7,
25811,
13,
1996,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26678,
16366,
13,
3849,
5275,
62,
29149,
3419,
198
] | 2.024307 | 5,842 |
import asyncio
import logging
import os
import json
import etl.io_config.server_protocol as protocol
alert_dns = '127.0.0.1'
predictor_dns = '0.0.0.0'
SRV_LOG_FMT = '%(asctime)s|%(name)s|%(process)s-%(thread)s|%(levelname)s|%(message)s'
logging.basicConfig(level=logging.INFO, format=SRV_LOG_FMT)
loop = asyncio.get_event_loop()
coro = asyncio.start_server(notification_loop, predictor_dns, 8182, loop=loop)
server = loop.run_until_complete(coro)
# Serve requests until Ctrl+C is pressed
logging.info('Serving on {}'.format(server.sockets[0].getsockname()))
try:
loop.run_forever()
except KeyboardInterrupt:
pass
# Close the server
server.close()
loop.run_until_complete(server.wait_closed())
loop.close()
| [
11748,
30351,
952,
198,
11748,
18931,
198,
11748,
28686,
198,
11748,
33918,
198,
11748,
2123,
75,
13,
952,
62,
11250,
13,
15388,
62,
11235,
4668,
355,
8435,
198,
198,
44598,
62,
67,
5907,
796,
705,
16799,
13,
15,
13,
15,
13,
16,
6,
198,
79,
17407,
273,
62,
67,
5907,
796,
705,
15,
13,
15,
13,
15,
13,
15,
6,
198,
12562,
53,
62,
25294,
62,
37,
13752,
796,
705,
4,
7,
292,
310,
524,
8,
82,
91,
4,
7,
3672,
8,
82,
91,
4,
7,
14681,
8,
82,
12,
4,
7,
16663,
8,
82,
91,
4,
7,
5715,
3672,
8,
82,
91,
4,
7,
20500,
8,
82,
6,
198,
6404,
2667,
13,
35487,
16934,
7,
5715,
28,
6404,
2667,
13,
10778,
11,
5794,
28,
12562,
53,
62,
25294,
62,
37,
13752,
8,
628,
628,
198,
198,
26268,
796,
30351,
952,
13,
1136,
62,
15596,
62,
26268,
3419,
198,
10215,
78,
796,
30351,
952,
13,
9688,
62,
15388,
7,
1662,
2649,
62,
26268,
11,
41568,
62,
67,
5907,
11,
807,
24294,
11,
9052,
28,
26268,
8,
198,
15388,
796,
9052,
13,
5143,
62,
28446,
62,
20751,
7,
10215,
78,
8,
198,
198,
2,
35557,
7007,
1566,
19212,
10,
34,
318,
12070,
198,
6404,
2667,
13,
10951,
10786,
11838,
278,
319,
23884,
4458,
18982,
7,
15388,
13,
82,
11603,
58,
15,
4083,
11407,
735,
3672,
3419,
4008,
198,
28311,
25,
198,
220,
9052,
13,
5143,
62,
754,
332,
3419,
198,
16341,
31973,
9492,
3622,
25,
198,
220,
1208,
198,
198,
2,
13872,
262,
4382,
198,
15388,
13,
19836,
3419,
198,
26268,
13,
5143,
62,
28446,
62,
20751,
7,
15388,
13,
17077,
62,
20225,
28955,
198,
26268,
13,
19836,
3419,
198
] | 2.573477 | 279 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Standard set of plugins."""
import base64
import datetime
import os
import sys
import netaddr
from oslo_config import cfg
from oslo_utils import units
import six
from ironic_inspector.common.i18n import _, _LC, _LE, _LI, _LW
from ironic_inspector import conf
from ironic_inspector.plugins import base
from ironic_inspector import utils
CONF = cfg.CONF
LOG = utils.getProcessingLogger('ironic_inspector.plugins.standard')
class RootDiskSelectionHook(base.ProcessingHook):
"""Smarter root disk selection using Ironic root device hints.
This hook must always go before SchedulerHook, otherwise root_disk field
might not be updated.
"""
def before_update(self, introspection_data, node_info, **kwargs):
"""Detect root disk from root device hints and IPA inventory."""
hints = node_info.node().properties.get('root_device')
if not hints:
LOG.debug('Root device hints are not provided',
node_info=node_info, data=introspection_data)
return
inventory = introspection_data.get('inventory')
if not inventory:
raise utils.Error(
_('Root device selection requires ironic-python-agent '
'as an inspection ramdisk'),
node_info=node_info, data=introspection_data)
disks = inventory.get('disks', [])
if not disks:
raise utils.Error(_('No disks found'),
node_info=node_info, data=introspection_data)
for disk in disks:
properties = disk.copy()
# Root device hints are in GiB, data from IPA is in bytes
properties['size'] //= units.Gi
for name, value in hints.items():
actual = properties.get(name)
if actual != value:
LOG.debug('Disk %(disk)s does not satisfy hint '
'%(name)s=%(value)s, actual value is %(actual)s',
{'disk': disk.get('name'), 'name': name,
'value': value, 'actual': actual},
node_info=node_info, data=introspection_data)
break
else:
LOG.debug('Disk %(disk)s of size %(size)s satisfies '
'root device hints',
{'disk': disk.get('name'), 'size': disk['size']},
node_info=node_info, data=introspection_data)
introspection_data['root_disk'] = disk
return
raise utils.Error(_('No disks satisfied root device hints'),
node_info=node_info, data=introspection_data)
class SchedulerHook(base.ProcessingHook):
"""Nova scheduler required properties."""
KEYS = ('cpus', 'cpu_arch', 'memory_mb', 'local_gb')
def before_update(self, introspection_data, node_info, **kwargs):
"""Update node with scheduler properties."""
inventory = introspection_data.get('inventory')
errors = []
root_disk = introspection_data.get('root_disk')
if root_disk:
introspection_data['local_gb'] = root_disk['size'] // units.Gi
if CONF.processing.disk_partitioning_spacing:
introspection_data['local_gb'] -= 1
elif inventory:
errors.append(_('root disk is not supplied by the ramdisk and '
'root_disk_selection hook is not enabled'))
if inventory:
try:
introspection_data['cpus'] = int(inventory['cpu']['count'])
introspection_data['cpu_arch'] = six.text_type(
inventory['cpu']['architecture'])
except (KeyError, ValueError, TypeError):
errors.append(_('malformed or missing CPU information: %s') %
inventory.get('cpu'))
try:
introspection_data['memory_mb'] = int(
inventory['memory']['physical_mb'])
except (KeyError, ValueError, TypeError):
errors.append(_('malformed or missing memory information: %s; '
'introspection requires physical memory size '
'from dmidecode') %
inventory.get('memory'))
else:
LOG.warning(_LW('No inventory provided: using old bash ramdisk '
'is deprecated, please switch to '
'ironic-python-agent'),
node_info=node_info, data=introspection_data)
missing = [key for key in self.KEYS
if not introspection_data.get(key)]
if missing:
raise utils.Error(
_('The following required parameters are missing: %s') %
missing,
node_info=node_info, data=introspection_data)
if errors:
raise utils.Error(_('The following problems encountered: %s') %
'; '.join(errors),
node_info=node_info, data=introspection_data)
LOG.info(_LI('Discovered data: CPUs: %(cpus)s %(cpu_arch)s, '
'memory %(memory_mb)s MiB, disk %(local_gb)s GiB'),
{key: introspection_data.get(key) for key in self.KEYS},
node_info=node_info, data=introspection_data)
overwrite = CONF.processing.overwrite_existing
properties = {key: str(introspection_data[key])
for key in self.KEYS if overwrite or
not node_info.node().properties.get(key)}
node_info.update_properties(**properties)
class ValidateInterfacesHook(base.ProcessingHook):
"""Hook to validate network interfaces."""
def _get_interfaces(self, data=None):
"""Convert inventory to a dict with interfaces.
:return: dict interface name -> dict with keys 'mac' and 'ip'
"""
result = {}
inventory = data.get('inventory', {})
if inventory:
for iface in inventory.get('interfaces', ()):
name = iface.get('name')
mac = iface.get('mac_address')
ip = iface.get('ipv4_address')
if not name:
LOG.error(_LE('Malformed interface record: %s'),
iface, data=data)
continue
LOG.debug('Found interface %(name)s with MAC "%(mac)s" and '
'IP address "%(ip)s"',
{'name': name, 'mac': mac, 'ip': ip}, data=data)
result[name] = {'ip': ip, 'mac': mac}
else:
LOG.warning(_LW('No inventory provided: using old bash ramdisk '
'is deprecated, please switch to '
'ironic-python-agent'), data=data)
result = data.get('interfaces')
return result
def _validate_interfaces(self, interfaces, data=None):
"""Validate interfaces on correctness and suitability.
:return: dict interface name -> dict with keys 'mac' and 'ip'
"""
if not interfaces:
raise utils.Error(_('No interfaces supplied by the ramdisk'),
data=data)
pxe_mac = utils.get_pxe_mac(data)
if not pxe_mac and CONF.processing.add_ports == 'pxe':
LOG.warning(_LW('No boot interface provided in the introspection '
'data, will add all ports with IP addresses'))
result = {}
for name, iface in interfaces.items():
mac = iface.get('mac')
ip = iface.get('ip')
if not mac:
LOG.debug('Skipping interface %s without link information',
name, data=data)
continue
if not utils.is_valid_mac(mac):
LOG.warning(_LW('MAC %(mac)s for interface %(name)s is not '
'valid, skipping'),
{'mac': mac, 'name': name},
data=data)
continue
mac = mac.lower()
if name == 'lo' or (ip and netaddr.IPAddress(ip).is_loopback()):
LOG.debug('Skipping local interface %s', name, data=data)
continue
if (CONF.processing.add_ports == 'pxe' and pxe_mac
and mac != pxe_mac):
LOG.debug('Skipping interface %s as it was not PXE booting',
name, data=data)
continue
elif CONF.processing.add_ports != 'all' and not ip:
LOG.debug('Skipping interface %s as it did not have '
'an IP address assigned during the ramdisk run',
name, data=data)
continue
result[name] = {'ip': ip, 'mac': mac.lower()}
if not result:
raise utils.Error(_('No suitable interfaces found in %s') %
interfaces, data=data)
return result
def before_processing(self, introspection_data, **kwargs):
"""Validate information about network interfaces."""
bmc_address = utils.get_ipmi_address_from_data(introspection_data)
if bmc_address:
introspection_data['ipmi_address'] = bmc_address
else:
LOG.debug('No BMC address provided in introspection data, '
'assuming virtual environment', data=introspection_data)
all_interfaces = self._get_interfaces(introspection_data)
interfaces = self._validate_interfaces(all_interfaces,
introspection_data)
LOG.info(_LI('Using network interface(s): %s'),
', '.join('%s %s' % (name, items)
for (name, items) in interfaces.items()),
data=introspection_data)
introspection_data['all_interfaces'] = all_interfaces
introspection_data['interfaces'] = interfaces
valid_macs = [iface['mac'] for iface in interfaces.values()]
introspection_data['macs'] = valid_macs
def before_update(self, introspection_data, node_info, **kwargs):
"""Drop ports that are not present in the data."""
if CONF.processing.keep_ports == 'present':
expected_macs = {
iface['mac']
for iface in introspection_data['all_interfaces'].values()
}
elif CONF.processing.keep_ports == 'added':
expected_macs = set(introspection_data['macs'])
else:
return
# list is required as we modify underlying dict
for port in list(node_info.ports().values()):
if port.address not in expected_macs:
LOG.info(_LI("Deleting port %(port)s as its MAC %(mac)s is "
"not in expected MAC list %(expected)s"),
{'port': port.uuid,
'mac': port.address,
'expected': list(sorted(expected_macs))},
node_info=node_info, data=introspection_data)
node_info.delete_port(port)
class RamdiskErrorHook(base.ProcessingHook):
"""Hook to process error send from the ramdisk."""
DATETIME_FORMAT = '%Y.%m.%d_%H.%M.%S_%f'
| [
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
198,
2,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
37811,
23615,
900,
286,
20652,
526,
15931,
198,
198,
11748,
2779,
2414,
198,
11748,
4818,
8079,
198,
11748,
28686,
198,
11748,
25064,
198,
198,
11748,
2010,
29851,
198,
6738,
28686,
5439,
62,
11250,
1330,
30218,
70,
198,
6738,
28686,
5439,
62,
26791,
1330,
4991,
198,
11748,
2237,
198,
198,
6738,
25304,
62,
1040,
806,
273,
13,
11321,
13,
72,
1507,
77,
1330,
4808,
11,
4808,
5639,
11,
4808,
2538,
11,
4808,
31271,
11,
4808,
43,
54,
198,
6738,
25304,
62,
1040,
806,
273,
1330,
1013,
198,
6738,
25304,
62,
1040,
806,
273,
13,
37390,
1330,
2779,
198,
6738,
25304,
62,
1040,
806,
273,
1330,
3384,
4487,
198,
198,
10943,
37,
796,
30218,
70,
13,
10943,
37,
628,
198,
25294,
796,
3384,
4487,
13,
1136,
18709,
278,
11187,
1362,
10786,
1934,
291,
62,
1040,
806,
273,
13,
37390,
13,
20307,
11537,
628,
198,
4871,
20410,
40961,
4653,
1564,
39,
566,
7,
8692,
13,
18709,
278,
39,
566,
2599,
198,
220,
220,
220,
37227,
7556,
2571,
6808,
11898,
6356,
1262,
314,
4565,
6808,
3335,
20269,
13,
628,
220,
220,
220,
770,
8011,
1276,
1464,
467,
878,
27774,
18173,
39,
566,
11,
4306,
6808,
62,
39531,
2214,
198,
220,
220,
220,
1244,
407,
307,
6153,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
878,
62,
19119,
7,
944,
11,
18951,
31308,
62,
7890,
11,
10139,
62,
10951,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
47504,
6808,
11898,
422,
6808,
3335,
20269,
290,
27966,
13184,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
20269,
796,
10139,
62,
10951,
13,
17440,
22446,
48310,
13,
1136,
10786,
15763,
62,
25202,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
20269,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
30016,
3335,
20269,
389,
407,
2810,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
220,
220,
220,
220,
13184,
796,
18951,
31308,
62,
7890,
13,
1136,
10786,
24807,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
13184,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
3384,
4487,
13,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
10786,
30016,
3335,
6356,
4433,
25304,
12,
29412,
12,
25781,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
292,
281,
15210,
15770,
39531,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
32505,
796,
13184,
13,
1136,
10786,
6381,
591,
3256,
685,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
32505,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
3384,
4487,
13,
12331,
28264,
10786,
2949,
32505,
1043,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
11898,
287,
32505,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6608,
796,
11898,
13,
30073,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
20410,
3335,
20269,
389,
287,
8118,
33,
11,
1366,
422,
27966,
318,
287,
9881,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6608,
17816,
7857,
20520,
3373,
28,
4991,
13,
33704,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1438,
11,
1988,
287,
20269,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4036,
796,
6608,
13,
1136,
7,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4036,
14512,
1988,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
40961,
4064,
7,
39531,
8,
82,
857,
407,
15959,
9254,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4,
7,
3672,
8,
82,
28,
4,
7,
8367,
8,
82,
11,
4036,
1988,
318,
4064,
7,
50039,
8,
82,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
6,
39531,
10354,
11898,
13,
1136,
10786,
3672,
33809,
705,
3672,
10354,
1438,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8367,
10354,
1988,
11,
705,
50039,
10354,
4036,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
40961,
4064,
7,
39531,
8,
82,
286,
2546,
4064,
7,
7857,
8,
82,
45104,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15763,
3335,
20269,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
6,
39531,
10354,
11898,
13,
1136,
10786,
3672,
33809,
705,
7857,
10354,
11898,
17816,
7857,
20520,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
15763,
62,
39531,
20520,
796,
11898,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
220,
220,
220,
220,
5298,
3384,
4487,
13,
12331,
28264,
10786,
2949,
32505,
11378,
6808,
3335,
20269,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
198,
4871,
27774,
18173,
39,
566,
7,
8692,
13,
18709,
278,
39,
566,
2599,
198,
220,
220,
220,
37227,
45,
10071,
6038,
18173,
2672,
6608,
526,
15931,
628,
220,
220,
220,
47134,
16309,
796,
19203,
13155,
385,
3256,
705,
36166,
62,
998,
3256,
705,
31673,
62,
2022,
3256,
705,
12001,
62,
22296,
11537,
628,
220,
220,
220,
825,
878,
62,
19119,
7,
944,
11,
18951,
31308,
62,
7890,
11,
10139,
62,
10951,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
10260,
10139,
351,
6038,
18173,
6608,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
13184,
796,
18951,
31308,
62,
7890,
13,
1136,
10786,
24807,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8563,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
6808,
62,
39531,
796,
18951,
31308,
62,
7890,
13,
1136,
10786,
15763,
62,
39531,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
6808,
62,
39531,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
12001,
62,
22296,
20520,
796,
6808,
62,
39531,
17816,
7857,
20520,
3373,
4991,
13,
33704,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
7102,
37,
13,
36948,
13,
39531,
62,
3911,
653,
278,
62,
2777,
4092,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
12001,
62,
22296,
20520,
48185,
352,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
13184,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8563,
13,
33295,
28264,
10786,
15763,
11898,
318,
407,
14275,
416,
262,
15770,
39531,
290,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15763,
62,
39531,
62,
49283,
8011,
318,
407,
9343,
6,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
611,
13184,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
13155,
385,
20520,
796,
493,
7,
24807,
17816,
36166,
6,
7131,
6,
9127,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
36166,
62,
998,
20520,
796,
2237,
13,
5239,
62,
4906,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13184,
17816,
36166,
6,
7131,
6,
998,
5712,
495,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
357,
9218,
12331,
11,
11052,
12331,
11,
5994,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8563,
13,
33295,
28264,
10786,
7617,
12214,
393,
4814,
9135,
1321,
25,
4064,
82,
11537,
4064,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13184,
13,
1136,
10786,
36166,
6,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
31673,
62,
2022,
20520,
796,
493,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13184,
17816,
31673,
6,
7131,
6,
42854,
62,
2022,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
357,
9218,
12331,
11,
11052,
12331,
11,
5994,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8563,
13,
33295,
28264,
10786,
7617,
12214,
393,
4814,
4088,
1321,
25,
4064,
82,
26,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
600,
305,
31308,
4433,
3518,
4088,
2546,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6738,
288,
76,
485,
8189,
11537,
4064,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13184,
13,
1136,
10786,
31673,
6,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
43917,
28264,
43,
54,
10786,
2949,
13184,
2810,
25,
1262,
1468,
27334,
15770,
39531,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
271,
39224,
11,
3387,
5078,
284,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1934,
291,
12,
29412,
12,
25781,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4814,
796,
685,
2539,
329,
1994,
287,
2116,
13,
7336,
16309,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
18951,
31308,
62,
7890,
13,
1136,
7,
2539,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4814,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
3384,
4487,
13,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
10786,
464,
1708,
2672,
10007,
389,
4814,
25,
4064,
82,
11537,
4064,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4814,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
8563,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
3384,
4487,
13,
12331,
28264,
10786,
464,
1708,
2761,
12956,
25,
4064,
82,
11537,
4064,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
26,
45302,
22179,
7,
48277,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
10951,
28264,
31271,
10786,
15642,
2557,
1366,
25,
32340,
25,
4064,
7,
13155,
385,
8,
82,
4064,
7,
36166,
62,
998,
8,
82,
11,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
31673,
4064,
7,
31673,
62,
2022,
8,
82,
13756,
33,
11,
11898,
4064,
7,
12001,
62,
22296,
8,
82,
8118,
33,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
2539,
25,
18951,
31308,
62,
7890,
13,
1136,
7,
2539,
8,
329,
1994,
287,
2116,
13,
7336,
16309,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
49312,
796,
7102,
37,
13,
36948,
13,
2502,
13564,
62,
25687,
198,
220,
220,
220,
220,
220,
220,
220,
6608,
796,
1391,
2539,
25,
965,
7,
600,
305,
31308,
62,
7890,
58,
2539,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1994,
287,
2116,
13,
7336,
16309,
611,
49312,
393,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
407,
10139,
62,
10951,
13,
17440,
22446,
48310,
13,
1136,
7,
2539,
38165,
198,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
13,
19119,
62,
48310,
7,
1174,
48310,
8,
628,
198,
4871,
3254,
20540,
9492,
32186,
39,
566,
7,
8692,
13,
18709,
278,
39,
566,
2599,
198,
220,
220,
220,
37227,
39,
566,
284,
26571,
3127,
20314,
526,
15931,
628,
220,
220,
220,
825,
4808,
1136,
62,
3849,
32186,
7,
944,
11,
1366,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
3103,
1851,
13184,
284,
257,
8633,
351,
20314,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
8633,
7071,
1438,
4613,
8633,
351,
8251,
705,
20285,
6,
290,
705,
541,
6,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
13184,
796,
1366,
13,
1136,
10786,
24807,
3256,
23884,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
13184,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
611,
558,
287,
13184,
13,
1136,
10786,
3849,
32186,
3256,
7499,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
611,
558,
13,
1136,
10786,
3672,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8352,
796,
611,
558,
13,
1136,
10786,
20285,
62,
21975,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20966,
796,
611,
558,
13,
1136,
10786,
541,
85,
19,
62,
21975,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
1438,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
18224,
28264,
2538,
10786,
15029,
12214,
7071,
1700,
25,
4064,
82,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
558,
11,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
21077,
7071,
4064,
7,
3672,
8,
82,
351,
20582,
36521,
7,
20285,
8,
82,
1,
290,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4061,
2209,
36521,
7,
541,
8,
82,
1,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
6,
3672,
10354,
1438,
11,
705,
20285,
10354,
8352,
11,
705,
541,
10354,
20966,
5512,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
58,
3672,
60,
796,
1391,
6,
541,
10354,
20966,
11,
705,
20285,
10354,
8352,
92,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
43917,
28264,
43,
54,
10786,
2949,
13184,
2810,
25,
1262,
1468,
27334,
15770,
39531,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
271,
39224,
11,
3387,
5078,
284,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1934,
291,
12,
29412,
12,
25781,
33809,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
1366,
13,
1136,
10786,
3849,
32186,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1255,
628,
220,
220,
220,
825,
4808,
12102,
378,
62,
3849,
32186,
7,
944,
11,
20314,
11,
1366,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
7762,
20540,
20314,
319,
29409,
290,
6050,
1799,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
8633,
7071,
1438,
4613,
8633,
351,
8251,
705,
20285,
6,
290,
705,
541,
6,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
20314,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
3384,
4487,
13,
12331,
28264,
10786,
2949,
20314,
14275,
416,
262,
15770,
39531,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
28,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
279,
27705,
62,
20285,
796,
3384,
4487,
13,
1136,
62,
8416,
68,
62,
20285,
7,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
279,
27705,
62,
20285,
290,
7102,
37,
13,
36948,
13,
2860,
62,
3742,
6624,
705,
8416,
68,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
43917,
28264,
43,
54,
10786,
2949,
6297,
7071,
2810,
287,
262,
18951,
31308,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
11,
481,
751,
477,
14090,
351,
6101,
9405,
6,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1438,
11,
611,
558,
287,
20314,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8352,
796,
611,
558,
13,
1136,
10786,
20285,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20966,
796,
611,
558,
13,
1136,
10786,
541,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
8352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
50,
4106,
2105,
7071,
4064,
82,
1231,
2792,
1321,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
11,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
3384,
4487,
13,
271,
62,
12102,
62,
20285,
7,
20285,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
43917,
28264,
43,
54,
10786,
44721,
4064,
7,
20285,
8,
82,
329,
7071,
4064,
7,
3672,
8,
82,
318,
407,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12102,
11,
31017,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
6,
20285,
10354,
8352,
11,
705,
3672,
10354,
1438,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8352,
796,
8352,
13,
21037,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1438,
6624,
705,
5439,
6,
393,
357,
541,
290,
2010,
29851,
13,
4061,
20231,
7,
541,
737,
271,
62,
26268,
1891,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
50,
4106,
2105,
1957,
7071,
4064,
82,
3256,
1438,
11,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
10943,
37,
13,
36948,
13,
2860,
62,
3742,
6624,
705,
8416,
68,
6,
290,
279,
27705,
62,
20285,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
8352,
14512,
279,
27705,
62,
20285,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
50,
4106,
2105,
7071,
4064,
82,
355,
340,
373,
407,
350,
55,
36,
6297,
278,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
11,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
7102,
37,
13,
36948,
13,
2860,
62,
3742,
14512,
705,
439,
6,
290,
407,
20966,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
50,
4106,
2105,
7071,
4064,
82,
355,
340,
750,
407,
423,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
272,
6101,
2209,
8686,
1141,
262,
15770,
39531,
1057,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
11,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
58,
3672,
60,
796,
1391,
6,
541,
10354,
20966,
11,
705,
20285,
10354,
8352,
13,
21037,
3419,
92,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
1255,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
3384,
4487,
13,
12331,
28264,
10786,
2949,
11080,
20314,
1043,
287,
4064,
82,
11537,
4064,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20314,
11,
1366,
28,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1255,
628,
220,
220,
220,
825,
878,
62,
36948,
7,
944,
11,
18951,
31308,
62,
7890,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
7762,
20540,
1321,
546,
3127,
20314,
526,
15931,
628,
220,
220,
220,
220,
220,
220,
220,
275,
23209,
62,
21975,
796,
3384,
4487,
13,
1136,
62,
541,
11632,
62,
21975,
62,
6738,
62,
7890,
7,
600,
305,
31308,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
275,
23209,
62,
21975,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
541,
11632,
62,
21975,
20520,
796,
275,
23209,
62,
21975,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
24442,
10786,
2949,
40714,
2209,
2810,
287,
18951,
31308,
1366,
11,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
32935,
7166,
2858,
3256,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
477,
62,
3849,
32186,
796,
2116,
13557,
1136,
62,
3849,
32186,
7,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
20314,
796,
2116,
13557,
12102,
378,
62,
3849,
32186,
7,
439,
62,
3849,
32186,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
10951,
28264,
31271,
10786,
12814,
3127,
7071,
7,
82,
2599,
4064,
82,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46083,
45302,
22179,
10786,
4,
82,
4064,
82,
6,
4064,
357,
3672,
11,
3709,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
357,
3672,
11,
3709,
8,
287,
20314,
13,
23814,
3419,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
28,
600,
305,
31308,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
439,
62,
3849,
32186,
20520,
796,
477,
62,
3849,
32186,
198,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
3849,
32186,
20520,
796,
20314,
198,
220,
220,
220,
220,
220,
220,
220,
4938,
62,
76,
16436,
796,
685,
361,
558,
17816,
20285,
20520,
329,
611,
558,
287,
20314,
13,
27160,
3419,
60,
198,
220,
220,
220,
220,
220,
220,
220,
18951,
31308,
62,
7890,
17816,
76,
16436,
20520,
796,
4938,
62,
76,
16436,
628,
220,
220,
220,
825,
878,
62,
19119,
7,
944,
11,
18951,
31308,
62,
7890,
11,
10139,
62,
10951,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
26932,
14090,
326,
389,
407,
1944,
287,
262,
1366,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7102,
37,
13,
36948,
13,
14894,
62,
3742,
6624,
705,
25579,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2938,
62,
76,
16436,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
558,
17816,
20285,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
611,
558,
287,
18951,
31308,
62,
7890,
17816,
439,
62,
3849,
32186,
6,
4083,
27160,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
7102,
37,
13,
36948,
13,
14894,
62,
3742,
6624,
705,
29373,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2938,
62,
76,
16436,
796,
900,
7,
600,
305,
31308,
62,
7890,
17816,
76,
16436,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1351,
318,
2672,
355,
356,
13096,
10238,
8633,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2493,
287,
1351,
7,
17440,
62,
10951,
13,
3742,
22446,
27160,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2493,
13,
21975,
407,
287,
2938,
62,
76,
16436,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
10951,
28264,
31271,
7203,
5005,
293,
889,
2493,
4064,
7,
634,
8,
82,
355,
663,
20582,
4064,
7,
20285,
8,
82,
318,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1662,
287,
2938,
20582,
1351,
4064,
7,
40319,
8,
82,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
6,
634,
10354,
2493,
13,
12303,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
20285,
10354,
2493,
13,
21975,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
40319,
10354,
1351,
7,
82,
9741,
7,
40319,
62,
76,
16436,
4008,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
28,
17440,
62,
10951,
11,
1366,
28,
600,
305,
31308,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
10951,
13,
33678,
62,
634,
7,
634,
8,
628,
198,
4871,
7431,
39531,
12331,
39,
566,
7,
8692,
13,
18709,
278,
39,
566,
2599,
198,
220,
220,
220,
37227,
39,
566,
284,
1429,
4049,
3758,
422,
262,
15770,
39531,
526,
15931,
628,
220,
220,
220,
360,
1404,
2767,
12789,
62,
21389,
1404,
796,
705,
4,
56,
13,
4,
76,
13,
4,
67,
62,
4,
39,
13,
4,
44,
13,
4,
50,
62,
4,
69,
6,
198
] | 2.078603 | 5,814 |
from .cgevolver import CGEvolver
from .eulerevolver import EulerEvolver
from .rungekuttaevolver import RungeKuttaEvolver
from .spintevolver import SpinTEvolver
from .spinxferevolver import SpinXferEvolver
from .uhh_thetaevolver import UHH_ThetaEvolver
from .xf_thermheunevolver import Xf_ThermHeunEvolver
from .xf_thermspinxferevolver import Xf_ThermSpinXferEvolver
| [
6738,
764,
66,
469,
10396,
332,
1330,
327,
8264,
10396,
332,
198,
6738,
764,
68,
2261,
260,
10396,
332,
1330,
412,
18173,
36,
10396,
332,
198,
6738,
764,
5143,
469,
74,
315,
8326,
1990,
14375,
1330,
5660,
469,
42,
315,
8326,
36,
10396,
332,
198,
6738,
764,
2777,
600,
1990,
14375,
1330,
28002,
9328,
10396,
332,
198,
6738,
764,
39706,
26152,
567,
10396,
332,
1330,
28002,
55,
2232,
36,
10396,
332,
198,
6738,
764,
7456,
71,
62,
1169,
8326,
1990,
14375,
1330,
471,
16768,
62,
464,
8326,
36,
10396,
332,
198,
6738,
764,
26152,
62,
490,
76,
258,
1726,
10396,
332,
1330,
1395,
69,
62,
35048,
76,
1544,
403,
36,
10396,
332,
198,
6738,
764,
26152,
62,
490,
907,
11635,
26152,
567,
10396,
332,
1330,
1395,
69,
62,
35048,
76,
4561,
259,
55,
2232,
36,
10396,
332,
198
] | 2.652174 | 138 |
from django.conf import settings
from django.http import HttpResponseForbidden
target_methods = settings.METHOD_ORIGIN.keys()
http_methods = ['CONNECT', 'DELETE', 'GET', 'HEAD', 'OPTIONS', 'POST', 'PUT'] | [
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
4023,
1330,
367,
29281,
31077,
1890,
37978,
198,
198,
16793,
62,
24396,
82,
796,
6460,
13,
49273,
62,
1581,
3528,
1268,
13,
13083,
3419,
198,
198,
4023,
62,
24396,
82,
796,
37250,
10943,
48842,
3256,
705,
7206,
2538,
9328,
3256,
705,
18851,
3256,
705,
37682,
3256,
705,
3185,
51,
11053,
3256,
705,
32782,
3256,
705,
30076,
20520
] | 2.971014 | 69 |
''' Crie um programa onde o usuário possa digitar sete valores numéricos e cadastre-os
em uma lista única que mantenha separados os valores pares e ímpares.
No final, mostre os valores pares e ímpares em ordem crescente.'''
'''princ = []
impar= []
par= []
for c in range (0,7):
n = int(input('Digite um número: '))
if n % 2 == 0:
par.append(n)
else:
impar.append(n)
princ.append(sorted(impar[:]))
princ.append(sorted(par[:]))
print(f'Os valores pares digitados foram: {princ[0]}\n'
f'Os valores ímpares digitados foram: {princ[1]}')'''
#guanabara methods
núm = [[], []]
valor = 0
for c in range (1,8):
valor = int(input(f'Digite o {c}ª valor: '))
if valor %2 ==0:
núm[0].append(valor)
else:
núm[1].append(valor)
print('~'*30)
núm[0].sort()
núm[1].sort()
print(f'Os valores pares digitados foram: {núm[0]}')
print(f'Os valores ímpares digitados foram: {núm[1]}') | [
7061,
6,
327,
5034,
23781,
1430,
64,
319,
2934,
267,
514,
84,
6557,
27250,
1184,
64,
3100,
7940,
900,
68,
1188,
2850,
997,
2634,
1173,
418,
304,
20603,
459,
260,
12,
418,
198,
368,
334,
2611,
1351,
64,
6184,
118,
77,
3970,
8358,
24818,
268,
3099,
2880,
22484,
28686,
1188,
2850,
279,
3565,
304,
6184,
255,
3149,
3565,
13,
198,
2949,
2457,
11,
749,
260,
28686,
1188,
2850,
279,
3565,
304,
6184,
255,
3149,
3565,
795,
2760,
368,
269,
26505,
68,
2637,
7061,
198,
198,
7061,
6,
1050,
1939,
796,
17635,
198,
320,
1845,
28,
17635,
198,
1845,
28,
17635,
198,
1640,
269,
287,
2837,
357,
15,
11,
22,
2599,
198,
220,
220,
220,
299,
796,
493,
7,
15414,
10786,
19511,
578,
23781,
299,
21356,
647,
78,
25,
705,
4008,
198,
220,
220,
220,
611,
299,
4064,
362,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1582,
13,
33295,
7,
77,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
848,
283,
13,
33295,
7,
77,
8,
198,
1050,
1939,
13,
33295,
7,
82,
9741,
7,
320,
1845,
58,
47715,
4008,
198,
1050,
1939,
13,
33295,
7,
82,
9741,
7,
1845,
58,
47715,
4008,
198,
198,
4798,
7,
69,
6,
16748,
1188,
2850,
279,
3565,
16839,
22484,
329,
321,
25,
1391,
1050,
1939,
58,
15,
60,
32239,
77,
6,
198,
220,
220,
220,
220,
220,
277,
6,
16748,
1188,
2850,
6184,
255,
3149,
3565,
16839,
22484,
329,
321,
25,
220,
1391,
1050,
1939,
58,
16,
48999,
11537,
7061,
6,
198,
198,
2,
5162,
272,
397,
3301,
5050,
198,
198,
77,
21356,
76,
796,
16410,
4357,
685,
11907,
198,
2100,
273,
796,
657,
198,
1640,
269,
287,
2837,
357,
16,
11,
23,
2599,
198,
220,
220,
220,
1188,
273,
796,
493,
7,
15414,
7,
69,
6,
19511,
578,
267,
1391,
66,
92,
126,
103,
1188,
273,
25,
705,
4008,
198,
220,
220,
220,
611,
1188,
273,
4064,
17,
6624,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
299,
21356,
76,
58,
15,
4083,
33295,
7,
2100,
273,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
299,
21356,
76,
58,
16,
4083,
33295,
7,
2100,
273,
8,
198,
4798,
10786,
93,
6,
9,
1270,
8,
198,
77,
21356,
76,
58,
15,
4083,
30619,
3419,
198,
77,
21356,
76,
58,
16,
4083,
30619,
3419,
198,
4798,
7,
69,
6,
16748,
1188,
2850,
279,
3565,
16839,
22484,
329,
321,
25,
1391,
77,
21356,
76,
58,
15,
48999,
11537,
198,
4798,
7,
69,
6,
16748,
1188,
2850,
6184,
255,
3149,
3565,
16839,
22484,
329,
321,
25,
1391,
77,
21356,
76,
58,
16,
48999,
11537
] | 2.076063 | 447 |
import time
from slackclient import SlackClient
import common
import config
if __name__ == '__main__':
conn = SlackConn(config.slack_token)
conn.upload_img('/Users/omibot/data/omibot/sentry/Dienstag, 31. Oktober 2017 um 14:15:51/Image2.jpeg', '#allgemein')
| [
11748,
640,
198,
198,
6738,
30740,
16366,
1330,
36256,
11792,
198,
198,
11748,
2219,
198,
11748,
4566,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
48260,
796,
36256,
37321,
7,
11250,
13,
6649,
441,
62,
30001,
8,
198,
220,
220,
220,
48260,
13,
25850,
62,
9600,
10786,
14,
14490,
14,
296,
571,
313,
14,
7890,
14,
296,
571,
313,
14,
82,
13000,
14,
35,
2013,
301,
363,
11,
3261,
13,
6762,
1462,
527,
2177,
23781,
1478,
25,
1314,
25,
4349,
14,
5159,
17,
13,
73,
22071,
3256,
705,
2,
439,
24090,
68,
259,
11537,
198
] | 2.596154 | 104 |
import os
from datetime import datetime
| [
11748,
28686,
198,
6738,
4818,
8079,
1330,
4818,
8079,
628
] | 4.1 | 10 |
"""
File: draw_line.py
Name: Kevin Fang
-------------------------
TODO:
"""
from campy.graphics.gobjects import GOval, GLine
from campy.graphics.gwindow import GWindow
from campy.gui.events.mouse import onmouseclicked
# Assign window as constant to create canvas
window = GWindow()
SIZE = 10
# a, b ,c ,d are global variables, so define them as 0 value
a = b = c = d = 0
def main():
"""
This program creates lines on an instance of GWindow class.
There is a circle indicating the user’s first click. A line appears
at the condition where the circle disappears as the user clicks
on the canvas for the second time.
"""
onmouseclicked(set_point)
if __name__ == "__main__":
main()
| [
37811,
201,
198,
8979,
25,
3197,
62,
1370,
13,
9078,
201,
198,
5376,
25,
7939,
24468,
201,
198,
22369,
12,
201,
198,
51,
3727,
46,
25,
201,
198,
37811,
201,
198,
6738,
1413,
88,
13,
70,
11549,
13,
70,
48205,
1330,
10351,
2100,
11,
10188,
500,
201,
198,
6738,
1413,
88,
13,
70,
11549,
13,
70,
17497,
1330,
402,
27703,
201,
198,
6738,
1413,
88,
13,
48317,
13,
31534,
13,
35888,
1330,
319,
35888,
565,
9484,
201,
198,
201,
198,
2,
2195,
570,
4324,
355,
6937,
284,
2251,
21978,
201,
198,
17497,
796,
402,
27703,
3419,
201,
198,
33489,
796,
838,
201,
198,
2,
257,
11,
275,
837,
66,
837,
67,
389,
3298,
9633,
11,
523,
8160,
606,
355,
657,
1988,
201,
198,
64,
796,
275,
796,
269,
796,
288,
796,
657,
201,
198,
201,
198,
201,
198,
4299,
1388,
33529,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
770,
1430,
8075,
3951,
319,
281,
4554,
286,
402,
27703,
1398,
13,
201,
198,
220,
220,
220,
1318,
318,
257,
9197,
12739,
262,
2836,
447,
247,
82,
717,
3904,
13,
317,
1627,
3568,
201,
198,
220,
220,
220,
379,
262,
4006,
810,
262,
9197,
27934,
355,
262,
2836,
25785,
201,
198,
220,
220,
220,
319,
262,
21978,
329,
262,
1218,
640,
13,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
319,
35888,
565,
9484,
7,
2617,
62,
4122,
8,
201,
198,
201,
198,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
201,
198,
220,
220,
220,
1388,
3419,
201,
198
] | 2.858238 | 261 |
from flask import get_flashed_messages
from flask_login import current_user
from app.auth.services.registration import (
AutoActivateUserPostProcessor,
AutologinPostProcessor,
SendActivationPostProcessor,
)
from app.core.auth.activation import AccountActivator
from app.utils.settings import app_config
| [
6738,
42903,
1330,
651,
62,
2704,
5263,
62,
37348,
1095,
198,
6738,
42903,
62,
38235,
1330,
1459,
62,
7220,
198,
198,
6738,
598,
13,
18439,
13,
30416,
13,
2301,
33397,
1330,
357,
198,
220,
220,
220,
11160,
25526,
378,
12982,
6307,
18709,
273,
11,
198,
220,
220,
220,
5231,
928,
259,
6307,
18709,
273,
11,
198,
220,
220,
220,
16290,
25526,
341,
6307,
18709,
273,
11,
198,
8,
198,
6738,
598,
13,
7295,
13,
18439,
13,
48545,
1330,
10781,
25526,
1352,
198,
6738,
598,
13,
26791,
13,
33692,
1330,
598,
62,
11250,
628,
628
] | 3.393617 | 94 |
""" This function should return a string like
"There are NUM planets in the solar system"
where NUM is provided as an argument."""
# Should equal "There are 8 planets in the solar system"
ss1 = solar_system(8)
# Should equal "There are 9 planets in the solar system"
ss2 = solar_system(9)
""" This function should return a string of the format
"On the DAYth day of MONTH in the year YEAR"
where DAY, MONTH, and YEAR are provided.
"""
# Should equal "On the 8th day of July in the year 2019"
date1 = fancy_date("July", 8, 2019)
# Should equal "On the 24th day of June in the year 1984"
date2 = fancy_date("June", 24, 1984)
""" This function should return a string
which starts with the provided place, then
has an @ sign, then the comma-separated lat and lng"""
# Should equal "Tilden Farm @ 37.91, -122.29"
loc1 = location("Tilden Farm", 37.91, -122.29)
# Should equal "Salton Sea @ 33.309, -115.979"
loc2 = location("Salton Sea", 33.309,-115.979)
""" This function should return a string
which starts with the provided item,
then a colon, then a $ sign and the provided cost."""
# Should equal "Avocado toast: $9.99"
menu1 = menu("Avocado toast", 9.99)
# Should equal "Cronut: $3.99"
menu2 = menu("Cronut", 3.99) | [
37811,
770,
2163,
815,
1441,
257,
4731,
588,
198,
1,
1858,
389,
36871,
14705,
287,
262,
6591,
1080,
1,
198,
3003,
36871,
318,
2810,
355,
281,
4578,
526,
15931,
198,
198,
2,
10358,
4961,
366,
1858,
389,
807,
14705,
287,
262,
6591,
1080,
1,
198,
824,
16,
796,
6591,
62,
10057,
7,
23,
8,
198,
198,
2,
10358,
4961,
366,
1858,
389,
860,
14705,
287,
262,
6591,
1080,
1,
198,
824,
17,
796,
6591,
62,
10057,
7,
24,
8,
198,
198,
37811,
770,
2163,
815,
1441,
257,
4731,
286,
262,
5794,
198,
1,
2202,
262,
24644,
400,
1110,
286,
25000,
4221,
287,
262,
614,
32914,
1,
198,
3003,
24644,
11,
25000,
4221,
11,
290,
32914,
389,
2810,
13,
198,
37811,
198,
198,
2,
10358,
4961,
366,
2202,
262,
807,
400,
1110,
286,
2901,
287,
262,
614,
13130,
1,
198,
4475,
16,
796,
14996,
62,
4475,
7203,
16157,
1600,
807,
11,
13130,
8,
198,
2,
10358,
4961,
366,
2202,
262,
1987,
400,
1110,
286,
2795,
287,
262,
614,
12844,
1,
198,
4475,
17,
796,
14996,
62,
4475,
7203,
15749,
1600,
1987,
11,
12844,
8,
628,
198,
37811,
770,
2163,
815,
1441,
257,
4731,
198,
4758,
4940,
351,
262,
2810,
1295,
11,
788,
198,
10134,
281,
2488,
1051,
11,
788,
262,
39650,
12,
25512,
515,
3042,
290,
300,
782,
37811,
198,
198,
2,
10358,
4961,
366,
51,
688,
268,
11272,
2488,
5214,
13,
6420,
11,
532,
18376,
13,
1959,
1,
198,
17946,
16,
796,
4067,
7203,
51,
688,
268,
11272,
1600,
5214,
13,
6420,
11,
532,
18376,
13,
1959,
8,
198,
2,
10358,
4961,
366,
19221,
1122,
6896,
2488,
4747,
13,
26895,
11,
532,
15363,
13,
24,
3720,
1,
198,
17946,
17,
796,
4067,
7203,
19221,
1122,
6896,
1600,
4747,
13,
26895,
12095,
15363,
13,
24,
3720,
8,
628,
198,
37811,
770,
2163,
815,
1441,
257,
4731,
198,
4758,
4940,
351,
262,
2810,
2378,
11,
198,
8524,
257,
7633,
11,
788,
257,
720,
1051,
290,
262,
2810,
1575,
526,
15931,
198,
198,
2,
10358,
4961,
366,
7355,
33441,
27805,
25,
720,
24,
13,
2079,
1,
198,
26272,
16,
796,
6859,
7203,
7355,
33441,
27805,
1600,
860,
13,
2079,
8,
198,
2,
10358,
4961,
366,
34,
1313,
315,
25,
720,
18,
13,
2079,
1,
198,
26272,
17,
796,
6859,
7203,
34,
1313,
315,
1600,
513,
13,
2079,
8
] | 3.176623 | 385 |
import logging
import vlc
import xml.etree.ElementTree as ET
import os
import sys
import re
from threading import Timer
from time import sleep
@vlc.CallbackDecorators.LogCb
| [
11748,
18931,
198,
11748,
410,
44601,
198,
11748,
35555,
13,
316,
631,
13,
20180,
27660,
355,
12152,
198,
11748,
28686,
198,
11748,
25064,
198,
11748,
302,
198,
6738,
4704,
278,
1330,
5045,
263,
198,
6738,
640,
1330,
3993,
628,
198,
31,
19279,
66,
13,
47258,
10707,
273,
2024,
13,
11187,
34,
65,
628
] | 3.320755 | 53 |
from django.contrib import admin
from user import models
# Register your models here.
admin.site.register(models.User)
admin.site.register(models.Staff)
admin.site.register(models.CourseAdviser)
admin.site.register(models.Student)
admin.site.register(models.Biodata)
admin.site.register(models.AcademicData)
admin.site.register(models.AcademicHistory)
admin.site.register(models.HealthData)
admin.site.register(models.FamilyData)
| [
6738,
42625,
14208,
13,
3642,
822,
1330,
13169,
198,
6738,
2836,
1330,
4981,
198,
198,
2,
17296,
534,
4981,
994,
13,
628,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
12982,
8,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
31449,
8,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
49046,
2782,
4703,
263,
8,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
38778,
8,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
33,
2101,
1045,
8,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
12832,
49113,
6601,
8,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
12832,
49113,
18122,
8,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
18081,
6601,
8,
198,
28482,
13,
15654,
13,
30238,
7,
27530,
13,
24094,
6601,
8,
198
] | 3.255639 | 133 |
line = input()
sides = {}
while line != "Lumpawaroo":
if " | " in line:
args = line.split(" | ")
side = args[0]
user = args[1]
# TODO If you receive forceSide | forceUser, you should check if such forceUser already exists, and if not, add him/her to the corresponding side
if side not in sides:
sides[side] = []
all_values = []
for current_list in sides.values():
all_values += current_list
if user not in all_values:
sides[side].append(user)
else:
args = line.split(" -> ")
user = args[0]
side = args[1]
old_side = ""
for key, value in sides.items():
if user in value:
old_side = key
break
if old_side != "":
sides[old_side].remove(user)
if side not in sides:
sides[side] = []
sides[side].append(user)
else:
if side not in sides:
sides[side] = []
sides[side].append(user)
print(f"{user} joins the {side} side!")
line = input()
sides = dict(sorted(sides.items(), key=lambda x: (-len(x[1]), x[0])))
for side, users in sides.items():
if len(users) == 0:
continue
print(f"Side: {side}, Members: {len(users)}")
for user in sorted(users):
print(f"! {user}")
| [
1370,
796,
5128,
3419,
198,
82,
1460,
796,
23884,
198,
198,
4514,
1627,
14512,
366,
43,
931,
707,
38049,
1298,
198,
220,
220,
220,
611,
366,
930,
366,
287,
1627,
25,
198,
220,
220,
220,
220,
220,
220,
220,
26498,
796,
1627,
13,
35312,
7203,
930,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1735,
796,
26498,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2836,
796,
26498,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16926,
46,
1002,
345,
3328,
2700,
24819,
930,
2700,
12982,
11,
345,
815,
2198,
611,
884,
2700,
12982,
1541,
7160,
11,
290,
611,
407,
11,
751,
683,
14,
372,
284,
262,
11188,
1735,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1735,
407,
287,
5389,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5389,
58,
1589,
60,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
477,
62,
27160,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1459,
62,
4868,
287,
5389,
13,
27160,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
477,
62,
27160,
15853,
1459,
62,
4868,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2836,
407,
287,
477,
62,
27160,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5389,
58,
1589,
4083,
33295,
7,
7220,
8,
628,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
26498,
796,
1627,
13,
35312,
7203,
4613,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2836,
796,
26498,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1735,
796,
26498,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1468,
62,
1589,
796,
13538,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1994,
11,
1988,
287,
5389,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2836,
287,
1988,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1468,
62,
1589,
796,
1994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1468,
62,
1589,
14512,
366,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5389,
58,
727,
62,
1589,
4083,
28956,
7,
7220,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1735,
407,
287,
5389,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5389,
58,
1589,
60,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5389,
58,
1589,
4083,
33295,
7,
7220,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1735,
407,
287,
5389,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5389,
58,
1589,
60,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5389,
58,
1589,
4083,
33295,
7,
7220,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
90,
7220,
92,
15449,
262,
1391,
1589,
92,
1735,
2474,
8,
628,
220,
220,
220,
1627,
796,
5128,
3419,
198,
198,
82,
1460,
796,
8633,
7,
82,
9741,
7,
82,
1460,
13,
23814,
22784,
1994,
28,
50033,
2124,
25,
13841,
11925,
7,
87,
58,
16,
46570,
2124,
58,
15,
60,
22305,
198,
198,
1640,
1735,
11,
2985,
287,
5389,
13,
23814,
33529,
198,
220,
220,
220,
611,
18896,
7,
18417,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
3601,
7,
69,
1,
24819,
25,
1391,
1589,
5512,
12688,
25,
1391,
11925,
7,
18417,
38165,
4943,
628,
220,
220,
220,
329,
2836,
287,
23243,
7,
18417,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
40484,
1391,
7220,
92,
4943,
198
] | 2.065982 | 682 |
import requests
import os
url = 'http://admin:SuperAdminPasssword6742344234!!@localhost:8080/'#'http://admin:SuperAdminPasssword6742344234!!@a18e-2601-182-ce00-c860-3c42-c8b2-be91-176.ngrok.io/'
#resp = requests.post(url, data={'newUser': True, 'username': 'new_user', 'password': 'test_pass'})
## makefile : filename
## writefile : filename, data : str
## deletefile : filename
## readfile : filename (gotten from GET request)
## makefolder : foldername
## deletefolder : foldername
## listfolder : foldername
## changedir : foldername
## renamefile : filename, newname : str
## renamefolder : foldername, newname : str
##
"""requests.put(url, data={'deletefile': "4.png"})
img = Image.open('shitpost.png')
requests.post(url, data={'makefile': "4.png"})
resp = requests.put(url, data={"writefile": "4.png", "authToken": "new_user_user_1", "username": "new_user", "data": img.tobytes()})
resp = requests.get(url + "4.png")
image = Image.frombytes('RGBA', img.size, resp.content)
img.save('4.png', format='PNG')"""
#req = requests.post(url, data={"makefile": "test2.txt"})
#print(req.content)
#req = requests.put(url, data={"writefile": "test2.txt", "authToken": "admin_super_0", "username": "admin_super_0", "data": "test helfgsdfgsdfglo world"})
#print(req.content)
req = requests.get(url + "test2.txt")
print(req.content) | [
11748,
7007,
201,
198,
11748,
28686,
201,
198,
201,
198,
6371,
796,
705,
4023,
1378,
28482,
25,
12442,
46787,
14478,
30553,
3134,
43356,
2598,
24409,
3228,
31,
36750,
25,
1795,
1795,
14,
6,
2,
6,
4023,
1378,
28482,
25,
12442,
46787,
14478,
30553,
3134,
43356,
2598,
24409,
3228,
31,
64,
1507,
68,
12,
2075,
486,
12,
24294,
12,
344,
405,
12,
66,
45039,
12,
18,
66,
3682,
12,
66,
23,
65,
17,
12,
1350,
6420,
12,
24096,
13,
782,
305,
74,
13,
952,
14,
6,
201,
198,
201,
198,
201,
198,
2,
4363,
796,
7007,
13,
7353,
7,
6371,
11,
1366,
34758,
6,
3605,
12982,
10354,
6407,
11,
705,
29460,
10354,
705,
3605,
62,
7220,
3256,
705,
28712,
10354,
705,
9288,
62,
6603,
6,
30072,
201,
198,
2235,
787,
7753,
1058,
29472,
201,
198,
2235,
3551,
7753,
1058,
29472,
11,
1366,
1058,
965,
201,
198,
2235,
12233,
7753,
1058,
29472,
201,
198,
2235,
1100,
7753,
1058,
29472,
357,
21646,
422,
17151,
2581,
8,
201,
198,
2235,
787,
43551,
1058,
5591,
13292,
201,
198,
2235,
12233,
43551,
1058,
5591,
13292,
201,
198,
2235,
1351,
43551,
1058,
5591,
13292,
201,
198,
2235,
3421,
343,
1058,
5591,
13292,
201,
198,
2235,
36265,
7753,
1058,
29472,
11,
649,
3672,
1058,
965,
201,
198,
2235,
36265,
43551,
1058,
5591,
13292,
11,
649,
3672,
1058,
965,
201,
198,
2235,
201,
198,
201,
198,
37811,
8897,
3558,
13,
1996,
7,
6371,
11,
1366,
34758,
6,
33678,
7753,
10354,
366,
19,
13,
11134,
20662,
8,
201,
198,
9600,
796,
7412,
13,
9654,
10786,
16211,
7353,
13,
11134,
11537,
201,
198,
8897,
3558,
13,
7353,
7,
6371,
11,
1366,
34758,
6,
15883,
7753,
10354,
366,
19,
13,
11134,
20662,
8,
201,
198,
4363,
796,
7007,
13,
1996,
7,
6371,
11,
1366,
28,
4895,
13564,
7753,
1298,
366,
19,
13,
11134,
1600,
366,
18439,
30642,
1298,
366,
3605,
62,
7220,
62,
7220,
62,
16,
1600,
366,
29460,
1298,
366,
3605,
62,
7220,
1600,
366,
7890,
1298,
33705,
13,
83,
26730,
4879,
3419,
30072,
201,
198,
201,
198,
4363,
796,
7007,
13,
1136,
7,
6371,
1343,
366,
19,
13,
11134,
4943,
201,
198,
201,
198,
9060,
796,
7412,
13,
6738,
33661,
10786,
48192,
4339,
3256,
33705,
13,
7857,
11,
1217,
13,
11299,
8,
201,
198,
9600,
13,
21928,
10786,
19,
13,
11134,
3256,
5794,
11639,
47,
10503,
11537,
37811,
201,
198,
201,
198,
2,
42180,
796,
7007,
13,
7353,
7,
6371,
11,
1366,
28,
4895,
15883,
7753,
1298,
366,
9288,
17,
13,
14116,
20662,
8,
201,
198,
2,
4798,
7,
42180,
13,
11299,
8,
201,
198,
201,
198,
2,
42180,
796,
7007,
13,
1996,
7,
6371,
11,
1366,
28,
4895,
13564,
7753,
1298,
366,
9288,
17,
13,
14116,
1600,
366,
18439,
30642,
1298,
366,
28482,
62,
16668,
62,
15,
1600,
366,
29460,
1298,
366,
28482,
62,
16668,
62,
15,
1600,
366,
7890,
1298,
366,
9288,
932,
69,
14542,
7568,
14542,
7568,
4743,
78,
995,
20662,
8,
201,
198,
2,
4798,
7,
42180,
13,
11299,
8,
201,
198,
201,
198,
42180,
796,
7007,
13,
1136,
7,
6371,
1343,
366,
9288,
17,
13,
14116,
4943,
201,
198,
4798,
7,
42180,
13,
11299,
8
] | 2.630769 | 520 |
##############################################
# Switching Linear Dynamical System
# Code for both SLDS generative model as well
# as variational inference code
##############################################
import torch
import torch.nn as nn
import numpy as np
import math
from torch.autograd import Variable
import itertools
import torch.nn.functional as F
import utils
from masked_cross_entropy import masked_cross_entropy
from EncDec import Encoder, Decoder, gather_last, sequence_mask
from data_utils import EOS_TOK, SOS_TOK, PAD_TOK, transform
| [
29113,
7804,
4242,
2235,
198,
2,
220,
220,
220,
14645,
278,
44800,
14970,
605,
4482,
220,
198,
2,
220,
220,
220,
6127,
329,
1111,
12419,
5258,
1152,
876,
2746,
355,
880,
198,
2,
220,
220,
220,
355,
5553,
864,
32278,
2438,
198,
29113,
7804,
4242,
2235,
198,
11748,
28034,
220,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
10688,
198,
6738,
28034,
13,
2306,
519,
6335,
1330,
35748,
198,
11748,
340,
861,
10141,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
11748,
3384,
4487,
198,
6738,
29229,
62,
19692,
62,
298,
28338,
1330,
29229,
62,
19692,
62,
298,
28338,
198,
6738,
14711,
10707,
1330,
14711,
12342,
11,
34580,
11,
6431,
62,
12957,
11,
8379,
62,
27932,
198,
6738,
1366,
62,
26791,
1330,
412,
2640,
62,
10468,
42,
11,
42707,
62,
10468,
42,
11,
350,
2885,
62,
10468,
42,
11,
6121,
628,
628,
198
] | 3.69281 | 153 |
import torch
from torch import nn
from houttuynia.nn import init
__all__ = [
'Conv1d', 'Conv2d', 'Conv3d', 'GramConv1',
]
| [
11748,
28034,
198,
6738,
28034,
1330,
299,
77,
198,
198,
6738,
289,
448,
28047,
2047,
544,
13,
20471,
1330,
2315,
198,
198,
834,
439,
834,
796,
685,
198,
220,
220,
220,
705,
3103,
85,
16,
67,
3256,
705,
3103,
85,
17,
67,
3256,
705,
3103,
85,
18,
67,
3256,
705,
38,
859,
3103,
85,
16,
3256,
198,
60,
628,
628,
198
] | 2.163934 | 61 |
from enum import Enum
from typing import Dict, List, Optional
import click
from pygments.lexers.shell import BashLexer
from prompt_toolkit import prompt, print_formatted_text, PromptSession
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.auto_suggest import AutoSuggestFromHistory
from prompt_toolkit.shortcuts import ProgressBar
from prompt_toolkit.application import run_in_terminal
from . import color
confirmStrToSwitch: Dict[str, SwitchState] = {
"y": SwitchState.Yes,
"n": SwitchState.No,
"o": SwitchState.OK,
"c": SwitchState.Cancel
}
switchToConfirmStr: Dict[SwitchState, str] = {
v: k for k, v in confirmStrToSwitch.items()}
defaultInputCommandSession = PromptSession(
message="> ", lexer=PygmentsLexer(BashLexer), auto_suggest=AutoSuggestFromHistory())
| [
6738,
33829,
1330,
2039,
388,
198,
6738,
19720,
1330,
360,
713,
11,
7343,
11,
32233,
198,
11748,
3904,
198,
6738,
12972,
11726,
13,
2588,
364,
13,
29149,
1330,
15743,
45117,
263,
198,
6738,
6152,
62,
25981,
15813,
1330,
6152,
11,
3601,
62,
687,
16898,
62,
5239,
11,
45965,
36044,
198,
6738,
6152,
62,
25981,
15813,
13,
2588,
364,
1330,
9485,
11726,
45117,
263,
198,
6738,
6152,
62,
25981,
15813,
13,
23736,
62,
47811,
1330,
11160,
43857,
4863,
18122,
198,
6738,
6152,
62,
25981,
15813,
13,
19509,
23779,
1330,
18387,
10374,
198,
6738,
6152,
62,
25981,
15813,
13,
31438,
1330,
1057,
62,
259,
62,
23705,
282,
198,
6738,
764,
1330,
3124,
628,
198,
198,
10414,
2533,
13290,
2514,
38978,
25,
360,
713,
58,
2536,
11,
14645,
9012,
60,
796,
1391,
198,
220,
220,
220,
366,
88,
1298,
14645,
9012,
13,
5297,
11,
198,
220,
220,
220,
366,
77,
1298,
14645,
9012,
13,
2949,
11,
198,
220,
220,
220,
366,
78,
1298,
14645,
9012,
13,
11380,
11,
198,
220,
220,
220,
366,
66,
1298,
14645,
9012,
13,
34,
21130,
198,
92,
198,
198,
31943,
2514,
18546,
2533,
13290,
25,
360,
713,
58,
38978,
9012,
11,
965,
60,
796,
1391,
198,
220,
220,
220,
410,
25,
479,
329,
479,
11,
410,
287,
6216,
13290,
2514,
38978,
13,
23814,
3419,
92,
198,
198,
12286,
20560,
21575,
36044,
796,
45965,
36044,
7,
198,
220,
220,
220,
3275,
2625,
29,
33172,
31191,
263,
28,
20519,
11726,
45117,
263,
7,
33,
1077,
45117,
263,
828,
8295,
62,
47811,
28,
27722,
43857,
4863,
18122,
28955,
628
] | 3.151163 | 258 |
# --------------
##File path for the file
file_path
#Code starts here
sample_message= str(read_file(file_path))
print(sample_message)
# --------------
#Code starts here
file_path_1
file_path_2
message_1=read_file(file_path_1)
message_2=read_file(file_path_2)
print("message1", message_1)
print("message2",message_2)
#print(int(message_2)//int(message_1))
secret_msg_1 = fuse_msg(message_1,message_2)
print(secret_msg_1)
# --------------
#Code starts here
file_path_3
message_3 = read_file(file_path_3)
print("message 3:", message_3)
secret_msg_2=substitute_msg(message_3)
print("secret msg2 :",secret_msg_2)
# --------------
# File path for message 4 and message 5
file_path_4
file_path_5
#Code starts here
message_4 = str(read_file(file_path_4))
message_5 = str(read_file(file_path_5))
print("message 4:",message_4)
print("message 5:",message_5)
secret_msg_3 = str(compare_msg(message_4, message_5))
print("secret msg3 :", secret_msg_3)
# --------------
#Code starts here
file_path_6
message_6= str(read_file(file_path_6))
print("message 6 :",message_6)
secret_msg_4 = extract_msg(message_6)
print("secret msg 4:",secret_msg_4)
# --------------
#Secret message parts in the correct order
message_parts=[secret_msg_3, secret_msg_1, secret_msg_4, secret_msg_2]
final_path= user_data_dir + '/secret_message.txt'
#Code starts here
secret_msg = " ".join(message_parts)
secret_message = write_file(secret_msg,final_path)
print("secret_msg :")
| [
2,
220,
26171,
198,
2235,
8979,
3108,
329,
262,
2393,
220,
201,
198,
7753,
62,
6978,
220,
201,
198,
201,
198,
2,
10669,
4940,
994,
201,
198,
201,
198,
201,
198,
39873,
62,
20500,
28,
965,
7,
961,
62,
7753,
7,
7753,
62,
6978,
4008,
201,
198,
4798,
7,
39873,
62,
20500,
8,
201,
198,
220,
220,
220,
220,
201,
628,
198,
198,
2,
220,
26171,
198,
2,
10669,
4940,
994,
201,
198,
7753,
62,
6978,
62,
16,
201,
198,
7753,
62,
6978,
62,
17,
201,
198,
201,
198,
20500,
62,
16,
28,
961,
62,
7753,
7,
7753,
62,
6978,
62,
16,
8,
201,
198,
20500,
62,
17,
28,
961,
62,
7753,
7,
7753,
62,
6978,
62,
17,
8,
201,
198,
201,
198,
4798,
7203,
20500,
16,
1600,
3275,
62,
16,
8,
201,
198,
4798,
7203,
20500,
17,
1600,
20500,
62,
17,
8,
201,
198,
201,
198,
2,
4798,
7,
600,
7,
20500,
62,
17,
8,
1003,
600,
7,
20500,
62,
16,
4008,
201,
198,
201,
198,
21078,
62,
19662,
62,
16,
796,
32738,
62,
19662,
7,
20500,
62,
16,
11,
20500,
62,
17,
8,
201,
198,
4798,
7,
21078,
62,
19662,
62,
16,
8,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
628,
198,
198,
2,
220,
26171,
198,
2,
10669,
4940,
994,
201,
198,
7753,
62,
6978,
62,
18,
201,
198,
201,
198,
20500,
62,
18,
796,
1100,
62,
7753,
7,
7753,
62,
6978,
62,
18,
8,
201,
198,
201,
198,
4798,
7203,
20500,
513,
25,
1600,
3275,
62,
18,
8,
201,
198,
201,
198,
21078,
62,
19662,
62,
17,
28,
7266,
301,
3678,
62,
19662,
7,
20500,
62,
18,
8,
201,
198,
4798,
7203,
21078,
31456,
17,
1058,
1600,
21078,
62,
19662,
62,
17,
8,
628,
198,
2,
220,
26171,
198,
2,
9220,
3108,
329,
3275,
604,
220,
290,
3275,
642,
201,
198,
7753,
62,
6978,
62,
19,
201,
198,
7753,
62,
6978,
62,
20,
201,
198,
201,
198,
2,
10669,
4940,
994,
201,
198,
201,
198,
20500,
62,
19,
796,
965,
7,
961,
62,
7753,
7,
7753,
62,
6978,
62,
19,
4008,
201,
198,
20500,
62,
20,
796,
965,
7,
961,
62,
7753,
7,
7753,
62,
6978,
62,
20,
4008,
201,
198,
201,
198,
4798,
7203,
20500,
604,
25,
1600,
20500,
62,
19,
8,
201,
198,
4798,
7203,
20500,
642,
25,
1600,
20500,
62,
20,
8,
201,
198,
201,
198,
21078,
62,
19662,
62,
18,
796,
965,
7,
5589,
533,
62,
19662,
7,
20500,
62,
19,
11,
3275,
62,
20,
4008,
201,
198,
4798,
7203,
21078,
31456,
18,
1058,
1600,
3200,
62,
19662,
62,
18,
8,
201,
198,
220,
220,
220,
220,
201,
198,
201,
628,
198,
198,
2,
220,
26171,
198,
2,
10669,
4940,
994,
201,
198,
7753,
62,
6978,
62,
21,
201,
198,
20500,
62,
21,
28,
965,
7,
961,
62,
7753,
7,
7753,
62,
6978,
62,
21,
4008,
201,
198,
201,
198,
4798,
7203,
20500,
718,
1058,
1600,
20500,
62,
21,
8,
201,
198,
201,
198,
21078,
62,
19662,
62,
19,
796,
7925,
62,
19662,
7,
20500,
62,
21,
8,
201,
198,
4798,
7203,
21078,
31456,
604,
25,
1600,
21078,
62,
19662,
62,
19,
8,
201,
628,
198,
198,
2,
220,
26171,
198,
2,
23725,
3275,
3354,
287,
262,
3376,
1502,
201,
198,
20500,
62,
42632,
41888,
21078,
62,
19662,
62,
18,
11,
3200,
62,
19662,
62,
16,
11,
3200,
62,
19662,
62,
19,
11,
3200,
62,
19662,
62,
17,
60,
201,
198,
201,
198,
201,
198,
20311,
62,
6978,
28,
2836,
62,
7890,
62,
15908,
1343,
31051,
21078,
62,
20500,
13,
14116,
6,
201,
198,
201,
198,
2,
10669,
4940,
994,
201,
198,
21078,
62,
19662,
796,
366,
27071,
22179,
7,
20500,
62,
42632,
8,
201,
198,
201,
198,
21078,
62,
20500,
796,
3551,
62,
7753,
7,
21078,
62,
19662,
11,
20311,
62,
6978,
8,
201,
198,
4798,
7203,
21078,
62,
19662,
1058,
4943,
628,
198
] | 2.407066 | 651 |
"""Test string
"""
import ARgorithmToolkit
algo = ARgorithmToolkit.StateSet()
st = ARgorithmToolkit.String('st', algo, "Hello world! 1234")
def test_body():
"""Test string contents
"""
assert st.body == "Hello world! 1234"
last_state = algo.states[-1]
assert last_state.content["state_type"] == 'string_declare'
assert last_state.content["state_def"]["body"] == "Hello world! 1234"
def test_append():
"""Test string append
"""
global st
st.append(" Hahaha")
assert st.body == "Hello world! 1234 Hahaha"
last_state = algo.states[-1]
assert last_state.content["state_type"] == 'string_append'
assert last_state.content["state_def"]["element"] == " Hahaha"
st+='xyz'
assert st.body == "Hello world! 1234 Hahahaxyz"
last_state = algo.states[-1]
second_last_state = algo.states[-2]
assert last_state.content["state_type"] == 'string_append'
assert last_state.content["state_def"]["element"] == "xyz"
assert second_last_state.content["state_type"] == 'string_declare'
assert second_last_state.content["state_def"]["body"] == "Hello world! 1234 Hahaha"
assert second_last_state.content["state_def"]["variable_name"] == "st_super"
def test_indexing():
"""Test string indexing
"""
assert st[1] == st.body[1]
last_state = algo.states[-1]
assert last_state.content["state_type"] == 'string_iter'
assert last_state.content["state_def"]["index"] == 1
subst = st[1:3]
assert isinstance(subst,ARgorithmToolkit.String)
last_state = algo.states[-1]
assert last_state.content["state_type"] == 'string_declare'
assert last_state.content["state_def"]["variable_name"] == 'st_super_sub'
assert last_state.content["state_def"]["body"] == st.body[1:3]
def test_iteration():
"""Test string iteration
"""
for i,(a,b) in enumerate(zip(st,st.body)):
assert a==b
last_state = algo.states[-1]
assert last_state.content["state_type"] == 'string_iter'
assert last_state.content["state_def"]["index"] == i
| [
37811,
14402,
4731,
198,
37811,
198,
11748,
5923,
42289,
25391,
15813,
198,
198,
282,
2188,
796,
5923,
42289,
25391,
15813,
13,
9012,
7248,
3419,
198,
301,
796,
5923,
42289,
25391,
15813,
13,
10100,
10786,
301,
3256,
435,
2188,
11,
366,
15496,
995,
0,
1105,
2682,
4943,
198,
198,
4299,
1332,
62,
2618,
33529,
198,
220,
220,
220,
37227,
14402,
4731,
10154,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6818,
336,
13,
2618,
6624,
366,
15496,
995,
0,
1105,
2682,
1,
198,
220,
220,
220,
938,
62,
5219,
796,
435,
2188,
13,
27219,
58,
12,
16,
60,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4906,
8973,
6624,
705,
8841,
62,
32446,
533,
6,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
2618,
8973,
6624,
366,
15496,
995,
0,
1105,
2682,
1,
198,
198,
4299,
1332,
62,
33295,
33529,
198,
220,
220,
220,
37227,
14402,
4731,
24443,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3298,
336,
198,
220,
220,
220,
336,
13,
33295,
7203,
367,
993,
12236,
4943,
198,
220,
220,
220,
6818,
336,
13,
2618,
6624,
366,
15496,
995,
0,
1105,
2682,
367,
993,
12236,
1,
198,
220,
220,
220,
938,
62,
5219,
796,
435,
2188,
13,
27219,
58,
12,
16,
60,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4906,
8973,
6624,
705,
8841,
62,
33295,
6,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
30854,
8973,
6624,
366,
367,
993,
12236,
1,
198,
220,
220,
220,
336,
10,
11639,
5431,
89,
6,
198,
220,
220,
220,
6818,
336,
13,
2618,
6624,
366,
15496,
995,
0,
1105,
2682,
367,
36225,
6969,
89,
1,
198,
220,
220,
220,
938,
62,
5219,
796,
435,
2188,
13,
27219,
58,
12,
16,
60,
198,
220,
220,
220,
1218,
62,
12957,
62,
5219,
796,
435,
2188,
13,
27219,
58,
12,
17,
60,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4906,
8973,
6624,
705,
8841,
62,
33295,
6,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
30854,
8973,
6624,
366,
5431,
89,
1,
198,
220,
220,
220,
6818,
1218,
62,
12957,
62,
5219,
13,
11299,
14692,
5219,
62,
4906,
8973,
6624,
705,
8841,
62,
32446,
533,
6,
198,
220,
220,
220,
6818,
1218,
62,
12957,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
2618,
8973,
6624,
366,
15496,
995,
0,
1105,
2682,
367,
993,
12236,
1,
198,
220,
220,
220,
6818,
1218,
62,
12957,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
45286,
62,
3672,
8973,
6624,
366,
301,
62,
16668,
1,
198,
198,
4299,
1332,
62,
9630,
278,
33529,
198,
220,
220,
220,
37227,
14402,
4731,
6376,
278,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6818,
336,
58,
16,
60,
6624,
336,
13,
2618,
58,
16,
60,
198,
220,
220,
220,
938,
62,
5219,
796,
435,
2188,
13,
27219,
58,
12,
16,
60,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4906,
8973,
6624,
705,
8841,
62,
2676,
6,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
9630,
8973,
6624,
352,
628,
220,
220,
220,
3293,
796,
336,
58,
16,
25,
18,
60,
198,
220,
220,
220,
6818,
318,
39098,
7,
7266,
301,
11,
1503,
42289,
25391,
15813,
13,
10100,
8,
198,
220,
220,
220,
938,
62,
5219,
796,
435,
2188,
13,
27219,
58,
12,
16,
60,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4906,
8973,
6624,
705,
8841,
62,
32446,
533,
6,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
45286,
62,
3672,
8973,
6624,
705,
301,
62,
16668,
62,
7266,
6,
198,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
2618,
8973,
6624,
336,
13,
2618,
58,
16,
25,
18,
60,
628,
198,
4299,
1332,
62,
2676,
341,
33529,
198,
220,
220,
220,
37227,
14402,
4731,
24415,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
329,
1312,
11,
7,
64,
11,
65,
8,
287,
27056,
378,
7,
13344,
7,
301,
11,
301,
13,
2618,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
257,
855,
65,
198,
220,
220,
220,
220,
220,
220,
220,
938,
62,
5219,
796,
435,
2188,
13,
27219,
58,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4906,
8973,
6624,
705,
8841,
62,
2676,
6,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
938,
62,
5219,
13,
11299,
14692,
5219,
62,
4299,
1,
7131,
1,
9630,
8973,
6624,
1312,
198
] | 2.549383 | 810 |
from logzero import logger
import logzero
import logging
import glob
import pandas as pd
# Scrapy packages
import scrapy
import requests
from scrapy.selector import Selector
from TA_scrapy.items import ReviewRestoItem, RestoItem, UserItem
from TA_scrapy.spiders import get_info
# Chromedriver package and options
from selenium import webdriver
from webdriver_manager.chrome import ChromeDriverManager
chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument('--headless')
chrome_options.add_argument('--no-sandbox')
chrome_options.add_argument('--disable-dev-shm-usage')
| [
198,
6738,
2604,
22570,
1330,
49706,
198,
11748,
2604,
22570,
198,
11748,
18931,
198,
11748,
15095,
198,
11748,
19798,
292,
355,
279,
67,
198,
198,
2,
1446,
2416,
88,
10392,
198,
11748,
15881,
88,
198,
11748,
7007,
198,
6738,
15881,
88,
13,
19738,
273,
1330,
9683,
273,
198,
6738,
21664,
62,
1416,
2416,
88,
13,
23814,
1330,
6602,
19452,
78,
7449,
11,
8324,
78,
7449,
11,
11787,
7449,
198,
6738,
21664,
62,
1416,
2416,
88,
13,
2777,
4157,
1330,
651,
62,
10951,
198,
198,
2,
18255,
276,
38291,
5301,
290,
3689,
198,
6738,
384,
11925,
1505,
1330,
3992,
26230,
198,
6738,
3992,
26230,
62,
37153,
13,
46659,
1330,
13282,
32103,
13511,
198,
46659,
62,
25811,
796,
3992,
26230,
13,
1925,
5998,
29046,
3419,
198,
46659,
62,
25811,
13,
2860,
62,
49140,
10786,
438,
2256,
1203,
11537,
198,
46659,
62,
25811,
13,
2860,
62,
49140,
10786,
438,
3919,
12,
38142,
3524,
11537,
198,
46659,
62,
25811,
13,
2860,
62,
49140,
10786,
438,
40223,
12,
7959,
12,
1477,
76,
12,
26060,
11537,
628
] | 3.444444 | 171 |
# Copyright 2013 OpenStack Foundation
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import json
import sqlalchemy as sql
from sqlalchemy import orm
from keystone import config
CONF = config.CONF
| [
2,
15069,
2211,
4946,
25896,
5693,
198,
2,
198,
2,
220,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
220,
220,
220,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
220,
220,
220,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
220,
220,
220,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
220,
220,
220,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
220,
220,
220,
739,
262,
13789,
13,
198,
198,
11748,
33918,
198,
198,
11748,
44161,
282,
26599,
355,
44161,
198,
6738,
44161,
282,
26599,
1330,
393,
76,
198,
198,
6738,
1994,
6440,
1330,
4566,
628,
198,
10943,
37,
796,
4566,
13,
10943,
37,
628,
198
] | 3.411215 | 214 |
"""测试场景组件的使用"""
from manimlib.imports import *
class Graph2DExample(GraphScene):
"""二维坐标图实例"""
CONFIG = {
"x_min": -1,
"x_max": 6,
"x_axis_width": 10,
"x_axis_label": "time",
#"x_label_color": RED,
"y_min": -1,
"y_max": 20,
"y_axis_height": 8,
"y_axis_label": "amp",
#"y_label_color": YELLOW,
"y_tick_frequency": 1,
}
class ThreeDExample(ThreeDScene):
"""三维场景实例"""
class MovingCameraExample(MovingCameraScene):
"""运动摄像机实例"""
class SampleSpaceExample(SampleSpaceScene):
"""概率采样空间实例"""
class ZoomedExample(ZoomedScene):
"""缩放摄像机实例"""
class VectorExample(LinearTransformationScene):
"""向量场实例"""
class ConfigSceneExample(Scene):
"""CONFIG参数修改设置实例"""
CONFIG = {
"camera_config": {
"frame_rate": 30,
},
}
class UpdateExample(Scene):
"""更新器设置实例"""
class CoorExample(Scene):
"""三维坐标轴例程""" | [
37811,
38184,
233,
46237,
243,
28839,
118,
162,
247,
107,
163,
119,
226,
20015,
114,
21410,
45635,
18796,
101,
37811,
198,
198,
6738,
582,
320,
8019,
13,
320,
3742,
1330,
1635,
198,
198,
4871,
29681,
17,
35,
16281,
7,
37065,
36542,
2599,
198,
220,
220,
220,
37227,
12859,
234,
163,
119,
112,
161,
251,
238,
43718,
229,
32368,
122,
22522,
252,
160,
122,
233,
37811,
628,
220,
220,
220,
25626,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
87,
62,
1084,
1298,
532,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
87,
62,
9806,
1298,
718,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
87,
62,
22704,
62,
10394,
1298,
838,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
87,
62,
22704,
62,
18242,
1298,
366,
2435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1,
87,
62,
18242,
62,
8043,
1298,
23848,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
88,
62,
1084,
1298,
532,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
88,
62,
9806,
1298,
1160,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
88,
62,
22704,
62,
17015,
1298,
807,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
88,
62,
22704,
62,
18242,
1298,
366,
696,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1,
88,
62,
18242,
62,
8043,
1298,
575,
23304,
3913,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
88,
62,
42298,
62,
35324,
1298,
352,
11,
198,
220,
220,
220,
1782,
198,
198,
4871,
7683,
35,
16281,
7,
12510,
35,
36542,
2599,
198,
220,
220,
220,
37227,
49011,
163,
119,
112,
28839,
118,
162,
247,
107,
22522,
252,
160,
122,
233,
37811,
198,
198,
4871,
26768,
35632,
16281,
7,
33622,
35632,
36542,
2599,
198,
220,
220,
220,
37227,
32573,
238,
27950,
101,
162,
239,
226,
161,
225,
237,
17312,
118,
22522,
252,
160,
122,
233,
37811,
198,
198,
4871,
27565,
14106,
16281,
7,
36674,
14106,
36542,
2599,
198,
220,
220,
220,
37227,
162,
99,
224,
163,
236,
229,
34932,
229,
43718,
115,
163,
102,
118,
29785,
112,
22522,
252,
160,
122,
233,
37811,
198,
198,
4871,
40305,
276,
16281,
7,
57,
4207,
276,
36542,
2599,
198,
220,
220,
220,
37227,
163,
120,
102,
162,
242,
122,
162,
239,
226,
161,
225,
237,
17312,
118,
22522,
252,
160,
122,
233,
37811,
198,
198,
4871,
20650,
16281,
7,
14993,
451,
8291,
1161,
36542,
2599,
198,
220,
220,
220,
37227,
28938,
239,
34932,
237,
28839,
118,
22522,
252,
160,
122,
233,
37811,
628,
198,
4871,
17056,
36542,
16281,
7,
36542,
2599,
198,
220,
220,
220,
37227,
10943,
16254,
20998,
224,
46763,
108,
46479,
106,
162,
242,
117,
164,
106,
122,
163,
121,
106,
22522,
252,
160,
122,
233,
37811,
628,
220,
220,
220,
25626,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
25695,
62,
11250,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
14535,
62,
4873,
1298,
1542,
11,
220,
198,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
1782,
198,
198,
4871,
10133,
16281,
7,
36542,
2599,
198,
220,
220,
220,
37227,
162,
249,
112,
23877,
108,
161,
247,
101,
164,
106,
122,
163,
121,
106,
22522,
252,
160,
122,
233,
37811,
198,
198,
4871,
1766,
273,
16281,
7,
36542,
2599,
198,
220,
220,
220,
37227,
49011,
163,
119,
112,
161,
251,
238,
43718,
229,
164,
121,
112,
160,
122,
233,
163,
101,
233,
37811
] | 1.631579 | 589 |
# Copyright (c) 2020-2021 impersonator.org authors (Wen Liu and Zhixin Piao). All rights reserved.
import cv2
import torch
import numpy as np
import math
from operator import itemgetter
from .dataset import normalize, pad_width
def infer_fast_post_process(net_outputs, PoseClass):
"""
Args:
net_outputs (dict): the output of the networks, and it contains,
--heatmaps:
--pafs:
PoseClass (type of tools.human_pose2d_estimators.utils.pose_utils.OpenPoseBody25):
Returns:
outputs (dict): the output results, and it contains the followings keys,
--pose_entries:
--all_keypoints:
--current_poses:
"""
heatmaps = net_outputs["heatmaps"]
pafs = net_outputs["pafs"]
pad = net_outputs["pad"]
scale = net_outputs["scale"]
stride = net_outputs["stride"]
upsample_ratio = net_outputs["upsample_ratio"]
height, width = net_outputs["orig_shape"]
num_keypoints = PoseClass.num_kpts
total_keypoints_num = 0
all_keypoints_by_type = []
for kpt_idx in range(num_keypoints): # 19th for bg
total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num)
pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs, PoseClass, demo=True)
for kpt_id in range(all_keypoints.shape[0]):
all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale
all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale
if len(all_keypoints):
all_keypoints[:, 0] = np.clip(all_keypoints[:, 0], 0, width)
all_keypoints[:, 1] = np.clip(all_keypoints[:, 1], 0, height)
current_poses = []
for n in range(len(pose_entries)):
if len(pose_entries[n]) == 0:
continue
pose_keypoints = np.zeros((num_keypoints, 3), dtype=all_keypoints.dtype)
for kpt_id in range(num_keypoints):
kpt_num_id = int(pose_entries[n][kpt_id])
if kpt_num_id != -1: # keypoint was found
pose_keypoints[kpt_id] = all_keypoints[kpt_num_id, 0:3]
else:
pose_keypoints[kpt_id, 0:2] = -1.0
# print(n, pose_keypoints)
pose = PoseClass(pose_keypoints, pose_entries[n][-2])
current_poses.append(pose)
outputs = {
"pose_entries": pose_entries,
"all_keypoints": all_keypoints,
"current_poses": current_poses
}
return outputs
| [
2,
15069,
357,
66,
8,
12131,
12,
1238,
2481,
28671,
1352,
13,
2398,
7035,
357,
54,
268,
18258,
290,
10511,
844,
259,
350,
13481,
737,
1439,
2489,
10395,
13,
198,
198,
11748,
269,
85,
17,
198,
11748,
28034,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
10688,
198,
6738,
10088,
1330,
2378,
1136,
353,
198,
198,
6738,
764,
19608,
292,
316,
1330,
3487,
1096,
11,
14841,
62,
10394,
628,
628,
628,
198,
198,
4299,
13249,
62,
7217,
62,
7353,
62,
14681,
7,
3262,
62,
22915,
82,
11,
37557,
9487,
2599,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2010,
62,
22915,
82,
357,
11600,
2599,
262,
5072,
286,
262,
7686,
11,
290,
340,
4909,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1377,
25080,
31803,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1377,
79,
1878,
82,
25,
628,
220,
220,
220,
220,
220,
220,
220,
37557,
9487,
357,
4906,
286,
4899,
13,
10734,
62,
3455,
17,
67,
62,
395,
320,
2024,
13,
26791,
13,
3455,
62,
26791,
13,
11505,
47,
577,
25842,
1495,
2599,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
23862,
357,
11600,
2599,
262,
5072,
2482,
11,
290,
340,
4909,
262,
1061,
654,
8251,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1377,
3455,
62,
298,
1678,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1377,
439,
62,
2539,
13033,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1377,
14421,
62,
4832,
25,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
4894,
31803,
796,
2010,
62,
22915,
82,
14692,
25080,
31803,
8973,
198,
220,
220,
220,
279,
1878,
82,
796,
2010,
62,
22915,
82,
14692,
79,
1878,
82,
8973,
198,
220,
220,
220,
14841,
796,
2010,
62,
22915,
82,
14692,
15636,
8973,
198,
220,
220,
220,
5046,
796,
2010,
62,
22915,
82,
14692,
9888,
8973,
198,
220,
220,
220,
33769,
796,
2010,
62,
22915,
82,
14692,
2536,
485,
8973,
198,
220,
220,
220,
19649,
1403,
62,
10366,
952,
796,
2010,
62,
22915,
82,
14692,
4739,
1403,
62,
10366,
952,
8973,
198,
220,
220,
220,
6001,
11,
9647,
796,
2010,
62,
22915,
82,
14692,
11612,
62,
43358,
8973,
628,
220,
220,
220,
997,
62,
2539,
13033,
796,
37557,
9487,
13,
22510,
62,
74,
457,
82,
628,
220,
220,
220,
2472,
62,
2539,
13033,
62,
22510,
796,
657,
198,
220,
220,
220,
477,
62,
2539,
13033,
62,
1525,
62,
4906,
796,
17635,
198,
220,
220,
220,
329,
479,
457,
62,
312,
87,
287,
2837,
7,
22510,
62,
2539,
13033,
2599,
220,
1303,
678,
400,
329,
275,
70,
198,
220,
220,
220,
220,
220,
220,
220,
2472,
62,
2539,
13033,
62,
22510,
15853,
7925,
62,
2539,
13033,
7,
25080,
31803,
58,
45299,
1058,
11,
479,
457,
62,
312,
87,
4357,
477,
62,
2539,
13033,
62,
1525,
62,
4906,
11,
2472,
62,
2539,
13033,
62,
22510,
8,
628,
220,
220,
220,
12705,
62,
298,
1678,
11,
477,
62,
2539,
13033,
796,
1448,
62,
2539,
13033,
7,
439,
62,
2539,
13033,
62,
1525,
62,
4906,
11,
279,
1878,
82,
11,
37557,
9487,
11,
13605,
28,
17821,
8,
628,
220,
220,
220,
329,
479,
457,
62,
312,
287,
2837,
7,
439,
62,
2539,
13033,
13,
43358,
58,
15,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
2539,
13033,
58,
74,
457,
62,
312,
11,
657,
60,
796,
357,
439,
62,
2539,
13033,
58,
74,
457,
62,
312,
11,
657,
60,
1635,
33769,
1220,
19649,
1403,
62,
10366,
952,
532,
14841,
58,
16,
12962,
1220,
5046,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
2539,
13033,
58,
74,
457,
62,
312,
11,
352,
60,
796,
357,
439,
62,
2539,
13033,
58,
74,
457,
62,
312,
11,
352,
60,
1635,
33769,
1220,
19649,
1403,
62,
10366,
952,
532,
14841,
58,
15,
12962,
1220,
5046,
628,
220,
220,
220,
611,
18896,
7,
439,
62,
2539,
13033,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
2539,
13033,
58,
45299,
657,
60,
796,
45941,
13,
15036,
7,
439,
62,
2539,
13033,
58,
45299,
657,
4357,
657,
11,
9647,
8,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
2539,
13033,
58,
45299,
352,
60,
796,
45941,
13,
15036,
7,
439,
62,
2539,
13033,
58,
45299,
352,
4357,
657,
11,
6001,
8,
628,
220,
220,
220,
1459,
62,
4832,
796,
17635,
198,
220,
220,
220,
329,
299,
287,
2837,
7,
11925,
7,
3455,
62,
298,
1678,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
3455,
62,
298,
1678,
58,
77,
12962,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
12705,
62,
2539,
13033,
796,
45941,
13,
9107,
418,
19510,
22510,
62,
2539,
13033,
11,
513,
828,
288,
4906,
28,
439,
62,
2539,
13033,
13,
67,
4906,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
479,
457,
62,
312,
287,
2837,
7,
22510,
62,
2539,
13033,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
479,
457,
62,
22510,
62,
312,
796,
493,
7,
3455,
62,
298,
1678,
58,
77,
7131,
74,
457,
62,
312,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
479,
457,
62,
22510,
62,
312,
14512,
532,
16,
25,
220,
1303,
1994,
4122,
373,
1043,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12705,
62,
2539,
13033,
58,
74,
457,
62,
312,
60,
796,
477,
62,
2539,
13033,
58,
74,
457,
62,
22510,
62,
312,
11,
657,
25,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12705,
62,
2539,
13033,
58,
74,
457,
62,
312,
11,
657,
25,
17,
60,
796,
532,
16,
13,
15,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
3601,
7,
77,
11,
12705,
62,
2539,
13033,
8,
198,
220,
220,
220,
220,
220,
220,
220,
12705,
796,
37557,
9487,
7,
3455,
62,
2539,
13033,
11,
12705,
62,
298,
1678,
58,
77,
7131,
12,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
4832,
13,
33295,
7,
3455,
8,
628,
220,
220,
220,
23862,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3455,
62,
298,
1678,
1298,
12705,
62,
298,
1678,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
439,
62,
2539,
13033,
1298,
477,
62,
2539,
13033,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
14421,
62,
4832,
1298,
1459,
62,
4832,
198,
220,
220,
220,
1782,
628,
220,
220,
220,
1441,
23862,
628,
198
] | 2.222511 | 1,155 |
import numpy as np
import pymc as pm
from matplotlib import pyplot as plt
challenger_data = np.genfromtxt("challenger_data.csv", skip_header=1,
usecols=[1, 2], missing_values="NA",
delimiter=",")
# drop the NA values
challenger_data = challenger_data[~np.isnan(challenger_data[:, 1])]
temperature = challenger_data[:, 0]
D = challenger_data[:, 1] # defect or not?
# notice the`value` here. We explain why below.
beta = pm.Normal("beta", 0, 0.001, value=0)
alpha = pm.Normal("alpha", 0, 0.001, value=0)
@pm.deterministic
# connect the probabilities in `p` with our observations through a
# Bernoulli random variable.
observed = pm.Bernoulli("bernoulli_obs", p, value=D, observed=True)
model = pm.Model([observed, beta, alpha])
# Mysterious code to be explained in Chapter 3
map_ = pm.MAP(model)
map_.fit()
mcmc = pm.MCMC(model)
mcmc.sample(120000, 100000, 2)
alpha_samples = mcmc.trace('alpha')[:, None] # best to make them 1d
beta_samples = mcmc.trace('beta')[:, None]
# histogram of the samples:
plt.subplot(211)
plt.title(r"Posterior distributions of the variables $\alpha, \beta$")
plt.hist(beta_samples, histtype='stepfilled', bins=35, alpha=0.85,
label=r"posterior of $\beta$", color="#7A68A6", normed=True)
plt.legend()
plt.subplot(212)
plt.hist(alpha_samples, histtype='stepfilled', bins=35, alpha=0.85,
label=r"posterior of $\alpha$", color="#A60628", normed=True)
plt.legend()
plt.show()
prob_31 = logistic(31, beta_samples, alpha_samples)
plt.xlim(0.995, 1)
plt.hist(prob_31, bins=1000, normed=True, histtype='stepfilled')
plt.title("Posterior distribution of probability of defect, given $t = 31$")
plt.xlabel("probability of defect occurring in O-ring")
plt.show()
| [
11748,
299,
32152,
355,
45941,
201,
198,
11748,
279,
4948,
66,
355,
9114,
201,
198,
6738,
2603,
29487,
8019,
1330,
12972,
29487,
355,
458,
83,
201,
198,
201,
198,
36747,
6540,
62,
7890,
796,
45941,
13,
5235,
6738,
14116,
7203,
36747,
6540,
62,
7890,
13,
40664,
1600,
14267,
62,
25677,
28,
16,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
779,
4033,
82,
41888,
16,
11,
362,
4357,
4814,
62,
27160,
2625,
4535,
1600,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46728,
2676,
28,
2430,
8,
201,
198,
2,
4268,
262,
11746,
3815,
201,
198,
36747,
6540,
62,
7890,
796,
32127,
62,
7890,
58,
93,
37659,
13,
271,
12647,
7,
36747,
6540,
62,
7890,
58,
45299,
352,
12962,
60,
198,
201,
198,
11498,
21069,
796,
32127,
62,
7890,
58,
45299,
657,
60,
201,
198,
35,
796,
32127,
62,
7890,
58,
45299,
352,
60,
220,
1303,
11855,
393,
407,
30,
201,
198,
201,
198,
2,
4003,
262,
63,
8367,
63,
994,
13,
775,
4727,
1521,
2174,
13,
201,
198,
31361,
796,
9114,
13,
26447,
7203,
31361,
1600,
657,
11,
657,
13,
8298,
11,
1988,
28,
15,
8,
201,
198,
26591,
796,
9114,
13,
26447,
7203,
26591,
1600,
657,
11,
657,
13,
8298,
11,
1988,
28,
15,
8,
201,
198,
201,
198,
201,
198,
31,
4426,
13,
67,
2357,
49228,
201,
198,
201,
198,
2,
2018,
262,
39522,
287,
4600,
79,
63,
351,
674,
13050,
832,
257,
201,
198,
2,
6206,
280,
15516,
4738,
7885,
13,
201,
198,
672,
45852,
796,
9114,
13,
23927,
280,
15516,
7203,
33900,
280,
15516,
62,
8158,
1600,
279,
11,
1988,
28,
35,
11,
6515,
28,
17821,
8,
201,
198,
201,
198,
19849,
796,
9114,
13,
17633,
26933,
672,
45852,
11,
12159,
11,
17130,
12962,
201,
198,
201,
198,
2,
40981,
2438,
284,
307,
4893,
287,
7006,
513,
201,
198,
8899,
62,
796,
9114,
13,
33767,
7,
19849,
8,
201,
198,
8899,
44807,
11147,
3419,
201,
198,
76,
11215,
66,
796,
9114,
13,
9655,
9655,
7,
19849,
8,
201,
198,
76,
11215,
66,
13,
39873,
7,
1065,
2388,
11,
1802,
830,
11,
362,
8,
201,
198,
201,
198,
26591,
62,
82,
12629,
796,
285,
11215,
66,
13,
40546,
10786,
26591,
11537,
58,
45299,
6045,
60,
220,
1303,
1266,
284,
787,
606,
352,
67,
201,
198,
31361,
62,
82,
12629,
796,
285,
11215,
66,
13,
40546,
10786,
31361,
11537,
58,
45299,
6045,
60,
201,
198,
201,
198,
2,
1554,
21857,
286,
262,
8405,
25,
201,
198,
489,
83,
13,
7266,
29487,
7,
21895,
8,
201,
198,
489,
83,
13,
7839,
7,
81,
1,
47,
6197,
1504,
24570,
286,
262,
9633,
39280,
26591,
11,
3467,
31361,
3,
4943,
201,
198,
489,
83,
13,
10034,
7,
31361,
62,
82,
12629,
11,
1554,
4906,
11639,
9662,
20286,
3256,
41701,
28,
2327,
11,
17130,
28,
15,
13,
5332,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
28,
81,
1,
79,
6197,
1504,
286,
39280,
31361,
3,
1600,
3124,
25698,
22,
32,
3104,
32,
21,
1600,
2593,
276,
28,
17821,
8,
201,
198,
489,
83,
13,
1455,
437,
3419,
201,
198,
201,
198,
489,
83,
13,
7266,
29487,
7,
21777,
8,
201,
198,
489,
83,
13,
10034,
7,
26591,
62,
82,
12629,
11,
1554,
4906,
11639,
9662,
20286,
3256,
41701,
28,
2327,
11,
17130,
28,
15,
13,
5332,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
28,
81,
1,
79,
6197,
1504,
286,
39280,
26591,
3,
1600,
3124,
25698,
32,
33206,
2078,
1600,
2593,
276,
28,
17821,
8,
201,
198,
489,
83,
13,
1455,
437,
3419,
201,
198,
489,
83,
13,
12860,
3419,
201,
198,
201,
198,
1676,
65,
62,
3132,
796,
2604,
2569,
7,
3132,
11,
12159,
62,
82,
12629,
11,
17130,
62,
82,
12629,
8,
201,
198,
201,
198,
489,
83,
13,
87,
2475,
7,
15,
13,
33438,
11,
352,
8,
201,
198,
489,
83,
13,
10034,
7,
1676,
65,
62,
3132,
11,
41701,
28,
12825,
11,
2593,
276,
28,
17821,
11,
1554,
4906,
11639,
9662,
20286,
11537,
201,
198,
489,
83,
13,
7839,
7203,
47,
6197,
1504,
6082,
286,
12867,
286,
11855,
11,
1813,
720,
83,
796,
3261,
3,
4943,
201,
198,
489,
83,
13,
87,
18242,
7203,
1676,
65,
1799,
286,
11855,
14963,
287,
440,
12,
1806,
4943,
201,
198,
489,
83,
13,
12860,
3419,
201,
198
] | 2.380208 | 768 |
from tkinter import *
window = Tk()
window.geometry("600x500+30+20")
window.title("Welcome to Python Programming")
btn = Button(window, text = "Click to add name", fg ="blue")
btn.place(x= 80, y= 100)
lbl = Label(window, text = "Student Personal Information", fg = "Blue", bg = "orange")
lbl.place(relx=.5, y =50, anchor="center")
lbl2 = Label(window, text ="Gender", fg="red")
lbl2.place(x= 80,y = 150)
txtfld = Entry(window, bd = 3, font = ("verdana",16))
txtfld.place(x=150,y=100)
v1 = StringVar()
v2 = StringVar()
v1.set(1)
r1 = Radiobutton(window, text="Male",variable=v1)
r1.place(x=80,y=200)
r2 = Radiobutton(window, text="Female",variable=v2)
r2.place(x=200,y=200)
v3 = IntVar()
v4 = IntVar()
v5 = IntVar()
chkbox = Checkbutton(window, text="basketball",variable=v3)
chkbox2 = Checkbutton(window, text="volleyball",variable=v4)
chkbox3 = Checkbutton(window, text="swimming",variable=v5)
chkbox.place(x=80, y=300)
chkbox2.place(x=250, y=300)
chkbox3.place(x=350, y=300)
lbl3 = Label(window, text ="Sports")
lbl3.place(x=80,y=250)
lbl4 = Label(window, text ="Subjects")
lbl4.place(x=80,y=350)
data1 ="arithmetric"
data2 ="writing"
data3 ="math"
lstbox = Listbox(window, height=5, selectmode="multiple")
lstbox.insert(END,data1,data2,data3)
lstbox.place(x=80, y=400)
window.mainloop()
| [
6738,
256,
74,
3849,
1330,
1635,
201,
198,
17497,
796,
309,
74,
3419,
201,
198,
201,
198,
17497,
13,
469,
15748,
7203,
8054,
87,
4059,
10,
1270,
10,
1238,
4943,
201,
198,
17497,
13,
7839,
7203,
14618,
284,
11361,
30297,
4943,
201,
198,
201,
198,
46118,
796,
20969,
7,
17497,
11,
2420,
796,
366,
8164,
284,
751,
1438,
1600,
277,
70,
796,
1,
17585,
4943,
201,
198,
46118,
13,
5372,
7,
87,
28,
4019,
11,
331,
28,
1802,
8,
201,
198,
201,
198,
75,
2436,
796,
36052,
7,
17497,
11,
2420,
796,
366,
38778,
15644,
6188,
1600,
277,
70,
796,
366,
14573,
1600,
275,
70,
796,
366,
43745,
4943,
201,
198,
75,
2436,
13,
5372,
7,
2411,
87,
28,
13,
20,
11,
331,
796,
1120,
11,
18021,
2625,
16159,
4943,
201,
198,
75,
2436,
17,
796,
36052,
7,
17497,
11,
2420,
796,
1,
41394,
1600,
277,
70,
2625,
445,
4943,
201,
198,
75,
2436,
17,
13,
5372,
7,
87,
28,
4019,
11,
88,
796,
6640,
8,
201,
198,
201,
198,
14116,
69,
335,
796,
21617,
7,
17497,
11,
275,
67,
796,
513,
11,
10369,
796,
5855,
332,
67,
2271,
1600,
1433,
4008,
201,
198,
14116,
69,
335,
13,
5372,
7,
87,
28,
8628,
11,
88,
28,
3064,
8,
201,
198,
201,
198,
85,
16,
796,
10903,
19852,
3419,
201,
198,
85,
17,
796,
10903,
19852,
3419,
201,
198,
85,
16,
13,
2617,
7,
16,
8,
201,
198,
81,
16,
796,
5325,
72,
672,
21115,
7,
17497,
11,
2420,
2625,
25486,
1600,
45286,
28,
85,
16,
8,
201,
198,
81,
16,
13,
5372,
7,
87,
28,
1795,
11,
88,
28,
2167,
8,
201,
198,
81,
17,
796,
5325,
72,
672,
21115,
7,
17497,
11,
2420,
2625,
27273,
1600,
45286,
28,
85,
17,
8,
201,
198,
81,
17,
13,
5372,
7,
87,
28,
2167,
11,
88,
28,
2167,
8,
201,
198,
201,
198,
85,
18,
796,
2558,
19852,
3419,
201,
198,
85,
19,
796,
2558,
19852,
3419,
201,
198,
85,
20,
796,
2558,
19852,
3419,
201,
198,
354,
74,
3524,
796,
6822,
16539,
7,
17497,
11,
2420,
2625,
21265,
1600,
45286,
28,
85,
18,
8,
201,
198,
354,
74,
3524,
17,
796,
6822,
16539,
7,
17497,
11,
2420,
2625,
10396,
1636,
1894,
1600,
45286,
28,
85,
19,
8,
201,
198,
354,
74,
3524,
18,
796,
6822,
16539,
7,
17497,
11,
2420,
2625,
2032,
27428,
1600,
45286,
28,
85,
20,
8,
201,
198,
201,
198,
354,
74,
3524,
13,
5372,
7,
87,
28,
1795,
11,
331,
28,
6200,
8,
201,
198,
354,
74,
3524,
17,
13,
5372,
7,
87,
28,
9031,
11,
331,
28,
6200,
8,
201,
198,
354,
74,
3524,
18,
13,
5372,
7,
87,
28,
14877,
11,
331,
28,
6200,
8,
201,
198,
201,
198,
75,
2436,
18,
796,
36052,
7,
17497,
11,
2420,
796,
1,
18153,
4943,
201,
198,
75,
2436,
18,
13,
5372,
7,
87,
28,
1795,
11,
88,
28,
9031,
8,
201,
198,
201,
198,
75,
2436,
19,
796,
36052,
7,
17497,
11,
2420,
796,
1,
19776,
82,
4943,
201,
198,
75,
2436,
19,
13,
5372,
7,
87,
28,
1795,
11,
88,
28,
14877,
8,
201,
198,
201,
198,
7890,
16,
796,
1,
283,
342,
4164,
1173,
1,
201,
198,
7890,
17,
796,
1,
16502,
1,
201,
198,
7890,
18,
796,
1,
11018,
1,
201,
198,
75,
301,
3524,
796,
7343,
3524,
7,
17497,
11,
6001,
28,
20,
11,
2922,
14171,
2625,
48101,
4943,
201,
198,
75,
301,
3524,
13,
28463,
7,
10619,
11,
7890,
16,
11,
7890,
17,
11,
7890,
18,
8,
201,
198,
75,
301,
3524,
13,
5372,
7,
87,
28,
1795,
11,
331,
28,
7029,
8,
201,
198,
201,
198,
17497,
13,
12417,
26268,
3419,
201,
198
] | 2.207516 | 612 |
from collections import defaultdict
forward, reverse = build_mapping_from_input()
# Part 1
print(len(can_contain('shiny gold')))
# Part 2
print(count_bags('shiny gold'))
| [
6738,
17268,
1330,
4277,
11600,
628,
198,
198,
11813,
11,
9575,
796,
1382,
62,
76,
5912,
62,
6738,
62,
15414,
3419,
628,
198,
2,
2142,
352,
628,
198,
4798,
7,
11925,
7,
5171,
62,
3642,
391,
10786,
1477,
3541,
3869,
6,
22305,
628,
198,
2,
2142,
362,
628,
198,
4798,
7,
9127,
62,
34005,
10786,
1477,
3541,
3869,
6,
4008,
198
] | 2.967213 | 61 |
import itertools
import numpy as np
from draw import Draw
from replay import Replay
from config import WHITELIST
class Comparer:
"""
A class for managing a set of replay comparisons.
Attributes:
List replays1: A list of Replay instances to compare against replays2.
List replays2: A list of Replay instances to be compared against. Optional, defaulting to None. No attempt to error check
this is made - if a compare() call is made, the program will throw an AttributeError. Be sure to only call
methods that involve the first set of replays if this argument is not passed.
Integer threshold: If a comparison scores below this value, the result is printed.
See Also:
Investigator
"""
def __init__(self, threshold, replays1, replays2=None):
"""
Initializes a Comparer instance.
Note that the order of the two replay lists has no effect; they are only numbered for consistency.
Comparing 1 to 2 is the same as comparing 2 to 1.
Args:
List replays1: A list of Replay instances to compare against replays2.
List replays2: A list of Replay instances to be compared against. Optional, defaulting to None. No attempt to error check
this is made - if a compare() call is made, the program will throw an AttributeError. Be sure to only call
methods that involve the first set of replays.
Integer threshold: If a comparison scores below this value, the result is printed.
"""
self.replays1 = replays1
self.replays2 = replays2
self.threshold = threshold
def compare(self, mode):
"""
If mode is "double", compares all replays in replays1 against all replays in replays2.
If mode is "single", compares all replays in replays1 against all other replays in replays1 (len(replays1) choose 2 comparisons).
In both cases, prints the result of each comparison according to _print_result.
Args:
String mode: One of either "double" or "single", determining how to choose which replays to compare.
"""
iterator = itertools.product(self.replays1, self.replays2) if mode == "double" else itertools.combinations(self.replays1, 2)
for replay1, replay2 in iterator:
if(self.check_names(replay1.player_name, replay2.player_name)):
continue
result = Comparer._compare_two_replays(replay1, replay2)
self._print_result(result, replay1, replay2)
def check_names(self, player1, player2):
"""
Returns True if both players are in the whitelist or are the same name, False otherwise.
Args:
String player1: The name of the first player.
String player2: The name of the second player.
"""
return ((player1 in WHITELIST and player2 in WHITELIST) or (player1 == player2))
def _print_result(self, result, replay1, replay2):
"""
Prints a human readable version of the result if the average distance
is below the threshold set from the command line.
Args:
Tuple result: A tuple containing (average distance, standard deviation) of a comparison.
Replay replay1: The replay to print the name of and to draw against replay2
Replay replay2: The replay to print the name of and to draw against replay1
"""
mean = result[0]
sigma = result[1]
if(mean > self.threshold):
return
print("{:.1f} similarity, {:.1f} std deviation ({} vs {})".format(mean, sigma, replay1.player_name, replay2.player_name))
answer = input("Would you like to see a visualization of both replays? ")
if answer[0].lower() == "y":
animation = Draw.draw_replays(replay1, replay2)
@staticmethod
def _compare_two_replays(replay1, replay2):
"""
Compares two Replays and return their average distance
and standard deviation of distances.
"""
# get all coordinates in numpy arrays so that they're arranged like:
# [ x_1 x_2 ... x_n
# y_1 y_2 ... y_n ]
# indexed by columns first.
data1 = replay1.as_list_with_timestamps()
data2 = replay2.as_list_with_timestamps()
# interpolate
(data1, data2) = Replay.interpolate(data1, data2)
# remove time from each tuple
data1 = [d[1:] for d in data1]
data2 = [d[1:] for d in data2]
(mu, sigma) = Comparer._compute_data_similarity(data1, data2)
return (mu, sigma)
@staticmethod
def _compute_data_similarity(data1, data2):
"""
Finds the similarity and standard deviation between two datasets.
Args:
List data1: A list of tuples containing the (x, y) coordinate of points
List data2: A list of tuples containing the (x, y) coordinate of points
Returns:
A tuple containing (similarity value, standard deviation) between the two datasets
"""
data1 = np.array(data1)
data2 = np.array(data2)
# switch if the second is longer, so that data1 is always the longest.
if len(data2) > len(data1):
(data1, data2) = (data2, data1)
shortest = len(data2)
distance = data1[:shortest] - data2
# square all numbers and sum over the second axis (add row 2 to row 1),
# finally take the square root of each number to get all distances.
# [ x_1 x_2 ... x_n => [ x_1 ** 2 ... x_n ** 2
# y_1 y_2 ... y_n ] => y_1 ** 2 ... y_n ** 2 ]
# => [ x_1 ** 2 + y_1 ** 2 ... x_n ** 2 + y_n ** 2 ]
# => [ d_1 ... d_2 ]
distance = (distance ** 2).sum(axis=1) ** 0.5
mu, sigma = distance.mean(), distance.std()
return (mu, sigma)
| [
11748,
340,
861,
10141,
198,
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
3197,
1330,
15315,
198,
6738,
24788,
1330,
23635,
198,
6738,
4566,
1330,
7655,
2043,
3698,
8808,
198,
198,
4871,
3082,
11258,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
1398,
329,
11149,
257,
900,
286,
24788,
17909,
13,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
49213,
25,
198,
220,
220,
220,
220,
220,
220,
220,
7343,
2186,
592,
16,
25,
317,
1351,
286,
23635,
10245,
284,
8996,
1028,
2186,
592,
17,
13,
198,
220,
220,
220,
220,
220,
220,
220,
7343,
2186,
592,
17,
25,
317,
1351,
286,
23635,
10245,
284,
307,
3688,
1028,
13,
32233,
11,
4277,
278,
284,
6045,
13,
1400,
2230,
284,
4049,
2198,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
428,
318,
925,
532,
611,
257,
8996,
3419,
869,
318,
925,
11,
262,
1430,
481,
3714,
281,
3460,
4163,
12331,
13,
1355,
1654,
284,
691,
869,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5050,
326,
6211,
262,
717,
900,
286,
2186,
592,
611,
428,
4578,
318,
407,
3804,
13,
198,
220,
220,
220,
220,
220,
220,
220,
34142,
11387,
25,
1002,
257,
7208,
8198,
2174,
428,
1988,
11,
262,
1255,
318,
10398,
13,
628,
220,
220,
220,
4091,
4418,
25,
198,
220,
220,
220,
220,
220,
220,
220,
49499,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
11387,
11,
2186,
592,
16,
11,
2186,
592,
17,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
20768,
4340,
257,
3082,
11258,
4554,
13,
628,
220,
220,
220,
220,
220,
220,
220,
5740,
326,
262,
1502,
286,
262,
734,
24788,
8341,
468,
645,
1245,
26,
484,
389,
691,
25840,
329,
15794,
13,
198,
220,
220,
220,
220,
220,
220,
220,
3082,
1723,
352,
284,
362,
318,
262,
976,
355,
14176,
362,
284,
352,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7343,
2186,
592,
16,
25,
317,
1351,
286,
23635,
10245,
284,
8996,
1028,
2186,
592,
17,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7343,
2186,
592,
17,
25,
317,
1351,
286,
23635,
10245,
284,
307,
3688,
1028,
13,
32233,
11,
4277,
278,
284,
6045,
13,
1400,
2230,
284,
4049,
2198,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
428,
318,
925,
532,
611,
257,
8996,
3419,
869,
318,
925,
11,
262,
1430,
481,
3714,
281,
3460,
4163,
12331,
13,
1355,
1654,
284,
691,
869,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5050,
326,
6211,
262,
717,
900,
286,
2186,
592,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34142,
11387,
25,
1002,
257,
7208,
8198,
2174,
428,
1988,
11,
262,
1255,
318,
10398,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
260,
26024,
16,
796,
2186,
592,
16,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
260,
26024,
17,
796,
2186,
592,
17,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
400,
10126,
796,
11387,
628,
220,
220,
220,
825,
8996,
7,
944,
11,
4235,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1002,
4235,
318,
366,
23352,
1600,
23008,
477,
2186,
592,
287,
2186,
592,
16,
1028,
477,
2186,
592,
287,
2186,
592,
17,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1002,
4235,
318,
366,
29762,
1600,
23008,
477,
2186,
592,
287,
2186,
592,
16,
1028,
477,
584,
2186,
592,
287,
2186,
592,
16,
357,
11925,
7,
260,
26024,
16,
8,
3853,
362,
17909,
737,
198,
220,
220,
220,
220,
220,
220,
220,
554,
1111,
2663,
11,
20842,
262,
1255,
286,
1123,
7208,
1864,
284,
4808,
4798,
62,
20274,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10903,
4235,
25,
1881,
286,
2035,
366,
23352,
1,
393,
366,
29762,
1600,
13213,
703,
284,
3853,
543,
2186,
592,
284,
8996,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
41313,
796,
340,
861,
10141,
13,
11167,
7,
944,
13,
260,
26024,
16,
11,
2116,
13,
260,
26024,
17,
8,
611,
4235,
6624,
366,
23352,
1,
2073,
340,
861,
10141,
13,
24011,
7352,
7,
944,
13,
260,
26024,
16,
11,
362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
24788,
16,
11,
24788,
17,
287,
41313,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
7,
944,
13,
9122,
62,
14933,
7,
260,
1759,
16,
13,
7829,
62,
3672,
11,
24788,
17,
13,
7829,
62,
3672,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
3082,
11258,
13557,
5589,
533,
62,
11545,
62,
260,
26024,
7,
260,
1759,
16,
11,
24788,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4798,
62,
20274,
7,
20274,
11,
24788,
16,
11,
24788,
17,
8,
628,
220,
220,
220,
825,
2198,
62,
14933,
7,
944,
11,
2137,
16,
11,
2137,
17,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
6407,
611,
1111,
1938,
389,
287,
262,
20542,
46331,
393,
389,
262,
976,
1438,
11,
10352,
4306,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10903,
2137,
16,
25,
383,
1438,
286,
262,
717,
2137,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10903,
2137,
17,
25,
383,
1438,
286,
262,
1218,
2137,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
14808,
7829,
16,
287,
7655,
2043,
3698,
8808,
290,
2137,
17,
287,
7655,
2043,
3698,
8808,
8,
393,
357,
7829,
16,
6624,
2137,
17,
4008,
628,
220,
220,
220,
825,
4808,
4798,
62,
20274,
7,
944,
11,
1255,
11,
24788,
16,
11,
24788,
17,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
12578,
82,
257,
1692,
31744,
2196,
286,
262,
1255,
611,
262,
2811,
5253,
198,
220,
220,
220,
220,
220,
220,
220,
318,
2174,
262,
11387,
900,
422,
262,
3141,
1627,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
29291,
1255,
25,
317,
46545,
7268,
357,
23913,
5253,
11,
3210,
28833,
8,
286,
257,
7208,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23635,
24788,
16,
25,
383,
24788,
284,
3601,
262,
1438,
286,
290,
284,
3197,
1028,
24788,
17,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23635,
24788,
17,
25,
383,
24788,
284,
3601,
262,
1438,
286,
290,
284,
3197,
1028,
24788,
16,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1612,
796,
1255,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
264,
13495,
796,
1255,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7,
32604,
1875,
2116,
13,
400,
10126,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
90,
25,
13,
16,
69,
92,
26789,
11,
46110,
13,
16,
69,
92,
14367,
28833,
37913,
92,
3691,
23884,
8,
1911,
18982,
7,
32604,
11,
264,
13495,
11,
24788,
16,
13,
7829,
62,
3672,
11,
24788,
17,
13,
7829,
62,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3280,
796,
5128,
7203,
17353,
345,
588,
284,
766,
257,
32704,
286,
1111,
2186,
592,
30,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3280,
58,
15,
4083,
21037,
3419,
6624,
366,
88,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11034,
796,
15315,
13,
19334,
62,
260,
26024,
7,
260,
1759,
16,
11,
24788,
17,
8,
628,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
4808,
5589,
533,
62,
11545,
62,
260,
26024,
7,
260,
1759,
16,
11,
24788,
17,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3082,
3565,
734,
18407,
592,
290,
1441,
511,
2811,
5253,
198,
220,
220,
220,
220,
220,
220,
220,
290,
3210,
28833,
286,
18868,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
651,
477,
22715,
287,
299,
32152,
26515,
523,
326,
484,
821,
14921,
588,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
685,
2124,
62,
16,
2124,
62,
17,
2644,
2124,
62,
77,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
331,
62,
16,
331,
62,
17,
2644,
331,
62,
77,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
41497,
416,
15180,
717,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
16,
796,
24788,
16,
13,
292,
62,
4868,
62,
4480,
62,
16514,
395,
9430,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
17,
796,
24788,
17,
13,
292,
62,
4868,
62,
4480,
62,
16514,
395,
9430,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
39555,
378,
198,
220,
220,
220,
220,
220,
220,
220,
357,
7890,
16,
11,
1366,
17,
8,
796,
23635,
13,
3849,
16104,
378,
7,
7890,
16,
11,
1366,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
4781,
640,
422,
1123,
46545,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
16,
796,
685,
67,
58,
16,
47715,
329,
288,
287,
1366,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
17,
796,
685,
67,
58,
16,
47715,
329,
288,
287,
1366,
17,
60,
628,
220,
220,
220,
220,
220,
220,
220,
357,
30300,
11,
264,
13495,
8,
796,
3082,
11258,
13557,
5589,
1133,
62,
7890,
62,
38610,
414,
7,
7890,
16,
11,
1366,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
30300,
11,
264,
13495,
8,
628,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
4808,
5589,
1133,
62,
7890,
62,
38610,
414,
7,
7890,
16,
11,
1366,
17,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
9938,
82,
262,
26789,
290,
3210,
28833,
1022,
734,
40522,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7343,
1366,
16,
25,
317,
1351,
286,
12777,
2374,
7268,
262,
357,
87,
11,
331,
8,
20435,
286,
2173,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7343,
1366,
17,
25,
317,
1351,
286,
12777,
2374,
7268,
262,
357,
87,
11,
331,
8,
20435,
286,
2173,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
46545,
7268,
357,
38610,
414,
1988,
11,
3210,
28833,
8,
1022,
262,
734,
40522,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1366,
16,
796,
45941,
13,
18747,
7,
7890,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
17,
796,
45941,
13,
18747,
7,
7890,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
5078,
611,
262,
1218,
318,
2392,
11,
523,
326,
1366,
16,
318,
1464,
262,
14069,
13,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
7890,
17,
8,
1875,
18896,
7,
7890,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
7890,
16,
11,
1366,
17,
8,
796,
357,
7890,
17,
11,
1366,
16,
8,
628,
220,
220,
220,
220,
220,
220,
220,
35581,
796,
18896,
7,
7890,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
5253,
796,
1366,
16,
58,
25,
19509,
395,
60,
532,
1366,
17,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
6616,
477,
3146,
290,
2160,
625,
262,
1218,
16488,
357,
2860,
5752,
362,
284,
5752,
352,
828,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3443,
1011,
262,
6616,
6808,
286,
1123,
1271,
284,
651,
477,
18868,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
685,
2124,
62,
16,
2124,
62,
17,
2644,
2124,
62,
77,
220,
220,
5218,
685,
2124,
62,
16,
12429,
362,
2644,
2124,
62,
77,
12429,
362,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
331,
62,
16,
331,
62,
17,
2644,
331,
62,
77,
2361,
5218,
220,
220,
331,
62,
16,
12429,
362,
2644,
331,
62,
77,
12429,
362,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5218,
685,
2124,
62,
16,
12429,
362,
1343,
331,
62,
16,
12429,
362,
2644,
2124,
62,
77,
12429,
362,
1343,
331,
62,
77,
12429,
362,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5218,
685,
288,
62,
16,
2644,
288,
62,
17,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
5253,
796,
357,
30246,
12429,
362,
737,
16345,
7,
22704,
28,
16,
8,
12429,
657,
13,
20,
628,
220,
220,
220,
220,
220,
220,
220,
38779,
11,
264,
13495,
796,
5253,
13,
32604,
22784,
5253,
13,
19282,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
30300,
11,
264,
13495,
8,
198
] | 2.50693 | 2,381 |
from setuptools import setup
setup(
name='proximal',
version='0.1.7',
packages=['proximal',
'proximal.prox_fns',
'proximal.lin_ops',
'proximal.algorithms',
'proximal.utils',
'proximal.halide',
'proximal.tests',
'proximal.tests.data'],
package_dir={'proximal': 'proximal'},
package_data={'proximal.tests.data': ['angela.jpg'],
'proximal.halide': ['src/*.cpp', 'src/core/*', 'src/external/*', 'src/fft/*',
'subprojects/halide.wrap',
'subprojects/pybind11.wrap',
'subprojects/packagefiles/halide/meson.build',
'meson.build']},
url='http://github.com/comp-imaging/ProxImaL/',
install_requires=["numpy >= 1.9",
"scipy >= 0.15",
"numexpr",
"Pillow",
"meson >= 0.54"],
use_2to3=True,
)
| [
6738,
900,
37623,
10141,
1330,
9058,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
1676,
87,
4402,
3256,
198,
220,
220,
220,
2196,
11639,
15,
13,
16,
13,
22,
3256,
198,
220,
220,
220,
10392,
28,
17816,
1676,
87,
4402,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1676,
87,
4402,
13,
1676,
87,
62,
69,
5907,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1676,
87,
4402,
13,
2815,
62,
2840,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1676,
87,
4402,
13,
282,
7727,
907,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1676,
87,
4402,
13,
26791,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1676,
87,
4402,
13,
14201,
485,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1676,
87,
4402,
13,
41989,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1676,
87,
4402,
13,
41989,
13,
7890,
6,
4357,
198,
220,
220,
220,
5301,
62,
15908,
34758,
6,
1676,
87,
4402,
10354,
705,
1676,
87,
4402,
6,
5512,
198,
220,
220,
220,
5301,
62,
7890,
34758,
6,
1676,
87,
4402,
13,
41989,
13,
7890,
10354,
37250,
8368,
64,
13,
9479,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1676,
87,
4402,
13,
14201,
485,
10354,
37250,
10677,
15211,
13,
20322,
3256,
705,
10677,
14,
7295,
15211,
3256,
705,
10677,
14,
22615,
15211,
3256,
705,
10677,
14,
487,
83,
15211,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7266,
42068,
14,
14201,
485,
13,
37150,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7266,
42068,
14,
9078,
21653,
1157,
13,
37150,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7266,
42068,
14,
26495,
16624,
14,
14201,
485,
14,
6880,
261,
13,
11249,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6880,
261,
13,
11249,
20520,
5512,
198,
220,
220,
220,
19016,
11639,
4023,
1378,
12567,
13,
785,
14,
5589,
12,
320,
3039,
14,
2964,
87,
40,
2611,
43,
14,
3256,
198,
220,
220,
220,
2721,
62,
47911,
28,
14692,
77,
32152,
18189,
352,
13,
24,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1416,
541,
88,
18189,
657,
13,
1314,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
31937,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
47,
359,
322,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6880,
261,
18189,
657,
13,
4051,
33116,
198,
220,
220,
220,
779,
62,
17,
1462,
18,
28,
17821,
11,
198,
8,
198
] | 1.690236 | 594 |
import math
import numpy as np
import subprocess
import re
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
import astropy.units as units
from astropy.cosmology import Planck15 as cosmo,z_at_value
from matplotlib.backends.backend_pdf import PdfPages
flare_dir="../flare"
Ms=1.5e4*10**(np.arange(16)/3.0)
#Ms=2.0e5*10**(np.arange(13)/3.0)
print "Ms=",Ms
SNRstudy(Ms,[1,2,4,10],[10,100,1000],300)
#logz = np.arange(10)/2.5
#print "logz=",logz
#print [10**x for x in logz]
#logD = [cosmo.luminosity_distance(1+10**lz)/units.Mpc for lz in logz]
#print logD
#plt.clf()
#plot=plt.plot(logz,logD)
#plt.show()
| [
11748,
10688,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
850,
14681,
198,
11748,
302,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
6738,
2603,
29487,
8019,
13,
8071,
2052,
1330,
48599,
9248,
198,
11748,
6468,
28338,
13,
41667,
355,
4991,
198,
6738,
6468,
28338,
13,
6966,
29126,
1330,
5224,
694,
1314,
355,
8615,
5908,
11,
89,
62,
265,
62,
8367,
198,
6738,
2603,
29487,
8019,
13,
1891,
2412,
13,
1891,
437,
62,
12315,
1330,
350,
7568,
47798,
628,
198,
220,
220,
220,
220,
198,
2704,
533,
62,
15908,
2625,
40720,
2704,
533,
1,
198,
10128,
28,
16,
13,
20,
68,
19,
9,
940,
1174,
7,
37659,
13,
283,
858,
7,
1433,
20679,
18,
13,
15,
8,
198,
2,
10128,
28,
17,
13,
15,
68,
20,
9,
940,
1174,
7,
37659,
13,
283,
858,
7,
1485,
20679,
18,
13,
15,
8,
198,
4798,
366,
10128,
28,
1600,
10128,
198,
15571,
49,
44517,
7,
10128,
17414,
16,
11,
17,
11,
19,
11,
940,
38430,
940,
11,
3064,
11,
12825,
4357,
6200,
8,
198,
2,
6404,
89,
796,
45941,
13,
283,
858,
7,
940,
20679,
17,
13,
20,
198,
2,
4798,
366,
6404,
89,
28,
1600,
6404,
89,
198,
2,
4798,
685,
940,
1174,
87,
329,
2124,
287,
2604,
89,
60,
198,
2,
6404,
35,
796,
685,
6966,
5908,
13,
75,
7230,
16579,
62,
30246,
7,
16,
10,
940,
1174,
75,
89,
20679,
41667,
13,
44,
14751,
329,
300,
89,
287,
2604,
89,
60,
198,
2,
4798,
2604,
35,
198,
2,
489,
83,
13,
565,
69,
3419,
198,
2,
29487,
28,
489,
83,
13,
29487,
7,
6404,
89,
11,
6404,
35,
8,
198,
2,
489,
83,
13,
12860,
3419,
198
] | 2.244681 | 282 |
"""
Schema for event objects.
"""
from .common import sources, extras
media_schema = {
"description": ("This \"special\" schema is used in two places in the Event"
" schema, on the top level and inside the agenda item. This is an"
" optional component that may be omited entirely from a document."),
"items": {
"properties": {
"name": {
"type": "string",
"description": ('name of the media link, such as "Recording of'
' the meeting" or "Discussion of construction'
' near the watershed"'),
},
"type": {
"type": "string",
"description": ('type of the set of recordings, such as'
' "recording" or "testimony".'),
},
"date": {
"pattern": "^[0-9]{4}(-[0-9]{2}){0,2}$",
"type": ["string", "null"],
"description": "date of the recording.",
},
"offset": {
"type": ["number", "null"],
"description": ("Offset where the related part starts. This is"
" optional and may be ommited entirely."),
},
"links": {
"description": ("List of links to the same media item, each"
" with a different MIME type."),
"items": {
"properties": {
"mimetype": {
"description": ("Mimetype of the media, such"
" as video/mp4 or audio/webm"),
"type": ["string", "null"]
},
"url": {
"type": "string",
"description": "URL where this media may be accessed",
},
},
"type": "object"
},
"type": "array"
},
},
"type": "object"
},
"type": "array"
}
schema = {
"description": "event data",
"_order": (
('Basics', ('_type', 'name', 'description', 'when', 'end', 'status', 'location')),
('Linked Entities', ('media', 'links', 'participants', 'agenda', 'documents',)),
('Common Fields', ['updated_at', 'created_at', 'sources']),
),
"properties": {
"_type": {
"enum": ["event"],
"type": "string",
"description": ("All events must have a _type field set to one of"
" the entries in the enum below."),
},
"name": {
"type": "string",
"description": ('A simple name of the event, such as "Fiscal'
' subcommittee hearing on pudding cups"')
},
"all_day": {
"type": ["boolean"],
"description": ("Indicates if the event is an all-day event"),
},
"type": {
"type": ["string"],
"description": ("type of event"),
},
# TODO: turn into enum
"updated_at": {
"type": ["string", "datetime"],
"required": False,
"description": "the time that this object was last updated.",
},
"created_at": {
"type": ["string", "datetime"],
"required": False,
"description": "the time that this object was first created.",
},
"description": {
"type": ["string", "null"],
"description": ('A longer description describing the event. As an'
' example, "Topics for discussion include this that'
' and the other thing. In addition, lunch will be'
' served".'),
},
"when": {
"type": ["datetime"],
"description": ("Starting date / time of the event. This should be"
" fully timezone qualified."),
},
"end": {
"type": ["datetime", "null"],
"description": ("Ending date / time of the event. This should"
" be fully timezone qualified."),
},
"status": {
"type": ["string", "null"],
"enum": ["cancelled", "tentative", "confirmed", "passed"],
"description": ("String that denotes the status of the meeting."
" This is useful for showing the meeting is cancelled"
" in a machine-readable way."),
},
"location": {
"description": "Where the event will take place.",
"type": "object",
"properties": {
"name": {
"type": "string",
"description": ('name of the location, such as "City Hall,'
' Boston, MA, USA", or "Room E201, Dolan'
' Science Center, 20700 North Park Blvd'
' University Heights Ohio, 44118"'),
},
"note": {
"type": ["string", "null"],
"description": ('human readable notes regarding the location,'
' something like "The meeting will take place'
' at the Minority Whip\'s desk on the floor"')
},
"url": {
"required": False,
"type": "string",
"description": "URL of the location, if applicable.",
},
"coordinates": {
"description": ('coordinates where this event will take'
' place. If the location hasn\'t (or isn\'t)'
' geolocated or geocodable, than this should'
' be set to null.'),
"type": ["object", "null"],
"properties": {
"latitude": {
"type": "string",
"description": "latitude of the location, if any",
},
"longitude": {
"type": "string",
"description": "longitude of the location, if any",
}
}
},
},
},
"media": media_schema,
"documents": {
"description": ("Links to related documents for the event. Usually,"
" this includes things like pre-written testimony,"
" spreadsheets or a slide deck that a presenter will"
" use."),
"items": {
"properties": {
"name": {
"type": "string",
"description": ('name of the document. Something like'
' "Fiscal Report" or "John Smith\'s'
' Slides".'),
},
"url": {
"type": "string",
"description": "URL where the content may be found.",
},
"mimetype": {
"type": "string",
"description": "Mimetype of the document.",
},
},
"type": "object"
},
"type": "array"
},
"links": {
"description": ("Links related to the event that are not documents"
" or items in the Agenda. This is filled with helpful"
" links for the event, such as a committee's homepage,"
" reference material or links to learn more about subjects"
" related to the event."),
"items": {
"properties": {
"note": {
"description": ('Human-readable name of the link. Something'
' like "Historical precedent for popsicle procurement"'),
"type": "string",
"blank": True,
},
"url": {
"description": "A URL for a link about the event",
"format": "uri",
"type": "string"
}
},
"type": "object"
},
"type": "array"
},
"participants": {
"description": ("List of participants in the event. This includes"
" committees invited, legislators chairing the event"
" or people who are attending."),
"items": {
"properties": {
"chamber": {
"type": ["string", "null"],
"description": ("Optional field storing the chamber of"
" the related participant."),
},
"name": {
"type": "string",
"description": "Human readable name of the entitity.",
},
"id": {
"type": ["string", "null"],
"description": "ID of the participant",
},
"type": {
"enum": ["organization", "person"],
"type": "string",
"description": ("What type of entity is this? `person`"
" may be used if the person is not a Legislator,"
" butattending the event, such as an"
" invited speaker or one who is offering"
" testimony."),
},
"note": {
"type": "string",
"description": ("Note regarding the relationship, such"
" as `chair` for the chair of a meeting."),
},
},
"type": "object"
},
"type": "array"
},
"agenda": {
"description": ("Agenda of the event, if any. This contains information"
" about the meeting's agenda, such as bills to"
" discuss or people to present."),
"items": {
"properties": {
"description": {
"type": "string",
"description": ("Human-readable string that represents this"
" agenda item. A good example would be something like"
" The Committee will consider SB 2339, HB 100"),
},
"order": {
"type": ["string", "null"],
"description": ("order of this item, useful for re-creating"
" meeting minutes. This may be ommited entirely."
" It may also optionally contains \"dots\""
" to denote nested agenda items, such as \"1.1.2.1\""
" or \"2\", which may go on as needed."),
},
"subjects": {
"description": ("List of related topics of this agenda"
" item relates to."),
"items": {"type": "string"},
"type": "array"
},
"media": media_schema,
"notes": {
"description": ("List of notes taken during this agenda"
" item, may be used to construct meeting minutes."),
"items": {
"properties": {
"description": {
"type": "string",
"description": ("simple string containing the"
" content of the note."),
},
},
"type": "object"
},
"type": "array"
},
"related_entities": {
"description": ("Entities that relate to this agenda"
" item, such as presenters, legislative"
" instruments, or committees."),
"items": {
"properties": {
"type": {
"type": "string",
"description": ("type of the related object, like"
" `bill` or `organization`."),
},
"id": {
"type": ["string", "null"],
"description": "ID of the related entity",
},
"name": {
"type": "string",
"description": ("human readable string"
" representing the entity,"
" such as `John Q. Smith`."),
},
"note": {
"type": ["string", "null"],
"description": ("human readable string (if any) noting"
" the relationship between the entity and"
" the agenda item, such as \"Jeff"
" will be presenting on the effects"
" of too much cookie dough\""),
},
},
"type": "object",
},
"minItems": 0,
"type": "array",
},
},
"type": "object"
},
"minItems": 0,
"type": "array"
},
"sources": sources,
"extras": extras,
},
"type": "object"
}
| [
37811,
198,
220,
220,
220,
10011,
2611,
329,
1785,
5563,
13,
198,
37811,
198,
198,
6738,
764,
11321,
1330,
4237,
11,
33849,
198,
198,
11431,
62,
15952,
2611,
796,
1391,
198,
220,
220,
220,
366,
11213,
1298,
5855,
1212,
19990,
20887,
7879,
32815,
318,
973,
287,
734,
4113,
287,
262,
8558,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
32815,
11,
319,
262,
1353,
1241,
290,
2641,
262,
8666,
2378,
13,
770,
318,
281,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11902,
7515,
326,
743,
307,
39030,
863,
5000,
422,
257,
3188,
526,
828,
198,
220,
220,
220,
366,
23814,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
3672,
286,
262,
2056,
2792,
11,
884,
355,
366,
6690,
1284,
286,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
262,
3249,
1,
393,
366,
34255,
286,
5103,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1474,
262,
42640,
30543,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
4906,
286,
262,
900,
286,
18813,
11,
884,
355,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
366,
8344,
1284,
1,
393,
366,
9288,
33969,
1911,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4475,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
33279,
1298,
366,
61,
58,
15,
12,
24,
60,
90,
19,
92,
32590,
58,
15,
12,
24,
60,
90,
17,
92,
19953,
15,
11,
17,
92,
3,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
4475,
286,
262,
8296,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
28968,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
17618,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
34519,
810,
262,
3519,
636,
4940,
13,
770,
318,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11902,
290,
743,
307,
267,
3020,
863,
5000,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
8053,
286,
6117,
284,
262,
976,
2056,
2378,
11,
1123,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
351,
257,
1180,
337,
12789,
2099,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23814,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
76,
320,
2963,
431,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
44,
320,
2963,
431,
286,
262,
2056,
11,
884,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
355,
2008,
14,
3149,
19,
393,
6597,
14,
12384,
76,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6371,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
21886,
810,
428,
2056,
743,
307,
17535,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1,
198,
92,
198,
198,
15952,
2611,
796,
1391,
198,
220,
220,
220,
366,
11213,
1298,
366,
15596,
1366,
1600,
628,
220,
220,
220,
45434,
2875,
1298,
357,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
15522,
873,
3256,
19203,
62,
4906,
3256,
705,
3672,
3256,
705,
11213,
3256,
705,
12518,
3256,
705,
437,
3256,
705,
13376,
3256,
705,
24886,
11537,
828,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
11280,
276,
7232,
871,
3256,
19203,
11431,
3256,
705,
28751,
3256,
705,
48013,
1187,
3256,
705,
363,
7438,
3256,
705,
15390,
2886,
3256,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
17227,
23948,
3256,
37250,
43162,
62,
265,
3256,
705,
25598,
62,
265,
3256,
705,
82,
2203,
20520,
828,
198,
220,
220,
220,
10612,
628,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
45434,
4906,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
44709,
1298,
14631,
15596,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
3237,
2995,
1276,
423,
257,
4808,
4906,
2214,
900,
284,
530,
286,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
262,
12784,
287,
262,
33829,
2174,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
32,
2829,
1438,
286,
262,
1785,
11,
884,
355,
366,
37,
7860,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
47014,
4854,
319,
44670,
14180,
1,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
439,
62,
820,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
2127,
21052,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
5497,
16856,
611,
262,
1785,
318,
281,
477,
12,
820,
1785,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
4906,
286,
1785,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16926,
46,
25,
1210,
656,
33829,
628,
220,
220,
220,
220,
220,
220,
220,
366,
43162,
62,
265,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
19608,
8079,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
1169,
640,
326,
428,
2134,
373,
938,
6153,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
25598,
62,
265,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
19608,
8079,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
1169,
640,
326,
428,
2134,
373,
717,
2727,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
32,
2392,
6764,
12059,
262,
1785,
13,
1081,
281,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1672,
11,
366,
25902,
329,
5114,
2291,
428,
326,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
290,
262,
584,
1517,
13,
554,
3090,
11,
9965,
481,
307,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4983,
1911,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
12518,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
19608,
8079,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
22851,
3128,
1220,
640,
286,
262,
1785,
13,
770,
815,
307,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3938,
640,
11340,
10617,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
437,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
19608,
8079,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
12915,
278,
3128,
1220,
640,
286,
262,
1785,
13,
770,
815,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
307,
3938,
640,
11340,
10617,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
198,
220,
220,
220,
220,
220,
220,
220,
366,
13376,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
44709,
1298,
14631,
66,
590,
3353,
1600,
366,
83,
298,
876,
1600,
366,
36349,
1600,
366,
6603,
276,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
10100,
326,
43397,
262,
3722,
286,
262,
3249,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
770,
318,
4465,
329,
4478,
262,
3249,
318,
16769,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
287,
257,
4572,
12,
46155,
835,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
24886,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
8496,
262,
1785,
481,
1011,
1295,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
3672,
286,
262,
4067,
11,
884,
355,
366,
14941,
4789,
4032,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6182,
11,
8779,
11,
4916,
1600,
393,
366,
41178,
412,
1264,
11,
360,
16617,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5800,
3337,
11,
1160,
9879,
2258,
3250,
29402,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2059,
20365,
6835,
11,
5846,
16817,
30543,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11295,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
10734,
31744,
4710,
5115,
262,
4067,
4032,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1223,
588,
366,
464,
3249,
481,
1011,
1295,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
379,
262,
29980,
40930,
43054,
82,
6915,
319,
262,
4314,
1,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6371,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
21886,
286,
262,
4067,
11,
611,
9723,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
37652,
17540,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
37652,
17540,
810,
428,
1785,
481,
1011,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1295,
13,
1002,
262,
4067,
5818,
43054,
83,
357,
273,
2125,
43054,
83,
33047,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4903,
349,
10533,
393,
4903,
420,
375,
540,
11,
621,
428,
815,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
307,
900,
284,
9242,
2637,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
15252,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15460,
3984,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
15460,
3984,
286,
262,
4067,
11,
611,
597,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6511,
3984,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
6511,
3984,
286,
262,
4067,
11,
611,
597,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
11431,
1298,
2056,
62,
15952,
2611,
11,
628,
220,
220,
220,
220,
220,
220,
220,
366,
15390,
2886,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
31815,
284,
3519,
4963,
329,
262,
1785,
13,
19672,
553,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
428,
3407,
1243,
588,
662,
12,
15266,
9709,
553,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4104,
42011,
393,
257,
10649,
6203,
326,
257,
39597,
481,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
779,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23814,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
3672,
286,
262,
3188,
13,
13742,
588,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
366,
37,
7860,
6358,
1,
393,
366,
7554,
4176,
43054,
82,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3454,
1460,
1911,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6371,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
21886,
810,
262,
2695,
743,
307,
1043,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
76,
320,
2963,
431,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
44,
320,
2963,
431,
286,
262,
3188,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
31815,
3519,
284,
262,
1785,
326,
389,
407,
4963,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
393,
3709,
287,
262,
37029,
13,
770,
318,
5901,
351,
7613,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6117,
329,
262,
1785,
11,
884,
355,
257,
5583,
338,
34940,
553,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4941,
2587,
393,
6117,
284,
2193,
517,
546,
7481,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3519,
284,
262,
1785,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23814,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11295,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
19203,
20490,
12,
46155,
1438,
286,
262,
2792,
13,
13742,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
588,
366,
13749,
12409,
19719,
329,
26384,
1548,
31156,
30543,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
27190,
1298,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6371,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
32,
10289,
329,
257,
2792,
546,
262,
1785,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
18982,
1298,
366,
9900,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
48013,
1187,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
8053,
286,
6809,
287,
262,
1785,
13,
770,
3407,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17460,
9392,
11,
19964,
5118,
278,
262,
1785,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
393,
661,
508,
389,
11969,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23814,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
354,
7789,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
30719,
2214,
23069,
262,
11847,
286,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
262,
3519,
18399,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
20490,
31744,
1438,
286,
262,
26189,
414,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
2389,
286,
262,
18399,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
44709,
1298,
14631,
9971,
1634,
1600,
366,
6259,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
2061,
2099,
286,
9312,
318,
428,
30,
4600,
6259,
63,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
743,
307,
973,
611,
262,
1048,
318,
407,
257,
12288,
1352,
553,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
475,
1078,
1571,
262,
1785,
11,
884,
355,
281,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9392,
10834,
393,
530,
508,
318,
6011,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9709,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11295,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
6425,
5115,
262,
2776,
11,
884,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
355,
4600,
16337,
63,
329,
262,
5118,
286,
257,
3249,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
366,
363,
7438,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
10262,
7438,
286,
262,
1785,
11,
611,
597,
13,
770,
4909,
1321,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
546,
262,
3249,
338,
8666,
11,
884,
355,
9024,
284,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2112,
393,
661,
284,
1944,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23814,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
20490,
12,
46155,
4731,
326,
6870,
428,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
8666,
2378,
13,
317,
922,
1672,
561,
307,
1223,
588,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
383,
4606,
481,
2074,
18056,
362,
29626,
11,
25997,
1802,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2875,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
2875,
286,
428,
2378,
11,
4465,
329,
302,
12,
20123,
278,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3249,
2431,
13,
770,
743,
307,
267,
3020,
863,
5000,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
632,
743,
635,
42976,
4909,
19990,
67,
1747,
7879,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
284,
42685,
28376,
8666,
3709,
11,
884,
355,
19990,
16,
13,
16,
13,
17,
13,
16,
7879,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
393,
19990,
17,
34607,
543,
743,
467,
319,
355,
2622,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
32796,
82,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
8053,
286,
3519,
10233,
286,
428,
8666,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2378,
18436,
284,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23814,
1298,
19779,
4906,
1298,
366,
8841,
25719,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11431,
1298,
2056,
62,
15952,
2611,
11,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17815,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
8053,
286,
4710,
2077,
1141,
428,
8666,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2378,
11,
743,
307,
973,
284,
5678,
3249,
2431,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23814,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
36439,
4731,
7268,
262,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2695,
286,
262,
3465,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
5363,
62,
298,
871,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
14539,
871,
326,
15124,
284,
428,
8666,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2378,
11,
884,
355,
1944,
364,
11,
10828,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
12834,
11,
393,
17460,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23814,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
4906,
286,
262,
3519,
2134,
11,
588,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4600,
35546,
63,
393,
4600,
9971,
1634,
63,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
366,
2389,
286,
262,
3519,
9312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
10734,
31744,
4731,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
10200,
262,
9312,
553,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
884,
355,
4600,
7554,
1195,
13,
4176,
63,
526,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11295,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
14631,
8841,
1600,
366,
8423,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
5855,
10734,
31744,
4731,
357,
361,
597,
8,
10820,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
262,
2776,
1022,
262,
9312,
290,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
262,
8666,
2378,
11,
884,
355,
19990,
19139,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
481,
307,
17728,
319,
262,
3048,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
286,
1165,
881,
19751,
15756,
7879,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1084,
23022,
1298,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1084,
23022,
1298,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
18747,
1,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2203,
1298,
4237,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
2302,
8847,
1298,
33849,
11,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
92,
198
] | 1.660739 | 9,223 |
from django.contrib.auth import views as auth_views
from django.views.generic.base import TemplateView
from django.conf.urls import patterns, include, url
from django.contrib import admin
from django.conf.urls.static import static
from django.conf import settings
from django.views.generic import RedirectView
from fileupload.views import *
app_name='fileupload'
urlpatterns = [
#~ url(r'^list/$', 'fileupload.views.list_files', name='list'),
url(r'^create_report/', 'fileupload.views.create_report', name='create_report'),
url(r'^(?P<report_id>[0-9]+)/', 'fileupload.views.view_report', name='view_report'),
url(r'^browse/$', 'fileupload.views.browse', name='browse'),
url(r'^user_reports/(?P<id>[0-9]+)/$', 'fileupload.views.user_reports', name='user_reports'),
url(r'^inbox/$', 'fileupload.views.inbox', name='inbox'),
url(r'^create_message/$', 'fileupload.views.create_message', name='create_message'),
url(r'^trash/$', 'fileupload.views.trash', name='trash'),
url(r'^delete_report/(?P<report_id>[0-9]+)/$', 'fileupload.views.delete_report', name='delete_report'),
url(r'^edit_report/(?P<report_id>[0-9]+)/$', 'fileupload.views.edit_report', name='edit_report'),
url(r'^view_message/(?P<message_id>[0-9]+)/', 'fileupload.views.view_message', name='view_message'),
url(r'^reply_message/(?P<message_id>[0-9]+)/', 'fileupload.views.reply_message', name='reply_message'),
url(r'^create_folder/$', 'fileupload.views.create_folder', name='create_folder'),
url(r'^edit_folder/(?P<folder_id>[0-9]+)/', 'fileupload.views.edit_folder', name='edit_folder'),
url(r'^delete_folder/(?P<folder_id>[0-9]+)/', 'fileupload.views.delete_folder', name='delete_folder'),
]
| [
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
1330,
5009,
355,
6284,
62,
33571,
198,
6738,
42625,
14208,
13,
33571,
13,
41357,
13,
8692,
1330,
37350,
7680,
198,
6738,
42625,
14208,
13,
10414,
13,
6371,
82,
1330,
7572,
11,
2291,
11,
19016,
198,
6738,
42625,
14208,
13,
3642,
822,
1330,
13169,
198,
6738,
42625,
14208,
13,
10414,
13,
6371,
82,
13,
12708,
1330,
9037,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
33571,
13,
41357,
1330,
2297,
1060,
7680,
198,
6738,
2393,
25850,
13,
33571,
1330,
1635,
198,
198,
1324,
62,
3672,
11639,
7753,
25850,
6,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
1303,
93,
19016,
7,
81,
6,
61,
4868,
32624,
3256,
705,
7753,
25850,
13,
33571,
13,
4868,
62,
16624,
3256,
1438,
11639,
4868,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
17953,
62,
13116,
14,
3256,
705,
7753,
25850,
13,
33571,
13,
17953,
62,
13116,
3256,
1438,
11639,
17953,
62,
13116,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
47,
27,
13116,
62,
312,
36937,
15,
12,
24,
48688,
20679,
3256,
705,
7753,
25850,
13,
33571,
13,
1177,
62,
13116,
3256,
1438,
11639,
1177,
62,
13116,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
25367,
325,
32624,
3256,
705,
7753,
25850,
13,
33571,
13,
25367,
325,
3256,
1438,
11639,
25367,
325,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7220,
62,
48922,
29006,
30,
47,
27,
312,
36937,
15,
12,
24,
48688,
20679,
3,
3256,
705,
7753,
25850,
13,
33571,
13,
7220,
62,
48922,
3256,
1438,
11639,
7220,
62,
48922,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
259,
3524,
32624,
3256,
705,
7753,
25850,
13,
33571,
13,
259,
3524,
3256,
1438,
11639,
259,
3524,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
17953,
62,
20500,
32624,
3256,
705,
7753,
25850,
13,
33571,
13,
17953,
62,
20500,
3256,
1438,
11639,
17953,
62,
20500,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
2213,
1077,
32624,
3256,
705,
7753,
25850,
13,
33571,
13,
2213,
1077,
3256,
1438,
11639,
2213,
1077,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
33678,
62,
13116,
29006,
30,
47,
27,
13116,
62,
312,
36937,
15,
12,
24,
48688,
20679,
3,
3256,
705,
7753,
25850,
13,
33571,
13,
33678,
62,
13116,
3256,
1438,
11639,
33678,
62,
13116,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
19312,
62,
13116,
29006,
30,
47,
27,
13116,
62,
312,
36937,
15,
12,
24,
48688,
20679,
3,
3256,
705,
7753,
25850,
13,
33571,
13,
19312,
62,
13116,
3256,
1438,
11639,
19312,
62,
13116,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
1177,
62,
20500,
29006,
30,
47,
27,
20500,
62,
312,
36937,
15,
12,
24,
48688,
20679,
3256,
705,
7753,
25850,
13,
33571,
13,
1177,
62,
20500,
3256,
1438,
11639,
1177,
62,
20500,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
47768,
62,
20500,
29006,
30,
47,
27,
20500,
62,
312,
36937,
15,
12,
24,
48688,
20679,
3256,
705,
7753,
25850,
13,
33571,
13,
47768,
62,
20500,
3256,
1438,
11639,
47768,
62,
20500,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
17953,
62,
43551,
32624,
3256,
705,
7753,
25850,
13,
33571,
13,
17953,
62,
43551,
3256,
1438,
11639,
17953,
62,
43551,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
19312,
62,
43551,
29006,
30,
47,
27,
43551,
62,
312,
36937,
15,
12,
24,
48688,
20679,
3256,
705,
7753,
25850,
13,
33571,
13,
19312,
62,
43551,
3256,
1438,
11639,
19312,
62,
43551,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
33678,
62,
43551,
29006,
30,
47,
27,
43551,
62,
312,
36937,
15,
12,
24,
48688,
20679,
3256,
705,
7753,
25850,
13,
33571,
13,
33678,
62,
43551,
3256,
1438,
11639,
33678,
62,
43551,
33809,
198,
60,
198
] | 2.670295 | 643 |
#!/usr/bin/env python3
# encoding: utf-8
"""Choices are enumeration values you can choose, by selecting index number.
It is a special TabStop, its content are taken literally, thus said, they will not be parsed recursively.
"""
from UltiSnips import vim_helper
from UltiSnips.position import Position
from UltiSnips.text_objects.tabstop import TabStop
from UltiSnips.snippet.parsing.lexer import ChoicesToken
class Choices(TabStop):
"""See module docstring."""
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
21004,
25,
3384,
69,
12,
23,
198,
198,
37811,
22164,
1063,
389,
27056,
341,
3815,
345,
460,
3853,
11,
416,
17246,
6376,
1271,
13,
198,
1026,
318,
257,
2041,
16904,
19485,
11,
663,
2695,
389,
2077,
7360,
11,
4145,
531,
11,
484,
481,
407,
307,
44267,
664,
1834,
2280,
13,
198,
37811,
198,
198,
6738,
6172,
72,
16501,
2419,
1330,
43907,
62,
2978,
525,
198,
6738,
6172,
72,
16501,
2419,
13,
9150,
1330,
23158,
198,
6738,
6172,
72,
16501,
2419,
13,
5239,
62,
48205,
13,
8658,
11338,
1330,
16904,
19485,
198,
6738,
6172,
72,
16501,
2419,
13,
16184,
3974,
316,
13,
79,
945,
278,
13,
2588,
263,
1330,
10031,
1063,
30642,
628,
198,
4871,
10031,
1063,
7,
33349,
19485,
2599,
198,
220,
220,
220,
37227,
6214,
8265,
2205,
8841,
526,
15931,
198
] | 3.27972 | 143 |
import pytest
from mltk.utils.test_helper import run_model_operation, generate_run_model_params
@pytest.mark.parametrize(*generate_run_model_params())
@pytest.mark.parametrize(*generate_run_model_params()) | [
198,
11748,
12972,
9288,
198,
6738,
285,
2528,
74,
13,
26791,
13,
9288,
62,
2978,
525,
1330,
1057,
62,
19849,
62,
27184,
11,
7716,
62,
5143,
62,
19849,
62,
37266,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
46491,
8612,
378,
62,
5143,
62,
19849,
62,
37266,
28955,
198,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
46491,
8612,
378,
62,
5143,
62,
19849,
62,
37266,
28955
] | 2.824324 | 74 |
name = str(input('Type your name: ')).strip()
print('Uppercase name: {}'.format(name.upper()))
print('Lowercase name: {}'.format(name.lower()))
print('Total letters: {}'.format(len(name) - name.count(' ')))
#print('First name has {} letters. '.format(name.find(' ')))
s = name.split()
print('First name has {} letters.'.format(len(s[0]))) | [
3672,
796,
965,
7,
15414,
10786,
6030,
534,
1438,
25,
705,
29720,
36311,
3419,
198,
4798,
10786,
52,
39921,
589,
1438,
25,
23884,
4458,
18982,
7,
3672,
13,
45828,
3419,
4008,
198,
4798,
10786,
31426,
7442,
1438,
25,
23884,
4458,
18982,
7,
3672,
13,
21037,
3419,
4008,
198,
4798,
10786,
14957,
7475,
25,
23884,
4458,
18982,
7,
11925,
7,
3672,
8,
532,
1438,
13,
9127,
10786,
705,
22305,
198,
2,
4798,
10786,
5962,
1438,
468,
23884,
7475,
13,
45302,
18982,
7,
3672,
13,
19796,
10786,
705,
22305,
198,
82,
796,
1438,
13,
35312,
3419,
198,
4798,
10786,
5962,
1438,
468,
23884,
7475,
2637,
13,
18982,
7,
11925,
7,
82,
58,
15,
60,
22305
] | 2.99115 | 113 |
#====================================================
# MODULES
#====================================================
import pandas as pd
import ROOT
import matplotlib.pyplot as plt
import numpy as np
#====================================================
# DATA PREPARATION
#====================================================
model_outputs = pd.read_csv('model_outputs.csv')
model_outputs['Label'] = pd.read_csv('dataset_higgs_challenge.csv')['Label']
model_outputs['KaggleWeight'] = pd.read_csv('dataset_higgs_challenge.csv')['KaggleWeight']
model_outputs['KaggleSet'] = pd.read_csv('dataset_higgs_challenge.csv')['KaggleSet']
predictions_train = model_outputs['Predictions'][model_outputs['KaggleSet'] == 't']
predictions_test = model_outputs['Predictions'][model_outputs['KaggleSet'] == 'v']
weights_train = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 't']
weights_test = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 'v']
labels_train = model_outputs['Label'][model_outputs['KaggleSet'] == 't']
labels_test = model_outputs['Label'][model_outputs['KaggleSet'] == 'v']
predictions_train = (predictions_train - min(predictions_train)) / (max(predictions_train) - min(predictions_train))
predictions_test = (predictions_test - min(predictions_test)) / (max(predictions_test) - min(predictions_test))
train_signal = predictions_train[model_outputs['KaggleSet'] == 't'][model_outputs['Label']=='s']
train_bkg = predictions_train[model_outputs['KaggleSet'] == 't'][model_outputs['Label']=='b']
test_signal = predictions_test[model_outputs['KaggleSet'] == 'v'][model_outputs['Label']=='s']
test_bkg = predictions_test[model_outputs['KaggleSet'] == 'v'][model_outputs['Label']=='b']
weights_train_signal = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 't'][model_outputs['Label']=='s']
weights_train_bkg = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 't'][model_outputs['Label']=='b']
weights_test_signal = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 'v'][model_outputs['Label']=='s']
weights_test_bkg = model_outputs['KaggleWeight'][model_outputs['KaggleSet'] == 'v'][model_outputs['Label']=='b']
#====================================================
# STYLE SETTINGS
#====================================================
ROOT.gROOT.SetStyle("ATLAS")
c = ROOT.TCanvas("c", "", 750, 700)
bins = 20
hist_train_s = ROOT.TH1D("hist_train_s", "train signal", bins, 0, 1)
hist_test_s = ROOT.TH1D("hist_test_s", "test signal", bins, 0, 1)
hist_train_b = ROOT.TH1D("hist_train_b", "train bkg", bins, 0, 1)
hist_test_b = ROOT.TH1D("hist_test_b", "test bkg", bins, 0, 1)
#====================================================
# FIRST UNWEIGHTED AND NORMALIZED TO UNITY
#====================================================
for i in range(len(train_signal)):
hist_train_s.Fill(train_signal.values[i])
for i in range(len(test_signal)):
hist_test_s.Fill(test_signal.values[i])
for i in range(len(train_bkg)):
hist_train_b.Fill(train_bkg.values[i])
for i in range(len(test_bkg)):
hist_test_b.Fill(test_bkg.values[i])
for hist in [hist_test_s, hist_test_b]:
for i in range(1, hist.GetNbinsX()+1):
hist.SetBinError(i, np.sqrt(hist.GetBinContent(i)))
for hist in [hist_train_s, hist_test_s, hist_train_b, hist_test_b]:
hist.Scale(1/hist.Integral(), 'nosw2')
#Plot settings:
hist_train_b.SetAxisRange(3e-3, 5, 'Y')
hist_train_b.GetYaxis().SetLabelSize(0.04)
hist_train_b.GetYaxis().SetTitleSize(0.04)
hist_train_b.GetYaxis().SetTitle('Event Fraction')
hist_train_b.GetXaxis().SetLabelSize(0.04)
hist_train_b.GetXaxis().SetTitleSize(0.04)
hist_train_b.GetXaxis().SetTitle('Model Output')
hist_train_b.SetLineColor(ROOT.kRed)
hist_train_b.SetLineWidth(3)
hist_train_b.Draw('HIST')
hist_test_b.SetMarkerSize(1.3)
hist_test_b.SetMarkerStyle(3)
hist_test_b.Draw('same')
hist_train_s.SetLineColor(ROOT.kBlue)
hist_train_s.SetLineWidth(3)
hist_train_s.Draw('hist same')
hist_test_s.SetMarkerSize(1.3)
hist_test_s.SetMarkerStyle(8)
hist_test_s.Draw('same')
c.SetLogy()
#Add legend:
legend = ROOT.TLegend(0.52, 0.75, 0.92, 0.9)
legend.SetTextFont(42)
legend.SetFillStyle(0)
legend.SetBorderSize(0)
legend.SetTextSize(0.04)
legend.SetTextAlign(12)
legend.AddEntry(hist_train_s, "Signal (Training)", "lf")
legend.AddEntry(hist_test_s, "Signal (Test)", "pe")
legend.AddEntry(hist_train_b, "Background (Training)" ,"l")
legend.AddEntry(hist_test_b, "Background (Test)", "ep")
legend.Draw("SAME")
text = ROOT.TLatex()
text.SetNDC()
text.SetTextFont(42)
text.SetTextSize(0.04)
text.DrawLatex(0.23, 0.87, "Simulation")
text.DrawLatex(0.23, 0.83, "H #rightarrow #tau^{+}#tau^{-}")
text.DrawLatex(0.23, 0.79, "#sqrt{s} = 8 TeV")
c.Draw()
#Set marker:
marker_types = ROOT.TCanvas('marker_types', '', 0,0,500,200)
marker = ROOT.TMarker()
marker.DisplayMarkerTypes()
marker_types.Draw()
#====================================================
# NOW THE WEIGHTED DISTRIBUTION
#====================================================
c2 = ROOT.TCanvas("c2", "", 750, 700)
bins = 10
hist_train_sw = ROOT.TH1D("hist_train_sw", "train signal", bins, 0, 1)
hist_train_bw = ROOT.TH1D("hist_train_bw", "train bkg", bins, 0, 1)
hist_test_w = ROOT.TH1D("hist_test_w", "test bkg", bins, 0, 1)
for i in range(len(train_signal)):
hist_train_sw.Fill(train_signal.values[i], weights_train_signal.values[i])
for i in range(len(train_bkg)):
hist_train_bw.Fill(train_bkg.values[i], weights_train_bkg.values[i])
for i in range(len(predictions_test)):
hist_test_w.Fill(predictions_test.values[i], weights_test.values[i])
for hist in [hist_train_sw, hist_train_bw, hist_test_w]:
for i in range(1, hist.GetNbinsX()+1):
hist.SetBinError(i, np.sqrt(hist.GetBinContent(i)))
hist_train_sw.SetFillColorAlpha(ROOT.kAzure-1,.6)
hist_train_bw.SetFillColorAlpha(ROOT.kRed-4, .9)
hist_train_sw.SetLineWidth(1)
hist_train_bw.SetLineWidth(1)
#Axes
hist_train_bw.GetYaxis().SetLabelSize(0.04)
hist_train_bw.GetYaxis().SetTitleSize(0.04)
hist_train_bw.GetYaxis().SetTitle('Events')
hist_train_bw.GetXaxis().SetLabelSize(0.04)
hist_train_bw.GetXaxis().SetTitleSize(0.04)
hist_train_bw.GetXaxis().SetTitle('Model Output')
hist_train_bw.Draw()
#Stack
hs = ROOT.THStack("hs", "Weighted Distributions")
hs.Add(hist_train_sw)
hs.Add(hist_train_bw)
hs.SetMinimum(20)
hs.SetMaximum(1e7)
hs.Draw('hist')
hs.SetHistogram(hist_train_bw)
hist_test_w.Draw('same')
#Legend
legend = ROOT.TLegend(0.5, 0.75, 0.8, 0.9)
legend.SetTextFont(42)
legend.SetFillStyle(0)
legend.SetBorderSize(0)
legend.SetTextSize(0.04)
legend.SetTextAlign(12)
legend.AddEntry(hist_train_sw, "Signal (Training)", "f")
legend.AddEntry(hist_train_bw, "Background (Training)", "f")
legend.AddEntry(hist_test_w, "Test", "pe")
legend.Draw("SAME")
#Text
text = ROOT.TLatex()
text.SetNDC()
text.SetTextFont(42)
text.SetTextSize(0.04)
text.DrawLatex(0.23, 0.87, "Simulation")
text.DrawLatex(0.23, 0.83, "H #rightarrow #tau^{+}#tau^{-}")
text.DrawLatex(0.23, 0.79, "#sqrt{s} = 8 TeV")
c2.SetLogy()
c2.Draw()
#====================================================
# SAVE CANVAS
#====================================================
c2.SaveAs('weighted.png')
c2.SaveAs('weighted.pdf')
w = ROOT.TColorWheel()
cw = ROOT.TCanvas("cw","cw",0,0,800,800)
w.SetCanvas(cw)
w.Draw()
cw.Draw()
#====================================================
# RATIO PLOT
#====================================================
bins = 10
hist_train_sw = ROOT.TH1D("hist_train_sw", "train signal", bins, 0, 1)
hist_train_bw = ROOT.TH1D("hist_train_bw", "train bkg", bins, 0, 1)
hist_test_w = ROOT.TH1D("hist_test_w", "test bkg", bins, 0, 1)
for i in range(len(train_signal)):
hist_train_sw.Fill(train_signal.values[i], weights_train_signal.values[i])
for i in range(len(train_bkg)):
hist_train_bw.Fill(train_bkg.values[i], weights_train_bkg.values[i])
for i in range(len(predictions_test)):
hist_test_w.Fill(predictions_test.values[i], weights_test.values[i])
for hist in [hist_train_sw, hist_train_bw, hist_test_w]:
for i in range(1, hist.GetNbinsX()+1):
hist.SetBinError(i, np.sqrt(hist.GetBinContent(i)))
c3 = ROOT.TCanvas("c3", "Ratio Plot", 700, 750)
upper_pad = ROOT.TPad("upper_pad", "", 0, 0.25, 1, 1)
lower_pad = ROOT.TPad("lower_pad", "", 0, 0, 1, 0.25)
for pad in [upper_pad, lower_pad]:
pad.SetLeftMargin(0.14)
pad.SetRightMargin(0.05)
pad.SetTickx(True)
pad.SetTicky(True)
upper_pad.SetBottomMargin(0)
lower_pad.SetTopMargin(0)
lower_pad.SetBottomMargin(0.3)
upper_pad.Draw()
lower_pad.Draw()
c3.Draw() | [
2,
10052,
4770,
1421,
198,
2,
220,
220,
220,
220,
19164,
6239,
1546,
198,
2,
10052,
4770,
1421,
198,
11748,
19798,
292,
355,
279,
67,
220,
198,
11748,
15107,
2394,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
299,
32152,
355,
45941,
628,
198,
2,
10052,
4770,
1421,
198,
2,
220,
220,
220,
220,
42865,
22814,
27082,
6234,
198,
2,
10052,
4770,
1421,
198,
19849,
62,
22915,
82,
796,
279,
67,
13,
961,
62,
40664,
10786,
19849,
62,
22915,
82,
13,
40664,
11537,
198,
19849,
62,
22915,
82,
17816,
33986,
20520,
796,
279,
67,
13,
961,
62,
40664,
10786,
19608,
292,
316,
62,
71,
20340,
62,
36747,
3540,
13,
40664,
11537,
17816,
33986,
20520,
198,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
25844,
20520,
796,
279,
67,
13,
961,
62,
40664,
10786,
19608,
292,
316,
62,
71,
20340,
62,
36747,
3540,
13,
40664,
11537,
17816,
42,
9460,
293,
25844,
20520,
198,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
796,
279,
67,
13,
961,
62,
40664,
10786,
19608,
292,
316,
62,
71,
20340,
62,
36747,
3540,
13,
40664,
11537,
17816,
42,
9460,
293,
7248,
20520,
198,
198,
28764,
9278,
62,
27432,
796,
2746,
62,
22915,
82,
17816,
39156,
9278,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
83,
20520,
198,
28764,
9278,
62,
9288,
796,
2746,
62,
22915,
82,
17816,
39156,
9278,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
85,
20520,
198,
43775,
62,
27432,
796,
2746,
62,
22915,
82,
17816,
42,
9460,
293,
25844,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
83,
20520,
198,
43775,
62,
9288,
796,
2746,
62,
22915,
82,
17816,
42,
9460,
293,
25844,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
85,
20520,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
23912,
1424,
62,
27432,
796,
2746,
62,
22915,
82,
17816,
33986,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
83,
20520,
198,
23912,
1424,
62,
9288,
796,
2746,
62,
22915,
82,
17816,
33986,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
85,
20520,
198,
198,
28764,
9278,
62,
27432,
796,
357,
28764,
9278,
62,
27432,
532,
949,
7,
28764,
9278,
62,
27432,
4008,
1220,
357,
9806,
7,
28764,
9278,
62,
27432,
8,
532,
949,
7,
28764,
9278,
62,
27432,
4008,
198,
28764,
9278,
62,
9288,
796,
357,
28764,
9278,
62,
9288,
532,
949,
7,
28764,
9278,
62,
9288,
4008,
1220,
357,
9806,
7,
28764,
9278,
62,
9288,
8,
532,
949,
7,
28764,
9278,
62,
9288,
4008,
198,
198,
27432,
62,
12683,
282,
796,
16277,
62,
27432,
58,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
83,
6,
7131,
19849,
62,
22915,
82,
17816,
33986,
20520,
855,
6,
82,
20520,
198,
27432,
62,
65,
10025,
796,
16277,
62,
27432,
58,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
83,
6,
7131,
19849,
62,
22915,
82,
17816,
33986,
20520,
855,
6,
65,
20520,
198,
9288,
62,
12683,
282,
796,
16277,
62,
9288,
58,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
85,
6,
7131,
19849,
62,
22915,
82,
17816,
33986,
20520,
855,
6,
82,
20520,
198,
9288,
62,
65,
10025,
796,
16277,
62,
9288,
58,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
85,
6,
7131,
19849,
62,
22915,
82,
17816,
33986,
20520,
855,
6,
65,
20520,
198,
198,
43775,
62,
27432,
62,
12683,
282,
796,
2746,
62,
22915,
82,
17816,
42,
9460,
293,
25844,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
83,
6,
7131,
19849,
62,
22915,
82,
17816,
33986,
20520,
855,
6,
82,
20520,
198,
43775,
62,
27432,
62,
65,
10025,
796,
2746,
62,
22915,
82,
17816,
42,
9460,
293,
25844,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
83,
6,
7131,
19849,
62,
22915,
82,
17816,
33986,
20520,
855,
6,
65,
20520,
198,
43775,
62,
9288,
62,
12683,
282,
796,
2746,
62,
22915,
82,
17816,
42,
9460,
293,
25844,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
85,
6,
7131,
19849,
62,
22915,
82,
17816,
33986,
20520,
855,
6,
82,
20520,
198,
43775,
62,
9288,
62,
65,
10025,
796,
2746,
62,
22915,
82,
17816,
42,
9460,
293,
25844,
6,
7131,
19849,
62,
22915,
82,
17816,
42,
9460,
293,
7248,
20520,
6624,
705,
85,
6,
7131,
19849,
62,
22915,
82,
17816,
33986,
20520,
855,
6,
65,
20520,
628,
198,
2,
10052,
4770,
1421,
198,
2,
220,
220,
220,
220,
3563,
56,
2538,
25823,
51,
20754,
198,
2,
10052,
4770,
1421,
198,
13252,
2394,
13,
70,
13252,
2394,
13,
7248,
21466,
7203,
1404,
43,
1921,
4943,
198,
198,
66,
796,
15107,
2394,
13,
4825,
272,
11017,
7203,
66,
1600,
366,
1600,
19683,
11,
13037,
8,
198,
198,
65,
1040,
796,
1160,
198,
10034,
62,
27432,
62,
82,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
27432,
62,
82,
1600,
366,
27432,
6737,
1600,
41701,
11,
657,
11,
352,
8,
198,
10034,
62,
9288,
62,
82,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
9288,
62,
82,
1600,
366,
9288,
6737,
1600,
41701,
11,
657,
11,
352,
8,
198,
10034,
62,
27432,
62,
65,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
27432,
62,
65,
1600,
366,
27432,
275,
10025,
1600,
41701,
11,
657,
11,
352,
8,
198,
10034,
62,
9288,
62,
65,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
9288,
62,
65,
1600,
366,
9288,
275,
10025,
1600,
41701,
11,
657,
11,
352,
8,
628,
198,
2,
10052,
4770,
1421,
198,
2,
220,
220,
220,
220,
31328,
4725,
8845,
9947,
1961,
5357,
25273,
42126,
14887,
1961,
5390,
4725,
9050,
198,
2,
10052,
4770,
1421,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
27432,
62,
12683,
282,
8,
2599,
198,
220,
220,
220,
1554,
62,
27432,
62,
82,
13,
33762,
7,
27432,
62,
12683,
282,
13,
27160,
58,
72,
12962,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
9288,
62,
12683,
282,
8,
2599,
198,
220,
220,
220,
1554,
62,
9288,
62,
82,
13,
33762,
7,
9288,
62,
12683,
282,
13,
27160,
58,
72,
12962,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
27432,
62,
65,
10025,
8,
2599,
198,
220,
220,
220,
1554,
62,
27432,
62,
65,
13,
33762,
7,
27432,
62,
65,
10025,
13,
27160,
58,
72,
12962,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
9288,
62,
65,
10025,
8,
2599,
198,
220,
220,
220,
1554,
62,
9288,
62,
65,
13,
33762,
7,
9288,
62,
65,
10025,
13,
27160,
58,
72,
12962,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
1640,
1554,
287,
685,
10034,
62,
9288,
62,
82,
11,
1554,
62,
9288,
62,
65,
5974,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
1554,
13,
3855,
45,
65,
1040,
55,
3419,
10,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1554,
13,
7248,
33,
259,
12331,
7,
72,
11,
45941,
13,
31166,
17034,
7,
10034,
13,
3855,
33,
259,
19746,
7,
72,
22305,
198,
1640,
1554,
287,
685,
10034,
62,
27432,
62,
82,
11,
1554,
62,
9288,
62,
82,
11,
1554,
62,
27432,
62,
65,
11,
1554,
62,
9288,
62,
65,
5974,
198,
220,
220,
220,
1554,
13,
29990,
7,
16,
14,
10034,
13,
34500,
1373,
22784,
705,
39369,
86,
17,
11537,
198,
220,
220,
220,
220,
198,
2,
43328,
6460,
25,
198,
10034,
62,
27432,
62,
65,
13,
7248,
31554,
271,
17257,
7,
18,
68,
12,
18,
11,
642,
11,
705,
56,
11537,
198,
10034,
62,
27432,
62,
65,
13,
3855,
56,
22704,
22446,
7248,
33986,
10699,
7,
15,
13,
3023,
8,
198,
10034,
62,
27432,
62,
65,
13,
3855,
56,
22704,
22446,
7248,
19160,
10699,
7,
15,
13,
3023,
8,
198,
10034,
62,
27432,
62,
65,
13,
3855,
56,
22704,
22446,
7248,
19160,
10786,
9237,
376,
7861,
11537,
198,
10034,
62,
27432,
62,
65,
13,
3855,
55,
22704,
22446,
7248,
33986,
10699,
7,
15,
13,
3023,
8,
198,
10034,
62,
27432,
62,
65,
13,
3855,
55,
22704,
22446,
7248,
19160,
10699,
7,
15,
13,
3023,
8,
198,
10034,
62,
27432,
62,
65,
13,
3855,
55,
22704,
22446,
7248,
19160,
10786,
17633,
25235,
11537,
198,
10034,
62,
27432,
62,
65,
13,
7248,
13949,
10258,
7,
13252,
2394,
13,
74,
7738,
8,
198,
10034,
62,
27432,
62,
65,
13,
7248,
13949,
30916,
7,
18,
8,
198,
10034,
62,
27432,
62,
65,
13,
25302,
10786,
39,
8808,
11537,
198,
198,
10034,
62,
9288,
62,
65,
13,
7248,
9704,
263,
10699,
7,
16,
13,
18,
8,
198,
10034,
62,
9288,
62,
65,
13,
7248,
9704,
263,
21466,
7,
18,
8,
198,
10034,
62,
9288,
62,
65,
13,
25302,
10786,
31642,
11537,
198,
198,
10034,
62,
27432,
62,
82,
13,
7248,
13949,
10258,
7,
13252,
2394,
13,
74,
14573,
8,
198,
10034,
62,
27432,
62,
82,
13,
7248,
13949,
30916,
7,
18,
8,
198,
10034,
62,
27432,
62,
82,
13,
25302,
10786,
10034,
976,
11537,
198,
198,
10034,
62,
9288,
62,
82,
13,
7248,
9704,
263,
10699,
7,
16,
13,
18,
8,
198,
10034,
62,
9288,
62,
82,
13,
7248,
9704,
263,
21466,
7,
23,
8,
198,
10034,
62,
9288,
62,
82,
13,
25302,
10786,
31642,
11537,
198,
198,
66,
13,
7248,
43,
9868,
3419,
198,
198,
2,
4550,
8177,
25,
198,
1455,
437,
796,
15107,
2394,
13,
51,
21351,
7,
15,
13,
4309,
11,
657,
13,
2425,
11,
657,
13,
5892,
11,
657,
13,
24,
8,
198,
1455,
437,
13,
7248,
8206,
23252,
7,
3682,
8,
198,
1455,
437,
13,
7248,
33762,
21466,
7,
15,
8,
198,
1455,
437,
13,
7248,
34189,
10699,
7,
15,
8,
198,
1455,
437,
13,
7248,
8206,
10699,
7,
15,
13,
3023,
8,
198,
1455,
437,
13,
7248,
8206,
2348,
570,
7,
1065,
8,
198,
1455,
437,
13,
4550,
30150,
7,
10034,
62,
27432,
62,
82,
11,
366,
11712,
282,
357,
44357,
42501,
366,
1652,
4943,
198,
1455,
437,
13,
4550,
30150,
7,
10034,
62,
9288,
62,
82,
11,
366,
11712,
282,
357,
14402,
42501,
366,
431,
4943,
198,
1455,
437,
13,
4550,
30150,
7,
10034,
62,
27432,
62,
65,
11,
366,
21756,
357,
44357,
16725,
42911,
75,
4943,
198,
1455,
437,
13,
4550,
30150,
7,
10034,
62,
9288,
62,
65,
11,
366,
21756,
357,
14402,
42501,
366,
538,
4943,
198,
1455,
437,
13,
25302,
7203,
50,
10067,
4943,
198,
198,
5239,
796,
15107,
2394,
13,
14990,
378,
87,
3419,
198,
5239,
13,
7248,
8575,
34,
3419,
198,
5239,
13,
7248,
8206,
23252,
7,
3682,
8,
198,
5239,
13,
7248,
8206,
10699,
7,
15,
13,
3023,
8,
198,
5239,
13,
25302,
26302,
87,
7,
15,
13,
1954,
11,
657,
13,
5774,
11,
366,
8890,
1741,
4943,
198,
5239,
13,
25302,
26302,
87,
7,
15,
13,
1954,
11,
657,
13,
5999,
11,
366,
39,
1303,
3506,
6018,
1303,
83,
559,
36796,
10,
92,
2,
83,
559,
36796,
12,
92,
4943,
198,
5239,
13,
25302,
26302,
87,
7,
15,
13,
1954,
11,
657,
13,
3720,
11,
25113,
31166,
17034,
90,
82,
92,
796,
807,
1665,
53,
4943,
198,
198,
66,
13,
25302,
3419,
198,
198,
2,
7248,
18364,
25,
198,
4102,
263,
62,
19199,
796,
15107,
2394,
13,
4825,
272,
11017,
10786,
4102,
263,
62,
19199,
3256,
705,
3256,
657,
11,
15,
11,
4059,
11,
2167,
8,
198,
4102,
263,
796,
15107,
2394,
13,
51,
9704,
263,
3419,
198,
4102,
263,
13,
23114,
9704,
263,
31431,
3419,
198,
4102,
263,
62,
19199,
13,
25302,
3419,
628,
198,
2,
10052,
4770,
1421,
198,
2,
220,
220,
220,
220,
20229,
3336,
12887,
9947,
1961,
34957,
9865,
35354,
198,
2,
10052,
4770,
1421,
198,
66,
17,
796,
15107,
2394,
13,
4825,
272,
11017,
7203,
66,
17,
1600,
366,
1600,
19683,
11,
13037,
8,
198,
198,
65,
1040,
796,
838,
198,
10034,
62,
27432,
62,
2032,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
27432,
62,
2032,
1600,
366,
27432,
6737,
1600,
41701,
11,
657,
11,
352,
8,
198,
10034,
62,
27432,
62,
65,
86,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
27432,
62,
65,
86,
1600,
366,
27432,
275,
10025,
1600,
41701,
11,
657,
11,
352,
8,
198,
10034,
62,
9288,
62,
86,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
9288,
62,
86,
1600,
366,
9288,
275,
10025,
1600,
41701,
11,
657,
11,
352,
8,
198,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
27432,
62,
12683,
282,
8,
2599,
198,
220,
220,
220,
1554,
62,
27432,
62,
2032,
13,
33762,
7,
27432,
62,
12683,
282,
13,
27160,
58,
72,
4357,
19590,
62,
27432,
62,
12683,
282,
13,
27160,
58,
72,
12962,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
27432,
62,
65,
10025,
8,
2599,
198,
220,
220,
220,
1554,
62,
27432,
62,
65,
86,
13,
33762,
7,
27432,
62,
65,
10025,
13,
27160,
58,
72,
4357,
19590,
62,
27432,
62,
65,
10025,
13,
27160,
58,
72,
12962,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
28764,
9278,
62,
9288,
8,
2599,
198,
220,
220,
220,
1554,
62,
9288,
62,
86,
13,
33762,
7,
28764,
9278,
62,
9288,
13,
27160,
58,
72,
4357,
19590,
62,
9288,
13,
27160,
58,
72,
12962,
198,
220,
220,
220,
220,
198,
1640,
1554,
287,
685,
10034,
62,
27432,
62,
2032,
11,
1554,
62,
27432,
62,
65,
86,
11,
1554,
62,
9288,
62,
86,
5974,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
1554,
13,
3855,
45,
65,
1040,
55,
3419,
10,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1554,
13,
7248,
33,
259,
12331,
7,
72,
11,
45941,
13,
31166,
17034,
7,
10034,
13,
3855,
33,
259,
19746,
7,
72,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
10034,
62,
27432,
62,
2032,
13,
7248,
33762,
10258,
38077,
7,
13252,
2394,
13,
74,
26903,
495,
12,
16,
38508,
21,
8,
198,
10034,
62,
27432,
62,
65,
86,
13,
7248,
33762,
10258,
38077,
7,
13252,
2394,
13,
74,
7738,
12,
19,
11,
764,
24,
8,
198,
10034,
62,
27432,
62,
2032,
13,
7248,
13949,
30916,
7,
16,
8,
198,
10034,
62,
27432,
62,
65,
86,
13,
7248,
13949,
30916,
7,
16,
8,
198,
198,
2,
31554,
274,
198,
10034,
62,
27432,
62,
65,
86,
13,
3855,
56,
22704,
22446,
7248,
33986,
10699,
7,
15,
13,
3023,
8,
198,
10034,
62,
27432,
62,
65,
86,
13,
3855,
56,
22704,
22446,
7248,
19160,
10699,
7,
15,
13,
3023,
8,
198,
10034,
62,
27432,
62,
65,
86,
13,
3855,
56,
22704,
22446,
7248,
19160,
10786,
37103,
11537,
198,
10034,
62,
27432,
62,
65,
86,
13,
3855,
55,
22704,
22446,
7248,
33986,
10699,
7,
15,
13,
3023,
8,
198,
10034,
62,
27432,
62,
65,
86,
13,
3855,
55,
22704,
22446,
7248,
19160,
10699,
7,
15,
13,
3023,
8,
198,
10034,
62,
27432,
62,
65,
86,
13,
3855,
55,
22704,
22446,
7248,
19160,
10786,
17633,
25235,
11537,
198,
10034,
62,
27432,
62,
65,
86,
13,
25302,
3419,
198,
198,
2,
25896,
198,
11994,
796,
15107,
2394,
13,
4221,
25896,
7203,
11994,
1600,
366,
25844,
276,
46567,
507,
4943,
198,
11994,
13,
4550,
7,
10034,
62,
27432,
62,
2032,
8,
198,
11994,
13,
4550,
7,
10034,
62,
27432,
62,
65,
86,
8,
198,
11994,
13,
7248,
44046,
7,
1238,
8,
198,
11994,
13,
7248,
40541,
7,
16,
68,
22,
8,
198,
11994,
13,
25302,
10786,
10034,
11537,
198,
11994,
13,
7248,
13749,
21857,
7,
10034,
62,
27432,
62,
65,
86,
8,
198,
198,
10034,
62,
9288,
62,
86,
13,
25302,
10786,
31642,
11537,
198,
198,
2,
21351,
198,
1455,
437,
796,
15107,
2394,
13,
51,
21351,
7,
15,
13,
20,
11,
657,
13,
2425,
11,
657,
13,
23,
11,
657,
13,
24,
8,
198,
1455,
437,
13,
7248,
8206,
23252,
7,
3682,
8,
198,
1455,
437,
13,
7248,
33762,
21466,
7,
15,
8,
198,
1455,
437,
13,
7248,
34189,
10699,
7,
15,
8,
198,
1455,
437,
13,
7248,
8206,
10699,
7,
15,
13,
3023,
8,
198,
1455,
437,
13,
7248,
8206,
2348,
570,
7,
1065,
8,
198,
1455,
437,
13,
4550,
30150,
7,
10034,
62,
27432,
62,
2032,
11,
366,
11712,
282,
357,
44357,
42501,
366,
69,
4943,
198,
1455,
437,
13,
4550,
30150,
7,
10034,
62,
27432,
62,
65,
86,
11,
366,
21756,
357,
44357,
42501,
366,
69,
4943,
198,
1455,
437,
13,
4550,
30150,
7,
10034,
62,
9288,
62,
86,
11,
366,
14402,
1600,
366,
431,
4943,
198,
1455,
437,
13,
25302,
7203,
50,
10067,
4943,
198,
198,
2,
8206,
198,
5239,
796,
15107,
2394,
13,
14990,
378,
87,
3419,
198,
5239,
13,
7248,
8575,
34,
3419,
198,
5239,
13,
7248,
8206,
23252,
7,
3682,
8,
198,
5239,
13,
7248,
8206,
10699,
7,
15,
13,
3023,
8,
198,
5239,
13,
25302,
26302,
87,
7,
15,
13,
1954,
11,
657,
13,
5774,
11,
366,
8890,
1741,
4943,
198,
5239,
13,
25302,
26302,
87,
7,
15,
13,
1954,
11,
657,
13,
5999,
11,
366,
39,
1303,
3506,
6018,
1303,
83,
559,
36796,
10,
92,
2,
83,
559,
36796,
12,
92,
4943,
198,
5239,
13,
25302,
26302,
87,
7,
15,
13,
1954,
11,
657,
13,
3720,
11,
25113,
31166,
17034,
90,
82,
92,
796,
807,
1665,
53,
4943,
198,
198,
66,
17,
13,
7248,
43,
9868,
3419,
198,
66,
17,
13,
25302,
3419,
628,
198,
2,
10052,
4770,
1421,
198,
2,
220,
220,
220,
220,
14719,
6089,
15628,
53,
1921,
198,
2,
10052,
4770,
1421,
198,
66,
17,
13,
16928,
1722,
10786,
6551,
276,
13,
11134,
11537,
198,
66,
17,
13,
16928,
1722,
10786,
6551,
276,
13,
12315,
11537,
198,
198,
86,
796,
15107,
2394,
13,
4825,
45621,
45307,
3419,
198,
66,
86,
796,
15107,
2394,
13,
4825,
272,
11017,
7203,
66,
86,
2430,
66,
86,
1600,
15,
11,
15,
11,
7410,
11,
7410,
8,
198,
86,
13,
7248,
6090,
11017,
7,
66,
86,
8,
198,
86,
13,
25302,
3419,
198,
66,
86,
13,
25302,
3419,
628,
198,
2,
10052,
4770,
1421,
198,
2,
220,
220,
220,
220,
371,
1404,
9399,
9297,
2394,
198,
2,
10052,
4770,
1421,
198,
65,
1040,
796,
838,
198,
198,
10034,
62,
27432,
62,
2032,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
27432,
62,
2032,
1600,
366,
27432,
6737,
1600,
41701,
11,
657,
11,
352,
8,
198,
10034,
62,
27432,
62,
65,
86,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
27432,
62,
65,
86,
1600,
366,
27432,
275,
10025,
1600,
41701,
11,
657,
11,
352,
8,
198,
10034,
62,
9288,
62,
86,
796,
15107,
2394,
13,
4221,
16,
35,
7203,
10034,
62,
9288,
62,
86,
1600,
366,
9288,
275,
10025,
1600,
41701,
11,
657,
11,
352,
8,
198,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
27432,
62,
12683,
282,
8,
2599,
198,
220,
220,
220,
1554,
62,
27432,
62,
2032,
13,
33762,
7,
27432,
62,
12683,
282,
13,
27160,
58,
72,
4357,
19590,
62,
27432,
62,
12683,
282,
13,
27160,
58,
72,
12962,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
27432,
62,
65,
10025,
8,
2599,
198,
220,
220,
220,
1554,
62,
27432,
62,
65,
86,
13,
33762,
7,
27432,
62,
65,
10025,
13,
27160,
58,
72,
4357,
19590,
62,
27432,
62,
65,
10025,
13,
27160,
58,
72,
12962,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
28764,
9278,
62,
9288,
8,
2599,
198,
220,
220,
220,
1554,
62,
9288,
62,
86,
13,
33762,
7,
28764,
9278,
62,
9288,
13,
27160,
58,
72,
4357,
19590,
62,
9288,
13,
27160,
58,
72,
12962,
198,
220,
220,
220,
220,
198,
1640,
1554,
287,
685,
10034,
62,
27432,
62,
2032,
11,
1554,
62,
27432,
62,
65,
86,
11,
1554,
62,
9288,
62,
86,
5974,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
1554,
13,
3855,
45,
65,
1040,
55,
3419,
10,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1554,
13,
7248,
33,
259,
12331,
7,
72,
11,
45941,
13,
31166,
17034,
7,
10034,
13,
3855,
33,
259,
19746,
7,
72,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
66,
18,
796,
15107,
2394,
13,
4825,
272,
11017,
7203,
66,
18,
1600,
366,
29665,
952,
28114,
1600,
13037,
11,
19683,
8,
198,
198,
45828,
62,
15636,
796,
15107,
2394,
13,
7250,
324,
7203,
45828,
62,
15636,
1600,
366,
1600,
657,
11,
657,
13,
1495,
11,
352,
11,
352,
8,
198,
21037,
62,
15636,
796,
15107,
2394,
13,
7250,
324,
7203,
21037,
62,
15636,
1600,
366,
1600,
657,
11,
657,
11,
352,
11,
657,
13,
1495,
8,
198,
1640,
14841,
287,
685,
45828,
62,
15636,
11,
2793,
62,
15636,
5974,
198,
220,
220,
220,
14841,
13,
7248,
18819,
24428,
259,
7,
15,
13,
1415,
8,
198,
220,
220,
220,
14841,
13,
7248,
11028,
24428,
259,
7,
15,
13,
2713,
8,
198,
220,
220,
220,
14841,
13,
7248,
51,
624,
87,
7,
17821,
8,
198,
220,
220,
220,
14841,
13,
7248,
51,
17479,
7,
17821,
8,
198,
45828,
62,
15636,
13,
7248,
34104,
24428,
259,
7,
15,
8,
198,
21037,
62,
15636,
13,
7248,
9126,
24428,
259,
7,
15,
8,
198,
21037,
62,
15636,
13,
7248,
34104,
24428,
259,
7,
15,
13,
18,
8,
198,
198,
45828,
62,
15636,
13,
25302,
3419,
198,
21037,
62,
15636,
13,
25302,
3419,
198,
66,
18,
13,
25302,
3419
] | 2.422098 | 3,575 |
import unittest
from katas.kyu_7.filter_list import filter_list
| [
11748,
555,
715,
395,
198,
198,
6738,
479,
265,
292,
13,
2584,
84,
62,
22,
13,
24455,
62,
4868,
1330,
8106,
62,
4868,
628
] | 2.75 | 24 |
#coding:utf-8
PURPLE = '\033[35m'
RED = '\033[31m'
CYAN = '\033[36m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
import csv
import sys
import codecs
from urllib.parse import urlparse #URL --> Domain
from time import sleep
dict_web_id = {}
dict_url = {}
dict_topic = {}
dict_suggest = {}
dict_sub = {}
dict_bin = {}
domains =set()
urls =set()
###################サブトピックリストの読み込み###################
a = open('sub_list.csv', 'r')
set_subtopic_keys = set()
for line in a:
LINE = line.rstrip().split(',')
web_id = LINE[0]
url = LINE[1]
topic = LINE[2]
sub_id = LINE[3]
Domain = '{uri.scheme}://{uri.netloc}/'.format(uri=urlparse(url))
domains.add(Domain)
dict_web_id.setdefault(Domain, set()).add(web_id)
dict_sub.setdefault(Domain, set()).add(sub_id)
dict_topic.setdefault(Domain, set()).add(topic)
set_topic=dict_topic[Domain]
set_sub=dict_sub[Domain]
set_subtopic_keys=dict_sub.keys() #dict_subのkeyの集合
a.close()
#################ビンリストの読み込み###########################
A = open('bin_list.csv','r')
set_bin_keys = set()
for line in A:
LINE = line.rstrip().split(',')
web_id = LINE[0]
url = LINE[1]
topic = LINE[2]
bin_id = LINE[3]
Domain = '{uri.scheme}://{uri.netloc}/'.format(uri=urlparse(url))
domains.add(Domain)
dict_web_id.setdefault(Domain, set()).add(web_id)
dict_topic.setdefault(Domain, set()).add(topic)
dict_bin.setdefault(Domain, set()).add(bin_id)
set_topic = dict_topic[Domain]
set_bin = dict_bin[Domain]
set_bin_keys = dict_bin.keys()
A.close()
###################ノウハウサイトの読み込み######################
b = open('know-how.csv','r')
count = 0
set_know_how = set()
dict_title = {}
dict_predict={}
dict_confidence={}
dict_truth={}
for line in b:
count = count + 1
print(line)
LINE = line.rstrip().split(',')
Domain = LINE[2]
Domain = Domain + '/'
Title = LINE[3]
predict= LINE[4]
confidence=LINE[5]
truth=LINE[1]
set_know_how.add(Domain)
dict_title[Domain] = Title
dict_predict[Domain]=predict
dict_confidence[Domain]=confidence
dict_truth[Domain]=truth
b.close()
####################ドメインごとにHTMLを作成#####################
p = open('result.csv','w')
p.write('domain_id\ttitle\tpredict\tconfidence\tsum_page\tsum_topic\ttopics\ttruth\n')
make_domain_dict()
#suggest_id()
p.close()
print (len(set_know_how))
print (RED + 'Prgram ended' + ENDC)
| [
2,
66,
7656,
25,
40477,
12,
23,
198,
47,
4261,
16437,
220,
796,
705,
59,
44427,
58,
2327,
76,
6,
198,
22083,
220,
220,
220,
220,
796,
705,
59,
44427,
58,
3132,
76,
6,
198,
34,
56,
1565,
220,
220,
220,
796,
705,
59,
44427,
58,
2623,
76,
6,
198,
11380,
9148,
8924,
220,
796,
705,
59,
44427,
58,
5824,
76,
6,
198,
11380,
43016,
796,
705,
59,
44427,
58,
5892,
76,
6,
198,
31502,
796,
705,
59,
44427,
58,
6052,
76,
6,
198,
7708,
4146,
220,
220,
220,
796,
705,
59,
44427,
58,
6420,
76,
6,
198,
1677,
9697,
220,
220,
220,
796,
705,
59,
44427,
58,
15,
76,
6,
198,
198,
11748,
269,
21370,
198,
11748,
25064,
198,
11748,
40481,
82,
198,
6738,
2956,
297,
571,
13,
29572,
1330,
19016,
29572,
1303,
21886,
14610,
20021,
198,
6738,
640,
1330,
3993,
198,
198,
11600,
62,
12384,
62,
312,
220,
796,
23884,
198,
11600,
62,
6371,
220,
220,
220,
220,
796,
23884,
220,
198,
11600,
62,
26652,
220,
220,
796,
23884,
198,
11600,
62,
47811,
796,
23884,
198,
11600,
62,
7266,
220,
220,
220,
220,
796,
23884,
198,
11600,
62,
8800,
220,
220,
220,
220,
796,
23884,
198,
3438,
1299,
220,
220,
220,
220,
220,
796,
2617,
3419,
198,
6371,
82,
220,
220,
220,
220,
220,
220,
220,
220,
796,
2617,
3419,
198,
198,
14468,
21017,
26503,
24001,
13298,
1209,
242,
35702,
12675,
43302,
5641,
45739,
255,
2515,
123,
164,
122,
120,
2515,
123,
14468,
21017,
198,
64,
796,
1280,
10786,
7266,
62,
4868,
13,
40664,
3256,
705,
81,
11537,
198,
2617,
62,
7266,
26652,
62,
13083,
796,
900,
3419,
198,
1640,
1627,
287,
257,
25,
198,
197,
24027,
796,
1627,
13,
81,
36311,
22446,
35312,
7,
3256,
11537,
198,
197,
12384,
62,
312,
796,
48920,
58,
15,
60,
198,
197,
6371,
220,
220,
220,
796,
48920,
58,
16,
60,
198,
197,
26652,
220,
796,
48920,
58,
17,
60,
198,
197,
7266,
62,
312,
796,
48920,
58,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
197,
43961,
796,
705,
90,
9900,
13,
15952,
1326,
92,
1378,
90,
9900,
13,
3262,
17946,
92,
14,
4458,
18982,
7,
9900,
28,
6371,
29572,
7,
6371,
4008,
198,
197,
3438,
1299,
13,
2860,
7,
43961,
8,
198,
197,
11600,
62,
12384,
62,
312,
13,
2617,
12286,
7,
43961,
11,
900,
3419,
737,
2860,
7,
12384,
62,
312,
8,
198,
197,
11600,
62,
7266,
13,
2617,
12286,
7,
43961,
11,
900,
3419,
737,
2860,
7,
7266,
62,
312,
8,
198,
197,
11600,
62,
26652,
13,
2617,
12286,
7,
43961,
11,
900,
3419,
737,
2860,
7,
26652,
8,
198,
197,
2617,
62,
26652,
28,
11600,
62,
26652,
58,
43961,
60,
198,
197,
2617,
62,
7266,
28,
11600,
62,
7266,
58,
43961,
60,
198,
197,
2617,
62,
7266,
26652,
62,
13083,
28,
11600,
62,
7266,
13,
13083,
3419,
1303,
11600,
62,
7266,
5641,
2539,
33426,
249,
228,
28938,
230,
198,
64,
13,
19836,
3419,
628,
198,
198,
14468,
2,
36922,
6527,
12675,
43302,
5641,
45739,
255,
2515,
123,
164,
122,
120,
2515,
123,
14468,
7804,
21017,
198,
32,
796,
1280,
10786,
8800,
62,
4868,
13,
40664,
41707,
81,
11537,
198,
2617,
62,
8800,
62,
13083,
796,
900,
3419,
198,
1640,
1627,
287,
317,
25,
198,
197,
24027,
796,
1627,
13,
81,
36311,
22446,
35312,
7,
3256,
11537,
198,
197,
12384,
62,
312,
796,
48920,
58,
15,
60,
198,
197,
6371,
220,
220,
220,
796,
48920,
58,
16,
60,
198,
197,
26652,
220,
796,
48920,
58,
17,
60,
198,
197,
8800,
62,
312,
796,
48920,
58,
18,
60,
198,
197,
43961,
796,
705,
90,
9900,
13,
15952,
1326,
92,
1378,
90,
9900,
13,
3262,
17946,
92,
14,
4458,
18982,
7,
9900,
28,
6371,
29572,
7,
6371,
4008,
198,
197,
3438,
1299,
13,
2860,
7,
43961,
8,
198,
197,
11600,
62,
12384,
62,
312,
13,
2617,
12286,
7,
43961,
11,
900,
3419,
737,
2860,
7,
12384,
62,
312,
8,
198,
197,
11600,
62,
26652,
13,
2617,
12286,
7,
43961,
11,
900,
3419,
737,
2860,
7,
26652,
8,
198,
197,
11600,
62,
8800,
13,
2617,
12286,
7,
43961,
11,
900,
3419,
737,
2860,
7,
8800,
62,
312,
8,
198,
197,
2617,
62,
26652,
220,
220,
220,
220,
220,
220,
220,
220,
796,
8633,
62,
26652,
58,
43961,
60,
198,
197,
2617,
62,
8800,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
8633,
62,
8800,
58,
43961,
60,
198,
197,
2617,
62,
8800,
62,
13083,
796,
8633,
62,
8800,
13,
13083,
3419,
198,
32,
13,
19836,
3419,
628,
628,
628,
198,
14468,
21017,
25053,
16165,
37412,
16165,
26503,
42396,
5641,
45739,
255,
2515,
123,
164,
122,
120,
2515,
123,
14468,
4242,
2235,
198,
65,
796,
1280,
10786,
16275,
12,
4919,
13,
40664,
41707,
81,
11537,
198,
9127,
796,
657,
198,
2617,
62,
16275,
62,
4919,
796,
900,
3419,
198,
11600,
62,
7839,
796,
23884,
198,
11600,
62,
79,
17407,
34758,
92,
198,
11600,
62,
39745,
34758,
92,
198,
11600,
62,
35310,
34758,
92,
198,
1640,
1627,
287,
275,
25,
198,
197,
9127,
796,
954,
1343,
352,
198,
197,
4798,
7,
1370,
8,
198,
197,
24027,
796,
1627,
13,
81,
36311,
22446,
35312,
7,
3256,
11537,
198,
197,
43961,
796,
48920,
58,
17,
60,
198,
197,
43961,
796,
20021,
1343,
31051,
6,
198,
197,
19160,
220,
796,
48920,
58,
18,
60,
198,
197,
79,
17407,
28,
48920,
58,
19,
60,
198,
197,
39745,
28,
24027,
58,
20,
60,
198,
197,
35310,
28,
24027,
58,
16,
60,
198,
197,
2617,
62,
16275,
62,
4919,
13,
2860,
7,
43961,
8,
198,
197,
11600,
62,
7839,
58,
43961,
60,
796,
11851,
198,
197,
11600,
62,
79,
17407,
58,
43961,
22241,
79,
17407,
198,
197,
11600,
62,
39745,
58,
43961,
22241,
39745,
198,
197,
11600,
62,
35310,
58,
43961,
22241,
35310,
198,
65,
13,
19836,
3419,
628,
628,
628,
198,
198,
14468,
4242,
13765,
26998,
11482,
6527,
2515,
242,
30201,
28618,
28656,
31758,
43291,
22755,
238,
14468,
4242,
2,
198,
79,
796,
1280,
10786,
20274,
13,
40664,
41707,
86,
11537,
198,
79,
13,
13564,
10786,
27830,
62,
312,
59,
926,
2578,
59,
34788,
17407,
59,
83,
39745,
59,
912,
388,
62,
7700,
59,
912,
388,
62,
26652,
59,
926,
404,
873,
59,
926,
81,
1071,
59,
77,
11537,
198,
197,
628,
198,
198,
15883,
62,
27830,
62,
11600,
3419,
198,
2,
47811,
62,
312,
3419,
198,
79,
13,
19836,
3419,
628,
198,
4798,
357,
11925,
7,
2617,
62,
16275,
62,
4919,
4008,
198,
4798,
357,
22083,
1343,
705,
6836,
4546,
4444,
6,
1343,
23578,
34,
8,
198
] | 2.242647 | 1,088 |
#personaldetails
print("NAME:Wealth Okete \nE-MAIL: [email protected] \nSLACK USERNAME: @Wealth \nBIOSTACK: Genomics \nTwitter Handle: @Wealty")
print(hamming_distance('@Wealth','@Wealty'))
| [
2,
6259,
1940,
316,
1768,
201,
198,
4798,
7203,
20608,
25,
1135,
1094,
6762,
14471,
3467,
77,
36,
12,
5673,
4146,
25,
5129,
13,
482,
14471,
31,
14816,
13,
785,
3467,
77,
8634,
8120,
1294,
1137,
20608,
25,
2488,
1135,
1094,
3467,
77,
3483,
10892,
8120,
25,
5215,
31994,
3467,
77,
14254,
33141,
25,
2488,
1135,
6017,
4943,
201,
198,
201,
198,
4798,
7,
2763,
2229,
62,
30246,
10786,
31,
1135,
1094,
41707,
31,
1135,
6017,
6,
4008,
201,
198
] | 2.5 | 80 |
conditional statement in python:
this performs different computations or actions depending on whatever a specific boolean expression evaluaates to true or false.
they are handled by if statements in python.
from maths:
equals: a==b
not equals: a != b
less than: a<b
greater than: a>b
greater than or equals to: a>=b
example of if statement:
ade_height= 6.25
oyin_height= 5.75
if ade_height > oyin_height:
print("ade is taller tham oyin")
The elif keyword:
the elif keyword is python way of saying "if the previous condition were not true, then try this condition"
example-
boys score=24.77
girls score=25.01
if boys score>girls score:
print("boys win, girls lose")
elif girls score>boys score:
print("girls win, boys lose")
the else keyword:
if
the else keyword catches anything which isnt caught by the preceding conditions.
example-
#program to calc the longer journey
#between lagos-ibadan and lagos london
lb_max_time=2.5
ll_max_time=6
if lb_max_time>ll_max_time:
print("lagos to ibadan takes more time")
elif lb_max_time<ll_max_time:
print("lagos to london takes more time")
else:
print("both take equal time")
using logical operators:
you can use operators 'and,or and not' in python conditional statements.
for example:
x=200
y=33
z=500
if x> y and z>x:
print("both condition are true")
the pass keyword
if statements cannot be empty, but if you for some reason have an if statement with no content, put in the pass statement to avoid getting an error.
example
boys=17
if boys==17:
pass
| [
17561,
1859,
2643,
287,
21015,
25,
201,
198,
5661,
17706,
1180,
2653,
602,
393,
4028,
6906,
319,
4232,
257,
2176,
25131,
5408,
5418,
6413,
689,
284,
2081,
393,
3991,
13,
201,
198,
9930,
389,
12118,
416,
611,
6299,
287,
21015,
13,
201,
198,
6738,
47761,
25,
201,
198,
4853,
874,
25,
257,
855,
65,
201,
198,
1662,
21767,
25,
257,
14512,
275,
201,
198,
1203,
621,
25,
257,
27,
65,
201,
198,
18223,
263,
621,
25,
257,
29,
65,
201,
198,
18223,
263,
621,
393,
21767,
284,
25,
257,
29,
28,
65,
201,
198,
201,
198,
20688,
286,
611,
2643,
25,
201,
198,
201,
198,
671,
62,
17015,
28,
718,
13,
1495,
201,
198,
726,
259,
62,
17015,
28,
642,
13,
2425,
201,
198,
361,
512,
68,
62,
17015,
1875,
35104,
259,
62,
17015,
25,
201,
198,
220,
220,
220,
3601,
7203,
671,
318,
25242,
294,
321,
35104,
259,
4943,
201,
198,
201,
198,
464,
1288,
361,
21179,
25,
201,
198,
201,
198,
1169,
1288,
361,
21179,
318,
21015,
835,
286,
2282,
366,
361,
262,
2180,
4006,
547,
407,
2081,
11,
788,
1949,
428,
4006,
1,
201,
198,
20688,
12,
201,
198,
13202,
4776,
28,
1731,
13,
3324,
201,
198,
36960,
4776,
28,
1495,
13,
486,
201,
198,
361,
6510,
4776,
29,
36960,
4776,
25,
201,
198,
220,
220,
220,
3601,
7203,
13202,
1592,
11,
4813,
4425,
4943,
201,
198,
417,
361,
4813,
4776,
29,
13202,
4776,
25,
201,
198,
220,
220,
220,
3601,
7203,
36960,
1592,
11,
6510,
4425,
4943,
201,
198,
201,
198,
1169,
2073,
21179,
25,
201,
198,
201,
198,
361,
220,
201,
198,
1169,
2073,
21179,
17591,
1997,
543,
318,
429,
4978,
416,
262,
18148,
3403,
13,
201,
198,
20688,
12,
201,
198,
2,
23065,
284,
42302,
262,
2392,
7002,
201,
198,
2,
23395,
19470,
418,
12,
571,
29157,
290,
19470,
418,
300,
3391,
201,
198,
23160,
62,
9806,
62,
2435,
28,
17,
13,
20,
201,
198,
297,
62,
9806,
62,
2435,
28,
21,
201,
198,
361,
18360,
62,
9806,
62,
2435,
29,
297,
62,
9806,
62,
2435,
25,
201,
198,
220,
220,
220,
3601,
7203,
30909,
418,
284,
24283,
29157,
2753,
517,
640,
4943,
201,
198,
417,
361,
18360,
62,
9806,
62,
2435,
27,
297,
62,
9806,
62,
2435,
25,
201,
198,
220,
220,
220,
3601,
7203,
30909,
418,
284,
300,
3391,
2753,
517,
640,
4943,
201,
198,
17772,
25,
201,
198,
220,
220,
220,
3601,
7203,
16885,
1011,
4961,
640,
4943,
201,
198,
201,
198,
3500,
12219,
12879,
25,
201,
198,
5832,
460,
779,
12879,
705,
392,
11,
273,
290,
407,
6,
287,
21015,
26340,
6299,
13,
201,
198,
1640,
1672,
25,
201,
198,
87,
28,
2167,
201,
198,
88,
28,
2091,
201,
198,
89,
28,
4059,
201,
198,
361,
2124,
29,
331,
290,
1976,
29,
87,
25,
201,
198,
220,
3601,
7203,
16885,
4006,
389,
2081,
4943,
201,
198,
201,
198,
201,
198,
1169,
1208,
21179,
201,
198,
361,
6299,
2314,
307,
6565,
11,
475,
611,
345,
329,
617,
1738,
423,
281,
611,
2643,
351,
645,
2695,
11,
1234,
287,
262,
1208,
2643,
284,
3368,
1972,
281,
4049,
13,
201,
198,
20688,
201,
198,
13202,
28,
1558,
201,
198,
361,
6510,
855,
1558,
25,
201,
198,
220,
220,
220,
1208,
201,
198
] | 2.957328 | 539 |
"""
sentry.event_manager
~~~~~~~~~~~~~~~~~~~~
:copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details.
:license: BSD, see LICENSE for more details.
"""
from __future__ import absolute_import, print_function
import logging
import math
import six
from datetime import datetime, timedelta
from collections import OrderedDict
from django.conf import settings
from django.db import connection, IntegrityError, router, transaction
from django.db.models import Q
from django.utils import timezone
from django.utils.encoding import force_bytes
from hashlib import md5
from uuid import uuid4
from sentry import eventtypes
from sentry.app import buffer, tsdb
from sentry.constants import (
CLIENT_RESERVED_ATTRS, LOG_LEVELS, DEFAULT_LOGGER_NAME, MAX_CULPRIT_LENGTH
)
from sentry.interfaces.base import get_interface, iter_interfaces
from sentry.models import (
Activity, Event, EventMapping, EventUser, Group, GroupHash, GroupResolution,
GroupStatus, Project, Release, TagKey, UserReport
)
from sentry.plugins import plugins
from sentry.signals import first_event_received, regression_signal
from sentry.utils.logging import suppress_exceptions
from sentry.tasks.merge import merge_group
from sentry.tasks.post_process import post_process_group
from sentry.utils.cache import default_cache
from sentry.utils.db import get_db_engine
from sentry.utils.safe import safe_execute, trim, trim_dict
from sentry.utils.strings import truncatechars
from sentry.utils.validators import validate_ip
if not settings.SENTRY_SAMPLE_DATA:
else:
| [
37811,
198,
82,
13000,
13,
15596,
62,
37153,
198,
27156,
8728,
198,
198,
25,
22163,
4766,
25,
357,
66,
8,
3050,
12,
4967,
416,
262,
11352,
563,
4816,
11,
766,
37195,
20673,
329,
517,
3307,
13,
198,
25,
43085,
25,
347,
10305,
11,
766,
38559,
24290,
329,
517,
3307,
13,
198,
37811,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
3601,
62,
8818,
198,
198,
11748,
18931,
198,
11748,
10688,
198,
11748,
2237,
198,
198,
6738,
4818,
8079,
1330,
4818,
8079,
11,
28805,
12514,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
9945,
1330,
4637,
11,
39348,
12331,
11,
20264,
11,
8611,
198,
6738,
42625,
14208,
13,
9945,
13,
27530,
1330,
1195,
198,
6738,
42625,
14208,
13,
26791,
1330,
640,
11340,
198,
6738,
42625,
14208,
13,
26791,
13,
12685,
7656,
1330,
2700,
62,
33661,
198,
6738,
12234,
8019,
1330,
45243,
20,
198,
6738,
334,
27112,
1330,
334,
27112,
19,
198,
198,
6738,
1908,
563,
1330,
1785,
19199,
198,
6738,
1908,
563,
13,
1324,
1330,
11876,
11,
40379,
9945,
198,
6738,
1908,
563,
13,
9979,
1187,
1330,
357,
198,
220,
220,
220,
45148,
62,
19535,
1137,
53,
1961,
62,
1404,
5446,
50,
11,
41605,
62,
2538,
18697,
50,
11,
5550,
38865,
62,
25294,
30373,
62,
20608,
11,
25882,
62,
34,
6239,
4805,
2043,
62,
43,
49494,
198,
8,
198,
6738,
1908,
563,
13,
3849,
32186,
13,
8692,
1330,
651,
62,
39994,
11,
11629,
62,
3849,
32186,
198,
6738,
1908,
563,
13,
27530,
1330,
357,
198,
220,
220,
220,
24641,
11,
8558,
11,
8558,
44,
5912,
11,
8558,
12982,
11,
4912,
11,
4912,
26257,
11,
4912,
4965,
2122,
11,
198,
220,
220,
220,
4912,
19580,
11,
4935,
11,
13868,
11,
17467,
9218,
11,
11787,
19100,
198,
8,
198,
6738,
1908,
563,
13,
37390,
1330,
20652,
198,
6738,
1908,
563,
13,
12683,
874,
1330,
717,
62,
15596,
62,
47844,
11,
20683,
62,
12683,
282,
198,
6738,
1908,
563,
13,
26791,
13,
6404,
2667,
1330,
18175,
62,
1069,
11755,
198,
6738,
1908,
563,
13,
83,
6791,
13,
647,
469,
1330,
20121,
62,
8094,
198,
6738,
1908,
563,
13,
83,
6791,
13,
7353,
62,
14681,
1330,
1281,
62,
14681,
62,
8094,
198,
6738,
1908,
563,
13,
26791,
13,
23870,
1330,
4277,
62,
23870,
198,
6738,
1908,
563,
13,
26791,
13,
9945,
1330,
651,
62,
9945,
62,
18392,
198,
6738,
1908,
563,
13,
26791,
13,
21230,
1330,
3338,
62,
41049,
11,
15797,
11,
15797,
62,
11600,
198,
6738,
1908,
563,
13,
26791,
13,
37336,
1330,
40122,
40340,
945,
198,
6738,
1908,
563,
13,
26791,
13,
12102,
2024,
1330,
26571,
62,
541,
628,
628,
628,
628,
628,
198,
198,
361,
407,
6460,
13,
50,
3525,
18276,
62,
49302,
16437,
62,
26947,
25,
198,
17772,
25,
628,
628,
198
] | 3.366953 | 466 |
__author__ = "RADICAL-SAGA Development Team"
__copyright__ = "Copyright 2013, RADICAL"
__license__ = "MIT"
import os
import radical.utils as ru
# ------------------------------------------------------------------------------
#
import utils
# ------------------------------------------------------------------------------
#
from .constants import *
from .task import Task, Container
from .attributes import Attributes, Callback
from .session import Session, DefaultSession
from .context import Context
from .url import Url
from .exceptions import SagaException
from .exceptions import NotImplemented
from .exceptions import IncorrectURL
from .exceptions import BadParameter
from .exceptions import AlreadyExists
from .exceptions import DoesNotExist
from .exceptions import IncorrectState
from .exceptions import PermissionDenied
from .exceptions import AuthorizationFailed
from .exceptions import AuthenticationFailed
from .exceptions import Timeout
from .exceptions import NoSuccess
from . import job
from . import filesystem
from . import replica
from . import advert
from . import resource
# import radical.saga.messages
# ------------------------------------------------------------------------------
#
pwd = os.path.dirname (__file__)
version_short, version_detail, version_base, version_branch, \
sdist_name, sdist_path = ru.get_version ([pwd])
version = version_short
# FIXME: the logger init will require a 'classical' ini based config, which is
# different from the json based config we use now. May need updating once the
# radical configuration system has changed to json
_logger = ru.Logger('radical.saga')
_logger.info ('radical.saga version: %s' % version_detail)
# ------------------------------------------------------------------------------
| [
198,
834,
9800,
834,
220,
220,
220,
796,
366,
49,
2885,
20151,
12,
4090,
9273,
7712,
4816,
1,
198,
834,
22163,
4766,
834,
796,
366,
15269,
2211,
11,
33540,
20151,
1,
198,
834,
43085,
834,
220,
220,
796,
366,
36393,
1,
628,
198,
11748,
28686,
198,
11748,
7702,
13,
26791,
355,
7422,
628,
198,
2,
16529,
26171,
198,
2,
198,
11748,
3384,
4487,
628,
198,
2,
16529,
26171,
198,
2,
198,
6738,
220,
220,
764,
9979,
1187,
220,
1330,
1635,
198,
198,
6738,
220,
220,
764,
35943,
220,
220,
220,
220,
220,
220,
1330,
15941,
11,
43101,
198,
6738,
220,
220,
764,
1078,
7657,
1330,
49213,
11,
4889,
1891,
198,
6738,
220,
220,
764,
29891,
220,
220,
220,
1330,
23575,
11,
15161,
36044,
198,
6738,
220,
220,
764,
22866,
220,
220,
220,
1330,
30532,
198,
6738,
220,
220,
764,
6371,
220,
220,
220,
220,
220,
220,
220,
1330,
8799,
75,
198,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
19743,
16922,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
1892,
3546,
1154,
12061,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
3457,
47315,
21886,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
7772,
36301,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
27511,
3109,
1023,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
8314,
3673,
3109,
396,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
3457,
47315,
9012,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
2448,
3411,
21306,
798,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
35263,
37,
6255,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
48191,
37,
6255,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
3862,
448,
198,
6738,
220,
220,
764,
1069,
11755,
1330,
1400,
33244,
198,
198,
6738,
220,
220,
764,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
1693,
198,
6738,
220,
220,
764,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
29905,
198,
6738,
220,
220,
764,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
30069,
198,
6738,
220,
220,
764,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
6728,
198,
6738,
220,
220,
764,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
8271,
198,
2,
1330,
7702,
13,
82,
8126,
13,
37348,
1095,
628,
198,
2,
16529,
26171,
198,
2,
198,
79,
16993,
220,
220,
220,
220,
796,
28686,
13,
6978,
13,
15908,
3672,
357,
834,
7753,
834,
8,
198,
9641,
62,
19509,
11,
2196,
62,
49170,
11,
2196,
62,
8692,
11,
2196,
62,
1671,
3702,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
264,
17080,
62,
3672,
11,
264,
17080,
62,
6978,
796,
7422,
13,
1136,
62,
9641,
29565,
79,
16993,
12962,
198,
9641,
796,
2196,
62,
19509,
628,
198,
2,
44855,
11682,
25,
262,
49706,
2315,
481,
2421,
257,
705,
4871,
605,
6,
287,
72,
1912,
4566,
11,
543,
318,
198,
2,
1180,
422,
262,
33918,
1912,
4566,
356,
779,
783,
13,
220,
220,
1737,
761,
19698,
1752,
262,
198,
2,
7702,
8398,
1080,
468,
3421,
284,
33918,
198,
62,
6404,
1362,
796,
7422,
13,
11187,
1362,
10786,
42325,
13,
82,
8126,
11537,
198,
62,
6404,
1362,
13,
10951,
19203,
42325,
13,
82,
8126,
220,
220,
220,
220,
220,
220,
220,
220,
2196,
25,
4064,
82,
6,
4064,
2196,
62,
49170,
8,
628,
198,
2,
16529,
26171,
628
] | 3.413121 | 564 |
import json
from .utils import Utils
utils = Utils()
| [
11748,
33918,
198,
6738,
764,
26791,
1330,
7273,
4487,
198,
198,
26791,
796,
7273,
4487,
3419,
198
] | 3.176471 | 17 |
# -*- coding: utf-8 -*-
if __name__ == '__main__':
main()
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2 | 32 |
# -*- coding: utf-8 -*-
from django.test.client import Client
from networkapi.test.test_case import NetworkApiTestCase
from networkapi.util.geral import mount_url
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
6738,
42625,
14208,
13,
9288,
13,
16366,
1330,
20985,
198,
198,
6738,
3127,
15042,
13,
9288,
13,
9288,
62,
7442,
1330,
7311,
32,
14415,
14402,
20448,
198,
6738,
3127,
15042,
13,
22602,
13,
1362,
282,
1330,
3817,
62,
6371,
628,
198
] | 3.018182 | 55 |
## -*- coding: utf-8 -*-
## (C) 2018 Muthiah Annamalai, <[email protected]>
import codecs
import os
from .resources import get_data_dir
| [
2235,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2235,
357,
34,
8,
2864,
337,
1071,
9520,
5506,
321,
282,
1872,
11,
1279,
8471,
12639,
648,
31,
14816,
13,
785,
29,
198,
198,
11748,
40481,
82,
198,
11748,
28686,
198,
6738,
764,
37540,
1330,
651,
62,
7890,
62,
15908,
628
] | 2.545455 | 55 |
import os, sys
from math import sqrt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.laplace import Laplace
from torch.distributions.normal import Normal
from torch.optim import Adam
from einops import rearrange, reduce, repeat
from advbench import perturbations
from advbench.lib.manifool.functions.algorithms.manifool import manifool
from advbench.datasets import FFCV_AVAILABLE
torch.backends.cudnn.benchmark = True
| [
11748,
28686,
11,
25064,
198,
6738,
10688,
1330,
19862,
17034,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
6738,
28034,
13,
17080,
2455,
507,
13,
5031,
5372,
1330,
4689,
5372,
198,
6738,
28034,
13,
17080,
2455,
507,
13,
11265,
1330,
14435,
198,
6738,
28034,
13,
40085,
1330,
7244,
198,
6738,
304,
259,
2840,
1330,
37825,
858,
11,
4646,
11,
9585,
198,
198,
6738,
1354,
26968,
1330,
22146,
5945,
602,
198,
6738,
1354,
26968,
13,
8019,
13,
805,
361,
970,
13,
12543,
2733,
13,
282,
7727,
907,
13,
805,
361,
970,
1330,
19871,
970,
198,
6738,
1354,
26968,
13,
19608,
292,
1039,
1330,
376,
4851,
53,
62,
10116,
32,
4146,
17534,
198,
198,
13165,
354,
13,
1891,
2412,
13,
66,
463,
20471,
13,
26968,
4102,
796,
6407,
628,
220,
220,
220,
220,
198
] | 3.245033 | 151 |
#!/usr/bin/env python
from __future__ import division, absolute_import, print_function
import os
import sys
import argparse
import redmapper
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Compute the zred background for all galaxies')
parser.add_argument('-c', '--configfile', action='store', type=str, required=True,
help='YAML config file')
args = parser.parse_args()
config = redmapper.Configuration(args.configfile)
zb = redmapper.ZredBackgroundGenerator(config)
zb.run()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
6738,
11593,
37443,
834,
1330,
7297,
11,
4112,
62,
11748,
11,
3601,
62,
8818,
198,
198,
11748,
28686,
198,
11748,
25064,
198,
11748,
1822,
29572,
198,
11748,
2266,
76,
11463,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
7,
11213,
11639,
7293,
1133,
262,
1976,
445,
4469,
329,
477,
27982,
11537,
628,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
12,
66,
3256,
705,
438,
11250,
7753,
3256,
2223,
11639,
8095,
3256,
2099,
28,
2536,
11,
2672,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
11639,
56,
2390,
43,
4566,
2393,
11537,
628,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
4566,
796,
2266,
76,
11463,
13,
38149,
7,
22046,
13,
11250,
7753,
8,
198,
220,
220,
220,
1976,
65,
796,
2266,
76,
11463,
13,
57,
445,
21756,
8645,
1352,
7,
11250,
8,
198,
220,
220,
220,
1976,
65,
13,
5143,
3419,
628,
628
] | 2.823232 | 198 |
import socket
import uuid
from struct import pack
| [
11748,
17802,
198,
11748,
334,
27112,
198,
6738,
2878,
1330,
2353,
198
] | 4.166667 | 12 |
from setuptools import setup
setup(
name='pythonthegathering',
packages=['pythonthegathering'],
version='1.2.1',
description='Replaces everything good and practical about Python with MTG!',
author='Theo Hamilton/linky00',
author_email='[email protected]',
url='https://github.com/linky00/pythonthegathering',
download_url='https://github.com/linky00/pythonthegathering/archive/v1.2.1.tar.gz',
keywords='decorators mtg',
classifiers=[
'Development Status :: 3 - Alpha',
'Programming Language :: Python :: 3.3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6'
],
license='MIT'
)
| [
6738,
900,
37623,
10141,
1330,
9058,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
79,
5272,
756,
258,
70,
25545,
3256,
198,
220,
220,
220,
10392,
28,
17816,
79,
5272,
756,
258,
70,
25545,
6,
4357,
198,
220,
220,
220,
2196,
11639,
16,
13,
17,
13,
16,
3256,
198,
220,
220,
220,
6764,
11639,
3041,
23625,
2279,
922,
290,
8472,
546,
11361,
351,
19308,
38,
0,
3256,
198,
220,
220,
220,
1772,
11639,
464,
78,
11582,
14,
8726,
88,
405,
3256,
198,
220,
220,
220,
1772,
62,
12888,
11639,
8726,
88,
405,
31,
489,
849,
349,
395,
463,
4267,
13,
785,
3256,
198,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
8726,
88,
405,
14,
79,
5272,
756,
258,
70,
25545,
3256,
198,
220,
220,
220,
4321,
62,
6371,
11639,
5450,
1378,
12567,
13,
785,
14,
8726,
88,
405,
14,
79,
5272,
756,
258,
70,
25545,
14,
17474,
14,
85,
16,
13,
17,
13,
16,
13,
18870,
13,
34586,
3256,
198,
220,
220,
220,
26286,
11639,
12501,
273,
2024,
285,
25297,
3256,
198,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
705,
41206,
12678,
7904,
513,
532,
12995,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
18,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
19,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
20,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
21,
6,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
5964,
11639,
36393,
6,
198,
8,
198
] | 2.568493 | 292 |
from . import common
| [
6738,
764,
1330,
2219,
628
] | 4.4 | 5 |
# -*- coding: utf-8 -*-
def default_params():
'''
Description:
It defines the default parameters of the program.
Args:
None
Return:
defaults_dict
'''
defaults_dict = {}
defaults_dict['program_name'] = 'MATSDP'
defaults_dict['version'] = '0.2.4'
defaults_dict['logfile'] = 'matsdp.log'
defaults_dict['output_dir_name'] = 'outputs'
defaults_dict['projects_dir_name'] = 'projects'
defaults_dict['projects_summary_dir_name'] = 'projects_summary'
defaults_dict['task_summary_dir_name'] = 'task_summary'
defaults_dict['test_dir_name'] = 'test'
defaults_dict['greek_capital_letter_list'] = ['Alpha', 'Beta', 'Gamma', 'Delta', 'Epsilon', 'Zeta', 'Eta', 'Theta', 'Iota', 'Kappa', 'Lambda', 'Mu', 'Nu', 'Xi', 'Omicron', 'Pi', 'Rho', 'Sigma', 'Tau', 'Upsilon', 'Phi', 'Chi', 'Psi', 'Omega']
defaults_dict['greek_small_letter_list'] = ['alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lambda', 'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi', 'chi', 'psi', 'omega']
return defaults_dict
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
201,
198,
4299,
4277,
62,
37266,
33529,
201,
198,
220,
220,
220,
705,
7061,
201,
198,
220,
220,
220,
12489,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
632,
15738,
262,
4277,
10007,
286,
262,
1430,
13,
201,
198,
220,
220,
220,
943,
14542,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
6045,
201,
198,
220,
220,
220,
8229,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
26235,
62,
11600,
201,
198,
220,
220,
220,
705,
7061,
201,
198,
220,
220,
220,
26235,
62,
11600,
796,
23884,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
23065,
62,
3672,
20520,
796,
705,
44,
33586,
6322,
6,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
9641,
20520,
796,
705,
15,
13,
17,
13,
19,
6,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
6404,
7753,
20520,
796,
705,
76,
1381,
26059,
13,
6404,
6,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
22915,
62,
15908,
62,
3672,
20520,
796,
705,
22915,
82,
6,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
42068,
62,
15908,
62,
3672,
20520,
796,
705,
42068,
6,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
42068,
62,
49736,
62,
15908,
62,
3672,
20520,
796,
705,
42068,
62,
49736,
6,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
35943,
62,
49736,
62,
15908,
62,
3672,
20520,
796,
705,
35943,
62,
49736,
6,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
9288,
62,
15908,
62,
3672,
20520,
796,
705,
9288,
6,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
70,
10316,
62,
27544,
62,
9291,
62,
4868,
20520,
796,
37250,
38077,
3256,
705,
43303,
3256,
705,
34777,
2611,
3256,
705,
42430,
3256,
705,
36,
862,
33576,
3256,
705,
57,
17167,
3256,
705,
36,
8326,
3256,
705,
464,
8326,
3256,
705,
40,
4265,
3256,
705,
42,
20975,
3256,
705,
43,
4131,
6814,
3256,
705,
33239,
3256,
705,
45,
84,
3256,
705,
42528,
3256,
705,
46,
9383,
1313,
3256,
705,
38729,
3256,
705,
49,
8873,
3256,
705,
50,
13495,
3256,
705,
51,
559,
3256,
705,
52,
862,
33576,
3256,
705,
2725,
72,
3256,
705,
1925,
72,
3256,
705,
12016,
72,
3256,
705,
46,
13731,
20520,
201,
198,
220,
220,
220,
26235,
62,
11600,
17816,
70,
10316,
62,
17470,
62,
9291,
62,
4868,
20520,
796,
37250,
26591,
3256,
705,
31361,
3256,
705,
28483,
2611,
3256,
705,
67,
12514,
3256,
705,
538,
18217,
261,
3256,
705,
89,
17167,
3256,
705,
17167,
3256,
705,
1169,
8326,
3256,
705,
72,
4265,
3256,
705,
74,
20975,
3256,
705,
50033,
3256,
705,
30300,
3256,
705,
28803,
3256,
705,
29992,
3256,
705,
10179,
1313,
3256,
705,
14415,
3256,
705,
81,
8873,
3256,
705,
82,
13495,
3256,
705,
83,
559,
3256,
705,
4739,
33576,
3256,
705,
34846,
3256,
705,
11072,
3256,
705,
862,
72,
3256,
705,
462,
4908,
20520,
201,
198,
220,
220,
220,
1441,
26235,
62,
11600,
201,
198
] | 2.319277 | 498 |
import scrapy | [
11748,
15881,
88
] | 4.333333 | 3 |
#!/usr/bin/python
# -*- coding: utf-8 -*-
# ====================================================================
# @author: Joe Del Rocco
# @since: 11/02/2017
# @summary: A module with angle and coordinate transformations.
# @note: Parts of this file came from angle_utilities.py written by Dan Knowlton of PCG at Cornell.
# Redistributed with permission.
# ====================================================================
# Provides functionality to convert between UV coordinates and angles as well
# as other useful angle utilities.
#
# Copyright 2014-2015 Program of Computer Graphics, Cornell University
# 580 Rhodes Hall
# Cornell University
# Ithaca NY 14853
# Web: http://www.graphics.cornell.edu/
#
# Not for commercial use. Do not redistribute without permission.
# ====================================================================
import math
import numpy as np
import common
'''
Convert a sky coordinate (azimuth, altitude) to fisheye UV coordinate (0-1, 0-1).
Note that images in this application were taken with North facing downward, so we must account for this in UV.
Note sampling pattern coordinates in this application were measured in altitude, but calculation below requires zenith.
Note altering of zenith to account for warp of lens used:
http://paulbourke.net/dome/fisheyecorrect/
'''
'''
Convert a fisheye UV coordinate (0-1, 0-1) to a sky coordinate (azimuth, altitude).
'''
'''
Convert an image pixel coordinate to a fisheye UV coordinate (0-1, 0-1).
'''
'''
Take in a pair of (azimuth, altitude) sky coordintes and return the corresponding central angle between them.
https://en.wikipedia.org/wiki/Great-circle_distance#Formulas
'''
| [
2,
48443,
14629,
14,
8800,
14,
29412,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
38093,
18604,
198,
2,
2488,
9800,
25,
5689,
4216,
13545,
1073,
198,
2,
2488,
20777,
25,
1367,
14,
2999,
14,
5539,
198,
2,
2488,
49736,
25,
317,
8265,
351,
9848,
290,
20435,
38226,
13,
198,
2,
2488,
11295,
25,
22349,
286,
428,
2393,
1625,
422,
9848,
62,
315,
2410,
13,
9078,
3194,
416,
6035,
9365,
75,
1122,
286,
4217,
38,
379,
27119,
13,
198,
2,
2297,
396,
6169,
351,
7170,
13,
198,
2,
38093,
18604,
198,
2,
47081,
11244,
284,
10385,
1022,
22033,
22715,
290,
18333,
355,
880,
198,
2,
220,
220,
355,
584,
4465,
9848,
20081,
13,
198,
2,
198,
2,
220,
15069,
1946,
12,
4626,
6118,
286,
13851,
19840,
11,
27119,
2059,
198,
2,
220,
220,
220,
220,
41234,
25656,
4789,
198,
2,
220,
220,
220,
220,
27119,
2059,
198,
2,
220,
220,
220,
220,
314,
400,
22260,
6645,
22613,
4310,
198,
2,
220,
5313,
25,
2638,
1378,
2503,
13,
70,
11549,
13,
20772,
695,
13,
15532,
14,
198,
2,
198,
2,
220,
1892,
329,
5068,
779,
13,
2141,
407,
17678,
4163,
1231,
7170,
13,
198,
2,
38093,
18604,
198,
11748,
10688,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2219,
628,
198,
7061,
6,
198,
3103,
1851,
257,
6766,
20435,
357,
1031,
320,
1071,
11,
20334,
8,
284,
277,
271,
258,
5948,
22033,
20435,
357,
15,
12,
16,
11,
657,
12,
16,
737,
198,
6425,
326,
4263,
287,
428,
3586,
547,
2077,
351,
2258,
6476,
20841,
11,
523,
356,
1276,
1848,
329,
428,
287,
22033,
13,
198,
6425,
19232,
3912,
22715,
287,
428,
3586,
547,
8630,
287,
20334,
11,
475,
17952,
2174,
4433,
1976,
268,
342,
13,
198,
6425,
29057,
286,
1976,
268,
342,
284,
1848,
329,
25825,
286,
10317,
973,
25,
198,
4023,
1378,
79,
2518,
6084,
365,
13,
3262,
14,
67,
462,
14,
69,
271,
20342,
721,
47315,
14,
198,
7061,
6,
198,
198,
7061,
6,
198,
3103,
1851,
257,
277,
271,
258,
5948,
22033,
20435,
357,
15,
12,
16,
11,
657,
12,
16,
8,
284,
257,
6766,
20435,
357,
1031,
320,
1071,
11,
20334,
737,
198,
7061,
6,
198,
198,
7061,
6,
198,
3103,
1851,
281,
2939,
17465,
20435,
284,
257,
277,
271,
258,
5948,
22033,
20435,
357,
15,
12,
16,
11,
657,
12,
16,
737,
198,
7061,
6,
198,
198,
7061,
6,
198,
12322,
287,
257,
5166,
286,
357,
1031,
320,
1071,
11,
20334,
8,
6766,
6349,
600,
274,
290,
1441,
262,
11188,
4318,
9848,
1022,
606,
13,
198,
5450,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
13681,
12,
45597,
62,
30246,
2,
8479,
25283,
198,
7061,
6,
198
] | 3.747228 | 451 |
from .base import *
import os
MINIMUM_SAMPLE_SIZE = 3
TRANSCRIPT_PHRASE_POSITIVE_CONFIDENCE_LIMIT = .51
TRANSCRIPT_PHRASE_NEGATIVE_CONFIDENCE_LIMIT = -.51
TRANSCRIPT_PHRASE_CORRECTION_LOWER_LIMIT = .51
TRANSCRIPT_PHRASE_CORRECTION_UPPER_LIMIT = .66
INSTALLED_APPS += ('storages',)
SECRET_KEY = os.environ['SECRET_KEY']
DEBUG = False
ADMINS = [(os.environ['ADMIN_NAME'], os.environ['ADMIN_EMAIL'])]
ALLOWED_HOSTS = ['fixit.americanarchive.org', 'fixit.wgbh-mla.org']
LOG_DIRECTORY = '/home/wgbh/logs'
GA_CODE = os.environ['GA_CODE']
AWS_HEADERS = {
'Expires': 'Thu, 31 Dec 2099 20:00:00 GMT',
'Cache-Control': 'max-age=94608000',
}
AWS_STORAGE_BUCKET_NAME = os.environ['S3_BUCKET_NAME']
AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID']
AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY']
AWS_S3_CUSTOM_DOMAIN = 's3.amazonaws.com/{}'.format(
AWS_STORAGE_BUCKET_NAME
)
STATIC_URL = 'https://s3.amazonaws.com/{}/'.format(AWS_S3_CUSTOM_DOMAIN)
STATICFILES_STORAGE = 'storages.backends.s3boto.S3BotoStorage'
REST_FRAMEWORK['DEFAULT_RENDERER_CLASSES'] = (
'rest_framework.renderers.JSONRenderer',
)
NEWRELIC_CONFIG_PATH = os.environ['NEWRELIC_CONFIG_PATH']
NEWRELIC_ENV = os.environ['NEWRELIC_ENV']
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.postgresql',
'HOST': os.environ['PG_HOST'],
'NAME': 'mla',
'USER': 'mla',
'PASSWORD': os.environ['PG_PASS'],
},
}
CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.PyLibMCCache',
'LOCATION': '127.0.0.1:11211',
}
}
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'file': {
'level': 'INFO',
'class': 'logging.FileHandler',
'filename': '{}/django.log'.format(LOG_DIRECTORY),
},
'metadata_errors': {
'level': 'INFO',
'class': 'logging.FileHandler',
'filename': '{}/metadata_error.log'.format(LOG_DIRECTORY),
},
},
'loggers': {
'django': {
'handlers': ['file'],
'level': 'DEBUG',
'propagate': True,
},
'metadata_errors': {
'handlers': ['metadata_errors'],
'level': 'DEBUG',
'propagate': True,
},
},
}
| [
6738,
764,
8692,
1330,
1635,
198,
11748,
28686,
198,
198,
23678,
3955,
5883,
62,
49302,
16437,
62,
33489,
796,
513,
198,
198,
5446,
1565,
6173,
46023,
62,
11909,
49,
11159,
62,
37997,
2043,
9306,
62,
10943,
37,
2389,
18310,
62,
43,
3955,
2043,
796,
764,
4349,
198,
5446,
1565,
6173,
46023,
62,
11909,
49,
11159,
62,
45,
7156,
37045,
62,
10943,
37,
2389,
18310,
62,
43,
3955,
2043,
796,
532,
13,
4349,
198,
5446,
1565,
6173,
46023,
62,
11909,
49,
11159,
62,
44879,
23988,
2849,
62,
43,
36048,
62,
43,
3955,
2043,
796,
764,
4349,
198,
5446,
1565,
6173,
46023,
62,
11909,
49,
11159,
62,
44879,
23988,
2849,
62,
8577,
18973,
62,
43,
3955,
2043,
796,
764,
2791,
198,
198,
38604,
7036,
1961,
62,
2969,
3705,
15853,
19203,
301,
273,
1095,
3256,
8,
198,
198,
23683,
26087,
62,
20373,
796,
28686,
13,
268,
2268,
17816,
23683,
26087,
62,
20373,
20520,
198,
198,
30531,
796,
10352,
198,
198,
2885,
44,
20913,
796,
47527,
418,
13,
268,
2268,
17816,
2885,
23678,
62,
20608,
6,
4357,
28686,
13,
268,
2268,
17816,
2885,
23678,
62,
27630,
4146,
6,
12962,
60,
198,
198,
7036,
3913,
1961,
62,
39,
10892,
50,
796,
37250,
13049,
270,
13,
2382,
7490,
17474,
13,
2398,
3256,
705,
13049,
270,
13,
86,
22296,
71,
12,
4029,
64,
13,
2398,
20520,
198,
198,
25294,
62,
17931,
23988,
15513,
796,
31051,
11195,
14,
86,
22296,
71,
14,
6404,
82,
6,
198,
198,
9273,
62,
34,
16820,
796,
28686,
13,
268,
2268,
17816,
9273,
62,
34,
16820,
20520,
198,
198,
12298,
50,
62,
37682,
4877,
796,
1391,
198,
220,
220,
220,
705,
16870,
2387,
10354,
705,
39902,
11,
3261,
4280,
1160,
2079,
1160,
25,
405,
25,
405,
16987,
3256,
198,
220,
220,
220,
705,
30562,
12,
15988,
10354,
705,
9806,
12,
496,
28,
5824,
28688,
830,
3256,
198,
92,
198,
12298,
50,
62,
2257,
1581,
11879,
62,
33,
16696,
2767,
62,
20608,
796,
28686,
13,
268,
2268,
17816,
50,
18,
62,
33,
16696,
2767,
62,
20608,
20520,
198,
12298,
50,
62,
26861,
7597,
62,
20373,
62,
2389,
796,
28686,
13,
268,
2268,
17816,
12298,
50,
62,
26861,
7597,
62,
20373,
62,
2389,
20520,
198,
12298,
50,
62,
23683,
26087,
62,
26861,
7597,
62,
20373,
796,
28686,
13,
268,
2268,
17816,
12298,
50,
62,
23683,
26087,
62,
26861,
7597,
62,
20373,
20520,
198,
198,
12298,
50,
62,
50,
18,
62,
34,
7759,
2662,
62,
39170,
29833,
796,
705,
82,
18,
13,
33103,
8356,
13,
785,
14,
90,
92,
4458,
18982,
7,
198,
220,
220,
220,
30865,
62,
2257,
1581,
11879,
62,
33,
16696,
2767,
62,
20608,
198,
8,
198,
198,
35744,
2149,
62,
21886,
796,
705,
5450,
1378,
82,
18,
13,
33103,
8356,
13,
785,
14,
90,
92,
14,
4458,
18982,
7,
12298,
50,
62,
50,
18,
62,
34,
7759,
2662,
62,
39170,
29833,
8,
198,
35744,
2149,
46700,
1546,
62,
2257,
1581,
11879,
796,
705,
301,
273,
1095,
13,
1891,
2412,
13,
82,
18,
65,
2069,
13,
50,
18,
33,
2069,
31425,
6,
198,
198,
49,
6465,
62,
10913,
2390,
6217,
14670,
17816,
7206,
38865,
62,
49,
10619,
1137,
1137,
62,
31631,
1546,
20520,
796,
357,
198,
220,
220,
220,
705,
2118,
62,
30604,
13,
10920,
19288,
13,
40386,
49,
437,
11882,
3256,
198,
8,
198,
198,
13965,
16448,
2149,
62,
10943,
16254,
62,
34219,
796,
28686,
13,
268,
2268,
17816,
13965,
16448,
2149,
62,
10943,
16254,
62,
34219,
20520,
198,
13965,
16448,
2149,
62,
1677,
53,
796,
28686,
13,
268,
2268,
17816,
13965,
16448,
2149,
62,
1677,
53,
20520,
198,
198,
35,
1404,
6242,
1921,
1546,
796,
1391,
198,
220,
220,
220,
705,
12286,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
26808,
8881,
10354,
705,
28241,
14208,
13,
9945,
13,
1891,
2412,
13,
7353,
34239,
13976,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
39,
10892,
10354,
28686,
13,
268,
2268,
17816,
6968,
62,
39,
10892,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
20608,
10354,
705,
4029,
64,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
29904,
10354,
705,
4029,
64,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
47924,
54,
12532,
10354,
28686,
13,
268,
2268,
17816,
6968,
62,
47924,
6,
4357,
198,
220,
220,
220,
8964,
198,
92,
198,
198,
34,
16219,
1546,
796,
1391,
198,
220,
220,
220,
705,
12286,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
31098,
10619,
10354,
705,
28241,
14208,
13,
7295,
13,
23870,
13,
1891,
2412,
13,
11883,
66,
2317,
13,
20519,
25835,
44,
4093,
4891,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
29701,
6234,
10354,
705,
16799,
13,
15,
13,
15,
13,
16,
25,
14686,
1157,
3256,
198,
220,
220,
220,
1782,
198,
92,
198,
198,
25294,
38,
2751,
796,
1391,
198,
220,
220,
220,
705,
9641,
10354,
352,
11,
198,
220,
220,
220,
705,
40223,
62,
25687,
62,
6404,
5355,
10354,
10352,
11,
198,
220,
220,
220,
705,
4993,
8116,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7753,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5715,
10354,
705,
10778,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4871,
10354,
705,
6404,
2667,
13,
8979,
25060,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
34345,
10354,
705,
90,
92,
14,
28241,
14208,
13,
6404,
4458,
18982,
7,
25294,
62,
17931,
23988,
15513,
828,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
705,
38993,
62,
48277,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5715,
10354,
705,
10778,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4871,
10354,
705,
6404,
2667,
13,
8979,
25060,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
34345,
10354,
705,
90,
92,
14,
38993,
62,
18224,
13,
6404,
4458,
18982,
7,
25294,
62,
17931,
23988,
15513,
828,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
705,
6404,
5355,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
28241,
14208,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4993,
8116,
10354,
37250,
7753,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5715,
10354,
705,
30531,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22930,
37861,
10354,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
705,
38993,
62,
48277,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4993,
8116,
10354,
37250,
38993,
62,
48277,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5715,
10354,
705,
30531,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22930,
37861,
10354,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
8964,
198,
92,
198
] | 1.954128 | 1,199 |
import urllib.request
import os
import pandas as pd
import numpy as np
from nltk.tokenize import RegexpTokenizer
from nltk.stem.porter import PorterStemmer
from nltk.corpus import stopwords
df = pd.read_csv('../data/raw/movie_data.csv',encoding='utf-8')
#print(df.head(3))
# init Objects
tokenizer=RegexpTokenizer(r'\w+')
en_stopwords=set(stopwords.words('english'))
ps=PorterStemmer()
df['review'].apply(getStemmedReview)
#df.to_csv(r'../data/processed/movie_data[clean].csv')
# X_train = df.loc[:35000, 'review'].values
# y_train = df.loc[:35000, 'sentiment'].values
# X_test = df.loc[35000:, 'review'].values
# y_test = df.loc[35000:, 'sentiment'].values
#
# from sklearn.feature_extraction.text import TfidfVectorizer
# vectorizer = TfidfVectorizer(sublinear_tf=True, encoding='utf-8',decode_error='ignore')
# vectorizer.fit(X_train)
# X_train=vectorizer.transform(X_train)
# X_test=vectorizer.transform(X_test)
#
# from sklearn.linear_model import LogisticRegression
# model=LogisticRegression(solver='liblinear')
# model.fit(X_train,y_train)
# print("Score on training data is: "+str(model.score(X_train,y_train)))
# print("Score on testing data is: "+str(model.score(X_test,y_test)))
#
# import sklearn.externals
# import joblib
# joblib.dump(en_stopwords,'stopwords.pkl')
# joblib.dump(model,'model.pkl')
# joblib.dump(vectorizer,'vectorizer.pkl')
| [
11748,
2956,
297,
571,
13,
25927,
198,
11748,
28686,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
299,
2528,
74,
13,
30001,
1096,
1330,
797,
25636,
79,
30642,
7509,
198,
6738,
299,
2528,
74,
13,
927,
13,
26634,
1330,
20890,
1273,
368,
647,
198,
6738,
299,
2528,
74,
13,
10215,
79,
385,
1330,
2245,
10879,
198,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
10786,
40720,
7890,
14,
1831,
14,
41364,
62,
7890,
13,
40664,
3256,
12685,
7656,
11639,
40477,
12,
23,
11537,
198,
2,
4798,
7,
7568,
13,
2256,
7,
18,
4008,
198,
198,
2,
2315,
35832,
198,
30001,
7509,
28,
3041,
25636,
79,
30642,
7509,
7,
81,
6,
59,
86,
10,
11537,
198,
268,
62,
11338,
10879,
28,
2617,
7,
11338,
10879,
13,
10879,
10786,
39126,
6,
4008,
198,
862,
28,
47,
4337,
1273,
368,
647,
3419,
198,
7568,
17816,
19023,
6,
4083,
39014,
7,
1136,
1273,
368,
1150,
14832,
8,
198,
2,
7568,
13,
1462,
62,
40664,
7,
81,
6,
40720,
7890,
14,
14681,
276,
14,
41364,
62,
7890,
58,
27773,
4083,
40664,
11537,
198,
198,
2,
1395,
62,
27432,
796,
47764,
13,
17946,
58,
25,
2327,
830,
11,
705,
19023,
6,
4083,
27160,
198,
2,
331,
62,
27432,
796,
47764,
13,
17946,
58,
25,
2327,
830,
11,
705,
34086,
3681,
6,
4083,
27160,
198,
2,
1395,
62,
9288,
796,
47764,
13,
17946,
58,
2327,
830,
45299,
705,
19023,
6,
4083,
27160,
198,
2,
331,
62,
9288,
796,
47764,
13,
17946,
58,
2327,
830,
45299,
705,
34086,
3681,
6,
4083,
27160,
198,
2,
198,
2,
422,
1341,
35720,
13,
30053,
62,
2302,
7861,
13,
5239,
1330,
309,
69,
312,
69,
38469,
7509,
198,
2,
15879,
7509,
796,
309,
69,
312,
69,
38469,
7509,
7,
7266,
29127,
62,
27110,
28,
17821,
11,
21004,
11639,
40477,
12,
23,
3256,
12501,
1098,
62,
18224,
11639,
46430,
11537,
198,
2,
15879,
7509,
13,
11147,
7,
55,
62,
27432,
8,
198,
2,
1395,
62,
27432,
28,
31364,
7509,
13,
35636,
7,
55,
62,
27432,
8,
198,
2,
1395,
62,
9288,
28,
31364,
7509,
13,
35636,
7,
55,
62,
9288,
8,
198,
2,
198,
2,
422,
1341,
35720,
13,
29127,
62,
19849,
1330,
5972,
2569,
8081,
2234,
198,
2,
2746,
28,
11187,
2569,
8081,
2234,
7,
82,
14375,
11639,
8019,
29127,
11537,
198,
2,
2746,
13,
11147,
7,
55,
62,
27432,
11,
88,
62,
27432,
8,
198,
2,
3601,
7203,
26595,
319,
3047,
1366,
318,
25,
43825,
2536,
7,
19849,
13,
26675,
7,
55,
62,
27432,
11,
88,
62,
27432,
22305,
198,
2,
3601,
7203,
26595,
319,
4856,
1366,
318,
25,
43825,
2536,
7,
19849,
13,
26675,
7,
55,
62,
9288,
11,
88,
62,
9288,
22305,
198,
2,
198,
2,
1330,
1341,
35720,
13,
1069,
759,
874,
198,
2,
1330,
1693,
8019,
198,
2,
1693,
8019,
13,
39455,
7,
268,
62,
11338,
10879,
4032,
11338,
10879,
13,
79,
41582,
11537,
198,
2,
1693,
8019,
13,
39455,
7,
19849,
4032,
19849,
13,
79,
41582,
11537,
198,
2,
1693,
8019,
13,
39455,
7,
31364,
7509,
4032,
31364,
7509,
13,
79,
41582,
11537,
198
] | 2.633721 | 516 |
import numpy as np
########################################
# Jeong approximate functions
########################################
| [
11748,
299,
32152,
355,
45941,
198,
198,
29113,
7804,
198,
2,
220,
220,
220,
220,
3852,
506,
27665,
5499,
198,
29113,
7804,
628,
628
] | 5.791667 | 24 |
from rest_framework.decorators import api_view
from fastrunner.utils import loader,newloader
from rest_framework.response import Response
from fastrunner.utils.parser import Format
from fastrunner import models
from django.conf import settings
import os,time,sys
from httprunner.utils import create_scaffold
from fastrunner.utils import runner
import traceback
from fastrunner.utils.newrunner import RunSingleApi,RunTree,RunSingleApiInStep,RunSingleApiInCase
"""运行方式
"""
import logging
logger = logging.getLogger('httprunner')
@api_view(['GET'])
def run_api_pk(request, **kwargs):
"""run api by pk
"""
run_test_path = settings.RUN_TEST_PATH
timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime())
projectPath = os.path.join(run_test_path, timedir)
create_scaffold(projectPath)
if ('debugtalk' in sys.modules.keys()):
del sys.modules['debugtalk']
debugApi = RunSingleApi(projectPath=projectPath, config=request.query_params['config'],
apiId=kwargs['pk'], type="singleapi")
debugApi.serializeTestCase()
debugApi.serializeTestSuite()
debugApi.serializeDebugtalk()
debugApi.generateMapping()
debugApi.run()
return Response(debugApi.summary)
@api_view(["POST"])
def run_testsuite(request):
"""debug testsuite
{
name: str,
body: dict
}
"""
body = request.data["body"]
project = request.data["project"]
name = request.data["name"]
testcase_list = []
config = None
for test in body:
test = loader.load_test(test, project=project)
if "base_url" in test["request"].keys():
config = test
continue
testcase_list.append(test)
summary = loader.debug_api(testcase_list, project, name=name, config=config)
return Response(summary)
@api_view(["POST"])
def run_test(request):
"""debug single test
{
body: dict
}
"""
body = request.data["body"]
summary = loader.debug_api(loader.load_test(body), request.data["project"])
return Response(summary)
@api_view(["GET"])
def run_testsuite_pk(request, **kwargs):
"""run testsuite by pk
{
project: int,
name: str
}
"""
pk = kwargs["pk"]
test_list = models.CaseStep.objects. \
filter(case__id=pk).order_by("step").values("body")
project = request.query_params["project"]
name = request.query_params["name"]
testcase_list = []
config = None
for content in test_list:
body = eval(content["body"])
if "base_url" in body["request"].keys():
config = eval(models.Config.objects.get(name=body["name"], project__id=project).body)
continue
testcase_list.append(body)
summary = loader.debug_api(testcase_list, project, name=name, config=config)
return Response(summary)
@api_view(['POST'])
@api_view(['POST'])
@api_view(['POST'])
@api_view(['POST'])
@api_view(['POST'])
def run_api(request):
""" run api by body
"""
api = Format(request.data)
api.parse()
run_test_path = settings.RUN_TEST_PATH
timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime())
projectPath = os.path.join(run_test_path, timedir)
if ('debugtalk' in sys.modules.keys()):
del sys.modules['debugtalk']
create_scaffold(projectPath)
debugApi = RunSingleApi(project=api.project,projectPath=projectPath,config=request.data['config'],
apiBody=api.testcase,type="debugapi")
debugApi.serializeTestCase()
debugApi.serializeTestSuite()
debugApi.serializeDebugtalk()
debugApi.generateMapping()
debugApi.run()
return Response(debugApi.summary)
@api_view(['POST'])
@api_view(['POST'])
def run_casesinglestep(request):
"""run testsuite by tree
{
project: int
relation: list
name: str
async: bool
}
"""
# order by id default
run_test_path = settings.RUN_TEST_PATH
timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime())
projectPath = os.path.join(run_test_path, timedir)
create_scaffold(projectPath)
if ('debugtalk' in sys.modules.keys()):
del sys.modules['debugtalk']
singleStep = ''
if('apiId' in request.data.keys()):
singleStep = RunSingleApiInCase(config=request.data['config'], project=request.data['project'],
apiId=request.data['apiId'],
index=request.data['index'], projectPath=projectPath,relation = request.data['relation'][0])
elif('suiteId' in request.data.keys()):
#TODO:这里的实现只是个临时方案,还要重写的
singleStep = RunSingleApiInCase(config=request.data['config'], project=request.data['project'],
suiteId=request.data['suiteId'],
index=request.data['index'], projectPath=projectPath,
relation=request.data['relation'][0])
singleStep.serializeApi()
singleStep.serializeDebugtalk()
singleStep.generateMapping()
singleStep.serializeTestCase()
singleStep.serializeTestSuite()
singleStep.run()
return Response(singleStep.summary)
@api_view(['POST'])
def run_DebugSuiteStep(request):
""" run suitestep by body
"""
run_test_path = settings.RUN_TEST_PATH
timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime())
projectPath = os.path.join(run_test_path, timedir)
create_scaffold(projectPath)
if ('debugtalk' in sys.modules.keys()):
del sys.modules['debugtalk']
debugApi = RunSingleApiInStep(config=request.data['config'],project=request.data['project'],apiId=request.data['apiId'],
apiBody=request.data, projectPath=projectPath)
debugApi.serializeApi()
debugApi.serializeDebugtalk()
debugApi.generateMapping()
debugApi.serializeTestCase()
debugApi.serializeTestSuite()
debugApi.run()
if ('debugtalk' in sys.modules.keys()):
del sys.modules['debugtalk']
return Response(debugApi.summary)
@api_view(['POST'])
def run_DebugCaseStep(request):
""" run casestep by body
"""
run_test_path = settings.RUN_TEST_PATH
timedir = time.strftime('%Y-%m-%d %H-%M-%S', time.localtime())
projectPath = os.path.join(run_test_path, timedir)
create_scaffold(projectPath)
if ('debugtalk' in sys.modules.keys()):
del sys.modules['debugtalk']
debugApi = RunSingleApiInStep(config=request.data['config'],project=request.data['project'],apiId=request.data['apiId'],
apiBody=request.data, projectPath=projectPath)
debugApi.serializeApi()
debugApi.serializeDebugtalk()
debugApi.generateMapping()
debugApi.serializeTestCase()
debugApi.run()
return Response(debugApi.summary)
| [
6738,
1334,
62,
30604,
13,
12501,
273,
2024,
1330,
40391,
62,
1177,
198,
6738,
3049,
16737,
13,
26791,
1330,
40213,
11,
3605,
29356,
198,
6738,
1334,
62,
30604,
13,
26209,
1330,
18261,
198,
6738,
3049,
16737,
13,
26791,
13,
48610,
1330,
18980,
198,
6738,
3049,
16737,
1330,
4981,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
11748,
28686,
11,
2435,
11,
17597,
198,
6738,
1841,
1050,
403,
1008,
13,
26791,
1330,
2251,
62,
1416,
2001,
727,
198,
6738,
3049,
16737,
13,
26791,
1330,
17490,
198,
11748,
12854,
1891,
198,
6738,
3049,
16737,
13,
26791,
13,
3605,
16737,
1330,
5660,
28008,
32,
14415,
11,
10987,
27660,
11,
10987,
28008,
32,
14415,
818,
8600,
11,
10987,
28008,
32,
14415,
818,
20448,
198,
198,
37811,
32573,
238,
26193,
234,
43095,
28156,
237,
198,
37811,
198,
11748,
18931,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
10786,
2804,
1050,
403,
1008,
11537,
628,
198,
31,
15042,
62,
1177,
7,
17816,
18851,
6,
12962,
198,
4299,
1057,
62,
15042,
62,
79,
74,
7,
25927,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
5143,
40391,
416,
279,
74,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1057,
62,
9288,
62,
6978,
796,
6460,
13,
49,
4944,
62,
51,
6465,
62,
34219,
198,
220,
220,
220,
28805,
343,
796,
640,
13,
2536,
31387,
10786,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
12,
4,
44,
12,
4,
50,
3256,
640,
13,
12001,
2435,
28955,
198,
220,
220,
220,
1628,
15235,
796,
28686,
13,
6978,
13,
22179,
7,
5143,
62,
9288,
62,
6978,
11,
28805,
343,
8,
198,
220,
220,
220,
2251,
62,
1416,
2001,
727,
7,
16302,
15235,
8,
198,
220,
220,
220,
611,
19203,
24442,
16620,
6,
287,
25064,
13,
18170,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
25064,
13,
18170,
17816,
24442,
16620,
20520,
628,
220,
220,
220,
14257,
32,
14415,
796,
5660,
28008,
32,
14415,
7,
16302,
15235,
28,
16302,
15235,
11,
4566,
28,
25927,
13,
22766,
62,
37266,
17816,
11250,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40391,
7390,
28,
46265,
22046,
17816,
79,
74,
6,
4357,
2099,
2625,
29762,
15042,
4943,
628,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
14402,
20448,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
14402,
5606,
578,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
27509,
16620,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
8612,
378,
44,
5912,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
5143,
3419,
628,
220,
220,
220,
1441,
18261,
7,
24442,
32,
14415,
13,
49736,
8,
628,
198,
31,
15042,
62,
1177,
7,
14692,
32782,
8973,
8,
198,
4299,
1057,
62,
9288,
2385,
578,
7,
25927,
2599,
198,
220,
220,
220,
37227,
24442,
1332,
2385,
578,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
25,
965,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1767,
25,
8633,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1767,
796,
2581,
13,
7890,
14692,
2618,
8973,
198,
220,
220,
220,
1628,
796,
2581,
13,
7890,
14692,
16302,
8973,
198,
220,
220,
220,
1438,
796,
2581,
13,
7890,
14692,
3672,
8973,
628,
220,
220,
220,
1332,
7442,
62,
4868,
796,
17635,
198,
220,
220,
220,
4566,
796,
6045,
628,
220,
220,
220,
329,
1332,
287,
1767,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
796,
40213,
13,
2220,
62,
9288,
7,
9288,
11,
1628,
28,
16302,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
366,
8692,
62,
6371,
1,
287,
1332,
14692,
25927,
1,
4083,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4566,
796,
1332,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
1332,
7442,
62,
4868,
13,
33295,
7,
9288,
8,
628,
220,
220,
220,
220,
220,
220,
220,
10638,
796,
40213,
13,
24442,
62,
15042,
7,
9288,
7442,
62,
4868,
11,
1628,
11,
1438,
28,
3672,
11,
4566,
28,
11250,
8,
628,
220,
220,
220,
1441,
18261,
7,
49736,
8,
628,
198,
31,
15042,
62,
1177,
7,
14692,
32782,
8973,
8,
198,
4299,
1057,
62,
9288,
7,
25927,
2599,
198,
220,
220,
220,
37227,
24442,
2060,
1332,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1767,
25,
8633,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1767,
796,
2581,
13,
7890,
14692,
2618,
8973,
198,
220,
220,
220,
10638,
796,
40213,
13,
24442,
62,
15042,
7,
29356,
13,
2220,
62,
9288,
7,
2618,
828,
2581,
13,
7890,
14692,
16302,
8973,
8,
198,
220,
220,
220,
1441,
18261,
7,
49736,
8,
628,
198,
31,
15042,
62,
1177,
7,
14692,
18851,
8973,
8,
198,
4299,
1057,
62,
9288,
2385,
578,
62,
79,
74,
7,
25927,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
5143,
1332,
2385,
578,
416,
279,
74,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1628,
25,
493,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
25,
965,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
279,
74,
796,
479,
86,
22046,
14692,
79,
74,
8973,
628,
220,
220,
220,
1332,
62,
4868,
796,
4981,
13,
20448,
8600,
13,
48205,
13,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
8106,
7,
7442,
834,
312,
28,
79,
74,
737,
2875,
62,
1525,
7203,
9662,
11074,
27160,
7203,
2618,
4943,
628,
220,
220,
220,
1628,
796,
2581,
13,
22766,
62,
37266,
14692,
16302,
8973,
198,
220,
220,
220,
1438,
796,
2581,
13,
22766,
62,
37266,
14692,
3672,
8973,
628,
220,
220,
220,
1332,
7442,
62,
4868,
796,
17635,
198,
220,
220,
220,
4566,
796,
6045,
628,
220,
220,
220,
329,
2695,
287,
1332,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1767,
796,
5418,
7,
11299,
14692,
2618,
8973,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
366,
8692,
62,
6371,
1,
287,
1767,
14692,
25927,
1,
4083,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4566,
796,
5418,
7,
27530,
13,
16934,
13,
48205,
13,
1136,
7,
3672,
28,
2618,
14692,
3672,
33116,
1628,
834,
312,
28,
16302,
737,
2618,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
1332,
7442,
62,
4868,
13,
33295,
7,
2618,
8,
628,
220,
220,
220,
10638,
796,
40213,
13,
24442,
62,
15042,
7,
9288,
7442,
62,
4868,
11,
1628,
11,
1438,
28,
3672,
11,
4566,
28,
11250,
8,
628,
220,
220,
220,
1441,
18261,
7,
49736,
8,
628,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
198,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
198,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
198,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
628,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
198,
4299,
1057,
62,
15042,
7,
25927,
2599,
198,
220,
220,
220,
37227,
1057,
40391,
416,
1767,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
40391,
796,
18980,
7,
25927,
13,
7890,
8,
198,
220,
220,
220,
40391,
13,
29572,
3419,
628,
220,
220,
220,
1057,
62,
9288,
62,
6978,
796,
6460,
13,
49,
4944,
62,
51,
6465,
62,
34219,
198,
220,
220,
220,
28805,
343,
796,
640,
13,
2536,
31387,
10786,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
12,
4,
44,
12,
4,
50,
3256,
640,
13,
12001,
2435,
28955,
198,
220,
220,
220,
1628,
15235,
796,
28686,
13,
6978,
13,
22179,
7,
5143,
62,
9288,
62,
6978,
11,
28805,
343,
8,
198,
220,
220,
220,
611,
19203,
24442,
16620,
6,
287,
25064,
13,
18170,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
25064,
13,
18170,
17816,
24442,
16620,
20520,
198,
220,
220,
220,
2251,
62,
1416,
2001,
727,
7,
16302,
15235,
8,
198,
220,
220,
220,
14257,
32,
14415,
796,
5660,
28008,
32,
14415,
7,
16302,
28,
15042,
13,
16302,
11,
16302,
15235,
28,
16302,
15235,
11,
11250,
28,
25927,
13,
7890,
17816,
11250,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40391,
25842,
28,
15042,
13,
9288,
7442,
11,
4906,
2625,
24442,
15042,
4943,
628,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
14402,
20448,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
14402,
5606,
578,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
27509,
16620,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
8612,
378,
44,
5912,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
5143,
3419,
198,
220,
220,
220,
1441,
18261,
7,
24442,
32,
14415,
13,
49736,
8,
628,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
198,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
198,
4299,
1057,
62,
33964,
278,
32712,
538,
7,
25927,
2599,
198,
220,
220,
220,
37227,
5143,
1332,
2385,
578,
416,
5509,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1628,
25,
493,
198,
220,
220,
220,
220,
220,
220,
220,
8695,
25,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
25,
965,
198,
220,
220,
220,
220,
220,
220,
220,
30351,
25,
20512,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
1502,
416,
4686,
4277,
198,
220,
220,
220,
1057,
62,
9288,
62,
6978,
796,
6460,
13,
49,
4944,
62,
51,
6465,
62,
34219,
198,
220,
220,
220,
28805,
343,
796,
640,
13,
2536,
31387,
10786,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
12,
4,
44,
12,
4,
50,
3256,
640,
13,
12001,
2435,
28955,
198,
220,
220,
220,
1628,
15235,
796,
28686,
13,
6978,
13,
22179,
7,
5143,
62,
9288,
62,
6978,
11,
28805,
343,
8,
198,
220,
220,
220,
2251,
62,
1416,
2001,
727,
7,
16302,
15235,
8,
198,
220,
220,
220,
611,
19203,
24442,
16620,
6,
287,
25064,
13,
18170,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
25064,
13,
18170,
17816,
24442,
16620,
20520,
198,
220,
220,
220,
2060,
8600,
796,
10148,
198,
220,
220,
220,
611,
10786,
15042,
7390,
6,
287,
2581,
13,
7890,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2060,
8600,
796,
5660,
28008,
32,
14415,
818,
20448,
7,
11250,
28,
25927,
13,
7890,
17816,
11250,
6,
4357,
1628,
28,
25927,
13,
7890,
17816,
16302,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40391,
7390,
28,
25927,
13,
7890,
17816,
15042,
7390,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
28,
25927,
13,
7890,
17816,
9630,
6,
4357,
1628,
15235,
28,
16302,
15235,
11,
49501,
796,
2581,
13,
7890,
17816,
49501,
6,
7131,
15,
12962,
198,
220,
220,
220,
1288,
361,
10786,
2385,
578,
7390,
6,
287,
2581,
13,
7890,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
51,
3727,
46,
25,
32573,
247,
34932,
234,
21410,
22522,
252,
163,
236,
108,
20998,
103,
42468,
10310,
103,
10310,
112,
33768,
114,
43095,
162,
94,
230,
171,
120,
234,
32573,
246,
17358,
223,
34932,
235,
37863,
247,
21410,
198,
220,
220,
220,
220,
220,
220,
220,
2060,
8600,
796,
5660,
28008,
32,
14415,
818,
20448,
7,
11250,
28,
25927,
13,
7890,
17816,
11250,
6,
4357,
1628,
28,
25927,
13,
7890,
17816,
16302,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18389,
7390,
28,
25927,
13,
7890,
17816,
2385,
578,
7390,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
28,
25927,
13,
7890,
17816,
9630,
6,
4357,
1628,
15235,
28,
16302,
15235,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8695,
28,
25927,
13,
7890,
17816,
49501,
6,
7131,
15,
12962,
198,
220,
220,
220,
2060,
8600,
13,
46911,
1096,
32,
14415,
3419,
198,
220,
220,
220,
2060,
8600,
13,
46911,
1096,
27509,
16620,
3419,
198,
220,
220,
220,
2060,
8600,
13,
8612,
378,
44,
5912,
3419,
198,
220,
220,
220,
2060,
8600,
13,
46911,
1096,
14402,
20448,
3419,
198,
220,
220,
220,
2060,
8600,
13,
46911,
1096,
14402,
5606,
578,
3419,
198,
220,
220,
220,
2060,
8600,
13,
5143,
3419,
198,
220,
220,
220,
1441,
18261,
7,
29762,
8600,
13,
49736,
8,
198,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
198,
4299,
1057,
62,
27509,
5606,
578,
8600,
7,
25927,
2599,
198,
220,
220,
220,
37227,
1057,
6050,
395,
538,
416,
1767,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1057,
62,
9288,
62,
6978,
796,
6460,
13,
49,
4944,
62,
51,
6465,
62,
34219,
198,
220,
220,
220,
28805,
343,
796,
640,
13,
2536,
31387,
10786,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
12,
4,
44,
12,
4,
50,
3256,
640,
13,
12001,
2435,
28955,
198,
220,
220,
220,
1628,
15235,
796,
28686,
13,
6978,
13,
22179,
7,
5143,
62,
9288,
62,
6978,
11,
28805,
343,
8,
198,
220,
220,
220,
2251,
62,
1416,
2001,
727,
7,
16302,
15235,
8,
198,
220,
220,
220,
611,
19203,
24442,
16620,
6,
287,
25064,
13,
18170,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
25064,
13,
18170,
17816,
24442,
16620,
20520,
198,
220,
220,
220,
14257,
32,
14415,
796,
5660,
28008,
32,
14415,
818,
8600,
7,
11250,
28,
25927,
13,
7890,
17816,
11250,
6,
4357,
16302,
28,
25927,
13,
7890,
17816,
16302,
6,
4357,
15042,
7390,
28,
25927,
13,
7890,
17816,
15042,
7390,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40391,
25842,
28,
25927,
13,
7890,
11,
1628,
15235,
28,
16302,
15235,
8,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
32,
14415,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
27509,
16620,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
8612,
378,
44,
5912,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
14402,
20448,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
14402,
5606,
578,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
5143,
3419,
198,
220,
220,
220,
611,
19203,
24442,
16620,
6,
287,
25064,
13,
18170,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
25064,
13,
18170,
17816,
24442,
16620,
20520,
198,
220,
220,
220,
1441,
18261,
7,
24442,
32,
14415,
13,
49736,
8,
628,
198,
31,
15042,
62,
1177,
7,
17816,
32782,
6,
12962,
198,
4299,
1057,
62,
27509,
20448,
8600,
7,
25927,
2599,
198,
220,
220,
220,
37227,
1057,
6124,
395,
538,
416,
1767,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1057,
62,
9288,
62,
6978,
796,
6460,
13,
49,
4944,
62,
51,
6465,
62,
34219,
198,
220,
220,
220,
28805,
343,
796,
640,
13,
2536,
31387,
10786,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
12,
4,
44,
12,
4,
50,
3256,
640,
13,
12001,
2435,
28955,
198,
220,
220,
220,
1628,
15235,
796,
28686,
13,
6978,
13,
22179,
7,
5143,
62,
9288,
62,
6978,
11,
28805,
343,
8,
198,
220,
220,
220,
2251,
62,
1416,
2001,
727,
7,
16302,
15235,
8,
198,
220,
220,
220,
611,
19203,
24442,
16620,
6,
287,
25064,
13,
18170,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
25064,
13,
18170,
17816,
24442,
16620,
20520,
198,
220,
220,
220,
14257,
32,
14415,
796,
5660,
28008,
32,
14415,
818,
8600,
7,
11250,
28,
25927,
13,
7890,
17816,
11250,
6,
4357,
16302,
28,
25927,
13,
7890,
17816,
16302,
6,
4357,
15042,
7390,
28,
25927,
13,
7890,
17816,
15042,
7390,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40391,
25842,
28,
25927,
13,
7890,
11,
1628,
15235,
28,
16302,
15235,
8,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
32,
14415,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
27509,
16620,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
8612,
378,
44,
5912,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
46911,
1096,
14402,
20448,
3419,
198,
220,
220,
220,
14257,
32,
14415,
13,
5143,
3419,
198,
220,
220,
220,
1441,
18261,
7,
24442,
32,
14415,
13,
49736,
8,
198
] | 2.32344 | 2,965 |
from math import floor
print(count_by([6.1,4.2,6.3], floor))
print(count_by(['one', 'two', 'three'], len))
| [
198,
6738,
10688,
1330,
4314,
198,
198,
4798,
7,
9127,
62,
1525,
26933,
21,
13,
16,
11,
19,
13,
17,
11,
21,
13,
18,
4357,
4314,
4008,
198,
4798,
7,
9127,
62,
1525,
7,
17816,
505,
3256,
705,
11545,
3256,
705,
15542,
6,
4357,
18896,
4008,
628
] | 2.340426 | 47 |
from lifelines.datasets import load_rossi
from lifelines import CoxPHFitter
rossi_dataset = load_rossi()
cph = CoxPHFitter()
cph.fit(rossi_dataset, duration_col='week', event_col='arrest', show_progress=True)
cph.print_summary() # access the results using cph.summary | [
6738,
3868,
20655,
13,
19608,
292,
1039,
1330,
3440,
62,
1214,
72,
198,
6738,
3868,
20655,
1330,
18014,
11909,
37,
1967,
198,
198,
1214,
72,
62,
19608,
292,
316,
796,
3440,
62,
1214,
72,
3419,
198,
66,
746,
796,
18014,
11909,
37,
1967,
3419,
198,
66,
746,
13,
11147,
7,
1214,
72,
62,
19608,
292,
316,
11,
9478,
62,
4033,
11639,
10464,
3256,
1785,
62,
4033,
11639,
283,
2118,
3256,
905,
62,
33723,
28,
17821,
8,
198,
198,
66,
746,
13,
4798,
62,
49736,
3419,
220,
1303,
1895,
262,
2482,
1262,
269,
746,
13,
49736
] | 2.842105 | 95 |
# ====================================================================
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ====================================================================
from lia.common.LiaTestCase import LiaTestCase
from lucene import \
WhitespaceAnalyzer, StandardAnalyzer, Term, QueryParser, Locale, \
BooleanQuery, FuzzyQuery, IndexSearcher, TermRangeQuery, TermQuery, \
BooleanClause, Version
| [
2,
38093,
18604,
198,
2,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
220,
220,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
220,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
220,
220,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
220,
220,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
220,
220,
11247,
739,
262,
13789,
13,
198,
2,
38093,
18604,
198,
198,
6738,
35388,
13,
11321,
13,
43,
544,
14402,
20448,
1330,
49520,
14402,
20448,
198,
198,
6738,
17115,
1734,
1330,
3467,
198,
220,
220,
220,
220,
29290,
10223,
37702,
9107,
11,
8997,
37702,
9107,
11,
35118,
11,
43301,
46677,
11,
15181,
1000,
11,
3467,
198,
220,
220,
220,
220,
41146,
20746,
11,
376,
4715,
88,
20746,
11,
12901,
50,
50194,
11,
35118,
17257,
20746,
11,
35118,
20746,
11,
3467,
198,
220,
220,
220,
220,
41146,
2601,
682,
11,
10628,
628
] | 3.861789 | 246 |
import h5py
import numpy as np
# @staticmethod
# def _preprocess_group_value(group):
# data = group['data'][:]
# labels = group['labels'][:]
# result = [(data[i][np.newaxis], labels[i, 0]) for i in range(data.shape[0])]
# return result
# @staticmethod
# def _preprocess_set_value(value):
# data = np.vstack([v[0] for v in value])
# labels = np.vstack([v[1] for v in value])
# return data, labels
| [
11748,
289,
20,
9078,
198,
11748,
299,
32152,
355,
45941,
628,
628,
220,
220,
220,
1303,
2488,
12708,
24396,
198,
220,
220,
220,
1303,
825,
4808,
3866,
14681,
62,
8094,
62,
8367,
7,
8094,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1366,
796,
1448,
17816,
7890,
6,
7131,
47715,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
14722,
796,
1448,
17816,
23912,
1424,
6,
7131,
47715,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1255,
796,
47527,
7890,
58,
72,
7131,
37659,
13,
3605,
22704,
4357,
14722,
58,
72,
11,
657,
12962,
329,
1312,
287,
2837,
7,
7890,
13,
43358,
58,
15,
12962,
60,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1441,
1255,
628,
220,
220,
220,
1303,
2488,
12708,
24396,
198,
220,
220,
220,
1303,
825,
4808,
3866,
14681,
62,
2617,
62,
8367,
7,
8367,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1366,
796,
45941,
13,
85,
25558,
26933,
85,
58,
15,
60,
329,
410,
287,
1988,
12962,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
14722,
796,
45941,
13,
85,
25558,
26933,
85,
58,
16,
60,
329,
410,
287,
1988,
12962,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1441,
1366,
11,
14722,
198
] | 2.269231 | 208 |
import itertools
import unittest
from typing import List, Optional, Union, Tuple
from . import children_entity_parser
from .predicate import Predicate
from ..most_general_unifier import MostGeneralUnifier
class Clause(object):
"""
Class for keeping predicates together and some several multi-predicate supported functionality
"""
def has_tautology(self) -> bool:
"""
Tautology checking procedure in the list of predicates
:return: Boolean flag representing whether the list has tautology or not. In case of having tautology True will
be returned, otherwise False.
"""
# Group each predicate by their name
for key, group in itertools.groupby(self.predicates, lambda predicate: predicate.get_name()):
# Separate them by their negation and test all the unification results of permutations of paired predicates
non_negated_predicates, negated_predicates = Clause._predicate_separator_by_sign(group)
for non_negated_predicate in non_negated_predicates:
for negated_predicate in negated_predicates:
unification, _ = MostGeneralUnifier.unify(non_negated_predicate.get_child(),
negated_predicate.get_child())
# If any of them can be unified, it means we got tautology
if unification:
return True
# If not achieved any tautology, it means we have no tautology
return False
def does_subsume(self, other: 'Clause') -> bool:
"""
Subsumption controlling function where the function tries to find
whether the other clause is more specific than the current clause
:param other: Other clause to check subsumption
:return: Boolean flag representing that the current clause subsumes the other clause
"""
# If no meet naming and negation match as a subset then immediately return False since subsumption cannot occur
fast_check_result = Clause._fast_check_by_negation_and_name(self, other)
if fast_check_result:
# Group by both name and negation
first_group = {key: list(group) for key, group in
itertools.groupby(self.predicates, lambda p: (p.get_name(), p.is_negated))}
second_group = {key: list(group) for key, group in
itertools.groupby(other.predicates, lambda p: (p.get_name(), p.is_negated))}
# Take common keys of each dict so that we can check if there exists any substitution which unifies them
common_keys = first_group.keys() & second_group.keys()
# And filter common predicates
filtered_first_group = [first_group[key] for key in common_keys]
filtered_second_group = [second_group[key] for key in common_keys]
# Then take multiplication of them
for multiplication in itertools.product(itertools.product(*filtered_first_group),
itertools.product(*filtered_second_group)):
# Each of the predicates must be the same or be less specific than the other's predicates
result = all(child == other_child or child.is_less_specific(other_child)
for child, other_child in zip(multiplication[0], multiplication[1]))
if result:
return True
# If none of them holds the condition, then return False
return False
else:
# If fast check fails
return False
def resolve_with(self, other: 'Clause') -> Tuple[Union['Clause', None], Union['Clause', None]]:
"""
Function to resolve two clauses
:param other: Other clause
:return: Resolvent clause in case of resolution otherwise None
"""
for predicate1, predicate2 in itertools.product(self.predicates, other.predicates):
# Try to unify them if they represent the same predicate but they have different negation states
if predicate1.get_name() == predicate2.get_name() and predicate1.is_negated != predicate2.is_negated:
result, substitutions = MostGeneralUnifier.unify(predicate1.get_child(), predicate2.get_child())
# Compose new predicate with combined predicates of both clauses except for resolvent predicates
new_clause_children = [Predicate.build(str(predicate)) for predicate in self.predicates]
new_clause_children.extend([Predicate.build(str(predicate)) for predicate in other.predicates])
new_clause_children.remove(predicate1)
new_clause_children.remove(predicate2)
# Return composed clause
return Clause(MostGeneralUnifier.apply_substitution(new_clause_children, substitutions)), substitutions
# If none of them can be resolved, return none
return None, None
@staticmethod
def _predicate_separator_by_sign(predicates):
"""
Grouping functionality of predicates
"""
non_negated, negated = [], []
for predicate in predicates:
(non_negated, negated)[predicate.is_negated].append(predicate)
return non_negated, negated
@staticmethod
def _fast_check_by_negation_and_name(clause1: 'Clause', clause2: 'Clause') -> bool:
"""
Fast subsumption check procedure which try to check there is any different predicate exists in other clause
so that the first clause cannot subsume
:param clause1: Clause to check subsume onto other clause
:param clause2: Clause which assumed to be subsumed by the first clause
:return: Boolean flag representing all predicates in the first clause are subset of that for second clause
"""
clause1 = set(map(lambda predicate: (predicate.is_negated, predicate.get_name()), clause1.predicates))
clause2 = set(map(lambda predicate: (predicate.is_negated, predicate.get_name()), clause2.predicates))
return clause1.issubset(clause2)
| [
11748,
340,
861,
10141,
198,
11748,
555,
715,
395,
198,
198,
6738,
19720,
1330,
7343,
11,
32233,
11,
4479,
11,
309,
29291,
198,
198,
6738,
764,
1330,
1751,
62,
26858,
62,
48610,
198,
6738,
764,
28764,
5344,
1330,
14322,
5344,
198,
6738,
11485,
1712,
62,
24622,
62,
403,
7483,
1330,
4042,
12218,
3118,
7483,
628,
198,
4871,
28081,
7,
15252,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5016,
329,
5291,
2747,
16856,
1978,
290,
617,
1811,
5021,
12,
28764,
5344,
4855,
11244,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
468,
62,
83,
2306,
1435,
7,
944,
8,
4613,
20512,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
309,
2306,
1435,
10627,
8771,
287,
262,
1351,
286,
2747,
16856,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
41146,
6056,
10200,
1771,
262,
1351,
468,
256,
2306,
1435,
393,
407,
13,
554,
1339,
286,
1719,
256,
2306,
1435,
6407,
481,
198,
220,
220,
220,
220,
220,
220,
220,
307,
4504,
11,
4306,
10352,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4912,
1123,
44010,
416,
511,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1994,
11,
1448,
287,
340,
861,
10141,
13,
8094,
1525,
7,
944,
13,
28764,
16856,
11,
37456,
44010,
25,
44010,
13,
1136,
62,
3672,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8621,
30748,
606,
416,
511,
2469,
341,
290,
1332,
477,
262,
49080,
2482,
286,
9943,
32855,
286,
20312,
2747,
16856,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1729,
62,
12480,
515,
62,
28764,
16856,
11,
2469,
515,
62,
28764,
16856,
796,
28081,
13557,
28764,
5344,
62,
25512,
1352,
62,
1525,
62,
12683,
7,
8094,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1729,
62,
12480,
515,
62,
28764,
5344,
287,
1729,
62,
12480,
515,
62,
28764,
16856,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2469,
515,
62,
28764,
5344,
287,
2469,
515,
62,
28764,
16856,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49080,
11,
4808,
796,
4042,
12218,
3118,
7483,
13,
403,
1958,
7,
13159,
62,
12480,
515,
62,
28764,
5344,
13,
1136,
62,
9410,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2469,
515,
62,
28764,
5344,
13,
1136,
62,
9410,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
597,
286,
606,
460,
307,
22706,
11,
340,
1724,
356,
1392,
256,
2306,
1435,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
49080,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
407,
8793,
597,
256,
2306,
1435,
11,
340,
1724,
356,
423,
645,
256,
2306,
1435,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
220,
220,
220,
825,
857,
62,
7266,
82,
2454,
7,
944,
11,
584,
25,
705,
2601,
682,
11537,
4613,
20512,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3834,
16345,
1159,
12755,
2163,
810,
262,
2163,
8404,
284,
1064,
198,
220,
220,
220,
220,
220,
220,
220,
1771,
262,
584,
13444,
318,
517,
2176,
621,
262,
1459,
13444,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
584,
25,
3819,
13444,
284,
2198,
6352,
24098,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
41146,
6056,
10200,
326,
262,
1459,
13444,
6352,
8139,
262,
584,
13444,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
645,
1826,
19264,
290,
2469,
341,
2872,
355,
257,
24637,
788,
3393,
1441,
10352,
1201,
6352,
24098,
2314,
3051,
198,
220,
220,
220,
220,
220,
220,
220,
3049,
62,
9122,
62,
20274,
796,
28081,
13557,
7217,
62,
9122,
62,
1525,
62,
12480,
341,
62,
392,
62,
3672,
7,
944,
11,
584,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3049,
62,
9122,
62,
20274,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4912,
416,
1111,
1438,
290,
2469,
341,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
717,
62,
8094,
796,
1391,
2539,
25,
1351,
7,
8094,
8,
329,
1994,
11,
1448,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
340,
861,
10141,
13,
8094,
1525,
7,
944,
13,
28764,
16856,
11,
37456,
279,
25,
357,
79,
13,
1136,
62,
3672,
22784,
279,
13,
271,
62,
12480,
515,
4008,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1218,
62,
8094,
796,
1391,
2539,
25,
1351,
7,
8094,
8,
329,
1994,
11,
1448,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
340,
861,
10141,
13,
8094,
1525,
7,
847,
13,
28764,
16856,
11,
37456,
279,
25,
357,
79,
13,
1136,
62,
3672,
22784,
279,
13,
271,
62,
12480,
515,
4008,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
7214,
2219,
8251,
286,
1123,
8633,
523,
326,
356,
460,
2198,
611,
612,
7160,
597,
32097,
543,
555,
6945,
606,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2219,
62,
13083,
796,
717,
62,
8094,
13,
13083,
3419,
1222,
1218,
62,
8094,
13,
13083,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
843,
8106,
2219,
2747,
16856,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29083,
62,
11085,
62,
8094,
796,
685,
11085,
62,
8094,
58,
2539,
60,
329,
1994,
287,
2219,
62,
13083,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29083,
62,
12227,
62,
8094,
796,
685,
12227,
62,
8094,
58,
2539,
60,
329,
1994,
287,
2219,
62,
13083,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3244,
1011,
48473,
286,
606,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
48473,
287,
340,
861,
10141,
13,
11167,
7,
270,
861,
10141,
13,
11167,
46491,
10379,
4400,
62,
11085,
62,
8094,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
340,
861,
10141,
13,
11167,
46491,
10379,
4400,
62,
12227,
62,
8094,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5501,
286,
262,
2747,
16856,
1276,
307,
262,
976,
393,
307,
1342,
2176,
621,
262,
584,
338,
2747,
16856,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
477,
7,
9410,
6624,
584,
62,
9410,
393,
1200,
13,
271,
62,
1203,
62,
11423,
7,
847,
62,
9410,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1200,
11,
584,
62,
9410,
287,
19974,
7,
47945,
3299,
58,
15,
4357,
48473,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1255,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
4844,
286,
606,
6622,
262,
4006,
11,
788,
1441,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
3049,
2198,
10143,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
220,
220,
220,
825,
10568,
62,
4480,
7,
944,
11,
584,
25,
705,
2601,
682,
11537,
4613,
309,
29291,
58,
38176,
17816,
2601,
682,
3256,
6045,
4357,
4479,
17816,
2601,
682,
3256,
6045,
60,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
15553,
284,
10568,
734,
31485,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
584,
25,
3819,
13444,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
1874,
349,
1151,
13444,
287,
1339,
286,
6323,
4306,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
329,
44010,
16,
11,
44010,
17,
287,
340,
861,
10141,
13,
11167,
7,
944,
13,
28764,
16856,
11,
584,
13,
28764,
16856,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9993,
284,
555,
1958,
606,
611,
484,
2380,
262,
976,
44010,
475,
484,
423,
1180,
2469,
341,
2585,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
44010,
16,
13,
1136,
62,
3672,
3419,
6624,
44010,
17,
13,
1136,
62,
3672,
3419,
290,
44010,
16,
13,
271,
62,
12480,
515,
14512,
44010,
17,
13,
271,
62,
12480,
515,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
11,
21436,
3508,
796,
4042,
12218,
3118,
7483,
13,
403,
1958,
7,
28764,
5344,
16,
13,
1136,
62,
9410,
22784,
44010,
17,
13,
1136,
62,
9410,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3082,
577,
649,
44010,
351,
5929,
2747,
16856,
286,
1111,
31485,
2845,
329,
581,
349,
1151,
2747,
16856,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
565,
682,
62,
17197,
796,
685,
39156,
5344,
13,
11249,
7,
2536,
7,
28764,
5344,
4008,
329,
44010,
287,
2116,
13,
28764,
16856,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
565,
682,
62,
17197,
13,
2302,
437,
26933,
39156,
5344,
13,
11249,
7,
2536,
7,
28764,
5344,
4008,
329,
44010,
287,
584,
13,
28764,
16856,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
565,
682,
62,
17197,
13,
28956,
7,
28764,
5344,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
565,
682,
62,
17197,
13,
28956,
7,
28764,
5344,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8229,
13160,
13444,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
28081,
7,
6943,
12218,
3118,
7483,
13,
39014,
62,
7266,
301,
2738,
7,
3605,
62,
565,
682,
62,
17197,
11,
21436,
3508,
36911,
21436,
3508,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
4844,
286,
606,
460,
307,
12939,
11,
1441,
4844,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
11,
6045,
628,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
4808,
28764,
5344,
62,
25512,
1352,
62,
1525,
62,
12683,
7,
28764,
16856,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
4912,
278,
11244,
286,
2747,
16856,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1729,
62,
12480,
515,
11,
2469,
515,
796,
685,
4357,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
44010,
287,
2747,
16856,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
13159,
62,
12480,
515,
11,
2469,
515,
38381,
28764,
5344,
13,
271,
62,
12480,
515,
4083,
33295,
7,
28764,
5344,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1729,
62,
12480,
515,
11,
2469,
515,
628,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
4808,
7217,
62,
9122,
62,
1525,
62,
12480,
341,
62,
392,
62,
3672,
7,
565,
682,
16,
25,
705,
2601,
682,
3256,
13444,
17,
25,
705,
2601,
682,
11537,
4613,
20512,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
12549,
6352,
24098,
2198,
8771,
543,
1949,
284,
2198,
612,
318,
597,
1180,
44010,
7160,
287,
584,
13444,
198,
220,
220,
220,
220,
220,
220,
220,
523,
326,
262,
717,
13444,
2314,
6352,
2454,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
13444,
16,
25,
28081,
284,
2198,
6352,
2454,
4291,
584,
13444,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
13444,
17,
25,
28081,
543,
9672,
284,
307,
6352,
18940,
416,
262,
717,
13444,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
41146,
6056,
10200,
477,
2747,
16856,
287,
262,
717,
13444,
389,
24637,
286,
326,
329,
1218,
13444,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
13444,
16,
796,
900,
7,
8899,
7,
50033,
44010,
25,
357,
28764,
5344,
13,
271,
62,
12480,
515,
11,
44010,
13,
1136,
62,
3672,
3419,
828,
13444,
16,
13,
28764,
16856,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
13444,
17,
796,
900,
7,
8899,
7,
50033,
44010,
25,
357,
28764,
5344,
13,
271,
62,
12480,
515,
11,
44010,
13,
1136,
62,
3672,
3419,
828,
13444,
17,
13,
28764,
16856,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
13444,
16,
13,
747,
549,
2617,
7,
565,
682,
17,
8,
628
] | 2.540541 | 2,442 |
import PySimpleGUI as sg
import app_state as app
import dashboard
import backend
import os
from loguru import logger
import traceback
import arus
| [
11748,
9485,
26437,
40156,
355,
264,
70,
198,
11748,
598,
62,
5219,
355,
598,
198,
11748,
30415,
198,
11748,
30203,
198,
11748,
28686,
198,
6738,
2604,
14717,
1330,
49706,
198,
11748,
12854,
1891,
198,
11748,
610,
385,
628,
198
] | 3.794872 | 39 |
import time
import timeit
from handlerPdf import getPDFname, getLocalTime
from pathlib import Path, PurePath
| [
11748,
640,
198,
11748,
640,
270,
198,
6738,
21360,
47,
7568,
1330,
651,
20456,
3672,
11,
651,
14565,
7575,
198,
6738,
3108,
8019,
1330,
10644,
11,
17129,
15235,
628,
628
] | 3.733333 | 30 |
import unittest
import random
import axelrod
C, D = axelrod.Actions.C, axelrod.Actions.D
| [
11748,
555,
715,
395,
198,
11748,
4738,
198,
11748,
7877,
417,
14892,
198,
198,
34,
11,
360,
796,
7877,
417,
14892,
13,
32,
2733,
13,
34,
11,
7877,
417,
14892,
13,
32,
2733,
13,
35,
198
] | 2.5 | 36 |
import numpy as np
import pytest
import torch
from supermariopy.ptutils import nn
| [
11748,
299,
32152,
355,
45941,
198,
11748,
12972,
9288,
198,
11748,
28034,
198,
6738,
2208,
76,
2743,
11081,
13,
457,
26791,
1330,
299,
77,
628,
628,
628,
628,
628,
628,
628,
628
] | 3.03125 | 32 |
from dimagi.ext.couchdbkit import DecimalProperty, Document, StringProperty
from corehq.apps.cachehq.mixins import CachedCouchDocumentMixin
TYPE_DOMAIN = 'domain'
TYPE_PRODUCT = 'product'
TYPE_SUPPLY_POINT_TYPE = 'supply-point-type'
TYPE_SUPPLY_POINT = 'supply-point'
class DefaultConsumption(CachedCouchDocumentMixin, Document):
"""
Model for setting the default consumption value of an entity
"""
type = StringProperty() # 'domain', 'product', 'supply-point-type', 'supply-point'
domain = StringProperty()
product_id = StringProperty()
supply_point_type = StringProperty()
supply_point_id = StringProperty()
default_consumption = DecimalProperty()
@classmethod
@classmethod
@classmethod
@classmethod
| [
6738,
5391,
18013,
13,
2302,
13,
66,
7673,
9945,
15813,
1330,
4280,
4402,
21746,
11,
16854,
11,
10903,
21746,
198,
198,
6738,
4755,
71,
80,
13,
18211,
13,
23870,
71,
80,
13,
19816,
1040,
1330,
327,
2317,
34,
7673,
24941,
35608,
259,
198,
198,
25216,
62,
39170,
29833,
796,
705,
27830,
6,
198,
25216,
62,
4805,
28644,
796,
705,
11167,
6,
198,
25216,
62,
40331,
6489,
56,
62,
16402,
12394,
62,
25216,
796,
705,
18608,
306,
12,
4122,
12,
4906,
6,
198,
25216,
62,
40331,
6489,
56,
62,
16402,
12394,
796,
705,
18608,
306,
12,
4122,
6,
628,
198,
4871,
15161,
9444,
24098,
7,
34,
2317,
34,
7673,
24941,
35608,
259,
11,
16854,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9104,
329,
4634,
262,
4277,
7327,
1988,
286,
281,
9312,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2099,
796,
10903,
21746,
3419,
220,
1303,
705,
27830,
3256,
705,
11167,
3256,
705,
18608,
306,
12,
4122,
12,
4906,
3256,
705,
18608,
306,
12,
4122,
6,
198,
220,
220,
220,
7386,
796,
10903,
21746,
3419,
198,
220,
220,
220,
1720,
62,
312,
796,
10903,
21746,
3419,
198,
220,
220,
220,
5127,
62,
4122,
62,
4906,
796,
10903,
21746,
3419,
198,
220,
220,
220,
5127,
62,
4122,
62,
312,
796,
10903,
21746,
3419,
198,
220,
220,
220,
4277,
62,
5936,
24098,
796,
4280,
4402,
21746,
3419,
628,
220,
220,
220,
2488,
4871,
24396,
628,
220,
220,
220,
2488,
4871,
24396,
628,
220,
220,
220,
2488,
4871,
24396,
628,
220,
220,
220,
2488,
4871,
24396,
198
] | 2.968872 | 257 |
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.7
# kernelspec:
# display_name: Python [conda env:bandit_38]
# language: python
# name: conda-env-bandit_38-py
# ---
# %% language="javascript"
# IPython.notebook.kernel.restart()
# %%
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
# %%
# %%
headwater = '0259'
hw_suffix = ''
workdir = f'/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHW_sample/HW{headwater}{hw_suffix}/RESULTS'
ofs_file = f'{workdir}/objfun_{headwater}'
df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True)
x_vars = df.columns.tolist()[3:]
ncols = 3
numrows = int(round(len(x_vars) / float(ncols) + 0.5))
cstep = 4
# of_var = 'of_som'
# Layout info at: https://matplotlib.org/stable/tutorials/intermediate/constrainedlayout_guide.html
fig, axes = plt.subplots(nrows=numrows, ncols=ncols, figsize=(10, 10), constrained_layout=True)
fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0.1, wspace=0.2)
ax = axes.flatten()
for ii,of in enumerate(x_vars):
ax[ii].set_title(f'of_prms vs {of}')
step_df = df[df.step == cstep]
step_df.plot(ax=ax[ii], kind='scatter', x=of, y='of_prms', color='red', alpha=0.2)
df_final = step_df.iloc[[-1]]
df_final.plot(ax=ax[ii], kind='scatter', x=of, y='of_prms', color='black')
# precal_ns_ref_df.plot(ax=ax[0], x='OF', y=precal_ns_ref_df.columns[1], ylim=(0.0, 1.0), color=calib_color,
# label='PRECAL-ref')
# ax = plt.gca()
# step_df = df[df.step == cstep]
# df_final = step_df.iloc[[-1]]
# step_df.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='red', alpha=0.2)
# df_final.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='black')
# step_two = df[df.step == 2]
# step_two.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='green', alpha=0.2)
# step_three = df[df.step == 3]
# step_three.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='blue', alpha=0.2)
# step_four = df[df.step == 4]
# step_four.plot(kind='scatter', x=of_var, y='of_prms', ax=ax, color='yellow', alpha=0.2)
# df_final = step_one.iloc[[-1]]
# df_final.plot(kind='scatter', x='ofRUN', y='prmsOF', ax=ax, color='black')
# df_final.plot(kind='scatter', x='ofAET', y='prmsOF', ax=ax, color='black')
# df_final.plot(kind='scatter', x='ofSCA', y='prmsOF', ax=ax, color='black')
# df_final.plot(kind='scatter', x='ofRCH', y='prmsOF', ax=ax, color='black')
# df_final.plot(kind='scatter', x='ofSOM', y='prmsOF', ax=ax, color='black')
# %%
len(df.columns.tolist()[2:])
# %%
colors = ['red', 'green', 'blue', 'yellow']
ncols = 3
numrows = int(round(len(x_vars) / float(ncols) + 0.5))
rnd = 3
# of_var = 'of_som'
df = df[df.loc[:, 'round'] == rnd]
# Layout info at: https://matplotlib.org/stable/tutorials/intermediate/constrainedlayout_guide.html
fig, axes = plt.subplots(nrows=numrows, ncols=ncols, figsize=(15, 15), constrained_layout=True)
fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0.1, wspace=0.2)
ax = axes.flatten()
for ii,of in enumerate(x_vars):
ax[ii].set_title(f'of_prms vs {of}')
for xx in range(1, 5):
p_df = df[df.step == xx]
p_df.plot(ax=ax[ii], kind='scatter', x=of, y='of_prms', color=colors[xx-1], alpha=0.2)
df_final = p_df.iloc[[-1]]
df_final.plot(ax=ax[ii], kind='scatter', x=of, y='of_prms', color='black')
# %%
df[df.loc[:, 'round'] == 1]
# %%
df.head()
# %%
df.info()
# %%
# %%
# %%
# %%
# %%
x_vars
# %% [markdown]
# ### Plot OFS from the original byHRU calibration
# %%
workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run1/RESULTS'
ofs_file = f'{workdir}/OFS_HRU3505'
df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0)
# df.plot(kind='scatter',x='num_children',y='num_pets',color='red')
ax = plt.gca()
df.plot(kind='scatter', x='ofRUN', y='prmsOF', ax=ax, color='red', alpha=0.2)
df.plot(kind='scatter', x='ofAET', y='prmsOF', ax=ax, color='green', alpha=0.2)
df.plot(kind='scatter', x='ofSCA', y='prmsOF', ax=ax, color='blue', alpha=0.2)
df.plot(kind='scatter', x='ofRCH', y='prmsOF', ax=ax, color='yellow', alpha=0.2)
df.plot(kind='scatter', x='ofSOM', y='prmsOF', ax=ax, color='purple', alpha=0.2)
df_final = df.iloc[[-1]]
df_final.plot(kind='scatter', x='ofRUN', y='prmsOF', ax=ax, color='black')
df_final.plot(kind='scatter', x='ofAET', y='prmsOF', ax=ax, color='black')
df_final.plot(kind='scatter', x='ofSCA', y='prmsOF', ax=ax, color='black')
df_final.plot(kind='scatter', x='ofRCH', y='prmsOF', ax=ax, color='black')
df_final.plot(kind='scatter', x='ofSOM', y='prmsOF', ax=ax, color='black')
# %%
# %% [markdown]
# ### Plot params
# %%
workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run2/RESULTS'
ofs_file = f'{workdir}/PARAMS_HRU3505'
df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0)
ax = plt.gca()
df.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='red', alpha=0.2)
df.plot(kind='scatter', x='fastcoef_lin', y='RUN', ax=ax, color='green', alpha=0.2)
df.plot(kind='scatter', x='freeh2o_cap', y='RUN', ax=ax, color='blue', alpha=0.2)
df.plot(kind='scatter', x='gwflow_coef', y='RUN', ax=ax, color='yellow', alpha=0.2)
df.plot(kind='scatter', x='jh_coef', y='RUN', ax=ax, color='purple', alpha=0.2)
df_final = df.iloc[[-1]]
df_final.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x='fastcoef_lin', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x='freeh2o_cap', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x='gwflow_coef', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x='jh_coef', y='RUN', ax=ax, color='black')
# %% [markdown]
# ### Plot params from original calibration
# %%
workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run1/RESULTS'
ofs_file = f'{workdir}/PARAMS_HRU3505'
df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0)
ax = plt.gca()
df.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='red', alpha=0.2)
df.plot(kind='scatter', x='fastcoef_lin', y='RUN', ax=ax, color='green', alpha=0.2)
df.plot(kind='scatter', x='freeh2o_cap', y='RUN', ax=ax, color='blue', alpha=0.2)
df.plot(kind='scatter', x='gwflow_coef', y='RUN', ax=ax, color='yellow', alpha=0.2)
df.plot(kind='scatter', x='jh_coef', y='RUN', ax=ax, color='purple', alpha=0.2)
df_final = df.iloc[[-1]]
df_final.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x='fastcoef_lin', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x='freeh2o_cap', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x='gwflow_coef', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x='jh_coef', y='RUN', ax=ax, color='black')
# %%
ax = plt.gca()
df.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='red', alpha=0.2)
df_final = df.iloc[[-1]]
df_final.plot(kind='scatter', x='carea_max', y='RUN', ax=ax, color='black')
# %%
df.columns
# %%
# %%
# %%
var = 'tmin_cbh_adj'
workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run2/RESULTS'
ofs_file = f'{workdir}/PARAMS_HRU3505'
df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0)
ax = plt.gca()
df.plot(kind='scatter', x=f'{var}', y='RUN', ax=ax, color='red', alpha=0.2)
df.plot(kind='scatter', x=f'{var}.1', y='RUN', ax=ax, color='green', alpha=0.2)
df.plot(kind='scatter', x=f'{var}.2', y='RUN', ax=ax, color='blue', alpha=0.2)
df.plot(kind='scatter', x=f'{var}.3', y='RUN', ax=ax, color='purple', alpha=0.2)
df_final = df.iloc[[-1]]
df_final.plot(kind='scatter', x=f'{var}', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x=f'{var}.1', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x=f'{var}.2', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x=f'{var}.3', y='RUN', ax=ax, color='black')
# %%
# %%
var = 'tmin_cbh_adj'
workdir = '/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU3505_run1/RESULTS'
ofs_file = f'{workdir}/PARAMS_HRU3505'
df = pd.read_csv(ofs_file, sep='\s+', skipinitialspace=True, header=0)
ax = plt.gca()
df.plot(kind='scatter', x=f'{var}', y='RUN', ax=ax, color='red', alpha=0.2)
df.plot(kind='scatter', x=f'{var}.1', y='RUN', ax=ax, color='green', alpha=0.2)
df.plot(kind='scatter', x=f'{var}.2', y='RUN', ax=ax, color='blue', alpha=0.2)
df.plot(kind='scatter', x=f'{var}.3', y='RUN', ax=ax, color='purple', alpha=0.2)
df_final = df.iloc[[-1]]
df_final.plot(kind='scatter', x=f'{var}', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x=f'{var}.1', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x=f'{var}.2', y='RUN', ax=ax, color='black')
df_final.plot(kind='scatter', x=f'{var}.3', y='RUN', ax=ax, color='black')
# %%
| [
2,
11420,
198,
2,
474,
929,
88,
353,
25,
198,
2,
220,
220,
474,
929,
88,
5239,
25,
198,
2,
220,
220,
220,
220,
17519,
25,
20966,
2047,
65,
11,
9078,
25,
25067,
198,
2,
220,
220,
220,
220,
2420,
62,
15603,
341,
25,
198,
2,
220,
220,
220,
220,
220,
220,
7552,
25,
764,
9078,
198,
2,
220,
220,
220,
220,
220,
220,
5794,
62,
3672,
25,
1411,
198,
2,
220,
220,
220,
220,
220,
220,
5794,
62,
9641,
25,
705,
16,
13,
18,
6,
198,
2,
220,
220,
220,
220,
220,
220,
474,
929,
88,
5239,
62,
9641,
25,
352,
13,
1485,
13,
22,
198,
2,
220,
220,
50207,
43106,
25,
198,
2,
220,
220,
220,
220,
3359,
62,
3672,
25,
11361,
685,
66,
13533,
17365,
25,
3903,
270,
62,
2548,
60,
198,
2,
220,
220,
220,
220,
3303,
25,
21015,
198,
2,
220,
220,
220,
220,
1438,
25,
1779,
64,
12,
24330,
12,
3903,
270,
62,
2548,
12,
9078,
198,
2,
11420,
198,
198,
2,
43313,
3303,
2625,
37495,
1,
198,
2,
6101,
7535,
13,
11295,
2070,
13,
33885,
13,
2118,
433,
3419,
198,
198,
2,
43313,
198,
11748,
2603,
29487,
8019,
355,
285,
489,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
19798,
292,
355,
279,
67,
198,
198,
2,
43313,
198,
198,
2,
43313,
198,
2256,
7050,
796,
705,
15,
25191,
6,
198,
36599,
62,
37333,
844,
796,
10148,
198,
1818,
15908,
796,
277,
26488,
14490,
14,
21999,
419,
261,
14,
16775,
82,
14,
16186,
62,
40436,
31142,
62,
17633,
14,
9948,
2889,
602,
14,
33863,
44,
85,
1157,
14,
1525,
39,
54,
62,
39873,
14,
39,
54,
90,
2256,
7050,
18477,
36599,
62,
37333,
844,
92,
14,
46274,
6,
198,
1659,
82,
62,
7753,
796,
277,
6,
90,
1818,
15908,
92,
14,
26801,
12543,
23330,
2256,
7050,
92,
6,
198,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
7,
1659,
82,
62,
7753,
11,
41767,
11639,
59,
82,
10,
3256,
14267,
36733,
13200,
28,
17821,
8,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
87,
62,
85,
945,
796,
47764,
13,
28665,
82,
13,
83,
349,
396,
3419,
58,
18,
47715,
198,
198,
77,
4033,
82,
796,
513,
198,
22510,
8516,
796,
493,
7,
744,
7,
11925,
7,
87,
62,
85,
945,
8,
1220,
12178,
7,
77,
4033,
82,
8,
1343,
657,
13,
20,
4008,
198,
198,
66,
9662,
796,
604,
198,
2,
286,
62,
7785,
796,
705,
1659,
62,
82,
296,
6,
198,
198,
2,
47639,
7508,
379,
25,
3740,
1378,
6759,
29487,
8019,
13,
2398,
14,
31284,
14,
83,
44917,
82,
14,
3849,
13857,
14,
1102,
2536,
1328,
39786,
62,
41311,
13,
6494,
198,
5647,
11,
34197,
796,
458,
83,
13,
7266,
489,
1747,
7,
77,
8516,
28,
22510,
8516,
11,
299,
4033,
82,
28,
77,
4033,
82,
11,
2336,
7857,
16193,
940,
11,
838,
828,
31070,
62,
39786,
28,
17821,
8,
198,
5647,
13,
2617,
62,
1102,
2536,
1328,
62,
39786,
62,
79,
5643,
7,
86,
62,
15636,
28,
19,
1220,
7724,
11,
289,
62,
15636,
28,
19,
1220,
7724,
11,
289,
13200,
28,
15,
13,
16,
11,
266,
13200,
28,
15,
13,
17,
8,
198,
897,
796,
34197,
13,
2704,
41769,
3419,
198,
198,
1640,
21065,
11,
1659,
287,
27056,
378,
7,
87,
62,
85,
945,
2599,
198,
220,
220,
220,
7877,
58,
4178,
4083,
2617,
62,
7839,
7,
69,
6,
1659,
62,
1050,
907,
3691,
1391,
1659,
92,
11537,
198,
220,
220,
220,
2239,
62,
7568,
796,
47764,
58,
7568,
13,
9662,
6624,
269,
9662,
60,
198,
220,
220,
220,
2239,
62,
7568,
13,
29487,
7,
897,
28,
897,
58,
4178,
4357,
1611,
11639,
1416,
1436,
3256,
2124,
28,
1659,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
3124,
11639,
445,
3256,
17130,
28,
15,
13,
17,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
47764,
62,
20311,
796,
2239,
62,
7568,
13,
346,
420,
30109,
12,
16,
11907,
198,
220,
220,
220,
47764,
62,
20311,
13,
29487,
7,
897,
28,
897,
58,
4178,
4357,
1611,
11639,
1416,
1436,
3256,
2124,
28,
1659,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
3124,
11639,
13424,
11537,
198,
220,
220,
220,
220,
198,
2,
220,
220,
220,
220,
3718,
282,
62,
5907,
62,
5420,
62,
7568,
13,
29487,
7,
897,
28,
897,
58,
15,
4357,
2124,
11639,
19238,
3256,
331,
28,
3866,
9948,
62,
5907,
62,
5420,
62,
7568,
13,
28665,
82,
58,
16,
4357,
331,
2475,
16193,
15,
13,
15,
11,
352,
13,
15,
828,
3124,
28,
9948,
571,
62,
8043,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
11639,
47,
38827,
1847,
12,
5420,
11537,
628,
198,
2,
7877,
796,
458,
83,
13,
70,
6888,
3419,
198,
2,
2239,
62,
7568,
796,
47764,
58,
7568,
13,
9662,
6624,
269,
9662,
60,
198,
2,
47764,
62,
20311,
796,
2239,
62,
7568,
13,
346,
420,
30109,
12,
16,
11907,
198,
2,
2239,
62,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
1659,
62,
7785,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
7877,
28,
897,
11,
3124,
11639,
445,
3256,
17130,
28,
15,
13,
17,
8,
198,
2,
47764,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
1659,
62,
7785,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
628,
628,
198,
2,
2239,
62,
11545,
796,
47764,
58,
7568,
13,
9662,
6624,
362,
60,
198,
2,
2239,
62,
11545,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
1659,
62,
7785,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
7877,
28,
897,
11,
3124,
11639,
14809,
3256,
17130,
28,
15,
13,
17,
8,
198,
198,
2,
2239,
62,
15542,
796,
47764,
58,
7568,
13,
9662,
6624,
513,
60,
198,
2,
2239,
62,
15542,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
1659,
62,
7785,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
7877,
28,
897,
11,
3124,
11639,
17585,
3256,
17130,
28,
15,
13,
17,
8,
198,
198,
2,
2239,
62,
14337,
796,
47764,
58,
7568,
13,
9662,
6624,
604,
60,
198,
2,
2239,
62,
14337,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
1659,
62,
7785,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
7877,
28,
897,
11,
3124,
11639,
36022,
3256,
17130,
28,
15,
13,
17,
8,
198,
198,
2,
47764,
62,
20311,
796,
2239,
62,
505,
13,
346,
420,
30109,
12,
16,
11907,
198,
2,
47764,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
49,
4944,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
2,
47764,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
32,
2767,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
2,
47764,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
6173,
32,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
2,
47764,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
49,
3398,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
2,
47764,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
50,
2662,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
628,
198,
2,
43313,
198,
11925,
7,
7568,
13,
28665,
82,
13,
83,
349,
396,
3419,
58,
17,
25,
12962,
198,
198,
2,
43313,
198,
4033,
669,
796,
37250,
445,
3256,
705,
14809,
3256,
705,
17585,
3256,
705,
36022,
20520,
198,
198,
77,
4033,
82,
796,
513,
198,
22510,
8516,
796,
493,
7,
744,
7,
11925,
7,
87,
62,
85,
945,
8,
1220,
12178,
7,
77,
4033,
82,
8,
1343,
657,
13,
20,
4008,
198,
198,
81,
358,
796,
513,
198,
2,
286,
62,
7785,
796,
705,
1659,
62,
82,
296,
6,
198,
7568,
796,
47764,
58,
7568,
13,
17946,
58,
45299,
705,
744,
20520,
6624,
374,
358,
60,
198,
198,
2,
47639,
7508,
379,
25,
3740,
1378,
6759,
29487,
8019,
13,
2398,
14,
31284,
14,
83,
44917,
82,
14,
3849,
13857,
14,
1102,
2536,
1328,
39786,
62,
41311,
13,
6494,
198,
5647,
11,
34197,
796,
458,
83,
13,
7266,
489,
1747,
7,
77,
8516,
28,
22510,
8516,
11,
299,
4033,
82,
28,
77,
4033,
82,
11,
2336,
7857,
16193,
1314,
11,
1315,
828,
31070,
62,
39786,
28,
17821,
8,
198,
5647,
13,
2617,
62,
1102,
2536,
1328,
62,
39786,
62,
79,
5643,
7,
86,
62,
15636,
28,
19,
1220,
7724,
11,
289,
62,
15636,
28,
19,
1220,
7724,
11,
289,
13200,
28,
15,
13,
16,
11,
266,
13200,
28,
15,
13,
17,
8,
198,
897,
796,
34197,
13,
2704,
41769,
3419,
198,
198,
1640,
21065,
11,
1659,
287,
27056,
378,
7,
87,
62,
85,
945,
2599,
198,
220,
220,
220,
7877,
58,
4178,
4083,
2617,
62,
7839,
7,
69,
6,
1659,
62,
1050,
907,
3691,
1391,
1659,
92,
11537,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
31383,
287,
2837,
7,
16,
11,
642,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
279,
62,
7568,
796,
47764,
58,
7568,
13,
9662,
6624,
31383,
60,
198,
220,
220,
220,
220,
220,
220,
220,
279,
62,
7568,
13,
29487,
7,
897,
28,
897,
58,
4178,
4357,
1611,
11639,
1416,
1436,
3256,
2124,
28,
1659,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
3124,
28,
4033,
669,
58,
5324,
12,
16,
4357,
17130,
28,
15,
13,
17,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
47764,
62,
20311,
796,
279,
62,
7568,
13,
346,
420,
30109,
12,
16,
11907,
198,
220,
220,
220,
47764,
62,
20311,
13,
29487,
7,
897,
28,
897,
58,
4178,
4357,
1611,
11639,
1416,
1436,
3256,
2124,
28,
1659,
11,
331,
11639,
1659,
62,
1050,
907,
3256,
3124,
11639,
13424,
11537,
198,
198,
2,
43313,
198,
7568,
58,
7568,
13,
17946,
58,
45299,
705,
744,
20520,
6624,
352,
60,
198,
198,
2,
43313,
198,
7568,
13,
2256,
3419,
198,
198,
2,
43313,
198,
7568,
13,
10951,
3419,
198,
198,
2,
43313,
198,
198,
2,
43313,
198,
198,
2,
43313,
198,
198,
2,
43313,
198,
198,
2,
43313,
198,
87,
62,
85,
945,
198,
198,
2,
43313,
685,
4102,
2902,
60,
198,
2,
44386,
28114,
3963,
50,
422,
262,
2656,
416,
17184,
52,
36537,
198,
198,
2,
43313,
198,
1818,
15908,
796,
31051,
14490,
14,
21999,
419,
261,
14,
16775,
82,
14,
16186,
62,
40436,
31142,
62,
17633,
14,
9948,
2889,
602,
14,
33863,
44,
85,
1157,
14,
1525,
17184,
52,
62,
39873,
14,
17184,
52,
14877,
20,
62,
5143,
16,
14,
46274,
6,
198,
1659,
82,
62,
7753,
796,
277,
6,
90,
1818,
15908,
92,
14,
46,
10652,
62,
17184,
52,
14877,
20,
6,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
7,
1659,
82,
62,
7753,
11,
41767,
11639,
59,
82,
10,
3256,
14267,
36733,
13200,
28,
17821,
11,
13639,
28,
15,
8,
220,
220,
220,
220,
220,
198,
198,
2,
47764,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
87,
11639,
22510,
62,
17197,
3256,
88,
11639,
22510,
62,
79,
1039,
3256,
8043,
11639,
445,
11537,
198,
897,
796,
458,
83,
13,
70,
6888,
3419,
198,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
49,
4944,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
445,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
32,
2767,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
14809,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
6173,
32,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
17585,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
49,
3398,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
36022,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
50,
2662,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
14225,
1154,
3256,
17130,
28,
15,
13,
17,
8,
198,
198,
7568,
62,
20311,
796,
47764,
13,
346,
420,
30109,
12,
16,
11907,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
49,
4944,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
32,
2767,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
6173,
32,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
49,
3398,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
1659,
50,
2662,
3256,
331,
11639,
1050,
907,
19238,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
198,
2,
43313,
198,
198,
2,
43313,
685,
4102,
2902,
60,
198,
2,
44386,
28114,
42287,
198,
198,
2,
43313,
198,
1818,
15908,
796,
31051,
14490,
14,
21999,
419,
261,
14,
16775,
82,
14,
16186,
62,
40436,
31142,
62,
17633,
14,
9948,
2889,
602,
14,
33863,
44,
85,
1157,
14,
1525,
17184,
52,
62,
39873,
14,
17184,
52,
14877,
20,
62,
5143,
17,
14,
46274,
6,
198,
1659,
82,
62,
7753,
796,
277,
6,
90,
1818,
15908,
92,
14,
27082,
40834,
62,
17184,
52,
14877,
20,
6,
198,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
7,
1659,
82,
62,
7753,
11,
41767,
11639,
59,
82,
10,
3256,
14267,
36733,
13200,
28,
17821,
11,
13639,
28,
15,
8,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
897,
796,
458,
83,
13,
70,
6888,
3419,
198,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
6651,
64,
62,
9806,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
445,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
7217,
1073,
891,
62,
2815,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
14809,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
5787,
71,
17,
78,
62,
11128,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
17585,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
70,
86,
11125,
62,
1073,
891,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
36022,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
73,
71,
62,
1073,
891,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
14225,
1154,
3256,
17130,
28,
15,
13,
17,
8,
198,
198,
7568,
62,
20311,
796,
47764,
13,
346,
420,
30109,
12,
16,
11907,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
6651,
64,
62,
9806,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
7217,
1073,
891,
62,
2815,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
5787,
71,
17,
78,
62,
11128,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
70,
86,
11125,
62,
1073,
891,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
73,
71,
62,
1073,
891,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
198,
2,
43313,
685,
4102,
2902,
60,
198,
2,
44386,
28114,
42287,
422,
2656,
36537,
198,
198,
2,
43313,
198,
1818,
15908,
796,
31051,
14490,
14,
21999,
419,
261,
14,
16775,
82,
14,
16186,
62,
40436,
31142,
62,
17633,
14,
9948,
2889,
602,
14,
33863,
44,
85,
1157,
14,
1525,
17184,
52,
62,
39873,
14,
17184,
52,
14877,
20,
62,
5143,
16,
14,
46274,
6,
198,
1659,
82,
62,
7753,
796,
277,
6,
90,
1818,
15908,
92,
14,
27082,
40834,
62,
17184,
52,
14877,
20,
6,
198,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
7,
1659,
82,
62,
7753,
11,
41767,
11639,
59,
82,
10,
3256,
14267,
36733,
13200,
28,
17821,
11,
13639,
28,
15,
8,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
897,
796,
458,
83,
13,
70,
6888,
3419,
198,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
6651,
64,
62,
9806,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
445,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
7217,
1073,
891,
62,
2815,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
14809,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
5787,
71,
17,
78,
62,
11128,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
17585,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
70,
86,
11125,
62,
1073,
891,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
36022,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
73,
71,
62,
1073,
891,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
14225,
1154,
3256,
17130,
28,
15,
13,
17,
8,
198,
198,
7568,
62,
20311,
796,
47764,
13,
346,
420,
30109,
12,
16,
11907,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
6651,
64,
62,
9806,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
7217,
1073,
891,
62,
2815,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
5787,
71,
17,
78,
62,
11128,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
70,
86,
11125,
62,
1073,
891,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
73,
71,
62,
1073,
891,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
198,
2,
43313,
198,
897,
796,
458,
83,
13,
70,
6888,
3419,
198,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
6651,
64,
62,
9806,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
445,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
62,
20311,
796,
47764,
13,
346,
420,
30109,
12,
16,
11907,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
11639,
6651,
64,
62,
9806,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
198,
2,
43313,
198,
7568,
13,
28665,
82,
198,
198,
2,
43313,
198,
198,
2,
43313,
198,
198,
2,
43313,
198,
7785,
796,
705,
83,
1084,
62,
21101,
71,
62,
41255,
6,
198,
1818,
15908,
796,
31051,
14490,
14,
21999,
419,
261,
14,
16775,
82,
14,
16186,
62,
40436,
31142,
62,
17633,
14,
9948,
2889,
602,
14,
33863,
44,
85,
1157,
14,
1525,
17184,
52,
62,
39873,
14,
17184,
52,
14877,
20,
62,
5143,
17,
14,
46274,
6,
198,
1659,
82,
62,
7753,
796,
277,
6,
90,
1818,
15908,
92,
14,
27082,
40834,
62,
17184,
52,
14877,
20,
6,
198,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
7,
1659,
82,
62,
7753,
11,
41767,
11639,
59,
82,
10,
3256,
14267,
36733,
13200,
28,
17821,
11,
13639,
28,
15,
8,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
897,
796,
458,
83,
13,
70,
6888,
3419,
198,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
92,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
445,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
16,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
14809,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
17,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
17585,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
18,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
14225,
1154,
3256,
17130,
28,
15,
13,
17,
8,
198,
198,
7568,
62,
20311,
796,
47764,
13,
346,
420,
30109,
12,
16,
11907,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
92,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
16,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
17,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
18,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
198,
2,
43313,
198,
198,
2,
43313,
198,
7785,
796,
705,
83,
1084,
62,
21101,
71,
62,
41255,
6,
198,
1818,
15908,
796,
31051,
14490,
14,
21999,
419,
261,
14,
16775,
82,
14,
16186,
62,
40436,
31142,
62,
17633,
14,
9948,
2889,
602,
14,
33863,
44,
85,
1157,
14,
1525,
17184,
52,
62,
39873,
14,
17184,
52,
14877,
20,
62,
5143,
16,
14,
46274,
6,
198,
1659,
82,
62,
7753,
796,
277,
6,
90,
1818,
15908,
92,
14,
27082,
40834,
62,
17184,
52,
14877,
20,
6,
198,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
7,
1659,
82,
62,
7753,
11,
41767,
11639,
59,
82,
10,
3256,
14267,
36733,
13200,
28,
17821,
11,
13639,
28,
15,
8,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
897,
796,
458,
83,
13,
70,
6888,
3419,
198,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
92,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
445,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
16,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
14809,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
17,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
17585,
3256,
17130,
28,
15,
13,
17,
8,
198,
7568,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
18,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
14225,
1154,
3256,
17130,
28,
15,
13,
17,
8,
198,
198,
7568,
62,
20311,
796,
47764,
13,
346,
420,
30109,
12,
16,
11907,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
92,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
16,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
17,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
7568,
62,
20311,
13,
29487,
7,
11031,
11639,
1416,
1436,
3256,
2124,
28,
69,
6,
90,
7785,
27422,
18,
3256,
331,
11639,
49,
4944,
3256,
7877,
28,
897,
11,
3124,
11639,
13424,
11537,
198,
198,
2,
43313,
198
] | 2.157093 | 4,265 |
import argparse
import json
import os
import re
import sys
from configparser import ConfigParser
from configparser import NoOptionError
from configparser import NoSectionError
from configparser import ParsingError
from typing import Union, Dict
from oelint_parser.cls_stash import Stash
from oelint_parser.constants import CONSTANTS
from oelint_adv.cls_rule import load_rules
from oelint_adv.color import set_colorize
from oelint_adv.rule_file import set_messageformat
from oelint_adv.rule_file import set_noinfo
from oelint_adv.rule_file import set_nowarn
from oelint_adv.rule_file import set_relpaths
from oelint_adv.rule_file import set_rulefile
from oelint_adv.rule_file import set_suppressions
sys.path.append(os.path.abspath(os.path.join(__file__, '..')))
def deserialize_boolean_options(options: Dict) -> Dict[str, Union[str, bool]]:
"""Converts strings in `options` that are either 'True' or 'False' to their boolean
representations.
"""
for k, v in options.items():
if isinstance(v, str):
if v.strip() == 'False':
options[k] = False
elif v.strip() == 'True':
options[k] = True
return options
if __name__ == '__main__':
main() # pragma: no cover
| [
11748,
1822,
29572,
198,
11748,
33918,
198,
11748,
28686,
198,
11748,
302,
198,
11748,
25064,
198,
6738,
4566,
48610,
1330,
17056,
46677,
198,
6738,
4566,
48610,
1330,
1400,
19722,
12331,
198,
6738,
4566,
48610,
1330,
1400,
16375,
12331,
198,
6738,
4566,
48610,
1330,
23042,
278,
12331,
198,
6738,
19720,
1330,
4479,
11,
360,
713,
198,
198,
6738,
267,
417,
600,
62,
48610,
13,
565,
82,
62,
301,
1077,
1330,
520,
1077,
198,
6738,
267,
417,
600,
62,
48610,
13,
9979,
1187,
1330,
7102,
2257,
1565,
4694,
198,
198,
6738,
267,
417,
600,
62,
32225,
13,
565,
82,
62,
25135,
1330,
3440,
62,
38785,
198,
6738,
267,
417,
600,
62,
32225,
13,
8043,
1330,
900,
62,
8043,
1096,
198,
6738,
267,
417,
600,
62,
32225,
13,
25135,
62,
7753,
1330,
900,
62,
20500,
18982,
198,
6738,
267,
417,
600,
62,
32225,
13,
25135,
62,
7753,
1330,
900,
62,
3919,
10951,
198,
6738,
267,
417,
600,
62,
32225,
13,
25135,
62,
7753,
1330,
900,
62,
2197,
1501,
198,
6738,
267,
417,
600,
62,
32225,
13,
25135,
62,
7753,
1330,
900,
62,
2411,
6978,
82,
198,
6738,
267,
417,
600,
62,
32225,
13,
25135,
62,
7753,
1330,
900,
62,
25135,
7753,
198,
6738,
267,
417,
600,
62,
32225,
13,
25135,
62,
7753,
1330,
900,
62,
18608,
601,
507,
198,
198,
17597,
13,
6978,
13,
33295,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
22179,
7,
834,
7753,
834,
11,
705,
492,
6,
22305,
628,
198,
198,
4299,
748,
48499,
1096,
62,
2127,
21052,
62,
25811,
7,
25811,
25,
360,
713,
8,
4613,
360,
713,
58,
2536,
11,
4479,
58,
2536,
11,
20512,
60,
5974,
198,
220,
220,
220,
37227,
3103,
24040,
13042,
287,
4600,
25811,
63,
326,
389,
2035,
705,
17821,
6,
393,
705,
25101,
6,
284,
511,
25131,
198,
220,
220,
220,
24612,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
329,
479,
11,
410,
287,
3689,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
85,
11,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
410,
13,
36311,
3419,
6624,
705,
25101,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3689,
58,
74,
60,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
410,
13,
36311,
3419,
6624,
705,
17821,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3689,
58,
74,
60,
796,
6407,
628,
220,
220,
220,
1441,
3689,
628,
628,
628,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
220,
1303,
23864,
2611,
25,
645,
3002,
198
] | 2.715517 | 464 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
String manipulate.
"""
# left strip
assert " Hello ".lstrip() == "Hello "
# right strip
assert " Hello ".rstrip() == " Hello"
# strip
assert " Hello ".strip() == "Hello"
# upper case
assert "Hello".upper() == "HELLO"
# lower case
assert "Hello".lower() == "hello"
# swap case
assert "Hello".swapcase() == "hELLO"
# titlize
assert "this is so good".title() == "This Is So Good"
# center
assert "Hello".center(9, "-") == "--Hello--"
# index
assert "this is so good".index("is") == 2
# replace
assert "this is so good".replace("is", "are") == "thare are so good"
# find
assert "this is so good".find("is") == 2
# count
assert "this is so good".count("o") == 3
# split
assert "This is so good".split(" ") == ["This", "is", "so", "good"]
# join
assert ", ".join(["a", "b", "c"]) == "a, b, c"
# ascii code to string
assert chr(88) == "X"
# string to ascii code
assert ord("X") == 88
# partition
assert "this is so good".partition("is") == ("th", "is", " is so good")
# make translate table and translate
table = str.maketrans("abc", "xyz")
assert "abc".translate(table) == "xyz"
# concatenate
assert "hello" + " " + "world" == "hello world"
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
37811,
198,
10100,
18510,
13,
198,
37811,
198,
198,
2,
1364,
10283,
198,
30493,
366,
220,
18435,
220,
27071,
75,
36311,
3419,
6624,
366,
15496,
220,
366,
198,
198,
2,
826,
10283,
198,
30493,
366,
220,
18435,
220,
27071,
81,
36311,
3419,
6624,
366,
220,
18435,
1,
198,
198,
2,
10283,
198,
30493,
366,
220,
18435,
220,
27071,
36311,
3419,
6624,
366,
15496,
1,
198,
198,
2,
6727,
1339,
198,
30493,
366,
15496,
1911,
45828,
3419,
6624,
366,
13909,
3069,
46,
1,
198,
198,
2,
2793,
1339,
198,
30493,
366,
15496,
1911,
21037,
3419,
6624,
366,
31373,
1,
198,
198,
2,
16075,
1339,
198,
30493,
366,
15496,
1911,
2032,
499,
7442,
3419,
6624,
366,
71,
23304,
46,
1,
198,
198,
2,
5259,
75,
1096,
198,
30493,
366,
5661,
318,
523,
922,
1911,
7839,
3419,
6624,
366,
1212,
1148,
1406,
4599,
1,
198,
198,
2,
3641,
198,
30493,
366,
15496,
1911,
16159,
7,
24,
11,
27444,
4943,
6624,
366,
438,
15496,
438,
1,
198,
198,
2,
6376,
198,
30493,
366,
5661,
318,
523,
922,
1911,
9630,
7203,
271,
4943,
6624,
362,
198,
198,
2,
6330,
198,
30493,
366,
5661,
318,
523,
922,
1911,
33491,
7203,
271,
1600,
366,
533,
4943,
6624,
366,
400,
533,
389,
523,
922,
1,
198,
198,
2,
1064,
198,
30493,
366,
5661,
318,
523,
922,
1911,
19796,
7203,
271,
4943,
6624,
362,
198,
198,
2,
954,
198,
30493,
366,
5661,
318,
523,
922,
1911,
9127,
7203,
78,
4943,
6624,
513,
198,
198,
2,
6626,
198,
30493,
366,
1212,
318,
523,
922,
1911,
35312,
7203,
366,
8,
6624,
14631,
1212,
1600,
366,
271,
1600,
366,
568,
1600,
366,
11274,
8973,
198,
198,
2,
4654,
198,
30493,
33172,
27071,
22179,
7,
14692,
64,
1600,
366,
65,
1600,
366,
66,
8973,
8,
6624,
366,
64,
11,
275,
11,
269,
1,
198,
198,
2,
355,
979,
72,
2438,
284,
4731,
198,
30493,
442,
81,
7,
3459,
8,
6624,
366,
55,
1,
198,
198,
2,
4731,
284,
355,
979,
72,
2438,
198,
30493,
2760,
7203,
55,
4943,
6624,
9193,
198,
198,
2,
18398,
198,
30493,
366,
5661,
318,
523,
922,
1911,
3911,
653,
7203,
271,
4943,
6624,
5855,
400,
1600,
366,
271,
1600,
366,
318,
523,
922,
4943,
198,
198,
2,
787,
15772,
3084,
290,
15772,
198,
11487,
796,
965,
13,
76,
461,
21879,
504,
7203,
39305,
1600,
366,
5431,
89,
4943,
198,
30493,
366,
39305,
1911,
7645,
17660,
7,
11487,
8,
6624,
366,
5431,
89,
1,
198,
198,
2,
1673,
36686,
378,
198,
30493,
366,
31373,
1,
1343,
366,
366,
1343,
366,
6894,
1,
6624,
366,
31373,
995,
1,
198
] | 2.677704 | 453 |
"""
This file contains unittests for the api app.
Use test_settings when running this:
./manage.py test --settings=dyanote.test_settings api
This will use sqlite and other settings to make test execution faster.
Command used to create test database.
./manage.py dumpdata --indent=4
--natural
-e admin
-e sessions
-e contenttypes
-e auth.Permission
-e south.migrationhistory > api/fixtures/test-db.json
To see test coverage use:
coverage run ./manage.py test --settings=dyanote.test_settings api
coverage report -m --include=api/*
coverage html
"""
import unittest
import re
from urllib.parse import quote
from json import loads as load_json
from django.core.urlresolvers import reverse
from django.test import TestCase
from django.contrib.auth.models import User
from django.core import mail
from django.core.exceptions import ValidationError
from rest_framework.test import APITestCase, APIClient
from rest_framework import status
from django.core.urlresolvers import get_script_prefix, resolve
from api.models import Page, ActivationKey
from api import utils
# Costant values found in the test database fixture
USERNAME = '[email protected]'
PASSWORD = 'pwd'
CLIENT_ID = 'bb05c6ab017f50116084'
CLIENT_SECRET = '4063c2648cdd7f2e4dae563da80a516f2eb6ebb6'
ACCESS_TOKEN = '1b24279ad7d5986301583538804e5240c3e588af'
ADMIN_USERNAME = 'admin'
ADMIN_PASSWORD = 'admin'
# Model test
# Utils tests
# User testing
| [
37811,
198,
1212,
2393,
4909,
555,
715,
3558,
329,
262,
40391,
598,
13,
198,
198,
11041,
1332,
62,
33692,
618,
2491,
428,
25,
198,
19571,
805,
496,
13,
9078,
1332,
1377,
33692,
28,
67,
4121,
1258,
13,
9288,
62,
33692,
40391,
198,
1212,
481,
779,
44161,
578,
290,
584,
6460,
284,
787,
1332,
9706,
5443,
13,
198,
198,
21575,
973,
284,
2251,
1332,
6831,
13,
198,
19571,
805,
496,
13,
9078,
10285,
7890,
1377,
521,
298,
28,
19,
198,
220,
220,
220,
1377,
11802,
198,
220,
220,
220,
532,
68,
13169,
198,
220,
220,
220,
532,
68,
10991,
198,
220,
220,
220,
532,
68,
2695,
19199,
198,
220,
220,
220,
532,
68,
6284,
13,
5990,
3411,
198,
220,
220,
220,
532,
68,
5366,
13,
76,
4254,
23569,
1875,
40391,
14,
69,
25506,
14,
9288,
12,
9945,
13,
17752,
198,
198,
2514,
766,
1332,
5197,
779,
25,
198,
1073,
1857,
1057,
24457,
805,
496,
13,
9078,
1332,
1377,
33692,
28,
67,
4121,
1258,
13,
9288,
62,
33692,
40391,
198,
1073,
1857,
989,
532,
76,
1377,
17256,
28,
15042,
15211,
198,
1073,
1857,
27711,
198,
37811,
198,
198,
11748,
555,
715,
395,
198,
11748,
302,
198,
6738,
2956,
297,
571,
13,
29572,
1330,
9577,
198,
6738,
33918,
1330,
15989,
355,
3440,
62,
17752,
198,
198,
6738,
42625,
14208,
13,
7295,
13,
6371,
411,
349,
690,
1330,
9575,
198,
6738,
42625,
14208,
13,
9288,
1330,
6208,
20448,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
198,
6738,
42625,
14208,
13,
7295,
1330,
6920,
198,
6738,
42625,
14208,
13,
7295,
13,
1069,
11755,
1330,
3254,
24765,
12331,
198,
6738,
1334,
62,
30604,
13,
9288,
1330,
3486,
2043,
395,
20448,
11,
3486,
2149,
75,
1153,
198,
6738,
1334,
62,
30604,
1330,
3722,
198,
6738,
42625,
14208,
13,
7295,
13,
6371,
411,
349,
690,
1330,
651,
62,
12048,
62,
40290,
11,
10568,
198,
6738,
40391,
13,
27530,
1330,
7873,
11,
13144,
341,
9218,
198,
6738,
40391,
1330,
3384,
4487,
628,
198,
2,
6446,
415,
3815,
1043,
287,
262,
1332,
6831,
29220,
198,
29904,
20608,
796,
705,
9288,
31,
67,
4121,
1258,
13,
785,
6,
198,
47924,
54,
12532,
796,
705,
79,
16993,
6,
198,
5097,
28495,
62,
2389,
796,
705,
11848,
2713,
66,
21,
397,
29326,
69,
33548,
1433,
2919,
19,
6,
198,
5097,
28495,
62,
23683,
26087,
796,
705,
1821,
5066,
66,
2075,
2780,
66,
1860,
22,
69,
17,
68,
19,
67,
3609,
46572,
6814,
1795,
64,
47493,
69,
17,
1765,
21,
1765,
65,
21,
6,
198,
26861,
7597,
62,
10468,
43959,
796,
705,
16,
65,
1731,
26050,
324,
22,
67,
3270,
4521,
18938,
3365,
2327,
2548,
36088,
68,
20,
16102,
66,
18,
68,
39118,
1878,
6,
198,
2885,
23678,
62,
29904,
20608,
796,
705,
28482,
6,
220,
198,
2885,
23678,
62,
47924,
54,
12532,
796,
705,
28482,
6,
628,
198,
2,
9104,
1332,
628,
198,
2,
7273,
4487,
5254,
628,
198,
2,
11787,
4856,
628,
198
] | 2.965092 | 487 |
import pytest
import shutil
import tempfile
import os
import pipes
import ujson as json
CORPUS = {
"docs": [
{
"url": "http://www.douglasadams.com/",
"content": """ <title>xxxxuniquecontent</title> """
},
{
"url": "http://www.example.com/page1",
"content": """ <title>xxxxuniquecontent2</title> """
}
],
"block": "1"
}
@pytest.mark.elasticsearch
| [
11748,
12972,
9288,
198,
11748,
4423,
346,
198,
11748,
20218,
7753,
198,
11748,
28686,
198,
11748,
19860,
198,
11748,
334,
17752,
355,
33918,
198,
198,
44879,
47,
2937,
796,
1391,
198,
220,
220,
220,
366,
31628,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6371,
1298,
366,
4023,
1378,
2503,
13,
67,
280,
14391,
324,
4105,
13,
785,
14,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11299,
1298,
37227,
1279,
7839,
29,
12343,
403,
1557,
721,
38564,
3556,
7839,
29,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6371,
1298,
366,
4023,
1378,
2503,
13,
20688,
13,
785,
14,
7700,
16,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11299,
1298,
37227,
1279,
7839,
29,
12343,
403,
1557,
721,
38564,
17,
3556,
7839,
29,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
366,
9967,
1298,
366,
16,
1,
198,
92,
628,
198,
31,
9078,
9288,
13,
4102,
13,
417,
3477,
12947,
628
] | 2.046296 | 216 |
import sys
sys.path.insert(1,"../../../")
import h2o
from tests import pyunit_utils
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
if __name__ == "__main__":
pyunit_utils.standalone_test(glm_mean_residual_deviance)
else:
glm_mean_residual_deviance()
| [
11748,
25064,
198,
17597,
13,
6978,
13,
28463,
7,
16,
553,
40720,
40720,
40720,
4943,
198,
11748,
289,
17,
78,
198,
6738,
5254,
1330,
12972,
20850,
62,
26791,
198,
6738,
289,
17,
78,
13,
395,
320,
2024,
13,
4743,
76,
1330,
367,
17,
7730,
877,
282,
1143,
14993,
451,
22362,
320,
1352,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
12972,
20850,
62,
26791,
13,
1481,
17749,
62,
9288,
7,
4743,
76,
62,
32604,
62,
411,
312,
723,
62,
7959,
3610,
8,
198,
17772,
25,
198,
220,
1278,
76,
62,
32604,
62,
411,
312,
723,
62,
7959,
3610,
3419,
198
] | 2.542056 | 107 |
from ScopeFoundry import HardwareComponent
from ScopeFoundryHW.ni_daq.devices.NI_Daq import NI_DacTask | [
6738,
41063,
21077,
563,
1330,
28715,
21950,
198,
6738,
41063,
21077,
563,
39,
54,
13,
8461,
62,
48539,
13,
42034,
13,
22125,
62,
26531,
80,
1330,
24947,
62,
35,
330,
25714
] | 3.290323 | 31 |
"""cli.alerter -- control alerter
With ``alerter`` command you can control the :py:mod:`~elastico.alerter`
module.
For more help on a command, run::
elastico alerter <command> -h
"""
from .cli import command, opt, arg
from ..alerter import Alerter
from ..connection import elasticsearch
from ..util import write_output
from ..server import Server
import pyaml, logging, time, yaml, sys
logger = logging.getLogger('elastico.cli.alerter')
alerter_command = command.add_subcommands('alerter', description=__doc__)
@alerter_command("expand-rules",
arg("--list", '-l', choices=['names', 'keys', 'types', 'alerts'], default=None),
arg("--format", '-f', default=None),
)
def alerter_expand_rules(config):
"""Expand rules, that you can check, if they are correct
This command expands the rules like in a regular alerter run and prints
them to stdout in YAML format. This way you can check, if all variables
and defaults are expanded as expected.
"""
expanded_rules = Alerter.expand_rules(config)
if config['alerter.expand-rules.list']:
expand = config['alerter.expand-rules.list']
if expand in ('names', 'keys', 'types'):
for name in set([ rule[expand[:-1]] for rule in expanded_rules ]):
print(name)
if expand == 'alerts':
for name in set([ "%s-%s" % (rule['type'], rule['key']) for rule in expanded_rules ]):
print(name)
elif config['alerter.expand-rules.format']:
for rule in expanded_rules:
print(config['alerter.expand-rules.format'].format(**rule))
else:
pyaml.p(expanded_rules)
@alerter_command('check',
arg('--status', "-s", choices=['ok', 'alert', 'error'], default='ok'),
arg('alert', nargs="*", default=[]),
)
# need a command, where I simulate the data input for the checks, such that
# you can check, if messages are created correctly
# need a command to display dependency tree of alert rules and alerts
@alerter_command('deps')
@alerter_command('status', opt('--all')) #, arg("rule"))
@alerter_command('show',
arg('item', choices=('rules', 'alerts'), help="choose what to display"),
opt('--details', '--all', '-a', help="display rule details")
)
@alerter_command("run")
def alerter_run(config):
"""run alerter"""
alerter = Alerter(elasticsearch(config), config)
alerter.check_alerts()
@alerter_command("serve",
arg('--sleep-seconds', '-s', type=float, default=60, config="serve.sleep_seconds"),
arg('--count', '-c', type=int, default=0, config="serve.count"),
)
def alerter_serve(config):
"""run alerter"""
server = Server(config, run=_run)
server.run()
@alerter_command("query")
def alerter_run(config):
"""run alerter"""
pass
| [
37811,
44506,
13,
36213,
353,
1377,
1630,
435,
263,
353,
198,
198,
3152,
7559,
36213,
353,
15506,
3141,
345,
460,
1630,
262,
1058,
9078,
25,
4666,
25,
63,
93,
417,
3477,
78,
13,
36213,
353,
63,
198,
21412,
13,
198,
198,
1890,
517,
1037,
319,
257,
3141,
11,
1057,
3712,
628,
220,
220,
27468,
78,
435,
263,
353,
1279,
21812,
29,
532,
71,
198,
198,
37811,
198,
6738,
764,
44506,
1330,
3141,
11,
2172,
11,
1822,
198,
6738,
11485,
36213,
353,
1330,
978,
263,
353,
198,
6738,
11485,
38659,
1330,
27468,
12947,
198,
6738,
11485,
22602,
1330,
3551,
62,
22915,
198,
6738,
11485,
15388,
1330,
9652,
198,
198,
11748,
12972,
43695,
11,
18931,
11,
640,
11,
331,
43695,
11,
25064,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
10786,
417,
3477,
78,
13,
44506,
13,
36213,
353,
11537,
198,
198,
36213,
353,
62,
21812,
796,
3141,
13,
2860,
62,
7266,
9503,
1746,
10786,
36213,
353,
3256,
6764,
28,
834,
15390,
834,
8,
628,
198,
31,
36213,
353,
62,
21812,
7203,
11201,
392,
12,
38785,
1600,
198,
220,
220,
220,
1822,
7203,
438,
4868,
1600,
705,
12,
75,
3256,
7747,
28,
17816,
14933,
3256,
705,
13083,
3256,
705,
19199,
3256,
705,
44598,
82,
6,
4357,
4277,
28,
14202,
828,
198,
220,
220,
220,
1822,
7203,
438,
18982,
1600,
705,
12,
69,
3256,
4277,
28,
14202,
828,
198,
220,
220,
220,
1267,
198,
4299,
435,
263,
353,
62,
11201,
392,
62,
38785,
7,
11250,
2599,
198,
220,
220,
220,
37227,
16870,
392,
3173,
11,
326,
345,
460,
2198,
11,
611,
484,
389,
3376,
628,
220,
220,
220,
770,
3141,
27513,
262,
3173,
588,
287,
257,
3218,
435,
263,
353,
1057,
290,
20842,
198,
220,
220,
220,
606,
284,
14367,
448,
287,
575,
2390,
43,
5794,
13,
220,
770,
835,
345,
460,
2198,
11,
611,
477,
9633,
198,
220,
220,
220,
290,
26235,
389,
9902,
355,
2938,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9902,
62,
38785,
796,
978,
263,
353,
13,
11201,
392,
62,
38785,
7,
11250,
8,
198,
220,
220,
220,
611,
4566,
17816,
36213,
353,
13,
11201,
392,
12,
38785,
13,
4868,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
4292,
796,
4566,
17816,
36213,
353,
13,
11201,
392,
12,
38785,
13,
4868,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
611,
4292,
287,
19203,
14933,
3256,
705,
13083,
3256,
705,
19199,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1438,
287,
900,
26933,
3896,
58,
11201,
392,
58,
21912,
16,
11907,
329,
3896,
287,
9902,
62,
38785,
2361,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
3672,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
4292,
6624,
705,
44598,
82,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1438,
287,
900,
26933,
36521,
82,
12,
4,
82,
1,
4064,
357,
25135,
17816,
4906,
6,
4357,
3896,
17816,
2539,
6,
12962,
329,
3896,
287,
9902,
62,
38785,
2361,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
3672,
8,
628,
220,
220,
220,
1288,
361,
4566,
17816,
36213,
353,
13,
11201,
392,
12,
38785,
13,
18982,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
329,
3896,
287,
9902,
62,
38785,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
11250,
17816,
36213,
353,
13,
11201,
392,
12,
38785,
13,
18982,
6,
4083,
18982,
7,
1174,
25135,
4008,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12972,
43695,
13,
79,
7,
11201,
12249,
62,
38785,
8,
628,
198,
31,
36213,
353,
62,
21812,
10786,
9122,
3256,
198,
220,
220,
220,
1822,
10786,
438,
13376,
3256,
27444,
82,
1600,
7747,
28,
17816,
482,
3256,
705,
44598,
3256,
705,
18224,
6,
4357,
4277,
11639,
482,
33809,
198,
220,
220,
220,
1822,
10786,
44598,
3256,
299,
22046,
2625,
9,
1600,
4277,
28,
21737,
828,
198,
220,
220,
220,
1267,
198,
198,
2,
761,
257,
3141,
11,
810,
314,
29308,
262,
1366,
5128,
329,
262,
8794,
11,
884,
326,
198,
2,
345,
460,
2198,
11,
611,
6218,
389,
2727,
9380,
198,
198,
2,
761,
257,
3141,
284,
3359,
20203,
5509,
286,
7995,
3173,
290,
21675,
198,
198,
31,
36213,
353,
62,
21812,
10786,
10378,
82,
11537,
198,
198,
31,
36213,
353,
62,
21812,
10786,
13376,
3256,
2172,
10786,
438,
439,
6,
4008,
1303,
11,
1822,
7203,
25135,
48774,
628,
198,
31,
36213,
353,
62,
21812,
10786,
12860,
3256,
198,
220,
220,
220,
1822,
10786,
9186,
3256,
7747,
28,
10786,
38785,
3256,
705,
44598,
82,
33809,
1037,
2625,
6679,
577,
644,
284,
3359,
12340,
198,
220,
220,
220,
2172,
10786,
438,
36604,
3256,
705,
438,
439,
3256,
705,
12,
64,
3256,
1037,
2625,
13812,
3896,
3307,
4943,
198,
8,
628,
198,
31,
36213,
353,
62,
21812,
7203,
5143,
4943,
198,
4299,
435,
263,
353,
62,
5143,
7,
11250,
2599,
198,
220,
220,
220,
37227,
5143,
435,
263,
353,
37811,
198,
220,
220,
220,
435,
263,
353,
796,
978,
263,
353,
7,
417,
3477,
12947,
7,
11250,
828,
4566,
8,
198,
220,
220,
220,
435,
263,
353,
13,
9122,
62,
44598,
82,
3419,
198,
198,
31,
36213,
353,
62,
21812,
7203,
2655,
303,
1600,
198,
220,
220,
220,
1822,
10786,
438,
42832,
12,
43012,
3256,
705,
12,
82,
3256,
2099,
28,
22468,
11,
4277,
28,
1899,
11,
4566,
2625,
2655,
303,
13,
42832,
62,
43012,
12340,
198,
220,
220,
220,
1822,
10786,
438,
9127,
3256,
705,
12,
66,
3256,
2099,
28,
600,
11,
4277,
28,
15,
11,
4566,
2625,
2655,
303,
13,
9127,
12340,
198,
220,
220,
220,
1267,
198,
4299,
435,
263,
353,
62,
2655,
303,
7,
11250,
2599,
198,
220,
220,
220,
37227,
5143,
435,
263,
353,
37811,
628,
220,
220,
220,
4382,
796,
9652,
7,
11250,
11,
1057,
28,
62,
5143,
8,
198,
220,
220,
220,
4382,
13,
5143,
3419,
198,
198,
31,
36213,
353,
62,
21812,
7203,
22766,
4943,
198,
4299,
435,
263,
353,
62,
5143,
7,
11250,
2599,
198,
220,
220,
220,
37227,
5143,
435,
263,
353,
37811,
198,
220,
220,
220,
1208,
198
] | 2.677885 | 1,040 |
import time
import uuid
from ...config import AppConfig
from ...middleware.interface import MiddlewareBase
from ...session.interfaces import ISessionProvider
from ...util import md5, b64
| [
11748,
640,
201,
198,
11748,
334,
27112,
201,
198,
201,
198,
6738,
2644,
11250,
1330,
2034,
16934,
201,
198,
6738,
2644,
27171,
1574,
13,
39994,
1330,
6046,
1574,
14881,
201,
198,
6738,
2644,
29891,
13,
3849,
32186,
1330,
3180,
2521,
29495,
201,
198,
6738,
2644,
22602,
1330,
45243,
20,
11,
275,
2414,
201,
198,
201,
198
] | 3.517857 | 56 |
LATESTMFILE = 'last_id.txt'
LOGFILE = "twitterbot_log.txt"
verbose = False
twitterName = "ui_cer_bot"
# Liste de terme qui servent pour répondre
answers = ['ahah :)' , 'YO' , 'O_O', 'stoi' , 'TG' , 'MER IL ET FOU']
# Liste des terme qui servent a repondre "stoi xxxx"
bad_words = {'boloss' : 'le boloss', 'boulette' : 'la boulette', 'accident' :"l'accident" , 'youtube':"le tube" , 'facebook':"le bouc" , 'dément': "qui ment"}
# Liste des terme relou ou le bot repond TG avec un mention paritculiere pour @infredwetrust :)
boring_words = {'#old' , 'oscours', '#oscours', "twitpic", "selfie" }
# Liste des termes qui enclenche une reponse
tg_list = ['tg','ta gueule', 'tg.', 'tg!', 'ta gueule.', 'ta gueule!']
#Liste des phrase que le bot tweete de lui-emme
talk = {"Sinon SAVA ?", "c'est l'amour à la plage, aoum tcha tcha tcha", "Je vous trouve très beau, surtout moi" , "y a quoi de beau à la télé ce soir ?", "sim est mort. #rip"}
| [
171,
119,
123,
43,
1404,
6465,
44,
25664,
796,
705,
12957,
62,
312,
13,
14116,
6,
198,
25294,
25664,
796,
366,
6956,
13645,
62,
6404,
13,
14116,
1,
198,
19011,
577,
796,
10352,
198,
6956,
5376,
796,
366,
9019,
62,
2189,
62,
13645,
1,
198,
198,
2,
7343,
68,
390,
1059,
1326,
45567,
1113,
298,
12797,
40560,
79,
623,
260,
198,
504,
86,
364,
796,
37250,
36225,
14373,
6,
837,
705,
56,
46,
6,
837,
705,
46,
62,
46,
3256,
705,
301,
23013,
6,
837,
705,
35990,
6,
837,
705,
29296,
14639,
12152,
376,
2606,
20520,
198,
198,
2,
7343,
68,
748,
1059,
1326,
45567,
1113,
298,
257,
1128,
623,
260,
366,
301,
23013,
2124,
31811,
1,
198,
14774,
62,
10879,
796,
1391,
6,
28984,
793,
6,
1058,
705,
293,
11572,
793,
3256,
705,
65,
280,
21348,
6,
1058,
705,
5031,
35833,
21348,
3256,
705,
4134,
738,
6,
1058,
1,
75,
6,
4134,
738,
1,
837,
705,
11604,
10354,
1,
293,
12403,
1,
837,
705,
19024,
10354,
1,
293,
35833,
66,
1,
837,
705,
67,
2634,
434,
10354,
366,
421,
72,
6229,
20662,
198,
198,
2,
7343,
68,
748,
1059,
1326,
823,
280,
267,
84,
443,
10214,
1128,
623,
44121,
257,
35138,
555,
3068,
1582,
270,
3129,
13235,
12797,
2488,
10745,
445,
86,
316,
11469,
14373,
198,
2865,
278,
62,
10879,
796,
1391,
6,
2,
727,
6,
837,
705,
17500,
4662,
3256,
705,
2,
17500,
4662,
3256,
366,
4246,
270,
16564,
1600,
366,
944,
494,
1,
1782,
198,
198,
2,
7343,
68,
748,
3381,
274,
45567,
13507,
268,
2395,
17809,
1128,
2591,
198,
25297,
62,
4868,
796,
37250,
25297,
41707,
8326,
308,
518,
2261,
3256,
705,
25297,
2637,
11,
705,
25297,
0,
3256,
705,
8326,
308,
518,
2261,
2637,
11,
705,
8326,
308,
518,
2261,
13679,
60,
198,
198,
2,
8053,
68,
748,
9546,
8358,
443,
10214,
6126,
68,
390,
300,
9019,
12,
368,
1326,
198,
16620,
796,
19779,
46200,
261,
311,
10116,
32,
5633,
1600,
366,
66,
6,
395,
300,
6,
321,
454,
28141,
8591,
458,
496,
11,
257,
280,
76,
256,
11693,
256,
11693,
256,
11693,
1600,
366,
40932,
410,
516,
4057,
303,
491,
14064,
82,
307,
559,
11,
969,
83,
448,
6941,
72,
1,
837,
366,
88,
257,
18658,
72,
390,
307,
559,
28141,
8591,
256,
2634,
45031,
2906,
523,
343,
5633,
1600,
366,
14323,
1556,
5596,
13,
1303,
5528,
20662,
198
] | 2.379747 | 395 |
from dsa.data_structures import LinkedList, ListNode
l = [1, 2, 3]
ll = LinkedList(l, doubly=False)
mid_n = ll.head.next_node
delete_middle_node(mid_n)
str(ll)
| [
6738,
288,
11400,
13,
7890,
62,
7249,
942,
1330,
7502,
276,
8053,
11,
7343,
19667,
628,
198,
198,
75,
796,
685,
16,
11,
362,
11,
513,
60,
198,
297,
796,
7502,
276,
8053,
7,
75,
11,
3385,
306,
28,
25101,
8,
198,
13602,
62,
77,
796,
32660,
13,
2256,
13,
19545,
62,
17440,
198,
33678,
62,
27171,
62,
17440,
7,
13602,
62,
77,
8,
198,
2536,
7,
297,
8,
198
] | 2.328571 | 70 |
from django.db import models
from django.db.models.deletion import CASCADE
# Create your models here. | [
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
6738,
42625,
14208,
13,
9945,
13,
27530,
13,
2934,
1616,
295,
1330,
35106,
34,
19266,
198,
198,
2,
13610,
534,
4981,
994,
13
] | 3.290323 | 31 |
#!/usr/bin/env python3
from collections import defaultdict
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('csv', nargs='?', default=None,
help='the CSV format callgraph to transform')
args = parser.parse_args()
import sys
with (open(args.csv) if args.csv else sys.stdin) as infile:
callgraph = read_callgraph(infile)
print_callgraph(callgraph)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
6738,
17268,
1330,
4277,
11600,
628,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1330,
1822,
29572,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
40664,
3256,
299,
22046,
11639,
30,
3256,
4277,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
11639,
1169,
44189,
5794,
869,
34960,
284,
6121,
11537,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
1330,
25064,
198,
220,
220,
220,
351,
357,
9654,
7,
22046,
13,
40664,
8,
611,
26498,
13,
40664,
2073,
25064,
13,
19282,
259,
8,
355,
1167,
576,
25,
198,
220,
220,
220,
220,
220,
220,
220,
869,
34960,
796,
1100,
62,
13345,
34960,
7,
259,
7753,
8,
198,
220,
220,
220,
3601,
62,
13345,
34960,
7,
13345,
34960,
8,
628
] | 2.563536 | 181 |
#!/usr/bin/env python3
# Copyright 2021 Canonical Ltd.
# See LICENSE file for licensing details.
import logging
from charms.operator_libs_linux.v0 import passwd
from helpers import lines_in_file
logger = logging.getLogger(__name__)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
15069,
33448,
19507,
605,
12052,
13,
198,
2,
4091,
38559,
24290,
2393,
329,
15665,
3307,
13,
628,
198,
11748,
18931,
198,
198,
6738,
41700,
13,
46616,
62,
8019,
82,
62,
23289,
13,
85,
15,
1330,
1208,
16993,
198,
6738,
49385,
1330,
3951,
62,
259,
62,
7753,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
628,
628,
198
] | 3.184211 | 76 |
# !/usr/bin/python3
import string
import time
import random
import json
import yaml
import ssl
import base64
import logging
from logging.config import fileConfig
import importlib
import argparse
import os
import re
from rich.logging import RichHandler
from datetime import datetime
import paho.mqtt.client as mqtt
from MessageConverters.MessageConverter import MessageConverter
LOGGING_CONFIG = 'logging.conf'
CONVERTERS_DIR = 'MessageConverters'
# list to store all mqtt connection infos
brokers = []
'''
def translate_to_tb_format(payload):
tb_payload = {}
measurements = []
measurement = {}
measurement['ts'] = payload.get('ts')
measurement['values'] = payload.get('fields')
deviceid = payload.get('tags').get('deviceid')
measurements.append(measurement)
tb_payload[deviceid] = measurements
return tb_payload
'''
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
help="increase output verbosity",
action="store_true")
parser.add_argument(
"--conf_file",
help="configuration file",
type=str,
default="config.yaml")
args = parser.parse_args()
path_log_config_file = os.path.join(os.path.dirname(
os.path.realpath(__file__)), 'conf', LOGGING_CONFIG)
print(f'logging config file: {path_log_config_file}')
fileConfig(path_log_config_file)
logger = logging.getLogger(__name__)
logger.info("using logging conf from {}".format(path_log_config_file))
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
logger.info("verbosity turned on")
# load config
path_config_file = os.path.join(os.path.dirname(
os.path.realpath(__file__)), 'conf', args.conf_file)
with open(path_config_file) as yaml_conf_file:
configuration = yaml.full_load(yaml_conf_file)
logger.info("loaded config: {}".format(configuration))
# start all mqtt connections
logger.info('starting mqtt connections...')
# list to stor all active vlients
active_clients = {}
# dictionary to store all dynamically loaded converters
converters = {}
for name, conf in configuration.get("brokers").items():
logger.info(
f'starting client for broker {name}, connecting to host {conf.get("host")}')
client = connect_mqtt(name, conf)
if client:
# Bind function to callback
client.on_publish = on_publish
client.on_log = on_log
client.on_message = on_message
client.on_connect = on_connect
client.on_disconnect = on_disconnect
client.loop_start()
client.enable_logger(logger)
# create converter and routing info
converter_and_routing_info = {}
converter_and_routing_info['name'] = name
subscribe_converter = conf.get('subscribe-converter')
converter_and_routing_info['subscribe-converter'] = subscribe_converter
if subscribe_converter:
_load_converter(subscribe_converter)
publish_converter = conf.get('publish-converter')
converter_and_routing_info['publish-converter'] = publish_converter
if publish_converter:
_load_converter(publish_converter)
converter_and_routing_info['routes'] = []
for route in configuration.get("routing"):
if route["subscribe-broker"] == name:
converter_and_routing_info['routes'].append(route)
payload_converter = route.get('payload-converter')
if payload_converter:
_load_converter(
payload_converter)
logger.debug(f"added route {route['name']}")
client.user_data_set(converter_and_routing_info)
active_clients[name] = client
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
logger.info('interrupted!')
for name, client in active_clients.items():
disconnect_mqtt(client)
| [
2,
5145,
14,
14629,
14,
8800,
14,
29412,
18,
198,
198,
11748,
4731,
198,
11748,
640,
198,
11748,
4738,
198,
11748,
33918,
198,
11748,
331,
43695,
198,
11748,
264,
6649,
198,
11748,
2779,
2414,
198,
11748,
18931,
198,
6738,
18931,
13,
11250,
1330,
2393,
16934,
198,
11748,
1330,
8019,
198,
11748,
1822,
29572,
198,
11748,
28686,
198,
11748,
302,
198,
6738,
5527,
13,
6404,
2667,
1330,
3998,
25060,
628,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
11748,
279,
17108,
13,
76,
80,
926,
13,
16366,
355,
285,
80,
926,
198,
198,
6738,
16000,
3103,
332,
1010,
13,
12837,
3103,
332,
353,
1330,
16000,
3103,
332,
353,
198,
198,
25294,
38,
2751,
62,
10943,
16254,
796,
705,
6404,
2667,
13,
10414,
6,
198,
10943,
15858,
4877,
62,
34720,
796,
705,
12837,
3103,
332,
1010,
6,
198,
198,
2,
1351,
284,
3650,
477,
285,
80,
926,
4637,
1167,
418,
198,
7957,
15949,
796,
17635,
628,
220,
220,
220,
220,
628,
628,
198,
7061,
6,
198,
4299,
15772,
62,
1462,
62,
83,
65,
62,
18982,
7,
15577,
2220,
2599,
198,
220,
220,
220,
256,
65,
62,
15577,
2220,
796,
23884,
198,
220,
220,
220,
13871,
796,
17635,
198,
220,
220,
220,
15558,
796,
23884,
198,
220,
220,
220,
15558,
17816,
912,
20520,
796,
21437,
13,
1136,
10786,
912,
11537,
198,
220,
220,
220,
15558,
17816,
27160,
20520,
796,
21437,
13,
1136,
10786,
25747,
11537,
198,
220,
220,
220,
3335,
312,
796,
21437,
13,
1136,
10786,
31499,
27691,
1136,
10786,
25202,
312,
11537,
198,
220,
220,
220,
13871,
13,
33295,
7,
1326,
5015,
434,
8,
220,
220,
220,
220,
198,
220,
220,
220,
256,
65,
62,
15577,
2220,
58,
25202,
312,
60,
796,
13871,
198,
220,
220,
220,
1441,
256,
65,
62,
15577,
2220,
198,
7061,
6,
628,
628,
628,
198,
220,
220,
220,
220,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
27444,
85,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
19011,
577,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
24988,
589,
5072,
15942,
16579,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
10414,
62,
7753,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
11250,
3924,
2393,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
2099,
28,
2536,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4277,
2625,
11250,
13,
88,
43695,
4943,
628,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
3108,
62,
6404,
62,
11250,
62,
7753,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
6978,
13,
5305,
6978,
7,
834,
7753,
834,
36911,
705,
10414,
3256,
41605,
38,
2751,
62,
10943,
16254,
8,
198,
220,
220,
220,
3601,
7,
69,
6,
6404,
2667,
4566,
2393,
25,
1391,
6978,
62,
6404,
62,
11250,
62,
7753,
92,
11537,
198,
220,
220,
220,
2393,
16934,
7,
6978,
62,
6404,
62,
11250,
62,
7753,
8,
198,
220,
220,
220,
49706,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
220,
220,
220,
49706,
13,
10951,
7203,
3500,
18931,
1013,
422,
23884,
1911,
18982,
7,
6978,
62,
6404,
62,
11250,
62,
7753,
4008,
198,
220,
220,
220,
611,
26498,
13,
19011,
577,
25,
198,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
1136,
11187,
1362,
22446,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7203,
19011,
16579,
2900,
319,
4943,
628,
220,
220,
220,
1303,
3440,
4566,
198,
220,
220,
220,
3108,
62,
11250,
62,
7753,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
6978,
13,
5305,
6978,
7,
834,
7753,
834,
36911,
705,
10414,
3256,
26498,
13,
10414,
62,
7753,
8,
198,
220,
220,
220,
351,
1280,
7,
6978,
62,
11250,
62,
7753,
8,
355,
331,
43695,
62,
10414,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8398,
796,
331,
43695,
13,
12853,
62,
2220,
7,
88,
43695,
62,
10414,
62,
7753,
8,
628,
220,
220,
220,
49706,
13,
10951,
7203,
14578,
4566,
25,
23884,
1911,
18982,
7,
11250,
3924,
4008,
628,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
923,
477,
285,
80,
926,
8787,
198,
220,
220,
220,
49706,
13,
10951,
10786,
38690,
285,
80,
926,
8787,
986,
11537,
198,
220,
220,
220,
1303,
1351,
284,
336,
273,
477,
4075,
410,
75,
2334,
198,
220,
220,
220,
4075,
62,
565,
2334,
796,
23884,
198,
220,
220,
220,
1303,
22155,
284,
3650,
477,
32366,
9639,
6718,
1010,
198,
220,
220,
220,
6718,
1010,
796,
23884,
198,
220,
220,
220,
329,
1438,
11,
1013,
287,
8398,
13,
1136,
7203,
7957,
15949,
11074,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
338,
83,
433,
278,
5456,
329,
20426,
1391,
3672,
5512,
14320,
284,
2583,
1391,
10414,
13,
1136,
7203,
4774,
4943,
92,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
5456,
796,
2018,
62,
76,
80,
926,
7,
3672,
11,
1013,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5456,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
41211,
2163,
284,
23838,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
261,
62,
12984,
1836,
796,
319,
62,
12984,
1836,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
261,
62,
6404,
796,
319,
62,
6404,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
261,
62,
20500,
796,
319,
62,
20500,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
261,
62,
8443,
796,
319,
62,
8443,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
261,
62,
6381,
8443,
796,
319,
62,
6381,
8443,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
26268,
62,
9688,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
21633,
62,
6404,
1362,
7,
6404,
1362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2251,
38394,
290,
28166,
7508,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38394,
62,
392,
62,
81,
13660,
62,
10951,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38394,
62,
392,
62,
81,
13660,
62,
10951,
17816,
3672,
20520,
796,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12383,
62,
1102,
332,
353,
796,
1013,
13,
1136,
10786,
7266,
12522,
12,
1102,
332,
353,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38394,
62,
392,
62,
81,
13660,
62,
10951,
17816,
7266,
12522,
12,
1102,
332,
353,
20520,
796,
12383,
62,
1102,
332,
353,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
12383,
62,
1102,
332,
353,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
2220,
62,
1102,
332,
353,
7,
7266,
12522,
62,
1102,
332,
353,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7715,
62,
1102,
332,
353,
796,
1013,
13,
1136,
10786,
12984,
1836,
12,
1102,
332,
353,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38394,
62,
392,
62,
81,
13660,
62,
10951,
17816,
12984,
1836,
12,
1102,
332,
353,
20520,
796,
7715,
62,
1102,
332,
353,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
7715,
62,
1102,
332,
353,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
2220,
62,
1102,
332,
353,
7,
12984,
1836,
62,
1102,
332,
353,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38394,
62,
392,
62,
81,
13660,
62,
10951,
17816,
81,
448,
274,
20520,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
6339,
287,
8398,
13,
1136,
7203,
81,
13660,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6339,
14692,
7266,
12522,
12,
7957,
6122,
8973,
6624,
1438,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38394,
62,
392,
62,
81,
13660,
62,
10951,
17816,
81,
448,
274,
6,
4083,
33295,
7,
38629,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21437,
62,
1102,
332,
353,
796,
6339,
13,
1136,
10786,
15577,
2220,
12,
1102,
332,
353,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
21437,
62,
1102,
332,
353,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
2220,
62,
1102,
332,
353,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21437,
62,
1102,
332,
353,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
69,
1,
29373,
6339,
1391,
38629,
17816,
3672,
20520,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
7220,
62,
7890,
62,
2617,
7,
1102,
332,
353,
62,
392,
62,
81,
13660,
62,
10951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4075,
62,
565,
2334,
58,
3672,
60,
796,
5456,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
13,
42832,
7,
16,
8,
198,
220,
220,
220,
2845,
31973,
9492,
3622,
25,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
10786,
46037,
0,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1438,
11,
5456,
287,
4075,
62,
565,
2334,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22837,
62,
76,
80,
926,
7,
16366,
8,
198
] | 2.295628 | 1,830 |
# Author-Patrick Rainsberry
# Description-Simplified Slicer for Fusion 360
# Importing sample Fusion Command
# Could import multiple Command definitions here
from .FusionSlicerLTCommand import FusionSlicerLTCommand, FusionSlicerLTCommand2
commands = []
command_definitions = []
# Define parameters for 1st command
cmd = {
'cmd_name': 'Fusion Slicer LT',
'cmd_description': 'Simplified Fusion Slicing App',
'cmd_id': 'cmdID_slicer_lt',
'cmd_resources': './resources',
'workspace': 'FusionSolidEnvironment',
'toolbar_panel_id': 'SolidScriptsAddinsPanel',
'class': FusionSlicerLTCommand
}
command_definitions.append(cmd)
# Define parameters for 1st command
cmd = {
'cmd_name': 'Fusion Slicer LT 2',
'cmd_description': 'Simplified Fusion Slicing App',
'cmd_id': 'cmdID_slicer_lt2',
'cmd_resources': './resources',
'workspace': 'FusionSolidEnvironment',
'toolbar_panel_id': 'SolidScriptsAddinsPanel',
'command_visible': False,
'class': FusionSlicerLTCommand2
}
command_definitions.append(cmd)
# Set to True to display various useful messages when debugging your app
debug = False
# Don't change anything below here:
for cmd_def in command_definitions:
command = cmd_def['class'](cmd_def, debug)
commands.append(command)
| [
2,
6434,
12,
32718,
371,
1299,
8396,
198,
2,
12489,
12,
8890,
489,
1431,
311,
677,
263,
329,
21278,
11470,
198,
198,
2,
17267,
278,
6291,
21278,
9455,
198,
2,
10347,
1330,
3294,
9455,
17336,
994,
198,
6738,
764,
37,
4241,
50,
677,
263,
43,
4825,
2002,
392,
1330,
21278,
50,
677,
263,
43,
4825,
2002,
392,
11,
21278,
50,
677,
263,
43,
4825,
2002,
392,
17,
198,
198,
9503,
1746,
796,
17635,
198,
21812,
62,
4299,
50101,
796,
17635,
198,
198,
2,
2896,
500,
10007,
329,
352,
301,
3141,
198,
28758,
796,
1391,
198,
220,
220,
220,
705,
28758,
62,
3672,
10354,
705,
37,
4241,
311,
677,
263,
34146,
3256,
198,
220,
220,
220,
705,
28758,
62,
11213,
10354,
705,
8890,
489,
1431,
21278,
311,
677,
278,
2034,
3256,
198,
220,
220,
220,
705,
28758,
62,
312,
10354,
705,
28758,
2389,
62,
82,
677,
263,
62,
2528,
3256,
198,
220,
220,
220,
705,
28758,
62,
37540,
10354,
705,
19571,
37540,
3256,
198,
220,
220,
220,
705,
5225,
10223,
10354,
705,
37,
4241,
46933,
31441,
3256,
198,
220,
220,
220,
705,
25981,
5657,
62,
35330,
62,
312,
10354,
705,
46933,
7391,
82,
4550,
1040,
26639,
3256,
198,
220,
220,
220,
705,
4871,
10354,
21278,
50,
677,
263,
43,
4825,
2002,
392,
198,
92,
198,
21812,
62,
4299,
50101,
13,
33295,
7,
28758,
8,
198,
198,
2,
2896,
500,
10007,
329,
352,
301,
3141,
198,
28758,
796,
1391,
198,
220,
220,
220,
705,
28758,
62,
3672,
10354,
705,
37,
4241,
311,
677,
263,
34146,
362,
3256,
198,
220,
220,
220,
705,
28758,
62,
11213,
10354,
705,
8890,
489,
1431,
21278,
311,
677,
278,
2034,
3256,
198,
220,
220,
220,
705,
28758,
62,
312,
10354,
705,
28758,
2389,
62,
82,
677,
263,
62,
2528,
17,
3256,
198,
220,
220,
220,
705,
28758,
62,
37540,
10354,
705,
19571,
37540,
3256,
198,
220,
220,
220,
705,
5225,
10223,
10354,
705,
37,
4241,
46933,
31441,
3256,
198,
220,
220,
220,
705,
25981,
5657,
62,
35330,
62,
312,
10354,
705,
46933,
7391,
82,
4550,
1040,
26639,
3256,
198,
220,
220,
220,
705,
21812,
62,
23504,
10354,
10352,
11,
198,
220,
220,
220,
705,
4871,
10354,
21278,
50,
677,
263,
43,
4825,
2002,
392,
17,
198,
92,
198,
21812,
62,
4299,
50101,
13,
33295,
7,
28758,
8,
198,
198,
2,
5345,
284,
6407,
284,
3359,
2972,
4465,
6218,
618,
28769,
534,
598,
198,
24442,
796,
10352,
628,
198,
2,
2094,
470,
1487,
1997,
2174,
994,
25,
198,
1640,
23991,
62,
4299,
287,
3141,
62,
4299,
50101,
25,
198,
220,
220,
220,
3141,
796,
23991,
62,
4299,
17816,
4871,
6,
16151,
28758,
62,
4299,
11,
14257,
8,
198,
220,
220,
220,
9729,
13,
33295,
7,
21812,
8,
628,
198
] | 2.864745 | 451 |
import subprocess
import tempfile
from pathlib import Path
import requests
from mutagen.easyid3 import EasyID3
from mutagen.id3 import APIC, ID3
from mutagen.mp3 import MP3
from pathvalidate import sanitize_filename
from PyQt5.QtCore import QThread
from vk_api.audio import VkAudio
from entities.album import VkAlbum
from entities.session import VkSession
from entities.song import VkSong
from utils import get_tracklist_iter
| [
11748,
850,
14681,
198,
11748,
20218,
7753,
198,
6738,
3108,
8019,
1330,
10644,
198,
198,
11748,
7007,
198,
6738,
4517,
11286,
13,
38171,
312,
18,
1330,
16789,
2389,
18,
198,
6738,
4517,
11286,
13,
312,
18,
1330,
3486,
2149,
11,
4522,
18,
198,
6738,
4517,
11286,
13,
3149,
18,
1330,
4904,
18,
198,
6738,
3108,
12102,
378,
1330,
5336,
270,
1096,
62,
34345,
198,
6738,
9485,
48,
83,
20,
13,
48,
83,
14055,
1330,
1195,
16818,
198,
6738,
410,
74,
62,
15042,
13,
24051,
1330,
569,
74,
21206,
198,
198,
6738,
12066,
13,
40916,
1330,
569,
74,
2348,
4435,
198,
6738,
12066,
13,
29891,
1330,
569,
74,
36044,
198,
6738,
12066,
13,
34050,
1330,
569,
74,
44241,
198,
6738,
3384,
4487,
1330,
651,
62,
11659,
4868,
62,
2676,
628
] | 3.325581 | 129 |
import h5py
import math
import time
import numpy
import sys
from functools import reduce
from keras.models import Sequential
from keras.layers import GRU, LSTM, Dropout, Dense
from keras.layers.wrappers import TimeDistributed
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
with open('./data/fb_news_comments.txt', 'r', encoding='utf-8') as file:
comments = file.read()
chars = list(sorted(set(comments)))
# print(''.join(chars))
# print([ord(x) for x in chars])
# exit()
start = 0
seq_length = 100
items = 200000
char_to_int = dict((c, i) for i, c in enumerate(chars))
int_to_char = dict((i, c) for i, c in enumerate(chars))
n_vocab = len(chars)
n_patterns = items
model = Sequential()
model.add(GRU(512, input_shape=(seq_length, 1), return_sequences=True))
model.add(Dropout(0.2))
model.add(GRU(256))
model.add(Dropout(0.2))
model.add(Dense(n_vocab, activation='softmax'))
model.load_weights("./results/test_6/weights-improvement-60-1.7856.hdf5")
model.compile(loss='categorical_crossentropy', optimizer='adam')
filepath="./results/test_6/weights-improvement-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, mode='min')
callbacks_list = [checkpoint]
for i in range(33, 100):
dataX = []
dataY = []
generate()
exit()
print()
for j in range(start + items * i, start + items * (i + 1)):
seq_in = comments[j:j + seq_length]
seq_out = comments[j + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
X = X / float(n_vocab)
y = np_utils.to_categorical(dataY)
model.fit(X, y, epochs=i * 2 + 2, initial_epoch=i * 2, batch_size=128, callbacks=callbacks_list)
| [
11748,
289,
20,
9078,
198,
11748,
10688,
198,
11748,
640,
198,
11748,
299,
32152,
198,
11748,
25064,
198,
6738,
1257,
310,
10141,
1330,
4646,
198,
6738,
41927,
292,
13,
27530,
1330,
24604,
1843,
198,
6738,
41927,
292,
13,
75,
6962,
1330,
10863,
52,
11,
406,
2257,
44,
11,
14258,
448,
11,
360,
1072,
198,
6738,
41927,
292,
13,
75,
6962,
13,
29988,
11799,
1330,
3862,
20344,
6169,
198,
6738,
41927,
292,
13,
13345,
10146,
1330,
9104,
9787,
4122,
198,
6738,
41927,
292,
13,
26791,
1330,
45941,
62,
26791,
198,
198,
4480,
1280,
7,
4458,
14,
7890,
14,
21855,
62,
10827,
62,
15944,
13,
14116,
3256,
705,
81,
3256,
21004,
11639,
40477,
12,
23,
11537,
355,
2393,
25,
198,
220,
220,
220,
3651,
796,
2393,
13,
961,
3419,
198,
198,
354,
945,
796,
1351,
7,
82,
9741,
7,
2617,
7,
15944,
22305,
198,
198,
2,
3601,
10786,
4458,
22179,
7,
354,
945,
4008,
198,
2,
3601,
26933,
585,
7,
87,
8,
329,
2124,
287,
34534,
12962,
198,
2,
8420,
3419,
198,
198,
9688,
796,
657,
198,
41068,
62,
13664,
796,
1802,
198,
23814,
796,
939,
830,
198,
198,
10641,
62,
1462,
62,
600,
796,
8633,
19510,
66,
11,
1312,
8,
329,
1312,
11,
269,
287,
27056,
378,
7,
354,
945,
4008,
198,
600,
62,
1462,
62,
10641,
796,
8633,
19510,
72,
11,
269,
8,
329,
1312,
11,
269,
287,
27056,
378,
7,
354,
945,
4008,
198,
198,
77,
62,
18893,
397,
796,
18896,
7,
354,
945,
8,
198,
77,
62,
33279,
82,
796,
3709,
198,
198,
19849,
796,
24604,
1843,
3419,
198,
198,
19849,
13,
2860,
7,
10761,
52,
7,
25836,
11,
5128,
62,
43358,
16193,
41068,
62,
13664,
11,
352,
828,
1441,
62,
3107,
3007,
28,
17821,
4008,
198,
19849,
13,
2860,
7,
26932,
448,
7,
15,
13,
17,
4008,
198,
19849,
13,
2860,
7,
10761,
52,
7,
11645,
4008,
198,
19849,
13,
2860,
7,
26932,
448,
7,
15,
13,
17,
4008,
198,
19849,
13,
2860,
7,
35,
1072,
7,
77,
62,
18893,
397,
11,
14916,
11639,
4215,
9806,
6,
4008,
198,
19849,
13,
2220,
62,
43775,
7,
1911,
14,
43420,
14,
9288,
62,
21,
14,
43775,
12,
49453,
434,
12,
1899,
12,
16,
13,
3695,
3980,
13,
71,
7568,
20,
4943,
198,
19849,
13,
5589,
576,
7,
22462,
11639,
66,
2397,
12409,
62,
19692,
298,
28338,
3256,
6436,
7509,
11639,
324,
321,
11537,
198,
198,
7753,
6978,
28,
1911,
14,
43420,
14,
9288,
62,
21,
14,
43775,
12,
49453,
434,
12,
90,
538,
5374,
25,
2999,
67,
92,
12,
90,
22462,
25,
13,
19,
69,
27422,
71,
7568,
20,
1,
198,
9122,
4122,
796,
9104,
9787,
4122,
7,
7753,
6978,
11,
5671,
11639,
22462,
3256,
15942,
577,
28,
16,
11,
4235,
11639,
1084,
11537,
198,
13345,
10146,
62,
4868,
796,
685,
9122,
4122,
60,
198,
198,
1640,
1312,
287,
2837,
7,
2091,
11,
1802,
2599,
198,
220,
220,
220,
1366,
55,
796,
17635,
198,
220,
220,
220,
1366,
56,
796,
17635,
628,
220,
220,
220,
7716,
3419,
198,
220,
220,
220,
8420,
3419,
198,
220,
220,
220,
3601,
3419,
628,
220,
220,
220,
329,
474,
287,
2837,
7,
9688,
1343,
3709,
1635,
1312,
11,
923,
1343,
3709,
1635,
357,
72,
1343,
352,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
259,
796,
3651,
58,
73,
25,
73,
1343,
33756,
62,
13664,
60,
198,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
448,
796,
3651,
58,
73,
1343,
33756,
62,
13664,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
55,
13,
33295,
26933,
10641,
62,
1462,
62,
600,
58,
10641,
60,
329,
1149,
287,
33756,
62,
259,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
56,
13,
33295,
7,
10641,
62,
1462,
62,
600,
58,
41068,
62,
448,
12962,
628,
220,
220,
220,
1395,
796,
299,
32152,
13,
3447,
1758,
7,
7890,
55,
11,
357,
77,
62,
33279,
82,
11,
33756,
62,
13664,
11,
352,
4008,
198,
220,
220,
220,
1395,
796,
1395,
1220,
12178,
7,
77,
62,
18893,
397,
8,
198,
220,
220,
220,
331,
796,
45941,
62,
26791,
13,
1462,
62,
66,
2397,
12409,
7,
7890,
56,
8,
628,
220,
220,
220,
2746,
13,
11147,
7,
55,
11,
331,
11,
36835,
82,
28,
72,
1635,
362,
1343,
362,
11,
4238,
62,
538,
5374,
28,
72,
1635,
362,
11,
15458,
62,
7857,
28,
12762,
11,
869,
10146,
28,
13345,
10146,
62,
4868,
8,
198
] | 2.476839 | 734 |
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack.package import *
class RClue(RPackage):
"""Cluster Ensembles."""
cran = "clue"
version('0.3-61', sha256='71311b16ce380fd9a8834be95b55b3d1b47e4ee2b8acb35b8d481138c314dc31')
version('0.3-60', sha256='6d21ddfd0d621ed3bac861890c600884b6ed5ff7d2a36c9778b892636dbbef2a')
version('0.3-58', sha256='2ab6662eaa1103a7b633477e8ebd266b262ed54fac6f9326b160067a2ded9ce7')
version('0.3-57', sha256='6e369d07b464a9624209a06b5078bf988f01f7963076e946649d76aea0622d17')
depends_on('[email protected]:', type=('build', 'run'))
depends_on('r-cluster', type=('build', 'run'))
| [
2,
15069,
2211,
12,
1238,
1828,
13914,
45036,
3549,
2351,
4765,
11,
11419,
290,
584,
198,
2,
1338,
441,
4935,
34152,
13,
4091,
262,
1353,
12,
5715,
27975,
38162,
9947,
2393,
329,
3307,
13,
198,
2,
198,
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
357,
25189,
4891,
12,
17,
13,
15,
6375,
17168,
8,
198,
198,
6738,
599,
441,
13,
26495,
1330,
1635,
628,
198,
4871,
371,
2601,
518,
7,
49,
27813,
2599,
198,
220,
220,
220,
37227,
2601,
5819,
2039,
4428,
829,
526,
15931,
628,
220,
220,
220,
41286,
796,
366,
565,
518,
1,
628,
220,
220,
220,
2196,
10786,
15,
13,
18,
12,
5333,
3256,
427,
64,
11645,
11639,
50055,
1157,
65,
1433,
344,
23734,
16344,
24,
64,
3459,
2682,
1350,
3865,
65,
2816,
65,
18,
67,
16,
65,
2857,
68,
19,
1453,
17,
65,
23,
330,
65,
2327,
65,
23,
67,
2780,
1157,
2548,
66,
33638,
17896,
3132,
11537,
198,
220,
220,
220,
2196,
10786,
15,
13,
18,
12,
1899,
3256,
427,
64,
11645,
11639,
21,
67,
2481,
1860,
16344,
15,
67,
21,
2481,
276,
18,
65,
330,
4521,
1507,
3829,
66,
8054,
40353,
65,
21,
276,
20,
487,
22,
67,
17,
64,
2623,
66,
24,
39761,
65,
4531,
2075,
2623,
9945,
65,
891,
17,
64,
11537,
198,
220,
220,
220,
2196,
10786,
15,
13,
18,
12,
3365,
3256,
427,
64,
11645,
11639,
17,
397,
2791,
5237,
68,
7252,
11442,
18,
64,
22,
65,
21,
2091,
32883,
68,
23,
1765,
67,
25540,
65,
29119,
276,
4051,
38942,
21,
69,
6052,
2075,
65,
36150,
3134,
64,
17,
9395,
24,
344,
22,
11537,
198,
220,
220,
220,
2196,
10786,
15,
13,
18,
12,
3553,
3256,
427,
64,
11645,
11639,
21,
68,
30803,
67,
2998,
65,
44578,
64,
4846,
1731,
22567,
64,
3312,
65,
1120,
3695,
19881,
24,
3459,
69,
486,
69,
3720,
30005,
4304,
68,
24,
3510,
33300,
67,
4304,
44705,
3312,
1828,
67,
1558,
11537,
628,
220,
220,
220,
8338,
62,
261,
10786,
81,
31,
18,
13,
17,
13,
15,
25,
3256,
2099,
28,
10786,
11249,
3256,
705,
5143,
6,
4008,
198,
220,
220,
220,
8338,
62,
261,
10786,
81,
12,
565,
5819,
3256,
2099,
28,
10786,
11249,
3256,
705,
5143,
6,
4008,
198
] | 2.146739 | 368 |
print(min(a,b,c))
| [
4798,
7,
1084,
7,
64,
11,
65,
11,
66,
4008,
198
] | 1.636364 | 11 |
import nltk
from nltk import tokenize
from nltk.util import ngrams
import os
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from readability import Readability
import collections
from nltk.stem.porter import *
from nltk import word_tokenize
import string
import pickle
### This File contains functions for each type of feature. Use Compute_All_Features.py to run.
DIRNAME = os.path.dirname(__file__)
| [
11748,
299,
2528,
74,
201,
198,
6738,
299,
2528,
74,
1330,
11241,
1096,
201,
198,
6738,
299,
2528,
74,
13,
22602,
1330,
299,
4546,
82,
201,
198,
11748,
28686,
201,
198,
6738,
410,
5067,
31837,
3681,
13,
85,
5067,
31837,
3681,
1330,
11352,
3681,
5317,
6377,
37702,
9107,
201,
198,
6738,
1100,
1799,
1330,
4149,
1799,
201,
198,
11748,
17268,
201,
198,
6738,
299,
2528,
74,
13,
927,
13,
26634,
1330,
1635,
201,
198,
6738,
299,
2528,
74,
1330,
1573,
62,
30001,
1096,
201,
198,
11748,
4731,
201,
198,
11748,
2298,
293,
201,
198,
201,
198,
21017,
770,
9220,
4909,
5499,
329,
1123,
2099,
286,
3895,
13,
5765,
3082,
1133,
62,
3237,
62,
23595,
13,
9078,
284,
1057,
13,
201,
198,
201,
198,
34720,
20608,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
8,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201
] | 2.807229 | 166 |
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright 2017 Romain Boman
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# example of PyQt (QMainWindow) + vtk (QVTKRenderWindowInteractor)
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
print("Qt %s loaded!" % QT_VERSION_STR)
import vtk
from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor
import sys
if __name__ == "__main__":
app = QApplication(sys.argv)
window = SimpleView()
window.show()
window.widget.Initialize() # This is the line we need
app.exec_()
| [
2,
0,
1220,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
198,
2,
220,
220,
15069,
2177,
3570,
391,
347,
5185,
198,
2,
198,
2,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
220,
220,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
220,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
220,
220,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
220,
220,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
220,
220,
11247,
739,
262,
13789,
13,
198,
198,
2,
1672,
286,
9485,
48,
83,
357,
48,
13383,
27703,
8,
1343,
410,
30488,
357,
48,
36392,
30758,
2194,
27703,
9492,
11218,
8,
198,
198,
6738,
9485,
48,
83,
20,
13,
48,
83,
14055,
1330,
1635,
198,
6738,
9485,
48,
83,
20,
13,
48,
83,
54,
312,
11407,
1330,
1635,
198,
4798,
7203,
48,
83,
4064,
82,
9639,
2474,
4064,
1195,
51,
62,
43717,
62,
18601,
8,
198,
11748,
410,
30488,
198,
6738,
410,
30488,
13,
39568,
13,
48,
36392,
30758,
2194,
27703,
9492,
11218,
1330,
1195,
36392,
30758,
2194,
27703,
9492,
11218,
198,
198,
11748,
25064,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
598,
796,
1195,
23416,
7,
17597,
13,
853,
85,
8,
198,
220,
220,
220,
4324,
796,
17427,
7680,
3419,
198,
220,
220,
220,
4324,
13,
12860,
3419,
198,
220,
220,
220,
4324,
13,
42655,
13,
24243,
1096,
3419,
220,
1303,
770,
318,
262,
1627,
356,
761,
198,
220,
220,
220,
598,
13,
18558,
62,
3419,
198
] | 2.964674 | 368 |
import h5py
import os
| [
11748,
289,
20,
9078,
198,
11748,
28686,
220,
198
] | 2.555556 | 9 |
import tensorflow as tf
import numpy as np
from sklearn.feature_extraction import text
from sklearn import feature_selection
from tensorflow.python.util import nest
from autokeras import const
from autokeras.hypermodel import hyper_block as hb_module
class HyperPreprocessor(hb_module.HyperBlock):
"""Hyper preprocessing block base class."""
def build(self, hp, inputs=None):
"""Build into part of a Keras Model.
Since they are for preprocess data before feeding into the Keras Model,
they are not part of the Keras Model. They only pass the inputs
directly to outputs.
"""
return inputs
def set_hp(self, hp):
"""Set Hyperparameters for the Preprocessor.
Since the `update` and `transform` function are all for single training
instances instead of the entire dataset, the Hyperparameters needs to be
set in advance of call them.
Args:
hp: Hyperparameters. The hyperparameters for tuning the preprocessor.
"""
self._hp = hp
def update(self, x):
"""Incrementally fit the preprocessor with a single training instance.
Args:
x: EagerTensor. A single instance in the training dataset.
"""
raise NotImplementedError
def transform(self, x):
"""Incrementally fit the preprocessor with a single training instance.
Args:
x: EagerTensor. A single instance in the training dataset.
Returns:
A transformed instanced which can be converted to a tf.Tensor.
"""
raise NotImplementedError
def output_types(self):
"""The output types of the transformed data, e.g. tf.int64.
The output types are required by tf.py_function, which is used for transform
the dataset into a new one with a map function.
Returns:
A tuple of data types.
"""
raise NotImplementedError
def output_shape(self):
"""The output shape of the transformed data.
The output shape is needed to build the Keras Model from the AutoModel.
The output shape of the preprocessor is the input shape of the Keras Model.
Returns:
A tuple of ints or a TensorShape.
"""
raise NotImplementedError
def finalize(self):
"""Training process of the preprocessor after update with all instances."""
pass
class OneHotEncoder(object):
"""A class that can format data.
This class provides ways to transform data's classification label into
vector.
Attributes:
data: The input data
num_classes: The number of classes in the classification problem.
labels: The number of labels.
label_to_vec: Mapping from label to vector.
int_to_label: Mapping from int to label.
"""
def __init__(self):
"""Initialize a OneHotEncoder"""
self.data = None
self.num_classes = 0
self.labels = None
self.label_to_vec = {}
self.int_to_label = {}
def fit(self, data):
"""Create mapping from label to vector, and vector to label."""
data = np.array(data).flatten()
self.labels = set(data)
self.num_classes = len(self.labels)
for index, label in enumerate(self.labels):
vec = np.array([0] * self.num_classes)
vec[index] = 1
self.label_to_vec[label] = vec
self.int_to_label[index] = label
def transform(self, data):
"""Get vector for every element in the data array."""
data = np.array(data)
if len(data.shape) > 1:
data = data.flatten()
return np.array(list(map(lambda x: self.label_to_vec[x], data)))
def inverse_transform(self, data):
"""Get label for every element in data."""
return np.array(list(map(lambda x: self.int_to_label[x],
np.argmax(np.array(data), axis=1))))
class Normalize(HyperPreprocessor):
""" Perform basic image transformation and augmentation.
# Attributes
mean: Tensor. The mean value. Shape: (data last dimension length,)
std: Tensor. The standard deviation. Shape is the same as mean.
"""
def transform(self, x):
""" Transform the test data, perform normalization.
# Arguments
data: Tensorflow Dataset. The data to be transformed.
# Returns
A DataLoader instance.
"""
x = nest.flatten(x)[0]
return (x - self.mean) / self.std
class TextToIntSequence(HyperPreprocessor):
"""Convert raw texts to sequences of word indices."""
class TextToNgramVector(HyperPreprocessor):
"""Convert raw texts to n-gram vectors."""
| [
11748,
11192,
273,
11125,
355,
48700,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
1341,
35720,
13,
30053,
62,
2302,
7861,
1330,
2420,
198,
6738,
1341,
35720,
1330,
3895,
62,
49283,
198,
6738,
11192,
273,
11125,
13,
29412,
13,
22602,
1330,
16343,
198,
198,
6738,
1960,
11020,
292,
1330,
1500,
198,
6738,
1960,
11020,
292,
13,
49229,
19849,
1330,
8718,
62,
9967,
355,
289,
65,
62,
21412,
628,
198,
4871,
15079,
6719,
41341,
7,
71,
65,
62,
21412,
13,
38197,
12235,
2599,
198,
220,
220,
220,
37227,
38197,
662,
36948,
2512,
2779,
1398,
526,
15931,
628,
220,
220,
220,
825,
1382,
7,
944,
11,
27673,
11,
17311,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15580,
656,
636,
286,
257,
17337,
292,
9104,
13,
628,
220,
220,
220,
220,
220,
220,
220,
4619,
484,
389,
329,
662,
14681,
1366,
878,
13017,
656,
262,
17337,
292,
9104,
11,
198,
220,
220,
220,
220,
220,
220,
220,
484,
389,
407,
636,
286,
262,
17337,
292,
9104,
13,
1119,
691,
1208,
262,
17311,
198,
220,
220,
220,
220,
220,
220,
220,
3264,
284,
23862,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
17311,
628,
220,
220,
220,
825,
900,
62,
24831,
7,
944,
11,
27673,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
7248,
15079,
17143,
7307,
329,
262,
3771,
41341,
13,
628,
220,
220,
220,
220,
220,
220,
220,
4619,
262,
4600,
19119,
63,
290,
4600,
35636,
63,
2163,
389,
477,
329,
2060,
3047,
198,
220,
220,
220,
220,
220,
220,
220,
10245,
2427,
286,
262,
2104,
27039,
11,
262,
15079,
17143,
7307,
2476,
284,
307,
198,
220,
220,
220,
220,
220,
220,
220,
900,
287,
5963,
286,
869,
606,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27673,
25,
15079,
17143,
7307,
13,
383,
8718,
17143,
7307,
329,
24549,
262,
662,
41341,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
24831,
796,
27673,
628,
220,
220,
220,
825,
4296,
7,
944,
11,
2124,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15562,
434,
453,
4197,
262,
662,
41341,
351,
257,
2060,
3047,
4554,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
25,
412,
3536,
51,
22854,
13,
317,
2060,
4554,
287,
262,
3047,
27039,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
628,
220,
220,
220,
825,
6121,
7,
944,
11,
2124,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15562,
434,
453,
4197,
262,
662,
41341,
351,
257,
2060,
3047,
4554,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
25,
412,
3536,
51,
22854,
13,
317,
2060,
4554,
287,
262,
3047,
27039,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
14434,
916,
2903,
543,
460,
307,
11513,
284,
257,
48700,
13,
51,
22854,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
628,
220,
220,
220,
825,
5072,
62,
19199,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
464,
5072,
3858,
286,
262,
14434,
1366,
11,
304,
13,
70,
13,
48700,
13,
600,
2414,
13,
628,
220,
220,
220,
220,
220,
220,
220,
383,
5072,
3858,
389,
2672,
416,
48700,
13,
9078,
62,
8818,
11,
543,
318,
973,
329,
6121,
198,
220,
220,
220,
220,
220,
220,
220,
262,
27039,
656,
257,
649,
530,
351,
257,
3975,
2163,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
46545,
286,
1366,
3858,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
628,
220,
220,
220,
825,
5072,
62,
43358,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
464,
5072,
5485,
286,
262,
14434,
1366,
13,
628,
220,
220,
220,
220,
220,
220,
220,
383,
5072,
5485,
318,
2622,
284,
1382,
262,
17337,
292,
9104,
422,
262,
11160,
17633,
13,
198,
220,
220,
220,
220,
220,
220,
220,
383,
5072,
5485,
286,
262,
662,
41341,
318,
262,
5128,
5485,
286,
262,
17337,
292,
9104,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
46545,
286,
493,
82,
393,
257,
309,
22854,
33383,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
628,
220,
220,
220,
825,
2457,
1096,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
44357,
1429,
286,
262,
662,
41341,
706,
4296,
351,
477,
10245,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
628,
198,
4871,
1881,
21352,
27195,
12342,
7,
15252,
2599,
198,
220,
220,
220,
37227,
32,
1398,
326,
460,
5794,
1366,
13,
628,
220,
220,
220,
770,
1398,
3769,
2842,
284,
6121,
1366,
338,
17923,
6167,
656,
198,
220,
220,
220,
15879,
13,
628,
220,
220,
220,
49213,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
25,
383,
5128,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
25,
383,
1271,
286,
6097,
287,
262,
17923,
1917,
13,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
25,
383,
1271,
286,
14722,
13,
198,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
1462,
62,
35138,
25,
337,
5912,
422,
6167,
284,
15879,
13,
198,
220,
220,
220,
220,
220,
220,
220,
493,
62,
1462,
62,
18242,
25,
337,
5912,
422,
493,
284,
6167,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
24243,
1096,
257,
1881,
21352,
27195,
12342,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7890,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
22510,
62,
37724,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
23912,
1424,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
18242,
62,
1462,
62,
35138,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
600,
62,
1462,
62,
18242,
796,
23884,
628,
220,
220,
220,
825,
4197,
7,
944,
11,
1366,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16447,
16855,
422,
6167,
284,
15879,
11,
290,
15879,
284,
6167,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
45941,
13,
18747,
7,
7890,
737,
2704,
41769,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
23912,
1424,
796,
900,
7,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
22510,
62,
37724,
796,
18896,
7,
944,
13,
23912,
1424,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
6376,
11,
6167,
287,
27056,
378,
7,
944,
13,
23912,
1424,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43030,
796,
45941,
13,
18747,
26933,
15,
60,
1635,
2116,
13,
22510,
62,
37724,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43030,
58,
9630,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
18242,
62,
1462,
62,
35138,
58,
18242,
60,
796,
43030,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
600,
62,
1462,
62,
18242,
58,
9630,
60,
796,
6167,
628,
220,
220,
220,
825,
6121,
7,
944,
11,
1366,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
3855,
15879,
329,
790,
5002,
287,
262,
1366,
7177,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
45941,
13,
18747,
7,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
7890,
13,
43358,
8,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
1366,
13,
2704,
41769,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
45941,
13,
18747,
7,
4868,
7,
8899,
7,
50033,
2124,
25,
2116,
13,
18242,
62,
1462,
62,
35138,
58,
87,
4357,
1366,
22305,
628,
220,
220,
220,
825,
34062,
62,
35636,
7,
944,
11,
1366,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
3855,
6167,
329,
790,
5002,
287,
1366,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
45941,
13,
18747,
7,
4868,
7,
8899,
7,
50033,
2124,
25,
2116,
13,
600,
62,
1462,
62,
18242,
58,
87,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
853,
9806,
7,
37659,
13,
18747,
7,
7890,
828,
16488,
28,
16,
35514,
628,
198,
4871,
14435,
1096,
7,
38197,
6719,
41341,
2599,
198,
220,
220,
220,
37227,
35006,
4096,
2939,
13389,
290,
16339,
14374,
13,
628,
220,
220,
220,
1303,
49213,
198,
220,
220,
220,
220,
220,
220,
220,
1612,
25,
309,
22854,
13,
383,
1612,
1988,
13,
25959,
25,
357,
7890,
938,
15793,
4129,
35751,
198,
220,
220,
220,
220,
220,
220,
220,
14367,
25,
309,
22854,
13,
383,
3210,
28833,
13,
25959,
318,
262,
976,
355,
1612,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
6121,
7,
944,
11,
2124,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
26981,
262,
1332,
1366,
11,
1620,
3487,
1634,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
20559,
2886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
25,
309,
22854,
11125,
16092,
292,
316,
13,
383,
1366,
284,
307,
14434,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
6060,
17401,
4554,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
16343,
13,
2704,
41769,
7,
87,
38381,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
87,
532,
2116,
13,
32604,
8,
1220,
2116,
13,
19282,
628,
198,
4871,
8255,
2514,
5317,
44015,
594,
7,
38197,
6719,
41341,
2599,
198,
220,
220,
220,
37227,
3103,
1851,
8246,
13399,
284,
16311,
286,
1573,
36525,
526,
15931,
628,
198,
4871,
8255,
2514,
45,
4546,
38469,
7,
38197,
6719,
41341,
2599,
198,
220,
220,
220,
37227,
3103,
1851,
8246,
13399,
284,
299,
12,
4546,
30104,
526,
15931,
198
] | 2.585405 | 1,850 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.