content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
intgr = 11 flt = 11.11 stng = "Eleven" tple = (1,2) lst = [1,2,3,4,5] h_i = hash(intgr) h_f = hash(flt) h_s = hash(stng) h_t = hash(tple) #h_l = hash(lst) print("hash of {} is {} ".format(intgr,h_i)) print("hash of {} is {} ".format(flt,h_f)) print("hash of {} is {} ".format(stng,h_s)) print("hash of {} is {} ".format(tple,h_t)) # print(h_l) list hash hoy na
[ 600, 2164, 796, 1367, 198, 69, 2528, 220, 220, 796, 1367, 13, 1157, 198, 301, 782, 220, 796, 366, 28827, 574, 1, 198, 83, 1154, 220, 796, 357, 16, 11, 17, 8, 198, 75, 301, 220, 220, 796, 685, 16, 11, 17, 11, 18, 11, 19, 11, 20, 60, 198, 198, 71, 62, 72, 796, 12234, 7, 600, 2164, 8, 220, 198, 71, 62, 69, 796, 12234, 7, 69, 2528, 8, 220, 198, 71, 62, 82, 796, 12234, 7, 301, 782, 8, 198, 71, 62, 83, 796, 12234, 7, 83, 1154, 8, 220, 198, 2, 71, 62, 75, 796, 12234, 7, 75, 301, 8, 220, 198, 198, 4798, 7203, 17831, 286, 23884, 318, 23884, 27071, 18982, 7, 600, 2164, 11, 71, 62, 72, 4008, 198, 4798, 7203, 17831, 286, 23884, 318, 23884, 27071, 18982, 7, 69, 2528, 11, 71, 62, 69, 4008, 198, 4798, 7203, 17831, 286, 23884, 318, 23884, 27071, 18982, 7, 301, 782, 11, 71, 62, 82, 4008, 198, 4798, 7203, 17831, 286, 23884, 318, 23884, 27071, 18982, 7, 83, 1154, 11, 71, 62, 83, 4008, 198, 2, 220, 3601, 7, 71, 62, 75, 8, 1351, 12234, 289, 726, 12385 ]
1.942708
192
""" Display a line depicting a noisy signal consisting of a lot of points. """ import numpy as np import pygfx as gfx from PySide6 import QtWidgets from wgpu.gui.qt import WgpuCanvas app = QtWidgets.QApplication([]) canvas = WgpuCanvas() renderer = gfx.WgpuRenderer(canvas) scene = gfx.Scene() # todo: crank this to 1M when wgpu allows it :D x = np.linspace(0, 100, 10_000, dtype=np.float32) y = np.sin(x) * 30 + np.random.normal(0, 5, len(x)).astype(np.float32) positions = np.column_stack([x, y, np.zeros_like(x)]) geometry = gfx.Geometry(positions=positions) material = gfx.LineMaterial(thickness=2.0, color=(0.0, 0.7, 0.3, 1.0)) line = gfx.Line(geometry, material) scene.add(line) camera = gfx.OrthographicCamera(110, 110) camera.position.set(50, 0, 0) if __name__ == "__main__": canvas.request_draw(lambda: renderer.render(scene, camera)) app.exec()
[ 37811, 198, 23114, 257, 1627, 27561, 257, 31210, 6737, 17747, 286, 257, 1256, 286, 2173, 13, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 12972, 70, 21373, 355, 308, 21373, 198, 198, 6738, 9485, 24819, 21, 1330, 33734, 54, 312, 11407, 198, 6738, 266, 46999, 13, 48317, 13, 39568, 1330, 370, 46999, 6090, 11017, 198, 198, 1324, 796, 33734, 54, 312, 11407, 13, 48, 23416, 26933, 12962, 198, 198, 5171, 11017, 796, 370, 46999, 6090, 11017, 3419, 198, 10920, 11882, 796, 308, 21373, 13, 54, 46999, 49, 437, 11882, 7, 5171, 11017, 8, 198, 198, 29734, 796, 308, 21373, 13, 36542, 3419, 198, 198, 2, 284, 4598, 25, 30425, 428, 284, 352, 44, 618, 266, 46999, 3578, 340, 1058, 35, 198, 87, 796, 45941, 13, 21602, 10223, 7, 15, 11, 1802, 11, 838, 62, 830, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 88, 796, 45941, 13, 31369, 7, 87, 8, 1635, 1542, 1343, 45941, 13, 25120, 13, 11265, 7, 15, 11, 642, 11, 18896, 7, 87, 29720, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 198, 1930, 1756, 796, 45941, 13, 28665, 62, 25558, 26933, 87, 11, 331, 11, 45941, 13, 9107, 418, 62, 2339, 7, 87, 8, 12962, 198, 469, 15748, 796, 308, 21373, 13, 10082, 15748, 7, 1930, 1756, 28, 1930, 1756, 8, 198, 198, 33665, 796, 308, 21373, 13, 13949, 17518, 7, 400, 624, 1108, 28, 17, 13, 15, 11, 3124, 16193, 15, 13, 15, 11, 657, 13, 22, 11, 657, 13, 18, 11, 352, 13, 15, 4008, 198, 1370, 796, 308, 21373, 13, 13949, 7, 469, 15748, 11, 2587, 8, 198, 29734, 13, 2860, 7, 1370, 8, 628, 198, 25695, 796, 308, 21373, 13, 5574, 400, 6826, 35632, 7, 11442, 11, 9796, 8, 198, 25695, 13, 9150, 13, 2617, 7, 1120, 11, 657, 11, 657, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 21978, 13, 25927, 62, 19334, 7, 50033, 25, 9851, 11882, 13, 13287, 7, 29734, 11, 4676, 4008, 198, 220, 220, 220, 598, 13, 18558, 3419, 198 ]
2.502857
350
from rest_framework.serializers import ModelSerializer from rocket_erp.apps.accounts.models import Account class AccountSerializer(ModelSerializer): """Serializer for account app, with all fields."""
[ 6738, 1334, 62, 30604, 13, 46911, 11341, 1330, 9104, 32634, 7509, 198, 198, 6738, 10701, 62, 263, 79, 13, 18211, 13, 23317, 82, 13, 27530, 1330, 10781, 628, 198, 4871, 10781, 32634, 7509, 7, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 32634, 7509, 329, 1848, 598, 11, 351, 477, 7032, 526, 15931, 198 ]
3.763636
55
__description__ = \ """ Main class for holding fit parameters, including guesses, values, ranges, etc. """ __date__ = "2016-09-02" __author__ = "Michael J. Harms" import copy import numpy as np class FitParameter: """ Class for storing and manipulating generic fit parameters. """ def __init__(self,name,guess=None,fixed=False,bounds=None,alias=None): """ Initialize class. Parameters: name: name of parameter (string) guess: parameter guess (float). If None, class will guess intelligently based on the parameter name. If no intelligent guess is available, guess will be set to 1.0. fixed: whether or not the parameter is fixed (bool) bounds: bounds on fit for parameter (list-like object of 2 floats). If None, bounds will be set to (None,None). If (None,5), no lower bound, upper bound of 5. alias: alias for parameter name, for linking to global paramter names. (str) If None, no alias is made. """ self.name = name self.guess = guess self.fixed = fixed self.bounds = bounds self.alias = alias #-------------------------------------------------------------------------- # parameter name @property def name(self): """ Name of the parameter. """ try: return self._name except AttributeError: return None #-------------------------------------------------------------------------- # parameter value @property def value(self): """ Value of the parameter. """ try: return self._value except AttributeError: return None @value.setter def value(self,value=None): """ If value is set to None, set value to self.guess value. """ if value is None: self._value = self.guess else: try: value = np.float(value) except ValueError: err = f"parameter value '{value}' cannot be interpretable as a float\n" raise ValueError(err) self._value = value #-------------------------------------------------------------------------- # parameter stdev @property def stdev(self): """ Standard deviation on the parameter. """ return self._stdev @stdev.setter def stdev(self,s): """ Set the standard deviation of the parameter. """ self._stdev = s #-------------------------------------------------------------------------- # parameter 95% confidence @property def ninetyfive(self): """ 95% confidence interval on the parameter. """ return self._ninetyfive @ninetyfive.setter def ninetyfive(self,value): """ Set the 95% confidence interval on the parameter. """ if len(value) != 2: err = "ninetyfive requires a list-like with length 2.\n" raise ValueError(err) self._ninetyfive[0] = value[0] self._ninetyfive[1] = value[1] #-------------------------------------------------------------------------- # parameter guess @property def guess(self): """ Guess for the parameter. """ return self._guess @guess.setter def guess(self,g): """ Set the guess. If None, choose intelligently based on the name of the parameter. """ if g != None: self._guess = g else: if self.name.startswith("dH"): self._guess = 1000.0 elif self.name.startswith("beta") or self.name.startswith("K"): self._guess = 1e6 elif self.name.startswith("fx"): self._guess = 1.0 else: self._guess = 1.0 self._value = self._guess #-------------------------------------------------------------------------- # parameter fixed-ness. @property def fixed(self): """ Whether or not the parameter if fixed. """ return self._fixed @fixed.setter def fixed(self,bool_value): """ Fix or unfix the parameter. """ self._fixed = bool(bool_value) self._initialize_fit_results() #-------------------------------------------------------------------------- # bounds for fit. @property def bounds(self): """ Fit bounds. Either list of bounds or None. """ return self._bounds @bounds.setter def bounds(self,b): """ Set fit bounds. """ if b != None: try: if len(b) != 2: raise TypeError except TypeError: err = "Bounds must be list-like object of length 2\n" raise ValueError(err) self._bounds = tuple(copy.deepcopy(b)) else: self._bounds = (-np.inf,np.inf) #-------------------------------------------------------------------------- # parameter alias @property def alias(self): """ Parameter alias. Either string or None. """ return self._alias @alias.setter def alias(self,a): """ Set alias. """ try: if self._alias != None and self._alias != a and a != None: err = "Could not set alias to {:} because it is already set to {:}".format(a,self._alias) raise ValueError(err) except AttributeError: pass self._alias = a
[ 834, 11213, 834, 796, 3467, 198, 37811, 198, 13383, 1398, 329, 4769, 4197, 10007, 11, 1390, 44774, 11, 3815, 11, 16069, 11, 3503, 13, 198, 37811, 198, 834, 4475, 834, 796, 366, 5304, 12, 2931, 12, 2999, 1, 198, 834, 9800, 834, 796, 366, 13256, 449, 13, 2113, 907, 1, 198, 198, 11748, 4866, 198, 11748, 299, 32152, 355, 45941, 198, 198, 4871, 25048, 36301, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 329, 23069, 290, 29349, 14276, 4197, 10007, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3672, 11, 5162, 408, 28, 14202, 11, 34021, 28, 25101, 11, 65, 3733, 28, 14202, 11, 26011, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 1398, 13, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 1438, 286, 11507, 357, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4724, 25, 11507, 4724, 357, 22468, 737, 220, 1002, 6045, 11, 1398, 481, 4724, 10878, 1473, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1912, 319, 262, 11507, 1438, 13, 220, 1002, 645, 12661, 4724, 318, 1695, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4724, 481, 307, 900, 284, 352, 13, 15, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5969, 25, 1771, 393, 407, 262, 11507, 318, 5969, 357, 30388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22303, 25, 22303, 319, 4197, 329, 11507, 357, 4868, 12, 2339, 2134, 286, 362, 36016, 737, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 22303, 481, 307, 900, 284, 357, 14202, 11, 14202, 737, 220, 1002, 357, 14202, 11, 20, 828, 645, 2793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5421, 11, 6727, 5421, 286, 642, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16144, 25, 16144, 329, 11507, 1438, 11, 329, 17795, 284, 3298, 5772, 353, 3891, 13, 357, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 645, 16144, 318, 925, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5162, 408, 796, 4724, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34021, 796, 5969, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 3733, 796, 22303, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26011, 796, 16144, 628, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 11507, 1438, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 11507, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1988, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 286, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 2488, 8367, 13, 2617, 353, 198, 220, 220, 220, 825, 1988, 7, 944, 11, 8367, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 1988, 318, 900, 284, 6045, 11, 900, 1988, 284, 2116, 13, 5162, 408, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8367, 796, 2116, 13, 5162, 408, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 45941, 13, 22468, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 796, 277, 1, 17143, 2357, 1988, 705, 90, 8367, 92, 6, 2314, 307, 6179, 540, 355, 257, 12178, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 8056, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8367, 796, 1988, 628, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 11507, 336, 7959, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 336, 7959, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8997, 28833, 319, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 301, 7959, 628, 220, 220, 220, 2488, 301, 7959, 13, 2617, 353, 198, 220, 220, 220, 825, 336, 7959, 7, 944, 11, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 3210, 28833, 286, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 301, 7959, 796, 264, 628, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 11507, 6957, 4, 6628, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 37989, 13261, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6957, 4, 6628, 16654, 319, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 35073, 2963, 13261, 628, 220, 220, 220, 2488, 35073, 2963, 13261, 13, 2617, 353, 198, 220, 220, 220, 825, 37989, 13261, 7, 944, 11, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 6957, 4, 6628, 16654, 319, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 8367, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 796, 366, 35073, 2963, 13261, 4433, 257, 1351, 12, 2339, 351, 4129, 362, 13, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 8056, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 35073, 2963, 13261, 58, 15, 60, 796, 1988, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 35073, 2963, 13261, 58, 16, 60, 796, 1988, 58, 16, 60, 628, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 11507, 4724, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4724, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37571, 329, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 5162, 408, 628, 220, 220, 220, 2488, 5162, 408, 13, 2617, 353, 198, 220, 220, 220, 825, 4724, 7, 944, 11, 70, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 4724, 13, 220, 1002, 6045, 11, 3853, 10878, 1473, 1912, 319, 262, 1438, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 308, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5162, 408, 796, 308, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3672, 13, 9688, 2032, 342, 7203, 67, 39, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5162, 408, 796, 8576, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 3672, 13, 9688, 2032, 342, 7203, 31361, 4943, 393, 2116, 13, 3672, 13, 9688, 2032, 342, 7203, 42, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5162, 408, 796, 352, 68, 21, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 3672, 13, 9688, 2032, 342, 7203, 21373, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5162, 408, 796, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5162, 408, 796, 352, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8367, 796, 2116, 13557, 5162, 408, 628, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 11507, 5969, 12, 1108, 13, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5969, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10127, 393, 407, 262, 11507, 611, 5969, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 34021, 628, 220, 220, 220, 2488, 34021, 13, 2617, 353, 198, 220, 220, 220, 825, 5969, 7, 944, 11, 30388, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13268, 393, 3684, 844, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34021, 796, 20512, 7, 30388, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 36733, 1096, 62, 11147, 62, 43420, 3419, 628, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 22303, 329, 4197, 13, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 22303, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25048, 22303, 13, 220, 15467, 1351, 286, 22303, 393, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 65, 3733, 628, 220, 220, 220, 2488, 65, 3733, 13, 2617, 353, 198, 220, 220, 220, 825, 22303, 7, 944, 11, 65, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 4197, 22303, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 275, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 65, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 796, 366, 33, 3733, 1276, 307, 1351, 12, 2339, 2134, 286, 4129, 362, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 8056, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 65, 3733, 796, 46545, 7, 30073, 13, 22089, 30073, 7, 65, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 65, 3733, 796, 13841, 37659, 13, 10745, 11, 37659, 13, 10745, 8, 628, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 11507, 16144, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 16144, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25139, 2357, 16144, 13, 220, 15467, 4731, 393, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 26011, 628, 220, 220, 220, 2488, 26011, 13, 2617, 353, 198, 220, 220, 220, 825, 16144, 7, 944, 11, 64, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 16144, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 26011, 14512, 6045, 290, 2116, 13557, 26011, 14512, 257, 290, 257, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 796, 366, 23722, 407, 900, 16144, 284, 46110, 92, 780, 340, 318, 1541, 900, 284, 46110, 92, 1911, 18982, 7, 64, 11, 944, 13557, 26011, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 8056, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 26011, 796, 257, 198 ]
2.3232
2,500
from abc import abstractmethod from collections import OrderedDict import os import pickle import re from typing import Tuple, Union import pandas as pd import numpy as np import gym from gridworld.log import logger from gridworld import ComponentEnv from gridworld.utils import to_scaled, to_raw, maybe_rescale_box_space from gridworld.agents.buildings.obs_space import make_obs_space from gridworld.agents.buildings import defaults from gridworld.agents.buildings import five_zone_rom_dynamics as dyn # Below are control variables' boundary. MAX_FLOW_RATE = [2.2, 2.2, 2.2, 2.2, 3.2] # Max flow rate for each individual zone MIN_FLOW_RATE = [.22, .22, .22, .22, .32] # Max flow rate for each individual zone MAX_TOTAL_FLOW_RATE = 10.0 # Total flow rate for all zones should be lower than 10 kg/sec. MAX_DISCHARGE_TEMP = 16.0 # Max temp of air leaving chiller MIN_DISCHARGE_TEMP = 10.0 # Min temp of air leaving chiller DEFAULT_COMFORT_BOUNDS = (22., 28.) # Temps between these values are considered "comfortable" def load_data(start_time: str = None, end_time: str = None) -> Tuple[pd.DataFrame, dict]: """Returns exogenous data dataframe, and state space model (per-zone) dict.""" THIS_DIR = os.path.dirname(os.path.abspath(__file__)) df = pd.read_csv(os.path.join(THIS_DIR, "data/exogenous_data.csv"), index_col=0) df.index = pd.DatetimeIndex(df.index) start_time = pd.Timestamp(start_time) if start_time else df.index[0] end_time = pd.Timestamp(end_time) if end_time else df.index[-1] _df = df.loc[start_time:end_time] if _df is None or len(_df) == 0: raise ValueError( f"start and/or end times ({start_time}, {end_time}) " + "resulted in empty dataframe. First and last indices are " + f"({df.index[0]}, {df.index[-1]}), choose values in this range.") with open(os.path.join(THIS_DIR, "data/state_space_model.p"), "rb") as f: models = pickle.load(f) return _df, models def get_col(df, pattern, index=None): """Returns a dataframe with columns matching regex pattern.""" return df[[c for c in df.columns if re.match(pattern, c)]].values class FiveZoneROMThermalEnergyEnv(FiveZoneROMEnv): """Subclass with identical physics, but that balances energy and comfort costs.""" def step_reward(self) -> Tuple[float, dict]: """Overwriting reward to balance energy and comfort.""" alpha = 0.2 energy_consumption_reward = -self.state["p_consumed"] / 12.0 comfort_error = [ max(self.state["zone_upper_viol_{}".format(i)], self.state["zone_lower_viol_{}".format(i)], 0.0) for i in range(self.num_zones) ] comfort_reward = -(sum([x**2 for x in comfort_error])) reward = alpha * energy_consumption_reward * 0.5 + (1. - alpha) * comfort_reward meta = { "comfort_rew": comfort_reward, "energy_rew": energy_consumption_reward } return reward, meta if __name__ == '__main__': env = FiveZoneROMThermalEnergyEnv() obs = env.reset() print(obs)
[ 6738, 450, 66, 1330, 12531, 24396, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 302, 198, 6738, 19720, 1330, 309, 29291, 11, 4479, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 11550, 198, 198, 6738, 10706, 6894, 13, 6404, 1330, 49706, 198, 6738, 10706, 6894, 1330, 35100, 4834, 85, 198, 6738, 10706, 6894, 13, 26791, 1330, 284, 62, 1416, 3021, 11, 284, 62, 1831, 11, 3863, 62, 411, 38765, 62, 3524, 62, 13200, 198, 6738, 10706, 6894, 13, 49638, 13, 11249, 654, 13, 8158, 62, 13200, 1330, 787, 62, 8158, 62, 13200, 198, 6738, 10706, 6894, 13, 49638, 13, 11249, 654, 1330, 26235, 198, 6738, 10706, 6894, 13, 49638, 13, 11249, 654, 1330, 1936, 62, 11340, 62, 398, 62, 67, 4989, 873, 355, 37860, 628, 198, 2, 10383, 389, 1630, 9633, 6, 18645, 13, 198, 22921, 62, 3697, 3913, 62, 49, 6158, 796, 685, 17, 13, 17, 11, 362, 13, 17, 11, 362, 13, 17, 11, 362, 13, 17, 11, 513, 13, 17, 60, 220, 1303, 5436, 5202, 2494, 329, 1123, 1981, 6516, 198, 23678, 62, 3697, 3913, 62, 49, 6158, 796, 685, 13, 1828, 11, 764, 1828, 11, 764, 1828, 11, 764, 1828, 11, 764, 2624, 60, 220, 1303, 5436, 5202, 2494, 329, 1123, 1981, 6516, 198, 22921, 62, 51, 27510, 62, 3697, 3913, 62, 49, 6158, 796, 838, 13, 15, 220, 1303, 7472, 5202, 2494, 329, 477, 14123, 815, 307, 2793, 621, 838, 14211, 14, 2363, 13, 198, 22921, 62, 26288, 38019, 8264, 62, 51, 39494, 796, 1467, 13, 15, 220, 220, 1303, 5436, 20218, 286, 1633, 4305, 442, 4665, 198, 23678, 62, 26288, 38019, 8264, 62, 51, 39494, 796, 838, 13, 15, 220, 220, 1303, 1855, 20218, 286, 1633, 4305, 442, 4665, 198, 7206, 38865, 62, 9858, 37, 9863, 62, 33, 19385, 5258, 796, 357, 1828, 1539, 2579, 2014, 220, 220, 1303, 5825, 862, 1022, 777, 3815, 389, 3177, 366, 785, 12065, 1, 628, 198, 4299, 3440, 62, 7890, 7, 9688, 62, 2435, 25, 965, 796, 6045, 11, 886, 62, 2435, 25, 965, 796, 6045, 8, 4613, 309, 29291, 58, 30094, 13, 6601, 19778, 11, 8633, 5974, 198, 220, 220, 220, 37227, 35561, 409, 27897, 1366, 1366, 14535, 11, 290, 1181, 2272, 2746, 357, 525, 12, 11340, 8, 8633, 526, 15931, 628, 220, 220, 220, 12680, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 628, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 40664, 7, 418, 13, 6978, 13, 22179, 7, 43559, 62, 34720, 11, 366, 7890, 14, 1069, 27897, 62, 7890, 13, 40664, 12340, 6376, 62, 4033, 28, 15, 8, 198, 220, 220, 220, 47764, 13, 9630, 796, 279, 67, 13, 27354, 8079, 15732, 7, 7568, 13, 9630, 8, 628, 220, 220, 220, 923, 62, 2435, 796, 279, 67, 13, 14967, 27823, 7, 9688, 62, 2435, 8, 611, 923, 62, 2435, 2073, 47764, 13, 9630, 58, 15, 60, 198, 220, 220, 220, 886, 62, 2435, 796, 279, 67, 13, 14967, 27823, 7, 437, 62, 2435, 8, 611, 886, 62, 2435, 2073, 47764, 13, 9630, 58, 12, 16, 60, 628, 220, 220, 220, 4808, 7568, 796, 47764, 13, 17946, 58, 9688, 62, 2435, 25, 437, 62, 2435, 60, 628, 220, 220, 220, 611, 4808, 7568, 318, 6045, 393, 18896, 28264, 7568, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 9688, 290, 14, 273, 886, 1661, 37913, 9688, 62, 2435, 5512, 1391, 437, 62, 2435, 30072, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20274, 276, 287, 6565, 1366, 14535, 13, 220, 3274, 290, 938, 36525, 389, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 15090, 7568, 13, 9630, 58, 15, 60, 5512, 1391, 7568, 13, 9630, 58, 12, 16, 48999, 828, 3853, 3815, 287, 428, 2837, 19570, 628, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 43559, 62, 34720, 11, 366, 7890, 14, 5219, 62, 13200, 62, 19849, 13, 79, 12340, 366, 26145, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4981, 796, 2298, 293, 13, 2220, 7, 69, 8, 628, 220, 220, 220, 1441, 4808, 7568, 11, 4981, 628, 198, 4299, 651, 62, 4033, 7, 7568, 11, 3912, 11, 6376, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 1366, 14535, 351, 15180, 12336, 40364, 3912, 526, 15931, 198, 220, 220, 220, 1441, 47764, 30109, 66, 329, 269, 287, 47764, 13, 28665, 82, 611, 302, 13, 15699, 7, 33279, 11, 269, 15437, 4083, 27160, 198, 220, 220, 220, 220, 628, 198, 198, 4871, 10579, 26961, 33676, 35048, 7617, 28925, 4834, 85, 7, 20029, 26961, 33676, 4834, 85, 2599, 198, 220, 220, 220, 37227, 7004, 4871, 351, 10411, 11887, 11, 475, 326, 25223, 2568, 290, 4467, 3484, 526, 15931, 628, 220, 220, 220, 825, 2239, 62, 260, 904, 7, 944, 8, 4613, 309, 29291, 58, 22468, 11, 8633, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5886, 16502, 6721, 284, 5236, 2568, 290, 4467, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 17130, 796, 657, 13, 17, 628, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 5936, 24098, 62, 260, 904, 796, 532, 944, 13, 5219, 14692, 79, 62, 5936, 18940, 8973, 1220, 1105, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 4467, 62, 18224, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 944, 13, 5219, 14692, 11340, 62, 45828, 62, 17069, 23330, 92, 1911, 18982, 7, 72, 8, 4357, 2116, 13, 5219, 14692, 11340, 62, 21037, 62, 17069, 23330, 92, 1911, 18982, 7, 72, 8, 4357, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 944, 13, 22510, 62, 89, 1952, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 4467, 62, 260, 904, 796, 532, 7, 16345, 26933, 87, 1174, 17, 329, 2124, 287, 4467, 62, 18224, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 6721, 796, 17130, 1635, 2568, 62, 5936, 24098, 62, 260, 904, 1635, 657, 13, 20, 1343, 357, 16, 13, 532, 17130, 8, 1635, 4467, 62, 260, 904, 628, 220, 220, 220, 220, 220, 220, 220, 13634, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21598, 62, 1809, 1298, 4467, 62, 260, 904, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22554, 62, 1809, 1298, 2568, 62, 5936, 24098, 62, 260, 904, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6721, 11, 13634, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 17365, 796, 10579, 26961, 33676, 35048, 7617, 28925, 4834, 85, 3419, 628, 220, 220, 220, 10201, 796, 17365, 13, 42503, 3419, 628, 220, 220, 220, 3601, 7, 8158, 8 ]
2.583609
1,208
__test__ = {"API_TESTS": r""" >>> from django.conf import settings >>> ORIGINAL_TIME_ZONE = settings.TIME_ZONE >>> settings.TIME_ZONE = "UTC" >>> from timezones import forms # the default case where no timezone is given explicitly. # uses settings.TIME_ZONE. >>> f = forms.LocalizedDateTimeField() >>> f.clean("2008-05-30 14:30:00") datetime.datetime(2008, 5, 30, 14, 30, tzinfo=<UTC>) # specify a timezone explicity. this may come from a UserProfile for example. >>> f = forms.LocalizedDateTimeField(timezone="America/Denver") >>> f.clean("2008-05-30 14:30:00") datetime.datetime(2008, 5, 30, 20, 30, tzinfo=<UTC>) >>> f = forms.TimeZoneField() >>> f.clean('US/Eastern') <DstTzInfo 'US/Eastern' EST-1 day, 19:00:00 STD> >>> settings.TIME_ZONE = ORIGINAL_TIME_ZONE """, "DECORATOR_TESTS": r""" >>> from timezones import decorators >>> from datetime import * >>> class Foo(object): ... datetime = datetime(2008, 6, 20, 23, 58, 17) ... @decorators.localdatetime('datetime') ... def localdatetime(self): ... return 'Australia/Lindeman' ... >>> foo = Foo() >>> foo.datetime datetime.datetime(2008, 6, 20, 23, 58, 17) >>> foo.localdatetime datetime.datetime(2008, 6, 21, 9, 58, 17, tzinfo=<DstTzInfo 'Australia/Lindeman' EST+10:00:00 STD>) >>> foo.localdatetime = datetime(2008, 6, 12, 23, 50, 0) >>> foo.datetime datetime.datetime(2008, 6, 12, 13, 50, tzinfo=<UTC>) >>> foo.localdatetime datetime.datetime(2008, 6, 12, 23, 50, tzinfo=<DstTzInfo 'Australia/Lindeman' EST+10:00:00 STD>) """}
[ 198, 834, 9288, 834, 796, 19779, 17614, 62, 51, 1546, 4694, 1298, 374, 37811, 198, 33409, 422, 42625, 14208, 13, 10414, 1330, 6460, 198, 33409, 43901, 17961, 62, 34694, 62, 57, 11651, 796, 6460, 13, 34694, 62, 57, 11651, 198, 33409, 6460, 13, 34694, 62, 57, 11651, 796, 366, 17429, 1, 198, 198, 33409, 422, 640, 89, 1952, 1330, 5107, 198, 198, 2, 262, 4277, 1339, 810, 645, 640, 11340, 318, 1813, 11777, 13, 198, 2, 3544, 6460, 13, 34694, 62, 57, 11651, 13, 198, 33409, 277, 796, 5107, 13, 14565, 1143, 10430, 7575, 15878, 3419, 198, 33409, 277, 13, 27773, 7203, 11528, 12, 2713, 12, 1270, 1478, 25, 1270, 25, 405, 4943, 198, 19608, 8079, 13, 19608, 8079, 7, 11528, 11, 642, 11, 1542, 11, 1478, 11, 1542, 11, 256, 89, 10951, 28, 27, 17429, 43734, 198, 198, 2, 11986, 257, 640, 11340, 1193, 8467, 13, 428, 743, 1282, 422, 257, 11787, 37046, 329, 1672, 13, 198, 33409, 277, 796, 5107, 13, 14565, 1143, 10430, 7575, 15878, 7, 2435, 11340, 2625, 18165, 14, 49818, 4943, 198, 33409, 277, 13, 27773, 7203, 11528, 12, 2713, 12, 1270, 1478, 25, 1270, 25, 405, 4943, 198, 19608, 8079, 13, 19608, 8079, 7, 11528, 11, 642, 11, 1542, 11, 1160, 11, 1542, 11, 256, 89, 10951, 28, 27, 17429, 43734, 198, 198, 33409, 277, 796, 5107, 13, 7575, 26961, 15878, 3419, 198, 33409, 277, 13, 27773, 10786, 2937, 14, 46109, 11537, 198, 27, 35, 301, 51, 89, 12360, 705, 2937, 14, 46109, 6, 17160, 12, 16, 1110, 11, 678, 25, 405, 25, 405, 48571, 29, 198, 198, 33409, 6460, 13, 34694, 62, 57, 11651, 796, 43901, 17961, 62, 34694, 62, 57, 11651, 198, 15931, 1600, 198, 1, 41374, 1581, 25633, 62, 51, 1546, 4694, 1298, 374, 37811, 198, 33409, 422, 640, 89, 1952, 1330, 11705, 2024, 198, 33409, 422, 4818, 8079, 1330, 1635, 198, 33409, 1398, 36080, 7, 15252, 2599, 198, 986, 220, 220, 220, 220, 4818, 8079, 796, 4818, 8079, 7, 11528, 11, 718, 11, 1160, 11, 2242, 11, 7618, 11, 1596, 8, 198, 986, 220, 220, 220, 220, 2488, 12501, 273, 2024, 13, 17946, 1940, 265, 8079, 10786, 19608, 8079, 11537, 198, 986, 220, 220, 220, 220, 825, 1179, 1940, 265, 8079, 7, 944, 2599, 198, 986, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 27429, 14, 43410, 8463, 6, 198, 986, 198, 33409, 22944, 796, 36080, 3419, 198, 33409, 22944, 13, 19608, 8079, 198, 19608, 8079, 13, 19608, 8079, 7, 11528, 11, 718, 11, 1160, 11, 2242, 11, 7618, 11, 1596, 8, 198, 33409, 22944, 13, 17946, 1940, 265, 8079, 198, 19608, 8079, 13, 19608, 8079, 7, 11528, 11, 718, 11, 2310, 11, 860, 11, 7618, 11, 1596, 11, 256, 89, 10951, 28, 27, 35, 301, 51, 89, 12360, 705, 27429, 14, 43410, 8463, 6, 17160, 10, 940, 25, 405, 25, 405, 48571, 43734, 198, 33409, 22944, 13, 17946, 1940, 265, 8079, 796, 4818, 8079, 7, 11528, 11, 718, 11, 1105, 11, 2242, 11, 2026, 11, 657, 8, 198, 33409, 22944, 13, 19608, 8079, 198, 19608, 8079, 13, 19608, 8079, 7, 11528, 11, 718, 11, 1105, 11, 1511, 11, 2026, 11, 256, 89, 10951, 28, 27, 17429, 43734, 198, 33409, 22944, 13, 17946, 1940, 265, 8079, 198, 19608, 8079, 13, 19608, 8079, 7, 11528, 11, 718, 11, 1105, 11, 2242, 11, 2026, 11, 256, 89, 10951, 28, 27, 35, 301, 51, 89, 12360, 705, 27429, 14, 43410, 8463, 6, 17160, 10, 940, 25, 405, 25, 405, 48571, 43734, 198, 15931, 20662, 198 ]
2.589041
584
from functions import Profile from mongodb import MongoDb from flask import Flask, render_template, request, redirect app= Flask(__name__) @app.route('/') @app.route('/',methods=['POST']) if __name__=='__main__': app.run(debug=True)
[ 6738, 5499, 1330, 13118, 198, 6738, 285, 506, 375, 65, 1330, 42591, 43832, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 2581, 11, 18941, 198, 198, 1324, 28, 46947, 7, 834, 3672, 834, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 3256, 24396, 82, 28, 17816, 32782, 6, 12962, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8 ]
2.741573
89
from tkinter import ttk import tkinter as tk import tkinter.messagebox from gui.menu_bar import MenuBar from gui.stream_frame import StreamFrame from config_file.fire_stream import ConfigFile ### Represents the main application, which is the combination of multiple frames
[ 6738, 256, 74, 3849, 1330, 256, 30488, 198, 11748, 256, 74, 3849, 355, 256, 74, 198, 11748, 256, 74, 3849, 13, 20500, 3524, 198, 198, 6738, 11774, 13, 26272, 62, 5657, 1330, 21860, 10374, 198, 6738, 11774, 13, 5532, 62, 14535, 1330, 13860, 19778, 198, 198, 6738, 4566, 62, 7753, 13, 6495, 62, 5532, 1330, 17056, 8979, 198, 198, 21017, 1432, 6629, 262, 1388, 3586, 11, 543, 318, 262, 6087, 286, 3294, 13431 ]
3.767123
73
# -*- coding: utf-8 -*- from __future__ import print_function import abc # import clu.abstract import collections.abc import contextlib import json import sys, os abstract = abc.abstractmethod from clu.constants import consts from clu.constants.exceptions import CDBError from clu.fs.abc import BaseFSName from clu.fs.filesystem import TemporaryName, Directory, rm_rf from clu.fs.misc import u8str # from clu.predicates import tuplize from clu.repr import strfields from clu.exporting import Exporter exporter = Exporter(path=__file__) export = exporter.decorator() @export @export @export export(CDBError) # Assign the modules’ `__all__` and `__dir__` using the exporter: __all__, __dir__ = exporter.all_and_dir() if __name__ == '__main__': sys.exit(test())
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 450, 66, 198, 2, 1330, 537, 84, 13, 397, 8709, 198, 11748, 17268, 13, 39305, 198, 11748, 4732, 8019, 198, 11748, 33918, 198, 11748, 25064, 11, 28686, 198, 198, 397, 8709, 796, 450, 66, 13, 397, 8709, 24396, 198, 198, 6738, 537, 84, 13, 9979, 1187, 1330, 1500, 82, 198, 6738, 537, 84, 13, 9979, 1187, 13, 1069, 11755, 1330, 6458, 33, 12331, 198, 6738, 537, 84, 13, 9501, 13, 39305, 1330, 7308, 10652, 5376, 198, 6738, 537, 84, 13, 9501, 13, 16624, 6781, 1330, 46042, 5376, 11, 27387, 11, 42721, 62, 41871, 198, 6738, 537, 84, 13, 9501, 13, 44374, 1330, 334, 23, 2536, 198, 2, 422, 537, 84, 13, 28764, 16856, 1330, 12777, 489, 1096, 198, 6738, 537, 84, 13, 260, 1050, 1330, 965, 25747, 198, 6738, 537, 84, 13, 1069, 26527, 1330, 1475, 26634, 198, 198, 1069, 26634, 796, 1475, 26634, 7, 6978, 28, 834, 7753, 834, 8, 198, 39344, 796, 1033, 4337, 13, 12501, 273, 1352, 3419, 198, 198, 31, 39344, 198, 198, 31, 39344, 198, 198, 31, 39344, 198, 198, 39344, 7, 8610, 33, 12331, 8, 198, 198, 2, 2195, 570, 262, 13103, 447, 247, 4600, 834, 439, 834, 63, 290, 4600, 834, 15908, 834, 63, 1262, 262, 1033, 4337, 25, 198, 834, 439, 834, 11, 11593, 15908, 834, 796, 1033, 4337, 13, 439, 62, 392, 62, 15908, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 9288, 28955 ]
2.848708
271
import os import sys sys.path.append('../../arl-python') import numpy as np import time import argparse from arl.image.cleaners import * from utils import * if __name__ == '__main__': np.random.seed(0) parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='./data') parser.add_argument('--niter', type=int, default=0) parser.add_argument('--gain', type=float, default=0.0) parser.add_argument('--thresh', type=float, default=0.0) parser.add_argument('--fracthresh', type=float, default=0.0) parser.add_argument('--nscales', type=int, default=0) parser.add_argument('--nmoments', type=int, default=0) parser.add_argument('--nx', type=int, default=0) parser.add_argument('--ny', type=int, default=0) args = parser.parse_args() test_cleaners(args.data_dir, args.niter, args.gain, args.thresh, args.fracthresh, \ args.nscales, args.nmoments, args.nx, args.ny)
[ 11748, 28686, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 40720, 7063, 12, 29412, 11537, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 1822, 29572, 198, 198, 6738, 610, 75, 13, 9060, 13, 27773, 364, 1330, 1635, 198, 6738, 3384, 4487, 1330, 1635, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 15, 8, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 7890, 62, 15908, 3256, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 7890, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 77, 2676, 3256, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 48544, 3256, 2099, 28, 22468, 11, 4277, 28, 15, 13, 15, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 400, 3447, 3256, 2099, 28, 22468, 11, 4277, 28, 15, 13, 15, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 69, 974, 71, 3447, 3256, 2099, 28, 22468, 11, 4277, 28, 15, 13, 15, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 77, 1416, 2040, 3256, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 21533, 296, 658, 3256, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 77, 87, 3256, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 3281, 3256, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 1332, 62, 27773, 364, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 77, 2676, 11, 26498, 13, 48544, 11, 26498, 13, 400, 3447, 11, 26498, 13, 69, 974, 71, 3447, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 77, 1416, 2040, 11, 26498, 13, 21533, 296, 658, 11, 26498, 13, 77, 87, 11, 26498, 13, 3281, 8, 198 ]
2.501292
387
l = [1, 2, 3] id1 = id(l) print(f"id1: {id1}") l *= 2 id2 = id(l) print(f"id2: {id2}") assert id1 == id2 print(f"id1 == id2: {id1 == id2}")
[ 75, 796, 685, 16, 11, 362, 11, 513, 60, 198, 312, 16, 796, 4686, 7, 75, 8, 198, 4798, 7, 69, 1, 312, 16, 25, 1391, 312, 16, 92, 4943, 198, 198, 75, 1635, 28, 362, 198, 312, 17, 796, 4686, 7, 75, 8, 198, 4798, 7, 69, 1, 312, 17, 25, 1391, 312, 17, 92, 4943, 198, 198, 30493, 4686, 16, 6624, 4686, 17, 198, 198, 4798, 7, 69, 1, 312, 16, 6624, 4686, 17, 25, 1391, 312, 16, 6624, 4686, 17, 92, 4943, 198 ]
1.662791
86
# -*- coding: utf-8 -*- # (C) 2015 Muthiah Annamalai # # This file is part of 'open-tamil' package tests # # setup the paths from __future__ import print_function from opentamiltests import * if __name__ == "__main__": unittest.main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 357, 34, 8, 1853, 337, 1071, 9520, 5506, 321, 282, 1872, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 705, 9654, 12, 83, 321, 346, 6, 5301, 5254, 198, 2, 198, 198, 2, 9058, 262, 13532, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 1034, 298, 321, 2326, 3558, 1330, 1635, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.589474
95
from django.contrib import admin from .models import Publication admin.site.register(Publication)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 45065, 198, 198, 28482, 13, 15654, 13, 30238, 7, 15202, 341, 8, 198 ]
3.807692
26
"""Async Mopidy Client via JSON/RPC Websocket interface""" # Fork of https://github.com/ismailof/mopidy-json-client by ismailof __author__ = 'svinerus ([email protected])' __version__ = '0.6.4' from .client import MopidyClient __all__ = [ 'MopidyClient', ]
[ 37811, 42367, 337, 404, 19325, 20985, 2884, 19449, 14, 49, 5662, 47736, 5459, 7071, 37811, 198, 198, 2, 39812, 286, 3740, 1378, 12567, 13, 785, 14, 1042, 603, 1659, 14, 35244, 19325, 12, 17752, 12, 16366, 416, 318, 4529, 1659, 198, 834, 9800, 834, 796, 705, 82, 7114, 263, 385, 357, 82, 7114, 263, 385, 31, 14816, 13, 785, 33047, 198, 834, 9641, 834, 796, 705, 15, 13, 21, 13, 19, 6, 198, 198, 6738, 764, 16366, 1330, 337, 404, 19325, 11792, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 44, 404, 19325, 11792, 3256, 198, 60, 198 ]
2.598039
102
from django.utils.translation import ugettext_lazy as _ from i18nfield.forms import I18nFormField, I18nTextarea from pretix.base.forms import SettingsForm
[ 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 6738, 1312, 1507, 77, 3245, 13, 23914, 1330, 314, 1507, 77, 8479, 15878, 11, 314, 1507, 77, 8206, 20337, 198, 6738, 2181, 844, 13, 8692, 13, 23914, 1330, 16163, 8479, 628 ]
3.25
48
def get_dapp_type(dapp): """Return the available dapp implementation.""" if hasattr(dapp, "ipfsdapp"): return "ipfs" return None
[ 4299, 651, 62, 67, 1324, 62, 4906, 7, 67, 1324, 2599, 198, 220, 220, 220, 37227, 13615, 262, 1695, 288, 1324, 7822, 526, 15931, 198, 220, 220, 220, 611, 468, 35226, 7, 67, 1324, 11, 366, 541, 9501, 67, 1324, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 541, 9501, 1, 198, 220, 220, 220, 1441, 6045, 198 ]
2.403226
62
"""Parse a kraken output file and generate a report and possibly extract reads for selected clades. (Adapted from original kraken-report.pl) """ import sys import gzip from csv import reader from Bio import SeqIO from pysam import AlignmentFile from collections import defaultdict import argparse from pathlib import Path import os import json import contextlib #grep 'scientific name' names.dmp |cut -d'|' -f 1,2 |gzip -c >names_trimmed.dmp #cut -d '|' -f 1,2,3 nodes.dmp|gzip -c >nodes_trimmed.dmp # remember to use filtered nodes.dmp and names.dmp def load_taxonomy(db_prefix): """Create/Read a taxonomy maps into dicts """ global name_map name_map = {} global rank_map rank_map = {} global child_lists child_lists = defaultdict(list) global name_clade_map parent_map = {} #read the taxonomy .dmp to and create or dict if not os.path.exists(db_prefix+"/taxonomy/name_map.json") or \ not os.path.exists(db_prefix+"/taxonomy/rank_map.json") or \ not os.path.exists(db_prefix+"/taxonomy/child_lists.json") or \ not os.path.exists(db_prefix+"/taxonomy/parent_map.json"): print ("Map files don't exist, creating json...", file=sys.stderr) with gzip.open(db_prefix+"/taxonomy/names_trimmed.dmp.gz", 'rt') as name_file: for line in name_file: node_id, name = line.strip().split('|') node_id = node_id.strip() name = name.strip() name_map[node_id] = name with gzip.open(db_prefix+"/taxonomy/nodes_trimmed.dmp.gz", 'rt') as nodes_file: for line in nodes_file: node_id, parent_id, rank = line.strip().split('|') node_id = node_id.strip() parent_id = parent_id.strip() rank = rank.strip() if node_id == '1': parent_id = '0' child_lists[parent_id].append(node_id) rank_map[node_id] = rank parent_map[node_id] = parent_id #save our dicts as json with open(db_prefix+"/taxonomy/name_map.json",'w') as name_map_file, \ open(db_prefix+"/taxonomy/rank_map.json",'w') as rank_map_file, \ open(db_prefix+"/taxonomy/child_lists.json",'w') as child_lists_file, \ open(db_prefix+"/taxonomy/parent_map.json",'w') as parent_map_file: json.dump(name_map,name_map_file) json.dump(rank_map, rank_map_file) json.dump(child_lists,child_lists_file) json.dump(parent_map, parent_map_file) else: #load the json with open(db_prefix+"/taxonomy/name_map.json",'r') as name_map_file, \ open(db_prefix+"/taxonomy/rank_map.json",'r') as rank_map_file, \ open(db_prefix+"/taxonomy/child_lists.json",'r') as child_lists_file: name_map = json.load(name_map_file) rank_map = json.load(rank_map_file) child_lists = json.load(child_lists_file) name_clade_map = {v: k for k, v in name_map.items()} #return (name_map, rank_map, child_lists, name_clade_map) def rank_code(rank): """Translate ranks into single letters code """ if rank == "species": return "S" if rank == "genus": return "G" if rank == "family": return "F" if rank == "order": return "O" if rank == "class": return "C" if rank == "phylum": return "P" if rank == "kingdom": return "K" if rank == "superkingdom": return "D" return "-" def get_taxonomy_str(taxid): """Generate the full taxonomy from a specific clade Parameters ---------- taxid: str Returns ------- str """ taxid_string = known_taxonomy_strings.get(taxid, False) if not taxid_string: nodes = [] while (taxid != '0'): nodes += [name_map[taxid]] taxid = parent_map[taxid] taxid_string = ';'.join(nodes[::-1]) known_taxonomy_strings[taxid] = taxid_string return taxid_string @contextlib.contextmanager def extract_fasta_from_id(fileout, id_list, seqfile, min_length): """Extract reads assigned to specific taxa. Parameters ---------- fileout: str Filename to write into id_list: list of """ if seqfile.endswith('a') or seqfile.endswith('a.gz'): file_type = "fasta" file_suffix = '.fa' elif seqfile.endswith('q') or seqfile.endswith('q.gz'): file_type = "fastq" file_suffix = '.fq' with open(fileout+file_suffix, 'w') as fout, \ gzip.open(seqfile, "rt") if seqfile.endswith("gz") else _ret_file(seqfile) as seqfile: # working with a generator expression, may be better memory-wise input_seq_iterator = SeqIO.parse(seqfile, file_type) fasta_seq_iterator = (rec for rec in input_seq_iterator if rec.id in id_list and len(rec) >= min_length) count = SeqIO.write(fasta_seq_iterator, fout, file_type) if len(id_list) != count: # sanity check you may want to extract from a demultiplexed file print("Warning, EOF reached but", len(id_list) - count, "sequences remained, is extractFile the original source?", file=sys.stderr) #this function will discard child clades in order to have a proper summation if __name__ == "__main__": name_map = rank_map = child_lists = node_name_map = clade_counts = taxo_counts = seq_count = extract_ids = seq_ids = None _main()
[ 37811, 10044, 325, 257, 479, 430, 3464, 5072, 2393, 290, 7716, 257, 989, 290, 5457, 7925, 9743, 329, 6163, 537, 2367, 13, 357, 48003, 276, 422, 2656, 479, 430, 3464, 12, 13116, 13, 489, 8, 198, 37811, 198, 198, 11748, 25064, 198, 11748, 308, 13344, 198, 6738, 269, 21370, 1330, 9173, 198, 6738, 16024, 1330, 1001, 80, 9399, 198, 6738, 279, 893, 321, 1330, 978, 16747, 8979, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 1822, 29572, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 4732, 8019, 198, 2, 70, 7856, 705, 41355, 1438, 6, 3891, 13, 67, 3149, 930, 8968, 532, 67, 6, 91, 6, 532, 69, 352, 11, 17, 930, 70, 13344, 532, 66, 1875, 14933, 62, 2213, 320, 1150, 13, 67, 3149, 198, 2, 8968, 532, 67, 705, 91, 6, 532, 69, 352, 11, 17, 11, 18, 13760, 13, 67, 3149, 91, 70, 13344, 532, 66, 1875, 77, 4147, 62, 2213, 320, 1150, 13, 67, 3149, 198, 198, 2, 3505, 284, 779, 29083, 13760, 13, 67, 3149, 290, 3891, 13, 67, 3149, 198, 4299, 3440, 62, 19290, 30565, 7, 9945, 62, 40290, 2599, 198, 220, 220, 220, 37227, 16447, 14, 5569, 257, 1687, 30565, 8739, 656, 8633, 82, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 1438, 62, 8899, 198, 220, 220, 220, 1438, 62, 8899, 796, 23884, 198, 220, 220, 220, 3298, 4279, 62, 8899, 198, 220, 220, 220, 4279, 62, 8899, 796, 23884, 198, 220, 220, 220, 3298, 1200, 62, 20713, 198, 220, 220, 220, 1200, 62, 20713, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 3298, 1438, 62, 565, 671, 62, 8899, 198, 220, 220, 220, 2560, 62, 8899, 796, 23884, 198, 220, 220, 220, 1303, 961, 262, 1687, 30565, 764, 67, 3149, 284, 290, 2251, 393, 8633, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 3672, 62, 8899, 13, 17752, 4943, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 43027, 62, 8899, 13, 17752, 4943, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 9410, 62, 20713, 13, 17752, 4943, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 8000, 62, 8899, 13, 17752, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 5855, 13912, 3696, 836, 470, 2152, 11, 4441, 33918, 9313, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 308, 13344, 13, 9654, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 14933, 62, 2213, 320, 1150, 13, 67, 3149, 13, 34586, 1600, 705, 17034, 11537, 355, 1438, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 1438, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 312, 11, 1438, 796, 1627, 13, 36311, 22446, 35312, 10786, 91, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 312, 796, 10139, 62, 312, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 1438, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 8899, 58, 17440, 62, 312, 60, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 351, 308, 13344, 13, 9654, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 77, 4147, 62, 2213, 320, 1150, 13, 67, 3149, 13, 34586, 1600, 705, 17034, 11537, 355, 13760, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 13760, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 312, 11, 2560, 62, 312, 11, 4279, 796, 1627, 13, 36311, 22446, 35312, 10786, 91, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 312, 796, 10139, 62, 312, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 312, 796, 2560, 62, 312, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 4279, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 62, 312, 6624, 705, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 312, 796, 705, 15, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 20713, 58, 8000, 62, 312, 4083, 33295, 7, 17440, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4279, 62, 8899, 58, 17440, 62, 312, 60, 796, 4279, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 8899, 58, 17440, 62, 312, 60, 796, 2560, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21928, 674, 8633, 82, 355, 33918, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 3672, 62, 8899, 13, 17752, 1600, 6, 86, 11537, 355, 1438, 62, 8899, 62, 7753, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 43027, 62, 8899, 13, 17752, 1600, 6, 86, 11537, 355, 4279, 62, 8899, 62, 7753, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 9410, 62, 20713, 13, 17752, 1600, 6, 86, 11537, 355, 1200, 62, 20713, 62, 7753, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 8000, 62, 8899, 13, 17752, 1600, 6, 86, 11537, 355, 2560, 62, 8899, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 3672, 62, 8899, 11, 3672, 62, 8899, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 43027, 62, 8899, 11, 4279, 62, 8899, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 9410, 62, 20713, 11, 9410, 62, 20713, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 8000, 62, 8899, 11, 2560, 62, 8899, 62, 7753, 8, 198, 220, 220, 220, 2073, 25, 1303, 2220, 262, 33918, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 3672, 62, 8899, 13, 17752, 1600, 6, 81, 11537, 355, 1438, 62, 8899, 62, 7753, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 43027, 62, 8899, 13, 17752, 1600, 6, 81, 11537, 355, 4279, 62, 8899, 62, 7753, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 7, 9945, 62, 40290, 10, 1, 14, 19290, 30565, 14, 9410, 62, 20713, 13, 17752, 1600, 6, 81, 11537, 355, 1200, 62, 20713, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 8899, 796, 33918, 13, 2220, 7, 3672, 62, 8899, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4279, 62, 8899, 796, 33918, 13, 2220, 7, 43027, 62, 8899, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 20713, 796, 33918, 13, 2220, 7, 9410, 62, 20713, 62, 7753, 8, 198, 220, 220, 220, 1438, 62, 565, 671, 62, 8899, 796, 1391, 85, 25, 479, 329, 479, 11, 410, 287, 1438, 62, 8899, 13, 23814, 3419, 92, 198, 220, 220, 220, 1303, 7783, 357, 3672, 62, 8899, 11, 4279, 62, 8899, 11, 1200, 62, 20713, 11, 1438, 62, 565, 671, 62, 8899, 8, 198, 198, 4299, 4279, 62, 8189, 7, 43027, 2599, 198, 220, 220, 220, 37227, 8291, 17660, 9803, 656, 2060, 7475, 2438, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4279, 6624, 366, 35448, 1298, 1441, 366, 50, 1, 198, 220, 220, 220, 611, 4279, 6624, 366, 5235, 385, 1298, 1441, 366, 38, 1, 198, 220, 220, 220, 611, 4279, 6624, 366, 17989, 1298, 1441, 366, 37, 1, 198, 220, 220, 220, 611, 4279, 6624, 366, 2875, 1298, 1441, 366, 46, 1, 198, 220, 220, 220, 611, 4279, 6624, 366, 4871, 1298, 1441, 366, 34, 1, 198, 220, 220, 220, 611, 4279, 6624, 366, 746, 11183, 1298, 1441, 366, 47, 1, 198, 220, 220, 220, 611, 4279, 6624, 366, 3364, 3438, 1298, 1441, 366, 42, 1, 198, 220, 220, 220, 611, 4279, 6624, 366, 16668, 3364, 3438, 1298, 1441, 366, 35, 1, 198, 220, 220, 220, 1441, 366, 21215, 198, 198, 4299, 651, 62, 19290, 30565, 62, 2536, 7, 19290, 312, 2599, 198, 220, 220, 220, 37227, 8645, 378, 262, 1336, 1687, 30565, 422, 257, 2176, 537, 671, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1687, 312, 25, 965, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 965, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1687, 312, 62, 8841, 796, 1900, 62, 19290, 30565, 62, 37336, 13, 1136, 7, 19290, 312, 11, 10352, 8, 198, 220, 220, 220, 611, 407, 1687, 312, 62, 8841, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13760, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 981, 357, 19290, 312, 14512, 705, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13760, 15853, 685, 3672, 62, 8899, 58, 19290, 312, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1687, 312, 796, 2560, 62, 8899, 58, 19290, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1687, 312, 62, 8841, 796, 705, 26, 4458, 22179, 7, 77, 4147, 58, 3712, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1900, 62, 19290, 30565, 62, 37336, 58, 19290, 312, 60, 796, 1687, 312, 62, 8841, 198, 220, 220, 220, 1441, 1687, 312, 62, 8841, 198, 220, 220, 220, 220, 198, 198, 31, 22866, 8019, 13, 22866, 37153, 198, 220, 220, 220, 220, 198, 4299, 7925, 62, 7217, 64, 62, 6738, 62, 312, 7, 7753, 448, 11, 4686, 62, 4868, 11, 33756, 7753, 11, 949, 62, 13664, 2599, 198, 220, 220, 220, 37227, 11627, 974, 9743, 8686, 284, 2176, 1687, 64, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2393, 448, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 7066, 12453, 284, 3551, 656, 198, 220, 220, 220, 4686, 62, 4868, 25, 1351, 286, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 33756, 7753, 13, 437, 2032, 342, 10786, 64, 11537, 393, 33756, 7753, 13, 437, 2032, 342, 10786, 64, 13, 34586, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 796, 366, 7217, 64, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 37333, 844, 796, 45302, 13331, 6, 198, 220, 220, 220, 1288, 361, 33756, 7753, 13, 437, 2032, 342, 10786, 80, 11537, 393, 33756, 7753, 13, 437, 2032, 342, 10786, 80, 13, 34586, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 796, 366, 7217, 80, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 37333, 844, 796, 45302, 69, 80, 6, 198, 220, 220, 220, 351, 1280, 7, 7753, 448, 10, 7753, 62, 37333, 844, 11, 705, 86, 11537, 355, 277, 448, 11, 3467, 198, 220, 220, 220, 308, 13344, 13, 9654, 7, 41068, 7753, 11, 366, 17034, 4943, 611, 33756, 7753, 13, 437, 2032, 342, 7203, 34586, 4943, 2073, 4808, 1186, 62, 7753, 7, 41068, 7753, 8, 355, 33756, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1762, 351, 257, 17301, 5408, 11, 743, 307, 1365, 4088, 12, 3083, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 41068, 62, 48727, 796, 1001, 80, 9399, 13, 29572, 7, 41068, 7753, 11, 2393, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3049, 64, 62, 41068, 62, 48727, 796, 357, 8344, 329, 664, 287, 5128, 62, 41068, 62, 48727, 611, 664, 13, 312, 287, 4686, 62, 4868, 290, 18896, 7, 8344, 8, 18189, 949, 62, 13664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 1001, 80, 9399, 13, 13564, 7, 7217, 64, 62, 41068, 62, 48727, 11, 277, 448, 11, 2393, 62, 4906, 8, 198, 220, 220, 220, 611, 18896, 7, 312, 62, 4868, 8, 14512, 954, 25, 1303, 34182, 2198, 345, 743, 765, 284, 7925, 422, 257, 1357, 586, 2480, 87, 276, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 20361, 11, 412, 19238, 4251, 475, 1600, 18896, 7, 312, 62, 4868, 8, 532, 954, 11, 366, 3107, 3007, 6150, 11, 318, 7925, 8979, 262, 2656, 2723, 35379, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 198, 2, 5661, 2163, 481, 27537, 1200, 537, 2367, 287, 1502, 284, 423, 257, 1774, 30114, 341, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1438, 62, 8899, 796, 4279, 62, 8899, 796, 1200, 62, 20713, 796, 10139, 62, 3672, 62, 8899, 796, 537, 671, 62, 9127, 82, 796, 1687, 78, 62, 9127, 82, 796, 33756, 62, 9127, 796, 7925, 62, 2340, 796, 33756, 62, 2340, 796, 6045, 198, 220, 220, 220, 4808, 12417, 3419, 198 ]
2.238757
2,446
from pythonforandroid.toolchain import Recipe, shprint, shutil, current_directory from pythonforandroid.toolchain import CompiledComponentsPythonRecipe from pythonforandroid.util import current_directory, ensure_dir from pythonforandroid.logger import debug, shprint, info from os.path import exists, join, dirname import sh import glob recipe = LXMLRecipe()
[ 6738, 21015, 1640, 19411, 13, 25981, 7983, 1330, 26694, 11, 427, 4798, 11, 4423, 346, 11, 1459, 62, 34945, 198, 6738, 21015, 1640, 19411, 13, 25981, 7983, 1330, 3082, 3902, 7293, 3906, 37906, 37523, 198, 6738, 21015, 1640, 19411, 13, 22602, 1330, 1459, 62, 34945, 11, 4155, 62, 15908, 198, 6738, 21015, 1640, 19411, 13, 6404, 1362, 1330, 14257, 11, 427, 4798, 11, 7508, 198, 6738, 28686, 13, 6978, 1330, 7160, 11, 4654, 11, 26672, 3672, 198, 11748, 427, 198, 11748, 15095, 198, 198, 29102, 431, 796, 44988, 5805, 37523, 3419, 198 ]
3.913043
92
#!/usr/bin/python import argparse import subprocess import json import re import config import collections from datetime import datetime, timedelta import time from pprint import pprint from slacker import Slacker slack = Slacker(config.token) option_age = "" option_owner = None option_protocol = 'slack' option_ssm = None option_stat = None query_cache = {} HOST="openbmc.gerrit" username_map = { 'irc': { 'jenkins-openbmc': "Jenkins", 'williamspatrick': "stwcx", }, 'slack': { 'amboar': "@arj", 'anoo1': "@anoo", 'bradbishop': "@bradleyb", 'bjwyman': "@v2cib530", 'cbostic': "@cbostic", 'dhruvibm': "@dhruvaraj", 'dkodihal': "@dkodihal", 'devenrao': "@devenrao", 'geissonator': "@andrewg", 'eddiejames': "@eajames", 'gtmills': "@gmills", 'jenkins-openbmc': "Jenkins", 'jk-ozlabs' : "@jk", 'mine260309': "@shyulei", 'msbarth': "@msbarth", 'mtritz': "@mtritz", 'ngorugan': "@ngorugan", 'navrathi' : "@navrathi", 'ojayanth': "@ojayanth", 'ratagupt': "@ratagupt", 'shenki': "@jms", 'spinler': "@spinler", 'tomjoseph83': "@tomjoseph", }, } project_map = { 'openbmc/witherspoon-pfault-analysis': ('spinler','Matt Spinler'), 'openbmc/phosphor-mrw-tools':('spinler','Matt Spinler'), 'openbmc/mboxbridge': ('amboar','Andrew Jeffery'), 'openbmc/obmc-console': ('jk-ozlabs','Jeremy Kerr'), 'openbmc/btbridge': ('jk-ozlabs','Jeremy Kerr'), 'openbmc/inarp': ('jk-ozlabs','Jeremy Kerr'), 'openbmc/phosphor-settingsd' :('dkodihal','Deepak Kodihalli'), 'openbmc/phosphor-logging' :('dkodihal','Deepak Kodihalli'), 'openbmc/openpower-vpd-parser': ('dkodihal','Deepak Kodihalli'), 'openbmc/phosphor-mboxd': ('amboar','Andrew Jeffery'), 'openbmc/openbmc': ('bradbishop','Brad Bishop'), 'openbmc/phosphor-host-ipmid': ('tomjoseph83','Tom Joseph') } send_to_slack = ['@andrewg', '@anoo', '@arj', '@bradleyb', '@cbostic', '@devenrao', '@dkodihal', '@dhruvaraj', '@eajames', '@gmills', '@jms', '@jk', '@msbarth', '@mtritz', '@navrathi', '@ngorugan', '@ojayanth', '@ratagupt', '@spinler', '@tomjoseph', '@v2cib530'] # print "sending stats to openbmcdev channel" # slack.chat.post_message('#openbmcdev',message) parser = argparse.ArgumentParser() parser.add_argument('--owner', help='Change owner', type=str, action='append') parser.add_argument('--protocol', help='Protocol for username conversion', type=str, choices=(username_map.keys())) parser.add_argument('-sm', action='store_true',help='send slack message flag') parser.add_argument('-stat', action='store_true',help='send statistics to slack flag') subparsers = parser.add_subparsers() report = subparsers.add_parser('report', help='Generate report') report.set_defaults(func=do_report) args = parser.parse_args() if ('owner' in args) and args.owner: option_owner = " OR ".join(map(lambda x: "owner:" + x, args.owner)) if 'protocol' in args and args.protocol: option_protocol = args.protocol if args.sm: option_ssm = 'True' print("will send messages to slack") else: print("no slack messges will be sent") if args.stat: option_stat = 'True' if 'func' in args: args.func(args) else: parser.print_help()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 628, 198, 11748, 1822, 29572, 198, 11748, 850, 14681, 198, 11748, 33918, 198, 11748, 302, 198, 11748, 4566, 198, 11748, 17268, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 11748, 640, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 198, 6738, 1017, 10735, 1330, 3454, 10735, 198, 6649, 441, 796, 3454, 10735, 7, 11250, 13, 30001, 8, 628, 198, 18076, 62, 496, 796, 13538, 198, 18076, 62, 18403, 796, 6045, 198, 18076, 62, 11235, 4668, 796, 705, 6649, 441, 6, 198, 18076, 62, 824, 76, 796, 6045, 198, 18076, 62, 14269, 796, 6045, 198, 198, 22766, 62, 23870, 796, 23884, 198, 39, 10892, 2625, 9654, 20475, 66, 13, 1362, 799, 1, 628, 628, 198, 198, 29460, 62, 8899, 796, 1391, 198, 220, 220, 220, 705, 1980, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 48796, 5331, 12, 9654, 20475, 66, 10354, 366, 44875, 5331, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 10594, 1789, 2777, 265, 5557, 10354, 366, 301, 86, 66, 87, 1600, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 6649, 441, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22651, 283, 10354, 44212, 283, 73, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 272, 2238, 16, 10354, 44212, 272, 2238, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1671, 324, 27832, 10354, 44212, 1671, 324, 1636, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 50007, 21768, 805, 10354, 44212, 85, 17, 66, 571, 38612, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21101, 15132, 10354, 44212, 21101, 15132, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34985, 622, 85, 571, 76, 10354, 44212, 34985, 622, 7785, 1228, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34388, 375, 4449, 282, 10354, 44212, 34388, 375, 4449, 282, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2934, 574, 430, 78, 10354, 44212, 2934, 574, 430, 78, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 469, 30927, 1352, 10354, 44212, 392, 1809, 70, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6048, 494, 73, 1047, 10354, 44212, 68, 1228, 1047, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13655, 76, 2171, 10354, 44212, 39870, 2171, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 48796, 5331, 12, 9654, 20475, 66, 10354, 366, 44875, 5331, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 73, 74, 12, 8590, 75, 8937, 6, 1058, 44212, 73, 74, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3810, 21719, 26895, 10354, 44212, 1477, 88, 2261, 72, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 907, 5657, 400, 10354, 44212, 907, 5657, 400, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16762, 29574, 10354, 44212, 16762, 29574, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 782, 273, 1018, 272, 10354, 44212, 782, 273, 1018, 272, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 28341, 81, 44202, 6, 1058, 44212, 28341, 81, 44202, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13210, 22931, 400, 10354, 44212, 13210, 22931, 400, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 10366, 11433, 457, 10354, 44212, 10366, 11433, 457, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 831, 4106, 10354, 44212, 73, 907, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39706, 1754, 10354, 44212, 39706, 1754, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39532, 73, 577, 746, 5999, 10354, 44212, 39532, 73, 577, 746, 1600, 198, 220, 220, 220, 8964, 198, 92, 198, 198, 16302, 62, 8899, 796, 1391, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 86, 1555, 2777, 2049, 12, 79, 69, 1721, 12, 20930, 10354, 19203, 39706, 1754, 41707, 13448, 28002, 1754, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 746, 14222, 273, 12, 76, 31653, 12, 31391, 10354, 10786, 39706, 1754, 41707, 13448, 28002, 1754, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 2022, 1140, 9458, 10354, 19203, 22651, 283, 41707, 20508, 5502, 1924, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 672, 23209, 12, 41947, 10354, 19203, 73, 74, 12, 8590, 75, 8937, 41707, 35623, 32879, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 18347, 9458, 10354, 19203, 73, 74, 12, 8590, 75, 8937, 41707, 35623, 32879, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 259, 5117, 10354, 19203, 73, 74, 12, 8590, 75, 8937, 41707, 35623, 32879, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 746, 14222, 273, 12, 33692, 67, 6, 1058, 10786, 34388, 375, 4449, 282, 41707, 29744, 461, 32701, 4449, 36546, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 746, 14222, 273, 12, 6404, 2667, 6, 1058, 10786, 34388, 375, 4449, 282, 41707, 29744, 461, 32701, 4449, 36546, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 9654, 6477, 12, 85, 30094, 12, 48610, 10354, 19203, 34388, 375, 4449, 282, 41707, 29744, 461, 32701, 4449, 36546, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 746, 14222, 273, 12, 2022, 1140, 67, 10354, 19203, 22651, 283, 41707, 20508, 5502, 1924, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 9654, 20475, 66, 10354, 19203, 1671, 324, 27832, 41707, 30805, 16559, 33809, 198, 220, 220, 220, 705, 9654, 20475, 66, 14, 746, 14222, 273, 12, 4774, 12, 541, 13602, 10354, 19203, 39532, 73, 577, 746, 5999, 41707, 13787, 7212, 11537, 198, 92, 628, 628, 198, 21280, 62, 1462, 62, 6649, 441, 796, 37250, 31, 392, 1809, 70, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 272, 2238, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 283, 73, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 1671, 324, 1636, 65, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 21101, 15132, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 2934, 574, 430, 78, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 34388, 375, 4449, 282, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 34985, 622, 7785, 1228, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 68, 1228, 1047, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 39870, 2171, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 73, 907, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 73, 74, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 907, 5657, 400, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 16762, 29574, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 28341, 81, 44202, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 782, 273, 1018, 272, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 13210, 22931, 400, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 10366, 11433, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 39706, 1754, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 39532, 73, 577, 746, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 85, 17, 66, 571, 38612, 20520, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 82, 1571, 9756, 284, 1280, 20475, 66, 7959, 6518, 1, 198, 2, 220, 220, 220, 220, 220, 220, 220, 30740, 13, 17006, 13, 7353, 62, 20500, 10786, 2, 9654, 20475, 66, 7959, 3256, 20500, 8, 198, 220, 220, 220, 220, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 18403, 3256, 1037, 11639, 19400, 4870, 3256, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 11639, 33295, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 11235, 4668, 3256, 1037, 11639, 19703, 4668, 329, 20579, 11315, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 7747, 16193, 29460, 62, 8899, 13, 13083, 3419, 4008, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 5796, 3256, 2223, 11639, 8095, 62, 7942, 3256, 16794, 11639, 21280, 30740, 3275, 6056, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 14269, 3256, 2223, 11639, 8095, 62, 7942, 3256, 16794, 11639, 21280, 7869, 284, 30740, 6056, 11537, 628, 198, 198, 7266, 79, 945, 364, 796, 30751, 13, 2860, 62, 7266, 79, 945, 364, 3419, 198, 198, 13116, 796, 22718, 945, 364, 13, 2860, 62, 48610, 10786, 13116, 3256, 1037, 11639, 8645, 378, 989, 11537, 198, 13116, 13, 2617, 62, 12286, 82, 7, 20786, 28, 4598, 62, 13116, 8, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 361, 19203, 18403, 6, 287, 26498, 8, 290, 26498, 13, 18403, 25, 198, 220, 220, 220, 3038, 62, 18403, 796, 366, 6375, 27071, 22179, 7, 8899, 7, 50033, 2124, 25, 366, 18403, 11097, 1343, 2124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 18403, 4008, 198, 361, 705, 11235, 4668, 6, 287, 26498, 290, 26498, 13, 11235, 4668, 25, 198, 220, 220, 220, 3038, 62, 11235, 4668, 796, 26498, 13, 11235, 4668, 198, 361, 26498, 13, 5796, 25, 198, 220, 220, 220, 3038, 62, 824, 76, 796, 705, 17821, 6, 198, 220, 220, 220, 3601, 7203, 10594, 3758, 6218, 284, 30740, 4943, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 3919, 30740, 2085, 3212, 481, 307, 1908, 4943, 198, 198, 361, 26498, 13, 14269, 25, 198, 220, 220, 220, 3038, 62, 14269, 796, 705, 17821, 6, 628, 198, 361, 705, 20786, 6, 287, 26498, 25, 198, 220, 220, 220, 26498, 13, 20786, 7, 22046, 8, 198, 17772, 25, 198, 220, 220, 220, 30751, 13, 4798, 62, 16794, 3419, 198 ]
2.0138
1,884
import numpy as np import unittest from rlscore.measure.cindex_measure import cindex from rlscore.measure.measure_utilities import UndefinedPerformance
[ 11748, 299, 32152, 355, 45941, 198, 11748, 555, 715, 395, 198, 198, 6738, 374, 75, 26675, 13, 1326, 5015, 13, 66, 9630, 62, 1326, 5015, 1330, 269, 9630, 198, 6738, 374, 75, 26675, 13, 1326, 5015, 13, 1326, 5015, 62, 315, 2410, 1330, 13794, 18156, 32273, 198, 220, 220, 220, 220, 628, 198 ]
3.018868
53
"""The window_event_manager module implements the WindowEventManager class.""" from typing import Callable, Dict, List, Set, Union from pyglet.window import Window as PygletWindow from pycat.base.event.key_event import KeyEvent from pycat.base.event.mouse_event import MouseEvent from pycat.geometry.point import Point from pycat.debug.print import print_failure from pycat.base.event.publisher import Subscriber, Publisher from pycat.base.event.window_event_subscriber import WindowEventSubscriber class WindowEventManager: """Manage pyglet window events. - Adds support for multiple callbacks on window events. - Tracks currently pressed keys and mouse position - Simplifies window event callback function signatures """ def __init__(self, window: PygletWindow): """Instantiate new instance of WindowEventManager class. :param window: the window whose events are to be managed :type window: `pyglet.window.Window` """ self.__mouse_position = Point() self.__mouse_delta = Point() self.__mouse_scroll_delta = Point() self.__active_keys: Set[Union[int, str]] = set() self.__active_key: Union[int, str] = "" self.__publishers: Dict[str, Publisher] = { "on_key_press": Publisher[Callable[[KeyEvent], None]](), "on_key_release": Publisher[Callable[[KeyEvent], None]](), "on_mouse_drag": Publisher[Callable[[MouseEvent], None]](), "on_mouse_enter": Publisher[Callable[[MouseEvent], None]](), "on_mouse_leave": Publisher[Callable[[MouseEvent], None]](), "on_mouse_motion": Publisher[Callable[[MouseEvent], None]](), "on_mouse_press": Publisher[Callable[[MouseEvent], None]](), "on_mouse_release": Publisher[Callable[[MouseEvent], None]](), "on_mouse_scroll": Publisher[Callable[[MouseEvent], None]](), } window.on_key_press = self.__on_key_press window.on_key_release = self.__on_key_release window.on_mouse_drag = self.__on_mouse_drag window.on_mouse_enter = self.__on_mouse_enter window.on_mouse_leave = self.__on_mouse_leave window.on_mouse_motion = self.__on_mouse_motion window.on_mouse_press = self.__on_mouse_press window.on_mouse_release = self.__on_mouse_release window.on_mouse_scroll = self.__on_mouse_scroll @property def mouse_position(self) -> Point: """Return the current mouse position. If the mouse has exited the window, will return the last mouse position before exiting :return: the current mouse position :rtype: Point """ return self.__mouse_position @property def mouse_delta(self) -> Point: """Return the current mouse position. If the mouse has exited the window, will return the last mouse position before exiting :return: the current mouse position :rtype: Point """ return self.__mouse_delta @property @property def active_keys(self) -> Set[Union[int, str]]: """Return a set of the currently pressed keys. Key codes constants are defined in `pycat.keyboard.KEY` :return: set of currently pressed keys :rtype: Set[int] """ return self.__active_keys def add_subscribers(self, **kwargs: Union[Subscriber, List[Subscriber]]): """Add subscribers by event keyword.""" for key in kwargs: if key in self.__publishers: self.__publishers[key].add_subscribers(kwargs[key]) else: self.__invalid_event_name(key) def remove_subscribers(self, **kwargs: Union[Subscriber, List[Subscriber]]): """Remove subscribers by event keyword.""" for key in kwargs: if key in self.__publishers: self.__publishers[key].remove_subscribers(kwargs[key]) else: self.__invalid_event_name(key) # Key Events # ------------------------------------------------------------------------ # Mouse Events # ------------------------------------------------------------------------
[ 37811, 464, 4324, 62, 15596, 62, 37153, 8265, 23986, 262, 26580, 9237, 13511, 1398, 526, 15931, 198, 198, 6738, 19720, 1330, 4889, 540, 11, 360, 713, 11, 7343, 11, 5345, 11, 4479, 198, 198, 6738, 12972, 70, 1616, 13, 17497, 1330, 26580, 355, 9485, 70, 1616, 27703, 198, 198, 6738, 12972, 9246, 13, 8692, 13, 15596, 13, 2539, 62, 15596, 1330, 7383, 9237, 198, 6738, 12972, 9246, 13, 8692, 13, 15596, 13, 35888, 62, 15596, 1330, 21839, 9237, 198, 6738, 12972, 9246, 13, 469, 15748, 13, 4122, 1330, 6252, 198, 6738, 12972, 9246, 13, 24442, 13, 4798, 1330, 3601, 62, 32165, 495, 198, 6738, 12972, 9246, 13, 8692, 13, 15596, 13, 12984, 8191, 1330, 3834, 1416, 24735, 11, 28045, 198, 6738, 12972, 9246, 13, 8692, 13, 15596, 13, 17497, 62, 15596, 62, 7266, 1416, 24735, 1330, 26580, 9237, 7004, 1416, 24735, 628, 198, 4871, 26580, 9237, 13511, 25, 198, 220, 220, 220, 37227, 5124, 496, 12972, 70, 1616, 4324, 2995, 13, 628, 220, 220, 220, 532, 34333, 1104, 329, 3294, 869, 10146, 319, 4324, 2995, 13, 198, 220, 220, 220, 532, 42259, 3058, 12070, 8251, 290, 10211, 2292, 198, 220, 220, 220, 532, 45157, 6945, 4324, 1785, 23838, 2163, 17239, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4324, 25, 9485, 70, 1616, 27703, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49933, 9386, 649, 4554, 286, 26580, 9237, 13511, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4324, 25, 262, 4324, 3025, 2995, 389, 284, 307, 5257, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4324, 25, 4600, 9078, 70, 1616, 13, 17497, 13, 27703, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 35888, 62, 9150, 796, 6252, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 35888, 62, 67, 12514, 796, 6252, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 35888, 62, 48728, 62, 67, 12514, 796, 6252, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 5275, 62, 13083, 25, 5345, 58, 38176, 58, 600, 11, 965, 11907, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 5275, 62, 2539, 25, 4479, 58, 600, 11, 965, 60, 796, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 12984, 8191, 82, 25, 360, 713, 58, 2536, 11, 28045, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 2539, 62, 8439, 1298, 28045, 58, 14134, 540, 30109, 9218, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 2539, 62, 20979, 1298, 28045, 58, 14134, 540, 30109, 9218, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 35888, 62, 7109, 363, 1298, 28045, 58, 14134, 540, 30109, 39643, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 35888, 62, 9255, 1298, 28045, 58, 14134, 540, 30109, 39643, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 35888, 62, 47408, 1298, 28045, 58, 14134, 540, 30109, 39643, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 35888, 62, 38714, 1298, 28045, 58, 14134, 540, 30109, 39643, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 35888, 62, 8439, 1298, 28045, 58, 14134, 540, 30109, 39643, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 35888, 62, 20979, 1298, 28045, 58, 14134, 540, 30109, 39643, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 35888, 62, 48728, 1298, 28045, 58, 14134, 540, 30109, 39643, 9237, 4357, 6045, 11907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 2539, 62, 8439, 796, 2116, 13, 834, 261, 62, 2539, 62, 8439, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 2539, 62, 20979, 796, 2116, 13, 834, 261, 62, 2539, 62, 20979, 628, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 35888, 62, 7109, 363, 796, 2116, 13, 834, 261, 62, 35888, 62, 7109, 363, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 35888, 62, 9255, 796, 2116, 13, 834, 261, 62, 35888, 62, 9255, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 35888, 62, 47408, 796, 2116, 13, 834, 261, 62, 35888, 62, 47408, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 35888, 62, 38714, 796, 2116, 13, 834, 261, 62, 35888, 62, 38714, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 35888, 62, 8439, 796, 2116, 13, 834, 261, 62, 35888, 62, 8439, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 35888, 62, 20979, 796, 2116, 13, 834, 261, 62, 35888, 62, 20979, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 261, 62, 35888, 62, 48728, 796, 2116, 13, 834, 261, 62, 35888, 62, 48728, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 10211, 62, 9150, 7, 944, 8, 4613, 6252, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1459, 10211, 2292, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 10211, 468, 34710, 262, 4324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 481, 1441, 262, 938, 10211, 2292, 878, 33895, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 262, 1459, 10211, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 6252, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 35888, 62, 9150, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 10211, 62, 67, 12514, 7, 944, 8, 4613, 6252, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1459, 10211, 2292, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 10211, 468, 34710, 262, 4324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 481, 1441, 262, 938, 10211, 2292, 878, 33895, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 262, 1459, 10211, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 6252, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 35888, 62, 67, 12514, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4075, 62, 13083, 7, 944, 8, 4613, 5345, 58, 38176, 58, 600, 11, 965, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 900, 286, 262, 3058, 12070, 8251, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7383, 12416, 38491, 389, 5447, 287, 4600, 9078, 9246, 13, 2539, 3526, 13, 20373, 63, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 900, 286, 3058, 12070, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 5345, 58, 600, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 5275, 62, 13083, 628, 220, 220, 220, 825, 751, 62, 7266, 40075, 364, 7, 944, 11, 12429, 46265, 22046, 25, 4479, 58, 7004, 1416, 24735, 11, 7343, 58, 7004, 1416, 24735, 11907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 18327, 416, 1785, 21179, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 2116, 13, 834, 12984, 8191, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 12984, 8191, 82, 58, 2539, 4083, 2860, 62, 7266, 40075, 364, 7, 46265, 22046, 58, 2539, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 259, 12102, 62, 15596, 62, 3672, 7, 2539, 8, 628, 220, 220, 220, 825, 4781, 62, 7266, 40075, 364, 7, 944, 11, 12429, 46265, 22046, 25, 4479, 58, 7004, 1416, 24735, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 58, 7004, 1416, 24735, 11907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27914, 18327, 416, 1785, 21179, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 2116, 13, 834, 12984, 8191, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 12984, 8191, 82, 58, 2539, 4083, 28956, 62, 7266, 40075, 364, 7, 46265, 22046, 58, 2539, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 259, 12102, 62, 15596, 62, 3672, 7, 2539, 8, 628, 220, 220, 220, 1303, 7383, 18715, 198, 220, 220, 220, 1303, 16529, 982, 628, 220, 220, 220, 1303, 21839, 18715, 198, 220, 220, 220, 1303, 16529, 982, 198 ]
2.53436
1,688
''' this module contains all the urls for the whole project ''' from django.contrib import admin from django.urls import path,include from article import views as articleViews from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.conf import settings from django.conf.urls.static import static # from django.views.generic import RedirectView urlpatterns = [ path('admin/', admin.site.urls), path('article/', include('article.urls')), path('auth/', include('social_django.urls', namespace='social')), path('watch/', include('watch_course.urls', namespace='watch')), # path('', RedirectView.as_view(url='/questionnaire/')), path('', include('questionnaire.urls',namespace='questionnaire')), path('users/', include('users.urls',namespace='user')), ] urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ 7061, 6, 201, 198, 5661, 8265, 4909, 477, 262, 2956, 7278, 329, 262, 2187, 1628, 201, 198, 7061, 6, 201, 198, 201, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 201, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 11, 17256, 201, 198, 6738, 2708, 1330, 5009, 355, 2708, 7680, 82, 201, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 6371, 82, 1330, 9037, 16624, 62, 6371, 33279, 82, 201, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 201, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 13, 12708, 1330, 9037, 201, 198, 2, 422, 42625, 14208, 13, 33571, 13, 41357, 1330, 2297, 1060, 7680, 201, 198, 201, 198, 201, 198, 6371, 33279, 82, 796, 685, 201, 198, 220, 220, 220, 3108, 10786, 28482, 14, 3256, 13169, 13, 15654, 13, 6371, 82, 828, 201, 198, 220, 220, 220, 3108, 10786, 20205, 14, 3256, 2291, 10786, 20205, 13, 6371, 82, 11537, 828, 201, 198, 220, 220, 220, 3108, 10786, 18439, 14, 3256, 2291, 10786, 14557, 62, 28241, 14208, 13, 6371, 82, 3256, 25745, 11639, 14557, 11537, 828, 201, 198, 220, 220, 220, 3108, 10786, 8340, 14, 3256, 2291, 10786, 8340, 62, 17319, 13, 6371, 82, 3256, 25745, 11639, 8340, 11537, 828, 201, 198, 220, 220, 220, 1303, 3108, 10786, 3256, 2297, 1060, 7680, 13, 292, 62, 1177, 7, 6371, 11639, 14, 25652, 24042, 14, 11537, 828, 201, 198, 220, 220, 220, 3108, 10786, 3256, 220, 2291, 10786, 25652, 24042, 13, 6371, 82, 3256, 14933, 10223, 11639, 25652, 24042, 11537, 828, 201, 198, 220, 220, 220, 3108, 10786, 18417, 14, 3256, 2291, 10786, 18417, 13, 6371, 82, 3256, 14933, 10223, 11639, 7220, 11537, 828, 201, 198, 60, 201, 198, 201, 198, 6371, 33279, 82, 15853, 9037, 16624, 62, 6371, 33279, 82, 3419, 201, 198, 6371, 33279, 82, 15853, 9037, 7, 33692, 13, 30733, 3539, 62, 21886, 11, 3188, 62, 15763, 28, 33692, 13, 30733, 3539, 62, 13252, 2394, 8, 201, 198 ]
2.92
325
#!/usr/bin/env python3 # (c) https://t.me/TelethonChat/37677 # This Source Code Form is subject to the terms of the GNU # MIT TeamDragons If a copy of the developer was not distributed with this # file, You can obtain one at https://www.gnu.org/licenses/MIT/TeamDragons from telethon.sessions import StringSession from telethon.sync import TelegramClient print( """Please go-to my.telegram.org Login using your Telegram account Click on API Development Tools Create a new application, by entering the required details""" ) APP_ID = int(input("MASUKAN API KEY : ")) API_HASH = input("MASUKAN API HASH : ") with TelegramClient(StringSession(), APP_ID, API_HASH) as client: print(client.session.save()) client.send_message("me", client.session.save())
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 357, 66, 8, 3740, 1378, 83, 13, 1326, 14, 31709, 400, 261, 30820, 14, 2718, 40179, 198, 2, 770, 8090, 6127, 5178, 318, 2426, 284, 262, 2846, 286, 262, 22961, 198, 2, 17168, 4816, 6187, 34765, 1002, 257, 4866, 286, 262, 8517, 373, 407, 9387, 351, 428, 198, 2, 2393, 11, 921, 460, 7330, 530, 379, 3740, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 36393, 14, 15592, 6187, 34765, 198, 198, 6738, 5735, 400, 261, 13, 82, 6202, 1330, 10903, 36044, 198, 6738, 5735, 400, 261, 13, 27261, 1330, 50203, 11792, 198, 198, 4798, 7, 198, 220, 220, 220, 37227, 5492, 467, 12, 1462, 616, 13, 660, 30536, 13, 2398, 198, 47790, 1262, 534, 50203, 1848, 198, 8164, 319, 7824, 7712, 20003, 198, 16447, 257, 649, 3586, 11, 416, 8218, 262, 2672, 3307, 37811, 198, 8, 198, 24805, 62, 2389, 796, 493, 7, 15414, 7203, 31180, 15039, 1565, 7824, 35374, 1058, 366, 4008, 198, 17614, 62, 39, 11211, 796, 5128, 7203, 31180, 15039, 1565, 7824, 367, 11211, 1058, 366, 8, 198, 198, 4480, 50203, 11792, 7, 10100, 36044, 22784, 43504, 62, 2389, 11, 7824, 62, 39, 11211, 8, 355, 5456, 25, 198, 220, 220, 220, 3601, 7, 16366, 13, 29891, 13, 21928, 28955, 198, 220, 220, 220, 5456, 13, 21280, 62, 20500, 7203, 1326, 1600, 5456, 13, 29891, 13, 21928, 28955, 198 ]
3.237288
236
node=[1,2,3] key=0 current_level={} node_store=[] main(node,key,current_level,node_store)
[ 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 17440, 41888, 16, 11, 17, 11, 18, 60, 198, 2539, 28, 15, 198, 198, 14421, 62, 5715, 34758, 92, 198, 17440, 62, 8095, 28, 21737, 198, 12417, 7, 17440, 11, 2539, 11, 14421, 62, 5715, 11, 17440, 62, 8095, 8, 198 ]
1.980769
52
#!/usr/bin/env python import rospy from ar_track_alvar_msgs.msg import AlvarMarkers import tf from tf.transformations import ( translation_matrix, quaternion_matrix, translation_from_matrix, quaternion_from_matrix, ) import threading import copy import numpy import ipdb comfortable_pick_frame = numpy.matrix([[0.9270661704094123, 0.37483076461918924, 0.007086153923013515, 0.746], [0.37479879099742724, -0.9270901506257341, 0.0054515025104288975, -0.089], [0.008612894362151227, -0.002398021632153474, -0.9999600329727978, 0.115], [0.0, 0.0, 0.0, 1.0]]) to_confortable_pick_frame = comfortable_pick_frame[:3, :3].I handcoded_marker_compensation = { 0: numpy.array( [[0.04258225549353267, -0.9976699860199164, -0.05330431982591899, -0.003], [0.9979499876999266, 0.045024270145620604, -0.045482272893637384, 0.0], [0.04777628665771998, -0.05125830754984532, 0.9975419852519115, -0.033], [0.0, 0.0, 0.0, 1.0]] , dtype=numpy.float64), 4: numpy.array( ((1.0, 0.0, 0.0, -0.0), (0.0, 1.0, 0.0, -0.0), (0.0, 0.0, 1.0, 0.05), (0.0, 0.0, 0.0, 1.0)) , dtype=numpy.float64), 6: numpy.array( ((1.0, 0.0, 0.0, -0.0), (0.0, 1.0, 0.0, -0.0), (0.0, 0.0, 1.0, 0.05), (0.0, 0.0, 0.0, 1.0)) , dtype=numpy.float64), 8: numpy.array( [[0.04157746411335095, -0.9972777195581611, -0.06089716373343029, 0.0], [0.9963386576809764, 0.04594110483626879, -0.07210197013183828, -0.011], [0.07470337133203928, -0.0576763812950862, 0.9955364590773818, -0.028], [0.0, 0.0, 0.0, 1.0]] , dtype=numpy.float64), 11: numpy.array(( ((1.0, 0.0, 0.0, 0.016), (0.0, 1.0, 0.0, -0.021), (0.0, 0.0, 1.0, 0.029), (0.0, 0.0, 0.0, 1.0)) ), dtype=numpy.float64), 13: numpy.array(( [[0.09622387309747282, -0.9940084038491953, -0.05184842643028589, 0.004], [0.9940084038491953, 0.09867616353674313, -0.04701391099286735, 0.0], [0.05184842643028589, -0.04701391099286735, 0.9975477095607297, -0.017], [0.0, 0.0, 0.0, 1.0]] ), dtype=numpy.float64), 17: numpy.array(( ((1.0, 0.0, 0.0, 0.0), (0.0, 1.0, 0.0, -0.0), (0.0, 0.0, 1.0, 0.075), (0.0, 0.0, 0.0, 1.0)) ), dtype=numpy.float64), 18: numpy.array(( [[-0.07792074091621037, 0.9962448437817034, -0.037743467957233004, 0.009], [-0.9936061393855619, -0.07450042029363613, 0.08483234731746714, -0.027], [0.081701884374772, 0.044112340840647246, 0.9956801210605593, -0.020], [0.0, 0.0, 0.0, 1.0]] ), dtype=numpy.float64), 20: numpy.array(( [[0.06595220199306795, -0.9974408579981445, -0.02760510547328114, 0.009], [0.9958555310795135, 0.06406061873788338, 0.06456003675076039, 0.016], [-0.06262641831212726, -0.031748573556066424, 0.9975319342289496, -0.040], [0.0, 0.0, 0.0, 1.0]] ), dtype=numpy.float64), 22: numpy.array(( ((1.0,0.0,0.0,0.0), (0.0, 1.0, 0.0, 0.016), (0.0 , 0.0 ,1.0, 0.016), (0.0, 0.0, 0.0, 1.0)) ), dtype=numpy.float64), 24: numpy.array(( [[0.06595220199306795, -0.9974408579981445, -0.02760510547328114, 0.009], [0.9958555310795135, 0.06406061873788338, 0.06456003675076039, 0.016], [-0.06262641831212726, -0.031748573556066424, 0.9975319342289496, -0.06], [0.0, 0.0, 0.0, 1.0]] ), dtype=numpy.float64), } writable = threading.Event() writable.clear() shared_msg = None if __name__ == '__main__': rospy.init_node("alvar_marker_to_baxter_picking_pose_py") rospy.Subscriber("ar_pose_marker", AlvarMarkers, cb) writable.set() listener = tf.TransformListener() broadcaster = tf.TransformBroadcaster() pub = rospy.Publisher("baxter_available_picking_pose", AlvarMarkers, queue_size=10) r = rospy.Rate(10) while not rospy.is_shutdown(): writable.clear() msg = copy.deepcopy(shared_msg) writable.set() if msg is not None: look_up_t = rospy.Time(0) listener.waitForTransform('base', 'left_hand_camera', look_up_t, rospy.Duration(3)) base_to_cam = listener.lookupTransform('base', 'left_hand_camera', look_up_t) base_to_cam_mat = listener.fromTranslationRotation(*base_to_cam) for marker in msg.markers: pose = marker.pose.pose pos = pose.position ori = pose.orientation cam_to_marker_mat = numpy.dot(translation_matrix((pos.x, pos.y, pos.z)), quaternion_matrix((ori.x, ori.y, ori.z, ori.w))) base_to_marker = numpy.dot(base_to_cam_mat, cam_to_marker_mat) broadcaster.sendTransform( translation_from_matrix(base_to_marker), quaternion_from_matrix(base_to_marker), rospy.Time.now(), 'raw_marker_%s'%marker.id, 'base', ) flipped_mat = transform_into_baxter_picking_space(base_to_marker) trans = translation_from_matrix(flipped_mat) quat = quaternion_from_matrix(flipped_mat) broadcaster.sendTransform( trans, quat, rospy.Time.now(), 'flipped_%s'%marker.id, 'base', ) if marker.id in handcoded_marker_compensation: compensated_mat = numpy.dot(flipped_mat, handcoded_marker_compensation[marker.id]) trans = translation_from_matrix(compensated_mat) quat = quaternion_from_matrix(compensated_mat) broadcaster.sendTransform( trans, quat, rospy.Time.now(), 'compensated_%s'%marker.id, 'base', ) noisy_mat = add_noise(compensated_mat) trans = translation_from_matrix(noisy_mat) quat = quaternion_from_matrix(noisy_mat) broadcaster.sendTransform( trans, quat, rospy.Time.now(), 'baxter_picking_pose_%s'%marker.id, 'base', ) marker.pose.pose.position.x = trans[0] marker.pose.pose.position.y = trans[1] marker.pose.pose.position.z = trans[2] marker.pose.pose.orientation.x = quat[0] marker.pose.pose.orientation.y = quat[1] marker.pose.pose.orientation.z = quat[2] marker.pose.pose.orientation.w = quat[3] if len(msg.markers) != 0: pub.publish(msg) try: r.sleep() except rospy.ROSInterruptException: break
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 686, 2777, 88, 198, 6738, 610, 62, 11659, 62, 282, 7785, 62, 907, 14542, 13, 19662, 1330, 978, 7785, 9704, 364, 198, 11748, 48700, 198, 6738, 48700, 13, 35636, 602, 1330, 357, 198, 220, 220, 220, 11059, 62, 6759, 8609, 11, 198, 220, 220, 220, 627, 9205, 295, 62, 6759, 8609, 11, 198, 220, 220, 220, 11059, 62, 6738, 62, 6759, 8609, 11, 198, 220, 220, 220, 627, 9205, 295, 62, 6738, 62, 6759, 8609, 11, 198, 8, 198, 11748, 4704, 278, 198, 11748, 4866, 198, 11748, 299, 32152, 198, 11748, 20966, 9945, 198, 198, 785, 12065, 62, 27729, 62, 14535, 796, 299, 32152, 13, 6759, 8609, 26933, 58, 15, 13, 24, 20233, 2791, 17279, 1821, 5824, 10163, 11, 657, 13, 2718, 2780, 22996, 27720, 1129, 23362, 1731, 11, 657, 13, 405, 2154, 4521, 1314, 2670, 1954, 486, 2327, 1314, 11, 657, 13, 22, 3510, 4357, 685, 15, 13, 2718, 2857, 4089, 37750, 2079, 4524, 1983, 1731, 11, 532, 15, 13, 24, 1983, 2931, 486, 1120, 26704, 22, 33660, 11, 657, 13, 22544, 2231, 8628, 1495, 13464, 2078, 4531, 2425, 11, 532, 15, 13, 49352, 4357, 685, 15, 13, 405, 4521, 1065, 4531, 43690, 23349, 1065, 1983, 11, 532, 15, 13, 405, 23516, 1795, 20666, 2624, 1314, 2682, 4524, 11, 532, 15, 13, 24214, 8054, 18, 26561, 26050, 3695, 11, 657, 13, 15363, 4357, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11907, 8, 198, 198, 1462, 62, 1102, 12065, 62, 27729, 62, 14535, 796, 6792, 62, 27729, 62, 14535, 58, 25, 18, 11, 1058, 18, 4083, 40, 198, 198, 4993, 40976, 62, 4102, 263, 62, 5589, 25742, 796, 1391, 198, 220, 220, 220, 657, 25, 299, 32152, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 13, 3023, 1495, 6469, 13381, 2920, 33319, 25674, 11, 532, 15, 13, 39647, 2791, 2079, 4521, 486, 2079, 23237, 11, 532, 15, 13, 2713, 26073, 3559, 22337, 25191, 1507, 2079, 11, 532, 15, 13, 11245, 4357, 685, 15, 13, 2079, 3720, 28324, 23, 4304, 17032, 25540, 11, 657, 13, 3023, 1120, 1731, 1983, 486, 29228, 1238, 31916, 11, 532, 15, 13, 40350, 2780, 24403, 27693, 2623, 2718, 22842, 11, 657, 13, 15, 4357, 685, 15, 13, 48000, 39509, 2078, 36879, 3324, 21113, 11, 532, 15, 13, 2713, 1065, 3365, 1270, 2425, 36260, 2231, 2624, 11, 657, 13, 2079, 41874, 29110, 1495, 1129, 15363, 11, 532, 15, 13, 44427, 4357, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11907, 628, 220, 220, 220, 837, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 220, 220, 220, 604, 25, 299, 32152, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11, 657, 13, 2713, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 4008, 198, 220, 220, 220, 837, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 220, 220, 220, 220, 198, 220, 220, 220, 718, 25, 299, 32152, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11, 657, 13, 2713, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 4008, 198, 220, 220, 220, 837, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 220, 220, 220, 220, 198, 220, 220, 220, 807, 25, 299, 32152, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 13, 3023, 1314, 3324, 44578, 1157, 2091, 1120, 3865, 11, 532, 15, 13, 39647, 1983, 3324, 1129, 40486, 1433, 1157, 11, 532, 15, 13, 41322, 4531, 22, 1433, 2718, 31380, 1270, 1959, 11, 657, 13, 15, 4357, 685, 15, 13, 38565, 28460, 2996, 4304, 1795, 5607, 2414, 11, 657, 13, 15, 33459, 3901, 940, 2780, 2623, 25022, 3720, 11, 532, 15, 13, 2998, 2481, 486, 5607, 30273, 1507, 2548, 2078, 11, 532, 15, 13, 28555, 4357, 685, 15, 13, 2998, 27790, 31496, 16945, 1238, 2670, 2078, 11, 532, 15, 13, 2713, 32059, 21, 2548, 18741, 1120, 4521, 17, 11, 657, 13, 2079, 2816, 2623, 33459, 2998, 22, 2548, 1507, 11, 532, 15, 13, 46957, 4357, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11907, 628, 220, 220, 220, 837, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1367, 25, 299, 32152, 13, 18747, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 657, 13, 27037, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 46821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11, 657, 13, 48891, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 4008, 198, 220, 220, 220, 10612, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1511, 25, 299, 32152, 13, 18747, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 13, 2931, 21, 1828, 32220, 1270, 5607, 2857, 32568, 11, 532, 15, 13, 2079, 7029, 40675, 2548, 2920, 1129, 4310, 11, 532, 15, 13, 2713, 1507, 34137, 18897, 1270, 2078, 44169, 11, 657, 13, 22914, 4357, 685, 15, 13, 2079, 7029, 40675, 2548, 2920, 1129, 4310, 11, 657, 13, 2931, 23, 42548, 1433, 2327, 27824, 3559, 1485, 11, 532, 15, 13, 48000, 486, 2670, 940, 2079, 2078, 3134, 2327, 11, 657, 13, 15, 4357, 685, 15, 13, 2713, 1507, 34137, 18897, 1270, 2078, 44169, 11, 532, 15, 13, 48000, 486, 2670, 940, 2079, 2078, 3134, 2327, 11, 657, 13, 2079, 2425, 2857, 2154, 3865, 31980, 26561, 11, 532, 15, 13, 29326, 4357, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11907, 198, 220, 220, 220, 10612, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 220, 220, 220, 198, 220, 220, 1596, 25, 299, 32152, 13, 18747, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11, 657, 13, 46396, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 4008, 198, 220, 220, 220, 10612, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 220, 220, 220, 220, 198, 220, 220, 220, 198, 220, 220, 1248, 25, 299, 32152, 13, 18747, 19510, 198, 220, 220, 220, 220, 220, 220, 16410, 12, 15, 13, 2998, 3720, 22745, 29416, 1433, 21536, 2718, 11, 657, 13, 38565, 1731, 34137, 30695, 17279, 2682, 11, 532, 15, 13, 15, 2718, 4524, 2682, 37601, 3553, 1954, 6200, 19, 11, 657, 13, 28694, 4357, 198, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 2079, 15277, 21, 20219, 2548, 37864, 1129, 11, 532, 15, 13, 2998, 2231, 22914, 1238, 1959, 2623, 2623, 1485, 11, 657, 13, 2919, 2780, 32637, 37804, 22985, 3134, 1415, 11, 532, 15, 13, 44698, 4357, 198, 220, 220, 220, 220, 220, 220, 685, 15, 13, 2919, 1558, 486, 40353, 2718, 2857, 4761, 11, 657, 13, 15, 39710, 10163, 26200, 1821, 33981, 26912, 11, 657, 13, 33438, 3104, 486, 21536, 1899, 2816, 6052, 11, 532, 15, 13, 33618, 4357, 198, 220, 220, 220, 220, 220, 220, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11907, 628, 220, 220, 220, 10612, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 220, 220, 220, 198, 220, 220, 220, 1160, 25, 299, 32152, 13, 18747, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 13, 15, 2996, 49234, 1264, 2079, 1270, 3134, 3865, 11, 532, 15, 13, 2079, 4524, 26200, 3553, 34808, 1415, 2231, 11, 532, 15, 13, 44698, 32417, 13348, 2857, 34256, 16562, 11, 657, 13, 28694, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 2079, 3365, 2816, 4310, 940, 41544, 17059, 11, 657, 13, 3312, 1821, 33206, 23451, 2718, 3459, 28460, 11, 657, 13, 3312, 2231, 8054, 2623, 15426, 40761, 2670, 11, 657, 13, 27037, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 3312, 2075, 18897, 24839, 1065, 16799, 2075, 11, 532, 15, 13, 3070, 1558, 2780, 3553, 28567, 33206, 2414, 1731, 11, 657, 13, 2079, 2425, 35175, 2682, 1828, 4531, 37747, 11, 532, 15, 13, 36676, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11907, 628, 220, 220, 220, 10612, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 628, 220, 220, 220, 2534, 25, 299, 32152, 13, 18747, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 16, 13, 15, 11, 15, 13, 15, 11, 15, 13, 15, 11, 15, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 11, 220, 657, 13, 27037, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 837, 657, 13, 15, 837, 16, 13, 15, 11, 657, 13, 27037, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 4008, 198, 220, 220, 220, 10612, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 220, 220, 1987, 25, 299, 32152, 13, 18747, 19510, 198, 220, 220, 220, 220, 220, 220, 16410, 15, 13, 15, 2996, 49234, 1264, 2079, 1270, 3134, 3865, 11, 532, 15, 13, 2079, 4524, 26200, 3553, 34808, 1415, 2231, 11, 532, 15, 13, 44698, 32417, 13348, 2857, 34256, 16562, 11, 657, 13, 28694, 4357, 198, 220, 220, 220, 220, 220, 220, 685, 15, 13, 2079, 3365, 2816, 4310, 940, 41544, 17059, 11, 657, 13, 3312, 1821, 33206, 23451, 2718, 3459, 28460, 11, 657, 13, 3312, 2231, 8054, 2623, 15426, 40761, 2670, 11, 657, 13, 27037, 4357, 198, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 3312, 2075, 18897, 24839, 1065, 16799, 2075, 11, 532, 15, 13, 3070, 1558, 2780, 3553, 28567, 33206, 2414, 1731, 11, 657, 13, 2079, 2425, 35175, 2682, 1828, 4531, 37747, 11, 532, 15, 13, 3312, 4357, 198, 220, 220, 220, 220, 220, 220, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11907, 198, 220, 220, 220, 10612, 288, 4906, 28, 77, 32152, 13, 22468, 2414, 828, 198, 92, 198, 198, 8933, 540, 796, 4704, 278, 13, 9237, 3419, 198, 8933, 540, 13, 20063, 3419, 198, 28710, 62, 19662, 796, 6045, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 686, 2777, 88, 13, 15003, 62, 17440, 7203, 282, 7785, 62, 4102, 263, 62, 1462, 62, 65, 40864, 62, 48864, 62, 3455, 62, 9078, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 686, 2777, 88, 13, 7004, 1416, 24735, 7203, 283, 62, 3455, 62, 4102, 263, 1600, 978, 7785, 9704, 364, 11, 269, 65, 8, 628, 220, 220, 220, 1991, 540, 13, 2617, 3419, 628, 220, 220, 220, 24783, 796, 48700, 13, 41762, 33252, 3419, 628, 198, 220, 220, 220, 26661, 796, 48700, 13, 41762, 30507, 17970, 3419, 198, 220, 220, 220, 2240, 796, 686, 2777, 88, 13, 46471, 7203, 65, 40864, 62, 15182, 62, 48864, 62, 3455, 1600, 978, 7785, 9704, 364, 11, 16834, 62, 7857, 28, 940, 8, 628, 220, 220, 220, 374, 796, 686, 2777, 88, 13, 32184, 7, 940, 8, 198, 220, 220, 220, 981, 407, 686, 2777, 88, 13, 271, 62, 49625, 2902, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1991, 540, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 4866, 13, 22089, 30073, 7, 28710, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1991, 540, 13, 2617, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 31456, 318, 407, 6045, 25, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 804, 62, 929, 62, 83, 796, 686, 2777, 88, 13, 7575, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24783, 13, 17077, 1890, 41762, 10786, 8692, 3256, 705, 9464, 62, 4993, 62, 25695, 3256, 804, 62, 929, 62, 83, 11, 686, 2777, 88, 13, 26054, 7, 18, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 1462, 62, 20991, 796, 24783, 13, 5460, 929, 41762, 10786, 8692, 3256, 705, 9464, 62, 4993, 62, 25695, 3256, 804, 62, 929, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 1462, 62, 20991, 62, 6759, 796, 24783, 13, 6738, 48313, 49, 14221, 46491, 8692, 62, 1462, 62, 20991, 8, 220, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 18364, 287, 31456, 13, 4102, 364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12705, 796, 18364, 13, 3455, 13, 3455, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 12705, 13, 9150, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22812, 796, 12705, 13, 13989, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12172, 62, 1462, 62, 4102, 263, 62, 6759, 796, 299, 32152, 13, 26518, 7, 41519, 62, 6759, 8609, 19510, 1930, 13, 87, 11, 1426, 13, 88, 11, 1426, 13, 89, 36911, 627, 9205, 295, 62, 6759, 8609, 19510, 10145, 13, 87, 11, 22812, 13, 88, 11, 22812, 13, 89, 11, 22812, 13, 86, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 1462, 62, 4102, 263, 796, 299, 32152, 13, 26518, 7, 8692, 62, 1462, 62, 20991, 62, 6759, 11, 12172, 62, 1462, 62, 4102, 263, 62, 6759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26661, 13, 21280, 41762, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11059, 62, 6738, 62, 6759, 8609, 7, 8692, 62, 1462, 62, 4102, 263, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 9205, 295, 62, 6738, 62, 6759, 8609, 7, 8692, 62, 1462, 62, 4102, 263, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 2777, 88, 13, 7575, 13, 2197, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 62, 4102, 263, 62, 4, 82, 6, 4, 4102, 263, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8692, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26157, 62, 6759, 796, 6121, 62, 20424, 62, 65, 40864, 62, 48864, 62, 13200, 7, 8692, 62, 1462, 62, 4102, 263, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1007, 796, 11059, 62, 6738, 62, 6759, 8609, 7, 2704, 3949, 62, 6759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 265, 796, 627, 9205, 295, 62, 6738, 62, 6759, 8609, 7, 2704, 3949, 62, 6759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26661, 13, 21280, 41762, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 265, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 2777, 88, 13, 7575, 13, 2197, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2704, 3949, 62, 4, 82, 6, 4, 4102, 263, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8692, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18364, 13, 312, 287, 25188, 9043, 62, 4102, 263, 62, 5589, 25742, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34304, 62, 6759, 796, 299, 32152, 13, 26518, 7, 2704, 3949, 62, 6759, 11, 25188, 9043, 62, 4102, 263, 62, 5589, 25742, 58, 4102, 263, 13, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1007, 796, 11059, 62, 6738, 62, 6759, 8609, 7, 5589, 641, 515, 62, 6759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 265, 796, 627, 9205, 295, 62, 6738, 62, 6759, 8609, 7, 5589, 641, 515, 62, 6759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26661, 13, 21280, 41762, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 265, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 2777, 88, 13, 7575, 13, 2197, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5589, 641, 515, 62, 4, 82, 6, 4, 4102, 263, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8692, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31210, 62, 6759, 796, 751, 62, 3919, 786, 7, 5589, 641, 515, 62, 6759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1007, 796, 11059, 62, 6738, 62, 6759, 8609, 7, 3919, 13560, 62, 6759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 265, 796, 627, 9205, 295, 62, 6738, 62, 6759, 8609, 7, 3919, 13560, 62, 6759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26661, 13, 21280, 41762, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 627, 265, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 2777, 88, 13, 7575, 13, 2197, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 40864, 62, 48864, 62, 3455, 62, 4, 82, 6, 4, 4102, 263, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8692, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 13, 3455, 13, 3455, 13, 9150, 13, 87, 796, 1007, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 13, 3455, 13, 3455, 13, 9150, 13, 88, 796, 1007, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 13, 3455, 13, 3455, 13, 9150, 13, 89, 796, 1007, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 13, 3455, 13, 3455, 13, 13989, 341, 13, 87, 796, 627, 265, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 13, 3455, 13, 3455, 13, 13989, 341, 13, 88, 796, 627, 265, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 13, 3455, 13, 3455, 13, 13989, 341, 13, 89, 796, 627, 265, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 13, 3455, 13, 3455, 13, 13989, 341, 13, 86, 796, 627, 265, 58, 18, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 19662, 13, 4102, 364, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2240, 13, 12984, 1836, 7, 19662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 42832, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 686, 2777, 88, 13, 49, 2640, 9492, 3622, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198 ]
1.743558
3,997
# Copyright 2017 Huawei Technologies Co.,LTD. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova.api.validation import parameter_types list_query_schema_v253 = { 'type': 'object', 'properties': { # The 2.33 microversion added support for paging by limit and marker. 'limit': parameter_types.single_param( parameter_types.non_negative_integer), 'marker': parameter_types.single_param({'type': 'string'}), # The 2.53 microversion adds support for filtering by hostname pattern # and requesting hosted servers in the GET /os-hypervisors and # GET /os-hypervisors/detail response. 'hypervisor_hostname_pattern': parameter_types.single_param( parameter_types.hostname), 'with_servers': parameter_types.single_param( parameter_types.boolean) }, 'additionalProperties': False } show_query_schema_v253 = { 'type': 'object', 'properties': { 'with_servers': parameter_types.single_param( parameter_types.boolean) }, 'additionalProperties': False }
[ 2, 15069, 2177, 43208, 21852, 1766, 1539, 43, 21016, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 6738, 645, 6862, 13, 15042, 13, 12102, 341, 1330, 11507, 62, 19199, 628, 198, 4868, 62, 22766, 62, 15952, 2611, 62, 85, 28592, 796, 1391, 198, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 362, 13, 2091, 4580, 9641, 2087, 1104, 329, 279, 3039, 416, 4179, 290, 18364, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32374, 10354, 11507, 62, 19199, 13, 29762, 62, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 62, 19199, 13, 13159, 62, 31591, 62, 41433, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4102, 263, 10354, 11507, 62, 19199, 13, 29762, 62, 17143, 15090, 6, 4906, 10354, 705, 8841, 6, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 362, 13, 4310, 4580, 9641, 6673, 1104, 329, 25431, 416, 2583, 3672, 3912, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 20623, 12007, 9597, 287, 262, 17151, 1220, 418, 12, 49229, 27681, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17151, 1220, 418, 12, 49229, 27681, 14, 49170, 2882, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 49229, 13131, 62, 4774, 3672, 62, 33279, 10354, 11507, 62, 19199, 13, 29762, 62, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 62, 19199, 13, 4774, 3672, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4480, 62, 2655, 690, 10354, 11507, 62, 19199, 13, 29762, 62, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 62, 19199, 13, 2127, 21052, 8, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 2860, 1859, 2964, 18200, 10354, 10352, 198, 92, 198, 198, 12860, 62, 22766, 62, 15952, 2611, 62, 85, 28592, 796, 1391, 198, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4480, 62, 2655, 690, 10354, 11507, 62, 19199, 13, 29762, 62, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 62, 19199, 13, 2127, 21052, 8, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 2860, 1859, 2964, 18200, 10354, 10352, 198, 92, 198 ]
2.909091
550
""" Scenarios for ODD generation/restriction of a base graph. Steps to create scenarios: 1. Define your reference graph: Add/choose graph fixture -> This is your base/reference graph, analogous to our OSM base map 2. Define your final odd graph (expected output) Restrict base graph using/adding `restriction` functions -> This will create an ODD subgraph, which is the final result expected by the method under test 3. Generate synthetic scenarios Use/add `transformation` functions -> This will create synthetic inputs to the methods under test 4. Make sure these are fed to `generate_scenarios` """ from copy import deepcopy import networkx as nx from locintel.graphs.datamodel.jurbey import Node from allpairspy import AllPairs from tests.synthetic.graphs import ( urban_grid_no_geometry, urban_grid_node_geometry, urban_grid_node_and_edge_geometry, ) from tests.synthetic.utils import ( interpolated_geometry, create_edge, requires, find_midpoint, ) ######################################################## # ODD restrictions # # # # Restriction to apply to base graph, to generate # # synthetic ODDs # # # ######################################################## ######################################################## # Graph transformations # # # # Transformations to apply to the ODD graph, in order # # to emulate real world use cases on arbitrary # # provider maps # # # ######################################################## @requires("edge_geometry") def generate_scenarios( base_graphs, restrictions, transformations, combination_function=None ): """ Generates scenarios consisting of combinations of graphs, restrictions and transformations, according to logic defined on combination_function. By default applies all pairs combinatorial method to keep it efficient, see more info here: https://www.tutorialspoint.com/software_testing_dictionary/all_pairs_testing.htm """ combination_function = combination_function or AllPairs for base_graph, restriction, transformation in combination_function( [base_graphs, restrictions, transformations], filter_func=is_valid_combination ): odd_graph = restriction(base_graph) transformed_graph = transformation(odd_graph) name = f"{base_graph.metadata['version']}_{restriction.__name__}_{transformation.__name__}" yield GraphTestScenario(name, base_graph, odd_graph, transformed_graph) odd_restrictions = [no_restrictions, remove_node, remove_edge] graph_transformations = [no_transformations, change_node_ids, split_edges] graphs = [ urban_grid_no_geometry, urban_grid_node_geometry, urban_grid_node_and_edge_geometry, ] scenarios = generate_scenarios(graphs, odd_restrictions, graph_transformations)
[ 37811, 198, 3351, 268, 13010, 329, 440, 16458, 5270, 14, 2118, 46214, 286, 257, 2779, 4823, 13, 198, 198, 8600, 82, 284, 2251, 13858, 25, 198, 16, 13, 2896, 500, 534, 4941, 4823, 25, 198, 220, 220, 220, 3060, 14, 6679, 577, 4823, 29220, 198, 220, 220, 220, 4613, 770, 318, 534, 2779, 14, 35790, 4823, 11, 34657, 284, 674, 7294, 44, 2779, 3975, 198, 198, 17, 13, 2896, 500, 534, 2457, 5629, 4823, 357, 40319, 5072, 8, 198, 220, 220, 220, 37163, 2779, 4823, 1262, 14, 26872, 4600, 2118, 46214, 63, 5499, 198, 220, 220, 220, 4613, 770, 481, 2251, 281, 440, 16458, 850, 34960, 11, 543, 318, 262, 2457, 1255, 2938, 416, 262, 2446, 739, 1332, 198, 198, 18, 13, 2980, 378, 18512, 13858, 198, 220, 220, 220, 5765, 14, 2860, 4600, 7645, 1161, 63, 5499, 198, 220, 220, 4613, 770, 481, 2251, 18512, 17311, 284, 262, 5050, 739, 1332, 198, 198, 19, 13, 6889, 1654, 777, 389, 11672, 284, 4600, 8612, 378, 62, 1416, 268, 13010, 63, 198, 37811, 198, 198, 6738, 4866, 1330, 2769, 30073, 198, 198, 11748, 3127, 87, 355, 299, 87, 198, 198, 6738, 1179, 48779, 13, 34960, 82, 13, 19608, 321, 375, 417, 13, 73, 333, 23454, 1330, 19081, 198, 198, 6738, 477, 24874, 2777, 88, 1330, 1439, 47, 3468, 198, 198, 6738, 5254, 13, 1837, 429, 6587, 13, 34960, 82, 1330, 357, 198, 220, 220, 220, 7876, 62, 25928, 62, 3919, 62, 469, 15748, 11, 198, 220, 220, 220, 7876, 62, 25928, 62, 17440, 62, 469, 15748, 11, 198, 220, 220, 220, 7876, 62, 25928, 62, 17440, 62, 392, 62, 14907, 62, 469, 15748, 11, 198, 8, 198, 6738, 5254, 13, 1837, 429, 6587, 13, 26791, 1330, 357, 198, 220, 220, 220, 39555, 515, 62, 469, 15748, 11, 198, 220, 220, 220, 2251, 62, 14907, 11, 198, 220, 220, 220, 4433, 11, 198, 220, 220, 220, 1064, 62, 13602, 4122, 11, 198, 8, 628, 198, 29113, 14468, 7804, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 440, 16458, 8733, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 37163, 295, 284, 4174, 284, 2779, 4823, 11, 284, 7716, 220, 220, 220, 220, 1303, 198, 2, 220, 18512, 440, 16458, 82, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 29113, 14468, 7804, 628, 628, 198, 29113, 14468, 7804, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29681, 38226, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 26981, 602, 284, 4174, 284, 262, 440, 16458, 4823, 11, 287, 1502, 1303, 198, 2, 220, 284, 33836, 1103, 995, 779, 2663, 319, 14977, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 10131, 8739, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 29113, 14468, 7804, 628, 198, 198, 31, 47911, 7203, 14907, 62, 469, 15748, 4943, 628, 628, 198, 4299, 7716, 62, 1416, 268, 13010, 7, 198, 220, 220, 220, 2779, 62, 34960, 82, 11, 8733, 11, 38226, 11, 6087, 62, 8818, 28, 14202, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 689, 13858, 17747, 286, 17790, 286, 28770, 11, 8733, 290, 38226, 11, 1864, 284, 9156, 198, 220, 220, 220, 5447, 319, 6087, 62, 8818, 13, 2750, 4277, 8991, 477, 14729, 1974, 20900, 498, 2446, 284, 1394, 340, 6942, 11, 766, 517, 198, 220, 220, 220, 7508, 994, 25, 3740, 1378, 2503, 13, 83, 44917, 2777, 1563, 13, 785, 14, 43776, 62, 33407, 62, 67, 14188, 14, 439, 62, 79, 3468, 62, 33407, 13, 19211, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6087, 62, 8818, 796, 6087, 62, 8818, 393, 1439, 47, 3468, 628, 220, 220, 220, 329, 2779, 62, 34960, 11, 17504, 11, 13389, 287, 6087, 62, 8818, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 8692, 62, 34960, 82, 11, 8733, 11, 38226, 4357, 8106, 62, 20786, 28, 271, 62, 12102, 62, 24011, 1883, 198, 220, 220, 220, 15179, 628, 220, 220, 220, 220, 220, 220, 220, 5629, 62, 34960, 796, 17504, 7, 8692, 62, 34960, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14434, 62, 34960, 796, 13389, 7, 5088, 62, 34960, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 277, 1, 90, 8692, 62, 34960, 13, 38993, 17816, 9641, 20520, 92, 23330, 2118, 46214, 13, 834, 3672, 834, 92, 23330, 7645, 1161, 13, 834, 3672, 834, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 29681, 14402, 3351, 39055, 7, 3672, 11, 2779, 62, 34960, 11, 5629, 62, 34960, 11, 14434, 62, 34960, 8, 628, 198, 5088, 62, 2118, 2012, 507, 796, 685, 3919, 62, 2118, 2012, 507, 11, 4781, 62, 17440, 11, 4781, 62, 14907, 60, 198, 34960, 62, 35636, 602, 796, 685, 3919, 62, 35636, 602, 11, 1487, 62, 17440, 62, 2340, 11, 6626, 62, 276, 3212, 60, 198, 34960, 82, 796, 685, 198, 220, 220, 220, 7876, 62, 25928, 62, 3919, 62, 469, 15748, 11, 198, 220, 220, 220, 7876, 62, 25928, 62, 17440, 62, 469, 15748, 11, 198, 220, 220, 220, 7876, 62, 25928, 62, 17440, 62, 392, 62, 14907, 62, 469, 15748, 11, 198, 60, 198, 1416, 268, 13010, 796, 7716, 62, 1416, 268, 13010, 7, 34960, 82, 11, 5629, 62, 2118, 2012, 507, 11, 4823, 62, 35636, 602, 8, 198 ]
2.654198
1,203
#-*- coding=utf-8 -*- #author: [email protected] import os from tmtc_ut import * from time import gmtime, strftime from lib.report import * from lib.htmlgenerator import * from lib.jinjagenerator import * if __name__ == '__main__': sdk = Sdkut(casedir="./cases", bindir='./bin') sdk.run() sdk.dumpreport()
[ 2, 12, 9, 12, 19617, 28, 40477, 12, 23, 532, 9, 12, 201, 198, 2, 9800, 25, 1976, 71, 4449, 6413, 13, 5948, 31, 43639, 2213, 388, 13, 785, 201, 198, 11748, 28686, 201, 198, 6738, 256, 16762, 66, 62, 315, 1330, 1635, 201, 198, 6738, 640, 1330, 308, 76, 2435, 11, 965, 31387, 201, 198, 6738, 9195, 13, 13116, 1330, 1635, 201, 198, 6738, 9195, 13, 6494, 8612, 1352, 1330, 1635, 201, 198, 6738, 9195, 13, 18594, 73, 363, 877, 1352, 1330, 1635, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 264, 34388, 796, 311, 34388, 315, 7, 66, 839, 343, 28, 1911, 14, 33964, 1600, 11007, 343, 28, 4458, 14, 8800, 11537, 201, 198, 220, 220, 220, 264, 34388, 13, 5143, 3419, 201, 198, 220, 220, 220, 264, 34388, 13, 39455, 13116, 3419 ]
2.308219
146
import csv import os lnr_genomes_aa = [] # aa = assembly_accession with open("bacteria_as_comref_genomes_wo_ecoli",'r') as f: next(f) # skip headings reader=csv.reader(f,delimiter='\t') tmp_size = None tmp_aa = None tmp_s_id = None for line in reader: filepath = line[20].replace("/cygdrive/h/","H:/") print filepath statinfo = os.stat(filepath) # Check whether there is a duplicate if tmp_s_id != line[6]: # sid = species_id tmp_aa = line[0] lnr_genomes_aa.append(tmp_aa) tmp_size = statinfo.st_size else: print ">",tmp_s_id # Keep the largest genomes in a same clade if tmp_size < statinfo.st_size: tmp_size = statinfo.st_size tmp_aa = line[0] tmp_s_id = line[6] lnr_genomes_aa.append(tmp_aa) print lnr_genomes_aa print "TOTAL:",len(lnr_genomes_aa) with open("bacteria_as_comref_genomes_wo_ecoli",'r') as f: lines = f.readlines() # lnr = Largest Non-Redundant nf = open("bacteria_as_comref_genomes_wo_ecoli_lnr","w") for line in lines: aa = line.split("\t")[0] if aa in lnr_genomes_aa: nf.write(line) lnr_genomes_aa.remove(aa) else: print "NOT IN: ",aa
[ 11748, 269, 21370, 198, 11748, 28686, 198, 198, 18755, 81, 62, 5235, 2586, 62, 7252, 796, 17635, 1303, 257, 64, 796, 10474, 62, 15526, 295, 198, 198, 4480, 1280, 7203, 65, 10634, 62, 292, 62, 785, 5420, 62, 5235, 2586, 62, 21638, 62, 721, 11106, 1600, 6, 81, 11537, 355, 277, 25, 198, 197, 19545, 7, 69, 8, 1303, 14267, 1182, 654, 198, 197, 46862, 28, 40664, 13, 46862, 7, 69, 11, 12381, 320, 2676, 11639, 59, 83, 11537, 198, 220, 197, 22065, 62, 7857, 796, 6045, 198, 197, 22065, 62, 7252, 796, 6045, 198, 197, 22065, 62, 82, 62, 312, 796, 6045, 198, 197, 1640, 1627, 287, 9173, 25, 198, 197, 197, 7753, 6978, 796, 1627, 58, 1238, 4083, 33491, 7203, 14, 948, 70, 19472, 14, 71, 14, 2430, 39, 14079, 4943, 198, 197, 197, 4798, 2393, 6978, 198, 197, 197, 301, 10680, 6513, 796, 28686, 13, 14269, 7, 7753, 6978, 8, 198, 197, 197, 2, 6822, 1771, 612, 318, 257, 23418, 198, 197, 197, 361, 45218, 62, 82, 62, 312, 14512, 1627, 58, 21, 5974, 1303, 9785, 796, 4693, 62, 312, 198, 197, 197, 197, 22065, 62, 7252, 796, 1627, 58, 15, 60, 198, 197, 197, 197, 18755, 81, 62, 5235, 2586, 62, 7252, 13, 33295, 7, 22065, 62, 7252, 8, 198, 197, 197, 197, 22065, 62, 7857, 796, 1185, 10951, 13, 301, 62, 7857, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 4798, 366, 29, 1600, 22065, 62, 82, 62, 312, 198, 197, 197, 197, 2, 9175, 262, 4387, 42136, 287, 257, 976, 537, 671, 198, 197, 197, 197, 361, 45218, 62, 7857, 1279, 1185, 10951, 13, 301, 62, 7857, 25, 198, 197, 197, 197, 197, 22065, 62, 7857, 796, 1185, 10951, 13, 301, 62, 7857, 198, 197, 197, 197, 197, 22065, 62, 7252, 796, 1627, 58, 15, 60, 198, 197, 197, 22065, 62, 82, 62, 312, 796, 1627, 58, 21, 60, 198, 197, 18755, 81, 62, 5235, 2586, 62, 7252, 13, 33295, 7, 22065, 62, 7252, 8, 198, 197, 4798, 300, 48624, 62, 5235, 2586, 62, 7252, 198, 197, 4798, 366, 51, 27510, 25, 1600, 11925, 7, 18755, 81, 62, 5235, 2586, 62, 7252, 8, 628, 198, 4480, 1280, 7203, 65, 10634, 62, 292, 62, 785, 5420, 62, 5235, 2586, 62, 21638, 62, 721, 11106, 1600, 6, 81, 11537, 355, 277, 25, 197, 198, 197, 6615, 796, 277, 13, 961, 6615, 3419, 198, 197, 2, 300, 48624, 796, 406, 853, 395, 8504, 12, 7738, 917, 415, 198, 220, 197, 77, 69, 796, 1280, 7203, 65, 10634, 62, 292, 62, 785, 5420, 62, 5235, 2586, 62, 21638, 62, 721, 11106, 62, 18755, 81, 2430, 86, 4943, 198, 197, 1640, 1627, 287, 3951, 25, 198, 197, 197, 7252, 796, 1627, 13, 35312, 7203, 59, 83, 4943, 58, 15, 60, 198, 197, 197, 361, 257, 64, 287, 300, 48624, 62, 5235, 2586, 62, 7252, 25, 198, 197, 197, 197, 77, 69, 13, 13564, 7, 1370, 8, 198, 197, 197, 197, 18755, 81, 62, 5235, 2586, 62, 7252, 13, 28956, 7, 7252, 8, 198, 220, 220, 220, 220, 197, 17772, 25, 198, 220, 220, 220, 220, 197, 197, 4798, 366, 11929, 3268, 25, 33172, 7252, 198 ]
2.155598
527
from functools import wraps @cache fn(1) fn(1) fn(3)
[ 6738, 1257, 310, 10141, 1330, 27521, 628, 198, 31, 23870, 198, 198, 22184, 7, 16, 8, 198, 22184, 7, 16, 8, 198, 22184, 7, 18, 8, 198 ]
2.074074
27
# -*- coding: utf-8 -*- # # || ____ _ __ # +------+ / __ )(_) /_______________ _____ ___ # | 0xBC | / __ / / __/ ___/ ___/ __ `/_ / / _ \ # +------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/ # || || /_____/_/\__/\___/_/ \__,_/ /___/\___/ # # Copyright (C) 2019 Bitcraze AB # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. import unittest import cflib.crtp from cflib.crazyflie import Crazyflie from cflib.crazyflie.log import LogConfig from cflib.crazyflie.swarm import CachedCfFactory from cflib.crazyflie.swarm import Swarm from cflib.crazyflie.syncCrazyflie import SyncCrazyflie from cflib.crazyflie.syncLogger import SyncLogger from sys_test.swarm_test_rig.rig_support import RigSupport
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 220, 220, 220, 220, 8614, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1427, 220, 4808, 11593, 198, 2, 220, 1343, 23031, 10, 220, 220, 220, 220, 220, 1220, 11593, 1267, 28264, 8, 1220, 2602, 37405, 220, 29343, 220, 46444, 198, 2, 220, 930, 657, 87, 2749, 930, 220, 220, 220, 220, 1220, 11593, 220, 1220, 1220, 11593, 14, 46444, 14, 46444, 14, 11593, 4600, 47835, 220, 1220, 1220, 4808, 3467, 198, 2, 220, 1343, 23031, 10, 220, 220, 220, 1220, 1220, 62, 14, 1220, 1220, 1220, 62, 14, 1220, 834, 14, 1220, 220, 1220, 1220, 62, 14, 1220, 1220, 1220, 62, 14, 220, 11593, 14, 198, 2, 220, 220, 8614, 220, 8614, 220, 220, 220, 1220, 29343, 47835, 14, 59, 834, 14, 59, 17569, 47835, 14, 220, 220, 3467, 834, 11, 62, 14, 1220, 17569, 14, 59, 17569, 14, 198, 2, 198, 2, 220, 15069, 357, 34, 8, 13130, 4722, 66, 430, 2736, 9564, 198, 2, 198, 2, 220, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 198, 2, 220, 13096, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 220, 355, 3199, 416, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 198, 2, 220, 286, 262, 13789, 11, 393, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 220, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 220, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 220, 1863, 351, 428, 1430, 26, 611, 407, 11, 3551, 284, 262, 3232, 10442, 198, 2, 220, 5693, 11, 3457, 1539, 6885, 14021, 3530, 11, 19383, 22343, 11, 6182, 11, 198, 2, 220, 8779, 220, 657, 2481, 940, 12, 1485, 486, 11, 4916, 13, 198, 11748, 555, 715, 395, 198, 198, 11748, 269, 2704, 571, 13, 6098, 34788, 198, 6738, 269, 2704, 571, 13, 50112, 2704, 494, 1330, 19932, 2704, 494, 198, 6738, 269, 2704, 571, 13, 50112, 2704, 494, 13, 6404, 1330, 5972, 16934, 198, 6738, 269, 2704, 571, 13, 50112, 2704, 494, 13, 2032, 1670, 1330, 327, 2317, 34, 69, 22810, 198, 6738, 269, 2704, 571, 13, 50112, 2704, 494, 13, 2032, 1670, 1330, 38293, 198, 6738, 269, 2704, 571, 13, 50112, 2704, 494, 13, 27261, 34, 5918, 2704, 494, 1330, 35908, 34, 5918, 2704, 494, 198, 6738, 269, 2704, 571, 13, 50112, 2704, 494, 13, 27261, 11187, 1362, 1330, 35908, 11187, 1362, 198, 6738, 25064, 62, 9288, 13, 2032, 1670, 62, 9288, 62, 4359, 13, 4359, 62, 11284, 1330, 24666, 15514, 628 ]
2.830645
496
from flask import Flask, render_template, request app = Flask(__name__) @app.route('/upload', methods=['GET', 'POST']) @app.route('/upload/progress') @app.route('/progress') if __name__ == '__main__': app.run(debug=True)
[ 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 2581, 201, 198, 201, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 201, 198, 201, 198, 31, 1324, 13, 38629, 10786, 14, 25850, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 201, 198, 201, 198, 31, 1324, 13, 38629, 10786, 14, 25850, 14, 33723, 11537, 201, 198, 220, 220, 220, 220, 201, 198, 31, 1324, 13, 38629, 10786, 14, 33723, 11537, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 197, 1324, 13, 5143, 7, 24442, 28, 17821, 8, 201, 198 ]
2.43
100
''' Visualize steps of the calibration process to ensure everything went according to plan ''' from matplotlib import pyplot as plt from astropy.io import fits from visualization import zscale #https://github.com/abostroem/utilities overscan_size = 32 #pixels unusable_bottom = 48//2 #pixels
[ 7061, 6, 198, 36259, 1096, 4831, 286, 262, 36537, 1429, 284, 4155, 2279, 1816, 1864, 284, 1410, 198, 7061, 6, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 6738, 6468, 28338, 13, 952, 1330, 11414, 198, 198, 6738, 32704, 1330, 1976, 9888, 1303, 5450, 1378, 12567, 13, 785, 14, 397, 455, 305, 368, 14, 315, 2410, 198, 198, 13801, 5171, 62, 7857, 796, 3933, 1303, 79, 14810, 198, 403, 31979, 62, 22487, 796, 4764, 1003, 17, 1303, 79, 14810, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 628 ]
3.141414
99
import time class log: """ This module is used to track the progress of events and write it into a log file. """
[ 11748, 640, 198, 198, 4871, 2604, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 8265, 318, 973, 284, 2610, 262, 4371, 286, 2995, 198, 220, 220, 220, 290, 3551, 340, 656, 257, 2604, 2393, 13, 198, 220, 220, 220, 37227, 198 ]
2.954545
44
{ "targets": [ { "target_name": "forbidden-point-finder", "sources": [ "src/binding/finder.cpp", "forbidden-point-finder/ForbiddenPointFinder.cpp" ] } ] }
[ 90, 198, 220, 220, 220, 366, 83, 853, 1039, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16793, 62, 3672, 1298, 366, 1640, 37978, 12, 4122, 12, 22805, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2203, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10677, 14, 30786, 14, 22805, 13, 20322, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1640, 37978, 12, 4122, 12, 22805, 14, 1890, 37978, 12727, 37, 5540, 13, 20322, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 2361, 198, 92 ]
1.662162
148
# Copyright 2020 The MuLT Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from model import Model import tensorflow as tf
[ 2, 15069, 12131, 383, 8252, 27734, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 198, 6738, 2746, 1330, 9104, 198, 11748, 11192, 273, 11125, 355, 48700, 628 ]
4.236994
173
from datetime import datetime import json from collections import OrderedDict import os.path from math import log from math import e from sklearn.preprocessing import minmax_scale from sklearn.preprocessing import MinMaxScaler import numpy as np from math import sqrt import pandas as pd data = OrderedDict() weights = [] lat = [] long = [] num_points = 500 if os.path.isfile('maps.json') : with open ('maps.json', 'r+') as fp: data = json.load(fp, object_pairs_hook=OrderedDict) for key in range(len(list(data.keys()))): if key > num_points: break stored = data[list(data.keys())[len(list(data.keys())) - 1 - key]] month = stored['Month'] day = stored['Day'] year = stored['Year'] lat.append(stored['Latitude']) long.append(stored['Longitude']) date = month + " " + str(day) + ", " + str(year) date_format = "%B %d, %Y" now = datetime.now() date_object = datetime.strptime(date, date_format) delta = now - date_object num_hours = delta.days*24 if num_hours != 0: weights.append(sqrt(1.0/num_hours) * 1000) else: weights.append(25) weights = np.array(weights) weights = weights.reshape(-1, 1) min_max_scaler = MinMaxScaler(feature_range=(0, 2)) weights = min_max_scaler.fit_transform(np.float32(weights)) weights = weights.tolist() points = OrderedDict() long_shit = [] lat_shit = [] weight_shit = [] for i in range(num_points): long_shit.append(long[i]) lat_shit.append(lat[i]) weight_shit.append(weights[i][0]) df = pd.DataFrame() df["lng"] = np.array(long_shit) df['lat'] = np.array(lat_shit) df ['weight'] = np.array(weight_shit) df.to_csv('heat_map.csv', index=False)
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 33918, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 28686, 13, 6978, 198, 6738, 10688, 1330, 2604, 198, 6738, 10688, 1330, 304, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 949, 9806, 62, 9888, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 1855, 11518, 3351, 36213, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 10688, 1330, 19862, 17034, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 7890, 796, 14230, 1068, 35, 713, 3419, 198, 43775, 796, 17635, 198, 15460, 796, 17635, 198, 6511, 796, 17635, 198, 198, 22510, 62, 13033, 796, 5323, 198, 198, 361, 28686, 13, 6978, 13, 4468, 576, 10786, 31803, 13, 17752, 11537, 1058, 198, 220, 220, 220, 351, 1280, 19203, 31803, 13, 17752, 3256, 705, 81, 10, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 33918, 13, 2220, 7, 46428, 11, 2134, 62, 79, 3468, 62, 25480, 28, 35422, 1068, 35, 713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 1640, 1994, 287, 2837, 7, 11925, 7, 4868, 7, 7890, 13, 13083, 3419, 4008, 2599, 198, 220, 220, 220, 611, 1994, 1875, 997, 62, 13033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 8574, 796, 1366, 58, 4868, 7, 7890, 13, 13083, 28955, 58, 11925, 7, 4868, 7, 7890, 13, 13083, 3419, 4008, 532, 352, 532, 1994, 11907, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1227, 796, 8574, 17816, 31948, 20520, 198, 220, 220, 220, 1110, 796, 8574, 17816, 12393, 20520, 198, 220, 220, 220, 614, 796, 8574, 17816, 17688, 20520, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3042, 13, 33295, 7, 301, 1850, 17816, 24220, 3984, 6, 12962, 198, 220, 220, 220, 890, 13, 33295, 7, 301, 1850, 17816, 14617, 3984, 6, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3128, 796, 1227, 1343, 366, 366, 1343, 965, 7, 820, 8, 1343, 33172, 366, 1343, 965, 7, 1941, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3128, 62, 18982, 796, 36521, 33, 4064, 67, 11, 4064, 56, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 783, 796, 4818, 8079, 13, 2197, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3128, 62, 15252, 796, 4818, 8079, 13, 2536, 457, 524, 7, 4475, 11, 3128, 62, 18982, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 25979, 796, 783, 532, 3128, 62, 15252, 198, 220, 220, 220, 220, 198, 220, 220, 220, 997, 62, 24425, 796, 25979, 13, 12545, 9, 1731, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 997, 62, 24425, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 13, 33295, 7, 31166, 17034, 7, 16, 13, 15, 14, 22510, 62, 24425, 8, 1635, 8576, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 13, 33295, 7, 1495, 8, 628, 198, 43775, 796, 45941, 13, 18747, 7, 43775, 8, 198, 43775, 796, 19590, 13, 3447, 1758, 32590, 16, 11, 352, 8, 198, 198, 1084, 62, 9806, 62, 1416, 36213, 796, 1855, 11518, 3351, 36213, 7, 30053, 62, 9521, 16193, 15, 11, 362, 4008, 198, 198, 43775, 796, 949, 62, 9806, 62, 1416, 36213, 13, 11147, 62, 35636, 7, 37659, 13, 22468, 2624, 7, 43775, 4008, 198, 198, 43775, 796, 19590, 13, 83, 349, 396, 3419, 198, 198, 13033, 796, 14230, 1068, 35, 713, 3419, 198, 198, 6511, 62, 16211, 796, 17635, 198, 15460, 62, 16211, 796, 17635, 198, 6551, 62, 16211, 796, 17635, 198, 198, 1640, 1312, 287, 2837, 7, 22510, 62, 13033, 2599, 198, 220, 220, 220, 890, 62, 16211, 13, 33295, 7, 6511, 58, 72, 12962, 198, 220, 220, 220, 3042, 62, 16211, 13, 33295, 7, 15460, 58, 72, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3463, 62, 16211, 13, 33295, 7, 43775, 58, 72, 7131, 15, 12962, 198, 220, 198, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 198, 7568, 14692, 75, 782, 8973, 796, 45941, 13, 18747, 7, 6511, 62, 16211, 8, 198, 7568, 17816, 15460, 20520, 796, 45941, 13, 18747, 7, 15460, 62, 16211, 8, 198, 7568, 37250, 6551, 20520, 796, 45941, 13, 18747, 7, 6551, 62, 16211, 8, 198, 198, 7568, 13, 1462, 62, 40664, 10786, 25080, 62, 8899, 13, 40664, 3256, 6376, 28, 25101, 8, 628, 198 ]
2.390476
735
"""一个纯 Python 实现的 Python 字节码解释器""" # 改编自 # 1. pyvm2 作者:Paul Swartz,来自 http://www.twistedmatrix.com/users/z3p/ # 2. byterun 作者:Ned Batchelder,github.com/nedbat/byterun import dis, operator, sys, collections, inspect, types Block = collections.namedtuple("Block", "type, handler, stack_height") class Function(object): """ 创建一个真实的函数对象,定义解释器期望的东西。 """ # 去掉 '__doc__' __slots__ = [ 'func_code', 'func_name', 'func_defaults', 'func_globals', 'func_locals', 'func_dict', 'func_closure', '__name__', '__dict__', '_vm', '_func', ] def __init__(self, name, code, globs, defaults, closure, vm): """你不需要按照这个来理解解释器。""" self._vm = vm self.func_code = code self.func_name = self.__name__ = name or code.co_name self.func_defaults = tuple(defaults) self.func_globals = globs self.func_locals = self._vm.frame.local_names self.__dict__ = {} self.func_closure = closure self.__doc__ = code.co_consts[0] if code.co_consts else None # 有时我们需要一个真正的 Python 函数,这里就是 kw = { 'argdefs': self.func_defaults, } if closure: kw['closure'] = tuple(make_cell(0) for _ in closure) # 利用 types 模块的 FunctionType 生成方法 self._func = types.FunctionType(code, globs, **kw) def __call__(self, *args, **kwargs): """调用函数时,创建一个新帧并运行它。""" # Python 3.6.1更新(bpo-19611): # 作用域和生成器表达式作用域生成的隐式 .0 参数会变为 implicit0 # 处理的时候需要注意(在 byte_LOAD_FAST 中) callargs = inspect.getcallargs(self._func, *args, **kwargs) # 使用 callargs 提供参数的映射:传递到新帧 frame = self._vm.make_frame( self.func_code, callargs, self.func_globals, {} ) return self._vm.run_frame(frame)
[ 37811, 31660, 10310, 103, 163, 118, 107, 11361, 10263, 106, 252, 163, 236, 108, 21410, 11361, 10263, 255, 245, 164, 232, 224, 163, 254, 223, 164, 100, 96, 34932, 232, 161, 247, 101, 37811, 198, 2, 10545, 242, 117, 163, 120, 244, 164, 229, 103, 198, 2, 352, 13, 12972, 14761, 17, 220, 43291, 38519, 171, 120, 248, 12041, 2451, 13636, 171, 120, 234, 30266, 98, 164, 229, 103, 2638, 1378, 2503, 13, 4246, 6347, 6759, 8609, 13, 785, 14, 18417, 14, 89, 18, 79, 14, 198, 2, 362, 13, 416, 353, 403, 220, 43291, 38519, 171, 120, 248, 45, 276, 6577, 2395, 6499, 171, 120, 234, 12567, 13, 785, 14, 2817, 8664, 14, 36204, 403, 198, 198, 11748, 595, 11, 10088, 11, 25064, 11, 17268, 11, 10104, 11, 3858, 198, 198, 12235, 796, 17268, 13, 13190, 83, 29291, 7203, 12235, 1600, 366, 4906, 11, 21360, 11, 8931, 62, 17015, 4943, 198, 198, 4871, 15553, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 230, 249, 161, 119, 118, 31660, 10310, 103, 40367, 253, 22522, 252, 21410, 49035, 121, 46763, 108, 43380, 117, 164, 109, 94, 171, 120, 234, 22522, 248, 20046, 231, 164, 100, 96, 34932, 232, 161, 247, 101, 17312, 253, 17312, 249, 21410, 10310, 250, 164, 98, 123, 16764, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 10263, 236, 119, 162, 236, 231, 705, 834, 15390, 834, 6, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20786, 62, 8189, 3256, 705, 20786, 62, 3672, 3256, 705, 20786, 62, 12286, 82, 3256, 705, 20786, 62, 4743, 672, 874, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20786, 62, 17946, 874, 3256, 705, 20786, 62, 11600, 3256, 705, 20786, 62, 17966, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 834, 3672, 834, 3256, 705, 834, 11600, 834, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 705, 62, 14761, 3256, 705, 62, 20786, 3256, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 11, 2438, 11, 1278, 8158, 11, 26235, 11, 16512, 11, 45887, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19526, 254, 38834, 165, 250, 222, 17358, 223, 162, 234, 231, 163, 227, 100, 32573, 247, 10310, 103, 30266, 98, 49426, 228, 164, 100, 96, 164, 100, 96, 34932, 232, 161, 247, 101, 16764, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14761, 796, 45887, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 8189, 796, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 3672, 796, 2116, 13, 834, 3672, 834, 796, 1438, 393, 2438, 13, 1073, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 12286, 82, 796, 46545, 7, 12286, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 4743, 672, 874, 796, 1278, 8158, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 17946, 874, 796, 2116, 13557, 14761, 13, 14535, 13, 12001, 62, 14933, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11600, 834, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 17966, 796, 16512, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 15390, 834, 796, 2438, 13, 1073, 62, 1102, 6448, 58, 15, 60, 611, 2438, 13, 1073, 62, 1102, 6448, 2073, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42164, 231, 33768, 114, 22755, 239, 20015, 105, 165, 250, 222, 17358, 223, 31660, 10310, 103, 40367, 253, 29826, 96, 21410, 11361, 10263, 229, 121, 46763, 108, 171, 120, 234, 32573, 247, 34932, 234, 22887, 109, 42468, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 853, 4299, 82, 10354, 2116, 13, 20786, 62, 12286, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 17816, 17966, 20520, 796, 46545, 7, 15883, 62, 3846, 7, 15, 8, 329, 4808, 287, 16512, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 230, 102, 18796, 101, 3858, 10545, 101, 94, 161, 251, 245, 21410, 15553, 6030, 13328, 242, 253, 22755, 238, 43095, 37345, 243, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20786, 796, 3858, 13, 22203, 6030, 7, 8189, 11, 1278, 8158, 11, 12429, 46265, 8, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 164, 108, 225, 18796, 101, 49035, 121, 46763, 108, 33768, 114, 171, 120, 234, 26344, 249, 161, 119, 118, 31660, 10310, 103, 23877, 108, 30585, 100, 33176, 114, 32573, 238, 26193, 234, 22522, 225, 16764, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11361, 513, 13, 21, 13, 16, 162, 249, 112, 23877, 108, 171, 120, 230, 65, 7501, 12, 25272, 1157, 171, 120, 231, 171, 120, 248, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 43291, 18796, 101, 161, 253, 253, 161, 240, 234, 37955, 22755, 238, 161, 247, 101, 26193, 101, 164, 122, 122, 28156, 237, 43291, 18796, 101, 161, 253, 253, 37955, 22755, 238, 21410, 49694, 238, 28156, 237, 764, 15, 10263, 237, 224, 46763, 108, 27670, 248, 20998, 246, 10310, 118, 16992, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 36469, 226, 49426, 228, 21410, 33768, 114, 161, 222, 247, 165, 250, 222, 17358, 223, 37345, 101, 35707, 237, 7, 28839, 101, 18022, 62, 35613, 62, 37, 11262, 220, 40792, 8, 198, 220, 220, 220, 220, 220, 220, 220, 869, 22046, 796, 10104, 13, 1136, 13345, 22046, 7, 944, 13557, 20786, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 45635, 18796, 101, 869, 22046, 10545, 237, 238, 160, 122, 249, 20998, 224, 46763, 108, 21410, 23626, 254, 22887, 226, 171, 120, 248, 27670, 254, 34460, 240, 26344, 108, 23877, 108, 30585, 100, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 2116, 13557, 14761, 13, 15883, 62, 14535, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 8189, 11, 869, 22046, 11, 2116, 13, 20786, 62, 4743, 672, 874, 11, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 14761, 13, 5143, 62, 14535, 7, 14535, 8, 628, 198, 220, 220, 220, 220, 628, 628, 220, 220, 220, 220, 628, 628, 628, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220 ]
1.592048
1,157
from abc import ABC from jax.ops import index_update, index_add, index from typing import List, Union, Any from spdc_inv.utils.defaults import QUBIT import scipy.special as sp import jax.numpy as np import math # Constants: pi = np.pi c = 2.99792458e8 # speed of light [meter/sec] eps0 = 8.854187817e-12 # vacuum permittivity [Farad/meter] h_bar = 1.054571800e-34 # [m^2 kg / s], taken from http://physics.nist.gov/cgi-bin/cuu/Value?hbar|search_for=planck # lambda functions: G1_Normalization = lambda w: h_bar * w / (2 * eps0 * c) I = lambda A, n: 2 * n * eps0 * c * np.abs(A) ** 2 # Intensity Power2D = lambda A, n, dx, dy: np.sum(I(A, n)) * dx * dy # Compute the idler wavelength given pump and signal SFG_idler_wavelength = lambda lambda_p, lambda_s: lambda_p * lambda_s / (lambda_s - lambda_p) def PP_crystal_slab( delta_k, z, crystal_profile, inference=None ): """ Periodically poled crystal slab. create the crystal slab at point z in the crystal, for poling period 2pi/delta_k Parameters ---------- delta_k: k mismatch z: longitudinal point for generating poling pattern crystal_profile: Crystal 3D hologram (if None, ignore) inference: (True/False) if in inference mode, we include more coefficients in the poling description for better validation Returns Periodically poled crystal slab at point z ------- """ if crystal_profile is None: return np.sign(np.cos(np.abs(delta_k) * z)) else: magnitude = np.abs(crystal_profile) phase = np.angle(crystal_profile) if inference is not None: max_order_fourier = 20 poling = 0 magnitude = magnitude / magnitude.max() DutyCycle = np.arcsin(magnitude) / np.pi for m in range(max_order_fourier): if m == 0: poling = poling + 2 * DutyCycle - 1 else: poling = poling + (2 / (m * np.pi)) * \ np.sin(m * pi * DutyCycle) * 2 * np.cos(m * phase + m * np.abs(delta_k) * z) return poling else: return (2 / np.pi) * np.exp(1j * (np.abs(delta_k) * z)) * magnitude * np.exp(1j * phase) def HermiteBank( lam, refractive_index, W0, max_mode_x, max_mode_y, x, y, z=0 ): """ generates a dictionary of Hermite Gauss basis functions Parameters ---------- lam; wavelength refractive_index: refractive index W0: beam waist max_mode_x: maximum projection mode 1st axis max_mode_y: maximum projection mode 2nd axis x: transverse points, x axis y: transverse points, y axis z: projection longitudinal position Returns ------- dictionary of Hermite Gauss basis functions """ Hermite_dict = {} for nx in range(max_mode_x): for ny in range(max_mode_y): Hermite_dict[f'|HG{nx}{ny}>'] = Hermite_gauss(lam, refractive_index, W0, nx, ny, z, x, y) return np.array(list(Hermite_dict.values())), [*Hermite_dict] def LaguerreBank( lam, refractive_index, W0, max_mode_p, max_mode_l, x, y, z=0, get_dict: bool = False, ): """ generates a dictionary of Laguerre Gauss basis functions Parameters ---------- lam; wavelength refractive_index: refractive index W0: beam waist max_mode_p: maximum projection mode 1st axis max_mode_l: maximum projection mode 2nd axis x: transverse points, x axis y: transverse points, y axis z: projection longitudinal position get_dict: (True/False) if True, the function will return a dictionary, else the dictionary is splitted to basis functions np.array and list of dictionary keys. Returns ------- dictionary of Laguerre Gauss basis functions """ Laguerre_dict = {} for p in range(max_mode_p): for l in range(-max_mode_l, max_mode_l + 1): Laguerre_dict[f'|LG{p}{l}>'] = Laguerre_gauss(lam, refractive_index, W0, l, p, z, x, y) if get_dict: return Laguerre_dict return np.array(list(Laguerre_dict.values())), [*Laguerre_dict] def TomographyBankLG( lam, refractive_index, W0, max_mode_p, max_mode_l, x, y, z=0, relative_phase: List[Union[Union[int, float], Any]] = None, tomography_quantum_state: str = None, ): """ generates a dictionary of basis function with projections into two orthogonal LG bases and mutually unbiased bases (MUBs). The MUBs are constructed from superpositions of the two orthogonal LG bases. according to: https://doi.org/10.1364/AOP.11.000067 Parameters ---------- lam; wavelength refractive_index: refractive index W0: beam waist max_mode_p: maximum projection mode 1st axis max_mode_l: maximum projection mode 2nd axis x: transverse points, x axis y: transverse points, y axis z: projection longitudinal position relative_phase: The relative phase between the mutually unbiased bases (MUBs) states tomography_quantum_state: the current quantum state we calculate it tomography matrix. currently we support: qubit/qutrit Returns ------- dictionary of bases functions used for constructing the tomography matrix """ TOMO_dict = \ LaguerreBank( lam, refractive_index, W0, max_mode_p, max_mode_l, x, y, z, get_dict=True) if tomography_quantum_state is QUBIT: del TOMO_dict['|LG00>'] LG_modes, LG_string = np.array(list(TOMO_dict.values())), [*TOMO_dict] for m in range(len(TOMO_dict) - 1, -1, -1): for n in range(m - 1, -1, -1): for k in range(len(relative_phase)): TOMO_dict[f'{LG_string[m]}+e^j{str(relative_phase[k]/np.pi)}π{LG_string[n]}'] = \ (1 / np.sqrt(2)) * (LG_modes[m] + np.exp(1j * relative_phase[k]) * LG_modes[n]) return np.array(list(TOMO_dict.values())), [*TOMO_dict] def TomographyBankHG( lam, refractive_index, W0, max_mode_x, max_mode_y, x, y, z=0, relative_phase: List[Union[Union[int, float], Any]] = None, tomography_quantum_state: str = None, ): """ generates a dictionary of basis function with projections into two orthogonal HG bases and mutually unbiased bases (MUBs). The MUBs are constructed from superpositions of the two orthogonal HG bases. according to: https://doi.org/10.1364/AOP.11.000067 Parameters ---------- lam; wavelength refractive_index: refractive index W0: beam waist max_mode_x: maximum projection mode 1st axis max_mode_y: maximum projection mode 2nd axis x: transverse points, x axis y: transverse points, y axis z: projection longitudinal position relative_phase: The relative phase between the mutually unbiased bases (MUBs) states tomography_quantum_state: the current quantum state we calculate it tomography matrix. currently we support: qubit Returns ------- dictionary of bases functions used for constructing the tomography matrix """ TOMO_dict = \ HermiteBank( lam, refractive_index, W0, max_mode_x, max_mode_y, x, y, z, get_dict=True) if tomography_quantum_state is QUBIT: del TOMO_dict['|HG00>'] del TOMO_dict['|HG11>'] HG_modes, HG_string = np.array(list(TOMO_dict.values())), [*TOMO_dict] for m in range(len(TOMO_dict) - 1, -1, -1): for n in range(m - 1, -1, -1): for k in range(len(relative_phase)): TOMO_dict[f'{HG_string[m]}+e^j{str(relative_phase[k]/np.pi)}π{HG_string[n]}'] = \ (1 / np.sqrt(2)) * (HG_modes[m] + np.exp(1j * relative_phase[k]) * HG_modes[n]) return np.array(list(TOMO_dict.values())), [*TOMO_dict] def Hermite_gauss(lam, refractive_index, W0, nx, ny, z, X, Y, coef=None): """ Hermite Gauss in 2D Parameters ---------- lam: wavelength refractive_index: refractive index W0: beam waists n, m: order of the HG beam z: the place in z to calculate for x,y: matrices of x and y coef Returns ------- Hermite-Gaussian beam of order n,m in 2D """ k = 2 * np.pi * refractive_index / lam z0 = np.pi * W0 ** 2 * refractive_index / lam # Rayleigh range Wz = W0 * np.sqrt(1 + (z / z0) ** 2) # w(z), the variation of the spot size invR = z / ((z ** 2) + (z0 ** 2)) # radius of curvature gouy = (nx + ny + 1)*np.arctan(z/z0) if coef is None: coefx = np.sqrt(np.sqrt(2/pi) / (2**nx * math.factorial(nx))) coefy = np.sqrt(np.sqrt(2/pi) / (2**ny * math.factorial(ny))) coef = coefx * coefy U = coef * \ (W0/Wz) * np.exp(-(X**2 + Y**2) / Wz**2) * \ HermiteP(nx, np.sqrt(2) * X / Wz) * \ HermiteP(ny, np.sqrt(2) * Y / Wz) * \ np.exp(-1j * (k * (X**2 + Y**2) / 2) * invR) * \ np.exp(1j * gouy) return U def Laguerre_gauss(lam, refractive_index, W0, l, p, z, x, y, coef=None): """ Laguerre Gauss in 2D Parameters ---------- lam: wavelength refractive_index: refractive index W0: beam waists l, p: order of the LG beam z: the place in z to calculate for x,y: matrices of x and y coef Returns ------- Laguerre-Gaussian beam of order l,p in 2D """ k = 2 * np.pi * refractive_index / lam z0 = np.pi * W0 ** 2 * refractive_index / lam # Rayleigh range Wz = W0 * np.sqrt(1 + (z / z0) ** 2) # w(z), the variation of the spot size r = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) invR = z / ((z ** 2) + (z0 ** 2)) # radius of curvature gouy = (np.abs(l)+2*p+1)*np.arctan(z/z0) if coef is None: coef = np.sqrt(2*math.factorial(p)/(np.pi * math.factorial(p + np.abs(l)))) U = coef * \ (W0/Wz)*(r*np.sqrt(2)/Wz)**(np.abs(l)) * \ np.exp(-r**2 / Wz**2) * \ LaguerreP(p, l, 2 * r**2 / Wz**2) * \ np.exp(-1j * (k * r**2 / 2) * invR) * \ np.exp(-1j * l * phi) * \ np.exp(1j * gouy) return U def HermiteP(n, x): """ Hermite polynomial of rank n Hn(x) Parameters ---------- n: order of the LG beam x: matrix of x Returns ------- Hermite polynomial """ if n == 0: return 1 elif n == 1: return 2 * x else: return 2 * x * HermiteP(n - 1, x) - 2 * (n - 1) * HermiteP(n - 2, x) def LaguerreP(p, l, x): """ Generalized Laguerre polynomial of rank p,l L_p^|l|(x) Parameters ---------- l, p: order of the LG beam x: matrix of x Returns ------- Generalized Laguerre polynomial """ if p == 0: return 1 elif p == 1: return 1 + np.abs(l)-x else: return ((2*p-1+np.abs(l)-x)*LaguerreP(p-1, l, x) - (p-1+np.abs(l))*LaguerreP(p-2, l, x))/p class Beam(ABC): """ A class that holds everything to do with a beam """ def __init__(self, lam: float, ctype, polarization: str, T: float, power: float = 0): """ Parameters ---------- lam: beam's wavelength ctype: function that holds crystal type fo calculating refractive index polarization: Polarization of the beam T: crystal's temperature [Celsius Degrees] power: beam power [watt] """ self.lam = lam self.n = ctype(lam * 1e6, T, polarization) # refractive index self.w = 2 * np.pi * c / lam # frequency self.k = 2 * np.pi * ctype(lam * 1e6, T, polarization) / lam # wave vector self.power = power # beam power def fix_power( A, power, n, dx, dy ): """ The function takes a field A and normalizes in to have the power indicated Parameters ---------- A power n dx dy Returns ------- """ output = A * np.sqrt(power) / np.sqrt(Power2D(A, n, dx, dy)) return output class DensMat(ABC): """ A class that holds tomography dimensions and tensors used for calculating qubit and qutrit tomography """
[ 6738, 450, 66, 1330, 9738, 198, 6738, 474, 897, 13, 2840, 1330, 6376, 62, 19119, 11, 6376, 62, 2860, 11, 6376, 198, 6738, 19720, 1330, 7343, 11, 4479, 11, 4377, 198, 6738, 599, 17896, 62, 16340, 13, 26791, 13, 12286, 82, 1330, 1195, 10526, 2043, 198, 198, 11748, 629, 541, 88, 13, 20887, 355, 599, 198, 11748, 474, 897, 13, 77, 32152, 355, 45941, 198, 11748, 10688, 628, 198, 2, 4757, 1187, 25, 198, 14415, 220, 220, 220, 220, 220, 796, 45941, 13, 14415, 198, 66, 220, 220, 220, 220, 220, 220, 796, 362, 13, 2079, 3720, 1731, 3365, 68, 23, 220, 1303, 2866, 286, 1657, 685, 27231, 14, 2363, 60, 198, 25386, 15, 220, 220, 220, 796, 807, 13, 23, 4051, 1507, 3695, 1558, 68, 12, 1065, 220, 1303, 17076, 9943, 715, 3458, 685, 21428, 324, 14, 27231, 60, 198, 71, 62, 5657, 220, 220, 796, 352, 13, 2713, 33032, 39188, 68, 12, 2682, 220, 1303, 685, 76, 61, 17, 14211, 1220, 264, 4357, 2077, 422, 2638, 1378, 746, 23154, 13, 77, 396, 13, 9567, 14, 37157, 12, 8800, 14, 66, 12303, 14, 11395, 30, 71, 5657, 91, 12947, 62, 1640, 28, 11578, 694, 198, 198, 2, 37456, 5499, 25, 198, 38, 16, 62, 26447, 1634, 220, 220, 220, 220, 220, 220, 220, 796, 37456, 266, 25, 289, 62, 5657, 1635, 266, 1220, 357, 17, 1635, 304, 862, 15, 1635, 269, 8, 198, 40, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 37456, 317, 11, 299, 25, 362, 1635, 299, 1635, 304, 862, 15, 1635, 269, 1635, 45941, 13, 8937, 7, 32, 8, 12429, 362, 220, 1303, 2558, 6377, 198, 13434, 17, 35, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 37456, 317, 11, 299, 11, 44332, 11, 20268, 25, 45941, 13, 16345, 7, 40, 7, 32, 11, 299, 4008, 1635, 44332, 1635, 20268, 198, 198, 2, 3082, 1133, 262, 4686, 1754, 28400, 1813, 8901, 290, 6737, 198, 20802, 38, 62, 312, 1754, 62, 10247, 26623, 220, 220, 220, 796, 37456, 37456, 62, 79, 11, 37456, 62, 82, 25, 37456, 62, 79, 1635, 37456, 62, 82, 1220, 357, 50033, 62, 82, 532, 37456, 62, 79, 8, 628, 198, 4299, 21082, 62, 20470, 7757, 62, 6649, 397, 7, 198, 220, 220, 220, 220, 220, 220, 220, 25979, 62, 74, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15121, 62, 13317, 11, 198, 220, 220, 220, 220, 220, 220, 220, 32278, 28, 14202, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18581, 1146, 755, 276, 15121, 38677, 13, 198, 220, 220, 220, 2251, 262, 15121, 38677, 379, 966, 1976, 287, 262, 15121, 11, 329, 755, 278, 2278, 362, 14415, 14, 67, 12514, 62, 74, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 25979, 62, 74, 25, 479, 46318, 198, 220, 220, 220, 1976, 25, 36211, 966, 329, 15453, 755, 278, 3912, 198, 220, 220, 220, 15121, 62, 13317, 25, 12969, 513, 35, 31912, 859, 357, 361, 6045, 11, 8856, 8, 198, 220, 220, 220, 32278, 25, 357, 17821, 14, 25101, 8, 611, 287, 32278, 4235, 11, 356, 2291, 517, 44036, 287, 262, 755, 278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 329, 1365, 21201, 628, 220, 220, 220, 16409, 18581, 1146, 755, 276, 15121, 38677, 379, 966, 1976, 198, 220, 220, 220, 35656, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 15121, 62, 13317, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 12683, 7, 37659, 13, 6966, 7, 37659, 13, 8937, 7, 67, 12514, 62, 74, 8, 1635, 1976, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14735, 796, 45941, 13, 8937, 7, 20470, 7757, 62, 13317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7108, 796, 45941, 13, 9248, 7, 20470, 7757, 62, 13317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 32278, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2875, 62, 69, 280, 5277, 796, 1160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 755, 278, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14735, 796, 14735, 1220, 14735, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18104, 20418, 2375, 796, 45941, 13, 5605, 31369, 7, 76, 4660, 3984, 8, 1220, 45941, 13, 14415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 285, 287, 2837, 7, 9806, 62, 2875, 62, 69, 280, 5277, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 285, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 755, 278, 796, 755, 278, 1343, 362, 1635, 18104, 20418, 2375, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 755, 278, 796, 755, 278, 1343, 357, 17, 1220, 357, 76, 1635, 45941, 13, 14415, 4008, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 31369, 7, 76, 1635, 31028, 1635, 18104, 20418, 2375, 8, 1635, 362, 1635, 45941, 13, 6966, 7, 76, 1635, 7108, 1343, 285, 1635, 45941, 13, 8937, 7, 67, 12514, 62, 74, 8, 1635, 1976, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 755, 278, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 17, 1220, 45941, 13, 14415, 8, 1635, 45941, 13, 11201, 7, 16, 73, 1635, 357, 37659, 13, 8937, 7, 67, 12514, 62, 74, 8, 1635, 1976, 4008, 1635, 14735, 1635, 45941, 13, 11201, 7, 16, 73, 1635, 7108, 8, 628, 198, 4299, 18113, 578, 28650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30592, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 35587, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 370, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 28, 15, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18616, 257, 22155, 286, 18113, 578, 12822, 1046, 4308, 5499, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 30592, 26, 28400, 198, 220, 220, 220, 1006, 35587, 62, 9630, 25, 1006, 35587, 6376, 198, 220, 220, 220, 370, 15, 25, 15584, 16139, 198, 220, 220, 220, 3509, 62, 14171, 62, 87, 25, 5415, 20128, 4235, 352, 301, 16488, 198, 220, 220, 220, 3509, 62, 14171, 62, 88, 25, 5415, 20128, 4235, 362, 358, 16488, 198, 220, 220, 220, 2124, 25, 1007, 4399, 2173, 11, 2124, 16488, 198, 220, 220, 220, 331, 25, 1007, 4399, 2173, 11, 331, 16488, 198, 220, 220, 220, 1976, 25, 20128, 36211, 2292, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 22155, 286, 18113, 578, 12822, 1046, 4308, 5499, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18113, 578, 62, 11600, 796, 23884, 198, 220, 220, 220, 329, 299, 87, 287, 2837, 7, 9806, 62, 14171, 62, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 88, 287, 2837, 7, 9806, 62, 14171, 62, 88, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18113, 578, 62, 11600, 58, 69, 6, 91, 39, 38, 90, 77, 87, 18477, 3281, 92, 29, 20520, 796, 18113, 578, 62, 4908, 1046, 7, 2543, 11, 1006, 35587, 62, 9630, 11, 370, 15, 11, 299, 87, 11, 299, 88, 11, 1976, 11, 2124, 11, 331, 8, 198, 220, 220, 220, 1441, 45941, 13, 18747, 7, 4868, 7, 48523, 578, 62, 11600, 13, 27160, 28955, 828, 30138, 48523, 578, 62, 11600, 60, 628, 198, 4299, 406, 11433, 263, 260, 28650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30592, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 35587, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 370, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 75, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 11600, 25, 20512, 796, 10352, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18616, 257, 22155, 286, 406, 11433, 263, 260, 12822, 1046, 4308, 5499, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 30592, 26, 28400, 198, 220, 220, 220, 1006, 35587, 62, 9630, 25, 1006, 35587, 6376, 198, 220, 220, 220, 370, 15, 25, 15584, 16139, 198, 220, 220, 220, 3509, 62, 14171, 62, 79, 25, 5415, 20128, 4235, 352, 301, 16488, 198, 220, 220, 220, 3509, 62, 14171, 62, 75, 25, 5415, 20128, 4235, 362, 358, 16488, 198, 220, 220, 220, 2124, 25, 1007, 4399, 2173, 11, 2124, 16488, 198, 220, 220, 220, 331, 25, 1007, 4399, 2173, 11, 331, 16488, 198, 220, 220, 220, 1976, 25, 20128, 36211, 2292, 198, 220, 220, 220, 651, 62, 11600, 25, 357, 17821, 14, 25101, 8, 611, 6407, 11, 262, 2163, 481, 1441, 257, 22155, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 262, 22155, 318, 4328, 2175, 284, 4308, 5499, 45941, 13, 18747, 290, 1351, 286, 22155, 8251, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 22155, 286, 406, 11433, 263, 260, 12822, 1046, 4308, 5499, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 406, 11433, 263, 260, 62, 11600, 796, 23884, 198, 220, 220, 220, 329, 279, 287, 2837, 7, 9806, 62, 14171, 62, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 300, 287, 2837, 32590, 9806, 62, 14171, 62, 75, 11, 3509, 62, 14171, 62, 75, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 11433, 263, 260, 62, 11600, 58, 69, 6, 91, 41257, 90, 79, 18477, 75, 92, 29, 20520, 796, 406, 11433, 263, 260, 62, 4908, 1046, 7, 2543, 11, 1006, 35587, 62, 9630, 11, 370, 15, 11, 300, 11, 279, 11, 1976, 11, 2124, 11, 331, 8, 198, 220, 220, 220, 611, 651, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 406, 11433, 263, 260, 62, 11600, 628, 220, 220, 220, 1441, 45941, 13, 18747, 7, 4868, 7, 43, 11433, 263, 260, 62, 11600, 13, 27160, 28955, 828, 30138, 43, 11433, 263, 260, 62, 11600, 60, 628, 198, 4299, 4186, 4867, 28650, 41257, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30592, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 35587, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 370, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 75, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3585, 62, 40715, 25, 7343, 58, 38176, 58, 38176, 58, 600, 11, 12178, 4357, 4377, 11907, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 16667, 4867, 62, 40972, 388, 62, 5219, 25, 965, 796, 6045, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18616, 257, 22155, 286, 4308, 2163, 351, 19887, 656, 734, 29617, 519, 20996, 17370, 12536, 290, 26519, 46735, 198, 220, 220, 220, 12536, 357, 44, 10526, 82, 737, 383, 337, 10526, 82, 389, 12006, 422, 2208, 1930, 1756, 286, 262, 734, 29617, 519, 20996, 17370, 12536, 13, 198, 220, 220, 220, 1864, 284, 25, 3740, 1378, 34023, 13, 2398, 14, 940, 13, 1485, 2414, 14, 32, 3185, 13, 1157, 13, 2388, 3134, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 30592, 26, 28400, 198, 220, 220, 220, 1006, 35587, 62, 9630, 25, 1006, 35587, 6376, 198, 220, 220, 220, 370, 15, 25, 15584, 16139, 198, 220, 220, 220, 3509, 62, 14171, 62, 79, 25, 5415, 20128, 4235, 352, 301, 16488, 198, 220, 220, 220, 3509, 62, 14171, 62, 75, 25, 5415, 20128, 4235, 362, 358, 16488, 198, 220, 220, 220, 2124, 25, 1007, 4399, 2173, 11, 2124, 16488, 198, 220, 220, 220, 331, 25, 1007, 4399, 2173, 11, 331, 16488, 198, 220, 220, 220, 1976, 25, 20128, 36211, 2292, 198, 220, 220, 220, 3585, 62, 40715, 25, 383, 3585, 7108, 1022, 262, 26519, 46735, 12536, 357, 44, 10526, 82, 8, 2585, 198, 220, 220, 220, 16667, 4867, 62, 40972, 388, 62, 5219, 25, 262, 1459, 14821, 1181, 356, 15284, 340, 16667, 4867, 17593, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3058, 356, 1104, 25, 627, 2545, 14, 80, 315, 799, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 22155, 286, 12536, 5499, 973, 329, 30580, 262, 16667, 4867, 17593, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 41526, 46, 62, 11600, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 406, 11433, 263, 260, 28650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30592, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 35587, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 75, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 11, 1976, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 11600, 28, 17821, 8, 628, 220, 220, 220, 611, 16667, 4867, 62, 40972, 388, 62, 5219, 318, 1195, 10526, 2043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 41526, 46, 62, 11600, 17816, 91, 41257, 405, 29, 20520, 628, 220, 220, 220, 17370, 62, 76, 4147, 11, 17370, 62, 8841, 796, 45941, 13, 18747, 7, 4868, 7, 51, 2662, 46, 62, 11600, 13, 27160, 28955, 828, 30138, 51, 2662, 46, 62, 11600, 60, 628, 220, 220, 220, 329, 285, 287, 2837, 7, 11925, 7, 51, 2662, 46, 62, 11600, 8, 532, 352, 11, 532, 16, 11, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 76, 532, 352, 11, 532, 16, 11, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 11925, 7, 43762, 62, 40715, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41526, 46, 62, 11600, 58, 69, 6, 90, 41257, 62, 8841, 58, 76, 48999, 10, 68, 61, 73, 90, 2536, 7, 43762, 62, 40715, 58, 74, 60, 14, 37659, 13, 14415, 38165, 46582, 90, 41257, 62, 8841, 58, 77, 48999, 20520, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 16, 1220, 45941, 13, 31166, 17034, 7, 17, 4008, 1635, 357, 41257, 62, 76, 4147, 58, 76, 60, 1343, 45941, 13, 11201, 7, 16, 73, 1635, 3585, 62, 40715, 58, 74, 12962, 1635, 17370, 62, 76, 4147, 58, 77, 12962, 628, 220, 220, 220, 1441, 45941, 13, 18747, 7, 4868, 7, 51, 2662, 46, 62, 11600, 13, 27160, 28955, 828, 30138, 51, 2662, 46, 62, 11600, 60, 198, 198, 4299, 4186, 4867, 28650, 39, 38, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30592, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 35587, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 370, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3585, 62, 40715, 25, 7343, 58, 38176, 58, 38176, 58, 600, 11, 12178, 4357, 4377, 11907, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 16667, 4867, 62, 40972, 388, 62, 5219, 25, 965, 796, 6045, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18616, 257, 22155, 286, 4308, 2163, 351, 19887, 656, 734, 29617, 519, 20996, 48698, 12536, 290, 26519, 46735, 198, 220, 220, 220, 12536, 357, 44, 10526, 82, 737, 383, 337, 10526, 82, 389, 12006, 422, 2208, 1930, 1756, 286, 262, 734, 29617, 519, 20996, 48698, 12536, 13, 198, 220, 220, 220, 1864, 284, 25, 3740, 1378, 34023, 13, 2398, 14, 940, 13, 1485, 2414, 14, 32, 3185, 13, 1157, 13, 2388, 3134, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 30592, 26, 28400, 198, 220, 220, 220, 1006, 35587, 62, 9630, 25, 1006, 35587, 6376, 198, 220, 220, 220, 370, 15, 25, 15584, 16139, 198, 220, 220, 220, 3509, 62, 14171, 62, 87, 25, 5415, 20128, 4235, 352, 301, 16488, 198, 220, 220, 220, 3509, 62, 14171, 62, 88, 25, 5415, 20128, 4235, 362, 358, 16488, 198, 220, 220, 220, 2124, 25, 1007, 4399, 2173, 11, 2124, 16488, 198, 220, 220, 220, 331, 25, 1007, 4399, 2173, 11, 331, 16488, 198, 220, 220, 220, 1976, 25, 20128, 36211, 2292, 198, 220, 220, 220, 3585, 62, 40715, 25, 383, 3585, 7108, 1022, 262, 26519, 46735, 12536, 357, 44, 10526, 82, 8, 2585, 198, 220, 220, 220, 16667, 4867, 62, 40972, 388, 62, 5219, 25, 262, 1459, 14821, 1181, 356, 15284, 340, 16667, 4867, 17593, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3058, 356, 1104, 25, 627, 2545, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 22155, 286, 12536, 5499, 973, 329, 30580, 262, 16667, 4867, 17593, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 41526, 46, 62, 11600, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 18113, 578, 28650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30592, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 35587, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14171, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 11, 1976, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 11600, 28, 17821, 8, 628, 220, 220, 220, 611, 16667, 4867, 62, 40972, 388, 62, 5219, 318, 1195, 10526, 2043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 41526, 46, 62, 11600, 17816, 91, 39, 38, 405, 29, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 41526, 46, 62, 11600, 17816, 91, 39, 38, 1157, 29, 20520, 628, 220, 220, 220, 48698, 62, 76, 4147, 11, 48698, 62, 8841, 796, 45941, 13, 18747, 7, 4868, 7, 51, 2662, 46, 62, 11600, 13, 27160, 28955, 828, 30138, 51, 2662, 46, 62, 11600, 60, 628, 220, 220, 220, 329, 285, 287, 2837, 7, 11925, 7, 51, 2662, 46, 62, 11600, 8, 532, 352, 11, 532, 16, 11, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 76, 532, 352, 11, 532, 16, 11, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 11925, 7, 43762, 62, 40715, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41526, 46, 62, 11600, 58, 69, 6, 90, 39, 38, 62, 8841, 58, 76, 48999, 10, 68, 61, 73, 90, 2536, 7, 43762, 62, 40715, 58, 74, 60, 14, 37659, 13, 14415, 38165, 46582, 90, 39, 38, 62, 8841, 58, 77, 48999, 20520, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 16, 1220, 45941, 13, 31166, 17034, 7, 17, 4008, 1635, 357, 39, 38, 62, 76, 4147, 58, 76, 60, 1343, 45941, 13, 11201, 7, 16, 73, 1635, 3585, 62, 40715, 58, 74, 12962, 1635, 48698, 62, 76, 4147, 58, 77, 12962, 628, 220, 220, 220, 1441, 45941, 13, 18747, 7, 4868, 7, 51, 2662, 46, 62, 11600, 13, 27160, 28955, 828, 30138, 51, 2662, 46, 62, 11600, 60, 628, 198, 4299, 18113, 578, 62, 4908, 1046, 7, 2543, 11, 1006, 35587, 62, 9630, 11, 370, 15, 11, 299, 87, 11, 299, 88, 11, 1976, 11, 1395, 11, 575, 11, 763, 891, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18113, 578, 12822, 1046, 287, 362, 35, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 30592, 25, 28400, 198, 220, 220, 220, 1006, 35587, 62, 9630, 25, 1006, 35587, 6376, 198, 220, 220, 220, 370, 15, 25, 15584, 2082, 1023, 198, 220, 220, 220, 299, 11, 285, 25, 1502, 286, 262, 48698, 15584, 198, 220, 220, 220, 1976, 25, 262, 1295, 287, 1976, 284, 15284, 329, 198, 220, 220, 220, 2124, 11, 88, 25, 2603, 45977, 286, 2124, 290, 331, 198, 220, 220, 220, 763, 891, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 18113, 578, 12, 35389, 31562, 15584, 286, 1502, 299, 11, 76, 287, 362, 35, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 796, 362, 1635, 45941, 13, 14415, 1635, 1006, 35587, 62, 9630, 1220, 30592, 198, 220, 220, 220, 1976, 15, 796, 45941, 13, 14415, 1635, 370, 15, 12429, 362, 1635, 1006, 35587, 62, 9630, 1220, 30592, 220, 1303, 7760, 42342, 2837, 198, 220, 220, 220, 370, 89, 796, 370, 15, 1635, 45941, 13, 31166, 17034, 7, 16, 1343, 357, 89, 1220, 1976, 15, 8, 12429, 362, 8, 220, 1303, 266, 7, 89, 828, 262, 12291, 286, 262, 4136, 2546, 628, 220, 220, 220, 800, 49, 796, 1976, 1220, 14808, 89, 12429, 362, 8, 1343, 357, 89, 15, 12429, 362, 4008, 220, 1303, 16874, 286, 46171, 1300, 198, 220, 220, 220, 50162, 88, 796, 357, 77, 87, 1343, 299, 88, 1343, 352, 27493, 37659, 13, 283, 310, 272, 7, 89, 14, 89, 15, 8, 198, 220, 220, 220, 611, 763, 891, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 763, 891, 87, 796, 45941, 13, 31166, 17034, 7, 37659, 13, 31166, 17034, 7, 17, 14, 14415, 8, 1220, 357, 17, 1174, 77, 87, 1635, 10688, 13, 22584, 5132, 7, 77, 87, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 763, 891, 88, 796, 45941, 13, 31166, 17034, 7, 37659, 13, 31166, 17034, 7, 17, 14, 14415, 8, 1220, 357, 17, 1174, 3281, 1635, 10688, 13, 22584, 5132, 7, 3281, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 763, 891, 796, 763, 891, 87, 1635, 763, 891, 88, 198, 220, 220, 220, 471, 796, 763, 891, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 357, 54, 15, 14, 54, 89, 8, 1635, 45941, 13, 11201, 7, 30420, 55, 1174, 17, 1343, 575, 1174, 17, 8, 1220, 370, 89, 1174, 17, 8, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 18113, 578, 47, 7, 77, 87, 11, 45941, 13, 31166, 17034, 7, 17, 8, 1635, 1395, 1220, 370, 89, 8, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 18113, 578, 47, 7, 3281, 11, 45941, 13, 31166, 17034, 7, 17, 8, 1635, 575, 1220, 370, 89, 8, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 11201, 32590, 16, 73, 1635, 357, 74, 1635, 357, 55, 1174, 17, 1343, 575, 1174, 17, 8, 1220, 362, 8, 1635, 800, 49, 8, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 11201, 7, 16, 73, 1635, 50162, 88, 8, 628, 220, 220, 220, 1441, 471, 628, 198, 4299, 406, 11433, 263, 260, 62, 4908, 1046, 7, 2543, 11, 1006, 35587, 62, 9630, 11, 370, 15, 11, 300, 11, 279, 11, 1976, 11, 2124, 11, 331, 11, 763, 891, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 406, 11433, 263, 260, 12822, 1046, 287, 362, 35, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 30592, 25, 28400, 198, 220, 220, 220, 1006, 35587, 62, 9630, 25, 1006, 35587, 6376, 198, 220, 220, 220, 370, 15, 25, 15584, 2082, 1023, 198, 220, 220, 220, 300, 11, 279, 25, 1502, 286, 262, 17370, 15584, 198, 220, 220, 220, 1976, 25, 262, 1295, 287, 1976, 284, 15284, 329, 198, 220, 220, 220, 2124, 11, 88, 25, 2603, 45977, 286, 2124, 290, 331, 198, 220, 220, 220, 763, 891, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 406, 11433, 263, 260, 12, 35389, 31562, 15584, 286, 1502, 300, 11, 79, 287, 362, 35, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 796, 362, 1635, 45941, 13, 14415, 1635, 1006, 35587, 62, 9630, 1220, 30592, 198, 220, 220, 220, 1976, 15, 796, 45941, 13, 14415, 1635, 370, 15, 12429, 362, 1635, 1006, 35587, 62, 9630, 1220, 30592, 220, 1303, 7760, 42342, 2837, 198, 220, 220, 220, 370, 89, 796, 370, 15, 1635, 45941, 13, 31166, 17034, 7, 16, 1343, 357, 89, 1220, 1976, 15, 8, 12429, 362, 8, 220, 1303, 266, 7, 89, 828, 262, 12291, 286, 262, 4136, 2546, 198, 220, 220, 220, 374, 796, 45941, 13, 31166, 17034, 7, 87, 1174, 17, 1343, 331, 1174, 17, 8, 198, 220, 220, 220, 872, 72, 796, 45941, 13, 283, 310, 272, 17, 7, 88, 11, 2124, 8, 628, 220, 220, 220, 800, 49, 796, 1976, 1220, 14808, 89, 12429, 362, 8, 1343, 357, 89, 15, 12429, 362, 4008, 220, 1303, 16874, 286, 46171, 1300, 198, 220, 220, 220, 50162, 88, 796, 357, 37659, 13, 8937, 7, 75, 47762, 17, 9, 79, 10, 16, 27493, 37659, 13, 283, 310, 272, 7, 89, 14, 89, 15, 8, 198, 220, 220, 220, 611, 763, 891, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 763, 891, 796, 45941, 13, 31166, 17034, 7, 17, 9, 11018, 13, 22584, 5132, 7, 79, 20679, 7, 37659, 13, 14415, 1635, 10688, 13, 22584, 5132, 7, 79, 1343, 45941, 13, 8937, 7, 75, 35514, 628, 220, 220, 220, 471, 796, 763, 891, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 357, 54, 15, 14, 54, 89, 27493, 7, 81, 9, 37659, 13, 31166, 17034, 7, 17, 20679, 54, 89, 8, 1174, 7, 37659, 13, 8937, 7, 75, 4008, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 11201, 32590, 81, 1174, 17, 1220, 370, 89, 1174, 17, 8, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 406, 11433, 263, 260, 47, 7, 79, 11, 300, 11, 362, 1635, 374, 1174, 17, 1220, 370, 89, 1174, 17, 8, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 11201, 32590, 16, 73, 1635, 357, 74, 1635, 374, 1174, 17, 1220, 362, 8, 1635, 800, 49, 8, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 11201, 32590, 16, 73, 1635, 300, 1635, 872, 72, 8, 1635, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 11201, 7, 16, 73, 1635, 50162, 88, 8, 198, 220, 220, 220, 1441, 471, 628, 198, 4299, 18113, 578, 47, 7, 77, 11, 2124, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18113, 578, 745, 6213, 49070, 286, 4279, 299, 367, 77, 7, 87, 8, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 299, 25, 1502, 286, 262, 17370, 15584, 198, 220, 220, 220, 2124, 25, 17593, 286, 2124, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 18113, 578, 745, 6213, 49070, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 299, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 198, 220, 220, 220, 1288, 361, 299, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 1635, 2124, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 1635, 2124, 1635, 18113, 578, 47, 7, 77, 532, 352, 11, 2124, 8, 532, 362, 1635, 357, 77, 532, 352, 8, 1635, 18113, 578, 47, 7, 77, 532, 362, 11, 2124, 8, 628, 198, 4299, 406, 11433, 263, 260, 47, 7, 79, 11, 300, 11, 2124, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3611, 1143, 406, 11433, 263, 260, 745, 6213, 49070, 286, 4279, 279, 11, 75, 406, 62, 79, 61, 91, 75, 91, 7, 87, 8, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 300, 11, 279, 25, 1502, 286, 262, 17370, 15584, 198, 220, 220, 220, 2124, 25, 17593, 286, 2124, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 3611, 1143, 406, 11433, 263, 260, 745, 6213, 49070, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 279, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 198, 220, 220, 220, 1288, 361, 279, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 1343, 45941, 13, 8937, 7, 75, 13219, 87, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 14808, 17, 9, 79, 12, 16, 10, 37659, 13, 8937, 7, 75, 13219, 87, 27493, 43, 11433, 263, 260, 47, 7, 79, 12, 16, 11, 300, 11, 2124, 8, 532, 357, 79, 12, 16, 10, 37659, 13, 8937, 7, 75, 4008, 9, 43, 11433, 263, 260, 47, 7, 79, 12, 17, 11, 300, 11, 2124, 4008, 14, 79, 628, 198, 4871, 25855, 7, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1398, 326, 6622, 2279, 284, 466, 351, 257, 15584, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30592, 25, 12178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42704, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 25, 12178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 25, 12178, 796, 657, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 30592, 25, 15584, 338, 28400, 198, 220, 220, 220, 220, 220, 220, 220, 269, 4906, 25, 2163, 326, 6622, 15121, 2099, 11511, 26019, 1006, 35587, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 42704, 25, 32909, 1634, 286, 262, 15584, 198, 220, 220, 220, 220, 220, 220, 220, 309, 25, 15121, 338, 5951, 685, 34, 32495, 25905, 6037, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 25, 15584, 1176, 685, 86, 1078, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2543, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 30592, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 4906, 7, 2543, 1635, 352, 68, 21, 11, 309, 11, 42704, 8, 220, 1303, 1006, 35587, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 86, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 362, 1635, 45941, 13, 14415, 1635, 269, 1220, 30592, 220, 1303, 8373, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 74, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 362, 1635, 45941, 13, 14415, 1635, 269, 4906, 7, 2543, 1635, 352, 68, 21, 11, 309, 11, 42704, 8, 1220, 30592, 220, 1303, 6769, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6477, 220, 220, 220, 220, 220, 220, 220, 796, 1176, 220, 1303, 15584, 1176, 628, 628, 198, 198, 4299, 4259, 62, 6477, 7, 198, 220, 220, 220, 220, 220, 220, 220, 317, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 11, 198, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20268, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 2163, 2753, 257, 2214, 317, 290, 3487, 4340, 287, 284, 423, 262, 1176, 8203, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 317, 198, 220, 220, 220, 1176, 198, 220, 220, 220, 299, 198, 220, 220, 220, 44332, 198, 220, 220, 220, 20268, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5072, 796, 317, 1635, 45941, 13, 31166, 17034, 7, 6477, 8, 1220, 45941, 13, 31166, 17034, 7, 13434, 17, 35, 7, 32, 11, 299, 11, 44332, 11, 20268, 4008, 198, 220, 220, 220, 1441, 5072, 628, 198, 4871, 360, 641, 19044, 7, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1398, 326, 6622, 16667, 4867, 15225, 290, 198, 220, 220, 220, 11192, 669, 973, 329, 26019, 627, 2545, 290, 10662, 315, 799, 16667, 4867, 198, 220, 220, 220, 37227, 198 ]
2.136486
5,964
""" Testing WCS projections on LSST simulation files """ import os, sys sys.path.append(os.path.abspath('..')) import numpy as np import matplotlib.pyplot as plt from spheredb.get_data import\ get_stripe82_file, all_lsst_exposures, get_LSST_file from spheredb.conversions import FITS_to_HPX, HPX_grid_step from spheredb.util import regrid import os import pyfits import re import datetime # Note: USE INSERT NOT MERGE!!!! if 1: from scidbpy import interface sdb = interface.SciDBShimInterface('http://vega.cs.washington.edu:8080') Nside = 2 ** 16 #19 hdulist = get_LSST_file() output = FITS_to_HPX(hdulist[1].header, hdulist[1].data, Nside, return_sparse=True) print output.shape RA_range = (output.row.min(), output.row.max()) DEC_range = (output.col.min(), output.col.max()) dRA = RA_range[1] - RA_range[0] dDEC = DEC_range[1] - DEC_range[0] RA_range = (RA_range[0] - 1 * dRA, RA_range[1] + 1 * dRA) DEC_range = (DEC_range[0] - 1 * dDEC, DEC_range[1] + 1 * dDEC) arr = sdb.from_sparse(output) subarr = arr[RA_range[0]:RA_range[1], DEC_range[0]:DEC_range[1]] plt.imshow(np.log(subarr.toarray()), cmap=plt.cm.binary) plt.show() elif 1: times = [hdulist[1].header['TAI'] for hdulist in all_lsst_exposures()] times = np.asarray(times) times.sort() print times.min() print times.max() plt.plot(24 * (times - 50095), '.k') plt.show()
[ 37811, 198, 44154, 45410, 19887, 319, 30948, 2257, 18640, 3696, 198, 37811, 198, 11748, 28686, 11, 25064, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 397, 2777, 776, 10786, 492, 6, 4008, 628, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 599, 6083, 65, 13, 1136, 62, 7890, 1330, 59, 198, 220, 220, 220, 651, 62, 33565, 431, 6469, 62, 7753, 11, 477, 62, 7278, 301, 62, 1069, 1930, 942, 11, 651, 62, 6561, 2257, 62, 7753, 198, 6738, 599, 6083, 65, 13, 1102, 47178, 1330, 376, 29722, 62, 1462, 62, 14082, 55, 11, 6574, 55, 62, 25928, 62, 9662, 198, 6738, 599, 6083, 65, 13, 22602, 1330, 842, 6058, 198, 198, 11748, 28686, 198, 11748, 12972, 21013, 198, 198, 11748, 302, 198, 11748, 4818, 8079, 198, 198, 2, 5740, 25, 23210, 29194, 17395, 5626, 34482, 8264, 13896, 628, 198, 361, 352, 25, 198, 220, 220, 220, 422, 629, 312, 65, 9078, 1330, 7071, 198, 220, 220, 220, 264, 9945, 796, 7071, 13, 50, 979, 11012, 2484, 320, 39317, 10786, 4023, 1378, 303, 4908, 13, 6359, 13, 86, 2542, 13, 15532, 25, 1795, 1795, 11537, 198, 220, 220, 220, 399, 1589, 796, 362, 12429, 1467, 1303, 1129, 198, 220, 220, 220, 289, 67, 377, 396, 796, 651, 62, 6561, 2257, 62, 7753, 3419, 198, 220, 220, 220, 5072, 796, 376, 29722, 62, 1462, 62, 14082, 55, 7, 31298, 377, 396, 58, 16, 4083, 25677, 11, 289, 67, 377, 396, 58, 16, 4083, 7890, 11, 399, 1589, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 82, 29572, 28, 17821, 8, 628, 220, 220, 220, 3601, 5072, 13, 43358, 628, 220, 220, 220, 17926, 62, 9521, 796, 357, 22915, 13, 808, 13, 1084, 22784, 5072, 13, 808, 13, 9806, 28955, 198, 220, 220, 220, 27196, 62, 9521, 796, 357, 22915, 13, 4033, 13, 1084, 22784, 5072, 13, 4033, 13, 9806, 28955, 628, 220, 220, 220, 288, 3861, 796, 17926, 62, 9521, 58, 16, 60, 532, 17926, 62, 9521, 58, 15, 60, 198, 220, 220, 220, 288, 41374, 796, 27196, 62, 9521, 58, 16, 60, 532, 27196, 62, 9521, 58, 15, 60, 628, 220, 220, 220, 17926, 62, 9521, 796, 357, 3861, 62, 9521, 58, 15, 60, 532, 352, 1635, 288, 3861, 11, 17926, 62, 9521, 58, 16, 60, 1343, 352, 1635, 288, 3861, 8, 198, 220, 220, 220, 27196, 62, 9521, 796, 357, 41374, 62, 9521, 58, 15, 60, 532, 352, 1635, 288, 41374, 11, 27196, 62, 9521, 58, 16, 60, 1343, 352, 1635, 288, 41374, 8, 628, 220, 220, 220, 5240, 796, 264, 9945, 13, 6738, 62, 82, 29572, 7, 22915, 8, 628, 220, 220, 220, 850, 3258, 796, 5240, 58, 3861, 62, 9521, 58, 15, 5974, 3861, 62, 9521, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27196, 62, 9521, 58, 15, 5974, 41374, 62, 9521, 58, 16, 11907, 628, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 37659, 13, 6404, 7, 7266, 3258, 13, 1462, 18747, 3419, 828, 269, 8899, 28, 489, 83, 13, 11215, 13, 39491, 8, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 198, 417, 361, 352, 25, 198, 220, 220, 220, 1661, 796, 685, 31298, 377, 396, 58, 16, 4083, 25677, 17816, 5603, 40, 20520, 329, 289, 67, 377, 396, 287, 477, 62, 7278, 301, 62, 1069, 1930, 942, 3419, 60, 198, 220, 220, 220, 1661, 796, 45941, 13, 292, 18747, 7, 22355, 8, 198, 220, 220, 220, 1661, 13, 30619, 3419, 198, 220, 220, 220, 3601, 1661, 13, 1084, 3419, 198, 220, 220, 220, 3601, 1661, 13, 9806, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 1731, 1635, 357, 22355, 532, 5323, 3865, 828, 45302, 74, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198 ]
2.231579
665
import logging import shutil import pytest import salt.features import salt.loader import salt.pillar log = logging.getLogger(__name__) @pytest.fixture(scope="package") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(autouse=True)
[ 11748, 18931, 198, 11748, 4423, 346, 198, 198, 11748, 12972, 9288, 198, 11748, 8268, 13, 40890, 198, 11748, 8268, 13, 29356, 198, 11748, 8268, 13, 41643, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 26495, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 2306, 1076, 28, 17821, 8, 198 ]
2.826446
121
import csv import numpy as np ### I had only used numpy , as this is when I had just dived in ### this universe ### So , for beginners go search for pandas you will reduce the lines of code and it ### is awesome !! ### read data with open('../Data/train.csv') as f: reader = csv.reader(f, delimiter=',') data = [] for row in reader: data.append(row) ### labels data_headers = data[0] ### get some fields only for i in ["Name", "PassengerId", "Survived", "Ticket", "Fare", "Cabin"]: data_headers.remove(i) ### preprocessing and encoding data = np.array(data[1:]) data = np.delete(data, [0, 3], 1) order = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Embarked'] data[data == ''] = '01111110' train_result = data[:, 0] data = np.delete(data, [0, 6], 1) data = np.delete(data, 5, 1) data = np.delete(data, 5, 1) print(data_headers, data[0]) data[data == "male"] = 0 data[data == "female"] = 1 data[data == "S"] = 1 data[data == "Q"] = 0 data[data == "C"] = 2 ### using various classifiers # from sklearn.naive_bayes import GaussianNB # clf=GaussianNB() # from sklearn.tree import DecisionTreeClassifier # clf=DecisionTreeClassifier() # from sklearn.svm import SVC # clf=SVC() from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier clf = RandomForestClassifier(max_depth=5, n_estimators=10, max_features=2) # clf=AdaBoostClassifier() # from sklearn.neighbors import KNeighborsClassifier # clf=KNeighborsClassifier() # print(np.array(['','1']).astype(np.float),"jsbd") # print(len(data.astype(np.float)),"############",len(train_result.astype(np.float))) ### fit data to classifier clf.fit(data.astype(np.float), train_result.astype(np.float)) # Testing data data = [] with open('../Data/test.csv') as f: reader = csv.reader(f, delimiter=',') data = [] for row in reader: data.append(row) # print(len(data)) data_headers = data[0] ### preprocessing for test data for i in ["Name", "PassengerId", "Ticket", "Fare", "Cabin"]: data = np.delete(data, data_headers.index(i), 1) data_headers.remove(i) data = np.array(data[1:]) data[data == ''] = '01111110' data[data == "male"] = 0 data[data == "female"] = 1 data[data == "S"] = 1 data[data == "Q"] = 0 data[data == "C"] = 2 # print(len(data),len(order),data,"end data") test_data = np.array(data[:, data_headers.index(order[0])]) for i in order[1:]: test_data = np.vstack((test_data, data[:, data_headers.index(i)])) # print(data_headers,"jdbfue",test_data,"jdbueb") with open('../Data/gender_submission.csv') as f: reader = csv.reader(f, delimiter=',') test_labels = [] for row in reader: test_labels.append(row[1]) print(len(test_labels)) test_labels = np.array(test_labels[1:]) ans = clf.predict(test_data.astype(np.float).T) ans1 = np.array([range(892, 1310)]) ans = np.vstack((ans1.astype(np.int), ans.astype(np.int))).T np.savetxt("fo1o.csv", ans, delimiter=",", fmt='%d')
[ 11748, 269, 21370, 198, 11748, 299, 32152, 355, 45941, 198, 198, 21017, 314, 550, 691, 973, 299, 32152, 837, 355, 428, 318, 618, 314, 550, 655, 288, 1572, 287, 198, 21017, 428, 6881, 198, 198, 21017, 1406, 837, 329, 31729, 467, 2989, 329, 19798, 292, 345, 481, 4646, 262, 3951, 286, 2438, 290, 340, 198, 21017, 318, 7427, 37867, 628, 198, 21017, 1100, 1366, 198, 4480, 1280, 10786, 40720, 6601, 14, 27432, 13, 40664, 11537, 355, 277, 25, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 11, 46728, 2676, 28, 3256, 11537, 198, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 808, 8, 198, 198, 21017, 14722, 198, 7890, 62, 50145, 796, 1366, 58, 15, 60, 198, 198, 21017, 651, 617, 7032, 691, 198, 1640, 1312, 287, 14631, 5376, 1600, 366, 14478, 6540, 7390, 1600, 366, 34652, 1572, 1600, 366, 51, 9715, 1600, 366, 37, 533, 1600, 366, 34, 6014, 1, 5974, 198, 220, 220, 220, 1366, 62, 50145, 13, 28956, 7, 72, 8, 198, 198, 21017, 662, 36948, 290, 21004, 198, 198, 7890, 796, 45941, 13, 18747, 7, 7890, 58, 16, 25, 12962, 198, 7890, 796, 45941, 13, 33678, 7, 7890, 11, 685, 15, 11, 513, 4357, 352, 8, 198, 2875, 796, 37250, 47, 4871, 3256, 705, 23398, 3256, 705, 23396, 3256, 705, 50, 571, 4561, 3256, 705, 47, 998, 3256, 705, 31567, 668, 276, 20520, 198, 7890, 58, 7890, 6624, 10148, 60, 796, 705, 486, 26259, 940, 6, 198, 27432, 62, 20274, 796, 1366, 58, 45299, 657, 60, 198, 7890, 796, 45941, 13, 33678, 7, 7890, 11, 685, 15, 11, 718, 4357, 352, 8, 198, 7890, 796, 45941, 13, 33678, 7, 7890, 11, 642, 11, 352, 8, 198, 7890, 796, 45941, 13, 33678, 7, 7890, 11, 642, 11, 352, 8, 198, 4798, 7, 7890, 62, 50145, 11, 1366, 58, 15, 12962, 198, 7890, 58, 7890, 6624, 366, 22606, 8973, 796, 657, 198, 7890, 58, 7890, 6624, 366, 24724, 8973, 796, 352, 198, 7890, 58, 7890, 6624, 366, 50, 8973, 796, 352, 198, 7890, 58, 7890, 6624, 366, 48, 8973, 796, 657, 198, 7890, 58, 7890, 6624, 366, 34, 8973, 796, 362, 198, 198, 21017, 1262, 2972, 1398, 13350, 198, 198, 2, 422, 1341, 35720, 13, 2616, 425, 62, 24406, 274, 1330, 12822, 31562, 32819, 198, 2, 537, 69, 28, 35389, 31562, 32819, 3419, 198, 2, 422, 1341, 35720, 13, 21048, 1330, 26423, 27660, 9487, 7483, 198, 2, 537, 69, 28, 10707, 1166, 27660, 9487, 7483, 3419, 198, 2, 422, 1341, 35720, 13, 82, 14761, 1330, 311, 15922, 198, 2, 537, 69, 28, 50, 15922, 3419, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 11, 47395, 45686, 9487, 7483, 198, 565, 69, 796, 14534, 34605, 9487, 7483, 7, 9806, 62, 18053, 28, 20, 11, 299, 62, 395, 320, 2024, 28, 940, 11, 3509, 62, 40890, 28, 17, 8, 198, 2, 537, 69, 28, 2782, 64, 45686, 9487, 7483, 3419, 198, 2, 422, 1341, 35720, 13, 710, 394, 32289, 1330, 509, 46445, 32289, 9487, 7483, 198, 2, 537, 69, 28, 42, 46445, 32289, 9487, 7483, 3419, 198, 2, 3601, 7, 37659, 13, 18747, 7, 17816, 41707, 16, 20520, 737, 459, 2981, 7, 37659, 13, 22468, 27267, 8457, 17457, 4943, 198, 2, 3601, 7, 11925, 7, 7890, 13, 459, 2981, 7, 37659, 13, 22468, 4008, 553, 7804, 4242, 1600, 11925, 7, 27432, 62, 20274, 13, 459, 2981, 7, 37659, 13, 22468, 22305, 628, 198, 21017, 4197, 1366, 284, 1398, 7483, 198, 565, 69, 13, 11147, 7, 7890, 13, 459, 2981, 7, 37659, 13, 22468, 828, 4512, 62, 20274, 13, 459, 2981, 7, 37659, 13, 22468, 4008, 198, 198, 2, 23983, 1366, 198, 7890, 796, 17635, 198, 4480, 1280, 10786, 40720, 6601, 14, 9288, 13, 40664, 11537, 355, 277, 25, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 11, 46728, 2676, 28, 3256, 11537, 198, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 808, 8, 198, 2, 3601, 7, 11925, 7, 7890, 4008, 198, 7890, 62, 50145, 796, 1366, 58, 15, 60, 198, 198, 21017, 662, 36948, 329, 1332, 1366, 198, 198, 1640, 1312, 287, 14631, 5376, 1600, 366, 14478, 6540, 7390, 1600, 366, 51, 9715, 1600, 366, 37, 533, 1600, 366, 34, 6014, 1, 5974, 198, 220, 220, 220, 1366, 796, 45941, 13, 33678, 7, 7890, 11, 1366, 62, 50145, 13, 9630, 7, 72, 828, 352, 8, 198, 220, 220, 220, 1366, 62, 50145, 13, 28956, 7, 72, 8, 198, 7890, 796, 45941, 13, 18747, 7, 7890, 58, 16, 25, 12962, 198, 7890, 58, 7890, 6624, 10148, 60, 796, 705, 486, 26259, 940, 6, 198, 7890, 58, 7890, 6624, 366, 22606, 8973, 796, 657, 198, 7890, 58, 7890, 6624, 366, 24724, 8973, 796, 352, 198, 7890, 58, 7890, 6624, 366, 50, 8973, 796, 352, 198, 7890, 58, 7890, 6624, 366, 48, 8973, 796, 657, 198, 7890, 58, 7890, 6624, 366, 34, 8973, 796, 362, 198, 2, 3601, 7, 11925, 7, 7890, 828, 11925, 7, 2875, 828, 7890, 553, 437, 1366, 4943, 198, 9288, 62, 7890, 796, 45941, 13, 18747, 7, 7890, 58, 45299, 1366, 62, 50145, 13, 9630, 7, 2875, 58, 15, 12962, 12962, 198, 1640, 1312, 287, 1502, 58, 16, 25, 5974, 198, 220, 220, 220, 1332, 62, 7890, 796, 45941, 13, 85, 25558, 19510, 9288, 62, 7890, 11, 1366, 58, 45299, 1366, 62, 50145, 13, 9630, 7, 72, 15437, 4008, 198, 2, 3601, 7, 7890, 62, 50145, 553, 73, 9945, 69, 518, 1600, 9288, 62, 7890, 553, 73, 9945, 518, 65, 4943, 198, 4480, 1280, 10786, 40720, 6601, 14, 8388, 62, 7266, 3411, 13, 40664, 11537, 355, 277, 25, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 11, 46728, 2676, 28, 3256, 11537, 198, 220, 220, 220, 1332, 62, 23912, 1424, 796, 17635, 198, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 23912, 1424, 13, 33295, 7, 808, 58, 16, 12962, 198, 4798, 7, 11925, 7, 9288, 62, 23912, 1424, 4008, 198, 9288, 62, 23912, 1424, 796, 45941, 13, 18747, 7, 9288, 62, 23912, 1424, 58, 16, 25, 12962, 198, 198, 504, 796, 537, 69, 13, 79, 17407, 7, 9288, 62, 7890, 13, 459, 2981, 7, 37659, 13, 22468, 737, 51, 8, 198, 198, 504, 16, 796, 45941, 13, 18747, 26933, 9521, 7, 4531, 17, 11, 1511, 940, 8, 12962, 198, 198, 504, 796, 45941, 13, 85, 25558, 19510, 504, 16, 13, 459, 2981, 7, 37659, 13, 600, 828, 9093, 13, 459, 2981, 7, 37659, 13, 600, 4008, 737, 51, 198, 198, 37659, 13, 21928, 14116, 7203, 6513, 16, 78, 13, 40664, 1600, 9093, 11, 46728, 2676, 28, 2430, 11, 46996, 11639, 4, 67, 11537, 628 ]
2.546481
1,151
from __future__ import absolute_import
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 628, 198 ]
4.1
10
import logging from typing import Optional import qcodes as qc from qcodes import Instrument, InstrumentChannel, Parameter from qcodes import validators as vals from qcodes.instrument.base import InstrumentBase from qcodes.utils.validators import Validator import nanotune as nt logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 6738, 19720, 1330, 32233, 198, 198, 11748, 10662, 40148, 355, 10662, 66, 198, 6738, 10662, 40148, 1330, 42410, 11, 42410, 29239, 11, 25139, 2357, 198, 6738, 10662, 40148, 1330, 4938, 2024, 355, 410, 874, 198, 6738, 10662, 40148, 13, 259, 43872, 13, 8692, 1330, 42410, 14881, 198, 6738, 10662, 40148, 13, 26791, 13, 12102, 2024, 1330, 48951, 1352, 198, 198, 11748, 15709, 313, 1726, 355, 299, 83, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.72093
86
import argparse import os import sys from sys import stdout import mdtraj as md import numpy as np import parmed import simtk.openmm as mm import simtk.openmm.app as app import simtk.unit as unit from openforcefield.topology import Molecule, Topology from openmmforcefields.generators import SystemGenerator from perses.utils.openeye import OEMol_to_omm_ff, createOEMolFromSDF from simtk.openmm import MonteCarloBarostat, XmlSerializer from simtk.openmm.app import CheckpointReporter, ForceField, PDBFile from simtk.openmm.app.pdbreporter import PDBReporter from simtk.openmm.app.statedatareporter import StateDataReporter # Read arguments to get ligand parser = argparse.ArgumentParser() parser.add_argument( "-ligand", help="the docked ligand to be prepared for simulation", choices=["larotrectinib", "selitrectinib", "repotrectinib"], type=str, ) args = parser.parse_args() chosen_ligand = args.ligand # Parameters print("--> Reading parameters") pressure = 1.0 * unit.bar temperature = 300 * unit.kelvin nonbonded_method = app.PME constraints = app.HBonds remove_cm_motion = True collision_rate = 1.0 / unit.picoseconds timestep = 0.002 * unit.picoseconds solvent_padding = 10.0 * unit.angstrom ionic_strength = 150 * unit.millimolar # Forcefield protein_forcefield = "amber14/protein.ff14SB.xml" small_molecule_forcefield = "openff-1.1.0" solvation_forcefield = "amber14/tip3p.xml" forcefield = ForceField(protein_forcefield, solvation_forcefield) # Set steps and frequencies nsteps = 2500000 # 5 ns report_freq = 100 chk_freq = 500 traj_freq = 1000 # 2500 frames # Set the input file names input_pdb = "6KZD_prepped.pdb" input_ligands_sdf = "../../structures_from_docking/6KZD_chemgauss_docking.sdf" # Create output directory output_prefix = "./output/" + chosen_ligand os.makedirs(output_prefix, exist_ok=True) print("--> Directory ", output_prefix, " created ") # Set file names integrator_xml_filename = "integrator_2fs.xml" state_xml_filename = "equilibrated_state_5ns.xml" state_pdb_filename = "equilibrated_state_5ns.pdb" system_xml_filename = "equilibrated_system_5ns.xml" checkpoint_filename = "equilibrated_checkpoint_5ns.chk" traj_output_filename = "equilibrated_traj_5ns.xtc" # Define the barostat for the system barostat = mm.MonteCarloBarostat(pressure, temperature) # Load and sort ligands molecules = Molecule.from_file(input_ligands_sdf) ligand_names = ["larotrectinib", "selitrectinib", "repotrectinib"] ligand_dict = dict(zip(ligand_names, molecules)) # Create dict for easy access later # Make the SystemGenerator system_generator = SystemGenerator( forcefields=[protein_forcefield, solvation_forcefield], barostat=barostat, periodic_forcefield_kwargs={"nonbondedMethod": app.PME}, small_molecule_forcefield=small_molecule_forcefield, molecules=ligand_dict[chosen_ligand], ) # Read in the PDB and create an OpenMM topology pdbfile = app.PDBFile(input_pdb) protein_topology, protein_positions = pdbfile.topology, pdbfile.positions # Add ligand to topology - credit to @hannahbrucemacdonald for help here print("--> Combining protein and ligand topologies") off_ligand_topology = Topology.from_molecules(ligand_dict[chosen_ligand]) ligand_topology = off_ligand_topology.to_openmm() ligand_positions = ligand_dict[chosen_ligand].conformers[0] md_protein_topology = md.Topology.from_openmm( protein_topology ) # using mdtraj for protein top md_ligand_topology = md.Topology.from_openmm( ligand_topology ) # using mdtraj for ligand top md_complex_topology = md_protein_topology.join(md_ligand_topology) # add them together complex_topology = md_complex_topology.to_openmm() # now back to openmm total_atoms = len(protein_positions) + len(ligand_positions) complex_positions = unit.Quantity(np.zeros([total_atoms, 3]), unit=unit.nanometers) complex_positions[0 : len(protein_positions)] = protein_positions for index, atom in enumerate(ligand_positions, len(protein_positions)): coords = atom / atom.unit complex_positions[index] = ( coords / 10.0 ) * unit.nanometers # since openmm works in nm # Add hydrogens and solvate the system modeller = app.Modeller(complex_topology, complex_positions) print("Adding hydrogens to the system...") modeller.addHydrogens(system_generator.forcefield) print("Solvating the system...") modeller.addSolvent( forcefield=system_generator.forcefield, model="tip3p", ionicStrength=ionic_strength, padding=solvent_padding, ) # Create an OpenMM system print("--> Creating an OpenMM system") system = system_generator.create_system(modeller.topology) # Make and serialize integrator - Langevin dynamics print( "Serializing integrator to %s" % os.path.join(output_prefix, integrator_xml_filename) ) integrator = mm.LangevinIntegrator( temperature, collision_rate, timestep # Friction coefficient ) with open(os.path.join(output_prefix, integrator_xml_filename), "w") as outfile: xml = mm.XmlSerializer.serialize(integrator) outfile.write(xml) # Define the platform to use; CUDA, OpenCL, CPU, or Reference. Or do not specify # the platform to use the default (fastest) platform # platform = mm.Platform.getPlatformByName("OpenCL") # prop = dict(OpenCLPrecision="mixed") # Use mixed single/double precision # Create the Simulation object sim = app.Simulation(modeller.topology, system, integrator) # , platform, prop) # Set the particle positions sim.context.setPositions(modeller.positions) # Minimize the energy print("--> Minimising energy with docked ligand: " + chosen_ligand) print( " initial : %8.3f kcal/mol" % ( sim.context.getState(getEnergy=True).getPotentialEnergy() / unit.kilocalories_per_mole ) ) sim.minimizeEnergy() print( " final : %8.3f kcal/mol" % ( sim.context.getState(getEnergy=True).getPotentialEnergy() / unit.kilocalories_per_mole ) ) # set starting velocities: print("--> Generating random starting velocities") sim.context.setVelocitiesToTemperature(temperature * unit.kelvin) # write limited state information to standard out: sim.reporters.append( StateDataReporter( stdout, reportInterval=report_freq, step=True, time=True, potentialEnergy=True, kineticEnergy=True, temperature=True, speed=True, progress=True, remainingTime=True, totalSteps=nsteps, separator="\t", ) ) # Write to checkpoint files regularly: sim.reporters.append( CheckpointReporter( file=os.path.join(output_prefix, checkpoint_filename), reportInterval=chk_freq ) ) # Write out the trajectory sim.reporters.append( md.reporters.XTCReporter( file=os.path.join(output_prefix, traj_output_filename), reportInterval=traj_freq ) ) # Run NPT dynamics print("--> Running dynamics in the NPT ensemble for the 6KZD:" + chosen_ligand + " complex") sim.step(nsteps) # Save and serialize the final state print("--> Serializing state to %s" % os.path.join(output_prefix, state_xml_filename)) state = sim.context.getState( getPositions=True, getVelocities=True, getEnergy=True, getForces=True ) with open(os.path.join(output_prefix, state_xml_filename), "w") as outfile: xml = mm.XmlSerializer.serialize(state) outfile.write(xml) # Save the final state as a PDB print("--> Saving final state as %s" % os.path.join(output_prefix, state_pdb_filename)) with open(os.path.join(output_prefix, state_pdb_filename), "w") as outfile: PDBFile.writeFile( sim.topology, sim.context.getState(getPositions=True, enforcePeriodicBox=True).getPositions(), file=outfile, keepIds=True, ) # Save and serialize system print("--> Serializing system to %s" % os.path.join(output_prefix, system_xml_filename)) system.setDefaultPeriodicBoxVectors(*state.getPeriodicBoxVectors()) with open(os.path.join(output_prefix, system_xml_filename), "w") as outfile: xml = mm.XmlSerializer.serialize(system) outfile.write(xml)
[ 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 25064, 1330, 14367, 448, 198, 198, 11748, 45243, 9535, 73, 355, 45243, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1582, 1150, 198, 11748, 985, 30488, 13, 9654, 3020, 355, 8085, 198, 11748, 985, 30488, 13, 9654, 3020, 13, 1324, 355, 598, 198, 11748, 985, 30488, 13, 20850, 355, 4326, 198, 6738, 1280, 3174, 3245, 13, 4852, 1435, 1330, 25726, 23172, 11, 5849, 1435, 198, 6738, 1280, 3020, 3174, 25747, 13, 8612, 2024, 1330, 4482, 8645, 1352, 198, 6738, 2774, 274, 13, 26791, 13, 404, 1734, 5948, 1330, 29671, 349, 62, 1462, 62, 2002, 62, 487, 11, 2251, 46, 3620, 349, 4863, 50, 8068, 198, 6738, 985, 30488, 13, 9654, 3020, 1330, 22489, 9914, 5439, 10374, 455, 265, 11, 1395, 4029, 32634, 7509, 198, 6738, 985, 30488, 13, 9654, 3020, 13, 1324, 1330, 6822, 4122, 6207, 4337, 11, 5221, 15878, 11, 350, 11012, 8979, 198, 6738, 985, 30488, 13, 9654, 3020, 13, 1324, 13, 30094, 4679, 26634, 1330, 350, 11012, 6207, 4337, 198, 6738, 985, 30488, 13, 9654, 3020, 13, 1324, 13, 21989, 265, 533, 26634, 1330, 1812, 6601, 6207, 4337, 198, 198, 2, 4149, 7159, 284, 651, 26106, 392, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 4604, 392, 1600, 198, 220, 220, 220, 1037, 2625, 1169, 288, 3543, 26106, 392, 284, 307, 5597, 329, 18640, 1600, 198, 220, 220, 220, 7747, 28, 14692, 21681, 313, 2554, 259, 571, 1600, 366, 741, 270, 2554, 259, 571, 1600, 366, 7856, 313, 2554, 259, 571, 33116, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 354, 5233, 62, 4604, 392, 796, 26498, 13, 4604, 392, 198, 198, 2, 40117, 198, 4798, 7203, 46904, 11725, 10007, 4943, 198, 36151, 796, 352, 13, 15, 1635, 4326, 13, 5657, 198, 11498, 21069, 796, 5867, 1635, 4326, 13, 365, 6780, 259, 198, 13159, 65, 623, 276, 62, 24396, 796, 598, 13, 5868, 36, 198, 1102, 2536, 6003, 796, 598, 13, 32886, 24764, 198, 28956, 62, 11215, 62, 38714, 796, 6407, 198, 26000, 1166, 62, 4873, 796, 352, 13, 15, 1220, 4326, 13, 16564, 577, 17561, 82, 198, 16514, 395, 538, 796, 657, 13, 21601, 1635, 4326, 13, 16564, 577, 17561, 82, 198, 34453, 1151, 62, 39231, 796, 838, 13, 15, 1635, 4326, 13, 648, 20282, 198, 26523, 62, 41402, 796, 6640, 1635, 4326, 13, 17805, 320, 6192, 198, 198, 2, 5221, 3245, 198, 48693, 62, 3174, 3245, 796, 366, 7789, 1415, 14, 48693, 13, 487, 1415, 16811, 13, 19875, 1, 198, 17470, 62, 76, 2305, 23172, 62, 3174, 3245, 796, 366, 9654, 487, 12, 16, 13, 16, 13, 15, 1, 198, 34453, 10473, 62, 3174, 3245, 796, 366, 7789, 1415, 14, 22504, 18, 79, 13, 19875, 1, 198, 3174, 3245, 796, 5221, 15878, 7, 48693, 62, 3174, 3245, 11, 1540, 10473, 62, 3174, 3245, 8, 198, 198, 2, 5345, 4831, 290, 19998, 198, 77, 20214, 796, 1679, 20483, 220, 1303, 642, 36545, 198, 13116, 62, 19503, 80, 796, 1802, 198, 354, 74, 62, 19503, 80, 796, 5323, 198, 9535, 73, 62, 19503, 80, 796, 8576, 220, 1303, 33507, 13431, 198, 198, 2, 5345, 262, 5128, 2393, 3891, 198, 15414, 62, 79, 9945, 796, 366, 21, 42, 57, 35, 62, 3866, 1496, 13, 79, 9945, 1, 198, 15414, 62, 4604, 1746, 62, 82, 7568, 796, 366, 40720, 40720, 7249, 942, 62, 6738, 62, 67, 8629, 14, 21, 42, 57, 35, 62, 15245, 4908, 1046, 62, 67, 8629, 13, 82, 7568, 1, 198, 198, 2, 13610, 5072, 8619, 198, 22915, 62, 40290, 796, 366, 19571, 22915, 30487, 1343, 7147, 62, 4604, 392, 198, 418, 13, 76, 4335, 17062, 7, 22915, 62, 40290, 11, 2152, 62, 482, 28, 17821, 8, 198, 4798, 7203, 46904, 27387, 33172, 5072, 62, 40290, 11, 366, 2727, 366, 8, 198, 198, 2, 5345, 2393, 3891, 198, 18908, 12392, 62, 19875, 62, 34345, 796, 366, 18908, 12392, 62, 17, 9501, 13, 19875, 1, 198, 5219, 62, 19875, 62, 34345, 796, 366, 4853, 346, 2889, 515, 62, 5219, 62, 20, 5907, 13, 19875, 1, 198, 5219, 62, 79, 9945, 62, 34345, 796, 366, 4853, 346, 2889, 515, 62, 5219, 62, 20, 5907, 13, 79, 9945, 1, 198, 10057, 62, 19875, 62, 34345, 796, 366, 4853, 346, 2889, 515, 62, 10057, 62, 20, 5907, 13, 19875, 1, 198, 9122, 4122, 62, 34345, 796, 366, 4853, 346, 2889, 515, 62, 9122, 4122, 62, 20, 5907, 13, 354, 74, 1, 198, 9535, 73, 62, 22915, 62, 34345, 796, 366, 4853, 346, 2889, 515, 62, 9535, 73, 62, 20, 5907, 13, 742, 66, 1, 198, 198, 2, 2896, 500, 262, 2318, 455, 265, 329, 262, 1080, 198, 5657, 455, 265, 796, 8085, 13, 9069, 660, 9914, 5439, 10374, 455, 265, 7, 36151, 11, 5951, 8, 198, 198, 2, 8778, 290, 3297, 26106, 1746, 198, 76, 2305, 13930, 796, 25726, 23172, 13, 6738, 62, 7753, 7, 15414, 62, 4604, 1746, 62, 82, 7568, 8, 198, 4604, 392, 62, 14933, 796, 14631, 21681, 313, 2554, 259, 571, 1600, 366, 741, 270, 2554, 259, 571, 1600, 366, 7856, 313, 2554, 259, 571, 8973, 198, 4604, 392, 62, 11600, 796, 8633, 7, 13344, 7, 4604, 392, 62, 14933, 11, 17745, 4008, 220, 1303, 13610, 8633, 329, 2562, 1895, 1568, 198, 198, 2, 6889, 262, 4482, 8645, 1352, 198, 10057, 62, 8612, 1352, 796, 4482, 8645, 1352, 7, 198, 220, 220, 220, 2700, 25747, 41888, 48693, 62, 3174, 3245, 11, 1540, 10473, 62, 3174, 3245, 4357, 198, 220, 220, 220, 2318, 455, 265, 28, 5657, 455, 265, 11, 198, 220, 220, 220, 27458, 62, 3174, 3245, 62, 46265, 22046, 28, 4895, 13159, 65, 623, 276, 17410, 1298, 598, 13, 5868, 36, 5512, 198, 220, 220, 220, 1402, 62, 76, 2305, 23172, 62, 3174, 3245, 28, 17470, 62, 76, 2305, 23172, 62, 3174, 3245, 11, 198, 220, 220, 220, 17745, 28, 4604, 392, 62, 11600, 58, 354, 5233, 62, 4604, 392, 4357, 198, 8, 198, 198, 2, 4149, 287, 262, 350, 11012, 290, 2251, 281, 4946, 12038, 1353, 1435, 198, 79, 9945, 7753, 796, 598, 13, 5760, 33, 8979, 7, 15414, 62, 79, 9945, 8, 198, 48693, 62, 4852, 1435, 11, 7532, 62, 1930, 1756, 796, 279, 9945, 7753, 13, 4852, 1435, 11, 279, 9945, 7753, 13, 1930, 1756, 198, 198, 2, 3060, 26106, 392, 284, 1353, 1435, 532, 3884, 284, 2488, 71, 25761, 65, 26524, 20285, 40915, 329, 1037, 994, 198, 4798, 7203, 46904, 14336, 3191, 7532, 290, 26106, 392, 1353, 5823, 4943, 198, 2364, 62, 4604, 392, 62, 4852, 1435, 796, 5849, 1435, 13, 6738, 62, 76, 2305, 13930, 7, 4604, 392, 62, 11600, 58, 354, 5233, 62, 4604, 392, 12962, 198, 4604, 392, 62, 4852, 1435, 796, 572, 62, 4604, 392, 62, 4852, 1435, 13, 1462, 62, 9654, 3020, 3419, 198, 4604, 392, 62, 1930, 1756, 796, 26106, 392, 62, 11600, 58, 354, 5233, 62, 4604, 392, 4083, 1102, 687, 364, 58, 15, 60, 198, 198, 9132, 62, 48693, 62, 4852, 1435, 796, 45243, 13, 9126, 1435, 13, 6738, 62, 9654, 3020, 7, 198, 220, 220, 220, 7532, 62, 4852, 1435, 198, 8, 220, 1303, 1262, 45243, 9535, 73, 329, 7532, 1353, 198, 9132, 62, 4604, 392, 62, 4852, 1435, 796, 45243, 13, 9126, 1435, 13, 6738, 62, 9654, 3020, 7, 198, 220, 220, 220, 26106, 392, 62, 4852, 1435, 198, 8, 220, 1303, 1262, 45243, 9535, 73, 329, 26106, 392, 1353, 198, 9132, 62, 41887, 62, 4852, 1435, 796, 45243, 62, 48693, 62, 4852, 1435, 13, 22179, 7, 9132, 62, 4604, 392, 62, 4852, 1435, 8, 220, 1303, 751, 606, 1978, 198, 198, 41887, 62, 4852, 1435, 796, 45243, 62, 41887, 62, 4852, 1435, 13, 1462, 62, 9654, 3020, 3419, 220, 1303, 783, 736, 284, 1280, 3020, 198, 23350, 62, 265, 3150, 796, 18896, 7, 48693, 62, 1930, 1756, 8, 1343, 18896, 7, 4604, 392, 62, 1930, 1756, 8, 198, 41887, 62, 1930, 1756, 796, 4326, 13, 31208, 7, 37659, 13, 9107, 418, 26933, 23350, 62, 265, 3150, 11, 513, 46570, 4326, 28, 20850, 13, 12647, 40077, 8, 198, 41887, 62, 1930, 1756, 58, 15, 1058, 18896, 7, 48693, 62, 1930, 1756, 15437, 796, 7532, 62, 1930, 1756, 198, 1640, 6376, 11, 22037, 287, 27056, 378, 7, 4604, 392, 62, 1930, 1756, 11, 18896, 7, 48693, 62, 1930, 1756, 8, 2599, 198, 220, 220, 220, 763, 3669, 796, 22037, 1220, 22037, 13, 20850, 198, 220, 220, 220, 3716, 62, 1930, 1756, 58, 9630, 60, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 1220, 838, 13, 15, 198, 220, 220, 220, 1267, 1635, 4326, 13, 12647, 40077, 220, 1303, 1201, 1280, 3020, 2499, 287, 28642, 198, 198, 2, 3060, 7409, 48686, 290, 1540, 85, 378, 262, 1080, 198, 4666, 12368, 796, 598, 13, 5841, 12368, 7, 41887, 62, 4852, 1435, 11, 3716, 62, 1930, 1756, 8, 198, 4798, 7203, 32901, 7409, 48686, 284, 262, 1080, 9313, 8, 198, 4666, 12368, 13, 2860, 40436, 48686, 7, 10057, 62, 8612, 1352, 13, 3174, 3245, 8, 198, 4798, 7203, 36949, 85, 803, 262, 1080, 9313, 8, 198, 4666, 12368, 13, 2860, 36949, 1151, 7, 198, 220, 220, 220, 2700, 3245, 28, 10057, 62, 8612, 1352, 13, 3174, 3245, 11, 198, 220, 220, 220, 2746, 2625, 22504, 18, 79, 1600, 198, 220, 220, 220, 22088, 291, 45027, 28, 26523, 62, 41402, 11, 198, 220, 220, 220, 24511, 28, 34453, 1151, 62, 39231, 11, 198, 8, 198, 198, 2, 13610, 281, 4946, 12038, 1080, 198, 4798, 7203, 46904, 30481, 281, 4946, 12038, 1080, 4943, 198, 10057, 796, 1080, 62, 8612, 1352, 13, 17953, 62, 10057, 7, 4666, 12368, 13, 4852, 1435, 8, 198, 198, 2, 6889, 290, 11389, 1096, 4132, 12392, 532, 47579, 7114, 17262, 198, 4798, 7, 198, 220, 220, 220, 366, 32634, 2890, 4132, 12392, 284, 4064, 82, 1, 198, 220, 220, 220, 4064, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 4132, 12392, 62, 19875, 62, 34345, 8, 198, 8, 198, 18908, 12392, 796, 8085, 13, 43, 858, 7114, 34500, 12392, 7, 198, 220, 220, 220, 5951, 11, 17661, 62, 4873, 11, 4628, 395, 538, 220, 1303, 1305, 2867, 35381, 198, 8, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 4132, 12392, 62, 19875, 62, 34345, 828, 366, 86, 4943, 355, 503, 7753, 25, 198, 220, 220, 220, 35555, 796, 8085, 13, 55, 4029, 32634, 7509, 13, 46911, 1096, 7, 18908, 12392, 8, 198, 220, 220, 220, 503, 7753, 13, 13564, 7, 19875, 8, 198, 198, 2, 2896, 500, 262, 3859, 284, 779, 26, 29369, 5631, 11, 4946, 5097, 11, 9135, 11, 393, 20984, 13, 1471, 466, 407, 11986, 198, 2, 262, 3859, 284, 779, 262, 4277, 357, 7217, 395, 8, 3859, 198, 2, 3859, 796, 8085, 13, 37148, 13, 1136, 37148, 3886, 5376, 7203, 11505, 5097, 4943, 198, 2, 2632, 796, 8633, 7, 11505, 5097, 6719, 16005, 2625, 76, 2966, 4943, 220, 1303, 5765, 7668, 2060, 14, 23352, 15440, 198, 198, 2, 13610, 262, 41798, 2134, 198, 14323, 796, 598, 13, 8890, 1741, 7, 4666, 12368, 13, 4852, 1435, 11, 1080, 11, 4132, 12392, 8, 220, 1303, 837, 3859, 11, 2632, 8, 198, 198, 2, 5345, 262, 18758, 6116, 198, 14323, 13, 22866, 13, 2617, 21604, 1756, 7, 4666, 12368, 13, 1930, 1756, 8, 198, 198, 2, 1855, 48439, 262, 2568, 198, 4798, 7203, 46904, 1855, 320, 1710, 2568, 351, 288, 3543, 26106, 392, 25, 366, 1343, 7147, 62, 4604, 392, 8, 198, 4798, 7, 198, 220, 220, 220, 366, 220, 4238, 1058, 4064, 23, 13, 18, 69, 49504, 14, 43132, 1, 198, 220, 220, 220, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 985, 13, 22866, 13, 1136, 9012, 7, 1136, 28925, 28, 17821, 737, 1136, 25396, 1843, 28925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1220, 4326, 13, 34553, 4374, 1749, 62, 525, 62, 76, 2305, 198, 220, 220, 220, 1267, 198, 8, 198, 14323, 13, 1084, 48439, 28925, 3419, 198, 4798, 7, 198, 220, 220, 220, 366, 220, 2457, 1058, 4064, 23, 13, 18, 69, 49504, 14, 43132, 1, 198, 220, 220, 220, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 985, 13, 22866, 13, 1136, 9012, 7, 1136, 28925, 28, 17821, 737, 1136, 25396, 1843, 28925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1220, 4326, 13, 34553, 4374, 1749, 62, 525, 62, 76, 2305, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 2, 900, 3599, 11555, 420, 871, 25, 198, 4798, 7203, 46904, 2980, 803, 4738, 3599, 11555, 420, 871, 4943, 198, 14323, 13, 22866, 13, 2617, 46261, 420, 871, 2514, 42492, 7, 11498, 21069, 1635, 4326, 13, 365, 6780, 259, 8, 198, 198, 2, 3551, 3614, 1181, 1321, 284, 3210, 503, 25, 198, 14323, 13, 260, 1819, 1010, 13, 33295, 7, 198, 220, 220, 220, 1812, 6601, 6207, 4337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 989, 9492, 2100, 28, 13116, 62, 19503, 80, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 640, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2785, 28925, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 37892, 28925, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5637, 7575, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 8600, 82, 28, 77, 20214, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2880, 1352, 2625, 59, 83, 1600, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 2, 19430, 284, 26954, 3696, 7987, 25, 198, 14323, 13, 260, 1819, 1010, 13, 33295, 7, 198, 220, 220, 220, 6822, 4122, 6207, 4337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 28, 418, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 26954, 62, 34345, 828, 989, 9492, 2100, 28, 354, 74, 62, 19503, 80, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 2, 19430, 503, 262, 22942, 198, 14323, 13, 260, 1819, 1010, 13, 33295, 7, 198, 220, 220, 220, 45243, 13, 260, 1819, 1010, 13, 55, 4825, 6207, 4337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 28, 418, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 1291, 73, 62, 22915, 62, 34345, 828, 989, 9492, 2100, 28, 9535, 73, 62, 19503, 80, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 2, 5660, 399, 11571, 17262, 198, 4798, 7203, 46904, 18162, 17262, 287, 262, 399, 11571, 34549, 329, 262, 718, 42, 57, 35, 11097, 1343, 7147, 62, 4604, 392, 1343, 366, 3716, 4943, 198, 14323, 13, 9662, 7, 77, 20214, 8, 198, 198, 2, 12793, 290, 11389, 1096, 262, 2457, 1181, 198, 4798, 7203, 46904, 23283, 2890, 1181, 284, 4064, 82, 1, 4064, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 1181, 62, 19875, 62, 34345, 4008, 198, 5219, 796, 985, 13, 22866, 13, 1136, 9012, 7, 198, 220, 220, 220, 651, 21604, 1756, 28, 17821, 11, 651, 46261, 420, 871, 28, 17821, 11, 651, 28925, 28, 17821, 11, 651, 1890, 728, 28, 17821, 198, 8, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 1181, 62, 19875, 62, 34345, 828, 366, 86, 4943, 355, 503, 7753, 25, 198, 220, 220, 220, 35555, 796, 8085, 13, 55, 4029, 32634, 7509, 13, 46911, 1096, 7, 5219, 8, 198, 220, 220, 220, 503, 7753, 13, 13564, 7, 19875, 8, 198, 198, 2, 12793, 262, 2457, 1181, 355, 257, 350, 11012, 198, 4798, 7203, 46904, 34689, 2457, 1181, 355, 4064, 82, 1, 4064, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 1181, 62, 79, 9945, 62, 34345, 4008, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 1181, 62, 79, 9945, 62, 34345, 828, 366, 86, 4943, 355, 503, 7753, 25, 198, 220, 220, 220, 350, 11012, 8979, 13, 13564, 8979, 7, 198, 220, 220, 220, 220, 220, 220, 220, 985, 13, 4852, 1435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 985, 13, 22866, 13, 1136, 9012, 7, 1136, 21604, 1756, 28, 17821, 11, 4605, 5990, 2101, 291, 14253, 28, 17821, 737, 1136, 21604, 1756, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 28, 448, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1394, 7390, 82, 28, 17821, 11, 198, 220, 220, 220, 1267, 198, 198, 2, 12793, 290, 11389, 1096, 1080, 198, 4798, 7203, 46904, 23283, 2890, 1080, 284, 4064, 82, 1, 4064, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 1080, 62, 19875, 62, 34345, 4008, 198, 10057, 13, 2617, 19463, 5990, 2101, 291, 14253, 53, 478, 669, 46491, 5219, 13, 1136, 5990, 2101, 291, 14253, 53, 478, 669, 28955, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 22915, 62, 40290, 11, 1080, 62, 19875, 62, 34345, 828, 366, 86, 4943, 355, 503, 7753, 25, 198, 220, 220, 220, 35555, 796, 8085, 13, 55, 4029, 32634, 7509, 13, 46911, 1096, 7, 10057, 8, 198, 220, 220, 220, 503, 7753, 13, 13564, 7, 19875, 8 ]
2.76284
2,901
"""Holds AnswerSelect model.""" import datetime from .. import db class AnswerSelect(db.Model): """Model to hold a users selected answers.""" __tablename__ = "answerselects" id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey("users.id")) quiz_id = db.Column(db.Integer, db.ForeignKey("quizzes.id")) question_id = db.Column(db.Integer, db.ForeignKey("questions.id")) answer_id = db.Column(db.Integer, db.ForeignKey("answers.id")) created_date = db.Column(db.DateTime, default=datetime.datetime.utcnow) user = db.relationship("User", backref="answerselects", lazy=True) answer = db.relationship("Answer", backref="answerselects", lazy=True) def __repr__(self): """Return string readable version of model.""" return "<AnswerSelect {}:{}>".format( self.user.name, self.answer.text)
[ 37811, 39, 10119, 23998, 17563, 2746, 526, 15931, 198, 198, 11748, 4818, 8079, 198, 198, 6738, 11485, 1330, 20613, 628, 198, 4871, 23998, 17563, 7, 9945, 13, 17633, 2599, 198, 220, 220, 220, 37227, 17633, 284, 1745, 257, 2985, 6163, 7429, 526, 15931, 628, 220, 220, 220, 11593, 8658, 11925, 480, 834, 796, 366, 41484, 19738, 82, 1, 628, 220, 220, 220, 4686, 796, 20613, 13, 39470, 7, 9945, 13, 46541, 11, 4165, 62, 2539, 28, 17821, 8, 198, 220, 220, 220, 2836, 62, 312, 796, 20613, 13, 39470, 7, 9945, 13, 46541, 11, 20613, 13, 33616, 9218, 7203, 18417, 13, 312, 48774, 198, 220, 220, 220, 38964, 62, 312, 796, 20613, 13, 39470, 7, 9945, 13, 46541, 11, 20613, 13, 33616, 9218, 7203, 421, 6457, 274, 13, 312, 48774, 198, 220, 220, 220, 1808, 62, 312, 796, 20613, 13, 39470, 7, 9945, 13, 46541, 11, 20613, 13, 33616, 9218, 7203, 6138, 507, 13, 312, 48774, 198, 220, 220, 220, 3280, 62, 312, 796, 20613, 13, 39470, 7, 9945, 13, 46541, 11, 20613, 13, 33616, 9218, 7203, 504, 86, 364, 13, 312, 48774, 198, 220, 220, 220, 2727, 62, 4475, 796, 20613, 13, 39470, 7, 9945, 13, 10430, 7575, 11, 4277, 28, 19608, 8079, 13, 19608, 8079, 13, 315, 66, 2197, 8, 628, 220, 220, 220, 2836, 796, 20613, 13, 39468, 1056, 7203, 12982, 1600, 736, 5420, 2625, 41484, 19738, 82, 1600, 16931, 28, 17821, 8, 198, 220, 220, 220, 3280, 796, 20613, 13, 39468, 1056, 7203, 33706, 1600, 736, 5420, 2625, 41484, 19738, 82, 1600, 16931, 28, 17821, 8, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 4731, 31744, 2196, 286, 2746, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 33490, 33706, 17563, 23884, 29164, 92, 29, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7220, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41484, 13, 5239, 8, 198 ]
2.637681
345
import typer from .app import run_as_service from .sensitivity_ua_services import ( sensitivity_ua_linear_regression, sensitivity_ua_test_func, ) from .demo_services import demo_func main = typer.Typer() @main.command() @main.command() @main.command() if __name__ == "__main__": main()
[ 11748, 1259, 525, 198, 198, 6738, 764, 1324, 1330, 1057, 62, 292, 62, 15271, 198, 6738, 764, 82, 40545, 62, 6413, 62, 30416, 1330, 357, 198, 220, 220, 220, 14233, 62, 6413, 62, 29127, 62, 2301, 2234, 11, 198, 220, 220, 220, 14233, 62, 6413, 62, 9288, 62, 20786, 11, 198, 8, 198, 6738, 764, 9536, 78, 62, 30416, 1330, 13605, 62, 20786, 198, 198, 12417, 796, 1259, 525, 13, 25492, 525, 3419, 628, 198, 31, 12417, 13, 21812, 3419, 628, 198, 31, 12417, 13, 21812, 3419, 628, 198, 31, 12417, 13, 21812, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.725664
113
from mongodb_statedb import StateDb
[ 6738, 285, 506, 375, 65, 62, 21989, 65, 1330, 1812, 43832, 628 ]
3.083333
12
# -*- encoding: utf-8 -*- """ DeepQ Learning is a Reinforcement Learning Platform where AI Learns to Play Games In this project, I'm trying to develop some 'Q-Learning Algorithms' where the neural network will learn to play various games. The `engine` is specifically designed to build games that can be used to train and test the models. The game engines are also built such that an user can self play without any overhead. List of Games Available: 1. Classic Snake Game (`snake.py`) @author: Debmalya Pramanik @Contact: [email protected] """ # init-time options registrations from .snake import * # noqa: F403
[ 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 29744, 48, 18252, 318, 257, 22299, 13442, 18252, 19193, 810, 9552, 30667, 284, 3811, 5776, 198, 198, 818, 428, 1628, 11, 314, 1101, 2111, 284, 1205, 617, 705, 48, 12, 41730, 978, 7727, 907, 6, 810, 262, 198, 710, 1523, 3127, 481, 2193, 284, 711, 2972, 1830, 13, 383, 4600, 18392, 63, 318, 5734, 198, 30473, 284, 1382, 1830, 326, 460, 307, 973, 284, 4512, 290, 1332, 262, 4981, 13, 383, 983, 198, 1516, 1127, 389, 635, 3170, 884, 326, 281, 2836, 460, 2116, 711, 1231, 597, 16965, 13, 198, 198, 8053, 286, 5776, 14898, 25, 198, 220, 352, 13, 13449, 16705, 3776, 357, 63, 16184, 539, 13, 9078, 63, 8, 198, 198, 31, 9800, 25, 220, 8965, 76, 3400, 64, 350, 859, 272, 1134, 198, 31, 17829, 25, 288, 47, 859, 272, 1134, 13, 16841, 31, 14816, 13, 785, 198, 37811, 198, 198, 2, 2315, 12, 2435, 3689, 47997, 198, 6738, 764, 16184, 539, 1330, 1635, 1303, 645, 20402, 25, 376, 31552, 198 ]
3.486188
181
""" Constants for ocrd_utils. """ from pkg_resources import get_distribution __all__ = [ 'VERSION', 'MIMETYPE_PAGE', 'EXT_TO_MIME', 'MIME_TO_EXT' ] VERSION = get_distribution('ocrd_utils').version MIMETYPE_PAGE = 'application/vnd.prima.page+xml' EXT_TO_MIME = { '.tif': 'image/tiff', '.tiff': 'image/tiff', '.png': 'image/png', '.jpg': 'image/jpg', '.jpeg': 'image/jpg', '.xml': MIMETYPE_PAGE } MIME_TO_EXT = { 'image/tiff': '.tif', 'image/png': '.png', 'image/jpg': '.jpg', 'image/jpeg': '.jpg', MIMETYPE_PAGE: '.xml', 'application/alto+xml': '.xml', }
[ 37811, 198, 34184, 1187, 329, 267, 66, 4372, 62, 26791, 13, 198, 37811, 198, 6738, 279, 10025, 62, 37540, 1330, 651, 62, 17080, 3890, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 43717, 3256, 198, 220, 220, 220, 705, 44, 3955, 2767, 56, 11401, 62, 4537, 8264, 3256, 198, 220, 220, 220, 705, 13918, 62, 10468, 62, 44, 12789, 3256, 198, 220, 220, 220, 705, 44, 12789, 62, 10468, 62, 13918, 6, 198, 60, 198, 198, 43717, 796, 651, 62, 17080, 3890, 10786, 1696, 67, 62, 26791, 27691, 9641, 198, 198, 44, 3955, 2767, 56, 11401, 62, 4537, 8264, 796, 705, 31438, 14, 85, 358, 13, 1050, 8083, 13, 7700, 10, 19875, 6, 198, 198, 13918, 62, 10468, 62, 44, 12789, 796, 1391, 198, 220, 220, 220, 45302, 49929, 10354, 705, 9060, 14, 83, 733, 3256, 198, 220, 220, 220, 45302, 83, 733, 10354, 705, 9060, 14, 83, 733, 3256, 198, 220, 220, 220, 45302, 11134, 10354, 705, 9060, 14, 11134, 3256, 198, 220, 220, 220, 45302, 9479, 10354, 705, 9060, 14, 9479, 3256, 198, 220, 220, 220, 45302, 73, 22071, 10354, 705, 9060, 14, 9479, 3256, 198, 220, 220, 220, 45302, 19875, 10354, 337, 3955, 2767, 56, 11401, 62, 4537, 8264, 198, 92, 198, 198, 44, 12789, 62, 10468, 62, 13918, 796, 1391, 198, 220, 220, 220, 705, 9060, 14, 83, 733, 10354, 45302, 49929, 3256, 198, 220, 220, 220, 705, 9060, 14, 11134, 10354, 45302, 11134, 3256, 198, 220, 220, 220, 705, 9060, 14, 9479, 10354, 45302, 9479, 3256, 198, 220, 220, 220, 705, 9060, 14, 73, 22071, 10354, 45302, 9479, 3256, 198, 220, 220, 220, 337, 3955, 2767, 56, 11401, 62, 4537, 8264, 25, 45302, 19875, 3256, 198, 220, 220, 220, 705, 31438, 14, 282, 1462, 10, 19875, 10354, 45302, 19875, 3256, 198, 92, 198 ]
2.062914
302
from logging import exception from math import sqrt from random import uniform
[ 6738, 18931, 1330, 6631, 198, 6738, 10688, 1330, 19862, 17034, 198, 6738, 4738, 1330, 8187, 198 ]
4.9375
16
"""UI Templates: For reusable ui pieces built from components.""" from zygrader import ui from zygrader.zybooks import Zybooks def filename_input(purpose, text=""): """Get a valid filename from the user""" window = ui.get_window() path_input = ui.layers.PathInputLayer("Filepath Entry") path_input.set_prompt( [f"Enter the path and filename for {purpose} [~ is supported]"]) path_input.set_text(text) window.run_layer(path_input) if path_input.canceled: return None return path_input.get_path()
[ 37811, 10080, 5825, 17041, 25, 1114, 42339, 334, 72, 5207, 3170, 422, 6805, 526, 15931, 198, 198, 6738, 1976, 88, 2164, 5067, 1330, 334, 72, 198, 6738, 1976, 88, 2164, 5067, 13, 7357, 12106, 1330, 40905, 12106, 628, 198, 198, 4299, 29472, 62, 15414, 7, 29983, 11, 2420, 33151, 2599, 198, 220, 220, 220, 37227, 3855, 257, 4938, 29472, 422, 262, 2836, 37811, 198, 220, 220, 220, 4324, 796, 334, 72, 13, 1136, 62, 17497, 3419, 628, 220, 220, 220, 3108, 62, 15414, 796, 334, 72, 13, 75, 6962, 13, 15235, 20560, 49925, 7203, 8979, 6978, 21617, 4943, 198, 220, 220, 220, 3108, 62, 15414, 13, 2617, 62, 16963, 457, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 69, 1, 17469, 262, 3108, 290, 29472, 329, 1391, 29983, 92, 685, 93, 318, 4855, 60, 8973, 8, 198, 220, 220, 220, 3108, 62, 15414, 13, 2617, 62, 5239, 7, 5239, 8, 198, 220, 220, 220, 4324, 13, 5143, 62, 29289, 7, 6978, 62, 15414, 8, 198, 220, 220, 220, 611, 3108, 62, 15414, 13, 66, 590, 992, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1441, 3108, 62, 15414, 13, 1136, 62, 6978, 3419, 198 ]
2.704433
203
if __name__ == "__main__": print(selection_sort([])) print(selection_sort([1])) print(selection_sort([0, 100000000, 20000])) print(selection_sort([1, 0])) print(selection_sort([1.5, -2.6, 2, 1.1])) print(selection_sort([3, 6, 8, 1, 2, 5, 3, 9, 3, 5, 9, 2])) print(selection_sort([3, 6, -45, 1, 2, 5, 3, -9, 3, 0, 9, 2])) print(selection_sort([3, 6, -45, 1, 2, 5, 3, -9, 3, 0, 9, 2], comparison=lambda a, b: a > b)) print(selection_sort(["hello", "apple", "cat", "zebra", "goat", ""]))
[ 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 7, 21737, 4008, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 26933, 16, 60, 4008, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 26933, 15, 11, 1802, 10535, 11, 939, 405, 60, 4008, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 26933, 16, 11, 657, 60, 4008, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 26933, 16, 13, 20, 11, 532, 17, 13, 21, 11, 362, 11, 352, 13, 16, 60, 4008, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 26933, 18, 11, 718, 11, 807, 11, 352, 11, 362, 11, 642, 11, 513, 11, 860, 11, 513, 11, 642, 11, 860, 11, 362, 60, 4008, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 26933, 18, 11, 718, 11, 532, 2231, 11, 352, 11, 362, 11, 642, 11, 513, 11, 532, 24, 11, 513, 11, 657, 11, 860, 11, 362, 60, 4008, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 26933, 18, 11, 718, 11, 532, 2231, 11, 352, 11, 362, 11, 642, 11, 513, 11, 532, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 11, 657, 11, 860, 11, 362, 4357, 7208, 28, 50033, 257, 11, 275, 25, 257, 1875, 275, 4008, 198, 220, 220, 220, 3601, 7, 49283, 62, 30619, 7, 14692, 31373, 1600, 366, 18040, 1600, 366, 9246, 1600, 366, 89, 37052, 1600, 366, 2188, 265, 1600, 366, 8973, 4008, 198 ]
2.010989
273
#// #//------------------------------------------------------------------------------ #// Copyright 2007-2011 Mentor Graphics Corporation #// Copyright 2007-2011 Cadence Design Systems, Inc. #// Copyright 2010-2011 Synopsys, Inc. #// Copyright 2013 NVIDIA Corporation #// All Rights Reserved Worldwide #// #// Licensed under the Apache License, Version 2.0 (the #// "License"); you may not use this file except in #// compliance with the License. You may obtain a copy of #// the License at #// #// http://www.apache.org/licenses/LICENSE-2.0 #// #// Unless required by applicable law or agreed to in #// writing, software distributed under the License is #// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR #// CONDITIONS OF ANY KIND, either express or implied. See #// the License for the specific language governing #// permissions and limitations under the License. #//------------------------------------------------------------------------------ # #`ifndef UVM_DAP_SVH # `define UVM_DAP_SVH # #// Set/Get DAPS # `include "dap/uvm_set_get_dap_base.svh" # `include "dap/uvm_simple_lock_dap.svh" # `include "dap/uvm_get_to_lock_dap.svh" # `include "dap/uvm_set_before_get_dap.svh" # #`endif // UVM_DAP_SVH #
[ 2, 1003, 220, 198, 2, 1003, 10097, 26171, 198, 2, 1003, 220, 220, 15069, 4343, 12, 9804, 31879, 273, 19840, 10501, 198, 2, 1003, 220, 220, 15069, 4343, 12, 9804, 20517, 594, 8495, 11998, 11, 3457, 13, 198, 2, 1003, 220, 220, 15069, 3050, 12, 9804, 16065, 2840, 893, 11, 3457, 13, 198, 2, 1003, 220, 220, 15069, 2211, 220, 220, 220, 220, 220, 15127, 10501, 198, 2, 1003, 220, 220, 1439, 6923, 33876, 33140, 198, 2, 1003, 198, 2, 1003, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 1003, 220, 220, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 198, 2, 1003, 220, 220, 11846, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 198, 2, 1003, 220, 220, 262, 13789, 379, 198, 2, 1003, 198, 2, 1003, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 1003, 198, 2, 1003, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 198, 2, 1003, 220, 220, 3597, 11, 3788, 9387, 739, 262, 13789, 318, 198, 2, 1003, 220, 220, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 198, 2, 1003, 220, 220, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 198, 2, 1003, 220, 220, 262, 13789, 329, 262, 2176, 3303, 15030, 198, 2, 1003, 220, 220, 21627, 290, 11247, 739, 262, 13789, 13, 198, 2, 1003, 10097, 26171, 198, 2, 198, 2, 63, 361, 358, 891, 471, 15996, 62, 35, 2969, 62, 50, 53, 39, 198, 2, 4600, 13086, 471, 15996, 62, 35, 2969, 62, 50, 53, 39, 198, 2, 198, 2, 1003, 5345, 14, 3855, 360, 44580, 198, 2, 4600, 17256, 366, 67, 499, 14, 84, 14761, 62, 2617, 62, 1136, 62, 67, 499, 62, 8692, 13, 21370, 71, 1, 198, 2, 4600, 17256, 366, 67, 499, 14, 84, 14761, 62, 36439, 62, 5354, 62, 67, 499, 13, 21370, 71, 1, 198, 2, 4600, 17256, 366, 67, 499, 14, 84, 14761, 62, 1136, 62, 1462, 62, 5354, 62, 67, 499, 13, 21370, 71, 1, 198, 2, 4600, 17256, 366, 67, 499, 14, 84, 14761, 62, 2617, 62, 19052, 62, 1136, 62, 67, 499, 13, 21370, 71, 1, 198, 2, 198, 2, 63, 32088, 3373, 471, 15996, 62, 35, 2969, 62, 50, 53, 39, 198, 2, 198 ]
3.053269
413
# Houston # Connects a serial device on Windows this would COMx # Sets the board type # Then starts polling analog pin 17 which is Analog pin 3 # You will need MRLComm.ino loaded on the Arduino # If all goes well - you should have 2 traces running # in the arduino->oscope tab - you can at this point connect # input - for example a 5v line to the lines and see them change from time import sleep from org.myrobotlab.service import Arduino from org.myrobotlab.service import Servo from org.myrobotlab.service import Motor # variables dependent on your setup boardType = "atmega2560" # atmega168 | atmega328p | atmega2560 | atmega1280 | atmega32u4 #comPort = "/dev/ttyACM0" #comPort = "COM9" lfaencoder = 38 analogSensorPin = 67 # create service for Houston arduino = runtime.createAndStart("arduino","Arduino") lshoulder = runtime.createAndStart("lshoulder","Servo") lbicep = runtime.createAndStart("lbicep","Servo") lelbow = runtime.createAndStart("lelbow","Servo") rshoulder = runtime.createAndStart("rshoulder","Servo") rbicep = runtime.createAndStart("rbicep","Servo") relbow = runtime.createAndStart("relbow","Servo") # 4 motors lfmotor = runtime.createAndStart("lfmotor","Motor") # left front rfmotor = runtime.createAndStart("rfmotor","Motor") # right front lbmotor = runtime.createAndStart("lbmotor","Motor") # left back rbmotor = runtime.createAndStart("rbmotor","Motor") # right back # set config for the services arduino.setBoard(boardType) # atmega168 | mega2560 | etc arduino.connect(comPort,57600,8,1,0) sleep(1) # give it a second for the serial device to get ready # attach Servos & Motors to arduino arduino.servoAttach(lshoulder.getName(), 46) arduino.servoAttach(lbicep.getName(), 47) arduino.servoAttach(lelbow.getName(), 48) arduino.servoAttach(rshoulder.getName(), 50) arduino.servoAttach(rbicep.getName(), 51) arduino.servoAttach(relbow.getName(), 52) arduino.motorAttach(lfmotor.getName(), 4, 30) arduino.motorAttach(rfmotor.getName(), 5, 31) arduino.motorAttach(lbmotor.getName(), 6, 32) arduino.motorAttach(rbmotor.getName(), 7, 33) # update the gui with configuration changes arduino.publishState() lshoulder.publishState() lbicep.publishState() lelbow.publishState() rshoulder.publishState() rbicep.publishState() relbow.publishState() lfmotor.publishState() rfmotor.publishState() lbmotor.publishState() rbmotor.publishState() # system check - need to do checks to see all systems are go ! # start the analog pin sample to display # in the oscope arduino.analogReadPollingStart(analogSensorPin) # change the pinMode of digital pin 13 arduino.pinMode(lfaencoder, Arduino.OUTPUT) # begin tracing the digital pin 13 arduino.digitalReadPollStart(lfaencoder) # turn off the trace # arduino.digitalReadPollStop(lfaencoder) # turn off the analog sampling # arduino.analogReadPollingStop(analogSensorPin)
[ 2, 6995, 198, 2, 8113, 82, 257, 11389, 3335, 319, 3964, 428, 561, 9440, 87, 220, 198, 2, 21394, 262, 3096, 2099, 198, 2, 3244, 4940, 13985, 15075, 6757, 1596, 543, 318, 50088, 6757, 513, 198, 2, 921, 481, 761, 17242, 5639, 2002, 13, 2879, 9639, 319, 262, 27634, 198, 2, 1002, 477, 2925, 880, 532, 345, 815, 423, 362, 20675, 2491, 198, 2, 287, 262, 610, 24493, 3784, 40326, 7400, 532, 345, 460, 379, 428, 966, 2018, 198, 2, 5128, 532, 329, 1672, 257, 642, 85, 1627, 284, 262, 3951, 290, 766, 606, 1487, 198, 6738, 640, 1330, 3993, 198, 6738, 8745, 13, 1820, 305, 13645, 23912, 13, 15271, 1330, 27634, 198, 6738, 8745, 13, 1820, 305, 13645, 23912, 13, 15271, 1330, 3116, 78, 198, 6738, 8745, 13, 1820, 305, 13645, 23912, 13, 15271, 1330, 12533, 198, 198, 2, 9633, 10795, 319, 534, 9058, 198, 3526, 6030, 796, 366, 265, 13731, 1495, 1899, 1, 220, 1303, 379, 13731, 14656, 930, 379, 13731, 34256, 79, 930, 379, 13731, 1495, 1899, 930, 379, 13731, 1065, 1795, 930, 379, 13731, 2624, 84, 19, 198, 2, 785, 13924, 796, 12813, 7959, 14, 42852, 2246, 44, 15, 1, 198, 2, 785, 13924, 796, 366, 9858, 24, 1, 198, 1652, 64, 12685, 12342, 796, 4353, 198, 272, 11794, 47864, 28348, 796, 8275, 198, 198, 2, 2251, 2139, 329, 6995, 198, 446, 84, 2879, 796, 19124, 13, 17953, 1870, 10434, 7203, 446, 84, 2879, 2430, 3163, 24493, 4943, 198, 198, 75, 1477, 17601, 796, 19124, 13, 17953, 1870, 10434, 7203, 75, 1477, 17601, 2430, 11838, 78, 4943, 198, 23160, 501, 79, 796, 19124, 13, 17953, 1870, 10434, 7203, 23160, 501, 79, 2430, 11838, 78, 4943, 198, 293, 75, 8176, 796, 19124, 13, 17953, 1870, 10434, 7203, 293, 75, 8176, 2430, 11838, 78, 4943, 198, 198, 81, 1477, 17601, 796, 19124, 13, 17953, 1870, 10434, 7203, 81, 1477, 17601, 2430, 11838, 78, 4943, 198, 26145, 501, 79, 796, 19124, 13, 17953, 1870, 10434, 7203, 26145, 501, 79, 2430, 11838, 78, 4943, 198, 2411, 8176, 796, 19124, 13, 17953, 1870, 10434, 7203, 2411, 8176, 2430, 11838, 78, 4943, 198, 198, 2, 604, 24699, 220, 198, 1652, 76, 20965, 796, 19124, 13, 17953, 1870, 10434, 7203, 1652, 76, 20965, 2430, 34919, 4943, 1303, 1364, 2166, 198, 81, 38353, 20965, 796, 19124, 13, 17953, 1870, 10434, 7203, 81, 38353, 20965, 2430, 34919, 4943, 1303, 826, 2166, 198, 75, 20475, 20965, 796, 19124, 13, 17953, 1870, 10434, 7203, 75, 20475, 20965, 2430, 34919, 4943, 1303, 1364, 736, 198, 81, 20475, 20965, 796, 19124, 13, 17953, 1870, 10434, 7203, 81, 20475, 20965, 2430, 34919, 4943, 1303, 826, 736, 198, 198, 2, 900, 4566, 329, 262, 2594, 198, 446, 84, 2879, 13, 2617, 29828, 7, 3526, 6030, 8, 1303, 379, 13731, 14656, 930, 23465, 1495, 1899, 930, 3503, 198, 446, 84, 2879, 13, 8443, 7, 785, 13924, 11, 3553, 8054, 11, 23, 11, 16, 11, 15, 8, 198, 42832, 7, 16, 8, 1303, 1577, 340, 257, 1218, 329, 262, 11389, 3335, 284, 651, 3492, 198, 198, 2, 10199, 3116, 418, 1222, 19292, 284, 610, 24493, 198, 446, 84, 2879, 13, 3168, 78, 33296, 7, 75, 1477, 17601, 13, 1136, 5376, 22784, 6337, 8, 198, 446, 84, 2879, 13, 3168, 78, 33296, 7, 23160, 501, 79, 13, 1136, 5376, 22784, 6298, 8, 198, 446, 84, 2879, 13, 3168, 78, 33296, 7, 293, 75, 8176, 13, 1136, 5376, 22784, 4764, 8, 198, 446, 84, 2879, 13, 3168, 78, 33296, 7, 81, 1477, 17601, 13, 1136, 5376, 22784, 2026, 8, 198, 446, 84, 2879, 13, 3168, 78, 33296, 7, 26145, 501, 79, 13, 1136, 5376, 22784, 6885, 8, 198, 446, 84, 2879, 13, 3168, 78, 33296, 7, 2411, 8176, 13, 1136, 5376, 22784, 6740, 8, 198, 198, 446, 84, 2879, 13, 76, 20965, 33296, 7, 1652, 76, 20965, 13, 1136, 5376, 22784, 604, 11, 1542, 8, 198, 446, 84, 2879, 13, 76, 20965, 33296, 7, 81, 38353, 20965, 13, 1136, 5376, 22784, 642, 11, 3261, 8, 198, 446, 84, 2879, 13, 76, 20965, 33296, 7, 75, 20475, 20965, 13, 1136, 5376, 22784, 718, 11, 3933, 8, 198, 446, 84, 2879, 13, 76, 20965, 33296, 7, 81, 20475, 20965, 13, 1136, 5376, 22784, 767, 11, 4747, 8, 198, 198, 2, 4296, 262, 11774, 351, 8398, 2458, 198, 446, 84, 2879, 13, 12984, 1836, 9012, 3419, 198, 198, 75, 1477, 17601, 13, 12984, 1836, 9012, 3419, 198, 23160, 501, 79, 13, 12984, 1836, 9012, 3419, 198, 293, 75, 8176, 13, 12984, 1836, 9012, 3419, 198, 81, 1477, 17601, 13, 12984, 1836, 9012, 3419, 198, 26145, 501, 79, 13, 12984, 1836, 9012, 3419, 198, 2411, 8176, 13, 12984, 1836, 9012, 3419, 198, 198, 1652, 76, 20965, 13, 12984, 1836, 9012, 3419, 198, 81, 38353, 20965, 13, 12984, 1836, 9012, 3419, 198, 75, 20475, 20965, 13, 12984, 1836, 9012, 3419, 198, 81, 20475, 20965, 13, 12984, 1836, 9012, 3419, 198, 198, 2, 1080, 2198, 532, 761, 284, 466, 8794, 284, 766, 477, 3341, 389, 467, 5145, 198, 2, 923, 262, 15075, 6757, 6291, 284, 3359, 198, 2, 287, 262, 267, 29982, 198, 446, 84, 2879, 13, 272, 11794, 5569, 39176, 278, 10434, 7, 272, 11794, 47864, 28348, 8, 198, 198, 2, 1487, 262, 6757, 19076, 286, 4875, 6757, 1511, 198, 446, 84, 2879, 13, 11635, 19076, 7, 1652, 64, 12685, 12342, 11, 27634, 13, 2606, 7250, 3843, 8, 198, 198, 2, 2221, 35328, 262, 4875, 6757, 1511, 220, 198, 446, 84, 2879, 13, 34725, 5569, 39176, 10434, 7, 1652, 64, 12685, 12342, 8, 198, 198, 2, 1210, 572, 262, 12854, 198, 2, 610, 24493, 13, 34725, 5569, 39176, 19485, 7, 1652, 64, 12685, 12342, 8, 198, 2, 1210, 572, 262, 15075, 19232, 198, 2, 610, 24493, 13, 272, 11794, 5569, 39176, 278, 19485, 7, 272, 11794, 47864, 28348, 8, 198 ]
2.963542
960
from datetime import datetime from typing import Dict from flask import Flask, request, send_file from music import BeatTimestamp, FileOffsetRecording from room import Room app = Flask(__name__) rooms: Dict[str, Room] = {} # Accepts datetime in milliseconds and converts to microseconds @app.route("/") # -------------------------------------------------------- # Rooms # -------------------------------------------------------- # Adds a new room to the rooms dictionary and returns it's ID # The room ID is necessary for all future interactions @app.route("/create-room", methods=['POST']) # Allows a new user to validate their room ID @app.route("/<string:room_id>/is-valid-room-id", methods=['POST']) # -------------------------------------------------------- # Recording # -------------------------------------------------------- # Informs the server that a user has begun recording # All users who start recording in a room must stop recording for # a composition to be produced @app.route("/<string:room_id>/start-recording", methods=['POST']) # Informs the server that a user is finished recording and provides # the FileOffsetRecordings as a json in the following format: # { # 'start_time': "%D:%H:%M:%S.%f" (f is milliseconds) # 'end_time': "%D:%H:%M:%S.%f" # 'events' : [ # { # filename: string, -- name of the audio file (uploaded and default) # time: "%D:%H:%M:%S.%f" # loopable: bool # }, # ... # ] # } # Returns whether the recording session is complete @app.route("/<string:room_id>/stop-recording", methods=['POST']) # Upload a sound file to current recording session # Must be in .mp4 format and with the filename that will be used to # reference the file in the offsets of the FileOffsetRecordings @app.route("/<string:room_id>/upload-sound", methods=['PUT']) # -------------------------------------------------------- # Getting Composition # -------------------------------------------------------- # Returns whether a is recording complete, meaning the same number of users # who started recording have stopped # Allows users to poll when they should call get-composition @app.route("/<string:room_id>/is-recording-complete") # Returns the generated composition as an mp3 file # Produces composition if necessary with the FileOffsetRecordings @app.route("/<string:room_id>/get-composition") # -------------------------------------------------------- # Misc. # -------------------------------------------------------- # Simple health check to test connection to server @app.route("/health-check") # Can be called as an hourly chron job to clean expired data @app.route("/cleanup", methods=['POST'])
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 360, 713, 198, 198, 6738, 42903, 1330, 46947, 11, 2581, 11, 3758, 62, 7753, 198, 198, 6738, 2647, 1330, 12568, 14967, 27823, 11, 9220, 34519, 6690, 1284, 198, 6738, 2119, 1330, 10096, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 9649, 25, 360, 713, 58, 2536, 11, 10096, 60, 796, 23884, 628, 198, 2, 21699, 82, 4818, 8079, 287, 38694, 290, 26161, 284, 4580, 43012, 628, 198, 31, 1324, 13, 38629, 7203, 14, 4943, 628, 198, 2, 20368, 22369, 198, 2, 42043, 198, 2, 20368, 22369, 198, 198, 2, 34333, 257, 649, 2119, 284, 262, 9519, 22155, 290, 5860, 340, 338, 4522, 198, 2, 383, 2119, 4522, 318, 3306, 329, 477, 2003, 12213, 198, 31, 1324, 13, 38629, 7203, 14, 17953, 12, 3823, 1600, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 2, 40402, 257, 649, 2836, 284, 26571, 511, 2119, 4522, 198, 31, 1324, 13, 38629, 7203, 14, 27, 8841, 25, 3823, 62, 312, 29, 14, 271, 12, 12102, 12, 3823, 12, 312, 1600, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 2, 20368, 22369, 198, 2, 43905, 198, 2, 20368, 22369, 198, 198, 2, 554, 23914, 262, 4382, 326, 257, 2836, 468, 9258, 8296, 198, 2, 1439, 2985, 508, 923, 8296, 287, 257, 2119, 1276, 2245, 8296, 329, 198, 2, 220, 220, 257, 11742, 284, 307, 4635, 198, 31, 1324, 13, 38629, 7203, 14, 27, 8841, 25, 3823, 62, 312, 29, 14, 9688, 12, 8344, 1284, 1600, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 2, 554, 23914, 262, 4382, 326, 257, 2836, 318, 5201, 8296, 290, 3769, 198, 2, 220, 220, 262, 9220, 34519, 23739, 654, 355, 257, 33918, 287, 262, 1708, 5794, 25, 198, 2, 1391, 198, 2, 220, 220, 705, 9688, 62, 2435, 10354, 36521, 35, 25, 4, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 1, 357, 69, 318, 38694, 8, 198, 2, 220, 220, 705, 437, 62, 2435, 10354, 36521, 35, 25, 4, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 1, 198, 2, 220, 220, 705, 31534, 6, 1058, 685, 198, 2, 220, 220, 220, 220, 220, 220, 1391, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 25, 4731, 11, 220, 220, 1377, 1438, 286, 262, 6597, 2393, 357, 25850, 276, 290, 4277, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 25, 36521, 35, 25, 4, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 1, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9052, 540, 25, 20512, 198, 2, 220, 220, 220, 220, 220, 220, 8964, 198, 2, 220, 220, 220, 220, 220, 220, 2644, 198, 2, 220, 220, 2361, 198, 2, 1782, 198, 2, 16409, 1771, 262, 8296, 6246, 318, 1844, 198, 31, 1324, 13, 38629, 7203, 14, 27, 8841, 25, 3823, 62, 312, 29, 14, 11338, 12, 8344, 1284, 1600, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 2, 36803, 257, 2128, 2393, 284, 1459, 8296, 6246, 198, 2, 12039, 307, 287, 764, 3149, 19, 5794, 290, 351, 262, 29472, 326, 481, 307, 973, 284, 198, 2, 220, 220, 4941, 262, 2393, 287, 262, 49005, 286, 262, 9220, 34519, 23739, 654, 198, 31, 1324, 13, 38629, 7203, 14, 27, 8841, 25, 3823, 62, 312, 29, 14, 25850, 12, 23661, 1600, 5050, 28, 17816, 30076, 6, 12962, 628, 198, 2, 20368, 22369, 198, 2, 18067, 955, 9150, 198, 2, 20368, 22369, 198, 198, 2, 16409, 1771, 257, 318, 8296, 1844, 11, 3616, 262, 976, 1271, 286, 2985, 198, 2, 220, 220, 508, 2067, 8296, 423, 5025, 198, 2, 40402, 2985, 284, 3278, 618, 484, 815, 869, 651, 12, 785, 9150, 198, 31, 1324, 13, 38629, 7203, 14, 27, 8841, 25, 3823, 62, 312, 29, 14, 271, 12, 8344, 1284, 12, 20751, 4943, 628, 198, 2, 16409, 262, 7560, 11742, 355, 281, 29034, 18, 2393, 198, 2, 21522, 728, 11742, 611, 3306, 351, 262, 9220, 34519, 23739, 654, 198, 31, 1324, 13, 38629, 7203, 14, 27, 8841, 25, 3823, 62, 312, 29, 14, 1136, 12, 785, 9150, 4943, 628, 198, 2, 20368, 22369, 198, 2, 29882, 13, 198, 2, 20368, 22369, 198, 198, 2, 17427, 1535, 2198, 284, 1332, 4637, 284, 4382, 198, 31, 1324, 13, 38629, 7203, 14, 13948, 12, 9122, 4943, 628, 198, 2, 1680, 307, 1444, 355, 281, 30160, 16199, 1693, 284, 3424, 21350, 1366, 198, 31, 1324, 13, 38629, 7203, 14, 27773, 929, 1600, 5050, 28, 17816, 32782, 6, 12962, 198 ]
3.581794
758
""" Created on 16 Apr 2017 @author: Bruno Beloff ([email protected]) """ from scs_dfe.interface.component.pca8574 import PCA8574State # -------------------------------------------------------------------------------------------------------------------- PCA8574State.init()
[ 37811, 198, 41972, 319, 1467, 2758, 2177, 198, 198, 31, 9800, 25, 31045, 3944, 2364, 357, 1671, 36909, 13, 6667, 2364, 31, 35782, 1073, 5773, 4234, 13, 785, 8, 198, 37811, 198, 198, 6738, 629, 82, 62, 67, 5036, 13, 39994, 13, 42895, 13, 79, 6888, 23, 46900, 1330, 4217, 32, 23, 46900, 9012, 628, 198, 2, 16529, 3880, 19351, 198, 198, 5662, 32, 23, 46900, 9012, 13, 15003, 3419, 198 ]
4.15493
71
#!/usr/bin/env python3 import argparse import datetime import os import shutil import sys import time from subprocess import check_output import geopandas as gpd import numpy as np from colorama import Fore, Style, init from basin_setup import __version__ # Initialize colors init() DEBUG = False out = Messages() def check_path(filename, outfile=False): """ Checks whether an file has been provided exists. If outfile is true then we assume we are making a file and there fore we should only check if the directory exists. Args: filename: path to a file outfile: Boolean indicating whether to check for a file (outfile=False) or a directory (outfile==True) """ folder = os.path.dirname(filename) if outfile and not os.path.isdir(folder): out.error("Directory provided for output location does not exist!" "\nMissing----->{}".format(filename)) sys.exit() if not outfile and not os.path.isfile(filename): out.error("Input file does not exist!\nMissing----->{}" "".format(filename)) sys.exit() def run_cmd(cmd, nthreads=None): """ Executes the command and pipes the output to the console. Args: cmd: String command to be entered in the the command prompt """ out.dbg('Running {}'.format(cmd)) if nthreads is not None: cmd = 'mpiexec -n {0} '.format(nthreads) + cmd s = check_output(cmd, shell=True, universal_newlines=True) out.dbg(s) def pitremove(demfile, outfile=None, nthreads=None): """ STEP #1 Builds the command to pit fill the DEM and executes it. Args: demfile: Path to tif of the DEM. outfile: Path to write the pit filled DEM. nthreads: Number of cores to use for mpiexec """ out.msg("Removing Pits from DEM...") if outfile is None: outfile = 'filled.tif' check_path(demfile) check_path(outfile, outfile=True) CMD = "pitremove -z {0} -fel {1}".format(demfile, outfile) run_cmd(CMD, nthreads=nthreads) def calcD8Flow(filled_dem, d8dir_file=None, d8slope_file=None, nthreads=None): """ STEP #2 Builds the command to calculate the D8 flow for the flow direction and executes it. Args: filled_dem: Path to tif of the pit filled DEM. d8dir_file: Path to write the D8 flow direction. d8slope_file: Path to write the D8 flow slope. nthreads: Number of cores to use for mpiexec """ out.msg("Calculating D8 flow direction...") # Check paths check_path(filled_dem) check_path(d8dir_file, outfile=True) check_path(d8slope_file, outfile=True) CMD = "d8flowdir -fel {0} -p {1} -sd8 {2}".format(filled_dem, d8dir_file, d8slope_file) run_cmd(CMD, nthreads=nthreads) def calcD8DrainageArea(d8flowdir, areaD8_out=None, nthreads=None): """ STEP #3 Calculates D8 Contributing area to each cell in the DEM. Args: d8flowdir: Path to the D8 Flow direction image areaD8_out: Path to output the Drainage area image nthreads: Number of cores to use for mpiexec """ check_path(d8flowdir) check_path(areaD8_out, outfile=True) CMD = "aread8 -p {0} -ad8 {1}".format(d8flowdir, areaD8_out) run_cmd(CMD, nthreads=nthreads) def defineStreamsByThreshold(areaD8, threshold_streams_out=None, threshold=100, nthreads=None): """ STEP #4 Stream definition by threshold in order to extract a first version of the stream network Args: areaD8: Path to the D8 Drainage area image threshold_streams_out: Path to output the thresholded image threshold: threshold value to recategorize the data nthreads: Number of cores to use for mpiexec """ out.msg( "Performing stream estimation using threshold of {0}".format( threshold)) check_path(areaD8) check_path(threshold_streams_out, outfile=True) CMD = "threshold -ssa {0} -src {1} -thresh {2}".format( areaD8, threshold_streams_out, threshold) run_cmd(CMD, nthreads=nthreads) def outlets_2_streams(d8flowdir, threshold_streams, pour_points, new_pour_points=None, nthreads=None): """ STEP #5 Move Outlets to Streams, so as to move the catchment outlet point on one of the DEM cells identified by TauDEM as belonging to the stream network Args: d8flowdir: Path to the D8 Flow direction image threshold_streams: Path to output the thresholded stream image pour_points: Path to pour point locations in a list new_pour_points: Path to output the new list of points nthreads: Number of cores to use for mpiexec """ check_path(d8flowdir) check_path(threshold_streams) check_path(pour_points) check_path(new_pour_points, outfile=True) CMD = 'moveoutletstostrm -p {0} -src {1} -o {2} -om {3}'.format( d8flowdir, threshold_streams, pour_points, new_pour_points) run_cmd(CMD, nthreads=nthreads) def calcD8DrainageAreaBasin(d8flowdir, basin_outlets_moved, areaD8_out=None, nthreads=None): """ STEP #6 D8 Contributing Area again, but with the catchment outlet point as additional input data Args: d8flowdir: Path to the D8 Flow direction image basin_outlets_moved: all pour points that have been moved to the stream areaD8_out: Path to output the Drainage area image that utilize all the points nthreads: Number of cores to use for mpiexec """ out.msg("Calculating drainage area using pour points...") check_path(d8flowdir) check_path(basin_outlets_moved) check_path(areaD8_out, outfile=True) CMD = 'aread8 -p {0} -o {1} -ad8 {2}'.format(d8flowdir, basin_outlets_moved, areaD8_out) run_cmd(CMD, nthreads=nthreads) def delineate_streams(dem, d8flowdir, basin_drain_area, threshold_streams, basin_outlets_moved, stream_orderfile=None, treefile=None, coordfile=None, netfile=None, wfile=None, nthreads=None): """ STEP #8 Stream Reach And Watershed Args: dem: path to a filled dem image d8flowdir: path to the flow direction image basin_drain_area: path to the flow accumulation image for the basin threshold_streams: streams defintion image defined by a threshold basin_outlets_moved: Path to a .bna of the pour points corrected to be on the streams. stream_orderfile: Name of the file to output the stream segment order treefile: Name of the file to output the subbasin flow order. coordfile: Not sure what this file is netfile: Name of the images to output the stream definitions. wfile: Name of the image to output subbasin definitions. nthreads: Number of cores to use for mpiexec """ out.msg("Creating watersheds and stream files...") # Check path validity inputs = [dem, d8flowdir, basin_drain_area, threshold_streams, basin_outlets_moved] outputs = [stream_orderfile, treefile, coordfile, netfile, wfile] for f in inputs: check_path(f) for f in outputs: check_path(f, outfile=True) CMD = ('streamnet -fel {0} -p {1} -ad8 {2} -src {3} -ord {4} -tree {5}' ' -coord {6} -net {7} -o {8} -w {9}').format( dem, d8flowdir, basin_drain_area, threshold_streams, stream_orderfile, treefile, coordfile, netfile, basin_outlets_moved, wfile) run_cmd(CMD, nthreads=nthreads) def convert2ascii(infile, outfile=None): """ Convert to ascii """ check_path(infile) check_path(outfile, outfile=True) # convert wfile files to ascii CMD = 'gdal_translate -of AAIGrid {0} {1}'.format(infile, outfile) run_cmd(CMD) def produce_shapefiles(watershed_tif, corrected_points, output_dir=None, streamflow=False): """ Outputs the polygons of the individual subbasins to a shapfile. Args: watershed_tif: Path to a geotiff of the watersheds corrected_points: Path to the corrected points used for delineation output_dir: Output location used for producing shapefiles """ # Check files check_path(watershed_tif) check_path(corrected_points) wfname = os.path.basename(watershed_tif).split('.')[0] + '.shp' # Polygonize creates a raster with all subbasins watershed_shp = os.path.join(output_dir, wfname) CMD = 'gdal_polygonize.py -f "ESRI SHAPEFILE" {} {}'.format(watershed_tif, watershed_shp) run_cmd(CMD) # Read in and identify the names of the pour points with the subbasins ptdf = gpd.read_file(corrected_points) wdf = gpd.read_file(watershed_shp) # Identify the name and output the individual basins for nm, pt in zip(ptdf['Primary ID'].values, ptdf['geometry'].values): for pol, idx in zip(wdf['geometry'].values, wdf.index): if pt.within(pol): # Create a new dataframe and output it df = gpd.GeoDataFrame(columns=wdf.columns, crs=wdf.crs) df = df.append(wdf.loc[idx]) out.msg("Creating the subbasin outline for {}...".format(nm)) df.to_file(os.path.join(output_dir, '{}_subbasin.shp' ''.format( (nm.lower()).replace(' ', '_')) )) # Output the full basin outline out.msg("Creating the entire basin outline...") same = np.ones(len(wdf.index)) wdf['all'] = same basin_outline = wdf.dissolve(by='all') basin_outline.to_file(os.path.join(output_dir, 'basin_outline.shp')) return watershed_shp def create_readme(sysargs, output_dir): """ Creates a readme with all the details for creating the files Args: sysargs: command used for generating files """ dt = ((datetime.datetime.today()).isoformat()).split('T')[0] out_str = ( "###################################################################\n" "# BASIN DELINEATION TOOL V{0}\n" "###################################################################\n" "\n The files in this folder were generated on {1}.\n" "This was accomplished using the following command:\n" "\n$ {2}\n" "\nTo get access to the source code please visit:\n" "https://github.com/USDA-ARS-NWRC/basin_setup") out_str = out_str.format(__version__, dt, ' '.join(sys.argv)) with open(os.path.join(output_dir, 'README.txt'), 'w') as fp: fp.write(out_str) fp.close() def cleanup(output_dir, at_start=False): """ Removes the temp folder and removes the following files: * output/watersheds.shp * output/*_subbasin.shp * output/basin_outline.shp * output/corrected_points.shp Args: output_dir: folder to lookin for cleanup at_start: If at the beginning we cleanup a lot more files versus than at the end of a run. """ out.msg("Cleaning up files...") # Always cleanup the temp folder temp = os.path.join(output_dir, 'temp') if os.path.isdir(temp): shutil.rmtree(temp) if at_start: # Remove any potential streamflow folders streamflow = os.path.join(output_dir, 'streamflow') if os.path.isdir(streamflow): shutil.rmtree(streamflow) fnames = os.listdir(output_dir) for f in fnames: fn = os.path.join(output_dir, f) if ("_subbasin." in f or "thresh" in f or "basin_outline." in f or 'watersheds_' in f or 'out.' in f or "corrected_points_" in f): out.dbg("Removing {}".format(f)) os.remove(fn) def confirm_norerun(non_thresholdkeys, imgs): """ Checks if the non-thresholded files exist, if so confirm the user wants to overwrite them. Args: non-thresholdedkeys: keys to check in the imgs dictionary of paths imgs: Dictionary of paths to images Returns bool: Indicating whether we continue or not """ out.dbg("Checking if important delineation images pre-exist...") # Quickly check if the user wants to over write a possible rerun move_forward = False any_file_exists = False for f in non_thresholdkeys: if os.path.isfile(imgs[f]): out.dbg("{} image exists!".format(f)) any_file_exists = True out.warn("You are about to overwrite the delineation files that" " take the longest to make. \n\nAre you sure you want to" " do this? (y/n)\n") answer = input() acceptable_answer = False while not acceptable_answer: if answer.lower() == 'y': acceptable_answer = True move_forward = True elif answer.lower() == 'n': acceptable_answer = True else: acceptable_answer = False break # If there weren't any files then move ahead if not any_file_exists: move_forward = True out.dbg("No pre-existing files, moving forward...") return move_forward def create_ars_streamflow_files(treefile, coordfile, threshold, wshp, netdir, output='basin_catchments.csv'): """ Takes in the Tree file and the Coordinates file to produce a csv of the downstream catchment, the elevation of a catchment, and contributing area """ today = (datetime.datetime.today().date()).isoformat() header = ("#############################################################\n" " Basin Catchment File for USDA-ARS-NWRC Streamflow modeling. \n" " Delineatation Threshold: {}\n" " Date Created: {}\n" " Created using basin_setup v{}\n" "#############################################################\n" "\n".format(threshold, today, __version__) ) with open(output, 'w+') as fp: fp.write(header) fp.close() # tree_names = ['link', 'start number', 'end number', 'downstream', # 'upstream', # 'strahler', # 'monitor point', # 'network magnitude'] # coord_names = ['dummy', 'x', 'y', 'distance', 'elevation', 'area'] # dftree = pd.read_csv(treefile, delimiter='\t', names=tree_names) # dfcoord = pd.read_csv(coordfile, delimiter='\t', names=coord_names) dfwshp = gpd.read_file(wshp) # Get the network shpapefile which lives under a folder named after the # tif. name = os.path.split(netdir)[-1].split('.')[0] + '.shp' netshp = os.path.join(netdir, name) dfnet = gpd.read_file(netshp) dfnet = dfnet.set_index('WSNO') # Collect the area of each basin dfwshp['area'] = dfwshp.area # handle individual cells acting as subbasins dfwshp = dfwshp.groupby('DN').sum() # Collect down stream info. dfwshp['downstream'] = dfnet['DSLINKNO'] dfwshp.to_csv(output, mode='a') def output_streamflow(imgs, threshold, wshp, temp="temp", output_dir='streamflow'): """ Outputs files necessary for streamflow modeling. This will create a file structure under a folder defined by output_dir and the threshold. E.g. streamflow/thresh_10000000 Args: imgs: Dictionary containing a files to be outputted. threshold: threshold used for creating subbasins wshp: Watershed shapefile output_dir: Location to output files """ # Dictionary to grab filenames for ARS streamflow dat = {} out.msg("Creating streamflow files...") final_output = os.path.join(output_dir, "thresh_{}".format(threshold)) if not os.path.isdir(output_dir): out.msg("Making streamflow directory") os.mkdir(output_dir) if not os.path.isdir(final_output): out.msg("Making streamflow threshold directory...") os.mkdir(final_output) # Convert the watersheds to ascii and move files to streamflow folder for # SLF streamflow for k in ['corrected_points', 'watersheds', 'coord', 'tree']: name = os.path.basename(imgs[k]) outfile = os.path.join(final_output, k + "." + name.split('.')[-1]) # Handle grabbing data for outputing ARS streamflow if k in ['tree', 'coord']: dat[k] = outfile if k == 'watersheds': outfile = os.path.join(final_output, k + '.asc') convert2ascii(imgs[k], outfile) else: shutil.copy(imgs[k], outfile) # Copy over threshold files for f in os.listdir(imgs['net']): to_f = os.path.join(final_output, os.path.basename(f)) shutil.copy(os.path.join(imgs["net"], f), to_f) # Create the files for ARS Streamflow create_ars_streamflow_files(dat['tree'], dat['coord'], threshold, wshp, imgs['net'], output=os.path.join(final_output, 'basin_catchments.csv')) def ernestafy(demfile, pour_points, output=None, temp=None, threshold=100, rerun=False, nthreads=None, out_streams=False): """ Run TauDEM using the script Ernesto Made.... therefore we will ernestafy this basin. Args: demfile: Original DEM tif. pour_points: Locations of the pour_points in a .bna file format output: Output folder location, default is ./delineation threshold: Threshold to use, can be a list or a single value rerun: boolean indicating whether to avoid re-doing steps 1-3 out_streams: Boolean determining whether to output the files for streamflow modeling """ create_readme(sys.argv, output) # Output File keys without a threshold in the filename non_thresholdkeys = ['filled', 'flow_dir', 'slope', 'drain_area', 'basin_drain_area'] # Output File keys WITH a threshold in the filename thresholdkeys = ['thresh_streams', 'thresh_basin_streams', 'order', 'tree', 'coord', 'net', 'watersheds', 'basin_outline', 'corrected_points'] filekeys = non_thresholdkeys + thresholdkeys # Create file paths for the output file management imgs = {} for k in filekeys: base = os.path.join(output, k) # Add the threshold to the filename if need be if k in thresholdkeys: base = os.path.join(temp, k) base += '_thresh_{}'.format(threshold) # Watchout for shapefiles if 'points' in k: imgs[k] = base + '.shp' # Files we need for streamflow elif k in ['coord', 'tree']: imgs[k] = base + '.dat' else: imgs[k] = base + '.tif' # This file if it already exists causes problems if os.path.isfile(imgs['net']): out.msg("Removing pre-existing stream network file...") os.remove(imgs['net']) # If we rerun we don't want to run steps 1-3 again if rerun: out.warn("Performing a rerun, assuming files for flow direction and" " accumulation exist...") else: move_forward = confirm_norerun(non_thresholdkeys, imgs) if move_forward: # 1. Pit Remove in order to fill the pits in the DEM pitremove(demfile, outfile=imgs['filled'], nthreads=nthreads) # 2. D8 Flow Directions in order to compute the flow direction in # each DEM cell calcD8Flow(imgs['filled'], d8dir_file=imgs['flow_dir'], d8slope_file=imgs['slope'], nthreads=nthreads) # 3. D8 Contributing Area so as to compute the drainage area in # each DEM cell calcD8DrainageArea(imgs['flow_dir'], areaD8_out=imgs['drain_area'], nthreads=nthreads) else: out.msg("Please use the '--rerun' flag to perform a rerun.\n") sys.exit() ########################################################################## # This section and below gets run every call. (STEPS 4-8) ########################################################################## # 4. Stream Definition by Threshold, in order to extract a first version of # the stream network defineStreamsByThreshold(imgs['drain_area'], threshold_streams_out=imgs['thresh_streams'], threshold=threshold, nthreads=nthreads) # 5. Move Outlets to Streams, so as to move the catchment outlet point on # one of the DEM cells identified by TauDEM as belonging to the stream # network outlets_2_streams(imgs['flow_dir'], imgs['thresh_streams'], pour_points, new_pour_points=imgs['corrected_points'], nthreads=nthreads) # 6. D8 Contributing Area again, but with the catchment outlet point as # additional input data calcD8DrainageAreaBasin(imgs['flow_dir'], imgs['corrected_points'], areaD8_out=imgs['basin_drain_area'], nthreads=nthreads) # 7. Stream Definition by Threshold again, but with the catchment outlet # point as additional input data defineStreamsByThreshold(imgs['basin_drain_area'], threshold_streams_out=imgs['thresh_basin_streams'], # noqa threshold=threshold, nthreads=nthreads) # 8. Stream Reach And Watershed delineate_streams(demfile, imgs['flow_dir'], imgs['basin_drain_area'], imgs['thresh_basin_streams'], imgs['corrected_points'], stream_orderfile=imgs['order'], treefile=imgs['tree'], coordfile=imgs['coord'], netfile=imgs['net'], wfile=imgs['watersheds'], nthreads=nthreads) # Output the shapefiles of the watershed wshp = produce_shapefiles(imgs['watersheds'], imgs['corrected_points'], output_dir=output) if out_streams: output_streamflow(imgs, threshold, wshp, temp=temp, output_dir=os.path.join(output, 'streamflow')) if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 1822, 29572, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 11748, 640, 198, 6738, 850, 14681, 1330, 2198, 62, 22915, 198, 198, 11748, 30324, 392, 292, 355, 27809, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 3124, 1689, 1330, 4558, 11, 17738, 11, 2315, 198, 198, 6738, 34164, 62, 40406, 1330, 11593, 9641, 834, 198, 198, 2, 20768, 1096, 7577, 198, 15003, 3419, 198, 198, 30531, 796, 10352, 628, 198, 198, 448, 796, 43534, 3419, 628, 198, 4299, 2198, 62, 6978, 7, 34345, 11, 503, 7753, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 1771, 281, 2393, 468, 587, 2810, 7160, 13, 198, 220, 220, 220, 1002, 503, 7753, 318, 2081, 788, 356, 7048, 356, 389, 1642, 257, 2393, 290, 612, 1674, 356, 198, 220, 220, 220, 815, 691, 2198, 611, 262, 8619, 7160, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 25, 3108, 284, 257, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 25, 41146, 12739, 1771, 284, 2198, 329, 257, 2393, 357, 448, 7753, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 257, 8619, 357, 448, 7753, 855, 17821, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9483, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 34345, 8, 628, 220, 220, 220, 611, 503, 7753, 290, 407, 28686, 13, 6978, 13, 9409, 343, 7, 43551, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 503, 13, 18224, 7203, 43055, 2810, 329, 5072, 4067, 857, 407, 2152, 2474, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37082, 77, 43730, 650, 3784, 90, 92, 1911, 18982, 7, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 628, 220, 220, 220, 611, 407, 503, 7753, 290, 407, 28686, 13, 6978, 13, 4468, 576, 7, 34345, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 503, 13, 18224, 7203, 20560, 2393, 857, 407, 2152, 0, 59, 77, 43730, 650, 3784, 90, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 628, 198, 4299, 1057, 62, 28758, 7, 28758, 11, 299, 16663, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8393, 1769, 262, 3141, 290, 19860, 262, 5072, 284, 262, 8624, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 25, 10903, 3141, 284, 307, 5982, 287, 262, 262, 3141, 6152, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 503, 13, 9945, 70, 10786, 28768, 23884, 4458, 18982, 7, 28758, 4008, 198, 220, 220, 220, 611, 299, 16663, 82, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 3149, 494, 87, 721, 532, 77, 1391, 15, 92, 45302, 18982, 7, 77, 16663, 82, 8, 1343, 23991, 628, 220, 220, 220, 264, 796, 2198, 62, 22915, 7, 28758, 11, 7582, 28, 17821, 11, 10112, 62, 3605, 6615, 28, 17821, 8, 198, 220, 220, 220, 503, 13, 9945, 70, 7, 82, 8, 628, 198, 4299, 6028, 28956, 7, 9536, 7753, 11, 503, 7753, 28, 14202, 11, 299, 16663, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49154, 1303, 16, 198, 220, 220, 220, 10934, 82, 262, 3141, 284, 6028, 6070, 262, 40101, 290, 42985, 340, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1357, 7753, 25, 10644, 284, 256, 361, 286, 262, 40101, 13, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 25, 10644, 284, 3551, 262, 6028, 5901, 40101, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 25, 7913, 286, 21758, 284, 779, 329, 285, 21749, 87, 721, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 13, 19662, 7203, 8413, 5165, 350, 896, 422, 40101, 9313, 8, 628, 220, 220, 220, 611, 503, 7753, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 796, 705, 20286, 13, 49929, 6, 628, 220, 220, 220, 2198, 62, 6978, 7, 9536, 7753, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 448, 7753, 11, 503, 7753, 28, 17821, 8, 628, 220, 220, 220, 327, 12740, 796, 366, 15544, 28956, 532, 89, 1391, 15, 92, 532, 69, 417, 1391, 16, 92, 1911, 18982, 7, 9536, 7753, 11, 503, 7753, 8, 628, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 11, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 198, 4299, 42302, 35, 23, 37535, 7, 20286, 62, 9536, 11, 288, 23, 15908, 62, 7753, 28, 14202, 11, 288, 23, 6649, 3008, 62, 7753, 28, 14202, 11, 299, 16663, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49154, 1303, 17, 198, 220, 220, 220, 10934, 82, 262, 3141, 284, 15284, 262, 360, 23, 5202, 329, 262, 5202, 4571, 290, 198, 220, 220, 220, 42985, 340, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5901, 62, 9536, 25, 10644, 284, 256, 361, 286, 262, 6028, 5901, 40101, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 23, 15908, 62, 7753, 25, 10644, 284, 3551, 262, 360, 23, 5202, 4571, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 23, 6649, 3008, 62, 7753, 25, 10644, 284, 3551, 262, 360, 23, 5202, 22638, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 25, 7913, 286, 21758, 284, 779, 329, 285, 21749, 87, 721, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 503, 13, 19662, 7203, 9771, 3129, 803, 360, 23, 5202, 4571, 9313, 8, 628, 220, 220, 220, 1303, 6822, 13532, 198, 220, 220, 220, 2198, 62, 6978, 7, 20286, 62, 9536, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 67, 23, 15908, 62, 7753, 11, 503, 7753, 28, 17821, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 67, 23, 6649, 3008, 62, 7753, 11, 503, 7753, 28, 17821, 8, 628, 220, 220, 220, 327, 12740, 796, 366, 67, 23, 11125, 15908, 532, 69, 417, 1391, 15, 92, 532, 79, 1391, 16, 92, 532, 21282, 23, 1391, 17, 92, 1911, 18982, 7, 20286, 62, 9536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 23, 15908, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 23, 6649, 3008, 62, 7753, 8, 628, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 11, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 198, 4299, 42302, 35, 23, 35, 3201, 496, 30547, 7, 67, 23, 11125, 15908, 11, 1989, 35, 23, 62, 448, 28, 14202, 11, 299, 16663, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49154, 1303, 18, 198, 220, 220, 220, 27131, 689, 360, 23, 25767, 278, 1989, 284, 1123, 2685, 287, 262, 40101, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 23, 11125, 15908, 25, 10644, 284, 262, 360, 23, 27782, 4571, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 1989, 35, 23, 62, 448, 25, 10644, 284, 5072, 262, 36024, 496, 1989, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 25, 7913, 286, 21758, 284, 779, 329, 285, 21749, 87, 721, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2198, 62, 6978, 7, 67, 23, 11125, 15908, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 20337, 35, 23, 62, 448, 11, 503, 7753, 28, 17821, 8, 198, 220, 220, 220, 327, 12740, 796, 366, 533, 324, 23, 532, 79, 1391, 15, 92, 532, 324, 23, 1391, 16, 92, 1911, 18982, 7, 67, 23, 11125, 15908, 11, 1989, 35, 23, 62, 448, 8, 628, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 11, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 198, 4299, 8160, 12124, 82, 3886, 817, 10126, 7, 20337, 35, 23, 11, 11387, 62, 5532, 82, 62, 448, 28, 14202, 11, 11387, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49154, 1303, 19, 198, 220, 220, 220, 13860, 6770, 416, 11387, 287, 1502, 284, 7925, 257, 717, 2196, 286, 262, 198, 220, 220, 220, 4269, 3127, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1989, 35, 23, 25, 10644, 284, 262, 360, 23, 36024, 496, 1989, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 62, 5532, 82, 62, 448, 25, 10644, 284, 5072, 262, 11387, 276, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 25, 11387, 1988, 284, 664, 47467, 1096, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 25, 7913, 286, 21758, 284, 779, 329, 285, 21749, 87, 721, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 13, 19662, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5990, 15464, 4269, 31850, 1262, 11387, 286, 1391, 15, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 4008, 198, 220, 220, 220, 2198, 62, 6978, 7, 20337, 35, 23, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 400, 10126, 62, 5532, 82, 62, 448, 11, 503, 7753, 28, 17821, 8, 628, 220, 220, 220, 327, 12740, 796, 366, 400, 10126, 532, 824, 64, 1391, 15, 92, 532, 10677, 1391, 16, 92, 532, 400, 3447, 1391, 17, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1989, 35, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 62, 5532, 82, 62, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 8, 628, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 11, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 198, 4299, 12527, 62, 17, 62, 5532, 82, 7, 67, 23, 11125, 15908, 11, 11387, 62, 5532, 82, 11, 12797, 62, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 48681, 62, 13033, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49154, 1303, 20, 220, 10028, 3806, 5289, 284, 13860, 82, 11, 523, 355, 284, 1445, 262, 4929, 434, 16615, 966, 198, 220, 220, 220, 319, 530, 286, 262, 40101, 4778, 5174, 416, 36849, 39429, 355, 16686, 284, 262, 198, 220, 220, 220, 4269, 3127, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 23, 11125, 15908, 25, 10644, 284, 262, 360, 23, 27782, 4571, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 62, 5532, 82, 25, 10644, 284, 5072, 262, 11387, 276, 4269, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 12797, 62, 13033, 25, 10644, 284, 12797, 966, 7064, 287, 257, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 48681, 62, 13033, 25, 10644, 284, 5072, 262, 649, 1351, 286, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 25, 7913, 286, 21758, 284, 779, 329, 285, 21749, 87, 721, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 6978, 7, 67, 23, 11125, 15908, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 400, 10126, 62, 5532, 82, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 48681, 62, 13033, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 3605, 62, 48681, 62, 13033, 11, 503, 7753, 28, 17821, 8, 198, 220, 220, 220, 327, 12740, 796, 705, 21084, 448, 1616, 301, 455, 26224, 532, 79, 1391, 15, 92, 532, 10677, 1391, 16, 92, 532, 78, 1391, 17, 92, 532, 296, 1391, 18, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 288, 23, 11125, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 62, 5532, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12797, 62, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 48681, 62, 13033, 8, 628, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 11, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 198, 4299, 42302, 35, 23, 35, 3201, 496, 30547, 15522, 259, 7, 67, 23, 11125, 15908, 11, 34164, 62, 448, 5289, 62, 76, 2668, 11, 1989, 35, 23, 62, 448, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49154, 1303, 21, 198, 220, 220, 220, 360, 23, 25767, 278, 9498, 757, 11, 475, 351, 262, 4929, 434, 16615, 966, 355, 198, 220, 220, 220, 3224, 5128, 1366, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 23, 11125, 15908, 25, 10644, 284, 262, 360, 23, 27782, 4571, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 34164, 62, 448, 5289, 62, 76, 2668, 25, 477, 12797, 2173, 326, 423, 587, 3888, 284, 262, 4269, 198, 220, 220, 220, 220, 220, 220, 220, 1989, 35, 23, 62, 448, 25, 10644, 284, 5072, 262, 36024, 496, 1989, 2939, 326, 17624, 477, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 25, 7913, 286, 21758, 284, 779, 329, 285, 21749, 87, 721, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 13, 19662, 7203, 9771, 3129, 803, 37664, 1989, 1262, 12797, 2173, 9313, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 67, 23, 11125, 15908, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 12093, 259, 62, 448, 5289, 62, 76, 2668, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 20337, 35, 23, 62, 448, 11, 503, 7753, 28, 17821, 8, 628, 220, 220, 220, 327, 12740, 796, 705, 533, 324, 23, 532, 79, 1391, 15, 92, 532, 78, 1391, 16, 92, 532, 324, 23, 1391, 17, 92, 4458, 18982, 7, 67, 23, 11125, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34164, 62, 448, 5289, 62, 76, 2668, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 35, 23, 62, 448, 8, 628, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 11, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 198, 4299, 46925, 378, 62, 5532, 82, 7, 9536, 11, 288, 23, 11125, 15908, 11, 34164, 62, 67, 3201, 62, 20337, 11, 11387, 62, 5532, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34164, 62, 448, 5289, 62, 76, 2668, 11, 4269, 62, 2875, 7753, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 7753, 28, 14202, 11, 6349, 7753, 28, 14202, 11, 2010, 7753, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 7753, 28, 14202, 11, 299, 16663, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49154, 1303, 23, 13860, 25146, 843, 21827, 704, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1357, 25, 3108, 284, 257, 5901, 1357, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 288, 23, 11125, 15908, 25, 3108, 284, 262, 5202, 4571, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 34164, 62, 67, 3201, 62, 20337, 25, 3108, 284, 262, 5202, 24106, 2939, 329, 262, 34164, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 62, 5532, 82, 25, 15190, 825, 600, 295, 2939, 5447, 416, 257, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 34164, 62, 448, 5289, 62, 76, 2668, 25, 10644, 284, 257, 764, 65, 2616, 286, 262, 12797, 2173, 19267, 284, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 262, 15190, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 62, 2875, 7753, 25, 6530, 286, 262, 2393, 284, 5072, 262, 4269, 10618, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 7753, 25, 6530, 286, 262, 2393, 284, 5072, 262, 850, 12093, 259, 5202, 1502, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6349, 7753, 25, 1892, 1654, 644, 428, 2393, 318, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 7753, 25, 6530, 286, 262, 4263, 284, 5072, 262, 4269, 17336, 13, 198, 220, 220, 220, 220, 220, 220, 220, 266, 7753, 25, 6530, 286, 262, 2939, 284, 5072, 850, 12093, 259, 17336, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 25, 7913, 286, 21758, 284, 779, 329, 285, 21749, 87, 721, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 503, 13, 19662, 7203, 32071, 42640, 82, 290, 4269, 3696, 9313, 8, 628, 220, 220, 220, 1303, 6822, 3108, 19648, 198, 220, 220, 220, 17311, 796, 685, 9536, 11, 288, 23, 11125, 15908, 11, 34164, 62, 67, 3201, 62, 20337, 11, 11387, 62, 5532, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34164, 62, 448, 5289, 62, 76, 2668, 60, 628, 220, 220, 220, 23862, 796, 685, 5532, 62, 2875, 7753, 11, 5509, 7753, 11, 6349, 7753, 11, 2010, 7753, 11, 266, 7753, 60, 198, 220, 220, 220, 329, 277, 287, 17311, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 6978, 7, 69, 8, 628, 220, 220, 220, 329, 277, 287, 23862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 6978, 7, 69, 11, 503, 7753, 28, 17821, 8, 628, 220, 220, 220, 327, 12740, 796, 19203, 5532, 3262, 532, 69, 417, 1391, 15, 92, 532, 79, 1391, 16, 92, 532, 324, 23, 1391, 17, 92, 532, 10677, 1391, 18, 92, 532, 585, 1391, 19, 92, 532, 21048, 1391, 20, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 532, 37652, 1391, 21, 92, 532, 3262, 1391, 22, 92, 532, 78, 1391, 23, 92, 532, 86, 1391, 24, 92, 27691, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1357, 11, 198, 220, 220, 220, 220, 220, 220, 220, 288, 23, 11125, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 34164, 62, 67, 3201, 62, 20337, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 62, 5532, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 62, 2875, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6349, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 34164, 62, 448, 5289, 62, 76, 2668, 11, 198, 220, 220, 220, 220, 220, 220, 220, 266, 7753, 8, 198, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 11, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 198, 4299, 10385, 17, 292, 979, 72, 7, 259, 7753, 11, 503, 7753, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 284, 355, 979, 72, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2198, 62, 6978, 7, 259, 7753, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 448, 7753, 11, 503, 7753, 28, 17821, 8, 628, 220, 220, 220, 1303, 10385, 266, 7753, 3696, 284, 355, 979, 72, 198, 220, 220, 220, 327, 12740, 796, 705, 21287, 282, 62, 7645, 17660, 532, 1659, 15923, 3528, 6058, 1391, 15, 92, 1391, 16, 92, 4458, 18982, 7, 259, 7753, 11, 503, 7753, 8, 198, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 8, 628, 198, 4299, 4439, 62, 43358, 16624, 7, 41555, 704, 62, 49929, 11, 19267, 62, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 28, 14202, 11, 4269, 11125, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25235, 82, 262, 25052, 684, 286, 262, 1981, 850, 12093, 1040, 284, 257, 427, 499, 7753, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42640, 62, 49929, 25, 10644, 284, 257, 4903, 313, 733, 286, 262, 42640, 82, 198, 220, 220, 220, 220, 220, 220, 220, 19267, 62, 13033, 25, 10644, 284, 262, 19267, 2173, 973, 329, 46925, 341, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 25, 25235, 4067, 973, 329, 9194, 5485, 16624, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6822, 3696, 198, 220, 220, 220, 2198, 62, 6978, 7, 41555, 704, 62, 49929, 8, 198, 220, 220, 220, 2198, 62, 6978, 7, 30283, 276, 62, 13033, 8, 628, 220, 220, 220, 266, 69, 3672, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 41555, 704, 62, 49929, 737, 35312, 10786, 2637, 38381, 15, 60, 1343, 45302, 1477, 79, 6, 628, 220, 220, 220, 1303, 12280, 14520, 1096, 8075, 257, 374, 1603, 351, 477, 850, 12093, 1040, 198, 220, 220, 220, 42640, 62, 1477, 79, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 266, 69, 3672, 8, 198, 220, 220, 220, 327, 12740, 796, 705, 21287, 282, 62, 35428, 14520, 1096, 13, 9078, 532, 69, 366, 1546, 7112, 6006, 45721, 25664, 1, 23884, 23884, 4458, 18982, 7, 41555, 704, 62, 49929, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42640, 62, 1477, 79, 8, 198, 220, 220, 220, 1057, 62, 28758, 7, 34, 12740, 8, 628, 220, 220, 220, 1303, 4149, 287, 290, 5911, 262, 3891, 286, 262, 12797, 2173, 351, 262, 850, 12093, 1040, 198, 220, 220, 220, 42975, 7568, 796, 27809, 67, 13, 961, 62, 7753, 7, 30283, 276, 62, 13033, 8, 628, 220, 220, 220, 266, 7568, 796, 27809, 67, 13, 961, 62, 7753, 7, 41555, 704, 62, 1477, 79, 8, 628, 220, 220, 220, 1303, 11440, 1958, 262, 1438, 290, 5072, 262, 1981, 1615, 1040, 198, 220, 220, 220, 329, 28642, 11, 42975, 287, 19974, 7, 457, 7568, 17816, 35170, 4522, 6, 4083, 27160, 11, 42975, 7568, 17816, 469, 15748, 6, 4083, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 755, 11, 4686, 87, 287, 19974, 7, 86, 7568, 17816, 469, 15748, 6, 4083, 27160, 11, 266, 7568, 13, 9630, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 42975, 13, 33479, 7, 16104, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 649, 1366, 14535, 290, 5072, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 27809, 67, 13, 10082, 78, 6601, 19778, 7, 28665, 82, 28, 86, 7568, 13, 28665, 82, 11, 1067, 82, 28, 86, 7568, 13, 66, 3808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 33295, 7, 86, 7568, 13, 17946, 58, 312, 87, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 13, 19662, 7203, 32071, 262, 850, 12093, 259, 19001, 329, 23884, 9313, 13, 18982, 7, 21533, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 1462, 62, 7753, 7, 418, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 705, 90, 92, 62, 7266, 12093, 259, 13, 1477, 79, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 21533, 13, 21037, 3419, 737, 33491, 10786, 46083, 705, 62, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 220, 220, 1303, 25235, 262, 1336, 34164, 19001, 198, 220, 220, 220, 503, 13, 19662, 7203, 32071, 262, 2104, 34164, 19001, 9313, 8, 198, 220, 220, 220, 976, 796, 45941, 13, 1952, 7, 11925, 7, 86, 7568, 13, 9630, 4008, 198, 220, 220, 220, 266, 7568, 17816, 439, 20520, 796, 976, 198, 220, 220, 220, 34164, 62, 448, 1370, 796, 266, 7568, 13, 67, 747, 6442, 7, 1525, 11639, 439, 11537, 198, 220, 220, 220, 34164, 62, 448, 1370, 13, 1462, 62, 7753, 7, 418, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 705, 12093, 259, 62, 448, 1370, 13, 1477, 79, 6, 4008, 628, 220, 220, 220, 1441, 42640, 62, 1477, 79, 628, 198, 4299, 2251, 62, 961, 1326, 7, 17597, 22046, 11, 5072, 62, 15908, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 1100, 1326, 351, 477, 262, 3307, 329, 4441, 262, 3696, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 22046, 25, 3141, 973, 329, 15453, 3696, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 83, 796, 14808, 19608, 8079, 13, 19608, 8079, 13, 40838, 3419, 737, 26786, 18982, 3419, 737, 35312, 10786, 51, 11537, 58, 15, 60, 198, 220, 220, 220, 503, 62, 2536, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29113, 29113, 21017, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 25113, 29809, 1268, 28163, 8881, 6234, 5390, 3535, 569, 90, 15, 32239, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29113, 29113, 21017, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 77, 383, 3696, 287, 428, 9483, 547, 7560, 319, 1391, 16, 27422, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 373, 13013, 1262, 262, 1708, 3141, 7479, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 77, 3, 1391, 17, 32239, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 77, 2514, 651, 1895, 284, 262, 2723, 2438, 3387, 3187, 7479, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 12567, 13, 785, 14, 2937, 5631, 12, 27415, 12, 27605, 7397, 14, 12093, 259, 62, 40406, 4943, 628, 220, 220, 220, 503, 62, 2536, 796, 503, 62, 2536, 13, 18982, 7, 834, 9641, 834, 11, 288, 83, 11, 705, 45302, 22179, 7, 17597, 13, 853, 85, 4008, 198, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 705, 15675, 11682, 13, 14116, 33809, 705, 86, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 13564, 7, 448, 62, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 19836, 3419, 628, 198, 4299, 27425, 7, 22915, 62, 15908, 11, 379, 62, 9688, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3982, 5241, 262, 20218, 9483, 290, 20694, 262, 1708, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 5072, 14, 41555, 704, 82, 13, 1477, 79, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 5072, 15211, 62, 7266, 12093, 259, 13, 1477, 79, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 5072, 14, 12093, 259, 62, 448, 1370, 13, 1477, 79, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 5072, 14, 30283, 276, 62, 13033, 13, 1477, 79, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 25, 9483, 284, 804, 259, 329, 27425, 198, 220, 220, 220, 220, 220, 220, 220, 379, 62, 9688, 25, 1002, 379, 262, 3726, 356, 27425, 257, 1256, 517, 3696, 9051, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 621, 379, 262, 886, 286, 257, 1057, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 13, 19662, 7203, 34, 25909, 510, 3696, 9313, 8, 628, 220, 220, 220, 1303, 16622, 27425, 262, 20218, 9483, 198, 220, 220, 220, 20218, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 705, 29510, 11537, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 29510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 29510, 8, 628, 220, 220, 220, 611, 379, 62, 9688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 597, 2785, 4269, 11125, 24512, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 11125, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 705, 5532, 11125, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 5532, 11125, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 5532, 11125, 8, 628, 220, 220, 220, 220, 220, 220, 220, 277, 14933, 796, 28686, 13, 4868, 15908, 7, 22915, 62, 15908, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 277, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5855, 62, 7266, 12093, 259, 526, 287, 277, 393, 366, 400, 3447, 1, 287, 277, 393, 366, 12093, 259, 62, 448, 1370, 526, 287, 277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 705, 41555, 704, 82, 62, 6, 287, 277, 393, 705, 448, 2637, 287, 277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 366, 30283, 276, 62, 13033, 62, 1, 287, 277, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 13, 9945, 70, 7203, 8413, 5165, 23884, 1911, 18982, 7, 69, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 22184, 8, 628, 198, 4299, 6216, 62, 77, 382, 5143, 7, 13159, 62, 400, 10126, 13083, 11, 545, 14542, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 611, 262, 1729, 12, 400, 10126, 276, 3696, 2152, 11, 611, 523, 6216, 262, 2836, 3382, 198, 220, 220, 220, 284, 49312, 606, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1729, 12, 400, 10126, 276, 13083, 25, 8251, 284, 2198, 287, 262, 545, 14542, 22155, 286, 13532, 198, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 25, 28261, 286, 13532, 284, 4263, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 20512, 25, 1423, 12364, 1771, 356, 2555, 393, 407, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 13, 9945, 70, 7203, 9787, 278, 611, 1593, 46925, 341, 4263, 662, 12, 38476, 9313, 8, 628, 220, 220, 220, 1303, 12029, 306, 2198, 611, 262, 2836, 3382, 284, 625, 3551, 257, 1744, 302, 5143, 198, 220, 220, 220, 1445, 62, 11813, 796, 10352, 198, 220, 220, 220, 597, 62, 7753, 62, 1069, 1023, 796, 10352, 628, 220, 220, 220, 329, 277, 287, 1729, 62, 400, 10126, 13083, 25, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 9600, 82, 58, 69, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 13, 9945, 70, 7203, 90, 92, 2939, 7160, 48220, 18982, 7, 69, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 597, 62, 7753, 62, 1069, 1023, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 13, 40539, 7203, 1639, 389, 546, 284, 49312, 262, 46925, 341, 3696, 326, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1011, 262, 14069, 284, 787, 13, 3467, 77, 59, 77, 8491, 345, 1654, 345, 765, 284, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 466, 428, 30, 357, 88, 14, 77, 19415, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3280, 796, 5128, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10909, 62, 41484, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 407, 10909, 62, 41484, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3280, 13, 21037, 3419, 6624, 705, 88, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10909, 62, 41484, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1445, 62, 11813, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3280, 13, 21037, 3419, 6624, 705, 77, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10909, 62, 41484, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10909, 62, 41484, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1303, 1002, 612, 6304, 470, 597, 3696, 788, 1445, 4058, 198, 220, 220, 220, 611, 407, 597, 62, 7753, 62, 1069, 1023, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1445, 62, 11813, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 503, 13, 9945, 70, 7203, 2949, 662, 12, 25687, 3696, 11, 3867, 2651, 9313, 8, 198, 220, 220, 220, 1441, 1445, 62, 11813, 628, 198, 4299, 2251, 62, 945, 62, 5532, 11125, 62, 16624, 7, 21048, 7753, 11, 6349, 7753, 11, 11387, 11, 266, 1477, 79, 11, 2010, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 11639, 12093, 259, 62, 40198, 902, 13, 40664, 6, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 287, 262, 12200, 2393, 290, 262, 22819, 17540, 2393, 284, 4439, 257, 269, 21370, 286, 262, 198, 220, 220, 220, 33218, 4929, 434, 11, 262, 22910, 286, 257, 4929, 434, 11, 290, 14329, 1989, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1909, 796, 357, 19608, 8079, 13, 19608, 8079, 13, 40838, 22446, 4475, 3419, 737, 26786, 18982, 3419, 628, 220, 220, 220, 13639, 796, 5855, 29113, 14468, 7804, 4242, 2, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32666, 25750, 434, 9220, 329, 29986, 12, 27415, 12, 27605, 7397, 13860, 11125, 21128, 13, 3467, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4216, 500, 265, 341, 536, 10126, 25, 23884, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7536, 15622, 25, 23884, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15622, 1262, 34164, 62, 40406, 410, 90, 32239, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29113, 14468, 7804, 4242, 2, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37082, 77, 1911, 18982, 7, 400, 10126, 11, 1909, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11593, 9641, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 351, 1280, 7, 22915, 11, 705, 86, 10, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 13564, 7, 25677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 19836, 3419, 628, 220, 220, 220, 1303, 5509, 62, 14933, 796, 37250, 8726, 3256, 705, 9688, 1271, 3256, 705, 437, 1271, 3256, 705, 2902, 5532, 3256, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 929, 5532, 3256, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 301, 11392, 1754, 3256, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41143, 966, 3256, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 14735, 20520, 198, 220, 220, 220, 1303, 6349, 62, 14933, 796, 37250, 67, 13513, 3256, 705, 87, 3256, 705, 88, 3256, 705, 30246, 3256, 705, 68, 2768, 341, 3256, 705, 20337, 20520, 628, 220, 220, 220, 1303, 288, 701, 631, 796, 279, 67, 13, 961, 62, 40664, 7, 21048, 7753, 11, 46728, 2676, 11639, 59, 83, 3256, 3891, 28, 21048, 62, 14933, 8, 198, 220, 220, 220, 1303, 47764, 37652, 796, 279, 67, 13, 961, 62, 40664, 7, 37652, 7753, 11, 46728, 2676, 11639, 59, 83, 3256, 3891, 28, 37652, 62, 14933, 8, 198, 220, 220, 220, 288, 44482, 1477, 79, 796, 27809, 67, 13, 961, 62, 7753, 7, 86, 1477, 79, 8, 628, 220, 220, 220, 1303, 3497, 262, 3127, 427, 79, 1758, 7753, 543, 3160, 739, 257, 9483, 3706, 706, 262, 198, 220, 220, 220, 1303, 256, 361, 13, 198, 220, 220, 220, 1438, 796, 28686, 13, 6978, 13, 35312, 7, 3262, 15908, 38381, 12, 16, 4083, 35312, 10786, 2637, 38381, 15, 60, 1343, 45302, 1477, 79, 6, 198, 220, 220, 220, 31720, 24831, 796, 28686, 13, 6978, 13, 22179, 7, 3262, 15908, 11, 1438, 8, 198, 220, 220, 220, 47764, 3262, 796, 27809, 67, 13, 961, 62, 7753, 7, 45938, 24831, 8, 628, 220, 220, 220, 47764, 3262, 796, 47764, 3262, 13, 2617, 62, 9630, 10786, 19416, 15285, 11537, 628, 220, 220, 220, 1303, 9745, 262, 1989, 286, 1123, 34164, 198, 220, 220, 220, 288, 44482, 1477, 79, 17816, 20337, 20520, 796, 288, 44482, 1477, 79, 13, 20337, 198, 220, 220, 220, 1303, 5412, 1981, 4778, 7205, 355, 850, 12093, 1040, 198, 220, 220, 220, 288, 44482, 1477, 79, 796, 288, 44482, 1477, 79, 13, 8094, 1525, 10786, 35504, 27691, 16345, 3419, 628, 220, 220, 220, 1303, 9745, 866, 4269, 7508, 13, 198, 220, 220, 220, 288, 44482, 1477, 79, 17816, 2902, 5532, 20520, 796, 47764, 3262, 17816, 5258, 43, 17248, 15285, 20520, 628, 220, 220, 220, 288, 44482, 1477, 79, 13, 1462, 62, 40664, 7, 22915, 11, 4235, 11639, 64, 11537, 628, 198, 4299, 5072, 62, 5532, 11125, 7, 9600, 82, 11, 11387, 11, 266, 1477, 79, 11, 20218, 2625, 29510, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 11639, 5532, 11125, 6, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25235, 82, 3696, 3306, 329, 4269, 11125, 21128, 13, 770, 481, 2251, 257, 2393, 198, 220, 220, 220, 4645, 739, 257, 9483, 5447, 416, 5072, 62, 15908, 290, 262, 11387, 13, 198, 220, 220, 220, 412, 13, 70, 13, 4269, 11125, 14, 400, 3447, 62, 16, 24598, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 25, 28261, 7268, 257, 3696, 284, 307, 5072, 1513, 13, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 25, 11387, 973, 329, 4441, 850, 12093, 1040, 198, 220, 220, 220, 220, 220, 220, 220, 266, 1477, 79, 25, 21827, 704, 5485, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 25, 13397, 284, 5072, 3696, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 28261, 284, 5552, 1226, 268, 1047, 329, 5923, 50, 4269, 11125, 198, 220, 220, 220, 4818, 796, 23884, 198, 220, 220, 220, 503, 13, 19662, 7203, 32071, 4269, 11125, 3696, 9313, 8, 628, 220, 220, 220, 2457, 62, 22915, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 366, 400, 3447, 23330, 92, 1911, 18982, 7, 400, 10126, 4008, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 22915, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 503, 13, 19662, 7203, 23874, 4269, 11125, 8619, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 22915, 62, 15908, 8, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 20311, 62, 22915, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 503, 13, 19662, 7203, 23874, 4269, 11125, 11387, 8619, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 20311, 62, 22915, 8, 628, 220, 220, 220, 1303, 38240, 262, 42640, 82, 284, 355, 979, 72, 290, 1445, 3696, 284, 4269, 11125, 9483, 329, 198, 220, 220, 220, 1303, 12419, 37, 4269, 11125, 198, 220, 220, 220, 329, 479, 287, 37250, 30283, 276, 62, 13033, 3256, 705, 41555, 704, 82, 3256, 705, 37652, 3256, 705, 21048, 6, 5974, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 9600, 82, 58, 74, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 20311, 62, 22915, 11, 479, 1343, 366, 526, 1343, 1438, 13, 35312, 10786, 2637, 38381, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 33141, 23256, 1366, 329, 5072, 278, 5923, 50, 4269, 11125, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 37250, 21048, 3256, 705, 37652, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 58, 74, 60, 796, 503, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 611, 479, 6624, 705, 41555, 704, 82, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 20311, 62, 22915, 11, 479, 1343, 45302, 3372, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10385, 17, 292, 979, 72, 7, 9600, 82, 58, 74, 4357, 503, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7, 9600, 82, 58, 74, 4357, 503, 7753, 8, 628, 220, 220, 220, 1303, 17393, 625, 11387, 3696, 198, 220, 220, 220, 329, 277, 287, 28686, 13, 4868, 15908, 7, 9600, 82, 17816, 3262, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 69, 796, 28686, 13, 6978, 13, 22179, 7, 20311, 62, 22915, 11, 28686, 13, 6978, 13, 12093, 12453, 7, 69, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7, 418, 13, 6978, 13, 22179, 7, 9600, 82, 14692, 3262, 33116, 277, 828, 284, 62, 69, 8, 628, 220, 220, 220, 1303, 13610, 262, 3696, 329, 5923, 50, 13860, 11125, 198, 220, 220, 220, 2251, 62, 945, 62, 5532, 11125, 62, 16624, 7, 19608, 17816, 21048, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 17816, 37652, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 1477, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 17816, 3262, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 28, 418, 13, 6978, 13, 22179, 7, 20311, 62, 22915, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12093, 259, 62, 40198, 902, 13, 40664, 6, 4008, 628, 198, 4299, 220, 1142, 395, 1878, 88, 7, 9536, 7753, 11, 12797, 62, 13033, 11, 5072, 28, 14202, 11, 20218, 28, 14202, 11, 11387, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 5143, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 5532, 82, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5660, 36849, 39429, 1262, 262, 4226, 34705, 78, 14446, 1106, 4361, 356, 481, 198, 220, 220, 220, 220, 1142, 395, 1878, 88, 428, 34164, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1357, 7753, 25, 13745, 40101, 256, 361, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12797, 62, 13033, 25, 41277, 286, 262, 12797, 62, 13033, 287, 257, 764, 65, 2616, 2393, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 25, 25235, 9483, 4067, 11, 4277, 318, 24457, 67, 4470, 341, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 25, 536, 10126, 284, 779, 11, 460, 307, 257, 1351, 393, 257, 2060, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 302, 5143, 25, 25131, 12739, 1771, 284, 3368, 302, 12, 19631, 4831, 352, 12, 18, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 5532, 82, 25, 41146, 13213, 1771, 284, 5072, 262, 3696, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4269, 11125, 21128, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2251, 62, 961, 1326, 7, 17597, 13, 853, 85, 11, 5072, 8, 628, 220, 220, 220, 1303, 25235, 9220, 8251, 1231, 257, 11387, 287, 262, 29472, 198, 220, 220, 220, 1729, 62, 400, 10126, 13083, 796, 37250, 20286, 3256, 705, 11125, 62, 15908, 3256, 705, 6649, 3008, 3256, 705, 67, 3201, 62, 20337, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12093, 259, 62, 67, 3201, 62, 20337, 20520, 628, 220, 220, 220, 1303, 25235, 9220, 8251, 13315, 257, 11387, 287, 262, 29472, 198, 220, 220, 220, 11387, 13083, 796, 37250, 400, 3447, 62, 5532, 82, 3256, 705, 400, 3447, 62, 12093, 259, 62, 5532, 82, 3256, 705, 2875, 3256, 705, 21048, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37652, 3256, 705, 3262, 3256, 705, 41555, 704, 82, 3256, 705, 12093, 259, 62, 448, 1370, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30283, 276, 62, 13033, 20520, 628, 220, 220, 220, 2393, 13083, 796, 1729, 62, 400, 10126, 13083, 1343, 11387, 13083, 628, 220, 220, 220, 1303, 13610, 2393, 13532, 329, 262, 5072, 2393, 4542, 198, 220, 220, 220, 545, 14542, 796, 23884, 198, 220, 220, 220, 329, 479, 287, 2393, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 11, 479, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 11387, 284, 262, 29472, 611, 761, 307, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 11387, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 28686, 13, 6978, 13, 22179, 7, 29510, 11, 479, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 15853, 705, 62, 400, 3447, 23330, 92, 4458, 18982, 7, 400, 10126, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6305, 448, 329, 5485, 16624, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 13033, 6, 287, 479, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 58, 74, 60, 796, 2779, 1343, 45302, 1477, 79, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13283, 356, 761, 329, 4269, 11125, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 479, 287, 37250, 37652, 3256, 705, 21048, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 58, 74, 60, 796, 2779, 1343, 45302, 19608, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 58, 74, 60, 796, 2779, 1343, 45302, 49929, 6, 628, 220, 220, 220, 1303, 770, 2393, 611, 340, 1541, 7160, 5640, 2761, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 9600, 82, 17816, 3262, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 503, 13, 19662, 7203, 8413, 5165, 662, 12, 25687, 4269, 3127, 2393, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 9600, 82, 17816, 3262, 6, 12962, 628, 220, 220, 220, 1303, 1002, 356, 302, 5143, 356, 836, 470, 765, 284, 1057, 4831, 352, 12, 18, 757, 198, 220, 220, 220, 611, 302, 5143, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 13, 40539, 7203, 5990, 15464, 257, 302, 5143, 11, 13148, 3696, 329, 5202, 4571, 290, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24106, 2152, 9313, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1445, 62, 11813, 796, 6216, 62, 77, 382, 5143, 7, 13159, 62, 400, 10126, 13083, 11, 545, 14542, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1445, 62, 11813, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 13, 16889, 17220, 287, 1502, 284, 6070, 262, 29699, 287, 262, 40101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6028, 28956, 7, 9536, 7753, 11, 503, 7753, 28, 9600, 82, 17816, 20286, 6, 4357, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 362, 13, 360, 23, 27782, 47426, 287, 1502, 284, 24061, 262, 5202, 4571, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 1123, 40101, 2685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 35, 23, 37535, 7, 9600, 82, 17816, 20286, 6, 4357, 288, 23, 15908, 62, 7753, 28, 9600, 82, 17816, 11125, 62, 15908, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 23, 6649, 3008, 62, 7753, 28, 9600, 82, 17816, 6649, 3008, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 513, 13, 360, 23, 25767, 278, 9498, 523, 355, 284, 24061, 262, 37664, 1989, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 1123, 40101, 2685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 35, 23, 35, 3201, 496, 30547, 7, 9600, 82, 17816, 11125, 62, 15908, 6, 4357, 1989, 35, 23, 62, 448, 28, 9600, 82, 17816, 67, 3201, 62, 20337, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 77, 16663, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 13, 19662, 7203, 5492, 779, 262, 705, 438, 260, 5143, 6, 6056, 284, 1620, 257, 302, 5143, 13, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2, 198, 220, 220, 220, 1303, 770, 2665, 290, 2174, 3011, 1057, 790, 869, 13, 357, 30516, 3705, 604, 12, 23, 8, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2, 628, 220, 220, 220, 1303, 604, 13, 13860, 30396, 416, 536, 10126, 11, 287, 1502, 284, 7925, 257, 717, 2196, 286, 198, 220, 220, 220, 1303, 220, 220, 220, 262, 4269, 3127, 198, 220, 220, 220, 8160, 12124, 82, 3886, 817, 10126, 7, 9600, 82, 17816, 67, 3201, 62, 20337, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 62, 5532, 82, 62, 448, 28, 9600, 82, 17816, 400, 3447, 62, 5532, 82, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 400, 10126, 11, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 220, 220, 220, 1303, 642, 13, 10028, 3806, 5289, 284, 13860, 82, 11, 523, 355, 284, 1445, 262, 4929, 434, 16615, 966, 319, 198, 220, 220, 220, 1303, 220, 220, 220, 530, 286, 262, 40101, 4778, 5174, 416, 36849, 39429, 355, 16686, 284, 262, 4269, 198, 220, 220, 220, 1303, 220, 220, 220, 3127, 198, 220, 220, 220, 12527, 62, 17, 62, 5532, 82, 7, 9600, 82, 17816, 11125, 62, 15908, 6, 4357, 545, 14542, 17816, 400, 3447, 62, 5532, 82, 6, 4357, 12797, 62, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 48681, 62, 13033, 28, 9600, 82, 17816, 30283, 276, 62, 13033, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 220, 220, 220, 1303, 718, 13, 360, 23, 25767, 278, 9498, 757, 11, 475, 351, 262, 4929, 434, 16615, 966, 355, 198, 220, 220, 220, 1303, 220, 220, 220, 3224, 5128, 1366, 198, 220, 220, 220, 42302, 35, 23, 35, 3201, 496, 30547, 15522, 259, 7, 9600, 82, 17816, 11125, 62, 15908, 6, 4357, 545, 14542, 17816, 30283, 276, 62, 13033, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 35, 23, 62, 448, 28, 9600, 82, 17816, 12093, 259, 62, 67, 3201, 62, 20337, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 220, 220, 220, 1303, 767, 13, 13860, 30396, 416, 536, 10126, 757, 11, 475, 351, 262, 4929, 434, 16615, 198, 220, 220, 220, 1303, 220, 220, 220, 966, 355, 3224, 5128, 1366, 198, 220, 220, 220, 8160, 12124, 82, 3886, 817, 10126, 7, 9600, 82, 17816, 12093, 259, 62, 67, 3201, 62, 20337, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 62, 5532, 82, 62, 448, 28, 9600, 82, 17816, 400, 3447, 62, 12093, 259, 62, 5532, 82, 6, 4357, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 400, 10126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 220, 220, 220, 1303, 807, 13, 13860, 25146, 843, 21827, 704, 198, 220, 220, 220, 46925, 378, 62, 5532, 82, 7, 9536, 7753, 11, 545, 14542, 17816, 11125, 62, 15908, 6, 4357, 545, 14542, 17816, 12093, 259, 62, 67, 3201, 62, 20337, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 17816, 400, 3447, 62, 12093, 259, 62, 5532, 82, 6, 4357, 545, 14542, 17816, 30283, 276, 62, 13033, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4269, 62, 2875, 7753, 28, 9600, 82, 17816, 2875, 6, 4357, 5509, 7753, 28, 9600, 82, 17816, 21048, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6349, 7753, 28, 9600, 82, 17816, 37652, 6, 4357, 2010, 7753, 28, 9600, 82, 17816, 3262, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 7753, 28, 9600, 82, 17816, 41555, 704, 82, 6, 4357, 299, 16663, 82, 28, 77, 16663, 82, 8, 628, 220, 220, 220, 1303, 25235, 262, 5485, 16624, 286, 262, 42640, 198, 220, 220, 220, 266, 1477, 79, 796, 4439, 62, 43358, 16624, 7, 9600, 82, 17816, 41555, 704, 82, 6, 4357, 545, 14542, 17816, 30283, 276, 62, 13033, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 28, 22915, 8, 198, 220, 220, 220, 611, 503, 62, 5532, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5532, 11125, 7, 9600, 82, 11, 11387, 11, 266, 1477, 79, 11, 20218, 28, 29510, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 28, 418, 13, 6978, 13, 22179, 7, 22915, 11, 705, 5532, 11125, 6, 4008, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.232222
10,434
"""Compute entropy """ from typing import Union import numpy from mlxtk.log import get_logger def compute_entropy( natpop: numpy.ndarray, normalize: bool = False ) -> Union[numpy.ndarray, numpy.float64]: """Compute the Boltzmann entropy from natural populations. The entropy is computed using the formula :math:`S_\\mathrm{B}=-\\sum\\limits_{i}\\lambda_i\\ln(\\lambda_i)`. Arguments: natpop (numpy.ndarray): one- or two-dimensional array containing natural populations Returns: Boltzmann entropy """ if len(natpop.shape) == 1: result = 0.0 for lam in natpop: if lam != 0.0: result -= lam * numpy.log(lam) if normalize: m = natpop.shape[0] if m == 1: raise ZeroDivisionError("cannot normalize entropy for m=1") else: S_max = numpy.log(m) result = result / S_max return result if len(natpop.shape) == 2: result = numpy.zeros(natpop.shape[0]) for i in range(natpop.shape[0]): for lam in natpop[i]: if lam != 0.0: result[i] -= lam * numpy.log(lam) if normalize: m = natpop.shape[1] if m == 1: raise ZeroDivisionError("cannot normalize entropy for m=1") else: S_max = numpy.log(m) result = result / S_max return result raise ValueError("natpop must be either 1- or 2-dimensional")
[ 37811, 7293, 1133, 40709, 198, 37811, 198, 6738, 19720, 1330, 4479, 198, 198, 11748, 299, 32152, 198, 198, 6738, 25962, 742, 74, 13, 6404, 1330, 651, 62, 6404, 1362, 628, 198, 4299, 24061, 62, 298, 28338, 7, 198, 220, 220, 220, 34664, 12924, 25, 299, 32152, 13, 358, 18747, 11, 3487, 1096, 25, 20512, 796, 10352, 198, 8, 4613, 4479, 58, 77, 32152, 13, 358, 18747, 11, 299, 32152, 13, 22468, 2414, 5974, 198, 220, 220, 220, 37227, 7293, 1133, 262, 21764, 89, 9038, 40709, 422, 3288, 9684, 13, 628, 220, 220, 220, 383, 40709, 318, 29231, 1262, 262, 10451, 198, 220, 220, 220, 1058, 11018, 25, 63, 50, 62, 6852, 11018, 26224, 90, 33, 92, 10779, 6852, 16345, 6852, 49196, 23330, 72, 92, 6852, 50033, 62, 72, 6852, 18755, 7, 6852, 50033, 62, 72, 8, 44646, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 34664, 12924, 357, 77, 32152, 13, 358, 18747, 2599, 530, 12, 393, 734, 12, 19577, 7177, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3288, 9684, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21764, 89, 9038, 40709, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 18896, 7, 32353, 12924, 13, 43358, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 329, 30592, 287, 34664, 12924, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30592, 14512, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 48185, 30592, 1635, 299, 32152, 13, 6404, 7, 2543, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3487, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 796, 34664, 12924, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 285, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 12169, 24095, 1166, 12331, 7203, 66, 34574, 3487, 1096, 40709, 329, 285, 28, 16, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 62, 9806, 796, 299, 32152, 13, 6404, 7, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1255, 1220, 311, 62, 9806, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 611, 18896, 7, 32353, 12924, 13, 43358, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 299, 32152, 13, 9107, 418, 7, 32353, 12924, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 32353, 12924, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 30592, 287, 34664, 12924, 58, 72, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30592, 14512, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 72, 60, 48185, 30592, 1635, 299, 32152, 13, 6404, 7, 2543, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3487, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 796, 34664, 12924, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 285, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 12169, 24095, 1166, 12331, 7203, 66, 34574, 3487, 1096, 40709, 329, 285, 28, 16, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 62, 9806, 796, 299, 32152, 13, 6404, 7, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1255, 1220, 311, 62, 9806, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 5298, 11052, 12331, 7203, 32353, 12924, 1276, 307, 2035, 352, 12, 393, 362, 12, 19577, 4943, 198 ]
2.051114
763
# Author: # Romain Bentz (pixis - @hackanddo) # Website: # https://beta.hackndo.com
[ 2, 6434, 25, 198, 2, 220, 3570, 391, 20421, 89, 357, 79, 844, 271, 532, 2488, 31153, 392, 4598, 8, 198, 2, 15887, 25, 198, 2, 220, 3740, 1378, 31361, 13, 31153, 358, 78, 13, 785, 628 ]
2.351351
37
class FreinerConfigurationError(Exception): """ Raised when a configuration problem is encountered. """
[ 4871, 4848, 7274, 38149, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7567, 1417, 618, 257, 8398, 1917, 318, 12956, 13, 198, 220, 220, 220, 37227, 198 ]
3.625
32
""" Script to run all the produce_results scripts in the validation_tests/xxx/xxx/ directories """ import os import time import anuga from anuga import indent #from anuga.validation_utilities.parameters import alg #from anuga.validation_utilities.parameters import cfl args = anuga.get_args() alg = args.alg np = args.np verbose = args.verbose #--------------------------------- # Get the current svn revision #--------------------------------- timestamp = time.asctime() major_revision = anuga.get_version() try: # This fails if using git for version control minor_revision = anuga.get_revision_number() except: try: # This works when using git on unix minor_revision = os.popen("git show-ref --head -s | head -n1").read().strip() except: # This is a fallback position minor_revision = 'unknown' #---------------------------------- # Now it is ok to create the latex # macro file with run parameters # # FIXME: THis is a little dangerous as # this is changed before all the tests # are run. #---------------------------------- f = open('saved_parameters.tex', 'w') #f.write('\\newcommand{\\cfl}{\\UScore{%s}}\n' % str(cfl)) f.write('\\newcommand{\\alg}{\\UScore{%s}}\n' % str(alg)) f.write('\\newcommand{\\majorR}{\\UScore{%s}}\n' % str(major_revision)) f.write('\\newcommand{\\minorR}{\\UScore{%s}}\n' % str(minor_revision)) f.write('\\newcommand{\\timeR}{{%s}}\n' % str(timestamp)) f.close() #--------------------------------- # Run the tests #--------------------------------- os.chdir('..') buildroot = os.getcwd() Upper_dirs = os.listdir('.') dir = '.' Upper_dirs = [name for name in os.listdir(dir) if os.path.isdir(os.path.join(dir, name))] try: Upper_dirs.remove('.svn') except ValueError: pass try: Upper_dirs.remove('reports') except ValueError: pass try: Upper_dirs.remove('case_studies') except ValueError: pass #print Upper_dirs #os.chdir('./Tests') #print 'Tests' print(Upper_dirs) time_total = 0.0 test_number = 1 for dir in Upper_dirs: os.chdir(dir) print(72 * '=') print('Directory: ' + dir) print(72 * '=') #print 'Changing to', os.getcwd() dir = '.' Lower_dirs = [name for name in os.listdir(dir) if os.path.isdir(os.path.join(dir, name))] try: Lower_dirs.remove('.svn') except ValueError: pass #print Lower_dirs for l_dir in Lower_dirs: os.chdir(l_dir) #print os.getcwd() print(60 * '=') print('Subdirectory %g: '% (test_number) + l_dir) test_number += 1 print(60 * '=') try: t0 = time.time() if verbose: cmd = 'python produce_results.py -alg %s -np %s -v '% (str(alg),str(np)) else: cmd = 'python produce_results.py -alg %s -np %s '% (str(alg),str(np)) print(2 * indent + 'Running: ' + cmd) os.system(cmd) t1 = time.time() - t0 time_total += t1 print(2 * indent + 'That took ' + str(t1) + ' secs') except: print(2 * indent + 'Failed running produce_results in ' + os.getcwd()) pass os.chdir('..') #print 'Changing to', os.getcwd() os.chdir('..') #print 'Changing to', os.getcwd() os.chdir(buildroot) print(72 * '=') print('That took ' + str(time_total) + ' secs') print(72 * '=') # go back to reports directory to typeset report os.chdir('reports') os.system('python validations_typeset_report.py') import subprocess cmd = 'mv validations_report.pdf validations_report_alg_%s.pdf' % (str(alg)) print(cmd) subprocess.call([cmd], shell=True)
[ 37811, 198, 7391, 284, 1057, 477, 262, 4439, 62, 43420, 14750, 287, 262, 198, 12102, 341, 62, 41989, 14, 31811, 14, 31811, 14, 29196, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 640, 198, 198, 11748, 281, 30302, 198, 6738, 281, 30302, 1330, 33793, 198, 2, 6738, 281, 30302, 13, 12102, 341, 62, 315, 2410, 13, 17143, 7307, 1330, 435, 70, 198, 2, 6738, 281, 30302, 13, 12102, 341, 62, 315, 2410, 13, 17143, 7307, 1330, 269, 2704, 628, 198, 22046, 796, 281, 30302, 13, 1136, 62, 22046, 3419, 198, 14016, 796, 26498, 13, 14016, 198, 37659, 796, 26498, 13, 37659, 198, 19011, 577, 796, 26498, 13, 19011, 577, 198, 198, 2, 3880, 12, 198, 2, 3497, 262, 1459, 38487, 77, 18440, 198, 2, 3880, 12, 198, 16514, 27823, 796, 640, 13, 292, 310, 524, 3419, 198, 22478, 62, 260, 10178, 796, 281, 30302, 13, 1136, 62, 9641, 3419, 198, 28311, 25, 198, 220, 220, 220, 1303, 770, 10143, 611, 1262, 17606, 329, 2196, 1630, 198, 220, 220, 220, 4159, 62, 260, 10178, 796, 281, 30302, 13, 1136, 62, 260, 10178, 62, 17618, 3419, 198, 16341, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 2499, 618, 1262, 17606, 319, 555, 844, 198, 220, 220, 220, 220, 220, 220, 220, 4159, 62, 260, 10178, 796, 28686, 13, 79, 9654, 7203, 18300, 905, 12, 5420, 1377, 2256, 532, 82, 930, 1182, 532, 77, 16, 11074, 961, 22446, 36311, 3419, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 257, 2121, 1891, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 4159, 62, 260, 10178, 796, 705, 34680, 6, 628, 198, 2, 3880, 438, 198, 2, 2735, 340, 318, 12876, 284, 2251, 262, 47038, 220, 198, 2, 15021, 2393, 351, 1057, 10007, 198, 2, 198, 2, 44855, 11682, 25, 2320, 271, 318, 257, 1310, 4923, 355, 198, 2, 428, 318, 3421, 878, 477, 262, 5254, 198, 2, 389, 1057, 13, 220, 198, 2, 3880, 438, 198, 198, 69, 796, 1280, 10786, 82, 9586, 62, 17143, 7307, 13, 16886, 3256, 705, 86, 11537, 198, 2, 69, 13, 13564, 10786, 6852, 3605, 21812, 90, 6852, 66, 2704, 18477, 6852, 2937, 7295, 90, 4, 82, 11709, 59, 77, 6, 4064, 965, 7, 66, 2704, 4008, 198, 69, 13, 13564, 10786, 6852, 3605, 21812, 90, 6852, 14016, 18477, 6852, 2937, 7295, 90, 4, 82, 11709, 59, 77, 6, 4064, 965, 7, 14016, 4008, 198, 69, 13, 13564, 10786, 6852, 3605, 21812, 90, 6852, 22478, 49, 18477, 6852, 2937, 7295, 90, 4, 82, 11709, 59, 77, 6, 4064, 965, 7, 22478, 62, 260, 10178, 4008, 198, 69, 13, 13564, 10786, 6852, 3605, 21812, 90, 6852, 1084, 273, 49, 18477, 6852, 2937, 7295, 90, 4, 82, 11709, 59, 77, 6, 4064, 965, 7, 1084, 273, 62, 260, 10178, 4008, 198, 69, 13, 13564, 10786, 6852, 3605, 21812, 90, 6852, 2435, 49, 18477, 90, 4, 82, 11709, 59, 77, 6, 4064, 965, 7, 16514, 27823, 4008, 198, 198, 69, 13, 19836, 3419, 198, 198, 2, 3880, 12, 198, 2, 5660, 262, 5254, 198, 2, 3880, 12, 198, 418, 13, 354, 15908, 10786, 492, 11537, 198, 11249, 15763, 796, 28686, 13, 1136, 66, 16993, 3419, 198, 198, 52, 2848, 62, 15908, 82, 796, 28686, 13, 4868, 15908, 10786, 2637, 8, 198, 15908, 796, 705, 2637, 198, 52, 2848, 62, 15908, 82, 796, 685, 3672, 329, 1438, 287, 28686, 13, 4868, 15908, 7, 15908, 8, 611, 28686, 13, 6978, 13, 9409, 343, 7, 418, 13, 6978, 13, 22179, 7, 15908, 11, 1438, 4008, 60, 198, 198, 28311, 25, 198, 220, 220, 220, 20390, 62, 15908, 82, 13, 28956, 7, 4458, 21370, 77, 11537, 198, 16341, 11052, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 28311, 25, 198, 220, 220, 220, 20390, 62, 15908, 82, 13, 28956, 10786, 48922, 11537, 198, 16341, 11052, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 28311, 25, 198, 220, 220, 220, 20390, 62, 15908, 82, 13, 28956, 10786, 7442, 62, 19149, 444, 11537, 198, 16341, 11052, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 2, 4798, 20390, 62, 15908, 82, 198, 2, 418, 13, 354, 15908, 7, 4458, 14, 51, 3558, 11537, 198, 198, 2, 4798, 705, 51, 3558, 6, 198, 4798, 7, 52, 2848, 62, 15908, 82, 8, 198, 198, 2435, 62, 23350, 796, 657, 13, 15, 198, 9288, 62, 17618, 796, 352, 198, 1640, 26672, 287, 20390, 62, 15908, 82, 25, 628, 220, 220, 220, 28686, 13, 354, 15908, 7, 15908, 8, 628, 220, 220, 220, 3601, 7, 4761, 1635, 705, 28, 11537, 198, 220, 220, 220, 3601, 10786, 43055, 25, 705, 1343, 26672, 8, 198, 220, 220, 220, 3601, 7, 4761, 1635, 705, 28, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 4798, 705, 48333, 284, 3256, 28686, 13, 1136, 66, 16993, 3419, 198, 220, 220, 220, 26672, 796, 705, 2637, 198, 220, 220, 220, 16048, 62, 15908, 82, 796, 220, 685, 3672, 329, 1438, 287, 28686, 13, 4868, 15908, 7, 15908, 8, 611, 28686, 13, 6978, 13, 9409, 343, 7, 418, 13, 6978, 13, 22179, 7, 15908, 11, 1438, 4008, 60, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16048, 62, 15908, 82, 13, 28956, 7, 4458, 21370, 77, 11537, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1303, 4798, 16048, 62, 15908, 82, 628, 628, 198, 220, 220, 220, 329, 300, 62, 15908, 287, 16048, 62, 15908, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 75, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 28686, 13, 1136, 66, 16993, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1899, 1635, 705, 28, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 7004, 34945, 4064, 70, 25, 705, 4, 357, 9288, 62, 17618, 8, 220, 1343, 300, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 17618, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1899, 1635, 705, 28, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 15, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 29412, 4439, 62, 43420, 13, 9078, 532, 14016, 4064, 82, 532, 37659, 4064, 82, 532, 85, 705, 4, 357, 2536, 7, 14016, 828, 2536, 7, 37659, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 29412, 4439, 62, 43420, 13, 9078, 532, 14016, 4064, 82, 532, 37659, 4064, 82, 705, 4, 357, 2536, 7, 14016, 828, 2536, 7, 37659, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 17, 1635, 33793, 1343, 705, 28768, 25, 705, 1343, 23991, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 7, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 532, 256, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 23350, 15853, 256, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 17, 1635, 33793, 1343, 705, 2504, 1718, 705, 1343, 965, 7, 83, 16, 8, 1343, 705, 792, 82, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 17, 1635, 33793, 1343, 705, 37, 6255, 2491, 4439, 62, 43420, 287, 705, 1343, 28686, 13, 1136, 66, 16993, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 10786, 492, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 705, 48333, 284, 3256, 28686, 13, 1136, 66, 16993, 3419, 628, 220, 220, 220, 28686, 13, 354, 15908, 10786, 492, 11537, 198, 220, 220, 220, 1303, 4798, 705, 48333, 284, 3256, 28686, 13, 1136, 66, 16993, 3419, 198, 220, 220, 220, 220, 198, 418, 13, 354, 15908, 7, 11249, 15763, 8, 198, 198, 4798, 7, 4761, 1635, 705, 28, 11537, 198, 4798, 10786, 2504, 1718, 705, 1343, 965, 7, 2435, 62, 23350, 8, 1343, 705, 792, 82, 11537, 198, 4798, 7, 4761, 1635, 705, 28, 11537, 628, 198, 2, 467, 736, 284, 3136, 8619, 284, 3858, 316, 989, 198, 418, 13, 354, 15908, 10786, 48922, 11537, 628, 198, 418, 13, 10057, 10786, 29412, 4938, 602, 62, 19199, 316, 62, 13116, 13, 9078, 11537, 198, 198, 11748, 850, 14681, 198, 28758, 796, 705, 76, 85, 4938, 602, 62, 13116, 13, 12315, 4938, 602, 62, 13116, 62, 14016, 62, 4, 82, 13, 12315, 6, 4064, 357, 2536, 7, 14016, 4008, 198, 4798, 7, 28758, 8, 198, 7266, 14681, 13, 13345, 26933, 28758, 4357, 7582, 28, 17821, 8, 628, 628, 628 ]
2.36457
1,558
from . import track from . import webserver from . import tracksocketserver from . import globalconfig
[ 6738, 764, 1330, 2610, 198, 6738, 764, 1330, 2639, 18497, 198, 6738, 764, 1330, 8339, 11603, 18497, 198, 6738, 764, 1330, 3298, 11250, 198 ]
4.291667
24
''' https://www.codeeval.com/open_challenges/113/ ''' import sys if __name__ == '__main__': main()
[ 7061, 6, 198, 5450, 1378, 2503, 13, 8189, 18206, 13, 785, 14, 9654, 62, 36747, 34120, 14, 16616, 14, 198, 7061, 6, 198, 11748, 25064, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
2.386364
44
_ntypes = 0 TYPE_VOID = add_type() TYPE_INT = add_type() TYPE_FLOAT = add_type() TYPE_STRING = add_type() TYPE_LVALUE = add_type() TYPE_FUNCTION = add_type() _funs = dict()
[ 198, 198, 62, 429, 9497, 796, 657, 198, 198, 25216, 62, 29516, 2389, 796, 751, 62, 4906, 3419, 198, 25216, 62, 12394, 796, 751, 62, 4906, 3419, 198, 25216, 62, 3697, 46, 1404, 796, 751, 62, 4906, 3419, 198, 25216, 62, 18601, 2751, 796, 751, 62, 4906, 3419, 198, 25216, 62, 43, 39488, 796, 751, 62, 4906, 3419, 198, 25216, 62, 42296, 4177, 2849, 796, 751, 62, 4906, 3419, 628, 628, 628, 628, 198, 62, 12543, 82, 796, 8633, 3419, 628, 628, 198 ]
2.26506
83
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
from mojo.UI import CurrentGlyphWindow from mojo.events import addObserver, removeObserver import vanilla class PrevNextGlyph: """ ControlBoard "PrevNextGlyph" demo Use a Rotary Encoder component to swtich the Current Glyph Window to the previous or next glyphs. After removing the code for the sample window, this script could be used as a Startup Script """ PrevNextGlyph()
[ 6738, 6941, 7639, 13, 10080, 1330, 9236, 38, 306, 746, 27703, 198, 6738, 6941, 7639, 13, 31534, 1330, 751, 31310, 18497, 11, 4781, 31310, 18497, 198, 11748, 16858, 628, 198, 4871, 43280, 10019, 38, 306, 746, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6779, 29828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 36854, 10019, 38, 306, 746, 1, 13605, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5765, 257, 18481, 560, 14711, 12342, 7515, 284, 1509, 83, 488, 262, 9236, 27949, 746, 26580, 284, 262, 2180, 393, 1306, 25874, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2293, 10829, 262, 2438, 329, 262, 6291, 4324, 11, 428, 4226, 714, 307, 973, 355, 257, 40472, 12327, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 36854, 10019, 38, 306, 746, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.291667
216
import pprint import argparse from src.knowledgehub.api import KnowledgeHubAPI if __name__ == "__main__": main()
[ 11748, 279, 4798, 198, 11748, 1822, 29572, 198, 198, 6738, 12351, 13, 45066, 40140, 13, 15042, 1330, 20414, 16066, 17614, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.025
40
num1 = int( input() ) num2 = int( input() ) if num1 > 0: if num2 > 0: print(num1, num2)
[ 22510, 16, 796, 493, 7, 5128, 3419, 1267, 201, 198, 22510, 17, 796, 493, 7, 5128, 3419, 1267, 201, 198, 201, 198, 361, 997, 16, 1875, 657, 25, 201, 198, 220, 220, 220, 611, 997, 17, 1875, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 22510, 16, 11, 997, 17, 8, 201, 198 ]
1.844828
58
from PyQt5.QtCore import QDate, Qt p1 = QDate(1996, 4, 2) p2 = QDate(1994, 6, 13) dayspassed = p1.daysTo(p2) print("{0} days have passed since {1} to {2}".format(dayspassed, p1.toString(Qt.ISODate), p2.toString(Qt.ISODate)))
[ 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1195, 10430, 11, 33734, 198, 198, 79, 16, 796, 1195, 10430, 7, 22288, 11, 604, 11, 362, 8, 198, 79, 17, 796, 1195, 10430, 7, 22666, 11, 718, 11, 1511, 8, 198, 198, 12545, 6603, 276, 796, 279, 16, 13, 12545, 2514, 7, 79, 17, 8, 198, 198, 4798, 7203, 90, 15, 92, 1528, 423, 3804, 1201, 1391, 16, 92, 284, 1391, 17, 92, 1911, 18982, 7, 12545, 6603, 276, 11, 279, 16, 13, 1462, 10100, 7, 48, 83, 13, 1797, 3727, 378, 828, 279, 17, 13, 1462, 10100, 7, 48, 83, 13, 1797, 3727, 378, 22305 ]
2.121495
107
import torch from qtorch import Number, FixedPoint, BlockFloatingPoint, FloatingPoint import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.utils.cpp_extension import load import os current_path = os.path.dirname(os.path.realpath(__file__)) quant_cpu = load( name='quant_cpu', sources=[ os.path.join(current_path, "quant_cpu/quant_cpu.cpp"), os.path.join(current_path, "quant_cpu/bit_helper.cpp"), os.path.join(current_path, "quant_cpu/sim_helper.cpp"), ] ) if torch.cuda.is_available(): quant_cuda = load( name='quant_cuda', sources=[ os.path.join(current_path, "quant_cuda/quant_cuda.cpp"), os.path.join(current_path, "quant_cuda/bit_helper.cu"), os.path.join(current_path, "quant_cuda/sim_helper.cu"), os.path.join(current_path, "quant_cuda/block_kernel.cu"), os.path.join(current_path, "quant_cuda/float_kernel.cu"), os.path.join(current_path, "quant_cuda/fixed_point_kernel.cu"), os.path.join(current_path, "quant_cuda/quant.cu"), ] ) else: quant_cuda = quant_cpu __all__ = ['fixed_point_quantize', 'block_quantize', 'float_quantize', "quantizer"] def quantizer(forward_number=None, backward_number=None, forward_rounding="stochastic", backward_rounding="stochastic", clamping_grad_zero=False, backward_hooks=[]): """ Creates a quantization function to support quantizing forward and backward process differently. Args: - :param: forward_number (qtorch.Number, optional) : the number format used for forward quantization. if is None, the quantization would be a identity mapping. - :param: backward_number (qtorch.Number, optional) : the number format used for backward quantization. if is None, the quantization would be a identity mapping. - :param: forward_rounding (string) : rounding mode, \"stochastic\" or \"nearest\" (default: \"stochastic\") - :param: backward_rounding (string) : rounding mode, \"stochastic\" or \"nearest\" (default: \"stochastic\") - :param: clamping_grad_zero (bool) : zero out the gradient of numbers that are being clamped during forward propagation. currently requires forward_number to be a fixed point number. - :param: backward_hooks (iterable) : iterable of functions that will be applied to gradients before backward quantization. For example, this can be used to support custom scaling. Returns: A quantization function as specified (torch.Tensor -> torch.Tensor) """ for rounding in [forward_rounding, backward_rounding]: assert rounding in ["stochastic", "nearest"], "invalid rounding type {:s}".format(rounding) for num in [forward_number, backward_number]: if num != None: assert isinstance(num, Number) if clamping_grad_zero==False: if forward_rounding=="nearest": if type(forward_number)==BlockFloatingPoint: forward_quant = lambda x, quant_module: quant_module.block_quantize_nearest(x, forward_number.wl, forward_number.dim) elif type(forward_number)==FixedPoint: forward_quant = lambda x, quant_module: quant_module.fixed_point_quantize_nearest(x, forward_number.wl, forward_number.fl, forward_number.clamp, forward_number.symmetric) elif type(forward_number)==FloatingPoint: forward_quant = lambda x, quant_module: quant_module.float_quantize_nearest(x, forward_number.man, forward_number.exp) elif forward_rounding=="stochastic": if type(forward_number)==BlockFloatingPoint: forward_quant = lambda x, quant_module: quant_module.block_quantize_stochastic(x, forward_number.wl, forward_number.dim) elif type(forward_number)==FixedPoint: forward_quant = lambda x, quant_module: quant_module.fixed_point_quantize_stochastic(x, forward_number.wl, forward_number.fl, forward_number.clamp, forward_number.symmetric) elif type(forward_number)==FloatingPoint: forward_quant = lambda x, quant_module: quant_module.float_quantize_stochastic(x, forward_number.man, forward_number.exp) else: if type(forward_number)==FixedPoint or forward_number==None: assert forward_number==None or forward_number.clamp == True, "must use clamping if zeroing out clamped gradient" if forward_rounding=="nearest": forward_quant = lambda x, quant_module: quant_module.fixed_point_quantize_nearest_mask(x, forward_number.wl, forward_number.fl, forward_number.symmetric) elif forward_rounding=="stochastic": forward_quant = lambda x, quant_module: quant_module.fixed_point_quantize_stochastic_mask(x, forward_number.wl, forward_number.fl, forward_number.symmetric) else: raise ValueError("zeroing clamping gradient only support fixed point.") if backward_rounding=="nearest": if type(backward_number)==BlockFloatingPoint: backward_quant = lambda a, quant_module: quant_module.block_quantize_nearest(a, backward_number.wl, backward_number.dim) elif type(backward_number)==FixedPoint: backward_quant = lambda a, quant_module: quant_module.fixed_point_quantize_nearest(a, backward_number.wl, backward_number.fl, backward_number.clamp, backward_number.symmetric) elif type(backward_number)==FloatingPoint: backward_quant = lambda a, quant_module: quant_module.float_quantize_nearest(a, backward_number.man, backward_number.exp) elif backward_rounding=="stochastic": if type(backward_number)==BlockFloatingPoint: backward_quant = lambda a, quant_module: quant_module.block_quantize_stochastic(a, backward_number.wl, backward_number.dim) elif type(backward_number)==FixedPoint: backward_quant = lambda a, quant_module: quant_module.fixed_point_quantize_stochastic(a, backward_number.wl, backward_number.fl, backward_number.clamp, backward_number.symmetric) elif type(backward_number)==FloatingPoint: backward_quant = lambda a, quant_module: quant_module.float_quantize_stochastic(a, backward_number.man, backward_number.exp) if clamping_grad_zero == False: else: return Rounding.apply def fixed_point_quantize(x, wl, fl, clamp=True, symmetric=False, rounding="stochastic"): """ Quantize a single precision Floating Point into low-precision Fixed Point Args: - :param: `x` (torch.Tensor) : the single precision number to be quantized - :param: `wl` (int) : word length of the fixed point number being simulated - :param: `fl` (int) : fractional length of the fixed point number being simulated - :param: `clamp` (bool, optional) : clamp input numbers into representable range. if false, the quantization will only simulate the effect on precision - :param: `symmetric` (bool, optional) : discard the minimum representable number to make the representable range symmetric - :param: `rounding` (string) : rounding mode, \"stochastic\" or \"nearest\" (default: \"stochastic\") Returns: - a quantized low-precision block floating point number (torch.Tensor) """ assert isinstance(x, torch.Tensor) assert rounding in ["stochastic", "nearest"] assert_wl_fl(wl, fl) quant_module = get_module(x) if rounding == "nearest": out = quant_module.fixed_point_quantize_nearest(x.contiguous(), wl, fl, clamp, symmetric) elif rounding == "stochastic": out = quant_module.fixed_point_quantize_stochastic(x.contiguous(), wl, fl, clamp, symmetric) return out def block_quantize(x, wl, dim=-1, rounding="stochastic"): """ Quantize a single precision Floating Point into low-precision Block Floating Point Args: - :param: `x` (torch.Tensor) : the single precision number to be quantized - :param: `wl` (int) : word length of the block floating point number being simulated - :param: `rounding` (string) : rounding mode, \"stochastic\" or \"nearest\" Returns: - a quantized low-precision block floating point number (torch.Tensor) """ assert isinstance(x, torch.Tensor), "x is not a single precision Floating Point Tensor" assert rounding in ["stochastic", "nearest"], "invalid rounding mode, {}".format(rounding) quant_module = get_module(x) if rounding=="nearest": out = quant_module.block_quantize_nearest(x.contiguous(), wl, dim) elif rounding=="stochastic": out = quant_module.block_quantize_stochastic(x.contiguous(), wl, dim) return out def float_quantize(x, exp, man, rounding="stochastic"): """ Quantize a single precision Floating Point into low-precision Floating Point Args: - :attr: `x` (torch.Tensor) : the single precision number(torch.Tensor) to be quantized - :attr: `exp` (int) : number of bits allocated for exponent - :attr: `man` (int) : number of bits allocated for mantissa, not counting the virtual bit - :attr: `rounding` (string) : rounding mode, \"stochastic\" or \"nearest\" Returns: - a quantized low-precision floating point number (torch.Tensor) """ assert isinstance(x, torch.Tensor), "x is not a single precision Floating Point Tensor" assert rounding in ["stochastic", "nearest"], "invalid rounding mode, {}".format(rounding) quant_module = get_module(x) if rounding=="nearest": out = quant_module.float_quantize_nearest(x.contiguous(), man, exp) elif rounding=="stochastic": out = quant_module.float_quantize_stochastic(x.contiguous(), man, exp) return out
[ 11748, 28034, 198, 6738, 10662, 13165, 354, 1330, 7913, 11, 10832, 12727, 11, 9726, 33574, 803, 12727, 11, 49768, 12727, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 28034, 13, 26791, 13, 20322, 62, 2302, 3004, 1330, 3440, 198, 11748, 28686, 198, 14421, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 4008, 198, 40972, 62, 36166, 796, 3440, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 40972, 62, 36166, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4237, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 36166, 14, 40972, 62, 36166, 13, 20322, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 36166, 14, 2545, 62, 2978, 525, 13, 20322, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 36166, 14, 14323, 62, 2978, 525, 13, 20322, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 361, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 5554, 62, 66, 15339, 796, 3440, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 40972, 62, 66, 15339, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4237, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 66, 15339, 14, 40972, 62, 66, 15339, 13, 20322, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 66, 15339, 14, 2545, 62, 2978, 525, 13, 27399, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 66, 15339, 14, 14323, 62, 2978, 525, 13, 27399, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 66, 15339, 14, 9967, 62, 33885, 13, 27399, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 66, 15339, 14, 22468, 62, 33885, 13, 27399, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 66, 15339, 14, 34021, 62, 4122, 62, 33885, 13, 27399, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 14421, 62, 6978, 11, 366, 40972, 62, 66, 15339, 14, 40972, 13, 27399, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 17772, 25, 198, 220, 220, 220, 5554, 62, 66, 15339, 796, 5554, 62, 36166, 198, 198, 834, 439, 834, 796, 37250, 34021, 62, 4122, 62, 40972, 1096, 3256, 705, 9967, 62, 40972, 1096, 3256, 705, 22468, 62, 40972, 1096, 3256, 366, 40972, 7509, 8973, 198, 198, 4299, 5554, 7509, 7, 11813, 62, 17618, 28, 14202, 11, 19528, 62, 17618, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 744, 278, 2625, 301, 5374, 3477, 1600, 19528, 62, 744, 278, 2625, 301, 5374, 3477, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29405, 278, 62, 9744, 62, 22570, 28, 25101, 11, 19528, 62, 25480, 82, 28, 21737, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 5554, 1634, 2163, 284, 1104, 5554, 2890, 2651, 290, 19528, 1429, 10338, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 2651, 62, 17618, 357, 80, 13165, 354, 13, 15057, 11, 11902, 8, 1058, 262, 1271, 5794, 973, 329, 2651, 5554, 1634, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 6045, 11, 262, 5554, 1634, 561, 307, 257, 5369, 16855, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 19528, 62, 17618, 357, 80, 13165, 354, 13, 15057, 11, 11902, 8, 1058, 262, 1271, 5794, 973, 329, 19528, 5554, 1634, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 6045, 11, 262, 5554, 1634, 561, 307, 257, 5369, 16855, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 2651, 62, 744, 278, 357, 8841, 8, 1058, 38185, 4235, 11, 19990, 301, 5374, 3477, 7879, 393, 19990, 710, 12423, 7879, 357, 12286, 25, 19990, 301, 5374, 3477, 59, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 19528, 62, 744, 278, 357, 8841, 8, 1058, 38185, 4235, 11, 19990, 301, 5374, 3477, 7879, 393, 19990, 710, 12423, 7879, 357, 12286, 25, 19990, 301, 5374, 3477, 59, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 29405, 278, 62, 9744, 62, 22570, 357, 30388, 8, 1058, 6632, 503, 262, 31312, 286, 3146, 326, 389, 852, 537, 13322, 1141, 2651, 43594, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3058, 4433, 2651, 62, 17618, 284, 307, 257, 5969, 966, 1271, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 19528, 62, 25480, 82, 357, 2676, 540, 8, 1058, 11629, 540, 286, 5499, 326, 481, 307, 5625, 284, 3915, 2334, 878, 19528, 5554, 1634, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 11, 428, 460, 307, 973, 284, 1104, 2183, 20796, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 5554, 1634, 2163, 355, 7368, 357, 13165, 354, 13, 51, 22854, 4613, 28034, 13, 51, 22854, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 329, 38185, 287, 685, 11813, 62, 744, 278, 11, 19528, 62, 744, 278, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 38185, 287, 14631, 301, 5374, 3477, 1600, 366, 710, 12423, 33116, 366, 259, 12102, 38185, 2099, 46110, 82, 92, 1911, 18982, 7, 744, 278, 8, 198, 220, 220, 220, 329, 997, 287, 685, 11813, 62, 17618, 11, 19528, 62, 17618, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 997, 14512, 6045, 25, 6818, 318, 39098, 7, 22510, 11, 7913, 8, 628, 220, 220, 220, 611, 29405, 278, 62, 9744, 62, 22570, 855, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2651, 62, 744, 278, 855, 1, 710, 12423, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 11813, 62, 17618, 8, 855, 12235, 33574, 803, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 40972, 796, 37456, 2124, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 9967, 62, 40972, 1096, 62, 710, 12423, 7, 87, 11, 2651, 62, 17618, 13, 40989, 11, 2651, 62, 17618, 13, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 11813, 62, 17618, 8, 855, 13715, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 40972, 796, 37456, 2124, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 34021, 62, 4122, 62, 40972, 1096, 62, 710, 12423, 7, 87, 11, 2651, 62, 17618, 13, 40989, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 17618, 13, 2704, 11, 2651, 62, 17618, 13, 565, 696, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 17618, 13, 1837, 3020, 19482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 11813, 62, 17618, 8, 855, 33574, 803, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 40972, 796, 37456, 2124, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 22468, 62, 40972, 1096, 62, 710, 12423, 7, 87, 11, 2651, 62, 17618, 13, 805, 11, 2651, 62, 17618, 13, 11201, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2651, 62, 744, 278, 855, 1, 301, 5374, 3477, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 11813, 62, 17618, 8, 855, 12235, 33574, 803, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 40972, 796, 37456, 2124, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 9967, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 87, 11, 2651, 62, 17618, 13, 40989, 11, 2651, 62, 17618, 13, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 11813, 62, 17618, 8, 855, 13715, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 40972, 796, 37456, 2124, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 34021, 62, 4122, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 87, 11, 2651, 62, 17618, 13, 40989, 11, 2651, 62, 17618, 13, 2704, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 17618, 13, 565, 696, 11, 2651, 62, 17618, 13, 1837, 3020, 19482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 11813, 62, 17618, 8, 855, 33574, 803, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 40972, 796, 37456, 2124, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 22468, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 87, 11, 2651, 62, 17618, 13, 805, 11, 2651, 62, 17618, 13, 11201, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 11813, 62, 17618, 8, 855, 13715, 12727, 393, 2651, 62, 17618, 855, 14202, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2651, 62, 17618, 855, 14202, 393, 2651, 62, 17618, 13, 565, 696, 6624, 6407, 11, 366, 27238, 779, 29405, 278, 611, 6632, 278, 503, 537, 13322, 31312, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2651, 62, 744, 278, 855, 1, 710, 12423, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 40972, 796, 37456, 2124, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 34021, 62, 4122, 62, 40972, 1096, 62, 710, 12423, 62, 27932, 7, 87, 11, 2651, 62, 17618, 13, 40989, 11, 2651, 62, 17618, 13, 2704, 11, 2651, 62, 17618, 13, 1837, 3020, 19482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2651, 62, 744, 278, 855, 1, 301, 5374, 3477, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 40972, 796, 37456, 2124, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 34021, 62, 4122, 62, 40972, 1096, 62, 301, 5374, 3477, 62, 27932, 7, 87, 11, 2651, 62, 17618, 13, 40989, 11, 2651, 62, 17618, 13, 2704, 11, 2651, 62, 17618, 13, 1837, 3020, 19482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 22570, 278, 29405, 278, 31312, 691, 1104, 5969, 966, 19570, 628, 220, 220, 220, 611, 19528, 62, 744, 278, 855, 1, 710, 12423, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 1891, 904, 62, 17618, 8, 855, 12235, 33574, 803, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 40972, 796, 37456, 257, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 9967, 62, 40972, 1096, 62, 710, 12423, 7, 64, 11, 19528, 62, 17618, 13, 40989, 11, 19528, 62, 17618, 13, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 1891, 904, 62, 17618, 8, 855, 13715, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 40972, 796, 37456, 257, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 34021, 62, 4122, 62, 40972, 1096, 62, 710, 12423, 7, 64, 11, 19528, 62, 17618, 13, 40989, 11, 19528, 62, 17618, 13, 2704, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 17618, 13, 565, 696, 11, 19528, 62, 17618, 13, 1837, 3020, 19482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 1891, 904, 62, 17618, 8, 855, 33574, 803, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 40972, 796, 37456, 257, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 22468, 62, 40972, 1096, 62, 710, 12423, 7, 64, 11, 19528, 62, 17618, 13, 805, 11, 19528, 62, 17618, 13, 11201, 8, 198, 220, 220, 220, 1288, 361, 19528, 62, 744, 278, 855, 1, 301, 5374, 3477, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 1891, 904, 62, 17618, 8, 855, 12235, 33574, 803, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 40972, 796, 37456, 257, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 9967, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 64, 11, 19528, 62, 17618, 13, 40989, 11, 19528, 62, 17618, 13, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 1891, 904, 62, 17618, 8, 855, 13715, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 40972, 796, 37456, 257, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 34021, 62, 4122, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 64, 11, 19528, 62, 17618, 13, 40989, 11, 19528, 62, 17618, 13, 2704, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 17618, 13, 565, 696, 11, 19528, 62, 17618, 13, 1837, 3020, 19482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 1891, 904, 62, 17618, 8, 855, 33574, 803, 12727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 40972, 796, 37456, 257, 11, 5554, 62, 21412, 25, 5554, 62, 21412, 13, 22468, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 64, 11, 19528, 62, 17618, 13, 805, 11, 19528, 62, 17618, 13, 11201, 8, 628, 220, 220, 220, 611, 29405, 278, 62, 9744, 62, 22570, 6624, 10352, 25, 198, 220, 220, 220, 2073, 25, 628, 220, 220, 220, 1441, 371, 9969, 13, 39014, 628, 198, 4299, 5969, 62, 4122, 62, 40972, 1096, 7, 87, 11, 266, 75, 11, 781, 11, 29405, 28, 17821, 11, 23606, 19482, 28, 25101, 11, 38185, 2625, 301, 5374, 3477, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16972, 1096, 257, 2060, 15440, 49768, 6252, 656, 1877, 12, 3866, 16005, 10832, 6252, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 87, 63, 357, 13165, 354, 13, 51, 22854, 8, 1058, 220, 262, 2060, 15440, 1271, 284, 307, 5554, 1143, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 40989, 63, 357, 600, 8, 1058, 1573, 4129, 286, 262, 5969, 966, 1271, 852, 28590, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 2704, 63, 357, 600, 8, 1058, 13390, 282, 4129, 286, 262, 5969, 966, 1271, 852, 28590, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 565, 696, 63, 357, 30388, 11, 11902, 8, 1058, 29405, 5128, 3146, 656, 2380, 540, 2837, 13, 611, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 5554, 1634, 481, 691, 29308, 262, 1245, 319, 15440, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 1837, 3020, 19482, 63, 357, 30388, 11, 11902, 8, 1058, 27537, 262, 5288, 2380, 540, 1271, 284, 787, 262, 2380, 540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 23606, 19482, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 744, 278, 63, 357, 8841, 8, 1058, 38185, 4235, 11, 19990, 301, 5374, 3477, 7879, 393, 19990, 710, 12423, 7879, 357, 12286, 25, 19990, 301, 5374, 3477, 59, 4943, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 257, 5554, 1143, 1877, 12, 3866, 16005, 2512, 12462, 966, 1271, 357, 13165, 354, 13, 51, 22854, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 318, 39098, 7, 87, 11, 28034, 13, 51, 22854, 8, 198, 220, 220, 220, 6818, 38185, 287, 14631, 301, 5374, 3477, 1600, 366, 710, 12423, 8973, 198, 220, 220, 220, 6818, 62, 40989, 62, 2704, 7, 40989, 11, 781, 8, 198, 220, 220, 220, 5554, 62, 21412, 796, 651, 62, 21412, 7, 87, 8, 198, 220, 220, 220, 611, 38185, 6624, 366, 710, 12423, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 5554, 62, 21412, 13, 34021, 62, 4122, 62, 40972, 1096, 62, 710, 12423, 7, 87, 13, 3642, 29709, 22784, 266, 75, 11, 781, 11, 29405, 11, 23606, 19482, 8, 198, 220, 220, 220, 1288, 361, 38185, 6624, 366, 301, 5374, 3477, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 5554, 62, 21412, 13, 34021, 62, 4122, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 87, 13, 3642, 29709, 22784, 266, 75, 11, 781, 11, 29405, 11, 23606, 19482, 8, 198, 220, 220, 220, 1441, 503, 198, 198, 4299, 2512, 62, 40972, 1096, 7, 87, 11, 266, 75, 11, 5391, 10779, 16, 11, 38185, 2625, 301, 5374, 3477, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16972, 1096, 257, 2060, 15440, 49768, 6252, 656, 1877, 12, 3866, 16005, 9726, 49768, 6252, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 87, 63, 357, 13165, 354, 13, 51, 22854, 8, 1058, 220, 262, 2060, 15440, 1271, 284, 307, 5554, 1143, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 40989, 63, 357, 600, 8, 1058, 1573, 4129, 286, 262, 2512, 12462, 966, 1271, 852, 28590, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 17143, 25, 4600, 744, 278, 63, 357, 8841, 8, 1058, 38185, 4235, 11, 19990, 301, 5374, 3477, 7879, 393, 19990, 710, 12423, 7879, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 257, 5554, 1143, 1877, 12, 3866, 16005, 2512, 12462, 966, 1271, 357, 13165, 354, 13, 51, 22854, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 318, 39098, 7, 87, 11, 28034, 13, 51, 22854, 828, 366, 87, 318, 407, 257, 2060, 15440, 49768, 6252, 309, 22854, 1, 198, 220, 220, 220, 6818, 38185, 287, 14631, 301, 5374, 3477, 1600, 366, 710, 12423, 33116, 366, 259, 12102, 38185, 4235, 11, 23884, 1911, 18982, 7, 744, 278, 8, 198, 220, 220, 220, 5554, 62, 21412, 796, 651, 62, 21412, 7, 87, 8, 198, 220, 220, 220, 611, 38185, 855, 1, 710, 12423, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 5554, 62, 21412, 13, 9967, 62, 40972, 1096, 62, 710, 12423, 7, 87, 13, 3642, 29709, 22784, 266, 75, 11, 5391, 8, 198, 220, 220, 220, 1288, 361, 38185, 855, 1, 301, 5374, 3477, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 5554, 62, 21412, 13, 9967, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 87, 13, 3642, 29709, 22784, 266, 75, 11, 5391, 8, 198, 220, 220, 220, 1441, 503, 198, 198, 4299, 12178, 62, 40972, 1096, 7, 87, 11, 1033, 11, 582, 11, 38185, 2625, 301, 5374, 3477, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16972, 1096, 257, 2060, 15440, 49768, 6252, 656, 1877, 12, 3866, 16005, 49768, 6252, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 35226, 25, 4600, 87, 63, 357, 13165, 354, 13, 51, 22854, 8, 1058, 262, 2060, 15440, 1271, 7, 13165, 354, 13, 51, 22854, 8, 284, 307, 5554, 1143, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 35226, 25, 4600, 11201, 63, 357, 600, 8, 1058, 1271, 286, 10340, 19171, 329, 28622, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 35226, 25, 4600, 805, 63, 357, 600, 8, 1058, 1271, 286, 10340, 19171, 329, 24818, 13808, 11, 407, 14143, 262, 7166, 1643, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1058, 35226, 25, 4600, 744, 278, 63, 357, 8841, 8, 1058, 38185, 4235, 11, 19990, 301, 5374, 3477, 7879, 393, 19990, 710, 12423, 7879, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 257, 5554, 1143, 1877, 12, 3866, 16005, 12462, 966, 1271, 357, 13165, 354, 13, 51, 22854, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 318, 39098, 7, 87, 11, 28034, 13, 51, 22854, 828, 366, 87, 318, 407, 257, 2060, 15440, 49768, 6252, 309, 22854, 1, 198, 220, 220, 220, 6818, 38185, 287, 14631, 301, 5374, 3477, 1600, 366, 710, 12423, 33116, 366, 259, 12102, 38185, 4235, 11, 23884, 1911, 18982, 7, 744, 278, 8, 198, 220, 220, 220, 5554, 62, 21412, 796, 651, 62, 21412, 7, 87, 8, 198, 220, 220, 220, 611, 38185, 855, 1, 710, 12423, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 5554, 62, 21412, 13, 22468, 62, 40972, 1096, 62, 710, 12423, 7, 87, 13, 3642, 29709, 22784, 582, 11, 1033, 8, 198, 220, 220, 220, 1288, 361, 38185, 855, 1, 301, 5374, 3477, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 5554, 62, 21412, 13, 22468, 62, 40972, 1096, 62, 301, 5374, 3477, 7, 87, 13, 3642, 29709, 22784, 582, 11, 1033, 8, 198, 220, 220, 220, 1441, 503, 198 ]
2.414916
4,331
""" Base class and common constants needed for pylmod tests """ import os from unittest import TestCase class BaseTest(TestCase): """ Base class with convenient constants and URL endpoints for pylmod testing. """ # This should be removed if we end up with common methods, but for # now they are just common attributes. # pylint: disable=too-few-public-methods DATA_ROOT = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'data' ) CERT = os.path.join(DATA_ROOT, 'certs', 'test_cert.pem') URLBASE = 'https://testingstuff/' GRADEBOOK_REGISTER_BASE = URLBASE + 'service/gradebook/' MEMBERSHIP_REGISTER_BASE = URLBASE + 'service/membership/' GBUUID = 'STELLAR:/project/testingstuff' CUUID = '/project/testingstuff'
[ 37811, 198, 14881, 1398, 290, 2219, 38491, 2622, 329, 279, 2645, 4666, 5254, 198, 37811, 198, 11748, 28686, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 628, 198, 4871, 7308, 14402, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 1398, 351, 11282, 38491, 290, 10289, 886, 13033, 329, 279, 2645, 4666, 4856, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 770, 815, 307, 4615, 611, 356, 886, 510, 351, 2219, 5050, 11, 475, 329, 198, 220, 220, 220, 1303, 783, 484, 389, 655, 2219, 12608, 13, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 18820, 12, 32146, 12, 11377, 12, 24396, 82, 198, 220, 220, 220, 42865, 62, 13252, 2394, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 327, 17395, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 13252, 2394, 11, 705, 22583, 82, 3256, 705, 9288, 62, 22583, 13, 79, 368, 11537, 628, 220, 220, 220, 10289, 33, 11159, 796, 705, 5450, 1378, 33407, 41094, 14, 6, 198, 220, 220, 220, 10863, 19266, 39453, 62, 31553, 41517, 62, 33, 11159, 796, 10289, 33, 11159, 1343, 705, 15271, 14, 9526, 2070, 14, 6, 198, 220, 220, 220, 35153, 33, 4877, 39, 4061, 62, 31553, 41517, 62, 33, 11159, 796, 10289, 33, 11159, 1343, 705, 15271, 14, 30814, 1056, 14, 6, 628, 220, 220, 220, 13124, 52, 27586, 796, 705, 2257, 23304, 1503, 14079, 16302, 14, 33407, 41094, 6, 198, 220, 220, 220, 29369, 27586, 796, 31051, 16302, 14, 33407, 41094, 6, 198 ]
2.656667
300
#!/usr/bin/env python3 from taptaptap3.proc import plan, ok, out plan(tests=10) ok("Starting the program") ok("Starting the engine") ok("Find the object") ok("Transport object to target") ok("Check for existing fire") ok("Place it beneath the desk") ok("Search for fire extinguisher") ok("Extinguish fire") ok("Put fire extinguisher back") ok("Terminate") out() ## validity: 0 ## ok testcases: 10 / 10 ## bailout: no ## stderr: Find the object
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 256, 2373, 2373, 499, 18, 13, 36942, 1330, 1410, 11, 12876, 11, 503, 198, 198, 11578, 7, 41989, 28, 940, 8, 198, 482, 7203, 22851, 262, 1430, 4943, 198, 482, 7203, 22851, 262, 3113, 4943, 198, 482, 7203, 16742, 262, 2134, 4943, 198, 482, 7203, 8291, 634, 2134, 284, 2496, 4943, 198, 482, 7203, 9787, 329, 4683, 2046, 4943, 198, 482, 7203, 27271, 340, 11061, 262, 6915, 4943, 198, 482, 7203, 18243, 329, 2046, 24995, 4828, 4943, 198, 482, 7203, 11627, 6680, 680, 2046, 4943, 198, 482, 7203, 11588, 2046, 24995, 4828, 736, 4943, 198, 482, 7203, 44798, 378, 4943, 198, 198, 448, 3419, 628, 198, 2235, 220, 220, 220, 220, 19648, 25, 657, 198, 2235, 12876, 1332, 33964, 25, 838, 1220, 838, 198, 2235, 220, 220, 220, 220, 220, 29928, 25, 645, 198, 2235, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 25, 9938, 262, 2134, 198 ]
2.881988
161
import unittest from classes.nag import Nag if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 6097, 13, 77, 363, 1330, 15196, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419 ]
2.676471
34
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import unittest import torch from hydra.experimental import compose, initialize_config_module from vissl.utils.hydra_config import convert_to_attrdict from vissl.utils.misc import merge_features from vissl.utils.test_utils import ( gpu_test, in_temporary_directory, run_integration_test, )
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 198, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 17168, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 628, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 11748, 28034, 198, 6738, 25039, 13, 23100, 9134, 1330, 36664, 11, 41216, 62, 11250, 62, 21412, 198, 6738, 410, 747, 75, 13, 26791, 13, 15511, 430, 62, 11250, 1330, 10385, 62, 1462, 62, 1078, 4372, 713, 198, 6738, 410, 747, 75, 13, 26791, 13, 44374, 1330, 20121, 62, 40890, 198, 6738, 410, 747, 75, 13, 26791, 13, 9288, 62, 26791, 1330, 357, 198, 220, 220, 220, 308, 19944, 62, 9288, 11, 198, 220, 220, 220, 287, 62, 11498, 5551, 62, 34945, 11, 198, 220, 220, 220, 1057, 62, 18908, 1358, 62, 9288, 11, 198, 8, 628 ]
3.302013
149
from src.PCA import * from src.generate_data import * from src.generate_picture import * from src.dimensionality_reduction_image import * if __name__ == '__main__': main()
[ 6738, 12351, 13, 5662, 32, 1330, 1635, 198, 6738, 12351, 13, 8612, 378, 62, 7890, 1330, 1635, 198, 6738, 12351, 13, 8612, 378, 62, 34053, 1330, 1635, 198, 6738, 12351, 13, 46156, 1483, 62, 445, 8110, 62, 9060, 1330, 1635, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.983607
61
import pybullet import time import numpy as np import random # np.random.seed(5) # random.seed(5) import sys import os import argparse import csv from scipy.spatial.transform import Rotation from collect_pose_data import PoseDataCollector sys.path.insert(1, '../utils/') from coord_helper import * from data_helper import * from collision_helper import * import bullet_client as bc sys.path.insert(1, '../lin_my/') from classifier_dataset_torch import ClassifierDataset from scipy.spatial import KDTree if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--home_dir_data", default="../data") parser.add_argument("--hook_name", default='') parser.add_argument("--sherlock", action='store_true') parser.add_argument("--obj_cat_split_id", type=int, default=-1) args = parser.parse_args() obj_cat_split_id = int(args.obj_cat_split_id) if args.sherlock: args.home_dir_data = '/scratch/groups/bohg/hang' assert args.hook_name != '' assert obj_cat_split_id >= 0 data_dir = os.path.join(args.home_dir_data, 'geo_data') labels_folder_dir = os.path.join(args.home_dir_data, 'geo_data/labels/') exclude_dir = os.path.join(args.home_dir_data, 'exclude') pos_collection_result_folder_dir = os.path.join(args.home_dir_data, 'collection_result_pene_big_pos_new') collection_result_folder_dir = os.path.join(args.home_dir_data, 'collection_result') neg_collection_result_folder_dir = os.path.join(args.home_dir_data, 'collection_result_pene_big_neg_new') pos_labels_dir = os.path.join(pos_collection_result_folder_dir, 'labels') neg_labels_dir = os.path.join(neg_collection_result_folder_dir, 'labels') mkdir_if_not(pos_collection_result_folder_dir) mkdir_if_not(neg_collection_result_folder_dir) mkdir_if_not(pos_labels_dir) mkdir_if_not(neg_labels_dir) all_hook_name, all_hook_urdf, all_object_name, all_object_urdf = load_all_hooks_object_w_split_id(obj_cat_split_id, data_dir, exclude_dir, labels_folder_dir, True, True, with_wall=False) p_id = bc.BulletClient(connection_mode=pybullet.DIRECT) cp_result_folder_dir = os.path.join(args.home_dir_data, 'dataset_cp') train_list_dir = os.path.join(cp_result_folder_dir, 'labels', 'train_list.txt') test_list_dir = os.path.join(cp_result_folder_dir, 'labels', 'test_list.txt') train_set = ClassifierDataset(args.home_dir_data, train_list_dir, False, split='train', with_wall=False, one_per_pair=True) test_set = ClassifierDataset(args.home_dir_data, test_list_dir, False, split='test', with_wall=False, one_per_pair=True) if not os.path.exists(neg_collection_result_folder_dir): os.mkdir(neg_collection_result_folder_dir) collector = PeneDataCollector(p_id) ct = 0 print('result file names', len(train_set.all_result_file_names), len(test_set.all_result_file_names)) for i, hook_name in enumerate(all_hook_name): if args.hook_name != '' and args.hook_name != hook_name: continue out_pos_labels_dir = os.path.join(pos_labels_dir, '{}.txt'.format(hook_name)) out_neg_labels_dir = os.path.join(neg_labels_dir, '{}.txt'.format(hook_name)) # if os.path.exists(out_pos_labels_dir) and os.path.exists(out_neg_labels_dir): # print('skip', hook_name) # continue hook_urdf = all_hook_urdf[i] hook_bullet_id, hook_scaling = collector.init_hook(hook_urdf) hook_world_pos_offset = get_hook_wall_offset(hook_urdf) hook_pc_dir = get_numpy_dir_from_urdf(hook_urdf) hook_world_pos = collector.get_hook_world_pos(hook_bullet_id, hook_world_pos_offset) hook_pc = np.load(hook_pc_dir) hook_tree = KDTree(hook_pc[:, :3], leafsize=1000) num_pos_dict = {} num_neg_dict = {} for j, object_name in enumerate(all_object_name): # if not 'daily_object' in object_name: # continue result_file_name = hook_name + '_' + object_name if (not result_file_name in train_set.all_result_file_names) \ and (not result_file_name in test_set.all_result_file_names): continue object_urdf = all_object_urdf[j] object_pc_dir = get_numpy_dir_from_urdf(object_urdf) object_pc = np.load(object_pc_dir) print(result_file_name) neg_out_dir = os.path.join(neg_collection_result_folder_dir, result_file_name + '.txt') pos_out_dir = os.path.join(pos_collection_result_folder_dir, result_file_name + '.txt') # result_dir = os.path.join(collection_result_folder_dir, result_file_name+ '.txt') # if not os.path.isfile(result_dir): # continue # result_file_poses = load_result_file(result_dir) # if result_file_poses.shape[0] == 0: # continue # if os.path.isfile(out_dir): # continue ct += 1 object_bullet_id = collector.p.loadURDF(object_urdf, basePosition=[0, 0, 2], baseOrientation=[0, 0, 0, 1], globalScaling=1, useFixedBase=False) object_scaling = collector.p.getCollisionShapeData(object_bullet_id, -1)[0][3][0] pos_result_arr, neg_result_arr = collector.collect_pene_data_one_hook_object(hook_bullet_id, object_bullet_id, hook_urdf, object_urdf, hook_scaling, object_scaling, hook_world_pos, hook_pc, object_pc, hook_tree, None) num_pos_dict[result_file_name] = len(pos_result_arr) num_neg_dict[result_file_name] = len(neg_result_arr) print(len(pos_result_arr), len(neg_result_arr), result_file_name) with open(pos_out_dir, 'w+') as f: for result in pos_result_arr: f.write(comma_separated(result) + '\n') with open(neg_out_dir, 'w+') as f: for result in neg_result_arr: f.write(comma_separated(result) + '\n') # print(pos_out_dir, neg_out_dir) collector.p.removeBody(object_bullet_id) if (ct + 1) % 30 == 0: print('reset') collector.p.disconnect() p_id = bc.BulletClient(connection_mode=pybullet.DIRECT) collector = PeneDataCollector(p_id) hook_bullet_id, hook_scaling = collector.init_hook(hook_urdf) out_pos_labels_dir = os.path.join(pos_labels_dir, '{}.txt'.format(hook_name)) out_neg_labels_dir = os.path.join(neg_labels_dir, '{}.txt'.format(hook_name)) collector.p.removeBody(hook_bullet_id) dict_to_csv(out_pos_labels_dir, num_pos_dict) dict_to_csv(out_neg_labels_dir, num_neg_dict) # for j in range(20000): # collector.p.stepSimulation() # time.sleep(1./240.)
[ 11748, 12972, 15065, 1616, 220, 198, 11748, 640, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 2, 45941, 13, 25120, 13, 28826, 7, 20, 8, 198, 2, 4738, 13, 28826, 7, 20, 8, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 269, 21370, 198, 6738, 629, 541, 88, 13, 2777, 34961, 13, 35636, 1330, 371, 14221, 198, 198, 6738, 2824, 62, 3455, 62, 7890, 1330, 37557, 6601, 31337, 273, 198, 17597, 13, 6978, 13, 28463, 7, 16, 11, 705, 40720, 26791, 14, 11537, 198, 6738, 6349, 62, 2978, 525, 1330, 1635, 220, 198, 6738, 1366, 62, 2978, 525, 1330, 1635, 220, 198, 6738, 17661, 62, 2978, 525, 1330, 1635, 198, 11748, 10492, 62, 16366, 355, 47125, 198, 198, 17597, 13, 6978, 13, 28463, 7, 16, 11, 705, 40720, 2815, 62, 1820, 14, 11537, 198, 6738, 1398, 7483, 62, 19608, 292, 316, 62, 13165, 354, 1330, 5016, 7483, 27354, 292, 316, 198, 198, 6738, 629, 541, 88, 13, 2777, 34961, 1330, 509, 24544, 631, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 197, 48610, 13, 2860, 62, 49140, 7203, 438, 11195, 62, 15908, 62, 7890, 1600, 4277, 2625, 40720, 7890, 4943, 198, 197, 48610, 13, 2860, 62, 49140, 7203, 438, 25480, 62, 3672, 1600, 4277, 28, 7061, 8, 198, 197, 48610, 13, 2860, 62, 49140, 7203, 438, 82, 372, 5354, 1600, 2223, 11639, 8095, 62, 7942, 11537, 198, 197, 48610, 13, 2860, 62, 49140, 7203, 438, 26801, 62, 9246, 62, 35312, 62, 312, 1600, 2099, 28, 600, 11, 4277, 10779, 16, 8, 198, 197, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 197, 26801, 62, 9246, 62, 35312, 62, 312, 796, 493, 7, 22046, 13, 26801, 62, 9246, 62, 35312, 62, 312, 8, 198, 197, 361, 26498, 13, 82, 372, 5354, 25, 198, 197, 197, 22046, 13, 11195, 62, 15908, 62, 7890, 796, 31051, 1416, 36722, 14, 24432, 14, 65, 1219, 70, 14, 33255, 6, 198, 197, 197, 30493, 26498, 13, 25480, 62, 3672, 14512, 10148, 198, 197, 197, 30493, 26181, 62, 9246, 62, 35312, 62, 312, 18189, 657, 198, 197, 7890, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 705, 469, 78, 62, 7890, 11537, 198, 197, 23912, 1424, 62, 43551, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 705, 469, 78, 62, 7890, 14, 23912, 1424, 14, 11537, 198, 197, 1069, 9152, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 705, 1069, 9152, 11537, 198, 197, 1930, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 705, 43681, 62, 20274, 62, 79, 1734, 62, 14261, 62, 1930, 62, 3605, 11537, 198, 197, 43681, 62, 20274, 62, 43551, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 705, 43681, 62, 20274, 11537, 198, 197, 12480, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 705, 43681, 62, 20274, 62, 79, 1734, 62, 14261, 62, 12480, 62, 3605, 11537, 198, 197, 1930, 62, 23912, 1424, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 1930, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 11, 705, 23912, 1424, 11537, 198, 197, 12480, 62, 23912, 1424, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 12480, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 11, 705, 23912, 1424, 11537, 628, 197, 28015, 15908, 62, 361, 62, 1662, 7, 1930, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 8, 198, 197, 28015, 15908, 62, 361, 62, 1662, 7, 12480, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 8, 198, 197, 28015, 15908, 62, 361, 62, 1662, 7, 1930, 62, 23912, 1424, 62, 15908, 8, 198, 197, 28015, 15908, 62, 361, 62, 1662, 7, 12480, 62, 23912, 1424, 62, 15908, 8, 628, 197, 439, 62, 25480, 62, 3672, 11, 477, 62, 25480, 62, 2799, 69, 11, 477, 62, 15252, 62, 3672, 11, 477, 62, 15252, 62, 2799, 69, 796, 3440, 62, 439, 62, 25480, 82, 62, 15252, 62, 86, 62, 35312, 62, 312, 7, 26801, 62, 9246, 62, 35312, 62, 312, 11, 1366, 62, 15908, 11, 19607, 62, 15908, 11, 14722, 62, 43551, 62, 15908, 11, 6407, 11, 6407, 11, 351, 62, 11930, 28, 25101, 8, 198, 197, 79, 62, 312, 796, 47125, 13, 33481, 1616, 11792, 7, 38659, 62, 14171, 28, 9078, 15065, 1616, 13, 17931, 23988, 8, 628, 197, 13155, 62, 20274, 62, 43551, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 705, 19608, 292, 316, 62, 13155, 11537, 628, 197, 27432, 62, 4868, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 13155, 62, 20274, 62, 43551, 62, 15908, 11, 705, 23912, 1424, 3256, 705, 27432, 62, 4868, 13, 14116, 11537, 220, 198, 197, 9288, 62, 4868, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 13155, 62, 20274, 62, 43551, 62, 15908, 11, 705, 23912, 1424, 3256, 705, 9288, 62, 4868, 13, 14116, 11537, 198, 197, 27432, 62, 2617, 796, 5016, 7483, 27354, 292, 316, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 4512, 62, 4868, 62, 15908, 11, 10352, 11, 6626, 11639, 27432, 3256, 351, 62, 11930, 28, 25101, 11, 530, 62, 525, 62, 24874, 28, 17821, 8, 198, 197, 9288, 62, 2617, 796, 5016, 7483, 27354, 292, 316, 7, 22046, 13, 11195, 62, 15908, 62, 7890, 11, 1332, 62, 4868, 62, 15908, 11, 10352, 11, 6626, 11639, 9288, 3256, 351, 62, 11930, 28, 25101, 11, 530, 62, 525, 62, 24874, 28, 17821, 8, 198, 197, 628, 197, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 12480, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 2599, 198, 197, 197, 418, 13, 28015, 15908, 7, 12480, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 8, 198, 197, 33327, 273, 796, 350, 1734, 6601, 31337, 273, 7, 79, 62, 312, 8, 198, 197, 310, 796, 657, 198, 197, 198, 197, 4798, 10786, 20274, 2393, 3891, 3256, 18896, 7, 27432, 62, 2617, 13, 439, 62, 20274, 62, 7753, 62, 14933, 828, 18896, 7, 9288, 62, 2617, 13, 439, 62, 20274, 62, 7753, 62, 14933, 4008, 198, 197, 1640, 1312, 11, 8011, 62, 3672, 287, 27056, 378, 7, 439, 62, 25480, 62, 3672, 2599, 198, 197, 197, 361, 26498, 13, 25480, 62, 3672, 14512, 10148, 290, 26498, 13, 25480, 62, 3672, 14512, 8011, 62, 3672, 25, 198, 197, 197, 197, 43043, 198, 197, 197, 198, 197, 197, 448, 62, 1930, 62, 23912, 1424, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 1930, 62, 23912, 1424, 62, 15908, 11, 705, 90, 27422, 14116, 4458, 18982, 7, 25480, 62, 3672, 4008, 198, 197, 197, 448, 62, 12480, 62, 23912, 1424, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 12480, 62, 23912, 1424, 62, 15908, 11, 705, 90, 27422, 14116, 4458, 18982, 7, 25480, 62, 3672, 4008, 198, 197, 197, 2, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 62, 1930, 62, 23912, 1424, 62, 15908, 8, 290, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 62, 12480, 62, 23912, 1424, 62, 15908, 2599, 198, 197, 197, 197, 2, 3601, 10786, 48267, 3256, 8011, 62, 3672, 8, 198, 197, 197, 197, 2, 2555, 628, 197, 197, 25480, 62, 2799, 69, 796, 477, 62, 25480, 62, 2799, 69, 58, 72, 60, 198, 197, 197, 25480, 62, 15065, 1616, 62, 312, 11, 8011, 62, 1416, 4272, 796, 22967, 13, 15003, 62, 25480, 7, 25480, 62, 2799, 69, 8, 198, 197, 197, 25480, 62, 6894, 62, 1930, 62, 28968, 796, 651, 62, 25480, 62, 11930, 62, 28968, 7, 25480, 62, 2799, 69, 8, 198, 197, 197, 25480, 62, 14751, 62, 15908, 796, 651, 62, 77, 32152, 62, 15908, 62, 6738, 62, 2799, 69, 7, 25480, 62, 2799, 69, 8, 198, 197, 197, 25480, 62, 6894, 62, 1930, 796, 22967, 13, 1136, 62, 25480, 62, 6894, 62, 1930, 7, 25480, 62, 15065, 1616, 62, 312, 11, 8011, 62, 6894, 62, 1930, 62, 28968, 8, 198, 197, 197, 25480, 62, 14751, 796, 45941, 13, 2220, 7, 25480, 62, 14751, 62, 15908, 8, 197, 198, 197, 197, 25480, 62, 21048, 796, 509, 24544, 631, 7, 25480, 62, 14751, 58, 45299, 1058, 18, 4357, 12835, 7857, 28, 12825, 8, 628, 197, 197, 22510, 62, 1930, 62, 11600, 796, 23884, 198, 197, 197, 22510, 62, 12480, 62, 11600, 796, 23884, 628, 197, 197, 1640, 474, 11, 2134, 62, 3672, 287, 27056, 378, 7, 439, 62, 15252, 62, 3672, 2599, 198, 197, 197, 197, 2, 611, 407, 705, 29468, 62, 15252, 6, 287, 2134, 62, 3672, 25, 198, 197, 197, 197, 197, 2, 2555, 198, 197, 197, 197, 20274, 62, 7753, 62, 3672, 796, 8011, 62, 3672, 1343, 705, 62, 6, 1343, 2134, 62, 3672, 198, 197, 197, 197, 361, 357, 1662, 1255, 62, 7753, 62, 3672, 287, 4512, 62, 2617, 13, 439, 62, 20274, 62, 7753, 62, 14933, 8, 3467, 198, 197, 197, 197, 197, 392, 357, 1662, 1255, 62, 7753, 62, 3672, 287, 1332, 62, 2617, 13, 439, 62, 20274, 62, 7753, 62, 14933, 2599, 198, 197, 197, 197, 197, 43043, 198, 197, 197, 197, 15252, 62, 2799, 69, 796, 477, 62, 15252, 62, 2799, 69, 58, 73, 60, 198, 197, 197, 197, 15252, 62, 14751, 62, 15908, 796, 651, 62, 77, 32152, 62, 15908, 62, 6738, 62, 2799, 69, 7, 15252, 62, 2799, 69, 8, 198, 197, 197, 197, 15252, 62, 14751, 796, 45941, 13, 2220, 7, 15252, 62, 14751, 62, 15908, 8, 628, 197, 197, 197, 4798, 7, 20274, 62, 7753, 62, 3672, 8, 198, 197, 197, 197, 12480, 62, 448, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 12480, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 11, 1255, 62, 7753, 62, 3672, 1343, 45302, 14116, 11537, 198, 197, 197, 197, 1930, 62, 448, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 1930, 62, 43681, 62, 20274, 62, 43551, 62, 15908, 11, 1255, 62, 7753, 62, 3672, 1343, 45302, 14116, 11537, 198, 197, 197, 197, 2, 1255, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 43681, 62, 20274, 62, 43551, 62, 15908, 11, 1255, 62, 7753, 62, 3672, 10, 45302, 14116, 11537, 198, 197, 197, 197, 2, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 20274, 62, 15908, 2599, 198, 197, 197, 197, 197, 2, 2555, 198, 197, 197, 197, 2, 1255, 62, 7753, 62, 4832, 796, 3440, 62, 20274, 62, 7753, 7, 20274, 62, 15908, 8, 198, 197, 197, 197, 2, 611, 1255, 62, 7753, 62, 4832, 13, 43358, 58, 15, 60, 6624, 657, 25, 198, 197, 197, 197, 2, 220, 197, 43043, 198, 197, 197, 197, 2, 611, 28686, 13, 6978, 13, 4468, 576, 7, 448, 62, 15908, 2599, 198, 197, 197, 197, 197, 2, 2555, 198, 197, 197, 197, 198, 197, 197, 197, 310, 15853, 352, 198, 197, 197, 197, 15252, 62, 15065, 1616, 62, 312, 796, 22967, 13, 79, 13, 2220, 4261, 8068, 7, 15252, 62, 2799, 69, 11, 2779, 26545, 41888, 15, 11, 657, 11, 362, 4357, 2779, 46, 8289, 341, 41888, 15, 11, 657, 11, 657, 11, 352, 4357, 3298, 3351, 4272, 28, 16, 11, 779, 13715, 14881, 28, 25101, 8, 198, 197, 197, 197, 15252, 62, 1416, 4272, 796, 22967, 13, 79, 13, 1136, 22667, 1166, 33383, 6601, 7, 15252, 62, 15065, 1616, 62, 312, 11, 532, 16, 38381, 15, 7131, 18, 7131, 15, 60, 220, 197, 628, 197, 197, 197, 1930, 62, 20274, 62, 3258, 11, 2469, 62, 20274, 62, 3258, 796, 22967, 13, 33327, 62, 79, 1734, 62, 7890, 62, 505, 62, 25480, 62, 15252, 7, 25480, 62, 15065, 1616, 62, 312, 11, 2134, 62, 15065, 1616, 62, 312, 11, 8011, 62, 2799, 69, 11, 2134, 62, 2799, 69, 11, 8011, 62, 1416, 4272, 11, 2134, 62, 1416, 4272, 11, 8011, 62, 6894, 62, 1930, 11, 220, 198, 197, 197, 197, 197, 25480, 62, 14751, 11, 2134, 62, 14751, 11, 8011, 62, 21048, 11, 6045, 8, 628, 197, 197, 197, 22510, 62, 1930, 62, 11600, 58, 20274, 62, 7753, 62, 3672, 60, 796, 220, 18896, 7, 1930, 62, 20274, 62, 3258, 8, 198, 197, 197, 197, 22510, 62, 12480, 62, 11600, 58, 20274, 62, 7753, 62, 3672, 60, 796, 220, 18896, 7, 12480, 62, 20274, 62, 3258, 8, 628, 197, 197, 197, 4798, 7, 11925, 7, 1930, 62, 20274, 62, 3258, 828, 18896, 7, 12480, 62, 20274, 62, 3258, 828, 1255, 62, 7753, 62, 3672, 8, 198, 197, 197, 197, 4480, 1280, 7, 1930, 62, 448, 62, 15908, 11, 705, 86, 10, 11537, 355, 277, 25, 198, 197, 197, 197, 197, 1640, 1255, 287, 1426, 62, 20274, 62, 3258, 25, 198, 197, 197, 197, 197, 197, 69, 13, 13564, 7, 785, 2611, 62, 25512, 515, 7, 20274, 8, 1343, 705, 59, 77, 11537, 198, 197, 197, 197, 4480, 1280, 7, 12480, 62, 448, 62, 15908, 11, 705, 86, 10, 11537, 355, 277, 25, 198, 197, 197, 197, 197, 1640, 1255, 287, 2469, 62, 20274, 62, 3258, 25, 198, 197, 197, 197, 197, 197, 69, 13, 13564, 7, 785, 2611, 62, 25512, 515, 7, 20274, 8, 1343, 705, 59, 77, 11537, 198, 197, 197, 197, 2, 3601, 7, 1930, 62, 448, 62, 15908, 11, 2469, 62, 448, 62, 15908, 8, 198, 197, 197, 197, 33327, 273, 13, 79, 13, 28956, 25842, 7, 15252, 62, 15065, 1616, 62, 312, 8, 198, 197, 197, 197, 361, 357, 310, 1343, 352, 8, 4064, 1542, 6624, 657, 25, 198, 197, 197, 197, 197, 4798, 10786, 42503, 11537, 198, 197, 197, 197, 197, 33327, 273, 13, 79, 13, 6381, 8443, 3419, 198, 197, 197, 197, 197, 79, 62, 312, 796, 47125, 13, 33481, 1616, 11792, 7, 38659, 62, 14171, 28, 9078, 15065, 1616, 13, 17931, 23988, 8, 198, 197, 197, 197, 197, 33327, 273, 796, 350, 1734, 6601, 31337, 273, 7, 79, 62, 312, 8, 198, 197, 197, 197, 197, 25480, 62, 15065, 1616, 62, 312, 11, 8011, 62, 1416, 4272, 796, 22967, 13, 15003, 62, 25480, 7, 25480, 62, 2799, 69, 8, 628, 197, 197, 448, 62, 1930, 62, 23912, 1424, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 1930, 62, 23912, 1424, 62, 15908, 11, 705, 90, 27422, 14116, 4458, 18982, 7, 25480, 62, 3672, 4008, 198, 197, 197, 448, 62, 12480, 62, 23912, 1424, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 12480, 62, 23912, 1424, 62, 15908, 11, 705, 90, 27422, 14116, 4458, 18982, 7, 25480, 62, 3672, 4008, 198, 197, 197, 33327, 273, 13, 79, 13, 28956, 25842, 7, 25480, 62, 15065, 1616, 62, 312, 8, 197, 628, 197, 197, 11600, 62, 1462, 62, 40664, 7, 448, 62, 1930, 62, 23912, 1424, 62, 15908, 11, 997, 62, 1930, 62, 11600, 8, 198, 197, 197, 11600, 62, 1462, 62, 40664, 7, 448, 62, 12480, 62, 23912, 1424, 62, 15908, 11, 997, 62, 12480, 62, 11600, 8, 628, 198, 197, 2, 329, 474, 287, 2837, 7, 2167, 405, 2599, 198, 197, 197, 2, 22967, 13, 79, 13, 9662, 8890, 1741, 3419, 198, 197, 197, 2, 640, 13, 42832, 7, 16, 19571, 16102, 2014 ]
2.422729
2,543
# Software License Agreement (BSD License) # # Copyright (c) 2013, Open Source Robotics Foundation, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Open Source Robotics Foundation, Inc. nor # the names of its contributors may be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function from .release_file import ReleaseFile
[ 2, 10442, 13789, 12729, 357, 21800, 13789, 8, 198, 2, 198, 2, 15069, 357, 66, 8, 2211, 11, 4946, 8090, 47061, 5693, 11, 3457, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 198, 2, 389, 1138, 25, 198, 2, 198, 2, 220, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 198, 2, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 198, 2, 220, 220, 220, 6634, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 198, 2, 220, 220, 220, 37592, 287, 262, 10314, 290, 14, 273, 584, 5696, 2810, 198, 2, 220, 220, 220, 351, 262, 6082, 13, 198, 2, 220, 1635, 16126, 262, 1438, 286, 4946, 8090, 47061, 5693, 11, 3457, 13, 4249, 198, 2, 220, 220, 220, 262, 3891, 286, 663, 20420, 743, 307, 973, 284, 11438, 393, 7719, 198, 2, 220, 220, 220, 3186, 10944, 422, 428, 3788, 1231, 2176, 3161, 198, 2, 220, 220, 220, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 198, 2, 366, 1921, 3180, 1, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 198, 2, 40880, 5390, 11, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 198, 2, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 27975, 38162, 9947, 47210, 21479, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 198, 2, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 198, 2, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 198, 2, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 198, 2, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 198, 2, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 198, 2, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 198, 2, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 6738, 764, 20979, 62, 7753, 1330, 13868, 8979, 628 ]
3.569358
483
import avanza
[ 11748, 1196, 35819, 628 ]
3.75
4
import unittest from rsgis import Metadata import os if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 44608, 70, 271, 1330, 3395, 14706, 198, 11748, 28686, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 628 ]
2.675
40
from ma import ma from models.entities import Todo
[ 6738, 17266, 1330, 17266, 198, 6738, 4981, 13, 298, 871, 1330, 309, 24313, 628 ]
3.714286
14
from ulauncher_virtualbox.VirtualboxExtension import VirtualboxExtension if __name__ == '__main__': VirtualboxExtension().run()
[ 6738, 14856, 1942, 2044, 62, 32844, 3524, 13, 37725, 3524, 11627, 3004, 1330, 15595, 3524, 11627, 3004, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 15595, 3524, 11627, 3004, 22446, 5143, 3419, 198 ]
3.243902
41
#! -*- coding:utf8 -*- # This file used to calculate avg temperature of everyday import sys import numpy as np import pandas as pd from filter import check_threshold, check_data_integrity, check_column_name def calculate_average(data, column_names): """计算温度相关列的平均值 :param data: :param column_names: :return: """ temperatures = [] grouped_data = data.groupby('day') for name, group in grouped_data: temperature = {} temperature['date'] = name for cn in column_names: _cal_ave(temperature, group, cn) temperatures.append(temperature.copy()) temperatures_dataframe = pd.DataFrame(temperatures) return temperatures_dataframe def _cal_ave(temperature, df, column_name): """ 计算指定列的平均值 :return: """ # check today temperature is valid if check_column_name(column_name) and check_threshold(df, 50, column_name) and check_data_integrity(df, None): temperature[column_name] = df[column_name].mean() else: temperature[column_name] = np.NaN if __name__ == '__main__': input, output = sys.argv[1:] data, column_names = read(input) # 日期不参与计算 column_names.remove('day') tem_df = calculate_average(data, column_names) tem_df.to_csv(output)
[ 2, 0, 532, 9, 12, 19617, 25, 40477, 23, 532, 9, 12, 198, 198, 2, 770, 2393, 973, 284, 15284, 42781, 5951, 286, 10908, 198, 198, 11748, 25064, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 8106, 1330, 2198, 62, 400, 10126, 11, 2198, 62, 7890, 62, 18908, 10138, 11, 2198, 62, 28665, 62, 3672, 628, 198, 198, 4299, 15284, 62, 23913, 7, 7890, 11, 5721, 62, 14933, 2599, 198, 220, 220, 220, 37227, 164, 106, 94, 163, 106, 245, 162, 116, 102, 41753, 99, 33566, 116, 17739, 111, 26344, 245, 21410, 33176, 111, 161, 251, 229, 161, 222, 120, 198, 220, 220, 220, 1058, 17143, 1366, 25, 198, 220, 220, 220, 1058, 17143, 5721, 62, 14933, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10101, 796, 17635, 198, 220, 220, 220, 32824, 62, 7890, 796, 1366, 13, 8094, 1525, 10786, 820, 11537, 198, 220, 220, 220, 329, 1438, 11, 1448, 287, 32824, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 17816, 4475, 20520, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 77, 287, 5721, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9948, 62, 1015, 7, 11498, 21069, 11, 1448, 11, 269, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10101, 13, 33295, 7, 11498, 21069, 13, 30073, 28955, 628, 220, 220, 220, 10101, 62, 7890, 14535, 796, 279, 67, 13, 6601, 19778, 7, 11498, 525, 6691, 8, 198, 220, 220, 220, 1441, 10101, 62, 7890, 14535, 628, 198, 4299, 4808, 9948, 62, 1015, 7, 11498, 21069, 11, 47764, 11, 5721, 62, 3672, 2599, 198, 220, 220, 220, 37227, 5525, 106, 94, 163, 106, 245, 162, 234, 229, 22522, 248, 26344, 245, 21410, 33176, 111, 161, 251, 229, 161, 222, 120, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2198, 1909, 5951, 318, 4938, 198, 220, 220, 220, 611, 2198, 62, 28665, 62, 3672, 7, 28665, 62, 3672, 8, 290, 2198, 62, 400, 10126, 7, 7568, 11, 2026, 11, 5721, 62, 3672, 8, 290, 2198, 62, 7890, 62, 18908, 10138, 7, 7568, 11, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 58, 28665, 62, 3672, 60, 796, 47764, 58, 28665, 62, 3672, 4083, 32604, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 58, 28665, 62, 3672, 60, 796, 45941, 13, 26705, 45, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 5128, 11, 5072, 796, 25064, 13, 853, 85, 58, 16, 47715, 198, 220, 220, 220, 1366, 11, 5721, 62, 14933, 796, 1100, 7, 15414, 8, 198, 220, 220, 220, 1303, 10545, 245, 98, 17312, 253, 38834, 20998, 224, 10310, 236, 164, 106, 94, 163, 106, 245, 198, 220, 220, 220, 5721, 62, 14933, 13, 28956, 10786, 820, 11537, 198, 220, 220, 220, 2169, 62, 7568, 796, 15284, 62, 23913, 7, 7890, 11, 5721, 62, 14933, 8, 198, 220, 220, 220, 2169, 62, 7568, 13, 1462, 62, 40664, 7, 22915, 8, 198 ]
2.345521
547
import os import logging from dataclasses import dataclass, field from typing import Optional import pandas as pd import torch from tqdm import tqdm from transformers import T5Tokenizer, BartTokenizer, HfArgumentParser logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ task: str = field( metadata={"help": "Which task 'qa', 'qg', 'e2e_qg', 'ans_ext', 'multi'. 'multi' means 'qa', 'qg', 'ans_ext' tasks"}, ) model_type: str = field(metadata={"help": "One of 't5', 'bart'"}) dataset_path: Optional[str] = field( default='~/Desktop/aqa/data/squad', metadata={'help': 'data directory for train and validation csv files.'} ) train_file_name: Optional[str] = field( default=None, metadata={"help": "name for cached train dataset"}, ) valid_file_name: Optional[str] = field( default=None, metadata={"help": "name for cached valid dataset"}, ) valid_for_qg_only: bool = field( default=False, metadata={"help": "For multitask dataset valid split should contain only qg task or all tasks."} ) qg_format: Optional[str] = field( default='highlight_qg_format', metadata={'help': "How to format inputs for que generation, 'highlight_qg_format' or 'prepend_qg_format'"}, ) max_source_length: Optional[int] = field( default=512, metadata={'help': 'Max input length for the source text'}, ) max_target_length: Optional[int] = field( default=64, metadata={'help': 'Max input length for the target text'}, ) if __name__ == "__main__": main()
[ 11748, 28686, 198, 11748, 18931, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 6738, 19720, 1330, 32233, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 6121, 364, 1330, 309, 20, 30642, 7509, 11, 13167, 30642, 7509, 11, 367, 69, 28100, 1713, 46677, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 31, 19608, 330, 31172, 198, 4871, 6060, 44357, 28100, 2886, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20559, 2886, 27113, 284, 644, 1366, 356, 389, 1016, 284, 5128, 674, 2746, 329, 3047, 290, 5418, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4876, 25, 965, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13828, 4876, 705, 20402, 3256, 705, 80, 70, 3256, 705, 68, 17, 68, 62, 80, 70, 3256, 705, 504, 62, 2302, 3256, 705, 41684, 4458, 705, 41684, 6, 1724, 705, 20402, 3256, 705, 80, 70, 3256, 705, 504, 62, 2302, 6, 8861, 25719, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2746, 62, 4906, 25, 965, 796, 2214, 7, 38993, 28, 4895, 16794, 1298, 366, 3198, 286, 705, 83, 20, 3256, 705, 16575, 6, 20662, 8, 198, 220, 220, 220, 27039, 62, 6978, 25, 32233, 58, 2536, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 93, 14, 36881, 14, 64, 20402, 14, 7890, 14, 16485, 324, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 6, 16794, 10354, 705, 7890, 8619, 329, 4512, 290, 21201, 269, 21370, 3696, 2637, 92, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4512, 62, 7753, 62, 3672, 25, 32233, 58, 2536, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 366, 3672, 329, 39986, 4512, 27039, 25719, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4938, 62, 7753, 62, 3672, 25, 32233, 58, 2536, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 366, 3672, 329, 39986, 4938, 27039, 25719, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4938, 62, 1640, 62, 80, 70, 62, 8807, 25, 20512, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 366, 1890, 41785, 2093, 27039, 4938, 6626, 815, 3994, 691, 10662, 70, 4876, 393, 477, 8861, 526, 92, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 10662, 70, 62, 18982, 25, 32233, 58, 2536, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 8929, 2971, 62, 80, 70, 62, 18982, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 6, 16794, 10354, 366, 2437, 284, 5794, 17311, 329, 8358, 5270, 11, 705, 8929, 2971, 62, 80, 70, 62, 18982, 6, 393, 705, 3866, 37038, 62, 80, 70, 62, 18982, 6, 25719, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3509, 62, 10459, 62, 13664, 25, 32233, 58, 600, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25836, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 6, 16794, 10354, 705, 11518, 5128, 4129, 329, 262, 2723, 2420, 6, 5512, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3509, 62, 16793, 62, 13664, 25, 32233, 58, 600, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 6, 16794, 10354, 705, 11518, 5128, 4129, 329, 262, 2496, 2420, 6, 5512, 198, 220, 220, 220, 1267, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.549356
699
# -*- coding: UTF-8 -*- import os from flask import Flask, redirect, url_for from app.config import DevelopmentConfig, ProductionConfig __author__ = 'lpe234' # create application bms_app = Flask(__name__) if os.environ.get('BMS_ENV') == 'PRODUCTION': bms_app.config.from_object(ProductionConfig) else: bms_app.config.from_object(DevelopmentConfig) # db from app.models import db db.init_app(bms_app) # login from app.login_utils import login_manager login_manager.init_app(bms_app) # main blueprint from app.main_views import main bms_app.register_blueprint(main, url_prefix='/main/') # api blueprint from app.api import api bms_app.register_blueprint(api, url_prefix='/api/') @bms_app.route('/') if __name__ == '__main__': bms_app.run()
[ 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 198, 6738, 42903, 1330, 46947, 11, 18941, 11, 19016, 62, 1640, 198, 198, 6738, 598, 13, 11250, 1330, 7712, 16934, 11, 19174, 16934, 628, 198, 834, 9800, 834, 796, 705, 75, 431, 24409, 6, 628, 198, 2, 2251, 3586, 198, 65, 907, 62, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 361, 28686, 13, 268, 2268, 13, 1136, 10786, 33, 5653, 62, 1677, 53, 11537, 6624, 705, 4805, 28644, 2849, 10354, 198, 220, 220, 220, 275, 907, 62, 1324, 13, 11250, 13, 6738, 62, 15252, 7, 35027, 16934, 8, 198, 17772, 25, 198, 220, 220, 220, 275, 907, 62, 1324, 13, 11250, 13, 6738, 62, 15252, 7, 41206, 16934, 8, 198, 198, 2, 20613, 198, 6738, 598, 13, 27530, 1330, 20613, 198, 9945, 13, 15003, 62, 1324, 7, 65, 907, 62, 1324, 8, 198, 198, 2, 17594, 198, 6738, 598, 13, 38235, 62, 26791, 1330, 17594, 62, 37153, 198, 38235, 62, 37153, 13, 15003, 62, 1324, 7, 65, 907, 62, 1324, 8, 198, 198, 2, 1388, 30881, 198, 6738, 598, 13, 12417, 62, 33571, 1330, 1388, 198, 65, 907, 62, 1324, 13, 30238, 62, 17585, 4798, 7, 12417, 11, 19016, 62, 40290, 11639, 14, 12417, 14, 11537, 198, 198, 2, 40391, 30881, 198, 6738, 598, 13, 15042, 1330, 40391, 198, 65, 907, 62, 1324, 13, 30238, 62, 17585, 4798, 7, 15042, 11, 19016, 62, 40290, 11639, 14, 15042, 14, 11537, 628, 198, 31, 65, 907, 62, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 275, 907, 62, 1324, 13, 5143, 3419, 198 ]
2.687719
285
#!/usr/bin/env python3 import base64 import yaml import sys import re import os import random import string import subprocess import json from d3des import encrypt as d3des try: from passlib.hash import md5_crypt, sha256_crypt, sha512_crypt from cryptography.hazmat.primitives import serialization as crypto_serialization from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.backends import default_backend as crypto_default_backend except ImportError: pass ################################################################### # # YAML related utilities # ################################################################### yaml_include_path = [] secrets_file = '_secrets_file_' key_store = '_ssh_key_store_' yaml_pp_vars = dict(os.environ) valid_re = re.compile(r'^[_A-Za-z][_A-Za-z0-9]*$') include_res = [ re.compile(r'^(\s*)#\s*include\s+') , re.compile(r'^(\s*-\s*)#\s*include\s+')] include_type = re.compile(r'\s*--(raw|bin)\s+') keygen_re = re.compile(r'(.*)\$KEYGEN:([A-Za-z][A-Za-z0-9]*)(:[^\$]*|)\$') pwgen_re = re.compile(r'(.*)\$PWGEN:([A-Za-z][A-Za-z0-9]*)(:[^\$]*|)\$') define_re = re.compile(r'^\s*#\s*define\s+([_A-Za-z][_A-Za-z0-9]*)\s*') ifdef_re = re.compile(r'^\s*#\s*ifdef\s+([_A-Za-z][_A-Za-z0-9]*)\s*') ifndef_re = re.compile(r'^\s*#\s*ifndef\s+([_A-Za-z][_A-Za-z0-9]*)\s*') else_re = re.compile(r'^\s*#\s*else\s*') endif_re = re.compile(r'^\s*#\s*endif\s*') exec_re = re.compile(r'^(\s*)#\s*exec\s+(.*)$') ################################################################### # # Main command line # ################################################################### if __name__ == '__main__': from argparse import ArgumentParser, Action cli = ArgumentParser(prog='ypp',description='YAML file pre-processor') cli.add_argument('-I','--include', help='Add Include path', action='append') cli.add_argument('-D','--define', help='Add constant', action='append') cli.add_argument('-y','--yaml', help='Parse YAML',action='store_true') cli.add_argument('-p','--preproc', help='Use pre-processor when parsing yaml',action='store_true') cli.add_argument('file', help='YAML file to parse') args = cli.parse_args() yparse_cmd(args) sys.exit()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 2779, 2414, 198, 11748, 331, 43695, 198, 11748, 25064, 198, 11748, 302, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 4731, 198, 11748, 850, 14681, 198, 11748, 33918, 198, 6738, 288, 18, 8906, 1330, 34117, 355, 288, 18, 8906, 198, 28311, 25, 198, 220, 422, 1208, 8019, 13, 17831, 1330, 45243, 20, 62, 29609, 11, 427, 64, 11645, 62, 29609, 11, 427, 64, 25836, 62, 29609, 198, 220, 422, 45898, 13, 71, 1031, 6759, 13, 19795, 20288, 1330, 11389, 1634, 355, 21473, 62, 46911, 1634, 198, 220, 422, 45898, 13, 71, 1031, 6759, 13, 19795, 20288, 13, 4107, 3020, 19482, 1330, 374, 11400, 198, 220, 422, 45898, 13, 71, 1031, 6759, 13, 1891, 2412, 1330, 4277, 62, 1891, 437, 355, 21473, 62, 12286, 62, 1891, 437, 198, 16341, 17267, 12331, 25, 198, 220, 1208, 198, 198, 29113, 29113, 21017, 198, 2, 198, 2, 575, 2390, 43, 3519, 20081, 198, 2, 198, 29113, 29113, 21017, 198, 88, 43695, 62, 17256, 62, 6978, 796, 17635, 198, 2363, 8004, 62, 7753, 796, 705, 62, 2363, 8004, 62, 7753, 62, 6, 198, 2539, 62, 8095, 796, 705, 62, 45824, 62, 2539, 62, 8095, 62, 6, 198, 88, 43695, 62, 381, 62, 85, 945, 796, 8633, 7, 418, 13, 268, 2268, 8, 198, 198, 12102, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 29795, 32, 12, 57, 64, 12, 89, 7131, 62, 32, 12, 57, 64, 12, 89, 15, 12, 24, 60, 9, 3, 11537, 198, 198, 17256, 62, 411, 796, 685, 302, 13, 5589, 576, 7, 81, 6, 61, 38016, 82, 28104, 2, 59, 82, 9, 17256, 59, 82, 10, 11537, 837, 302, 13, 5589, 576, 7, 81, 6, 61, 38016, 82, 9, 12, 59, 82, 28104, 2, 59, 82, 9, 17256, 59, 82, 10, 11537, 60, 198, 17256, 62, 4906, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 82, 9, 438, 7, 1831, 91, 8800, 19415, 82, 10, 11537, 198, 198, 2539, 5235, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 7, 15885, 19415, 3, 20373, 35353, 25, 26933, 32, 12, 57, 64, 12, 89, 7131, 32, 12, 57, 64, 12, 89, 15, 12, 24, 60, 9, 5769, 33250, 61, 59, 3, 60, 9, 91, 19415, 3, 11537, 198, 198, 79, 86, 5235, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 7, 15885, 19415, 3, 47, 54, 35353, 25, 26933, 32, 12, 57, 64, 12, 89, 7131, 32, 12, 57, 64, 12, 89, 15, 12, 24, 60, 9, 5769, 33250, 61, 59, 3, 60, 9, 91, 19415, 3, 11537, 198, 198, 13086, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 59, 82, 9, 2, 59, 82, 9, 13086, 59, 82, 10, 26933, 62, 32, 12, 57, 64, 12, 89, 7131, 62, 32, 12, 57, 64, 12, 89, 15, 12, 24, 60, 9, 19415, 82, 9, 11537, 198, 361, 4299, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 59, 82, 9, 2, 59, 82, 9, 361, 4299, 59, 82, 10, 26933, 62, 32, 12, 57, 64, 12, 89, 7131, 62, 32, 12, 57, 64, 12, 89, 15, 12, 24, 60, 9, 19415, 82, 9, 11537, 198, 361, 358, 891, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 59, 82, 9, 2, 59, 82, 9, 361, 358, 891, 59, 82, 10, 26933, 62, 32, 12, 57, 64, 12, 89, 7131, 62, 32, 12, 57, 64, 12, 89, 15, 12, 24, 60, 9, 19415, 82, 9, 11537, 198, 17772, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 59, 82, 9, 2, 59, 82, 9, 17772, 59, 82, 9, 11537, 198, 32088, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 59, 82, 9, 2, 59, 82, 9, 32088, 59, 82, 9, 11537, 198, 18558, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 38016, 82, 28104, 2, 59, 82, 9, 18558, 59, 82, 33747, 15885, 8, 3, 11537, 628, 198, 29113, 29113, 21017, 198, 2, 198, 2, 8774, 3141, 1627, 198, 2, 198, 29113, 29113, 21017, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 422, 1822, 29572, 1330, 45751, 46677, 11, 7561, 628, 220, 537, 72, 796, 45751, 46677, 7, 1676, 70, 11639, 88, 381, 3256, 11213, 11639, 56, 2390, 43, 2393, 662, 12, 41341, 11537, 198, 220, 537, 72, 13, 2860, 62, 49140, 10786, 12, 40, 41707, 438, 17256, 3256, 1037, 11639, 4550, 40348, 3108, 3256, 2223, 11639, 33295, 11537, 198, 220, 537, 72, 13, 2860, 62, 49140, 10786, 12, 35, 41707, 438, 13086, 3256, 1037, 11639, 4550, 6937, 3256, 2223, 11639, 33295, 11537, 628, 220, 537, 72, 13, 2860, 62, 49140, 10786, 12, 88, 41707, 438, 88, 43695, 3256, 1037, 11639, 10044, 325, 575, 2390, 43, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 537, 72, 13, 2860, 62, 49140, 10786, 12, 79, 41707, 438, 3866, 36942, 3256, 1037, 11639, 11041, 662, 12, 41341, 618, 32096, 331, 43695, 3256, 2673, 11639, 8095, 62, 7942, 11537, 198, 220, 537, 72, 13, 2860, 62, 49140, 10786, 7753, 3256, 1037, 11639, 56, 2390, 43, 2393, 284, 21136, 11537, 628, 220, 26498, 796, 537, 72, 13, 29572, 62, 22046, 3419, 198, 220, 331, 29572, 62, 28758, 7, 22046, 8, 198, 220, 25064, 13, 37023, 3419, 198 ]
2.5
890
"""empty message Revision ID: 1b5bbc75de44 Revises: 1531599e3534 Create Date: 2014-01-02 20:52:28.389571 """ # revision identifiers, used by Alembic. revision = '1b5bbc75de44' down_revision = '1531599e3534' from alembic import op import sqlalchemy as sa from kozmic.models import db
[ 37811, 28920, 3275, 198, 198, 18009, 1166, 4522, 25, 352, 65, 20, 11848, 66, 2425, 2934, 2598, 198, 18009, 2696, 25, 24652, 1314, 2079, 68, 2327, 2682, 198, 16447, 7536, 25, 1946, 12, 486, 12, 2999, 1160, 25, 4309, 25, 2078, 13, 29769, 42875, 198, 198, 37811, 198, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 16, 65, 20, 11848, 66, 2425, 2934, 2598, 6, 198, 2902, 62, 260, 10178, 796, 705, 21395, 1314, 2079, 68, 2327, 2682, 6, 198, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 198, 198, 6738, 479, 8590, 9383, 13, 27530, 1330, 20613, 628, 198 ]
2.54386
114
import os import sys import attrdict import ssl import json import zipfile import random import traceback import gnupg import base64 from Crypto.Cipher import AES, PKCS1_OAEP from Crypto.PublicKey import RSA from web3.auto import w3 from eth_account.messages import defunct_hash_message from shutil import copyfile keccak256 = w3.soliditySha3 debug = True if __name__ == '__main__': sconeDir = '/scone' iexecOutDir = '/iexec_out' determinismFile = 'determinism.iexec' callbackFile = 'callback.iexec' WriteEnclaveSign(sconeDir + '/' + determinismFile) copyfile(sconeDir + '/' + callbackFile, iexecOutDir + '/' + callbackFile)
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 708, 4372, 713, 198, 11748, 264, 6649, 198, 11748, 33918, 198, 11748, 19974, 7753, 198, 11748, 4738, 198, 11748, 12854, 1891, 198, 11748, 19967, 929, 70, 198, 11748, 2779, 2414, 198, 198, 6738, 36579, 13, 34, 10803, 1330, 34329, 11, 29673, 7902, 16, 62, 23621, 8905, 198, 6738, 36579, 13, 15202, 9218, 1330, 42319, 198, 6738, 3992, 18, 13, 23736, 1330, 266, 18, 198, 6738, 4555, 62, 23317, 13, 37348, 1095, 1330, 49119, 62, 17831, 62, 20500, 198, 6738, 4423, 346, 1330, 4866, 7753, 198, 198, 365, 535, 461, 11645, 796, 266, 18, 13, 39390, 414, 2484, 64, 18, 198, 24442, 796, 6407, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 629, 505, 35277, 220, 796, 31051, 1416, 505, 6, 198, 220, 220, 220, 37941, 87, 721, 7975, 35277, 220, 796, 31051, 494, 87, 721, 62, 448, 6, 198, 220, 220, 220, 3416, 1042, 8979, 796, 705, 67, 13221, 1042, 13, 494, 87, 721, 6, 198, 220, 220, 220, 23838, 8979, 796, 705, 47423, 13, 494, 87, 721, 6, 628, 220, 220, 220, 19430, 4834, 44281, 11712, 7, 1416, 505, 35277, 1343, 31051, 6, 1343, 3416, 1042, 8979, 8, 628, 220, 220, 220, 4866, 7753, 7, 1416, 505, 35277, 1343, 31051, 6, 1343, 23838, 8979, 11, 37941, 87, 721, 7975, 35277, 1343, 31051, 6, 1343, 23838, 8979, 8, 198 ]
2.811966
234
from lightning_baselines3.off_policy_models.off_policy_model import OffPolicyModel from lightning_baselines3.off_policy_models.dqn import DQN from lightning_baselines3.off_policy_models.td3 import TD3 from lightning_baselines3.off_policy_models.ddpg import DDPG from lightning_baselines3.off_policy_models.sac import SAC
[ 6738, 14357, 62, 12093, 20655, 18, 13, 2364, 62, 30586, 62, 27530, 13, 2364, 62, 30586, 62, 19849, 1330, 3242, 36727, 17633, 198, 6738, 14357, 62, 12093, 20655, 18, 13, 2364, 62, 30586, 62, 27530, 13, 49506, 77, 1330, 360, 48, 45, 198, 6738, 14357, 62, 12093, 20655, 18, 13, 2364, 62, 30586, 62, 27530, 13, 8671, 18, 1330, 13320, 18, 198, 6738, 14357, 62, 12093, 20655, 18, 13, 2364, 62, 30586, 62, 27530, 13, 1860, 6024, 1330, 360, 6322, 38, 198, 6738, 14357, 62, 12093, 20655, 18, 13, 2364, 62, 30586, 62, 27530, 13, 30584, 1330, 311, 2246, 198 ]
3.21
100
from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical default_folds = 5 default_test_size = 0.2
[ 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 29186, 1431, 42, 37, 727, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 26791, 1330, 284, 62, 66, 2397, 12409, 198, 198, 12286, 62, 69, 10119, 796, 642, 198, 12286, 62, 9288, 62, 7857, 796, 657, 13, 17 ]
3.229508
61
""" Airmap package init code AirMapSDK Created by AirMap Team on 6/28/16. Copyright (c) 2016 AirMap, Inc. All rights reserved. """ import airdefs import connect import statusAPI import flightAPI import drone import log import telemetryAPI import alertsAPI
[ 37811, 198, 220, 317, 2533, 499, 5301, 2315, 2438, 198, 220, 3701, 13912, 10305, 42, 628, 220, 15622, 416, 3701, 13912, 4816, 319, 718, 14, 2078, 14, 1433, 13, 198, 220, 15069, 357, 66, 8, 1584, 3701, 13912, 11, 3457, 13, 1439, 2489, 10395, 13, 198, 37811, 198, 198, 11748, 257, 1447, 891, 82, 198, 11748, 2018, 198, 11748, 3722, 17614, 198, 11748, 5474, 17614, 198, 11748, 12170, 198, 11748, 2604, 198, 11748, 5735, 41935, 17614, 198, 11748, 21675, 17614, 198 ]
3.283951
81
import subprocess from re import search from .methods import config_read
[ 11748, 850, 14681, 198, 6738, 302, 1330, 2989, 198, 198, 6738, 764, 24396, 82, 1330, 4566, 62, 961, 628, 198 ]
3.8
20
'''input 3 1 1 1 2 2 2 3 3 3 27 6 3 14 159 2 6 53 58 9 79 323 84 6 2643 383 2 79 50 288 87 2 1 5 2 4 3 6 3 ''' # -*- coding: utf-8 -*- # AtCoder Beginner Contest # Problem C if __name__ == '__main__': n = int(input()) a = sorted(list(map(int, input().split()))) b = list(map(int, input().split())) c = sorted(list(map(int, input().split()))) count = 0 # See: # https://img.atcoder.jp/arc084/editorial.pdf # https://docs.python.jp/3/library/bisect.html # https://beta.atcoder.jp/contests/abc077/submissions/1740764 from bisect import bisect_left from bisect import bisect_right for number in b: a_count = bisect_left(a, number) c_count = n - bisect_right(c, number) count += a_count * c_count print(count)
[ 7061, 6, 15414, 201, 198, 18, 201, 198, 16, 352, 352, 201, 198, 17, 362, 362, 201, 198, 18, 513, 513, 201, 198, 1983, 201, 198, 201, 198, 21, 201, 198, 18, 1478, 26422, 362, 718, 7192, 201, 198, 3365, 860, 9225, 38446, 9508, 718, 201, 198, 2075, 3559, 49814, 362, 9225, 2026, 35419, 201, 198, 5774, 201, 198, 201, 198, 17, 201, 198, 16, 642, 201, 198, 17, 604, 201, 198, 18, 718, 201, 198, 18, 201, 198, 201, 198, 7061, 6, 201, 198, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 2, 1629, 34, 12342, 16623, 1008, 27297, 201, 198, 2, 20647, 327, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 299, 796, 493, 7, 15414, 28955, 201, 198, 220, 220, 220, 257, 796, 23243, 7, 4868, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 22305, 201, 198, 220, 220, 220, 275, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008, 201, 198, 220, 220, 220, 269, 796, 23243, 7, 4868, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 22305, 201, 198, 220, 220, 220, 954, 796, 657, 201, 198, 201, 198, 220, 220, 220, 1303, 4091, 25, 201, 198, 220, 220, 220, 1303, 3740, 1378, 9600, 13, 265, 66, 12342, 13, 34523, 14, 5605, 2919, 19, 14, 35352, 498, 13, 12315, 201, 198, 220, 220, 220, 1303, 3740, 1378, 31628, 13, 29412, 13, 34523, 14, 18, 14, 32016, 14, 41907, 478, 13, 6494, 201, 198, 220, 220, 220, 1303, 3740, 1378, 31361, 13, 265, 66, 12342, 13, 34523, 14, 3642, 3558, 14, 39305, 2998, 22, 14, 7266, 8481, 14, 1558, 30120, 2414, 201, 198, 220, 220, 220, 422, 47457, 478, 1330, 47457, 478, 62, 9464, 201, 198, 220, 220, 220, 422, 47457, 478, 1330, 47457, 478, 62, 3506, 201, 198, 201, 198, 220, 220, 220, 329, 1271, 287, 275, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 9127, 796, 47457, 478, 62, 9464, 7, 64, 11, 1271, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 9127, 796, 299, 532, 47457, 478, 62, 3506, 7, 66, 11, 1271, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 257, 62, 9127, 1635, 269, 62, 9127, 201, 198, 201, 198, 220, 220, 220, 3601, 7, 9127, 8, 201, 198 ]
2.054054
407
#! python3 # __author__ = "YangJiaHao" # date: 2018/3/13 if __name__ == '__main__': so = Solution() res = so.restoreIpAddresses('010010') print(res)
[ 2, 0, 21015, 18, 198, 2, 11593, 9800, 834, 796, 366, 38663, 41, 544, 39, 5488, 1, 198, 2, 3128, 25, 2864, 14, 18, 14, 1485, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 523, 796, 28186, 3419, 198, 220, 220, 220, 581, 796, 523, 13, 2118, 382, 40, 79, 4550, 16746, 10786, 486, 37187, 11537, 198, 220, 220, 220, 3601, 7, 411, 8, 198 ]
2.232877
73
# Generated by Django 3.2.7 on 2021-09-27 16:18 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 22, 319, 33448, 12, 2931, 12, 1983, 1467, 25, 1507, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import requests from bs4 import BeautifulSoup
[ 11748, 7007, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486 ]
4.090909
11
#!/usr/bin/python3 import sys diction={} for line in sys.stdin: line=line.strip() line_val=line.split(',') bowl,bat,runs,balls=line_val runs=int(runs) print(runs) balls=int(balls) key=(bowl,bat) if key in diction: diction[key][0].append(runs) diction[key][1].append(balls) else: diction[key]=[[],[]] diction[key][0].append(runs) diction[key][1].append(balls) for key in diction.keys(); diction[key][0]=sum(diction[key][0]) diction[key][1]=sum(diction[key][1]) s=sorted(diction,key=func3) s=sorted(s,key=func2) s=sorted(s,key=func1,reverse=True) for k in s: if diction[k][1]>5: print('%s,%s,%d,%d' % (k[0],k[1],diction[k][0],diction[k][1]))
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 201, 198, 11748, 25064, 201, 198, 201, 198, 67, 2867, 34758, 92, 201, 198, 201, 198, 1640, 1627, 287, 25064, 13, 19282, 259, 25, 201, 198, 197, 1370, 28, 1370, 13, 36311, 3419, 201, 198, 197, 1370, 62, 2100, 28, 1370, 13, 35312, 7, 3256, 11537, 201, 198, 197, 36859, 11, 8664, 11, 48381, 11, 21591, 28, 1370, 62, 2100, 201, 198, 197, 48381, 28, 600, 7, 48381, 8, 201, 198, 197, 4798, 7, 48381, 8, 201, 198, 197, 21591, 28, 600, 7, 21591, 8, 201, 198, 197, 2539, 16193, 36859, 11, 8664, 8, 201, 198, 361, 1994, 287, 48589, 25, 201, 198, 197, 67, 2867, 58, 2539, 7131, 15, 4083, 33295, 7, 48381, 8, 201, 198, 197, 67, 2867, 58, 2539, 7131, 16, 4083, 33295, 7, 21591, 8, 201, 198, 17772, 25, 201, 198, 197, 67, 2867, 58, 2539, 22241, 30109, 38430, 11907, 201, 198, 197, 67, 2867, 58, 2539, 7131, 15, 4083, 33295, 7, 48381, 8, 201, 198, 197, 67, 2867, 58, 2539, 7131, 16, 4083, 33295, 7, 21591, 8, 201, 198, 197, 201, 198, 201, 198, 1640, 1994, 287, 48589, 13, 13083, 9783, 201, 198, 197, 67, 2867, 58, 2539, 7131, 15, 22241, 16345, 7, 67, 2867, 58, 2539, 7131, 15, 12962, 201, 198, 197, 67, 2867, 58, 2539, 7131, 16, 22241, 16345, 7, 67, 2867, 58, 2539, 7131, 16, 12962, 201, 198, 201, 198, 82, 28, 82, 9741, 7, 67, 2867, 11, 2539, 28, 20786, 18, 8, 201, 198, 82, 28, 82, 9741, 7, 82, 11, 2539, 28, 20786, 17, 8, 201, 198, 82, 28, 82, 9741, 7, 82, 11, 2539, 28, 20786, 16, 11, 50188, 28, 17821, 8, 201, 198, 201, 198, 1640, 479, 287, 264, 25, 201, 198, 361, 48589, 58, 74, 7131, 16, 60, 29, 20, 25, 201, 198, 197, 4798, 10786, 4, 82, 11, 4, 82, 11, 4, 67, 11, 4, 67, 6, 4064, 357, 74, 58, 15, 4357, 74, 58, 16, 4357, 67, 2867, 58, 74, 7131, 15, 4357, 67, 2867, 58, 74, 7131, 16, 60, 4008, 220, 220, 220, 201, 198 ]
2
349
from django.shortcuts import render, redirect, reverse from django.template import RequestContext from django.views import View from django import http from django.contrib.auth import login, logout, mixins from django.db import DatabaseError from django_redis import get_redis_connection from django.contrib.auth import authenticate import json, re from django.conf import settings from django.core.paginator import Paginator import logging from random import randint from itsdangerous import TimedJSONWebSignatureSerializer as TOKEN from .models import User, Address from meiduo_mall.utils.views import LoginRequiredView from .utils import check_token_to_user, generate_verify_email_url from celery_tasks.email.tasks import send_verify_email from celery_tasks.sms.tasks import send_sms_code from meiduo_mall.utils.response_code import RETCODE from goods.models import SKU from carts.utils import merge_cart_cookie_to_redis from orders.models import OrderInfo logger = logging.getLogger('django') # 创建日志输出器 # Create your views here. class UsernameCountView(View): '''判断用户名是否已经注册''' class MobileCountView(View): '''判断手机号是否重复''' class LogoutView(View): '''退出登录''' class UserInfoView(mixins.LoginRequiredMixin, View): '''用户中心界面''' class EmailView(mixins.LoginRequiredMixin, View): '''添加用户邮箱''' class VerifyEmailView(View): '''激活邮箱''' class AddressView(mixins.LoginRequiredMixin, View): '''用户收获地址''' def get(self, request): '''显示用户收货地址界面''' user = request.user # 获取当前用户所有的收货地址 address_qs = Address.objects.filter(is_deleted=False, user=user) address_list = [] for address in address_qs: address_dict = { 'id': address.id, 'title': address.title, 'receiver': address.receiver, 'province_id': address.province_id, 'province': address.province.name, 'city_id': address.city_id, 'city': address.city.name, 'district_id': address.district_id, 'district': address.district.name, 'place': address.place, 'mobile': address.mobile, 'tel': address.tel, 'email': address.email, } address_list.append(address_dict) context = { 'addresses': address_list, 'default_address_id': user.default_address_id } return render(request, 'user_center_site.html', context) class CreateAddressView(LoginRequiredView): '''新增收货地址''' class UpdateDestroyAddressView(LoginRequiredView): """修改和删除""" def put(self, request, address_id): """修改地址逻辑""" # 查询要修改的地址对象 try: address = Address.objects.get(id=address_id) except Address.DoesNotExist: return http.HttpResponseForbidden('要修改的地址不存在') # 接收 json_dict = json.loads(request.body.decode()) title = json_dict.get('title') receiver = json_dict.get('receiver') province_id = json_dict.get('province_id') city_id = json_dict.get('city_id') district_id = json_dict.get('district_id') place = json_dict.get('place') mobile = json_dict.get('mobile') tel = json_dict.get('tel') email = json_dict.get('email') # 校验 if all([title, receiver, province_id, city_id, district_id, place, mobile]) is False: return http.HttpResponseForbidden('缺少必传参数') if not re.match(r'^1[3-9]\d{9}$', mobile): return http.HttpResponseForbidden('参数mobile有误') if tel: if not re.match(r'^(0[0-9]{2,3}-)?([2-9][0-9]{6,7})+(-[0-9]{1,4})?$', tel): return http.HttpResponseForbidden('参数tel有误') if email: if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return http.HttpResponseForbidden('参数email有误') # 修改 Address.objects.filter(id=address_id).update( title=title, receiver=receiver, province_id=province_id, city_id=city_id, district_id=district_id, place=place, mobile=mobile, tel=tel, email=email ) address = Address.objects.get(id=address_id) # 要重新查询一次新数据 # 把新增的地址数据响应回去 address_dict = { 'id': address.id, 'title': address.title, 'receiver': address.receiver, 'province_id': address.province_id, 'province': address.province.name, 'city_id': address.city_id, 'city': address.city.name, 'district_id': address.district_id, 'district': address.district.name, 'place': address.place, 'mobile': address.mobile, 'tel': address.tel, 'email': address.email, } return http.JsonResponse({'code': RETCODE.OK, 'errmsg': 'OK', 'address': address_dict}) # 响应 def delete(self, request, address_id): """对收货地址逻辑删除""" try: address = Address.objects.get(id=address_id) except Address.DoesNotExist: return http.HttpResponseForbidden('要删除的地址不存在') address.is_deleted = True # address.delete() address.save() return http.JsonResponse({'code': RETCODE.OK, 'errmsg': 'OK'}) class DefaultAddressView(LoginRequiredView): """设置默认地址""" def put(self, request, address_id): """实现默认地址""" try: address = Address.objects.get(id=address_id) except Address.DoesNotExist: return http.HttpResponseForbidden('要修改的地址不存在') user = request.user user.default_address = address user.save() return http.JsonResponse({'code': RETCODE.OK, 'errmsg': 'OK'}) class UpdateTitleAddressView(LoginRequiredView): """修改用户收货地址标题""" class ChangePasswordView(LoginRequiredView): """修改密码""" class UserBrowseHistory(LoginRequiredView): '''记录商品浏览记录''' class FindPasswordView(View): '''找回密码''' def get(self, request): '''渲染找回密码界面''' return render(request, 'find_password.html') class UsernameExistView(View): '''验证用户名是否存在''' class GenerateSmsCodeView(View): '''发送短信验证码''' class SMSVerifyView(View): '''验证短信验证码''' class InputPasswordView(View): '''覆盖原密码'''
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 18941, 11, 9575, 198, 6738, 42625, 14208, 13, 28243, 1330, 19390, 21947, 198, 6738, 42625, 14208, 13, 33571, 1330, 3582, 198, 6738, 42625, 14208, 1330, 2638, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 17594, 11, 2604, 448, 11, 5022, 1040, 198, 6738, 42625, 14208, 13, 9945, 1330, 24047, 12331, 198, 6738, 42625, 14208, 62, 445, 271, 1330, 651, 62, 445, 271, 62, 38659, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 8323, 5344, 198, 11748, 33918, 11, 302, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 13, 79, 363, 20900, 1330, 31525, 20900, 198, 11748, 18931, 198, 6738, 4738, 1330, 43720, 600, 198, 6738, 663, 38537, 516, 1330, 5045, 276, 40386, 13908, 11712, 1300, 32634, 7509, 355, 5390, 43959, 198, 198, 6738, 764, 27530, 1330, 11787, 11, 17917, 198, 6738, 502, 312, 20895, 62, 76, 439, 13, 26791, 13, 33571, 1330, 23093, 37374, 7680, 198, 6738, 764, 26791, 1330, 2198, 62, 30001, 62, 1462, 62, 7220, 11, 7716, 62, 332, 1958, 62, 12888, 62, 6371, 198, 6738, 18725, 1924, 62, 83, 6791, 13, 12888, 13, 83, 6791, 1330, 3758, 62, 332, 1958, 62, 12888, 198, 6738, 18725, 1924, 62, 83, 6791, 13, 82, 907, 13, 83, 6791, 1330, 3758, 62, 82, 907, 62, 8189, 198, 6738, 502, 312, 20895, 62, 76, 439, 13, 26791, 13, 26209, 62, 8189, 1330, 30826, 34, 16820, 198, 6738, 7017, 13, 27530, 1330, 14277, 52, 198, 6738, 44355, 13, 26791, 1330, 20121, 62, 26674, 62, 44453, 62, 1462, 62, 445, 271, 198, 6738, 6266, 13, 27530, 1330, 8284, 12360, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 28241, 14208, 11537, 220, 1303, 10263, 230, 249, 161, 119, 118, 33768, 98, 33232, 245, 164, 122, 241, 49035, 118, 161, 247, 101, 198, 198, 2, 13610, 534, 5009, 994, 13, 628, 198, 4871, 50069, 12332, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 26344, 97, 23877, 255, 18796, 101, 22755, 115, 28938, 235, 42468, 28938, 99, 32432, 110, 163, 119, 237, 37345, 101, 37863, 234, 7061, 6, 628, 198, 4871, 12173, 12332, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 26344, 97, 23877, 255, 33699, 233, 17312, 118, 20998, 115, 42468, 28938, 99, 34932, 235, 13783, 235, 7061, 6, 628, 628, 198, 4871, 5972, 448, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 34460, 222, 49035, 118, 163, 247, 119, 37605, 243, 7061, 6, 628, 198, 4871, 11787, 12360, 7680, 7, 19816, 1040, 13, 47790, 37374, 35608, 259, 11, 3582, 2599, 198, 220, 220, 220, 705, 7061, 18796, 101, 22755, 115, 40792, 33232, 225, 45911, 234, 165, 251, 95, 7061, 6, 628, 198, 4871, 9570, 7680, 7, 19816, 1040, 13, 47790, 37374, 35608, 259, 11, 3582, 2599, 198, 220, 220, 220, 705, 7061, 162, 115, 119, 27950, 254, 18796, 101, 22755, 115, 165, 224, 106, 163, 106, 109, 7061, 6, 628, 198, 4871, 49899, 15333, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 162, 123, 222, 162, 112, 119, 165, 224, 106, 163, 106, 109, 7061, 6, 628, 198, 4871, 17917, 7680, 7, 19816, 1040, 13, 47790, 37374, 35608, 259, 11, 3582, 2599, 198, 220, 220, 220, 705, 7061, 18796, 101, 22755, 115, 162, 242, 114, 164, 236, 115, 28839, 108, 161, 251, 222, 7061, 6, 198, 220, 220, 220, 825, 651, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 23626, 122, 163, 97, 118, 18796, 101, 22755, 115, 162, 242, 114, 164, 112, 100, 28839, 108, 161, 251, 222, 45911, 234, 165, 251, 95, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 2581, 13, 7220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 37605, 241, 30298, 235, 18796, 101, 22755, 115, 33699, 222, 17312, 231, 21410, 162, 242, 114, 164, 112, 100, 28839, 108, 161, 251, 222, 198, 220, 220, 220, 220, 220, 220, 220, 2209, 62, 48382, 796, 17917, 13, 48205, 13, 24455, 7, 271, 62, 2934, 33342, 28, 25101, 11, 2836, 28, 7220, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2209, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2209, 287, 2209, 62, 48382, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 2209, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 2209, 13, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 39729, 10354, 2209, 13, 260, 39729, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15234, 924, 62, 312, 10354, 2209, 13, 15234, 924, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15234, 924, 10354, 2209, 13, 15234, 924, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19205, 62, 312, 10354, 2209, 13, 19205, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19205, 10354, 2209, 13, 19205, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17080, 2012, 62, 312, 10354, 2209, 13, 17080, 2012, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17080, 2012, 10354, 2209, 13, 17080, 2012, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5372, 10354, 2209, 13, 5372, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24896, 10354, 2209, 13, 24896, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37524, 10354, 2209, 13, 37524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12888, 10354, 2209, 13, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 62, 4868, 13, 33295, 7, 21975, 62, 11600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2860, 16746, 10354, 2209, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 62, 21975, 62, 312, 10354, 2836, 13, 12286, 62, 21975, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 7220, 62, 16159, 62, 15654, 13, 6494, 3256, 4732, 8, 628, 198, 4871, 13610, 20231, 7680, 7, 47790, 37374, 7680, 2599, 198, 220, 220, 220, 705, 7061, 23877, 108, 161, 95, 252, 162, 242, 114, 164, 112, 100, 28839, 108, 161, 251, 222, 7061, 6, 628, 198, 4871, 10133, 49174, 20231, 7680, 7, 47790, 37374, 7680, 2599, 198, 220, 220, 220, 37227, 46479, 106, 162, 242, 117, 161, 240, 234, 26344, 254, 165, 247, 97, 37811, 628, 220, 220, 220, 825, 1234, 7, 944, 11, 2581, 11, 2209, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46479, 106, 162, 242, 117, 28839, 108, 161, 251, 222, 34460, 119, 164, 122, 239, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 253, 98, 46237, 95, 17358, 223, 46479, 106, 162, 242, 117, 21410, 28839, 108, 161, 251, 222, 43380, 117, 164, 109, 94, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 796, 17917, 13, 48205, 13, 1136, 7, 312, 28, 21975, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 17917, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 43481, 31077, 1890, 37978, 10786, 17358, 223, 46479, 106, 162, 242, 117, 21410, 28839, 108, 161, 251, 222, 38834, 27764, 246, 28839, 101, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 236, 98, 162, 242, 114, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 11600, 796, 33918, 13, 46030, 7, 25927, 13, 2618, 13, 12501, 1098, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 33918, 62, 11600, 13, 1136, 10786, 7839, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 9733, 796, 33918, 62, 11600, 13, 1136, 10786, 260, 39729, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8473, 62, 312, 796, 33918, 62, 11600, 13, 1136, 10786, 15234, 924, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 312, 796, 33918, 62, 11600, 13, 1136, 10786, 19205, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4783, 62, 312, 796, 33918, 62, 11600, 13, 1136, 10786, 17080, 2012, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1295, 796, 33918, 62, 11600, 13, 1136, 10786, 5372, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5175, 796, 33918, 62, 11600, 13, 1136, 10786, 24896, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 13632, 796, 33918, 62, 11600, 13, 1136, 10786, 37524, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3053, 796, 33918, 62, 11600, 13, 1136, 10786, 12888, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 254, 94, 165, 103, 234, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 26933, 7839, 11, 9733, 11, 8473, 62, 312, 11, 1748, 62, 312, 11, 4783, 62, 312, 11, 1295, 11, 5175, 12962, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 43481, 31077, 1890, 37978, 10786, 163, 120, 118, 22887, 239, 33232, 227, 27670, 254, 20998, 224, 46763, 108, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 302, 13, 15699, 7, 81, 6, 61, 16, 58, 18, 12, 24, 60, 59, 67, 90, 24, 92, 3, 3256, 5175, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 43481, 31077, 1890, 37978, 10786, 20998, 224, 46763, 108, 24896, 17312, 231, 46237, 107, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 13632, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 302, 13, 15699, 7, 81, 6, 61, 7, 15, 58, 15, 12, 24, 60, 90, 17, 11, 18, 92, 12, 19427, 26933, 17, 12, 24, 7131, 15, 12, 24, 60, 90, 21, 11, 22, 30072, 10, 32590, 58, 15, 12, 24, 60, 90, 16, 11, 19, 92, 19427, 3, 3256, 13632, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 43481, 31077, 1890, 37978, 10786, 20998, 224, 46763, 108, 37524, 17312, 231, 46237, 107, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 302, 13, 15699, 7, 81, 6, 61, 58, 64, 12, 89, 15, 12, 24, 7131, 59, 86, 17405, 41441, 60, 9, 31, 58, 64, 12, 89, 15, 12, 24, 41441, 60, 33747, 59, 3693, 64, 12, 89, 60, 90, 17, 11, 20, 92, 19953, 16, 11, 17, 92, 3, 3256, 3053, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 43481, 31077, 1890, 37978, 10786, 20998, 224, 46763, 108, 12888, 17312, 231, 46237, 107, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 46479, 106, 162, 242, 117, 198, 220, 220, 220, 220, 220, 220, 220, 17917, 13, 48205, 13, 24455, 7, 312, 28, 21975, 62, 312, 737, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9733, 28, 260, 39729, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8473, 62, 312, 28, 15234, 924, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 312, 28, 19205, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4783, 62, 312, 28, 17080, 2012, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1295, 28, 5372, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5175, 28, 24896, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13632, 28, 37524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 28, 12888, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2209, 796, 17917, 13, 48205, 13, 1136, 7, 312, 28, 21975, 62, 312, 8, 220, 1303, 5525, 99, 223, 34932, 235, 23877, 108, 162, 253, 98, 46237, 95, 31660, 162, 105, 94, 23877, 108, 46763, 108, 162, 235, 106, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 232, 232, 23877, 108, 161, 95, 252, 21410, 28839, 108, 161, 251, 222, 46763, 108, 162, 235, 106, 161, 241, 235, 41753, 242, 32368, 252, 43889, 119, 198, 220, 220, 220, 220, 220, 220, 220, 2209, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 2209, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 2209, 13, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 39729, 10354, 2209, 13, 260, 39729, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15234, 924, 62, 312, 10354, 2209, 13, 15234, 924, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15234, 924, 10354, 2209, 13, 15234, 924, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19205, 62, 312, 10354, 2209, 13, 19205, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19205, 10354, 2209, 13, 19205, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17080, 2012, 62, 312, 10354, 2209, 13, 17080, 2012, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17080, 2012, 10354, 2209, 13, 17080, 2012, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5372, 10354, 2209, 13, 5372, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24896, 10354, 2209, 13, 24896, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37524, 10354, 2209, 13, 37524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12888, 10354, 2209, 13, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 41, 1559, 31077, 15090, 6, 8189, 10354, 30826, 34, 16820, 13, 11380, 11, 705, 8056, 19662, 10354, 705, 11380, 3256, 705, 21975, 10354, 2209, 62, 11600, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 241, 235, 41753, 242, 628, 220, 220, 220, 825, 12233, 7, 944, 11, 2581, 11, 2209, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43380, 117, 162, 242, 114, 164, 112, 100, 28839, 108, 161, 251, 222, 34460, 119, 164, 122, 239, 26344, 254, 165, 247, 97, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 796, 17917, 13, 48205, 13, 1136, 7, 312, 28, 21975, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 17917, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 43481, 31077, 1890, 37978, 10786, 17358, 223, 26344, 254, 165, 247, 97, 21410, 28839, 108, 161, 251, 222, 38834, 27764, 246, 28839, 101, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2209, 13, 271, 62, 2934, 33342, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2209, 13, 33678, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2209, 13, 21928, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 41, 1559, 31077, 15090, 6, 8189, 10354, 30826, 34, 16820, 13, 11380, 11, 705, 8056, 19662, 10354, 705, 11380, 6, 30072, 628, 198, 4871, 15161, 20231, 7680, 7, 47790, 37374, 7680, 2599, 198, 220, 220, 220, 37227, 164, 106, 122, 163, 121, 106, 165, 119, 246, 164, 106, 97, 28839, 108, 161, 251, 222, 37811, 628, 220, 220, 220, 825, 1234, 7, 944, 11, 2581, 11, 2209, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22522, 252, 163, 236, 108, 165, 119, 246, 164, 106, 97, 28839, 108, 161, 251, 222, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 796, 17917, 13, 48205, 13, 1136, 7, 312, 28, 21975, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 17917, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 43481, 31077, 1890, 37978, 10786, 17358, 223, 46479, 106, 162, 242, 117, 21410, 28839, 108, 161, 251, 222, 38834, 27764, 246, 28839, 101, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 2581, 13, 7220, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 12286, 62, 21975, 796, 2209, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 21928, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 13, 41, 1559, 31077, 15090, 6, 8189, 10354, 30826, 34, 16820, 13, 11380, 11, 705, 8056, 19662, 10354, 705, 11380, 6, 30072, 628, 198, 4871, 10133, 19160, 20231, 7680, 7, 47790, 37374, 7680, 2599, 198, 220, 220, 220, 37227, 46479, 106, 162, 242, 117, 18796, 101, 22755, 115, 162, 242, 114, 164, 112, 100, 28839, 108, 161, 251, 222, 43718, 229, 165, 95, 246, 37811, 628, 198, 4871, 9794, 35215, 7680, 7, 47790, 37374, 7680, 2599, 198, 220, 220, 220, 37227, 46479, 106, 162, 242, 117, 43380, 228, 163, 254, 223, 37811, 628, 198, 198, 4871, 11787, 32635, 325, 18122, 7, 47790, 37374, 7680, 2599, 198, 220, 220, 220, 705, 7061, 164, 106, 108, 37605, 243, 161, 243, 228, 161, 241, 223, 38184, 237, 164, 100, 42062, 106, 108, 37605, 243, 7061, 6, 628, 628, 198, 4871, 9938, 35215, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 33699, 122, 32368, 252, 43380, 228, 163, 254, 223, 7061, 6, 628, 220, 220, 220, 825, 651, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 162, 116, 110, 162, 253, 241, 33699, 122, 32368, 252, 43380, 228, 163, 254, 223, 45911, 234, 165, 251, 95, 7061, 6, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 19796, 62, 28712, 13, 6494, 11537, 628, 198, 4871, 50069, 3109, 396, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 165, 103, 234, 46237, 223, 18796, 101, 22755, 115, 28938, 235, 42468, 28938, 99, 27764, 246, 28839, 101, 7061, 6, 628, 198, 4871, 2980, 378, 50, 907, 10669, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 20998, 239, 34460, 223, 163, 253, 255, 46479, 94, 165, 103, 234, 46237, 223, 163, 254, 223, 7061, 6, 628, 198, 4871, 29287, 13414, 1958, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 165, 103, 234, 46237, 223, 163, 253, 255, 46479, 94, 165, 103, 234, 46237, 223, 163, 254, 223, 7061, 6, 628, 198, 4871, 23412, 35215, 7680, 7, 7680, 2599, 198, 220, 220, 220, 705, 7061, 17358, 228, 33566, 244, 43889, 253, 43380, 228, 163, 254, 223, 7061, 6, 198 ]
1.890415
3,422
import Rhino.Geometry as rg import math # grasshoppper variables # geometric variables base_points normals layer_count layer_height # pattern variables min_max_val period phase_shift base_layer_set = [] for i, pt in enumerate(base_points): local_pt = rg.Point3d(pt.X, pt.Y, 0.0) base_layer_set.append(PointWithNormal(local_pt, normals[i])) print(base_layer_set) curve_list = []
[ 11748, 47759, 13, 10082, 15748, 355, 48670, 198, 11748, 10688, 198, 198, 2, 8701, 8873, 381, 525, 9633, 198, 198, 2, 38445, 9633, 198, 8692, 62, 13033, 198, 27237, 874, 198, 29289, 62, 9127, 198, 29289, 62, 17015, 198, 198, 2, 3912, 9633, 198, 1084, 62, 9806, 62, 2100, 198, 41007, 198, 40715, 62, 30846, 198, 198, 8692, 62, 29289, 62, 2617, 796, 17635, 198, 198, 1640, 1312, 11, 42975, 287, 27056, 378, 7, 8692, 62, 13033, 2599, 628, 220, 220, 220, 1957, 62, 457, 796, 48670, 13, 12727, 18, 67, 7, 457, 13, 55, 11, 42975, 13, 56, 11, 657, 13, 15, 8, 628, 220, 220, 220, 2779, 62, 29289, 62, 2617, 13, 33295, 7, 12727, 3152, 26447, 7, 12001, 62, 457, 11, 2593, 874, 58, 72, 60, 4008, 198, 198, 4798, 7, 8692, 62, 29289, 62, 2617, 8, 198, 198, 22019, 303, 62, 4868, 796, 17635, 198 ]
2.651007
149
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import sys import unittest import numpy as np import oneflow as flow import oneflow.unittest rank = flow.env.get_rank() @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") @flow.unittest.skip_unless_1n4d() if __name__ == "__main__": unittest.main()
[ 37811, 198, 15269, 12131, 383, 1881, 37535, 46665, 13, 1439, 2489, 10395, 13, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 555, 715, 395, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 530, 11125, 355, 5202, 198, 11748, 530, 11125, 13, 403, 715, 395, 628, 198, 43027, 796, 5202, 13, 24330, 13, 1136, 62, 43027, 3419, 628, 198, 198, 31, 403, 715, 395, 13, 48267, 1532, 7, 418, 13, 1136, 24330, 7203, 11651, 3697, 3913, 62, 51, 6465, 62, 36037, 62, 1340, 11319, 12340, 366, 8807, 1332, 42804, 2663, 4943, 198, 31, 11125, 13, 403, 715, 395, 13, 48267, 62, 25252, 62, 16, 77, 19, 67, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.327068
266