content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import re import struct from typing import Any, BinaryIO, Dict, NamedTuple, Optional, Sequence, Tuple from .util import music, tilesets, load_tileset, spritesets, load_spriteset, PokeImportError from .sound import MinLibSound from .encoders import encode_tiles
[ 11748, 302, 198, 11748, 2878, 198, 6738, 19720, 1330, 4377, 11, 45755, 9399, 11, 360, 713, 11, 34441, 51, 29291, 11, 32233, 11, 45835, 11, 309, 29291, 198, 198, 6738, 764, 22602, 1330, 2647, 11, 19867, 1039, 11, 3440, 62, 83, 2915, 316, 11, 42866, 1039, 11, 3440, 62, 2777, 23156, 316, 11, 41163, 20939, 12331, 198, 6738, 764, 23661, 1330, 1855, 25835, 21369, 198, 6738, 764, 12685, 375, 364, 1330, 37773, 62, 83, 2915, 628, 628, 628, 628, 198 ]
3.375
80
# This is an example program showing different methods of controlling motors, servos, and Neopixels. # It works with a Rock Candy or PiHut PS3 controller. # The left stick controls the speed and direction of both motors - push up to go forwards, down for backwards and left or right to steer. # The right stick directly controls two servo motors connected to GPIO pins 21 and 22. # The R1 button starts or stops turbo mode (the robot goes faster!) . # The L1 and L2 buttons move a servo connected to GPIO 22 to two pre-set positions. # The Square button starts or stops a servo connected to GPIO 20 slowly sweeping left to right. This uses multiprocessing to run at the same time as the main program loop. # The Triangle, Circle, and X buttons start and stop different Neopixels sequences - also with multiprocessing. # Author: Neil Lambeth. [email protected] @NeilRedRobotics from __future__ import print_function # Make print work with python 2 & 3 from evdev import InputDevice, ecodes import redboard import multiprocessing import time try: import neopixels # Neopixels need to be run with 'sudo', just a reminder! except RuntimeError: print ('') print ("Remember to use 'sudo' if you're using neopixels!") print ('') exit() dev = InputDevice('/dev/input/event0') #print(dev) device = str(dev).find('Rock Candy') # Look for a Rock Candy or PiHut controller if device != -1: print ('Controller: Rock Candy PS3 Gamepad') controller = 1 else: print ('Controller: PiHut PS3 Gamepad') controller = 2 # Button mapping for different controllers if controller == 1: # Rock Candy triangle, x, square, circle = 307, 305, 304, 306 R1, R2, R3 = 309, 311, 315 L1, L2, L3 = 308, 310, 314 select, start, home = 312, 313, 316 if controller == 2: # PiHut triangle, x, square, circle = 308, 304, 307, 305 R1, R2, R3 = 311, 313, 318 L1, L2, L3 = 310, 312, 317 select, start, home = 314, 315, 316 # Set up variables RX = 0 LX = 0 RY = 0 RY = 0 LeftY = 0 LeftX = 0 LeftX_R = 0 LeftX_L = 0 Leftmotor = 0 Rightmotor = 0 LM_OLD = 0 RM_OLD = 0 turbo = False invertX = False triangleToggle = False xToggle = False circleToggle = False squareToggle = False # Function to use with multiprocessing to sweep a servo slowly left and right # without interrupting the normal program flow # Set up neopixel processes - neopixel code is in ~/RedBoard/neopixels.py p1 = multiprocessing.Process(target = neopixels.knightRider) p1.start() # Start the neopixel display when the program starts triangleToggle = True p2 = multiprocessing.Process(target = neopixels.headLights) p3 = multiprocessing.Process(target = neopixels.demo) p4 = multiprocessing.Process(target = servoSlowSweep) # Read gamepad buttons----------------------------------------------------------- for event in dev.read_loop(): #print(event) # Uncomment to show all button data if event.type == ecodes.EV_KEY: #print(event.code) # Uncomment to show each keycode # Button pressed code if event.value == 1: if event.code == triangle and triangleToggle == False: # Toggles the button press - one press for on - one press for off. triangleToggle = True print ('triangle on') # Start and stop the neopixel processes - it's important to only run one neopixel process at any one time. So check and stop other processes if they are running. if p1.is_alive() == False: # Make sure the process isn't already running if p2.is_alive() == True: # Kill the other process if it's running p2.terminate() if p3.is_alive() == True: # Kill the other process if it's running p3.terminate() p1 = multiprocessing.Process(target = neopixels.knightRider) p1.start() # Start the process elif event.code == triangle and triangleToggle == True: triangleToggle = False print ('triangle off') p1.terminate() neopixels.clear() elif event.code == x and xToggle == False: xToggle = True print ('X on') if p2.is_alive() == False: # Make sure the process isn't already running if p1.is_alive() == True: # Kill the other process if it's running p1.terminate() if p3.is_alive() == True: # Kill the other process if it's running p3.terminate() p2 = multiprocessing.Process(target = neopixels.headLights) p2.start() # Start the process elif event.code == x and xToggle == True: xToggle = False print ('x off') p2.terminate() neopixels.clear() elif event.code == circle and circleToggle == False: circleToggle = True print ('Circle on') if p3.is_alive() == False: # Make sure the process isn't already running if p1.is_alive() == True: # Kill the other process if it's running p1.terminate() if p2.is_alive() == True: # Kill the other process if it's running p2.terminate() p3 = multiprocessing.Process(target = neopixels.demo) p3.start() # Start the process elif event.code == circle and circleToggle == True: circleToggle = False print ('Circle off') p3.terminate() neopixels.clear() elif event.code == square and squareToggle == False: squareToggle = True print ('Square on') if p4.is_alive() == False: # Make sure the process isn't already running p4 = multiprocessing.Process(target = servoSlowSweep) p4.start() # Start the process elif event.code == square and squareToggle == True: squareToggle = False print ('Square off') p4.terminate() elif event.code == R1: print ('R1 - Turbo On') turbo = True elif event.code == R2: print ('R2') elif event.code == R3: print ('R3') elif event.code == L1: print ('L1') redboard.servo22(80) # Send the positon to the servo elif event.code == L2: print ('L2') redboard.servo22(-80) # Send the positon to the servo elif event.code == L3: print ('L3') elif event.code == select and invertX == False: print ('Invert X') invertX = True elif event.code == select and invertX == True: print ('Normal X') invertX = False elif event.code == start: print ('Start') elif event.code == home: print ('Home') # Button Release Code------------------------------------------------ if event.value == 0: # Button released if event.code == R1: # Turbo Off print ('R1 - Turbo Off') turbo = False elif event.code == R2: print ('R2') elif event.code == L1 or event.code == L2: # Servos Centre print ('Servo Centre') redboard.servo22(0) # Analogue Sticks and Dpad--------------------------------------------- if event.type == ecodes.EV_ABS: print('') print('---------------------------------') # Dpad if event.code == 16: if event.value == -1: print ('Dpad LEFT') if event.value == 1: print ('Dpad RIGHT') if event.code == 17: if event.value == -1: print ('Dpad UP') if event.value == 1: print ('Dpad DOWN') # Right analogue stick servo controls elif event.code == 5: # Right analogue Vertical stick RY = event.value #print (RY) S21 = redboard.mapServo(RY) # Scale the value from the # joystick to work with the servo redboard.servo21_P(S21) # Send the positon to the servo elif event.code == 2: # Right analogue Horizontal stick RX = event.value #print (RX) S22 = redboard.mapServo(RX) # Scale the value from the # joystick to work with the servo redboard.servo22_P(S22) # Send the positon to the servo # Left analogue stick motor controls if event.code == 1: # Left analogue Vertical stick # The analogue stick gives a value between 0-255 # Convert the value to 0-127 for forwards # and 0- -127 for backwards LY = event.value if LY < 128: # Forwards LeftY = 127 - LY #print('LY =',LY) #print('LeftY = ',LeftY) elif LY >= 128: # Backwards LeftY = LY - 128 LeftY = -LeftY # Make negative #print('LY =',LY) #print('LeftY = ',LeftY) elif event.code == 0: # Left analogue Horizontal stick # The analogue stick gives a value between 0-255 # Convert the value to 0-127 for left # and 0-127 for right LX = event.value if LX < 128: # Left LeftX_L = 127 - LX #print('LX =',LX) #print('LeftX_Left = ',LeftX_L) if LX > 128: # Right LeftX_R = LX - 128 #print('LX = ',LX) #print('LeftX_Right = ',LeftX_R) if LX == 128: # Make sure both values are zero if stick is in the centre LeftX_L = 0 LeftX_R = 0 # Prepare the values to send to the motors if LeftY == 0: #Turn on the spot if not going forwards or backwards if LX <= 128: # Turn Left Leftmotor = -LeftX_L # Reverse motor to turn on the spot Rightmotor = LeftX_L elif LX >= 127: # Turn Right Leftmotor = LeftX_R Rightmotor = -LeftX_R # Reverse motor to turn on the spot elif LY <= 128: # Forwards print ('Forwards') Leftmotor = LeftY - LeftX_L # Mix steering values if Leftmotor <1: # Stop motor going backwards Leftmotor = 0; Rightmotor = LeftY - LeftX_R # Mix steering values if Rightmotor <1: # Stop motor going backwards Rightmotor = 0; elif LY >= 127: # Backwards print('Backwards') Leftmotor = LeftY + LeftX_L # Mix steering values if Leftmotor >-1: # Stop motor going forwards Leftmotor = 0; Rightmotor = LeftY + LeftX_R # Mix steering values if Rightmotor >-1: # Stop motor going forwards Rightmotor = 0; if turbo == True: # Double speed for turbo LM = Leftmotor * 2 RM = Rightmotor * 2 else: # Normal speed LM = Leftmotor RM = Rightmotor if LM != LM_OLD or RM != RM_OLD: # Only print motor speeds if they have changed print ('Left motor =',LM) print ('Right motor =',RM) LM_OLD = LM RM_OLD = RM # Set motor speed and direction if invertX == True: # Reverse steering controls #print('Reverse steering') redboard.M2_8bit(RM) redboard.M1_8bit(LM) else: # Normal steering controls #print ('Normal steering') redboard.M2_8bit(LM) redboard.M1_8bit(RM)
[ 2, 770, 318, 281, 1672, 1430, 4478, 1180, 5050, 286, 12755, 24699, 11, 1113, 418, 11, 290, 3169, 404, 14810, 13, 198, 2, 632, 2499, 351, 257, 4631, 24680, 393, 13993, 39, 315, 6599, 18, 10444, 13, 198, 2, 383, 1364, 4859, 6973, 262, 2866, 290, 4571, 286, 1111, 24699, 532, 4574, 510, 284, 467, 22052, 11, 866, 329, 16196, 290, 1364, 393, 826, 284, 27401, 13, 198, 2, 383, 826, 4859, 3264, 6973, 734, 1113, 78, 24699, 5884, 284, 50143, 20567, 2310, 290, 2534, 13, 220, 198, 2, 383, 371, 16, 4936, 4940, 393, 9911, 29292, 4235, 357, 1169, 9379, 2925, 5443, 8133, 764, 220, 198, 2, 383, 406, 16, 290, 406, 17, 12163, 1445, 257, 1113, 78, 5884, 284, 50143, 2534, 284, 734, 662, 12, 2617, 6116, 13, 198, 2, 383, 9276, 4936, 4940, 393, 9911, 257, 1113, 78, 5884, 284, 50143, 1160, 6364, 18404, 1364, 284, 826, 13, 770, 3544, 18540, 305, 919, 278, 284, 1057, 379, 262, 976, 640, 355, 262, 1388, 1430, 9052, 13, 220, 220, 198, 2, 383, 33233, 11, 16291, 11, 290, 1395, 12163, 923, 290, 2245, 1180, 3169, 404, 14810, 16311, 532, 635, 351, 18540, 305, 919, 278, 13, 628, 198, 2, 6434, 25, 15929, 21114, 2788, 13, 497, 346, 31, 445, 305, 13645, 873, 13, 1073, 13, 2724, 2488, 29354, 7738, 14350, 23891, 628, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 220, 1303, 6889, 3601, 670, 351, 21015, 362, 1222, 513, 198, 6738, 819, 7959, 1330, 23412, 24728, 11, 9940, 4147, 198, 11748, 2266, 3526, 198, 11748, 18540, 305, 919, 278, 198, 11748, 640, 198, 198, 28311, 25, 220, 198, 220, 220, 220, 1330, 497, 404, 14810, 1303, 220, 3169, 404, 14810, 761, 284, 307, 1057, 351, 705, 24032, 3256, 655, 257, 15438, 0, 198, 16341, 43160, 12331, 25, 198, 220, 220, 220, 3601, 357, 7061, 8, 198, 220, 220, 220, 3601, 5855, 16676, 284, 779, 705, 24032, 6, 611, 345, 821, 1262, 497, 404, 14810, 2474, 8, 198, 220, 220, 220, 3601, 357, 7061, 8, 198, 220, 220, 220, 8420, 3419, 628, 220, 220, 220, 220, 198, 7959, 796, 23412, 24728, 10786, 14, 7959, 14, 15414, 14, 15596, 15, 11537, 198, 2, 4798, 7, 7959, 8, 198, 198, 25202, 796, 965, 7, 7959, 737, 19796, 10786, 19665, 24680, 11537, 220, 1303, 6803, 329, 257, 4631, 24680, 393, 13993, 39, 315, 10444, 198, 361, 3335, 14512, 532, 16, 25, 198, 220, 220, 220, 3601, 19203, 22130, 25, 4631, 24680, 6599, 18, 3776, 15636, 11537, 198, 220, 220, 220, 10444, 796, 352, 198, 17772, 25, 198, 220, 220, 220, 3601, 19203, 22130, 25, 13993, 39, 315, 6599, 18, 3776, 15636, 11537, 198, 220, 220, 220, 10444, 796, 362, 628, 198, 2, 20969, 16855, 329, 1180, 20624, 198, 361, 10444, 6624, 352, 25, 220, 1303, 4631, 24680, 198, 220, 220, 220, 22950, 11, 2124, 11, 6616, 11, 9197, 796, 38369, 11, 32747, 11, 31672, 11, 37255, 198, 220, 220, 220, 371, 16, 11, 371, 17, 11, 371, 18, 796, 40286, 11, 35592, 11, 32647, 198, 220, 220, 220, 406, 16, 11, 406, 17, 11, 406, 18, 796, 35617, 11, 28947, 11, 34085, 198, 220, 220, 220, 2922, 11, 923, 11, 1363, 796, 34465, 11, 35897, 11, 34131, 220, 628, 198, 361, 10444, 6624, 362, 25, 220, 1303, 13993, 39, 315, 198, 220, 220, 220, 22950, 11, 2124, 11, 6616, 11, 9197, 796, 35617, 11, 31672, 11, 38369, 11, 32747, 198, 220, 220, 220, 371, 16, 11, 371, 17, 11, 371, 18, 796, 35592, 11, 35897, 11, 39320, 198, 220, 220, 220, 406, 16, 11, 406, 17, 11, 406, 18, 796, 28947, 11, 34465, 11, 37563, 198, 220, 220, 220, 2922, 11, 923, 11, 1363, 796, 34085, 11, 32647, 11, 34131, 220, 628, 198, 2, 5345, 510, 9633, 198, 49, 55, 796, 657, 198, 43, 55, 796, 657, 198, 18276, 796, 657, 198, 18276, 796, 657, 198, 18819, 56, 796, 657, 198, 18819, 55, 796, 657, 198, 18819, 55, 62, 49, 796, 657, 198, 18819, 55, 62, 43, 796, 657, 198, 18819, 76, 20965, 796, 657, 198, 11028, 76, 20965, 796, 657, 198, 31288, 62, 15173, 796, 657, 198, 29138, 62, 15173, 796, 657, 198, 36590, 2127, 796, 10352, 198, 259, 1851, 55, 796, 10352, 198, 198, 28461, 9248, 51, 20258, 796, 10352, 198, 87, 51, 20258, 796, 10352, 198, 45597, 51, 20258, 796, 10352, 198, 23415, 51, 20258, 796, 10352, 628, 198, 2, 220, 15553, 284, 779, 351, 18540, 305, 919, 278, 284, 16085, 257, 1113, 78, 6364, 1364, 290, 826, 220, 198, 2, 220, 1231, 11313, 278, 262, 3487, 1430, 5202, 220, 628, 198, 2, 5345, 510, 497, 404, 7168, 7767, 532, 497, 404, 7168, 2438, 318, 287, 47795, 7738, 29828, 14, 710, 404, 14810, 13, 9078, 220, 220, 220, 198, 79, 16, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 796, 497, 404, 14810, 13, 74, 3847, 49, 1304, 8, 198, 79, 16, 13, 9688, 3419, 1303, 220, 7253, 262, 497, 404, 7168, 3359, 618, 262, 1430, 4940, 198, 28461, 9248, 51, 20258, 796, 6407, 220, 198, 198, 79, 17, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 796, 497, 404, 14810, 13, 2256, 43, 2337, 8, 198, 79, 18, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 796, 497, 404, 14810, 13, 9536, 78, 8, 198, 79, 19, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 796, 1113, 34049, 9319, 40783, 538, 8, 628, 198, 2, 4149, 983, 15636, 12163, 43801, 6329, 198, 1640, 1785, 287, 1614, 13, 961, 62, 26268, 33529, 198, 220, 220, 220, 1303, 4798, 7, 15596, 8, 220, 1303, 791, 23893, 284, 905, 477, 4936, 1366, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 1785, 13, 4906, 6624, 9940, 4147, 13, 20114, 62, 20373, 25, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 15596, 13, 8189, 8, 220, 1303, 791, 23893, 284, 905, 1123, 1994, 8189, 198, 198, 2, 20969, 12070, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8367, 6624, 352, 25, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8189, 6624, 22950, 290, 22950, 51, 20258, 6624, 10352, 25, 1303, 309, 48549, 262, 4936, 1803, 532, 530, 1803, 329, 319, 532, 530, 1803, 329, 572, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22950, 51, 20258, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 28461, 9248, 319, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 7253, 290, 2245, 262, 497, 404, 7168, 7767, 532, 340, 338, 1593, 284, 691, 1057, 530, 497, 404, 7168, 1429, 379, 597, 530, 640, 13, 1406, 2198, 290, 2245, 584, 7767, 611, 484, 389, 2491, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 16, 13, 271, 62, 282, 425, 3419, 6624, 10352, 25, 220, 1303, 6889, 1654, 262, 1429, 2125, 470, 1541, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17, 13, 271, 62, 282, 425, 3419, 6624, 6407, 25, 1303, 12265, 262, 584, 1429, 611, 340, 338, 2491, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 23705, 378, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 18, 13, 271, 62, 282, 425, 3419, 6624, 6407, 25, 1303, 12265, 262, 584, 1429, 611, 340, 338, 2491, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 18, 13, 23705, 378, 3419, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 796, 497, 404, 14810, 13, 74, 3847, 49, 1304, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 9688, 3419, 220, 1303, 7253, 262, 1429, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 22950, 290, 22950, 51, 20258, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22950, 51, 20258, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 28461, 9248, 572, 11537, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 23705, 378, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 404, 14810, 13, 20063, 3419, 220, 628, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 2124, 290, 2124, 51, 20258, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 51, 20258, 796, 6407, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 55, 319, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17, 13, 271, 62, 282, 425, 3419, 6624, 10352, 25, 1303, 6889, 1654, 262, 1429, 2125, 470, 1541, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 16, 13, 271, 62, 282, 425, 3419, 6624, 6407, 25, 1303, 12265, 262, 584, 1429, 611, 340, 338, 2491, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 23705, 378, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 18, 13, 271, 62, 282, 425, 3419, 6624, 6407, 25, 1303, 12265, 262, 584, 1429, 611, 340, 338, 2491, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 18, 13, 23705, 378, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 796, 497, 404, 14810, 13, 2256, 43, 2337, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 9688, 3419, 220, 1303, 7253, 262, 1429, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 2124, 290, 2124, 51, 20258, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 51, 20258, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 87, 572, 11537, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 23705, 378, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 404, 14810, 13, 20063, 3419, 220, 628, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 9197, 290, 9197, 51, 20258, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9197, 51, 20258, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 31560, 293, 319, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 18, 13, 271, 62, 282, 425, 3419, 6624, 10352, 25, 1303, 6889, 1654, 262, 1429, 2125, 470, 1541, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 16, 13, 271, 62, 282, 425, 3419, 6624, 6407, 25, 1303, 12265, 262, 584, 1429, 611, 340, 338, 2491, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 16, 13, 23705, 378, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17, 13, 271, 62, 282, 425, 3419, 6624, 6407, 25, 1303, 12265, 262, 584, 1429, 611, 340, 338, 2491, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17, 13, 23705, 378, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 18, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 796, 497, 404, 14810, 13, 9536, 78, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 18, 13, 9688, 3419, 220, 1303, 7253, 262, 1429, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 9197, 290, 9197, 51, 20258, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9197, 51, 20258, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 31560, 293, 572, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 18, 13, 23705, 378, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 404, 14810, 13, 20063, 3419, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 6616, 290, 6616, 51, 20258, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6616, 51, 20258, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 48011, 319, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 19, 13, 271, 62, 282, 425, 3419, 6624, 10352, 25, 1303, 6889, 1654, 262, 1429, 2125, 470, 1541, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 19, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 796, 1113, 34049, 9319, 40783, 538, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 19, 13, 9688, 3419, 220, 1303, 7253, 262, 1429, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 6616, 290, 6616, 51, 20258, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6616, 51, 20258, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 48011, 572, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 19, 13, 23705, 378, 3419, 628, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 371, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 49, 16, 532, 22278, 1550, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29292, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 371, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 49, 17, 11537, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 371, 18, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 49, 18, 11537, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 406, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 43, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 3168, 78, 1828, 7, 1795, 8, 1303, 220, 16290, 262, 1426, 37752, 284, 262, 1113, 78, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 406, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 43, 17, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 3168, 78, 1828, 32590, 1795, 8, 1303, 220, 16290, 262, 1426, 37752, 284, 262, 1113, 78, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 406, 18, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 43, 18, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 2922, 290, 287, 1851, 55, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 818, 1851, 1395, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 1851, 55, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 2922, 290, 287, 1851, 55, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 26447, 1395, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 1851, 55, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 923, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 10434, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 1363, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 16060, 11537, 628, 628, 198, 2, 220, 20969, 13868, 6127, 47232, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8367, 6624, 657, 25, 220, 1303, 20969, 2716, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8189, 6624, 371, 16, 25, 220, 1303, 22278, 3242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 49, 16, 532, 22278, 3242, 11537, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29292, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 371, 17, 25, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 49, 17, 11537, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 406, 16, 393, 1785, 13, 8189, 6624, 406, 17, 25, 220, 1303, 3116, 418, 9072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 11838, 78, 9072, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 3168, 78, 1828, 7, 15, 8, 220, 220, 220, 628, 628, 198, 2, 220, 1052, 30326, 520, 3378, 290, 360, 15636, 3880, 32501, 628, 220, 220, 220, 611, 1785, 13, 4906, 6624, 9940, 4147, 13, 20114, 62, 32, 4462, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 3880, 12, 11537, 628, 198, 2, 360, 15636, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8189, 6624, 1467, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8367, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 35, 15636, 12509, 9792, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8367, 6624, 352, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 35, 15636, 33621, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8189, 6624, 1596, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8367, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 35, 15636, 15958, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8367, 6624, 352, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 35, 15636, 30320, 11537, 628, 198, 198, 2, 220, 6498, 45304, 4859, 1113, 78, 6973, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 642, 25, 220, 1303, 6498, 45304, 38937, 4859, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 56, 796, 1785, 13, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 18276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 2481, 796, 2266, 3526, 13, 8899, 11838, 78, 7, 18276, 8, 1303, 220, 21589, 262, 1988, 422, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 49485, 284, 670, 351, 262, 1113, 78, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 3168, 78, 2481, 62, 47, 7, 50, 2481, 8, 220, 220, 220, 220, 1303, 220, 16290, 262, 1426, 37752, 284, 262, 1113, 78, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 362, 25, 220, 1303, 6498, 45304, 6075, 38342, 4859, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24202, 796, 1785, 13, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 49, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 1828, 796, 2266, 3526, 13, 8899, 11838, 78, 7, 49, 55, 8, 1303, 220, 21589, 262, 1988, 422, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 49485, 284, 670, 351, 262, 1113, 78, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 3168, 78, 1828, 62, 47, 7, 50, 1828, 8, 220, 220, 220, 220, 1303, 220, 16290, 262, 1426, 37752, 284, 262, 1113, 78, 628, 198, 198, 2, 220, 9578, 45304, 4859, 5584, 6973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 8189, 6624, 352, 25, 220, 1303, 9578, 45304, 38937, 4859, 628, 197, 197, 197, 2, 383, 45304, 4859, 3607, 257, 1988, 1022, 657, 12, 13381, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 262, 1988, 284, 657, 12, 16799, 329, 22052, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 657, 12, 532, 16799, 329, 16196, 198, 197, 197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 56, 796, 1785, 13, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 406, 56, 1279, 13108, 25, 220, 1303, 1114, 2017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 56, 796, 18112, 532, 406, 56, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 11319, 796, 3256, 11319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 18819, 56, 796, 46083, 18819, 56, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 406, 56, 18189, 13108, 25, 220, 1303, 5157, 2017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 56, 796, 406, 56, 532, 13108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 56, 796, 532, 18819, 56, 220, 1303, 6889, 4633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 11319, 796, 3256, 11319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 18819, 56, 796, 46083, 18819, 56, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 8189, 6624, 657, 25, 220, 1303, 9578, 45304, 6075, 38342, 4859, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 45304, 4859, 3607, 257, 1988, 1022, 657, 12, 13381, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 262, 1988, 284, 657, 12, 16799, 329, 1364, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 657, 12, 16799, 329, 826, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44988, 796, 1785, 13, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 44988, 1279, 13108, 25, 220, 1303, 9578, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 55, 62, 43, 796, 18112, 532, 44988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 43, 55, 796, 3256, 43, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 18819, 55, 62, 18819, 796, 46083, 18819, 55, 62, 43, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 44988, 1875, 13108, 25, 220, 1303, 6498, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 55, 62, 49, 796, 44988, 532, 13108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 43, 55, 796, 46083, 43, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 18819, 55, 62, 11028, 796, 46083, 18819, 55, 62, 49, 8, 198, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 44988, 6624, 13108, 25, 220, 1303, 6889, 1654, 1111, 3815, 389, 6632, 611, 4859, 318, 287, 262, 7372, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 55, 62, 43, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 55, 62, 49, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 198, 2, 220, 43426, 262, 3815, 284, 3758, 284, 262, 24699, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9578, 56, 6624, 657, 25, 220, 1303, 17278, 319, 262, 4136, 611, 407, 1016, 22052, 393, 16196, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 44988, 19841, 13108, 25, 1303, 6756, 9578, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 76, 20965, 796, 532, 18819, 55, 62, 43, 220, 1303, 31849, 5584, 284, 1210, 319, 262, 4136, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6498, 76, 20965, 796, 9578, 55, 62, 43, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 44988, 18189, 18112, 25, 1303, 6756, 6498, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 76, 20965, 796, 9578, 55, 62, 49, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6498, 76, 20965, 796, 532, 18819, 55, 62, 49, 220, 1303, 31849, 5584, 284, 1210, 319, 262, 4136, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 406, 56, 19841, 13108, 25, 220, 1303, 1114, 2017, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 1890, 2017, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 76, 20965, 796, 9578, 56, 532, 9578, 55, 62, 43, 220, 1303, 15561, 19702, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9578, 76, 20965, 1279, 16, 25, 220, 1303, 13707, 5584, 1016, 16196, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 76, 20965, 796, 657, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6498, 76, 20965, 796, 9578, 56, 532, 9578, 55, 62, 49, 220, 1303, 15561, 19702, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6498, 76, 20965, 1279, 16, 25, 220, 1303, 13707, 5584, 1016, 16196, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6498, 76, 20965, 796, 657, 26, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 406, 56, 18189, 18112, 25, 220, 1303, 5157, 2017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 7282, 2017, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 76, 20965, 796, 9578, 56, 1343, 9578, 55, 62, 43, 220, 1303, 15561, 19702, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9578, 76, 20965, 1875, 12, 16, 25, 220, 1303, 13707, 5584, 1016, 22052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9578, 76, 20965, 796, 657, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6498, 76, 20965, 796, 9578, 56, 1343, 9578, 55, 62, 49, 220, 220, 1303, 15561, 19702, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6498, 76, 20965, 1875, 12, 16, 25, 220, 1303, 13707, 5584, 1016, 22052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6498, 76, 20965, 796, 657, 26, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 29292, 6624, 6407, 25, 220, 1303, 11198, 2866, 329, 29292, 198, 220, 220, 220, 220, 220, 220, 220, 37125, 220, 796, 9578, 76, 20965, 1635, 362, 198, 220, 220, 220, 220, 220, 220, 220, 29820, 796, 6498, 76, 20965, 1635, 362, 628, 198, 220, 220, 220, 2073, 25, 220, 1303, 14435, 2866, 198, 220, 220, 220, 220, 220, 220, 220, 37125, 796, 9578, 76, 20965, 198, 220, 220, 220, 220, 220, 220, 220, 29820, 796, 6498, 76, 20965, 628, 220, 220, 220, 611, 37125, 14512, 37125, 62, 15173, 393, 29820, 14512, 29820, 62, 15173, 25, 220, 1303, 5514, 3601, 5584, 12055, 611, 484, 423, 3421, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 18819, 5584, 220, 796, 3256, 31288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 11028, 5584, 796, 3256, 29138, 8, 198, 197, 198, 220, 220, 220, 37125, 62, 15173, 796, 37125, 198, 220, 220, 220, 29820, 62, 15173, 796, 29820, 198, 197, 198, 197, 198, 220, 220, 220, 1303, 5345, 5584, 2866, 290, 4571, 197, 198, 220, 220, 220, 220, 220, 197, 198, 220, 220, 220, 611, 287, 1851, 55, 6624, 6407, 25, 220, 1303, 31849, 19702, 6973, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 49, 964, 325, 19702, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 44, 17, 62, 23, 2545, 7, 29138, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 44, 16, 62, 23, 2545, 7, 31288, 8, 628, 220, 220, 220, 2073, 25, 220, 1303, 14435, 19702, 6973, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 19203, 26447, 19702, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 44, 17, 62, 23, 2545, 7, 31288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2266, 3526, 13, 44, 16, 62, 23, 2545, 7, 29138, 8, 220, 198, 220, 220, 220, 220, 220, 628, 628, 198, 220, 220, 220, 198 ]
2.083556
5,996
""" Tools to help manage Globus proxies """ import os import subprocess import logging from iceprod.server.config import IceProdConfig logger = logging.getLogger('globus') class SiteGlobusProxy(object): """ Manage site-wide globus proxy :param cfgfile: cfgfile location (optional) :param duration: proxy duration (optional, default 72 hours) """ def set_passphrase(self, p): """Set the passphrase""" self.cfg['passphrase'] = p def set_duration(self, d): """Set the duration""" self.cfg['duration'] = d def set_voms_vo(self, vo): """Set the voms VO""" self.cfg['voms_vo'] = vo def set_voms_role(self, r): """Set the voms role""" self.cfg['voms_role'] = r def update_proxy(self): """Update the proxy""" if 'passphrase' not in self.cfg: raise Exception('passphrase missing') if 'duration' not in self.cfg: raise Exception('duration missing') logger.info('duration: %r',self.cfg['duration']) if subprocess.call(['grid-proxy-info','-e', '-valid','%d:0'%self.cfg['duration'], ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL): # proxy needs updating if 'voms_vo' in self.cfg and self.cfg['voms_vo']: cmd = ['voms-proxy-init'] if 'voms_role' in self.cfg and self.cfg['voms_role']: vo = self.cfg['voms_vo'] role = self.cfg['voms_role'] cmd.extend(['-voms', '{0}:/{0}/Role={1}'.format(vo, role)]) else: cmd.extend(['-voms', self.cfg['voms_vo']]) else: cmd = ['grid-proxy-init'] cmd.extend(['-pwstdin','-valid','%d:0'%(self.cfg['duration']+1)]) if 'out' in self.cfg: cmd.extend(['-out', self.cfg['out']]) inputbytes = (self.cfg['passphrase']+'\n').encode('utf-8') p = subprocess.run(cmd, input=inputbytes, capture_output=True, timeout=60, check=False) logger.info('proxy cmd: %r', p.args) logger.info('stdout: %s', p.stdout) logger.info('stderr: %s', p.stderr) if 'voms_vo' in self.cfg and self.cfg['voms_vo']: for line in p.stdout.decode('utf-8').split('\n'): if line.startswith('Creating proxy') and line.endswith('Done'): break # this is a good proxy else: raise Exception('voms-proxy-init failed') elif p.returncode > 0: raise Exception('grid-proxy-init failed') def get_proxy(self): """Get the proxy location""" if 'out' in self.cfg: return self.cfg['out'] FNULL = open(os.devnull, 'w') return subprocess.check_output(['grid-proxy-info','-path'], stderr=FNULL).decode('utf-8').strip()
[ 37811, 198, 33637, 284, 1037, 6687, 40713, 385, 41775, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 11748, 18931, 198, 198, 6738, 4771, 1676, 67, 13, 15388, 13, 11250, 1330, 6663, 2964, 67, 16934, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 4743, 672, 385, 11537, 198, 198, 4871, 14413, 9861, 672, 385, 44148, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1869, 496, 2524, 12, 4421, 15095, 385, 15741, 628, 220, 220, 220, 1058, 17143, 30218, 70, 7753, 25, 30218, 70, 7753, 4067, 357, 25968, 8, 198, 220, 220, 220, 1058, 17143, 9478, 25, 15741, 9478, 357, 25968, 11, 4277, 7724, 2250, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 62, 6603, 34675, 7, 944, 11, 279, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 262, 1208, 34675, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 17816, 6603, 34675, 20520, 796, 279, 628, 220, 220, 220, 825, 900, 62, 32257, 7, 944, 11, 288, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 262, 9478, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 17816, 32257, 20520, 796, 288, 628, 220, 220, 220, 825, 900, 62, 85, 3150, 62, 13038, 7, 944, 11, 7608, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 262, 410, 3150, 30578, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 17816, 85, 3150, 62, 13038, 20520, 796, 7608, 628, 220, 220, 220, 825, 900, 62, 85, 3150, 62, 18090, 7, 944, 11, 374, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 262, 410, 3150, 2597, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 17816, 85, 3150, 62, 18090, 20520, 796, 374, 628, 220, 220, 220, 825, 4296, 62, 36436, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 15741, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 6603, 34675, 6, 407, 287, 2116, 13, 37581, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 6603, 34675, 4814, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 32257, 6, 407, 287, 2116, 13, 37581, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 32257, 4814, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 32257, 25, 4064, 81, 3256, 944, 13, 37581, 17816, 32257, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 850, 14681, 13, 13345, 7, 17816, 25928, 12, 36436, 12, 10951, 3256, 29001, 68, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12, 12102, 41707, 4, 67, 25, 15, 6, 4, 944, 13, 37581, 17816, 32257, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 14367, 448, 28, 7266, 14681, 13, 39345, 33991, 11, 336, 1082, 81, 28, 7266, 14681, 13, 39345, 33991, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15741, 2476, 19698, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 85, 3150, 62, 13038, 6, 287, 2116, 13, 37581, 290, 2116, 13, 37581, 17816, 85, 3150, 62, 13038, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 37250, 85, 3150, 12, 36436, 12, 15003, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 85, 3150, 62, 18090, 6, 287, 2116, 13, 37581, 290, 2116, 13, 37581, 17816, 85, 3150, 62, 18090, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7608, 796, 2116, 13, 37581, 17816, 85, 3150, 62, 13038, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2597, 796, 2116, 13, 37581, 17816, 85, 3150, 62, 18090, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 13, 2302, 437, 7, 17816, 12, 85, 3150, 3256, 705, 90, 15, 92, 14079, 90, 15, 92, 14, 47445, 34758, 16, 92, 4458, 18982, 7, 13038, 11, 2597, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 13, 2302, 437, 7, 17816, 12, 85, 3150, 3256, 2116, 13, 37581, 17816, 85, 3150, 62, 13038, 6, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 37250, 25928, 12, 36436, 12, 15003, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 13, 2302, 437, 7, 17816, 12, 79, 86, 19282, 259, 3256, 29001, 12102, 41707, 4, 67, 25, 15, 6, 4, 7, 944, 13, 37581, 17816, 32257, 20520, 10, 16, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 448, 6, 287, 2116, 13, 37581, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 13, 2302, 437, 7, 17816, 12, 448, 3256, 2116, 13, 37581, 17816, 448, 6, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 33661, 796, 357, 944, 13, 37581, 17816, 6603, 34675, 20520, 10, 6, 59, 77, 27691, 268, 8189, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 850, 14681, 13, 5143, 7, 28758, 11, 5128, 28, 15414, 33661, 11, 8006, 62, 22915, 28, 17821, 11, 26827, 28, 1899, 11, 2198, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 36436, 23991, 25, 4064, 81, 3256, 279, 13, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 19282, 448, 25, 4064, 82, 3256, 279, 13, 19282, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 301, 1082, 81, 25, 4064, 82, 3256, 279, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 85, 3150, 62, 13038, 6, 287, 2116, 13, 37581, 290, 2116, 13, 37581, 17816, 85, 3150, 62, 13038, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 279, 13, 19282, 448, 13, 12501, 1098, 10786, 40477, 12, 23, 27691, 35312, 10786, 59, 77, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 10786, 32071, 15741, 11537, 290, 1627, 13, 437, 2032, 342, 10786, 45677, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 1303, 428, 318, 257, 922, 15741, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 85, 3150, 12, 36436, 12, 15003, 4054, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 279, 13, 7783, 8189, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 25928, 12, 36436, 12, 15003, 4054, 11537, 628, 220, 220, 220, 825, 651, 62, 36436, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15741, 4067, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 448, 6, 287, 2116, 13, 37581, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 37581, 17816, 448, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 376, 33991, 796, 1280, 7, 418, 13, 7959, 8423, 11, 705, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 850, 14681, 13, 9122, 62, 22915, 7, 17816, 25928, 12, 36436, 12, 10951, 3256, 29001, 6978, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 37, 33991, 737, 12501, 1098, 10786, 40477, 12, 23, 27691, 36311, 3419, 198 ]
1.980354
1,527
import os import percy from percy import utils try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse __all__ = ['ResourceLoader'] MAX_FILESIZE_BYTES = 15 * 1024**2 # 15 MiB.
[ 11748, 28686, 198, 11748, 583, 948, 198, 6738, 583, 948, 1330, 3384, 4487, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 2956, 297, 571, 13, 29572, 1330, 19016, 29572, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 19016, 29572, 1330, 19016, 29572, 198, 198, 834, 439, 834, 796, 37250, 26198, 17401, 20520, 198, 198, 22921, 62, 46700, 1546, 35400, 62, 17513, 51, 1546, 796, 1315, 1635, 28119, 1174, 17, 220, 1303, 1315, 13756, 33, 13, 628, 198 ]
2.7875
80
import traceback import uuid import socket import logging import os import base64 import zlib import gzip import time import datetime from http import cookies from http.server import BaseHTTPRequestHandler from http.server import HTTPServer from threading import Thread import WebRequest if __name__ == '__main__': wg = WebRequest.WebGetRobust() srv = start_server( assertion_class = None, from_wg = wg, skip_header_checks = True) print("running server on port: ", srv) while 1: time.sleep(1)
[ 198, 11748, 12854, 1891, 198, 11748, 334, 27112, 198, 11748, 17802, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 2779, 2414, 198, 11748, 1976, 8019, 198, 11748, 308, 13344, 198, 11748, 640, 198, 11748, 4818, 8079, 198, 6738, 2638, 1330, 14746, 198, 6738, 2638, 13, 15388, 1330, 7308, 40717, 18453, 25060, 198, 6738, 2638, 13, 15388, 1330, 38288, 18497, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 11748, 5313, 18453, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 197, 86, 70, 796, 5313, 18453, 13, 13908, 3855, 14350, 436, 3419, 198, 197, 27891, 85, 796, 923, 62, 15388, 7, 198, 197, 197, 30493, 295, 62, 4871, 220, 220, 220, 796, 6045, 11, 198, 197, 197, 6738, 62, 86, 70, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 266, 70, 11, 198, 197, 197, 48267, 62, 25677, 62, 42116, 796, 6407, 8, 628, 197, 4798, 7203, 20270, 4382, 319, 2493, 25, 33172, 19677, 85, 8, 198, 197, 4514, 352, 25, 198, 197, 197, 2435, 13, 42832, 7, 16, 8, 198 ]
2.933333
180
import re import math import random import logging from collections import OrderedDict from discord.ext import commands from common import utilities from common import dynamo_manager from common.module.discoverable_module import DiscoverableCog from common.module.module_initialization_container import ModuleInitializationContainer ## Config CONFIG_OPTIONS = utilities.load_config() ## Logging logger = utilities.initialize_logging(logging.getLogger(__name__)) class Music(DiscoverableCog): ''' Note that there's something wrong with the note parsing logic. It still works, but it takes waaay too long now. I'll look into it later. ''' ## Keys BPM_KEY = "bpm" OCTAVE_KEY = "octave" TONE_KEY = "tone" BAD_KEY = "bad" BAD_PERCENT_KEY = "bad_percent" ## Defaults BPM = CONFIG_OPTIONS.get(BPM_KEY, 100) OCTAVE = CONFIG_OPTIONS.get(OCTAVE_KEY, 2) TONE = CONFIG_OPTIONS.get(TONE_KEY, False) BAD = CONFIG_OPTIONS.get(BAD_KEY, False) BAD_PERCENT = CONFIG_OPTIONS.get(BAD_PERCENT_KEY, 10) ## Config ## todo: fix this NOTES = ["c", "c#", "d", "d#", "e", "f", "f#", "g", "g#", "a", "a#", "b"] HALF_STEPS = len(NOTES) OCTAVES = 10 NOTE_REPLACEMENT = "[laa<{},{}>]" REST = "r" REST_REPLACEMENT = "[_<{},{}>]" TONE_REPLACEMENT = "[:t <{},{}>]" SHARP = "#" ## Properties @property ## Methods ## Calculates the frequency of a note at a given number of half steps from the reference frequency ## Builds a dictionary of notes and their pitches at a given octave ## Pulls any TTS config options (ex. [:dv hs 10]) from the message string ## Pulls any music config options (ex. \bpm=N) from the message string ## Turns a list of Note objects into a string of TTS friendly phonemes ## Commands @commands.command(no_pm=True, brief="Sings the given notes aloud!") async def music(self, ctx, notes, ignore_char_limit=False): """ Sings the given notes aloud to your voice channel. A note (or notes) can look like any of these: 'a' - Just the 'a' quarter note in the default second octave. '2d' - A 'd' quarter note held for two beats, again in the second octave. 'c#4' - A 'c#' quarter note in the fourth octave. '2b#3' - A 'b#' quarter note held for two beats, in the third octave. 'r' - A quarter rest. '4r' - A quarter rest held for four beats. 'b/b' - Two 'b' eighth notes. '2c#/d#/a3/f' - A 'c#' sixteenth note held for two beats, a 'd#' sixteenth note, an 'a' sixteenth note in the third octave, and a 'f' sixteenth note. Formatting: Notes (at the moment) have four distinct parts (Duration?)(Note)(Sharp?)(Octave?). Only the base note is necessary, everything else can be omitted if necessary (see examples) A single space NEEDS to be inserted between notes. You can chain notes together by inserting a '/' between notes, this lets you create multiple shorter beats. This lets you approximate eighth notes, sixteenth notes, thirty-second notes, and really any other division of notes. (Twelfth, Twentieth, etc) You can also use the | character to help with formatting your bars (ex. 'c d e f | r g a b') Inline Configuration: BPM: The '\\bpm=N' line can be inserted anywhere to adjust the bpm of notes in that line. N can be any positive integer. (ex. '\\bpm=120' or '\\bpm=60') Octave: The '\\octave=N' line can be inserted anywhere to adjust the default octave of notes in that line. N can be any integer between 0 and 9 (inclusive) (ex. '\\octave=1' or '\\octave=3'), however 0 through 4 give the best results. Tones: The '\\tone=N' line can be inserted anywhere to set whether or not to use tones instead of phonemes on that line. N can be either 0 or 1, where 0 disables tones, and 1 enables them. Bad: The '\\bad=N' line can be inserted anywhere to set whether or not to make the notes on that line sound worse (See: https://www.youtube.com/watch?v=KolfEhV-KiA). N can be either 0 or 1, where 0 disables the badness, and 1 enables it. Bad_Percent: The '\\bad_percent=N' line can be inserted anywhere to set the level of badness, when using the \\bad config. N can be any positive integer. It works as a percentage where if N = 0, then it's not at all worse, and N = 100 would be 100% worse. Needs \\bad to be set to have any effect. Examples: My Heart Will Go On (first 7 bars): '\music \\bpm=100 f f f f | e 2f f | e 2f g | 2a 2g | f f f f | e 2f f | 2d 2r' Sandstorm (kinda): '\music \\bpm=136 \\octave=3 \\tone=1 b/b/b/b/b b/b/b/b/b/b/b e/e/e/e/e/e/e d/d/d/d/d/d/d a b/b/b/b/b/b b/b/b/b/b/b c# b/b/b/b/b/a' Defaults: bpm = 100 octave = 2 tone = 0 bad = 0 bad_percent = 10 """ ## Todo: preserve the position of tts_configs in the message tts_configs, message = self._extract_tts_configs(notes) music_configs, message = self._extract_music_configs(notes) bpm = music_configs.get(self.BPM_KEY, self.bpm) beat_length = 60 / bpm # for a quarter note octave = music_configs.get(self.OCTAVE_KEY, self.octave) notes = MusicParser(message, beat_length, octave).notes tts_notes = self._build_tts_note_string(notes, **music_configs) await self.speech_cog._say(ctx, " ".join(tts_configs) + tts_notes, ignore_char_limit=ignore_char_limit)
[ 11748, 302, 198, 11748, 10688, 198, 11748, 4738, 198, 11748, 18931, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 198, 6738, 2219, 1330, 20081, 198, 6738, 2219, 1330, 6382, 78, 62, 37153, 198, 6738, 2219, 13, 21412, 13, 67, 29392, 540, 62, 21412, 1330, 29704, 540, 34, 519, 198, 6738, 2219, 13, 21412, 13, 21412, 62, 36733, 1634, 62, 34924, 1330, 19937, 24243, 1634, 29869, 198, 198, 2235, 17056, 198, 10943, 16254, 62, 3185, 51, 11053, 796, 20081, 13, 2220, 62, 11250, 3419, 198, 198, 2235, 5972, 2667, 198, 6404, 1362, 796, 20081, 13, 36733, 1096, 62, 6404, 2667, 7, 6404, 2667, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 4008, 628, 628, 198, 198, 4871, 7849, 7, 44596, 540, 34, 519, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5740, 326, 612, 338, 1223, 2642, 351, 262, 3465, 32096, 9156, 13, 632, 991, 2499, 11, 475, 340, 2753, 2082, 64, 323, 1165, 890, 783, 13, 314, 1183, 198, 220, 220, 220, 804, 656, 340, 1568, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 22492, 26363, 198, 220, 220, 220, 347, 5868, 62, 20373, 796, 366, 65, 4426, 1, 198, 220, 220, 220, 42256, 32, 6089, 62, 20373, 796, 366, 38441, 1015, 1, 198, 220, 220, 220, 309, 11651, 62, 20373, 796, 366, 41527, 1, 198, 220, 220, 220, 33934, 62, 20373, 796, 366, 14774, 1, 198, 220, 220, 220, 33934, 62, 18973, 43960, 62, 20373, 796, 366, 14774, 62, 25067, 1, 628, 220, 220, 220, 22492, 2896, 13185, 198, 220, 220, 220, 347, 5868, 796, 25626, 62, 3185, 51, 11053, 13, 1136, 7, 33, 5868, 62, 20373, 11, 1802, 8, 198, 220, 220, 220, 42256, 32, 6089, 796, 25626, 62, 3185, 51, 11053, 13, 1136, 7, 46, 4177, 32, 6089, 62, 20373, 11, 362, 8, 198, 220, 220, 220, 309, 11651, 796, 25626, 62, 3185, 51, 11053, 13, 1136, 7, 11357, 36, 62, 20373, 11, 10352, 8, 198, 220, 220, 220, 33934, 796, 25626, 62, 3185, 51, 11053, 13, 1136, 7, 33, 2885, 62, 20373, 11, 10352, 8, 198, 220, 220, 220, 33934, 62, 18973, 43960, 796, 25626, 62, 3185, 51, 11053, 13, 1136, 7, 33, 2885, 62, 18973, 43960, 62, 20373, 11, 838, 8, 628, 220, 220, 220, 22492, 17056, 198, 220, 220, 220, 22492, 284, 4598, 25, 4259, 428, 198, 220, 220, 220, 5626, 1546, 796, 14631, 66, 1600, 366, 66, 2, 1600, 366, 67, 1600, 366, 67, 2, 1600, 366, 68, 1600, 366, 69, 1600, 366, 69, 2, 1600, 366, 70, 1600, 366, 70, 2, 1600, 366, 64, 1600, 366, 64, 2, 1600, 366, 65, 8973, 198, 220, 220, 220, 42968, 37, 62, 30516, 3705, 796, 18896, 7, 11929, 1546, 8, 198, 220, 220, 220, 42256, 10116, 1546, 796, 838, 198, 220, 220, 220, 24550, 62, 2200, 6489, 2246, 12529, 796, 12878, 5031, 64, 27, 90, 5512, 90, 92, 29, 30866, 198, 220, 220, 220, 30617, 796, 366, 81, 1, 198, 220, 220, 220, 30617, 62, 2200, 6489, 2246, 12529, 796, 12878, 62, 27, 90, 5512, 90, 92, 29, 30866, 198, 220, 220, 220, 309, 11651, 62, 2200, 6489, 2246, 12529, 796, 12878, 25, 83, 1279, 90, 5512, 90, 92, 29, 30866, 198, 220, 220, 220, 6006, 36035, 796, 25113, 1, 628, 198, 220, 220, 220, 22492, 24946, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 22492, 25458, 628, 220, 220, 220, 22492, 27131, 689, 262, 8373, 286, 257, 3465, 379, 257, 1813, 1271, 286, 2063, 4831, 422, 262, 4941, 8373, 628, 198, 220, 220, 220, 22492, 10934, 82, 257, 22155, 286, 4710, 290, 511, 22421, 379, 257, 1813, 19318, 1015, 628, 198, 220, 220, 220, 22492, 21429, 82, 597, 309, 4694, 4566, 3689, 357, 1069, 13, 685, 25, 67, 85, 289, 82, 838, 12962, 422, 262, 3275, 4731, 628, 198, 220, 220, 220, 22492, 21429, 82, 597, 2647, 4566, 3689, 357, 1069, 13, 3467, 65, 4426, 28, 45, 8, 422, 262, 3275, 4731, 628, 198, 220, 220, 220, 22492, 30875, 257, 1351, 286, 5740, 5563, 656, 257, 4731, 286, 309, 4694, 8030, 32896, 368, 274, 628, 220, 220, 220, 22492, 49505, 628, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 7, 3919, 62, 4426, 28, 17821, 11, 4506, 2625, 50, 654, 262, 1813, 4710, 32227, 2474, 8, 198, 220, 220, 220, 30351, 825, 2647, 7, 944, 11, 269, 17602, 11, 4710, 11, 8856, 62, 10641, 62, 32374, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 311, 654, 262, 1813, 4710, 32227, 284, 534, 3809, 6518, 13, 628, 220, 220, 220, 220, 220, 220, 220, 317, 3465, 357, 273, 4710, 8, 460, 804, 588, 597, 286, 777, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 64, 6, 532, 2329, 262, 705, 64, 6, 3860, 3465, 287, 262, 4277, 1218, 19318, 1015, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17, 67, 6, 532, 317, 705, 67, 6, 3860, 3465, 2714, 329, 734, 17825, 11, 757, 287, 262, 1218, 19318, 1015, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 2, 19, 6, 532, 317, 705, 66, 2, 6, 3860, 3465, 287, 262, 5544, 19318, 1015, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17, 65, 2, 18, 6, 532, 317, 705, 65, 2, 6, 3860, 3465, 2714, 329, 734, 17825, 11, 287, 262, 2368, 19318, 1015, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 81, 6, 532, 317, 3860, 1334, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19, 81, 6, 532, 317, 3860, 1334, 2714, 329, 1440, 17825, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 14, 65, 6, 532, 4930, 705, 65, 6, 16974, 4710, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17, 66, 2, 14, 67, 2, 14, 64, 18, 14, 69, 6, 532, 317, 705, 66, 2, 6, 2237, 20283, 3465, 2714, 329, 734, 17825, 11, 257, 705, 67, 2, 6, 2237, 20283, 3465, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 705, 64, 6, 2237, 20283, 3465, 287, 262, 2368, 19318, 1015, 11, 290, 257, 705, 69, 6, 2237, 20283, 3465, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 18980, 889, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11822, 357, 265, 262, 2589, 8, 423, 1440, 7310, 3354, 357, 26054, 30, 5769, 6425, 5769, 44336, 30, 5769, 12349, 1015, 29865, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5514, 262, 2779, 3465, 318, 3306, 11, 2279, 2073, 460, 307, 22532, 611, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3826, 6096, 8, 317, 2060, 2272, 36465, 50, 284, 307, 18846, 1022, 4710, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 921, 460, 6333, 4710, 1978, 416, 19319, 257, 31051, 6, 1022, 4710, 11, 428, 8781, 345, 2251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3294, 12238, 17825, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 8781, 345, 27665, 16974, 4710, 11, 2237, 20283, 4710, 11, 12277, 12, 12227, 4710, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1107, 597, 584, 7297, 286, 4710, 13, 357, 5080, 44659, 11, 1815, 298, 19235, 11, 3503, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 921, 460, 635, 779, 262, 930, 2095, 284, 1037, 351, 33313, 534, 9210, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1069, 13, 705, 66, 288, 304, 277, 930, 374, 308, 257, 275, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 554, 1370, 28373, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 5868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 705, 6852, 65, 4426, 28, 45, 6, 1627, 460, 307, 18846, 6609, 284, 4532, 262, 275, 4426, 286, 4710, 287, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 399, 460, 307, 597, 3967, 18253, 13, 357, 1069, 13, 705, 6852, 65, 4426, 28, 10232, 6, 393, 705, 6852, 65, 4426, 28, 1899, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2556, 1015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 705, 6852, 38441, 1015, 28, 45, 6, 1627, 460, 307, 18846, 6609, 284, 4532, 262, 4277, 19318, 1015, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4710, 287, 326, 1627, 13, 399, 460, 307, 597, 18253, 1022, 657, 290, 860, 357, 259, 5731, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1069, 13, 705, 6852, 38441, 1015, 28, 16, 6, 393, 705, 6852, 38441, 1015, 28, 18, 33809, 2158, 657, 832, 604, 1577, 262, 1266, 2482, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 1952, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 705, 6852, 41527, 28, 45, 6, 1627, 460, 307, 18846, 6609, 284, 900, 1771, 393, 407, 284, 779, 23755, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2427, 286, 32896, 368, 274, 319, 326, 1627, 13, 399, 460, 307, 2035, 657, 393, 352, 11, 810, 657, 595, 2977, 23755, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 352, 13536, 606, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7772, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 705, 6852, 14774, 28, 45, 6, 1627, 460, 307, 18846, 6609, 284, 900, 1771, 393, 407, 284, 787, 262, 4710, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 326, 1627, 2128, 4785, 357, 6214, 25, 3740, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 42, 4024, 43894, 53, 12, 42, 72, 32, 737, 399, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 2035, 657, 393, 352, 11, 810, 657, 595, 2977, 262, 2089, 1108, 11, 290, 352, 13536, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7772, 62, 31905, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 705, 6852, 14774, 62, 25067, 28, 45, 6, 1627, 460, 307, 18846, 6609, 284, 900, 262, 1241, 286, 2089, 1108, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 1262, 262, 26867, 14774, 4566, 13, 399, 460, 307, 597, 3967, 18253, 13, 632, 2499, 355, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5873, 810, 611, 399, 796, 657, 11, 788, 340, 338, 407, 379, 477, 4785, 11, 290, 399, 796, 1802, 561, 307, 1802, 4, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4785, 13, 36557, 26867, 14774, 284, 307, 900, 284, 423, 597, 1245, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2011, 8894, 2561, 1514, 1550, 357, 11085, 767, 9210, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 59, 28965, 26867, 65, 4426, 28, 3064, 277, 277, 277, 277, 930, 304, 362, 69, 277, 930, 304, 362, 69, 308, 930, 362, 64, 362, 70, 930, 277, 277, 277, 277, 930, 304, 362, 69, 277, 930, 362, 67, 362, 81, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3837, 12135, 357, 11031, 64, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 59, 28965, 26867, 65, 4426, 28, 20809, 26867, 38441, 1015, 28, 18, 26867, 41527, 28, 16, 275, 14, 65, 14, 65, 14, 65, 14, 65, 275, 14, 65, 14, 65, 14, 65, 14, 65, 14, 65, 14, 65, 304, 14, 68, 14, 68, 14, 68, 14, 68, 14, 68, 14, 68, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14, 67, 14, 67, 14, 67, 14, 67, 14, 67, 14, 67, 257, 275, 14, 65, 14, 65, 14, 65, 14, 65, 14, 65, 275, 14, 65, 14, 65, 14, 65, 14, 65, 14, 65, 269, 2, 275, 14, 65, 14, 65, 14, 65, 14, 65, 14, 64, 6, 628, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 4426, 796, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19318, 1015, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8216, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2089, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2089, 62, 25067, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 309, 24313, 25, 12201, 262, 2292, 286, 256, 912, 62, 11250, 82, 287, 262, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 256, 912, 62, 11250, 82, 11, 3275, 796, 2116, 13557, 2302, 974, 62, 83, 912, 62, 11250, 82, 7, 17815, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2647, 62, 11250, 82, 11, 3275, 796, 2116, 13557, 2302, 974, 62, 28965, 62, 11250, 82, 7, 17815, 8, 628, 220, 220, 220, 220, 220, 220, 220, 275, 4426, 796, 2647, 62, 11250, 82, 13, 1136, 7, 944, 13, 33, 5868, 62, 20373, 11, 2116, 13, 65, 4426, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4405, 62, 13664, 796, 3126, 1220, 275, 4426, 220, 1303, 329, 257, 3860, 3465, 198, 220, 220, 220, 220, 220, 220, 220, 19318, 1015, 796, 2647, 62, 11250, 82, 13, 1136, 7, 944, 13, 46, 4177, 32, 6089, 62, 20373, 11, 2116, 13, 38441, 1015, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4710, 796, 7849, 46677, 7, 20500, 11, 4405, 62, 13664, 11, 19318, 1015, 737, 17815, 198, 220, 220, 220, 220, 220, 220, 220, 256, 912, 62, 17815, 796, 2116, 13557, 11249, 62, 83, 912, 62, 11295, 62, 8841, 7, 17815, 11, 12429, 28965, 62, 11250, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13, 45862, 62, 66, 519, 13557, 16706, 7, 49464, 11, 366, 27071, 22179, 7, 83, 912, 62, 11250, 82, 8, 1343, 256, 912, 62, 17815, 11, 8856, 62, 10641, 62, 32374, 28, 46430, 62, 10641, 62, 32374, 8, 628 ]
2.308666
2,608
import pytest from keras.preprocessing import image from PIL import Image import numpy as np import os import shutil import tempfile if __name__ == '__main__': pytest.main([__file__])
[ 11748, 12972, 9288, 201, 198, 6738, 41927, 292, 13, 3866, 36948, 1330, 2939, 201, 198, 6738, 350, 4146, 1330, 7412, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 28686, 201, 198, 11748, 4423, 346, 201, 198, 11748, 20218, 7753, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 12972, 9288, 13, 12417, 26933, 834, 7753, 834, 12962, 201, 198 ]
2.706667
75
#!/usr/bin/env python from setuptools import find_packages, setup project = "ch-cli" version = "0.1.0" setup( name=project, version=version, description="Command line tool for ch", author="Zuiwan", author_email="[email protected]", url="https://github.com/zuiwan/CodingHub-CLI.git", packages=find_packages(exclude=("*.tests", "*.tests.*", "tests.*", "tests")), inchude_package_data=True, zip_safe=False, keywords="ch", install_requires=[ "click>=6.7", "requests>=2.12.4", "marshmallow>=2.11.1", "pytz>=2016.10", "shortuuid>=0.4.3", "tabulate>=0.7.7", "kafka-python>=1.3.3", "pathlib2>=2.3.0", "tzlocal>=1.4", "progressbar33>=2.4", "websocket-client>=0.44.0", ], setup_requires=[ "nose>=1.0", ], dependency_links=[ ], entry_points={ "console_scripts": [ "codehub = ch.main:cli", "ch-dev = ch.development.dev:cli", "ch-local = ch.development.local:cli", ], }, tests_require=[ "mock>=1.0.1", ], )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 198, 16302, 796, 366, 354, 12, 44506, 1, 198, 9641, 796, 366, 15, 13, 16, 13, 15, 1, 198, 40406, 7, 198, 220, 220, 220, 1438, 28, 16302, 11, 198, 220, 220, 220, 2196, 28, 9641, 11, 198, 220, 220, 220, 6764, 2625, 21575, 1627, 2891, 329, 442, 1600, 198, 220, 220, 220, 1772, 2625, 57, 9019, 8149, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 67, 590, 3541, 31, 14816, 13, 785, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 89, 9019, 8149, 14, 34, 7656, 16066, 12, 5097, 40, 13, 18300, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 1069, 9152, 28, 7203, 24620, 41989, 1600, 366, 24620, 41989, 15885, 1600, 366, 41989, 15885, 1600, 366, 41989, 4943, 828, 198, 220, 220, 220, 11111, 2507, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 26286, 2625, 354, 1600, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12976, 29, 28, 21, 13, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8897, 3558, 29, 28, 17, 13, 1065, 13, 19, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 5406, 42725, 29, 28, 17, 13, 1157, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9078, 22877, 29, 28, 5304, 13, 940, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19509, 12303, 312, 29, 28, 15, 13, 19, 13, 18, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8658, 5039, 29, 28, 15, 13, 22, 13, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 74, 1878, 4914, 12, 29412, 29, 28, 16, 13, 18, 13, 18, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6978, 8019, 17, 29, 28, 17, 13, 18, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22877, 12001, 29, 28, 16, 13, 19, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33723, 5657, 2091, 29, 28, 17, 13, 19, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 732, 1443, 5459, 12, 16366, 29, 28, 15, 13, 2598, 13, 15, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 9058, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 77, 577, 29, 28, 16, 13, 15, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 20203, 62, 28751, 41888, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41947, 62, 46521, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8189, 40140, 796, 442, 13, 12417, 25, 44506, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 12, 7959, 796, 442, 13, 31267, 13, 7959, 25, 44506, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 12, 12001, 796, 442, 13, 31267, 13, 12001, 25, 44506, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 5254, 62, 46115, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 735, 29, 28, 16, 13, 15, 13, 16, 1600, 198, 220, 220, 220, 16589, 198, 8, 198 ]
1.918644
590
import os import re from typing import ( Union, List, Dict, Pattern ) from pyrogram.filters import create from pyrogram import filters, Client from pyrogram.types import ( Message, CallbackQuery, InlineQuery, InlineKeyboardMarkup, ReplyKeyboardMarkup, Update ) from config import Config from tronx.database.postgres.dv_sql import DVSQL dv = DVSQL() # custom regex filter def MyPrefix(): """Multiple prefix support function""" return dv.getdv("PREFIX").split() or Config.PREFIX.split() or "." # custom command filter
[ 11748, 28686, 198, 11748, 302, 198, 198, 6738, 19720, 1330, 357, 198, 197, 38176, 11, 220, 198, 197, 8053, 11, 220, 198, 197, 35, 713, 11, 220, 198, 197, 47546, 198, 8, 198, 198, 6738, 12972, 39529, 13, 10379, 1010, 1330, 2251, 198, 6738, 12972, 39529, 1330, 16628, 11, 20985, 198, 6738, 12972, 39529, 13, 19199, 1330, 357, 198, 197, 12837, 11, 220, 198, 197, 47258, 20746, 11, 220, 198, 197, 818, 1370, 20746, 11, 220, 198, 197, 818, 1370, 9218, 3526, 9704, 929, 11, 220, 198, 197, 36875, 9218, 3526, 9704, 929, 11, 220, 198, 197, 10260, 198, 8, 198, 6738, 4566, 1330, 17056, 198, 6738, 491, 261, 87, 13, 48806, 13, 7353, 34239, 13, 67, 85, 62, 25410, 1330, 29854, 17861, 220, 198, 198, 67, 85, 796, 29854, 17861, 3419, 628, 198, 2, 2183, 40364, 8106, 628, 198, 198, 4299, 2011, 36698, 844, 33529, 198, 197, 37811, 31217, 21231, 1104, 2163, 37811, 198, 197, 7783, 288, 85, 13, 1136, 67, 85, 7203, 47, 31688, 10426, 11074, 35312, 3419, 393, 17056, 13, 47, 31688, 10426, 13, 35312, 3419, 393, 366, 526, 628, 198, 198, 2, 2183, 3141, 8106, 628, 198 ]
2.879581
191
import torch from dataset import DrivingDataset from vidvqvae import VQVAE from torch.utils.data import DataLoader from torch.utils.data import random_split import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import ModelCheckpoint dataset = DrivingDataset("./generative", frames=16, skip=16) print(len(dataset)) train_set, val_set = random_split(dataset, [10000, 3009], generator=torch.Generator().manual_seed(42)) train_loader = DataLoader(train_set, batch_size=16, num_workers=12) val_loader = DataLoader(val_set, batch_size=8, num_workers=12) model = VQVAE( in_channel=3, channel=128, n_res_block=2, n_res_channel=32, embed_dim=64, n_embed=512, decay=0.99 ) # wandb_logger = WandbLogger(project="VidVQVAE", log_model="all") # wandb_logger.watch(model) # checkpoint_callback = ModelCheckpoint(monitor="val_loss") # trainer = pl.Trainer(gpus=1, logger=wandb_logger, callbacks=[checkpoint_callback]) trainer = pl.Trainer(gpus=1) trainer.fit(model, train_loader, val_loader)
[ 11748, 28034, 198, 6738, 27039, 1330, 32889, 27354, 292, 316, 198, 6738, 410, 312, 85, 80, 33353, 1330, 569, 48, 11731, 36, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 4738, 62, 35312, 198, 11748, 12972, 13165, 354, 62, 2971, 768, 355, 458, 198, 6738, 12972, 13165, 354, 62, 2971, 768, 13, 6404, 5355, 1330, 22420, 65, 11187, 1362, 198, 6738, 12972, 13165, 354, 62, 2971, 768, 13, 13345, 10146, 1330, 9104, 9787, 4122, 628, 198, 19608, 292, 316, 796, 32889, 27354, 292, 316, 7, 1911, 14, 8612, 876, 1600, 13431, 28, 1433, 11, 14267, 28, 1433, 8, 198, 4798, 7, 11925, 7, 19608, 292, 316, 4008, 198, 27432, 62, 2617, 11, 1188, 62, 2617, 796, 4738, 62, 35312, 7, 19608, 292, 316, 11, 685, 49388, 11, 5867, 24, 4357, 17301, 28, 13165, 354, 13, 8645, 1352, 22446, 805, 723, 62, 28826, 7, 3682, 4008, 198, 198, 27432, 62, 29356, 796, 6060, 17401, 7, 27432, 62, 2617, 11, 15458, 62, 7857, 28, 1433, 11, 997, 62, 22896, 28, 1065, 8, 198, 2100, 62, 29356, 796, 6060, 17401, 7, 2100, 62, 2617, 11, 15458, 62, 7857, 28, 23, 11, 997, 62, 22896, 28, 1065, 8, 198, 198, 19849, 796, 569, 48, 11731, 36, 7, 198, 220, 220, 220, 287, 62, 17620, 28, 18, 11, 198, 220, 220, 220, 6518, 28, 12762, 11, 198, 220, 220, 220, 299, 62, 411, 62, 9967, 28, 17, 11, 198, 220, 220, 220, 299, 62, 411, 62, 17620, 28, 2624, 11, 198, 220, 220, 220, 11525, 62, 27740, 28, 2414, 11, 198, 220, 220, 220, 299, 62, 20521, 28, 25836, 11, 198, 220, 220, 220, 22119, 28, 15, 13, 2079, 198, 8, 198, 198, 2, 11569, 65, 62, 6404, 1362, 796, 22420, 65, 11187, 1362, 7, 16302, 2625, 53, 312, 53, 48, 11731, 36, 1600, 2604, 62, 19849, 2625, 439, 4943, 198, 2, 11569, 65, 62, 6404, 1362, 13, 8340, 7, 19849, 8, 198, 198, 2, 26954, 62, 47423, 796, 9104, 9787, 4122, 7, 41143, 2625, 2100, 62, 22462, 4943, 198, 2, 21997, 796, 220, 458, 13, 2898, 10613, 7, 31197, 385, 28, 16, 11, 49706, 28, 86, 392, 65, 62, 6404, 1362, 11, 869, 10146, 41888, 9122, 4122, 62, 47423, 12962, 198, 2213, 10613, 796, 458, 13, 2898, 10613, 7, 31197, 385, 28, 16, 8, 198, 2213, 10613, 13, 11147, 7, 19849, 11, 4512, 62, 29356, 11, 1188, 62, 29356, 8 ]
2.637931
406
# Copyright 2013 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse from requestbuilder import Arg, MutuallyExclusiveArgList from requestbuilder.mixins import TabifyingMixin from euca2ools.commands.autoscaling import AutoScalingRequest
[ 2, 15069, 2211, 412, 1229, 3400, 457, 385, 11998, 11, 3457, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 286, 428, 3788, 287, 2723, 290, 13934, 5107, 11, 198, 2, 351, 393, 1231, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 198, 2, 3403, 389, 1138, 25, 198, 2, 198, 2, 220, 220, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 198, 2, 220, 220, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 198, 2, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 198, 2, 220, 220, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 198, 2, 366, 1921, 3180, 1, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 198, 2, 40880, 5390, 11, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 198, 2, 317, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 198, 2, 47210, 21479, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 198, 2, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 198, 2, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 198, 2, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 198, 2, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 198, 2, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 198, 2, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 198, 11748, 1822, 29572, 198, 198, 6738, 2581, 38272, 1330, 20559, 11, 13859, 935, 3109, 5731, 28100, 8053, 198, 6738, 2581, 38272, 13, 19816, 1040, 1330, 16904, 4035, 35608, 259, 198, 198, 6738, 304, 43120, 17, 10141, 13, 9503, 1746, 13, 2306, 17500, 4272, 1330, 11160, 3351, 4272, 18453, 628 ]
3.514943
435
from ColorText import ColorText Texto = ColorText.mudaCor('Olá Mundo!','blue','lo') print(Texto)
[ 6738, 5315, 8206, 1330, 5315, 8206, 201, 198, 201, 198, 8206, 78, 796, 5315, 8206, 13, 76, 15339, 10606, 10786, 30098, 6557, 33324, 78, 0, 41707, 17585, 41707, 5439, 11537, 201, 198, 4798, 7, 8206, 78, 8 ]
2.702703
37
# -*- coding: utf-8 -*- """Tests for the color module. BSD 3-Clause License Copyright (c) 2020-2021, Daniel Nagel All rights reserved. """ import numpy as np import pytest from matplotlib import colors as clr import prettypyplot @pytest.mark.parametrize('num, kwargs, error', [ (1, {}, None), (2, {'high': 2}, None), (2, {}, ValueError), ('a', {}, TypeError), ((1, 2), {}, TypeError), ]) def test__is_number_in_range(num, kwargs, error): """Test if number is in range.""" if error is None: prettypyplot.colors._is_number_in_range(num, **kwargs) else: with pytest.raises(error): prettypyplot.colors._is_number_in_range(num, **kwargs) @pytest.mark.parametrize('L1, L2, refcontrast', [ (1, 0, 21), (0.5, 0.5, 1), ]) def test__contrast(L1, L2, refcontrast): """Test contrast.""" for l1, l2 in ((L1, L2), (L2, L1)): contrast = prettypyplot.colors._contrast(l1, l2) assert contrast == refcontrast @pytest.mark.parametrize('rgb, refluminace', [ ((1, 1, 1), 1), ((1, 0, 0), 0.2126), ((0, 1, 0), 0.7152), ((0, 0, 0), 0), ]) def test__relative_luminance(rgb, refluminace): """Test luminance.""" luminance = prettypyplot.colors._relative_luminance(rgb) assert luminance == refluminace @pytest.mark.parametrize('bgcolor, kwargs, refcolor, error', [ ('w', {}, '#000000', None), ('b', {}, '#ffffff', None), ('w', {'colors': ('r', 'w', 'k')}, clr.to_rgb('k'), None), ('w', {'colors': ('r', 'w')}, clr.to_rgb('r'), None), ('#505050', {}, '#ffffff', None), ('#a0a0a0', {}, '#000000', None), ('notAColorCode', {}, None, ValueError), ('w', {'colors': ('notAColorCode')}, None, ValueError), ]) def test_text_color(bgcolor, kwargs, refcolor, error): """Test estimate text color.""" if error is None: color = prettypyplot.colors.text_color(bgcolor, **kwargs) assert clr.to_rgb(color) == clr.to_rgb(refcolor) else: with pytest.raises(error): prettypyplot.colors.text_color(bgcolor, **kwargs) @pytest.mark.parametrize('color, refbool, error', [ ('k', True, None), ('w', True, None), ('r', False, None), ('#212121', True, None), ('#212122', False, None), ('NoColorCode', None, ValueError), ]) def test_is_grayshade(color, refbool, error): """Test if color is gray shade.""" if error is None: assert refbool == prettypyplot.colors.is_greyshade(color) else: with pytest.raises(error): prettypyplot.colors.is_greyshade(color) @pytest.mark.parametrize('nsc, color, kwargs, refcolors, error', [ (2, 'k', {}, [[0, 0, 0], [0.75, 0.75, 0.75]], None), (2, 'k', {'return_hex': False}, ['#000000', '#bfbfbf'], None), (2, 'k', {'return_hex': True}, ['#000000', '#bfbfbf'], None), (3, 'r', {}, ['#ff0000', '#ff6060', '#ffbfbf'], None), (3, 'NoColorCoder', {}, None, ValueError), (1.2, 'k', {}, None, TypeError), ('s', 'k', {}, None, TypeError), (0, 'k', {}, None, ValueError), (-5, 'k', {}, None, ValueError), ]) def test_categorical_color(nsc, color, kwargs, refcolors, error): """Test categorical color.""" if error is None: colors = prettypyplot.colors.categorical_color(nsc, color, **kwargs) # convert colors to hex if 'return_hex' not in kwargs or not kwargs['return_hex']: colors = [clr.to_hex(c) for c in colors] assert all( c == clr.to_hex(rc) for c, rc in zip(colors, refcolors) ) else: with pytest.raises(error): prettypyplot.colors.categorical_color(nsc, color, **kwargs) @pytest.mark.parametrize('nc, nsc, kwargs, ref, error', [ ( 2, 2, {'cmap': 'tab10'}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 2, 2, {}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 2, 2, {'return_colors': True}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 1, 2, {'cmap': 'jet'}, [[0.0, 0.0, 0.5], [0.75, 0.75, 1.0]], None, ), (2, 2, {'cmap': 'NoColorMap'}, None, ValueError), (20, 2, {'cmap': 'tab10'}, None, ValueError), (-2, 2, {}, None, ValueError), (2, -2, {}, None, ValueError), (2, -2, {}, None, ValueError), ]) def test_categorical_cmap(nc, nsc, kwargs, ref, error): """Test categorical cmap.""" if error is None: colors = prettypyplot.colors.categorical_cmap(nc, nsc, **kwargs) # convert colors to hex if 'return_colors' in kwargs and kwargs['return_colors']: colors = colors.reshape(-1, 3) else: colors = colors.colors np.testing.assert_array_almost_equal(colors, ref, decimal=2) else: with pytest.raises(error): prettypyplot.colors.categorical_cmap(nc, nsc, **kwargs) # dummy coverage tests def test_load_colors(): """Check that no error get raised.""" prettypyplot.colors.load_colors() def test_load_cmaps(): """Check that no error get raised.""" prettypyplot.colors.load_cmaps()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 51, 3558, 329, 262, 3124, 8265, 13, 198, 198, 21800, 513, 12, 2601, 682, 13789, 198, 15269, 357, 66, 8, 12131, 12, 1238, 2481, 11, 7806, 15196, 417, 198, 3237, 2489, 10395, 13, 198, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 9288, 198, 6738, 2603, 29487, 8019, 1330, 7577, 355, 537, 81, 198, 198, 11748, 2495, 9078, 29487, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 22510, 11, 479, 86, 22046, 11, 4049, 3256, 685, 198, 220, 220, 220, 357, 16, 11, 1391, 5512, 6045, 828, 198, 220, 220, 220, 357, 17, 11, 1391, 6, 8929, 10354, 362, 5512, 6045, 828, 198, 220, 220, 220, 357, 17, 11, 1391, 5512, 11052, 12331, 828, 198, 220, 220, 220, 19203, 64, 3256, 1391, 5512, 5994, 12331, 828, 198, 220, 220, 220, 14808, 16, 11, 362, 828, 1391, 5512, 5994, 12331, 828, 198, 12962, 198, 4299, 1332, 834, 271, 62, 17618, 62, 259, 62, 9521, 7, 22510, 11, 479, 86, 22046, 11, 4049, 2599, 198, 220, 220, 220, 37227, 14402, 611, 1271, 318, 287, 2837, 526, 15931, 198, 220, 220, 220, 611, 4049, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2495, 9078, 29487, 13, 4033, 669, 13557, 271, 62, 17618, 62, 259, 62, 9521, 7, 22510, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 18224, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2495, 9078, 29487, 13, 4033, 669, 13557, 271, 62, 17618, 62, 259, 62, 9521, 7, 22510, 11, 12429, 46265, 22046, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 43, 16, 11, 406, 17, 11, 1006, 3642, 5685, 3256, 685, 198, 220, 220, 220, 357, 16, 11, 657, 11, 2310, 828, 357, 15, 13, 20, 11, 657, 13, 20, 11, 352, 828, 198, 12962, 198, 4299, 1332, 834, 3642, 5685, 7, 43, 16, 11, 406, 17, 11, 1006, 3642, 5685, 2599, 198, 220, 220, 220, 37227, 14402, 6273, 526, 15931, 198, 220, 220, 220, 329, 300, 16, 11, 300, 17, 287, 14808, 43, 16, 11, 406, 17, 828, 357, 43, 17, 11, 406, 16, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6273, 796, 2495, 9078, 29487, 13, 4033, 669, 13557, 3642, 5685, 7, 75, 16, 11, 300, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 6273, 6624, 1006, 3642, 5685, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 81, 22296, 11, 1006, 75, 7230, 558, 3256, 685, 198, 220, 220, 220, 14808, 16, 11, 352, 11, 352, 828, 352, 828, 198, 220, 220, 220, 14808, 16, 11, 657, 11, 657, 828, 657, 13, 17, 19420, 828, 198, 220, 220, 220, 14808, 15, 11, 352, 11, 657, 828, 657, 13, 22, 17827, 828, 198, 220, 220, 220, 14808, 15, 11, 657, 11, 657, 828, 657, 828, 198, 12962, 198, 4299, 1332, 834, 43762, 62, 75, 7230, 590, 7, 81, 22296, 11, 1006, 75, 7230, 558, 2599, 198, 220, 220, 220, 37227, 14402, 29763, 590, 526, 15931, 198, 220, 220, 220, 29763, 590, 796, 2495, 9078, 29487, 13, 4033, 669, 13557, 43762, 62, 75, 7230, 590, 7, 81, 22296, 8, 198, 220, 220, 220, 6818, 29763, 590, 6624, 1006, 75, 7230, 558, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 35904, 8043, 11, 479, 86, 22046, 11, 1006, 8043, 11, 4049, 3256, 685, 198, 220, 220, 220, 19203, 86, 3256, 1391, 5512, 705, 2, 10535, 3256, 6045, 828, 198, 220, 220, 220, 19203, 65, 3256, 1391, 5512, 705, 2, 12927, 487, 3256, 6045, 828, 198, 220, 220, 220, 19203, 86, 3256, 1391, 6, 4033, 669, 10354, 19203, 81, 3256, 705, 86, 3256, 705, 74, 11537, 5512, 537, 81, 13, 1462, 62, 81, 22296, 10786, 74, 33809, 6045, 828, 198, 220, 220, 220, 19203, 86, 3256, 1391, 6, 4033, 669, 10354, 19203, 81, 3256, 705, 86, 11537, 5512, 537, 81, 13, 1462, 62, 81, 22296, 10786, 81, 33809, 6045, 828, 198, 220, 220, 220, 19203, 2, 1120, 1120, 1120, 3256, 1391, 5512, 705, 2, 12927, 487, 3256, 6045, 828, 198, 220, 220, 220, 19203, 2, 64, 15, 64, 15, 64, 15, 3256, 1391, 5512, 705, 2, 10535, 3256, 6045, 828, 198, 220, 220, 220, 19203, 1662, 2246, 45621, 10669, 3256, 1391, 5512, 6045, 11, 11052, 12331, 828, 198, 220, 220, 220, 19203, 86, 3256, 1391, 6, 4033, 669, 10354, 19203, 1662, 2246, 45621, 10669, 11537, 5512, 6045, 11, 11052, 12331, 828, 198, 12962, 198, 4299, 1332, 62, 5239, 62, 8043, 7, 35904, 8043, 11, 479, 86, 22046, 11, 1006, 8043, 11, 4049, 2599, 198, 220, 220, 220, 37227, 14402, 8636, 2420, 3124, 526, 15931, 198, 220, 220, 220, 611, 4049, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 2495, 9078, 29487, 13, 4033, 669, 13, 5239, 62, 8043, 7, 35904, 8043, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 537, 81, 13, 1462, 62, 81, 22296, 7, 8043, 8, 6624, 537, 81, 13, 1462, 62, 81, 22296, 7, 5420, 8043, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 18224, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2495, 9078, 29487, 13, 4033, 669, 13, 5239, 62, 8043, 7, 35904, 8043, 11, 12429, 46265, 22046, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 8043, 11, 1006, 30388, 11, 4049, 3256, 685, 198, 220, 220, 220, 19203, 74, 3256, 6407, 11, 6045, 828, 198, 220, 220, 220, 19203, 86, 3256, 6407, 11, 6045, 828, 198, 220, 220, 220, 19203, 81, 3256, 10352, 11, 6045, 828, 198, 220, 220, 220, 19203, 2, 21777, 19244, 3256, 6407, 11, 6045, 828, 198, 220, 220, 220, 19203, 2, 21777, 18376, 3256, 10352, 11, 6045, 828, 198, 220, 220, 220, 19203, 2949, 10258, 10669, 3256, 6045, 11, 11052, 12331, 828, 198, 12962, 198, 4299, 1332, 62, 271, 62, 2164, 592, 71, 671, 7, 8043, 11, 1006, 30388, 11, 4049, 2599, 198, 220, 220, 220, 37227, 14402, 611, 3124, 318, 12768, 17979, 526, 15931, 198, 220, 220, 220, 611, 4049, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1006, 30388, 6624, 2495, 9078, 29487, 13, 4033, 669, 13, 271, 62, 16694, 893, 71, 671, 7, 8043, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 18224, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2495, 9078, 29487, 13, 4033, 669, 13, 271, 62, 16694, 893, 71, 671, 7, 8043, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 77, 1416, 11, 3124, 11, 479, 86, 22046, 11, 1006, 4033, 669, 11, 4049, 3256, 685, 198, 220, 220, 220, 357, 17, 11, 705, 74, 3256, 1391, 5512, 16410, 15, 11, 657, 11, 657, 4357, 685, 15, 13, 2425, 11, 657, 13, 2425, 11, 657, 13, 2425, 60, 4357, 6045, 828, 198, 220, 220, 220, 357, 17, 11, 705, 74, 3256, 1391, 6, 7783, 62, 33095, 10354, 10352, 5512, 37250, 2, 10535, 3256, 705, 2, 19881, 19881, 19881, 6, 4357, 6045, 828, 198, 220, 220, 220, 357, 17, 11, 705, 74, 3256, 1391, 6, 7783, 62, 33095, 10354, 6407, 5512, 37250, 2, 10535, 3256, 705, 2, 19881, 19881, 19881, 6, 4357, 6045, 828, 198, 220, 220, 220, 357, 18, 11, 705, 81, 3256, 1391, 5512, 37250, 2, 487, 2388, 3256, 705, 2, 487, 1899, 1899, 3256, 705, 2, 487, 19881, 19881, 6, 4357, 6045, 828, 198, 220, 220, 220, 357, 18, 11, 705, 2949, 10258, 34, 12342, 3256, 1391, 5512, 6045, 11, 11052, 12331, 828, 198, 220, 220, 220, 357, 16, 13, 17, 11, 705, 74, 3256, 1391, 5512, 6045, 11, 5994, 12331, 828, 198, 220, 220, 220, 19203, 82, 3256, 705, 74, 3256, 1391, 5512, 6045, 11, 5994, 12331, 828, 198, 220, 220, 220, 357, 15, 11, 705, 74, 3256, 1391, 5512, 6045, 11, 11052, 12331, 828, 198, 220, 220, 220, 13841, 20, 11, 705, 74, 3256, 1391, 5512, 6045, 11, 11052, 12331, 828, 198, 12962, 198, 4299, 1332, 62, 66, 2397, 12409, 62, 8043, 7, 77, 1416, 11, 3124, 11, 479, 86, 22046, 11, 1006, 4033, 669, 11, 4049, 2599, 198, 220, 220, 220, 37227, 14402, 4253, 12409, 3124, 526, 15931, 198, 220, 220, 220, 611, 4049, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7577, 796, 2495, 9078, 29487, 13, 4033, 669, 13, 66, 2397, 12409, 62, 8043, 7, 77, 1416, 11, 3124, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10385, 7577, 284, 17910, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 7783, 62, 33095, 6, 407, 287, 479, 86, 22046, 393, 407, 479, 86, 22046, 17816, 7783, 62, 33095, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 796, 685, 565, 81, 13, 1462, 62, 33095, 7, 66, 8, 329, 269, 287, 7577, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 477, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 6624, 537, 81, 13, 1462, 62, 33095, 7, 6015, 8, 329, 269, 11, 48321, 287, 19974, 7, 4033, 669, 11, 1006, 4033, 669, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 18224, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2495, 9078, 29487, 13, 4033, 669, 13, 66, 2397, 12409, 62, 8043, 7, 77, 1416, 11, 3124, 11, 12429, 46265, 22046, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 10782, 11, 299, 1416, 11, 479, 86, 22046, 11, 1006, 11, 4049, 3256, 685, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 66, 8899, 10354, 705, 8658, 940, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 1065, 11, 657, 13, 2857, 11, 657, 13, 4869, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 2425, 11, 657, 13, 24, 11, 352, 13, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 13, 15, 11, 657, 13, 20, 11, 657, 13, 3312, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 13, 15, 11, 657, 13, 5774, 11, 657, 13, 2425, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 1065, 11, 657, 13, 2857, 11, 657, 13, 4869, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 2425, 11, 657, 13, 24, 11, 352, 13, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 13, 15, 11, 657, 13, 20, 11, 657, 13, 3312, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 13, 15, 11, 657, 13, 5774, 11, 657, 13, 2425, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 7783, 62, 4033, 669, 10354, 6407, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 1065, 11, 657, 13, 2857, 11, 657, 13, 4869, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 2425, 11, 657, 13, 24, 11, 352, 13, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 13, 15, 11, 657, 13, 20, 11, 657, 13, 3312, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 13, 15, 11, 657, 13, 5774, 11, 657, 13, 2425, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 66, 8899, 10354, 705, 31173, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 20, 4357, 685, 15, 13, 2425, 11, 657, 13, 2425, 11, 352, 13, 15, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 17, 11, 362, 11, 1391, 6, 66, 8899, 10354, 705, 2949, 10258, 13912, 6, 5512, 6045, 11, 11052, 12331, 828, 198, 220, 220, 220, 357, 1238, 11, 362, 11, 1391, 6, 66, 8899, 10354, 705, 8658, 940, 6, 5512, 6045, 11, 11052, 12331, 828, 198, 220, 220, 220, 13841, 17, 11, 362, 11, 1391, 5512, 6045, 11, 11052, 12331, 828, 198, 220, 220, 220, 357, 17, 11, 532, 17, 11, 1391, 5512, 6045, 11, 11052, 12331, 828, 198, 220, 220, 220, 357, 17, 11, 532, 17, 11, 1391, 5512, 6045, 11, 11052, 12331, 828, 198, 12962, 198, 4299, 1332, 62, 66, 2397, 12409, 62, 66, 8899, 7, 10782, 11, 299, 1416, 11, 479, 86, 22046, 11, 1006, 11, 4049, 2599, 198, 220, 220, 220, 37227, 14402, 4253, 12409, 269, 8899, 526, 15931, 198, 220, 220, 220, 611, 4049, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7577, 796, 2495, 9078, 29487, 13, 4033, 669, 13, 66, 2397, 12409, 62, 66, 8899, 7, 10782, 11, 299, 1416, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10385, 7577, 284, 17910, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 7783, 62, 4033, 669, 6, 287, 479, 86, 22046, 290, 479, 86, 22046, 17816, 7783, 62, 4033, 669, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 796, 7577, 13, 3447, 1758, 32590, 16, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 796, 7577, 13, 4033, 669, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 28177, 62, 40496, 7, 4033, 669, 11, 1006, 11, 32465, 28, 17, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 18224, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2495, 9078, 29487, 13, 4033, 669, 13, 66, 2397, 12409, 62, 66, 8899, 7, 10782, 11, 299, 1416, 11, 12429, 46265, 22046, 8, 628, 198, 2, 31548, 5197, 5254, 198, 4299, 1332, 62, 2220, 62, 4033, 669, 33529, 198, 220, 220, 220, 37227, 9787, 326, 645, 4049, 651, 4376, 526, 15931, 198, 220, 220, 220, 2495, 9078, 29487, 13, 4033, 669, 13, 2220, 62, 4033, 669, 3419, 628, 198, 4299, 1332, 62, 2220, 62, 11215, 1686, 33529, 198, 220, 220, 220, 37227, 9787, 326, 645, 4049, 651, 4376, 526, 15931, 198, 220, 220, 220, 2495, 9078, 29487, 13, 4033, 669, 13, 2220, 62, 11215, 1686, 3419, 198 ]
1.998542
2,744
from typing import Text import os import pytest from rasa.constants import (DEFAULT_DOMAIN_PATH, DEFAULT_CONFIG_PATH, DEFAULT_MODELS_PATH, DEFAULT_DATA_PATH) @pytest.fixture(scope="session") @pytest.fixture(scope="session")
[ 6738, 19720, 1330, 8255, 198, 11748, 28686, 198, 11748, 12972, 9288, 198, 198, 6738, 374, 15462, 13, 9979, 1187, 1330, 357, 7206, 38865, 62, 39170, 29833, 62, 34219, 11, 5550, 38865, 62, 10943, 16254, 62, 34219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5550, 38865, 62, 33365, 37142, 62, 34219, 11, 5550, 38865, 62, 26947, 62, 34219, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 29891, 4943, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 29891, 4943, 198 ]
2.388889
108
# pylint: disable = missing-docstring import pytest from bases import encoding from bases.encoding import BaseEncoding from bases import random from bases.random import rand_str random.set_options(min_bytes=0, max_bytes=16) nsamples = 1024 @pytest.mark.parametrize("enc_name,enc", list(encoding.table()))
[ 2, 279, 2645, 600, 25, 15560, 796, 4814, 12, 15390, 8841, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 12536, 1330, 21004, 198, 6738, 12536, 13, 12685, 7656, 1330, 7308, 27195, 7656, 198, 6738, 12536, 1330, 4738, 198, 6738, 12536, 13, 25120, 1330, 43720, 62, 2536, 198, 198, 25120, 13, 2617, 62, 25811, 7, 1084, 62, 33661, 28, 15, 11, 3509, 62, 33661, 28, 1433, 8, 198, 5907, 12629, 796, 28119, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 12685, 62, 3672, 11, 12685, 1600, 1351, 7, 12685, 7656, 13, 11487, 3419, 4008, 198 ]
3.121212
99
from marshmallow import Schema, fields
[ 6738, 22397, 42725, 1330, 10011, 2611, 11, 7032, 198 ]
4.333333
9
from pydantic import validator, Field from pystratis.api import Model # noinspection PyUnresolvedReferences class AddNodeRequest(Model): """A request model for the connectionmanager/addnode endpoint. Args: ipaddr (str): The endpoint. command (str): Allowed commands [add, remove, onetry] """ ipaddr: str = Field(alias='endpoint') command: str # noinspection PyMethodParameters,PyUnusedLocal @validator('command')
[ 6738, 279, 5173, 5109, 1330, 4938, 1352, 11, 7663, 198, 6738, 12972, 2536, 37749, 13, 15042, 1330, 9104, 628, 198, 2, 645, 1040, 14978, 9485, 3118, 411, 5634, 19927, 198, 4871, 3060, 19667, 18453, 7, 17633, 2599, 198, 220, 220, 220, 37227, 32, 2581, 2746, 329, 262, 4637, 37153, 14, 2860, 17440, 36123, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 29851, 357, 2536, 2599, 383, 36123, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3141, 357, 2536, 2599, 1439, 6972, 9729, 685, 2860, 11, 4781, 11, 319, 11973, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20966, 29851, 25, 965, 796, 7663, 7, 26011, 11639, 437, 4122, 11537, 198, 220, 220, 220, 3141, 25, 965, 628, 220, 220, 220, 1303, 645, 1040, 14978, 9485, 17410, 48944, 11, 20519, 3118, 1484, 14565, 198, 220, 220, 220, 2488, 12102, 1352, 10786, 21812, 11537, 198 ]
2.974194
155
import os PATH = os.path.abspath(os.path.dirname(__file__))
[ 11748, 28686, 198, 198, 34219, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198 ]
2.346154
26
import urllib from django.forms.fields import CharField from django.utils.translation import ugettext_lazy as _ from django.views.generic import View from .exceptions import PopupViewIsNotSubclassView from .widgets import PopupViewWidget
[ 11748, 2956, 297, 571, 198, 198, 6738, 42625, 14208, 13, 23914, 13, 25747, 1330, 3178, 15878, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 3582, 198, 198, 6738, 764, 1069, 11755, 1330, 8099, 929, 7680, 3792, 3673, 7004, 4871, 7680, 198, 6738, 764, 28029, 11407, 1330, 8099, 929, 7680, 38300, 628 ]
3.492754
69
from browser import document as doc from browser.html import TABLE, TR, TH, TD, INPUT, SELECT, OPTION, DIV, BUTTON, SPAN, LI, H2, H3, IMG, COLGROUP, COL, P, SECTION, BR from json import load from last_update import time # Create the static elements of the home page init_page() doc['loading'] <= DIV(Id='prerendered')
[ 6738, 6444, 1330, 3188, 355, 2205, 198, 6738, 6444, 13, 6494, 1330, 43679, 11, 7579, 11, 2320, 11, 13320, 11, 3268, 30076, 11, 33493, 11, 39852, 2849, 11, 360, 3824, 11, 21728, 11357, 11, 6226, 1565, 11, 24653, 11, 367, 17, 11, 367, 18, 11, 8959, 38, 11, 20444, 46846, 11, 20444, 11, 350, 11, 44513, 11, 11177, 198, 6738, 33918, 1330, 3440, 198, 6738, 938, 62, 19119, 1330, 640, 628, 198, 2, 13610, 262, 9037, 4847, 286, 262, 1363, 2443, 628, 198, 15003, 62, 7700, 3419, 198, 15390, 17816, 25138, 20520, 19841, 360, 3824, 7, 7390, 11639, 3866, 26238, 11537, 198 ]
3.156863
102
"""Conversion functions for weather radar and rainfall data.""" from numpy import isfinite, log, ubyte from scipy.ndimage import gaussian_filter from skimage.exposure import equalize_hist, rescale_intensity def dBZ_to_ubyte(I, dBZ_min=-10.0, dBZ_max=50.0, filter_stddev=3.0): """Convert a dBZ field into a 8-bit image, as required by Optflow. Optionally, apply a Gaussian smoothing filter. Parameters ---------- I : array-like The dBZ field. dBZ_min : float Minimum dBZ. Values smaller than dBZ_min are set to dBZ_min. If None, dBZ_min is computed from I. dBZ_max : float Maximum dBZ. Values greater than dBZ_max are set to dBZ_max. If None, dBZ_max is computed from I. filter_stddev : float Standard deviation of the Gaussian filter (0=no filtering) Returns ------- out : ndarray(dtype=ubyte) The processed dBZ field. """ I = I.copy() MASK = isfinite(I) if dBZ_min == None: dBZ_min = min(I[MASK]) if dBZ_max == None: dBZ_max = max(I[MASK]) I[~MASK] = dBZ_min I[I < dBZ_min] = dBZ_min I[I > dBZ_max] = dBZ_max if filter_stddev > 0.0: I = gaussian_filter(I, filter_stddev, mode="reflect") I = ((I - dBZ_min) / (dBZ_max - dBZ_min)) * 255.0 return I.astype(ubyte) def rainfall_to_ubyte(I, R_min=0.1, R_max=40.0, filter_stddev=3.0, logtrans=False): """Convert a rainfall intensity field into a 8-bit image, as required by Optflow. Optionally, apply a Gaussian smoothing filter. Parameters ---------- I : array-like The input rainfall field. R_min : float Minimum rainfall intensity. Values smaller than R_min are set to R_min. If None, R_min is computed from I. R_max : float Maximum rainfall intensity. Values greater than R_max are set to R_max. If None, R_max is computed from I. filter_stddev : float Standard deviation of the Gaussian filter (0=no filtering) logtrans : bool If True, apply a log-transform to the input rainfall field. In this case, R_min must be nonzero. Returns ------- out : ndarray(dtype=ubyte) The processed rainfall field. """ I = I.copy() MASK = isfinite(I) if R_min == None: R_min = min(I[MASK]) if R_max == None: R_max = max(I[MASK]) I[~MASK] = R_min I[I < R_min] = R_min I[I > R_max] = R_max if logtrans == True: if R_min == 0.0: raise ValueError("R_min must be nonzero if log-transform is used") I = log(I) R_min = log(R_min) R_max = log(R_max) # TESTING #I = rescale_intensity(I, (R_min, R_max), (0.0, 1.0)) #I = equalize_hist(I) #I = ((I - min(I)) / (max(I) - min(I))) * 255.0 MASK = I > R_min # TODO: Make the threshold 128 configurable. I[MASK] = 128.0 + ((I[MASK] - R_min) / (R_max - R_min)) * (255.0 - 128.0) I[~MASK] = 0.0 I = I.astype(ubyte) if filter_stddev > 0.0: I = gaussian_filter(I, filter_stddev, mode="reflect") return I
[ 37811, 3103, 9641, 5499, 329, 6193, 13428, 290, 25807, 1366, 526, 15931, 198, 198, 6738, 299, 32152, 1330, 318, 69, 9504, 11, 2604, 11, 334, 26327, 198, 6738, 629, 541, 88, 13, 358, 9060, 1330, 31986, 31562, 62, 24455, 198, 6738, 1341, 9060, 13, 1069, 26205, 1330, 4961, 1096, 62, 10034, 11, 6811, 1000, 62, 47799, 198, 198, 4299, 30221, 57, 62, 1462, 62, 549, 88, 660, 7, 40, 11, 30221, 57, 62, 1084, 10779, 940, 13, 15, 11, 30221, 57, 62, 9806, 28, 1120, 13, 15, 11, 8106, 62, 301, 1860, 1990, 28, 18, 13, 15, 2599, 198, 220, 37227, 3103, 1851, 257, 30221, 57, 2214, 656, 257, 807, 12, 2545, 2939, 11, 355, 2672, 416, 13123, 11125, 13, 16018, 453, 11, 220, 198, 220, 4174, 257, 12822, 31562, 32746, 722, 8106, 13, 198, 220, 220, 198, 220, 40117, 198, 220, 24200, 438, 198, 220, 314, 1058, 7177, 12, 2339, 198, 220, 220, 220, 383, 30221, 57, 2214, 13, 198, 220, 30221, 57, 62, 1084, 1058, 12178, 198, 220, 220, 220, 26265, 30221, 57, 13, 27068, 4833, 621, 30221, 57, 62, 1084, 389, 900, 284, 30221, 57, 62, 1084, 13, 1002, 6045, 11, 220, 198, 220, 220, 220, 30221, 57, 62, 1084, 318, 29231, 422, 314, 13, 198, 220, 30221, 57, 62, 9806, 1058, 12178, 198, 220, 220, 220, 22246, 30221, 57, 13, 27068, 3744, 621, 30221, 57, 62, 9806, 389, 900, 284, 30221, 57, 62, 9806, 13, 1002, 6045, 11, 220, 198, 220, 220, 220, 30221, 57, 62, 9806, 318, 29231, 422, 314, 13, 198, 220, 8106, 62, 301, 1860, 1990, 1058, 12178, 198, 220, 220, 220, 8997, 28833, 286, 262, 12822, 31562, 8106, 357, 15, 28, 3919, 25431, 8, 198, 220, 220, 198, 220, 16409, 198, 220, 35656, 198, 220, 503, 1058, 299, 67, 18747, 7, 67, 4906, 28, 549, 88, 660, 8, 198, 220, 220, 220, 383, 13686, 30221, 57, 2214, 13, 198, 220, 37227, 198, 220, 314, 796, 314, 13, 30073, 3419, 198, 220, 32337, 42, 796, 318, 69, 9504, 7, 40, 8, 198, 220, 220, 198, 220, 611, 30221, 57, 62, 1084, 6624, 6045, 25, 198, 220, 220, 220, 30221, 57, 62, 1084, 796, 949, 7, 40, 58, 31180, 42, 12962, 198, 220, 611, 30221, 57, 62, 9806, 6624, 6045, 25, 198, 220, 220, 220, 30221, 57, 62, 9806, 796, 3509, 7, 40, 58, 31180, 42, 12962, 198, 220, 220, 198, 220, 314, 58, 93, 31180, 42, 60, 796, 30221, 57, 62, 1084, 198, 220, 314, 58, 40, 1279, 30221, 57, 62, 1084, 60, 796, 30221, 57, 62, 1084, 198, 220, 314, 58, 40, 1875, 30221, 57, 62, 9806, 60, 796, 30221, 57, 62, 9806, 198, 220, 220, 198, 220, 611, 8106, 62, 301, 1860, 1990, 1875, 657, 13, 15, 25, 198, 220, 220, 220, 314, 796, 31986, 31562, 62, 24455, 7, 40, 11, 8106, 62, 301, 1860, 1990, 11, 4235, 2625, 35051, 4943, 198, 220, 220, 198, 220, 314, 796, 14808, 40, 532, 30221, 57, 62, 1084, 8, 1220, 357, 36077, 57, 62, 9806, 532, 30221, 57, 62, 1084, 4008, 1635, 14280, 13, 15, 198, 220, 220, 198, 220, 1441, 314, 13, 459, 2981, 7, 549, 88, 660, 8, 198, 198, 4299, 25807, 62, 1462, 62, 549, 88, 660, 7, 40, 11, 371, 62, 1084, 28, 15, 13, 16, 11, 371, 62, 9806, 28, 1821, 13, 15, 11, 8106, 62, 301, 1860, 1990, 28, 18, 13, 15, 11, 2604, 7645, 28, 25101, 2599, 198, 220, 37227, 3103, 1851, 257, 25807, 12245, 2214, 656, 257, 807, 12, 2545, 2939, 11, 355, 2672, 416, 220, 198, 220, 13123, 11125, 13, 16018, 453, 11, 4174, 257, 12822, 31562, 32746, 722, 8106, 13, 198, 220, 220, 198, 220, 40117, 198, 220, 24200, 438, 198, 220, 314, 1058, 7177, 12, 2339, 198, 220, 220, 220, 383, 5128, 25807, 2214, 13, 198, 220, 371, 62, 1084, 1058, 12178, 198, 220, 220, 220, 26265, 25807, 12245, 13, 27068, 4833, 621, 371, 62, 1084, 389, 900, 284, 371, 62, 1084, 13, 220, 198, 220, 220, 220, 1002, 6045, 11, 371, 62, 1084, 318, 29231, 422, 314, 13, 198, 220, 371, 62, 9806, 1058, 12178, 198, 220, 220, 220, 22246, 25807, 12245, 13, 27068, 3744, 621, 371, 62, 9806, 389, 900, 284, 371, 62, 9806, 13, 220, 198, 220, 220, 220, 1002, 6045, 11, 371, 62, 9806, 318, 29231, 422, 314, 13, 198, 220, 8106, 62, 301, 1860, 1990, 1058, 12178, 198, 220, 220, 220, 8997, 28833, 286, 262, 12822, 31562, 8106, 357, 15, 28, 3919, 25431, 8, 198, 220, 2604, 7645, 1058, 20512, 198, 220, 220, 220, 1002, 6407, 11, 4174, 257, 2604, 12, 35636, 284, 262, 5128, 25807, 2214, 13, 554, 428, 1339, 11, 220, 198, 220, 220, 220, 371, 62, 1084, 1276, 307, 1729, 22570, 13, 198, 220, 220, 198, 220, 16409, 198, 220, 35656, 198, 220, 503, 1058, 299, 67, 18747, 7, 67, 4906, 28, 549, 88, 660, 8, 198, 220, 220, 220, 383, 13686, 25807, 2214, 13, 198, 220, 37227, 198, 220, 314, 796, 314, 13, 30073, 3419, 198, 220, 32337, 42, 796, 318, 69, 9504, 7, 40, 8, 198, 220, 220, 198, 220, 611, 371, 62, 1084, 6624, 6045, 25, 198, 220, 220, 220, 371, 62, 1084, 796, 949, 7, 40, 58, 31180, 42, 12962, 198, 220, 611, 371, 62, 9806, 6624, 6045, 25, 198, 220, 220, 220, 371, 62, 9806, 796, 3509, 7, 40, 58, 31180, 42, 12962, 198, 220, 220, 198, 220, 314, 58, 93, 31180, 42, 60, 796, 371, 62, 1084, 198, 220, 314, 58, 40, 1279, 371, 62, 1084, 60, 796, 371, 62, 1084, 198, 220, 314, 58, 40, 1875, 371, 62, 9806, 60, 796, 371, 62, 9806, 198, 220, 220, 198, 220, 611, 2604, 7645, 6624, 6407, 25, 198, 220, 220, 220, 611, 371, 62, 1084, 6624, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 49, 62, 1084, 1276, 307, 1729, 22570, 611, 2604, 12, 35636, 318, 973, 4943, 198, 220, 220, 220, 314, 796, 2604, 7, 40, 8, 198, 220, 220, 220, 371, 62, 1084, 796, 2604, 7, 49, 62, 1084, 8, 198, 220, 220, 220, 371, 62, 9806, 796, 2604, 7, 49, 62, 9806, 8, 198, 220, 220, 198, 220, 1303, 43001, 2751, 198, 220, 1303, 40, 796, 6811, 1000, 62, 47799, 7, 40, 11, 357, 49, 62, 1084, 11, 371, 62, 9806, 828, 357, 15, 13, 15, 11, 352, 13, 15, 4008, 198, 220, 1303, 40, 796, 4961, 1096, 62, 10034, 7, 40, 8, 198, 220, 1303, 40, 796, 14808, 40, 532, 949, 7, 40, 4008, 1220, 357, 9806, 7, 40, 8, 532, 949, 7, 40, 22305, 1635, 14280, 13, 15, 198, 220, 220, 198, 220, 32337, 42, 796, 314, 1875, 371, 62, 1084, 198, 220, 1303, 16926, 46, 25, 6889, 262, 11387, 13108, 4566, 11970, 13, 198, 220, 314, 58, 31180, 42, 60, 796, 13108, 13, 15, 1343, 14808, 40, 58, 31180, 42, 60, 532, 371, 62, 1084, 8, 1220, 357, 49, 62, 9806, 532, 371, 62, 1084, 4008, 1635, 357, 13381, 13, 15, 532, 13108, 13, 15, 8, 198, 220, 314, 58, 93, 31180, 42, 60, 796, 657, 13, 15, 198, 220, 220, 198, 220, 314, 796, 314, 13, 459, 2981, 7, 549, 88, 660, 8, 198, 220, 220, 198, 220, 611, 8106, 62, 301, 1860, 1990, 1875, 657, 13, 15, 25, 198, 220, 220, 220, 314, 796, 31986, 31562, 62, 24455, 7, 40, 11, 8106, 62, 301, 1860, 1990, 11, 4235, 2625, 35051, 4943, 198, 220, 220, 198, 220, 1441, 314, 198 ]
2.368463
1,243
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from .vendor.Qt import QtWidgets from .libs.maya import fbx from .libs.maya import namespace from . import history_helper def import_fbx(path, import_mode, parent): """import fbx Args: path (unicode): path import_mode (.libs.maya.fbx.FBXImportMode): import mode parent (QtWidgets.QWidget): parent """ namespaces = namespace.get_namespaces(return_separator=True, return_root=True) if len(namespaces) == 1: fbx.import_fbx(path, import_mode, namespaces[0]) history_helper.add_recent_file(path) return ns, confirmed = QtWidgets.QInputDialog.getItem(parent, "Select Namespace", "Namespace", namespaces, 0, False) if not confirmed: return fbx.import_fbx(path, import_mode, ns) history_helper.add_recent_file(path)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 6738, 764, 85, 18738, 13, 48, 83, 1330, 33734, 54, 312, 11407, 198, 198, 6738, 764, 8019, 82, 13, 11261, 64, 1330, 277, 65, 87, 198, 6738, 764, 8019, 82, 13, 11261, 64, 1330, 25745, 198, 6738, 764, 1330, 2106, 62, 2978, 525, 628, 198, 4299, 1330, 62, 21855, 87, 7, 6978, 11, 1330, 62, 14171, 11, 2560, 2599, 198, 220, 220, 220, 37227, 11748, 277, 65, 87, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 46903, 1098, 2599, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 62, 14171, 20262, 8019, 82, 13, 11261, 64, 13, 21855, 87, 13, 26001, 55, 20939, 19076, 2599, 1330, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 357, 48, 83, 54, 312, 11407, 13, 48, 38300, 2599, 2560, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3891, 43076, 796, 25745, 13, 1136, 62, 14933, 43076, 7, 7783, 62, 25512, 1352, 28, 17821, 11, 1441, 62, 15763, 28, 17821, 8, 628, 220, 220, 220, 611, 18896, 7, 14933, 43076, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 65, 87, 13, 11748, 62, 21855, 87, 7, 6978, 11, 1330, 62, 14171, 11, 3891, 43076, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2106, 62, 2978, 525, 13, 2860, 62, 49921, 62, 7753, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 36545, 11, 4999, 796, 33734, 54, 312, 11407, 13, 48, 20560, 44204, 13, 1136, 7449, 7, 8000, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17563, 28531, 10223, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36690, 10223, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 43076, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 8, 198, 220, 220, 220, 611, 407, 4999, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 277, 65, 87, 13, 11748, 62, 21855, 87, 7, 6978, 11, 1330, 62, 14171, 11, 36545, 8, 198, 220, 220, 220, 2106, 62, 2978, 525, 13, 2860, 62, 49921, 62, 7753, 7, 6978, 8, 198 ]
1.861066
619
from sqlalchemy import schema from sqlalchemy.orm import Session from fastapi import Depends, APIRouter, HTTPException, status from fastapi.security.oauth2 import OAuth2PasswordRequestForm from .. import db, models, schemas, utils, oauth2 router = APIRouter( tags=["Authentication"], ) @router.post("/login", response_model=schemas.Token)
[ 6738, 44161, 282, 26599, 1330, 32815, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 23575, 198, 6738, 3049, 15042, 1330, 2129, 2412, 11, 3486, 4663, 39605, 11, 14626, 16922, 11, 3722, 198, 6738, 3049, 15042, 13, 12961, 13, 12162, 1071, 17, 1330, 440, 30515, 17, 35215, 18453, 8479, 198, 198, 6738, 11485, 1330, 20613, 11, 4981, 11, 3897, 5356, 11, 3384, 4487, 11, 267, 18439, 17, 628, 198, 472, 353, 796, 3486, 4663, 39605, 7, 198, 220, 220, 220, 15940, 28, 14692, 47649, 3299, 33116, 198, 8, 628, 198, 31, 472, 353, 13, 7353, 7203, 14, 38235, 1600, 2882, 62, 19849, 28, 1416, 4411, 292, 13, 30642, 8, 198 ]
3.192661
109
import logging import os from aiohttp import web, WSMsgType from aiohttp.web_response import Response from jsonrpcserver.aio import methods from sn_agent import ontology from sn_agent.api.job import can_perform_service, perform_job from sn_agent.job.job_descriptor import JobDescriptor from sn_agent.ontology.service_descriptor import ServiceDescriptor logger = logging.getLogger(__name__) WS_FILE = os.path.join(os.path.dirname(__file__), 'websocket.html') @methods.add @methods.add
[ 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 257, 952, 4023, 1330, 3992, 11, 25290, 50108, 6030, 198, 6738, 257, 952, 4023, 13, 12384, 62, 26209, 1330, 18261, 198, 6738, 33918, 81, 14751, 15388, 13, 64, 952, 1330, 5050, 198, 198, 6738, 3013, 62, 25781, 1330, 39585, 1435, 198, 6738, 3013, 62, 25781, 13, 15042, 13, 21858, 1330, 460, 62, 525, 687, 62, 15271, 11, 1620, 62, 21858, 198, 6738, 3013, 62, 25781, 13, 21858, 13, 21858, 62, 20147, 1968, 273, 1330, 15768, 24564, 1968, 273, 198, 6738, 3013, 62, 25781, 13, 756, 1435, 13, 15271, 62, 20147, 1968, 273, 1330, 4809, 24564, 1968, 273, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 19416, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 732, 1443, 5459, 13, 6494, 11537, 628, 198, 31, 24396, 82, 13, 2860, 628, 198, 31, 24396, 82, 13, 2860, 628, 628, 198 ]
2.97006
167
maior = 0 menor = 0 for p in range(1, 6): peso = float(input(f'Digite a massa da {p}º pessoa em quilos: ')) if p == 1: maior = peso menor = peso else: if peso > maior: maior = peso if peso < menor: menor = peso print('O maior peso lido foi de {}Kg'.format(maior)) print('O menor peso lido foi de {}Kg'.format(menor))
[ 2611, 1504, 796, 657, 198, 3653, 273, 796, 657, 198, 1640, 279, 287, 2837, 7, 16, 11, 718, 2599, 198, 220, 220, 220, 32317, 78, 796, 12178, 7, 15414, 7, 69, 6, 19511, 578, 257, 2347, 64, 12379, 1391, 79, 92, 36165, 279, 408, 12162, 795, 627, 346, 418, 25, 705, 4008, 198, 220, 220, 220, 611, 279, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17266, 1504, 796, 32317, 78, 198, 220, 220, 220, 220, 220, 220, 220, 1450, 273, 796, 32317, 78, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 32317, 78, 1875, 17266, 1504, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17266, 1504, 796, 32317, 78, 198, 220, 220, 220, 220, 220, 220, 220, 611, 32317, 78, 1279, 1450, 273, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1450, 273, 796, 32317, 78, 198, 4798, 10786, 46, 17266, 1504, 32317, 78, 300, 17305, 11511, 72, 390, 23884, 42, 70, 4458, 18982, 7, 2611, 1504, 4008, 198, 4798, 10786, 46, 1450, 273, 32317, 78, 300, 17305, 11511, 72, 390, 23884, 42, 70, 4458, 18982, 7, 3653, 273, 4008 ]
1.910448
201
# SPDX-License-Identifier: MIT # Copyright (c) 2018-2022 Amano Team from pyrogram import types from pyrogram.helpers import bki, ikb from userlixo.database import Message
[ 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 17168, 198, 2, 15069, 357, 66, 8, 2864, 12, 1238, 1828, 42614, 78, 4816, 198, 198, 6738, 12972, 39529, 1330, 3858, 198, 6738, 12972, 39529, 13, 16794, 364, 1330, 275, 4106, 11, 220, 1134, 65, 198, 198, 6738, 2836, 75, 844, 78, 13, 48806, 1330, 16000, 628, 628, 198 ]
3.051724
58
import matplotlib.pyplot as plt import sys import os outDir = sys.argv[1] finalOutDir = outDir + '/figure3d/' if not os.path.exists(finalOutDir): os.makedirs(finalOutDir) #make a plot showing the true positive and false positive rates of each method. #each sv type will get its own icon, and methods can be labeled by color methods = ['chrCV MIL', 'chrCV simple RF', 'VEP', 'SVScore'] methodColors = ['#0055d4ff', '#c83737ff', 'orange', '#808080ff'] #These are obtained from running the individual scripts for each method (see workflow.sh) tprsDEL = [0.53, 0.56, 0.02, 0.009] fprsDEL = [0.20, 0.56, 0.2, 0.09] tprsDUP = [0.58, 0.45, 0.08, 0.03] fprsDUP = [0.30, 0.46, 0.46, 0.08] tprsINV = [0.60, 0.38, 0, 0.007] fprsINV = [0.25, 0.37, 0, 0.03] tprsITX = [0.62, 0.47, 0, 0] fprsITX = [0.30, 0.43, 0, 0.02] #make the scatter plot plt.scatter(fprsDEL, tprsDEL, marker='.', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsDUP, tprsDUP, marker='s', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsINV, tprsINV, marker='^', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsITX, tprsITX, marker='*', facecolor=methodColors, edgecolor=methodColors) plt.savefig(finalOutDir + '/tpr_fpr.svg')
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 25064, 198, 11748, 28686, 198, 198, 448, 35277, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 198, 20311, 7975, 35277, 796, 503, 35277, 1343, 31051, 26875, 18, 67, 14, 6, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 20311, 7975, 35277, 2599, 198, 197, 418, 13, 76, 4335, 17062, 7, 20311, 7975, 35277, 8, 198, 198, 2, 15883, 257, 7110, 4478, 262, 2081, 3967, 290, 3991, 3967, 3965, 286, 1123, 2446, 13, 198, 2, 27379, 38487, 2099, 481, 651, 663, 898, 7196, 11, 290, 5050, 460, 307, 15494, 416, 3124, 198, 198, 24396, 82, 796, 37250, 354, 81, 33538, 31515, 3256, 705, 354, 81, 33538, 2829, 20445, 3256, 705, 6089, 47, 3256, 705, 50, 53, 26595, 20520, 198, 24396, 5216, 669, 796, 37250, 2, 405, 2816, 67, 19, 487, 3256, 705, 2, 66, 23, 2718, 2718, 487, 3256, 705, 43745, 3256, 705, 2, 1795, 1795, 1795, 487, 20520, 198, 198, 2, 4711, 389, 6492, 422, 2491, 262, 1981, 14750, 329, 1123, 2446, 357, 3826, 30798, 13, 1477, 8, 198, 83, 1050, 82, 35, 3698, 796, 685, 15, 13, 4310, 11, 657, 13, 3980, 11, 657, 13, 2999, 11, 657, 13, 28694, 60, 198, 69, 1050, 82, 35, 3698, 796, 685, 15, 13, 1238, 11, 657, 13, 3980, 11, 657, 13, 17, 11, 657, 13, 2931, 60, 198, 198, 83, 1050, 82, 35, 8577, 796, 685, 15, 13, 3365, 11, 657, 13, 2231, 11, 657, 13, 2919, 11, 657, 13, 3070, 60, 198, 69, 1050, 82, 35, 8577, 796, 685, 15, 13, 1270, 11, 657, 13, 3510, 11, 657, 13, 3510, 11, 657, 13, 2919, 60, 198, 198, 83, 1050, 82, 1268, 53, 796, 685, 15, 13, 1899, 11, 657, 13, 2548, 11, 657, 11, 657, 13, 25816, 60, 198, 69, 1050, 82, 1268, 53, 796, 685, 15, 13, 1495, 11, 657, 13, 2718, 11, 657, 11, 657, 13, 3070, 60, 198, 198, 83, 1050, 82, 2043, 55, 796, 685, 15, 13, 5237, 11, 657, 13, 2857, 11, 657, 11, 657, 60, 198, 69, 1050, 82, 2043, 55, 796, 685, 15, 13, 1270, 11, 657, 13, 3559, 11, 657, 11, 657, 13, 2999, 60, 198, 198, 2, 15883, 262, 41058, 7110, 198, 489, 83, 13, 1416, 1436, 7, 69, 1050, 82, 35, 3698, 11, 256, 1050, 82, 35, 3698, 11, 18364, 11639, 2637, 11, 1986, 8043, 28, 24396, 5216, 669, 11, 5743, 8043, 28, 24396, 5216, 669, 8, 198, 489, 83, 13, 1416, 1436, 7, 69, 1050, 82, 35, 8577, 11, 256, 1050, 82, 35, 8577, 11, 18364, 11639, 82, 3256, 1986, 8043, 28, 24396, 5216, 669, 11, 5743, 8043, 28, 24396, 5216, 669, 8, 198, 489, 83, 13, 1416, 1436, 7, 69, 1050, 82, 1268, 53, 11, 256, 1050, 82, 1268, 53, 11, 18364, 11639, 61, 3256, 1986, 8043, 28, 24396, 5216, 669, 11, 5743, 8043, 28, 24396, 5216, 669, 8, 198, 489, 83, 13, 1416, 1436, 7, 69, 1050, 82, 2043, 55, 11, 256, 1050, 82, 2043, 55, 11, 18364, 11639, 9, 3256, 1986, 8043, 28, 24396, 5216, 669, 11, 5743, 8043, 28, 24396, 5216, 669, 8, 198, 198, 489, 83, 13, 21928, 5647, 7, 20311, 7975, 35277, 1343, 31051, 83, 1050, 62, 69, 1050, 13, 21370, 70, 11537, 628, 628 ]
2.276051
547
from collections import deque from math import ceil, log from division import Division from picker import Picker
[ 6738, 17268, 1330, 390, 4188, 198, 6738, 10688, 1330, 2906, 346, 11, 2604, 198, 198, 6738, 7297, 1330, 7458, 198, 6738, 2298, 263, 1330, 12346, 263, 628, 198 ]
4.142857
28
#!/usr/bin/env python3 import csv import sys import xml.etree.ElementTree as ET ### Natural key sorting for orders like : C1, C5, C10, C12 ... (instead of C1, C10, C12, C5...) # http://stackoverflow.com/a/5967539 import re def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [ atoi(c) for c in re.split('(\d+)', text) ] ### def parse_kicad_xml(input_file): """Parse the KiCad XML file and look for the part designators as done in the case of the official KiCad Open Parts Library: * OPL parts are designated with "SKU" (preferred) * other parts are designated with "MPN" """ components = {} parts = {} missing = [] tree = ET.parse(input_file) root = tree.getroot() for f in root.findall('./components/'): name = f.attrib['ref'] info = {} fields = f.find('fields') opl, mpn = None, None if fields is not None: for x in fields: if x.attrib['name'].upper() == 'SKU': opl = x.text elif x.attrib['name'].upper() == 'MPN': mpn = x.text if opl: components[name] = opl elif mpn: components[name] = mpn else: missing += [name] continue if components[name] not in parts: parts[components[name]] = [] parts[components[name]] += [name] return components, missing def write_bom_seeed(output_file_slug, components): """Write the BOM according to the Seeed Studio Fusion PCBA template available at: https://statics3.seeedstudio.com/assets/file/fusion/bom_template_2016-08-18.csv ``` Part/Designator,Manufacture Part Number/Seeed SKU,Quantity C1,RHA,1 "D1,D2",CC0603KRX7R9BB102,2 ``` The output is a CSV file at the `output_file_slug`.csv location. """ parts = {} for c in components: if components[c] not in parts: parts[components[c]] = [] parts[components[c]] += [c] field_names = ['Part/Designator', 'Manufacture Part Number/Seeed SKU', 'Quantity'] with open("{}.csv".format(output_file_slug), 'w') as csvfile: bomwriter = csv.DictWriter(csvfile, fieldnames=field_names, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) bomwriter.writeheader() for p in sorted(parts.keys()): pieces = sorted(parts[p], key=natural_keys) designators = ",".join(pieces) bomwriter.writerow({'Part/Designator': designators, 'Manufacture Part Number/Seeed SKU': p, 'Quantity': len(pieces)}) if __name__ == "__main__": input_file = sys.argv[1] output_file = sys.argv[2] components, missing = parse_kicad_xml(input_file) write_bom_seeed(output_file, components) if len(missing) > 0: print("** Warning **: there were parts with missing SKU/MFP") print(missing)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 269, 21370, 198, 11748, 25064, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 198, 21017, 12068, 1994, 29407, 329, 6266, 588, 1058, 327, 16, 11, 327, 20, 11, 327, 940, 11, 327, 1065, 2644, 357, 38070, 286, 327, 16, 11, 327, 940, 11, 327, 1065, 11, 327, 20, 23029, 198, 2, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 3270, 42444, 2670, 198, 11748, 302, 198, 198, 4299, 3288, 62, 13083, 7, 5239, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 435, 396, 13, 30619, 7, 2539, 28, 11802, 62, 13083, 8, 10524, 287, 1692, 1502, 198, 220, 220, 220, 2638, 1378, 2817, 8664, 2395, 6499, 13, 785, 14, 14036, 14, 12726, 1065, 14, 10734, 62, 82, 24707, 13, 6494, 198, 220, 220, 220, 357, 6214, 1675, 14863, 338, 7822, 287, 262, 3651, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1441, 685, 379, 23013, 7, 66, 8, 329, 269, 287, 302, 13, 35312, 10786, 38016, 67, 28988, 3256, 2420, 8, 2361, 198, 21017, 198, 198, 4299, 21136, 62, 74, 291, 324, 62, 19875, 7, 15414, 62, 7753, 2599, 198, 220, 220, 220, 37227, 10044, 325, 262, 21927, 34, 324, 23735, 2393, 290, 804, 329, 262, 636, 1486, 2024, 198, 220, 220, 220, 355, 1760, 287, 262, 1339, 286, 262, 1743, 21927, 34, 324, 4946, 22349, 10074, 25, 198, 220, 220, 220, 1635, 440, 6489, 3354, 389, 11032, 351, 366, 18831, 52, 1, 357, 3866, 18186, 8, 198, 220, 220, 220, 1635, 584, 3354, 389, 11032, 351, 366, 7378, 45, 1, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6805, 796, 23884, 198, 220, 220, 220, 3354, 796, 23884, 198, 220, 220, 220, 4814, 796, 17635, 628, 220, 220, 220, 5509, 796, 12152, 13, 29572, 7, 15414, 62, 7753, 8, 198, 220, 220, 220, 6808, 796, 5509, 13, 1136, 15763, 3419, 198, 220, 220, 220, 329, 277, 287, 6808, 13, 19796, 439, 7, 4458, 14, 5589, 3906, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 277, 13, 1078, 822, 17816, 5420, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 277, 13, 19796, 10786, 25747, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 267, 489, 11, 285, 21999, 796, 6045, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7032, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 7032, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 1078, 822, 17816, 3672, 6, 4083, 45828, 3419, 6624, 705, 18831, 52, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 489, 796, 2124, 13, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 13, 1078, 822, 17816, 3672, 6, 4083, 45828, 3419, 6624, 705, 7378, 45, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 21999, 796, 2124, 13, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 611, 267, 489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6805, 58, 3672, 60, 796, 267, 489, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 285, 21999, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6805, 58, 3672, 60, 796, 285, 21999, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 15853, 685, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6805, 58, 3672, 60, 407, 287, 3354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3354, 58, 5589, 3906, 58, 3672, 11907, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 58, 5589, 3906, 58, 3672, 11907, 15853, 685, 3672, 60, 198, 220, 220, 220, 1441, 6805, 11, 4814, 198, 198, 4299, 3551, 62, 65, 296, 62, 325, 2308, 7, 22915, 62, 7753, 62, 6649, 1018, 11, 6805, 2599, 198, 220, 220, 220, 37227, 16594, 262, 347, 2662, 1864, 284, 262, 1001, 2308, 11733, 21278, 4217, 4339, 11055, 1695, 379, 25, 198, 220, 220, 220, 3740, 1378, 14269, 873, 18, 13, 325, 2308, 19149, 952, 13, 785, 14, 19668, 14, 7753, 14, 69, 4241, 14, 65, 296, 62, 28243, 62, 5304, 12, 2919, 12, 1507, 13, 40664, 628, 220, 220, 220, 7559, 63, 198, 220, 220, 220, 2142, 14, 23067, 1352, 11, 44445, 495, 2142, 7913, 14, 6214, 276, 14277, 52, 11, 31208, 198, 220, 220, 220, 327, 16, 11, 49, 7801, 11, 16, 198, 220, 220, 220, 366, 35, 16, 11, 35, 17, 1600, 4093, 15, 35642, 30758, 55, 22, 49, 24, 15199, 15377, 11, 17, 198, 220, 220, 220, 7559, 63, 628, 220, 220, 220, 383, 5072, 318, 257, 44189, 2393, 379, 262, 4600, 22915, 62, 7753, 62, 6649, 1018, 44646, 40664, 4067, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3354, 796, 23884, 198, 220, 220, 220, 329, 269, 287, 6805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6805, 58, 66, 60, 407, 287, 3354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3354, 58, 5589, 3906, 58, 66, 11907, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 58, 5589, 3906, 58, 66, 11907, 15853, 685, 66, 60, 628, 220, 220, 220, 2214, 62, 14933, 796, 37250, 7841, 14, 23067, 1352, 3256, 705, 44445, 495, 2142, 7913, 14, 6214, 276, 14277, 52, 3256, 705, 31208, 20520, 198, 220, 220, 220, 351, 1280, 7203, 90, 27422, 40664, 1911, 18982, 7, 22915, 62, 7753, 62, 6649, 1018, 828, 705, 86, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8626, 16002, 796, 269, 21370, 13, 35, 713, 34379, 7, 40664, 7753, 11, 2214, 14933, 28, 3245, 62, 14933, 11, 46728, 2676, 28, 3256, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9577, 10641, 11639, 1, 3256, 28411, 28, 40664, 13, 10917, 23051, 62, 23678, 3955, 1847, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8626, 16002, 13, 13564, 25677, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 23243, 7, 42632, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 796, 23243, 7, 42632, 58, 79, 4357, 1994, 28, 11802, 62, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1486, 2024, 796, 366, 553, 13, 22179, 7, 34154, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8626, 16002, 13, 16002, 322, 15090, 6, 7841, 14, 23067, 1352, 10354, 1486, 2024, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 44445, 495, 2142, 7913, 14, 6214, 276, 14277, 52, 10354, 279, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31208, 10354, 18896, 7, 34154, 8, 30072, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 5128, 62, 7753, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 5072, 62, 7753, 796, 25064, 13, 853, 85, 58, 17, 60, 628, 220, 220, 220, 6805, 11, 4814, 796, 21136, 62, 74, 291, 324, 62, 19875, 7, 15414, 62, 7753, 8, 198, 220, 220, 220, 3551, 62, 65, 296, 62, 325, 2308, 7, 22915, 62, 7753, 11, 6805, 8, 198, 220, 220, 220, 611, 18896, 7, 45688, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1174, 15932, 12429, 25, 612, 547, 3354, 351, 4814, 14277, 52, 14, 44, 5837, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 45688, 8, 198 ]
2.220099
1,413
import wget import gzip import time as t import json import fileinput import os
[ 11748, 266, 1136, 198, 11748, 308, 13344, 198, 11748, 640, 355, 256, 198, 11748, 33918, 198, 11748, 2393, 15414, 198, 11748, 28686, 628, 628, 628 ]
3.4
25
"""Sample ace and supersmoother problems from literature."""
[ 37811, 36674, 31506, 290, 22754, 5908, 847, 2761, 422, 9285, 526, 15931, 198 ]
4.692308
13
from threading import Lock import geoip2.database from util import resource_path
[ 6738, 4704, 278, 1330, 13656, 201, 198, 201, 198, 11748, 40087, 541, 17, 13, 48806, 201, 198, 201, 198, 6738, 7736, 1330, 8271, 62, 6978, 201, 198, 201, 198, 201, 198 ]
2.967742
31
from stable_baselines.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise from stable_baselines.td3.rnd import RND from stable_baselines.td3.td3 import TD3 from stable_baselines.td3.dist_predictor import Predictor from stable_baselines.td3.ddl_td3 import DDLTD3 from stable_baselines.td3.policies import MlpPolicy, CnnPolicy, LnMlpPolicy, LnCnnPolicy
[ 6738, 8245, 62, 12093, 20655, 13, 11321, 13, 3919, 786, 1330, 14435, 12502, 2949, 786, 11, 49359, 5714, 34653, 11925, 27343, 12502, 2949, 786, 198, 6738, 8245, 62, 12093, 20655, 13, 8671, 18, 13, 81, 358, 1330, 371, 8575, 198, 6738, 8245, 62, 12093, 20655, 13, 8671, 18, 13, 8671, 18, 1330, 13320, 18, 198, 6738, 8245, 62, 12093, 20655, 13, 8671, 18, 13, 17080, 62, 79, 17407, 273, 1330, 49461, 273, 198, 6738, 8245, 62, 12093, 20655, 13, 8671, 18, 13, 1860, 75, 62, 8671, 18, 1330, 360, 19260, 21016, 18, 198, 6738, 8245, 62, 12093, 20655, 13, 8671, 18, 13, 79, 4160, 444, 1330, 337, 34431, 36727, 11, 327, 20471, 36727, 11, 406, 77, 44, 34431, 36727, 11, 406, 77, 34, 20471, 36727, 628 ]
2.920635
126
from django.shortcuts import render import random
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 11748, 4738, 198 ]
4.166667
12
#from django.test import TestCase from datetime import date from decimal import * from django.core.urlresolvers import reverse from django.contrib.auth.models import User from rest_framework.test import APITestCase from rest_framework.authtoken.models import Token from .models import * from .mommy_recipes import * # def test_response(self): # response = get_response(self.client, self.url, None) # self.assertEqual(response.status_code, 200) # def test_public_deter_response(self): # public_deter_1.make() # public_deter_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # def test_daily_deter_qualif_response(self): # daily_deter_qualif_1.make() # daily_deter_qualif_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200) # self.assertEqual(response.status_code, 200) # def test_public_deter_qualif_response(self): # public_deter_qualif_1.make() # public_deter_qualif_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200) # def test_deter_awifs_response(self): # deter_awifs_1.make() # deter_awifs_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200)
[ 2, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 4818, 8079, 1330, 3128, 198, 6738, 32465, 1330, 1635, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2043, 395, 20448, 198, 6738, 1334, 62, 30604, 13, 18439, 30001, 13, 27530, 1330, 29130, 198, 198, 6738, 764, 27530, 1330, 1635, 198, 6738, 764, 32542, 1820, 62, 8344, 18636, 1330, 1635, 628, 628, 628, 198, 220, 220, 220, 1303, 825, 1332, 62, 26209, 7, 944, 2599, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 2882, 796, 651, 62, 26209, 7, 944, 13, 16366, 11, 2116, 13, 6371, 11, 6045, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 939, 8, 628, 220, 220, 220, 1303, 825, 1332, 62, 11377, 62, 67, 2357, 62, 26209, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1171, 62, 67, 2357, 62, 16, 13, 15883, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1171, 62, 67, 2357, 62, 17, 13, 15883, 3419, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 796, 1391, 6, 3046, 10354, 705, 5673, 3256, 705, 5733, 10354, 1853, 11, 705, 6880, 10354, 807, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22504, 78, 10354, 705, 35, 2767, 1137, 3256, 705, 395, 363, 952, 10354, 705, 34, 419, 68, 28513, 78, 6, 92, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 2882, 796, 651, 62, 26209, 7, 944, 13, 16366, 11, 2116, 13, 6371, 11, 42287, 8, 628, 220, 220, 220, 1303, 825, 1332, 62, 29468, 62, 67, 2357, 62, 13255, 361, 62, 26209, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 4445, 62, 67, 2357, 62, 13255, 361, 62, 16, 13, 15883, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 4445, 62, 67, 2357, 62, 13255, 361, 62, 17, 13, 15883, 3419, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 796, 1391, 6, 3046, 10354, 705, 5673, 3256, 705, 5733, 10354, 1853, 11, 705, 6880, 10354, 807, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22504, 78, 10354, 705, 35, 2767, 1137, 3256, 705, 395, 363, 952, 10354, 705, 34, 419, 68, 28513, 78, 6, 92, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 2882, 796, 651, 62, 26209, 7, 944, 13, 16366, 11, 2116, 13, 6371, 11, 42287, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 939, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 939, 8, 628, 220, 220, 220, 1303, 825, 1332, 62, 11377, 62, 67, 2357, 62, 13255, 361, 62, 26209, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1171, 62, 67, 2357, 62, 13255, 361, 62, 16, 13, 15883, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1171, 62, 67, 2357, 62, 13255, 361, 62, 17, 13, 15883, 3419, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 796, 1391, 6, 3046, 10354, 705, 5673, 3256, 705, 5733, 10354, 1853, 11, 705, 6880, 10354, 807, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22504, 78, 10354, 705, 35, 2767, 1137, 3256, 705, 395, 363, 952, 10354, 705, 34, 419, 68, 28513, 78, 6, 92, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 2882, 796, 651, 62, 26209, 7, 944, 13, 16366, 11, 2116, 13, 6371, 11, 42287, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 939, 8, 628, 220, 220, 220, 1303, 825, 1332, 62, 67, 2357, 62, 707, 361, 82, 62, 26209, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2206, 62, 707, 361, 82, 62, 16, 13, 15883, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2206, 62, 707, 361, 82, 62, 17, 13, 15883, 3419, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 796, 1391, 6, 3046, 10354, 705, 5673, 3256, 705, 5733, 10354, 1853, 11, 705, 6880, 10354, 807, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22504, 78, 10354, 705, 35, 2767, 1137, 3256, 705, 395, 363, 952, 10354, 705, 34, 419, 68, 28513, 78, 6, 92, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 2882, 796, 651, 62, 26209, 7, 944, 13, 16366, 11, 2116, 13, 6371, 11, 42287, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 939, 8 ]
2.256627
830
from localization import L from resources.fonts import QXFontDB from resources.gfx import QXImageDB, QXImageSequenceDB from xlib import qt as qtx from ...backend import BackendHost class QBackendPanel(qtx.QXWidget): """ Base panel for CSW backend """
[ 6738, 42842, 1330, 406, 198, 6738, 4133, 13, 10331, 82, 1330, 1195, 55, 23252, 11012, 198, 6738, 4133, 13, 70, 21373, 1330, 1195, 55, 5159, 11012, 11, 1195, 55, 5159, 44015, 594, 11012, 198, 6738, 2124, 8019, 1330, 10662, 83, 355, 10662, 17602, 198, 198, 6738, 2644, 1891, 437, 1330, 5157, 437, 17932, 628, 198, 4871, 1195, 7282, 437, 26639, 7, 80, 17602, 13, 48, 55, 38300, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 6103, 329, 9429, 54, 30203, 198, 220, 220, 220, 37227, 198 ]
2.988764
89
import jax.numpy as jnp import numpy as np from jax import random from rmhmc.hmc import hmc from .problems import banana
[ 11748, 474, 897, 13, 77, 32152, 355, 474, 37659, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 474, 897, 1330, 4738, 198, 198, 6738, 42721, 71, 23209, 13, 71, 23209, 1330, 289, 23209, 198, 198, 6738, 764, 1676, 22143, 1330, 25996, 628 ]
2.952381
42
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs from ._inputs import * __all__ = ['NamespaceArgs', 'Namespace'] @pulumi.input_type @pulumi.input_type
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 17202, 39410, 25, 428, 2393, 373, 7560, 416, 262, 21624, 12994, 24118, 687, 10290, 357, 27110, 5235, 8, 16984, 13, 17202, 198, 2, 17202, 2141, 407, 4370, 416, 1021, 4556, 345, 821, 1728, 345, 760, 644, 345, 389, 1804, 0, 17202, 198, 198, 11748, 14601, 198, 11748, 17472, 12994, 198, 11748, 17472, 12994, 13, 43282, 198, 6738, 19720, 1330, 4377, 11, 337, 5912, 11, 32233, 11, 45835, 11, 4479, 11, 31754, 198, 6738, 764, 1330, 4808, 315, 2410, 198, 6738, 764, 1330, 23862, 198, 6738, 47540, 15414, 82, 1330, 1635, 198, 198, 834, 439, 834, 796, 37250, 36690, 10223, 42035, 3256, 705, 36690, 10223, 20520, 198, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198 ]
3.414815
135
'''Encoder eval for MS-SSIM ''' from cortex.main import run from cortex_DIM.configs.deconvnets import configs as decoder_configs from cortex_DIM.models.decoder import Decoder class MSSSIMEval(Decoder): '''Measure MS-SSIM through a decoder trained with reconstruction. ''' defaults = dict( data=dict(batch_size=dict(train=64, test=64), inputs=dict(inputs='images'), skip_last_batch=True), optimizer=dict(learning_rate=1e-4, scheduler='MultiStepLR', scheduler_options=dict(milestones=[50, 100], gamma=0.1)) ) def build(self, encoder, config_, task_idx=-1, config='basic32x32', args={}): '''Builds MINE evaluator. Args: encoder_key: Dictionary key for the encoder. task_idx: Index of output tensor to measure MS-SSIM. config: Config name for decoder. See `configs` for details. args: Arguments to update config with. ''' self.nets.encoder = encoder X = self.inputs('data.images') self.task_idx = task_idx out = self.nets.encoder(X, return_all_activations=True)[self.task_idx] config = decoder_configs.get(config) config.update(**args) super().build(out.size()[1:], args=config) if __name__ == '__main__': run(MSSSIMEval())
[ 7061, 6, 27195, 12342, 5418, 329, 6579, 12, 5432, 3955, 198, 198, 7061, 6, 198, 198, 6738, 20223, 13, 12417, 1330, 1057, 198, 198, 6738, 20223, 62, 35, 3955, 13, 11250, 82, 13, 12501, 261, 85, 45938, 1330, 4566, 82, 355, 875, 12342, 62, 11250, 82, 198, 6738, 20223, 62, 35, 3955, 13, 27530, 13, 12501, 12342, 1330, 34580, 628, 198, 4871, 337, 5432, 50, 12789, 2100, 7, 10707, 12342, 2599, 198, 220, 220, 220, 705, 7061, 47384, 6579, 12, 5432, 3955, 832, 257, 875, 12342, 8776, 351, 25056, 13, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 26235, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 11600, 7, 43501, 62, 7857, 28, 11600, 7, 27432, 28, 2414, 11, 1332, 28, 2414, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 11600, 7, 15414, 82, 11639, 17566, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 12957, 62, 43501, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 28, 11600, 7, 40684, 62, 4873, 28, 16, 68, 12, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6038, 18173, 11639, 29800, 8600, 35972, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6038, 18173, 62, 25811, 28, 11600, 7, 25433, 30637, 41888, 1120, 11, 1802, 4357, 34236, 28, 15, 13, 16, 4008, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1382, 7, 944, 11, 2207, 12342, 11, 4566, 62, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 312, 87, 10779, 16, 11, 4566, 11639, 35487, 2624, 87, 2624, 3256, 26498, 34758, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 15580, 82, 337, 8881, 5418, 84, 1352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 62, 2539, 25, 28261, 1994, 329, 262, 2207, 12342, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 312, 87, 25, 12901, 286, 5072, 11192, 273, 284, 3953, 6579, 12, 5432, 3955, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 17056, 1438, 329, 875, 12342, 13, 4091, 4600, 11250, 82, 63, 329, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 25, 20559, 2886, 284, 4296, 4566, 351, 13, 628, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45938, 13, 12685, 12342, 796, 2207, 12342, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 2116, 13, 15414, 82, 10786, 7890, 13, 17566, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35943, 62, 312, 87, 796, 4876, 62, 312, 87, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2116, 13, 45938, 13, 12685, 12342, 7, 55, 11, 1441, 62, 439, 62, 15791, 602, 28, 17821, 38381, 944, 13, 35943, 62, 312, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 875, 12342, 62, 11250, 82, 13, 1136, 7, 11250, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 19119, 7, 1174, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 11249, 7, 448, 13, 7857, 3419, 58, 16, 25, 4357, 26498, 28, 11250, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 7, 44, 5432, 50, 12789, 2100, 28955 ]
2.170807
644
# -*- coding: utf-8 -*- import asyncio import aiohttp if __name__ == "__main__": loop = asyncio.get_event_loop() yahoo = Yahoo() loop.run_until_complete(yahoo.fetch_price()) loop.run_forever()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 30351, 952, 198, 11748, 257, 952, 4023, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 9052, 796, 30351, 952, 13, 1136, 62, 15596, 62, 26268, 3419, 198, 220, 220, 220, 331, 12992, 796, 16551, 3419, 198, 220, 220, 220, 9052, 13, 5143, 62, 28446, 62, 20751, 7, 40774, 13, 69, 7569, 62, 20888, 28955, 198, 220, 220, 220, 9052, 13, 5143, 62, 754, 332, 3419, 198 ]
2.355556
90
"""Reusable utilities for data and model I/O""" from ._data_io import ( load_data, save_csv, try_load_data, try_load_xy, ) from ._model_io import save, saver DIVIK_RESULT_FNAME = "result.pkl" __all__ = [ "load_data", "save_csv", "try_load_data", "try_load_xy", "save", "saver", ]
[ 37811, 3041, 31979, 20081, 329, 1366, 290, 2746, 314, 14, 46, 37811, 198, 6738, 47540, 7890, 62, 952, 1330, 357, 198, 220, 220, 220, 3440, 62, 7890, 11, 198, 220, 220, 220, 3613, 62, 40664, 11, 198, 220, 220, 220, 1949, 62, 2220, 62, 7890, 11, 198, 220, 220, 220, 1949, 62, 2220, 62, 5431, 11, 198, 8, 198, 6738, 47540, 19849, 62, 952, 1330, 3613, 11, 473, 332, 198, 198, 33569, 18694, 62, 19535, 16724, 62, 37, 20608, 796, 366, 20274, 13, 79, 41582, 1, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 2220, 62, 7890, 1600, 198, 220, 220, 220, 366, 21928, 62, 40664, 1600, 198, 220, 220, 220, 366, 28311, 62, 2220, 62, 7890, 1600, 198, 220, 220, 220, 366, 28311, 62, 2220, 62, 5431, 1600, 198, 220, 220, 220, 366, 21928, 1600, 198, 220, 220, 220, 366, 82, 8770, 1600, 198, 60, 198 ]
2.13245
151
import pyglet import rabbyt from pyglet.window import key from pyglet.window import mouse from pyglet.gl import * from tools import *
[ 11748, 12972, 70, 1616, 198, 11748, 27998, 1525, 83, 198, 6738, 12972, 70, 1616, 13, 17497, 1330, 1994, 198, 6738, 12972, 70, 1616, 13, 17497, 1330, 10211, 198, 6738, 12972, 70, 1616, 13, 4743, 1330, 1635, 198, 6738, 4899, 1330, 1635, 198 ]
3.190476
42
# -*- coding: utf-8 -*- """ Created on Fri Apr 30 22:41:09 2021 @author: amanda """ # loop through the .zip files and create images in .png format # import necessary libraries import os import image_to_png directory = "dataset_zip" #file_extensions = ["OSAVI", "NDVI", "GNDVI", "PSRI", "NDVI45"] extension = "OSAVI" print("Extension: ", extension) # crawling through directory and subdirectories for root, directories, files in os.walk(directory): for filename in files: print("filname", filename) # join the two strings in order to form the full filepath. filepath = os.path.join(root, filename) print("Filepath: ", filepath) """ For creating RGB images, no extension is required""" #image_to_png.RGB_spliter(filepath) image_to_png.three_channel_spliter(filepath, extension)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 19480, 2758, 1542, 2534, 25, 3901, 25, 2931, 33448, 198, 31, 9800, 25, 716, 5282, 198, 37811, 198, 198, 2, 9052, 832, 262, 764, 13344, 3696, 290, 2251, 4263, 287, 764, 11134, 5794, 198, 2, 1330, 3306, 12782, 198, 198, 11748, 28686, 198, 11748, 2939, 62, 1462, 62, 11134, 198, 198, 34945, 796, 366, 19608, 292, 316, 62, 13344, 1, 198, 198, 2, 7753, 62, 2302, 5736, 796, 14631, 2640, 10116, 40, 1600, 366, 8575, 12861, 1600, 366, 38, 8575, 12861, 1600, 366, 3705, 7112, 1600, 366, 8575, 12861, 2231, 8973, 198, 2302, 3004, 796, 366, 2640, 10116, 40, 1, 198, 4798, 7203, 11627, 3004, 25, 33172, 7552, 8, 198, 198, 2, 34499, 832, 8619, 290, 850, 12942, 1749, 198, 1640, 6808, 11, 29196, 11, 3696, 287, 28686, 13, 11152, 7, 34945, 2599, 198, 220, 220, 220, 329, 29472, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10379, 3672, 1600, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4654, 262, 734, 13042, 287, 1502, 284, 1296, 262, 1336, 2393, 6978, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 8979, 6978, 25, 33172, 2393, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 1114, 4441, 25228, 4263, 11, 645, 7552, 318, 2672, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9060, 62, 1462, 62, 11134, 13, 36982, 62, 22018, 2676, 7, 7753, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 1462, 62, 11134, 13, 15542, 62, 17620, 62, 22018, 2676, 7, 7753, 6978, 11, 7552, 8, 198 ]
2.773026
304
import pandas as pd CRITERIA = [ "largely_recommended", "reliability", "importance", "engaging", "pedagogy", "layman_friendly", "entertaining_relaxing", "better_habits", "diversity_inclusion", "backfire_risk", ] TCOLOR = [ "#1282b2", "#DC8A5D", "#C28BED", "#4C72D5", "#4BB061", "#D37A80", "#DFC642", "#76C6CB", "#9DD654", "#D8836D", ] MSG_NO_DATA = "You should first load the public dataset at the top of the page." def set_df(data, users=[]): """Set up the dataframe""" df_tmp = pd.read_csv(data) index = ["video_a", "video_b", "public_username"] df = df_tmp.pivot(index=index, columns="criteria", values="score") df.reset_index(inplace=True) if users: df = df[df["public_username"].isin(users)] return df
[ 11748, 19798, 292, 355, 279, 67, 628, 198, 9419, 2043, 1137, 3539, 796, 685, 198, 220, 220, 220, 366, 11664, 306, 62, 47335, 1631, 1600, 198, 220, 220, 220, 366, 2411, 12455, 1600, 198, 220, 220, 220, 366, 11748, 590, 1600, 198, 220, 220, 220, 366, 1516, 3039, 1600, 198, 220, 220, 220, 366, 9124, 363, 9868, 1600, 198, 220, 220, 220, 366, 10724, 805, 62, 13120, 1600, 198, 220, 220, 220, 366, 298, 861, 1397, 62, 2411, 897, 278, 1600, 198, 220, 220, 220, 366, 27903, 62, 5976, 896, 1600, 198, 220, 220, 220, 366, 67, 1608, 62, 259, 4717, 1600, 198, 220, 220, 220, 366, 1891, 6495, 62, 19121, 1600, 198, 60, 198, 198, 4825, 3535, 1581, 796, 685, 198, 220, 220, 220, 25113, 1065, 6469, 65, 17, 1600, 198, 220, 220, 220, 25113, 9697, 23, 32, 20, 35, 1600, 198, 220, 220, 220, 25113, 34, 2078, 33, 1961, 1600, 198, 220, 220, 220, 25113, 19, 34, 4761, 35, 20, 1600, 198, 220, 220, 220, 25113, 19, 15199, 3312, 16, 1600, 198, 220, 220, 220, 25113, 35, 2718, 32, 1795, 1600, 198, 220, 220, 220, 25113, 35, 4851, 41290, 1600, 198, 220, 220, 220, 25113, 4304, 34, 21, 23199, 1600, 198, 220, 220, 220, 25113, 24, 16458, 39111, 1600, 198, 220, 220, 220, 25113, 35, 3459, 2623, 35, 1600, 198, 60, 198, 198, 5653, 38, 62, 15285, 62, 26947, 796, 366, 1639, 815, 717, 3440, 262, 1171, 27039, 379, 262, 1353, 286, 262, 2443, 526, 628, 198, 4299, 900, 62, 7568, 7, 7890, 11, 2985, 28, 21737, 2599, 198, 220, 220, 220, 37227, 7248, 510, 262, 1366, 14535, 37811, 628, 220, 220, 220, 47764, 62, 22065, 796, 279, 67, 13, 961, 62, 40664, 7, 7890, 8, 628, 220, 220, 220, 6376, 796, 14631, 15588, 62, 64, 1600, 366, 15588, 62, 65, 1600, 366, 11377, 62, 29460, 8973, 628, 220, 220, 220, 47764, 796, 47764, 62, 22065, 13, 79, 45785, 7, 9630, 28, 9630, 11, 15180, 2625, 22213, 5142, 1600, 3815, 2625, 26675, 4943, 198, 220, 220, 220, 47764, 13, 42503, 62, 9630, 7, 259, 5372, 28, 17821, 8, 628, 220, 220, 220, 611, 2985, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 58, 7568, 14692, 11377, 62, 29460, 1, 4083, 45763, 7, 18417, 15437, 628, 220, 220, 220, 1441, 47764, 628 ]
2.157623
387
# Copyright (c) 2015 Orange. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sqlalchemy import orm from sqlalchemy import sql from neutron.db.models import l3 from neutron.db import models_v2 from neutron.debug import debug_agent from neutron_lib.api.definitions import portbindings from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from neutron_lib import constants as const from neutron_lib.db import api as db_api from oslo_log import helpers as log_helpers from oslo_log import log as logging from networking_bagpipe.agent.bgpvpn import rpc_client from networking_bgpvpn.neutron.db import bgpvpn_db from networking_bgpvpn.neutron.services.common import utils from networking_bgpvpn.neutron.services.service_drivers.bagpipe \ import bagpipe_v2 as v2 LOG = logging.getLogger(__name__) @log_helpers.log_method_call @db_api.CONTEXT_READER def get_network_info_for_port(context, port_id, network_id): """Get MAC, IP and Gateway IP addresses informations for a specific port""" try: net_info = (context.session. query(models_v2.Port.mac_address, models_v2.IPAllocation.ip_address, models_v2.Subnet.cidr, models_v2.Subnet.gateway_ip). join(models_v2.IPAllocation, models_v2.IPAllocation.port_id == models_v2.Port.id). join(models_v2.Subnet, models_v2.IPAllocation.subnet_id == models_v2.Subnet.id). filter(models_v2.Subnet.ip_version == 4). filter(models_v2.Port.id == port_id).one()) (mac_address, ip_address, cidr, gateway_ip) = net_info except orm.exc.NoResultFound: return gateway_mac = ( context.session. query(models_v2.Port.mac_address). filter( models_v2.Port.network_id == network_id, (models_v2.Port.device_owner == const.DEVICE_OWNER_ROUTER_INTF) ). one_or_none() ) return {'mac_address': mac_address, 'ip_address': ip_address + cidr[cidr.index('/'):], 'gateway_ip': gateway_ip, 'gateway_mac': gateway_mac[0] if gateway_mac else None} @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @registry.has_registry_receivers class BaGPipeBGPVPNDriver(v2.BaGPipeBGPVPNDriver): """BGPVPN Service Driver class for BaGPipe""" def _format_bgpvpn(self, context, bgpvpn, network_id): """JSON-format BGPVPN BGPVPN, network identifiers, and route targets. """ formatted_bgpvpn = {'id': bgpvpn['id'], 'network_id': network_id, 'gateway_mac': get_gateway_mac(context, network_id)} formatted_bgpvpn.update( self._format_bgpvpn_network_route_targets([bgpvpn])) return formatted_bgpvpn def _format_bgpvpn_network_route_targets(self, bgpvpns): """Format BGPVPN network informations (VPN type and route targets) [{ 'type': 'l3', 'route_targets': ['12345:1', '12345:2'], 'import_targets': ['12345:3'], 'export_targets': ['12345:4'] }, { 'type': 'l3', 'route_targets': ['12346:1'] }, { 'type': 'l2', 'route_targets': ['12347:1'] } ] to { 'l3vpn' : { 'import_rt': ['12345:1', '12345:2', '12345:3', '12346:1'], 'export_rt': ['12345:1', '12345:2', '12345:4', '12346:1'] }, 'l2vpn' : { 'import_rt': ['12347:1'], 'export_rt': ['12347:1'] } } """ bgpvpn_rts = {} for bgpvpn in bgpvpns: # Add necessary keys to BGP VPN route targets dictionary if bgpvpn['type'] + 'vpn' not in bgpvpn_rts: bgpvpn_rts.update( {bgpvpn['type'] + 'vpn': {'import_rt': [], 'export_rt': []}} ) if 'route_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['import_rt'] += ( bgpvpn['route_targets'] ) bgpvpn_rts[bgpvpn['type'] + 'vpn']['export_rt'] += ( bgpvpn['route_targets'] ) if 'import_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['import_rt'] += ( bgpvpn['import_targets'] ) if 'export_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['export_rt'] += ( bgpvpn['export_targets'] ) for attribute in ('import_rt', 'export_rt'): if bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute]: bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute] = list( set(bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute])) return bgpvpn_rts def _retrieve_bgpvpn_network_info_for_port(self, context, port): """Retrieve BGP VPN network informations for a specific port { 'network_id': <UUID>, 'mac_address': '00:00:de:ad:be:ef', 'ip_address': '10.0.0.2', 'gateway_ip': '10.0.0.1', 'gateway_mac': 'aa:bb:cc:dd:ee:ff', # if a router interface exists 'l3vpn' : { 'import_rt': ['12345:1', '12345:2', '12345:3'], 'export_rt': ['12345:1', '12345:2', '12345:4'] } } """ port_id = port['id'] network_id = port['network_id'] bgpvpn_network_info = {} bgpvpns = self._bgpvpns_for_network(context, network_id) # NOTE(tmorin): We currently need to send 'network_id', 'mac_address', # 'ip_address', 'gateway_ip' to the agent, even in the absence of # a BGPVPN bound to the port. If we don't this information will # lack on an update_bgpvpn RPC. When the agent will have the ability # to retrieve this info by itself, we'll change this method # to return {} if there is no bound bgpvpn. bgpvpn_rts = self._format_bgpvpn_network_route_targets(bgpvpns) LOG.debug("Port connected on BGPVPN network %s with route targets " "%s" % (network_id, bgpvpn_rts)) bgpvpn_network_info.update(bgpvpn_rts) LOG.debug("Getting port %s network details" % port_id) network_info = get_network_info_for_port(context, port_id, network_id) if not network_info: LOG.warning("No network information for net %s", network_id) return bgpvpn_network_info.update(network_info) return bgpvpn_network_info @db_api.CONTEXT_READER @log_helpers.log_method_call @log_helpers.log_method_call @log_helpers.log_method_call @log_helpers.log_method_call @registry.receives(resources.PORT, [events.AFTER_UPDATE]) @log_helpers.log_method_call @registry.receives(resources.PORT, [events.AFTER_DELETE]) @log_helpers.log_method_call # contrary to mother class, no need to subscribe to router interface # before-delete, because after delete, we still can generate RPCs @registry.receives(resources.ROUTER_INTERFACE, [events.AFTER_DELETE]) @log_helpers.log_method_call
[ 2, 15069, 357, 66, 8, 1853, 11942, 13, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 6738, 44161, 282, 26599, 1330, 393, 76, 198, 6738, 44161, 282, 26599, 1330, 44161, 198, 198, 6738, 49810, 13, 9945, 13, 27530, 1330, 300, 18, 198, 6738, 49810, 13, 9945, 1330, 4981, 62, 85, 17, 198, 6738, 49810, 13, 24442, 1330, 14257, 62, 25781, 198, 198, 6738, 49810, 62, 8019, 13, 15042, 13, 4299, 50101, 1330, 2493, 21653, 654, 198, 6738, 49810, 62, 8019, 13, 13345, 10146, 1330, 2995, 198, 6738, 49810, 62, 8019, 13, 13345, 10146, 1330, 20478, 198, 6738, 49810, 62, 8019, 13, 13345, 10146, 1330, 4133, 198, 6738, 49810, 62, 8019, 1330, 38491, 355, 1500, 198, 6738, 49810, 62, 8019, 13, 9945, 1330, 40391, 355, 20613, 62, 15042, 198, 198, 6738, 28686, 5439, 62, 6404, 1330, 49385, 355, 2604, 62, 16794, 364, 198, 6738, 28686, 5439, 62, 6404, 1330, 2604, 355, 18931, 198, 198, 6738, 19140, 62, 21454, 34360, 13, 25781, 13, 65, 31197, 85, 21999, 1330, 374, 14751, 62, 16366, 198, 198, 6738, 19140, 62, 65, 31197, 85, 21999, 13, 710, 315, 1313, 13, 9945, 1330, 275, 31197, 85, 21999, 62, 9945, 198, 6738, 19140, 62, 65, 31197, 85, 21999, 13, 710, 315, 1313, 13, 30416, 13, 11321, 1330, 3384, 4487, 198, 6738, 19140, 62, 65, 31197, 85, 21999, 13, 710, 315, 1313, 13, 30416, 13, 15271, 62, 36702, 13, 21454, 34360, 3467, 198, 220, 220, 220, 1330, 6131, 34360, 62, 85, 17, 355, 410, 17, 628, 198, 25294, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 31, 6404, 62, 16794, 364, 13, 6404, 62, 24396, 62, 13345, 198, 31, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 198, 4299, 651, 62, 27349, 62, 10951, 62, 1640, 62, 634, 7, 22866, 11, 2493, 62, 312, 11, 3127, 62, 312, 2599, 198, 220, 220, 220, 37227, 3855, 20582, 11, 6101, 290, 29916, 6101, 9405, 4175, 602, 329, 257, 2176, 2493, 37811, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 62, 10951, 796, 357, 22866, 13, 29891, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 7, 27530, 62, 85, 17, 13, 13924, 13, 20285, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 62, 85, 17, 13, 4061, 3237, 5040, 13, 541, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 62, 85, 17, 13, 7004, 3262, 13, 66, 312, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 62, 85, 17, 13, 7004, 3262, 13, 10494, 1014, 62, 541, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 7, 27530, 62, 85, 17, 13, 4061, 3237, 5040, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 62, 85, 17, 13, 4061, 3237, 5040, 13, 634, 62, 312, 6624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 62, 85, 17, 13, 13924, 13, 312, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 7, 27530, 62, 85, 17, 13, 7004, 3262, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 62, 85, 17, 13, 4061, 3237, 5040, 13, 7266, 3262, 62, 312, 6624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 62, 85, 17, 13, 7004, 3262, 13, 312, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 7, 27530, 62, 85, 17, 13, 7004, 3262, 13, 541, 62, 9641, 6624, 604, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 7, 27530, 62, 85, 17, 13, 13924, 13, 312, 6624, 2493, 62, 312, 737, 505, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 357, 20285, 62, 21975, 11, 20966, 62, 21975, 11, 269, 312, 81, 11, 24308, 62, 541, 8, 796, 2010, 62, 10951, 198, 220, 220, 220, 2845, 393, 76, 13, 41194, 13, 2949, 23004, 21077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 24308, 62, 20285, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 13, 29891, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 7, 27530, 62, 85, 17, 13, 13924, 13, 20285, 62, 21975, 737, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 62, 85, 17, 13, 13924, 13, 27349, 62, 312, 6624, 3127, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 27530, 62, 85, 17, 13, 13924, 13, 25202, 62, 18403, 6624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 13, 7206, 27389, 62, 14165, 1137, 62, 49, 2606, 5781, 62, 1268, 10234, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 198, 220, 220, 220, 220, 220, 220, 220, 530, 62, 273, 62, 23108, 3419, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 1391, 6, 20285, 62, 21975, 10354, 8352, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 21975, 10354, 20966, 62, 21975, 1343, 269, 312, 81, 58, 66, 312, 81, 13, 9630, 10786, 14, 6, 2599, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10494, 1014, 62, 541, 10354, 24308, 62, 541, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10494, 1014, 62, 20285, 10354, 24308, 62, 20285, 58, 15, 60, 611, 24308, 62, 20285, 2073, 6045, 92, 628, 198, 31, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 628, 198, 31, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 628, 198, 31, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 628, 198, 31, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 628, 198, 31, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 628, 198, 31, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 628, 198, 31, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 628, 198, 198, 31, 2301, 4592, 13, 10134, 62, 2301, 4592, 62, 260, 344, 1191, 198, 4871, 8999, 16960, 3757, 33, 16960, 8859, 8575, 38291, 7, 85, 17, 13, 34458, 16960, 3757, 33, 16960, 8859, 8575, 38291, 2599, 628, 220, 220, 220, 37227, 33, 16960, 33883, 4809, 12434, 1398, 329, 8999, 16960, 3757, 37811, 628, 220, 220, 220, 825, 4808, 18982, 62, 65, 31197, 85, 21999, 7, 944, 11, 4732, 11, 275, 31197, 85, 21999, 11, 3127, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40386, 12, 18982, 347, 16960, 33883, 628, 220, 220, 220, 220, 220, 220, 220, 347, 16960, 33883, 11, 3127, 42814, 11, 290, 6339, 6670, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 39559, 62, 65, 31197, 85, 21999, 796, 1391, 6, 312, 10354, 275, 31197, 85, 21999, 17816, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 62, 312, 10354, 3127, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10494, 1014, 62, 20285, 10354, 651, 62, 10494, 1014, 62, 20285, 7, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3127, 62, 312, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 39559, 62, 65, 31197, 85, 21999, 13, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18982, 62, 65, 31197, 85, 21999, 62, 27349, 62, 38629, 62, 83, 853, 1039, 26933, 65, 31197, 85, 21999, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 39559, 62, 65, 31197, 85, 21999, 628, 220, 220, 220, 825, 4808, 18982, 62, 65, 31197, 85, 21999, 62, 27349, 62, 38629, 62, 83, 853, 1039, 7, 944, 11, 275, 31197, 36133, 5907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26227, 347, 16960, 33883, 3127, 4175, 602, 357, 33883, 2099, 290, 6339, 6670, 8, 628, 220, 220, 220, 220, 220, 220, 220, 685, 90, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 75, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38629, 62, 83, 853, 1039, 10354, 37250, 10163, 2231, 25, 16, 3256, 705, 10163, 2231, 25, 17, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11748, 62, 83, 853, 1039, 10354, 37250, 10163, 2231, 25, 18, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39344, 62, 83, 853, 1039, 10354, 37250, 10163, 2231, 25, 19, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 75, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38629, 62, 83, 853, 1039, 10354, 37250, 1065, 30557, 25, 16, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 75, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38629, 62, 83, 853, 1039, 10354, 37250, 1065, 30995, 25, 16, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 284, 628, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 18, 85, 21999, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11748, 62, 17034, 10354, 37250, 10163, 2231, 25, 16, 3256, 705, 10163, 2231, 25, 17, 3256, 705, 10163, 2231, 25, 18, 3256, 705, 1065, 30557, 25, 16, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39344, 62, 17034, 10354, 37250, 10163, 2231, 25, 16, 3256, 705, 10163, 2231, 25, 17, 3256, 705, 10163, 2231, 25, 19, 3256, 705, 1065, 30557, 25, 16, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 17, 85, 21999, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11748, 62, 17034, 10354, 37250, 1065, 30995, 25, 16, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39344, 62, 17034, 10354, 37250, 1065, 30995, 25, 16, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 81, 912, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 275, 31197, 85, 21999, 287, 275, 31197, 36133, 5907, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3306, 8251, 284, 347, 16960, 21669, 6339, 6670, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 6, 407, 287, 275, 31197, 85, 21999, 62, 81, 912, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 81, 912, 13, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 65, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 10354, 1391, 6, 11748, 62, 17034, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39344, 62, 17034, 10354, 17635, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 38629, 62, 83, 853, 1039, 6, 287, 275, 31197, 85, 21999, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 81, 912, 58, 65, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 6, 7131, 6, 11748, 62, 17034, 20520, 15853, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 17816, 38629, 62, 83, 853, 1039, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 81, 912, 58, 65, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 6, 7131, 6, 39344, 62, 17034, 20520, 15853, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 17816, 38629, 62, 83, 853, 1039, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 11748, 62, 83, 853, 1039, 6, 287, 275, 31197, 85, 21999, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 81, 912, 58, 65, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 6, 7131, 6, 11748, 62, 17034, 20520, 15853, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 17816, 11748, 62, 83, 853, 1039, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 39344, 62, 83, 853, 1039, 6, 287, 275, 31197, 85, 21999, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 81, 912, 58, 65, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 6, 7131, 6, 39344, 62, 17034, 20520, 15853, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 17816, 39344, 62, 83, 853, 1039, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11688, 287, 19203, 11748, 62, 17034, 3256, 705, 39344, 62, 17034, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 31197, 85, 21999, 62, 81, 912, 58, 65, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 6, 7131, 42348, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 81, 912, 58, 65, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 6, 7131, 42348, 60, 796, 1351, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 7, 65, 31197, 85, 21999, 62, 81, 912, 58, 65, 31197, 85, 21999, 17816, 4906, 20520, 1343, 705, 85, 21999, 6, 7131, 42348, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 275, 31197, 85, 21999, 62, 81, 912, 628, 220, 220, 220, 825, 4808, 1186, 30227, 62, 65, 31197, 85, 21999, 62, 27349, 62, 10951, 62, 1640, 62, 634, 7, 944, 11, 4732, 11, 2493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9781, 30227, 347, 16960, 21669, 3127, 4175, 602, 329, 257, 2176, 2493, 628, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 62, 312, 10354, 1279, 52, 27586, 22330, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20285, 62, 21975, 10354, 705, 405, 25, 405, 25, 2934, 25, 324, 25, 1350, 25, 891, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 21975, 10354, 705, 940, 13, 15, 13, 15, 13, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10494, 1014, 62, 541, 10354, 705, 940, 13, 15, 13, 15, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10494, 1014, 62, 20285, 10354, 705, 7252, 25, 11848, 25, 535, 25, 1860, 25, 1453, 25, 487, 3256, 1303, 611, 257, 20264, 7071, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 18, 85, 21999, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11748, 62, 17034, 10354, 37250, 10163, 2231, 25, 16, 3256, 705, 10163, 2231, 25, 17, 3256, 705, 10163, 2231, 25, 18, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39344, 62, 17034, 10354, 37250, 10163, 2231, 25, 16, 3256, 705, 10163, 2231, 25, 17, 3256, 705, 10163, 2231, 25, 19, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 62, 312, 796, 2493, 17816, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 3127, 62, 312, 796, 2493, 17816, 27349, 62, 312, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 27349, 62, 10951, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 36133, 5907, 796, 2116, 13557, 65, 31197, 36133, 5907, 62, 1640, 62, 27349, 7, 22866, 11, 3127, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 24550, 7, 83, 4491, 259, 2599, 775, 3058, 761, 284, 3758, 705, 27349, 62, 312, 3256, 705, 20285, 62, 21975, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 705, 541, 62, 21975, 3256, 705, 10494, 1014, 62, 541, 6, 284, 262, 5797, 11, 772, 287, 262, 8889, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 257, 347, 16960, 33883, 5421, 284, 262, 2493, 13, 220, 1002, 356, 836, 470, 428, 1321, 481, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 3092, 319, 281, 4296, 62, 65, 31197, 85, 21999, 39400, 13, 1649, 262, 5797, 481, 423, 262, 2694, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 284, 19818, 428, 7508, 416, 2346, 11, 356, 1183, 1487, 428, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 284, 1441, 23884, 611, 612, 318, 645, 5421, 275, 31197, 85, 21999, 13, 628, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 81, 912, 796, 2116, 13557, 18982, 62, 65, 31197, 85, 21999, 62, 27349, 62, 38629, 62, 83, 853, 1039, 7, 65, 31197, 36133, 5907, 8, 628, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 7203, 13924, 5884, 319, 347, 16960, 33883, 3127, 4064, 82, 351, 6339, 6670, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36521, 82, 1, 4064, 357, 27349, 62, 312, 11, 275, 31197, 85, 21999, 62, 81, 912, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 27349, 62, 10951, 13, 19119, 7, 65, 31197, 85, 21999, 62, 81, 912, 8, 628, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 24442, 7203, 20570, 2493, 4064, 82, 3127, 3307, 1, 4064, 2493, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3127, 62, 10951, 796, 651, 62, 27349, 62, 10951, 62, 1640, 62, 634, 7, 22866, 11, 2493, 62, 312, 11, 3127, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3127, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 43917, 7203, 2949, 3127, 1321, 329, 2010, 4064, 82, 1600, 3127, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 275, 31197, 85, 21999, 62, 27349, 62, 10951, 13, 19119, 7, 27349, 62, 10951, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 275, 31197, 85, 21999, 62, 27349, 62, 10951, 628, 220, 220, 220, 2488, 9945, 62, 15042, 13, 10943, 32541, 62, 15675, 1137, 628, 220, 220, 220, 2488, 6404, 62, 16794, 364, 13, 6404, 62, 24396, 62, 13345, 628, 220, 220, 220, 2488, 6404, 62, 16794, 364, 13, 6404, 62, 24396, 62, 13345, 628, 220, 220, 220, 2488, 6404, 62, 16794, 364, 13, 6404, 62, 24396, 62, 13345, 628, 220, 220, 220, 2488, 6404, 62, 16794, 364, 13, 6404, 62, 24396, 62, 13345, 628, 220, 220, 220, 2488, 2301, 4592, 13, 260, 344, 1083, 7, 37540, 13, 15490, 11, 685, 31534, 13, 8579, 5781, 62, 16977, 12962, 198, 220, 220, 220, 2488, 6404, 62, 16794, 364, 13, 6404, 62, 24396, 62, 13345, 628, 220, 220, 220, 2488, 2301, 4592, 13, 260, 344, 1083, 7, 37540, 13, 15490, 11, 685, 31534, 13, 8579, 5781, 62, 7206, 2538, 9328, 12962, 198, 220, 220, 220, 2488, 6404, 62, 16794, 364, 13, 6404, 62, 24396, 62, 13345, 628, 220, 220, 220, 1303, 10388, 284, 2802, 1398, 11, 645, 761, 284, 12383, 284, 20264, 7071, 198, 220, 220, 220, 1303, 878, 12, 33678, 11, 780, 706, 12233, 11, 356, 991, 460, 7716, 39400, 82, 198, 220, 220, 220, 2488, 2301, 4592, 13, 260, 344, 1083, 7, 37540, 13, 49, 2606, 5781, 62, 41358, 49836, 11, 685, 31534, 13, 8579, 5781, 62, 7206, 2538, 9328, 12962, 198, 220, 220, 220, 2488, 6404, 62, 16794, 364, 13, 6404, 62, 24396, 62, 13345, 198 ]
1.985011
4,203
from diepvries.deserializers.snowflake_deserializer import ( DatabaseConfiguration, SnowflakeDeserializer, ) if __name__ == "__main__": deserialize()
[ 6738, 4656, 79, 85, 1678, 13, 8906, 48499, 11341, 13, 82, 2197, 47597, 62, 8906, 48499, 7509, 1330, 357, 198, 220, 220, 220, 24047, 38149, 11, 198, 220, 220, 220, 7967, 47597, 5960, 48499, 7509, 11, 198, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 748, 48499, 1096, 3419, 198 ]
2.75
60
""" Metrics measuring either uncertainty or confidence of a model. """ import torch import torch.nn.functional as F
[ 37811, 198, 9171, 10466, 15964, 2035, 13479, 393, 6628, 286, 257, 2746, 13, 198, 37811, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 628, 628, 628 ]
4.033333
30
# # PySNMP MIB module TUBS-IBR-AGENT-CAPABILITIES (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TUBS-IBR-AGENT-CAPABILITIES # Produced by pysmi-0.3.4 at Wed May 1 15:27:47 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsUnion") ModuleCompliance, AgentCapabilities, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "AgentCapabilities", "NotificationGroup") Gauge32, ObjectIdentity, Counter64, Counter32, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, TimeTicks, IpAddress, MibIdentifier, Bits, Integer32, ModuleIdentity, Unsigned32, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "ObjectIdentity", "Counter64", "Counter32", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "TimeTicks", "IpAddress", "MibIdentifier", "Bits", "Integer32", "ModuleIdentity", "Unsigned32", "iso") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ibr, = mibBuilder.importSymbols("TUBS-SMI", "ibr") ibrAgentCapabilities = ModuleIdentity((1, 3, 6, 1, 4, 1, 1575, 1, 6)) ibrAgentCapabilities.setRevisions(('2000-02-09 00:00', '1998-08-05 16:23', '1997-02-14 10:23',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ibrAgentCapabilities.setRevisionsDescriptions(('Updated IMPORTS and minor stylistic fixes.', 'Added agent capabilities for the WWW-MIB subagent version 1.0.', 'The initial revision of this module.',)) if mibBuilder.loadTexts: ibrAgentCapabilities.setLastUpdated('200002090000Z') if mibBuilder.loadTexts: ibrAgentCapabilities.setOrganization('TU Braunschweig') if mibBuilder.loadTexts: ibrAgentCapabilities.setContactInfo('Juergen Schoenwaelder TU Braunschweig Bueltenweg 74/75 38106 Braunschweig Germany Tel: +49 531 391 3283 Fax: +49 531 391 5936 E-mail: [email protected]') if mibBuilder.loadTexts: ibrAgentCapabilities.setDescription('Agent capability statements.') linux = MibIdentifier((1, 3, 6, 1, 4, 1, 1575, 1, 6, 1)) linuxAgent3dot3 = AgentCapabilities((1, 3, 6, 1, 4, 1, 1575, 1, 6, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): linuxAgent3dot3 = linuxAgent3dot3.setProductRelease('cmu-snmp-linux-3.3') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): linuxAgent3dot3 = linuxAgent3dot3.setStatus('current') if mibBuilder.loadTexts: linuxAgent3dot3.setDescription('CMU SNMP v1.1b + SNMPv2 USEC + LINUX') wwwSubagent1dot0 = AgentCapabilities((1, 3, 6, 1, 4, 1, 1575, 1, 6, 3)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): wwwSubagent1dot0 = wwwSubagent1dot0.setProductRelease('TUBS Apache WWW-MIB sub-agent version 1.0') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): wwwSubagent1dot0 = wwwSubagent1dot0.setStatus('current') if mibBuilder.loadTexts: wwwSubagent1dot0.setDescription('TUBS WWW-MIB sub-agent version 1.0 for Solaris.') mibBuilder.exportSymbols("TUBS-IBR-AGENT-CAPABILITIES", linuxAgent3dot3=linuxAgent3dot3, ibrAgentCapabilities=ibrAgentCapabilities, PYSNMP_MODULE_ID=ibrAgentCapabilities, wwwSubagent1dot0=wwwSubagent1dot0, linux=linux)
[ 2, 198, 2, 9485, 15571, 7378, 337, 9865, 8265, 309, 52, 4462, 12, 9865, 49, 12, 4760, 3525, 12, 33177, 32, 49516, 357, 4023, 1378, 16184, 76, 489, 8937, 13, 785, 14, 79, 893, 11632, 8, 198, 2, 7054, 45, 13, 16, 2723, 2393, 1378, 14, 14490, 14, 67, 615, 47562, 19, 14, 13603, 14, 76, 571, 82, 13, 16184, 76, 489, 8937, 13, 785, 14, 292, 77, 16, 14, 51, 52, 4462, 12, 9865, 49, 12, 4760, 3525, 12, 33177, 32, 49516, 198, 2, 21522, 771, 416, 279, 893, 11632, 12, 15, 13, 18, 13, 19, 379, 3300, 1737, 220, 352, 1315, 25, 1983, 25, 2857, 13130, 198, 2, 1550, 2583, 42274, 54, 15567, 19, 12, 44, 12, 1415, 2425, 3859, 21450, 2196, 1248, 13, 20, 13, 15, 416, 2836, 288, 615, 47562, 19, 198, 2, 8554, 11361, 2196, 513, 13, 22, 13, 18, 357, 12286, 11, 1526, 2681, 13130, 11, 7769, 25, 1954, 25, 1314, 8, 220, 198, 2, 198, 12349, 316, 10100, 11, 9515, 33234, 7483, 11, 34142, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 1600, 366, 12349, 316, 10100, 1600, 366, 10267, 33234, 7483, 1600, 366, 46541, 4943, 198, 45, 2434, 40161, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 1677, 5883, 1137, 6234, 1600, 366, 45, 2434, 40161, 4943, 198, 3103, 2536, 6003, 9492, 5458, 11, 14206, 11395, 3103, 2536, 2913, 11, 11052, 17257, 3103, 2536, 2913, 11, 11052, 10699, 3103, 2536, 2913, 11, 1482, 2536, 6003, 38176, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 2200, 20032, 12529, 1600, 366, 3103, 2536, 6003, 9492, 5458, 1600, 366, 28008, 11395, 3103, 2536, 2913, 1600, 366, 11395, 17257, 3103, 2536, 2913, 1600, 366, 11395, 10699, 3103, 2536, 2913, 1600, 366, 3103, 2536, 6003, 38176, 4943, 198, 26796, 38143, 3610, 11, 15906, 15610, 5738, 11, 42808, 13247, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 10943, 37, 1600, 366, 26796, 38143, 3610, 1600, 366, 36772, 15610, 5738, 1600, 366, 3673, 2649, 13247, 4943, 198, 38, 559, 469, 2624, 11, 9515, 7390, 26858, 11, 15034, 2414, 11, 15034, 2624, 11, 42808, 6030, 11, 337, 571, 3351, 282, 283, 11, 337, 571, 10962, 11, 337, 571, 10962, 25166, 11, 337, 571, 10962, 39470, 11, 3862, 51, 3378, 11, 314, 79, 20231, 11, 337, 571, 33234, 7483, 11, 44733, 11, 34142, 2624, 11, 19937, 7390, 26858, 11, 791, 32696, 2624, 11, 47279, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 50, 8895, 1600, 366, 38, 559, 469, 2624, 1600, 366, 10267, 7390, 26858, 1600, 366, 31694, 2414, 1600, 366, 31694, 2624, 1600, 366, 3673, 2649, 6030, 1600, 366, 44, 571, 3351, 282, 283, 1600, 366, 44, 571, 10962, 1600, 366, 44, 571, 10962, 25166, 1600, 366, 44, 571, 10962, 39470, 1600, 366, 7575, 51, 3378, 1600, 366, 40, 79, 20231, 1600, 366, 44, 571, 33234, 7483, 1600, 366, 33, 896, 1600, 366, 46541, 2624, 1600, 366, 26796, 7390, 26858, 1600, 366, 3118, 32696, 2624, 1600, 366, 26786, 4943, 198, 23114, 10100, 11, 8255, 723, 3103, 4018, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 4825, 1600, 366, 23114, 10100, 1600, 366, 8206, 723, 3103, 4018, 4943, 198, 2889, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 51, 52, 4462, 12, 50, 8895, 1600, 366, 2889, 4943, 198, 2889, 36772, 15610, 5738, 796, 19937, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1315, 2425, 11, 352, 11, 718, 4008, 198, 2889, 36772, 15610, 5738, 13, 2617, 18009, 3279, 7, 10786, 11024, 12, 2999, 12, 2931, 3571, 25, 405, 3256, 705, 21113, 12, 2919, 12, 2713, 1467, 25, 1954, 3256, 705, 21498, 12, 2999, 12, 1415, 838, 25, 1954, 3256, 4008, 198, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 611, 285, 571, 32875, 13, 2220, 8206, 82, 25, 220, 2889, 36772, 15610, 5738, 13, 2617, 18009, 3279, 24564, 1968, 507, 7, 10786, 17354, 30023, 33002, 290, 4159, 22152, 2569, 13040, 2637, 11, 705, 13003, 5797, 9889, 329, 262, 13505, 54, 12, 8895, 33, 850, 25781, 2196, 352, 13, 15, 2637, 11, 705, 464, 4238, 18440, 286, 428, 8265, 2637, 11, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 220, 2889, 36772, 15610, 5738, 13, 2617, 5956, 17354, 10786, 2167, 405, 22567, 2388, 57, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 220, 2889, 36772, 15610, 5738, 13, 2617, 26121, 1634, 10786, 51, 52, 9718, 13271, 354, 732, 328, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 220, 2889, 36772, 15610, 5738, 13, 2617, 17829, 12360, 10786, 41, 15573, 5235, 3059, 6571, 86, 3609, 6499, 309, 52, 9718, 13271, 354, 732, 328, 347, 2731, 1452, 732, 70, 8915, 14, 2425, 4353, 15801, 9718, 13271, 354, 732, 328, 4486, 12088, 25, 1343, 2920, 642, 3132, 5014, 16, 513, 30290, 376, 897, 25, 1343, 2920, 642, 3132, 5014, 16, 7863, 2623, 412, 12, 4529, 25, 5513, 6571, 86, 31, 2889, 13, 6359, 13, 28047, 12, 1443, 13, 2934, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 220, 2889, 36772, 15610, 5738, 13, 2617, 11828, 10786, 36772, 12971, 6299, 2637, 8, 198, 23289, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1315, 2425, 11, 352, 11, 718, 11, 352, 4008, 198, 23289, 36772, 18, 26518, 18, 796, 15906, 15610, 5738, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1315, 2425, 11, 352, 11, 718, 11, 362, 4008, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 32639, 36772, 18, 26518, 18, 796, 32639, 36772, 18, 26518, 18, 13, 2617, 15667, 26362, 10786, 11215, 84, 12, 16184, 3149, 12, 23289, 12, 18, 13, 18, 11537, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 32639, 36772, 18, 26518, 18, 796, 32639, 36772, 18, 26518, 18, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 32639, 36772, 18, 26518, 18, 13, 2617, 11828, 10786, 24187, 52, 11346, 7378, 410, 16, 13, 16, 65, 1343, 11346, 7378, 85, 17, 1294, 2943, 1343, 43277, 31235, 11537, 198, 2503, 7004, 25781, 16, 26518, 15, 796, 15906, 15610, 5738, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1315, 2425, 11, 352, 11, 718, 11, 513, 4008, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 7324, 7004, 25781, 16, 26518, 15, 796, 7324, 7004, 25781, 16, 26518, 15, 13, 2617, 15667, 26362, 10786, 51, 52, 4462, 24843, 13505, 54, 12, 8895, 33, 850, 12, 25781, 2196, 352, 13, 15, 11537, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 7324, 7004, 25781, 16, 26518, 15, 796, 7324, 7004, 25781, 16, 26518, 15, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 7324, 7004, 25781, 16, 26518, 15, 13, 2617, 11828, 10786, 51, 52, 4462, 13505, 54, 12, 8895, 33, 850, 12, 25781, 2196, 352, 13, 15, 329, 12347, 271, 2637, 8, 198, 76, 571, 32875, 13, 39344, 13940, 2022, 10220, 7203, 51, 52, 4462, 12, 9865, 49, 12, 4760, 3525, 12, 33177, 32, 49516, 1600, 32639, 36772, 18, 26518, 18, 28, 23289, 36772, 18, 26518, 18, 11, 220, 2889, 36772, 15610, 5738, 28, 2889, 36772, 15610, 5738, 11, 350, 56, 15571, 7378, 62, 33365, 24212, 62, 2389, 28, 2889, 36772, 15610, 5738, 11, 7324, 7004, 25781, 16, 26518, 15, 28, 2503, 7004, 25781, 16, 26518, 15, 11, 32639, 28, 23289, 8, 198 ]
2.677954
1,388
import PIL from PIL import ImageFont from PIL import Image from PIL import ImageDraw import numpy as np import matplotlib.pyplot as plt import os from skimage.filters import threshold_otsu import scipy from scipy import ndimage from scipy.interpolate import griddata import cv2 import preprocess if __name__ == "__main__": # DEFINE AND LOAD FONT script_root = '/Users/junkyungkim/Documents/PycharmProjects/cluttered_nist' fontnames = ['FUTRFW.ttf', 'Instruction.otf', 'absender1.ttf', '5Identification-Mono.ttf', '7Segment.ttf', 'VCR_OSD_MONO_1.001.ttf', 'Instruction.otf', 'Segment16B Regular.ttf'] std_fontsizes = [225, 240, 225, 150, 255, 255, 255, 255] std_thin_iters = [6, 15, 4, 9, 9, 2] scale = 1 # 0.5 for fontname, std_fontsize, std_thin_iter in zip(fontnames, std_fontsizes, std_thin_iters): std_fontsize = int(std_fontsize*scale) std_thin_iter = int(std_thin_iter*scale) font = ImageFont.truetype(os.path.join(script_root,'fonts',fontname), std_fontsize) # RENDER img=Image.new("RGBA", (2500, 300), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 0), "ABCDEFGXYZ", (0, 0, 0), font=font) draw = ImageDraw.Draw(img) # MORPHOLOGICAL POSTPROC (FOR CONSTNAT STROKE THICKNESS) img = 255 - np.mean(np.array(img), axis=2) binary = img > 128 # img_closed = scipy.ndimage.binary_closing(binary.astype(np.int), iterations=20)##np.maximum(iterations / 2, 1)) img_eroded = (scipy.ndimage.morphology.binary_erosion(binary, iterations=std_thin_iter) * 255).astype(np.uint8) landscape = preprocess.generate_distortion_mask(img_eroded, sigma=[4000,2000], num_centers=[30,20]) warped = preprocess.custom_warp(img_eroded, landscape, power=0.07) # img_dist = img_eroded # distCoeffs = [-.1, 1.0, 1.0, 1.0] # focal_length = [1000, 1000] # for coord in [[400,100],[500,150],[600,200]]: # distCoeffs[0] = distCoeffs[0]*-1 # img_dist = custom_fisheye(img_dist, coord, distCoeffs, focal_length) # import preprocess # im_pixelated = preprocess.pixelate_obj(img_eroded, [10 * scale, 10 * scale], 0.1, 5 * scale, ignore_fit=True) plt.subplot(211);plt.imshow(binary, cmap='gray') plt.subplot(212);plt.imshow(warped, cmap='gray') plt.show() # thinned = zhangSuen(binary) # plt.subplot(121) # plt.imshow(img) # plt.subplot(122) # plt.imshow(thinned) # plt.show()
[ 11748, 350, 4146, 198, 6738, 350, 4146, 1330, 7412, 23252, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 350, 4146, 1330, 7412, 25302, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 28686, 198, 6738, 1341, 9060, 13, 10379, 1010, 1330, 11387, 62, 1747, 84, 198, 11748, 629, 541, 88, 198, 6738, 629, 541, 88, 1330, 299, 67, 9060, 198, 6738, 629, 541, 88, 13, 3849, 16104, 378, 1330, 1036, 1638, 1045, 198, 198, 11748, 269, 85, 17, 198, 198, 11748, 662, 14681, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 2, 23449, 8881, 5357, 17579, 2885, 376, 35830, 198, 197, 12048, 62, 15763, 796, 31051, 14490, 14, 73, 28898, 2150, 74, 320, 14, 38354, 14, 20519, 354, 1670, 16775, 82, 14, 565, 46322, 62, 77, 396, 6, 198, 197, 10331, 14933, 796, 37250, 37, 3843, 49, 24160, 13, 926, 69, 3256, 198, 197, 197, 197, 197, 705, 6310, 2762, 13, 313, 69, 3256, 198, 197, 197, 197, 197, 705, 8937, 2194, 16, 13, 926, 69, 3256, 198, 197, 197, 197, 197, 705, 20, 33234, 2649, 12, 9069, 78, 13, 926, 69, 3256, 198, 197, 197, 197, 197, 705, 22, 41030, 434, 13, 926, 69, 3256, 198, 197, 197, 197, 197, 705, 53, 9419, 62, 2640, 35, 62, 27857, 46, 62, 16, 13, 8298, 13, 926, 69, 3256, 198, 197, 197, 197, 197, 705, 6310, 2762, 13, 313, 69, 3256, 198, 197, 197, 197, 197, 705, 41030, 434, 1433, 33, 23603, 13, 926, 69, 20520, 198, 197, 19282, 62, 10331, 82, 4340, 796, 685, 18182, 11, 14956, 11, 18500, 11, 6640, 11, 14280, 11, 14280, 11, 14280, 11, 14280, 60, 198, 197, 19282, 62, 40871, 62, 270, 364, 796, 685, 21, 11, 1315, 11, 604, 11, 860, 11, 860, 11, 362, 60, 198, 197, 9888, 796, 352, 220, 1303, 657, 13, 20, 628, 197, 1640, 10369, 3672, 11, 14367, 62, 10331, 7857, 11, 14367, 62, 40871, 62, 2676, 287, 19974, 7, 10331, 14933, 11, 14367, 62, 10331, 82, 4340, 11, 14367, 62, 40871, 62, 270, 364, 2599, 198, 197, 197, 19282, 62, 10331, 7857, 796, 493, 7, 19282, 62, 10331, 7857, 9, 9888, 8, 198, 197, 197, 19282, 62, 40871, 62, 2676, 796, 493, 7, 19282, 62, 40871, 62, 2676, 9, 9888, 8, 628, 197, 197, 10331, 796, 7412, 23252, 13, 83, 622, 2963, 431, 7, 418, 13, 6978, 13, 22179, 7, 12048, 62, 15763, 4032, 10331, 82, 3256, 10331, 3672, 828, 14367, 62, 10331, 7857, 8, 628, 197, 197, 2, 371, 10619, 1137, 198, 197, 197, 9600, 28, 5159, 13, 3605, 7203, 48192, 4339, 1600, 357, 44688, 11, 5867, 828, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 197, 197, 19334, 796, 7412, 25302, 13, 25302, 7, 9600, 8, 198, 197, 197, 19334, 13, 5239, 19510, 15, 11, 657, 828, 366, 24694, 7206, 30386, 34278, 57, 1600, 357, 15, 11, 657, 11, 657, 828, 10369, 28, 10331, 8, 198, 197, 197, 19334, 796, 7412, 25302, 13, 25302, 7, 9600, 8, 628, 197, 197, 2, 35208, 11909, 33462, 20151, 24582, 4805, 4503, 357, 13775, 7102, 2257, 34259, 3563, 13252, 7336, 2320, 11860, 31097, 8, 198, 197, 197, 9600, 796, 14280, 532, 45941, 13, 32604, 7, 37659, 13, 18747, 7, 9600, 828, 16488, 28, 17, 8, 198, 197, 197, 39491, 796, 33705, 1875, 13108, 198, 197, 197, 2, 33705, 62, 20225, 796, 629, 541, 88, 13, 358, 9060, 13, 39491, 62, 565, 2752, 7, 39491, 13, 459, 2981, 7, 37659, 13, 600, 828, 34820, 28, 1238, 8, 2235, 37659, 13, 47033, 7, 2676, 602, 1220, 362, 11, 352, 4008, 198, 197, 197, 9600, 62, 263, 9043, 796, 357, 1416, 541, 88, 13, 358, 9060, 13, 24503, 1435, 13, 39491, 62, 263, 18442, 7, 39491, 11, 34820, 28, 19282, 62, 40871, 62, 2676, 8, 1635, 14280, 737, 459, 2981, 7, 37659, 13, 28611, 23, 8, 628, 197, 197, 1044, 6794, 796, 662, 14681, 13, 8612, 378, 62, 17080, 5817, 62, 27932, 7, 9600, 62, 263, 9043, 11, 264, 13495, 41888, 27559, 11, 11024, 4357, 997, 62, 1087, 364, 41888, 1270, 11, 1238, 12962, 198, 197, 197, 86, 5117, 276, 796, 662, 14681, 13, 23144, 62, 86, 5117, 7, 9600, 62, 263, 9043, 11, 10747, 11, 1176, 28, 15, 13, 2998, 8, 198, 197, 197, 2, 33705, 62, 17080, 796, 33705, 62, 263, 9043, 198, 197, 197, 2, 1233, 34, 2577, 487, 82, 796, 25915, 13, 16, 11, 352, 13, 15, 11, 352, 13, 15, 11, 352, 13, 15, 60, 198, 197, 197, 2, 25397, 62, 13664, 796, 685, 12825, 11, 8576, 60, 198, 197, 197, 2, 329, 6349, 287, 16410, 7029, 11, 3064, 38430, 4059, 11, 8628, 38430, 8054, 11, 2167, 60, 5974, 198, 197, 197, 2, 220, 197, 17080, 34, 2577, 487, 82, 58, 15, 60, 796, 1233, 34, 2577, 487, 82, 58, 15, 60, 9, 12, 16, 198, 197, 197, 2, 220, 197, 9600, 62, 17080, 796, 2183, 62, 69, 271, 258, 5948, 7, 9600, 62, 17080, 11, 6349, 11, 1233, 34, 2577, 487, 82, 11, 25397, 62, 13664, 8, 628, 197, 197, 2, 1330, 662, 14681, 198, 197, 197, 2, 545, 62, 32515, 515, 796, 662, 14681, 13, 32515, 378, 62, 26801, 7, 9600, 62, 263, 9043, 11, 685, 940, 1635, 5046, 11, 838, 1635, 5046, 4357, 657, 13, 16, 11, 642, 1635, 5046, 11, 8856, 62, 11147, 28, 17821, 8, 198, 197, 197, 489, 83, 13, 7266, 29487, 7, 21895, 1776, 489, 83, 13, 320, 12860, 7, 39491, 11, 269, 8899, 11639, 44605, 11537, 198, 197, 197, 489, 83, 13, 7266, 29487, 7, 21777, 1776, 489, 83, 13, 320, 12860, 7, 86, 5117, 276, 11, 269, 8899, 11639, 44605, 11537, 198, 197, 197, 489, 83, 13, 12860, 3419, 628, 197, 197, 2, 7888, 2817, 796, 1976, 33255, 5606, 268, 7, 39491, 8, 628, 197, 197, 2, 458, 83, 13, 7266, 29487, 7, 19244, 8, 198, 197, 197, 2, 458, 83, 13, 320, 12860, 7, 9600, 8, 198, 197, 197, 2, 458, 83, 13, 7266, 29487, 7, 18376, 8, 198, 197, 197, 2, 458, 83, 13, 320, 12860, 7, 40871, 2817, 8, 198, 197, 197, 2, 458, 83, 13, 12860, 3419 ]
2.306122
1,029
import os import sys import numpy as np import scipy.stats as stats import pandas as pd from IPython import embed from qlknn.NNDB.model import Network, NetworkJSON from qlknn.models.ffnn import QuaLiKizNDNN shortname = {'Ate': '$R/L_{T_e}$', 'Ati': '$R/L_{T_i}$'} longname ={ 'Ate': 'Normalized electron temperature gradient $R/L_{T_e}$', 'Ati': 'Normalized ion temperature gradient $R/L_{T_i}$'} nameconvert = { 'An': '$R/L_n$', #'Nustar': '$\\nu^*$', 'Nustar': '$log_{10}(\\nu^*)$', 'logNustar': '$log_{10}(\\nu^*)$', 'Ti_Te': 'Relative temperature $T_i/T_e$', 'Zeff': '$Z_{eff}$', 'q': '$q$', 'smag': 'Magnetic shear $\hat{s}$', 'x': '$\\varepsilon\,(r/R)$', 'efe_GB': '$q_e\,[GB]$', 'efi_GB': '$q_i\,[GB]$', 'efiITG_GB': '$q_{ITG, i}\,[GB]$', 'efeITG_GB': '$q_{ITG, e}\,[GB]$', 'efiTEM_GB': '$q_{TEM, i}\,[GB]$', 'efeTEM_GB': '$q_{TEM, e}\,[GB]$', 'efeETG_GB': 'Normalized heat flux $q$', 'pfe_GB': '$\Gamma_e\,[GB]$', 'pfi_GB': '$\Gamma_i\,[GB]$', 'pfeITG_GB': '$\Gamma_{ITG, i}\,[GB]$', 'pfeTEM_GB': '$\Gamma_{TEM, i}\,[GB]$', 'gam_leq_GB': '$\gamma_{max, \leq 2}\,[GB]$' } comboname = { 'efiTEM_GB_div_efeTEM_GB': nameconvert['efiTEM_GB'] + '/' + nameconvert['efeTEM_GB'], 'pfeTEM_GB_div_efeTEM_GB': nameconvert['pfeTEM_GB'] + '/' + nameconvert['efeTEM_GB'], 'efeITG_GB_div_efiITG_GB': nameconvert['efeITG_GB'] + '/' + nameconvert['efiITG_GB'], 'pfeITG_GB_div_efiITG_GB': nameconvert['pfeITG_GB'] + '/' + nameconvert['efiITG_GB'] } nameconvert.update(shortname) nameconvert.update(comboname)
[ 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 34242, 355, 9756, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 6101, 7535, 1330, 11525, 198, 198, 6738, 10662, 75, 15418, 77, 13, 6144, 11012, 13, 19849, 1330, 7311, 11, 7311, 40386, 198, 6738, 10662, 75, 15418, 77, 13, 27530, 13, 487, 20471, 1330, 2264, 64, 32304, 42, 528, 8575, 6144, 198, 198, 19509, 3672, 796, 1391, 6, 32, 660, 10354, 705, 3, 49, 14, 43, 23330, 51, 62, 68, 92, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2953, 72, 10354, 705, 3, 49, 14, 43, 23330, 51, 62, 72, 92, 3, 6, 92, 198, 198, 6511, 3672, 796, 90, 198, 220, 220, 220, 705, 32, 660, 10354, 705, 26447, 1143, 11538, 5951, 31312, 720, 49, 14, 43, 23330, 51, 62, 68, 92, 3, 3256, 198, 220, 220, 220, 705, 2953, 72, 10354, 705, 26447, 1143, 22088, 5951, 31312, 720, 49, 14, 43, 23330, 51, 62, 72, 92, 3, 6, 92, 198, 198, 3672, 1102, 1851, 796, 1391, 198, 220, 220, 220, 705, 2025, 10354, 705, 3, 49, 14, 43, 62, 77, 3, 3256, 198, 220, 220, 220, 1303, 6, 45, 436, 283, 10354, 705, 3, 6852, 28803, 61, 9, 3, 3256, 198, 220, 220, 220, 705, 45, 436, 283, 10354, 705, 3, 6404, 23330, 940, 92, 7, 6852, 28803, 61, 28104, 3, 3256, 198, 220, 220, 220, 705, 6404, 45, 436, 283, 10354, 705, 3, 6404, 23330, 940, 92, 7, 6852, 28803, 61, 28104, 3, 3256, 198, 220, 220, 220, 705, 40533, 62, 6767, 10354, 705, 6892, 876, 5951, 720, 51, 62, 72, 14, 51, 62, 68, 3, 3256, 198, 220, 220, 220, 705, 57, 14822, 10354, 705, 3, 57, 23330, 14822, 92, 3, 3256, 198, 220, 220, 220, 705, 80, 10354, 705, 3, 80, 3, 3256, 198, 220, 220, 220, 705, 5796, 363, 10354, 705, 13436, 9833, 673, 283, 39280, 5183, 90, 82, 92, 3, 3256, 198, 220, 220, 220, 705, 87, 10354, 705, 3, 6852, 85, 533, 862, 33576, 59, 11, 7, 81, 14, 49, 8, 3, 3256, 628, 220, 220, 220, 705, 22521, 62, 4579, 10354, 705, 3, 80, 62, 68, 59, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 891, 72, 62, 4579, 10354, 705, 3, 80, 62, 72, 59, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 891, 72, 2043, 38, 62, 4579, 10354, 705, 3, 80, 23330, 2043, 38, 11, 1312, 32239, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 22521, 2043, 38, 62, 4579, 10354, 705, 3, 80, 23330, 2043, 38, 11, 304, 32239, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 891, 72, 51, 3620, 62, 4579, 10354, 705, 3, 80, 23330, 51, 3620, 11, 1312, 32239, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 22521, 51, 3620, 62, 4579, 10354, 705, 3, 80, 23330, 51, 3620, 11, 304, 32239, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 22521, 2767, 38, 62, 4579, 10354, 705, 26447, 1143, 4894, 28462, 720, 80, 3, 3256, 628, 220, 220, 220, 705, 79, 5036, 62, 4579, 10354, 705, 3, 59, 34777, 2611, 62, 68, 59, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 79, 12463, 62, 4579, 10354, 705, 3, 59, 34777, 2611, 62, 72, 59, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 79, 5036, 2043, 38, 62, 4579, 10354, 705, 3, 59, 34777, 2611, 23330, 2043, 38, 11, 1312, 32239, 17414, 4579, 60, 3, 3256, 198, 220, 220, 220, 705, 79, 5036, 51, 3620, 62, 4579, 10354, 705, 3, 59, 34777, 2611, 23330, 51, 3620, 11, 1312, 32239, 17414, 4579, 60, 3, 3256, 628, 220, 220, 220, 705, 28483, 62, 293, 80, 62, 4579, 10354, 705, 3, 59, 28483, 2611, 23330, 9806, 11, 3467, 293, 80, 362, 32239, 17414, 4579, 60, 3, 6, 198, 198, 92, 198, 198, 785, 4189, 480, 796, 1391, 198, 220, 220, 220, 705, 891, 72, 51, 3620, 62, 4579, 62, 7146, 62, 22521, 51, 3620, 62, 4579, 10354, 1438, 1102, 1851, 17816, 891, 72, 51, 3620, 62, 4579, 20520, 1343, 31051, 6, 1343, 1438, 1102, 1851, 17816, 22521, 51, 3620, 62, 4579, 6, 4357, 198, 220, 220, 220, 705, 79, 5036, 51, 3620, 62, 4579, 62, 7146, 62, 22521, 51, 3620, 62, 4579, 10354, 1438, 1102, 1851, 17816, 79, 5036, 51, 3620, 62, 4579, 20520, 1343, 31051, 6, 1343, 1438, 1102, 1851, 17816, 22521, 51, 3620, 62, 4579, 6, 4357, 198, 220, 220, 220, 705, 22521, 2043, 38, 62, 4579, 62, 7146, 62, 891, 72, 2043, 38, 62, 4579, 10354, 1438, 1102, 1851, 17816, 22521, 2043, 38, 62, 4579, 20520, 1343, 31051, 6, 1343, 1438, 1102, 1851, 17816, 891, 72, 2043, 38, 62, 4579, 6, 4357, 198, 220, 220, 220, 705, 79, 5036, 2043, 38, 62, 4579, 62, 7146, 62, 891, 72, 2043, 38, 62, 4579, 10354, 1438, 1102, 1851, 17816, 79, 5036, 2043, 38, 62, 4579, 20520, 1343, 31051, 6, 1343, 1438, 1102, 1851, 17816, 891, 72, 2043, 38, 62, 4579, 20520, 198, 198, 92, 198, 3672, 1102, 1851, 13, 19119, 7, 19509, 3672, 8, 198, 3672, 1102, 1851, 13, 19119, 7, 785, 4189, 480, 8, 628 ]
1.865297
876
"""Alconna ArgAction相关""" from datetime import datetime from typing import Any, Optional, TYPE_CHECKING, Literal from arclet.alconna.components.action import ArgAction from arclet.alconna.components.behavior import ArpamarBehavior from arclet.alconna.exceptions import BehaveCancelled, OutBoundsBehavior from arclet.alconna.config import config class _StoreValue(ArgAction): """针对特定值的类""" def store_value(value: Any): """存储一个值""" return _StoreValue(value) if TYPE_CHECKING: from arclet.alconna import alconna_version from arclet.alconna.arpamar import Arpamar def version(value: Optional[tuple]): """返回一个以元组形式存储的版本信息""" return _StoreValue(value) if value else _StoreValue(alconna_version) def set_default(value: Any, option: Optional[str] = None, subcommand: Optional[str] = None): """ 设置一个选项的默认值, 在无该选项时会被设置 当option与subcommand同时传入时, 则会被设置为该subcommand内option的默认值 Args: value: 默认值 option: 选项名 subcommand: 子命令名 """ return _SetDefault() def exclusion(target_path: str, other_path: str): """ 当设置的两个路径同时存在时, 抛出异常 Args: target_path: 目标路径 other_path: 其他路径 """ return _EXCLUSION() def cool_down(seconds: float): """ 当设置的时间间隔内被调用时, 抛出异常 Args: seconds: 时间间隔 """ return _CoolDown() def inclusion(*targets: str, flag: Literal["any", "all"] = "any"): """ 当设置的路径不存在时, 抛出异常 Args: targets: 路径列表 flag: 匹配方式, 可选值为"any"或"all", 默认为"any" """ return _Inclusion()
[ 37811, 2348, 1102, 2616, 20559, 12502, 33566, 116, 17739, 111, 37811, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 4377, 11, 32233, 11, 41876, 62, 50084, 2751, 11, 25659, 1691, 198, 6738, 10389, 1616, 13, 282, 1102, 2616, 13, 5589, 3906, 13, 2673, 1330, 20559, 12502, 198, 6738, 10389, 1616, 13, 282, 1102, 2616, 13, 5589, 3906, 13, 46571, 1330, 943, 79, 39236, 25267, 15759, 198, 6738, 10389, 1616, 13, 282, 1102, 2616, 13, 1069, 11755, 1330, 10407, 1015, 34, 590, 3353, 11, 3806, 33, 3733, 25267, 15759, 198, 6738, 10389, 1616, 13, 282, 1102, 2616, 13, 11250, 1330, 4566, 628, 198, 4871, 4808, 22658, 11395, 7, 28100, 12502, 2599, 198, 220, 220, 220, 37227, 165, 240, 230, 43380, 117, 31965, 117, 22522, 248, 161, 222, 120, 21410, 163, 109, 119, 37811, 628, 198, 4299, 3650, 62, 8367, 7, 8367, 25, 4377, 2599, 198, 220, 220, 220, 37227, 27764, 246, 43636, 101, 31660, 10310, 103, 161, 222, 120, 37811, 198, 220, 220, 220, 1441, 4808, 22658, 11395, 7, 8367, 8, 628, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 10389, 1616, 13, 282, 1102, 2616, 1330, 435, 1102, 2616, 62, 9641, 198, 220, 220, 220, 422, 10389, 1616, 13, 282, 1102, 2616, 13, 5117, 39236, 1330, 943, 79, 39236, 628, 198, 220, 220, 220, 825, 2196, 7, 8367, 25, 32233, 58, 83, 29291, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 32573, 242, 32368, 252, 31660, 10310, 103, 20015, 98, 17739, 225, 163, 119, 226, 37605, 95, 28156, 237, 27764, 246, 43636, 101, 21410, 48304, 17312, 105, 46479, 94, 162, 223, 107, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 22658, 11395, 7, 8367, 8, 611, 1988, 2073, 4808, 22658, 11395, 7, 282, 1102, 2616, 62, 9641, 8, 628, 198, 4299, 900, 62, 12286, 7, 8367, 25, 4377, 11, 3038, 25, 32233, 58, 2536, 60, 796, 6045, 11, 850, 21812, 25, 32233, 58, 2536, 60, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5525, 106, 122, 163, 121, 106, 31660, 10310, 103, 34460, 231, 165, 94, 117, 21410, 165, 119, 246, 164, 106, 97, 161, 222, 120, 11, 10263, 250, 101, 33768, 254, 46237, 98, 34460, 231, 165, 94, 117, 33768, 114, 27670, 248, 164, 95, 104, 164, 106, 122, 163, 121, 106, 628, 220, 220, 220, 10263, 121, 241, 18076, 10310, 236, 7266, 21812, 28938, 234, 33768, 114, 27670, 254, 17739, 98, 33768, 114, 11, 10263, 230, 247, 27670, 248, 164, 95, 104, 164, 106, 122, 163, 121, 106, 10310, 118, 46237, 98, 7266, 21812, 37863, 227, 18076, 21410, 165, 119, 246, 164, 106, 97, 161, 222, 120, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 25, 16268, 119, 246, 164, 106, 97, 161, 222, 120, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 25, 16268, 222, 231, 165, 94, 117, 28938, 235, 198, 220, 220, 220, 220, 220, 220, 220, 850, 21812, 25, 10263, 255, 238, 37772, 121, 20015, 97, 28938, 235, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 4808, 7248, 19463, 3419, 628, 198, 4299, 19328, 7, 16793, 62, 6978, 25, 965, 11, 584, 62, 6978, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 121, 241, 164, 106, 122, 163, 121, 106, 21410, 10310, 97, 10310, 103, 164, 115, 107, 36181, 226, 28938, 234, 33768, 114, 27764, 246, 28839, 101, 33768, 114, 11, 10545, 232, 249, 49035, 118, 28156, 224, 30585, 116, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 6978, 25, 13328, 249, 106, 43718, 229, 164, 115, 107, 36181, 226, 198, 220, 220, 220, 220, 220, 220, 220, 584, 62, 6978, 25, 10263, 227, 114, 20015, 244, 164, 115, 107, 36181, 226, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 4808, 6369, 28332, 2849, 3419, 628, 198, 4299, 3608, 62, 2902, 7, 43012, 25, 12178, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 121, 241, 164, 106, 122, 163, 121, 106, 21410, 33768, 114, 29785, 112, 29785, 112, 49694, 242, 37863, 227, 164, 95, 104, 164, 108, 225, 18796, 101, 33768, 114, 11, 10545, 232, 249, 49035, 118, 28156, 224, 30585, 116, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4201, 25, 10545, 245, 114, 29785, 112, 29785, 112, 49694, 242, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 4808, 34530, 8048, 3419, 628, 198, 4299, 14900, 46491, 83, 853, 1039, 25, 965, 11, 6056, 25, 25659, 1691, 14692, 1092, 1600, 366, 439, 8973, 796, 366, 1092, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 121, 241, 164, 106, 122, 163, 121, 106, 21410, 164, 115, 107, 36181, 226, 38834, 27764, 246, 28839, 101, 33768, 114, 11, 10545, 232, 249, 49035, 118, 28156, 224, 30585, 116, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6670, 25, 5525, 115, 107, 36181, 226, 26344, 245, 26193, 101, 198, 220, 220, 220, 220, 220, 220, 220, 6056, 25, 10263, 234, 117, 165, 227, 235, 43095, 28156, 237, 11, 10263, 237, 107, 34460, 231, 161, 222, 120, 10310, 118, 1, 1092, 1, 22755, 244, 1, 439, 1600, 16268, 119, 246, 164, 106, 97, 10310, 118, 1, 1092, 1, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4808, 818, 4717, 3419, 198 ]
1.702081
913
from django.contrib import admin from notification.models import Notifications # Register your models here. admin.site.register(Notifications)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 14483, 13, 27530, 1330, 1892, 6637, 198, 2, 17296, 534, 4981, 994, 13, 198, 28482, 13, 15654, 13, 30238, 7, 3673, 6637, 8 ]
4.30303
33
#!/usr/bin/env python ''' Outer ear simulator Author: Michal Sudwoj <[email protected]> Version: 1.0.0 Data: 2019-09-09 ''' from typing import Tuple import numpy as np import scipy.io.wavfile as wav import scipy.signal as ss from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from pysofaconventions import SOFAFile def head(data : np.ndarray, sofa : SOFAFile, azimuth : float, elevation : float): ''' Apply effects of the head (HRTF) ''' from scipy.spatial import KDTree s = get_sofa(sofa) pos = s.getVariableValue('SourcePosition') # find closest position to requested azimuth and elevation # TODO: consider normalizing position units to eg. degrees index = KDTree(pos).query([azimuth, elevation, 1])[1] hrir = s.getDataIR()[index, :, :] data = data.T left = ss.fftconvolve(data, hrir[0]) right = ss.fftconvolve(data, hrir[1]) output = np.asarray([left, right]).swapaxes(-1, 0) return output def canal(input : np.ndarray, f_s: int, l : float, d : float): ''' Apply effects of the ear canal Modeled as a bandpass filter, as in 'Matlab Auditory Periphery (MAP)' ''' assert f_s > 0 assert l >= 0 assert d >= 0 v = 343 gain = 10 order = 1 f_nyq = f_s / 2 for n in [1, 3, 5]: # 'Stopped pipe' resonator; resonating frequency f_r = (n * v) / (4 * l / 1000 + 0.4 * d / 1000) # bandpass cut offsets somewhat chosen s.t. for the first mode, they coincide with the parameters from MAP lowcut = f_r - 1500 # Hz highcut = f_r + 500 # Hz low = lowcut / f_nyq high = highcut / f_nyq b, a = ss.butter(order, [low, high], btype = 'band') input += gain * ss.lfilter(b, a, input) return input def middle(input): ''' Apply the effects of the middle ear Modelled soley as impedence mismatch and lever ''' z_air = 414 # kg m^-2 s^-1 z_water = 1.48e6 # kg m^-2 s^-1 A_eardrum = 60 # mm^2 A_oval = 3.2 # mm^2 lever_malleus = 1.3 reflected = ((z_air - z_water) / (z_air + z_water)) ** 2 transmitted = 1 - reflected return input * transmitted * (A_eardrum / A_oval) * lever_malleus def read(filename : str) -> Tuple[np.ndarray, float]: ''' Read WAV file and normalize to float array ''' f_s, data = wav.read(filename) if data.dtype == 'uint8': data = data / 255 - 0.5 elif data.dtype == 'int16': data = data / 32767 elif data.dtype == 'int32': data = data / 2147483647 elif data.dtype == 'float32': data = 1.0 * data else: eprint(f'Input error: data.dtype = {data.dtype}') exit(1) if data.ndim == 1: # mono pass elif data.ndim == 2: data = data[:, 0] else: eprint(f'Input error: data.ndim = {data.ndim}') exit(1) return data, f_s if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 7061, 6, 198, 7975, 263, 1027, 35375, 198, 198, 13838, 25, 2843, 282, 14818, 86, 13210, 1279, 907, 463, 86, 13210, 31, 50139, 13, 2788, 89, 13, 354, 29, 198, 14815, 25, 352, 13, 15, 13, 15, 198, 6601, 25, 13130, 12, 2931, 12, 2931, 198, 7061, 6, 198, 198, 6738, 19720, 1330, 309, 29291, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 952, 13, 45137, 7753, 355, 266, 615, 198, 11748, 629, 541, 88, 13, 12683, 282, 355, 37786, 198, 6738, 1822, 29572, 1330, 45751, 46677, 11, 45751, 7469, 13185, 22087, 8479, 1436, 198, 6738, 12972, 568, 69, 7807, 16593, 1330, 12809, 7708, 8979, 198, 198, 4299, 1182, 7, 7890, 1058, 45941, 13, 358, 18747, 11, 34902, 1058, 12809, 7708, 8979, 11, 35560, 320, 1071, 1058, 12178, 11, 22910, 1058, 12178, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 27967, 3048, 286, 262, 1182, 357, 17184, 10234, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 422, 629, 541, 88, 13, 2777, 34961, 1330, 509, 24544, 631, 628, 220, 220, 220, 264, 796, 651, 62, 568, 13331, 7, 568, 13331, 8, 198, 220, 220, 220, 1426, 796, 264, 13, 1136, 43015, 11395, 10786, 7416, 26545, 11537, 198, 220, 220, 220, 1303, 1064, 11706, 2292, 284, 9167, 35560, 320, 1071, 290, 22910, 198, 220, 220, 220, 1303, 16926, 46, 25, 2074, 3487, 2890, 2292, 4991, 284, 29206, 13, 7370, 198, 220, 220, 220, 6376, 796, 509, 24544, 631, 7, 1930, 737, 22766, 26933, 1031, 320, 1071, 11, 22910, 11, 352, 12962, 58, 16, 60, 198, 220, 220, 220, 289, 29283, 796, 264, 13, 1136, 6601, 4663, 3419, 58, 9630, 11, 1058, 11, 1058, 60, 628, 220, 220, 220, 1366, 796, 1366, 13, 51, 198, 220, 220, 220, 1364, 796, 37786, 13, 487, 83, 42946, 6442, 7, 7890, 11, 289, 29283, 58, 15, 12962, 198, 220, 220, 220, 826, 796, 37786, 13, 487, 83, 42946, 6442, 7, 7890, 11, 289, 29283, 58, 16, 12962, 198, 220, 220, 220, 5072, 796, 45941, 13, 292, 18747, 26933, 9464, 11, 826, 35944, 2032, 499, 897, 274, 32590, 16, 11, 657, 8, 628, 220, 220, 220, 1441, 5072, 198, 198, 4299, 29365, 7, 15414, 1058, 45941, 13, 358, 18747, 11, 277, 62, 82, 25, 493, 11, 300, 1058, 12178, 11, 288, 1058, 12178, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 27967, 3048, 286, 262, 1027, 29365, 628, 220, 220, 220, 9104, 276, 355, 257, 4097, 6603, 8106, 11, 355, 287, 705, 19044, 23912, 7591, 37765, 2448, 10803, 88, 357, 33767, 33047, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6818, 277, 62, 82, 1875, 657, 198, 220, 220, 220, 6818, 300, 18189, 657, 198, 220, 220, 220, 6818, 288, 18189, 657, 628, 220, 220, 220, 410, 796, 37290, 198, 220, 220, 220, 4461, 796, 838, 198, 220, 220, 220, 1502, 796, 352, 198, 220, 220, 220, 277, 62, 3281, 80, 796, 277, 62, 82, 1220, 362, 628, 220, 220, 220, 329, 299, 287, 685, 16, 11, 513, 11, 642, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 1273, 38333, 12656, 6, 14309, 1352, 26, 14309, 803, 8373, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 81, 796, 357, 77, 1635, 410, 8, 1220, 357, 19, 1635, 300, 1220, 8576, 1343, 657, 13, 19, 1635, 288, 1220, 8576, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4097, 6603, 2005, 49005, 6454, 7147, 264, 13, 83, 13, 329, 262, 717, 4235, 11, 484, 37319, 351, 262, 10007, 422, 34645, 198, 220, 220, 220, 220, 220, 220, 220, 1877, 8968, 796, 277, 62, 81, 532, 20007, 1303, 26109, 198, 220, 220, 220, 220, 220, 220, 220, 1029, 8968, 796, 277, 62, 81, 1343, 5323, 1303, 26109, 628, 220, 220, 220, 220, 220, 220, 220, 1877, 796, 1877, 8968, 1220, 277, 62, 3281, 80, 198, 220, 220, 220, 220, 220, 220, 220, 1029, 796, 1029, 8968, 1220, 277, 62, 3281, 80, 198, 220, 220, 220, 220, 220, 220, 220, 275, 11, 257, 796, 37786, 13, 4360, 353, 7, 2875, 11, 685, 9319, 11, 1029, 4357, 275, 4906, 796, 705, 3903, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 15853, 4461, 1635, 37786, 13, 1652, 346, 353, 7, 65, 11, 257, 11, 5128, 8, 628, 220, 220, 220, 1441, 5128, 198, 198, 4299, 3504, 7, 15414, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 27967, 262, 3048, 286, 262, 3504, 1027, 628, 220, 220, 220, 3401, 11978, 523, 1636, 355, 26795, 594, 46318, 290, 17124, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1976, 62, 958, 796, 45900, 1303, 14211, 285, 61, 12, 17, 264, 61, 12, 16, 198, 220, 220, 220, 1976, 62, 7050, 796, 352, 13, 2780, 68, 21, 1303, 14211, 285, 61, 12, 17, 264, 61, 12, 16, 198, 220, 220, 220, 317, 62, 68, 446, 6582, 796, 3126, 1303, 8085, 61, 17, 198, 220, 220, 220, 317, 62, 8325, 796, 513, 13, 17, 1303, 8085, 61, 17, 198, 220, 220, 220, 17124, 62, 76, 6765, 385, 796, 352, 13, 18, 628, 220, 220, 220, 12548, 796, 14808, 89, 62, 958, 532, 1976, 62, 7050, 8, 1220, 357, 89, 62, 958, 1343, 1976, 62, 7050, 4008, 12429, 362, 198, 220, 220, 220, 18307, 796, 352, 532, 12548, 628, 220, 220, 220, 1441, 5128, 1635, 18307, 1635, 357, 32, 62, 68, 446, 6582, 1220, 317, 62, 8325, 8, 1635, 17124, 62, 76, 6765, 385, 198, 198, 4299, 1100, 7, 34345, 1058, 965, 8, 4613, 309, 29291, 58, 37659, 13, 358, 18747, 11, 12178, 5974, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4149, 370, 10116, 2393, 290, 3487, 1096, 284, 12178, 7177, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 277, 62, 82, 11, 1366, 796, 266, 615, 13, 961, 7, 34345, 8, 198, 220, 220, 220, 611, 1366, 13, 67, 4906, 6624, 705, 28611, 23, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 1220, 14280, 532, 657, 13, 20, 198, 220, 220, 220, 1288, 361, 1366, 13, 67, 4906, 6624, 705, 600, 1433, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 1220, 36203, 3134, 198, 220, 220, 220, 1288, 361, 1366, 13, 67, 4906, 6624, 705, 600, 2624, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 1220, 362, 20198, 2780, 26780, 22, 198, 220, 220, 220, 1288, 361, 1366, 13, 67, 4906, 6624, 705, 22468, 2624, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 352, 13, 15, 1635, 1366, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 304, 4798, 7, 69, 6, 20560, 4049, 25, 1366, 13, 67, 4906, 796, 1391, 7890, 13, 67, 4906, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 220, 220, 611, 1366, 13, 358, 320, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33361, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1288, 361, 1366, 13, 358, 320, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 58, 45299, 657, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 304, 4798, 7, 69, 6, 20560, 4049, 25, 1366, 13, 358, 320, 796, 1391, 7890, 13, 358, 320, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 220, 220, 1441, 1366, 11, 277, 62, 82, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.295578
1,289
import numpy as np import math
[ 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 628, 198 ]
3.3
10
from flask import Flask, Blueprint, request, jsonify, make_response, redirect, url_for from werkzeug.security import generate_password_hash, check_password_hash from functools import wraps from db import db_connect import datetime import jwt import sys auth = Blueprint('auth', __name__) @auth.route('/login') @db_connect
[ 6738, 42903, 1330, 46947, 11, 39932, 11, 2581, 11, 33918, 1958, 11, 787, 62, 26209, 11, 18941, 11, 19016, 62, 1640, 198, 6738, 266, 9587, 2736, 1018, 13, 12961, 1330, 7716, 62, 28712, 62, 17831, 11, 2198, 62, 28712, 62, 17831, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 20613, 1330, 20613, 62, 8443, 198, 11748, 4818, 8079, 198, 11748, 474, 46569, 198, 11748, 25064, 198, 198, 18439, 796, 39932, 10786, 18439, 3256, 11593, 3672, 834, 8, 628, 198, 198, 31, 18439, 13, 38629, 10786, 14, 38235, 11537, 198, 31, 9945, 62, 8443, 198 ]
3.431579
95
# yelp/urls.py from django.urls import path from django.conf.urls import url from rest_framework.urlpatterns import format_suffix_patterns # view functions from .views import hello from .views import home urlpatterns = { path('', hello, name='hello'), path('<slug:business_id>', home, name='home'), } urlpatterns = format_suffix_patterns(urlpatterns)
[ 2, 331, 417, 79, 14, 6371, 82, 13, 9078, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 1334, 62, 30604, 13, 6371, 33279, 82, 1330, 5794, 62, 37333, 844, 62, 33279, 82, 198, 2, 1570, 5499, 198, 6738, 764, 33571, 1330, 23748, 198, 6738, 764, 33571, 1330, 1363, 628, 198, 6371, 33279, 82, 796, 1391, 198, 220, 220, 220, 3108, 10786, 3256, 23748, 11, 1438, 11639, 31373, 33809, 198, 220, 220, 220, 3108, 10786, 27, 6649, 1018, 25, 22680, 62, 312, 29, 3256, 1363, 11, 1438, 11639, 11195, 33809, 198, 92, 198, 198, 6371, 33279, 82, 796, 5794, 62, 37333, 844, 62, 33279, 82, 7, 6371, 33279, 82, 8 ]
2.934959
123
import tensorflow as tf def model_inputs(image_size): ''' Defines CNN inputs (placeholders). :param image_size: tuple, (height, width) of an image ''' #-> [Batch_size, image_size[0], image_size[1], 3] inputs = tf.placeholder(dtype=tf.float32, shape=[None, image_size[0], image_size[1], 3], name='images') targets = tf.placeholder(dtype=tf.int32, shape=[None,], name='targets') dropout_prob = tf.placeholder(dtype=tf.float32, name='dropout_probs') return inputs, targets, dropout_prob def conv_block(inputs, number_of_filters, kernel_size, strides=(1, 1), padding='SAME', activation=tf.nn.relu, max_pool=True, batch_norm=True): ''' Defines convolutional block layer. :param inputs: data from a previous layer :param number_of_filters: integer, number of conv filters :param kernel_size: tuple, size of conv layer kernel :param padding: string, type of padding technique: SAME or VALID :param activation: tf.object, activation function used on the layer :param max_pool: boolean, if true the conv block will use max_pool :param batch_norm: boolean, if true the conv block will use batch normalization ''' conv_features = layer = tf.layers.conv2d(inputs=inputs, filters=number_of_filters, kernel_size=kernel_size, strides=strides, padding=padding, activation=activation) if max_pool: layer = tf.layers.max_pooling2d(layer, pool_size=(2, 2), strides=(2, 2), padding='SAME') if batch_norm: layer = tf.layers.batch_normalization(layer) return layer, conv_features def dense_block(inputs, units, activation=tf.nn.relu, dropout_rate=None, batch_norm=True): ''' Defines dense block layer. :param inputs: data from a previous layer :param units: integer, number of neurons/units for a dense layer :param activation: tf.object, activation function used on the layer :param dropout_rate: dropout rate used in this dense block :param batch_norm: boolean, if true the conv block will use batch normalization ''' dense_features = layer = tf.layers.dense(inputs, units=units, activation=activation) if dropout_rate is not None: layer = tf.layers.dropout(layer, rate=dropout_rate) if batch_norm: layer = tf.layers.batch_normalization(layer) return layer, dense_features def opt_loss(logits, targets, learning_rate): ''' Defines model's optimizer and loss functions. :param logits: pre-activated model outputs :param targets: true labels for each input sample :param learning_rate: learning_rate ''' loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=targets, logits=logits)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) return loss, optimizer
[ 11748, 11192, 273, 11125, 355, 48700, 201, 198, 201, 198, 201, 198, 4299, 2746, 62, 15414, 82, 7, 9060, 62, 7857, 2599, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 2896, 1127, 8100, 17311, 357, 5372, 10476, 737, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1058, 17143, 2939, 62, 7857, 25, 46545, 11, 357, 17015, 11, 9647, 8, 286, 281, 2939, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 1303, 3784, 685, 33, 963, 62, 7857, 11, 2939, 62, 7857, 58, 15, 4357, 2939, 62, 7857, 58, 16, 4357, 513, 60, 201, 198, 220, 220, 220, 17311, 796, 48700, 13, 5372, 13829, 7, 67, 4906, 28, 27110, 13, 22468, 2624, 11, 5485, 41888, 14202, 11, 2939, 62, 7857, 58, 15, 4357, 2939, 62, 7857, 58, 16, 4357, 513, 4357, 1438, 11639, 17566, 11537, 201, 198, 220, 220, 220, 6670, 796, 48700, 13, 5372, 13829, 7, 67, 4906, 28, 27110, 13, 600, 2624, 11, 5485, 41888, 14202, 11, 4357, 1438, 11639, 83, 853, 1039, 11537, 201, 198, 220, 220, 220, 4268, 448, 62, 1676, 65, 796, 48700, 13, 5372, 13829, 7, 67, 4906, 28, 27110, 13, 22468, 2624, 11, 1438, 11639, 14781, 448, 62, 1676, 1443, 11537, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1441, 17311, 11, 6670, 11, 4268, 448, 62, 1676, 65, 201, 198, 201, 198, 201, 198, 4299, 3063, 62, 9967, 7, 15414, 82, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 10379, 1010, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35002, 16193, 16, 11, 352, 828, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 50, 10067, 3256, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 28, 27110, 13, 20471, 13, 260, 2290, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 7742, 28, 17821, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 28, 17821, 2599, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 2896, 1127, 3063, 2122, 282, 2512, 7679, 13, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1058, 17143, 17311, 25, 1366, 422, 257, 2180, 7679, 201, 198, 220, 220, 220, 1058, 17143, 1271, 62, 1659, 62, 10379, 1010, 25, 18253, 11, 1271, 286, 3063, 16628, 201, 198, 220, 220, 220, 1058, 17143, 9720, 62, 7857, 25, 46545, 11, 2546, 286, 3063, 7679, 9720, 201, 198, 220, 220, 220, 1058, 17143, 24511, 25, 4731, 11, 2099, 286, 24511, 8173, 25, 311, 10067, 393, 26173, 2389, 201, 198, 220, 220, 220, 1058, 17143, 14916, 25, 48700, 13, 15252, 11, 14916, 2163, 973, 319, 262, 7679, 201, 198, 220, 220, 220, 1058, 17143, 3509, 62, 7742, 25, 25131, 11, 611, 2081, 262, 3063, 2512, 481, 779, 3509, 62, 7742, 201, 198, 220, 220, 220, 1058, 17143, 15458, 62, 27237, 25, 25131, 11, 611, 2081, 262, 3063, 2512, 481, 779, 15458, 3487, 1634, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 3063, 62, 40890, 796, 7679, 796, 48700, 13, 75, 6962, 13, 42946, 17, 67, 7, 15414, 82, 28, 15414, 82, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 28, 17618, 62, 1659, 62, 10379, 1010, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 33885, 62, 7857, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35002, 28, 2536, 1460, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 28, 39231, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 28, 48545, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 611, 3509, 62, 7742, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 796, 48700, 13, 75, 6962, 13, 9806, 62, 7742, 278, 17, 67, 7, 29289, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5933, 62, 7857, 16193, 17, 11, 362, 828, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35002, 16193, 17, 11, 362, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 50, 10067, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 611, 15458, 62, 27237, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 796, 48700, 13, 75, 6962, 13, 43501, 62, 11265, 1634, 7, 29289, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1441, 7679, 11, 3063, 62, 40890, 201, 198, 201, 198, 201, 198, 4299, 15715, 62, 9967, 7, 15414, 82, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 28, 27110, 13, 20471, 13, 260, 2290, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 4873, 28, 14202, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 28, 17821, 2599, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 2896, 1127, 15715, 2512, 7679, 13, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1058, 17143, 17311, 25, 1366, 422, 257, 2180, 7679, 201, 198, 220, 220, 220, 1058, 17143, 4991, 25, 18253, 11, 1271, 286, 16890, 14, 41667, 329, 257, 15715, 7679, 201, 198, 220, 220, 220, 1058, 17143, 14916, 25, 48700, 13, 15252, 11, 14916, 2163, 973, 319, 262, 7679, 201, 198, 220, 220, 220, 1058, 17143, 4268, 448, 62, 4873, 25, 4268, 448, 2494, 973, 287, 428, 15715, 2512, 201, 198, 220, 220, 220, 1058, 17143, 15458, 62, 27237, 25, 25131, 11, 611, 2081, 262, 3063, 2512, 481, 779, 15458, 3487, 1634, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 15715, 62, 40890, 796, 7679, 796, 48700, 13, 75, 6962, 13, 67, 1072, 7, 15414, 82, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 28, 41667, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 28, 48545, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 611, 4268, 448, 62, 4873, 318, 407, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 796, 48700, 13, 75, 6962, 13, 14781, 448, 7, 29289, 11, 2494, 28, 14781, 448, 62, 4873, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 611, 15458, 62, 27237, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 796, 48700, 13, 75, 6962, 13, 43501, 62, 11265, 1634, 7, 29289, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1441, 7679, 11, 15715, 62, 40890, 201, 198, 201, 198, 201, 198, 4299, 2172, 62, 22462, 7, 6404, 896, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6670, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 2599, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 2896, 1127, 2746, 338, 6436, 7509, 290, 2994, 5499, 13, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1058, 17143, 2604, 896, 25, 662, 12, 33106, 2746, 23862, 201, 198, 220, 220, 220, 1058, 17143, 6670, 25, 2081, 14722, 329, 1123, 5128, 6291, 201, 198, 220, 220, 220, 1058, 17143, 4673, 62, 4873, 25, 4673, 62, 4873, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 2994, 796, 48700, 13, 445, 7234, 62, 32604, 7, 27110, 13, 20471, 13, 82, 29572, 62, 4215, 9806, 62, 19692, 62, 298, 28338, 62, 4480, 62, 6404, 896, 7, 23912, 1424, 28, 83, 853, 1039, 11, 2604, 896, 28, 6404, 896, 4008, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 6436, 7509, 796, 48700, 13, 27432, 13, 23159, 27871, 320, 7509, 7, 40684, 62, 4873, 28, 40684, 62, 4873, 737, 1084, 48439, 7, 22462, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1441, 2994, 11, 6436, 7509 ]
1.979989
1,849
#!/usr/bin/python # -*- coding: utf-8 -*- # Adapted from https://github.com/priba/nmp_qc """ utils.py: Functions to process dataset graphs. Usage: """ from __future__ import print_function import rdkit import torch from joblib import Parallel, delayed import multiprocessing import networkx as nx import numpy as np import shutil import os __author__ = "Pedro HC Avelar, Pau Riba, Anjan Dutta" __email__ = "[email protected], [email protected], [email protected]" def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() pred = pred.type_as(target) target = target.type_as(pred) correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res #end collate_g_concat #end collate_g_concat #end collate_g_concat_dict
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 30019, 276, 422, 3740, 1378, 12567, 13, 785, 14, 79, 822, 64, 14, 77, 3149, 62, 80, 66, 198, 198, 37811, 198, 220, 220, 220, 3384, 4487, 13, 9078, 25, 40480, 284, 1429, 27039, 28770, 13, 628, 220, 220, 220, 29566, 25, 198, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 374, 67, 15813, 198, 11748, 28034, 198, 6738, 1693, 8019, 1330, 42945, 11, 11038, 198, 11748, 18540, 305, 919, 278, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4423, 346, 198, 11748, 28686, 198, 198, 834, 9800, 834, 796, 366, 43468, 305, 27327, 317, 626, 283, 11, 37329, 23133, 64, 11, 1052, 13881, 360, 315, 8326, 1, 198, 834, 12888, 834, 796, 366, 746, 6888, 626, 283, 31, 10745, 13, 3046, 81, 14542, 13, 1671, 11, 279, 822, 64, 31, 66, 28435, 13, 84, 397, 13, 9246, 11, 512, 315, 8326, 31, 66, 28435, 13, 84, 397, 13, 9246, 1, 628, 198, 220, 220, 220, 220, 628, 628, 198, 4299, 9922, 7, 22915, 11, 2496, 11, 1353, 74, 16193, 16, 35751, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 262, 15440, 31, 74, 329, 262, 7368, 3815, 286, 479, 37811, 198, 220, 220, 220, 3509, 74, 796, 3509, 7, 4852, 74, 8, 198, 220, 220, 220, 15458, 62, 7857, 796, 2496, 13, 7857, 7, 15, 8, 198, 220, 220, 220, 4808, 11, 2747, 796, 5072, 13, 4852, 74, 7, 9806, 74, 11, 352, 11, 6407, 11, 6407, 8, 198, 220, 220, 220, 2747, 796, 2747, 13, 83, 3419, 198, 220, 220, 220, 2747, 796, 2747, 13, 4906, 62, 292, 7, 16793, 8, 198, 220, 220, 220, 2496, 796, 2496, 13, 4906, 62, 292, 7, 28764, 8, 198, 220, 220, 220, 3376, 796, 2747, 13, 27363, 7, 16793, 13, 1177, 7, 16, 11, 532, 16, 737, 11201, 392, 62, 292, 7, 28764, 4008, 198, 220, 220, 220, 581, 796, 17635, 198, 220, 220, 220, 329, 479, 287, 1353, 74, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3376, 62, 74, 796, 3376, 58, 25, 74, 4083, 1177, 32590, 16, 737, 22468, 22446, 16345, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 581, 13, 33295, 7, 30283, 62, 74, 13, 76, 377, 41052, 3064, 13, 15, 1220, 15458, 62, 7857, 4008, 198, 220, 220, 220, 1441, 581, 198, 2, 437, 2927, 378, 62, 70, 62, 1102, 9246, 198, 2, 437, 2927, 378, 62, 70, 62, 1102, 9246, 198, 198, 2, 437, 2927, 378, 62, 70, 62, 1102, 9246, 62, 11600, 628, 628 ]
2.381898
453
''' ############################################################################### Ultrafast Quantum Optics Package ############################################################################### Quantum Optics and Quantum Information Group Written by > Jean-Philippe MacLean: [email protected] > Sacha Schwarz [email protected] ''' #Initialize modules from .whitepeaks.analytics import * from .whitepeaks.interface import * from .whitepeaks.methods import * from .whitepeaks.states import * #Define constants c=0.299792458 #Speed of light in um/fs or mm/ps import warnings warnings.filterwarnings("ignore") from timeit import default_timer as time
[ 7061, 6, 198, 29113, 29113, 7804, 4242, 21017, 198, 36122, 7217, 29082, 13123, 873, 15717, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 24915, 388, 13123, 873, 290, 29082, 6188, 4912, 198, 25354, 416, 220, 198, 29, 11320, 12, 49680, 68, 4100, 35806, 25, 474, 4426, 6008, 272, 31, 84, 7050, 29680, 13, 6888, 198, 29, 20678, 64, 34835, 264, 34518, 13, 20601, 5767, 89, 31, 84, 7050, 29680, 13, 6888, 198, 198, 7061, 6, 198, 198, 2, 24243, 1096, 13103, 220, 198, 6738, 764, 11186, 431, 4730, 13, 38200, 14094, 1330, 1635, 220, 198, 6738, 764, 11186, 431, 4730, 13, 39994, 1330, 1635, 220, 198, 6738, 764, 11186, 431, 4730, 13, 24396, 82, 1330, 1635, 220, 198, 6738, 764, 11186, 431, 4730, 13, 27219, 1330, 1635, 220, 198, 198, 2, 7469, 500, 38491, 198, 66, 28, 15, 13, 22579, 3720, 1731, 3365, 1303, 22785, 286, 1657, 287, 23781, 14, 9501, 393, 8085, 14, 862, 198, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 7203, 46430, 4943, 198, 198, 6738, 640, 270, 1330, 4277, 62, 45016, 355, 640 ]
3.75
180
import os, sys from flask import request from flask_restplus import Namespace, Resource, fields from flask.wrappers import Response from app.utils.async_action import async_action from app.api_response import ApiResponse from app.errors import ApiException, JobTemplateNotFound, PlaybookFailure, PlaybookTimeout, SwitchNotFound from .service import SwitchService from .model import Switch from .interfaces import SwitchInterfaces from app.utils.authorization import authorize from app.utils.logger import log from app.utils.b64 import decode from app.macs.service import MacService api_description = """ Representación de los switches de la empresa. """ api = Namespace('Switch', description=api_description) interfaces = SwitchInterfaces(api) @api.route("/") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) class SwitchResource(Resource): """ Switch Resource """ @api.response(200, 'Lista de Switches', interfaces.many_response_model) @log @async_action @authorize async def get(self): """ Devuelve la lista de Switches """ try: entities = await SwitchService.get_all() return ApiResponse(interfaces.many_schema.dump(entities).data) except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea') @api.expect(interfaces.create_model) @api.response(200, 'Nuevo Switch', interfaces.single_response_model) @log @authorize def post(self): """ Crea un nuevo Switch. """ json_data = request.get_json() if json_data is None: raise ApiException('JSON body is undefined') body = interfaces.single_schema.load(json_data).data Switch = SwitchService.create(body) return ApiResponse(interfaces.single_schema.dump(Switch).data) @api.expect(interfaces.update_model) @api.response(200, 'Switches Actualizados', interfaces.many_response_model) @log @authorize def put(self, id: int): """ Actualiza un batch de Switches por su ID. """ json_data = request.get_json() sw_updated = [] for item in json_data: sw = interfaces.single_schema.load(request.json).data sw_updated.append(SwitchService.update(id, sw)) return ApiResponse(interfaces.many_schema.dump(sw_updated).data) @api.route("/<int:id>") @api.param("id", "Identificador único del Switch") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) @api.route("/inventory") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) class SwitchInventoryResource(Resource): """ Inventory switch Resource """ @api.response(200, 'Inventario con lista de swithces') @async_action async def get(self): """ Devuelve la lista de Switches """ try: entities = await SwitchService.get_all() ansible_switches_vars = {} for x in entities: ansible_switches_vars[x.name] = { "ansible_host": x.ip, "ansible_become": True, "ansible_become_method": "enable", "ansible_connection": "network_cli", "ansible_network_os": "ios", "ansible_port": x.ansible_ssh_port or 22, "ansible_user": decode(x.ansible_user), "ansible_ssh_pass": decode(x.ansible_ssh_pass) } ansible_switches_hostnames = map(lambda x : x.name, entities) sw_inv = { 'group': { 'hosts': list(ansible_switches_hostnames), }, '_meta': { 'hostvars': ansible_switches_vars } } return ApiResponse(sw_inv) except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea') @api.route("/<int:id>/macs") @api.param("id", "Identificador único del Switch") class SwitchMacResource(Resource): """ Mac Resource """ @api.response(200, 'Lista de Interfaces con sus respectivas macs', interfaces.many_response_model) @log @async_action @authorize async def get(self, switch_id: int): """ Devuelve la lista de todaslas macs del switch """ try: resp = await MacService.get(switch_id) return ApiResponse(resp) except SwitchNotFound: raise ApiException(f'No se encuentra un switch con el id:{switch_id}') except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea')
[ 11748, 28686, 11, 25064, 198, 6738, 42903, 1330, 2581, 198, 6738, 42903, 62, 2118, 9541, 1330, 28531, 10223, 11, 20857, 11, 7032, 198, 6738, 42903, 13, 29988, 11799, 1330, 18261, 198, 6738, 598, 13, 26791, 13, 292, 13361, 62, 2673, 1330, 30351, 62, 2673, 198, 198, 6738, 598, 13, 15042, 62, 26209, 1330, 5949, 72, 31077, 198, 6738, 598, 13, 48277, 1330, 5949, 72, 16922, 11, 15768, 30800, 3673, 21077, 11, 3811, 2070, 50015, 11, 3811, 2070, 48031, 11, 14645, 3673, 21077, 198, 6738, 764, 15271, 1330, 14645, 16177, 198, 6738, 764, 19849, 1330, 14645, 198, 6738, 764, 3849, 32186, 1330, 14645, 9492, 32186, 198, 198, 6738, 598, 13, 26791, 13, 9800, 1634, 1330, 29145, 198, 6738, 598, 13, 26791, 13, 6404, 1362, 1330, 2604, 198, 6738, 598, 13, 26791, 13, 65, 2414, 1330, 36899, 198, 6738, 598, 13, 76, 16436, 13, 15271, 1330, 4100, 16177, 198, 198, 15042, 62, 11213, 796, 37227, 198, 40171, 32009, 18840, 390, 22346, 18225, 390, 8591, 795, 79, 14625, 13, 198, 37811, 198, 198, 15042, 796, 28531, 10223, 10786, 38978, 3256, 6764, 28, 15042, 62, 11213, 8, 198, 3849, 32186, 796, 14645, 9492, 32186, 7, 15042, 8, 198, 198, 31, 15042, 13, 38629, 7203, 14, 4943, 198, 31, 15042, 13, 26209, 7, 7029, 11, 705, 22069, 19390, 3256, 20314, 13, 18224, 62, 26209, 62, 19849, 8, 198, 31, 15042, 13, 15390, 7, 16733, 274, 34758, 198, 220, 220, 220, 22219, 25, 705, 52, 2616, 1457, 1143, 3256, 198, 220, 220, 220, 38210, 25, 705, 1890, 37978, 3256, 198, 220, 220, 220, 5323, 25, 705, 37693, 4382, 4049, 3256, 198, 220, 220, 220, 47233, 25, 705, 22069, 29916, 3256, 198, 220, 220, 220, 44541, 25, 705, 16177, 791, 15182, 3256, 198, 30072, 198, 4871, 14645, 26198, 7, 26198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14645, 20857, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 15042, 13, 26209, 7, 2167, 11, 705, 8053, 64, 390, 2451, 9249, 3256, 20314, 13, 21834, 62, 26209, 62, 19849, 8, 198, 220, 220, 220, 2488, 6404, 198, 220, 220, 220, 2488, 292, 13361, 62, 2673, 198, 220, 220, 220, 2488, 9800, 1096, 198, 220, 220, 220, 30351, 825, 651, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6245, 2731, 303, 8591, 1351, 64, 390, 2451, 9249, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12066, 796, 25507, 14645, 16177, 13, 1136, 62, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5949, 72, 31077, 7, 3849, 32186, 13, 21834, 62, 15952, 2611, 13, 39455, 7, 298, 871, 737, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 15768, 30800, 3673, 21077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 2949, 2152, 68, 555, 41794, 31215, 909, 83, 877, 8591, 1167, 81, 20285, 72, 18840, 390, 39990, 20314, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3811, 2070, 48031, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 14772, 304, 73, 721, 42008, 18840, 390, 8591, 256, 20337, 2208, 78, 1288, 256, 26597, 7501, 1619, 26827, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3811, 2070, 50015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 24750, 78, 8591, 304, 73, 721, 42008, 18840, 390, 8591, 256, 20337, 11537, 198, 220, 220, 220, 2488, 15042, 13, 1069, 806, 7, 3849, 32186, 13, 17953, 62, 19849, 8, 198, 220, 220, 220, 2488, 15042, 13, 26209, 7, 2167, 11, 705, 45, 518, 13038, 14645, 3256, 20314, 13, 29762, 62, 26209, 62, 19849, 8, 198, 220, 220, 220, 2488, 6404, 198, 220, 220, 220, 2488, 9800, 1096, 198, 220, 220, 220, 825, 1281, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5844, 64, 555, 299, 518, 13038, 14645, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 796, 2581, 13, 1136, 62, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 33918, 62, 7890, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 40386, 1767, 318, 28721, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1767, 796, 20314, 13, 29762, 62, 15952, 2611, 13, 2220, 7, 17752, 62, 7890, 737, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 14645, 796, 14645, 16177, 13, 17953, 7, 2618, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5949, 72, 31077, 7, 3849, 32186, 13, 29762, 62, 15952, 2611, 13, 39455, 7, 38978, 737, 7890, 8, 628, 220, 220, 220, 2488, 15042, 13, 1069, 806, 7, 3849, 32186, 13, 19119, 62, 19849, 8, 198, 220, 220, 220, 2488, 15042, 13, 26209, 7, 2167, 11, 705, 10462, 9249, 33520, 528, 22484, 3256, 20314, 13, 21834, 62, 26209, 62, 19849, 8, 198, 220, 220, 220, 2488, 6404, 198, 220, 220, 220, 2488, 9800, 1096, 198, 220, 220, 220, 825, 1234, 7, 944, 11, 4686, 25, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33520, 23638, 555, 15458, 390, 2451, 9249, 16964, 424, 4522, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 7890, 796, 2581, 13, 1136, 62, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1509, 62, 43162, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 33918, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1509, 796, 20314, 13, 29762, 62, 15952, 2611, 13, 2220, 7, 25927, 13, 17752, 737, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1509, 62, 43162, 13, 33295, 7, 38978, 16177, 13, 19119, 7, 312, 11, 1509, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5949, 72, 31077, 7, 3849, 32186, 13, 21834, 62, 15952, 2611, 13, 39455, 7, 2032, 62, 43162, 737, 7890, 8, 198, 198, 31, 15042, 13, 38629, 7203, 14, 27, 600, 25, 312, 29, 4943, 198, 31, 15042, 13, 17143, 7203, 312, 1600, 366, 33234, 811, 7079, 6184, 118, 77, 3713, 1619, 14645, 4943, 198, 31, 15042, 13, 26209, 7, 7029, 11, 705, 22069, 19390, 3256, 20314, 13, 18224, 62, 26209, 62, 19849, 8, 198, 31, 15042, 13, 15390, 7, 16733, 274, 34758, 198, 220, 220, 220, 22219, 25, 705, 52, 2616, 1457, 1143, 3256, 198, 220, 220, 220, 38210, 25, 705, 1890, 37978, 3256, 198, 220, 220, 220, 5323, 25, 705, 37693, 4382, 4049, 3256, 198, 220, 220, 220, 47233, 25, 705, 22069, 29916, 3256, 198, 220, 220, 220, 44541, 25, 705, 16177, 791, 15182, 3256, 198, 30072, 198, 31, 15042, 13, 38629, 7203, 14, 24807, 4943, 198, 31, 15042, 13, 26209, 7, 7029, 11, 705, 22069, 19390, 3256, 20314, 13, 18224, 62, 26209, 62, 19849, 8, 198, 31, 15042, 13, 15390, 7, 16733, 274, 34758, 198, 220, 220, 220, 22219, 25, 705, 52, 2616, 1457, 1143, 3256, 198, 220, 220, 220, 38210, 25, 705, 1890, 37978, 3256, 198, 220, 220, 220, 5323, 25, 705, 37693, 4382, 4049, 3256, 198, 220, 220, 220, 47233, 25, 705, 22069, 29916, 3256, 198, 220, 220, 220, 44541, 25, 705, 16177, 791, 15182, 3256, 198, 30072, 198, 4871, 14645, 818, 17158, 26198, 7, 26198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35772, 5078, 20857, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 15042, 13, 26209, 7, 2167, 11, 705, 818, 1151, 4982, 369, 1351, 64, 390, 1509, 342, 728, 11537, 198, 220, 220, 220, 2488, 292, 13361, 62, 2673, 198, 220, 220, 220, 30351, 825, 651, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6245, 2731, 303, 8591, 1351, 64, 390, 2451, 9249, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12066, 796, 25507, 14645, 16177, 13, 1136, 62, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9093, 856, 62, 2032, 9249, 62, 85, 945, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 220, 287, 12066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9093, 856, 62, 2032, 9249, 62, 85, 945, 58, 87, 13, 3672, 60, 796, 1391, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 504, 856, 62, 4774, 1298, 2124, 13, 541, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 504, 856, 62, 9423, 462, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 504, 856, 62, 9423, 462, 62, 24396, 1298, 366, 21633, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 504, 856, 62, 38659, 1298, 366, 27349, 62, 44506, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 504, 856, 62, 27349, 62, 418, 1298, 366, 4267, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 504, 856, 62, 634, 1298, 2124, 13, 504, 856, 62, 45824, 62, 634, 393, 2534, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 504, 856, 62, 7220, 1298, 36899, 7, 87, 13, 504, 856, 62, 7220, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 504, 856, 62, 45824, 62, 6603, 1298, 36899, 7, 87, 13, 504, 856, 62, 45824, 62, 6603, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9093, 856, 62, 2032, 9249, 62, 4774, 14933, 796, 3975, 7, 50033, 2124, 1058, 2124, 13, 3672, 11, 12066, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1509, 62, 16340, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8094, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4774, 82, 10354, 1351, 7, 504, 856, 62, 2032, 9249, 62, 4774, 14933, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 28961, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4774, 85, 945, 10354, 9093, 856, 62, 2032, 9249, 62, 85, 945, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5949, 72, 31077, 7, 2032, 62, 16340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 15768, 30800, 3673, 21077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 2949, 2152, 68, 555, 41794, 31215, 909, 83, 877, 8591, 1167, 81, 20285, 72, 18840, 390, 39990, 20314, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3811, 2070, 48031, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 14772, 304, 73, 721, 42008, 18840, 390, 8591, 256, 20337, 2208, 78, 1288, 256, 26597, 7501, 1619, 26827, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3811, 2070, 50015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 24750, 78, 8591, 304, 73, 721, 42008, 18840, 390, 8591, 256, 20337, 11537, 198, 198, 31, 15042, 13, 38629, 7203, 14, 27, 600, 25, 312, 29, 14, 76, 16436, 4943, 198, 31, 15042, 13, 17143, 7203, 312, 1600, 366, 33234, 811, 7079, 6184, 118, 77, 3713, 1619, 14645, 4943, 198, 4871, 14645, 14155, 26198, 7, 26198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4100, 20857, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 15042, 13, 26209, 7, 2167, 11, 705, 8053, 64, 390, 4225, 32186, 369, 2341, 2461, 38630, 8352, 82, 3256, 20314, 13, 21834, 62, 26209, 62, 19849, 8, 198, 220, 220, 220, 2488, 6404, 198, 220, 220, 220, 2488, 292, 13361, 62, 2673, 198, 220, 220, 220, 2488, 9800, 1096, 198, 220, 220, 220, 30351, 825, 651, 7, 944, 11, 5078, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6245, 2731, 303, 8591, 1351, 64, 390, 284, 67, 292, 21921, 8352, 82, 1619, 5078, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 25507, 4100, 16177, 13, 1136, 7, 31943, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5949, 72, 31077, 7, 4363, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 14645, 3673, 21077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 7, 69, 6, 2949, 384, 2207, 84, 298, 430, 555, 5078, 369, 1288, 4686, 29164, 31943, 62, 312, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 15768, 30800, 3673, 21077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 2949, 2152, 68, 555, 41794, 31215, 909, 83, 877, 8591, 1167, 81, 20285, 72, 18840, 390, 39990, 20314, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3811, 2070, 48031, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 14772, 304, 73, 721, 42008, 18840, 390, 8591, 256, 20337, 2208, 78, 1288, 256, 26597, 7501, 1619, 26827, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3811, 2070, 50015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 16922, 10786, 24750, 78, 8591, 304, 73, 721, 42008, 18840, 390, 8591, 256, 20337, 11537, 198 ]
2.337255
2,550
# Authors: Stephane Gaiffas <[email protected]> # Ibrahim Merad <[email protected]> # License: BSD 3 clause """ This module implement the ``TMean`` class for the trimmed-means robust estimator. `StateTMean` is a place-holder for the TMean estimator containing: """ from collections import namedtuple import numpy as np from numba import jit from ._base import Estimator, jit_kwargs from .._utils import np_float, trimmed_mean, fast_trimmed_mean StateTMean = namedtuple( "StateTMean", [ "deriv_samples", "deriv_samples_outer_prods", "gradient", "loss_derivative", "partial_derivative", ], ) class TMean(Estimator): """Trimmed-mean estimator"""
[ 2, 46665, 25, 39644, 1531, 12822, 733, 292, 1279, 9662, 71, 1531, 13, 4908, 733, 292, 31, 14816, 13, 785, 29, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30917, 4638, 324, 1279, 22723, 324, 22, 31, 14816, 13, 785, 29, 198, 2, 13789, 25, 347, 10305, 513, 13444, 198, 198, 37811, 198, 1212, 8265, 3494, 262, 7559, 51, 5308, 272, 15506, 1398, 329, 262, 40325, 12, 1326, 504, 12373, 3959, 1352, 13, 198, 198, 63, 9012, 51, 5308, 272, 63, 318, 257, 1295, 12, 13829, 329, 262, 309, 5308, 272, 3959, 1352, 7268, 25, 198, 198, 37811, 198, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 997, 7012, 1330, 474, 270, 198, 6738, 47540, 8692, 1330, 10062, 320, 1352, 11, 474, 270, 62, 46265, 22046, 198, 6738, 11485, 62, 26791, 1330, 45941, 62, 22468, 11, 40325, 62, 32604, 11, 3049, 62, 2213, 320, 1150, 62, 32604, 198, 198, 9012, 51, 5308, 272, 796, 3706, 83, 29291, 7, 198, 220, 220, 220, 366, 9012, 51, 5308, 272, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1082, 452, 62, 82, 12629, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1082, 452, 62, 82, 12629, 62, 39605, 62, 1676, 9310, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 49607, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22462, 62, 1082, 452, 876, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 47172, 62, 1082, 452, 876, 1600, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 4871, 309, 5308, 272, 7, 22362, 320, 1352, 2599, 198, 220, 220, 220, 37227, 2898, 320, 1150, 12, 32604, 3959, 1352, 37811, 628 ]
2.491409
291
from typing import Set, List, Tuple from bauh.api.abstract.handler import ProcessWatcher from bauh.api.abstract.view import MultipleSelectComponent, InputOption from bauh.commons import resource from bauh.commons.html import bold from bauh.gems.arch import ROOT_DIR from bauh.view.util.translation import I18n
[ 6738, 19720, 1330, 5345, 11, 7343, 11, 309, 29291, 198, 198, 6738, 275, 559, 71, 13, 15042, 13, 397, 8709, 13, 30281, 1330, 10854, 54, 34734, 198, 6738, 275, 559, 71, 13, 15042, 13, 397, 8709, 13, 1177, 1330, 20401, 17563, 21950, 11, 23412, 19722, 198, 6738, 275, 559, 71, 13, 9503, 684, 1330, 8271, 198, 6738, 275, 559, 71, 13, 9503, 684, 13, 6494, 1330, 10758, 198, 6738, 275, 559, 71, 13, 70, 5232, 13, 998, 1330, 15107, 2394, 62, 34720, 198, 6738, 275, 559, 71, 13, 1177, 13, 22602, 13, 41519, 1330, 314, 1507, 77, 628, 628 ]
3.171717
99
from policyglass import Action, EffectiveAction
[ 6738, 2450, 20721, 1330, 7561, 11, 29455, 12502, 628 ]
5.444444
9
import unittest import shutil import tempfile from os import path from unittest.mock import patch, mock_open from taurex.model.model import ForwardModel from taurex.model.simplemodel import SimpleForwardModel import numpy as np import pickle
[ 198, 11748, 555, 715, 395, 198, 11748, 4423, 346, 198, 11748, 20218, 7753, 198, 6738, 28686, 1330, 3108, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 8529, 11, 15290, 62, 9654, 198, 6738, 20486, 495, 87, 13, 19849, 13, 19849, 1330, 19530, 17633, 198, 6738, 20486, 495, 87, 13, 19849, 13, 36439, 19849, 1330, 17427, 39746, 17633, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2298, 293, 628, 198 ]
3.5
70
from typing import List # 迭代先序遍历
[ 6738, 19720, 1330, 7343, 198, 198, 2, 5525, 123, 255, 47987, 17739, 230, 41753, 237, 34402, 235, 43889, 228, 198 ]
1.7
20
# if __name__ == '__main__': # print "the generator function:" # print repr(counter) # print "call generator function" # c = counter() # print "the generator:" # print repr(c) # print 'iterate' # for item in c: # print 'received:', item
[ 198, 198, 2, 611, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 2, 220, 220, 220, 220, 3601, 366, 1169, 17301, 2163, 11097, 198, 2, 220, 220, 220, 220, 3601, 41575, 7, 24588, 8, 198, 2, 220, 220, 220, 220, 3601, 366, 13345, 17301, 2163, 1, 198, 198, 2, 220, 220, 220, 220, 269, 796, 3753, 3419, 198, 2, 220, 220, 220, 220, 3601, 366, 1169, 17301, 11097, 198, 2, 220, 220, 220, 220, 3601, 41575, 7, 66, 8, 198, 198, 2, 220, 220, 220, 220, 3601, 705, 2676, 378, 6, 198, 2, 220, 220, 220, 220, 329, 2378, 287, 269, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 47844, 25, 3256, 2378, 198 ]
2.322314
121
# -*- coding: utf-8 -*- # # Star Trek: Interstellar Transport # # Written in 2021 by Moky <[email protected]> # # ============================================================================== # MIT License # # Copyright (c) 2021 Albert Moky # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================== import socket from abc import ABC, abstractmethod from typing import Optional, Set from ..fsm import Processor from .channel import Channel from .connection import Connection class Hub(Processor, ABC): """ Connections & Channels Container """ @abstractmethod def open_channel(self, remote: Optional[tuple], local: Optional[tuple]) -> Optional[Channel]: """ Open a channel with direction (remote, local) :param remote: remote address to connected :param local: local address to bound :return: None on socket error """ raise NotImplemented @abstractmethod def close_channel(self, channel: Channel): """ Close socket channel :param channel: socket channel :return: """ raise NotImplemented @abstractmethod def connect(self, remote: tuple, local: Optional[tuple] = None) -> Optional[Connection]: """ Get connection with direction (remote, local) :param remote: remote address :param local: local address :return: None on channel not opened """ raise NotImplemented @abstractmethod def disconnect(self, remote: tuple = None, local: Optional[tuple] = None, connection: Connection = None) -> Optional[Connection]: """ Close connection :param remote: remote address :param local: local address :param connection: closing connection :return: closed connection """ raise NotImplemented # # Local Address # @classmethod @classmethod @classmethod @classmethod
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 220, 220, 2907, 12338, 25, 49041, 19940, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22503, 287, 33448, 416, 337, 31375, 1279, 282, 4835, 13, 76, 31375, 31, 14816, 13, 785, 29, 198, 2, 198, 2, 38093, 25609, 28, 198, 2, 17168, 13789, 198, 2, 198, 2, 15069, 357, 66, 8, 33448, 9966, 337, 31375, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 2, 38093, 25609, 28, 198, 198, 11748, 17802, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 19720, 1330, 32233, 11, 5345, 198, 198, 6738, 11485, 69, 5796, 1330, 32893, 198, 198, 6738, 764, 17620, 1330, 11102, 198, 6738, 764, 38659, 1330, 26923, 628, 198, 4871, 14699, 7, 18709, 273, 11, 9738, 2599, 198, 220, 220, 220, 37227, 8113, 507, 1222, 609, 8961, 43101, 37227, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 1280, 62, 17620, 7, 944, 11, 6569, 25, 32233, 58, 83, 29291, 4357, 1957, 25, 32233, 58, 83, 29291, 12962, 4613, 32233, 58, 29239, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4946, 257, 6518, 351, 4571, 357, 47960, 11, 1957, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6569, 25, 6569, 2209, 284, 5884, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1957, 25, 220, 1957, 2209, 284, 5421, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 319, 17802, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 1969, 62, 17620, 7, 944, 11, 6518, 25, 11102, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13872, 17802, 6518, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6518, 25, 17802, 6518, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 2018, 7, 944, 11, 6569, 25, 46545, 11, 1957, 25, 32233, 58, 83, 29291, 60, 796, 6045, 8, 4613, 32233, 58, 32048, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 4637, 351, 4571, 357, 47960, 11, 1957, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6569, 25, 6569, 2209, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1957, 25, 220, 1957, 2209, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 319, 6518, 407, 4721, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 22837, 7, 944, 11, 6569, 25, 46545, 796, 6045, 11, 1957, 25, 32233, 58, 83, 29291, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 25, 26923, 796, 6045, 8, 4613, 32233, 58, 32048, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13872, 4637, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6569, 25, 6569, 2209, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1957, 25, 220, 1957, 2209, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4637, 25, 9605, 4637, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 4838, 4637, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 220, 220, 10714, 17917, 198, 220, 220, 220, 1303, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 198 ]
3.091908
1,001
#!/usr/bin/python # Filename: TMWP_OO_CustDataStructures.py # TMWP = TheMitchWorksPro # Functions and/or Objects for smarter handling of common data structures # required imports are noted in the code where used/required # from ... import ... version = '0.1' python_version_support = 'code shoud be compatibile w/ Python 2.7 and Python 3.x' import collections # source: https://code.activestate.com/recipes/576694/ # added to collection for testing but may or may not be tested yet # notes say this was created for Python 2.6 but should be compatible w/ 2.7 and 3.x # Alternatives: from sortedcontainers import SortedSet # pip install sortedcontainers library to use it # libraries needed: import collections
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 7066, 12453, 25, 309, 14326, 47, 62, 6684, 62, 34, 436, 6601, 44909, 942, 13, 9078, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 14326, 47, 796, 383, 44, 2007, 23044, 2964, 198, 198, 2, 40480, 290, 14, 273, 35832, 329, 23714, 9041, 286, 2219, 1366, 8573, 198, 2, 2672, 17944, 389, 4367, 287, 262, 2438, 810, 973, 14, 35827, 198, 2, 422, 2644, 1330, 2644, 198, 198, 9641, 796, 705, 15, 13, 16, 6, 198, 29412, 62, 9641, 62, 11284, 796, 705, 8189, 427, 2778, 307, 8330, 571, 576, 266, 14, 11361, 362, 13, 22, 290, 11361, 513, 13, 87, 6, 628, 198, 11748, 17268, 198, 220, 220, 220, 1303, 2723, 25, 3740, 1378, 8189, 13, 15791, 44146, 13, 785, 14, 8344, 18636, 14, 3553, 2791, 5824, 14, 198, 197, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 284, 4947, 329, 4856, 475, 743, 393, 743, 407, 307, 6789, 1865, 198, 197, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4710, 910, 428, 373, 2727, 329, 11361, 362, 13, 21, 475, 815, 307, 11670, 266, 14, 362, 13, 22, 290, 513, 13, 87, 198, 197, 2, 13243, 2929, 25, 220, 422, 23243, 3642, 50221, 1330, 311, 9741, 7248, 198, 197, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7347, 2721, 23243, 3642, 50221, 5888, 284, 779, 340, 198, 197, 198, 197, 2, 12782, 2622, 25, 220, 1330, 17268 ]
3.015748
254
# Copyright 2017 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """File-based buffer common. A file-based buffer which writes its events to a single file on disk, and separately maintains metadata. There are three files maintained, plus one for each consumer created: data.json: Stores actual data. Each line corresponds to one event. As events are written to disk, each one is given a sequence number. Format of each line: [SEQ_NUM, {EVENT_DATA}, CRC_SUM] Writing SEQ_NUM to data.json is not strictly necessary since we keep track of sequence numbers in metadata, but it is useful for debugging, and could also help when restoring a corrupt database. metadata.json: Stores current sequence numbers and cursor positions. The "first seq" and "start pos" are taken to be absolute to the original untruncated data file, and refer to the beginning of data currently stored on disk. So if seq=1 was consumed by all Consumers, and Truncate removed it from disk, first_seq would be set to 2. Note that since the cursor positions are absolute, start_pos must be subtracted to get the actual position in the file on disk, e.g.: f.seek(current_pos - start_pos) consumers.json: Stores a list of all active Consumers. If a Consumer is removed, it will be removed from this list, but its metadata file will continue to exist. If it is ever re-created, the existing metadata will be used. If this is undesired behaviour, the metadata file for that Consumer should be manually deleted. consumer_X.json: Stores the sequence number and cursor position of a particular Consumer. Versioning: Another concept that is worth explaining separately is "versioning". We want to support truncating, that is, when our file contains N records which have already been consumed by all Consumers, and M remaining records, remove the first N records from the main data file in order to save disk space. After rewriting the data file, update metadata accordingly. But what happens if a failure occurs in between these two steps? Our "old" metadata now is now paired with a "new" data file, which means we will likely be unable to read anything properly. To solve this problem, before re-writing the main data file, we save a metadata file to disk with both "old" and "new" metadata versions *before* performing a truncate on the main data file. The key is a CRC hash of the first line of the main data file. When the buffer first starts, it will check to see which key matches the first line, and it will use this metadata version. Thus, if a failure occurs *before* writing the main data file, the "old" metadata can be used. If a failure occurs *after* writing the main data file, the "new" metadata can be used. """ import copy import json import logging import os import shutil import zlib from cros.factory.instalog import datatypes from cros.factory.instalog import lock_utils from cros.factory.instalog import log_utils from cros.factory.instalog import plugin_base from cros.factory.instalog.utils import file_utils # The number of bytes to buffer when retrieving events from a file. _BUFFER_SIZE_BYTES = 4 * 1024 # 4kb class SimpleFileException(Exception): """General exception type for this plugin.""" def GetChecksumLegacy(data): """Generates an 8-character CRC32 checksum of given string.""" # TODO(chuntsen): Remove this legacy function. # The function crc32() returns a signed 32-bit integer in Python2, but it # returns an unsigned 32-bit integer in Python3. To generate the same value # across all Python versions, we convert unsigned integer to signed integer. checksum = zlib.crc32(data.encode('utf-8')) if checksum >= 2**31: checksum -= 2**32 return '{:08x}'.format(abs(checksum)) def GetChecksum(data): """Generates an 8-character CRC32 checksum of given string.""" # The function crc32() returns a signed 32-bit integer in Python2, but it # returns an unsigned 32-bit integer in Python3. To generate the same value # across all Python versions, we use "crc32() & 0xffffffff". return '{:08x}'.format(zlib.crc32(data.encode('utf-8')) & 0xffffffff) def FormatRecord(seq, record): """Returns a record formatted as a line to be written to disk.""" data = '%d, %s' % (seq, record) checksum = GetChecksum(data) return '[%s, "%s"]\n' % (data, checksum) def ParseRecord(line, logger_name=None): """Parses and returns a line from disk as a record. Returns: A tuple of (seq_number, record), or None on failure. """ logger = logging.getLogger(logger_name) line_inner = line.rstrip()[1:-1] # Strip [] and newline data, _, checksum = line_inner.rpartition(', ') # TODO(chuntsen): Change this method after a long time. checksum = checksum.strip('"') seq, _, record = data.partition(', ') if not seq or not record: logger.warning('Parsing error for record %s', line.rstrip()) return None, None if checksum != GetChecksum(data) and checksum != GetChecksumLegacy(data): logger.warning('Checksum error for record %s', line.rstrip()) return None, None return int(seq), record def TryLoadJSON(path, logger_name=None): """Attempts to load JSON from the given file. Returns: Parsed data from the file. None if the file does not exist. Raises: Exception if there was some other problem reading the file, or if something went wrong parsing the data. """ logger = logging.getLogger(logger_name) if not os.path.isfile(path): logger.debug('%s: does not exist', path) return None try: with open(path, 'r') as f: return json.load(f) except Exception: logger.exception('%s: Error reading disk or loading JSON', path) raise def CopyAttachmentsToTempDir(att_paths, tmp_dir, logger_name=None): """Copys attachments to the temporary directory.""" logger = logging.getLogger(logger_name) try: for att_path in att_paths: # Check that the source file exists. if not os.path.isfile(att_path): raise ValueError('Attachment path `%s` specified in event does not ' 'exist' % att_path) target_path = os.path.join(tmp_dir, att_path.replace('/', '_')) logger.debug('Copying attachment: %s --> %s', att_path, target_path) with open(target_path, 'w') as dst_f: with open(att_path, 'r') as src_f: shutil.copyfileobj(src_f, dst_f) # Fsync the file and the containing directory to make sure it # is flushed to disk. dst_f.flush() os.fdatasync(dst_f) # Fsync the containing directory to make sure all attachments are flushed # to disk. dirfd = os.open(tmp_dir, os.O_DIRECTORY) os.fsync(dirfd) os.close(dirfd) return True except Exception: logger.exception('Exception encountered when copying attachments') return False def MoveAndWrite(config_dct, events): """Moves the atts, serializes the events and writes them to the data_path.""" logger = logging.getLogger(config_dct['logger_name']) metadata_dct = RestoreMetadata(config_dct) cur_seq = metadata_dct['last_seq'] + 1 cur_pos = metadata_dct['end_pos'] - metadata_dct['start_pos'] # Truncate the size of the file in case of a previously unfinished # transaction. with open(config_dct['data_path'], 'a') as f: f.truncate(cur_pos) with open(config_dct['data_path'], 'a') as f: # On some machines, the file handle offset isn't set to EOF until # a write occurs. Thus we must manually seek to the end to ensure # that f.tell() will return useful results. f.seek(0, 2) # 2 means use EOF as the reference point. assert f.tell() == cur_pos for event in events: for att_id, att_path in event.attachments.items(): target_name = '%s_%s' % (cur_seq, att_id) target_path = os.path.join(config_dct['attachments_dir'], target_name) event.attachments[att_id] = target_name logger.debug('Relocating attachment %s: %s --> %s', att_id, att_path, target_path) # Note: This could potentially overwrite an existing file that got # written just before Instalog process stopped unexpectedly. os.rename(att_path, target_path) logger.debug('Writing event with cur_seq=%d, cur_pos=%d', cur_seq, cur_pos) output = FormatRecord(cur_seq, event.Serialize()) # Store the version for SaveMetadata to use. if cur_pos == 0: metadata_dct['version'] = GetChecksum(output) f.write(output) cur_seq += 1 cur_pos += len(output) if config_dct['args'].enable_fsync: # Fsync the file and the containing directory to make sure it # is flushed to disk. f.flush() os.fdatasync(f) dirfd = os.open(os.path.dirname(config_dct['data_path']), os.O_DIRECTORY) os.fsync(dirfd) os.close(dirfd) metadata_dct['last_seq'] = cur_seq - 1 metadata_dct['end_pos'] = metadata_dct['start_pos'] + cur_pos SaveMetadata(config_dct, metadata_dct) def SaveMetadata(config_dct, metadata_dct, old_metadata_dct=None): """Writes metadata of main database to disk.""" if not metadata_dct['version']: raise SimpleFileException('No `version` available for SaveMetadata') data = {metadata_dct['version']: metadata_dct} if old_metadata_dct and old_metadata_dct['version']: if metadata_dct['version'] == old_metadata_dct['version']: raise SimpleFileException( 'Same `version` from new metadata and old metadata') data[old_metadata_dct['version']] = old_metadata_dct with file_utils.AtomicWrite(config_dct['metadata_path'], fsync=True) as f: json.dump(data, f) def RestoreMetadata(config_dct): """Restores version from the main data file on disk. If the metadata file does not exist, will silently return. """ logger = logging.getLogger(config_dct['logger_name']) metadata_dct = {'first_seq': 1, 'last_seq': 0, 'start_pos': 0, 'end_pos': 0, 'version': '00000000'} data = TryLoadJSON(config_dct['metadata_path'], logger.name) if data is not None: try: with open(config_dct['data_path'], 'r') as f: metadata_dct['version'] = GetChecksum(f.readline()) except Exception: logger.error('Data file unexpectedly missing; resetting metadata') return metadata_dct if metadata_dct['version'] not in data: logger.error('Could not find metadata version %s (available: %s); ' 'recovering metadata from data file', metadata_dct['version'], ', '.join(data.keys())) RecoverMetadata(config_dct, metadata_dct) return metadata_dct if len(data) > 1: logger.info('Metadata contains multiple versions %s; choosing %s', ', '.join(data.keys()), metadata_dct['version']) metadata_dct.update(data[metadata_dct['version']]) if (metadata_dct['end_pos'] > metadata_dct['start_pos'] + os.path.getsize(config_dct['data_path'])): logger.error('end_pos in restored metadata is larger than start_pos + ' 'data file; recovering metadata from data file') RecoverMetadata(config_dct, metadata_dct) else: if os.path.isfile(config_dct['data_path']): logger.error('Could not find metadata file, but we have data file; ' 'recovering metadata from data file') RecoverMetadata(config_dct, metadata_dct) else: logger.info('Creating metadata file and data file') SaveMetadata(config_dct, metadata_dct) file_utils.TouchFile(config_dct['data_path']) return metadata_dct def RecoverMetadata(config_dct, metadata_dct): """Recovers metadata from the main data file on disk. Uses the first valid record for first_seq and start_pos, and the last valid record for last_seq and end_pos. """ logger = logging.getLogger(config_dct['logger_name']) first_record = True cur_pos = 0 with open(config_dct['data_path'], 'r') as f: for line in f: seq, _unused_record = ParseRecord(line, config_dct['logger_name']) if first_record and seq: metadata_dct['first_seq'] = seq metadata_dct['start_pos'] = cur_pos first_record = False cur_pos += len(line) if seq: metadata_dct['last_seq'] = seq metadata_dct['end_pos'] = cur_pos logger.info('Finished recovering metadata; sequence range found: %d to %d', metadata_dct['first_seq'], metadata_dct['last_seq']) SaveMetadata(config_dct, metadata_dct) def TruncateAttachments(config_dct, metadata_dct): """Deletes attachments of events no longer stored within data.json.""" logger = logging.getLogger(config_dct['logger_name']) for fname in os.listdir(config_dct['attachments_dir']): fpath = os.path.join(config_dct['attachments_dir'], fname) if not os.path.isfile(fpath): continue seq, unused_underscore, unused_att_id = fname.partition('_') if not seq.isdigit(): continue if int(seq) < metadata_dct['first_seq']: logger.debug('Truncating attachment (<seq=%d): %s', metadata_dct['first_seq'], fname) os.unlink(fpath) def Truncate(config_dct, min_seq, min_pos): """Truncates the main data file to only contain unprocessed records. See file-level docstring for more information about versions. """ logger = logging.getLogger(config_dct['logger_name']) metadata_dct = RestoreMetadata(config_dct) # Does the buffer already have data in it? if not metadata_dct['version']: return if metadata_dct['first_seq'] == min_seq: logger.info('No need to truncate') return try: logger.debug('Will truncate up until seq=%d, pos=%d', min_seq, min_pos) # Prepare the old vs. new metadata to write to disk. old_metadata_dct = copy.deepcopy(metadata_dct) metadata_dct['first_seq'] = min_seq metadata_dct['start_pos'] = min_pos with file_utils.AtomicWrite(config_dct['data_path'], fsync=True) as new_f: # AtomicWrite opens a file handle to a temporary file right next to # the real file (data_path), so we can open a "read" handle on data_path # without affecting AtomicWrite's handle. Only when AtomicWrite's context # block ends will the temporary be moved to replace data_path. with open(config_dct['data_path'], 'r') as old_f: old_f.seek(min_pos - old_metadata_dct['start_pos']) # Deal with the first line separately to get the new version. first_line = old_f.readline() metadata_dct['version'] = GetChecksum(first_line) new_f.write(first_line) shutil.copyfileobj(old_f, new_f) # Before performing the "replace" step of write-replace (when # the file_utils.AtomicWrite context ends), save metadata to disk in # case of disk failure. SaveMetadata(config_dct, metadata_dct, old_metadata_dct) # After we use AtomicWrite, we can remove old metadata. SaveMetadata(config_dct, metadata_dct) except Exception: logger.exception('Exception occurred during Truncate operation') raise class Consumer(log_utils.LoggerMixin, plugin_base.BufferEventStream): """Represents a Consumer and its BufferEventStream. Since SimpleFile has only a single database file, there can only ever be one functioning BufferEventStream at any given time. So we bundle the Consumer and its BufferEventStream into one object. When CreateStream is called, a lock is acquired and the Consumer object is return. The lock must first be acquired before any of Next, Commit, or Abort can be used. """ def CreateStream(self): """Creates a BufferEventStream object to be used by Instalog core. Since this class doubles as BufferEventStream, we mark that the BufferEventStream is "unexpired" by setting self._stream_lock, and return self. Returns: `self` if BufferEventStream not already in use, None if busy. """ return self if self._stream_lock.acquire(False) else None def _SaveMetadata(self): """Saves metadata for this Consumer to disk (seq and pos).""" data = {'cur_seq': self.cur_seq, 'cur_pos': self.cur_pos} with file_utils.AtomicWrite(self.metadata_path, fsync=True) as f: json.dump(data, f) def RestoreConsumerMetadata(self): """Restores metadata for this Consumer from disk (seq and pos). On each restore, ensure that the available window of records on disk has not surpassed our own current record. How would this happen? If the Consumer is removed, records it still hasn't read are truncated from the main database, and the Consumer is re-added under the same name. If the metadata file does not exist, will silently return. """ data = TryLoadJSON(self.metadata_path, self.logger.name) if data is not None: if 'cur_seq' not in data or 'cur_pos' not in data: self.error('Consumer %s metadata file invalid; resetting', self.name) return # Make sure we are still ahead of simple_file. with self.read_lock: metadata_dct = RestoreMetadata(self.simple_file.ConfigToDict()) self.cur_seq = min(max(metadata_dct['first_seq'], data['cur_seq']), metadata_dct['last_seq'] + 1) self.cur_pos = min(max(metadata_dct['start_pos'], data['cur_pos']), metadata_dct['end_pos']) if (data['cur_seq'] < metadata_dct['first_seq'] or data['cur_seq'] > (metadata_dct['last_seq'] + 1)): self.error('Consumer %s cur_seq=%d is out of buffer range %d to %d, ' 'correcting to %d', self.name, data['cur_seq'], metadata_dct['first_seq'], metadata_dct['last_seq'] + 1, self.cur_seq) self.new_seq = self.cur_seq self.new_pos = self.cur_pos def _Buffer(self): """Returns a list of pending records. Stores the current buffer internally at self.read_buf. If it already has data in it, self.read_buf will be returned as-is. It will be "refilled" when it is empty. Reads up to _BUFFER_SIZE_BYTES from the file on each "refill". Returns: A list of records, where each is a three-element tuple: (record_seq, record_data, line_bytes). """ if self.read_buf: return self.read_buf # Does the buffer already have data in it? if not os.path.exists(self.simple_file.data_path): return self.read_buf self.debug('_Buffer: waiting for read_lock') try: # When the buffer is truncating, we can't get the read_lock. if not self.read_lock.acquire(timeout=0.5): return [] metadata_dct = RestoreMetadata(self.simple_file.ConfigToDict()) with open(self.simple_file.data_path, 'r') as f: cur = self.new_pos - metadata_dct['start_pos'] f.seek(cur) total_bytes = 0 skipped_bytes = 0 for line in f: if total_bytes > _BUFFER_SIZE_BYTES: break size = len(line) cur += size if cur > (metadata_dct['end_pos'] - metadata_dct['start_pos']): break seq, record = ParseRecord(line, self.logger.name) if seq is None: # Parsing of this line failed for some reason. skipped_bytes += size continue # Only add to total_bytes for a valid line. total_bytes += size # Include any skipped bytes from previously skipped records in the # "size" of this record, in order to allow the consumer to skip to the # proper offset. self.read_buf.append((seq, record, size + skipped_bytes)) skipped_bytes = 0 finally: self.read_lock.CheckAndRelease() return self.read_buf def _Next(self): """Helper for Next, also used for testing purposes. Returns: A tuple of (seq, record), or (None, None) if no records available. """ if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired buf = self._Buffer() if not buf: return None, None seq, record, size = buf.pop(0) self.new_seq = seq + 1 self.new_pos += size return seq, record def Next(self): """See BufferEventStream.Next.""" seq, record = self._Next() if not seq: return None event = datatypes.Event.Deserialize(record) return self.simple_file.ExternalizeEvent(event) def Commit(self): """See BufferEventStream.Commit.""" if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired self.cur_seq = self.new_seq self.cur_pos = self.new_pos # Ensure that regardless of any errors, locks are released. try: self._SaveMetadata() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Commit: Write exception occurred, Events may be ' 'processed by output plugin multiple times') finally: try: self._stream_lock.release() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Commit: Internal error occurred') def Abort(self): """See BufferEventStream.Abort.""" if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired self.new_seq = self.cur_seq self.new_pos = self.cur_pos self.read_buf = [] try: self._stream_lock.release() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Abort: Internal error occurred')
[ 2, 15069, 2177, 383, 18255, 1505, 7294, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 8979, 12, 3106, 11876, 2219, 13, 198, 198, 32, 2393, 12, 3106, 11876, 543, 6797, 663, 2995, 284, 257, 2060, 2393, 319, 11898, 11, 290, 198, 25512, 1286, 16047, 20150, 13, 198, 198, 1858, 389, 1115, 3696, 9456, 11, 5556, 530, 329, 1123, 7172, 2727, 25, 628, 220, 1366, 13, 17752, 25, 628, 220, 220, 220, 41835, 4036, 1366, 13, 220, 5501, 1627, 24866, 284, 530, 1785, 13, 220, 1081, 2995, 389, 198, 220, 220, 220, 3194, 284, 11898, 11, 1123, 530, 318, 1813, 257, 8379, 1271, 13, 220, 18980, 286, 1123, 1627, 25, 628, 220, 220, 220, 220, 220, 220, 220, 685, 5188, 48, 62, 41359, 11, 1391, 20114, 3525, 62, 26947, 5512, 45623, 62, 50, 5883, 60, 628, 220, 220, 220, 22183, 7946, 48, 62, 41359, 284, 1366, 13, 17752, 318, 407, 14084, 3306, 1201, 356, 1394, 2610, 198, 220, 220, 220, 286, 8379, 3146, 287, 20150, 11, 475, 340, 318, 4465, 329, 28769, 11, 290, 714, 198, 220, 220, 220, 635, 1037, 618, 25646, 257, 10622, 6831, 13, 628, 220, 20150, 13, 17752, 25, 628, 220, 220, 220, 41835, 1459, 8379, 3146, 290, 23493, 6116, 13, 220, 383, 366, 11085, 33756, 1, 290, 198, 220, 220, 220, 366, 9688, 1426, 1, 389, 2077, 284, 307, 4112, 284, 262, 2656, 1418, 5143, 66, 515, 1366, 2393, 11, 198, 220, 220, 220, 290, 3522, 284, 262, 3726, 286, 1366, 3058, 8574, 319, 11898, 13, 628, 220, 220, 220, 1406, 611, 33756, 28, 16, 373, 13529, 416, 477, 45103, 11, 290, 833, 19524, 378, 4615, 340, 422, 198, 220, 220, 220, 11898, 11, 717, 62, 41068, 561, 307, 900, 284, 362, 13, 628, 220, 220, 220, 5740, 326, 1201, 262, 23493, 6116, 389, 4112, 11, 923, 62, 1930, 1276, 307, 198, 220, 220, 220, 13284, 20216, 284, 651, 262, 4036, 2292, 287, 262, 2393, 319, 11898, 11, 304, 13, 70, 11207, 628, 220, 220, 220, 220, 220, 220, 220, 277, 13, 36163, 7, 14421, 62, 1930, 532, 923, 62, 1930, 8, 628, 220, 7008, 13, 17752, 25, 628, 220, 220, 220, 41835, 257, 1351, 286, 477, 4075, 45103, 13, 220, 1002, 257, 18110, 318, 4615, 11, 340, 481, 307, 198, 220, 220, 220, 4615, 422, 428, 1351, 11, 475, 663, 20150, 2393, 481, 2555, 284, 2152, 13, 220, 1002, 340, 198, 220, 220, 220, 318, 1683, 302, 12, 25598, 11, 262, 4683, 20150, 481, 307, 973, 13, 220, 1002, 428, 318, 198, 220, 220, 220, 27858, 1202, 9172, 11, 262, 20150, 2393, 329, 326, 18110, 815, 307, 14500, 198, 220, 220, 220, 13140, 13, 628, 220, 7172, 62, 55, 13, 17752, 25, 628, 220, 220, 220, 41835, 262, 8379, 1271, 290, 23493, 2292, 286, 257, 1948, 18110, 13, 628, 198, 14815, 278, 25, 628, 220, 6023, 3721, 326, 318, 2861, 11170, 13869, 318, 366, 9641, 278, 1911, 220, 775, 765, 198, 220, 284, 1104, 40122, 803, 11, 326, 318, 11, 618, 674, 2393, 4909, 399, 4406, 543, 423, 198, 220, 1541, 587, 13529, 416, 477, 45103, 11, 290, 337, 5637, 4406, 11, 4781, 262, 198, 220, 717, 399, 4406, 422, 262, 1388, 1366, 2393, 287, 1502, 284, 3613, 11898, 2272, 13, 220, 2293, 198, 220, 49614, 262, 1366, 2393, 11, 4296, 20150, 16062, 13, 628, 220, 887, 644, 4325, 611, 257, 5287, 8833, 287, 1022, 777, 734, 4831, 30, 220, 3954, 366, 727, 1, 198, 220, 20150, 783, 318, 783, 20312, 351, 257, 366, 3605, 1, 1366, 2393, 11, 543, 1724, 356, 481, 1884, 198, 220, 307, 5906, 284, 1100, 1997, 6105, 13, 628, 220, 1675, 8494, 428, 1917, 11, 878, 302, 12, 16502, 262, 1388, 1366, 2393, 11, 356, 3613, 257, 198, 220, 20150, 2393, 284, 11898, 351, 1111, 366, 727, 1, 290, 366, 3605, 1, 20150, 6300, 1635, 19052, 9, 198, 220, 9489, 257, 40122, 378, 319, 262, 1388, 1366, 2393, 13, 220, 383, 1994, 318, 257, 45623, 12234, 286, 262, 198, 220, 717, 1627, 286, 262, 1388, 1366, 2393, 13, 220, 1649, 262, 11876, 717, 4940, 11, 340, 481, 2198, 198, 220, 284, 766, 543, 1994, 7466, 262, 717, 1627, 11, 290, 340, 481, 779, 428, 20150, 198, 220, 2196, 13, 628, 220, 6660, 11, 611, 257, 5287, 8833, 1635, 19052, 9, 3597, 262, 1388, 1366, 2393, 11, 262, 366, 727, 1, 198, 220, 20150, 460, 307, 973, 13, 220, 1002, 257, 5287, 8833, 1635, 8499, 9, 3597, 262, 1388, 1366, 2393, 11, 198, 220, 262, 366, 3605, 1, 20150, 460, 307, 973, 13, 198, 37811, 198, 198, 11748, 4866, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 1976, 8019, 198, 198, 6738, 269, 4951, 13, 69, 9548, 13, 259, 7757, 519, 1330, 4818, 265, 9497, 198, 6738, 269, 4951, 13, 69, 9548, 13, 259, 7757, 519, 1330, 5793, 62, 26791, 198, 6738, 269, 4951, 13, 69, 9548, 13, 259, 7757, 519, 1330, 2604, 62, 26791, 198, 6738, 269, 4951, 13, 69, 9548, 13, 259, 7757, 519, 1330, 13877, 62, 8692, 198, 6738, 269, 4951, 13, 69, 9548, 13, 259, 7757, 519, 13, 26791, 1330, 2393, 62, 26791, 628, 198, 2, 383, 1271, 286, 9881, 284, 11876, 618, 50122, 2995, 422, 257, 2393, 13, 198, 62, 19499, 45746, 62, 33489, 62, 17513, 51, 1546, 796, 604, 1635, 28119, 220, 1303, 604, 32812, 628, 198, 4871, 17427, 8979, 16922, 7, 16922, 2599, 198, 220, 37227, 12218, 6631, 2099, 329, 428, 13877, 526, 15931, 628, 198, 4299, 3497, 7376, 4657, 388, 11484, 1590, 7, 7890, 2599, 198, 220, 37227, 8645, 689, 281, 807, 12, 22769, 45623, 2624, 8794, 388, 286, 1813, 4731, 526, 15931, 198, 220, 1303, 16926, 46, 7, 354, 34115, 268, 2599, 17220, 428, 10655, 2163, 13, 198, 220, 1303, 383, 2163, 1067, 66, 2624, 3419, 5860, 257, 4488, 3933, 12, 2545, 18253, 287, 11361, 17, 11, 475, 340, 198, 220, 1303, 5860, 281, 22165, 3933, 12, 2545, 18253, 287, 11361, 18, 13, 1675, 7716, 262, 976, 1988, 198, 220, 1303, 1973, 477, 11361, 6300, 11, 356, 10385, 22165, 18253, 284, 4488, 18253, 13, 198, 220, 8794, 388, 796, 1976, 8019, 13, 66, 6015, 2624, 7, 7890, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 198, 220, 611, 8794, 388, 18189, 362, 1174, 3132, 25, 198, 220, 220, 220, 8794, 388, 48185, 362, 1174, 2624, 198, 220, 1441, 705, 90, 25, 2919, 87, 92, 4458, 18982, 7, 8937, 7, 42116, 388, 4008, 628, 198, 4299, 3497, 7376, 4657, 388, 7, 7890, 2599, 198, 220, 37227, 8645, 689, 281, 807, 12, 22769, 45623, 2624, 8794, 388, 286, 1813, 4731, 526, 15931, 198, 220, 1303, 383, 2163, 1067, 66, 2624, 3419, 5860, 257, 4488, 3933, 12, 2545, 18253, 287, 11361, 17, 11, 475, 340, 198, 220, 1303, 5860, 281, 22165, 3933, 12, 2545, 18253, 287, 11361, 18, 13, 1675, 7716, 262, 976, 1988, 198, 220, 1303, 1973, 477, 11361, 6300, 11, 356, 779, 366, 66, 6015, 2624, 3419, 1222, 657, 87, 12927, 12927, 1911, 198, 220, 1441, 705, 90, 25, 2919, 87, 92, 4458, 18982, 7, 89, 8019, 13, 66, 6015, 2624, 7, 7890, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 1222, 657, 87, 12927, 12927, 8, 628, 198, 4299, 18980, 23739, 7, 41068, 11, 1700, 2599, 198, 220, 37227, 35561, 257, 1700, 39559, 355, 257, 1627, 284, 307, 3194, 284, 11898, 526, 15931, 198, 220, 1366, 796, 705, 4, 67, 11, 4064, 82, 6, 4064, 357, 41068, 11, 1700, 8, 198, 220, 8794, 388, 796, 3497, 7376, 4657, 388, 7, 7890, 8, 198, 220, 1441, 44438, 4, 82, 11, 36521, 82, 8973, 59, 77, 6, 4064, 357, 7890, 11, 8794, 388, 8, 628, 198, 4299, 2547, 325, 23739, 7, 1370, 11, 49706, 62, 3672, 28, 14202, 2599, 198, 220, 37227, 47, 945, 274, 290, 5860, 257, 1627, 422, 11898, 355, 257, 1700, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 317, 46545, 286, 357, 41068, 62, 17618, 11, 1700, 828, 393, 6045, 319, 5287, 13, 198, 220, 37227, 198, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 6404, 1362, 62, 3672, 8, 198, 220, 1627, 62, 5083, 796, 1627, 13, 81, 36311, 3419, 58, 16, 21912, 16, 60, 220, 1303, 18508, 17635, 290, 649, 1370, 198, 220, 1366, 11, 4808, 11, 8794, 388, 796, 1627, 62, 5083, 13, 81, 3911, 653, 7, 3256, 705, 8, 198, 220, 1303, 16926, 46, 7, 354, 34115, 268, 2599, 9794, 428, 2446, 706, 257, 890, 640, 13, 198, 220, 8794, 388, 796, 8794, 388, 13, 36311, 10786, 1, 11537, 198, 220, 33756, 11, 4808, 11, 1700, 796, 1366, 13, 3911, 653, 7, 3256, 705, 8, 198, 220, 611, 407, 33756, 393, 407, 1700, 25, 198, 220, 220, 220, 49706, 13, 43917, 10786, 47, 945, 278, 4049, 329, 1700, 4064, 82, 3256, 1627, 13, 81, 36311, 28955, 198, 220, 220, 220, 1441, 6045, 11, 6045, 198, 220, 611, 8794, 388, 14512, 3497, 7376, 4657, 388, 7, 7890, 8, 290, 8794, 388, 14512, 3497, 7376, 4657, 388, 11484, 1590, 7, 7890, 2599, 198, 220, 220, 220, 49706, 13, 43917, 10786, 7376, 4657, 388, 4049, 329, 1700, 4064, 82, 3256, 1627, 13, 81, 36311, 28955, 198, 220, 220, 220, 1441, 6045, 11, 6045, 198, 220, 1441, 493, 7, 41068, 828, 1700, 628, 198, 4299, 9993, 8912, 40386, 7, 6978, 11, 49706, 62, 3672, 28, 14202, 2599, 198, 220, 37227, 48452, 284, 3440, 19449, 422, 262, 1813, 2393, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 23042, 276, 1366, 422, 262, 2393, 13, 220, 6045, 611, 262, 2393, 857, 407, 2152, 13, 628, 220, 7567, 2696, 25, 198, 220, 220, 220, 35528, 611, 612, 373, 617, 584, 1917, 3555, 262, 2393, 11, 393, 611, 1223, 198, 220, 220, 220, 1816, 2642, 32096, 262, 1366, 13, 198, 220, 37227, 198, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 6404, 1362, 62, 3672, 8, 198, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 6978, 2599, 198, 220, 220, 220, 49706, 13, 24442, 10786, 4, 82, 25, 857, 407, 2152, 3256, 3108, 8, 198, 220, 220, 220, 1441, 6045, 198, 220, 1949, 25, 198, 220, 220, 220, 351, 1280, 7, 6978, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 1441, 33918, 13, 2220, 7, 69, 8, 198, 220, 2845, 35528, 25, 198, 220, 220, 220, 49706, 13, 1069, 4516, 10786, 4, 82, 25, 13047, 3555, 11898, 393, 11046, 19449, 3256, 3108, 8, 198, 220, 220, 220, 5298, 628, 198, 4299, 17393, 33296, 902, 2514, 30782, 35277, 7, 1078, 62, 6978, 82, 11, 45218, 62, 15908, 11, 49706, 62, 3672, 28, 14202, 2599, 198, 220, 37227, 13379, 893, 32161, 284, 262, 8584, 8619, 526, 15931, 198, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 6404, 1362, 62, 3672, 8, 198, 220, 1949, 25, 198, 220, 220, 220, 329, 708, 62, 6978, 287, 708, 62, 6978, 82, 25, 198, 220, 220, 220, 220, 220, 1303, 6822, 326, 262, 2723, 2393, 7160, 13, 198, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 1078, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 8086, 15520, 3108, 4600, 4, 82, 63, 7368, 287, 1785, 857, 407, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38476, 6, 4064, 708, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 2496, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 22065, 62, 15908, 11, 708, 62, 6978, 13, 33491, 10786, 14, 3256, 705, 62, 6, 4008, 198, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 13379, 1112, 18231, 25, 4064, 82, 14610, 4064, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 62, 6978, 11, 2496, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 351, 1280, 7, 16793, 62, 6978, 11, 705, 86, 11537, 355, 29636, 62, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 1078, 62, 6978, 11, 705, 81, 11537, 355, 12351, 62, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7753, 26801, 7, 10677, 62, 69, 11, 29636, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 376, 27261, 262, 2393, 290, 262, 7268, 8619, 284, 787, 1654, 340, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 44869, 284, 11898, 13, 198, 220, 220, 220, 220, 220, 220, 220, 29636, 62, 69, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 16344, 265, 292, 13361, 7, 67, 301, 62, 69, 8, 198, 220, 220, 220, 1303, 376, 27261, 262, 7268, 8619, 284, 787, 1654, 477, 32161, 389, 44869, 198, 220, 220, 220, 1303, 284, 11898, 13, 198, 220, 220, 220, 26672, 16344, 796, 28686, 13, 9654, 7, 22065, 62, 15908, 11, 28686, 13, 46, 62, 17931, 23988, 15513, 8, 198, 220, 220, 220, 28686, 13, 69, 27261, 7, 15908, 16344, 8, 198, 220, 220, 220, 28686, 13, 19836, 7, 15908, 16344, 8, 198, 220, 220, 220, 1441, 6407, 198, 220, 2845, 35528, 25, 198, 220, 220, 220, 49706, 13, 1069, 4516, 10786, 16922, 12956, 618, 23345, 32161, 11537, 198, 220, 220, 220, 1441, 10352, 628, 198, 4299, 10028, 1870, 16594, 7, 11250, 62, 67, 310, 11, 2995, 2599, 198, 220, 37227, 44, 5241, 262, 708, 82, 11, 11389, 4340, 262, 2995, 290, 6797, 606, 284, 262, 1366, 62, 6978, 526, 15931, 198, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 11250, 62, 67, 310, 17816, 6404, 1362, 62, 3672, 6, 12962, 198, 220, 20150, 62, 67, 310, 796, 42019, 9171, 14706, 7, 11250, 62, 67, 310, 8, 198, 220, 1090, 62, 41068, 796, 20150, 62, 67, 310, 17816, 12957, 62, 41068, 20520, 1343, 352, 198, 220, 1090, 62, 1930, 796, 20150, 62, 67, 310, 17816, 437, 62, 1930, 20520, 532, 20150, 62, 67, 310, 17816, 9688, 62, 1930, 20520, 198, 220, 1303, 833, 19524, 378, 262, 2546, 286, 262, 2393, 287, 1339, 286, 257, 4271, 34419, 198, 220, 1303, 8611, 13, 198, 220, 351, 1280, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 6, 4357, 705, 64, 11537, 355, 277, 25, 198, 220, 220, 220, 277, 13, 2213, 19524, 378, 7, 22019, 62, 1930, 8, 628, 220, 351, 1280, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 6, 4357, 705, 64, 11537, 355, 277, 25, 198, 220, 220, 220, 1303, 1550, 617, 8217, 11, 262, 2393, 5412, 11677, 2125, 470, 900, 284, 412, 19238, 1566, 198, 220, 220, 220, 1303, 257, 3551, 8833, 13, 220, 6660, 356, 1276, 14500, 5380, 284, 262, 886, 284, 4155, 198, 220, 220, 220, 1303, 326, 277, 13, 33331, 3419, 481, 1441, 4465, 2482, 13, 198, 220, 220, 220, 277, 13, 36163, 7, 15, 11, 362, 8, 220, 1303, 362, 1724, 779, 412, 19238, 355, 262, 4941, 966, 13, 198, 220, 220, 220, 6818, 277, 13, 33331, 3419, 6624, 1090, 62, 1930, 198, 220, 220, 220, 329, 1785, 287, 2995, 25, 198, 220, 220, 220, 220, 220, 329, 708, 62, 312, 11, 708, 62, 6978, 287, 1785, 13, 47348, 902, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 3672, 796, 705, 4, 82, 62, 4, 82, 6, 4064, 357, 22019, 62, 41068, 11, 708, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 62, 67, 310, 17816, 47348, 902, 62, 15908, 6, 4357, 2496, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 13, 47348, 902, 58, 1078, 62, 312, 60, 796, 2496, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 6892, 27123, 18231, 4064, 82, 25, 4064, 82, 14610, 4064, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 62, 312, 11, 708, 62, 6978, 11, 2496, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 25, 770, 714, 6196, 49312, 281, 4683, 2393, 326, 1392, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3194, 655, 878, 2262, 11794, 1429, 5025, 25884, 13, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 918, 480, 7, 1078, 62, 6978, 11, 2496, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 33874, 1785, 351, 1090, 62, 41068, 28, 4, 67, 11, 1090, 62, 1930, 28, 4, 67, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 41068, 11, 1090, 62, 1930, 8, 198, 220, 220, 220, 220, 220, 5072, 796, 18980, 23739, 7, 22019, 62, 41068, 11, 1785, 13, 32634, 1096, 28955, 628, 220, 220, 220, 220, 220, 1303, 9363, 262, 2196, 329, 12793, 9171, 14706, 284, 779, 13, 198, 220, 220, 220, 220, 220, 611, 1090, 62, 1930, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 9641, 20520, 796, 3497, 7376, 4657, 388, 7, 22915, 8, 628, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 22915, 8, 198, 220, 220, 220, 220, 220, 1090, 62, 41068, 15853, 352, 198, 220, 220, 220, 220, 220, 1090, 62, 1930, 15853, 18896, 7, 22915, 8, 628, 220, 220, 220, 611, 4566, 62, 67, 310, 17816, 22046, 6, 4083, 21633, 62, 69, 27261, 25, 198, 220, 220, 220, 220, 220, 1303, 376, 27261, 262, 2393, 290, 262, 7268, 8619, 284, 787, 1654, 340, 198, 220, 220, 220, 220, 220, 1303, 318, 44869, 284, 11898, 13, 198, 220, 220, 220, 220, 220, 277, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 28686, 13, 16344, 265, 292, 13361, 7, 69, 8, 198, 220, 220, 220, 220, 220, 26672, 16344, 796, 28686, 13, 9654, 7, 418, 13, 6978, 13, 15908, 3672, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 46, 62, 17931, 23988, 15513, 8, 198, 220, 220, 220, 220, 220, 28686, 13, 69, 27261, 7, 15908, 16344, 8, 198, 220, 220, 220, 220, 220, 28686, 13, 19836, 7, 15908, 16344, 8, 198, 220, 20150, 62, 67, 310, 17816, 12957, 62, 41068, 20520, 796, 1090, 62, 41068, 532, 352, 198, 220, 20150, 62, 67, 310, 17816, 437, 62, 1930, 20520, 796, 20150, 62, 67, 310, 17816, 9688, 62, 1930, 20520, 1343, 1090, 62, 1930, 198, 220, 12793, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 8, 628, 198, 4299, 12793, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 11, 1468, 62, 38993, 62, 67, 310, 28, 14202, 2599, 198, 220, 37227, 20257, 274, 20150, 286, 1388, 6831, 284, 11898, 526, 15931, 198, 220, 611, 407, 20150, 62, 67, 310, 17816, 9641, 6, 5974, 198, 220, 220, 220, 5298, 17427, 8979, 16922, 10786, 2949, 4600, 9641, 63, 1695, 329, 12793, 9171, 14706, 11537, 198, 220, 1366, 796, 1391, 38993, 62, 67, 310, 17816, 9641, 6, 5974, 20150, 62, 67, 310, 92, 198, 220, 611, 1468, 62, 38993, 62, 67, 310, 290, 1468, 62, 38993, 62, 67, 310, 17816, 9641, 6, 5974, 198, 220, 220, 220, 611, 20150, 62, 67, 310, 17816, 9641, 20520, 6624, 1468, 62, 38993, 62, 67, 310, 17816, 9641, 6, 5974, 198, 220, 220, 220, 220, 220, 5298, 17427, 8979, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30556, 4600, 9641, 63, 422, 649, 20150, 290, 1468, 20150, 11537, 198, 220, 220, 220, 1366, 58, 727, 62, 38993, 62, 67, 310, 17816, 9641, 6, 11907, 796, 1468, 62, 38993, 62, 67, 310, 198, 220, 351, 2393, 62, 26791, 13, 2953, 10179, 16594, 7, 11250, 62, 67, 310, 17816, 38993, 62, 6978, 6, 4357, 277, 27261, 28, 17821, 8, 355, 277, 25, 198, 220, 220, 220, 33918, 13, 39455, 7, 7890, 11, 277, 8, 628, 198, 4299, 42019, 9171, 14706, 7, 11250, 62, 67, 310, 2599, 198, 220, 37227, 19452, 2850, 2196, 422, 262, 1388, 1366, 2393, 319, 11898, 13, 628, 220, 1002, 262, 20150, 2393, 857, 407, 2152, 11, 481, 24595, 1441, 13, 198, 220, 37227, 198, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 11250, 62, 67, 310, 17816, 6404, 1362, 62, 3672, 6, 12962, 198, 220, 20150, 62, 67, 310, 796, 1391, 6, 11085, 62, 41068, 10354, 352, 11, 705, 12957, 62, 41068, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9688, 62, 1930, 10354, 657, 11, 705, 437, 62, 1930, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9641, 10354, 705, 8269, 6, 92, 198, 220, 1366, 796, 9993, 8912, 40386, 7, 11250, 62, 67, 310, 17816, 38993, 62, 6978, 6, 4357, 49706, 13, 3672, 8, 198, 220, 611, 1366, 318, 407, 6045, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 6, 4357, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 9641, 20520, 796, 3497, 7376, 4657, 388, 7, 69, 13, 961, 1370, 28955, 198, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 49706, 13, 18224, 10786, 6601, 2393, 25884, 4814, 26, 13259, 889, 20150, 11537, 198, 220, 220, 220, 220, 220, 1441, 20150, 62, 67, 310, 198, 220, 220, 220, 611, 20150, 62, 67, 310, 17816, 9641, 20520, 407, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 49706, 13, 18224, 10786, 23722, 407, 1064, 20150, 2196, 4064, 82, 357, 15182, 25, 4064, 82, 1776, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 9631, 278, 20150, 422, 1366, 2393, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 9641, 6, 4357, 46083, 45302, 22179, 7, 7890, 13, 13083, 3419, 4008, 198, 220, 220, 220, 220, 220, 49107, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 8, 198, 220, 220, 220, 220, 220, 1441, 20150, 62, 67, 310, 198, 220, 220, 220, 611, 18896, 7, 7890, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 9171, 14706, 4909, 3294, 6300, 4064, 82, 26, 11236, 4064, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46083, 45302, 22179, 7, 7890, 13, 13083, 3419, 828, 20150, 62, 67, 310, 17816, 9641, 6, 12962, 198, 220, 220, 220, 20150, 62, 67, 310, 13, 19119, 7, 7890, 58, 38993, 62, 67, 310, 17816, 9641, 6, 11907, 8, 198, 220, 220, 220, 611, 357, 38993, 62, 67, 310, 17816, 437, 62, 1930, 20520, 1875, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 9688, 62, 1930, 20520, 1343, 28686, 13, 6978, 13, 11407, 1096, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 6, 12962, 2599, 198, 220, 220, 220, 220, 220, 49706, 13, 18224, 10786, 437, 62, 1930, 287, 15032, 20150, 318, 4025, 621, 923, 62, 1930, 1343, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 2393, 26, 20222, 20150, 422, 1366, 2393, 11537, 198, 220, 220, 220, 220, 220, 49107, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 20520, 2599, 198, 220, 220, 220, 220, 220, 49706, 13, 18224, 10786, 23722, 407, 1064, 20150, 2393, 11, 475, 356, 423, 1366, 2393, 26, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 9631, 278, 20150, 422, 1366, 2393, 11537, 198, 220, 220, 220, 220, 220, 49107, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 32071, 20150, 2393, 290, 1366, 2393, 11537, 198, 220, 220, 220, 220, 220, 12793, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 8, 198, 220, 220, 220, 220, 220, 2393, 62, 26791, 13, 35211, 8979, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 6, 12962, 198, 220, 1441, 20150, 62, 67, 310, 628, 198, 4299, 49107, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 2599, 198, 220, 37227, 6690, 13801, 20150, 422, 262, 1388, 1366, 2393, 319, 11898, 13, 628, 220, 36965, 262, 717, 4938, 1700, 329, 717, 62, 41068, 290, 923, 62, 1930, 11, 290, 262, 938, 198, 220, 4938, 1700, 329, 938, 62, 41068, 290, 886, 62, 1930, 13, 198, 220, 37227, 198, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 11250, 62, 67, 310, 17816, 6404, 1362, 62, 3672, 6, 12962, 198, 220, 717, 62, 22105, 796, 6407, 198, 220, 1090, 62, 1930, 796, 657, 198, 220, 351, 1280, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 6, 4357, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 33756, 11, 4808, 403, 1484, 62, 22105, 796, 2547, 325, 23739, 7, 1370, 11, 4566, 62, 67, 310, 17816, 6404, 1362, 62, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 611, 717, 62, 22105, 290, 33756, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 11085, 62, 41068, 20520, 796, 33756, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 9688, 62, 1930, 20520, 796, 1090, 62, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 717, 62, 22105, 796, 10352, 198, 220, 220, 220, 220, 220, 1090, 62, 1930, 15853, 18896, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 611, 33756, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 12957, 62, 41068, 20520, 796, 33756, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 437, 62, 1930, 20520, 796, 1090, 62, 1930, 198, 220, 49706, 13, 10951, 10786, 18467, 1348, 20222, 20150, 26, 8379, 2837, 1043, 25, 4064, 67, 284, 4064, 67, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 11085, 62, 41068, 6, 4357, 20150, 62, 67, 310, 17816, 12957, 62, 41068, 6, 12962, 198, 220, 12793, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 8, 628, 198, 4299, 833, 19524, 378, 33296, 902, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 2599, 198, 220, 37227, 5005, 40676, 32161, 286, 2995, 645, 2392, 8574, 1626, 1366, 13, 17752, 526, 15931, 198, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 11250, 62, 67, 310, 17816, 6404, 1362, 62, 3672, 6, 12962, 198, 220, 329, 277, 3672, 287, 28686, 13, 4868, 15908, 7, 11250, 62, 67, 310, 17816, 47348, 902, 62, 15908, 20520, 2599, 198, 220, 220, 220, 277, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 62, 67, 310, 17816, 47348, 902, 62, 15908, 6, 4357, 277, 3672, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 69, 6978, 2599, 198, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 33756, 11, 21958, 62, 41116, 7295, 11, 21958, 62, 1078, 62, 312, 796, 277, 3672, 13, 3911, 653, 10786, 62, 11537, 198, 220, 220, 220, 611, 407, 33756, 13, 9409, 328, 270, 33529, 198, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 611, 493, 7, 41068, 8, 1279, 20150, 62, 67, 310, 17816, 11085, 62, 41068, 6, 5974, 198, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 2898, 19524, 803, 18231, 38155, 41068, 28, 4, 67, 2599, 4064, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 11085, 62, 41068, 6, 4357, 277, 3672, 8, 198, 220, 220, 220, 220, 220, 28686, 13, 403, 8726, 7, 69, 6978, 8, 628, 198, 4299, 833, 19524, 378, 7, 11250, 62, 67, 310, 11, 949, 62, 41068, 11, 949, 62, 1930, 2599, 198, 220, 37227, 2898, 19524, 689, 262, 1388, 1366, 2393, 284, 691, 3994, 555, 14681, 276, 4406, 13, 628, 220, 4091, 2393, 12, 5715, 2205, 8841, 329, 517, 1321, 546, 6300, 13, 198, 220, 37227, 198, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 11250, 62, 67, 310, 17816, 6404, 1362, 62, 3672, 6, 12962, 198, 220, 20150, 62, 67, 310, 796, 42019, 9171, 14706, 7, 11250, 62, 67, 310, 8, 198, 220, 1303, 8314, 262, 11876, 1541, 423, 1366, 287, 340, 30, 198, 220, 611, 407, 20150, 62, 67, 310, 17816, 9641, 6, 5974, 198, 220, 220, 220, 1441, 198, 220, 611, 20150, 62, 67, 310, 17816, 11085, 62, 41068, 20520, 6624, 949, 62, 41068, 25, 198, 220, 220, 220, 49706, 13, 10951, 10786, 2949, 761, 284, 40122, 378, 11537, 198, 220, 220, 220, 1441, 198, 220, 1949, 25, 198, 220, 220, 220, 49706, 13, 24442, 10786, 8743, 40122, 378, 510, 1566, 33756, 28, 4, 67, 11, 1426, 28, 4, 67, 3256, 949, 62, 41068, 11, 949, 62, 1930, 8, 628, 220, 220, 220, 1303, 43426, 262, 1468, 3691, 13, 649, 20150, 284, 3551, 284, 11898, 13, 198, 220, 220, 220, 1468, 62, 38993, 62, 67, 310, 796, 4866, 13, 22089, 30073, 7, 38993, 62, 67, 310, 8, 198, 220, 220, 220, 20150, 62, 67, 310, 17816, 11085, 62, 41068, 20520, 796, 949, 62, 41068, 198, 220, 220, 220, 20150, 62, 67, 310, 17816, 9688, 62, 1930, 20520, 796, 949, 62, 1930, 628, 220, 220, 220, 351, 2393, 62, 26791, 13, 2953, 10179, 16594, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 6, 4357, 277, 27261, 28, 17821, 8, 355, 649, 62, 69, 25, 198, 220, 220, 220, 220, 220, 1303, 28976, 16594, 9808, 257, 2393, 5412, 284, 257, 8584, 2393, 826, 1306, 284, 198, 220, 220, 220, 220, 220, 1303, 262, 1103, 2393, 357, 7890, 62, 6978, 828, 523, 356, 460, 1280, 257, 366, 961, 1, 5412, 319, 1366, 62, 6978, 198, 220, 220, 220, 220, 220, 1303, 1231, 13891, 28976, 16594, 338, 5412, 13, 220, 5514, 618, 28976, 16594, 338, 4732, 198, 220, 220, 220, 220, 220, 1303, 2512, 5645, 481, 262, 8584, 307, 3888, 284, 6330, 1366, 62, 6978, 13, 198, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 67, 310, 17816, 7890, 62, 6978, 6, 4357, 705, 81, 11537, 355, 1468, 62, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 69, 13, 36163, 7, 1084, 62, 1930, 532, 1468, 62, 38993, 62, 67, 310, 17816, 9688, 62, 1930, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15138, 351, 262, 717, 1627, 13869, 284, 651, 262, 649, 2196, 13, 198, 220, 220, 220, 220, 220, 220, 220, 717, 62, 1370, 796, 1468, 62, 69, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 9641, 20520, 796, 3497, 7376, 4657, 388, 7, 11085, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 69, 13, 13564, 7, 11085, 62, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7753, 26801, 7, 727, 62, 69, 11, 649, 62, 69, 8, 628, 220, 220, 220, 220, 220, 1303, 7413, 9489, 262, 366, 33491, 1, 2239, 286, 3551, 12, 33491, 357, 12518, 198, 220, 220, 220, 220, 220, 1303, 262, 2393, 62, 26791, 13, 2953, 10179, 16594, 4732, 5645, 828, 3613, 20150, 284, 11898, 287, 198, 220, 220, 220, 220, 220, 1303, 1339, 286, 11898, 5287, 13, 198, 220, 220, 220, 220, 220, 12793, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 11, 1468, 62, 38993, 62, 67, 310, 8, 628, 220, 220, 220, 1303, 2293, 356, 779, 28976, 16594, 11, 356, 460, 4781, 1468, 20150, 13, 198, 220, 220, 220, 12793, 9171, 14706, 7, 11250, 62, 67, 310, 11, 20150, 62, 67, 310, 8, 628, 220, 2845, 35528, 25, 198, 220, 220, 220, 49706, 13, 1069, 4516, 10786, 16922, 5091, 1141, 833, 19524, 378, 4905, 11537, 198, 220, 220, 220, 5298, 628, 198, 198, 4871, 18110, 7, 6404, 62, 26791, 13, 11187, 1362, 35608, 259, 11, 13877, 62, 8692, 13, 28632, 9237, 12124, 2599, 198, 220, 37227, 6207, 6629, 257, 18110, 290, 663, 47017, 9237, 12124, 13, 628, 220, 4619, 17427, 8979, 468, 691, 257, 2060, 6831, 2393, 11, 612, 460, 691, 1683, 307, 530, 198, 220, 15025, 47017, 9237, 12124, 379, 597, 1813, 640, 13, 220, 1406, 356, 18537, 262, 18110, 198, 220, 290, 663, 47017, 9237, 12124, 656, 530, 2134, 13, 220, 1649, 13610, 12124, 318, 1444, 11, 257, 198, 220, 5793, 318, 9477, 290, 262, 18110, 2134, 318, 1441, 13, 220, 383, 5793, 1276, 717, 307, 198, 220, 9477, 878, 597, 286, 7406, 11, 35910, 11, 393, 2275, 419, 460, 307, 973, 13, 198, 220, 37227, 628, 220, 825, 13610, 12124, 7, 944, 2599, 198, 220, 220, 220, 37227, 16719, 274, 257, 47017, 9237, 12124, 2134, 284, 307, 973, 416, 2262, 11794, 4755, 13, 628, 220, 220, 220, 4619, 428, 1398, 21938, 355, 47017, 9237, 12124, 11, 356, 1317, 326, 262, 198, 220, 220, 220, 47017, 9237, 12124, 318, 366, 403, 1069, 6474, 1, 416, 4634, 2116, 13557, 5532, 62, 5354, 11, 198, 220, 220, 220, 290, 1441, 2116, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 4600, 944, 63, 611, 47017, 9237, 12124, 407, 1541, 287, 779, 11, 6045, 611, 8179, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2116, 611, 2116, 13557, 5532, 62, 5354, 13, 330, 29782, 7, 25101, 8, 2073, 6045, 628, 220, 825, 4808, 16928, 9171, 14706, 7, 944, 2599, 198, 220, 220, 220, 37227, 50, 3080, 20150, 329, 428, 18110, 284, 11898, 357, 41068, 290, 1426, 21387, 15931, 198, 220, 220, 220, 1366, 796, 1391, 6, 22019, 62, 41068, 10354, 2116, 13, 22019, 62, 41068, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22019, 62, 1930, 10354, 2116, 13, 22019, 62, 1930, 92, 198, 220, 220, 220, 351, 2393, 62, 26791, 13, 2953, 10179, 16594, 7, 944, 13, 38993, 62, 6978, 11, 277, 27261, 28, 17821, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 7890, 11, 277, 8, 628, 220, 825, 42019, 49106, 9171, 14706, 7, 944, 2599, 198, 220, 220, 220, 37227, 19452, 2850, 20150, 329, 428, 18110, 422, 11898, 357, 41068, 290, 1426, 737, 628, 220, 220, 220, 1550, 1123, 11169, 11, 4155, 326, 262, 1695, 4324, 286, 4406, 319, 11898, 468, 198, 220, 220, 220, 407, 30612, 674, 898, 1459, 1700, 13, 220, 1374, 561, 428, 1645, 30, 220, 1002, 262, 198, 220, 220, 220, 18110, 318, 4615, 11, 4406, 340, 991, 5818, 470, 1100, 389, 40122, 515, 422, 262, 198, 220, 220, 220, 1388, 6831, 11, 290, 262, 18110, 318, 302, 12, 29373, 739, 262, 976, 1438, 13, 628, 220, 220, 220, 1002, 262, 20150, 2393, 857, 407, 2152, 11, 481, 24595, 1441, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 9993, 8912, 40386, 7, 944, 13, 38993, 62, 6978, 11, 2116, 13, 6404, 1362, 13, 3672, 8, 198, 220, 220, 220, 611, 1366, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 611, 705, 22019, 62, 41068, 6, 407, 287, 1366, 393, 705, 22019, 62, 1930, 6, 407, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 10786, 49106, 4064, 82, 20150, 2393, 12515, 26, 13259, 889, 3256, 2116, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 1303, 6889, 1654, 356, 389, 991, 4058, 286, 2829, 62, 7753, 13, 198, 220, 220, 220, 220, 220, 351, 2116, 13, 961, 62, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 796, 42019, 9171, 14706, 7, 944, 13, 36439, 62, 7753, 13, 16934, 2514, 35, 713, 28955, 198, 220, 220, 220, 220, 220, 2116, 13, 22019, 62, 41068, 796, 949, 7, 9806, 7, 38993, 62, 67, 310, 17816, 11085, 62, 41068, 6, 4357, 1366, 17816, 22019, 62, 41068, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 12957, 62, 41068, 20520, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 22019, 62, 1930, 796, 949, 7, 9806, 7, 38993, 62, 67, 310, 17816, 9688, 62, 1930, 6, 4357, 1366, 17816, 22019, 62, 1930, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 437, 62, 1930, 6, 12962, 198, 220, 220, 220, 220, 220, 611, 357, 7890, 17816, 22019, 62, 41068, 20520, 1279, 20150, 62, 67, 310, 17816, 11085, 62, 41068, 20520, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 22019, 62, 41068, 20520, 1875, 357, 38993, 62, 67, 310, 17816, 12957, 62, 41068, 20520, 1343, 352, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 10786, 49106, 4064, 82, 1090, 62, 41068, 28, 4, 67, 318, 503, 286, 11876, 2837, 4064, 67, 284, 4064, 67, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30283, 278, 284, 4064, 67, 3256, 2116, 13, 3672, 11, 1366, 17816, 22019, 62, 41068, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 17816, 11085, 62, 41068, 6, 4357, 20150, 62, 67, 310, 17816, 12957, 62, 41068, 20520, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22019, 62, 41068, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 3605, 62, 41068, 796, 2116, 13, 22019, 62, 41068, 198, 220, 220, 220, 220, 220, 2116, 13, 3605, 62, 1930, 796, 2116, 13, 22019, 62, 1930, 628, 220, 825, 4808, 28632, 7, 944, 2599, 198, 220, 220, 220, 37227, 35561, 257, 1351, 286, 13310, 4406, 13, 628, 220, 220, 220, 41835, 262, 1459, 11876, 20947, 379, 2116, 13, 961, 62, 29325, 13, 220, 1002, 340, 1541, 468, 198, 220, 220, 220, 1366, 287, 340, 11, 2116, 13, 961, 62, 29325, 481, 307, 4504, 355, 12, 271, 13, 220, 632, 481, 307, 366, 5420, 2967, 1, 198, 220, 220, 220, 618, 340, 318, 6565, 13, 628, 220, 220, 220, 4149, 82, 510, 284, 4808, 19499, 45746, 62, 33489, 62, 17513, 51, 1546, 422, 262, 2393, 319, 1123, 366, 5420, 359, 1911, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 317, 1351, 286, 4406, 11, 810, 1123, 318, 257, 1115, 12, 30854, 46545, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 22105, 62, 41068, 11, 1700, 62, 7890, 11, 1627, 62, 33661, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2116, 13, 961, 62, 29325, 25, 198, 220, 220, 220, 220, 220, 1441, 2116, 13, 961, 62, 29325, 198, 220, 220, 220, 1303, 8314, 262, 11876, 1541, 423, 1366, 287, 340, 30, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 944, 13, 36439, 62, 7753, 13, 7890, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 1441, 2116, 13, 961, 62, 29325, 198, 220, 220, 220, 2116, 13, 24442, 10786, 62, 28632, 25, 4953, 329, 1100, 62, 5354, 11537, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 1303, 1649, 262, 11876, 318, 40122, 803, 11, 356, 460, 470, 651, 262, 1100, 62, 5354, 13, 198, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 961, 62, 5354, 13, 330, 29782, 7, 48678, 28, 15, 13, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 220, 220, 20150, 62, 67, 310, 796, 42019, 9171, 14706, 7, 944, 13, 36439, 62, 7753, 13, 16934, 2514, 35, 713, 28955, 198, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 36439, 62, 7753, 13, 7890, 62, 6978, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 796, 2116, 13, 3605, 62, 1930, 532, 20150, 62, 67, 310, 17816, 9688, 62, 1930, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 36163, 7, 22019, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 33661, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 26684, 62, 33661, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2472, 62, 33661, 1875, 4808, 19499, 45746, 62, 33489, 62, 17513, 51, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 18896, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 15853, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 1875, 357, 38993, 62, 67, 310, 17816, 437, 62, 1930, 20520, 532, 20150, 62, 67, 310, 17816, 9688, 62, 1930, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 11, 1700, 796, 2547, 325, 23739, 7, 1370, 11, 2116, 13, 6404, 1362, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 33756, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23042, 278, 286, 428, 1627, 4054, 329, 617, 1738, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26684, 62, 33661, 15853, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5514, 751, 284, 2472, 62, 33661, 329, 257, 4938, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 33661, 15853, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 40348, 597, 26684, 9881, 422, 4271, 26684, 4406, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 7857, 1, 286, 428, 1700, 11, 287, 1502, 284, 1249, 262, 7172, 284, 14267, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1774, 11677, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 961, 62, 29325, 13, 33295, 19510, 41068, 11, 1700, 11, 2546, 1343, 26684, 62, 33661, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26684, 62, 33661, 796, 657, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 961, 62, 5354, 13, 9787, 1870, 26362, 3419, 198, 220, 220, 220, 1441, 2116, 13, 961, 62, 29325, 628, 220, 825, 4808, 10019, 7, 944, 2599, 198, 220, 220, 220, 37227, 47429, 329, 7406, 11, 635, 973, 329, 4856, 4959, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 317, 46545, 286, 357, 41068, 11, 1700, 828, 393, 357, 14202, 11, 6045, 8, 611, 645, 4406, 1695, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 2116, 13557, 5532, 62, 5354, 13, 3792, 39, 19892, 33529, 198, 220, 220, 220, 220, 220, 5298, 13877, 62, 8692, 13, 9237, 12124, 3109, 6474, 198, 220, 220, 220, 42684, 796, 2116, 13557, 28632, 3419, 198, 220, 220, 220, 611, 407, 42684, 25, 198, 220, 220, 220, 220, 220, 1441, 6045, 11, 6045, 198, 220, 220, 220, 33756, 11, 1700, 11, 2546, 796, 42684, 13, 12924, 7, 15, 8, 198, 220, 220, 220, 2116, 13, 3605, 62, 41068, 796, 33756, 1343, 352, 198, 220, 220, 220, 2116, 13, 3605, 62, 1930, 15853, 2546, 198, 220, 220, 220, 1441, 33756, 11, 1700, 628, 220, 825, 7406, 7, 944, 2599, 198, 220, 220, 220, 37227, 6214, 47017, 9237, 12124, 13, 10019, 526, 15931, 198, 220, 220, 220, 33756, 11, 1700, 796, 2116, 13557, 10019, 3419, 198, 220, 220, 220, 611, 407, 33756, 25, 198, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 1785, 796, 4818, 265, 9497, 13, 9237, 13, 5960, 48499, 1096, 7, 22105, 8, 198, 220, 220, 220, 1441, 2116, 13, 36439, 62, 7753, 13, 41506, 1096, 9237, 7, 15596, 8, 628, 220, 825, 35910, 7, 944, 2599, 198, 220, 220, 220, 37227, 6214, 47017, 9237, 12124, 13, 6935, 270, 526, 15931, 198, 220, 220, 220, 611, 407, 2116, 13557, 5532, 62, 5354, 13, 3792, 39, 19892, 33529, 198, 220, 220, 220, 220, 220, 5298, 13877, 62, 8692, 13, 9237, 12124, 3109, 6474, 198, 220, 220, 220, 2116, 13, 22019, 62, 41068, 796, 2116, 13, 3605, 62, 41068, 198, 220, 220, 220, 2116, 13, 22019, 62, 1930, 796, 2116, 13, 3605, 62, 1930, 198, 220, 220, 220, 1303, 48987, 326, 7692, 286, 597, 8563, 11, 19253, 389, 2716, 13, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 16928, 9171, 14706, 3419, 198, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 1303, 16926, 46, 7, 74, 19811, 2599, 2262, 11794, 4755, 393, 42636, 18471, 3524, 815, 4929, 428, 198, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6631, 290, 2230, 284, 11512, 4423, 866, 13, 198, 220, 220, 220, 220, 220, 2116, 13, 1069, 4516, 10786, 6935, 270, 25, 19430, 6631, 5091, 11, 18715, 743, 307, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14681, 276, 416, 5072, 13877, 3294, 1661, 11537, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5532, 62, 5354, 13, 20979, 3419, 198, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 7, 74, 19811, 2599, 2262, 11794, 4755, 393, 42636, 18471, 3524, 815, 4929, 428, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6631, 290, 2230, 284, 11512, 4423, 866, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1069, 4516, 10786, 6935, 270, 25, 18628, 4049, 5091, 11537, 628, 220, 825, 2275, 419, 7, 944, 2599, 198, 220, 220, 220, 37227, 6214, 47017, 9237, 12124, 13, 4826, 419, 526, 15931, 198, 220, 220, 220, 611, 407, 2116, 13557, 5532, 62, 5354, 13, 3792, 39, 19892, 33529, 198, 220, 220, 220, 220, 220, 5298, 13877, 62, 8692, 13, 9237, 12124, 3109, 6474, 198, 220, 220, 220, 2116, 13, 3605, 62, 41068, 796, 2116, 13, 22019, 62, 41068, 198, 220, 220, 220, 2116, 13, 3605, 62, 1930, 796, 2116, 13, 22019, 62, 1930, 198, 220, 220, 220, 2116, 13, 961, 62, 29325, 796, 17635, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 5532, 62, 5354, 13, 20979, 3419, 198, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 1303, 16926, 46, 7, 74, 19811, 2599, 2262, 11794, 4755, 393, 42636, 18471, 3524, 815, 4929, 428, 198, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6631, 290, 2230, 284, 11512, 4423, 866, 13, 198, 220, 220, 220, 220, 220, 2116, 13, 1069, 4516, 10786, 4826, 419, 25, 18628, 4049, 5091, 11537, 198 ]
2.721083
8,092
from model.pgra import PGRA from model.pgra_function.sc import Score from data_utils.data_gen import LinkGenerator, init_seed_fn from torch.utils.data import DataLoader from time import perf_counter import torch import numpy as np import config from model.modules.regularizer import Regularizer import tempfile from collections import Counter from tqdm import tqdm import os from model.tracker import LossTracker, MultiClsTracker
[ 6738, 2746, 13, 6024, 430, 1330, 23842, 3861, 198, 6738, 2746, 13, 6024, 430, 62, 8818, 13, 1416, 1330, 15178, 198, 6738, 1366, 62, 26791, 13, 7890, 62, 5235, 1330, 7502, 8645, 1352, 11, 2315, 62, 28826, 62, 22184, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 6738, 640, 1330, 23035, 62, 24588, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4566, 198, 6738, 2746, 13, 18170, 13, 16338, 7509, 1330, 23603, 7509, 198, 11748, 20218, 7753, 198, 6738, 17268, 1330, 15034, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 28686, 198, 198, 6738, 2746, 13, 2213, 10735, 1330, 22014, 35694, 11, 15237, 2601, 82, 35694, 628 ]
3.724138
116
from astropy import cosmology as cosmo import autofit as af from autolens.pipeline import tagging from autolens.pipeline.phase import dataset from autolens.pipeline.phase.imaging.analysis import Analysis from autolens.pipeline.phase.imaging.meta_imaging import MetaImaging from autolens.pipeline.phase.imaging.result import Result
[ 6738, 6468, 28338, 1330, 8615, 29126, 355, 8615, 5908, 198, 198, 11748, 1960, 1659, 270, 355, 6580, 198, 6738, 1960, 349, 641, 13, 79, 541, 4470, 1330, 49620, 198, 6738, 1960, 349, 641, 13, 79, 541, 4470, 13, 40715, 1330, 27039, 198, 6738, 1960, 349, 641, 13, 79, 541, 4470, 13, 40715, 13, 320, 3039, 13, 20930, 1330, 14691, 198, 6738, 1960, 349, 641, 13, 79, 541, 4470, 13, 40715, 13, 320, 3039, 13, 28961, 62, 320, 3039, 1330, 30277, 3546, 3039, 198, 6738, 1960, 349, 641, 13, 79, 541, 4470, 13, 40715, 13, 320, 3039, 13, 20274, 1330, 25414, 628, 198 ]
3.27451
102
from torch.utils.data import Dataset import h5py import abc
[ 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 198, 11748, 289, 20, 9078, 198, 11748, 450, 66, 628 ]
3.05
20
import os import shutil import time import pprint import torch import argparse import numpy as np ## ------------------------ Basic Functions ------------------------ def one_hot(indices, depth): """ Returns a one-hot tensor. This is a PyTorch equivalent of Tensorflow's tf.one_hot. Parameters: indices: a (n_batch, m) Tensor or (m) Tensor. depth: a scalar. Represents the depth of the one hot dimension. Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor. """ encoded_indicies = torch.zeros(indices.size() + torch.Size([depth])) if indices.is_cuda: encoded_indicies = encoded_indicies.cuda() index = indices.view(indices.size()+torch.Size([1])) encoded_indicies = encoded_indicies.scatter_(1,index,1) return encoded_indicies _utils_pp = pprint.PrettyPrinter() def compute_confidence_interval(data): """ Compute 95% confidence interval :param data: An array of mean accuracy (or mAP) across a number of sampled episodes. :return: the 95% confidence interval for this data. """ a = 1.0 * np.array(data) m = np.mean(a) std = np.std(a) pm = 1.96 * (std / np.sqrt(len(a))) return m, pm ## ------------------------ GFSL Measures ------------------------ # the method to count harmonic mean in low-shot learning paper # based on the seen-joint and unseen_joint performnace from sklearn.metrics import average_precision_score # based on the seen-joint and unseen_joint performnace based on MAP # change recall = tps / tps[-1] in sklearn/metrics/ranking.py to recall = np.ones(tps.size) if tps[-1] == 0 else tps / tps[-1] ## ------------------------GFSL Training Arguments Related ------------------------ ## ------------------------GFSL Evaluation Arguments Related ------------------------
[ 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 640, 198, 11748, 279, 4798, 198, 11748, 28034, 198, 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2235, 220, 22369, 14392, 40480, 220, 22369, 220, 198, 4299, 530, 62, 8940, 7, 521, 1063, 11, 6795, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 530, 12, 8940, 11192, 273, 13, 198, 220, 220, 220, 770, 318, 257, 9485, 15884, 354, 7548, 286, 309, 22854, 11125, 338, 48700, 13, 505, 62, 8940, 13, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 36525, 25, 220, 257, 357, 77, 62, 43501, 11, 285, 8, 309, 22854, 393, 357, 76, 8, 309, 22854, 13, 198, 220, 220, 220, 220, 220, 6795, 25, 257, 16578, 283, 13, 1432, 6629, 262, 6795, 286, 262, 530, 3024, 15793, 13, 198, 220, 220, 220, 16409, 25, 257, 357, 77, 62, 43501, 11, 285, 11, 6795, 8, 309, 22854, 393, 357, 76, 11, 6795, 8, 309, 22854, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 30240, 62, 521, 291, 444, 796, 28034, 13, 9107, 418, 7, 521, 1063, 13, 7857, 3419, 1343, 28034, 13, 10699, 26933, 18053, 60, 4008, 198, 220, 220, 220, 611, 36525, 13, 271, 62, 66, 15339, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30240, 62, 521, 291, 444, 796, 30240, 62, 521, 291, 444, 13, 66, 15339, 3419, 198, 220, 220, 220, 6376, 796, 36525, 13, 1177, 7, 521, 1063, 13, 7857, 3419, 10, 13165, 354, 13, 10699, 26933, 16, 60, 4008, 198, 220, 220, 220, 30240, 62, 521, 291, 444, 796, 30240, 62, 521, 291, 444, 13, 1416, 1436, 41052, 16, 11, 9630, 11, 16, 8, 628, 220, 220, 220, 1441, 30240, 62, 521, 291, 444, 628, 628, 198, 198, 62, 26791, 62, 381, 796, 279, 4798, 13, 35700, 6836, 3849, 3419, 198, 198, 4299, 24061, 62, 39745, 62, 3849, 2100, 7, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 6957, 4, 6628, 16654, 198, 220, 220, 220, 1058, 17143, 1366, 25, 1052, 7177, 286, 1612, 9922, 357, 273, 285, 2969, 8, 1973, 257, 1271, 286, 35846, 8640, 13, 198, 220, 220, 220, 1058, 7783, 25, 262, 6957, 4, 6628, 16654, 329, 428, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 257, 796, 352, 13, 15, 1635, 45941, 13, 18747, 7, 7890, 8, 198, 220, 220, 220, 285, 796, 45941, 13, 32604, 7, 64, 8, 198, 220, 220, 220, 14367, 796, 45941, 13, 19282, 7, 64, 8, 198, 220, 220, 220, 9114, 796, 352, 13, 4846, 1635, 357, 19282, 1220, 45941, 13, 31166, 17034, 7, 11925, 7, 64, 22305, 198, 220, 220, 220, 1441, 285, 11, 9114, 198, 198, 2235, 220, 22369, 34977, 8634, 45040, 220, 22369, 220, 628, 198, 2, 262, 2446, 284, 954, 49239, 1612, 287, 1877, 12, 9442, 4673, 3348, 198, 198, 2, 1912, 319, 262, 1775, 12, 73, 1563, 290, 29587, 62, 73, 1563, 1620, 77, 558, 198, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 2811, 62, 3866, 16005, 62, 26675, 198, 198, 2, 1912, 319, 262, 1775, 12, 73, 1563, 290, 29587, 62, 73, 1563, 1620, 77, 558, 1912, 319, 34645, 198, 2, 1487, 10014, 796, 256, 862, 1220, 256, 862, 58, 12, 16, 60, 287, 1341, 35720, 14, 4164, 10466, 14, 28405, 13, 9078, 284, 10014, 796, 45941, 13, 1952, 7, 83, 862, 13, 7857, 8, 611, 256, 862, 58, 12, 16, 60, 6624, 657, 2073, 256, 862, 1220, 256, 862, 58, 12, 16, 60, 628, 198, 2235, 220, 22369, 21713, 8634, 13614, 20559, 2886, 19809, 220, 22369, 220, 628, 198, 2235, 220, 22369, 21713, 8634, 34959, 20559, 2886, 19809, 220, 22369, 220 ]
2.954545
616
from pyoinformatics.align import lcs, format_matrix from pyoinformatics.seq import Seq
[ 6738, 279, 8226, 259, 18982, 873, 13, 31494, 1330, 300, 6359, 11, 5794, 62, 6759, 8609, 198, 6738, 279, 8226, 259, 18982, 873, 13, 41068, 1330, 1001, 80, 628, 198 ]
2.966667
30
from __future__ import annotations import os from importlib import import_module from typing import TYPE_CHECKING, List, Type, Dict, Union from openhab_creator import logger if TYPE_CHECKING: from openhab_creator.models.configuration import Configuration from openhab_creator.output.items.baseitemscreator import BaseItemsCreator
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 11748, 28686, 198, 6738, 1330, 8019, 1330, 1330, 62, 21412, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 11, 7343, 11, 5994, 11, 360, 713, 11, 4479, 198, 198, 6738, 1280, 5976, 62, 45382, 1330, 49706, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 1280, 5976, 62, 45382, 13, 27530, 13, 11250, 3924, 1330, 28373, 198, 220, 220, 220, 422, 1280, 5976, 62, 45382, 13, 22915, 13, 23814, 13, 8692, 9186, 1416, 630, 273, 1330, 7308, 23022, 16719, 273, 628, 198 ]
3.648936
94
import pandas as pd from imblearn.over_sampling import RandomOverSampler import math #Training Data re = RandomOverSampler() df = pd.read_csv("data/raw/train.csv") y = df["Survived"] x = df.drop(["Survived", "Cabin", "Name", "PassengerId", "Ticket"], axis=1) embark = ["C", "Q", "S"] genders = ["male", "female"] for i, v in enumerate(x["Embarked"]): try: x.at[i, "Embarked"] = embark.index(v) + 1 except ValueError as n: x.at[i, "Embarked"] = 0 for i, v in enumerate(x["Sex"]): x.at[i, "Sex"] = genders.index(v) mean_age = df.describe()["Age"]["mean"] for i, v in enumerate(x["Age"]): if(math.isnan(v)): x.at[i, "Age"] = mean_age x,y = re.fit_resample(x,y) df = pd.concat([x,y], axis=1) df.to_csv("data/processed/train.csv", index=False) #Test Data test_df = pd.read_csv("data/raw/test.csv") test_df = test_df.drop(["Cabin", "Name", "PassengerId", "Ticket"], axis=1) for i, v in enumerate(test_df["Embarked"]): try: test_df.at[i, "Embarked"] = embark.index(v) + 1 except ValueError as n: test_df.at[i, "Embarked"] = 0 for i, v in enumerate(test_df["Sex"]): test_df.at[i, "Sex"] = genders.index(v) for i, v in enumerate(test_df["Age"]): if(math.isnan(v)): test_df.at[i, "Age"] = mean_age for i, v in enumerate(test_df["Age"]): if(math.isnan(v)): test_df.at[i, "Age"] = mean_age mean_fare = df.describe()["Fare"]["mean"] for i, v in enumerate(test_df["Fare"]): if(math.isnan(v)): test_df.at[i, "Fare"] = mean_fare test_y = pd.read_csv("data/raw/gender.csv") test_y = test_y.drop(["PassengerId"], axis=1) test_df = pd.concat([test_df, test_y], axis=1) test_df.to_csv("data/processed/test.csv", index=False)
[ 11748, 19798, 292, 355, 279, 67, 198, 6738, 545, 903, 1501, 13, 2502, 62, 37687, 11347, 1330, 14534, 5886, 16305, 20053, 198, 11748, 10688, 628, 198, 2, 44357, 6060, 198, 260, 796, 14534, 5886, 16305, 20053, 3419, 628, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 1831, 14, 27432, 13, 40664, 4943, 198, 198, 88, 796, 47764, 14692, 34652, 1572, 8973, 198, 87, 796, 47764, 13, 14781, 7, 14692, 34652, 1572, 1600, 366, 34, 6014, 1600, 366, 5376, 1600, 366, 14478, 6540, 7390, 1600, 366, 51, 9715, 33116, 16488, 28, 16, 8, 628, 198, 24419, 668, 796, 14631, 34, 1600, 366, 48, 1600, 366, 50, 8973, 198, 70, 7338, 796, 14631, 22606, 1600, 366, 24724, 8973, 198, 1640, 1312, 11, 410, 287, 27056, 378, 7, 87, 14692, 31567, 668, 276, 8973, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 265, 58, 72, 11, 366, 31567, 668, 276, 8973, 796, 21030, 13, 9630, 7, 85, 8, 1343, 352, 198, 220, 220, 220, 2845, 11052, 12331, 355, 299, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 265, 58, 72, 11, 366, 31567, 668, 276, 8973, 796, 657, 198, 198, 1640, 1312, 11, 410, 287, 27056, 378, 7, 87, 14692, 23398, 8973, 2599, 198, 220, 220, 220, 2124, 13, 265, 58, 72, 11, 366, 23398, 8973, 796, 38054, 13, 9630, 7, 85, 8, 628, 198, 32604, 62, 496, 796, 47764, 13, 20147, 4892, 3419, 14692, 23396, 1, 7131, 1, 32604, 8973, 198, 1640, 1312, 11, 410, 287, 27056, 378, 7, 87, 14692, 23396, 8973, 2599, 198, 220, 220, 220, 611, 7, 11018, 13, 271, 12647, 7, 85, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 265, 58, 72, 11, 366, 23396, 8973, 796, 1612, 62, 496, 198, 198, 87, 11, 88, 796, 302, 13, 11147, 62, 411, 1403, 7, 87, 11, 88, 8, 628, 198, 7568, 796, 279, 67, 13, 1102, 9246, 26933, 87, 11, 88, 4357, 16488, 28, 16, 8, 198, 7568, 13, 1462, 62, 40664, 7203, 7890, 14, 14681, 276, 14, 27432, 13, 40664, 1600, 6376, 28, 25101, 8, 628, 198, 2, 14402, 6060, 198, 198, 9288, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 1831, 14, 9288, 13, 40664, 4943, 198, 198, 9288, 62, 7568, 796, 1332, 62, 7568, 13, 14781, 7, 14692, 34, 6014, 1600, 366, 5376, 1600, 366, 14478, 6540, 7390, 1600, 366, 51, 9715, 33116, 16488, 28, 16, 8, 628, 198, 198, 1640, 1312, 11, 410, 287, 27056, 378, 7, 9288, 62, 7568, 14692, 31567, 668, 276, 8973, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7568, 13, 265, 58, 72, 11, 366, 31567, 668, 276, 8973, 796, 21030, 13, 9630, 7, 85, 8, 1343, 352, 198, 220, 220, 220, 2845, 11052, 12331, 355, 299, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7568, 13, 265, 58, 72, 11, 366, 31567, 668, 276, 8973, 796, 657, 628, 198, 1640, 1312, 11, 410, 287, 27056, 378, 7, 9288, 62, 7568, 14692, 23398, 8973, 2599, 198, 220, 220, 220, 1332, 62, 7568, 13, 265, 58, 72, 11, 366, 23398, 8973, 796, 38054, 13, 9630, 7, 85, 8, 198, 198, 1640, 1312, 11, 410, 287, 27056, 378, 7, 9288, 62, 7568, 14692, 23396, 8973, 2599, 198, 220, 220, 220, 611, 7, 11018, 13, 271, 12647, 7, 85, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7568, 13, 265, 58, 72, 11, 366, 23396, 8973, 796, 1612, 62, 496, 628, 198, 1640, 1312, 11, 410, 287, 27056, 378, 7, 9288, 62, 7568, 14692, 23396, 8973, 2599, 198, 220, 220, 220, 611, 7, 11018, 13, 271, 12647, 7, 85, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7568, 13, 265, 58, 72, 11, 366, 23396, 8973, 796, 1612, 62, 496, 198, 198, 32604, 62, 9496, 796, 47764, 13, 20147, 4892, 3419, 14692, 37, 533, 1, 7131, 1, 32604, 8973, 198, 1640, 1312, 11, 410, 287, 27056, 378, 7, 9288, 62, 7568, 14692, 37, 533, 8973, 2599, 198, 220, 220, 220, 611, 7, 11018, 13, 271, 12647, 7, 85, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7568, 13, 265, 58, 72, 11, 366, 37, 533, 8973, 796, 1612, 62, 9496, 198, 198, 9288, 62, 88, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 1831, 14, 8388, 13, 40664, 4943, 198, 9288, 62, 88, 796, 1332, 62, 88, 13, 14781, 7, 14692, 14478, 6540, 7390, 33116, 16488, 28, 16, 8, 198, 198, 9288, 62, 7568, 796, 279, 67, 13, 1102, 9246, 26933, 9288, 62, 7568, 11, 1332, 62, 88, 4357, 16488, 28, 16, 8, 198, 9288, 62, 7568, 13, 1462, 62, 40664, 7203, 7890, 14, 14681, 276, 14, 9288, 13, 40664, 1600, 6376, 28, 25101, 8 ]
2.135301
813
from typing import List from cu_pass.dpa_calculator.aggregate_interference_calculator.configuration.support.eirps import \ EIRP_DISTRIBUTION_MAP_TYPE from cu_pass.dpa_calculator.cbsd.cbsd import CbsdCategories from cu_pass.dpa_calculator.dpa.builder import RadioAstronomyFacilityNames from cu_pass.dpa_calculator.dpa.dpa import Dpa from testcases.cu_pass.dpa_calculator.features.environment.hooks import ContextSas from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.contexts.context_cbsd_deployment_options import \ ContextCbsdDeploymentOptions from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.contexts.context_monte_carlo_iterations import \ ContextMonteCarloIterations from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.parsers.parse_dpa import parse_dpa ARBITRARY_BUCKET_NAME = 'arbitrary_bucket_name' ARBITRARY_DPA_NAME = RadioAstronomyFacilityNames.HatCreek.value ARBITRARY_NUMBER_OF_ITERATIONS = 1 ARBITRARY_RADIUS_IN_KILOMETERS = 2 ARBITRARY_OUTPUT_DIRECTORY = 'arbitrary_output_directory'
[ 6738, 19720, 1330, 7343, 198, 198, 6738, 18912, 62, 6603, 13, 67, 8957, 62, 9948, 3129, 1352, 13, 9460, 49373, 62, 3849, 4288, 62, 9948, 3129, 1352, 13, 11250, 3924, 13, 11284, 13, 68, 343, 862, 1330, 3467, 198, 220, 220, 220, 412, 4663, 47, 62, 26288, 5446, 9865, 35354, 62, 33767, 62, 25216, 198, 6738, 18912, 62, 6603, 13, 67, 8957, 62, 9948, 3129, 1352, 13, 66, 1443, 67, 13, 66, 1443, 67, 1330, 327, 1443, 67, 34, 26129, 198, 6738, 18912, 62, 6603, 13, 67, 8957, 62, 9948, 3129, 1352, 13, 67, 8957, 13, 38272, 1330, 8829, 33751, 1313, 9145, 47522, 879, 36690, 198, 6738, 18912, 62, 6603, 13, 67, 8957, 62, 9948, 3129, 1352, 13, 67, 8957, 13, 67, 8957, 1330, 360, 8957, 198, 6738, 1332, 33964, 13, 27399, 62, 6603, 13, 67, 8957, 62, 9948, 3129, 1352, 13, 40890, 13, 38986, 13, 25480, 82, 1330, 30532, 50, 292, 198, 6738, 1332, 33964, 13, 27399, 62, 6603, 13, 67, 8957, 62, 9948, 3129, 1352, 13, 40890, 13, 20214, 13, 67, 8957, 62, 710, 394, 2865, 2894, 13, 38986, 13, 22866, 82, 13, 22866, 62, 66, 1443, 67, 62, 2934, 1420, 434, 62, 25811, 1330, 3467, 198, 220, 220, 220, 30532, 34, 1443, 67, 49322, 434, 29046, 198, 6738, 1332, 33964, 13, 27399, 62, 6603, 13, 67, 8957, 62, 9948, 3129, 1352, 13, 40890, 13, 20214, 13, 67, 8957, 62, 710, 394, 2865, 2894, 13, 38986, 13, 22866, 82, 13, 22866, 62, 2144, 660, 62, 7718, 5439, 62, 2676, 602, 1330, 3467, 198, 220, 220, 220, 30532, 9069, 660, 9914, 5439, 29993, 602, 198, 6738, 1332, 33964, 13, 27399, 62, 6603, 13, 67, 8957, 62, 9948, 3129, 1352, 13, 40890, 13, 20214, 13, 67, 8957, 62, 710, 394, 2865, 2894, 13, 38986, 13, 79, 945, 364, 13, 29572, 62, 67, 8957, 1330, 21136, 62, 67, 8957, 198, 198, 1503, 26094, 49, 13153, 62, 33, 16696, 2767, 62, 20608, 796, 705, 283, 2545, 11619, 62, 27041, 316, 62, 3672, 6, 198, 1503, 26094, 49, 13153, 62, 35, 4537, 62, 20608, 796, 8829, 33751, 1313, 9145, 47522, 879, 36690, 13, 40483, 34, 10316, 13, 8367, 198, 1503, 26094, 49, 13153, 62, 41359, 13246, 62, 19238, 62, 2043, 1137, 18421, 796, 352, 198, 1503, 26094, 49, 13153, 62, 49, 2885, 40, 2937, 62, 1268, 62, 42, 4146, 2662, 2767, 4877, 796, 362, 198, 1503, 26094, 49, 13153, 62, 2606, 7250, 3843, 62, 17931, 23988, 15513, 796, 705, 283, 2545, 11619, 62, 22915, 62, 34945, 6, 628, 198 ]
2.663462
416
import logging import os import sys import time from typing import Union from io import IOBase from .base import Client from tftpy.shared import TIMEOUT_RETRIES from tftpy.packet import types from tftpy.exceptions import TftpException,TftpTimeout,TftpFileNotFoundError from tftpy.states import SentReadRQ,SentWriteRQ logger = logging.getLogger('tftpy.context.client') class Upload(Client): """The upload context for the client during an upload. Note: If input is a hyphen, then we will use stdin.""" def __init__(self, host: str, port: int, timeout: int, input: Union[IOBase,str], **kwargs) -> None: """Upload context for uploading data to a server. Args: host (str): Server Address port (int): Server Port timeout (int): socket timeout input ([IOBase,str]): Input data, can be one of - An open file object - A path to a file - a '-' indicating read from STDIN """ super().__init__(host, port, timeout, **kwargs) # If the input object has a read() function, assume it is file-like. if hasattr(input, 'read'): self.fileobj = input elif input == '-': self.fileobj = sys.stdin else: self.fileobj = open(input, "rb") logger.debug("tftpy.context.client.upload.__init__()") logger.debug(f" file_to_transfer = {self.file_to_transfer}, options = {self.options}") def start(self) -> None: """Main loop to read data in and send file to the server.""" logger.info(f"Sending tftp upload request to {self.host}") logger.info(f" filename -> {self.file_to_transfer}") logger.info(f" options -> {self.options}") self.metrics.start_time = time.time() logger.debug(f"Set metrics.start_time to {self.metrics.start_time}") pkt = types.WriteRQ() pkt.filename = self.file_to_transfer pkt.mode = self.mode pkt.options = self.options self.send(pkt) self.state = SentWriteRQ(self) while self.state: try: logger.debug(f"State is {self.state}") self.cycle() except TftpTimeout as err: logger.error(str(err)) self.retry_count += 1 if self.retry_count >= TIMEOUT_RETRIES: logger.debug("hit max retries, giving up") raise else: logger.warning("resending last packet") self.state.resend_last() def end(self, *args): """Finish up the context.""" super().end() self.metrics.end_time = time.time() logger.debug(f"Set metrics.end_time to {self.metrics.end_time}") self.metrics.compute() class Download(Client): """The download context for the client during a download. Note: If output is a hyphen, then the output will be sent to stdout.""" def __init__(self, host: str, port: int, timeout: int, output: Union[IOBase,str], **kwargs) -> None: """Initalize the Download context with the server and where to save the data Args: host (str): Server Address port (int): Server port timeout (int): Socket Timeout output (Union[IOBase,str]): Output data, can be one of - An open file object - A path to a file - '-' indicating write to STDOUT Raises: TftpException: unable to open the destiation file for writing """ super().__init__(host, port, timeout, **kwargs) self.filelike_fileobj = False # If the output object has a write() function, assume it is file-like. if hasattr(output, 'write'): self.fileobj = output self.filelike_fileobj = True # If the output filename is -, then use stdout elif output == '-': self.fileobj = sys.stdout self.filelike_fileobj = True else: try: self.fileobj = open(output, "wb") except OSError as err: raise TftpException("Could not open output file", err) logger.debug("tftpy.context.client.Download.__init__()") logger.debug(f" file_to_transfer = {self.file_to_transfer}, options = {self.options}") def start(self) -> None: """Initiate the download. Raises: TftpTimeout: Failed to connect to the server TftpFileNotFoundError: Recieved a File not fount error """ logger.info(f"Sending tftp download request to {self.host}") logger.info(f" filename -> {self.file_to_transfer}") logger.info(f" options -> {self.options}") self.metrics.start_time = time.time() logger.debug(f"Set metrics.start_time to {self.metrics.start_time}") pkt = types.ReadRQ() pkt.filename = self.file_to_transfer pkt.mode = self.mode pkt.options = self.options self.send(pkt) self.state = SentReadRQ(self) while self.state: try: logger.debug(f"State is {self.state}") self.cycle() except TftpTimeout as err: logger.error(str(err)) self.retry_count += 1 if self.retry_count >= TIMEOUT_RETRIES: logger.debug("hit max retries, giving up") raise TftpTimeout("Max retries reached") else: logger.warning("resending last packet") self.state.resend_last() except TftpFileNotFoundError as err: # If we received file not found, then we should not save the open # output file or we'll be left with a size zero file. Delete it, # if it exists. logger.error("Received File not found error") if self.fileobj is not None and not self.filelike_fileobj and os.path.exists(self.fileobj.name): logger.debug(f"unlinking output file of {self.fileobj.name}") os.unlink(self.fileobj.name) raise TftpFileNotFoundError(err) def end(self) -> None: """Finish up the context.""" super().end(not self.filelike_fileobj) self.metrics.end_time = time.time() logger.debug(f"Set metrics.end_time to {self.metrics.end_time}") self.metrics.compute()
[ 11748, 18931, 201, 198, 11748, 28686, 201, 198, 11748, 25064, 201, 198, 11748, 640, 201, 198, 201, 198, 6738, 19720, 1330, 4479, 201, 198, 6738, 33245, 1330, 314, 9864, 589, 201, 198, 201, 198, 6738, 764, 8692, 1330, 20985, 201, 198, 6738, 256, 701, 9078, 13, 28710, 1330, 20460, 12425, 62, 2200, 5446, 11015, 201, 198, 6738, 256, 701, 9078, 13, 8002, 316, 1330, 3858, 201, 198, 6738, 256, 701, 9078, 13, 1069, 11755, 1330, 309, 701, 79, 16922, 11, 51, 701, 79, 48031, 11, 51, 701, 79, 8979, 3673, 21077, 12331, 201, 198, 6738, 256, 701, 9078, 13, 27219, 1330, 11352, 5569, 49, 48, 11, 31837, 16594, 49, 48, 201, 198, 201, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 83, 701, 9078, 13, 22866, 13, 16366, 11537, 201, 198, 201, 198, 4871, 36803, 7, 11792, 2599, 201, 198, 220, 220, 220, 37227, 464, 9516, 4732, 329, 262, 5456, 1141, 281, 9516, 13, 201, 198, 220, 220, 220, 5740, 25, 1002, 5128, 318, 257, 5328, 831, 11, 788, 356, 481, 779, 14367, 259, 526, 15931, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2583, 25, 965, 11, 2493, 25, 493, 11, 26827, 25, 493, 11, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 25, 4479, 58, 9399, 14881, 11, 2536, 4357, 12429, 46265, 22046, 8, 4613, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 41592, 4732, 329, 33794, 1366, 284, 257, 4382, 13, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2583, 357, 2536, 2599, 9652, 17917, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 357, 600, 2599, 9652, 4347, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 357, 600, 2599, 17802, 26827, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 29565, 9399, 14881, 11, 2536, 60, 2599, 23412, 1366, 11, 460, 307, 530, 286, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1052, 1280, 2393, 2134, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 317, 3108, 284, 257, 2393, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 257, 705, 19355, 12739, 1100, 422, 48571, 1268, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 4774, 11, 2493, 11, 26827, 11, 12429, 46265, 22046, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 5128, 2134, 468, 257, 1100, 3419, 2163, 11, 7048, 340, 318, 2393, 12, 2339, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 15414, 11, 705, 961, 6, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 26801, 796, 5128, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5128, 6624, 705, 12, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 26801, 796, 25064, 13, 19282, 259, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 26801, 796, 1280, 7, 15414, 11, 366, 26145, 4943, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 83, 701, 9078, 13, 22866, 13, 16366, 13, 25850, 13, 834, 15003, 834, 3419, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 2393, 62, 1462, 62, 39437, 796, 1391, 944, 13, 7753, 62, 1462, 62, 39437, 5512, 3689, 796, 1391, 944, 13, 25811, 92, 4943, 201, 198, 201, 198, 220, 220, 220, 825, 923, 7, 944, 8, 4613, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13383, 9052, 284, 1100, 1366, 287, 290, 3758, 2393, 284, 262, 4382, 526, 15931, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 50, 1571, 256, 701, 79, 9516, 2581, 284, 1391, 944, 13, 4774, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 220, 220, 220, 29472, 4613, 1391, 944, 13, 7753, 62, 1462, 62, 39437, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 220, 220, 220, 3689, 4613, 1391, 944, 13, 25811, 92, 4943, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 10466, 13, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 7248, 20731, 13, 9688, 62, 2435, 284, 1391, 944, 13, 4164, 10466, 13, 9688, 62, 2435, 92, 4943, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 796, 3858, 13, 16594, 49, 48, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 13, 34345, 796, 2116, 13, 7753, 62, 1462, 62, 39437, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 13, 14171, 796, 2116, 13, 14171, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 13, 25811, 796, 2116, 13, 25811, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 79, 21841, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5219, 796, 11352, 16594, 49, 48, 7, 944, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 5219, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 9012, 318, 1391, 944, 13, 5219, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13696, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 309, 701, 79, 48031, 355, 11454, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 2536, 7, 8056, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1186, 563, 62, 9127, 15853, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1186, 563, 62, 9127, 18189, 20460, 12425, 62, 2200, 5446, 11015, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 17945, 3509, 1005, 1678, 11, 3501, 510, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 411, 1571, 938, 19638, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5219, 13, 411, 437, 62, 12957, 3419, 201, 198, 201, 198, 220, 220, 220, 825, 886, 7, 944, 11, 1635, 22046, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48658, 510, 262, 4732, 526, 15931, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 437, 3419, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 10466, 13, 437, 62, 2435, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 7248, 20731, 13, 437, 62, 2435, 284, 1391, 944, 13, 4164, 10466, 13, 437, 62, 2435, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 10466, 13, 5589, 1133, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 201, 198, 4871, 10472, 7, 11792, 2599, 201, 198, 220, 220, 220, 37227, 464, 4321, 4732, 329, 262, 5456, 1141, 257, 4321, 13, 201, 198, 220, 220, 220, 5740, 25, 1002, 5072, 318, 257, 5328, 831, 11, 788, 262, 5072, 481, 307, 1908, 284, 14367, 448, 526, 15931, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2583, 25, 965, 11, 2493, 25, 493, 11, 26827, 25, 493, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 25, 4479, 58, 9399, 14881, 11, 2536, 4357, 12429, 46265, 22046, 8, 4613, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 818, 1287, 1096, 262, 10472, 4732, 351, 262, 4382, 290, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 284, 3613, 262, 1366, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2583, 357, 2536, 2599, 9652, 17917, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 357, 600, 2599, 9652, 2493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 357, 600, 2599, 47068, 3862, 448, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 357, 38176, 58, 9399, 14881, 11, 2536, 60, 2599, 25235, 1366, 11, 460, 307, 530, 286, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1052, 1280, 2393, 2134, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 317, 3108, 284, 257, 2393, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 705, 19355, 12739, 3551, 284, 48571, 12425, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 701, 79, 16922, 25, 5906, 284, 1280, 262, 2244, 3920, 2393, 329, 3597, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 4774, 11, 2493, 11, 26827, 11, 12429, 46265, 22046, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 2339, 62, 7753, 26801, 796, 10352, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 5072, 2134, 468, 257, 3551, 3419, 2163, 11, 7048, 340, 318, 2393, 12, 2339, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 22915, 11, 705, 13564, 6, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 26801, 796, 5072, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 2339, 62, 7753, 26801, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 5072, 29472, 318, 532, 11, 788, 779, 14367, 448, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5072, 6624, 705, 12, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 26801, 796, 25064, 13, 19282, 448, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 2339, 62, 7753, 26801, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 26801, 796, 1280, 7, 22915, 11, 366, 39346, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 11454, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 309, 701, 79, 16922, 7203, 23722, 407, 1280, 5072, 2393, 1600, 11454, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 83, 701, 9078, 13, 22866, 13, 16366, 13, 10002, 13, 834, 15003, 834, 3419, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 2393, 62, 1462, 62, 39437, 796, 1391, 944, 13, 7753, 62, 1462, 62, 39437, 5512, 3689, 796, 1391, 944, 13, 25811, 92, 4943, 201, 198, 201, 198, 220, 220, 220, 825, 923, 7, 944, 8, 4613, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 818, 8846, 378, 262, 4321, 13, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 701, 79, 48031, 25, 22738, 284, 2018, 284, 262, 4382, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 701, 79, 8979, 3673, 21077, 12331, 25, 3311, 39591, 257, 9220, 407, 277, 608, 4049, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 50, 1571, 256, 701, 79, 4321, 2581, 284, 1391, 944, 13, 4774, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 220, 220, 220, 29472, 4613, 1391, 944, 13, 7753, 62, 1462, 62, 39437, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 220, 220, 220, 3689, 4613, 1391, 944, 13, 25811, 92, 4943, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 10466, 13, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 7248, 20731, 13, 9688, 62, 2435, 284, 1391, 944, 13, 4164, 10466, 13, 9688, 62, 2435, 92, 4943, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 796, 3858, 13, 5569, 49, 48, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 13, 34345, 796, 2116, 13, 7753, 62, 1462, 62, 39437, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 13, 14171, 796, 2116, 13, 14171, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 13, 25811, 796, 2116, 13, 25811, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 79, 21841, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5219, 796, 11352, 5569, 49, 48, 7, 944, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 5219, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 9012, 318, 1391, 944, 13, 5219, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13696, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 309, 701, 79, 48031, 355, 11454, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 2536, 7, 8056, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1186, 563, 62, 9127, 15853, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1186, 563, 62, 9127, 18189, 20460, 12425, 62, 2200, 5446, 11015, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 17945, 3509, 1005, 1678, 11, 3501, 510, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 309, 701, 79, 48031, 7203, 11518, 1005, 1678, 4251, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 411, 1571, 938, 19638, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5219, 13, 411, 437, 62, 12957, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 309, 701, 79, 8979, 3673, 21077, 12331, 355, 11454, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 2722, 2393, 407, 1043, 11, 788, 356, 815, 407, 3613, 262, 1280, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5072, 2393, 393, 356, 1183, 307, 1364, 351, 257, 2546, 6632, 2393, 13, 23520, 340, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 340, 7160, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 3041, 6471, 9220, 407, 1043, 4049, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 7753, 26801, 318, 407, 6045, 290, 407, 2116, 13, 7753, 2339, 62, 7753, 26801, 290, 28686, 13, 6978, 13, 1069, 1023, 7, 944, 13, 7753, 26801, 13, 3672, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 403, 75, 8040, 5072, 2393, 286, 1391, 944, 13, 7753, 26801, 13, 3672, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 403, 8726, 7, 944, 13, 7753, 26801, 13, 3672, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 309, 701, 79, 8979, 3673, 21077, 12331, 7, 8056, 8, 201, 198, 201, 198, 220, 220, 220, 825, 886, 7, 944, 8, 4613, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48658, 510, 262, 4732, 526, 15931, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 437, 7, 1662, 2116, 13, 7753, 2339, 62, 7753, 26801, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 10466, 13, 437, 62, 2435, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 7248, 20731, 13, 437, 62, 2435, 284, 1391, 944, 13, 4164, 10466, 13, 437, 62, 2435, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 10466, 13, 5589, 1133, 3419 ]
2.016208
3,455
import importlib max_steps = 1000 terminate_prob = 0.998 batch_size = 5 gameEnv = importlib.import_module('coin_game_v') env = gameEnv.gameEnv(terminate_prob=terminate_prob, max_steps=max_steps, batch_size=batch_size) print('state_space', env.state_space) print('red_pos', env.red_pos) print('blue_pos', env.blue_pos) print('red_coin', env.red_coin) print('coin_pos', env.coin_pos) # test red agent picks up red coin env.red_coin = [1, 1, 1, 1, 1] env.red_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size state, reward, done = env.step(actions=[[1,1], [1,1], [1,1], [1,1], [1,1]]) print('red_pos', env.red_pos) print('blue_pos', env.blue_pos) print('red_coin', env.red_coin) print('coin_pos', env.coin_pos) print('reward', reward) print('state', state) # # test red agent picks up blue coin # env.red_coin = 0 # env.red_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='red') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward) # # test blue agent picks up red coin # env.red_coin = 1 # env.blue_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='blue') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward) # # test blue agent picks up blue coin # env.red_coin = 0 # env.blue_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='blue') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward)
[ 11748, 1330, 8019, 198, 198, 9806, 62, 20214, 796, 8576, 198, 23705, 378, 62, 1676, 65, 796, 657, 13, 34808, 198, 43501, 62, 7857, 796, 642, 198, 6057, 4834, 85, 796, 1330, 8019, 13, 11748, 62, 21412, 10786, 3630, 62, 6057, 62, 85, 11537, 198, 24330, 796, 983, 4834, 85, 13, 6057, 4834, 85, 7, 23705, 378, 62, 1676, 65, 28, 23705, 378, 62, 1676, 65, 11, 3509, 62, 20214, 28, 9806, 62, 20214, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 198, 198, 4798, 10786, 5219, 62, 13200, 3256, 17365, 13, 5219, 62, 13200, 8, 198, 4798, 10786, 445, 62, 1930, 3256, 17365, 13, 445, 62, 1930, 8, 198, 4798, 10786, 17585, 62, 1930, 3256, 17365, 13, 17585, 62, 1930, 8, 198, 4798, 10786, 445, 62, 3630, 3256, 17365, 13, 445, 62, 3630, 8, 198, 4798, 10786, 3630, 62, 1930, 3256, 17365, 13, 3630, 62, 1930, 8, 628, 198, 2, 1332, 2266, 5797, 11103, 510, 2266, 10752, 198, 24330, 13, 445, 62, 3630, 796, 685, 16, 11, 352, 11, 352, 11, 352, 11, 352, 60, 198, 24330, 13, 445, 62, 1930, 796, 357, 17365, 13, 3630, 62, 1930, 532, 17365, 13, 4658, 58, 16, 60, 1267, 4064, 17365, 13, 25928, 62, 7857, 198, 5219, 11, 6721, 11, 1760, 796, 17365, 13, 9662, 7, 4658, 28, 30109, 16, 11, 16, 4357, 685, 16, 11, 16, 4357, 685, 16, 11, 16, 4357, 685, 16, 11, 16, 4357, 685, 16, 11, 16, 11907, 8, 198, 4798, 10786, 445, 62, 1930, 3256, 17365, 13, 445, 62, 1930, 8, 198, 4798, 10786, 17585, 62, 1930, 3256, 17365, 13, 17585, 62, 1930, 8, 198, 4798, 10786, 445, 62, 3630, 3256, 17365, 13, 445, 62, 3630, 8, 198, 4798, 10786, 3630, 62, 1930, 3256, 17365, 13, 3630, 62, 1930, 8, 198, 4798, 10786, 260, 904, 3256, 6721, 8, 198, 4798, 10786, 5219, 3256, 1181, 8, 628, 198, 2, 1303, 1332, 2266, 5797, 11103, 510, 4171, 10752, 198, 2, 17365, 13, 445, 62, 3630, 796, 657, 198, 2, 17365, 13, 445, 62, 1930, 796, 357, 17365, 13, 3630, 62, 1930, 532, 17365, 13, 4658, 58, 16, 60, 1267, 4064, 17365, 13, 25928, 62, 7857, 198, 2, 4808, 11, 6721, 11, 1760, 796, 17365, 13, 9662, 7, 2673, 28, 16, 11, 5797, 11639, 445, 11537, 198, 2, 3601, 10786, 445, 62, 1930, 3256, 17365, 13, 445, 62, 1930, 8, 198, 2, 3601, 10786, 17585, 62, 1930, 3256, 17365, 13, 17585, 62, 1930, 8, 198, 2, 3601, 10786, 445, 62, 3630, 3256, 17365, 13, 445, 62, 3630, 8, 198, 2, 3601, 10786, 3630, 62, 1930, 3256, 17365, 13, 3630, 62, 1930, 8, 198, 2, 3601, 10786, 260, 904, 3256, 6721, 8, 198, 198, 2, 1303, 1332, 4171, 5797, 11103, 510, 2266, 10752, 198, 2, 17365, 13, 445, 62, 3630, 796, 352, 198, 2, 17365, 13, 17585, 62, 1930, 796, 357, 17365, 13, 3630, 62, 1930, 532, 17365, 13, 4658, 58, 16, 60, 1267, 4064, 17365, 13, 25928, 62, 7857, 198, 2, 4808, 11, 6721, 11, 1760, 796, 17365, 13, 9662, 7, 2673, 28, 16, 11, 5797, 11639, 17585, 11537, 198, 2, 3601, 10786, 445, 62, 1930, 3256, 17365, 13, 445, 62, 1930, 8, 198, 2, 3601, 10786, 17585, 62, 1930, 3256, 17365, 13, 17585, 62, 1930, 8, 198, 2, 3601, 10786, 445, 62, 3630, 3256, 17365, 13, 445, 62, 3630, 8, 198, 2, 3601, 10786, 3630, 62, 1930, 3256, 17365, 13, 3630, 62, 1930, 8, 198, 2, 3601, 10786, 260, 904, 3256, 6721, 8, 198, 198, 2, 1303, 1332, 4171, 5797, 11103, 510, 4171, 10752, 198, 2, 17365, 13, 445, 62, 3630, 796, 657, 198, 2, 17365, 13, 17585, 62, 1930, 796, 357, 17365, 13, 3630, 62, 1930, 532, 17365, 13, 4658, 58, 16, 60, 1267, 4064, 17365, 13, 25928, 62, 7857, 198, 2, 4808, 11, 6721, 11, 1760, 796, 17365, 13, 9662, 7, 2673, 28, 16, 11, 5797, 11639, 17585, 11537, 198, 2, 3601, 10786, 445, 62, 1930, 3256, 17365, 13, 445, 62, 1930, 8, 198, 2, 3601, 10786, 17585, 62, 1930, 3256, 17365, 13, 17585, 62, 1930, 8, 198, 2, 3601, 10786, 445, 62, 3630, 3256, 17365, 13, 445, 62, 3630, 8, 198, 2, 3601, 10786, 3630, 62, 1930, 3256, 17365, 13, 3630, 62, 1930, 8, 198, 2, 3601, 10786, 260, 904, 3256, 6721, 8, 198 ]
2.504225
710
# -*- coding: utf-8 -*- import pygame, os from src.sprites.MyStaticSprite import * from src.sprites.Interactive import * from src.ResourceManager import * from src.scenes.stage.OnDialogueState import * SPRITE_FILES = os.path.join("sprites", "interactives")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 12972, 6057, 11, 28686, 198, 6738, 12351, 13, 2777, 23156, 13, 3666, 45442, 38454, 578, 1330, 1635, 198, 6738, 12351, 13, 2777, 23156, 13, 9492, 5275, 1330, 1635, 198, 6738, 12351, 13, 26198, 13511, 1330, 1635, 198, 6738, 12351, 13, 28123, 13, 14247, 13, 2202, 41099, 9012, 1330, 1635, 198, 198, 4303, 49, 12709, 62, 46700, 1546, 796, 28686, 13, 6978, 13, 22179, 7203, 2777, 23156, 1600, 366, 3849, 529, 1083, 4943, 198 ]
2.910112
89
from os import environ from boto3 import client import actions from loader import Loader ACCOUNTID = client('sts').get_caller_identity()['Account'] ARN = 'arn:aws:forecast:{region}:{account}:dataset/{name}' LOADER = Loader()
[ 6738, 28686, 1330, 551, 2268, 198, 6738, 275, 2069, 18, 1330, 5456, 198, 11748, 4028, 198, 6738, 40213, 1330, 8778, 263, 198, 198, 26861, 28270, 2389, 796, 5456, 10786, 6448, 27691, 1136, 62, 13345, 263, 62, 738, 414, 3419, 17816, 30116, 20520, 198, 1503, 45, 796, 705, 1501, 25, 8356, 25, 754, 2701, 29164, 36996, 92, 29164, 23317, 38362, 19608, 292, 316, 14, 90, 3672, 92, 6, 198, 35613, 1137, 796, 8778, 263, 3419, 628 ]
3.026667
75
from ecpy import EllipticCurve, ExtendedFiniteField, symmetric_tate_pairing import hashlib import random import cPickle # PKI secret secret = 0xdeadbeef p = int("501794446334189957604282155189438160845433783392772743395579628617109" "929160215221425142482928909270259580854362463493326988807453595748573" "76419559953437557") l = (p + 1) / 6 F = ExtendedFiniteField(p, "x^2+x+1") E = EllipticCurve(F, 0, 1) P = E(3, int("1418077311270457886139292292020587683642898636677353664354101171" "7684401801069777797699258667061922178009879315047772033936311133" "535564812495329881887557081")) sP = E(int("129862491850266001914601437161941818413833907050695770313188660767" "152646233571458109764766382285470424230719843324368007925375351295" "39576510740045312772012"), int("452543250979361708074026409576755302296698208397782707067096515523" "033579018123253402743775747767548650767928190884624134827869137911" "24188897792458334596297")) if __name__ == "__main__": main()
[ 6738, 9940, 9078, 1330, 7122, 10257, 291, 26628, 303, 11, 24204, 37, 9504, 15878, 11, 23606, 19482, 62, 83, 378, 62, 24874, 278, 198, 11748, 12234, 8019, 198, 11748, 4738, 198, 11748, 269, 31686, 293, 198, 198, 2, 29673, 40, 3200, 198, 21078, 796, 657, 24954, 1329, 1350, 891, 198, 198, 79, 796, 493, 7203, 33548, 3720, 2598, 3510, 31380, 1507, 2079, 3553, 31916, 32568, 18742, 1507, 5824, 2548, 1433, 2919, 34229, 2091, 3695, 29626, 27019, 28857, 29626, 2816, 41060, 27033, 1558, 14454, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 24, 1959, 1433, 2999, 1314, 1828, 1415, 1495, 1415, 23045, 1959, 27693, 2931, 20233, 1495, 3865, 28362, 4051, 2623, 26912, 27371, 2091, 26276, 3459, 36928, 2231, 30743, 3553, 2780, 48638, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22, 2414, 1129, 2816, 33438, 2682, 22318, 3553, 4943, 198, 198, 75, 796, 357, 79, 1343, 352, 8, 1220, 718, 198, 198, 37, 796, 24204, 37, 9504, 15878, 7, 79, 11, 366, 87, 61, 17, 10, 87, 10, 16, 4943, 198, 36, 796, 7122, 10257, 291, 26628, 303, 7, 37, 11, 657, 11, 352, 8, 198, 198, 47, 796, 412, 7, 18, 11, 493, 7203, 1415, 1507, 2998, 22, 3132, 1065, 2154, 33032, 44980, 20219, 1959, 23539, 42334, 3365, 30610, 26780, 2078, 49087, 2623, 40179, 2327, 2623, 2414, 2327, 3901, 486, 27192, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30610, 2598, 29159, 486, 3312, 24, 3324, 40393, 4304, 2079, 25600, 2791, 35402, 1129, 1828, 1558, 7410, 4089, 3720, 3132, 1120, 2857, 3324, 1238, 29626, 35447, 1157, 16945, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20, 28567, 34287, 1065, 2920, 4310, 1959, 3459, 20356, 38172, 2154, 6659, 48774, 198, 82, 47, 796, 412, 7, 600, 7203, 1065, 49087, 21626, 1507, 1120, 2075, 8054, 1129, 20964, 28645, 2718, 1433, 22913, 1507, 22883, 20107, 2091, 3829, 2154, 1120, 3388, 3553, 2154, 25838, 1507, 4521, 31980, 3134, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1314, 2075, 3510, 1954, 27277, 1415, 3365, 940, 5607, 33981, 2791, 2548, 23815, 4051, 32869, 1731, 19214, 22, 28296, 2091, 1731, 2623, 7410, 3720, 1495, 22318, 2327, 1065, 3865, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2670, 3553, 2996, 940, 4524, 405, 2231, 27970, 3324, 6999, 12340, 198, 220, 220, 220, 220, 220, 220, 493, 7203, 2231, 24970, 2624, 29022, 3720, 2623, 17279, 36928, 1821, 2075, 29416, 37452, 38172, 1270, 23539, 2791, 4089, 21315, 2670, 39761, 20233, 35402, 31495, 2996, 18742, 1954, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44427, 41734, 29159, 10163, 1495, 23601, 28857, 2718, 39251, 2857, 4304, 2425, 2780, 17544, 32059, 24, 2078, 1129, 46556, 3510, 1731, 1485, 2780, 25870, 3388, 1485, 3720, 1157, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1731, 1507, 39121, 40393, 1731, 3365, 2091, 2231, 4846, 26561, 48774, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1388, 3419, 198 ]
2.07529
518
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-10-12 20:32 from __future__ import unicode_literals import annoying.fields import byro.common.models.auditable from django.db import migrations, models import django.db.models.deletion import localflavor.generic.models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 21, 319, 2177, 12, 940, 12, 1065, 1160, 25, 2624, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 15774, 13, 25747, 198, 11748, 416, 305, 13, 11321, 13, 27530, 13, 3885, 4674, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 198, 11748, 1179, 1604, 75, 5570, 13, 41357, 13, 27530, 628 ]
2.968421
95
# -*- coding: utf-8 -*- from dataclasses import dataclass from typing import Any, Dict, List, NamedTuple, Optional from bkuser_core.categories.plugins.ldap.models import DepartmentProfile, UserProfile from bkuser_core.user_settings.loader import ConfigProvider from django.utils.encoding import force_str from ldap3.utils import dn as dn_utils @dataclass class ProfileFieldMapper: """从 ldap 对象属性中获取用户字段""" config_loader: ConfigProvider setting_field_map: dict def get_field(self, user_meta: Dict[str, List[bytes]], field_name: str, raise_exception: bool = False) -> str: """根据字段映射关系, 从 ldap 中获取 `field_name` 的值""" try: setting_name = self.setting_field_map[field_name] except KeyError: if raise_exception: raise ValueError("该用户字段没有在配置中有对应项,无法同步") return "" try: ldap_field_name = self.config_loader[setting_name] except KeyError: if raise_exception: raise ValueError(f"用户目录配置中缺失字段 {setting_name}") return "" try: if user_meta[ldap_field_name]: return force_str(user_meta[ldap_field_name][0]) return "" except KeyError: if raise_exception: raise ValueError(f"搜索数据中没有对应的字段 {ldap_field_name}") return "" def get_user_attributes(self) -> list: """获取远端属性名列表""" return [self.config_loader[x] for x in self.setting_field_map.values() if self.config_loader[x]] class RDN(NamedTuple): """RelativeDistinguishedName""" type: str value: str separator: str def parse_dn_tree(dn: str, restrict_types: List[str] = None) -> List[RDN]: """A DN is a sequence of relative distinguished names (RDN) connected by commas, For examples: we have a dn = "CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", this method will parse the dn to: >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM") [RDN(type='CN', value='Jeff Smith', separator=','), RDN(type='OU', value='Sales', separator=','), RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] if provide restrict_types, this method will ignore the attribute not in restrict_types, For examples: >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["DC"]) [RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] Furthermore, restrict_types is Case-insensitive, the ["DC"], ["dc"], ["Dc"] are Exactly equal. >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["dc"]) [RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] See Also: https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ldap/distinguished-names """ restrict_types = [type_.upper() for type_ in (restrict_types or [])] items = dn_utils.parse_dn(dn, escape=True) if restrict_types: parts = [RDN(*i) for i in items if i[0].upper() in restrict_types] else: parts = [RDN(*i) for i in items] return parts def parse_dn_value_list(dn: str, restrict_types: List[str] = None) -> List[str]: """this method work like parse_dn_tree, be only return values of those attributes, For examples: >>> parse_dn_value_list("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM") ['Jeff Smith', 'Sales', 'Fabrikam', 'COM'] if provide restrict_types, this method will ignore the attribute not in restrict_types, For examples: >>> parse_dn_value_list("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["DC"]) ['Fabrikam', 'COM'] """ tree = parse_dn_tree(dn, restrict_types) parts = [] for part in tree: parts.append(part.value) return parts
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 11, 34441, 51, 29291, 11, 32233, 198, 198, 6738, 275, 74, 7220, 62, 7295, 13, 66, 26129, 13, 37390, 13, 335, 499, 13, 27530, 1330, 2732, 37046, 11, 11787, 37046, 198, 6738, 275, 74, 7220, 62, 7295, 13, 7220, 62, 33692, 13, 29356, 1330, 17056, 29495, 198, 6738, 42625, 14208, 13, 26791, 13, 12685, 7656, 1330, 2700, 62, 2536, 198, 6738, 300, 67, 499, 18, 13, 26791, 1330, 288, 77, 355, 288, 77, 62, 26791, 628, 198, 31, 19608, 330, 31172, 198, 4871, 13118, 15878, 44, 11463, 25, 198, 220, 220, 220, 37227, 20015, 236, 300, 67, 499, 10263, 107, 117, 164, 109, 94, 161, 109, 252, 45250, 100, 40792, 164, 236, 115, 20998, 244, 18796, 101, 22755, 115, 27764, 245, 162, 106, 113, 37811, 628, 220, 220, 220, 4566, 62, 29356, 25, 17056, 29495, 198, 220, 220, 220, 4634, 62, 3245, 62, 8899, 25, 8633, 628, 220, 220, 220, 825, 651, 62, 3245, 7, 944, 11, 2836, 62, 28961, 25, 360, 713, 58, 2536, 11, 7343, 58, 33661, 60, 4357, 2214, 62, 3672, 25, 965, 11, 5298, 62, 1069, 4516, 25, 20512, 796, 10352, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43718, 117, 162, 235, 106, 27764, 245, 162, 106, 113, 23626, 254, 22887, 226, 17739, 111, 163, 111, 119, 11, 220, 20015, 236, 300, 67, 499, 220, 40792, 164, 236, 115, 20998, 244, 4600, 3245, 62, 3672, 63, 13328, 248, 226, 161, 222, 120, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4634, 62, 3672, 796, 2116, 13, 33990, 62, 3245, 62, 8899, 58, 3245, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5298, 62, 1069, 4516, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 46237, 98, 18796, 101, 22755, 115, 27764, 245, 162, 106, 113, 162, 110, 94, 17312, 231, 28839, 101, 165, 227, 235, 163, 121, 106, 40792, 17312, 231, 43380, 117, 41753, 242, 165, 94, 117, 171, 120, 234, 33768, 254, 37345, 243, 28938, 234, 29826, 98, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 67, 499, 62, 3245, 62, 3672, 796, 2116, 13, 11250, 62, 29356, 58, 33990, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5298, 62, 1069, 4516, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 18796, 101, 22755, 115, 33566, 106, 37605, 243, 165, 227, 235, 163, 121, 106, 40792, 163, 120, 118, 13783, 109, 27764, 245, 162, 106, 113, 1391, 33990, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 28961, 58, 335, 499, 62, 3245, 62, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2700, 62, 2536, 7, 7220, 62, 28961, 58, 335, 499, 62, 3245, 62, 3672, 7131, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5298, 62, 1069, 4516, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 162, 238, 250, 163, 112, 95, 46763, 108, 162, 235, 106, 40792, 162, 110, 94, 17312, 231, 43380, 117, 41753, 242, 21410, 27764, 245, 162, 106, 113, 1391, 335, 499, 62, 3245, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13538, 628, 220, 220, 220, 825, 651, 62, 7220, 62, 1078, 7657, 7, 944, 8, 4613, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 164, 236, 115, 20998, 244, 32573, 250, 44165, 107, 161, 109, 252, 45250, 100, 28938, 235, 26344, 245, 26193, 101, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 944, 13, 11250, 62, 29356, 58, 87, 60, 329, 2124, 287, 2116, 13, 33990, 62, 3245, 62, 8899, 13, 27160, 3419, 611, 2116, 13, 11250, 62, 29356, 58, 87, 11907, 628, 628, 198, 4871, 31475, 45, 7, 45, 2434, 51, 29291, 2599, 198, 220, 220, 220, 37227, 6892, 876, 20344, 46709, 5376, 37811, 628, 220, 220, 220, 2099, 25, 965, 198, 220, 220, 220, 1988, 25, 965, 198, 220, 220, 220, 2880, 1352, 25, 965, 628, 198, 4299, 21136, 62, 32656, 62, 21048, 7, 32656, 25, 965, 11, 4239, 62, 19199, 25, 7343, 58, 2536, 60, 796, 6045, 8, 4613, 7343, 58, 35257, 45, 5974, 198, 220, 220, 220, 37227, 32, 45080, 318, 257, 8379, 286, 3585, 18876, 3891, 357, 35257, 45, 8, 5884, 416, 725, 292, 11, 1114, 6096, 25, 628, 220, 220, 220, 356, 423, 257, 288, 77, 796, 366, 44175, 28, 19139, 4176, 11, 2606, 28, 44490, 11, 9697, 28, 43957, 12602, 321, 11, 9697, 28, 9858, 1600, 428, 2446, 481, 21136, 262, 288, 77, 284, 25, 198, 220, 220, 220, 13163, 21136, 62, 32656, 62, 21048, 7203, 44175, 28, 19139, 4176, 11, 2606, 28, 44490, 11, 9697, 28, 43957, 12602, 321, 11, 9697, 28, 9858, 4943, 198, 220, 220, 220, 685, 35257, 45, 7, 4906, 11639, 44175, 3256, 1988, 11639, 19139, 4176, 3256, 2880, 1352, 28, 3256, 33809, 198, 220, 220, 220, 220, 31475, 45, 7, 4906, 11639, 2606, 3256, 1988, 11639, 44490, 3256, 2880, 1352, 28, 3256, 33809, 198, 220, 220, 220, 220, 31475, 45, 7, 4906, 11639, 9697, 3256, 1988, 11639, 43957, 12602, 321, 3256, 2880, 1352, 28, 3256, 33809, 198, 220, 220, 220, 220, 31475, 45, 7, 4906, 11639, 9697, 3256, 1988, 11639, 9858, 3256, 2880, 1352, 28, 7061, 15437, 628, 220, 220, 220, 611, 2148, 4239, 62, 19199, 11, 428, 2446, 481, 8856, 262, 11688, 407, 287, 4239, 62, 19199, 11, 1114, 6096, 25, 198, 220, 220, 220, 13163, 21136, 62, 32656, 62, 21048, 7203, 44175, 28, 19139, 4176, 11, 2606, 28, 44490, 11, 9697, 28, 43957, 12602, 321, 11, 9697, 28, 9858, 1600, 4239, 62, 19199, 28, 14692, 9697, 8973, 8, 198, 220, 220, 220, 685, 35257, 45, 7, 4906, 11639, 9697, 3256, 1988, 11639, 43957, 12602, 321, 3256, 2880, 1352, 28, 3256, 33809, 31475, 45, 7, 4906, 11639, 9697, 3256, 1988, 11639, 9858, 3256, 2880, 1352, 28, 7061, 15437, 628, 220, 220, 220, 11399, 11, 4239, 62, 19199, 318, 8913, 12, 1040, 18464, 11, 262, 14631, 9697, 33116, 14631, 17896, 33116, 14631, 35, 66, 8973, 389, 36819, 4961, 13, 198, 220, 220, 220, 13163, 21136, 62, 32656, 62, 21048, 7203, 44175, 28, 19139, 4176, 11, 2606, 28, 44490, 11, 9697, 28, 43957, 12602, 321, 11, 9697, 28, 9858, 1600, 4239, 62, 19199, 28, 14692, 17896, 8973, 8, 198, 220, 220, 220, 685, 35257, 45, 7, 4906, 11639, 9697, 3256, 1988, 11639, 43957, 12602, 321, 3256, 2880, 1352, 28, 3256, 33809, 31475, 45, 7, 4906, 11639, 9697, 3256, 1988, 11639, 9858, 3256, 2880, 1352, 28, 7061, 15437, 628, 220, 220, 220, 4091, 4418, 25, 3740, 1378, 31628, 13, 40485, 13, 785, 14, 268, 12, 385, 14, 3866, 1442, 12, 47178, 14, 28457, 14, 41375, 14, 335, 499, 14, 17080, 46709, 12, 14933, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4239, 62, 19199, 796, 685, 4906, 44807, 45828, 3419, 329, 2099, 62, 287, 357, 2118, 2012, 62, 19199, 393, 685, 12962, 60, 198, 220, 220, 220, 3709, 796, 288, 77, 62, 26791, 13, 29572, 62, 32656, 7, 32656, 11, 6654, 28, 17821, 8, 628, 220, 220, 220, 611, 4239, 62, 19199, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 685, 35257, 45, 46491, 72, 8, 329, 1312, 287, 3709, 611, 1312, 58, 15, 4083, 45828, 3419, 287, 4239, 62, 19199, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 685, 35257, 45, 46491, 72, 8, 329, 1312, 287, 3709, 60, 628, 220, 220, 220, 1441, 3354, 628, 198, 4299, 21136, 62, 32656, 62, 8367, 62, 4868, 7, 32656, 25, 965, 11, 4239, 62, 19199, 25, 7343, 58, 2536, 60, 796, 6045, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 37227, 5661, 2446, 670, 588, 21136, 62, 32656, 62, 21048, 11, 307, 691, 1441, 3815, 286, 883, 12608, 11, 1114, 6096, 25, 628, 220, 220, 220, 13163, 21136, 62, 32656, 62, 8367, 62, 4868, 7203, 44175, 28, 19139, 4176, 11, 2606, 28, 44490, 11, 9697, 28, 43957, 12602, 321, 11, 9697, 28, 9858, 4943, 198, 220, 220, 220, 37250, 19139, 4176, 3256, 705, 44490, 3256, 705, 43957, 12602, 321, 3256, 705, 9858, 20520, 628, 220, 220, 220, 611, 2148, 4239, 62, 19199, 11, 428, 2446, 481, 8856, 262, 11688, 407, 287, 4239, 62, 19199, 11, 1114, 6096, 25, 198, 220, 220, 220, 13163, 21136, 62, 32656, 62, 8367, 62, 4868, 7203, 44175, 28, 19139, 4176, 11, 2606, 28, 44490, 11, 9697, 28, 43957, 12602, 321, 11, 9697, 28, 9858, 1600, 4239, 62, 19199, 28, 14692, 9697, 8973, 8, 198, 220, 220, 220, 37250, 43957, 12602, 321, 3256, 705, 9858, 20520, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5509, 796, 21136, 62, 32656, 62, 21048, 7, 32656, 11, 4239, 62, 19199, 8, 198, 220, 220, 220, 3354, 796, 17635, 198, 220, 220, 220, 329, 636, 287, 5509, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 13, 33295, 7, 3911, 13, 8367, 8, 198, 220, 220, 220, 1441, 3354, 198 ]
2.262757
1,705
# IMPORTS # DATA data = [] with open("Data - Day04.txt") as file: for line in file: data.append(line.strip().split(" ")) # GOAL 1 """ A new system policy has been put in place that requires all accounts to use a passphrase instead of simply a password. A passphrase consists of a series of words (lowercase letters) separated by spaces. To ensure security, a valid passphrase must contain no duplicate words. The system's full passphrase list is available as your puzzle input. How many passphrases are valid? """ # ANSWER 1 data_sets = [] for phrase in data: data_sets.append(set(phrase)) num_valid = 0 for i in range(len(data)): if len(data[i]) == len(data_sets[i]): num_valid += 1 print(f"Answer 4a: {num_valid}") # GOAL 2 """ For added security, yet another system policy has been put in place. Now, a valid passphrase must contain no two words that are anagrams of each other - that is, a passphrase is invalid if any word's letters can be rearranged to form any other word in the passphrase. """ sorted_data = [] sorted_data_sets = [] for i in data: new_i = is_anagram(i) sorted_data.append(new_i) sorted_data_sets.append(set(new_i)) num_valid_b = 0 for i in range(len(sorted_data)): if len(sorted_data[i]) == len(sorted_data_sets[i]): num_valid_b += 1 print(f"Answer 4b: {num_valid_b}")
[ 2, 30023, 33002, 198, 198, 2, 42865, 198, 7890, 796, 17635, 198, 4480, 1280, 7203, 6601, 532, 3596, 3023, 13, 14116, 4943, 355, 2393, 25, 198, 220, 220, 220, 329, 1627, 287, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 1370, 13, 36311, 22446, 35312, 7203, 366, 4008, 198, 198, 2, 10351, 1847, 352, 198, 37811, 198, 32, 649, 1080, 2450, 468, 587, 1234, 287, 1295, 326, 4433, 477, 5504, 284, 779, 257, 1208, 34675, 220, 198, 38070, 286, 2391, 257, 9206, 13, 220, 198, 32, 1208, 34675, 10874, 286, 257, 2168, 286, 2456, 357, 21037, 7442, 7475, 8, 11266, 416, 9029, 13, 198, 198, 2514, 4155, 2324, 11, 257, 4938, 1208, 34675, 1276, 3994, 645, 23418, 2456, 13, 198, 198, 464, 1080, 338, 1336, 1208, 34675, 1351, 318, 1695, 355, 534, 15027, 5128, 13, 1374, 867, 1208, 746, 81, 1386, 389, 4938, 30, 198, 37811, 198, 198, 2, 3537, 17887, 1137, 352, 198, 7890, 62, 28709, 796, 17635, 198, 1640, 9546, 287, 1366, 25, 198, 220, 220, 220, 1366, 62, 28709, 13, 33295, 7, 2617, 7, 34675, 4008, 198, 198, 22510, 62, 12102, 796, 657, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 7890, 8, 2599, 198, 220, 220, 220, 611, 18896, 7, 7890, 58, 72, 12962, 6624, 18896, 7, 7890, 62, 28709, 58, 72, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 12102, 15853, 352, 198, 198, 4798, 7, 69, 1, 33706, 604, 64, 25, 1391, 22510, 62, 12102, 92, 4943, 198, 198, 2, 10351, 1847, 362, 198, 37811, 198, 1890, 2087, 2324, 11, 1865, 1194, 1080, 2450, 468, 587, 1234, 287, 1295, 13, 220, 198, 3844, 11, 257, 4938, 1208, 34675, 1276, 3994, 645, 734, 2456, 326, 389, 281, 6713, 82, 286, 1123, 584, 532, 326, 318, 11, 220, 198, 64, 1208, 34675, 318, 12515, 611, 597, 1573, 338, 7475, 460, 307, 37825, 5102, 284, 1296, 597, 584, 1573, 287, 262, 1208, 34675, 13, 198, 37811, 198, 198, 82, 9741, 62, 7890, 796, 17635, 198, 82, 9741, 62, 7890, 62, 28709, 796, 17635, 198, 1640, 1312, 287, 1366, 25, 198, 220, 220, 220, 649, 62, 72, 796, 318, 62, 272, 6713, 7, 72, 8, 198, 220, 220, 220, 23243, 62, 7890, 13, 33295, 7, 3605, 62, 72, 8, 198, 220, 220, 220, 23243, 62, 7890, 62, 28709, 13, 33295, 7, 2617, 7, 3605, 62, 72, 4008, 628, 198, 22510, 62, 12102, 62, 65, 796, 657, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 82, 9741, 62, 7890, 8, 2599, 198, 220, 220, 220, 611, 18896, 7, 82, 9741, 62, 7890, 58, 72, 12962, 6624, 18896, 7, 82, 9741, 62, 7890, 62, 28709, 58, 72, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 12102, 62, 65, 15853, 352, 198, 198, 4798, 7, 69, 1, 33706, 604, 65, 25, 1391, 22510, 62, 12102, 62, 65, 92, 4943 ]
2.823651
482
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import unittest from azure.cli.core.auth.adal_authentication import _normalize_expires_on if __name__ == '__main__': unittest.main()
[ 2, 16529, 1783, 10541, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 2, 16529, 1783, 10541, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 35560, 495, 13, 44506, 13, 7295, 13, 18439, 13, 31682, 62, 41299, 3299, 1330, 4808, 11265, 1096, 62, 11201, 2387, 62, 261, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
5.020619
97
#! /usr/bin/env python """ An implementation of Vanilla Policy Gradient (VPG) for solo_escape_task VPG is a model free, on policy, reinforcement learning algorithm (https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf) Author: LinZHanK ([email protected]) """ from __future__ import absolute_import, division, print_function import sys import os import time from datetime import datetime import numpy as np import tensorflow as tf import rospy from envs.solo_escape_task_env import SoloEscapeEnv from utils import data_utils, solo_utils, tf_utils from utils.data_utils import bcolors from agents.vpg import VPGAgent if __name__ == "__main__": # create argument parser args = data_utils.get_args() # start timing training rospy.init_node("solo_escape_dqn", anonymous=True, log_level=rospy.INFO) # make an instance from env class env = SoloEscapeEnv() env.reset() agent_params = {} train_params = {} # agent parameters agent_params["dim_state"] = len(solo_utils.obs_to_state(env.observation)) agent_params["actions"] = np.array([np.array([1, -1]), np.array([1, 1])]) agent_params["layer_sizes"] = args.layer_sizes agent_params["learning_rate"] = args.learning_rate # training params if args.datetime: train_params["datetime"] = args.datetime else: train_params["datetime"] = datetime.now().strftime("%Y-%m-%d-%H-%M") train_params["num_epochs"] = args.num_epochs train_params["num_steps"] = args.num_steps train_params["time_bonus"] = -1./train_params['num_steps'] train_params["success_bonus"] = 0 train_params["wall_bonus"] = -10./train_params["num_steps"] train_params["door_bonus"] = 0 train_params["sample_size"] = args.sample_size # instantiate agent agent = VPGAgent(agent_params) # specify model path model_path = os.path.dirname(sys.path[0])+"/saved_models/solo_escape/vpg/"+train_params["datetime"]+"/agent/model.h5" update_counter = 0 episodic_returns = [] episode = 0 step = 0 start_time = time.time() for ep in range(train_params['num_epochs']): # init training batches batch_states = [] batch_acts = [] batch_rtaus = [] # init episode obs, _ = env.reset() state_0 = solo_utils.obs_to_state(obs) done, ep_rewards = False, [] batch_counter = 0 while True: # take action by sampling policy_net predictions act_id = agent.sample_action(state_0) action = agent.actions[act_id] obs, rew, done, info = env.step(action) state_1 = solo_utils.obs_to_state(obs) # adjust reward rew, done = solo_utils.adjust_reward(train_params, env) # fill training batch batch_acts.append(act_id) batch_states.append(state_0) # update ep_rewards.append(rew) state_0 = state_1 print( bcolors.OKGREEN, "Epoch: {} \nEpisode: {}, Step: {} \naction: {}->{}, state: {}, reward/episodic_return: {}/{}, status: {}, success: {}".format( ep, episode, step, act_id, action, state_1, rew, sum(ep_rewards), info, env.success_count ), bcolors.ENDC ) # step increment step += 1 if done: ep_return, ep_length = sum(ep_rewards), len(ep_rewards) batch_rtaus += list(solo_utils.reward_to_go(ep_rewards)) assert len(batch_rtaus) == len(batch_states) # store episodic_return episodic_returns.append(ep_return) # reset to a new episode obs, _ = env.reset() done, ep_rewards = False, [] state_0 = solo_utils.obs_to_state(obs) episode += 1 step = 0 print( bcolors.OKGREEN, "current batch size: {}".format(len(batch_rtaus)), bcolors.ENDC ) if len(batch_rtaus) > train_params['sample_size']: break agent.train(batch_states, batch_acts, batch_rtaus) agent.save_model(model_path) # time training end_time = time.time() training_time = end_time - start_time # plot episodic returns data_utils.plot_returns(returns=episodic_returns, mode=0, save_flag=True, fdir=os.path.dirname(model_path)) # plot accumulated returns data_utils.plot_returns(returns=episodic_returns, mode=1, save_flag=True, fdir=os.path.dirname(model_path)) # plot averaged return data_utils.plot_returns(returns=episodic_returns, mode=2, save_flag=True, fdir=os.path.dirname(model_path)) # save agent parameters data_utils.save_pkl(content=agent_params, fdir=os.path.dirname(model_path), fname="agent_parameters.pkl") # save returns data_utils.save_pkl(content=episodic_returns, fdir=os.path.dirname(os.path.dirname(model_path)), fname="episodic_returns.pkl") # save results train_info = train_params train_info["success_count"] = env.success_count train_info["training_time"] = training_time train_info["learning_rate"] = agent_params["learning_rate"] train_info["state_dimension"] = agent_params["dim_state"] train_info["action_options"] = agent_params["actions"] train_info["layer_sizes"] = agent_params["layer_sizes"] data_utils.save_csv(content=train_info, fdir=os.path.dirname(os.path.dirname(model_path)), fname="train_information.csv")
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 2025, 7822, 286, 33897, 7820, 17701, 1153, 357, 53, 6968, 8, 329, 12199, 62, 41915, 62, 35943, 198, 53, 6968, 318, 257, 2746, 1479, 11, 319, 2450, 11, 37414, 4673, 11862, 357, 5450, 1378, 40491, 13, 77, 2419, 13, 535, 14, 20189, 14, 1558, 1485, 12, 30586, 12, 49607, 12, 24396, 82, 12, 1640, 12, 260, 259, 13442, 12, 40684, 12, 4480, 12, 8818, 12, 1324, 13907, 18991, 13, 12315, 8, 198, 13838, 25, 5164, 57, 29919, 42, 357, 2815, 23548, 962, 31, 14816, 13, 785, 8, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 640, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 686, 2777, 88, 198, 198, 6738, 551, 14259, 13, 82, 14057, 62, 41915, 62, 35943, 62, 24330, 1330, 20284, 36, 6794, 4834, 85, 198, 6738, 3384, 4487, 1330, 1366, 62, 26791, 11, 12199, 62, 26791, 11, 48700, 62, 26791, 198, 6738, 3384, 4487, 13, 7890, 62, 26791, 1330, 275, 4033, 669, 198, 6738, 6554, 13, 85, 6024, 1330, 569, 6968, 36772, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 2251, 4578, 30751, 198, 220, 220, 220, 26498, 796, 1366, 62, 26791, 13, 1136, 62, 22046, 3419, 198, 220, 220, 220, 1303, 923, 10576, 3047, 198, 220, 220, 220, 686, 2777, 88, 13, 15003, 62, 17440, 7203, 82, 14057, 62, 41915, 62, 49506, 77, 1600, 11614, 28, 17821, 11, 2604, 62, 5715, 28, 305, 2777, 88, 13, 10778, 8, 198, 220, 220, 220, 1303, 787, 281, 4554, 422, 17365, 1398, 198, 220, 220, 220, 17365, 796, 20284, 36, 6794, 4834, 85, 3419, 198, 220, 220, 220, 17365, 13, 42503, 3419, 198, 220, 220, 220, 5797, 62, 37266, 796, 23884, 198, 220, 220, 220, 4512, 62, 37266, 796, 23884, 198, 220, 220, 220, 1303, 5797, 10007, 198, 220, 220, 220, 5797, 62, 37266, 14692, 27740, 62, 5219, 8973, 796, 18896, 7, 82, 14057, 62, 26791, 13, 8158, 62, 1462, 62, 5219, 7, 24330, 13, 672, 3168, 341, 4008, 198, 220, 220, 220, 5797, 62, 37266, 14692, 4658, 8973, 796, 45941, 13, 18747, 26933, 37659, 13, 18747, 26933, 16, 11, 532, 16, 46570, 45941, 13, 18747, 26933, 16, 11, 352, 12962, 12962, 198, 220, 220, 220, 5797, 62, 37266, 14692, 29289, 62, 82, 4340, 8973, 796, 26498, 13, 29289, 62, 82, 4340, 198, 220, 220, 220, 5797, 62, 37266, 14692, 40684, 62, 4873, 8973, 796, 26498, 13, 40684, 62, 4873, 198, 220, 220, 220, 1303, 3047, 42287, 198, 220, 220, 220, 611, 26498, 13, 19608, 8079, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 37266, 14692, 19608, 8079, 8973, 796, 26498, 13, 19608, 8079, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 37266, 14692, 19608, 8079, 8973, 796, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 12, 4, 39, 12, 4, 44, 4943, 198, 220, 220, 220, 4512, 62, 37266, 14692, 22510, 62, 538, 5374, 82, 8973, 796, 26498, 13, 22510, 62, 538, 5374, 82, 198, 220, 220, 220, 4512, 62, 37266, 14692, 22510, 62, 20214, 8973, 796, 26498, 13, 22510, 62, 20214, 198, 220, 220, 220, 4512, 62, 37266, 14692, 2435, 62, 4189, 385, 8973, 796, 532, 16, 19571, 27432, 62, 37266, 17816, 22510, 62, 20214, 20520, 198, 220, 220, 220, 4512, 62, 37266, 14692, 13138, 62, 4189, 385, 8973, 796, 657, 198, 220, 220, 220, 4512, 62, 37266, 14692, 11930, 62, 4189, 385, 8973, 796, 532, 940, 19571, 27432, 62, 37266, 14692, 22510, 62, 20214, 8973, 198, 220, 220, 220, 4512, 62, 37266, 14692, 9424, 62, 4189, 385, 8973, 796, 657, 198, 220, 220, 220, 4512, 62, 37266, 14692, 39873, 62, 7857, 8973, 796, 26498, 13, 39873, 62, 7857, 198, 220, 220, 220, 1303, 9113, 9386, 5797, 198, 220, 220, 220, 5797, 796, 569, 6968, 36772, 7, 25781, 62, 37266, 8, 198, 220, 220, 220, 1303, 11986, 2746, 3108, 198, 220, 220, 220, 2746, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 17597, 13, 6978, 58, 15, 12962, 10, 1, 14, 82, 9586, 62, 27530, 14, 82, 14057, 62, 41915, 14, 85, 6024, 30487, 10, 27432, 62, 37266, 14692, 19608, 8079, 8973, 10, 1, 14, 25781, 14, 19849, 13, 71, 20, 1, 198, 220, 220, 220, 4296, 62, 24588, 796, 657, 198, 220, 220, 220, 48177, 29512, 62, 7783, 82, 796, 17635, 198, 220, 220, 220, 4471, 796, 657, 198, 220, 220, 220, 2239, 796, 657, 198, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 329, 2462, 287, 2837, 7, 27432, 62, 37266, 17816, 22510, 62, 538, 5374, 82, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2315, 3047, 37830, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27219, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 8656, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 81, 8326, 385, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2315, 4471, 198, 220, 220, 220, 220, 220, 220, 220, 10201, 11, 4808, 796, 17365, 13, 42503, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 15, 796, 12199, 62, 26791, 13, 8158, 62, 1462, 62, 5219, 7, 8158, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1760, 11, 2462, 62, 260, 2017, 796, 10352, 11, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1011, 2223, 416, 19232, 2450, 62, 3262, 16277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 719, 62, 312, 796, 5797, 13, 39873, 62, 2673, 7, 5219, 62, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 5797, 13, 4658, 58, 529, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10201, 11, 302, 86, 11, 1760, 11, 7508, 796, 17365, 13, 9662, 7, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 16, 796, 12199, 62, 26791, 13, 8158, 62, 1462, 62, 5219, 7, 8158, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4532, 6721, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 86, 11, 1760, 796, 12199, 62, 26791, 13, 23032, 62, 260, 904, 7, 27432, 62, 37266, 11, 17365, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6070, 3047, 15458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 8656, 13, 33295, 7, 529, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27219, 13, 33295, 7, 5219, 62, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2462, 62, 260, 2017, 13, 33295, 7, 1809, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 15, 796, 1181, 62, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 4033, 669, 13, 11380, 43016, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13807, 5374, 25, 23884, 3467, 77, 23758, 25, 1391, 5512, 5012, 25, 23884, 3467, 77, 2673, 25, 23884, 3784, 90, 5512, 1181, 25, 1391, 5512, 6721, 14, 538, 271, 29512, 62, 7783, 25, 23884, 14, 90, 5512, 3722, 25, 1391, 5512, 1943, 25, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2462, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4471, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 719, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 86, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 7, 538, 62, 260, 2017, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17365, 13, 13138, 62, 9127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 4033, 669, 13, 1677, 9697, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2239, 18703, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1760, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2462, 62, 7783, 11, 2462, 62, 13664, 796, 2160, 7, 538, 62, 260, 2017, 828, 18896, 7, 538, 62, 260, 2017, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 81, 8326, 385, 15853, 1351, 7, 82, 14057, 62, 26791, 13, 260, 904, 62, 1462, 62, 2188, 7, 538, 62, 260, 2017, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 43501, 62, 81, 8326, 385, 8, 6624, 18896, 7, 43501, 62, 27219, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 48177, 29512, 62, 7783, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48177, 29512, 62, 7783, 82, 13, 33295, 7, 538, 62, 7783, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13259, 284, 257, 649, 4471, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10201, 11, 4808, 796, 17365, 13, 42503, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1760, 11, 2462, 62, 260, 2017, 796, 10352, 11, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 15, 796, 12199, 62, 26791, 13, 8158, 62, 1462, 62, 5219, 7, 8158, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4471, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 4033, 669, 13, 11380, 43016, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14421, 15458, 2546, 25, 23884, 1911, 18982, 7, 11925, 7, 43501, 62, 81, 8326, 385, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 4033, 669, 13, 1677, 9697, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 43501, 62, 81, 8326, 385, 8, 1875, 4512, 62, 37266, 17816, 39873, 62, 7857, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 27432, 7, 43501, 62, 27219, 11, 15458, 62, 8656, 11, 15458, 62, 81, 8326, 385, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 21928, 62, 19849, 7, 19849, 62, 6978, 8, 198, 220, 220, 220, 1303, 640, 3047, 198, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 3047, 62, 2435, 796, 886, 62, 2435, 532, 923, 62, 2435, 628, 220, 220, 220, 1303, 7110, 48177, 29512, 5860, 198, 220, 220, 220, 1366, 62, 26791, 13, 29487, 62, 7783, 82, 7, 7783, 82, 28, 538, 271, 29512, 62, 7783, 82, 11, 4235, 28, 15, 11, 3613, 62, 32109, 28, 17821, 11, 277, 15908, 28, 418, 13, 6978, 13, 15908, 3672, 7, 19849, 62, 6978, 4008, 198, 220, 220, 220, 1303, 7110, 22425, 5860, 198, 220, 220, 220, 1366, 62, 26791, 13, 29487, 62, 7783, 82, 7, 7783, 82, 28, 538, 271, 29512, 62, 7783, 82, 11, 4235, 28, 16, 11, 3613, 62, 32109, 28, 17821, 11, 277, 15908, 28, 418, 13, 6978, 13, 15908, 3672, 7, 19849, 62, 6978, 4008, 198, 220, 220, 220, 1303, 7110, 16449, 1441, 198, 220, 220, 220, 1366, 62, 26791, 13, 29487, 62, 7783, 82, 7, 7783, 82, 28, 538, 271, 29512, 62, 7783, 82, 11, 4235, 28, 17, 11, 3613, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 277, 15908, 28, 418, 13, 6978, 13, 15908, 3672, 7, 19849, 62, 6978, 4008, 198, 220, 220, 220, 1303, 3613, 5797, 10007, 198, 220, 220, 220, 1366, 62, 26791, 13, 21928, 62, 79, 41582, 7, 11299, 28, 25781, 62, 37266, 11, 277, 15908, 28, 418, 13, 6978, 13, 15908, 3672, 7, 19849, 62, 6978, 828, 277, 3672, 2625, 25781, 62, 17143, 7307, 13, 79, 41582, 4943, 198, 220, 220, 220, 1303, 3613, 5860, 198, 220, 220, 220, 1366, 62, 26791, 13, 21928, 62, 79, 41582, 7, 11299, 28, 538, 271, 29512, 62, 7783, 82, 11, 277, 15908, 28, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 19849, 62, 6978, 36911, 277, 3672, 2625, 538, 271, 29512, 62, 7783, 82, 13, 79, 41582, 4943, 198, 220, 220, 220, 1303, 3613, 2482, 198, 220, 220, 220, 4512, 62, 10951, 796, 4512, 62, 37266, 198, 220, 220, 220, 4512, 62, 10951, 14692, 13138, 62, 9127, 8973, 796, 17365, 13, 13138, 62, 9127, 198, 220, 220, 220, 4512, 62, 10951, 14692, 34409, 62, 2435, 8973, 796, 3047, 62, 2435, 198, 220, 220, 220, 4512, 62, 10951, 14692, 40684, 62, 4873, 8973, 796, 5797, 62, 37266, 14692, 40684, 62, 4873, 8973, 198, 220, 220, 220, 4512, 62, 10951, 14692, 5219, 62, 46156, 8973, 796, 5797, 62, 37266, 14692, 27740, 62, 5219, 8973, 198, 220, 220, 220, 4512, 62, 10951, 14692, 2673, 62, 25811, 8973, 796, 5797, 62, 37266, 14692, 4658, 8973, 198, 220, 220, 220, 4512, 62, 10951, 14692, 29289, 62, 82, 4340, 8973, 796, 5797, 62, 37266, 14692, 29289, 62, 82, 4340, 8973, 198, 220, 220, 220, 1366, 62, 26791, 13, 21928, 62, 40664, 7, 11299, 28, 27432, 62, 10951, 11, 277, 15908, 28, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 19849, 62, 6978, 36911, 277, 3672, 2625, 27432, 62, 17018, 13, 40664, 4943, 198 ]
2.163529
2,709
# Buycoin Python SDK # Copyright 2021 Iyanuoluwa Ajao # See LICENCE for details. """ Authentication is handled by the :any:`Airtable` class. >>> airtable = Airtable(base_key, table_name, api_key) Note: You can also use this class to handle authentication for you if you are making your own wrapper: >>> auth = BuycoinsAuth(api_key) >>> >>> response = requests.get('https://api.airtable.com/v0/{basekey}/{table_name}', auth=auth) """ from requests.auth import AuthBase
[ 2, 11763, 3630, 11361, 26144, 198, 2, 15069, 33448, 314, 4121, 84, 349, 84, 10247, 22028, 5488, 198, 2, 4091, 38559, 18310, 329, 3307, 13, 198, 198, 37811, 198, 47649, 3299, 318, 12118, 416, 262, 1058, 1092, 25, 63, 32, 2265, 540, 63, 1398, 13, 198, 198, 33409, 1633, 11487, 796, 317, 2265, 540, 7, 8692, 62, 2539, 11, 3084, 62, 3672, 11, 40391, 62, 2539, 8, 198, 6425, 25, 198, 220, 220, 220, 921, 460, 635, 779, 428, 1398, 284, 5412, 18239, 329, 345, 611, 345, 198, 220, 220, 220, 389, 1642, 534, 898, 29908, 25, 198, 220, 220, 220, 13163, 6284, 796, 11763, 14624, 30515, 7, 15042, 62, 2539, 8, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 2882, 796, 7007, 13, 1136, 10786, 5450, 1378, 15042, 13, 958, 11487, 13, 785, 14, 85, 15, 14, 90, 8692, 2539, 92, 14, 90, 11487, 62, 3672, 92, 3256, 6284, 28, 18439, 8, 198, 37811, 198, 198, 6738, 7007, 13, 18439, 1330, 26828, 14881, 628, 198 ]
2.934524
168
#!/usr/bin/env python3 ###Description: The tool reads cern web services behind SSO using user certificates from __future__ import print_function import os, urllib, urllib2, httplib, cookielib, sys, HTMLParser, re from optparse import OptionParser if __name__ == "__main__": parser = OptionParser(usage="%prog [-d(ebug)] -o(ut) COOKIE_FILENAME -c(cert) CERN-PEM -k(ey) CERT-KEY -u(rl) URL") parser.add_option("-d", "--debug", dest="debug", help="Enable pycurl debugging. Prints to data and headers to stderr.", action="store_true", default=False) parser.add_option("-p", "--postdata", dest="postdata", help="Data to be sent as post request", action="store", default=None) parser.add_option("-c", "--cert", dest="cert_path", help="[REQUIRED] Absolute path to cert file.", action="store") parser.add_option("-k", "--key", dest="key_path", help="[REQUIRED] Absolute path to key file.", action="store") parser.add_option("-u", "--url", dest="url", help="[REQUIRED] Url to a service behind the SSO", action="store") (opts, args) = parser.parse_args() checkRequiredArguments(opts, parser) content = getContent(opts.url, opts.cert_path, opts.key_path, opts.postdata, opts.debug) print(content)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 21017, 11828, 25, 383, 2891, 9743, 269, 1142, 3992, 2594, 2157, 6723, 46, 1262, 2836, 20835, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 28686, 11, 2956, 297, 571, 11, 2956, 297, 571, 17, 11, 1841, 489, 571, 11, 4255, 8207, 571, 11, 25064, 11, 11532, 46677, 11, 302, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 30751, 796, 16018, 46677, 7, 26060, 2625, 4, 1676, 70, 25915, 67, 7, 1765, 1018, 15437, 532, 78, 7, 315, 8, 327, 15308, 10008, 62, 46700, 1677, 10067, 532, 66, 7, 22583, 8, 327, 28778, 12, 47, 3620, 532, 74, 7, 2959, 8, 327, 17395, 12, 20373, 532, 84, 7, 45895, 8, 10289, 4943, 220, 198, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 67, 1600, 366, 438, 24442, 1600, 2244, 2625, 24442, 1600, 1037, 2625, 36695, 12972, 66, 6371, 28769, 13, 12578, 82, 284, 1366, 290, 24697, 284, 336, 1082, 81, 33283, 2223, 2625, 8095, 62, 7942, 1600, 4277, 28, 25101, 8, 198, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 79, 1600, 366, 438, 7353, 7890, 1600, 2244, 2625, 7353, 7890, 1600, 1037, 2625, 6601, 284, 307, 1908, 355, 1281, 2581, 1600, 2223, 2625, 8095, 1600, 4277, 28, 14202, 8, 198, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 66, 1600, 366, 438, 22583, 1600, 2244, 2625, 22583, 62, 6978, 1600, 1037, 2625, 58, 2200, 10917, 37819, 60, 36532, 3108, 284, 5051, 2393, 33283, 2223, 2625, 8095, 4943, 198, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 74, 1600, 366, 438, 2539, 1600, 2244, 2625, 2539, 62, 6978, 1600, 1037, 2625, 58, 2200, 10917, 37819, 60, 36532, 3108, 284, 1994, 2393, 33283, 2223, 2625, 8095, 4943, 198, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 84, 1600, 366, 438, 6371, 1600, 2244, 2625, 6371, 1600, 1037, 2625, 58, 2200, 10917, 37819, 60, 8799, 75, 284, 257, 2139, 2157, 262, 6723, 46, 1600, 2223, 2625, 8095, 4943, 198, 220, 357, 404, 912, 11, 26498, 8, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 2198, 37374, 28100, 2886, 7, 404, 912, 11, 30751, 8, 198, 220, 2695, 796, 651, 19746, 7, 404, 912, 13, 6371, 11, 2172, 82, 13, 22583, 62, 6978, 11, 2172, 82, 13, 2539, 62, 6978, 11, 2172, 82, 13, 7353, 7890, 11, 2172, 82, 13, 24442, 8, 198, 220, 3601, 7, 11299, 8, 198 ]
2.932039
412
# -*- coding: utf-8 -*- import filecmp import json import os import pkgutil import zipfile import hypothesis import pytest import six from verta.tracking.entities._deployable_entity import _DeployableEntity from verta._internal_utils.custom_modules import CustomModules from .. import utils from . import contexts
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 2393, 48991, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 279, 10025, 22602, 198, 11748, 19974, 7753, 198, 198, 11748, 14078, 198, 11748, 12972, 9288, 198, 11748, 2237, 198, 198, 6738, 9421, 64, 13, 36280, 13, 298, 871, 13557, 2934, 1420, 540, 62, 26858, 1330, 4808, 49322, 540, 32398, 198, 6738, 9421, 64, 13557, 32538, 62, 26791, 13, 23144, 62, 18170, 1330, 8562, 5841, 5028, 198, 198, 6738, 11485, 1330, 3384, 4487, 198, 6738, 764, 1330, 26307, 628 ]
3.393617
94
# We need those imports for migrations compatibility purpose from privatemedia.storage import ProtectedStorage, PrivateStorage # noqa
[ 2, 775, 761, 883, 17944, 329, 15720, 602, 17764, 4007, 198, 6738, 21883, 368, 5507, 13, 35350, 1330, 5038, 11197, 31425, 11, 15348, 31425, 220, 1303, 645, 20402, 198 ]
4.655172
29
# -*- coding: utf-8 -*- # # Copyright (c) 2014 Ari Aosved # http://github.com/devaos/sublime-remote/blob/master/LICENSE """This module implements an API layer for Vagrant related functionality.""" import re import subprocess # ============================================================================= def parse_vm_id(line): """Determine if a line appears to be from `vagrant global-status`.""" parts = re.split("\s+", line) if len(parts) == 5 and parts[0] != "id" \ and re.match("^[0-9a-f]{1,7}$", parts[0]): return parts[0] return None def get_vm_list(opt): """Pull a list of all running vagrant VMs for the user to choose from.""" p1 = subprocess.Popen(["/usr/bin/vagrant", "global-status"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) while True: buf = p1.stdout.readline() decoded = buf.decode("utf-8").rstrip() if decoded == "" and p1.poll() is not None: break if decoded == "": continue if parse_vm_id(decoded) is not None: opt.append(decoded) return opt def get_ssh_options(vm): """Pull the ssh options required to connect to a specific vagrant VM.""" cmd = 'PATH="${PATH}:/usr/local/bin" /usr/bin/vagrant ssh-config' cmd = cmd + ' ' + vm + '; exit 0' print("ssh options cmd", cmd) out = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) out = out.decode("utf-8").rstrip() print("ssh options output", out) obj = [s.strip().split(' ') for s in out.splitlines()] opt = [] for field in obj: if field[0] != "Host": opt.append("=".join(field)) opt = "-o " + " -o ".join(opt) print("ssh options parsed", opt) return opt
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 66, 8, 1946, 6069, 317, 418, 1079, 198, 2, 2638, 1378, 12567, 13, 785, 14, 7959, 7495, 14, 7266, 27299, 12, 47960, 14, 2436, 672, 14, 9866, 14, 43, 2149, 24290, 198, 198, 37811, 1212, 8265, 23986, 281, 7824, 7679, 329, 37203, 5250, 3519, 11244, 526, 15931, 198, 198, 11748, 302, 198, 11748, 850, 14681, 198, 198, 2, 38093, 25609, 628, 198, 4299, 21136, 62, 14761, 62, 312, 7, 1370, 2599, 198, 220, 220, 220, 37227, 35, 2357, 3810, 611, 257, 1627, 3568, 284, 307, 422, 4600, 29821, 5250, 3298, 12, 13376, 63, 526, 15931, 628, 220, 220, 220, 3354, 796, 302, 13, 35312, 7203, 59, 82, 10, 1600, 1627, 8, 198, 220, 220, 220, 611, 18896, 7, 42632, 8, 6624, 642, 290, 3354, 58, 15, 60, 14512, 366, 312, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 290, 302, 13, 15699, 7203, 61, 58, 15, 12, 24, 64, 12, 69, 60, 90, 16, 11, 22, 92, 3, 1600, 3354, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3354, 58, 15, 60, 628, 220, 220, 220, 1441, 6045, 628, 198, 4299, 651, 62, 14761, 62, 4868, 7, 8738, 2599, 198, 220, 220, 220, 37227, 42940, 257, 1351, 286, 477, 2491, 14334, 5250, 569, 10128, 329, 262, 2836, 284, 3853, 422, 526, 15931, 628, 220, 220, 220, 279, 16, 796, 850, 14681, 13, 47, 9654, 7, 14692, 14, 14629, 14, 8800, 14, 29821, 5250, 1600, 366, 20541, 12, 13376, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 336, 1082, 81, 28, 7266, 14681, 13, 47, 4061, 36, 8, 628, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42684, 796, 279, 16, 13, 19282, 448, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 875, 9043, 796, 42684, 13, 12501, 1098, 7203, 40477, 12, 23, 11074, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 875, 9043, 6624, 13538, 290, 279, 16, 13, 30393, 3419, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 875, 9043, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21136, 62, 14761, 62, 312, 7, 12501, 9043, 8, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 13, 33295, 7, 12501, 9043, 8, 628, 220, 220, 220, 1441, 2172, 628, 198, 4299, 651, 62, 45824, 62, 25811, 7, 14761, 2599, 198, 220, 220, 220, 37227, 42940, 262, 26678, 3689, 2672, 284, 2018, 284, 257, 2176, 14334, 5250, 16990, 526, 15931, 628, 220, 220, 220, 23991, 796, 705, 34219, 2625, 38892, 34219, 92, 14079, 14629, 14, 12001, 14, 8800, 1, 1220, 14629, 14, 8800, 14, 29821, 5250, 26678, 12, 11250, 6, 198, 220, 220, 220, 23991, 796, 23991, 1343, 705, 705, 1343, 45887, 1343, 705, 26, 8420, 657, 6, 198, 220, 220, 220, 3601, 7203, 45824, 3689, 23991, 1600, 23991, 8, 628, 220, 220, 220, 503, 796, 850, 14681, 13, 9122, 62, 22915, 7, 28758, 11, 336, 1082, 81, 28, 7266, 14681, 13, 36886, 11, 7582, 28, 17821, 8, 198, 220, 220, 220, 503, 796, 503, 13, 12501, 1098, 7203, 40477, 12, 23, 11074, 81, 36311, 3419, 198, 220, 220, 220, 3601, 7203, 45824, 3689, 5072, 1600, 503, 8, 628, 220, 220, 220, 26181, 796, 685, 82, 13, 36311, 22446, 35312, 10786, 705, 8, 329, 264, 287, 503, 13, 35312, 6615, 3419, 60, 198, 220, 220, 220, 2172, 796, 17635, 198, 220, 220, 220, 329, 2214, 287, 26181, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 58, 15, 60, 14512, 366, 17932, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 13, 33295, 7203, 28, 1911, 22179, 7, 3245, 4008, 628, 220, 220, 220, 2172, 796, 27444, 78, 366, 1343, 366, 532, 78, 27071, 22179, 7, 8738, 8, 198, 220, 220, 220, 3601, 7203, 45824, 3689, 44267, 1600, 2172, 8, 628, 220, 220, 220, 1441, 2172, 198 ]
2.429932
735
import gym import numpy as np from gym_framework.panda_ctrl.panda_mujoco_base_ctrl import PandaBase class PandaTorqueControl(PandaBase): """ Control the Panda robot by directly applying torques (control=torque). """ @property @property @property @property
[ 11748, 11550, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 11550, 62, 30604, 13, 79, 5282, 62, 44755, 13, 79, 5282, 62, 76, 23577, 25634, 62, 8692, 62, 44755, 1330, 41112, 14881, 628, 198, 4871, 41112, 15884, 4188, 15988, 7, 47, 5282, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6779, 262, 41112, 9379, 416, 3264, 11524, 7332, 13281, 357, 13716, 28, 13165, 4188, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 198 ]
2.939394
99
import plotly.express as px import plotly.io as pio import plotly.graph_objects as go from plotly.subplots import make_subplots import pandas as pd import numpy as np from agents import * from generators import * from CMDataLoader import CMDataLoader from Simulator import Simulator from plotutils import update_layout_wrapper import config import constants import random # my_palette = ["#264653","#9D1DC8","#287271", "#645DAC","#636EFA", "#ECA400","#FE484E","#8484E8", "#03b800" ,"#9251e1","#F4A261"] # my_palette = ["#54478c","#9D1DC8","#2c699a","#048ba8","#0db39e","#16db93","#83e377","#b9e769","#efea5a","#f1c453","#f29e4c"] my_palette = ["#1f00a7","#9d1dc8","#00589f","#009b86","#00a367","#67a300","#645dac","#eca400","#fd7e00","#b6322b", "#FE484E"] hardware_palette = ["#009b86", "#9D1DC8"] opex_palette = ["#9D1DC8","#264653","#8484E8"] primary_color = ["#9d1dc8"] if __name__ == '__main__': random.seed(1032009) np.random.seed(1032009) n_trials = 25 fee_params = CMDataLoader.get_historical_fee_params() block_subsidy = 6.25 historical_price_params = CMDataLoader.get_historical_price_params() get_summary_plots(historical_price_params, fee_params, block_subsidy, n_trials, "with Historical Parameters", "historical") bearish_price_params = (historical_price_params[0], -1 * abs(historical_price_params[1]), historical_price_params[2]) get_summary_plots(bearish_price_params, fee_params, block_subsidy, n_trials, "with Bearish Parameters", "bearish") corrections_price_params = (historical_price_params[0], 0, historical_price_params[2] * 1.25) get_summary_plots(corrections_price_params, fee_params, block_subsidy, n_trials, "in Bull Market with Corrections", "corrections") s9_s19_prices = {key: config.machine_prices[key] for key in [constants.MachineName.ANTMINER_S9, constants.MachineName.ANTMINER_S19]} get_summary_plots(historical_price_params, fee_params, block_subsidy, n_trials, "with Historical Parameters", "historical-machines", s9_s19_prices, [0.03], hardware_palette) get_summary_plots_opex(bearish_price_params, fee_params, block_subsidy, n_trials, "with Bearish Parameters", "bearish-opex", s9_s19_prices, [0.03, 0.04, 0.05], opex_palette)
[ 11748, 7110, 306, 13, 42712, 355, 279, 87, 198, 11748, 7110, 306, 13, 952, 355, 279, 952, 198, 11748, 7110, 306, 13, 34960, 62, 48205, 355, 467, 198, 6738, 7110, 306, 13, 7266, 489, 1747, 1330, 787, 62, 7266, 489, 1747, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 6554, 1330, 1635, 198, 6738, 27298, 1330, 1635, 198, 6738, 16477, 6601, 17401, 1330, 16477, 6601, 17401, 198, 6738, 13942, 1330, 13942, 198, 6738, 7110, 26791, 1330, 4296, 62, 39786, 62, 48553, 198, 11748, 4566, 198, 11748, 38491, 198, 11748, 4738, 198, 198, 2, 616, 62, 18596, 5857, 796, 14631, 2, 18897, 46435, 2430, 2, 24, 35, 16, 9697, 23, 2430, 2, 27800, 28977, 1600, 25113, 49259, 35, 2246, 2430, 2, 21, 2623, 36, 7708, 1600, 25113, 36600, 7029, 2430, 2, 15112, 34137, 36, 2430, 2, 23, 34137, 36, 23, 1600, 25113, 3070, 65, 7410, 1, 42911, 2, 24, 28072, 68, 16, 2430, 2, 37, 19, 32, 30057, 8973, 198, 2, 616, 62, 18596, 5857, 796, 14631, 2, 47576, 3695, 66, 2430, 2, 24, 35, 16, 9697, 23, 2430, 2, 17, 66, 47325, 64, 2430, 2, 47202, 7012, 23, 2430, 2, 15, 9945, 2670, 68, 2430, 2, 1433, 9945, 6052, 2430, 2, 5999, 68, 26514, 2430, 2, 65, 24, 68, 22, 3388, 2430, 2, 891, 18213, 20, 64, 2430, 2, 69, 16, 66, 36625, 2430, 2, 69, 1959, 68, 19, 66, 8973, 198, 1820, 62, 18596, 5857, 796, 14631, 2, 16, 69, 405, 64, 22, 2430, 2, 24, 67, 16, 17896, 23, 2430, 2, 405, 44169, 69, 2430, 2, 28694, 65, 4521, 2430, 2, 405, 64, 27824, 2430, 2, 3134, 64, 6200, 2430, 2, 49259, 67, 330, 2430, 2, 31047, 7029, 2430, 2, 16344, 22, 68, 405, 2430, 2, 65, 5066, 1828, 65, 1600, 25113, 15112, 34137, 36, 8973, 198, 10424, 1574, 62, 18596, 5857, 796, 14631, 2, 28694, 65, 4521, 1600, 25113, 24, 35, 16, 9697, 23, 8973, 198, 404, 1069, 62, 18596, 5857, 796, 14631, 2, 24, 35, 16, 9697, 23, 2430, 2, 18897, 46435, 2430, 2, 23, 34137, 36, 23, 8973, 198, 39754, 62, 8043, 796, 14631, 2, 24, 67, 16, 17896, 23, 8973, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4738, 13, 28826, 7, 15197, 10531, 8, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 15197, 10531, 8, 198, 220, 220, 220, 299, 62, 28461, 874, 796, 1679, 628, 220, 220, 220, 6838, 62, 37266, 796, 16477, 6601, 17401, 13, 1136, 62, 10034, 12409, 62, 39071, 62, 37266, 3419, 198, 220, 220, 220, 2512, 62, 7266, 82, 19325, 796, 718, 13, 1495, 628, 220, 220, 220, 6754, 62, 20888, 62, 37266, 796, 16477, 6601, 17401, 13, 1136, 62, 10034, 12409, 62, 20888, 62, 37266, 3419, 198, 220, 220, 220, 651, 62, 49736, 62, 489, 1747, 7, 10034, 12409, 62, 20888, 62, 37266, 11, 6838, 62, 37266, 11, 2512, 62, 7266, 82, 19325, 11, 299, 62, 28461, 874, 11, 366, 4480, 23121, 40117, 1600, 366, 10034, 12409, 4943, 628, 220, 220, 220, 6842, 680, 62, 20888, 62, 37266, 796, 357, 10034, 12409, 62, 20888, 62, 37266, 58, 15, 4357, 532, 16, 1635, 2352, 7, 10034, 12409, 62, 20888, 62, 37266, 58, 16, 46570, 6754, 62, 20888, 62, 37266, 58, 17, 12962, 198, 220, 220, 220, 651, 62, 49736, 62, 489, 1747, 7, 33227, 680, 62, 20888, 62, 37266, 11, 6838, 62, 37266, 11, 2512, 62, 7266, 82, 19325, 11, 299, 62, 28461, 874, 11, 366, 4480, 14732, 680, 40117, 1600, 366, 33227, 680, 4943, 628, 220, 220, 220, 26251, 62, 20888, 62, 37266, 796, 357, 10034, 12409, 62, 20888, 62, 37266, 58, 15, 4357, 657, 11, 6754, 62, 20888, 62, 37266, 58, 17, 60, 1635, 352, 13, 1495, 8, 198, 220, 220, 220, 651, 62, 49736, 62, 489, 1747, 7, 30283, 507, 62, 20888, 62, 37266, 11, 6838, 62, 37266, 11, 2512, 62, 7266, 82, 19325, 11, 299, 62, 28461, 874, 11, 366, 259, 8266, 5991, 351, 40526, 1600, 366, 30283, 507, 4943, 628, 220, 220, 220, 264, 24, 62, 82, 1129, 62, 1050, 1063, 796, 1391, 2539, 25, 4566, 13, 30243, 62, 1050, 1063, 58, 2539, 60, 329, 1994, 287, 685, 9979, 1187, 13, 37573, 5376, 13, 8643, 23678, 1137, 62, 50, 24, 11, 38491, 13, 37573, 5376, 13, 8643, 23678, 1137, 62, 50, 1129, 48999, 198, 220, 220, 220, 651, 62, 49736, 62, 489, 1747, 7, 10034, 12409, 62, 20888, 62, 37266, 11, 6838, 62, 37266, 11, 2512, 62, 7266, 82, 19325, 11, 299, 62, 28461, 874, 11, 366, 4480, 23121, 40117, 1600, 366, 10034, 12409, 12, 76, 620, 1127, 1600, 264, 24, 62, 82, 1129, 62, 1050, 1063, 11, 685, 15, 13, 3070, 4357, 6890, 62, 18596, 5857, 8, 628, 220, 220, 220, 651, 62, 49736, 62, 489, 1747, 62, 404, 1069, 7, 33227, 680, 62, 20888, 62, 37266, 11, 6838, 62, 37266, 11, 2512, 62, 7266, 82, 19325, 11, 299, 62, 28461, 874, 11, 366, 4480, 14732, 680, 40117, 1600, 366, 33227, 680, 12, 404, 1069, 1600, 264, 24, 62, 82, 1129, 62, 1050, 1063, 11, 685, 15, 13, 3070, 11, 657, 13, 3023, 11, 657, 13, 2713, 4357, 267, 24900, 62, 18596, 5857, 8, 198 ]
2.558857
875
__all__ = ( "extract_value", "extract_errors", ) from typing import ( cast, Any, Type, Union, List, ) from testplates.impl.value import ( MISSING, ) from testplates.impl.exceptions import ( TestplatesError, ) from .attrs import ( TESTPLATES_ERRORS_ATTR, TESTPLATES_VALUE_ATTR, ) def extract_value( instance: Any, ) -> Any: """ Extracts value. For internal use only. """ value = getattr(instance, TESTPLATES_VALUE_ATTR, MISSING) return value def extract_errors( cls_or_instance: Union[Type[Any], Any], ) -> List[TestplatesError]: """ Extracts errors. For internal use only. """ errors = getattr(cls_or_instance, TESTPLATES_ERRORS_ATTR, MISSING) if errors is MISSING: setattr(cls_or_instance, TESTPLATES_ERRORS_ATTR, errors := list()) return cast(List[TestplatesError], errors)
[ 834, 439, 834, 796, 357, 198, 220, 220, 220, 366, 2302, 974, 62, 8367, 1600, 198, 220, 220, 220, 366, 2302, 974, 62, 48277, 1600, 198, 8, 198, 198, 6738, 19720, 1330, 357, 198, 220, 220, 220, 3350, 11, 198, 220, 220, 220, 4377, 11, 198, 220, 220, 220, 5994, 11, 198, 220, 220, 220, 4479, 11, 198, 220, 220, 220, 7343, 11, 198, 8, 198, 198, 6738, 1332, 17041, 13, 23928, 13, 8367, 1330, 357, 198, 220, 220, 220, 49684, 2751, 11, 198, 8, 198, 198, 6738, 1332, 17041, 13, 23928, 13, 1069, 11755, 1330, 357, 198, 220, 220, 220, 6208, 17041, 12331, 11, 198, 8, 198, 198, 6738, 764, 1078, 3808, 1330, 357, 198, 220, 220, 220, 43001, 6489, 29462, 62, 24908, 50, 62, 1404, 5446, 11, 198, 220, 220, 220, 43001, 6489, 29462, 62, 39488, 62, 1404, 5446, 11, 198, 8, 628, 198, 4299, 7925, 62, 8367, 7, 198, 220, 220, 220, 4554, 25, 4377, 11, 198, 8, 4613, 4377, 25, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 82, 1988, 13, 198, 220, 220, 220, 1114, 5387, 779, 691, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1988, 796, 651, 35226, 7, 39098, 11, 43001, 6489, 29462, 62, 39488, 62, 1404, 5446, 11, 49684, 2751, 8, 628, 220, 220, 220, 1441, 1988, 628, 198, 4299, 7925, 62, 48277, 7, 198, 220, 220, 220, 537, 82, 62, 273, 62, 39098, 25, 4479, 58, 6030, 58, 7149, 4357, 4377, 4357, 198, 8, 4613, 7343, 58, 14402, 17041, 12331, 5974, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 82, 8563, 13, 198, 220, 220, 220, 1114, 5387, 779, 691, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 8563, 796, 651, 35226, 7, 565, 82, 62, 273, 62, 39098, 11, 43001, 6489, 29462, 62, 24908, 50, 62, 1404, 5446, 11, 49684, 2751, 8, 628, 220, 220, 220, 611, 8563, 318, 49684, 2751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 565, 82, 62, 273, 62, 39098, 11, 43001, 6489, 29462, 62, 24908, 50, 62, 1404, 5446, 11, 8563, 19039, 1351, 28955, 628, 220, 220, 220, 1441, 3350, 7, 8053, 58, 14402, 17041, 12331, 4357, 8563, 8, 198 ]
2.447154
369
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: projection_shift :platform: Unix :synopsis: Calculate horizontal and vertical shifts in the projection\ images over time, using template matching. .. moduleauthor:: Nicola Wadeson <[email protected]> """ import logging import numpy as np from skimage.feature import match_template, match_descriptors, ORB from scipy.linalg import lstsq from skimage.transform import AffineTransform from skimage.measure import ransac from savu.plugins.utils import register_plugin from savu.plugins.filters.base_filter import BaseFilter from savu.plugins.driver.cpu_plugin import CpuPlugin @register_plugin class ProjectionShift(BaseFilter, CpuPlugin): """ """
[ 2, 15069, 1946, 13566, 4401, 8090, 12052, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 492, 8265, 3712, 20128, 62, 30846, 198, 220, 220, 1058, 24254, 25, 33501, 198, 220, 220, 1058, 28869, 24608, 25, 27131, 378, 16021, 290, 11723, 15381, 287, 262, 20128, 59, 198, 220, 220, 220, 220, 220, 220, 4263, 625, 640, 11, 1262, 11055, 12336, 13, 198, 198, 492, 8265, 9800, 3712, 40396, 370, 2367, 261, 1279, 41355, 43776, 31, 67, 8446, 13, 330, 13, 2724, 29, 198, 198, 37811, 198, 198, 11748, 18931, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 9060, 13, 30053, 1330, 2872, 62, 28243, 11, 2872, 62, 20147, 1968, 669, 11, 6375, 33, 198, 6738, 629, 541, 88, 13, 75, 1292, 70, 1330, 300, 6448, 80, 198, 6738, 1341, 9060, 13, 35636, 1330, 6708, 500, 41762, 198, 6738, 1341, 9060, 13, 1326, 5015, 1330, 374, 504, 330, 198, 198, 6738, 6799, 84, 13, 37390, 13, 26791, 1330, 7881, 62, 33803, 198, 6738, 6799, 84, 13, 37390, 13, 10379, 1010, 13, 8692, 62, 24455, 1330, 7308, 22417, 198, 6738, 6799, 84, 13, 37390, 13, 26230, 13, 36166, 62, 33803, 1330, 327, 19944, 37233, 628, 198, 31, 30238, 62, 33803, 198, 4871, 4935, 295, 33377, 7, 14881, 22417, 11, 327, 19944, 37233, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37227, 198 ]
3.578947
361
import torch # cand_ids = torch.randint(0,10000,(10,)) # print(cand_ids.dtype) # print(cand_ids.shape) scores = torch.Tensor([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]]) a=scores[0:2] # print(a) # print(scores.dtype) # print(scores.shape) # scores[[1,2,3]] # with torch.autograd.profiler.profile(record_shapes=True) as prof: # print(scores[[1,2],[0,2]]) # print(prof.key_averages(group_by_input_shape=True).table(sort_by="self_cpu_time_total"))
[ 11748, 28034, 628, 198, 2, 2658, 62, 2340, 796, 28034, 13, 25192, 600, 7, 15, 11, 49388, 11, 7, 940, 11, 4008, 198, 2, 3601, 7, 46188, 62, 2340, 13, 67, 4906, 8, 198, 2, 3601, 7, 46188, 62, 2340, 13, 43358, 8, 198, 1416, 2850, 796, 28034, 13, 51, 22854, 26933, 58, 657, 11, 220, 352, 11, 220, 362, 38430, 513, 11, 220, 604, 11, 220, 642, 38430, 718, 11, 220, 767, 11, 220, 807, 38430, 860, 11, 838, 11, 1367, 11907, 8, 198, 198, 64, 28, 1416, 2850, 58, 15, 25, 17, 60, 198, 2, 3601, 7, 64, 8, 198, 2, 3601, 7, 1416, 2850, 13, 67, 4906, 8, 198, 2, 3601, 7, 1416, 2850, 13, 43358, 8, 198, 2, 8198, 30109, 16, 11, 17, 11, 18, 11907, 198, 2, 351, 28034, 13, 2306, 519, 6335, 13, 5577, 5329, 13, 13317, 7, 22105, 62, 1477, 7916, 28, 17821, 8, 355, 1534, 25, 198, 2, 3601, 7, 1416, 2850, 30109, 16, 11, 17, 38430, 15, 11, 17, 11907, 8, 198, 2, 3601, 7, 5577, 13, 2539, 62, 8770, 1095, 7, 8094, 62, 1525, 62, 15414, 62, 43358, 28, 17821, 737, 11487, 7, 30619, 62, 1525, 2625, 944, 62, 36166, 62, 2435, 62, 23350, 48774, 198 ]
2.223301
206
import csv from decimal import Decimal from itertools import islice from datetime import datetime, timedelta import pytest from bs4 import BeautifulSoup from src.jamberry.workstation import extract_shipping_address, extract_line_items, parse_order_row_soup, \ JamberryWorkstation # uncomment these lines to see requests # import logging # logging.basicConfig(level=logging.DEBUG) @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.usefixtures('order_detail_html') @pytest.mark.usefixtures('order_detail_html') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.usefixtures('order_row_html') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws')
[ 11748, 269, 21370, 198, 6738, 32465, 1330, 4280, 4402, 198, 198, 6738, 340, 861, 10141, 1330, 318, 75, 501, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 11748, 12972, 9288, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 198, 6738, 12351, 13, 73, 7789, 563, 13, 1818, 17529, 1330, 7925, 62, 1477, 4501, 62, 21975, 11, 7925, 62, 1370, 62, 23814, 11, 21136, 62, 2875, 62, 808, 62, 82, 10486, 11, 3467, 198, 220, 220, 220, 449, 7789, 563, 12468, 17529, 628, 198, 2, 8820, 434, 777, 3951, 284, 766, 7007, 198, 2, 1330, 18931, 198, 2, 18931, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 30531, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 2875, 62, 49170, 62, 6494, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 2875, 62, 49170, 62, 6494, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 2875, 62, 808, 62, 6494, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 25119, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 18504, 11537, 198 ]
2.731707
369
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2020-03-28 11:49 from __future__ import unicode_literals from django.db import migrations
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 319, 12131, 12, 3070, 12, 2078, 1367, 25, 2920, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.754717
53
""" clustering_utils.py: utilitary functions for the clustering.py module. """ import numpy as np from enum import IntEnum from .utils import find_in_sequence class Link(IntEnum): """ Represents state of coreferring links. Must be negative integers to not interfere with the clustering process. """ NO_ANTECEDENT = -1 PROCESSED = -2 def cluster_labels_to_entity_clusters(cluster_labels): """ @cluster_labels is the second return from the affinity_matrix computation, and cluster_labels[mention_idx] = mention's cluster """ clusters = dict() for idx, label in enumerate(cluster_labels): if label not in clusters: clusters[label] = list() clusters[label].append(idx) return [clusters[key] for key in clusters.keys()] def coreference_links_to_entity_clusters(links): """ Transforms the given array of coreference links into a set of entities (mention clusters). Each entity/cluster is represented by the mentions' indices. """ clusters = [] for i in range(len(links) - 1, -1, -1): new_cluster = set() j = i while True: antecedent = links[j] links[j] = Link.PROCESSED new_cluster.add(j) # end of coreference link if antecedent == Link.NO_ANTECEDENT: clusters.append(new_cluster) break # linking to previously processed cluster elif antecedent == Link.PROCESSED: previous_cluster_idx = find_in_sequence(lambda s: j in s, clusters) clusters[previous_cluster_idx].update(new_cluster) break j = antecedent return clusters def generate_affinity_matrix(document, mention_pair_predictions): """ Generates an affinity/similarity matrix from the given mention-pair scores. @returns affinity_matrix[m1_idx, m2_idx] = affinity_score """ num_mentions = len(document.mentions) affinity_matrix = np.ndarray(shape=(num_mentions, num_mentions), dtype=np.float32) affinity_matrix.fill(0) for idx in range(len(mention_pair_predictions)): i1, i2 = document.pairwise_combinations[idx] affinity_matrix[i1,i2] = mention_pair_predictions[idx] affinity_matrix[i2,i1] = mention_pair_predictions[idx] return affinity_matrix
[ 37811, 198, 565, 436, 1586, 62, 26791, 13, 9078, 25, 3384, 18748, 5499, 329, 262, 32966, 1586, 13, 9078, 8265, 13, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 33829, 1330, 2558, 4834, 388, 198, 6738, 764, 26791, 1330, 1064, 62, 259, 62, 43167, 628, 198, 4871, 7502, 7, 5317, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1432, 6629, 1181, 286, 4755, 2232, 1806, 6117, 13, 198, 220, 220, 220, 12039, 307, 4633, 37014, 284, 407, 18135, 351, 262, 32966, 1586, 1429, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8005, 62, 8643, 2943, 1961, 3525, 220, 220, 796, 532, 16, 198, 220, 220, 220, 41755, 7597, 1961, 220, 220, 220, 220, 220, 220, 796, 532, 17, 628, 198, 4299, 13946, 62, 23912, 1424, 62, 1462, 62, 26858, 62, 565, 13654, 7, 565, 5819, 62, 23912, 1424, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 565, 5819, 62, 23912, 1424, 318, 262, 1218, 1441, 422, 262, 28430, 62, 6759, 8609, 29964, 11, 198, 220, 220, 220, 220, 290, 13946, 62, 23912, 1424, 58, 434, 295, 62, 312, 87, 60, 796, 3068, 338, 13946, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23163, 796, 8633, 3419, 198, 220, 220, 220, 329, 4686, 87, 11, 6167, 287, 27056, 378, 7, 565, 5819, 62, 23912, 1424, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6167, 407, 287, 23163, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23163, 58, 18242, 60, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 23163, 58, 18242, 4083, 33295, 7, 312, 87, 8, 628, 220, 220, 220, 1441, 685, 565, 13654, 58, 2539, 60, 329, 1994, 287, 23163, 13, 13083, 3419, 60, 628, 198, 4299, 4755, 4288, 62, 28751, 62, 1462, 62, 26858, 62, 565, 13654, 7, 28751, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3602, 23914, 262, 1813, 7177, 286, 4755, 4288, 6117, 656, 257, 900, 286, 12066, 357, 434, 295, 23163, 737, 198, 220, 220, 220, 5501, 9312, 14, 565, 5819, 318, 7997, 416, 262, 15802, 6, 36525, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23163, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 28751, 8, 532, 352, 11, 532, 16, 11, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 565, 5819, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 474, 796, 1312, 628, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29692, 771, 298, 796, 6117, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6117, 58, 73, 60, 796, 7502, 13, 4805, 4503, 7597, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 565, 5819, 13, 2860, 7, 73, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 886, 286, 4755, 4288, 2792, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29692, 771, 298, 6624, 7502, 13, 15285, 62, 8643, 2943, 1961, 3525, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23163, 13, 33295, 7, 3605, 62, 565, 5819, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17795, 284, 4271, 13686, 13946, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 29692, 771, 298, 6624, 7502, 13, 4805, 4503, 7597, 1961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2180, 62, 565, 5819, 62, 312, 87, 796, 1064, 62, 259, 62, 43167, 7, 50033, 264, 25, 474, 287, 264, 11, 23163, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23163, 58, 3866, 1442, 62, 565, 5819, 62, 312, 87, 4083, 19119, 7, 3605, 62, 565, 5819, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 29692, 771, 298, 628, 220, 220, 220, 1441, 23163, 198, 220, 220, 220, 220, 198, 198, 4299, 7716, 62, 2001, 6269, 62, 6759, 8609, 7, 22897, 11, 3068, 62, 24874, 62, 28764, 9278, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 689, 281, 28430, 14, 38610, 414, 17593, 422, 262, 1813, 3068, 12, 24874, 8198, 13, 198, 220, 220, 220, 2488, 7783, 82, 28430, 62, 6759, 8609, 58, 76, 16, 62, 312, 87, 11, 285, 17, 62, 312, 87, 60, 796, 28430, 62, 26675, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 997, 62, 434, 507, 796, 18896, 7, 22897, 13, 434, 507, 8, 198, 220, 220, 220, 28430, 62, 6759, 8609, 796, 45941, 13, 358, 18747, 7, 43358, 16193, 22510, 62, 434, 507, 11, 997, 62, 434, 507, 828, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 28430, 62, 6759, 8609, 13, 20797, 7, 15, 8, 628, 220, 220, 220, 329, 4686, 87, 287, 2837, 7, 11925, 7, 434, 295, 62, 24874, 62, 28764, 9278, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 16, 11, 1312, 17, 796, 3188, 13, 24874, 3083, 62, 24011, 7352, 58, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 28430, 62, 6759, 8609, 58, 72, 16, 11, 72, 17, 60, 796, 3068, 62, 24874, 62, 28764, 9278, 58, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 28430, 62, 6759, 8609, 58, 72, 17, 11, 72, 16, 60, 796, 3068, 62, 24874, 62, 28764, 9278, 58, 312, 87, 60, 628, 220, 220, 220, 1441, 28430, 62, 6759, 8609, 198 ]
2.395792
998