content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import subprocess import dendropy from shutil import copyfile if snakemake.params.enabled: iqtree_cmd = "iqtree --quiet -s " + snakemake.input.alignment + " -t " + snakemake.input.start_tree + \ " -T " + str(snakemake.threads) + " --prefix " + snakemake.params.prefix if snakemake.params.mode == "full": iqtree_cmd += " -m " + snakemake.params.model elif snakemake.params.mode == "fast": iqtree_cmd += " --fast" subprocess.run(iqtree_cmd, shell=True, check=True) else: copyfile(snakemake.input.start_tree, snakemake.output.unrooted) tree = dendropy.Tree.get(path=snakemake.output.unrooted, schema="newick") tree.reroot_at_midpoint(update_bipartitions=True, suppress_unifurcations=False) tree.reroot_at_midpoint(update_bipartitions=True, suppress_unifurcations=False) tree.write(path=str(snakemake.output.rooted), schema="newick", suppress_rooting=True, unquoted_underscores=True)
[ 11748, 850, 14681, 198, 11748, 288, 437, 28338, 198, 6738, 4423, 346, 1330, 4866, 7753, 198, 198, 361, 17522, 15883, 13, 37266, 13, 25616, 25, 198, 220, 220, 220, 1312, 80, 21048, 62, 28758, 796, 366, 25011, 21048, 1377, 39624, 532, 82, 366, 1343, 17522, 15883, 13, 15414, 13, 282, 16747, 1343, 366, 532, 83, 366, 1343, 17522, 15883, 13, 15414, 13, 9688, 62, 21048, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 532, 51, 366, 1343, 965, 7, 16184, 539, 15883, 13, 16663, 82, 8, 1343, 366, 1377, 40290, 366, 1343, 17522, 15883, 13, 37266, 13, 40290, 198, 220, 220, 220, 611, 17522, 15883, 13, 37266, 13, 14171, 6624, 366, 12853, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 80, 21048, 62, 28758, 15853, 366, 532, 76, 366, 1343, 17522, 15883, 13, 37266, 13, 19849, 198, 220, 220, 220, 1288, 361, 17522, 15883, 13, 37266, 13, 14171, 6624, 366, 7217, 1298, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 80, 21048, 62, 28758, 15853, 366, 1377, 7217, 1, 628, 220, 220, 220, 850, 14681, 13, 5143, 7, 25011, 21048, 62, 28758, 11, 7582, 28, 17821, 11, 2198, 28, 17821, 8, 198, 17772, 25, 198, 220, 220, 220, 4866, 7753, 7, 16184, 539, 15883, 13, 15414, 13, 9688, 62, 21048, 11, 17522, 15883, 13, 22915, 13, 403, 305, 5191, 8, 198, 198, 21048, 796, 288, 437, 28338, 13, 27660, 13, 1136, 7, 6978, 28, 16184, 539, 15883, 13, 22915, 13, 403, 305, 5191, 11, 32815, 2625, 3605, 624, 4943, 198, 21048, 13, 260, 15763, 62, 265, 62, 13602, 4122, 7, 19119, 62, 65, 541, 433, 1756, 28, 17821, 11, 18175, 62, 403, 361, 333, 66, 602, 28, 25101, 8, 198, 21048, 13, 260, 15763, 62, 265, 62, 13602, 4122, 7, 19119, 62, 65, 541, 433, 1756, 28, 17821, 11, 18175, 62, 403, 361, 333, 66, 602, 28, 25101, 8, 198, 21048, 13, 13564, 7, 6978, 28, 2536, 7, 16184, 539, 15883, 13, 22915, 13, 305, 5191, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32815, 2625, 3605, 624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18175, 62, 305, 10720, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 421, 5191, 62, 41116, 66, 2850, 28, 17821, 8 ]
2.42394
401
import os import time import calculate from github import Github from django.conf import settings from calaccess_raw import get_model_list from calaccess_raw.management.commands import CalAccessCommand from django.contrib.humanize.templatetags.humanize import intcomma
[ 11748, 28686, 198, 11748, 640, 198, 11748, 15284, 198, 6738, 33084, 1330, 38994, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 2386, 15526, 62, 1831, 1330, 651, 62, 19849, 62, 4868, 198, 6738, 2386, 15526, 62, 1831, 13, 27604, 13, 9503, 1746, 1330, 2199, 15457, 21575, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 10734, 1096, 13, 11498, 489, 265, 316, 3775, 13, 10734, 1096, 1330, 493, 785, 2611, 628 ]
3.75
72
L = [11,22,66,22,11,44,55,66,88,77,22,11,44,22,33,77,55,44] print('The given list is: ') print(L) D = {} for item in L: if item not in D: D[item] = L.count(item) print('Frequency of different items is:') print(D)
[ 43, 796, 685, 1157, 11, 1828, 11, 2791, 11, 1828, 11, 1157, 11, 2598, 11, 2816, 11, 2791, 11, 3459, 11, 3324, 11, 1828, 11, 1157, 11, 2598, 11, 1828, 11, 2091, 11, 3324, 11, 2816, 11, 2598, 60, 198, 4798, 10786, 464, 1813, 1351, 318, 25, 705, 8, 198, 4798, 7, 43, 8, 198, 35, 796, 23884, 198, 1640, 2378, 287, 406, 25, 198, 361, 2378, 407, 287, 360, 25, 198, 35, 58, 9186, 60, 796, 406, 13, 9127, 7, 9186, 8, 198, 4798, 10786, 37, 28707, 286, 1180, 3709, 318, 25, 11537, 198, 4798, 7, 35, 8, 198 ]
2.13
100
""" Data model and data access methods for Candles. """ import pytz from core.models.instruments import Instrument from django.db import models class Candle(models.Model): """ Candle data model. """ # pylint: disable=too-many-instance-attributes instrument = models.ForeignKey(Instrument, on_delete=models.PROTECT) start_time = models.DateTimeField() volume = models.PositiveIntegerField() granularity = models.CharField(max_length=5) open_bid = models.DecimalField(max_digits=12, decimal_places=6) high_bid = models.DecimalField(max_digits=12, decimal_places=6) low_bid = models.DecimalField(max_digits=12, decimal_places=6) close_bid = models.DecimalField(max_digits=12, decimal_places=6) open_ask = models.DecimalField(max_digits=12, decimal_places=6) high_ask = models.DecimalField(max_digits=12, decimal_places=6) low_ask = models.DecimalField(max_digits=12, decimal_places=6) close_ask = models.DecimalField(max_digits=12, decimal_places=6) def create_one(**kwargs): """ Create a Candle object with the given fields. Args: Named arguments. instrument: Instrument object. start_time: Datetime object. Candle start time. volume: Positive integer. granularity: String. 'D' for Daily. bid: Dictionary with 'o', 'h', 'l', 'c' ask: Dictionary with 'o', 'h', 'l', 'c' Returns: Candle object with the given fields. """ if 'bid' in kwargs: bid = kwargs.get('bid') del kwargs['bid'] if bid is not None: kwargs['open_bid'] = bid.get('o') kwargs['high_bid'] = bid.get('h') kwargs['low_bid'] = bid.get('l') kwargs['close_bid'] = bid.get('c') if 'ask' in kwargs: ask = kwargs.get('ask') del kwargs['ask'] if ask is not None: kwargs['open_ask'] = ask.get('o') kwargs['high_ask'] = ask.get('h') kwargs['low_ask'] = ask.get('l') kwargs['close_ask'] = ask.get('c') if 'start_time' in kwargs: kwargs['start_time'] = add_timezone(kwargs.get('start_time')) return Candle(**kwargs) def delete_all(): """ Delete all candles in the database. Args: None. """ return Candle.objects.all().delete() def get_all(order_by): """ Returns all candles in the database. Args: order_by: List of strings to order the candles by. Returns: List of all Candle objects (QuerySet). """ return Candle.objects.all().order_by(*order_by) def get_candles(**kwargs): """ Retrieve a list of candles with given conditions. Args: kwargs: Named arguments for filtering candles. instrument: Instrument object. Filter by this instrument. start: Datetime. Filter candles with later time than 'start'. end: Datetime. Filter candles with earlier time than 'end'. granularity: String. Granularity of the querying candle. order_by: String. Space delimited string of fields to order by. Returns: List of Candle objects satisfying the conditions (QuerySet). """ candles = Candle.objects.all() if kwargs.get('instrument') is not None: candles = candles.filter(instrument=kwargs.get('instrument')) if kwargs.get('start') is not None: start_time = add_timezone(kwargs.get('start')) candles = candles.filter(start_time__gte=start_time) if kwargs.get('end') is not None: end_time = add_timezone(kwargs.get('end')) candles = candles.filter(start_time__lte=end_time) if kwargs.get('granularity') is not None: candles = candles.filter(granularity=kwargs.get('granularity')) if kwargs.get('order_by') is not None: candles = candles.order_by(kwargs.get('order_by')) return candles def get_last(**kwargs): """ Retrieve the latest candle of given instrument and granularity. Args: kwargs: Named arguments for filtering candles. instrument: Instrument object. granularity: String. The granularity of the candles. before: Datetime. Get the last candle before this time. Returns: Candle object if exists or None. """ candles = get_candles( instrument=kwargs.get('instrument'), granularity=kwargs.get('granularity'), end=kwargs.get('before'), order_by='-start_time') if candles: return candles[0] def add_timezone(time_record): """ Add a default America/New_York timezone info to a datetime object. Args: time_record: Datetime object. Returns: Datetime object with a timezone if time_record did not have tzinfo, otherwise return time_record itself. """ if time_record.tzname() is None: return time_record.replace(tzinfo=pytz.timezone('America/New_York')) return time_record def insert_many(candles): """ Bulk insert a list of candles. Args: candles: List of Candle objects to be inserted. """ Candle.objects.bulk_create(candles)
[ 37811, 6060, 2746, 290, 1366, 1895, 5050, 329, 15518, 829, 13, 198, 37811, 198, 11748, 12972, 22877, 198, 6738, 4755, 13, 27530, 13, 259, 2536, 2886, 1330, 42410, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 628, 198, 4871, 44973, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 44973, 1366, 2746, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 18820, 12, 21834, 12, 39098, 12, 1078, 7657, 628, 220, 220, 220, 8875, 796, 4981, 13, 33616, 9218, 7, 818, 43872, 11, 319, 62, 33678, 28, 27530, 13, 4805, 2394, 9782, 8, 198, 220, 220, 220, 923, 62, 2435, 796, 4981, 13, 10430, 7575, 15878, 3419, 198, 220, 220, 220, 6115, 796, 4981, 13, 21604, 1800, 46541, 15878, 3419, 628, 220, 220, 220, 19468, 33737, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 20, 8, 628, 220, 220, 220, 1280, 62, 14065, 796, 4981, 13, 10707, 4402, 15878, 7, 9806, 62, 12894, 896, 28, 1065, 11, 32465, 62, 23625, 28, 21, 8, 198, 220, 220, 220, 1029, 62, 14065, 796, 4981, 13, 10707, 4402, 15878, 7, 9806, 62, 12894, 896, 28, 1065, 11, 32465, 62, 23625, 28, 21, 8, 198, 220, 220, 220, 1877, 62, 14065, 796, 4981, 13, 10707, 4402, 15878, 7, 9806, 62, 12894, 896, 28, 1065, 11, 32465, 62, 23625, 28, 21, 8, 198, 220, 220, 220, 1969, 62, 14065, 796, 4981, 13, 10707, 4402, 15878, 7, 9806, 62, 12894, 896, 28, 1065, 11, 32465, 62, 23625, 28, 21, 8, 628, 220, 220, 220, 1280, 62, 2093, 796, 4981, 13, 10707, 4402, 15878, 7, 9806, 62, 12894, 896, 28, 1065, 11, 32465, 62, 23625, 28, 21, 8, 198, 220, 220, 220, 1029, 62, 2093, 796, 4981, 13, 10707, 4402, 15878, 7, 9806, 62, 12894, 896, 28, 1065, 11, 32465, 62, 23625, 28, 21, 8, 198, 220, 220, 220, 1877, 62, 2093, 796, 4981, 13, 10707, 4402, 15878, 7, 9806, 62, 12894, 896, 28, 1065, 11, 32465, 62, 23625, 28, 21, 8, 198, 220, 220, 220, 1969, 62, 2093, 796, 4981, 13, 10707, 4402, 15878, 7, 9806, 62, 12894, 896, 28, 1065, 11, 32465, 62, 23625, 28, 21, 8, 628, 198, 4299, 2251, 62, 505, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 13610, 257, 44973, 2134, 351, 262, 1813, 7032, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34441, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8875, 25, 42410, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 25, 16092, 8079, 2134, 13, 44973, 923, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6115, 25, 33733, 18253, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19468, 33737, 25, 10903, 13, 705, 35, 6, 329, 6714, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8406, 25, 28261, 351, 705, 78, 3256, 705, 71, 3256, 705, 75, 3256, 705, 66, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1265, 25, 28261, 351, 705, 78, 3256, 705, 71, 3256, 705, 75, 3256, 705, 66, 6, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44973, 2134, 351, 262, 1813, 7032, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 705, 14065, 6, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8406, 796, 479, 86, 22046, 13, 1136, 10786, 14065, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 479, 86, 22046, 17816, 14065, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8406, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 9654, 62, 14065, 20520, 796, 8406, 13, 1136, 10786, 78, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 8929, 62, 14065, 20520, 796, 8406, 13, 1136, 10786, 71, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 9319, 62, 14065, 20520, 796, 8406, 13, 1136, 10786, 75, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 19836, 62, 14065, 20520, 796, 8406, 13, 1136, 10786, 66, 11537, 628, 220, 220, 220, 611, 705, 2093, 6, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1265, 796, 479, 86, 22046, 13, 1136, 10786, 2093, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 479, 86, 22046, 17816, 2093, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1265, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 9654, 62, 2093, 20520, 796, 1265, 13, 1136, 10786, 78, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 8929, 62, 2093, 20520, 796, 1265, 13, 1136, 10786, 71, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 9319, 62, 2093, 20520, 796, 1265, 13, 1136, 10786, 75, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 19836, 62, 2093, 20520, 796, 1265, 13, 1136, 10786, 66, 11537, 628, 220, 220, 220, 611, 705, 9688, 62, 2435, 6, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 9688, 62, 2435, 20520, 796, 751, 62, 2435, 11340, 7, 46265, 22046, 13, 1136, 10786, 9688, 62, 2435, 6, 4008, 628, 220, 220, 220, 1441, 44973, 7, 1174, 46265, 22046, 8, 628, 198, 4299, 12233, 62, 439, 33529, 198, 220, 220, 220, 37227, 23520, 477, 32268, 287, 262, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 44973, 13, 48205, 13, 439, 22446, 33678, 3419, 628, 198, 4299, 651, 62, 439, 7, 2875, 62, 1525, 2599, 198, 220, 220, 220, 37227, 16409, 477, 32268, 287, 262, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 1525, 25, 7343, 286, 13042, 284, 1502, 262, 32268, 416, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 477, 44973, 5563, 357, 20746, 7248, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 44973, 13, 48205, 13, 439, 22446, 2875, 62, 1525, 46491, 2875, 62, 1525, 8, 628, 198, 4299, 651, 62, 46188, 829, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 4990, 30227, 257, 1351, 286, 32268, 351, 1813, 3403, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 25, 34441, 7159, 329, 25431, 32268, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8875, 25, 42410, 2134, 13, 25853, 416, 428, 8875, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 25, 16092, 8079, 13, 25853, 32268, 351, 1568, 640, 621, 705, 9688, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 25, 16092, 8079, 13, 25853, 32268, 351, 2961, 640, 621, 705, 437, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19468, 33737, 25, 10903, 13, 17113, 33737, 286, 262, 42517, 1112, 26839, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 1525, 25, 10903, 13, 4687, 46728, 863, 4731, 286, 7032, 284, 1502, 416, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 44973, 5563, 19201, 262, 3403, 357, 20746, 7248, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 32268, 796, 44973, 13, 48205, 13, 439, 3419, 198, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 259, 43872, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 32268, 796, 32268, 13, 24455, 7, 259, 43872, 28, 46265, 22046, 13, 1136, 10786, 259, 43872, 6, 4008, 198, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 9688, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 751, 62, 2435, 11340, 7, 46265, 22046, 13, 1136, 10786, 9688, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 32268, 796, 32268, 13, 24455, 7, 9688, 62, 2435, 834, 70, 660, 28, 9688, 62, 2435, 8, 198, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 437, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 751, 62, 2435, 11340, 7, 46265, 22046, 13, 1136, 10786, 437, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 32268, 796, 32268, 13, 24455, 7, 9688, 62, 2435, 834, 75, 660, 28, 437, 62, 2435, 8, 198, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 46324, 33737, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 32268, 796, 32268, 13, 24455, 7, 46324, 33737, 28, 46265, 22046, 13, 1136, 10786, 46324, 33737, 6, 4008, 198, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 2875, 62, 1525, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 32268, 796, 32268, 13, 2875, 62, 1525, 7, 46265, 22046, 13, 1136, 10786, 2875, 62, 1525, 6, 4008, 628, 220, 220, 220, 1441, 32268, 628, 198, 4299, 651, 62, 12957, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 4990, 30227, 262, 3452, 26839, 286, 1813, 8875, 290, 19468, 33737, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 25, 34441, 7159, 329, 25431, 32268, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8875, 25, 42410, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19468, 33737, 25, 10903, 13, 383, 19468, 33737, 286, 262, 32268, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 878, 25, 16092, 8079, 13, 3497, 262, 938, 26839, 878, 428, 640, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44973, 2134, 611, 7160, 393, 6045, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 32268, 796, 651, 62, 46188, 829, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8875, 28, 46265, 22046, 13, 1136, 10786, 259, 43872, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19468, 33737, 28, 46265, 22046, 13, 1136, 10786, 46324, 33737, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 886, 28, 46265, 22046, 13, 1136, 10786, 19052, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 1525, 11639, 12, 9688, 62, 2435, 11537, 628, 220, 220, 220, 611, 32268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 32268, 58, 15, 60, 628, 198, 4299, 751, 62, 2435, 11340, 7, 2435, 62, 22105, 2599, 198, 220, 220, 220, 37227, 3060, 257, 4277, 2253, 14, 3791, 62, 49278, 640, 11340, 7508, 284, 257, 4818, 8079, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 22105, 25, 16092, 8079, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16092, 8079, 2134, 351, 257, 640, 11340, 611, 640, 62, 22105, 750, 407, 423, 256, 89, 10951, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4306, 1441, 640, 62, 22105, 2346, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 640, 62, 22105, 13, 22877, 3672, 3419, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 640, 62, 22105, 13, 33491, 7, 22877, 10951, 28, 9078, 22877, 13, 2435, 11340, 10786, 18165, 14, 3791, 62, 49278, 6, 4008, 628, 220, 220, 220, 1441, 640, 62, 22105, 628, 198, 4299, 7550, 62, 21834, 7, 46188, 829, 2599, 198, 220, 220, 220, 37227, 47900, 7550, 257, 1351, 286, 32268, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32268, 25, 7343, 286, 44973, 5563, 284, 307, 18846, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44973, 13, 48205, 13, 65, 12171, 62, 17953, 7, 46188, 829, 8, 198 ]
2.368984
2,244
#!/usr/bin/env python # coding: utf-8 import itertools import random import numpy as np import sys, os import pandas as pd import torch from torchsummary import summary from torchtext import data import torch.nn as nn import torch.utils.data from torch.utils.data import Dataset, TensorDataset,DataLoader, RandomSampler from torch.utils.tensorboard import SummaryWriter import torchvision import torch.nn.functional as F from sklearn.metrics import roc_auc_score, classification_report, confusion_matrix from tqdm import tqdm, tqdm_notebook import warnings warnings.filterwarnings(action='once') import pickle import shutil import time import matplotlib.pyplot as plt import tensorflow as tf # Import transformers specific packages from transformers import BertTokenizer, BertModel, BertConfig from transformers import BertForSequenceClassification, BertForTokenClassification from transformers import AdamW,get_linear_schedule_with_warmup, pipeline # Import package for data parallelism to train on multi-GPU machines from models.Transformers.parallel import DataParallelModel, DataParallelCriterion # Check if cuda is available # Set the device and empty cache device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device =='cuda': from apex import amp torch.cuda.empty_cache() torch.backends.cudnn.deterministic = True # Class for model training and inference
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 11748, 340, 861, 10141, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 11, 28686, 198, 11748, 19798, 292, 355, 279, 67, 220, 198, 11748, 28034, 198, 6738, 28034, 49736, 1330, 10638, 198, 6738, 28034, 5239, 1330, 1366, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 26791, 13, 7890, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 11, 309, 22854, 27354, 292, 316, 11, 6601, 17401, 11, 14534, 16305, 20053, 198, 6738, 28034, 13, 26791, 13, 83, 22854, 3526, 1330, 21293, 34379, 198, 11748, 28034, 10178, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 686, 66, 62, 14272, 62, 26675, 11, 17923, 62, 13116, 11, 10802, 62, 6759, 8609, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 11, 256, 80, 36020, 62, 11295, 2070, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 7, 2673, 11639, 27078, 11537, 198, 11748, 2298, 293, 198, 11748, 4423, 346, 198, 11748, 640, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 2, 17267, 6121, 364, 2176, 10392, 198, 6738, 6121, 364, 1330, 22108, 30642, 7509, 11, 22108, 17633, 11, 22108, 16934, 198, 6738, 6121, 364, 1330, 220, 22108, 1890, 44015, 594, 9487, 2649, 11, 22108, 1890, 30642, 9487, 2649, 198, 6738, 6121, 364, 1330, 7244, 54, 11, 1136, 62, 29127, 62, 15952, 5950, 62, 4480, 62, 31975, 929, 11, 11523, 198, 198, 2, 17267, 5301, 329, 1366, 10730, 1042, 284, 4512, 319, 5021, 12, 33346, 8217, 198, 6738, 4981, 13, 41762, 364, 13, 1845, 29363, 1330, 6060, 10044, 29363, 17633, 11, 6060, 10044, 29363, 18559, 28019, 628, 198, 2, 6822, 611, 269, 15339, 318, 1695, 198, 2, 5345, 262, 3335, 290, 6565, 12940, 198, 25202, 796, 28034, 13, 25202, 10786, 66, 15339, 6, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 705, 36166, 11537, 198, 361, 3335, 6624, 6, 66, 15339, 10354, 198, 220, 220, 220, 422, 40167, 1330, 20766, 198, 220, 220, 220, 28034, 13, 66, 15339, 13, 28920, 62, 23870, 3419, 198, 13165, 354, 13, 1891, 2412, 13, 66, 463, 20471, 13, 67, 2357, 49228, 796, 6407, 198, 198, 2, 5016, 329, 2746, 3047, 290, 32278, 198 ]
3.503759
399
# -*- coding: utf-8 -*- #pylint: disable-msg=E0611, E1101, C0103, R0901, R0902, R0903, R0904, W0232 #------------------------------------------------------------------------------ # Copyright (c) 2007-2014, Acoular Development Team. #------------------------------------------------------------------------------ """Implements beamformers in the time domain. .. autosummary:: :toctree: generated/ BeamformerTime BeamformerTimeTraj BeamformerTimeSq BeamformerTimeSqTraj IntegratorSectorTime """ # imports from other packages from numpy import array, newaxis, empty, sqrt, arange, clip, r_, zeros, \ histogram, unique, cross, dot from traits.api import Float, CArray, Property, Trait, Bool, Delegate, \ cached_property, List from traitsui.api import View, Item from traitsui.menu import OKCancelButtons # acoular imports from .internal import digest from .grids import RectGrid from .microphones import MicGeom from .environments import Environment from .trajectory import Trajectory from .tprocess import TimeInOut def const_power_weight( bf ): """ Internal helper function for :class:`BeamformerTime` Provides microphone weighting to make the power per unit area of the microphone array geometry constant. Parameters ---------- bf: :class:`BeamformerTime` object Returns ------- array of floats The weight factors. """ r = bf.env.r( bf.c, zeros((3, 1)), bf.mpos.mpos) # distances to center # round the relative distances to one decimal place r = (r/r.max()).round(decimals=1) ru, ind = unique(r, return_inverse=True) ru = (ru[1:]+ru[:-1])/2 count, bins = histogram(r, r_[0, ru, 1.5*r.max()-0.5*ru[-1]]) bins *= bins weights = sqrt((bins[1:]-bins[:-1])/count) weights /= weights.mean() return weights[ind] # possible choices for spatial weights possible_weights = {'none':None, 'power':const_power_weight} class BeamformerTime( TimeInOut ): """ Provides a basic time domain beamformer with time signal output for a spatially fixed grid. """ #: :class:`~acoular.grids.Grid`-derived object that provides the grid locations. grid = Trait(RectGrid, desc="beamforming grid") #: Number of channels in output (=number of grid points). numchannels = Delegate('grid', 'size') #: :class:`~acoular.microphones.MicGeom` object that provides the microphone locations. mpos= Trait(MicGeom, desc="microphone geometry") #: :class:`~acoular.environments.Environment` or derived object, #: which provides information about the sound propagation in the medium. env = Trait(Environment(), Environment) #: Spatial weighting function. weights = Trait('none', possible_weights, desc="spatial weighting function") # (from timedomain.possible_weights) #: The speed of sound, defaults to 343 m/s c = Float(343., desc="speed of sound") #: Sound travel distances from microphone array center to grid #: points (readonly). r0 = Property( desc="array center to grid distances") #: Sound travel distances from array microphones to grid #: points (readonly). rm = Property( desc="array center to grid distances") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'c', \ 'env.digest', 'weights', '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property #@cached_property #@cached_property def result( self, num=2048 ): """ Python generator that yields the beamformer output block-wise. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape (num, :attr:`numchannels`). :attr:`numchannels` is usually very large. The last block may be shorter than num. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.sample_freq delays = self.rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation between samples d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation d_index2 = arange(self.mpos.num_mics) # amp = (self.rm/self.r0[:, newaxis]) # multiplication factor amp = (w/(self.rm*self.rm)).sum(1) * self.r0 amp = 1.0/(amp[:, newaxis]*self.rm) # multiplication factor d_interp1 *= amp # premultiplication, to save later ops d_interp2 *= amp dmin = d_index.min() # minimum index dmax = d_index.max()+1 # maximum index aoff = dmax-dmin # index span #working copy of data: zi = empty((aoff+num, self.source.numchannels), dtype=float) o = empty((num, self.grid.size), dtype=float) # output array offset = aoff # start offset for working array ooffset = 0 # offset for output array for block in self.source.result(num): ns = block.shape[0] # numbers of samples and channels maxoffset = ns-dmin # ns - aoff +aoff -dmin zi[aoff:aoff+ns] = block * w # copy data to working array # loop over data samples while offset < maxoffset: # yield output array if full if ooffset == num: yield o ooffset = 0 # the next line needs to be implemented faster o[ooffset] = (zi[offset+d_index, d_index2]*d_interp1 + \ zi[offset+d_index+1, d_index2]*d_interp2).sum(-1) offset += 1 ooffset += 1 # copy remaining samples in front of next block zi[0:aoff] = zi[-aoff:] offset -= num # remaining data chunk yield o[:ooffset] class BeamformerTimeSq( BeamformerTime ): """ Provides a time domain beamformer with time-dependend power signal output and possible autopower removal for a spatially fixed grid. """ #: Boolean flag, if 'True' (default), the main diagonal is removed before beamforming. r_diag = Bool(True, desc="removal of diagonal") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'r_diag', \ 'c', 'env.digest', 'weights', '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('r_diag', label='diagonal removed')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property # generator, delivers the beamformer result def result( self, num=2048 ): """ Python generator that yields the *squared* beamformer output with optional removal of autocorrelation block-wise. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very large (number of grid points). The last block may be shorter than num. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq delays = self.rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation between samples d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation d_index2 = arange(self.mpos.num_mics) # amp = (self.rm/self.r0[:, newaxis]) # multiplication factor amp = (w/(self.rm*self.rm)).sum(1) * self.r0 amp = 1.0/(amp[:, newaxis]*self.rm) # multiplication factor d_interp1 *= amp # premultiplication, to save later ops d_interp2 *= amp dmin = d_index.min() # minimum index dmax = d_index.max()+1 # maximum index # print dmin, dmax aoff = dmax-dmin # index span #working copy of data: zi = empty((aoff+num, self.source.numchannels), dtype=float) o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) offset = aoff # start offset for working array ooffset = 0 # offset for output array for block in self.source.result(num): ns = block.shape[0] # numbers of samples and channels maxoffset = ns-dmin # ns - aoff +aoff -dmin zi[aoff:aoff+ns] = block * w # copy data to working array # loop over data samples while offset < maxoffset: # yield output array if full if ooffset == num: yield o ooffset = 0 # the next line needs to be implemented faster temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2) if self.r_diag: # simple sum and remove autopower o[ooffset] = clip(temp.sum(-1)**2 - \ (temp**2).sum(-1), 1e-100, 1e+100) else: # simple sum o[ooffset] = temp.sum(-1)**2 offset += 1 ooffset += 1 # copy remaining samples in front of next block zi[0:aoff] = zi[-aoff:] offset -= num # remaining data chunk yield o[:ooffset] class BeamformerTimeTraj( BeamformerTime ): """ Provides a basic time domain beamformer with time signal output for a grid moving along a trajectory """ #: :class:`~acoular.trajectory.Trajectory` or derived object. #: Start time is assumed to be the same as for the samples. trajectory = Trait(Trajectory, desc="trajectory of the grid center") #: Reference vector, perpendicular to the y-axis of moving grid. rvec = CArray( dtype=float, shape=(3, ), value=array((0, 0, 0)), desc="reference vector") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', \ 'c', 'weights', 'rvec', 'env.digest', 'trajectory.digest', \ '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('trajectory{}', style='custom')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property def result( self, num=2048 ): """ Python generator that yields the beamformer output block-wise. Optional removal of autocorrelation. The "moving" grid can be translated and optionally rotated. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very \ large (number of grid points). The last block may be shorter than num. \ The output starts for signals that were emitted from the grid at t=0. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq # temp array for the grid co-ordinates gpos = self.grid.pos() # max delay span = sum of # max diagonal lengths of circumscribing cuboids for grid and micarray dmax = sqrt(((gpos.max(1)-gpos.min(1))**2).sum()) dmax += sqrt(((self.mpos.mpos.max(1)-self.mpos.mpos.min(1))**2).sum()) dmax = int(dmax/c)+1 # max index span zi = empty((dmax+num, self.source.numchannels), \ dtype=float) #working copy of data o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) d_index2 = arange(self.mpos.num_mics, dtype=int) # second index (static) offset = dmax+num # start offset for working array ooffset = 0 # offset for output array # generators for trajectory, starting at time zero start_t = 0.0 g = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq) g1 = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq, der=1) rflag = (self.rvec == 0).all() #flag translation vs. rotation data = self.source.result(num) flag = True while flag: # yield output array if full if ooffset == num: yield o ooffset = 0 if rflag: # grid is only translated, not rotated tpos = gpos + array(g.next())[:, newaxis] else: # grid is both translated and rotated loc = array(g.next()) #translation array([0., 0.4, 1.]) dx = array(g1.next()) #direction vector (new x-axis) dy = cross(self.rvec, dx) # new y-axis dz = cross(dx, dy) # new z-axis RM = array((dx, dy, dz)).T # rotation matrix RM /= sqrt((RM*RM).sum(0)) # column normalized tpos = dot(RM, gpos)+loc[:, newaxis] # rotation+translation rm = self.env.r( self.c, tpos, self.mpos.mpos) r0 = self.env.r( self.c, tpos) delays = rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation amp = (w/(rm*rm)).sum(1) * r0 amp = 1.0/(amp[:, newaxis]*rm) # multiplication factor # now, we have to make sure that the needed data is available while offset+d_index.max()+2>dmax+num: # copy remaining samples in front of next block zi[0:dmax] = zi[-dmax:] # the offset is adjusted by one block length offset -= num # test if data generator is exhausted try: # get next data block = data.next() except StopIteration: print loc flag = False break # samples in the block, equals to num except for the last block ns = block.shape[0] zi[dmax:dmax+ns] = block * w# copy data to working array else: # the next line needs to be implemented faster # it eats half of the time temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2)*amp o[ooffset] = temp.sum(-1) offset += 1 ooffset += 1 # remaining data chunk yield o[:ooffset] class BeamformerTimeSqTraj( BeamformerTimeSq ): """ Provides a time domain beamformer with time-dependent power signal output and possible autopower removal for a grid moving along a trajectory. """ #: :class:`~acoular.trajectory.Trajectory` or derived object. #: Start time is assumed to be the same as for the samples. trajectory = Trait(Trajectory, desc="trajectory of the grid center") #: Reference vector, perpendicular to the y-axis of moving grid. rvec = CArray( dtype=float, shape=(3, ), value=array((0, 0, 0)), desc="reference vector") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'r_diag', \ 'c', 'weights', 'rvec', 'env.digest', 'trajectory.digest', \ '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('trajectory{}', style='custom')], [Item('r_diag', label='diagonal removed')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property def result( self, num=2048 ): """ Python generator that yields the *squared* beamformer output block-wise. Optional removal of autocorrelation. The "moving" grid can be translated and optionally rotated. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very \ large (number of grid points). The last block may be shorter than num. \ The output starts for signals that were emitted from the grid at t=0. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq # temp array for the grid co-ordinates gpos = self.grid.pos() # max delay span = sum of # max diagonal lengths of circumscribing cuboids for grid and micarray dmax = sqrt(((gpos.max(1)-gpos.min(1))**2).sum()) dmax += sqrt(((self.mpos.mpos.max(1)-self.mpos.mpos.min(1))**2).sum()) dmax = int(dmax/c)+1 # max index span zi = empty((dmax+num, self.source.numchannels), \ dtype=float) #working copy of data o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) d_index2 = arange(self.mpos.num_mics, dtype=int) # second index (static) offset = dmax+num # start offset for working array ooffset = 0 # offset for output array # generators for trajectory, starting at time zero start_t = 0.0 g = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq) g1 = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq, der=1) rflag = (self.rvec == 0).all() #flag translation vs. rotation data = self.source.result(num) flag = True while flag: # yield output array if full if ooffset == num: yield o ooffset = 0 if rflag: # grid is only translated, not rotated tpos = gpos + array(g.next())[:, newaxis] else: # grid is both translated and rotated loc = array(g.next()) #translation dx = array(g1.next()) #direction vector (new x-axis) dy = cross(self.rvec, dx) # new y-axis dz = cross(dx, dy) # new z-axis RM = array((dx, dy, dz)).T # rotation matrix RM /= sqrt((RM*RM).sum(0)) # column normalized tpos = dot(RM, gpos)+loc[:, newaxis] # rotation+translation rm = self.env.r( self.c, tpos, self.mpos.mpos) r0 = self.env.r( self.c, tpos) delays = rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation amp = (w/(rm*rm)).sum(1) * r0 amp = 1.0/(amp[:, newaxis]*rm) # multiplication factor # now, we have to make sure that the needed data is available while offset+d_index.max()+2>dmax+num: # copy remaining samples in front of next block zi[0:dmax] = zi[-dmax:] # the offset is adjusted by one block length offset -= num # test if data generator is exhausted try: # get next data block = data.next() except StopIteration: flag = False break # samples in the block, equals to num except for the last block ns = block.shape[0] zi[dmax:dmax+ns] = block * w# copy data to working array else: # the next line needs to be implemented faster # it eats half of the time temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2)*amp if self.r_diag: # simple sum and remove autopower o[ooffset] = clip(temp.sum(-1)**2 - \ (temp**2).sum(-1), 1e-100, 1e+100) else: # simple sum o[ooffset] = temp.sum(-1)**2 offset += 1 ooffset += 1 # remaining data chunk yield o[:ooffset] class IntegratorSectorTime( TimeInOut ): """ Provides an Integrator in the time domain. """ #: :class:`~acoular.grids.Grid`-derived object that provides the grid locations. grid = Trait(RectGrid, desc="beamforming grid") #: List of sectors in grid sectors = List() #: Clipping, in Dezibel relative to maximum (negative values) clip = Float(-350.0) #: Number of channels in output (= number of sectors). numchannels = Property( depends_on = ['sectors', ]) # internal identifier digest = Property( depends_on = ['sectors', 'clip', 'grid.digest', 'source.digest', \ '__class__'], ) traits_view = View( [ [Item('sectors', style='custom')], [Item('grid', style='custom'), '-<>'], '|' ], title='Integrator', buttons = OKCancelButtons ) @cached_property @cached_property def result( self, num=1 ): """ Python generator that yields the source output integrated over the given sectors, block-wise. Parameters ---------- num : integer, defaults to 1 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape (num, :attr:`numchannels`). :attr:`numchannels` is the number of sectors. The last block may be shorter than num. """ inds = [self.grid.indices(*sector) for sector in self.sectors] gshape = self.grid.shape o = empty((num, self.numchannels), dtype=float) # output array for r in self.source.result(num): ns = r.shape[0] mapshape = (ns,) + gshape rmax = r.max() rmin = rmax * 10**(self.clip/10.0) r = where(r>rmin, r, 0.0) i = 0 for ind in inds: h = r[:].reshape(mapshape)[ (s_[:],) + ind ] o[:ns, i] = h.reshape(h.shape[0], -1).sum(axis=1) i += 1 yield o[:ns]
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 79, 2645, 600, 25, 15560, 12, 19662, 28, 36, 3312, 1157, 11, 412, 1157, 486, 11, 327, 486, 3070, 11, 371, 2931, 486, 11, 371, 2931, 2999, 11, 371, 2931, 3070, 11, 371, 2931, 3023, 11, 370, 15, 24339, 198, 2, 10097, 26171, 198, 2, 15069, 357, 66, 8, 4343, 12, 4967, 11, 4013, 2852, 283, 7712, 4816, 13, 198, 2, 10097, 26171, 198, 37811, 3546, 1154, 902, 15584, 687, 364, 287, 262, 640, 7386, 13, 198, 198, 492, 44619, 388, 6874, 3712, 198, 220, 220, 220, 1058, 1462, 310, 631, 25, 7560, 14, 628, 220, 220, 220, 25855, 16354, 7575, 198, 220, 220, 220, 25855, 16354, 7575, 15721, 73, 198, 220, 220, 220, 25855, 16354, 7575, 50, 80, 198, 220, 220, 220, 25855, 16354, 7575, 50, 80, 15721, 73, 198, 220, 220, 220, 15995, 12392, 50, 9250, 7575, 198, 37811, 198, 198, 2, 17944, 422, 584, 10392, 198, 6738, 299, 32152, 1330, 7177, 11, 649, 22704, 11, 6565, 11, 19862, 17034, 11, 610, 858, 11, 10651, 11, 374, 62, 11, 1976, 27498, 11, 3467, 198, 10034, 21857, 11, 3748, 11, 3272, 11, 16605, 198, 6738, 12796, 13, 15042, 1330, 48436, 11, 327, 19182, 11, 14161, 11, 4759, 270, 11, 347, 970, 11, 1024, 34637, 11, 3467, 198, 66, 2317, 62, 26745, 11, 7343, 198, 6738, 12796, 9019, 13, 15042, 1330, 3582, 11, 9097, 198, 6738, 12796, 9019, 13, 26272, 1330, 7477, 34, 21130, 1537, 27288, 198, 198, 2, 936, 2852, 283, 17944, 198, 6738, 764, 32538, 1330, 16274, 198, 6738, 764, 2164, 2340, 1330, 48599, 41339, 198, 6738, 764, 24055, 9708, 1330, 7631, 10082, 296, 198, 6738, 764, 268, 12103, 1330, 9344, 198, 6738, 764, 9535, 752, 652, 1330, 4759, 752, 652, 198, 6738, 764, 83, 14681, 1330, 3862, 818, 7975, 628, 198, 4299, 1500, 62, 6477, 62, 6551, 7, 275, 69, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18628, 31904, 2163, 329, 1058, 4871, 25, 63, 3856, 321, 16354, 7575, 63, 198, 220, 220, 220, 220, 198, 220, 220, 220, 47081, 21822, 3463, 278, 220, 198, 220, 220, 220, 284, 787, 262, 1176, 583, 4326, 1989, 286, 262, 198, 220, 220, 220, 21822, 7177, 22939, 6937, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 275, 69, 25, 1058, 4871, 25, 63, 3856, 321, 16354, 7575, 63, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7177, 286, 36016, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3463, 5087, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 374, 796, 275, 69, 13, 24330, 13, 81, 7, 275, 69, 13, 66, 11, 1976, 27498, 19510, 18, 11, 352, 36911, 275, 69, 13, 76, 1930, 13, 76, 1930, 8, 1303, 18868, 284, 3641, 198, 220, 220, 220, 1303, 2835, 262, 3585, 18868, 284, 530, 32465, 1295, 198, 220, 220, 220, 374, 796, 357, 81, 14, 81, 13, 9806, 3419, 737, 744, 7, 12501, 320, 874, 28, 16, 8, 198, 220, 220, 220, 7422, 11, 773, 796, 3748, 7, 81, 11, 1441, 62, 259, 4399, 28, 17821, 8, 198, 220, 220, 220, 7422, 796, 357, 622, 58, 16, 47715, 10, 622, 58, 21912, 16, 12962, 14, 17, 198, 220, 220, 220, 954, 11, 41701, 796, 1554, 21857, 7, 81, 11, 374, 62, 58, 15, 11, 7422, 11, 352, 13, 20, 9, 81, 13, 9806, 3419, 12, 15, 13, 20, 9, 622, 58, 12, 16, 11907, 8, 198, 220, 220, 220, 41701, 1635, 28, 41701, 198, 220, 220, 220, 19590, 796, 19862, 17034, 19510, 65, 1040, 58, 16, 25, 45297, 65, 1040, 58, 21912, 16, 12962, 14, 9127, 8, 198, 220, 220, 220, 19590, 1220, 28, 19590, 13, 32604, 3419, 198, 220, 220, 220, 1441, 19590, 58, 521, 60, 198, 198, 2, 1744, 7747, 329, 21739, 19590, 198, 79, 4733, 62, 43775, 796, 1391, 6, 23108, 10354, 14202, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6477, 10354, 9979, 62, 6477, 62, 6551, 92, 628, 198, 4871, 25855, 16354, 7575, 7, 3862, 818, 7975, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47081, 257, 4096, 640, 7386, 15584, 16354, 351, 640, 6737, 5072, 198, 220, 220, 220, 329, 257, 15246, 1927, 5969, 10706, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 25, 1058, 4871, 25, 63, 93, 330, 2852, 283, 13, 2164, 2340, 13, 41339, 63, 12, 34631, 2134, 326, 3769, 262, 10706, 7064, 13, 198, 220, 220, 220, 10706, 796, 4759, 270, 7, 45474, 41339, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 40045, 15464, 10706, 4943, 628, 220, 220, 220, 1303, 25, 7913, 286, 9619, 287, 5072, 46121, 17618, 286, 10706, 2173, 737, 198, 220, 220, 220, 997, 354, 8961, 796, 1024, 34637, 10786, 25928, 3256, 705, 7857, 11537, 628, 220, 220, 220, 1303, 25, 1058, 4871, 25, 63, 93, 330, 2852, 283, 13, 24055, 9708, 13, 25437, 10082, 296, 63, 2134, 326, 3769, 262, 21822, 7064, 13, 198, 220, 220, 220, 285, 1930, 28, 4759, 270, 7, 25437, 10082, 296, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 24055, 4862, 22939, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 25, 1058, 4871, 25, 63, 93, 330, 2852, 283, 13, 268, 12103, 13, 31441, 63, 393, 10944, 2134, 11, 220, 198, 220, 220, 220, 1303, 25, 543, 3769, 1321, 546, 262, 2128, 43594, 287, 262, 7090, 13, 198, 220, 220, 220, 17365, 796, 4759, 270, 7, 31441, 22784, 9344, 8, 628, 220, 220, 220, 1303, 25, 1338, 34961, 3463, 278, 2163, 13, 198, 220, 220, 220, 19590, 796, 4759, 270, 10786, 23108, 3256, 1744, 62, 43775, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 2777, 34961, 3463, 278, 2163, 4943, 198, 220, 220, 220, 1303, 357, 6738, 4628, 3836, 391, 13, 79, 4733, 62, 43775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 25, 383, 2866, 286, 2128, 11, 26235, 284, 37290, 285, 14, 82, 198, 220, 220, 220, 269, 796, 48436, 7, 32118, 1539, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 12287, 286, 2128, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 25, 9506, 3067, 18868, 422, 21822, 7177, 3641, 284, 10706, 220, 198, 220, 220, 220, 1303, 25, 2173, 357, 961, 8807, 737, 198, 220, 220, 220, 374, 15, 796, 14161, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 18747, 3641, 284, 10706, 18868, 4943, 628, 220, 220, 220, 1303, 25, 9506, 3067, 18868, 422, 7177, 46952, 284, 10706, 220, 198, 220, 220, 220, 1303, 25, 2173, 357, 961, 8807, 737, 198, 220, 220, 220, 42721, 796, 14161, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 18747, 3641, 284, 10706, 18868, 4943, 628, 220, 220, 220, 1303, 5387, 27421, 198, 220, 220, 220, 16274, 796, 14161, 7, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8338, 62, 261, 796, 37250, 76, 1930, 13, 12894, 395, 3256, 705, 25928, 13, 12894, 395, 3256, 705, 10459, 13, 12894, 395, 3256, 705, 66, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 13, 12894, 395, 3256, 705, 43775, 3256, 705, 834, 4871, 834, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 12796, 62, 1177, 796, 3582, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 76, 1930, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 25928, 3256, 3918, 11639, 23144, 33809, 705, 12, 27, 29, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 66, 3256, 6167, 11639, 12287, 286, 2128, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 24330, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 43775, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 91, 6, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 3856, 321, 16354, 3689, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 12163, 796, 7477, 34, 21130, 1537, 27288, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 31, 66, 2317, 62, 26745, 628, 220, 220, 220, 1303, 31, 66, 2317, 62, 26745, 628, 220, 220, 220, 825, 1255, 7, 2116, 11, 997, 28, 1238, 2780, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11361, 17301, 326, 19299, 262, 15584, 16354, 5072, 2512, 12, 3083, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 997, 1058, 18253, 11, 26235, 284, 36117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 11507, 15738, 262, 2546, 286, 262, 7021, 284, 307, 26403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 13, 68, 13, 262, 1271, 286, 8405, 583, 2512, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 2374, 287, 7021, 286, 5485, 357, 22510, 11, 1058, 35226, 25, 63, 22510, 354, 8961, 63, 737, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 35226, 25, 63, 22510, 354, 8961, 63, 318, 3221, 845, 1588, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 938, 2512, 743, 307, 12238, 621, 997, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 43775, 62, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 2116, 13, 43775, 41052, 944, 38381, 3605, 22704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 66, 14, 944, 13, 39873, 62, 19503, 80, 198, 220, 220, 220, 220, 220, 220, 220, 16119, 796, 2116, 13, 26224, 14, 66, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 9630, 796, 7177, 7, 12381, 592, 11, 288, 4906, 28, 600, 8, 1303, 18253, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 16, 796, 16119, 4064, 352, 1303, 352, 301, 763, 14822, 329, 9493, 39555, 341, 1022, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 17, 796, 352, 12, 67, 62, 3849, 79, 16, 1303, 362, 358, 763, 14822, 329, 9493, 39555, 341, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 9630, 17, 796, 610, 858, 7, 944, 13, 76, 1930, 13, 22510, 62, 76, 873, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 357, 944, 13, 26224, 14, 944, 13, 81, 15, 58, 45299, 649, 22704, 12962, 1303, 48473, 5766, 198, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 357, 86, 29006, 944, 13, 26224, 9, 944, 13, 26224, 29720, 16345, 7, 16, 8, 1635, 2116, 13, 81, 15, 198, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 352, 13, 15, 29006, 696, 58, 45299, 649, 22704, 60, 9, 944, 13, 26224, 8, 1303, 48473, 5766, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 16, 1635, 28, 20766, 1303, 4199, 586, 24705, 3299, 11, 284, 3613, 1568, 39628, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 17, 1635, 28, 20766, 198, 220, 220, 220, 220, 220, 220, 220, 288, 1084, 796, 288, 62, 9630, 13, 1084, 3419, 1303, 5288, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 796, 288, 62, 9630, 13, 9806, 3419, 10, 16, 1303, 5415, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2364, 796, 288, 9806, 12, 67, 1084, 1303, 6376, 11506, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16090, 4866, 286, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 796, 6565, 19510, 64, 2364, 10, 22510, 11, 2116, 13, 10459, 13, 22510, 354, 8961, 828, 288, 4906, 28, 22468, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 267, 796, 6565, 19510, 22510, 11, 2116, 13, 25928, 13, 7857, 828, 288, 4906, 28, 22468, 8, 1303, 5072, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 796, 257, 2364, 1303, 923, 11677, 329, 1762, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 796, 657, 1303, 11677, 329, 5072, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2512, 287, 2116, 13, 10459, 13, 20274, 7, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36545, 796, 2512, 13, 43358, 58, 15, 60, 1303, 3146, 286, 8405, 290, 9619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 28968, 796, 36545, 12, 67, 1084, 1303, 36545, 532, 257, 2364, 1343, 64, 2364, 532, 67, 1084, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 64, 2364, 25, 64, 2364, 10, 5907, 60, 796, 2512, 1635, 266, 1303, 4866, 1366, 284, 1762, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 1366, 8405, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 11677, 1279, 3509, 28968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7800, 5072, 7177, 611, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 267, 28968, 6624, 997, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1306, 1627, 2476, 284, 307, 9177, 5443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 58, 2238, 487, 2617, 60, 796, 357, 17027, 58, 28968, 10, 67, 62, 9630, 11, 288, 62, 9630, 17, 60, 9, 67, 62, 3849, 79, 16, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 28968, 10, 67, 62, 9630, 10, 16, 11, 288, 62, 9630, 17, 60, 9, 67, 62, 3849, 79, 17, 737, 16345, 32590, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4866, 5637, 8405, 287, 2166, 286, 1306, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 15, 25, 64, 2364, 60, 796, 1976, 72, 58, 12, 64, 2364, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 48185, 997, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5637, 1366, 16058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 58, 25, 2238, 487, 2617, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4871, 25855, 16354, 7575, 50, 80, 7, 25855, 16354, 7575, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47081, 257, 640, 7386, 15584, 16354, 351, 640, 12, 45841, 437, 198, 220, 220, 220, 1176, 6737, 5072, 290, 1744, 22320, 789, 9934, 198, 220, 220, 220, 329, 257, 15246, 1927, 5969, 10706, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 25, 41146, 6056, 11, 611, 705, 17821, 6, 357, 12286, 828, 262, 1388, 40039, 318, 4615, 878, 15584, 15464, 13, 198, 220, 220, 220, 374, 62, 10989, 363, 796, 347, 970, 7, 17821, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 2787, 8325, 286, 40039, 4943, 628, 220, 220, 220, 1303, 5387, 27421, 198, 220, 220, 220, 16274, 796, 14161, 7, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8338, 62, 261, 796, 37250, 76, 1930, 13, 12894, 395, 3256, 705, 25928, 13, 12894, 395, 3256, 705, 10459, 13, 12894, 395, 3256, 705, 81, 62, 10989, 363, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 3256, 705, 24330, 13, 12894, 395, 3256, 705, 43775, 3256, 705, 834, 4871, 834, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 12796, 62, 1177, 796, 3582, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 76, 1930, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 25928, 3256, 3918, 11639, 23144, 33809, 705, 12, 27, 29, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 81, 62, 10989, 363, 3256, 6167, 11639, 10989, 27923, 4615, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 66, 3256, 6167, 11639, 12287, 286, 2128, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 24330, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 43775, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 91, 6, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 3856, 321, 16354, 3689, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 12163, 796, 7477, 34, 21130, 1537, 27288, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 17301, 11, 16316, 262, 15584, 16354, 1255, 198, 220, 220, 220, 825, 1255, 7, 2116, 11, 997, 28, 1238, 2780, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11361, 17301, 326, 19299, 262, 1635, 16485, 1144, 9, 15584, 16354, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 351, 11902, 9934, 286, 1960, 420, 273, 49501, 2512, 12, 3083, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 997, 1058, 18253, 11, 26235, 284, 36117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 11507, 15738, 262, 2546, 286, 262, 7021, 284, 307, 26403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 13, 68, 13, 262, 1271, 286, 8405, 583, 2512, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 2374, 287, 7021, 286, 5485, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 357, 22510, 11, 1058, 35226, 25, 63, 93, 3856, 321, 16354, 7575, 13, 22510, 354, 8961, 63, 737, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 35226, 25, 63, 93, 3856, 321, 16354, 7575, 13, 22510, 354, 8961, 63, 318, 3221, 845, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1588, 357, 17618, 286, 10706, 2173, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 938, 2512, 743, 307, 12238, 621, 997, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 43775, 62, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 2116, 13, 43775, 41052, 944, 38381, 3605, 22704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 66, 14, 944, 13, 10459, 13, 39873, 62, 19503, 80, 198, 220, 220, 220, 220, 220, 220, 220, 16119, 796, 2116, 13, 26224, 14, 66, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 9630, 796, 7177, 7, 12381, 592, 11, 288, 4906, 28, 600, 8, 1303, 18253, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 16, 796, 16119, 4064, 352, 1303, 352, 301, 763, 14822, 329, 9493, 39555, 341, 1022, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 17, 796, 352, 12, 67, 62, 3849, 79, 16, 1303, 362, 358, 763, 14822, 329, 9493, 39555, 341, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 9630, 17, 796, 610, 858, 7, 944, 13, 76, 1930, 13, 22510, 62, 76, 873, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 357, 944, 13, 26224, 14, 944, 13, 81, 15, 58, 45299, 649, 22704, 12962, 1303, 48473, 5766, 198, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 357, 86, 29006, 944, 13, 26224, 9, 944, 13, 26224, 29720, 16345, 7, 16, 8, 1635, 2116, 13, 81, 15, 198, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 352, 13, 15, 29006, 696, 58, 45299, 649, 22704, 60, 9, 944, 13, 26224, 8, 1303, 48473, 5766, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 16, 1635, 28, 20766, 1303, 4199, 586, 24705, 3299, 11, 284, 3613, 1568, 39628, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 17, 1635, 28, 20766, 198, 220, 220, 220, 220, 220, 220, 220, 288, 1084, 796, 288, 62, 9630, 13, 1084, 3419, 1303, 5288, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 796, 288, 62, 9630, 13, 9806, 3419, 10, 16, 1303, 5415, 6376, 198, 2, 220, 220, 220, 220, 220, 220, 220, 3601, 288, 1084, 11, 288, 9806, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2364, 796, 288, 9806, 12, 67, 1084, 1303, 6376, 11506, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16090, 4866, 286, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 796, 6565, 19510, 64, 2364, 10, 22510, 11, 2116, 13, 10459, 13, 22510, 354, 8961, 828, 288, 4906, 28, 22468, 8, 198, 220, 220, 220, 220, 220, 220, 220, 267, 796, 6565, 19510, 22510, 11, 2116, 13, 25928, 13, 7857, 828, 288, 4906, 28, 22468, 8, 1303, 5072, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 6565, 19510, 944, 13, 25928, 13, 7857, 11, 2116, 13, 10459, 13, 22510, 354, 8961, 828, 288, 4906, 28, 22468, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 796, 257, 2364, 1303, 923, 11677, 329, 1762, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 796, 657, 1303, 11677, 329, 5072, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2512, 287, 2116, 13, 10459, 13, 20274, 7, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36545, 796, 2512, 13, 43358, 58, 15, 60, 1303, 3146, 286, 8405, 290, 9619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 28968, 796, 36545, 12, 67, 1084, 1303, 36545, 532, 257, 2364, 1343, 64, 2364, 532, 67, 1084, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 64, 2364, 25, 64, 2364, 10, 5907, 60, 796, 2512, 1635, 266, 1303, 4866, 1366, 284, 1762, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 1366, 8405, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 11677, 1279, 3509, 28968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7800, 5072, 7177, 611, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 267, 28968, 6624, 997, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1306, 1627, 2476, 284, 307, 9177, 5443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 58, 45299, 1058, 60, 796, 357, 17027, 58, 28968, 10, 67, 62, 9630, 11, 288, 62, 9630, 17, 60, 9, 67, 62, 3849, 79, 16, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1976, 72, 58, 28968, 10, 67, 62, 9630, 10, 16, 11, 288, 62, 9630, 17, 60, 9, 67, 62, 3849, 79, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 81, 62, 10989, 363, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2829, 2160, 290, 4781, 22320, 789, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 58, 2238, 487, 2617, 60, 796, 10651, 7, 29510, 13, 16345, 32590, 16, 8, 1174, 17, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 29510, 1174, 17, 737, 16345, 32590, 16, 828, 352, 68, 12, 3064, 11, 352, 68, 10, 3064, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2829, 2160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 58, 2238, 487, 2617, 60, 796, 20218, 13, 16345, 32590, 16, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4866, 5637, 8405, 287, 2166, 286, 1306, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 15, 25, 64, 2364, 60, 796, 1976, 72, 58, 12, 64, 2364, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 48185, 997, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5637, 1366, 16058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 58, 25, 2238, 487, 2617, 60, 628, 628, 198, 4871, 25855, 16354, 7575, 15721, 73, 7, 25855, 16354, 7575, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47081, 257, 4096, 640, 7386, 15584, 16354, 351, 640, 6737, 5072, 198, 220, 220, 220, 329, 257, 10706, 3867, 1863, 257, 22942, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 1303, 25, 1058, 4871, 25, 63, 93, 330, 2852, 283, 13, 9535, 752, 652, 13, 15721, 752, 652, 63, 393, 10944, 2134, 13, 198, 220, 220, 220, 1303, 25, 7253, 640, 318, 9672, 284, 307, 262, 976, 355, 329, 262, 8405, 13, 198, 220, 220, 220, 22942, 796, 4759, 270, 7, 15721, 752, 652, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 9535, 752, 652, 286, 262, 10706, 3641, 4943, 628, 220, 220, 220, 1303, 25, 20984, 15879, 11, 47190, 284, 262, 331, 12, 22704, 286, 3867, 10706, 13, 198, 220, 220, 220, 374, 35138, 796, 327, 19182, 7, 288, 4906, 28, 22468, 11, 5485, 16193, 18, 11, 10612, 1988, 28, 18747, 19510, 15, 11, 657, 11, 657, 36911, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 35790, 15879, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5387, 27421, 198, 220, 220, 220, 16274, 796, 14161, 7, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8338, 62, 261, 796, 37250, 76, 1930, 13, 12894, 395, 3256, 705, 25928, 13, 12894, 395, 3256, 705, 10459, 13, 12894, 395, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 3256, 705, 43775, 3256, 705, 81, 35138, 3256, 705, 24330, 13, 12894, 395, 3256, 705, 9535, 752, 652, 13, 12894, 395, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 834, 4871, 834, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 12796, 62, 1177, 796, 3582, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 76, 1930, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 25928, 3256, 3918, 11639, 23144, 33809, 705, 12, 27, 29, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 9535, 752, 652, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 66, 3256, 6167, 11639, 12287, 286, 2128, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 24330, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 43775, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 91, 6, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 3856, 321, 16354, 3689, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 12163, 796, 7477, 34, 21130, 1537, 27288, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 1255, 7, 2116, 11, 997, 28, 1238, 2780, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11361, 17301, 326, 19299, 262, 15584, 16354, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 2512, 12, 3083, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 32233, 9934, 286, 1960, 420, 273, 49501, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 366, 31462, 1, 10706, 460, 307, 14251, 290, 42976, 38375, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 997, 1058, 18253, 11, 26235, 284, 36117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 11507, 15738, 262, 2546, 286, 262, 7021, 284, 307, 26403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 13, 68, 13, 262, 1271, 286, 8405, 583, 2512, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 2374, 287, 7021, 286, 5485, 220, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 357, 22510, 11, 1058, 35226, 25, 63, 93, 3856, 321, 16354, 7575, 13, 22510, 354, 8961, 63, 737, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 35226, 25, 63, 93, 3856, 321, 16354, 7575, 13, 22510, 354, 8961, 63, 318, 3221, 845, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1588, 357, 17618, 286, 10706, 2173, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 938, 2512, 743, 307, 12238, 621, 997, 13, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 4940, 329, 10425, 326, 547, 31234, 422, 262, 10706, 379, 256, 28, 15, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 43775, 62, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 2116, 13, 43775, 41052, 944, 38381, 3605, 22704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 66, 14, 944, 13, 10459, 13, 39873, 62, 19503, 80, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20218, 7177, 329, 262, 10706, 763, 12, 585, 17540, 198, 220, 220, 220, 220, 220, 220, 220, 308, 1930, 796, 2116, 13, 25928, 13, 1930, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3509, 5711, 11506, 796, 2160, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3509, 40039, 20428, 286, 4456, 1416, 23098, 13617, 10994, 329, 10706, 290, 12314, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 796, 19862, 17034, 19510, 7, 70, 1930, 13, 9806, 7, 16, 13219, 70, 1930, 13, 1084, 7, 16, 4008, 1174, 17, 737, 16345, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 15853, 19862, 17034, 19510, 7, 944, 13, 76, 1930, 13, 76, 1930, 13, 9806, 7, 16, 13219, 944, 13, 76, 1930, 13, 76, 1930, 13, 1084, 7, 16, 4008, 1174, 17, 737, 16345, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 796, 493, 7, 67, 9806, 14, 66, 47762, 16, 1303, 3509, 6376, 11506, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 796, 6565, 19510, 67, 9806, 10, 22510, 11, 2116, 13, 10459, 13, 22510, 354, 8961, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 22468, 8, 1303, 16090, 4866, 286, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 267, 796, 6565, 19510, 22510, 11, 2116, 13, 25928, 13, 7857, 828, 288, 4906, 28, 22468, 8, 1303, 5072, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 6565, 19510, 944, 13, 25928, 13, 7857, 11, 2116, 13, 10459, 13, 22510, 354, 8961, 828, 288, 4906, 28, 22468, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 9630, 17, 796, 610, 858, 7, 944, 13, 76, 1930, 13, 22510, 62, 76, 873, 11, 288, 4906, 28, 600, 8, 1303, 1218, 6376, 357, 12708, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 796, 288, 9806, 10, 22510, 1303, 923, 11677, 329, 1762, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 796, 657, 1303, 11677, 329, 5072, 7177, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27298, 329, 22942, 11, 3599, 379, 640, 6632, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 83, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 308, 796, 2116, 13, 9535, 752, 652, 13, 9535, 73, 7, 923, 62, 83, 11, 25979, 62, 83, 28, 16, 14, 944, 13, 10459, 13, 39873, 62, 19503, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 16, 796, 2116, 13, 9535, 752, 652, 13, 9535, 73, 7, 923, 62, 83, 11, 25979, 62, 83, 28, 16, 14, 944, 13, 10459, 13, 39873, 62, 19503, 80, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4587, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 374, 32109, 796, 357, 944, 13, 81, 35138, 6624, 657, 737, 439, 3419, 1303, 32109, 11059, 3691, 13, 13179, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2116, 13, 10459, 13, 20274, 7, 22510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6056, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7800, 5072, 7177, 611, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 267, 28968, 6624, 997, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 32109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10706, 318, 691, 14251, 11, 407, 38375, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 1930, 796, 308, 1930, 1343, 7177, 7, 70, 13, 19545, 28955, 58, 45299, 649, 22704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10706, 318, 1111, 14251, 290, 38375, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1179, 796, 7177, 7, 70, 13, 19545, 28955, 1303, 41519, 7177, 26933, 15, 1539, 657, 13, 19, 11, 352, 8183, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44332, 796, 7177, 7, 70, 16, 13, 19545, 28955, 1303, 37295, 15879, 357, 3605, 2124, 12, 22704, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20268, 796, 3272, 7, 944, 13, 81, 35138, 11, 44332, 8, 1303, 649, 331, 12, 22704, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 89, 796, 3272, 7, 34350, 11, 20268, 8, 1303, 649, 1976, 12, 22704, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29820, 796, 7177, 19510, 34350, 11, 20268, 11, 288, 89, 29720, 51, 1303, 13179, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29820, 1220, 28, 19862, 17034, 19510, 29138, 9, 29138, 737, 16345, 7, 15, 4008, 1303, 5721, 39279, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 1930, 796, 16605, 7, 29138, 11, 308, 1930, 47762, 17946, 58, 45299, 649, 22704, 60, 1303, 13179, 10, 41519, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 796, 2116, 13, 24330, 13, 81, 7, 2116, 13, 66, 11, 256, 1930, 11, 2116, 13, 76, 1930, 13, 76, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 15, 796, 2116, 13, 24330, 13, 81, 7, 2116, 13, 66, 11, 256, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16119, 796, 42721, 14, 66, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 9630, 796, 7177, 7, 12381, 592, 11, 288, 4906, 28, 600, 8, 1303, 18253, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 16, 796, 16119, 4064, 352, 1303, 352, 301, 763, 14822, 329, 9493, 39555, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 17, 796, 352, 12, 67, 62, 3849, 79, 16, 1303, 362, 358, 763, 14822, 329, 9493, 39555, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 357, 86, 29006, 26224, 9, 26224, 29720, 16345, 7, 16, 8, 1635, 374, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 352, 13, 15, 29006, 696, 58, 45299, 649, 22704, 60, 9, 26224, 8, 1303, 48473, 5766, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 11, 356, 423, 284, 787, 1654, 326, 262, 2622, 1366, 318, 1695, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 11677, 10, 67, 62, 9630, 13, 9806, 3419, 10, 17, 29, 67, 9806, 10, 22510, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4866, 5637, 8405, 287, 2166, 286, 1306, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 15, 25, 67, 9806, 60, 796, 1976, 72, 58, 12, 67, 9806, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 11677, 318, 12328, 416, 530, 2512, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 48185, 997, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1332, 611, 1366, 17301, 318, 19064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 1306, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 1366, 13, 19545, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 13707, 29993, 341, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 1179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8405, 287, 262, 2512, 11, 21767, 284, 997, 2845, 329, 262, 938, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36545, 796, 2512, 13, 43358, 58, 15, 60, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 67, 9806, 25, 67, 9806, 10, 5907, 60, 796, 2512, 1635, 266, 2, 4866, 1366, 284, 1762, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1306, 1627, 2476, 284, 307, 9177, 5443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 25365, 2063, 286, 262, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 58, 45299, 1058, 60, 796, 357, 17027, 58, 28968, 10, 67, 62, 9630, 11, 288, 62, 9630, 17, 60, 9, 67, 62, 3849, 79, 16, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1976, 72, 58, 28968, 10, 67, 62, 9630, 10, 16, 11, 288, 62, 9630, 17, 60, 9, 67, 62, 3849, 79, 17, 27493, 696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 58, 2238, 487, 2617, 60, 796, 20218, 13, 16345, 32590, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5637, 1366, 16058, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 58, 25, 2238, 487, 2617, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4871, 25855, 16354, 7575, 50, 80, 15721, 73, 7, 25855, 16354, 7575, 50, 80, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47081, 257, 640, 7386, 15584, 16354, 351, 640, 12, 21186, 198, 220, 220, 220, 1176, 6737, 5072, 290, 1744, 22320, 789, 9934, 198, 220, 220, 220, 329, 257, 10706, 3867, 1863, 257, 22942, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 25, 1058, 4871, 25, 63, 93, 330, 2852, 283, 13, 9535, 752, 652, 13, 15721, 752, 652, 63, 393, 10944, 2134, 13, 198, 220, 220, 220, 1303, 25, 7253, 640, 318, 9672, 284, 307, 262, 976, 355, 329, 262, 8405, 13, 198, 220, 220, 220, 22942, 796, 4759, 270, 7, 15721, 752, 652, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 9535, 752, 652, 286, 262, 10706, 3641, 4943, 628, 220, 220, 220, 1303, 25, 20984, 15879, 11, 47190, 284, 262, 331, 12, 22704, 286, 3867, 10706, 13, 198, 220, 220, 220, 374, 35138, 796, 327, 19182, 7, 288, 4906, 28, 22468, 11, 5485, 16193, 18, 11, 10612, 1988, 28, 18747, 19510, 15, 11, 657, 11, 657, 36911, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 35790, 15879, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5387, 27421, 198, 220, 220, 220, 16274, 796, 14161, 7, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8338, 62, 261, 796, 37250, 76, 1930, 13, 12894, 395, 3256, 705, 25928, 13, 12894, 395, 3256, 705, 10459, 13, 12894, 395, 3256, 705, 81, 62, 10989, 363, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 3256, 705, 43775, 3256, 705, 81, 35138, 3256, 705, 24330, 13, 12894, 395, 3256, 705, 9535, 752, 652, 13, 12894, 395, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 834, 4871, 834, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 12796, 62, 1177, 796, 3582, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 76, 1930, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 25928, 3256, 3918, 11639, 23144, 33809, 705, 12, 27, 29, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 9535, 752, 652, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 81, 62, 10989, 363, 3256, 6167, 11639, 10989, 27923, 4615, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 66, 3256, 6167, 11639, 12287, 286, 2128, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 24330, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 43775, 90, 92, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 91, 6, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 3856, 321, 16354, 3689, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 12163, 796, 7477, 34, 21130, 1537, 27288, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 1255, 7, 2116, 11, 997, 28, 1238, 2780, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11361, 17301, 326, 19299, 262, 1635, 16485, 1144, 9, 15584, 16354, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 2512, 12, 3083, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 32233, 9934, 286, 1960, 420, 273, 49501, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 366, 31462, 1, 10706, 460, 307, 14251, 290, 42976, 38375, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 997, 1058, 18253, 11, 26235, 284, 36117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 11507, 15738, 262, 2546, 286, 262, 7021, 284, 307, 26403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 13, 68, 13, 262, 1271, 286, 8405, 583, 2512, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 2374, 287, 7021, 286, 5485, 220, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 357, 22510, 11, 1058, 35226, 25, 63, 93, 3856, 321, 16354, 7575, 13, 22510, 354, 8961, 63, 737, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 35226, 25, 63, 93, 3856, 321, 16354, 7575, 13, 22510, 354, 8961, 63, 318, 3221, 845, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1588, 357, 17618, 286, 10706, 2173, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 938, 2512, 743, 307, 12238, 621, 997, 13, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 4940, 329, 10425, 326, 547, 31234, 422, 262, 10706, 379, 256, 28, 15, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 43775, 62, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 2116, 13, 43775, 41052, 944, 38381, 3605, 22704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 66, 14, 944, 13, 10459, 13, 39873, 62, 19503, 80, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20218, 7177, 329, 262, 10706, 763, 12, 585, 17540, 198, 220, 220, 220, 220, 220, 220, 220, 308, 1930, 796, 2116, 13, 25928, 13, 1930, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3509, 5711, 11506, 796, 2160, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3509, 40039, 20428, 286, 4456, 1416, 23098, 13617, 10994, 329, 10706, 290, 12314, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 796, 19862, 17034, 19510, 7, 70, 1930, 13, 9806, 7, 16, 13219, 70, 1930, 13, 1084, 7, 16, 4008, 1174, 17, 737, 16345, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 15853, 19862, 17034, 19510, 7, 944, 13, 76, 1930, 13, 76, 1930, 13, 9806, 7, 16, 13219, 944, 13, 76, 1930, 13, 76, 1930, 13, 1084, 7, 16, 4008, 1174, 17, 737, 16345, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 796, 493, 7, 67, 9806, 14, 66, 47762, 16, 1303, 3509, 6376, 11506, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 796, 6565, 19510, 67, 9806, 10, 22510, 11, 2116, 13, 10459, 13, 22510, 354, 8961, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 22468, 8, 1303, 16090, 4866, 286, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 267, 796, 6565, 19510, 22510, 11, 2116, 13, 25928, 13, 7857, 828, 288, 4906, 28, 22468, 8, 1303, 5072, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 6565, 19510, 944, 13, 25928, 13, 7857, 11, 2116, 13, 10459, 13, 22510, 354, 8961, 828, 288, 4906, 28, 22468, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 9630, 17, 796, 610, 858, 7, 944, 13, 76, 1930, 13, 22510, 62, 76, 873, 11, 288, 4906, 28, 600, 8, 1303, 1218, 6376, 357, 12708, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 796, 288, 9806, 10, 22510, 1303, 923, 11677, 329, 1762, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 796, 657, 1303, 11677, 329, 5072, 7177, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27298, 329, 22942, 11, 3599, 379, 640, 6632, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 83, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 308, 796, 2116, 13, 9535, 752, 652, 13, 9535, 73, 7, 923, 62, 83, 11, 25979, 62, 83, 28, 16, 14, 944, 13, 10459, 13, 39873, 62, 19503, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 16, 796, 2116, 13, 9535, 752, 652, 13, 9535, 73, 7, 923, 62, 83, 11, 25979, 62, 83, 28, 16, 14, 944, 13, 10459, 13, 39873, 62, 19503, 80, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4587, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 32109, 796, 357, 944, 13, 81, 35138, 6624, 657, 737, 439, 3419, 1303, 32109, 11059, 3691, 13, 13179, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2116, 13, 10459, 13, 20274, 7, 22510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6056, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7800, 5072, 7177, 611, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 267, 28968, 6624, 997, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 32109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10706, 318, 691, 14251, 11, 407, 38375, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 1930, 796, 308, 1930, 1343, 7177, 7, 70, 13, 19545, 28955, 58, 45299, 649, 22704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10706, 318, 1111, 14251, 290, 38375, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1179, 796, 7177, 7, 70, 13, 19545, 28955, 1303, 41519, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44332, 796, 7177, 7, 70, 16, 13, 19545, 28955, 1303, 37295, 15879, 357, 3605, 2124, 12, 22704, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20268, 796, 3272, 7, 944, 13, 81, 35138, 11, 44332, 8, 1303, 649, 331, 12, 22704, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 89, 796, 3272, 7, 34350, 11, 20268, 8, 1303, 649, 1976, 12, 22704, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29820, 796, 7177, 19510, 34350, 11, 20268, 11, 288, 89, 29720, 51, 1303, 13179, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29820, 1220, 28, 19862, 17034, 19510, 29138, 9, 29138, 737, 16345, 7, 15, 4008, 1303, 5721, 39279, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 1930, 796, 16605, 7, 29138, 11, 308, 1930, 47762, 17946, 58, 45299, 649, 22704, 60, 1303, 13179, 10, 41519, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 796, 2116, 13, 24330, 13, 81, 7, 2116, 13, 66, 11, 256, 1930, 11, 2116, 13, 76, 1930, 13, 76, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 15, 796, 2116, 13, 24330, 13, 81, 7, 2116, 13, 66, 11, 256, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16119, 796, 42721, 14, 66, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 9630, 796, 7177, 7, 12381, 592, 11, 288, 4906, 28, 600, 8, 1303, 18253, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 16, 796, 16119, 4064, 352, 1303, 352, 301, 763, 14822, 329, 9493, 39555, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 3849, 79, 17, 796, 352, 12, 67, 62, 3849, 79, 16, 1303, 362, 358, 763, 14822, 329, 9493, 39555, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 357, 86, 29006, 26224, 9, 26224, 29720, 16345, 7, 16, 8, 1635, 374, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20766, 796, 352, 13, 15, 29006, 696, 58, 45299, 649, 22704, 60, 9, 26224, 8, 1303, 48473, 5766, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 11, 356, 423, 284, 787, 1654, 326, 262, 2622, 1366, 318, 1695, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 11677, 10, 67, 62, 9630, 13, 9806, 3419, 10, 17, 29, 67, 9806, 10, 22510, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4866, 5637, 8405, 287, 2166, 286, 1306, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 15, 25, 67, 9806, 60, 796, 1976, 72, 58, 12, 67, 9806, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 11677, 318, 12328, 416, 530, 2512, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 48185, 997, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1332, 611, 1366, 17301, 318, 19064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 1306, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 1366, 13, 19545, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 13707, 29993, 341, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8405, 287, 262, 2512, 11, 21767, 284, 997, 2845, 329, 262, 938, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36545, 796, 2512, 13, 43358, 58, 15, 60, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 72, 58, 67, 9806, 25, 67, 9806, 10, 5907, 60, 796, 2512, 1635, 266, 2, 4866, 1366, 284, 1762, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1306, 1627, 2476, 284, 307, 9177, 5443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 25365, 2063, 286, 262, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 58, 45299, 1058, 60, 796, 357, 17027, 58, 28968, 10, 67, 62, 9630, 11, 288, 62, 9630, 17, 60, 9, 67, 62, 3849, 79, 16, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 1976, 72, 58, 28968, 10, 67, 62, 9630, 10, 16, 11, 288, 62, 9630, 17, 60, 9, 67, 62, 3849, 79, 17, 27493, 696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 81, 62, 10989, 363, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2829, 2160, 290, 4781, 22320, 789, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 58, 2238, 487, 2617, 60, 796, 10651, 7, 29510, 13, 16345, 32590, 16, 8, 1174, 17, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 29510, 1174, 17, 737, 16345, 32590, 16, 828, 352, 68, 12, 3064, 11, 352, 68, 10, 3064, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2829, 2160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 58, 2238, 487, 2617, 60, 796, 20218, 13, 16345, 32590, 16, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 28968, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5637, 1366, 16058, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 58, 25, 2238, 487, 2617, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4871, 15995, 12392, 50, 9250, 7575, 7, 3862, 818, 7975, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47081, 281, 15995, 12392, 287, 262, 640, 7386, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 25, 1058, 4871, 25, 63, 93, 330, 2852, 283, 13, 2164, 2340, 13, 41339, 63, 12, 34631, 2134, 326, 3769, 262, 10706, 7064, 13, 198, 220, 220, 220, 10706, 796, 4759, 270, 7, 45474, 41339, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1715, 2625, 40045, 15464, 10706, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 25, 7343, 286, 16020, 287, 10706, 198, 220, 220, 220, 16020, 796, 7343, 3419, 628, 220, 220, 220, 1303, 25, 1012, 4501, 11, 287, 1024, 89, 43837, 3585, 284, 5415, 357, 31591, 3815, 8, 198, 220, 220, 220, 10651, 796, 48436, 32590, 14877, 13, 15, 8, 628, 220, 220, 220, 1303, 25, 7913, 286, 9619, 287, 5072, 46121, 1271, 286, 16020, 737, 198, 220, 220, 220, 997, 354, 8961, 796, 14161, 7, 8338, 62, 261, 796, 37250, 325, 5217, 3256, 33761, 628, 220, 220, 220, 1303, 5387, 27421, 198, 220, 220, 220, 16274, 796, 14161, 7, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8338, 62, 261, 796, 37250, 325, 5217, 3256, 705, 15036, 3256, 705, 25928, 13, 12894, 395, 3256, 705, 10459, 13, 12894, 395, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 705, 834, 4871, 834, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 12796, 62, 1177, 796, 3582, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 325, 5217, 3256, 3918, 11639, 23144, 11537, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7449, 10786, 25928, 3256, 3918, 11639, 23144, 33809, 705, 12, 27, 29, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 91, 6, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 34500, 12392, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 12163, 796, 7477, 34, 21130, 1537, 27288, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 825, 1255, 7, 2116, 11, 997, 28, 16, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11361, 17301, 326, 19299, 262, 2723, 5072, 11521, 625, 262, 1813, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16020, 11, 2512, 12, 3083, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 997, 1058, 18253, 11, 26235, 284, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 11507, 15738, 262, 2546, 286, 262, 7021, 284, 307, 26403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 13, 68, 13, 262, 1271, 286, 8405, 583, 2512, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3409, 2374, 287, 7021, 286, 5485, 357, 22510, 11, 1058, 35226, 25, 63, 22510, 354, 8961, 63, 737, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 35226, 25, 63, 22510, 354, 8961, 63, 318, 262, 1271, 286, 16020, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 938, 2512, 743, 307, 12238, 621, 997, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 773, 82, 796, 685, 944, 13, 25928, 13, 521, 1063, 46491, 34914, 8, 329, 6567, 287, 2116, 13, 325, 5217, 60, 198, 220, 220, 220, 220, 220, 220, 220, 308, 43358, 796, 2116, 13, 25928, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 267, 796, 6565, 19510, 22510, 11, 2116, 13, 22510, 354, 8961, 828, 288, 4906, 28, 22468, 8, 1303, 5072, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 329, 374, 287, 2116, 13, 10459, 13, 20274, 7, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36545, 796, 374, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 43358, 796, 357, 5907, 35751, 1343, 308, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 9806, 796, 374, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 1084, 796, 374, 9806, 1635, 838, 1174, 7, 944, 13, 15036, 14, 940, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 810, 7, 81, 29, 81, 1084, 11, 374, 11, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 773, 287, 773, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 374, 58, 25, 4083, 3447, 1758, 7, 8899, 43358, 38381, 357, 82, 62, 58, 25, 4357, 8, 1343, 773, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 58, 25, 5907, 11, 1312, 60, 796, 289, 13, 3447, 1758, 7, 71, 13, 43358, 58, 15, 4357, 532, 16, 737, 16345, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 267, 58, 25, 5907, 60, 628, 198 ]
2.101289
12,025
# Dependencies import sys, json import classifier ignore_labels = ['duplicate', 'in-progress', 'pending-publication', 'published', 'waiting-for-user-information', 'high priority'] # simple JSON echo script for line in sys.stdin: payload = json.loads(line) ( action, params ) = payload results = {} if action == "train_labels": ( user, repo, issues, ignore_labels ) = params results = classifier.train_issues(user, repo, issues, ignore_labels) elif action == "predict_labels": ( user, repo, issues ) = params results = classifier.predict_labels_for_issues(user, repo, issues) elif action == "similarity": issues = params[0] results = classifier.issue_similarity(issues) print json.dumps(results)
[ 2, 37947, 3976, 198, 11748, 25064, 11, 33918, 198, 11748, 1398, 7483, 198, 198, 46430, 62, 23912, 1424, 796, 37250, 646, 489, 5344, 3256, 705, 259, 12, 33723, 3256, 705, 79, 1571, 12, 11377, 341, 3256, 705, 30271, 3256, 705, 10247, 1780, 12, 1640, 12, 7220, 12, 17018, 3256, 705, 8929, 8475, 20520, 198, 198, 2, 2829, 19449, 9809, 4226, 198, 1640, 1627, 287, 25064, 13, 19282, 259, 25, 198, 220, 220, 220, 21437, 796, 33918, 13, 46030, 7, 1370, 8, 198, 220, 220, 220, 357, 2223, 11, 42287, 1267, 796, 21437, 198, 220, 220, 220, 2482, 796, 23884, 198, 220, 220, 220, 611, 2223, 6624, 366, 27432, 62, 23912, 1424, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2836, 11, 29924, 11, 2428, 11, 8856, 62, 23912, 1424, 1267, 796, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 1398, 7483, 13, 27432, 62, 37165, 7, 7220, 11, 29924, 11, 2428, 11, 8856, 62, 23912, 1424, 8, 198, 220, 220, 220, 1288, 361, 2223, 6624, 366, 79, 17407, 62, 23912, 1424, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2836, 11, 29924, 11, 2428, 1267, 796, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 1398, 7483, 13, 79, 17407, 62, 23912, 1424, 62, 1640, 62, 37165, 7, 7220, 11, 29924, 11, 2428, 8, 198, 220, 220, 220, 1288, 361, 2223, 6624, 366, 38610, 414, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2428, 796, 42287, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 1398, 7483, 13, 21949, 62, 38610, 414, 7, 37165, 8, 628, 220, 220, 220, 3601, 33918, 13, 67, 8142, 7, 43420, 8, 198 ]
2.744681
282
import pytest from webviz_config.utils._dash_component_utils import calculate_slider_step @pytest.mark.parametrize( "min_value,max_value,steps,res", [ (5, 10, 100, 0.01), (-10, -5, 100, 0.01), (-10, 10, 100, 0.1) ] )
[ 11748, 12972, 9288, 198, 198, 6738, 3992, 85, 528, 62, 11250, 13, 26791, 13557, 42460, 62, 42895, 62, 26791, 1330, 15284, 62, 6649, 1304, 62, 9662, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 1084, 62, 8367, 11, 9806, 62, 8367, 11, 20214, 11, 411, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 1802, 11, 657, 13, 486, 828, 198, 220, 220, 220, 220, 220, 220, 220, 13841, 940, 11, 532, 20, 11, 1802, 11, 657, 13, 486, 828, 198, 220, 220, 220, 220, 220, 220, 220, 13841, 940, 11, 838, 11, 1802, 11, 657, 13, 16, 8, 198, 220, 220, 220, 2361, 198, 8, 198 ]
2.015748
127
import models import datetime from app import db from data import constants from logzero import logger from sqlalchemy import exc from sqlalchemy.sql import func from data.subqueries import TestCounts import re import os import pytz utc = pytz.UTC
[ 11748, 4981, 198, 11748, 4818, 8079, 198, 6738, 598, 1330, 20613, 198, 6738, 1366, 1330, 38491, 198, 6738, 2604, 22570, 1330, 49706, 198, 6738, 44161, 282, 26599, 1330, 2859, 198, 6738, 44161, 282, 26599, 13, 25410, 1330, 25439, 198, 6738, 1366, 13, 7266, 421, 10640, 1330, 6208, 12332, 82, 198, 11748, 302, 198, 11748, 28686, 198, 11748, 12972, 22877, 198, 198, 315, 66, 796, 12972, 22877, 13, 17429, 628, 628, 628 ]
3.577465
71
TESTRAIL_API_TOKEN = "" TESTRAIL_URL = "" TESTRAIL_PWD = ""
[ 51, 6465, 3861, 4146, 62, 17614, 62, 10468, 43959, 796, 13538, 198, 51, 6465, 3861, 4146, 62, 21886, 796, 13538, 198, 51, 6465, 3861, 4146, 62, 47, 22332, 796, 13538 ]
1.966667
30
import sys import csv import random """ Sets up the data for the Link Prediction experiment. Given the raw data file, it: 1)removes a specified amount of edges for representation induction, 2) creates a specified amount of negative examples from the remaining edges, 3) splits the positive and negative examples into train, dev and test sets as specified 4) writes the relevant train, dev and test files. """ #e.g of split: {'p1': [('date', '=', 1980)]} #In MATADOR dataset, all Chemical identifiers can be integers but no proteins can be if __name__ == '__main__': sys.exit(main(sys.argv))
[ 11748, 25064, 198, 11748, 269, 21370, 198, 11748, 4738, 198, 198, 37811, 198, 50, 1039, 510, 262, 1366, 329, 262, 7502, 46690, 6306, 13, 198, 15056, 262, 8246, 1366, 2393, 11, 340, 25, 352, 8, 2787, 5241, 257, 7368, 2033, 286, 13015, 329, 10552, 28471, 11, 362, 8, 8075, 257, 7368, 2033, 286, 4633, 6096, 422, 262, 5637, 13015, 11, 198, 18, 8, 30778, 262, 3967, 290, 4633, 6096, 656, 4512, 11, 1614, 290, 1332, 5621, 355, 7368, 604, 8, 6797, 262, 5981, 4512, 11, 1614, 290, 1332, 3696, 13, 198, 198, 37811, 198, 198, 2, 68, 13, 70, 286, 6626, 25, 1391, 6, 79, 16, 10354, 685, 10786, 4475, 3256, 705, 28, 3256, 7169, 15437, 92, 628, 198, 2, 818, 36775, 2885, 1581, 27039, 11, 477, 24872, 42814, 460, 307, 37014, 475, 645, 15568, 460, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 7, 17597, 13, 853, 85, 4008, 198, 220, 220, 220, 220 ]
3.395604
182
import random import codecs
[ 11748, 4738, 198, 11748, 40481, 82, 198 ]
4
7
#list ----> we store int,float,string.. #ordered collection of item --->DAta structure numbers = [1, 2, 3, 4, 5] print(numbers) print(numbers[2])#we can also access by indexing words = ["Beenash", 'Pervaiz', "Hanan"] print(words) print(words[:2]) # by slicing mixed = [1, 2, 3, 4, "five", "six",2.5, None] print(mixed) print(mixed[-1])# negative indexing #change the data of the list mixed[1] = 'two' print(mixed) #if we change the almost total data of list numbers[:5] = ['one', 'two','three','four','five'] print(numbers)
[ 2, 4868, 13498, 29, 356, 3650, 493, 11, 22468, 11, 8841, 492, 198, 2, 24071, 4947, 286, 2378, 1377, 3784, 35, 2953, 64, 4645, 198, 77, 17024, 796, 685, 16, 11, 362, 11, 513, 11, 604, 11, 642, 60, 198, 4798, 7, 77, 17024, 8, 198, 4798, 7, 77, 17024, 58, 17, 12962, 2, 732, 460, 635, 1895, 416, 6376, 278, 198, 198, 10879, 796, 14631, 3856, 268, 1077, 1600, 705, 47, 32775, 528, 3256, 366, 39, 27870, 8973, 198, 4798, 7, 10879, 8, 198, 4798, 7, 10879, 58, 25, 17, 12962, 1303, 416, 49289, 198, 198, 76, 2966, 796, 685, 16, 11, 362, 11, 513, 11, 604, 11, 366, 13261, 1600, 366, 19412, 1600, 17, 13, 20, 11, 6045, 60, 198, 4798, 7, 76, 2966, 8, 198, 4798, 7, 76, 2966, 58, 12, 16, 12962, 2, 4633, 6376, 278, 198, 198, 2, 3803, 262, 1366, 286, 262, 1351, 198, 76, 2966, 58, 16, 60, 796, 705, 11545, 6, 198, 4798, 7, 76, 2966, 8, 198, 2, 361, 356, 1487, 262, 2048, 2472, 1366, 286, 1351, 198, 77, 17024, 58, 25, 20, 60, 796, 37250, 505, 3256, 705, 11545, 41707, 15542, 41707, 14337, 41707, 13261, 20520, 198, 4798, 7, 77, 17024, 8 ]
2.60396
202
from contacts.contacts_modules import delete_contact to_delete = delete_contact.DeleteContact() delete = to_delete.delete_contact("1")
[ 6738, 13961, 13, 3642, 8656, 62, 18170, 1330, 12233, 62, 32057, 198, 198, 1462, 62, 33678, 796, 12233, 62, 32057, 13, 38727, 17829, 3419, 198, 33678, 796, 284, 62, 33678, 13, 33678, 62, 32057, 7203, 16, 4943, 198 ]
3.578947
38
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'MainWindow.ui' # # Created by: PyQt5 UI code generator 5.12.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 2, 5178, 7822, 7560, 422, 3555, 334, 72, 2393, 705, 13383, 27703, 13, 9019, 6, 201, 198, 2, 201, 198, 2, 15622, 416, 25, 9485, 48, 83, 20, 12454, 2438, 17301, 642, 13, 1065, 13, 17, 201, 198, 2, 201, 198, 2, 39410, 0, 1439, 2458, 925, 287, 428, 2393, 481, 307, 2626, 0, 201, 198, 201, 198, 6738, 9485, 48, 83, 20, 1330, 33734, 14055, 11, 33734, 8205, 72, 11, 33734, 54, 312, 11407, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.57
100
from django.shortcuts import redirect from django.http import HttpResponse from django.template import loader from http.server import HTTPStatus from .User import User import iotweb.views.urls_and_messages as UM import requests import json def devices(request, shdw_id): """ GET request: renders the physical devices page POST request: It's a request to delete one physical device """ user = User.get_instance() if request.POST: # REQUEST TO DELETE DEVICE url = UM.DB_URL + 'deletePhysicalDevice/{}/'.format(request.POST['device_id']) headers = {'Authorization': 'Token {}'.format(user.user_token)} req = requests.get(url=url, headers=headers) if req.status_code == 200: return redirect('/viewDevices/{}/'.format(shdw_id)) else: template = loader.get_template('../templates/error_page.html') context = {'code_error': req.status_code, 'message': req.text, 'error_name': HTTPStatus(req.status_code).phrase, 'back': '/viewDevices/{}/'.format(shdw_id) } if req.status_code == 401: context['message'] = context['message'] + UM.REFRESH_TOKEN context['back'] = '/login/' return HttpResponse(template.render(context, request)) else: # GET - RENDER THE TEMPLATE WITH PHYSICAL DEVICES template = loader.get_template('../templates/physical_devices.html') url = UM.DB_URL + 'getShadowDevices/{}/'.format(shdw_id) headers = {'Authorization': 'Token {}'.format(user.user_token)} req = requests.get(url=url, headers=headers) if req.status_code == 200: devices_list = json.loads(req.text)['devices'] context = {'devices': [], 'shadow_id': shdw_id, 'email': user.user_email} if devices_list: for device in devices_list: json_object = json.loads(device) # CHECK THIS AGAIN url_token = UM.DB_URL + 'getTokenById/{}/'.format(json_object['token']) res_tok = requests.get(url=url_token, headers=headers) token = json.loads(res_tok.text)['token'] json_object['token'] = token # we replace token id with token value json_object['id'] = json_object['_id'] url_status = UM.DB_URL + 'getDeviceStatus/{}/'.format(json_object['_id']) req_status = requests.get(url=url_status, headers=headers) json_object['STATUS'] = json.loads(req_status.text)['status'] context['devices'].append(json_object) return HttpResponse(template.render(context, request)) else: template = loader.get_template('../templates/error_page.html') context = {'code_error': req.status_code, 'message': req.text, 'error_name': HTTPStatus(req.status_code).phrase, 'back': '/profile/' } if req.status_code == 401: context['message'] = context['message'] + UM.REFRESH_TOKEN context['back'] = '/login/' return HttpResponse(template.render(context, request))
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 18941, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 28243, 1330, 40213, 198, 6738, 2638, 13, 15388, 1330, 14626, 19580, 198, 6738, 764, 12982, 1330, 11787, 198, 198, 11748, 1312, 313, 12384, 13, 33571, 13, 6371, 82, 62, 392, 62, 37348, 1095, 355, 44352, 198, 11748, 7007, 198, 11748, 33918, 628, 198, 4299, 4410, 7, 25927, 11, 427, 67, 86, 62, 312, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17151, 2581, 25, 30111, 262, 3518, 4410, 2443, 198, 220, 220, 220, 24582, 2581, 25, 632, 338, 257, 2581, 284, 12233, 530, 3518, 3335, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2836, 796, 11787, 13, 1136, 62, 39098, 3419, 628, 220, 220, 220, 611, 2581, 13, 32782, 25, 220, 1303, 4526, 35780, 5390, 5550, 2538, 9328, 5550, 27389, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 44352, 13, 11012, 62, 21886, 1343, 705, 33678, 31611, 24728, 14, 90, 92, 14, 4458, 18982, 7, 25927, 13, 32782, 17816, 25202, 62, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 1391, 6, 13838, 1634, 10354, 705, 30642, 23884, 4458, 18982, 7, 7220, 13, 7220, 62, 30001, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 43089, 796, 7007, 13, 1136, 7, 6371, 28, 6371, 11, 24697, 28, 50145, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 43089, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 10786, 14, 1177, 13603, 1063, 14, 90, 92, 14, 4458, 18982, 7, 1477, 67, 86, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 796, 40213, 13, 1136, 62, 28243, 10786, 40720, 11498, 17041, 14, 18224, 62, 7700, 13, 6494, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 1391, 6, 8189, 62, 18224, 10354, 43089, 13, 13376, 62, 8189, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20500, 10354, 43089, 13, 5239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18224, 62, 3672, 10354, 14626, 19580, 7, 42180, 13, 13376, 62, 8189, 737, 34675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 10354, 31051, 1177, 13603, 1063, 14, 90, 92, 14, 4458, 18982, 7, 1477, 67, 86, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 43089, 13, 13376, 62, 8189, 6624, 22219, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 17816, 20500, 20520, 796, 4732, 17816, 20500, 20520, 1343, 44352, 13, 2200, 10913, 44011, 62, 10468, 43959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 17816, 1891, 20520, 796, 31051, 38235, 14, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 7, 28243, 13, 13287, 7, 22866, 11, 2581, 4008, 628, 220, 220, 220, 2073, 25, 220, 1303, 17151, 532, 371, 10619, 1137, 3336, 309, 3620, 6489, 6158, 13315, 9370, 16309, 20151, 5550, 53, 34444, 628, 220, 220, 220, 220, 220, 220, 220, 11055, 796, 40213, 13, 1136, 62, 28243, 10786, 40720, 11498, 17041, 14, 42854, 62, 42034, 13, 6494, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 44352, 13, 11012, 62, 21886, 1343, 705, 1136, 27447, 13603, 1063, 14, 90, 92, 14, 4458, 18982, 7, 1477, 67, 86, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 1391, 6, 13838, 1634, 10354, 705, 30642, 23884, 4458, 18982, 7, 7220, 13, 7220, 62, 30001, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 43089, 796, 7007, 13, 1136, 7, 6371, 28, 6371, 11, 24697, 28, 50145, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 43089, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4410, 62, 4868, 796, 33918, 13, 46030, 7, 42180, 13, 5239, 8, 17816, 42034, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 1391, 6, 42034, 10354, 685, 4357, 705, 19106, 62, 312, 10354, 427, 67, 86, 62, 312, 11, 705, 12888, 10354, 2836, 13, 7220, 62, 12888, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4410, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3335, 287, 4410, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 15252, 796, 33918, 13, 46030, 7, 25202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5870, 25171, 12680, 36218, 1268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 30001, 796, 44352, 13, 11012, 62, 21886, 1343, 705, 1136, 30642, 48364, 14, 90, 92, 14, 4458, 18982, 7, 17752, 62, 15252, 17816, 30001, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 83, 482, 796, 7007, 13, 1136, 7, 6371, 28, 6371, 62, 30001, 11, 24697, 28, 50145, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 33918, 13, 46030, 7, 411, 62, 83, 482, 13, 5239, 8, 17816, 30001, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 15252, 17816, 30001, 20520, 796, 11241, 220, 1303, 356, 6330, 11241, 4686, 351, 11241, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 15252, 17816, 312, 20520, 796, 33918, 62, 15252, 17816, 62, 312, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 13376, 796, 44352, 13, 11012, 62, 21886, 1343, 705, 1136, 24728, 19580, 14, 90, 92, 14, 4458, 18982, 7, 17752, 62, 15252, 17816, 62, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43089, 62, 13376, 796, 7007, 13, 1136, 7, 6371, 28, 6371, 62, 13376, 11, 24697, 28, 50145, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 15252, 17816, 35744, 2937, 20520, 796, 33918, 13, 46030, 7, 42180, 62, 13376, 13, 5239, 8, 17816, 13376, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 17816, 42034, 6, 4083, 33295, 7, 17752, 62, 15252, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 7, 28243, 13, 13287, 7, 22866, 11, 2581, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 796, 40213, 13, 1136, 62, 28243, 10786, 40720, 11498, 17041, 14, 18224, 62, 7700, 13, 6494, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 1391, 6, 8189, 62, 18224, 10354, 43089, 13, 13376, 62, 8189, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20500, 10354, 43089, 13, 5239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18224, 62, 3672, 10354, 14626, 19580, 7, 42180, 13, 13376, 62, 8189, 737, 34675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 10354, 31051, 13317, 14, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 43089, 13, 13376, 62, 8189, 6624, 22219, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 17816, 20500, 20520, 796, 4732, 17816, 20500, 20520, 1343, 44352, 13, 2200, 10913, 44011, 62, 10468, 43959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 17816, 1891, 20520, 796, 31051, 38235, 14, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 7, 28243, 13, 13287, 7, 22866, 11, 2581, 4008, 628, 628 ]
2.140952
1,575
import logging from django.conf import settings from django.contrib.sites.shortcuts import get_current_site from django.template import loader from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from .models import MailTemplate try: from django.template.exceptions import TemplateDoesNotExist, TemplateSyntaxError except ImportError: from django.template.base import TemplateDoesNotExist, TemplateSyntaxError logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 49315, 13, 19509, 23779, 1330, 651, 62, 14421, 62, 15654, 198, 6738, 42625, 14208, 13, 28243, 1330, 40213, 198, 6738, 42625, 14208, 13, 26791, 13, 49585, 395, 1806, 1330, 1317, 62, 21230, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 764, 27530, 1330, 11099, 30800, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 42625, 14208, 13, 28243, 13, 1069, 11755, 1330, 37350, 13921, 3673, 3109, 396, 11, 37350, 13940, 41641, 12331, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 42625, 14208, 13, 28243, 13, 8692, 1330, 37350, 13921, 3673, 3109, 396, 11, 37350, 13940, 41641, 12331, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 628 ]
3.472973
148
import subprocess import sys import getopt import json from pyzabbix import ZabbixMetric, ZabbixSender ipa = '' ipb = '' host = '' try: opts, args = getopt.getopt(sys.argv[1:], "ha:b:n:") except getopt.GetoptError: print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' sys.exit(2) for opt, arg in opts: if opt == "-h": print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' print 'Parameters:' print '-a\t\tIP Controler A' print '-b\t\tIP Controler B' print '-n\t\tHostName in Zabbix' print '-h\t\tThis help' sys.exit() elif opt == "-a": ipa = arg elif opt == "-b": ipb = arg elif opt == "-n": host = arg # else # print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' # sys.exit(2) SMCLI = "/opt/IBM_DS/client/SMcli" CONN = ipa + " " + ipb cmd = SMCLI + " " + CONN + " -S -c \"set session performanceMonitorInterval=3 performanceMonitorIterations=1;show allLogicalDrives performanceStats;\"" #print cmd proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) (out, err) = proc.communicate() strings = out.split("\n",7)[7] #print strings packet = [] output = [] for str in strings.splitlines(): arr = str.split(',') output.append({"{#VALUE}": arr[0].replace("\"","")}) packet.append(ZabbixMetric(host, 'total.ios['+arr[0].replace("\"","")+']',arr[1].replace("\"", ""))) packet.append(ZabbixMetric(host, 'read['+arr[0].replace("\"","")+']',arr[2].replace("\"", ""))) packet.append(ZabbixMetric(host, 'read.cache.hit['+arr[0].replace("\"","")+']',arr[3].replace("\"", ""))) packet.append(ZabbixMetric(host, 'write.cache.hit['+arr[0].replace("\"","")+']',arr[4].replace("\"", ""))) packet.append(ZabbixMetric(host, 'ssd.cache.hit['+arr[0].replace("\"","")+']',arr[5].replace("\"", ""))) packet.append(ZabbixMetric(host, 'current.MBs['+arr[0].replace("\"","")+']',arr[6].replace("\"", ""))) packet.append(ZabbixMetric(host, 'max.MBs['+arr[0].replace("\"","")+']',arr[7].replace("\"", ""))) packet.append(ZabbixMetric(host, 'current.ios['+arr[0].replace("\"","")+']',arr[8].replace("\"", ""))) packet.append(ZabbixMetric(host, 'max.ios['+arr[0].replace("\"","")+']',arr[9].replace("\"", ""))) if arr[0].replace("\"","") == "STORAGE SUBSYSTEM TOTALS": break #print packet ZabbixSender(zabbix_server='192.168.10.45', zabbix_port=10051).send(packet) print '{"data":' print json.dumps(output) print '}'
[ 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 651, 8738, 198, 11748, 33918, 198, 6738, 12972, 89, 6485, 844, 1330, 1168, 6485, 844, 9171, 1173, 11, 1168, 6485, 844, 50, 2194, 198, 541, 64, 796, 10148, 198, 541, 65, 796, 10148, 198, 4774, 796, 10148, 198, 28311, 25, 198, 220, 220, 220, 2172, 82, 11, 26498, 796, 651, 8738, 13, 1136, 8738, 7, 17597, 13, 853, 85, 58, 16, 25, 4357, 366, 3099, 25, 65, 25, 77, 25, 4943, 198, 16341, 651, 8738, 13, 3855, 8738, 12331, 25, 198, 220, 220, 220, 3601, 705, 9132, 2624, 5324, 13, 9078, 532, 64, 1279, 4061, 4264, 305, 1754, 32, 29, 532, 65, 1279, 4061, 4264, 305, 1754, 33, 29, 532, 77, 1279, 17932, 5376, 818, 57, 6485, 844, 29, 6, 198, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 1640, 2172, 11, 1822, 287, 2172, 82, 25, 198, 220, 220, 220, 611, 2172, 6624, 27444, 71, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 9132, 2624, 5324, 13, 9078, 532, 64, 1279, 4061, 4264, 305, 1754, 32, 29, 532, 65, 1279, 4061, 4264, 305, 1754, 33, 29, 532, 77, 1279, 17932, 5376, 818, 57, 6485, 844, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 48944, 32105, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 12, 64, 59, 83, 59, 83, 4061, 2345, 305, 1754, 317, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 12, 65, 59, 83, 59, 83, 4061, 2345, 305, 1754, 347, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 12, 77, 59, 83, 59, 83, 17932, 5376, 287, 1168, 6485, 844, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 12, 71, 59, 83, 59, 83, 1212, 1037, 6, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 1288, 361, 2172, 6624, 27444, 64, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 64, 796, 1822, 198, 220, 220, 220, 1288, 361, 2172, 6624, 27444, 65, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 65, 796, 1822, 198, 220, 220, 220, 1288, 361, 2172, 6624, 27444, 77, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 796, 1822, 198, 2, 220, 220, 220, 2073, 198, 2, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 9132, 2624, 5324, 13, 9078, 532, 64, 1279, 4061, 4264, 305, 1754, 32, 29, 532, 65, 1279, 4061, 4264, 305, 1754, 33, 29, 532, 77, 1279, 17932, 5376, 818, 57, 6485, 844, 29, 6, 198, 2, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 12310, 5097, 40, 796, 12813, 8738, 14, 9865, 44, 62, 5258, 14, 16366, 14, 12310, 44506, 1, 198, 10943, 45, 796, 20966, 64, 1343, 366, 366, 1343, 20966, 65, 198, 28758, 796, 9447, 5097, 40, 1343, 366, 366, 1343, 7102, 45, 1343, 366, 532, 50, 532, 66, 19990, 2617, 6246, 2854, 35479, 9492, 2100, 28, 18, 2854, 35479, 29993, 602, 28, 16, 26, 12860, 477, 11187, 605, 20564, 1158, 2854, 29668, 26, 7879, 1, 198, 2, 4798, 23991, 198, 36942, 796, 220, 850, 14681, 13, 47, 9654, 7, 28758, 11, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 7582, 28, 17821, 8, 198, 7, 448, 11, 11454, 8, 796, 13834, 13, 10709, 5344, 3419, 198, 37336, 796, 503, 13, 35312, 7203, 59, 77, 1600, 22, 38381, 22, 60, 198, 2, 4798, 13042, 198, 8002, 316, 796, 17635, 198, 22915, 796, 17635, 198, 1640, 965, 287, 13042, 13, 35312, 6615, 33529, 198, 220, 220, 220, 5240, 796, 965, 13, 35312, 7, 3256, 11537, 198, 220, 220, 220, 5072, 13, 33295, 7, 4895, 90, 2, 39488, 92, 1298, 5240, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 30072, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 23350, 13, 4267, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 16, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 961, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 17, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 961, 13, 23870, 13, 17945, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 18, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 13564, 13, 23870, 13, 17945, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 19, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 824, 67, 13, 23870, 13, 17945, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 20, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 14421, 13, 10744, 82, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 21, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 9806, 13, 10744, 82, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 22, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 14421, 13, 4267, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 23, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 19638, 13, 33295, 7, 57, 6485, 844, 9171, 1173, 7, 4774, 11, 705, 9806, 13, 4267, 17816, 10, 3258, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 10, 20520, 3256, 3258, 58, 24, 4083, 33491, 7203, 7879, 1600, 13538, 22305, 198, 220, 220, 220, 611, 5240, 58, 15, 4083, 33491, 7203, 7879, 2430, 4943, 6624, 366, 2257, 1581, 11879, 13558, 4462, 56, 25361, 309, 2394, 23333, 1298, 198, 220, 220, 220, 220, 220, 2270, 198, 2, 4798, 19638, 198, 57, 6485, 844, 50, 2194, 7, 89, 6485, 844, 62, 15388, 11639, 17477, 13, 14656, 13, 940, 13, 2231, 3256, 1976, 6485, 844, 62, 634, 28, 3064, 4349, 737, 21280, 7, 8002, 316, 8, 198, 4798, 705, 4895, 7890, 1298, 6, 198, 4798, 33918, 13, 67, 8142, 7, 22915, 8, 198, 4798, 705, 92, 6, 198 ]
2.25
1,132
from heapq import nlargest # NOTE: this solution assumes the handles are only english letters handles = ['DogeCoin', 'YangGang', 'HodlForLife', 'fakeDonaldDrumpf', 'GodIsLove', 'BernieOrBust'] new_user = 'iLoveDogs' obj = SimilarAccounts() result1 = obj.make_anagram(new_user) result2 = obj.make_anagram('DogeCoin') anagram_score = obj.get_score_with_anagram(new_user, 'GodIsLove') set_score = obj.get_score_with_set(new_user, 'GodIsLove') print(f"anagram score:", anagram_score) print(f"set score:", set_score) k_handles = obj.suggest(new_user, handles, 2) print(k_handles)
[ 6738, 24575, 80, 1330, 299, 28209, 198, 198, 2, 24550, 25, 428, 4610, 18533, 262, 17105, 389, 691, 46932, 7475, 198, 198, 4993, 829, 796, 37250, 5211, 469, 24387, 3256, 705, 38663, 38, 648, 3256, 705, 39, 375, 75, 1890, 14662, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30706, 7371, 6187, 931, 69, 3256, 705, 13482, 3792, 18565, 3256, 705, 33433, 5574, 33, 436, 20520, 198, 3605, 62, 7220, 796, 705, 72, 18565, 35, 18463, 6, 198, 198, 26801, 796, 11014, 30116, 82, 3419, 198, 20274, 16, 796, 26181, 13, 15883, 62, 272, 6713, 7, 3605, 62, 7220, 8, 198, 20274, 17, 796, 26181, 13, 15883, 62, 272, 6713, 10786, 5211, 469, 24387, 11537, 198, 272, 6713, 62, 26675, 796, 26181, 13, 1136, 62, 26675, 62, 4480, 62, 272, 6713, 7, 3605, 62, 7220, 11, 705, 13482, 3792, 18565, 11537, 198, 2617, 62, 26675, 796, 26181, 13, 1136, 62, 26675, 62, 4480, 62, 2617, 7, 3605, 62, 7220, 11, 705, 13482, 3792, 18565, 11537, 198, 4798, 7, 69, 1, 272, 6713, 4776, 25, 1600, 281, 6713, 62, 26675, 8, 198, 4798, 7, 69, 1, 2617, 4776, 25, 1600, 900, 62, 26675, 8, 198, 74, 62, 4993, 829, 796, 26181, 13, 47811, 7, 3605, 62, 7220, 11, 17105, 11, 362, 8, 198, 198, 4798, 7, 74, 62, 4993, 829, 8, 198 ]
2.610619
226
"""Configuration data container with interactive ipywidgets GUI""" import json import ipywidgets import jsonschema class DictWidget(): """Container class for configuration data Constructed from a JSON Schema. Use like a dictionary to store and retrieve configuration data. Will also create a ipywidget interactive representation via `gui()`. Also supports nested schemata (i.e. a schema tha contains `object` properties, which are themselves configuration containers.""" def __init__(self, schema): """Construct a Configuration object from a JSON schema definition""" self.schema = schema self.data = {} self.callback = None self.children = {} # Create GUI # Widget objects are collected in a dictionary (for update in __setitem__()) # as well as a list (together with their description labels to create a VBox for display). self.widgets = {} self.widgetlist = [] for name, props in self.schema['properties'].items(): minimum = props.get('minimum', None) maximum = props.get('maximum', None) description = props.get('description', '') # Containers create new `Configuration` instances - save those children for later if props['type'] == 'object': subschema = {"title": name, "type": "object", "properties": props['properties']} self.children[name] = Configuration(subschema) else: # Scalar data elements are displayed as is if props['type'] == 'integer': value = self.data.get(name, props.get('default', 0)) widget = ipywidgets.IntSlider(description=name, min=minimum, max=maximum, value=value) elif props['type'] == 'number': value = self.data.get(name, props.get('default', 0.0)) widget = ipywidgets.FloatSlider(description=name, min=minimum, max=maximum, value=value) elif props['type'] == 'string': # also supports drop down value = self.data.get(name, props.get('default', '')) if 'choices' in props: widget = ipywidgets.Dropdown(options=props['choices'].split(';'), value=value, description=name) else: widget = ipywidgets.Text(description=name, value=value) elif props['type'] == 'boolean': value = self.data.get(name, props.get('default', False)) widget = ipywidgets.Checkbox(description=name, value=value) else: widget = ipywidgets.Label(description=name, value=f"Don't know how to draw {props['type']}") widget.observe(self.on_value_change, names='value') # save for self-reference self.widgets[name] = widget self.widgetlist.append(ipywidgets.HBox([widget, ipywidgets.Label(value=description)])) # Add all saved children in a Tab if self.children: widget = ipywidgets.Tab([c._gui for c in self.children.values()]) for i, c in enumerate(self.children.keys()): widget.set_title(i, c) widget.observe(self.on_value_change, names='value') # save for self-reference self.widgets['_children'] = widget self.widgetlist.append(widget) # Return all widgets in a VBox self._gui = ipywidgets.VBox(self.widgetlist) def from_dict(self, dict_in): """Load configuration data from a dictionary. Will validate input against schema used in object construction.""" jsonschema.validate(dict_in, self.schema) for key, value in dict_in.items(): if isinstance(value, dict): self.children[key].from_dict(value) else: self[key] = value def from_json(self, json_in): """Load configuration data from JSON.""" temp = json.loads(json_in) self.from_dict(temp) def to_json(self): """Dump configuration data as JSON.""" if not self.data: return None return json.dumps(self.to_dict()) def to_dict(self): """Dump configuration data as dictionary.""" ret = dict(self.data) for name, child in self.children.items(): ret[name] = child.to_dict() return ret def __getitem__(self, item): """Allow using dict syntax for object retrievel. Will first try to locate a child configuration object. If that's not found, it will then look for a data item.""" if item in self.children: return self.children[item] return self.data.__getitem__(item) def __setitem__(self, item, value): """Allow using dict syntax for setting values. Will only allow setting values in accordance with schema used for object generation.""" if item not in self.schema['properties']: raise KeyError(f'"{item}" not in schema') temp = dict(self.data) temp.__setitem__(item, value) jsonschema.validate(temp, self.schema) self.data.__setitem__(item, value) # update any gui that may exist if item in self.widgets: self.widgets[item].value = value def on_value_change(self, change): """Callback for GUI updates.""" key = change['owner'].description self[key] = change['new'] if self.callback: self.callback(self.to_dict()) # TODO: expensive! def interact(self, callback=None): """Return an interactive ipywidgets GUI for setting configuration values. Will call `callback` with a dictionary of data values on change.""" self.callback = callback # Update children's callbacks, too. for c in self.children.values(): c.callback = callback return self._gui
[ 37811, 38149, 1366, 9290, 351, 14333, 20966, 88, 28029, 11407, 25757, 37811, 198, 198, 11748, 33918, 198, 198, 11748, 20966, 88, 28029, 11407, 198, 11748, 44804, 684, 2395, 2611, 628, 198, 4871, 360, 713, 38300, 33529, 198, 220, 220, 220, 37227, 29869, 1398, 329, 8398, 1366, 628, 220, 220, 220, 28407, 276, 422, 257, 19449, 10011, 2611, 13, 5765, 588, 257, 22155, 284, 3650, 290, 19818, 8398, 1366, 13, 198, 220, 220, 220, 2561, 635, 2251, 257, 20966, 88, 42655, 14333, 10552, 2884, 4600, 48317, 3419, 44646, 4418, 6971, 28376, 3897, 76, 1045, 198, 220, 220, 220, 357, 72, 13, 68, 13, 257, 32815, 28110, 4909, 4600, 15252, 63, 6608, 11, 543, 389, 2405, 8398, 16472, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 32815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 257, 28373, 2134, 422, 257, 19449, 32815, 6770, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15952, 2611, 796, 32815, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47423, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17197, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 25757, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 370, 17484, 5563, 389, 7723, 287, 257, 22155, 357, 1640, 4296, 287, 11593, 2617, 9186, 834, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 355, 880, 355, 257, 1351, 357, 45525, 351, 511, 6764, 14722, 284, 2251, 257, 569, 14253, 329, 3359, 737, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28029, 11407, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42655, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 25744, 287, 2116, 13, 15952, 2611, 17816, 48310, 6, 4083, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5288, 796, 25744, 13, 1136, 10786, 39504, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5415, 796, 25744, 13, 1136, 10786, 47033, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 796, 25744, 13, 1136, 10786, 11213, 3256, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2345, 50221, 2251, 649, 4600, 38149, 63, 10245, 532, 3613, 883, 1751, 329, 1568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 25744, 17816, 4906, 20520, 6624, 705, 15252, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5294, 258, 2611, 796, 19779, 7839, 1298, 1438, 11, 366, 4906, 1298, 366, 15252, 1600, 366, 48310, 1298, 25744, 17816, 48310, 20520, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17197, 58, 3672, 60, 796, 28373, 7, 7266, 15952, 2611, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34529, 283, 1366, 4847, 389, 9066, 355, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 25744, 17816, 4906, 20520, 6624, 705, 41433, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 7890, 13, 1136, 7, 3672, 11, 25744, 13, 1136, 10786, 12286, 3256, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 796, 20966, 88, 28029, 11407, 13, 5317, 11122, 1304, 7, 11213, 28, 3672, 11, 949, 28, 39504, 11, 3509, 28, 47033, 11, 1988, 28, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 25744, 17816, 4906, 20520, 6624, 705, 17618, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 7890, 13, 1136, 7, 3672, 11, 25744, 13, 1136, 10786, 12286, 3256, 657, 13, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 796, 20966, 88, 28029, 11407, 13, 43879, 11122, 1304, 7, 11213, 28, 3672, 11, 949, 28, 39504, 11, 3509, 28, 47033, 11, 1988, 28, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 25744, 17816, 4906, 20520, 6624, 705, 8841, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 635, 6971, 4268, 866, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 7890, 13, 1136, 7, 3672, 11, 25744, 13, 1136, 10786, 12286, 3256, 10148, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 6679, 1063, 6, 287, 25744, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 796, 20966, 88, 28029, 11407, 13, 26932, 2902, 7, 25811, 28, 1676, 862, 17816, 6679, 1063, 6, 4083, 35312, 10786, 26, 33809, 1988, 28, 8367, 11, 6764, 28, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 796, 20966, 88, 28029, 11407, 13, 8206, 7, 11213, 28, 3672, 11, 1988, 28, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 25744, 17816, 4906, 20520, 6624, 705, 2127, 21052, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 7890, 13, 1136, 7, 3672, 11, 25744, 13, 1136, 10786, 12286, 3256, 10352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 796, 20966, 88, 28029, 11407, 13, 9787, 3524, 7, 11213, 28, 3672, 11, 1988, 28, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 796, 20966, 88, 28029, 11407, 13, 33986, 7, 11213, 28, 3672, 11, 1988, 28, 69, 1, 3987, 470, 760, 703, 284, 3197, 1391, 1676, 862, 17816, 4906, 20520, 92, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 13, 672, 2655, 303, 7, 944, 13, 261, 62, 8367, 62, 3803, 11, 3891, 11639, 8367, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 329, 2116, 12, 35790, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28029, 11407, 58, 3672, 60, 796, 26295, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42655, 4868, 13, 33295, 7, 541, 88, 28029, 11407, 13, 39, 14253, 26933, 42655, 11, 20966, 88, 28029, 11407, 13, 33986, 7, 8367, 28, 11213, 15437, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 477, 7448, 1751, 287, 257, 16904, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 796, 20966, 88, 28029, 11407, 13, 33349, 26933, 66, 13557, 48317, 329, 269, 287, 2116, 13, 17197, 13, 27160, 3419, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 269, 287, 27056, 378, 7, 944, 13, 17197, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 13, 2617, 62, 7839, 7, 72, 11, 269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26295, 13, 672, 2655, 303, 7, 944, 13, 261, 62, 8367, 62, 3803, 11, 3891, 11639, 8367, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 329, 2116, 12, 35790, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28029, 11407, 17816, 62, 17197, 20520, 796, 26295, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42655, 4868, 13, 33295, 7, 42655, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8229, 477, 40803, 287, 257, 569, 14253, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 48317, 796, 20966, 88, 28029, 11407, 13, 53, 14253, 7, 944, 13, 42655, 4868, 8, 628, 198, 220, 220, 220, 825, 422, 62, 11600, 7, 944, 11, 8633, 62, 259, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 8398, 1366, 422, 257, 22155, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2561, 26571, 5128, 1028, 32815, 973, 287, 2134, 5103, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 44804, 684, 2395, 2611, 13, 12102, 378, 7, 11600, 62, 259, 11, 2116, 13, 15952, 2611, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 8633, 62, 259, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17197, 58, 2539, 4083, 6738, 62, 11600, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 58, 2539, 60, 796, 1988, 628, 198, 220, 220, 220, 825, 422, 62, 17752, 7, 944, 11, 33918, 62, 259, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 8398, 1366, 422, 19449, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 33918, 13, 46030, 7, 17752, 62, 259, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6738, 62, 11600, 7, 29510, 8, 628, 198, 220, 220, 220, 825, 284, 62, 17752, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35, 931, 8398, 1366, 355, 19449, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 944, 13, 1462, 62, 11600, 28955, 628, 198, 220, 220, 220, 825, 284, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35, 931, 8398, 1366, 355, 22155, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 8633, 7, 944, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 1200, 287, 2116, 13, 17197, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 3672, 60, 796, 1200, 13, 1462, 62, 11600, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 2378, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35265, 1262, 8633, 15582, 329, 2134, 13236, 626, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2561, 717, 1949, 284, 17276, 257, 1200, 8398, 2134, 13, 1002, 326, 338, 407, 1043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 340, 481, 788, 804, 329, 257, 1366, 2378, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 287, 2116, 13, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17197, 58, 9186, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7890, 13, 834, 1136, 9186, 834, 7, 9186, 8, 628, 198, 220, 220, 220, 825, 11593, 2617, 9186, 834, 7, 944, 11, 2378, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35265, 1262, 8633, 15582, 329, 4634, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2561, 691, 1249, 4634, 3815, 287, 10213, 351, 32815, 973, 329, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 5270, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 407, 287, 2116, 13, 15952, 2611, 17816, 48310, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7, 69, 29653, 90, 9186, 36786, 407, 287, 32815, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 8633, 7, 944, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 13, 834, 2617, 9186, 834, 7, 9186, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 44804, 684, 2395, 2611, 13, 12102, 378, 7, 29510, 11, 2116, 13, 15952, 2611, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 13, 834, 2617, 9186, 834, 7, 9186, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 597, 11774, 326, 743, 2152, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 287, 2116, 13, 28029, 11407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28029, 11407, 58, 9186, 4083, 8367, 796, 1988, 628, 198, 220, 220, 220, 825, 319, 62, 8367, 62, 3803, 7, 944, 11, 1487, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47258, 329, 25757, 5992, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 1487, 17816, 18403, 6, 4083, 11213, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 58, 2539, 60, 796, 1487, 17816, 3605, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 47423, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47423, 7, 944, 13, 1462, 62, 11600, 28955, 1303, 16926, 46, 25, 5789, 0, 628, 220, 220, 220, 825, 9427, 7, 944, 11, 23838, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 281, 14333, 20966, 88, 28029, 11407, 25757, 329, 4634, 8398, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2561, 869, 4600, 47423, 63, 351, 257, 22155, 286, 1366, 3815, 319, 1487, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47423, 796, 23838, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 1751, 338, 869, 10146, 11, 1165, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 2116, 13, 17197, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 47423, 796, 23838, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 48317, 198 ]
2.356366
2,576
from nepali_company_registrar.nepal_company_registrar import NepalCompanyRegistrar
[ 6738, 25919, 7344, 62, 39722, 62, 2301, 396, 20040, 13, 77, 538, 282, 62, 39722, 62, 2301, 396, 20040, 1330, 27026, 39154, 8081, 396, 20040, 198 ]
3.192308
26
from __future__ import (absolute_import, division, print_function, unicode_literals) from datetime import datetime, timedelta from backtrader.feed import DataBase from backtrader import TimeFrame, date2num, num2date from backtrader.utils.py3 import (integer_types, queue, string_types, with_metaclass) from backtrader.metabase import MetaParams from . import igstore class IGData(with_metaclass(MetaIGData, DataBase)): ''' params: ''' #TODO insert params params = ( ('useask', False), ('reconnections', -1), ('qcheck', 5) ) # States for the Finite State Machine in _load _ST_FROM, _ST_START, _ST_LIVE, _ST_HISTORBACK, _ST_OVER = range(5) _store = igstore.IGStore def islive(self): '''Returns ``True`` to notify ``Cerebro`` that preloading and runonce should be deactivated''' return True def setenvironment(self, env): '''Receives an environment (cerebro) and passes it over to the store it belongs to''' super(IGData, self).setenvironment(env) env.addstore(self.o) def start(self): '''Starts the IG connecction and gets the real contract and contractdetails if it exists''' super(IGData, self).start() # Create attributes as soon as possible self._statelivereconn = False # if reconnecting in live state self._storedmsg = dict() # keep pending live message (under None) self.qlive = queue.Queue() self._state = self._ST_OVER # Kickstart store and get queue to wait on self.o.start(data=self) self._start_finish() self._state = self._ST_START # initial state for _load self._st_start() self._reconns = 0 def stop(self): '''Stops and tells the store to stop''' super(IGData, self).stop() self.o.stop() def _load(self): ''' steps 1 - check if we status live. If so process message - Check for error codes in message and change status appropriately - Process the message as long as the status is not trying to reconnect - Setup a backfill if data is missing. 2 - If not, is the status set to perform a backfill? ''' if self._state == self._ST_OVER: return False while True: if self._state == self._ST_LIVE: try: msg = (self._storedmsg.pop(None, None) or self.qlive.get(timeout=self._qcheck)) except queue.Empty: return None # indicate timeout situation if msg is None: # Conn broken during historical/backfilling self.put_notification(self.CONNBROKEN) self.put_notification(self.DISCONNECTED) self._state = self._ST_OVER return False # failed #TODO handle error messages in feed #Check for empty data. Sometimes all the fields return None... if msg['UTM'] is None: return None #self._reconns = self.p.reconnections # Process the message according to expected return type if not self._statelivereconn: if self._laststatus != self.LIVE: if self.qlive.qsize() <= 1: # very short live queue self.put_notification(self.LIVE) ret = self._load_tick(msg) if ret: return True # could not load bar ... go and get new one continue elif self._state == self._ST_START: if not self._st_start(instart=False): self._state = self._ST_OVER return False #TODO # - Check for delays in feed # - put a self.put_notification(self.DELAYED) # - Attempt to fill in missing data # - Setup a backfill of some sort when starting a feed. # - Set Dissonnected status where appropriate.
[ 6738, 11593, 37443, 834, 1330, 357, 48546, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28000, 1098, 62, 17201, 874, 8, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 198, 6738, 736, 2213, 5067, 13, 12363, 1330, 6060, 14881, 198, 6738, 736, 2213, 5067, 1330, 3862, 19778, 11, 3128, 17, 22510, 11, 997, 17, 4475, 198, 6738, 736, 2213, 5067, 13, 26791, 13, 9078, 18, 1330, 357, 41433, 62, 19199, 11, 16834, 11, 4731, 62, 19199, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 4164, 330, 31172, 8, 198, 6738, 736, 2213, 5067, 13, 4164, 5754, 1330, 30277, 10044, 4105, 198, 6738, 764, 1330, 45329, 8095, 628, 198, 4871, 35336, 6601, 7, 4480, 62, 4164, 330, 31172, 7, 48526, 3528, 6601, 11, 6060, 14881, 8, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 42287, 25, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 51, 3727, 46, 7550, 42287, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 1904, 2093, 3256, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 260, 8443, 507, 3256, 532, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 80, 9122, 3256, 642, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1829, 329, 262, 4463, 578, 1812, 10850, 287, 4808, 2220, 198, 220, 220, 220, 4808, 2257, 62, 10913, 2662, 11, 4808, 2257, 62, 2257, 7227, 11, 4808, 2257, 62, 43, 9306, 11, 4808, 2257, 62, 39, 8808, 1581, 31098, 11, 4808, 2257, 62, 41983, 796, 2837, 7, 20, 8, 628, 220, 220, 220, 4808, 8095, 796, 45329, 8095, 13, 3528, 22658, 628, 220, 220, 220, 825, 318, 12583, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 35561, 7559, 17821, 15506, 284, 19361, 7559, 34, 567, 7957, 15506, 326, 662, 25138, 290, 1057, 27078, 198, 220, 220, 220, 220, 220, 220, 220, 815, 307, 390, 33106, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 198, 220, 220, 220, 825, 900, 38986, 7, 944, 11, 17365, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 3041, 344, 1083, 281, 2858, 357, 344, 260, 7957, 8, 290, 8318, 340, 625, 284, 262, 3650, 340, 198, 220, 220, 220, 220, 220, 220, 220, 14448, 284, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 3528, 6601, 11, 2116, 737, 2617, 38986, 7, 24330, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17365, 13, 2860, 8095, 7, 944, 13, 78, 8, 628, 220, 220, 220, 825, 923, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 1273, 5889, 262, 35336, 369, 32984, 596, 290, 3011, 262, 1103, 2775, 290, 198, 220, 220, 220, 220, 220, 220, 220, 2775, 36604, 611, 340, 7160, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 3528, 6601, 11, 2116, 737, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 12608, 355, 2582, 355, 1744, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5219, 12583, 260, 37043, 796, 10352, 220, 1303, 611, 37671, 278, 287, 2107, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 301, 1850, 19662, 796, 8633, 3419, 220, 1303, 1394, 13310, 2107, 3275, 357, 4625, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 80, 12583, 796, 16834, 13, 34991, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5219, 796, 2116, 13557, 2257, 62, 41983, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10279, 9688, 3650, 290, 651, 16834, 284, 4043, 319, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 78, 13, 9688, 7, 7890, 28, 944, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9688, 62, 15643, 680, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5219, 796, 2116, 13557, 2257, 62, 2257, 7227, 220, 1303, 4238, 1181, 329, 4808, 2220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 301, 62, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 260, 1102, 5907, 796, 657, 628, 220, 220, 220, 825, 2245, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 1273, 2840, 290, 4952, 262, 3650, 284, 2245, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 3528, 6601, 11, 2116, 737, 11338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 78, 13, 11338, 3419, 628, 198, 220, 220, 220, 825, 4808, 2220, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 628, 220, 220, 220, 220, 220, 220, 220, 352, 532, 2198, 611, 356, 3722, 2107, 13, 1002, 523, 1429, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 6822, 329, 4049, 12416, 287, 3275, 290, 1487, 3722, 20431, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 10854, 262, 3275, 355, 890, 355, 262, 3722, 318, 407, 2111, 284, 37671, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 31122, 257, 736, 20797, 611, 1366, 318, 4814, 13, 198, 220, 220, 220, 220, 220, 220, 220, 362, 532, 1002, 407, 11, 318, 262, 3722, 900, 284, 1620, 257, 736, 20797, 30, 628, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 5219, 6624, 2116, 13557, 2257, 62, 41983, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 5219, 6624, 2116, 13557, 2257, 62, 43, 9306, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 357, 944, 13557, 301, 1850, 19662, 13, 12924, 7, 14202, 11, 6045, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 80, 12583, 13, 1136, 7, 48678, 28, 944, 13557, 80, 9122, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 16834, 13, 40613, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 220, 1303, 7603, 26827, 3074, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31456, 318, 6045, 25, 220, 1303, 20776, 5445, 1141, 6754, 14, 1891, 69, 4509, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1996, 62, 1662, 2649, 7, 944, 13, 10943, 45, 11473, 11380, 1677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1996, 62, 1662, 2649, 7, 944, 13, 26288, 10943, 48842, 1961, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5219, 796, 2116, 13557, 2257, 62, 41983, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 220, 1303, 4054, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 51, 3727, 46, 5412, 4049, 6218, 287, 3745, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9787, 329, 6565, 1366, 13, 8975, 477, 262, 7032, 1441, 6045, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31456, 17816, 3843, 44, 20520, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13557, 260, 1102, 5907, 796, 2116, 13, 79, 13, 260, 8443, 507, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10854, 262, 3275, 1864, 284, 2938, 1441, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 5219, 12583, 260, 37043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 12957, 13376, 14512, 2116, 13, 43, 9306, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 80, 12583, 13, 80, 7857, 3419, 19841, 352, 25, 220, 1303, 845, 1790, 2107, 16834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1996, 62, 1662, 2649, 7, 944, 13, 43, 9306, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 2116, 13557, 2220, 62, 42298, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 714, 407, 3440, 2318, 2644, 467, 290, 651, 649, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 5219, 6624, 2116, 13557, 2257, 62, 2257, 7227, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 301, 62, 9688, 7, 8625, 433, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5219, 796, 2116, 13557, 2257, 62, 41983, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 51, 3727, 46, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 532, 6822, 329, 16119, 287, 3745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 532, 1234, 257, 2116, 13, 1996, 62, 1662, 2649, 7, 944, 13, 35, 3698, 4792, 1961, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 532, 25770, 284, 6070, 287, 4814, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 532, 31122, 257, 736, 20797, 286, 617, 3297, 618, 3599, 257, 3745, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 532, 5345, 360, 30927, 1606, 276, 3722, 810, 5035, 13, 628, 198 ]
2.117299
2,029
from photons_products.base import Product, Capability, CapabilityValue from photons_products.enums import VendorRegistry, Zones, Family from photons_products import conditions as cond class Capability(Capability): """ .. attribute:: is_light Is this device a light .. attribute:: zones The style of zones. So strips are LINEAR and things like the candle and tile are MATRIX .. attribute:: has_ir Do we have infrared capability .. attribute:: has_hev Does this device have HEV LEDs .. attribute:: has_color Do we have hue control .. attribute:: has_chain Do we have a chain of devices .. attribute:: has_relays Does this device have relays .. attribute:: has_buttons Does this device have physical buttons .. attribute:: has_unhandled This product has StateUnhandled .. attribute:: has_extended_multizone This product supports extended multizone messages .. attribute:: has_variable_color_temp Do we have variable kelvin .. attribute:: min_kelvin The min kelvin of this product .. attribute:: max_kelvin The max kelvin of this product .. attribute:: product The product class associate with this capability .. attribute:: firmware_major the firmware_major associated with this product You can create an instance of this capability with your own firmware_major by calling this instance .. attribute:: firmware_minor the firmware_major associated with this product You can create an instance of this capability with your own firmware_minor by calling this instance .. autoattribute:: photons_products.lifx.Capability.has_matrix .. autoattribute:: photons_products.lifx.Capability.has_multizone """ is_light = True zones = CapabilityValue(Zones.SINGLE) has_ir = CapabilityValue(False) has_hev = CapabilityValue(False) has_color = CapabilityValue(False) has_chain = CapabilityValue(False) has_relays = CapabilityValue(False) has_buttons = CapabilityValue(False) has_unhandled = CapabilityValue(False).until(0, 0, cond.NameHas("SWITCH"), becomes=True) has_extended_multizone = CapabilityValue(False).until( 2, 77, cond.Family(Family.LCM2), cond.Capability(has_multizone=True), becomes=True ) has_variable_color_temp = CapabilityValue(True) min_kelvin = CapabilityValue(2500) max_kelvin = CapabilityValue(9000) @property def has_multizone(self): """Return whether we have LINEAR zones""" return self.zones is Zones.LINEAR @property def has_matrix(self): """Return whether we have MATRIX zones""" return self.zones is Zones.MATRIX
[ 6738, 44378, 62, 29498, 13, 8692, 1330, 8721, 11, 4476, 1799, 11, 4476, 1799, 11395, 198, 6738, 44378, 62, 29498, 13, 268, 5700, 1330, 39896, 8081, 4592, 11, 1168, 1952, 11, 7884, 198, 6738, 44378, 62, 29498, 1330, 3403, 355, 1779, 628, 198, 198, 4871, 4476, 1799, 7, 15610, 1799, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11485, 11688, 3712, 318, 62, 2971, 198, 220, 220, 220, 220, 220, 220, 220, 1148, 428, 3335, 257, 1657, 628, 220, 220, 220, 11485, 11688, 3712, 14123, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3918, 286, 14123, 13, 1406, 22670, 389, 48920, 1503, 290, 1243, 588, 262, 26839, 290, 17763, 389, 36775, 7112, 55, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 343, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 356, 423, 30624, 12971, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 258, 85, 198, 220, 220, 220, 220, 220, 220, 220, 8314, 428, 3335, 423, 11179, 53, 33697, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 8043, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 356, 423, 37409, 1630, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 7983, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 356, 423, 257, 6333, 286, 4410, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 2411, 592, 198, 220, 220, 220, 220, 220, 220, 220, 8314, 428, 3335, 423, 823, 592, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 4360, 27288, 198, 220, 220, 220, 220, 220, 220, 220, 8314, 428, 3335, 423, 3518, 12163, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 403, 38788, 198, 220, 220, 220, 220, 220, 220, 220, 770, 1720, 468, 1812, 3118, 38788, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 2302, 1631, 62, 16680, 528, 505, 198, 220, 220, 220, 220, 220, 220, 220, 770, 1720, 6971, 7083, 1963, 528, 505, 6218, 628, 220, 220, 220, 11485, 11688, 3712, 468, 62, 45286, 62, 8043, 62, 29510, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 356, 423, 7885, 885, 6780, 259, 628, 220, 220, 220, 11485, 11688, 3712, 949, 62, 365, 6780, 259, 198, 220, 220, 220, 220, 220, 220, 220, 383, 949, 885, 6780, 259, 286, 428, 1720, 628, 220, 220, 220, 11485, 11688, 3712, 3509, 62, 365, 6780, 259, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3509, 885, 6780, 259, 286, 428, 1720, 628, 220, 220, 220, 11485, 11688, 3712, 1720, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1720, 1398, 11602, 351, 428, 12971, 628, 220, 220, 220, 11485, 11688, 3712, 18779, 62, 22478, 198, 220, 220, 220, 220, 220, 220, 220, 262, 18779, 62, 22478, 3917, 351, 428, 1720, 198, 220, 220, 220, 220, 220, 220, 220, 921, 460, 2251, 281, 4554, 286, 428, 12971, 351, 534, 898, 18779, 62, 22478, 416, 4585, 428, 4554, 628, 220, 220, 220, 11485, 11688, 3712, 18779, 62, 1084, 273, 198, 220, 220, 220, 220, 220, 220, 220, 262, 18779, 62, 22478, 3917, 351, 428, 1720, 198, 220, 220, 220, 220, 220, 220, 220, 921, 460, 2251, 281, 4554, 286, 428, 12971, 351, 534, 898, 18779, 62, 1084, 273, 416, 4585, 428, 4554, 628, 220, 220, 220, 11485, 8295, 42348, 3712, 44378, 62, 29498, 13, 36195, 87, 13, 15610, 1799, 13, 10134, 62, 6759, 8609, 198, 220, 220, 220, 11485, 8295, 42348, 3712, 44378, 62, 29498, 13, 36195, 87, 13, 15610, 1799, 13, 10134, 62, 16680, 528, 505, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 318, 62, 2971, 796, 6407, 628, 220, 220, 220, 14123, 796, 4476, 1799, 11395, 7, 57, 1952, 13, 50, 2751, 2538, 8, 628, 220, 220, 220, 468, 62, 343, 796, 4476, 1799, 11395, 7, 25101, 8, 198, 220, 220, 220, 468, 62, 258, 85, 796, 4476, 1799, 11395, 7, 25101, 8, 198, 220, 220, 220, 468, 62, 8043, 796, 4476, 1799, 11395, 7, 25101, 8, 198, 220, 220, 220, 468, 62, 7983, 796, 4476, 1799, 11395, 7, 25101, 8, 198, 220, 220, 220, 468, 62, 2411, 592, 796, 4476, 1799, 11395, 7, 25101, 8, 198, 220, 220, 220, 468, 62, 4360, 27288, 796, 4476, 1799, 11395, 7, 25101, 8, 628, 220, 220, 220, 468, 62, 403, 38788, 796, 4476, 1799, 11395, 7, 25101, 737, 28446, 7, 15, 11, 657, 11, 1779, 13, 5376, 19242, 7203, 17887, 31949, 12340, 4329, 28, 17821, 8, 628, 220, 220, 220, 468, 62, 2302, 1631, 62, 16680, 528, 505, 796, 4476, 1799, 11395, 7, 25101, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 362, 11, 8541, 11, 1779, 13, 24094, 7, 24094, 13, 5639, 44, 17, 828, 1779, 13, 15610, 1799, 7, 10134, 62, 16680, 528, 505, 28, 17821, 828, 4329, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 468, 62, 45286, 62, 8043, 62, 29510, 796, 4476, 1799, 11395, 7, 17821, 8, 628, 220, 220, 220, 949, 62, 365, 6780, 259, 796, 4476, 1799, 11395, 7, 44688, 8, 198, 220, 220, 220, 3509, 62, 365, 6780, 259, 796, 4476, 1799, 11395, 7, 24, 830, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 468, 62, 16680, 528, 505, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1771, 356, 423, 48920, 1503, 14123, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 89, 1952, 318, 1168, 1952, 13, 24027, 1503, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 468, 62, 6759, 8609, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1771, 356, 423, 36775, 7112, 55, 14123, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 89, 1952, 318, 1168, 1952, 13, 41636, 7112, 55, 628 ]
2.916318
956
# 若中断了直接再次运行即可 # 爬取历史数据建立数据库 if __name__ == '__main__': from crypto_1min import Bitfinex_api import threading initially_urls_queue = Bitfinex_api().create_initially_urls_queue() # Bitfinex_api().get_all_symbol_detail() threads = [thread() for i in range(50)] for thread in threads: thread.start() for thread in threads: thread.join()
[ 2, 5525, 233, 98, 40792, 23877, 255, 12859, 228, 33566, 112, 162, 236, 98, 37863, 235, 162, 105, 94, 32573, 238, 26193, 234, 39355, 111, 20998, 107, 201, 198, 2, 13328, 230, 105, 20998, 244, 43889, 228, 20998, 110, 46763, 108, 162, 235, 106, 161, 119, 118, 44165, 233, 46763, 108, 162, 235, 106, 41753, 241, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 422, 21473, 62, 16, 1084, 1330, 4722, 38125, 87, 62, 15042, 201, 198, 220, 220, 220, 1330, 4704, 278, 201, 198, 220, 220, 220, 7317, 62, 6371, 82, 62, 36560, 796, 4722, 38125, 87, 62, 15042, 22446, 17953, 62, 15003, 1927, 62, 6371, 82, 62, 36560, 3419, 201, 198, 2, 220, 220, 220, 4722, 38125, 87, 62, 15042, 22446, 1136, 62, 439, 62, 1837, 23650, 62, 49170, 3419, 201, 198, 201, 198, 220, 220, 220, 14390, 796, 685, 16663, 3419, 329, 1312, 287, 2837, 7, 1120, 15437, 201, 198, 220, 220, 220, 329, 4704, 287, 14390, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 13, 9688, 3419, 201, 198, 220, 220, 220, 329, 4704, 287, 14390, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 13, 22179, 3419 ]
1.88835
206
#! python3 import datetime as dt import requests import pandas as pd import lxml.html as lh '''' Class containing the code that scrapes the stock ticker/information from various stock & crypto sites''' class StockScraper: ''' This is a function that scrapes a table from a provided web page.'''
[ 2, 0, 21015, 18, 198, 11748, 4818, 8079, 355, 288, 83, 198, 11748, 7007, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 300, 19875, 13, 6494, 355, 300, 71, 198, 198, 39115, 5016, 7268, 262, 2438, 326, 15881, 274, 262, 4283, 4378, 263, 14, 17018, 422, 2972, 4283, 1222, 21473, 5043, 7061, 6, 198, 4871, 10500, 3351, 38545, 25, 628, 220, 220, 220, 705, 7061, 770, 318, 257, 2163, 326, 15881, 274, 257, 3084, 422, 257, 2810, 3992, 2443, 2637, 7061, 628, 628, 628, 628, 628, 628, 628, 628, 198 ]
3.483516
91
#!/usr/bin/env python # coding: utf-8 # In[8]: import rebound import numpy as np ############### ### IMPORTS ### ############### params = np.load('sample_params.npy') ################### ### DEFINITIONS ### ################### radeg = np.pi/180 ############################ ############################ ############################ ### SIMULATION ### ############################ ############################ ############################ t_tot = 2000000 Nout = 100000 times = np.linspace(0,t_tot,Nout) M0 = 1 num_tr = len(params[0]) sim = rebound.Simulation() sim.add(m=M0,x=0, y=0, z=0, vx=0, vy=0, vz=0, hash='Sun') add_tr(sim, params) sim.add(m=9.543e-4, a=5.2, e=.04839, inc=.022689, Omega=0, omega=0, hash='jupiter') sim.integrator = 'whfast' sim.dt = 0.5 sim.move_to_com() ps = sim.particles ######################################### ## Parameter tracking initialization ## ######################################### mass = np.zeros(Nout) x_sol = np.zeros(Nout); y_sol = np.zeros(Nout); z_sol = np.zeros(Nout) x_sol[0] = ps['Sun'].x y_sol[0] = ps['Sun'].y z_sol[0] = ps['Sun'].z x_jup = np.zeros(Nout); y_jup = np.zeros(Nout); z_jup = np.zeros(Nout) x_jup[0] = ps['jupiter'].x y_jup[0] = ps['jupiter'].y z_jup[0] = ps['jupiter'].z a_jup = np.zeros(Nout) e_jup = np.zeros(Nout) i_jup = np.zeros(Nout) pmjup = np.zeros(Nout) lmjup = np.zeros(Nout) a_jup[0] = ps['jupiter'].a e_jup[0] = ps['jupiter'].e i_jup[0] = ps['jupiter'].inc pmjup[0] = ps['jupiter'].pomega lmjup[0] = ps['jupiter'].l a_vals = np.zeros((num_tr, Nout)) e_vals = np.zeros((num_tr, Nout)) i_vals = np.zeros((num_tr, Nout)) omvals = np.zeros((num_tr, Nout)) pmvals = np.zeros((num_tr, Nout)) lmvals = np.zeros((num_tr, Nout)) x_vals = np.zeros((num_tr, Nout)) y_vals = np.zeros((num_tr, Nout)) z_vals = np.zeros((num_tr, Nout)) for moon in range(num_tr): a_vals[moon,0] = ps['tr_{0}'.format(moon)].a e_vals[moon,0] = ps['tr_{0}'.format(moon)].e i_vals[moon,0] = ps['tr_{0}'.format(moon)].inc lmvals[moon,0] = ps['tr_{0}'.format(moon)].l omvals[moon,0] = ps['tr_{0}'.format(moon)].Omega pmvals[moon,0] = ps['tr_{0}'.format(moon)].pomega x_vals[moon,0] = ps['tr_{0}'.format(moon)].x y_vals[moon,0] = ps['tr_{0}'.format(moon)].y z_vals[moon,0] = ps['tr_{0}'.format(moon)].z ########################### ########################### ########################### #### RUNNING #### ########################### ########################### ########################### for i, time in enumerate(times): sim.integrate(time) sim.move_to_com() x_sol[i] = ps['Sun'].x y_sol[i] = ps['Sun'].y z_sol[i] = ps['Sun'].z x_jup[i] = ps['jupiter'].x y_jup[i] = ps['jupiter'].y z_jup[i] = ps['jupiter'].z a_jup[i] = ps['jupiter'].a e_jup[i] = ps['jupiter'].e i_jup[i] = ps['jupiter'].inc pmjup[i] = ps['jupiter'].pomega lmjup[i] = ps['jupiter'].l for moon in range(num_tr): a_vals[moon,i] = ps['tr_{0}'.format(moon)].a e_vals[moon,i] = ps['tr_{0}'.format(moon)].e i_vals[moon,i] = ps['tr_{0}'.format(moon)].inc lmvals[moon,i] = ps['tr_{0}'.format(moon)].l omvals[moon,i] = ps['tr_{0}'.format(moon)].Omega pmvals[moon,i] = ps['tr_{0}'.format(moon)].pomega x_vals[moon,i] = ps['tr_{0}'.format(moon)].x y_vals[moon,i] = ps['tr_{0}'.format(moon)].y z_vals[moon,i] = ps['tr_{0}'.format(moon)].z ############## ## Saving ## ############## i_vals/= radeg i_jup /= radeg troj_data = np.array((a_vals, e_vals, i_vals, omvals, pmvals, lmvals, x_vals, y_vals, z_vals)) plnt_data = np.array((a_jup, e_jup, i_jup, pmjup, lmjup, x_jup, y_jup, z_jup)) star_data = np.array((mass, lsol, x_sol, y_sol, z_sol)) np.save("Ctrl_Trojandata.npy", troj_data) np.save("Ctrl_Planetdata.npy", plnt_data) np.save("Ctrl_Stardata.npy", star_data) np.save("Ctrl_Timesteps.npy", times)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 23, 5974, 628, 198, 11748, 23623, 198, 11748, 299, 32152, 355, 45941, 628, 198, 7804, 4242, 21017, 198, 21017, 30023, 33002, 44386, 198, 7804, 4242, 21017, 628, 198, 37266, 796, 45941, 13, 2220, 10786, 39873, 62, 37266, 13, 77, 9078, 11537, 628, 198, 14468, 21017, 198, 21017, 5550, 20032, 2043, 11053, 44386, 198, 14468, 21017, 628, 198, 27585, 70, 796, 45941, 13, 14415, 14, 15259, 628, 198, 14468, 7804, 4242, 198, 14468, 7804, 4242, 198, 14468, 7804, 4242, 198, 198, 21017, 220, 220, 220, 220, 220, 23749, 6239, 6234, 220, 220, 220, 220, 220, 44386, 198, 198, 14468, 7804, 4242, 198, 14468, 7804, 4242, 198, 14468, 7804, 4242, 628, 198, 83, 62, 83, 313, 796, 939, 2388, 198, 45, 448, 796, 1802, 830, 198, 22355, 796, 45941, 13, 21602, 10223, 7, 15, 11, 83, 62, 83, 313, 11, 45, 448, 8, 198, 198, 44, 15, 796, 352, 198, 22510, 62, 2213, 796, 18896, 7, 37266, 58, 15, 12962, 198, 198, 14323, 796, 23623, 13, 8890, 1741, 3419, 198, 198, 14323, 13, 2860, 7, 76, 28, 44, 15, 11, 87, 28, 15, 11, 331, 28, 15, 11, 1976, 28, 15, 11, 410, 87, 28, 15, 11, 410, 88, 28, 15, 11, 410, 89, 28, 15, 11, 12234, 11639, 16012, 11537, 198, 2860, 62, 2213, 7, 14323, 11, 42287, 8, 198, 14323, 13, 2860, 7, 76, 28, 24, 13, 20, 3559, 68, 12, 19, 11, 257, 28, 20, 13, 17, 11, 304, 28, 13, 47202, 2670, 11, 753, 28, 13, 44087, 40523, 11, 19839, 28, 15, 11, 37615, 28, 15, 11, 12234, 11639, 73, 21251, 11537, 198, 198, 14323, 13, 18908, 12392, 796, 705, 1929, 7217, 6, 198, 14323, 13, 28664, 796, 657, 13, 20, 198, 14323, 13, 21084, 62, 1462, 62, 785, 3419, 198, 198, 862, 796, 985, 13, 3911, 2983, 628, 198, 29113, 7804, 2, 198, 2235, 220, 25139, 2357, 9646, 37588, 220, 22492, 198, 29113, 7804, 2, 628, 198, 22208, 796, 45941, 13, 9107, 418, 7, 45, 448, 8, 198, 198, 87, 62, 34453, 796, 45941, 13, 9107, 418, 7, 45, 448, 1776, 331, 62, 34453, 796, 45941, 13, 9107, 418, 7, 45, 448, 1776, 1976, 62, 34453, 796, 45941, 13, 9107, 418, 7, 45, 448, 8, 198, 87, 62, 34453, 58, 15, 60, 796, 26692, 17816, 16012, 6, 4083, 87, 198, 88, 62, 34453, 58, 15, 60, 796, 26692, 17816, 16012, 6, 4083, 88, 198, 89, 62, 34453, 58, 15, 60, 796, 26692, 17816, 16012, 6, 4083, 89, 198, 198, 87, 62, 73, 929, 796, 45941, 13, 9107, 418, 7, 45, 448, 1776, 331, 62, 73, 929, 796, 45941, 13, 9107, 418, 7, 45, 448, 1776, 1976, 62, 73, 929, 796, 45941, 13, 9107, 418, 7, 45, 448, 8, 198, 87, 62, 73, 929, 58, 15, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 87, 198, 88, 62, 73, 929, 58, 15, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 88, 198, 89, 62, 73, 929, 58, 15, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 89, 198, 198, 64, 62, 73, 929, 796, 45941, 13, 9107, 418, 7, 45, 448, 8, 198, 68, 62, 73, 929, 796, 45941, 13, 9107, 418, 7, 45, 448, 8, 220, 198, 72, 62, 73, 929, 796, 45941, 13, 9107, 418, 7, 45, 448, 8, 198, 4426, 73, 929, 796, 45941, 13, 9107, 418, 7, 45, 448, 8, 198, 75, 76, 73, 929, 796, 45941, 13, 9107, 418, 7, 45, 448, 8, 198, 198, 64, 62, 73, 929, 58, 15, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 64, 198, 68, 62, 73, 929, 58, 15, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 68, 198, 72, 62, 73, 929, 58, 15, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 1939, 198, 4426, 73, 929, 58, 15, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 79, 462, 4908, 198, 75, 76, 73, 929, 58, 15, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 75, 198, 198, 64, 62, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 68, 62, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 72, 62, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 296, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 4426, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 75, 76, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 198, 87, 62, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 88, 62, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 89, 62, 12786, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 2213, 11, 399, 448, 4008, 198, 198, 1640, 8824, 287, 2837, 7, 22510, 62, 2213, 2599, 198, 220, 220, 220, 257, 62, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 64, 198, 220, 220, 220, 304, 62, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 68, 198, 220, 220, 220, 1312, 62, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 1939, 198, 220, 220, 220, 300, 76, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 75, 198, 220, 220, 220, 39030, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 46, 13731, 198, 220, 220, 220, 9114, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 79, 462, 4908, 198, 220, 220, 220, 2124, 62, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 87, 198, 220, 220, 220, 331, 62, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 88, 198, 220, 220, 220, 1976, 62, 12786, 58, 22977, 11, 15, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 89, 628, 198, 14468, 7804, 21017, 198, 14468, 7804, 21017, 198, 14468, 7804, 21017, 198, 198, 4242, 220, 220, 220, 220, 220, 32494, 15871, 220, 220, 220, 220, 220, 1303, 21017, 198, 198, 14468, 7804, 21017, 198, 14468, 7804, 21017, 198, 14468, 7804, 21017, 198, 198, 1640, 1312, 11, 640, 287, 27056, 378, 7, 22355, 2599, 198, 220, 220, 220, 985, 13, 18908, 4873, 7, 2435, 8, 198, 220, 220, 220, 985, 13, 21084, 62, 1462, 62, 785, 3419, 628, 220, 220, 220, 2124, 62, 34453, 58, 72, 60, 796, 26692, 17816, 16012, 6, 4083, 87, 198, 220, 220, 220, 331, 62, 34453, 58, 72, 60, 796, 26692, 17816, 16012, 6, 4083, 88, 198, 220, 220, 220, 1976, 62, 34453, 58, 72, 60, 796, 26692, 17816, 16012, 6, 4083, 89, 628, 220, 220, 220, 2124, 62, 73, 929, 58, 72, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 87, 198, 220, 220, 220, 331, 62, 73, 929, 58, 72, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 88, 220, 198, 220, 220, 220, 1976, 62, 73, 929, 58, 72, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 89, 198, 220, 220, 220, 257, 62, 73, 929, 58, 72, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 64, 198, 220, 220, 220, 304, 62, 73, 929, 58, 72, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 68, 198, 220, 220, 220, 1312, 62, 73, 929, 58, 72, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 1939, 198, 220, 220, 220, 9114, 73, 929, 58, 72, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 79, 462, 4908, 198, 220, 220, 220, 300, 76, 73, 929, 58, 72, 60, 796, 26692, 17816, 73, 21251, 6, 4083, 75, 628, 220, 220, 220, 329, 8824, 287, 2837, 7, 22510, 62, 2213, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 64, 198, 220, 220, 220, 220, 220, 220, 220, 304, 62, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 68, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 1939, 198, 220, 220, 220, 220, 220, 220, 220, 300, 76, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 75, 198, 220, 220, 220, 220, 220, 220, 220, 39030, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 46, 13731, 198, 220, 220, 220, 220, 220, 220, 220, 9114, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 79, 462, 4908, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 87, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 88, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 12786, 58, 22977, 11, 72, 60, 796, 26692, 17816, 2213, 23330, 15, 92, 4458, 18982, 7, 22977, 25295, 89, 628, 198, 7804, 4242, 2235, 198, 2235, 220, 34689, 220, 22492, 198, 7804, 4242, 2235, 628, 198, 72, 62, 12786, 14, 28, 374, 671, 70, 198, 72, 62, 73, 929, 1220, 28, 374, 671, 70, 198, 198, 23528, 73, 62, 7890, 796, 45941, 13, 18747, 19510, 64, 62, 12786, 11, 304, 62, 12786, 11, 1312, 62, 12786, 11, 39030, 12786, 11, 9114, 12786, 11, 300, 76, 12786, 11, 2124, 62, 12786, 11, 331, 62, 12786, 11, 1976, 62, 12786, 4008, 198, 489, 429, 62, 7890, 796, 45941, 13, 18747, 19510, 64, 62, 73, 929, 11, 304, 62, 73, 929, 11, 1312, 62, 73, 929, 11, 9114, 73, 929, 11, 300, 76, 73, 929, 11, 2124, 62, 73, 929, 11, 331, 62, 73, 929, 11, 1976, 62, 73, 929, 4008, 198, 7364, 62, 7890, 796, 45941, 13, 18747, 19510, 22208, 11, 300, 34453, 11, 2124, 62, 34453, 11, 331, 62, 34453, 11, 1976, 62, 34453, 4008, 198, 198, 37659, 13, 21928, 7203, 40069, 62, 44095, 73, 392, 1045, 13, 77, 9078, 1600, 4161, 73, 62, 7890, 8, 198, 37659, 13, 21928, 7203, 40069, 62, 41801, 7890, 13, 77, 9078, 1600, 458, 429, 62, 7890, 8, 198, 37659, 13, 21928, 7203, 40069, 62, 1273, 446, 1045, 13, 77, 9078, 1600, 3491, 62, 7890, 8, 198, 37659, 13, 21928, 7203, 40069, 62, 14967, 395, 25386, 13, 77, 9078, 1600, 1661, 8, 628 ]
2.127568
1,850
# coding=utf-8 # Copyright 2019 The Google NoisyStudent Team Authors. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import collections import json import copy import os import time import numpy as np import tensorflow as tf import utils FLAGS = flags.FLAGS flags.DEFINE_string('input_dir', '', '') flags.DEFINE_string('prediction_dir', '', '') flags.DEFINE_string('info_dir', '', '') flags.DEFINE_string('prelim_stats_dir', '', '') flags.DEFINE_string('output_dir', '', '') flags.DEFINE_integer( 'num_shards', default=128, help='') flags.DEFINE_integer( 'only_use_num_shards', default=-1, help='') flags.DEFINE_integer( 'shard_id', default=0, help='') flags.DEFINE_integer( 'num_image', default=1300, help='') flags.DEFINE_integer( 'total_replicas', default=1, help='') flags.DEFINE_integer( 'total_label_replicas', default=-1, help='') flags.DEFINE_integer( 'task', default=-1, help='') flags.DEFINE_integer( 'debug', default=0, help='') flags.DEFINE_float( 'min_threshold', default=0.0, help='') flags.DEFINE_float( 'max_prob', default=2, help='sometimes the probability can be greater than 1 due to floating point.') flags.DEFINE_integer( 'num_label_classes', default=1000, help='') flags.DEFINE_integer( 'upsample', default=1, help='') flags.DEFINE_integer( 'only_get_stats', default=0, help='') flags.DEFINE_string('file_prefix', 'train', '') flags.DEFINE_string( 'data_type', default='tfrecord', help='') flags.DEFINE_integer( 'use_top', default=1, help='') flags.DEFINE_bool( 'eval_imagenet_p', default=False, help='') flags.DEFINE_bool( 'use_all', default=False, help='') if __name__ == '__main__': app.run(main)
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 13130, 383, 3012, 1400, 13560, 38778, 4816, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 705, 34156, 24036, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 705, 1921, 3180, 6, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 6738, 2352, 75, 1330, 598, 198, 6738, 2352, 75, 1330, 9701, 198, 11748, 17268, 198, 11748, 33918, 198, 11748, 4866, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 3384, 4487, 198, 198, 38948, 50, 796, 9701, 13, 38948, 50, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 15414, 62, 15908, 3256, 705, 3256, 10148, 8, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 28764, 2867, 62, 15908, 3256, 705, 3256, 10148, 8, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 10951, 62, 15908, 3256, 705, 3256, 10148, 8, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 79, 2411, 320, 62, 34242, 62, 15908, 3256, 705, 3256, 10148, 8, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 22915, 62, 15908, 3256, 705, 3256, 10148, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 22510, 62, 1477, 1371, 3256, 4277, 28, 12762, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 8807, 62, 1904, 62, 22510, 62, 1477, 1371, 3256, 4277, 10779, 16, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 1477, 446, 62, 312, 3256, 4277, 28, 15, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 22510, 62, 9060, 3256, 4277, 28, 1485, 405, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 23350, 62, 35666, 44645, 3256, 4277, 28, 16, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 23350, 62, 18242, 62, 35666, 44645, 3256, 4277, 10779, 16, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 35943, 3256, 4277, 10779, 16, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 24442, 3256, 4277, 28, 15, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 22468, 7, 198, 220, 220, 220, 705, 1084, 62, 400, 10126, 3256, 4277, 28, 15, 13, 15, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 22468, 7, 198, 220, 220, 220, 705, 9806, 62, 1676, 65, 3256, 4277, 28, 17, 11, 1037, 11639, 29810, 262, 12867, 460, 307, 3744, 621, 352, 2233, 284, 12462, 966, 2637, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 22510, 62, 18242, 62, 37724, 3256, 4277, 28, 12825, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 4739, 1403, 3256, 4277, 28, 16, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 8807, 62, 1136, 62, 34242, 3256, 4277, 28, 15, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 7753, 62, 40290, 3256, 705, 27432, 3256, 10148, 8, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 7, 198, 220, 220, 220, 705, 7890, 62, 4906, 3256, 4277, 11639, 27110, 22105, 3256, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7, 198, 220, 220, 220, 705, 1904, 62, 4852, 3256, 4277, 28, 16, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 30388, 7, 198, 220, 220, 220, 705, 18206, 62, 320, 11286, 316, 62, 79, 3256, 4277, 28, 25101, 11, 1037, 28, 7061, 8, 198, 198, 33152, 13, 7206, 29940, 62, 30388, 7, 198, 220, 220, 220, 705, 1904, 62, 439, 3256, 4277, 28, 25101, 11, 1037, 28, 7061, 8, 628, 628, 628, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 598, 13, 5143, 7, 12417, 8, 628 ]
2.807059
850
n = int(input('Digite um número para calcular o fatorial: ')) f = 1 for c in range(n, 0, -1): print(f'{c}', end='') print(' x ' if c > 1 else ' = ', end='') f = f * c print(f'{f}')
[ 77, 796, 493, 7, 15414, 10786, 19511, 578, 23781, 299, 21356, 647, 78, 31215, 2386, 10440, 267, 277, 21592, 25, 705, 4008, 198, 69, 796, 352, 198, 1640, 269, 287, 2837, 7, 77, 11, 657, 11, 532, 16, 2599, 198, 220, 220, 220, 3601, 7, 69, 6, 90, 66, 92, 3256, 886, 28, 7061, 8, 198, 220, 220, 220, 3601, 10786, 2124, 705, 611, 269, 1875, 352, 2073, 705, 796, 46083, 886, 28, 7061, 8, 198, 220, 220, 220, 277, 796, 277, 1635, 269, 198, 4798, 7, 69, 6, 90, 69, 92, 11537, 198 ]
2.053191
94
#!python """ This module provides pytest tests for the functions from preprocessing.py file """ import pytest import alphaviz.preprocessing as preproc # def test_preprocess_ckg_output(): # ckg_output_string_correct = "~Q92934;~Q15149" # ckg_output_string_correct_2 = " ~Q92934; ~Q15149" # ckg_output_string_wrong = "Q92934; Q15149" # # proteins_correct_input = alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_correct) # assert len(proteins_correct_input) == 2, \ # "The number of extracted proteins is wrong." # assert 'Q92934' in proteins_correct_input, \ # "A unique protein is absent in the extracted list of proteins." # # assert proteins_correct_input == alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_correct_2), \ # "Spaces in the ckg string don't influence on the result of the output." # # with pytest.raises(ValueError): # alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_wrong)
[ 2, 0, 29412, 198, 37811, 198, 1212, 8265, 3769, 12972, 9288, 5254, 329, 262, 5499, 422, 662, 36948, 13, 9078, 2393, 198, 37811, 198, 198, 11748, 12972, 9288, 198, 11748, 435, 746, 615, 528, 13, 3866, 36948, 355, 662, 36942, 628, 198, 198, 2, 825, 1332, 62, 3866, 14681, 62, 694, 70, 62, 22915, 33529, 198, 2, 220, 220, 220, 220, 269, 10025, 62, 22915, 62, 8841, 62, 30283, 796, 366, 93, 48, 24, 1959, 2682, 26, 93, 48, 1314, 19442, 1, 198, 2, 220, 220, 220, 220, 269, 10025, 62, 22915, 62, 8841, 62, 30283, 62, 17, 796, 366, 5299, 48, 24, 1959, 2682, 26, 5299, 48, 1314, 19442, 1, 198, 2, 220, 220, 220, 220, 269, 10025, 62, 22915, 62, 8841, 62, 36460, 796, 366, 48, 24, 1959, 2682, 26, 1195, 1314, 19442, 1, 198, 2, 198, 2, 220, 220, 220, 220, 15568, 62, 30283, 62, 15414, 796, 435, 746, 615, 528, 13, 3866, 36948, 13, 3866, 14681, 62, 694, 70, 62, 22915, 7, 694, 70, 62, 22915, 62, 8841, 62, 30283, 8, 198, 2, 220, 220, 220, 220, 6818, 18896, 7, 1676, 660, 1040, 62, 30283, 62, 15414, 8, 6624, 362, 11, 3467, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 366, 464, 1271, 286, 21242, 15568, 318, 2642, 526, 198, 2, 220, 220, 220, 220, 6818, 705, 48, 24, 1959, 2682, 6, 287, 15568, 62, 30283, 62, 15414, 11, 3467, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32, 3748, 7532, 318, 13717, 287, 262, 21242, 1351, 286, 15568, 526, 198, 2, 198, 2, 220, 220, 220, 220, 6818, 15568, 62, 30283, 62, 15414, 6624, 435, 746, 615, 528, 13, 3866, 36948, 13, 3866, 14681, 62, 694, 70, 62, 22915, 7, 694, 70, 62, 22915, 62, 8841, 62, 30283, 62, 17, 828, 3467, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4561, 2114, 287, 262, 269, 10025, 4731, 836, 470, 4588, 319, 262, 1255, 286, 262, 5072, 526, 198, 2, 198, 2, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 435, 746, 615, 528, 13, 3866, 36948, 13, 3866, 14681, 62, 694, 70, 62, 22915, 7, 694, 70, 62, 22915, 62, 8841, 62, 36460, 8, 628, 198 ]
2.607792
385
from . import * # bind = BindTransmitter(system_id='test_id', password='abc123') # print bind.get_obj() # print bind.get_hex() # print bind.get_bin() # #print json.dumps(bind.get_obj(), indent=4, sort_keys=True) # #print json.dumps(decode_pdu(bind.get_hex()), indent=4, sort_keys=True) # print json.dumps(unpack_pdu(bind.get_bin()), indent=4, sort_keys=True) # sm = SubmitSM(short_message='testing testing') # print json.dumps(unpack_pdu(sm.get_bin()), indent=4, sort_keys=True) # sm.add_message_payload('616263646566676869') # print json.dumps(unpack_pdu(sm.get_bin()), indent=4, sort_keys=True)
[ 6738, 764, 1330, 1635, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 2, 11007, 796, 41211, 8291, 37974, 7, 10057, 62, 312, 11639, 9288, 62, 312, 3256, 9206, 11639, 39305, 10163, 11537, 198, 2, 3601, 11007, 13, 1136, 62, 26801, 3419, 198, 2, 3601, 11007, 13, 1136, 62, 33095, 3419, 198, 2, 3601, 11007, 13, 1136, 62, 8800, 3419, 198, 2, 1303, 4798, 33918, 13, 67, 8142, 7, 21653, 13, 1136, 62, 26801, 22784, 33793, 28, 19, 11, 3297, 62, 13083, 28, 17821, 8, 198, 2, 1303, 4798, 33918, 13, 67, 8142, 7, 12501, 1098, 62, 79, 646, 7, 21653, 13, 1136, 62, 33095, 3419, 828, 33793, 28, 19, 11, 3297, 62, 13083, 28, 17821, 8, 198, 2, 3601, 33918, 13, 67, 8142, 7, 403, 8002, 62, 79, 646, 7, 21653, 13, 1136, 62, 8800, 3419, 828, 33793, 28, 19, 11, 3297, 62, 13083, 28, 17821, 8, 198, 198, 2, 895, 796, 39900, 12310, 7, 19509, 62, 20500, 11639, 33407, 4856, 11537, 198, 2, 3601, 33918, 13, 67, 8142, 7, 403, 8002, 62, 79, 646, 7, 5796, 13, 1136, 62, 8800, 3419, 828, 33793, 28, 19, 11, 3297, 62, 13083, 28, 17821, 8, 198, 2, 895, 13, 2860, 62, 20500, 62, 15577, 2220, 10786, 44214, 2075, 26780, 2996, 2791, 3134, 3104, 3388, 11537, 198, 2, 3601, 33918, 13, 67, 8142, 7, 403, 8002, 62, 79, 646, 7, 5796, 13, 1136, 62, 8800, 3419, 828, 33793, 28, 19, 11, 3297, 62, 13083, 28, 17821, 8, 198 ]
2.48996
249
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2020 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------- import iris import iris.analysis import numpy as np from six import string_types, integer_types import iris.coord_categorisation as iccat import doctest import os.path import catnip.config as conf import iris.exceptions from dask import array as da def _get_xy_noborder(mask): """ make a function that returns the indices of where the mask is valid. If the mask is all True (all masked) raises a ValueError args ---- mask: mask from numpy array Returns ------- x1, x2, y1, y2: int giving space where the data is valid """ if np.all(mask): raise ValueError("All values masked - can't get indices") ys, xs = np.where(~mask) x1 = min(xs) x2 = max(xs) + 1 y1 = min(ys) y2 = max(ys) + 1 return x1, x2, y1, y2 def add_aux_unrotated_coords(cube): """ This function takes a cube that is on a rotated pole coordinate system and adds to it, two addtional auxillary coordinates to hold the unrotated coordinate values. args ---- cube: iris cube on an rotated pole coordinate system Returns ------- cube: input cube with auxilliary coordinates of unrotated latitude and longitude Notes ----- See below for an example that should be run with python3: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> print([coord.name() for coord in cube.coords()]) ['time', 'grid_latitude', 'grid_longitude'] >>> auxcube = add_aux_unrotated_coords(cube) >>> print([coord.name() for coord in auxcube.coords()]) ['time', 'grid_latitude', 'grid_longitude', 'latitude', 'longitude'] >>> print(auxcube.coord('latitude')) # doctest: +NORMALIZE_WHITESPACE AuxCoord(array([[35.32243855, 35.33914928, 35.355619 , ..., 35.71848081, 35.70883111, 35.69893388], [35.10317609, 35.11986604, 35.13631525, ..., 35.49871728, 35.48908 , 35.47919551], [34.88390966, 34.90057895, 34.91700776, ..., 35.27895246, 35.26932754, 35.25945571], ..., [ 6.13961446, 6.15413611, 6.16844578, ..., 6.48307389, 6.47472284, 6.46615667], [ 5.92011032, 5.93461779, 5.94891347, ..., 6.26323044, 6.25488773, 6.24633011], [ 5.70060768, 5.71510098, 5.72938268, ..., 6.04338876, 6.03505439, 6.02650532]]), standard_name=None, \ units=Unit('degrees'), long_name='latitude') >>> print(auxcube.shape) (360, 136, 109) >>> print(auxcube.coord('latitude').shape) (136, 109) >>> print(auxcube.coord('longitude').shape) (136, 109) """ if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # get cube's coordinate system cs = cube.coord_system() if str(cs).find("Rotated") == -1: raise TypeError( "The cube is not on a rotated pole, coord system is {}".format(str(cs)) ) auxcube = cube.copy() # get coord names # Longitude xcoord = auxcube.coord(axis="X", dim_coords=True) # Latitude ycoord = auxcube.coord(axis="Y", dim_coords=True) # read in the grid lat/lon points from the cube glat = auxcube.coord(ycoord).points glon = auxcube.coord(xcoord).points # create a rectangular grid out of an array of # glon and glat values, shape will be len(glat)xlen(glon) x, y = np.meshgrid(glon, glat) # get the cube dimensions which corresponds to glon and glat x_dim = auxcube.coord_dims(xcoord)[0] y_dim = auxcube.coord_dims(ycoord)[0] # define two new variables to hold the unrotated coordinates rlongitude, rlatitude = iris.analysis.cartography.unrotate_pole( x, y, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude ) # create two new auxillary coordinates to hold # the values of the unrotated coordinates reg_long = iris.coords.AuxCoord(rlongitude, long_name="longitude", units="degrees") reg_lat = iris.coords.AuxCoord(rlatitude, long_name="latitude", units="degrees") # add two auxilary coordinates to the cube holding # regular(unrotated) lat/lon values auxcube.add_aux_coord(reg_long, [y_dim, x_dim]) auxcube.add_aux_coord(reg_lat, [y_dim, x_dim]) return auxcube def add_bounds(cube, coord_names, bound_position=0.5): """ Simple function to check whether a coordinate in a cube has bounds, and add them if it doesn't. args ---- cube: iris cube coord_names: string or list of strings containing the name/s of the coordinates you want to add bounds to. bound_position: Optional, the desired position of the bounds relative to the position of the points. Default is 0.5. Returns ------- cube: cube with bounds added Notes ----- Need to be careful that it is appropriate to add bounds to the data, e.g. if data are instantaneous, time bounds are not appropriate. An example: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> bcube = add_bounds(cube, 'time') time coordinate already has bounds, none will be added >>> bcube = add_bounds(cube, 'grid_latitude') grid_latitude bounds added >>> bcube = add_bounds(cube, ['grid_latitude','grid_longitude']) grid_latitude bounds added grid_longitude bounds added """ # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # check if the coordinate name input is a string if not isinstance(coord_names, (string_types, list)): raise TypeError("Input coordinate must be a string") bcube = cube.copy() # find names of dim coords c_names = [c.name() for c in bcube.coords()] # if coord_names is a single string, it will be split, # by the loop this statement checks for that case and # puts stash into a tuple to prevent splitting. if isinstance(coord_names, string_types): coord_names = tuple([coord_names]) for coord in coord_names: # check if coord is a string if not isinstance(coord, string_types): raise TypeError( "Coordinate {} must be a string, it is currently a {}".format( str(coord), type(coord) ) ) # check coord is a coordinate of the cube if coord not in c_names: raise AttributeError( "{} is not a coordinate, available coordinates are: {}".format( coord, c_names ) ) # check if the coord already has bounds if bcube.coord(coord).has_bounds(): print( ("{} coordinate already has bounds, none will be added".format(coord)) ) # add bounds to coord else: bcube.coord(coord).guess_bounds(bound_position=bound_position) print(("{} bounds added".format(coord))) return bcube def add_coord_system(cube): """ A cube must have a coordinate system in order to be regridded. This function checks whether a cube has a coordinate system. If the cube has no coordinate system, the standard the ellipsoid representation wgs84 (ie. the one used by GPS) is added. Note: It will not work for rotated pole data without a coordinate system. args ---- cube: iris cube Returns ------- cube: The copy of the input cube with coordinate system added, if the cube didn't have one already. Notes ----- A simple example: >>> file = os.path.join(conf.DATA_DIR, 'gtopo30_025deg.nc') >>> cube = iris.load_cube(file) >>> print(cube.coord('latitude').coord_system) None >>> cscube = add_coord_system(cube) Coordinate system GeogCS(6371229.0) added to cube >>> print(cscube.coord('latitude').coord_system) GeogCS(6371229.0) """ # Note: wgs84 is the World Geodetic System, and a standard coord # system in iris. In GeogCS(6371229.0), 6371229 is the Earth's # radius in m. See: # https://scitools.org.uk/iris/docs/v1.9.0/html/iris/iris/coord_systems.html # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") cscube = cube.copy() cs = cscube.coord_system() if cs is not None: if str(cs).find("Rotated") == 0: # not possible to add a coord system for # rotated pole cube without knowing the # rotation. Give error message. raise TypeError("Error, no coordinate system for rotated pole cube") else: coord_names = [coord.name() for coord in cscube.coords(dim_coords=True)] wgs84_cs = iris.coord_systems.GeogCS(6371229.0) if "latitude" in coord_names: cscube.coord("latitude").coord_system = wgs84_cs if "longitude" in coord_names: cscube.coord("longitude").coord_system = wgs84_cs print("Coordinate system GeogCS(6371229.0) added to cube") return cscube def add_time_coord_cats(cube): """ This function takes in an iris cube, and adds a range of numeric co-ordinate categorisations to it. Depending on the data, not all of the coords added will be relevant. args ---- cube: iris cube that has a coordinate called 'time' Returns ------- Cube: cube that has new time categorisation coords added Notes ----- test A simple example: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> coord_names = [coord.name() for coord in cube.coords()] >>> print((', '.join(coord_names))) time, grid_latitude, grid_longitude >>> ccube = add_time_coord_cats(cube) >>> coord_names = [coord.name() for coord in ccube.coords()] >>> print((', '.join(coord_names))) time, grid_latitude, grid_longitude, day_of_month, day_of_year, month, \ month_number, season, season_number, year >>> # print every 50th value of the added time cat coords ... for c in coord_names[3:]: ... print(ccube.coord(c).long_name) ... print(ccube.coord(c).points[::50]) ... day_of_month [ 1 21 11 1 21 11 1 21] day_of_year [ 1 51 101 151 201 251 301 351] month ['Jan' 'Feb' 'Apr' 'Jun' 'Jul' 'Sep' 'Nov' 'Dec'] month_number [ 1 2 4 6 7 9 11 12] season ['djf' 'djf' 'mam' 'jja' 'jja' 'son' 'son' 'djf'] season_number [0 0 1 2 2 3 3 0] year [2000 2000 2000 2000 2000 2000 2000 2000] """ # most errors pop up when you try to add a coord that has # previously been added, or the cube doesn't contain the # necessary attribute. ccube = cube.copy() # numeric try: iccat.add_day_of_year(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_day_of_month(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_month_number(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_season_number(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_year(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) # strings try: iccat.add_month(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_season(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) return ccube def extract_rot_cube(cube, min_lat, min_lon, max_lat, max_lon): """ Function etracts the specific region from the cube. args ---- cube: cube on rotated coord system, used as reference grid for transformation. Returns ------- min_lat: The minimum latitude point of the desired extracted cube. min_lon: The minimum longitude point of the desired extracted cube. max_lat: The maximum latitude point of the desired extracted cube. max_lon: The maximum longitude point of the desired extracted cube. An example: >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube = iris.load_cube(file, 'air_temperature') >>> min_lat = 50 >>> min_lon = -10 >>> max_lat = 60 >>> max_lon = 0 >>> extracted_cube = extract_rot_cube(cube, min_lat, min_lon, max_lat, max_lon) >>> max_lat_cube = np.max(extracted_cube.coord('latitude').points) >>> print(f'{max_lat_cube:.3f}') 61.365 >>> min_lat_cube = np.min(extracted_cube.coord('latitude').points) >>> print(f'{min_lat_cube:.3f}') 48.213 >>> max_lon_cube = np.max(extracted_cube.coord('longitude').points) >>> print(f'{max_lon_cube:.3f}') 3.643 >>> min_lon_cube = np.min(extracted_cube.coord('longitude').points) >>> print(f'{min_lon_cube:.3f}') -16.292 """ # adding unrotated coords to the cube cube = add_aux_unrotated_coords(cube) # mask the cube using the true lat and lon lats = cube.coord("latitude").points lons = cube.coord("longitude").points select_lons = (lons >= min_lon) & (lons <= max_lon) select_lats = (lats >= min_lat) & (lats <= max_lat) selection = select_lats & select_lons selection = da.broadcast_to(selection, cube.shape) cube.data = da.ma.masked_where(~selection, cube.core_data()) # grab a single 2D slice of X and Y and take the mask lon_coord = cube.coord(axis="X", dim_coords=True) lat_coord = cube.coord(axis="Y", dim_coords=True) for yx_slice in cube.slices(["grid_latitude", "grid_longitude"]): cmask = yx_slice.data.mask break # now cut the cube down along X and Y coords x1, x2, y1, y2 = _get_xy_noborder(cmask) idx = len(cube.shape) * [slice(None)] idx[cube.coord_dims(cube.coord(axis="x", dim_coords=True))[0]] = slice(x1, x2, 1) idx[cube.coord_dims(cube.coord(axis="y", dim_coords=True))[0]] = slice(y1, y2, 1) extracted_cube = cube[tuple(idx)] return extracted_cube def remove_forecast_coordinates(iris_cube): """A function to remove the forecast_period and forecast_reference_time coordinates from the UM PP files args ---- iris_cube: input iris_cube Returns ------- iris_cube: iris cube without the forecast_period and forecast_reference_time coordinates Notes ----- See below for examples: >>> cube_list_fcr = iris.cube.CubeList() >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube_list = iris.load(file) >>> for cube in cube_list: ... cube_fcr = remove_forecast_coordinates(cube) ... cube_list_fcr.append(cube_fcr) Removed the forecast_period coordinate from Heavyside function \ on pressure levels cube Removed the forecast_reference_time coordinate from Heavyside \ function on pressure levels cube Removed the forecast_period coordinate from air_temperature cube Removed the forecast_reference_time coordinate from air_temperature cube Removed the forecast_period coordinate from relative_humidity cube Removed the forecast_reference_time coordinate from relative_humidity cube Removed the forecast_period coordinate from specific_humidity cube Removed the forecast_reference_time coordinate from specific_humidity cube Removed the forecast_period coordinate from x_wind cube Removed the forecast_reference_time coordinate from x_wind cube Removed the forecast_period coordinate from y_wind cube Removed the forecast_reference_time coordinate from y_wind cube Now check if the forecast coordinates have been removed >>> for cube in cube_list_fcr: ... cube_nfc = remove_forecast_coordinates(cube) 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' """ try: iris_cube.remove_coord("forecast_period") print( ( "Removed the forecast_period coordinate from {} cube".format( iris_cube.name() ) ) ) except iris.exceptions.CoordinateNotFoundError as coord_not_found: print("{}".format(coord_not_found)) try: iris_cube.remove_coord("forecast_reference_time") print( ( "Removed the forecast_reference_time coordinate from {} cube".format( iris_cube.name() ) ) ) except iris.exceptions.CoordinateNotFoundError as coord_not_found: print("{}".format(coord_not_found)) return iris_cube def rim_remove(cube, rim_width): """ Return IRIS cube with rim removed. args ---- cube: input iris cube rim_width: integer, number of grid points to remove from edge of lat and long Returns ------- rrcube: rim removed cube Notes ----- See below for examples: >>> cube_list_rr = iris.cube.CubeList() >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube_list = iris.load(file) >>> for cube in cube_list: ... cube_rr = rim_remove(cube, 8) ... cube_list_rr.append(cube_rr) ... Removed 8 size rim from Heavyside function on pressure levels Removed 8 size rim from air_temperature Removed 8 size rim from relative_humidity Removed 8 size rim from specific_humidity Removed 8 size rim from x_wind Removed 8 size rim from y_wind >>> file = os.path.join(conf.DATA_DIR, 'rcm_mslp_monthly.pp') >>> mslp_cube = iris.load_cube(file) >>> >>> mslp_cube_rr = rim_remove(mslp_cube, 8) Removed 8 size rim from air_pressure_at_sea_level >>> >>> print(len(mslp_cube.coord('grid_latitude').points)) 432 >>> print(len(mslp_cube.coord('grid_longitude').points)) 444 >>> print(len(mslp_cube.coord('grid_latitude').points)) 432 >>> print(len(mslp_cube.coord('grid_longitude').points)) 444 >>> >>> mslp_cube_rrrr = rim_remove(mslp_cube_rr, 8) WARNING - This cube has already had it's rim removed Removed 8 size rim from air_pressure_at_sea_level Now test for failures: >>> mslp_cube_rr = rim_remove(cube, 8.2) # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: Please provide a positive integer for rim_width >>> mslp_cube_rr = rim_remove(cube, -5) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: Please provide a positive integer > 0 for rim_width >>> mslp_cube_rr = rim_remove(cube, 400) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: length of lat or lon coord is < rim_width*2 >>> mslp_cube_rr = rim_remove(cube, 0) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: Please provide a positive integer > 0 for rim_width >>> mslp_cube_rr = rim_remove(cube, 'a') # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: Please provide a positive integer for rim_width """ # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # check whether rim_width is an integer if not isinstance(rim_width, (integer_types)): raise TypeError("Please provide a positive integer for rim_width") if rim_width <= 0: raise IndexError("Please provide a positive integer > 0 for rim_width") # check whether this cube has already had it's rim removed if "rim_removed" in cube.attributes: print("WARNING - This cube has already had it's rim removed") # Longitude xcoord = cube.coord(axis="X", dim_coords=True) # Latitude ycoord = cube.coord(axis="Y", dim_coords=True) # make sure specified rim_width is going to work if len(xcoord.points) <= (rim_width * 2) or len(ycoord.points) <= (rim_width * 2): raise IndexError("length of lat or lon coord is < rim_width*2") # Remove rim from Longitude rrcube = cube.subset(xcoord[rim_width : -1 * rim_width]) # Remove rim from Latitude rrcube = rrcube.subset(ycoord[rim_width : -1 * rim_width]) # add meta data that rim has been removed rrcube.attributes["rim_removed"] = "{} point rim removed".format(rim_width) print(("Removed {} size rim from {}".format(rim_width, cube.name()))) return rrcube if __name__ == "__main__": doctest.testmod()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 16529, 32501, 198, 2, 357, 34, 8, 3517, 12223, 15069, 2177, 12, 42334, 3395, 4452, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 198, 2, 220, 220, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 198, 2, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 1635, 16126, 262, 1438, 286, 262, 6634, 15762, 4249, 262, 3891, 286, 663, 198, 2, 220, 220, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 198, 2, 220, 220, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 198, 2, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 198, 2, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 198, 2, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 198, 2, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 198, 2, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 198, 2, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 198, 2, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 198, 2, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 198, 2, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 198, 2, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 16529, 32501, 198, 198, 11748, 4173, 271, 198, 11748, 4173, 271, 13, 20930, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2237, 1330, 4731, 62, 19199, 11, 18253, 62, 19199, 198, 11748, 4173, 271, 13, 37652, 62, 66, 47467, 5612, 355, 14158, 9246, 198, 11748, 10412, 395, 198, 11748, 28686, 13, 6978, 198, 198, 11748, 3797, 77, 541, 13, 11250, 355, 1013, 198, 11748, 4173, 271, 13, 1069, 11755, 198, 6738, 288, 2093, 1330, 7177, 355, 12379, 628, 198, 4299, 4808, 1136, 62, 5431, 62, 34952, 2875, 7, 27932, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 787, 220, 257, 2163, 326, 5860, 262, 36525, 198, 220, 220, 220, 286, 810, 262, 9335, 318, 4938, 13, 1002, 262, 9335, 318, 477, 6407, 357, 439, 29229, 8, 198, 220, 220, 220, 12073, 257, 11052, 12331, 628, 220, 220, 220, 26498, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 9335, 25, 9335, 422, 299, 32152, 7177, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2124, 16, 11, 2124, 17, 11, 331, 16, 11, 331, 17, 25, 493, 3501, 2272, 810, 262, 1366, 318, 4938, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 45941, 13, 439, 7, 27932, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 3237, 3815, 29229, 532, 460, 470, 651, 36525, 4943, 198, 220, 220, 220, 331, 82, 11, 2124, 82, 796, 45941, 13, 3003, 7, 93, 27932, 8, 198, 220, 220, 220, 2124, 16, 796, 949, 7, 34223, 8, 198, 220, 220, 220, 2124, 17, 796, 3509, 7, 34223, 8, 1343, 352, 198, 220, 220, 220, 331, 16, 796, 949, 7, 893, 8, 198, 220, 220, 220, 331, 17, 796, 3509, 7, 893, 8, 1343, 352, 628, 220, 220, 220, 1441, 2124, 16, 11, 2124, 17, 11, 331, 16, 11, 331, 17, 628, 198, 4299, 751, 62, 14644, 62, 403, 10599, 515, 62, 1073, 3669, 7, 40296, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 2753, 257, 23441, 326, 318, 319, 257, 38375, 16825, 198, 220, 220, 220, 20435, 1080, 290, 6673, 284, 340, 11, 734, 751, 83, 1538, 198, 220, 220, 220, 27506, 15856, 22715, 284, 1745, 262, 555, 10599, 515, 20435, 198, 220, 220, 220, 3815, 13, 628, 220, 220, 220, 26498, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 23441, 25, 4173, 271, 23441, 319, 281, 38375, 16825, 20435, 1080, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 23441, 25, 5128, 23441, 351, 27506, 359, 8042, 22715, 286, 555, 10599, 515, 198, 220, 220, 220, 32477, 290, 890, 3984, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 628, 220, 220, 220, 4091, 2174, 329, 281, 1672, 326, 815, 307, 1057, 351, 21015, 18, 25, 628, 220, 220, 220, 13163, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 10414, 13, 26947, 62, 34720, 11, 705, 907, 34431, 13, 29468, 13, 6015, 76, 13, 85, 1155, 13, 10782, 11537, 198, 220, 220, 220, 13163, 23441, 796, 4173, 271, 13, 2220, 62, 40296, 7, 7753, 8, 198, 220, 220, 220, 13163, 3601, 26933, 37652, 13, 3672, 3419, 329, 6349, 287, 23441, 13, 1073, 3669, 3419, 12962, 198, 220, 220, 220, 37250, 2435, 3256, 705, 25928, 62, 15460, 3984, 3256, 705, 25928, 62, 6511, 3984, 20520, 198, 220, 220, 220, 13163, 27506, 40296, 796, 751, 62, 14644, 62, 403, 10599, 515, 62, 1073, 3669, 7, 40296, 8, 198, 220, 220, 220, 13163, 3601, 26933, 37652, 13, 3672, 3419, 329, 6349, 287, 27506, 40296, 13, 1073, 3669, 3419, 12962, 198, 220, 220, 220, 37250, 2435, 3256, 705, 25928, 62, 15460, 3984, 3256, 705, 25928, 62, 6511, 3984, 3256, 705, 15460, 3984, 3256, 705, 6511, 3984, 20520, 198, 220, 220, 220, 13163, 3601, 7, 14644, 40296, 13, 37652, 10786, 15460, 3984, 6, 4008, 1303, 10412, 395, 25, 1343, 35510, 42126, 35400, 62, 12418, 2043, 1546, 47, 11598, 198, 220, 220, 220, 47105, 7222, 585, 7, 18747, 26933, 58, 2327, 13, 2624, 1731, 2548, 2816, 11, 3439, 13, 29626, 19442, 2078, 11, 3439, 13, 2327, 3980, 1129, 220, 837, 2644, 11, 3439, 13, 45720, 22148, 6659, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3439, 13, 2154, 49287, 16243, 11, 3439, 13, 3388, 4531, 2091, 3459, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2327, 13, 15197, 1558, 31751, 11, 3439, 13, 16315, 4521, 31916, 11, 3439, 13, 1485, 5066, 1314, 1495, 11, 2644, 11, 3439, 13, 2920, 5774, 1558, 2078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3439, 13, 35890, 2919, 220, 220, 837, 3439, 13, 31714, 1129, 43697, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2682, 13, 3459, 2670, 2931, 2791, 11, 4974, 13, 12865, 38907, 3865, 11, 4974, 13, 24, 1558, 405, 39509, 11, 2644, 11, 3439, 13, 25870, 3865, 26912, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3439, 13, 2075, 6052, 1983, 4051, 11, 3439, 13, 25191, 2231, 42875, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 718, 13, 1485, 4846, 1415, 3510, 11, 220, 718, 13, 21526, 20809, 1157, 11, 220, 718, 13, 1433, 5705, 2231, 3695, 11, 2644, 11, 220, 718, 13, 2780, 22996, 29769, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 718, 13, 2857, 2857, 1828, 5705, 11, 220, 718, 13, 42199, 1314, 28933, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 642, 13, 24, 1264, 940, 2624, 11, 220, 642, 13, 24, 30557, 1558, 3720, 11, 220, 642, 13, 24, 35890, 1485, 2857, 11, 2644, 11, 220, 718, 13, 2075, 2624, 1270, 2598, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 718, 13, 1495, 33646, 46871, 11, 220, 718, 13, 26912, 2091, 28555, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 642, 13, 9879, 1899, 30610, 11, 220, 642, 13, 22, 1314, 3064, 4089, 11, 220, 642, 13, 48555, 2548, 25022, 11, 2644, 11, 220, 718, 13, 3023, 2091, 3459, 4304, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 718, 13, 3070, 1120, 4051, 2670, 11, 220, 718, 13, 45987, 31654, 2624, 11907, 828, 3210, 62, 3672, 28, 14202, 11, 3467, 198, 41667, 28, 26453, 10786, 13500, 6037, 33809, 890, 62, 3672, 11639, 15460, 3984, 11537, 198, 220, 220, 220, 13163, 3601, 7, 14644, 40296, 13, 43358, 8, 198, 220, 220, 220, 357, 15277, 11, 21056, 11, 16003, 8, 198, 220, 220, 220, 13163, 3601, 7, 14644, 40296, 13, 37652, 10786, 15460, 3984, 27691, 43358, 8, 198, 220, 220, 220, 357, 20809, 11, 16003, 8, 198, 220, 220, 220, 13163, 3601, 7, 14644, 40296, 13, 37652, 10786, 6511, 3984, 27691, 43358, 8, 198, 220, 220, 220, 357, 20809, 11, 16003, 8, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 318, 39098, 7, 40296, 11, 4173, 271, 13, 40296, 13, 29071, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 20560, 318, 407, 257, 23441, 4943, 628, 220, 220, 220, 1303, 651, 23441, 338, 20435, 1080, 198, 220, 220, 220, 50115, 796, 23441, 13, 37652, 62, 10057, 3419, 628, 220, 220, 220, 611, 965, 7, 6359, 737, 19796, 7203, 24864, 515, 4943, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 464, 23441, 318, 407, 319, 257, 38375, 16825, 11, 6349, 1080, 318, 23884, 1911, 18982, 7, 2536, 7, 6359, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 27506, 40296, 796, 23441, 13, 30073, 3419, 198, 220, 220, 220, 1303, 651, 6349, 3891, 198, 220, 220, 220, 1303, 5882, 3984, 198, 220, 220, 220, 2124, 37652, 796, 27506, 40296, 13, 37652, 7, 22704, 2625, 55, 1600, 5391, 62, 1073, 3669, 28, 17821, 8, 198, 220, 220, 220, 1303, 5476, 3984, 198, 220, 220, 220, 331, 37652, 796, 27506, 40296, 13, 37652, 7, 22704, 2625, 56, 1600, 5391, 62, 1073, 3669, 28, 17821, 8, 628, 220, 220, 220, 1303, 1100, 287, 262, 10706, 3042, 14, 14995, 2173, 422, 262, 23441, 198, 220, 220, 220, 1278, 265, 796, 27506, 40296, 13, 37652, 7, 88, 37652, 737, 13033, 198, 220, 220, 220, 1278, 261, 796, 27506, 40296, 13, 37652, 7, 87, 37652, 737, 13033, 628, 220, 220, 220, 1303, 2251, 257, 36954, 10706, 503, 286, 281, 7177, 286, 198, 220, 220, 220, 1303, 1278, 261, 290, 1278, 265, 3815, 11, 5485, 481, 307, 18896, 7, 4743, 265, 8, 87, 11925, 7, 4743, 261, 8, 198, 220, 220, 220, 2124, 11, 331, 796, 45941, 13, 76, 5069, 25928, 7, 4743, 261, 11, 1278, 265, 8, 628, 220, 220, 220, 1303, 651, 262, 23441, 15225, 543, 24866, 284, 1278, 261, 290, 1278, 265, 198, 220, 220, 220, 2124, 62, 27740, 796, 27506, 40296, 13, 37652, 62, 67, 12078, 7, 87, 37652, 38381, 15, 60, 198, 220, 220, 220, 331, 62, 27740, 796, 27506, 40296, 13, 37652, 62, 67, 12078, 7, 88, 37652, 38381, 15, 60, 628, 220, 220, 220, 1303, 8160, 734, 649, 9633, 284, 1745, 262, 555, 10599, 515, 22715, 198, 220, 220, 220, 374, 6511, 3984, 11, 374, 15460, 3984, 796, 4173, 271, 13, 20930, 13, 26674, 4867, 13, 403, 10599, 378, 62, 36869, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 11, 50115, 13, 25928, 62, 43588, 62, 36869, 62, 6511, 3984, 11, 50115, 13, 25928, 62, 43588, 62, 36869, 62, 15460, 3984, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 2251, 734, 649, 27506, 15856, 22715, 284, 1745, 198, 220, 220, 220, 1303, 262, 3815, 286, 262, 555, 10599, 515, 22715, 198, 220, 220, 220, 842, 62, 6511, 796, 4173, 271, 13, 1073, 3669, 13, 32, 2821, 7222, 585, 7, 81, 6511, 3984, 11, 890, 62, 3672, 2625, 6511, 3984, 1600, 4991, 2625, 13500, 6037, 4943, 198, 220, 220, 220, 842, 62, 15460, 796, 4173, 271, 13, 1073, 3669, 13, 32, 2821, 7222, 585, 7, 81, 15460, 3984, 11, 890, 62, 3672, 2625, 15460, 3984, 1600, 4991, 2625, 13500, 6037, 4943, 628, 220, 220, 220, 1303, 751, 734, 27506, 346, 560, 22715, 284, 262, 23441, 4769, 198, 220, 220, 220, 1303, 3218, 7, 403, 10599, 515, 8, 3042, 14, 14995, 3815, 198, 220, 220, 220, 27506, 40296, 13, 2860, 62, 14644, 62, 37652, 7, 2301, 62, 6511, 11, 685, 88, 62, 27740, 11, 2124, 62, 27740, 12962, 198, 220, 220, 220, 27506, 40296, 13, 2860, 62, 14644, 62, 37652, 7, 2301, 62, 15460, 11, 685, 88, 62, 27740, 11, 2124, 62, 27740, 12962, 628, 220, 220, 220, 1441, 27506, 40296, 628, 198, 4299, 751, 62, 65, 3733, 7, 40296, 11, 6349, 62, 14933, 11, 5421, 62, 9150, 28, 15, 13, 20, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17427, 2163, 284, 2198, 1771, 257, 198, 220, 220, 220, 220, 220, 220, 220, 20435, 287, 257, 23441, 468, 22303, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 751, 606, 611, 340, 1595, 470, 13, 628, 220, 220, 220, 220, 220, 220, 220, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 13498, 198, 220, 220, 220, 220, 220, 220, 220, 23441, 25, 4173, 271, 23441, 198, 220, 220, 220, 220, 220, 220, 220, 6349, 62, 14933, 25, 4731, 393, 1351, 286, 13042, 7268, 262, 1438, 14, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 22715, 345, 765, 284, 751, 22303, 284, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5421, 62, 9150, 25, 32233, 11, 262, 10348, 2292, 286, 262, 22303, 3585, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2292, 286, 262, 2173, 13, 15161, 318, 657, 13, 20, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 23441, 25, 23441, 351, 22303, 2087, 628, 220, 220, 220, 220, 220, 220, 220, 11822, 198, 220, 220, 220, 220, 220, 220, 220, 37404, 198, 220, 220, 220, 220, 220, 220, 220, 10664, 284, 307, 8161, 326, 340, 318, 5035, 198, 220, 220, 220, 220, 220, 220, 220, 284, 751, 22303, 284, 262, 1366, 11, 304, 13, 70, 13, 611, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 389, 47707, 11, 640, 22303, 389, 407, 198, 220, 220, 220, 220, 220, 220, 220, 5035, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1052, 1672, 25, 628, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 10414, 13, 26947, 62, 34720, 11, 705, 907, 34431, 13, 29468, 13, 6015, 76, 13, 85, 1155, 13, 10782, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 23441, 796, 4173, 271, 13, 2220, 62, 40296, 7, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 275, 40296, 796, 751, 62, 65, 3733, 7, 40296, 11, 705, 2435, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 640, 20435, 1541, 468, 22303, 11, 4844, 481, 307, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 275, 40296, 796, 751, 62, 65, 3733, 7, 40296, 11, 705, 25928, 62, 15460, 3984, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 15460, 3984, 22303, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 275, 40296, 796, 751, 62, 65, 3733, 7, 40296, 11, 37250, 25928, 62, 15460, 3984, 41707, 25928, 62, 6511, 3984, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 15460, 3984, 22303, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 6511, 3984, 22303, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 2198, 611, 262, 5128, 318, 281, 34230, 23441, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 40296, 11, 4173, 271, 13, 40296, 13, 29071, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 20560, 318, 407, 257, 23441, 4943, 628, 220, 220, 220, 1303, 2198, 611, 262, 20435, 1438, 5128, 318, 257, 4731, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 37652, 62, 14933, 11, 357, 8841, 62, 19199, 11, 1351, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 20560, 20435, 1276, 307, 257, 4731, 4943, 628, 220, 220, 220, 275, 40296, 796, 23441, 13, 30073, 3419, 628, 220, 220, 220, 1303, 1064, 3891, 286, 5391, 763, 3669, 198, 220, 220, 220, 269, 62, 14933, 796, 685, 66, 13, 3672, 3419, 329, 269, 287, 275, 40296, 13, 1073, 3669, 3419, 60, 628, 220, 220, 220, 1303, 611, 6349, 62, 14933, 318, 257, 2060, 4731, 11, 340, 481, 307, 6626, 11, 198, 220, 220, 220, 1303, 416, 262, 9052, 428, 2643, 8794, 329, 326, 1339, 290, 198, 220, 220, 220, 1303, 7584, 38305, 656, 257, 46545, 284, 2948, 26021, 13, 198, 220, 220, 220, 611, 318, 39098, 7, 37652, 62, 14933, 11, 4731, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6349, 62, 14933, 796, 46545, 26933, 37652, 62, 14933, 12962, 628, 220, 220, 220, 329, 6349, 287, 6349, 62, 14933, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 6349, 318, 257, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 37652, 11, 4731, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7222, 45480, 23884, 1276, 307, 257, 4731, 11, 340, 318, 3058, 257, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 37652, 828, 2099, 7, 37652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 6349, 318, 257, 20435, 286, 262, 23441, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6349, 407, 287, 269, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 92, 318, 407, 257, 20435, 11, 1695, 22715, 389, 25, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6349, 11, 269, 62, 14933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 262, 6349, 1541, 468, 22303, 198, 220, 220, 220, 220, 220, 220, 220, 611, 275, 40296, 13, 37652, 7, 37652, 737, 10134, 62, 65, 3733, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 90, 92, 20435, 1541, 468, 22303, 11, 4844, 481, 307, 2087, 1911, 18982, 7, 37652, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 22303, 284, 6349, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 40296, 13, 37652, 7, 37652, 737, 5162, 408, 62, 65, 3733, 7, 7784, 62, 9150, 28, 7784, 62, 9150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 90, 92, 22303, 2087, 1911, 18982, 7, 37652, 22305, 628, 220, 220, 220, 1441, 275, 40296, 628, 198, 4299, 751, 62, 37652, 62, 10057, 7, 40296, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 23441, 1276, 423, 257, 20435, 1080, 287, 1502, 284, 307, 842, 81, 1638, 276, 13, 628, 220, 220, 220, 770, 2163, 8794, 1771, 257, 23441, 468, 257, 20435, 1080, 13, 1002, 198, 220, 220, 220, 262, 23441, 468, 645, 20435, 1080, 11, 262, 3210, 262, 30004, 541, 568, 312, 198, 220, 220, 220, 10552, 266, 14542, 5705, 357, 494, 13, 262, 530, 973, 416, 15472, 8, 318, 2087, 13, 628, 220, 220, 220, 5740, 25, 632, 481, 407, 670, 329, 38375, 16825, 1366, 1231, 257, 198, 220, 220, 220, 20435, 1080, 13, 628, 220, 220, 220, 26498, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 23441, 25, 4173, 271, 23441, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 23441, 25, 383, 4866, 286, 262, 5128, 23441, 351, 20435, 1080, 2087, 11, 198, 220, 220, 220, 611, 262, 23441, 1422, 470, 423, 530, 1541, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 628, 220, 220, 220, 317, 2829, 1672, 25, 628, 220, 220, 220, 13163, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 10414, 13, 26947, 62, 34720, 11, 705, 70, 4852, 78, 1270, 62, 36629, 13500, 13, 10782, 11537, 198, 220, 220, 220, 13163, 23441, 796, 4173, 271, 13, 2220, 62, 40296, 7, 7753, 8, 198, 220, 220, 220, 13163, 3601, 7, 40296, 13, 37652, 10786, 15460, 3984, 27691, 37652, 62, 10057, 8, 198, 220, 220, 220, 6045, 198, 220, 220, 220, 13163, 269, 1416, 3266, 796, 751, 62, 37652, 62, 10057, 7, 40296, 8, 198, 220, 220, 220, 22819, 4559, 1080, 220, 2269, 519, 7902, 7, 21, 2718, 1065, 1959, 13, 15, 8, 2087, 284, 23441, 198, 220, 220, 220, 13163, 3601, 7, 66, 1416, 3266, 13, 37652, 10786, 15460, 3984, 27691, 37652, 62, 10057, 8, 198, 220, 220, 220, 2269, 519, 7902, 7, 21, 2718, 1065, 1959, 13, 15, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 5740, 25, 266, 14542, 5705, 318, 262, 2159, 2269, 375, 5139, 4482, 11, 290, 257, 3210, 6349, 198, 220, 220, 220, 1303, 1080, 287, 4173, 271, 13, 554, 2269, 519, 7902, 7, 21, 2718, 1065, 1959, 13, 15, 828, 718, 2718, 1065, 1959, 318, 262, 3668, 338, 198, 220, 220, 220, 1303, 16874, 287, 285, 13, 4091, 25, 198, 220, 220, 220, 1303, 3740, 1378, 1416, 270, 10141, 13, 2398, 13, 2724, 14, 29616, 14, 31628, 14, 85, 16, 13, 24, 13, 15, 14, 6494, 14, 29616, 14, 29616, 14, 37652, 62, 10057, 82, 13, 6494, 628, 220, 220, 220, 1303, 2198, 611, 262, 5128, 318, 281, 34230, 23441, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 40296, 11, 4173, 271, 13, 40296, 13, 29071, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 20560, 318, 407, 257, 23441, 4943, 628, 220, 220, 220, 269, 1416, 3266, 796, 23441, 13, 30073, 3419, 198, 220, 220, 220, 50115, 796, 269, 1416, 3266, 13, 37652, 62, 10057, 3419, 628, 220, 220, 220, 611, 50115, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 965, 7, 6359, 737, 19796, 7203, 24864, 515, 4943, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 1744, 284, 751, 257, 6349, 1080, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38375, 16825, 23441, 1231, 6970, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13179, 13, 13786, 4049, 3275, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 12331, 11, 645, 20435, 1080, 329, 38375, 16825, 23441, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6349, 62, 14933, 796, 685, 37652, 13, 3672, 3419, 329, 6349, 287, 269, 1416, 3266, 13, 1073, 3669, 7, 27740, 62, 1073, 3669, 28, 17821, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 266, 14542, 5705, 62, 6359, 796, 4173, 271, 13, 37652, 62, 10057, 82, 13, 10082, 519, 7902, 7, 21, 2718, 1065, 1959, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 15460, 3984, 1, 287, 6349, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 1416, 3266, 13, 37652, 7203, 15460, 3984, 11074, 37652, 62, 10057, 796, 266, 14542, 5705, 62, 6359, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 6511, 3984, 1, 287, 6349, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 1416, 3266, 13, 37652, 7203, 6511, 3984, 11074, 37652, 62, 10057, 796, 266, 14542, 5705, 62, 6359, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7222, 45480, 1080, 220, 2269, 519, 7902, 7, 21, 2718, 1065, 1959, 13, 15, 8, 2087, 284, 23441, 4943, 628, 220, 220, 220, 1441, 269, 1416, 3266, 628, 198, 4299, 751, 62, 2435, 62, 37652, 62, 24619, 7, 40296, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 2753, 287, 281, 4173, 271, 23441, 11, 290, 6673, 257, 2837, 286, 198, 220, 220, 220, 35575, 763, 12, 45480, 17851, 38189, 284, 340, 13, 23591, 198, 220, 220, 220, 319, 262, 1366, 11, 407, 477, 286, 262, 763, 3669, 2087, 481, 307, 5981, 13, 628, 220, 220, 220, 26498, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 23441, 25, 4173, 271, 23441, 326, 468, 257, 20435, 1444, 705, 2435, 6, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 23315, 25, 23441, 326, 468, 649, 640, 17851, 5612, 763, 3669, 2087, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 1332, 628, 220, 220, 220, 317, 2829, 1672, 25, 628, 220, 220, 220, 13163, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 10414, 13, 26947, 62, 34720, 11, 705, 907, 34431, 13, 29468, 13, 6015, 76, 13, 85, 1155, 13, 10782, 11537, 198, 220, 220, 220, 13163, 23441, 796, 4173, 271, 13, 2220, 62, 40296, 7, 7753, 8, 198, 220, 220, 220, 13163, 6349, 62, 14933, 796, 685, 37652, 13, 3672, 3419, 329, 6349, 287, 23441, 13, 1073, 3669, 3419, 60, 198, 220, 220, 220, 13163, 3601, 19510, 3256, 45302, 22179, 7, 37652, 62, 14933, 22305, 198, 220, 220, 220, 640, 11, 10706, 62, 15460, 3984, 11, 10706, 62, 6511, 3984, 198, 220, 220, 220, 13163, 36624, 3266, 796, 751, 62, 2435, 62, 37652, 62, 24619, 7, 40296, 8, 198, 220, 220, 220, 13163, 6349, 62, 14933, 796, 685, 37652, 13, 3672, 3419, 329, 6349, 287, 36624, 3266, 13, 1073, 3669, 3419, 60, 198, 220, 220, 220, 13163, 3601, 19510, 3256, 45302, 22179, 7, 37652, 62, 14933, 22305, 198, 220, 220, 220, 640, 11, 10706, 62, 15460, 3984, 11, 10706, 62, 6511, 3984, 11, 1110, 62, 1659, 62, 8424, 11, 1110, 62, 1659, 62, 1941, 11, 1227, 11, 3467, 198, 8424, 62, 17618, 11, 1622, 11, 1622, 62, 17618, 11, 614, 198, 220, 220, 220, 13163, 1303, 3601, 790, 2026, 400, 1988, 286, 262, 2087, 640, 3797, 763, 3669, 198, 220, 220, 220, 2644, 329, 269, 287, 6349, 62, 14933, 58, 18, 25, 5974, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 3601, 7, 535, 3266, 13, 37652, 7, 66, 737, 6511, 62, 3672, 8, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 3601, 7, 535, 3266, 13, 37652, 7, 66, 737, 13033, 58, 3712, 1120, 12962, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 1110, 62, 1659, 62, 8424, 198, 220, 220, 220, 685, 352, 2310, 1367, 220, 352, 2310, 1367, 220, 352, 2310, 60, 198, 220, 220, 220, 1110, 62, 1659, 62, 1941, 198, 220, 220, 220, 685, 220, 352, 220, 6885, 8949, 25326, 580, 34489, 25643, 44417, 60, 198, 220, 220, 220, 1227, 198, 220, 220, 220, 37250, 12128, 6, 705, 15146, 6, 705, 13680, 6, 705, 22396, 6, 705, 16980, 6, 705, 19117, 6, 705, 20795, 6, 705, 10707, 20520, 198, 220, 220, 220, 1227, 62, 17618, 198, 220, 220, 220, 685, 352, 220, 362, 220, 604, 220, 718, 220, 767, 220, 860, 1367, 1105, 60, 198, 220, 220, 220, 1622, 198, 220, 220, 220, 37250, 28241, 69, 6, 705, 28241, 69, 6, 705, 76, 321, 6, 705, 73, 6592, 6, 705, 73, 6592, 6, 705, 1559, 6, 705, 1559, 6, 705, 28241, 69, 20520, 198, 220, 220, 220, 1622, 62, 17618, 198, 220, 220, 220, 685, 15, 657, 352, 362, 362, 513, 513, 657, 60, 198, 220, 220, 220, 614, 198, 220, 220, 220, 685, 11024, 4751, 4751, 4751, 4751, 4751, 4751, 4751, 60, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 749, 8563, 1461, 510, 618, 345, 1949, 284, 751, 257, 6349, 326, 468, 198, 220, 220, 220, 1303, 4271, 587, 2087, 11, 393, 262, 23441, 1595, 470, 3994, 262, 198, 220, 220, 220, 1303, 3306, 11688, 13, 628, 220, 220, 220, 36624, 3266, 796, 23441, 13, 30073, 3419, 628, 220, 220, 220, 1303, 35575, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14158, 9246, 13, 2860, 62, 820, 62, 1659, 62, 1941, 7, 535, 3266, 11, 366, 2435, 4943, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 2845, 11052, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14158, 9246, 13, 2860, 62, 820, 62, 1659, 62, 8424, 7, 535, 3266, 11, 366, 2435, 4943, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 2845, 11052, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14158, 9246, 13, 2860, 62, 8424, 62, 17618, 7, 535, 3266, 11, 366, 2435, 4943, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 2845, 11052, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14158, 9246, 13, 2860, 62, 6230, 62, 17618, 7, 535, 3266, 11, 366, 2435, 4943, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 2845, 11052, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14158, 9246, 13, 2860, 62, 1941, 7, 535, 3266, 11, 366, 2435, 4943, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 2845, 11052, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 1303, 13042, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14158, 9246, 13, 2860, 62, 8424, 7, 535, 3266, 11, 366, 2435, 4943, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 2845, 11052, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14158, 9246, 13, 2860, 62, 6230, 7, 535, 3266, 11, 366, 2435, 4943, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 198, 220, 220, 220, 2845, 11052, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 2860, 62, 2435, 62, 37652, 62, 24619, 25, 1391, 5512, 31017, 764, 764, 764, 27071, 18982, 7, 8056, 22305, 628, 220, 220, 220, 1441, 36624, 3266, 628, 198, 4299, 7925, 62, 10599, 62, 40296, 7, 40296, 11, 949, 62, 15460, 11, 949, 62, 14995, 11, 3509, 62, 15460, 11, 3509, 62, 14995, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 2123, 974, 82, 262, 2176, 3814, 422, 262, 23441, 13, 198, 220, 220, 220, 26498, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 23441, 25, 23441, 319, 38375, 6349, 1080, 11, 973, 355, 4941, 10706, 329, 13389, 13, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 949, 62, 15460, 25, 383, 5288, 32477, 966, 286, 262, 10348, 21242, 23441, 13, 198, 220, 220, 220, 949, 62, 14995, 25, 383, 5288, 890, 3984, 966, 286, 262, 10348, 21242, 23441, 13, 198, 220, 220, 220, 3509, 62, 15460, 25, 383, 5415, 32477, 966, 286, 262, 10348, 21242, 23441, 13, 198, 220, 220, 220, 3509, 62, 14995, 25, 383, 5415, 890, 3984, 966, 286, 262, 10348, 21242, 23441, 13, 198, 220, 220, 220, 1052, 1672, 25, 198, 220, 220, 220, 13163, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 10414, 13, 26947, 62, 34720, 11, 705, 6015, 76, 62, 8424, 306, 13, 381, 11537, 198, 220, 220, 220, 13163, 23441, 796, 4173, 271, 13, 2220, 62, 40296, 7, 7753, 11, 705, 958, 62, 11498, 21069, 11537, 198, 220, 220, 220, 13163, 949, 62, 15460, 796, 2026, 198, 220, 220, 220, 13163, 949, 62, 14995, 796, 532, 940, 198, 220, 220, 220, 13163, 3509, 62, 15460, 796, 3126, 198, 220, 220, 220, 13163, 3509, 62, 14995, 796, 657, 198, 220, 220, 220, 13163, 21242, 62, 40296, 796, 7925, 62, 10599, 62, 40296, 7, 40296, 11, 949, 62, 15460, 11, 949, 62, 14995, 11, 3509, 62, 15460, 11, 3509, 62, 14995, 8, 198, 220, 220, 220, 13163, 3509, 62, 15460, 62, 40296, 796, 220, 45941, 13, 9806, 7, 2302, 20216, 62, 40296, 13, 37652, 10786, 15460, 3984, 27691, 13033, 8, 198, 220, 220, 220, 13163, 3601, 7, 69, 6, 90, 9806, 62, 15460, 62, 40296, 25, 13, 18, 69, 92, 11537, 198, 220, 220, 220, 8454, 13, 24760, 198, 220, 220, 220, 13163, 949, 62, 15460, 62, 40296, 796, 45941, 13, 1084, 7, 2302, 20216, 62, 40296, 13, 37652, 10786, 15460, 3984, 27691, 13033, 8, 198, 220, 220, 220, 13163, 3601, 7, 69, 6, 90, 1084, 62, 15460, 62, 40296, 25, 13, 18, 69, 92, 11537, 198, 220, 220, 220, 4764, 13, 26427, 198, 220, 220, 220, 13163, 3509, 62, 14995, 62, 40296, 796, 45941, 13, 9806, 7, 2302, 20216, 62, 40296, 13, 37652, 10786, 6511, 3984, 27691, 13033, 8, 198, 220, 220, 220, 13163, 3601, 7, 69, 6, 90, 9806, 62, 14995, 62, 40296, 25, 13, 18, 69, 92, 11537, 198, 220, 220, 220, 513, 13, 41813, 198, 220, 220, 220, 13163, 949, 62, 14995, 62, 40296, 796, 45941, 13, 1084, 7, 2302, 20216, 62, 40296, 13, 37652, 10786, 6511, 3984, 27691, 13033, 8, 198, 220, 220, 220, 13163, 3601, 7, 69, 6, 90, 1084, 62, 14995, 62, 40296, 25, 13, 18, 69, 92, 11537, 198, 220, 220, 220, 532, 1433, 13, 32759, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 4375, 555, 10599, 515, 763, 3669, 284, 262, 23441, 198, 220, 220, 220, 23441, 796, 751, 62, 14644, 62, 403, 10599, 515, 62, 1073, 3669, 7, 40296, 8, 628, 220, 220, 220, 1303, 9335, 262, 23441, 1262, 262, 2081, 3042, 290, 300, 261, 198, 220, 220, 220, 300, 1381, 796, 23441, 13, 37652, 7203, 15460, 3984, 11074, 13033, 198, 220, 220, 220, 300, 684, 796, 23441, 13, 37652, 7203, 6511, 3984, 11074, 13033, 198, 220, 220, 220, 2922, 62, 75, 684, 796, 357, 75, 684, 18189, 949, 62, 14995, 8, 1222, 357, 75, 684, 19841, 3509, 62, 14995, 8, 198, 220, 220, 220, 2922, 62, 75, 1381, 796, 357, 75, 1381, 18189, 949, 62, 15460, 8, 1222, 357, 75, 1381, 19841, 3509, 62, 15460, 8, 198, 220, 220, 220, 6356, 796, 2922, 62, 75, 1381, 1222, 2922, 62, 75, 684, 198, 220, 220, 220, 6356, 796, 12379, 13, 36654, 2701, 62, 1462, 7, 49283, 11, 23441, 13, 43358, 8, 198, 220, 220, 220, 23441, 13, 7890, 796, 12379, 13, 2611, 13, 27932, 276, 62, 3003, 7, 93, 49283, 11, 23441, 13, 7295, 62, 7890, 28955, 628, 220, 220, 220, 1303, 5552, 257, 2060, 362, 35, 16416, 286, 1395, 290, 575, 290, 1011, 262, 9335, 198, 220, 220, 220, 300, 261, 62, 37652, 796, 23441, 13, 37652, 7, 22704, 2625, 55, 1600, 5391, 62, 1073, 3669, 28, 17821, 8, 198, 220, 220, 220, 3042, 62, 37652, 796, 23441, 13, 37652, 7, 22704, 2625, 56, 1600, 5391, 62, 1073, 3669, 28, 17821, 8, 198, 220, 220, 220, 329, 331, 87, 62, 48369, 287, 23441, 13, 82, 677, 274, 7, 14692, 25928, 62, 15460, 3984, 1600, 366, 25928, 62, 6511, 3984, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 12067, 2093, 796, 331, 87, 62, 48369, 13, 7890, 13, 27932, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1303, 783, 2005, 262, 23441, 866, 1863, 1395, 290, 575, 763, 3669, 198, 220, 220, 220, 2124, 16, 11, 2124, 17, 11, 331, 16, 11, 331, 17, 796, 4808, 1136, 62, 5431, 62, 34952, 2875, 7, 11215, 2093, 8, 198, 220, 220, 220, 4686, 87, 796, 18896, 7, 40296, 13, 43358, 8, 1635, 685, 48369, 7, 14202, 15437, 628, 220, 220, 220, 4686, 87, 58, 40296, 13, 37652, 62, 67, 12078, 7, 40296, 13, 37652, 7, 22704, 2625, 87, 1600, 5391, 62, 1073, 3669, 28, 17821, 4008, 58, 15, 11907, 796, 16416, 7, 87, 16, 11, 2124, 17, 11, 352, 8, 198, 220, 220, 220, 4686, 87, 58, 40296, 13, 37652, 62, 67, 12078, 7, 40296, 13, 37652, 7, 22704, 2625, 88, 1600, 5391, 62, 1073, 3669, 28, 17821, 4008, 58, 15, 11907, 796, 16416, 7, 88, 16, 11, 331, 17, 11, 352, 8, 628, 220, 220, 220, 21242, 62, 40296, 796, 23441, 58, 83, 29291, 7, 312, 87, 15437, 628, 220, 220, 220, 1441, 21242, 62, 40296, 628, 198, 4299, 4781, 62, 754, 2701, 62, 37652, 17540, 7, 29616, 62, 40296, 2599, 198, 220, 220, 220, 37227, 32, 2163, 284, 4781, 262, 11092, 62, 41007, 290, 198, 220, 220, 220, 11092, 62, 35790, 62, 2435, 22715, 422, 262, 44352, 21082, 3696, 628, 220, 220, 220, 26498, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 4173, 271, 62, 40296, 25, 5128, 4173, 271, 62, 40296, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4173, 271, 62, 40296, 25, 4173, 271, 23441, 1231, 262, 11092, 62, 41007, 290, 11092, 62, 35790, 62, 2435, 198, 220, 220, 220, 22715, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 628, 220, 220, 220, 4091, 2174, 329, 6096, 25, 628, 220, 220, 220, 13163, 23441, 62, 4868, 62, 69, 6098, 796, 4173, 271, 13, 40296, 13, 29071, 8053, 3419, 198, 220, 220, 220, 13163, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 10414, 13, 26947, 62, 34720, 11, 705, 6015, 76, 62, 8424, 306, 13, 381, 11537, 198, 220, 220, 220, 13163, 23441, 62, 4868, 796, 4173, 271, 13, 2220, 7, 7753, 8, 198, 220, 220, 220, 13163, 329, 23441, 287, 23441, 62, 4868, 25, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 23441, 62, 69, 6098, 796, 4781, 62, 754, 2701, 62, 37652, 17540, 7, 40296, 8, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 23441, 62, 4868, 62, 69, 6098, 13, 33295, 7, 40296, 62, 69, 6098, 8, 198, 220, 220, 220, 28252, 262, 11092, 62, 41007, 20435, 422, 679, 615, 893, 485, 2163, 3467, 198, 261, 3833, 2974, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 35790, 62, 2435, 20435, 422, 679, 615, 893, 485, 3467, 198, 8818, 319, 3833, 2974, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 41007, 20435, 422, 1633, 62, 11498, 21069, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 35790, 62, 2435, 20435, 422, 1633, 62, 11498, 21069, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 41007, 20435, 422, 3585, 62, 17047, 17995, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 35790, 62, 2435, 20435, 422, 3585, 62, 17047, 17995, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 41007, 20435, 422, 2176, 62, 17047, 17995, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 35790, 62, 2435, 20435, 422, 2176, 62, 17047, 17995, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 41007, 20435, 422, 2124, 62, 7972, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 35790, 62, 2435, 20435, 422, 2124, 62, 7972, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 41007, 20435, 422, 331, 62, 7972, 23441, 198, 220, 220, 220, 28252, 262, 11092, 62, 35790, 62, 2435, 20435, 422, 331, 62, 7972, 23441, 628, 220, 220, 220, 2735, 2198, 611, 262, 11092, 22715, 423, 587, 4615, 628, 220, 220, 220, 13163, 329, 23441, 287, 23441, 62, 4868, 62, 69, 6098, 25, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 23441, 62, 77, 16072, 796, 4781, 62, 754, 2701, 62, 37652, 17540, 7, 40296, 8, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 41007, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 35790, 62, 2435, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 41007, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 35790, 62, 2435, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 41007, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 35790, 62, 2435, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 41007, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 35790, 62, 2435, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 41007, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 35790, 62, 2435, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 41007, 20435, 11, 475, 1043, 4844, 2637, 198, 220, 220, 220, 705, 3109, 7254, 284, 1064, 3446, 352, 11092, 62, 35790, 62, 2435, 20435, 11, 475, 1043, 4844, 2637, 198, 37811, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4173, 271, 62, 40296, 13, 28956, 62, 37652, 7203, 754, 2701, 62, 41007, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45975, 262, 11092, 62, 41007, 20435, 422, 23884, 23441, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4173, 271, 62, 40296, 13, 3672, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2845, 4173, 271, 13, 1069, 11755, 13, 7222, 45480, 3673, 21077, 12331, 355, 6349, 62, 1662, 62, 9275, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 1911, 18982, 7, 37652, 62, 1662, 62, 9275, 4008, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4173, 271, 62, 40296, 13, 28956, 62, 37652, 7203, 754, 2701, 62, 35790, 62, 2435, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45975, 262, 11092, 62, 35790, 62, 2435, 20435, 422, 23884, 23441, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4173, 271, 62, 40296, 13, 3672, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2845, 4173, 271, 13, 1069, 11755, 13, 7222, 45480, 3673, 21077, 12331, 355, 6349, 62, 1662, 62, 9275, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 1911, 18982, 7, 37652, 62, 1662, 62, 9275, 4008, 628, 220, 220, 220, 1441, 4173, 271, 62, 40296, 628, 198, 4299, 20254, 62, 28956, 7, 40296, 11, 20254, 62, 10394, 2599, 198, 220, 220, 220, 37227, 8229, 14826, 1797, 23441, 351, 20254, 4615, 13, 628, 220, 220, 220, 26498, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 23441, 25, 5128, 4173, 271, 23441, 198, 220, 220, 220, 20254, 62, 10394, 25, 18253, 11, 1271, 286, 10706, 2173, 284, 4781, 422, 5743, 286, 3042, 290, 890, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 374, 6015, 3266, 25, 20254, 4615, 23441, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 628, 220, 220, 220, 4091, 2174, 329, 6096, 25, 628, 220, 220, 220, 13163, 23441, 62, 4868, 62, 21062, 796, 4173, 271, 13, 40296, 13, 29071, 8053, 3419, 198, 220, 220, 220, 13163, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 10414, 13, 26947, 62, 34720, 11, 705, 6015, 76, 62, 8424, 306, 13, 381, 11537, 198, 220, 220, 220, 13163, 23441, 62, 4868, 796, 4173, 271, 13, 2220, 7, 7753, 8, 198, 220, 220, 220, 13163, 329, 23441, 287, 23441, 62, 4868, 25, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 23441, 62, 21062, 796, 20254, 62, 28956, 7, 40296, 11, 807, 8, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 23441, 62, 4868, 62, 21062, 13, 33295, 7, 40296, 62, 21062, 8, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 28252, 807, 2546, 20254, 422, 679, 615, 893, 485, 2163, 319, 3833, 2974, 198, 220, 220, 220, 28252, 807, 2546, 20254, 422, 1633, 62, 11498, 21069, 198, 220, 220, 220, 28252, 807, 2546, 20254, 422, 3585, 62, 17047, 17995, 198, 220, 220, 220, 28252, 807, 2546, 20254, 422, 2176, 62, 17047, 17995, 198, 220, 220, 220, 28252, 807, 2546, 20254, 422, 2124, 62, 7972, 198, 220, 220, 220, 28252, 807, 2546, 20254, 422, 331, 62, 7972, 198, 220, 220, 220, 13163, 2393, 796, 28686, 13, 6978, 13, 22179, 7, 10414, 13, 26947, 62, 34720, 11, 705, 6015, 76, 62, 907, 34431, 62, 8424, 306, 13, 381, 11537, 198, 220, 220, 220, 13163, 285, 6649, 79, 62, 40296, 796, 4173, 271, 13, 2220, 62, 40296, 7, 7753, 8, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 285, 6649, 79, 62, 40296, 62, 21062, 796, 20254, 62, 28956, 7, 907, 34431, 62, 40296, 11, 807, 8, 198, 220, 220, 220, 28252, 807, 2546, 20254, 422, 1633, 62, 36151, 62, 265, 62, 8583, 62, 5715, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 3601, 7, 11925, 7, 907, 34431, 62, 40296, 13, 37652, 10786, 25928, 62, 15460, 3984, 27691, 13033, 4008, 198, 220, 220, 220, 46393, 198, 220, 220, 220, 13163, 3601, 7, 11925, 7, 907, 34431, 62, 40296, 13, 37652, 10786, 25928, 62, 6511, 3984, 27691, 13033, 4008, 198, 220, 220, 220, 45095, 198, 220, 220, 220, 13163, 3601, 7, 11925, 7, 907, 34431, 62, 40296, 13, 37652, 10786, 25928, 62, 15460, 3984, 27691, 13033, 4008, 198, 220, 220, 220, 46393, 198, 220, 220, 220, 13163, 3601, 7, 11925, 7, 907, 34431, 62, 40296, 13, 37652, 10786, 25928, 62, 6511, 3984, 27691, 13033, 4008, 198, 220, 220, 220, 45095, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 285, 6649, 79, 62, 40296, 62, 21062, 21062, 796, 20254, 62, 28956, 7, 907, 34431, 62, 40296, 62, 21062, 11, 807, 8, 198, 220, 220, 220, 39410, 532, 770, 23441, 468, 1541, 550, 340, 338, 20254, 4615, 198, 220, 220, 220, 28252, 807, 2546, 20254, 422, 1633, 62, 36151, 62, 265, 62, 8583, 62, 5715, 628, 198, 220, 220, 220, 2735, 1332, 329, 15536, 25, 628, 220, 220, 220, 13163, 285, 6649, 79, 62, 40296, 62, 21062, 796, 20254, 62, 28956, 7, 40296, 11, 807, 13, 17, 8, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 5994, 12331, 25, 4222, 2148, 257, 3967, 18253, 329, 20254, 62, 10394, 198, 220, 220, 220, 13163, 285, 6649, 79, 62, 40296, 62, 21062, 796, 20254, 62, 28956, 7, 40296, 11, 532, 20, 8, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 12901, 12331, 25, 4222, 2148, 257, 3967, 18253, 1875, 657, 329, 20254, 62, 10394, 198, 220, 220, 220, 13163, 285, 6649, 79, 62, 40296, 62, 21062, 796, 20254, 62, 28956, 7, 40296, 11, 7337, 8, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 12901, 12331, 25, 4129, 286, 3042, 393, 300, 261, 6349, 318, 1279, 20254, 62, 10394, 9, 17, 198, 220, 220, 220, 13163, 285, 6649, 79, 62, 40296, 62, 21062, 796, 20254, 62, 28956, 7, 40296, 11, 657, 8, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 12901, 12331, 25, 4222, 2148, 257, 3967, 18253, 1875, 657, 329, 20254, 62, 10394, 198, 220, 220, 220, 13163, 285, 6649, 79, 62, 40296, 62, 21062, 796, 20254, 62, 28956, 7, 40296, 11, 705, 64, 11537, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 5994, 12331, 25, 4222, 2148, 257, 3967, 18253, 329, 20254, 62, 10394, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2198, 611, 262, 5128, 318, 281, 34230, 23441, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 40296, 11, 4173, 271, 13, 40296, 13, 29071, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 20560, 318, 407, 257, 23441, 4943, 628, 220, 220, 220, 1303, 2198, 1771, 20254, 62, 10394, 318, 281, 18253, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 3036, 62, 10394, 11, 357, 41433, 62, 19199, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 5492, 2148, 257, 3967, 18253, 329, 20254, 62, 10394, 4943, 198, 220, 220, 220, 611, 20254, 62, 10394, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 12901, 12331, 7203, 5492, 2148, 257, 3967, 18253, 1875, 657, 329, 20254, 62, 10394, 4943, 628, 220, 220, 220, 1303, 2198, 1771, 428, 23441, 468, 1541, 550, 340, 338, 20254, 4615, 198, 220, 220, 220, 611, 366, 3036, 62, 2787, 2668, 1, 287, 23441, 13, 1078, 7657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 31502, 532, 770, 23441, 468, 1541, 550, 340, 338, 20254, 4615, 4943, 628, 220, 220, 220, 1303, 5882, 3984, 198, 220, 220, 220, 2124, 37652, 796, 23441, 13, 37652, 7, 22704, 2625, 55, 1600, 5391, 62, 1073, 3669, 28, 17821, 8, 198, 220, 220, 220, 1303, 5476, 3984, 198, 220, 220, 220, 331, 37652, 796, 23441, 13, 37652, 7, 22704, 2625, 56, 1600, 5391, 62, 1073, 3669, 28, 17821, 8, 628, 220, 220, 220, 1303, 787, 1654, 7368, 20254, 62, 10394, 318, 1016, 284, 670, 198, 220, 220, 220, 611, 18896, 7, 87, 37652, 13, 13033, 8, 19841, 357, 3036, 62, 10394, 1635, 362, 8, 393, 18896, 7, 88, 37652, 13, 13033, 8, 19841, 357, 3036, 62, 10394, 1635, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 12901, 12331, 7203, 13664, 286, 3042, 393, 300, 261, 6349, 318, 1279, 20254, 62, 10394, 9, 17, 4943, 628, 220, 220, 220, 1303, 17220, 20254, 422, 5882, 3984, 198, 220, 220, 220, 374, 6015, 3266, 796, 23441, 13, 7266, 2617, 7, 87, 37652, 58, 3036, 62, 10394, 1058, 532, 16, 1635, 20254, 62, 10394, 12962, 198, 220, 220, 220, 1303, 17220, 20254, 422, 5476, 3984, 198, 220, 220, 220, 374, 6015, 3266, 796, 374, 6015, 3266, 13, 7266, 2617, 7, 88, 37652, 58, 3036, 62, 10394, 1058, 532, 16, 1635, 20254, 62, 10394, 12962, 198, 220, 220, 220, 1303, 751, 13634, 1366, 326, 20254, 468, 587, 4615, 198, 220, 220, 220, 374, 6015, 3266, 13, 1078, 7657, 14692, 3036, 62, 2787, 2668, 8973, 796, 45144, 92, 966, 20254, 4615, 1911, 18982, 7, 3036, 62, 10394, 8, 628, 220, 220, 220, 3601, 7, 7203, 45975, 23884, 2546, 20254, 422, 23884, 1911, 18982, 7, 3036, 62, 10394, 11, 23441, 13, 3672, 3419, 22305, 628, 220, 220, 220, 1441, 374, 6015, 3266, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 10412, 395, 13, 9288, 4666, 3419, 198 ]
2.595957
9,400
""" Ref: https://dacon.io/competitions/official/235673/talkboard/401911?page=1&dtype=recent """ import os import re import platform import itertools import collections import pkg_resources # pip install py-rouge from io import open if platform.system() == "Windows": try: from eunjeon import Mecab except: print("please install eunjeon module") else: # Ubuntu일 경우 from konlpy.tag import Mecab
[ 37811, 198, 8134, 25, 3740, 1378, 67, 7807, 13, 952, 14, 5589, 316, 1756, 14, 16841, 14, 22370, 45758, 14, 16620, 3526, 14, 21844, 35549, 30, 7700, 28, 16, 5, 67, 4906, 28, 49921, 198, 37811, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 3859, 198, 11748, 340, 861, 10141, 198, 11748, 17268, 198, 11748, 279, 10025, 62, 37540, 220, 1303, 7347, 2721, 12972, 12, 472, 469, 198, 6738, 33245, 1330, 1280, 628, 198, 361, 3859, 13, 10057, 3419, 6624, 366, 11209, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 304, 403, 18015, 261, 1330, 337, 721, 397, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 29688, 2721, 304, 403, 18015, 261, 8265, 4943, 198, 17772, 25, 220, 1303, 14949, 35975, 120, 220, 166, 110, 121, 168, 248, 108, 198, 220, 220, 220, 422, 479, 261, 75, 9078, 13, 12985, 1330, 337, 721, 397, 628 ]
2.645963
161
import functools import sys from typing import Set import nltk from flair.data import Sentence from flair.models import SequenceTagger from langdetect import detect @functools.lru_cache(maxsize=1) def get_tagger(language: str) -> SequenceTagger: """Return the tagger needed """ if language == "de": return SequenceTagger.load("de-ner") if language == "en": return SequenceTagger.load("ner-fast") raise Exception("Invalid language") def filter_text(text: str) -> str: """remove unwanted character from the text which can disturb NER""" filtered = text for s in "\\\xa0\"'[]()’“”\xad": filtered = filtered.replace(s, "") return filtered def format_entities(entities: Set[str]) -> Set[str]: """ Remove :param entity: :return: """ result = [] for entity in entities: if entity[-1] in [".", ",", "?", "!", ":"]: entity = entity[0:-1] entity = entity.replace("\n", " ") if entity[-1] == "s" and entity[:-1] in entities: continue if not entity: continue result.append(entity) return set(result) @functools.lru_cache(maxsize=512) def find_entity(text: str, language: str) -> Set[str]: """extract entity using flair""" global tagger filtered = filter_text(text) if not filtered: return set() detected_language = detect(filtered) if language != detected_language: return set() sent_tokens = nltk.sent_tokenize(filtered) sentences = [Sentence(i) for i in sent_tokens] tagger = get_tagger(language) tagger.predict(sentences) flair_entities = [] for sentence in sentences: flair_entities.extend( [entity.text for entity in sentence.get_spans("ner")] ) result = format_entities(set(flair_entities)) return result if __name__ == "__main__": text = sys.argv[1] print(find_entity(text))
[ 11748, 1257, 310, 10141, 198, 11748, 25064, 198, 6738, 19720, 1330, 5345, 198, 198, 11748, 299, 2528, 74, 198, 6738, 37457, 13, 7890, 1330, 11352, 594, 198, 6738, 37457, 13, 27530, 1330, 45835, 51, 7928, 198, 6738, 42392, 15255, 478, 1330, 4886, 628, 198, 31, 12543, 310, 10141, 13, 75, 622, 62, 23870, 7, 9806, 7857, 28, 16, 8, 198, 4299, 651, 62, 83, 7928, 7, 16129, 25, 965, 8, 4613, 45835, 51, 7928, 25, 198, 220, 220, 220, 37227, 13615, 262, 7621, 1362, 2622, 37227, 198, 220, 220, 220, 611, 3303, 6624, 366, 2934, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45835, 51, 7928, 13, 2220, 7203, 2934, 12, 1008, 4943, 198, 220, 220, 220, 611, 3303, 6624, 366, 268, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45835, 51, 7928, 13, 2220, 7203, 1008, 12, 7217, 4943, 198, 220, 220, 220, 5298, 35528, 7203, 44651, 3303, 4943, 628, 198, 4299, 8106, 62, 5239, 7, 5239, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 28956, 19125, 2095, 422, 262, 2420, 543, 460, 17037, 399, 1137, 37811, 198, 220, 220, 220, 29083, 796, 2420, 198, 220, 220, 220, 329, 264, 287, 366, 6852, 59, 27865, 15, 7879, 6, 21737, 3419, 447, 247, 447, 250, 447, 251, 59, 87, 324, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 796, 29083, 13, 33491, 7, 82, 11, 366, 4943, 198, 220, 220, 220, 1441, 29083, 628, 198, 4299, 5794, 62, 298, 871, 7, 298, 871, 25, 5345, 58, 2536, 12962, 4613, 5345, 58, 2536, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17220, 198, 220, 220, 220, 1058, 17143, 9312, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1255, 796, 17635, 198, 220, 220, 220, 329, 9312, 287, 12066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9312, 58, 12, 16, 60, 287, 14631, 33283, 366, 553, 11, 366, 35379, 366, 40754, 366, 11097, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9312, 796, 9312, 58, 15, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9312, 796, 9312, 13, 33491, 7203, 59, 77, 1600, 366, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9312, 58, 12, 16, 60, 6624, 366, 82, 1, 290, 9312, 58, 21912, 16, 60, 287, 12066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 7, 26858, 8, 198, 220, 220, 220, 1441, 900, 7, 20274, 8, 628, 198, 31, 12543, 310, 10141, 13, 75, 622, 62, 23870, 7, 9806, 7857, 28, 25836, 8, 198, 4299, 1064, 62, 26858, 7, 5239, 25, 965, 11, 3303, 25, 965, 8, 4613, 5345, 58, 2536, 5974, 198, 220, 220, 220, 37227, 2302, 974, 9312, 1262, 37457, 37811, 198, 220, 220, 220, 3298, 7621, 1362, 198, 220, 220, 220, 29083, 796, 8106, 62, 5239, 7, 5239, 8, 198, 220, 220, 220, 611, 407, 29083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 900, 3419, 198, 220, 220, 220, 12326, 62, 16129, 796, 4886, 7, 10379, 4400, 8, 198, 220, 220, 220, 611, 3303, 14512, 12326, 62, 16129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 900, 3419, 198, 220, 220, 220, 1908, 62, 83, 482, 641, 796, 299, 2528, 74, 13, 34086, 62, 30001, 1096, 7, 10379, 4400, 8, 198, 220, 220, 220, 13439, 796, 685, 31837, 594, 7, 72, 8, 329, 1312, 287, 1908, 62, 83, 482, 641, 60, 198, 220, 220, 220, 7621, 1362, 796, 651, 62, 83, 7928, 7, 16129, 8, 198, 220, 220, 220, 7621, 1362, 13, 79, 17407, 7, 34086, 3007, 8, 198, 220, 220, 220, 37457, 62, 298, 871, 796, 17635, 198, 220, 220, 220, 329, 6827, 287, 13439, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37457, 62, 298, 871, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 26858, 13, 5239, 329, 9312, 287, 6827, 13, 1136, 62, 2777, 504, 7203, 1008, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1255, 796, 5794, 62, 298, 871, 7, 2617, 7, 2704, 958, 62, 298, 871, 4008, 198, 220, 220, 220, 1441, 1255, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2420, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 3601, 7, 19796, 62, 26858, 7, 5239, 4008, 198 ]
2.475285
789
from typing import Dict from abc import abstractmethod, ABC from pandas import DataFrame import json import os DEFAULT_TRANSLATION_PROVIDER = SchemaTranslationProvider()
[ 6738, 19720, 1330, 360, 713, 198, 198, 6738, 450, 66, 1330, 12531, 24396, 11, 9738, 198, 6738, 19798, 292, 1330, 6060, 19778, 198, 11748, 33918, 198, 11748, 28686, 628, 628, 198, 7206, 38865, 62, 5446, 1565, 8634, 6234, 62, 41283, 41237, 796, 10011, 2611, 48313, 29495, 3419, 198 ]
3.645833
48
from src.contexts.kms.computed_data.application.find_one.ComputedDataByKeyAndInputFinder import \ ComputedDataByKeyAndInputFinder from src.contexts.kms.computed_data.application.find_one.ComputedDataByKeyAndInputQuery import \ ComputedDataByKeyAndInputQuery from src.contexts.kms.computed_data.application.find_one.KmsComputedDataResponse import KmsComputedDataResponse from src.contexts.kms.computed_data.domain.entities.ComputedDataInput import ComputedDataInput from src.contexts.kms.computed_data.domain.entities.ComputedDataType import ComputedDataType from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyId import CryptoKeyId from src.contexts.shared.domain.QueryHandler import QueryHandler
[ 6738, 12351, 13, 22866, 82, 13, 74, 907, 13, 785, 17128, 62, 7890, 13, 31438, 13, 19796, 62, 505, 13, 5377, 17128, 6601, 3886, 9218, 1870, 20560, 37, 5540, 1330, 3467, 198, 220, 220, 220, 955, 17128, 6601, 3886, 9218, 1870, 20560, 37, 5540, 198, 6738, 12351, 13, 22866, 82, 13, 74, 907, 13, 785, 17128, 62, 7890, 13, 31438, 13, 19796, 62, 505, 13, 5377, 17128, 6601, 3886, 9218, 1870, 20560, 20746, 1330, 3467, 198, 220, 220, 220, 955, 17128, 6601, 3886, 9218, 1870, 20560, 20746, 198, 6738, 12351, 13, 22866, 82, 13, 74, 907, 13, 785, 17128, 62, 7890, 13, 31438, 13, 19796, 62, 505, 13, 42, 907, 5377, 17128, 6601, 31077, 1330, 509, 907, 5377, 17128, 6601, 31077, 198, 6738, 12351, 13, 22866, 82, 13, 74, 907, 13, 785, 17128, 62, 7890, 13, 27830, 13, 298, 871, 13, 5377, 17128, 6601, 20560, 1330, 955, 17128, 6601, 20560, 198, 6738, 12351, 13, 22866, 82, 13, 74, 907, 13, 785, 17128, 62, 7890, 13, 27830, 13, 298, 871, 13, 5377, 17128, 6601, 6030, 1330, 955, 17128, 6601, 6030, 198, 6738, 12351, 13, 22866, 82, 13, 74, 907, 13, 29609, 2088, 893, 13, 27830, 13, 298, 871, 13, 23919, 78, 9218, 7390, 1330, 36579, 9218, 7390, 198, 6738, 12351, 13, 22866, 82, 13, 28710, 13, 27830, 13, 20746, 25060, 1330, 43301, 25060, 628 ]
3.192825
223
import apscheduler from apscheduler.schedulers.blocking import BlockingScheduler #If you want to cleanup all test resources like vms, volumes, workloads then set # following cleanup parameter value to True otherwise False cleanup = True # pre requisite paramter pre_req = True #Test results for reporting PASS = "PASS" FAIL = "FAIL" enabled_tests = ["Attached_Volume_Ceph"] #Id of workload type "parallel" parallel="2ddd528d-c9b4-4d7e-8722-cc395140255a" #Resources to use from file #Please add your resources one on each line in files: tempest/tempest/vms_file, volumes_file, workloads_file vms_from_file=False volumes_from_file=False workloads_from_file=False #CLI configuration parameters workload_type_id="f82ce76f-17fe-438b-aa37-7a023058e50d" workload_name="clitest" source_platform="openstack" snapshot_name = "test-snapshot" snapshot_type_full = "full" restore_name = "test-oneclick-restore" selective_restore_name = "test-selective-restore" restore_filename = "/opt/restore.json" vm_license_filename = "test_licenses/tvault_license_10VM.txt" capacity_license_filename = "test_licenses/tvault_license_100TB.txt" compute_license_filename = "test_licenses/tvault_license_10compute.txt" invalid_license_filename = "test_licenses/tvault_license_invalid.txt" expired_license_filename = "test_licenses/tvault_license_expired.txt" workload_modify_name = "test2-new" workload_modify_description = "test2-new-description" restore_type = "restore" global_job_scheduler=False tvault_ip = "192.168.16.254" tvault_dbusername = "root" tvault_dbname = "workloadmgr" tvault_password = "sample-password" no_of_compute_nodes = 1 compute_node_ip = "192.168.16.75" compute_node_username = "root" compute_node_password = "Password1!" # Scheduler parameter interval="1 hrs" interval_update = "7 hrs" enabled='false' retention_policy_type="Number of Snapshots to Keep" retention_policy_type_update = "Number of days to retain Snapshots" retention_policy_value="3" retention_policy_value_update = "7" schedule_report_file="scheduleReport.txt" sched=BlockingScheduler() count=0 No_of_Backup=1 # Scheduler policy parameters policy_name="policy2" policy_name_update = "policy_update" fullbackup_interval="8" fullbackup_interval_update = "7" # test parameters key_pair_name = "tempest_test_key_pair" instance_username = "ubuntu" snapshot_restore_name = "Tempest Test Restore" restored_instance_flavor = 2 security_group_id = "baaae013-75d5-4821-806c-2cb259c95fb4" security_group_name = "test_security" flavor_name = "test_flavor" config_yaml = {"compute": ["/etc/nova", "/var/lib/nova", "/var/log/nova"], "glance": ["/etc/glance", "/var/lib/glance", "/var/log/glance"], "keystone": ["/etc/keystone", "/var/lib/keystone", "/var/log/keystone"], "cinder": ["/etc/cinder", "/var/lib/cinder", "/var/log/cinder"], "neutron": ["/etc/neutron", "/var/lib/neutron"], "swift": ["/etc/swift", "/var/log/swift/"], "ceilometer": ["/etc/ceilometer", "/var/log/ceilometer/"], "orchestration": ["/etc/heat/", "/var/log/heat/"]} additional_dir = {"tvault-contego": ["/etc/tvault-contego/"]} bootfromvol_vol_size = 4 volumes_parts = ["/dev/vdb", "/dev/vdc"] recovery_flavor_ref = 3 recovery_image_ref = "cd056509-666b-41fa-9236-86f202b3e619" #Email settings data setting_data = {"smtp_default_recipient": "[email protected]", "smtp_default_sender": "[email protected]", "smtp_port": "587", "smtp_server_name": "smtp.gmail.com", "smtp_server_password": tvault_password, "smtp_server_username": "[email protected]", "smtp_timeout": "10" } enable_email_notification = {"smtp_email_enable" : 1} disable_email_notification = {"smtp_email_enable" : 0} #Parameter for multiple vm workloads etc vm_count = 8
[ 11748, 257, 862, 1740, 18173, 198, 6738, 257, 862, 1740, 18173, 13, 1416, 704, 377, 364, 13, 41938, 1330, 1086, 8629, 50, 1740, 18173, 198, 198, 2, 1532, 345, 765, 284, 27425, 477, 1332, 4133, 588, 410, 907, 11, 15343, 11, 26211, 82, 788, 900, 198, 2, 1708, 27425, 11507, 1988, 284, 6407, 4306, 10352, 198, 27773, 929, 796, 6407, 220, 198, 198, 2, 662, 37088, 5772, 353, 198, 3866, 62, 42180, 796, 6407, 198, 198, 2, 14402, 2482, 329, 6447, 198, 47924, 796, 366, 47924, 1, 198, 7708, 4146, 796, 366, 7708, 4146, 1, 198, 198, 25616, 62, 41989, 796, 14631, 8086, 2317, 62, 31715, 62, 34, 27446, 8973, 198, 198, 2, 7390, 286, 26211, 2099, 366, 1845, 29363, 1, 198, 1845, 29363, 2625, 17, 1860, 67, 49351, 67, 12, 66, 24, 65, 19, 12, 19, 67, 22, 68, 12, 5774, 1828, 12, 535, 31010, 15187, 13381, 64, 1, 198, 198, 2, 33236, 284, 779, 422, 2393, 198, 2, 5492, 751, 534, 4133, 530, 319, 1123, 1627, 287, 3696, 25, 20218, 395, 14, 29510, 395, 14, 85, 907, 62, 7753, 11, 15343, 62, 7753, 11, 26211, 82, 62, 7753, 198, 85, 907, 62, 6738, 62, 7753, 28, 25101, 198, 10396, 8139, 62, 6738, 62, 7753, 28, 25101, 198, 1818, 46030, 62, 6738, 62, 7753, 28, 25101, 198, 198, 2, 5097, 40, 8398, 10007, 198, 1818, 2220, 62, 4906, 62, 312, 2625, 69, 6469, 344, 4304, 69, 12, 1558, 5036, 12, 43704, 65, 12, 7252, 2718, 12, 22, 64, 2999, 1270, 3365, 68, 1120, 67, 1, 198, 1818, 2220, 62, 3672, 2625, 565, 270, 395, 1, 198, 10459, 62, 24254, 2625, 9654, 25558, 1, 198, 45380, 9442, 62, 3672, 796, 366, 9288, 12, 45380, 9442, 1, 198, 45380, 9442, 62, 4906, 62, 12853, 796, 366, 12853, 1, 198, 2118, 382, 62, 3672, 796, 366, 9288, 12, 505, 12976, 12, 2118, 382, 1, 198, 19738, 425, 62, 2118, 382, 62, 3672, 796, 366, 9288, 12, 19738, 425, 12, 2118, 382, 1, 198, 2118, 382, 62, 34345, 796, 12813, 8738, 14, 2118, 382, 13, 17752, 1, 198, 14761, 62, 43085, 62, 34345, 796, 366, 9288, 62, 677, 4541, 14, 14981, 1721, 62, 43085, 62, 940, 15996, 13, 14116, 1, 198, 42404, 62, 43085, 62, 34345, 796, 366, 9288, 62, 677, 4541, 14, 14981, 1721, 62, 43085, 62, 3064, 22737, 13, 14116, 1, 198, 5589, 1133, 62, 43085, 62, 34345, 796, 366, 9288, 62, 677, 4541, 14, 14981, 1721, 62, 43085, 62, 940, 5589, 1133, 13, 14116, 1, 198, 259, 12102, 62, 43085, 62, 34345, 796, 366, 9288, 62, 677, 4541, 14, 14981, 1721, 62, 43085, 62, 259, 12102, 13, 14116, 1, 198, 1069, 6474, 62, 43085, 62, 34345, 796, 366, 9288, 62, 677, 4541, 14, 14981, 1721, 62, 43085, 62, 1069, 6474, 13, 14116, 1, 198, 198, 1818, 2220, 62, 4666, 1958, 62, 3672, 796, 366, 9288, 17, 12, 3605, 1, 198, 1818, 2220, 62, 4666, 1958, 62, 11213, 796, 366, 9288, 17, 12, 3605, 12, 11213, 1, 198, 2118, 382, 62, 4906, 796, 366, 2118, 382, 1, 198, 20541, 62, 21858, 62, 1416, 704, 18173, 28, 25101, 198, 198, 14981, 1721, 62, 541, 796, 366, 17477, 13, 14656, 13, 1433, 13, 24970, 1, 198, 14981, 1721, 62, 9945, 29460, 796, 366, 15763, 1, 198, 14981, 1721, 62, 9945, 3672, 796, 366, 1818, 2220, 76, 2164, 1, 198, 14981, 1721, 62, 28712, 796, 366, 39873, 12, 28712, 1, 198, 198, 3919, 62, 1659, 62, 5589, 1133, 62, 77, 4147, 796, 352, 198, 5589, 1133, 62, 17440, 62, 541, 796, 366, 17477, 13, 14656, 13, 1433, 13, 2425, 1, 198, 5589, 1133, 62, 17440, 62, 29460, 796, 366, 15763, 1, 198, 5589, 1133, 62, 17440, 62, 28712, 796, 366, 35215, 16, 2474, 198, 198, 2, 27774, 18173, 11507, 198, 198, 3849, 2100, 2625, 16, 36201, 1, 198, 3849, 2100, 62, 19119, 796, 366, 22, 36201, 1, 198, 25616, 11639, 9562, 6, 198, 1186, 1463, 62, 30586, 62, 4906, 2625, 15057, 286, 16026, 20910, 284, 9175, 1, 198, 1186, 1463, 62, 30586, 62, 4906, 62, 19119, 796, 366, 15057, 286, 1528, 284, 12377, 16026, 20910, 1, 198, 1186, 1463, 62, 30586, 62, 8367, 2625, 18, 1, 198, 1186, 1463, 62, 30586, 62, 8367, 62, 19119, 796, 366, 22, 1, 198, 15952, 5950, 62, 13116, 62, 7753, 2625, 15952, 5950, 19100, 13, 14116, 1, 198, 1416, 704, 28, 3629, 8629, 50, 1740, 18173, 3419, 198, 9127, 28, 15, 198, 2949, 62, 1659, 62, 7282, 929, 28, 16, 198, 198, 2, 27774, 18173, 2450, 10007, 198, 30586, 62, 3672, 2625, 30586, 17, 1, 198, 30586, 62, 3672, 62, 19119, 796, 366, 30586, 62, 19119, 1, 198, 12853, 1891, 929, 62, 3849, 2100, 2625, 23, 1, 198, 12853, 1891, 929, 62, 3849, 2100, 62, 19119, 796, 366, 22, 1, 198, 198, 2, 1332, 10007, 198, 2539, 62, 24874, 62, 3672, 220, 796, 366, 29510, 395, 62, 9288, 62, 2539, 62, 24874, 1, 198, 39098, 62, 29460, 796, 366, 32230, 1, 198, 45380, 9442, 62, 2118, 382, 62, 3672, 796, 366, 30782, 395, 6208, 42019, 1, 198, 2118, 1850, 62, 39098, 62, 2704, 5570, 796, 362, 198, 12961, 62, 8094, 62, 312, 796, 366, 7012, 64, 3609, 30273, 12, 2425, 67, 20, 12, 2780, 2481, 12, 37988, 66, 12, 17, 21101, 25191, 66, 3865, 21855, 19, 1, 198, 12961, 62, 8094, 62, 3672, 796, 366, 9288, 62, 12961, 1, 198, 2704, 5570, 62, 3672, 796, 366, 9288, 62, 2704, 5570, 1, 198, 11250, 62, 88, 43695, 796, 19779, 5589, 1133, 1298, 14631, 14, 14784, 14, 38438, 1600, 12813, 7785, 14, 8019, 14, 38438, 1600, 12813, 7785, 14, 6404, 14, 38438, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4743, 590, 1298, 14631, 14, 14784, 14, 4743, 590, 1600, 12813, 7785, 14, 8019, 14, 4743, 590, 1600, 12813, 7785, 14, 6404, 14, 4743, 590, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2539, 6440, 1298, 14631, 14, 14784, 14, 2539, 6440, 1600, 12813, 7785, 14, 8019, 14, 2539, 6440, 1600, 12813, 7785, 14, 6404, 14, 2539, 6440, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 5540, 1298, 14631, 14, 14784, 14, 66, 5540, 1600, 12813, 7785, 14, 8019, 14, 66, 5540, 1600, 12813, 7785, 14, 6404, 14, 66, 5540, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 710, 315, 1313, 1298, 14631, 14, 14784, 14, 710, 315, 1313, 1600, 12813, 7785, 14, 8019, 14, 710, 315, 1313, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2032, 2135, 1298, 14631, 14, 14784, 14, 2032, 2135, 1600, 12813, 7785, 14, 6404, 14, 2032, 2135, 30487, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 344, 346, 15635, 1298, 14631, 14, 14784, 14, 344, 346, 15635, 1600, 12813, 7785, 14, 6404, 14, 344, 346, 15635, 30487, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 273, 2395, 12401, 1298, 14631, 14, 14784, 14, 25080, 14, 1600, 12813, 7785, 14, 6404, 14, 25080, 14, 8973, 92, 198, 2860, 1859, 62, 15908, 796, 19779, 14981, 1721, 12, 1102, 660, 2188, 1298, 14631, 14, 14784, 14, 14981, 1721, 12, 1102, 660, 2188, 14, 8973, 92, 198, 18769, 6738, 10396, 62, 10396, 62, 7857, 796, 604, 198, 10396, 8139, 62, 42632, 796, 14631, 14, 7959, 14, 85, 9945, 1600, 12813, 7959, 14, 85, 17896, 8973, 198, 260, 1073, 548, 62, 2704, 5570, 62, 5420, 796, 513, 198, 260, 1073, 548, 62, 9060, 62, 5420, 796, 366, 10210, 2713, 17544, 24, 12, 27310, 65, 12, 3901, 13331, 12, 24, 24940, 12, 4521, 69, 19004, 65, 18, 68, 21, 1129, 1, 220, 628, 198, 2, 15333, 6460, 1366, 198, 33990, 62, 7890, 796, 19779, 5796, 34788, 62, 12286, 62, 8344, 48137, 1298, 366, 2213, 346, 952, 13, 11249, 31, 2213, 346, 952, 13, 952, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5796, 34788, 62, 12286, 62, 82, 2194, 1298, 366, 2213, 346, 952, 13, 11249, 31, 2213, 346, 952, 13, 952, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5796, 34788, 62, 634, 1298, 366, 44617, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5796, 34788, 62, 15388, 62, 3672, 1298, 366, 5796, 34788, 13, 14816, 13, 785, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5796, 34788, 62, 15388, 62, 28712, 1298, 31557, 1721, 62, 28712, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5796, 34788, 62, 15388, 62, 29460, 1298, 366, 2213, 346, 952, 13, 11249, 31, 2213, 346, 952, 13, 952, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5796, 34788, 62, 48678, 1298, 366, 940, 1, 1782, 198, 21633, 62, 12888, 62, 1662, 2649, 796, 19779, 5796, 34788, 62, 12888, 62, 21633, 1, 1058, 352, 92, 198, 40223, 62, 12888, 62, 1662, 2649, 796, 19779, 5796, 34788, 62, 12888, 62, 21633, 1, 1058, 657, 92, 628, 198, 2, 36301, 329, 3294, 45887, 26211, 82, 3503, 198, 14761, 62, 9127, 796, 807, 198 ]
2.414172
1,637
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Builds a basic rooted graph in a simple swarm fashion. # z = peer() a = peer() b = peer() c = peer() d = peer() e = peer() f = peer() g = peer() h = peer() a.join() b.join() c.join() d.join() e.join() f.join() g.join() h.join() for i in z,a,b,c,d,e,f,g,h: print i print """ The following should just have been displayed: peer (ID=0, parentID=None, max=2, children=[1, 2]) peer (ID=1, parentID=0, max=2, children=[3, 4]) peer (ID=2, parentID=0, max=2, children=[5, 6]) peer (ID=3, parentID=1, max=2, children=[7, 8]) peer (ID=4, parentID=1, max=2, children=[]) peer (ID=5, parentID=2, max=2, children=[]) peer (ID=6, parentID=2, max=2, children=[]) peer (ID=7, parentID=3, max=2, children=[]) peer (ID=8, parentID=3, max=2, children=[])"""
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 3050, 3517, 32250, 10501, 290, 509, 1689, 25418, 25767, 669, 7, 16, 8, 198, 2, 198, 2, 357, 16, 8, 509, 1689, 25418, 25767, 669, 389, 5610, 287, 262, 37195, 20673, 2393, 290, 379, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 74, 1689, 25418, 13, 2398, 14, 32, 24318, 20673, 532, 3387, 9117, 428, 2393, 11, 198, 2, 220, 220, 220, 220, 407, 428, 4003, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 10934, 82, 257, 4096, 19459, 4823, 287, 257, 2829, 30077, 6977, 13, 198, 2, 198, 198, 89, 796, 12720, 3419, 198, 64, 796, 12720, 3419, 198, 65, 796, 12720, 3419, 198, 66, 796, 12720, 3419, 198, 67, 796, 12720, 3419, 198, 68, 796, 12720, 3419, 198, 69, 796, 12720, 3419, 198, 70, 796, 12720, 3419, 198, 71, 796, 12720, 3419, 198, 198, 64, 13, 22179, 3419, 198, 65, 13, 22179, 3419, 198, 66, 13, 22179, 3419, 198, 67, 13, 22179, 3419, 198, 68, 13, 22179, 3419, 198, 69, 13, 22179, 3419, 198, 70, 13, 22179, 3419, 198, 71, 13, 22179, 3419, 198, 198, 1640, 1312, 287, 1976, 11, 64, 11, 65, 11, 66, 11, 67, 11, 68, 11, 69, 11, 70, 11, 71, 25, 198, 220, 220, 3601, 1312, 198, 198, 4798, 37227, 198, 198, 464, 1708, 815, 655, 423, 587, 9066, 25, 198, 198, 33350, 357, 2389, 28, 15, 11, 2560, 2389, 28, 14202, 11, 3509, 28, 17, 11, 1751, 41888, 16, 11, 362, 12962, 198, 33350, 357, 2389, 28, 16, 11, 2560, 2389, 28, 15, 11, 3509, 28, 17, 11, 1751, 41888, 18, 11, 604, 12962, 198, 33350, 357, 2389, 28, 17, 11, 2560, 2389, 28, 15, 11, 3509, 28, 17, 11, 1751, 41888, 20, 11, 718, 12962, 198, 33350, 357, 2389, 28, 18, 11, 2560, 2389, 28, 16, 11, 3509, 28, 17, 11, 1751, 41888, 22, 11, 807, 12962, 198, 33350, 357, 2389, 28, 19, 11, 2560, 2389, 28, 16, 11, 3509, 28, 17, 11, 1751, 41888, 12962, 198, 33350, 357, 2389, 28, 20, 11, 2560, 2389, 28, 17, 11, 3509, 28, 17, 11, 1751, 41888, 12962, 198, 33350, 357, 2389, 28, 21, 11, 2560, 2389, 28, 17, 11, 3509, 28, 17, 11, 1751, 41888, 12962, 198, 33350, 357, 2389, 28, 22, 11, 2560, 2389, 28, 18, 11, 3509, 28, 17, 11, 1751, 41888, 12962, 198, 33350, 357, 2389, 28, 23, 11, 2560, 2389, 28, 18, 11, 3509, 28, 17, 11, 1751, 41888, 12962, 37811, 198 ]
2.766667
570
# -*- coding: utf-8 -*- from pandas import DataFrame from typing import List, Tuple def dataframe_astype(df: DataFrame, columns: List[Tuple[str, type]]): """ DataFrame Column Type converter Parameters ---------- df: DataFrame Pandas DataFrame columns: list of tuple of str, type column name and type for type conversion Returns ------- DataFrame Pandas DataFrame """ for column, tp in columns: if tp == int or tp == float: df[column] = df[column].str.replace(',|-', '').astype(tp, errors='ignore') else: df[column] = df[column].astype(tp, errors='ignore') return df
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 19798, 292, 1330, 6060, 19778, 198, 6738, 19720, 1330, 7343, 11, 309, 29291, 628, 198, 4299, 1366, 14535, 62, 459, 2981, 7, 7568, 25, 6060, 19778, 11, 15180, 25, 7343, 58, 51, 29291, 58, 2536, 11, 2099, 11907, 2599, 198, 220, 220, 220, 37227, 6060, 19778, 29201, 5994, 38394, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 47764, 25, 6060, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 16492, 292, 6060, 19778, 198, 220, 220, 220, 15180, 25, 1351, 286, 46545, 286, 965, 11, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 1438, 290, 2099, 329, 2099, 11315, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 6060, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 16492, 292, 6060, 19778, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 5721, 11, 256, 79, 287, 15180, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 79, 6624, 493, 393, 256, 79, 6624, 12178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 28665, 60, 796, 47764, 58, 28665, 4083, 2536, 13, 33491, 7, 3256, 91, 12, 3256, 10148, 737, 459, 2981, 7, 34788, 11, 8563, 11639, 46430, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 28665, 60, 796, 47764, 58, 28665, 4083, 459, 2981, 7, 34788, 11, 8563, 11639, 46430, 11537, 198, 220, 220, 220, 1441, 47764, 198 ]
2.474453
274
# -*- coding: utf-8 -*- # Import Python Libs from __future__ import absolute_import, print_function, unicode_literals from tempfile import NamedTemporaryFile import os # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import TestCase, skipIf from tests.support.mock import ( MagicMock, NO_MOCK, NO_MOCK_REASON, patch, mock_open ) # Import Salt Libs from salt.exceptions import CommandExecutionError, SaltInvocationError import salt.modules.timezone as timezone from salt.ext import six import salt.utils.platform import salt.utils.stringutils GET_ZONE_FILE = 'salt.modules.timezone._get_zone_file' GET_LOCALTIME_PATH = 'salt.modules.timezone._get_localtime_path' @skipIf(NO_MOCK, NO_MOCK_REASON) @skipIf(NO_MOCK, NO_MOCK_REASON) class TimezoneModuleTestCase(TestCase, LoaderModuleMockMixin): ''' Timezone test case ''' TEST_TZ = 'UTC' @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_centos(self): ''' Test CentOS is recognized :return: ''' with patch.dict(timezone.__grains__, {'os': 'centos'}): with patch('salt.modules.timezone._get_zone_etc_localtime', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_rh_suse(self): ''' Test RedHat and Suse are recognized :return: ''' for osfamily in ['RedHat', 'Suse']: with patch.dict(timezone.__grains__, {'os_family': [osfamily]}): with patch('salt.modules.timezone._get_zone_sysconfig', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_debian_gentoo(self): ''' Test Debian and Gentoo are recognized :return: ''' for osfamily in ['Debian', 'Gentoo']: with patch.dict(timezone.__grains__, {'os_family': [osfamily]}): with patch('salt.modules.timezone._get_zone_etc_timezone', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_allbsd_nilinuxrt(self): ''' Test *BSD and NILinuxRT are recognized :return: ''' for osfamily in ['FreeBSD', 'OpenBSD', 'NetBSD', 'NILinuxRT']: with patch.dict(timezone.__grains__, {'os_family': osfamily}): with patch('salt.modules.timezone._get_zone_etc_localtime', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_slowlaris(self): ''' Test Slowlaris is recognized :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Solaris']}): with patch('salt.modules.timezone._get_zone_solaris', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_aix(self): ''' Test IBM AIX is recognized :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['AIX']}): with patch('salt.modules.timezone._get_zone_aix', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_redhat(self): ''' Test zone set on RH series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): assert timezone.set_zone(self.TEST_TZ) name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^ZONE=.*', 'ZONE="UTC"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_suse(self): ''' Test zone set on SUSE series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): assert timezone.set_zone(self.TEST_TZ) name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^TIMEZONE=.*', 'TIMEZONE="UTC"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_gentoo(self): ''' Test zone set on Gentoo series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Gentoo']}): with patch('salt.utils.files.fopen', mock_open()) as m_open: assert timezone.set_zone(self.TEST_TZ) fh_ = m_open.filehandles['/etc/timezone'][0] assert fh_.call.args == ('/etc/timezone', 'w'), fh_.call.args assert fh_.write_calls == ['UTC', '\n'], fh_.write_calls @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_debian(self): ''' Test zone set on Debian series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): with patch('salt.utils.files.fopen', mock_open()) as m_open: assert timezone.set_zone(self.TEST_TZ) fh_ = m_open.filehandles['/etc/timezone'][0] assert fh_.call.args == ('/etc/timezone', 'w'), fh_.call.args assert fh_.write_calls == ['UTC', '\n'], fh_.write_calls @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=True)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_timedate_utc(self): ''' Test get hwclock UTC/localtime :return: ''' with patch('salt.modules.timezone._timedatectl', MagicMock(return_value={'stdout': 'rtc in local tz'})): assert timezone.get_hwclock() == 'UTC' with patch('salt.modules.timezone._timedatectl', MagicMock(return_value={'stdout': 'rtc in local tz:yes'})): assert timezone.get_hwclock() == 'localtime' @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_suse(self): ''' Test get hwclock on SUSE :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_redhat(self): ''' Test get hwclock on RedHat :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} def _test_get_hwclock_debian(self): # TODO: Enable this when testing environment is working properly ''' Test get hwclock on Debian :return: ''' with patch('salt.utils.path.which', MagicMock(return_value=False)): with patch('os.path.exists', MagicMock(return_value=True)): with patch('os.unlink', MagicMock()): with patch('os.symlink', MagicMock()): with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_solaris(self): ''' Test get hwclock on Solaris :return: ''' # Incomplete with patch.dict(timezone.__grains__, {'os_family': ['Solaris']}): assert timezone.get_hwclock() == 'UTC' with patch('salt.utils.files.fopen', mock_open()): assert timezone.get_hwclock() == 'localtime' @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_aix(self): ''' Test get hwclock on AIX :return: ''' # Incomplete hwclock = 'localtime' if not os.path.isfile('/etc/environment'): hwclock = 'UTC' with patch.dict(timezone.__grains__, {'os_family': ['AIX']}): assert timezone.get_hwclock() == hwclock @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=True)) def test_set_hwclock_timedatectl(self): ''' Test set hwclock with timedatectl :return: ''' timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['timedatectl', 'set-local-rtc', 'false'],) timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[1] assert args == (['timedatectl', 'set-local-rtc', 'true'],) @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_hwclock_aix_nilinuxrt(self): ''' Test set hwclock on AIX and NILinuxRT :return: ''' for osfamily in ['AIX', 'NILinuxRT']: with patch.dict(timezone.__grains__, {'os_family': osfamily}): with self.assertRaises(SaltInvocationError): assert timezone.set_hwclock('forty two') assert timezone.set_hwclock('UTC') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_solaris(self): ''' Test set hwclock on Solaris :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Solaris'], 'cpuarch': 'x86'}): with self.assertRaises(SaltInvocationError): assert timezone.set_hwclock('forty two') assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['rtc', '-z', 'GMT'],) assert kwargs == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_arch(self): ''' Test set hwclock on arch :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Arch']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['timezonectl', 'set-local-rtc', 'false'],) assert kwargs == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_redhat(self): ''' Test set hwclock on RedHat :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^ZONE=.*', 'ZONE="TEST_TIMEZONE"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_suse(self): ''' Test set hwclock on SUSE :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^TIMEZONE=.*', 'TIMEZONE="TEST_TIMEZONE"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_debian(self): ''' Test set hwclock on Debian :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/default/rcS', '^UTC=.*', 'UTC=yes') assert timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[1] assert args == ('/etc/default/rcS', '^UTC=.*', 'UTC=no') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_gentoo(self): ''' Test set hwclock on Gentoo :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Gentoo']}): with self.assertRaises(SaltInvocationError): timezone.set_hwclock('forty two') timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/conf.d/hwclock', '^clock=.*', 'clock="UTC"') timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[1] assert args == ('/etc/conf.d/hwclock', '^clock=.*', 'clock="local"')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 17267, 11361, 7980, 82, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 6738, 20218, 7753, 1330, 34441, 12966, 5551, 8979, 198, 11748, 28686, 198, 198, 2, 17267, 13754, 23983, 7980, 82, 198, 6738, 5254, 13, 11284, 13, 19816, 1040, 1330, 8778, 263, 26796, 44, 735, 35608, 259, 198, 6738, 5254, 13, 11284, 13, 20850, 1330, 6208, 20448, 11, 14267, 1532, 198, 6738, 5254, 13, 11284, 13, 76, 735, 1330, 357, 198, 220, 220, 220, 6139, 44, 735, 11, 198, 220, 220, 220, 8005, 62, 44, 11290, 11, 198, 220, 220, 220, 8005, 62, 44, 11290, 62, 2200, 36033, 11, 198, 220, 220, 220, 8529, 11, 198, 220, 220, 220, 15290, 62, 9654, 198, 8, 198, 198, 2, 17267, 13754, 7980, 82, 198, 6738, 8268, 13, 1069, 11755, 1330, 9455, 23002, 1009, 12331, 11, 13754, 19904, 5040, 12331, 198, 11748, 8268, 13, 18170, 13, 2435, 11340, 355, 640, 11340, 198, 6738, 8268, 13, 2302, 1330, 2237, 198, 11748, 8268, 13, 26791, 13, 24254, 198, 11748, 8268, 13, 26791, 13, 8841, 26791, 198, 198, 18851, 62, 57, 11651, 62, 25664, 796, 705, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 1136, 62, 11340, 62, 7753, 6, 198, 18851, 62, 29701, 31429, 12789, 62, 34219, 796, 705, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 1136, 62, 12001, 2435, 62, 6978, 6, 628, 198, 31, 48267, 1532, 7, 15285, 62, 44, 11290, 11, 8005, 62, 44, 11290, 62, 2200, 36033, 8, 628, 198, 31, 48267, 1532, 7, 15285, 62, 44, 11290, 11, 8005, 62, 44, 11290, 62, 2200, 36033, 8, 198, 4871, 3862, 11340, 26796, 14402, 20448, 7, 14402, 20448, 11, 8778, 263, 26796, 44, 735, 35608, 259, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 11340, 1332, 1339, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 43001, 62, 51, 57, 796, 705, 17429, 6, 628, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 11340, 62, 1087, 418, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 32418, 318, 8018, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 10354, 705, 1087, 418, 6, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 1136, 62, 11340, 62, 14784, 62, 12001, 2435, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 944, 13, 51, 6465, 62, 51, 57, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 11340, 3419, 6624, 2116, 13, 51, 6465, 62, 51, 57, 628, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 11340, 62, 418, 62, 17989, 62, 17179, 62, 82, 1904, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 2297, 40483, 290, 1778, 325, 389, 8018, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 329, 28686, 17989, 287, 37250, 7738, 40483, 3256, 705, 50, 1904, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 685, 418, 17989, 48999, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 1136, 62, 11340, 62, 17597, 11250, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 944, 13, 51, 6465, 62, 51, 57, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 11340, 3419, 6624, 2116, 13, 51, 6465, 62, 51, 57, 628, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 11340, 62, 418, 62, 17989, 62, 24689, 62, 6783, 2238, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 26062, 290, 27391, 2238, 389, 8018, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 329, 28686, 17989, 287, 37250, 16587, 666, 3256, 705, 38, 298, 2238, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 685, 418, 17989, 48999, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 1136, 62, 11340, 62, 14784, 62, 2435, 11340, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 944, 13, 51, 6465, 62, 51, 57, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 11340, 3419, 6624, 2116, 13, 51, 6465, 62, 51, 57, 628, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 11340, 62, 418, 62, 17989, 62, 439, 1443, 67, 62, 45991, 259, 2821, 17034, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 1635, 21800, 290, 399, 4146, 259, 2821, 14181, 389, 8018, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 329, 28686, 17989, 287, 37250, 11146, 21800, 3256, 705, 11505, 21800, 3256, 705, 7934, 21800, 3256, 705, 45, 4146, 259, 2821, 14181, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 28686, 17989, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 1136, 62, 11340, 62, 14784, 62, 12001, 2435, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 944, 13, 51, 6465, 62, 51, 57, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 11340, 3419, 6624, 2116, 13, 51, 6465, 62, 51, 57, 628, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 11340, 62, 418, 62, 17989, 62, 6649, 4883, 20066, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 3454, 4883, 20066, 318, 8018, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 38825, 271, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 1136, 62, 11340, 62, 82, 6192, 271, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 944, 13, 51, 6465, 62, 51, 57, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 11340, 3419, 6624, 2116, 13, 51, 6465, 62, 51, 57, 628, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 11340, 62, 418, 62, 17989, 62, 64, 844, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 19764, 9552, 55, 318, 8018, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 32, 10426, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 1136, 62, 11340, 62, 64, 844, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 944, 13, 51, 6465, 62, 51, 57, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 11340, 3419, 6624, 2116, 13, 51, 6465, 62, 51, 57, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 11340, 62, 445, 5183, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 6516, 900, 319, 35662, 2168, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 7738, 40483, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 11340, 7, 944, 13, 51, 6465, 62, 51, 57, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 7753, 13, 36622, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 19203, 14, 14784, 14, 17597, 11250, 14, 15750, 3256, 705, 61, 57, 11651, 28, 15885, 3256, 705, 57, 11651, 2625, 17429, 1, 11537, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 11340, 62, 82, 1904, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 6516, 900, 319, 311, 19108, 2168, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 50, 1904, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 11340, 7, 944, 13, 51, 6465, 62, 51, 57, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 7753, 13, 36622, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 19203, 14, 14784, 14, 17597, 11250, 14, 15750, 3256, 705, 61, 34694, 57, 11651, 28, 15885, 3256, 705, 34694, 57, 11651, 2625, 17429, 1, 11537, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 11340, 62, 6783, 2238, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 6516, 900, 319, 27391, 2238, 2168, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 38, 298, 2238, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 26791, 13, 16624, 13, 69, 9654, 3256, 15290, 62, 9654, 28955, 355, 285, 62, 9654, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 11340, 7, 944, 13, 51, 6465, 62, 51, 57, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 62, 796, 285, 62, 9654, 13, 7753, 4993, 829, 17816, 14, 14784, 14, 2435, 11340, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 71, 44807, 13345, 13, 22046, 6624, 19203, 14, 14784, 14, 2435, 11340, 3256, 705, 86, 33809, 277, 71, 44807, 13345, 13, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 71, 44807, 13564, 62, 66, 5691, 6624, 37250, 17429, 3256, 705, 59, 77, 6, 4357, 277, 71, 44807, 13564, 62, 66, 5691, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 11340, 62, 24689, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 6516, 900, 319, 26062, 2168, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 16587, 666, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 26791, 13, 16624, 13, 69, 9654, 3256, 15290, 62, 9654, 28955, 355, 285, 62, 9654, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 11340, 7, 944, 13, 51, 6465, 62, 51, 57, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 62, 796, 285, 62, 9654, 13, 7753, 4993, 829, 17816, 14, 14784, 14, 2435, 11340, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 71, 44807, 13345, 13, 22046, 6624, 19203, 14, 14784, 14, 2435, 11340, 3256, 705, 86, 33809, 277, 71, 44807, 13345, 13, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 71, 44807, 13564, 62, 66, 5691, 6624, 37250, 17429, 3256, 705, 59, 77, 6, 4357, 277, 71, 44807, 13564, 62, 66, 5691, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 36599, 15750, 62, 16514, 276, 378, 62, 315, 66, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 651, 289, 86, 15750, 18119, 14, 12001, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 16514, 276, 378, 34168, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 34758, 6, 19282, 448, 10354, 705, 17034, 66, 287, 1957, 256, 89, 6, 30072, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 36599, 15750, 3419, 6624, 705, 17429, 6, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13557, 16514, 276, 378, 34168, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 34758, 6, 19282, 448, 10354, 705, 17034, 66, 287, 1957, 256, 89, 25, 8505, 6, 30072, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 36599, 15750, 3419, 6624, 705, 12001, 2435, 6, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 36599, 15750, 62, 82, 1904, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 651, 289, 86, 15750, 319, 311, 19108, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 50, 1904, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 13, 1136, 62, 36599, 15750, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 853, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 28758, 13, 5143, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 357, 17816, 13199, 3256, 705, 12, 77, 3256, 705, 16, 3256, 31051, 14784, 14, 41255, 2435, 6, 4357, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 479, 86, 853, 6624, 1391, 6, 29412, 62, 29149, 10354, 10352, 92, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 36599, 15750, 62, 445, 5183, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 651, 289, 86, 15750, 319, 2297, 40483, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 7738, 40483, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 13, 1136, 62, 36599, 15750, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 853, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 28758, 13, 5143, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 357, 17816, 13199, 3256, 705, 12, 77, 3256, 705, 16, 3256, 31051, 14784, 14, 41255, 2435, 6, 4357, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 479, 86, 853, 6624, 1391, 6, 29412, 62, 29149, 10354, 10352, 92, 628, 220, 220, 220, 825, 4808, 9288, 62, 1136, 62, 36599, 15750, 62, 24689, 7, 944, 2599, 220, 1303, 16926, 46, 25, 27882, 428, 618, 4856, 2858, 318, 1762, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 651, 289, 86, 15750, 319, 26062, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 16587, 666, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 13, 1136, 62, 36599, 15750, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 853, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 28758, 13, 5143, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 357, 17816, 13199, 3256, 705, 12, 77, 3256, 705, 16, 3256, 31051, 14784, 14, 41255, 2435, 6, 4357, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 479, 86, 853, 6624, 1391, 6, 29412, 62, 29149, 10354, 10352, 92, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 36599, 15750, 62, 82, 6192, 271, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 651, 289, 86, 15750, 319, 12347, 271, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 20751, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 38825, 271, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 36599, 15750, 3419, 6624, 705, 17429, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 10786, 82, 2501, 13, 26791, 13, 16624, 13, 69, 9654, 3256, 15290, 62, 9654, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 36599, 15750, 3419, 6624, 705, 12001, 2435, 6, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 1136, 62, 36599, 15750, 62, 64, 844, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 651, 289, 86, 15750, 319, 9552, 55, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 20751, 198, 220, 220, 220, 220, 220, 220, 220, 289, 86, 15750, 796, 705, 12001, 2435, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 10786, 14, 14784, 14, 38986, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 86, 15750, 796, 705, 17429, 6, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 32, 10426, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 1136, 62, 36599, 15750, 3419, 6624, 289, 86, 15750, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 36599, 15750, 62, 16514, 276, 378, 34168, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 900, 289, 86, 15750, 351, 28805, 378, 34168, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 17429, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 28758, 13, 1186, 8189, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 357, 17816, 16514, 276, 378, 34168, 3256, 705, 2617, 12, 12001, 12, 17034, 66, 3256, 705, 9562, 6, 4357, 8, 628, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 12001, 2435, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 28758, 13, 1186, 8189, 6, 4083, 76, 735, 62, 66, 5691, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 357, 17816, 16514, 276, 378, 34168, 3256, 705, 2617, 12, 12001, 12, 17034, 66, 3256, 705, 7942, 6, 4357, 8, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 36599, 15750, 62, 64, 844, 62, 45991, 259, 2821, 17034, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 900, 289, 86, 15750, 319, 9552, 55, 290, 399, 4146, 259, 2821, 14181, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 329, 28686, 17989, 287, 37250, 32, 10426, 3256, 705, 45, 4146, 259, 2821, 14181, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 28686, 17989, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 43061, 19904, 5040, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 3319, 88, 734, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 17429, 11537, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13, 1136, 62, 11340, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 11639, 51, 6465, 62, 34694, 57, 11651, 6, 4008, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 36599, 15750, 62, 82, 6192, 271, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 900, 289, 86, 15750, 319, 12347, 271, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 38825, 271, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36166, 998, 10354, 705, 87, 4521, 6, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 43061, 19904, 5040, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 3319, 88, 734, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 17429, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 28758, 13, 1186, 8189, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 357, 17816, 17034, 66, 3256, 705, 12, 89, 3256, 705, 49424, 6, 4357, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 479, 86, 22046, 6624, 1391, 6, 29412, 62, 29149, 10354, 10352, 92, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13, 1136, 62, 11340, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 11639, 51, 6465, 62, 34694, 57, 11651, 6, 4008, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 36599, 15750, 62, 998, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 900, 289, 86, 15750, 319, 3934, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 19895, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 17429, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 28758, 13, 1186, 8189, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 357, 17816, 2435, 26361, 478, 75, 3256, 705, 2617, 12, 12001, 12, 17034, 66, 3256, 705, 9562, 6, 4357, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 479, 86, 22046, 6624, 1391, 6, 29412, 62, 29149, 10354, 10352, 92, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13, 1136, 62, 11340, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 11639, 51, 6465, 62, 34694, 57, 11651, 6, 4008, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 36599, 15750, 62, 445, 5183, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 900, 289, 86, 15750, 319, 2297, 40483, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 7738, 40483, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 17429, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 7753, 13, 36622, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 19203, 14, 14784, 14, 17597, 11250, 14, 15750, 3256, 705, 61, 57, 11651, 28, 15885, 3256, 705, 57, 11651, 2625, 51, 6465, 62, 34694, 57, 11651, 1, 11537, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13, 1136, 62, 11340, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 11639, 51, 6465, 62, 34694, 57, 11651, 6, 4008, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 36599, 15750, 62, 82, 1904, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 900, 289, 86, 15750, 319, 311, 19108, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 50, 1904, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 17429, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 7753, 13, 36622, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 19203, 14, 14784, 14, 17597, 11250, 14, 15750, 3256, 705, 61, 34694, 57, 11651, 28, 15885, 3256, 705, 34694, 57, 11651, 2625, 51, 6465, 62, 34694, 57, 11651, 1, 11537, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13, 1136, 62, 11340, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 11639, 51, 6465, 62, 34694, 57, 11651, 6, 4008, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 36599, 15750, 62, 24689, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 900, 289, 86, 15750, 319, 26062, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 16587, 666, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 17429, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 7753, 13, 36622, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 19203, 14, 14784, 14, 12286, 14, 6015, 50, 3256, 705, 61, 17429, 28, 15885, 3256, 705, 17429, 28, 8505, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 12001, 2435, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 7753, 13, 36622, 6, 4083, 76, 735, 62, 66, 5691, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 19203, 14, 14784, 14, 12286, 14, 6015, 50, 3256, 705, 61, 17429, 28, 15885, 3256, 705, 17429, 28, 3919, 11537, 628, 220, 220, 220, 2488, 48267, 1532, 7, 82, 2501, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 705, 418, 13, 1837, 4029, 676, 407, 1695, 287, 3964, 11537, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 26791, 13, 6978, 13, 4758, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 25101, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 6978, 13, 1069, 1023, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 28, 17821, 4008, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 403, 8726, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 418, 13, 1837, 4029, 676, 3256, 6139, 44, 735, 28955, 198, 220, 220, 220, 2488, 17147, 10786, 82, 2501, 13, 18170, 13, 2435, 11340, 13, 1136, 62, 11340, 3256, 6139, 44, 735, 7, 7783, 62, 8367, 11639, 51, 6465, 62, 34694, 57, 11651, 6, 4008, 198, 220, 220, 220, 825, 1332, 62, 2617, 62, 36599, 15750, 62, 6783, 2238, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 900, 289, 86, 15750, 319, 27391, 2238, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8529, 13, 11600, 7, 2435, 11340, 13, 834, 2164, 1299, 834, 11, 1391, 6, 418, 62, 17989, 10354, 37250, 38, 298, 2238, 20520, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 43061, 19904, 5040, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 3319, 88, 734, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 17429, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 7753, 13, 36622, 6, 4083, 76, 735, 62, 66, 5691, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 19203, 14, 14784, 14, 10414, 13, 67, 14, 36599, 15750, 3256, 705, 61, 15750, 28, 15885, 3256, 705, 15750, 2625, 17429, 1, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 13, 2617, 62, 36599, 15750, 10786, 12001, 2435, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 26498, 11, 479, 86, 22046, 796, 640, 11340, 13, 834, 82, 2501, 834, 17816, 7753, 13, 36622, 6, 4083, 76, 735, 62, 66, 5691, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 6624, 19203, 14, 14784, 14, 10414, 13, 67, 14, 36599, 15750, 3256, 705, 61, 15750, 28, 15885, 3256, 705, 15750, 2625, 12001, 1, 11537, 198 ]
2.149709
8,256
import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten import matplotlib.pyplot as plt import numpy as np import random pixel_width = 28 pixel_height = 28 no_of_classes = 10 batch_size = 32 epochs = 10 (features_train, labels_train), (features_test, labels_test) = mnist.load_data() features_train = features_train.reshape(features_train.shape[0], pixel_width, pixel_height, 1) features_test = features_test.reshape(features_test.shape[0], pixel_width, pixel_height, 1) input_shape = (pixel_width, pixel_height, 1) features_train = features_train.astype('float32') features_test = features_test.astype('float32') features_train /= 255 features_test /= 255 labels_train = keras.utils.to_categorical(labels_train, no_of_classes) labels_test = keras.utils.to_categorical(labels_test, no_of_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation = 'relu', input_shape = input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(no_of_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(features_train, labels_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(features_test, labels_test)) score = model.evaluate(features_test, labels_test, verbose=0) predictions = model.predict(features_test) prediction_digits = np.argmax(predictions, axis=1) plt.figure(figsize=(18, 18)) for i in range(100): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.xticks([]) plt.yticks([]) plt.grid(False) image_index = random.randint(0, len(prediction_digits)) plt.imshow(np.squeeze(features_test[image_index]), cmap=plt.cm.gray) ax.xaxis.label.set_color(get_label_color(prediction_digits[image_index], np.argmax(labels_test[image_index]))) #print(image_index) plt.xlabel('Predicted: %d' % prediction_digits[image_index]) plt.show()
[ 11748, 41927, 292, 198, 6738, 41927, 292, 13, 19608, 292, 1039, 1330, 285, 77, 396, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 34872, 17, 35, 11, 5436, 27201, 278, 17, 35, 11, 14258, 448, 11, 360, 1072, 11, 1610, 41769, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 198, 32515, 62, 10394, 796, 2579, 198, 32515, 62, 17015, 796, 2579, 198, 3919, 62, 1659, 62, 37724, 796, 838, 198, 43501, 62, 7857, 796, 3933, 198, 538, 5374, 82, 796, 838, 198, 198, 7, 40890, 62, 27432, 11, 14722, 62, 27432, 828, 357, 40890, 62, 9288, 11, 14722, 62, 9288, 8, 796, 285, 77, 396, 13, 2220, 62, 7890, 3419, 198, 40890, 62, 27432, 796, 3033, 62, 27432, 13, 3447, 1758, 7, 40890, 62, 27432, 13, 43358, 58, 15, 4357, 17465, 62, 10394, 11, 17465, 62, 17015, 11, 352, 8, 198, 40890, 62, 9288, 796, 3033, 62, 9288, 13, 3447, 1758, 7, 40890, 62, 9288, 13, 43358, 58, 15, 4357, 17465, 62, 10394, 11, 17465, 62, 17015, 11, 352, 8, 198, 198, 15414, 62, 43358, 796, 357, 32515, 62, 10394, 11, 17465, 62, 17015, 11, 352, 8, 198, 198, 40890, 62, 27432, 796, 3033, 62, 27432, 13, 459, 2981, 10786, 22468, 2624, 11537, 198, 40890, 62, 9288, 796, 3033, 62, 9288, 13, 459, 2981, 10786, 22468, 2624, 11537, 198, 198, 40890, 62, 27432, 1220, 28, 14280, 198, 40890, 62, 9288, 1220, 28, 14280, 198, 198, 23912, 1424, 62, 27432, 796, 41927, 292, 13, 26791, 13, 1462, 62, 66, 2397, 12409, 7, 23912, 1424, 62, 27432, 11, 645, 62, 1659, 62, 37724, 8, 198, 23912, 1424, 62, 9288, 796, 41927, 292, 13, 26791, 13, 1462, 62, 66, 2397, 12409, 7, 23912, 1424, 62, 9288, 11, 645, 62, 1659, 62, 37724, 8, 198, 198, 19849, 796, 24604, 1843, 3419, 198, 19849, 13, 2860, 7, 3103, 85, 17, 35, 7, 2624, 11, 9720, 62, 7857, 16193, 18, 11, 513, 828, 14916, 796, 705, 260, 2290, 3256, 5128, 62, 43358, 796, 5128, 62, 43358, 4008, 198, 19849, 13, 2860, 7, 11518, 27201, 278, 17, 35, 7, 7742, 62, 7857, 16193, 17, 11, 362, 22305, 198, 19849, 13, 2860, 7, 26932, 448, 7, 15, 13, 1495, 4008, 198, 19849, 13, 2860, 7, 7414, 41769, 28955, 198, 19849, 13, 2860, 7, 35, 1072, 7, 12762, 11, 14916, 11639, 260, 2290, 6, 4008, 198, 19849, 13, 2860, 7, 35, 1072, 7, 3919, 62, 1659, 62, 37724, 11, 14916, 11639, 4215, 9806, 6, 4008, 628, 198, 19849, 13, 5589, 576, 7, 22462, 28, 6122, 292, 13, 22462, 274, 13, 66, 2397, 12409, 62, 19692, 298, 28338, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 28, 6122, 292, 13, 40085, 11341, 13, 2782, 324, 12514, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20731, 28, 17816, 4134, 23843, 6, 12962, 198, 19849, 13, 11147, 7, 40890, 62, 27432, 11, 14722, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 16193, 40890, 62, 9288, 11, 14722, 62, 9288, 4008, 198, 198, 26675, 796, 2746, 13, 49786, 7, 40890, 62, 9288, 11, 14722, 62, 9288, 11, 15942, 577, 28, 15, 8, 198, 198, 28764, 9278, 796, 2746, 13, 79, 17407, 7, 40890, 62, 9288, 8, 198, 28764, 2867, 62, 12894, 896, 796, 45941, 13, 853, 9806, 7, 28764, 9278, 11, 16488, 28, 16, 8, 198, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 1507, 11, 1248, 4008, 198, 1640, 1312, 287, 2837, 7, 3064, 2599, 198, 220, 7877, 796, 458, 83, 13, 7266, 29487, 7, 940, 11, 838, 11, 1312, 10, 16, 8, 198, 220, 458, 83, 13, 742, 3378, 26933, 12962, 198, 220, 458, 83, 13, 742, 3378, 26933, 12962, 198, 220, 458, 83, 13, 20760, 3378, 26933, 12962, 198, 220, 458, 83, 13, 25928, 7, 25101, 8, 198, 220, 2939, 62, 9630, 796, 4738, 13, 25192, 600, 7, 15, 11, 18896, 7, 28764, 2867, 62, 12894, 896, 4008, 198, 220, 458, 83, 13, 320, 12860, 7, 37659, 13, 16485, 1453, 2736, 7, 40890, 62, 9288, 58, 9060, 62, 9630, 46570, 269, 8899, 28, 489, 83, 13, 11215, 13, 44605, 8, 628, 220, 7877, 13, 87, 22704, 13, 18242, 13, 2617, 62, 8043, 7, 1136, 62, 18242, 62, 8043, 7, 28764, 2867, 62, 12894, 896, 58, 9060, 62, 9630, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 853, 9806, 7, 23912, 1424, 62, 9288, 58, 9060, 62, 9630, 60, 22305, 198, 220, 1303, 4798, 7, 9060, 62, 9630, 8, 198, 220, 458, 83, 13, 87, 18242, 10786, 39156, 5722, 25, 4064, 67, 6, 4064, 17724, 62, 12894, 896, 58, 9060, 62, 9630, 12962, 198, 489, 83, 13, 12860, 3419, 198 ]
2.473154
894
test = { 'name': 'q2_1', 'points': 1, 'suites': [ { 'cases': [ {'code': '>>> # Make sure you assigned `binary options` to an array;\n>>> type(binary_options) == np.ndarray\nTrue', 'hidden': False, 'locked': False}, { 'code': '>>> # Should be a two element array of a binary distribution;\n>>> sorted(set(binary_options)) == sorted(set([0, 1]))\nTrue', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
[ 9288, 796, 1391, 220, 220, 705, 3672, 10354, 705, 80, 17, 62, 16, 3256, 198, 220, 220, 220, 705, 13033, 10354, 352, 11, 198, 220, 220, 220, 705, 2385, 2737, 10354, 685, 220, 220, 1391, 220, 220, 705, 33964, 10354, 685, 220, 220, 1391, 6, 8189, 10354, 705, 33409, 1303, 6889, 1654, 345, 8686, 4600, 39491, 3689, 63, 284, 281, 7177, 26, 59, 77, 33409, 2099, 7, 39491, 62, 25811, 8, 6624, 45941, 13, 358, 18747, 59, 77, 17821, 3256, 705, 30342, 10354, 10352, 11, 705, 24162, 10354, 10352, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 220, 220, 705, 8189, 10354, 705, 33409, 1303, 10358, 307, 257, 734, 5002, 7177, 286, 257, 13934, 6082, 26, 59, 77, 33409, 23243, 7, 2617, 7, 39491, 62, 25811, 4008, 6624, 23243, 7, 2617, 26933, 15, 11, 352, 60, 4008, 59, 77, 17821, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 10352, 92, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1416, 1850, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40406, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 660, 446, 593, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 4598, 310, 395, 6, 92, 48999, 198 ]
1.789894
376
import collections
[ 11748, 17268, 628, 198 ]
5.25
4
import torch import torch.nn as nn from .base_loss import Loss
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 6738, 764, 8692, 62, 22462, 1330, 22014, 628 ]
3.368421
19
from .successivehalving import SuccessiveHalving from .base import WarmStartIteration from .successiveresampling import SuccessiveResampling
[ 6738, 764, 13138, 425, 14201, 1075, 1330, 16282, 425, 40202, 1075, 198, 6738, 764, 8692, 1330, 25692, 10434, 29993, 341, 198, 6738, 764, 13138, 425, 411, 321, 11347, 1330, 16282, 425, 4965, 321, 11347, 198 ]
4.028571
35
#!_PYTHONLOC # # (C) COPYRIGHT 2009-2019 Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision$ # Date: $Date$ import string import sys import MySQLdb from isfdb import * from common import * from login import * from SQLparsing import * if __name__ == '__main__': PrintHeader("My Web Sites") PrintNavbar('mywebsites', 0, 0, 'mywebsites.cgi', 0) (myID, username, usertoken) = GetUserData() myID = int(myID) if not myID: print 'You must be logged in to modify your list of preferred Web sites' sys.exit(0) PrintTrailer('mywebsites', 0, 0) #Get a list of currently defined Web sites query = "select site_id, site_name from websites order by site_name" db.query(query) result = db.store_result() row = result.fetch_row() websites = [] while row: websites.append(row[0]) row = result.fetch_row() # Get the currently defined site preferences for the logged-in user query = "select site_id,user_choice from user_sites where user_id='%d'" % (myID) db.query(query) result = db.store_result() row = result.fetch_row() user_sites = [] while row: user_sites.append(row[0]) row = result.fetch_row() print '<h3>Select Web Sites to link Publications to. At least one Amazon site needs to be selected since ISFDB links to Amazon-hosted images.</h3>' print '<form id="data" METHOD="POST" ACTION="/cgi-bin/submitmywebsites.cgi">' print '<ul>' for website in websites: checked = 'checked' for user_site in user_sites: if user_site[0] == website[0]: if user_site[1] == 0: checked = '' break print '<li><input type="checkbox" name="site_choice.%s" value="on" %s>%s ' % (website[0], checked, website[1]) print '<input name="site_id.%d" value="%s" type="HIDDEN"></li>' % (website[0], website[1]) print '</ul>' print '<p>' print '<input type="SUBMIT" value="Update List of Web Sites">' print '</form>' PrintTrailer('mywebsites', 0, 0)
[ 2, 0, 62, 47, 56, 4221, 1340, 29701, 198, 2, 198, 2, 220, 220, 220, 220, 357, 34, 8, 27975, 38162, 9947, 3717, 12, 23344, 220, 220, 7900, 292, 15573, 385, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 11096, 371, 34874, 15731, 1137, 53, 1961, 198, 2, 198, 2, 220, 220, 220, 220, 383, 6634, 4003, 2029, 857, 407, 2370, 597, 4036, 393, 198, 2, 220, 220, 220, 220, 5292, 9207, 286, 884, 2723, 2438, 13, 198, 2, 198, 2, 220, 220, 220, 220, 10628, 25, 720, 18009, 1166, 3, 198, 2, 220, 220, 220, 220, 7536, 25, 720, 10430, 3, 628, 198, 11748, 4731, 198, 11748, 25064, 198, 11748, 33476, 9945, 198, 6738, 318, 69, 9945, 1330, 1635, 198, 6738, 2219, 1330, 1635, 198, 6738, 17594, 1330, 1635, 198, 6738, 16363, 79, 945, 278, 1330, 1635, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 197, 18557, 39681, 7203, 3666, 5313, 37034, 4943, 198, 197, 18557, 30575, 5657, 10786, 1820, 732, 1443, 2737, 3256, 657, 11, 657, 11, 705, 1820, 732, 1443, 2737, 13, 37157, 3256, 657, 8, 628, 197, 7, 1820, 2389, 11, 20579, 11, 514, 861, 4233, 8, 796, 3497, 12982, 6601, 3419, 198, 197, 1820, 2389, 796, 493, 7, 1820, 2389, 8, 198, 197, 361, 407, 616, 2389, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 1639, 1276, 307, 18832, 287, 284, 13096, 534, 1351, 286, 9871, 5313, 5043, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 197, 18557, 15721, 5329, 10786, 1820, 732, 1443, 2737, 3256, 657, 11, 657, 8, 628, 197, 2, 3855, 257, 1351, 286, 3058, 5447, 5313, 5043, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 366, 19738, 2524, 62, 312, 11, 2524, 62, 3672, 422, 9293, 1502, 416, 2524, 62, 3672, 1, 198, 197, 9945, 13, 22766, 7, 22766, 8, 198, 197, 20274, 796, 20613, 13, 8095, 62, 20274, 3419, 198, 197, 808, 796, 1255, 13, 69, 7569, 62, 808, 3419, 198, 197, 732, 1443, 2737, 796, 17635, 198, 197, 4514, 5752, 25, 198, 197, 197, 732, 1443, 2737, 13, 33295, 7, 808, 58, 15, 12962, 198, 197, 197, 808, 796, 1255, 13, 69, 7569, 62, 808, 3419, 628, 197, 2, 3497, 262, 3058, 5447, 2524, 15387, 329, 262, 18832, 12, 259, 2836, 198, 197, 22766, 796, 366, 19738, 2524, 62, 312, 11, 7220, 62, 25541, 422, 2836, 62, 49315, 810, 2836, 62, 312, 11639, 4, 67, 29653, 4064, 357, 1820, 2389, 8, 198, 197, 9945, 13, 22766, 7, 22766, 8, 198, 197, 20274, 796, 20613, 13, 8095, 62, 20274, 3419, 198, 197, 808, 796, 1255, 13, 69, 7569, 62, 808, 3419, 198, 197, 7220, 62, 49315, 796, 17635, 198, 197, 4514, 5752, 25, 198, 197, 197, 7220, 62, 49315, 13, 33295, 7, 808, 58, 15, 12962, 198, 197, 197, 808, 796, 1255, 13, 69, 7569, 62, 808, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 27, 71, 18, 29, 17563, 5313, 37034, 284, 2792, 40865, 284, 13, 1629, 1551, 530, 6186, 2524, 2476, 284, 307, 6163, 1201, 3180, 37, 11012, 6117, 284, 6186, 12, 4774, 276, 4263, 25970, 71, 18, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 27, 687, 4686, 2625, 7890, 1, 337, 36252, 2625, 32782, 1, 40282, 35922, 37157, 12, 8800, 14, 46002, 1820, 732, 1443, 2737, 13, 37157, 5320, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 27, 377, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3052, 287, 9293, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 796, 705, 26752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2836, 62, 15654, 287, 2836, 62, 49315, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 15654, 58, 15, 60, 6624, 3052, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 15654, 58, 16, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 197, 4798, 705, 27, 4528, 6927, 15414, 2099, 2625, 9122, 3524, 1, 1438, 2625, 15654, 62, 25541, 13, 4, 82, 1, 1988, 2625, 261, 1, 4064, 82, 29, 4, 82, 705, 4064, 357, 732, 12485, 58, 15, 4357, 10667, 11, 3052, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 197, 4798, 705, 27, 15414, 1438, 2625, 15654, 62, 312, 13, 4, 67, 1, 1988, 2625, 4, 82, 1, 2099, 2625, 39, 2389, 41819, 23984, 4528, 29, 6, 4064, 357, 732, 12485, 58, 15, 4357, 3052, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 3556, 377, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 27, 79, 29, 6, 198, 197, 4798, 705, 27, 15414, 2099, 2625, 50, 10526, 36393, 1, 1988, 2625, 10260, 7343, 286, 5313, 37034, 5320, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 3556, 687, 29, 6, 628, 197, 18557, 15721, 5329, 10786, 1820, 732, 1443, 2737, 3256, 657, 11, 657, 8, 628 ]
2.255446
1,010
from pybars import Compiler import lxml.etree as etree import collections from . import Artifact import os class ArtifactGenerator(object): """Class used to generate artifacts for WSO2""" """Generate the artifact based on the passed template location and data""" def merge(self, a, b, path=None): "deep merge dictionary" if path is None: path = [] for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): self.merge(a[key], b[key], path + [str(key)]) elif a[key] == b[key]: pass # same leaf value else: #raise Exception('Conflict at %s' % '.'.join(path + [str(key)])) pass else: a[key] = b[key] return a def get_filepaths(self, directory, function): """ This function will generate the file names in a directory tree by walking the tree either top-down or bottom-up. For each directory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath, dirnames, filenames). """ file_paths = [] # List which will store all of the full filepaths. # Walk the tree. for root, directories, files in os.walk(directory): for filename in files: # Join the two strings in order to form the full filepath. filepath = os.path.join(root, filename) file_paths = function(filepath, filename, file_paths) # Add it to the list. return file_paths # Self-explanatory. def generateArtifact(self, data, directory): """ Pass in the generic parameters for the pom file. The method will read the synapse directory and create the resources dictionary """ synapse_directory = directory fileList = self.get_filepaths(synapse_directory, synapse_config) resources = [] for fileObj in fileList: resources.append({'type': fileObj['fileESBType'], 'fileExtension': fileObj['fileType'], 'resourceName': fileObj['fileName'].split(".")[0]}) #print resources data['resources'] = resources artifactArtiObj = self.generate(data, "templates/artifact.hbs") return artifactArtiObj #registry_directory = directory + "/gateway-registry/" #def registry_config(filepath, filename, file_paths): #typeName = filepath.split("/") #print typeName # if typeName[13]=="synapse-config": # if len(typeName) == 16: # typeName = typeName[14] # file_paths.append({'filePath': filepath, 'fileName': filename, 'type': typeName}) #return file_paths #fileList = self.get_filepaths(registry_directory, registry_config) def generateCarPom(self, data, directory): """ Pass in the generic parameters for the pom file. The method will read the synapse directory and create the resources dictionary """ synapse_directory = directory fileList = self.get_filepaths(synapse_directory, synapse_config) resources = [] for fileObj in fileList: resources.append({'type': fileObj['fileESBType'], 'fileExtension': fileObj['fileType'], 'resourceName': fileObj['fileName'].split(".")[0]}) data['resources'] = resources print data artifactCarObj = self.generate(data, "templates/car_pom.hbs") return artifactCarObj #registry_directory = directory + "/dev-registry/" #def registry_config(filepath, filename, file_paths): #typeName = filepath.split("/") #print typeName # if typeName[13]=="synapse-config": # if len(typeName) == 16: # typeName = typeName[14] # file_paths.append({'filePath': filepath, 'fileName': filename, 'type': typeName}) #return file_paths #fileList = self.get_filepaths(registry_directory, registry_config)
[ 6738, 12972, 34046, 1330, 3082, 5329, 198, 11748, 300, 19875, 13, 316, 631, 355, 2123, 631, 198, 11748, 17268, 198, 6738, 764, 1330, 45908, 198, 11748, 28686, 198, 4871, 45908, 8645, 1352, 7, 15252, 2599, 198, 197, 37811, 9487, 973, 284, 7716, 20316, 329, 370, 15821, 17, 37811, 198, 197, 37811, 8645, 378, 262, 24127, 1912, 319, 262, 3804, 11055, 4067, 290, 1366, 37811, 628, 197, 4299, 20121, 7, 944, 11, 257, 11, 275, 11, 3108, 28, 14202, 2599, 198, 197, 220, 220, 220, 366, 22089, 20121, 22155, 1, 198, 197, 220, 220, 220, 611, 3108, 318, 6045, 25, 3108, 796, 17635, 198, 197, 220, 220, 220, 329, 1994, 287, 275, 25, 198, 197, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 257, 25, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 64, 58, 2539, 4357, 8633, 8, 290, 318, 39098, 7, 65, 58, 2539, 4357, 8633, 2599, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 647, 469, 7, 64, 58, 2539, 4357, 275, 58, 2539, 4357, 3108, 1343, 685, 2536, 7, 2539, 8, 12962, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 257, 58, 2539, 60, 6624, 275, 58, 2539, 5974, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 1303, 976, 12835, 1988, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 40225, 35528, 10786, 18546, 13758, 379, 4064, 82, 6, 4064, 705, 2637, 13, 22179, 7, 6978, 1343, 685, 2536, 7, 2539, 15437, 4008, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 197, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 58, 2539, 60, 796, 275, 58, 2539, 60, 198, 197, 220, 220, 220, 1441, 257, 628, 197, 4299, 651, 62, 7753, 6978, 82, 7, 944, 11, 8619, 11, 2163, 2599, 198, 197, 220, 220, 220, 37227, 198, 197, 220, 220, 220, 770, 2163, 481, 7716, 262, 2393, 3891, 287, 257, 8619, 220, 198, 197, 220, 220, 220, 5509, 416, 6155, 262, 5509, 2035, 1353, 12, 2902, 393, 4220, 12, 929, 13, 1114, 1123, 220, 198, 197, 220, 220, 220, 8619, 287, 262, 5509, 19459, 379, 8619, 1353, 357, 8201, 1353, 2346, 828, 220, 198, 197, 220, 220, 220, 340, 19299, 257, 513, 12, 83, 29291, 357, 15908, 6978, 11, 26672, 14933, 11, 1226, 268, 1047, 737, 198, 197, 220, 220, 220, 37227, 198, 197, 220, 220, 220, 2393, 62, 6978, 82, 796, 17635, 220, 1303, 7343, 543, 481, 3650, 477, 286, 262, 1336, 2393, 6978, 82, 13, 628, 197, 220, 220, 220, 1303, 6857, 262, 5509, 13, 198, 197, 220, 220, 220, 329, 6808, 11, 29196, 11, 3696, 287, 28686, 13, 11152, 7, 34945, 2599, 198, 197, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 3696, 25, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15251, 262, 734, 13042, 287, 1502, 284, 1296, 262, 1336, 2393, 6978, 13, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 29472, 8, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 82, 796, 2163, 7, 7753, 6978, 11, 29472, 11, 2393, 62, 6978, 82, 8, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 340, 284, 262, 1351, 13, 628, 197, 220, 220, 220, 1441, 2393, 62, 6978, 82, 220, 1303, 12189, 12, 1069, 11578, 2870, 13, 628, 197, 4299, 7716, 8001, 29660, 7, 944, 11, 1366, 11, 8619, 2599, 198, 197, 197, 37811, 6251, 287, 262, 14276, 10007, 329, 262, 279, 296, 2393, 13, 383, 2446, 481, 1100, 262, 6171, 7512, 198, 197, 197, 34945, 290, 2251, 262, 4133, 22155, 37227, 198, 197, 197, 198, 197, 197, 28869, 7512, 62, 34945, 796, 8619, 628, 197, 197, 7753, 8053, 796, 2116, 13, 1136, 62, 7753, 6978, 82, 7, 28869, 7512, 62, 34945, 11, 6171, 7512, 62, 11250, 8, 198, 197, 197, 37540, 796, 17635, 198, 197, 197, 1640, 2393, 49201, 287, 2393, 8053, 25, 198, 197, 197, 197, 37540, 13, 33295, 15090, 6, 4906, 10354, 2393, 49201, 17816, 7753, 1546, 33, 6030, 6, 4357, 705, 7753, 11627, 3004, 10354, 2393, 49201, 17816, 7753, 6030, 6, 4357, 705, 31092, 5376, 10354, 2393, 49201, 17816, 7753, 5376, 6, 4083, 35312, 7203, 19570, 58, 15, 60, 30072, 198, 197, 197, 2, 4798, 4133, 198, 197, 197, 7890, 17816, 37540, 20520, 796, 4133, 198, 197, 197, 433, 29660, 8001, 72, 49201, 796, 2116, 13, 8612, 378, 7, 7890, 11, 366, 11498, 17041, 14, 433, 29660, 13, 71, 1443, 4943, 198, 197, 197, 7783, 24127, 8001, 72, 49201, 198, 197, 197, 2, 2301, 4592, 62, 34945, 796, 8619, 1343, 12813, 10494, 1014, 12, 2301, 4592, 30487, 198, 197, 197, 2, 4299, 20478, 62, 11250, 7, 7753, 6978, 11, 29472, 11, 2393, 62, 6978, 82, 2599, 198, 197, 197, 197, 2, 4906, 5376, 796, 2393, 6978, 13, 35312, 7203, 14, 4943, 198, 197, 197, 197, 2, 4798, 2099, 5376, 198, 197, 197, 197, 2, 611, 2099, 5376, 58, 1485, 60, 855, 1, 28869, 7512, 12, 11250, 1298, 198, 197, 197, 197, 2, 220, 197, 361, 18896, 7, 4906, 5376, 8, 6624, 1467, 25, 198, 197, 197, 197, 2, 220, 197, 197, 4906, 5376, 796, 2099, 5376, 58, 1415, 60, 198, 197, 197, 197, 2, 220, 197, 197, 7753, 62, 6978, 82, 13, 33295, 15090, 6, 7753, 15235, 10354, 2393, 6978, 11, 705, 7753, 5376, 10354, 29472, 11, 705, 4906, 10354, 2099, 5376, 30072, 220, 198, 197, 197, 198, 197, 197, 197, 2, 7783, 2393, 62, 6978, 82, 198, 197, 197, 2, 7753, 8053, 796, 2116, 13, 1136, 62, 7753, 6978, 82, 7, 2301, 4592, 62, 34945, 11, 20478, 62, 11250, 8, 628, 197, 4299, 7716, 9914, 47, 296, 7, 944, 11, 1366, 11, 8619, 2599, 198, 197, 197, 37811, 6251, 287, 262, 14276, 10007, 329, 262, 279, 296, 2393, 13, 383, 2446, 481, 1100, 262, 6171, 7512, 198, 197, 197, 34945, 290, 2251, 262, 4133, 22155, 37227, 198, 197, 197, 198, 197, 197, 28869, 7512, 62, 34945, 796, 8619, 628, 197, 197, 7753, 8053, 796, 2116, 13, 1136, 62, 7753, 6978, 82, 7, 28869, 7512, 62, 34945, 11, 6171, 7512, 62, 11250, 8, 198, 197, 197, 37540, 796, 17635, 198, 197, 197, 1640, 2393, 49201, 287, 2393, 8053, 25, 198, 197, 197, 197, 37540, 13, 33295, 15090, 6, 4906, 10354, 2393, 49201, 17816, 7753, 1546, 33, 6030, 6, 4357, 705, 7753, 11627, 3004, 10354, 2393, 49201, 17816, 7753, 6030, 6, 4357, 705, 31092, 5376, 10354, 2393, 49201, 17816, 7753, 5376, 6, 4083, 35312, 7203, 19570, 58, 15, 60, 30072, 198, 197, 197, 7890, 17816, 37540, 20520, 796, 4133, 198, 197, 197, 4798, 1366, 198, 197, 197, 433, 29660, 9914, 49201, 796, 2116, 13, 8612, 378, 7, 7890, 11, 366, 11498, 17041, 14, 7718, 62, 79, 296, 13, 71, 1443, 4943, 198, 197, 197, 7783, 24127, 9914, 49201, 198, 197, 197, 2, 2301, 4592, 62, 34945, 796, 8619, 1343, 12813, 7959, 12, 2301, 4592, 30487, 198, 197, 197, 2, 4299, 20478, 62, 11250, 7, 7753, 6978, 11, 29472, 11, 2393, 62, 6978, 82, 2599, 198, 197, 197, 197, 2, 4906, 5376, 796, 2393, 6978, 13, 35312, 7203, 14, 4943, 198, 197, 197, 197, 2, 4798, 2099, 5376, 198, 197, 197, 197, 2, 611, 2099, 5376, 58, 1485, 60, 855, 1, 28869, 7512, 12, 11250, 1298, 198, 197, 197, 197, 2, 220, 197, 361, 18896, 7, 4906, 5376, 8, 6624, 1467, 25, 198, 197, 197, 197, 2, 220, 197, 197, 4906, 5376, 796, 2099, 5376, 58, 1415, 60, 198, 197, 197, 197, 2, 220, 197, 197, 7753, 62, 6978, 82, 13, 33295, 15090, 6, 7753, 15235, 10354, 2393, 6978, 11, 705, 7753, 5376, 10354, 29472, 11, 705, 4906, 10354, 2099, 5376, 30072, 220, 198, 197, 197, 198, 197, 197, 197, 2, 7783, 2393, 62, 6978, 82, 198, 197, 197, 2, 7753, 8053, 796, 2116, 13, 1136, 62, 7753, 6978, 82, 7, 2301, 4592, 62, 34945, 11, 20478, 62, 11250, 8 ]
2.637074
1,408
from math import pi import os import time # sum([n, n, n...]) adds any number of variables # print (subtract(8, 3)) # print (multiply(5, 3)) # print (double(7)) # print (triple(5)) # print (divide(8, 4)) # print (half(4)) # print (celsius_conv(94)) c_c = celsius_conv # print (fahrenheit_conv(49)) # print (p_t(3, 4)) # print (p_t2(5, 3)) # print (square(5)) # print (square_root(25)) # print (cube(4)) # print (f_y(1)) f_y = feet_to_yards # print (i_c(10)) i_c = inches_to_centi # print (i_f(11)) i_f = inches_to_feet # print (f_i(30)) f_i = feet_to_inches # print (blah(8)) # print (convert_mileage(90)) # print (liters_needed(50, 30)) def pie_perc(n): """precondition: n > 0 Assuming n people want to eat a pie, return the percentage each person gets to eat.""" return int(100 / n) def average_of_best_3(a, b, c, d): # gives the average of the highest 3 """Use numbers between 0 and 100""" first = min(a, b, c, d) second = (a + b + c + d - first) third = second / 3 return third circum = circumference # circum(r) = circumference(r)
[ 6738, 10688, 1330, 31028, 198, 11748, 28686, 198, 11748, 640, 628, 198, 2, 2160, 26933, 77, 11, 299, 11, 299, 986, 12962, 6673, 597, 1271, 286, 9633, 198, 198, 2, 3601, 357, 7266, 83, 974, 7, 23, 11, 513, 4008, 198, 198, 2, 3601, 357, 16680, 541, 306, 7, 20, 11, 513, 4008, 198, 198, 2, 3601, 357, 23352, 7, 22, 4008, 198, 198, 2, 3601, 357, 28461, 1154, 7, 20, 4008, 198, 198, 2, 3601, 357, 7146, 485, 7, 23, 11, 604, 4008, 198, 198, 2, 3601, 357, 13959, 7, 19, 4008, 198, 198, 2, 3601, 357, 5276, 82, 3754, 62, 42946, 7, 5824, 4008, 198, 198, 66, 62, 66, 796, 269, 32495, 62, 42946, 198, 198, 2, 3601, 357, 69, 993, 34032, 62, 42946, 7, 2920, 4008, 198, 198, 2, 3601, 357, 79, 62, 83, 7, 18, 11, 604, 4008, 198, 198, 2, 3601, 357, 79, 62, 83, 17, 7, 20, 11, 513, 4008, 198, 198, 2, 3601, 357, 23415, 7, 20, 4008, 198, 198, 2, 3601, 357, 23415, 62, 15763, 7, 1495, 4008, 198, 198, 2, 3601, 357, 40296, 7, 19, 4008, 198, 198, 2, 3601, 357, 69, 62, 88, 7, 16, 4008, 198, 198, 69, 62, 88, 796, 3625, 62, 1462, 62, 33750, 198, 198, 2, 3601, 357, 72, 62, 66, 7, 940, 4008, 198, 198, 72, 62, 66, 796, 8331, 62, 1462, 62, 1087, 72, 198, 198, 2, 3601, 357, 72, 62, 69, 7, 1157, 4008, 198, 198, 72, 62, 69, 796, 8331, 62, 1462, 62, 39690, 198, 198, 2, 3601, 357, 69, 62, 72, 7, 1270, 4008, 198, 198, 69, 62, 72, 796, 3625, 62, 1462, 62, 45457, 628, 198, 198, 2, 3601, 357, 2436, 993, 7, 23, 4008, 198, 198, 2, 3601, 357, 1102, 1851, 62, 18085, 496, 7, 3829, 4008, 198, 198, 2, 3601, 357, 18250, 364, 62, 27938, 7, 1120, 11, 1542, 4008, 628, 628, 628, 198, 198, 4299, 2508, 62, 525, 66, 7, 77, 2599, 198, 220, 220, 220, 37227, 3866, 31448, 25, 299, 1875, 657, 198, 220, 220, 220, 33238, 299, 661, 765, 284, 4483, 257, 2508, 11, 198, 220, 220, 220, 1441, 262, 5873, 1123, 1048, 3011, 284, 4483, 526, 15931, 198, 220, 220, 220, 1441, 493, 7, 3064, 1220, 299, 8, 628, 198, 198, 4299, 2811, 62, 1659, 62, 13466, 62, 18, 7, 64, 11, 275, 11, 269, 11, 288, 2599, 220, 1303, 3607, 262, 2811, 286, 262, 4511, 513, 198, 220, 220, 220, 37227, 11041, 3146, 1022, 657, 290, 1802, 37811, 198, 220, 220, 220, 717, 796, 949, 7, 64, 11, 275, 11, 269, 11, 288, 8, 198, 220, 220, 220, 1218, 796, 357, 64, 1343, 275, 1343, 269, 1343, 288, 532, 717, 8, 198, 220, 220, 220, 2368, 796, 1218, 1220, 513, 198, 220, 220, 220, 1441, 2368, 628, 628, 198, 198, 21170, 388, 796, 38447, 198, 198, 2, 4456, 7, 81, 8, 796, 38447, 7, 81, 8, 628, 198 ]
2.309278
485
import config from pymongo import MongoClient from instagram_api import insta_fetch_feed
[ 11748, 4566, 198, 6738, 279, 4948, 25162, 1330, 42591, 11792, 198, 6738, 916, 6713, 62, 15042, 1330, 916, 64, 62, 69, 7569, 62, 12363 ]
3.666667
24
import os import pandas as pd import numpy as np import math from random import shuffle from tensorflow import keras from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from person_counting.data_generators.data_generators import Generator_CSVS from person_counting.data_generators.data_generators import * from person_counting.utils.preprocessing import get_filtered_lengths from person_counting.utils.scaler import FeatureScaler, LabelScaler from person_counting.utils.preprocessing import apply_file_filters class Generator_CSVS_CNN(Generator_CSVS): """ Generators class to load npy files from video folder structre like PCDS Dataset and train CNNs Arguments (**kwargs) length_t : Length of the feature's DataFrame in time dimension length_y : Length of the feature's DataFrame in y direction file_names : File names to be processed filter_cols_upper, : Amount of columns to be filtered at end and start of DataFrame batch_size : Batch size top_path : Parent path where csv files are contained label_file : Name of the label file """ def create_datagen( top_path, sample, label_file, augmentation_factor=0, filter_hour_below=7, filter_hour_above=24, filter_category_noisy=False, supercharge_crowdeds=False, ): """ Creates train and test data generators for lstm network. Arguments: top_path: Parent directory where shall be searched for training files sample: sample of hyperparameters used in this run label_file: Name of the label file containing all the labels augmentation_factor: Factor how much augmentation shall be done, 1 means moving every pixel for one position filter_hour_above: Hour after which videos shall be filtered filter_category_noisy: Flag if noisy videos shall be filtered """ # Load filenames and lengths length_t, length_y = get_filtered_lengths(top_path, sample) train_file_names, validation_file_names, test_file_names = get_file_split( top_path, supercharge_crowdeds=supercharge_crowdeds ) # Apply filters train_file_names = apply_file_filters( df=train_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) validation_file_names = apply_file_filters( df=validation_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) test_file_names = apply_file_filters( df=test_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) scale_files = pd.concat([train_file_names, validation_file_names, test_file_names]) print( "Dataset contains: \n{} training files \n{} validation files \n{} testing files".format( len(train_file_names), len(validation_file_names), len(test_file_names) ) ) feature_scaler = FeatureScaler(top_path, scale_files, sample) label_scaler = LabelScaler(top_path, label_file, scale_files, sample) gen_train = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=train_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=augmentation_factor, ) # Don't do augmentation here! gen_validation = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=validation_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=0, ) gen_test = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=test_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=0, ) return gen_train, gen_validation, gen_test def get_file_split(top_path, supercharge_crowdeds=False): """Get filenames previously splitted""" if top_path[-2:] != "\\\\" and top_path[-1] != "/": top_path += "/" if supercharge_crowdeds: train = top_path + pd.read_csv( os.path.join(top_path, "supercharged_crowdeds_train_split.csv"), header=None, squeeze=True ) else: train = top_path + pd.read_csv(os.path.join(top_path, "train_split.csv"), header=None, squeeze=True) val = top_path + pd.read_csv(os.path.join(top_path, "validation_split.csv"), header=None, squeeze=True) test = top_path + pd.read_csv(os.path.join(top_path, "test_split.csv"), header=None, squeeze=True) train = train.apply(lambda row: row.replace("\\", "/")) val = val.apply(lambda row: row.replace("\\", "/")) test = test.apply(lambda row: row.replace("\\", "/")) return train, val, test
[ 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 6738, 4738, 1330, 36273, 198, 198, 6738, 11192, 273, 11125, 1330, 41927, 292, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 11, 1855, 11518, 3351, 36213, 198, 198, 6738, 1048, 62, 9127, 278, 13, 7890, 62, 8612, 2024, 13, 7890, 62, 8612, 2024, 1330, 35986, 62, 7902, 20304, 198, 6738, 1048, 62, 9127, 278, 13, 7890, 62, 8612, 2024, 13, 7890, 62, 8612, 2024, 1330, 1635, 198, 6738, 1048, 62, 9127, 278, 13, 26791, 13, 3866, 36948, 1330, 651, 62, 10379, 4400, 62, 13664, 82, 198, 6738, 1048, 62, 9127, 278, 13, 26791, 13, 1416, 36213, 1330, 27018, 3351, 36213, 11, 36052, 3351, 36213, 198, 6738, 1048, 62, 9127, 278, 13, 26791, 13, 3866, 36948, 1330, 4174, 62, 7753, 62, 10379, 1010, 628, 198, 4871, 35986, 62, 7902, 20304, 62, 18474, 7, 8645, 1352, 62, 7902, 20304, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 2024, 1398, 284, 3440, 299, 9078, 3696, 422, 198, 220, 220, 220, 2008, 9483, 2878, 260, 588, 4217, 5258, 16092, 292, 316, 290, 198, 220, 220, 220, 4512, 8100, 82, 628, 220, 220, 220, 20559, 2886, 357, 1174, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 83, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 22313, 286, 262, 3895, 338, 6060, 19778, 287, 640, 15793, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 88, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 22313, 286, 262, 3895, 338, 6060, 19778, 287, 331, 4571, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 14933, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 9220, 3891, 284, 307, 13686, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 4033, 82, 62, 45828, 11, 220, 1058, 26308, 286, 15180, 284, 307, 29083, 379, 886, 290, 923, 286, 6060, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 347, 963, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 6978, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 16774, 3108, 810, 269, 21370, 3696, 389, 7763, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 7753, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 6530, 286, 262, 6167, 2393, 628, 220, 220, 220, 37227, 628, 198, 4299, 2251, 62, 19608, 11286, 7, 198, 220, 220, 220, 1353, 62, 6978, 11, 198, 220, 220, 220, 6291, 11, 198, 220, 220, 220, 6167, 62, 7753, 11, 198, 220, 220, 220, 16339, 14374, 62, 31412, 28, 15, 11, 198, 220, 220, 220, 8106, 62, 9769, 62, 35993, 28, 22, 11, 198, 220, 220, 220, 8106, 62, 9769, 62, 29370, 28, 1731, 11, 198, 220, 220, 220, 8106, 62, 22872, 62, 3919, 13560, 28, 25101, 11, 198, 220, 220, 220, 2208, 10136, 62, 66, 3986, 5379, 28, 25101, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 4512, 290, 1332, 1366, 27298, 329, 300, 301, 76, 3127, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 6978, 25, 16774, 8619, 810, 2236, 307, 16499, 329, 3047, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 25, 6291, 286, 8718, 17143, 7307, 973, 287, 428, 1057, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 7753, 25, 6530, 286, 262, 6167, 2393, 7268, 477, 262, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 16339, 14374, 62, 31412, 25, 27929, 703, 881, 16339, 14374, 2236, 307, 1760, 11, 352, 1724, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3867, 790, 17465, 329, 530, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 9769, 62, 29370, 25, 19123, 706, 543, 5861, 2236, 307, 29083, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 22872, 62, 3919, 13560, 25, 19762, 611, 31210, 5861, 2236, 307, 29083, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 8778, 1226, 268, 1047, 290, 20428, 198, 220, 220, 220, 4129, 62, 83, 11, 4129, 62, 88, 796, 651, 62, 10379, 4400, 62, 13664, 82, 7, 4852, 62, 6978, 11, 6291, 8, 198, 220, 220, 220, 4512, 62, 7753, 62, 14933, 11, 21201, 62, 7753, 62, 14933, 11, 1332, 62, 7753, 62, 14933, 796, 651, 62, 7753, 62, 35312, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 6978, 11, 2208, 10136, 62, 66, 3986, 5379, 28, 16668, 10136, 62, 66, 3986, 5379, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 27967, 16628, 198, 220, 220, 220, 4512, 62, 7753, 62, 14933, 796, 4174, 62, 7753, 62, 10379, 1010, 7, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 27432, 62, 7753, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 9769, 62, 29370, 28, 24455, 62, 9769, 62, 29370, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 22872, 62, 3919, 13560, 28, 24455, 62, 22872, 62, 3919, 13560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 9769, 62, 35993, 28, 24455, 62, 9769, 62, 35993, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 21201, 62, 7753, 62, 14933, 796, 4174, 62, 7753, 62, 10379, 1010, 7, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 12102, 341, 62, 7753, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 9769, 62, 29370, 28, 24455, 62, 9769, 62, 29370, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 22872, 62, 3919, 13560, 28, 24455, 62, 22872, 62, 3919, 13560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 9769, 62, 35993, 28, 24455, 62, 9769, 62, 35993, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1332, 62, 7753, 62, 14933, 796, 4174, 62, 7753, 62, 10379, 1010, 7, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 9288, 62, 7753, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 9769, 62, 29370, 28, 24455, 62, 9769, 62, 29370, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 22872, 62, 3919, 13560, 28, 24455, 62, 22872, 62, 3919, 13560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 9769, 62, 35993, 28, 24455, 62, 9769, 62, 35993, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 5046, 62, 16624, 796, 279, 67, 13, 1102, 9246, 26933, 27432, 62, 7753, 62, 14933, 11, 21201, 62, 7753, 62, 14933, 11, 1332, 62, 7753, 62, 14933, 12962, 628, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27354, 292, 316, 4909, 25, 3467, 77, 90, 92, 3047, 3696, 3467, 77, 90, 92, 21201, 3696, 3467, 77, 90, 92, 4856, 3696, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 27432, 62, 7753, 62, 14933, 828, 18896, 7, 12102, 341, 62, 7753, 62, 14933, 828, 18896, 7, 9288, 62, 7753, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3895, 62, 1416, 36213, 796, 27018, 3351, 36213, 7, 4852, 62, 6978, 11, 5046, 62, 16624, 11, 6291, 8, 198, 220, 220, 220, 6167, 62, 1416, 36213, 796, 36052, 3351, 36213, 7, 4852, 62, 6978, 11, 6167, 62, 7753, 11, 5046, 62, 16624, 11, 6291, 8, 628, 220, 220, 220, 2429, 62, 27432, 796, 35986, 62, 7902, 20304, 62, 18474, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 83, 28, 13664, 62, 83, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 88, 28, 13664, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 14933, 28, 27432, 62, 7753, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 1416, 36213, 28, 30053, 62, 1416, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 1416, 36213, 28, 18242, 62, 1416, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 28, 39873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 6978, 28, 4852, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 7753, 28, 18242, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 16339, 14374, 62, 31412, 28, 559, 5154, 341, 62, 31412, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 2094, 470, 466, 16339, 14374, 994, 0, 198, 220, 220, 220, 2429, 62, 12102, 341, 796, 35986, 62, 7902, 20304, 62, 18474, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 83, 28, 13664, 62, 83, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 88, 28, 13664, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 14933, 28, 12102, 341, 62, 7753, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 1416, 36213, 28, 30053, 62, 1416, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 1416, 36213, 28, 18242, 62, 1416, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 28, 39873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 6978, 28, 4852, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 7753, 28, 18242, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 16339, 14374, 62, 31412, 28, 15, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2429, 62, 9288, 796, 35986, 62, 7902, 20304, 62, 18474, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 83, 28, 13664, 62, 83, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 88, 28, 13664, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 14933, 28, 9288, 62, 7753, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 1416, 36213, 28, 30053, 62, 1416, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 1416, 36213, 28, 18242, 62, 1416, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 28, 39873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 6978, 28, 4852, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 7753, 28, 18242, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 16339, 14374, 62, 31412, 28, 15, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 2429, 62, 27432, 11, 2429, 62, 12102, 341, 11, 2429, 62, 9288, 628, 198, 4299, 651, 62, 7753, 62, 35312, 7, 4852, 62, 6978, 11, 2208, 10136, 62, 66, 3986, 5379, 28, 25101, 2599, 198, 220, 220, 220, 37227, 3855, 1226, 268, 1047, 4271, 4328, 2175, 37811, 628, 220, 220, 220, 611, 1353, 62, 6978, 58, 12, 17, 47715, 14512, 366, 13426, 1, 290, 1353, 62, 6978, 58, 12, 16, 60, 14512, 12813, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 6978, 15853, 12813, 1, 628, 220, 220, 220, 611, 2208, 10136, 62, 66, 3986, 5379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 796, 1353, 62, 6978, 1343, 279, 67, 13, 961, 62, 40664, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 4852, 62, 6978, 11, 366, 16668, 17200, 62, 66, 3986, 5379, 62, 27432, 62, 35312, 13, 40664, 12340, 13639, 28, 14202, 11, 21229, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 796, 1353, 62, 6978, 1343, 279, 67, 13, 961, 62, 40664, 7, 418, 13, 6978, 13, 22179, 7, 4852, 62, 6978, 11, 366, 27432, 62, 35312, 13, 40664, 12340, 13639, 28, 14202, 11, 21229, 28, 17821, 8, 628, 220, 220, 220, 1188, 796, 1353, 62, 6978, 1343, 279, 67, 13, 961, 62, 40664, 7, 418, 13, 6978, 13, 22179, 7, 4852, 62, 6978, 11, 366, 12102, 341, 62, 35312, 13, 40664, 12340, 13639, 28, 14202, 11, 21229, 28, 17821, 8, 198, 220, 220, 220, 1332, 796, 1353, 62, 6978, 1343, 279, 67, 13, 961, 62, 40664, 7, 418, 13, 6978, 13, 22179, 7, 4852, 62, 6978, 11, 366, 9288, 62, 35312, 13, 40664, 12340, 13639, 28, 14202, 11, 21229, 28, 17821, 8, 628, 220, 220, 220, 4512, 796, 4512, 13, 39014, 7, 50033, 5752, 25, 5752, 13, 33491, 7203, 6852, 1600, 12813, 48774, 198, 220, 220, 220, 1188, 796, 1188, 13, 39014, 7, 50033, 5752, 25, 5752, 13, 33491, 7203, 6852, 1600, 12813, 48774, 198, 220, 220, 220, 1332, 796, 1332, 13, 39014, 7, 50033, 5752, 25, 5752, 13, 33491, 7203, 6852, 1600, 12813, 48774, 628, 220, 220, 220, 1441, 4512, 11, 1188, 11, 1332, 198 ]
2.446412
2,202
from .supervise import *
[ 6738, 764, 16668, 85, 786, 1330, 1635, 198 ]
3.125
8
from datetime import datetime from enum import Enum from typing import Dict, List, Optional, Tuple from .account import Account from .base import BaseModel class Permission(str, Enum): """ Workspace permission levels. """ no_permission = "none" read = "read" write = "write" full_control = "all"
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 19720, 1330, 360, 713, 11, 7343, 11, 32233, 11, 309, 29291, 198, 198, 6738, 764, 23317, 1330, 10781, 198, 6738, 764, 8692, 1330, 7308, 17633, 628, 628, 628, 628, 198, 4871, 2448, 3411, 7, 2536, 11, 2039, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10933, 10223, 7170, 2974, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 645, 62, 525, 3411, 796, 366, 23108, 1, 198, 220, 220, 220, 1100, 796, 366, 961, 1, 198, 220, 220, 220, 3551, 796, 366, 13564, 1, 198, 220, 220, 220, 1336, 62, 13716, 796, 366, 439, 1, 628, 628 ]
2.930435
115
import math import numpy as np from sc2.ids.unit_typeid import UnitTypeId from sc2.helpers.control_group import ControlGroup from . import constants as C
[ 11748, 10688, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 17, 13, 2340, 13, 20850, 62, 4906, 312, 1330, 11801, 6030, 7390, 198, 6738, 629, 17, 13, 16794, 364, 13, 13716, 62, 8094, 1330, 6779, 13247, 198, 198, 6738, 764, 1330, 38491, 355, 327 ]
3.369565
46
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2019 Adrian Englhardt <[email protected]> # Licensed under the MIT License - https://opensource.org/licenses/MIT from .change_detection_helpers import normalize, normalize_2d, normalize_2d_global, prepare_data, smooth_frequency, \ transform_to_cosdist, transform_to_padded_cosdist, relative_frequency, percentual_diff, cut_array, filter_min_freq from .helpers import expand_path, natural_sort __all__ = ['normalize', 'normalize_2d', 'normalize_2d_global', 'prepare_data', 'smooth_frequency', 'transform_to_cosdist', 'transform_to_padded_cosdist', 'relative_frequency', 'percentual_diff', 'cut_array', 'filter_min_freq', 'expand_path', 'natural_sort']
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 66, 8, 13130, 21462, 1985, 75, 28375, 1279, 324, 4484, 13, 1516, 75, 28375, 31, 14816, 13, 785, 29, 198, 2, 49962, 739, 262, 17168, 13789, 532, 3740, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 198, 6738, 764, 3803, 62, 15255, 3213, 62, 16794, 364, 1330, 3487, 1096, 11, 3487, 1096, 62, 17, 67, 11, 3487, 1096, 62, 17, 67, 62, 20541, 11, 8335, 62, 7890, 11, 7209, 62, 35324, 11, 3467, 198, 220, 220, 220, 6121, 62, 1462, 62, 6966, 17080, 11, 6121, 62, 1462, 62, 79, 29373, 62, 6966, 17080, 11, 3585, 62, 35324, 11, 1411, 723, 62, 26069, 11, 2005, 62, 18747, 11, 8106, 62, 1084, 62, 19503, 80, 198, 6738, 764, 16794, 364, 1330, 4292, 62, 6978, 11, 3288, 62, 30619, 198, 198, 834, 439, 834, 796, 37250, 11265, 1096, 3256, 705, 11265, 1096, 62, 17, 67, 3256, 705, 11265, 1096, 62, 17, 67, 62, 20541, 3256, 705, 46012, 533, 62, 7890, 3256, 705, 5796, 5226, 62, 35324, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35636, 62, 1462, 62, 6966, 17080, 3256, 705, 35636, 62, 1462, 62, 79, 29373, 62, 6966, 17080, 3256, 705, 43762, 62, 35324, 3256, 705, 25067, 723, 62, 26069, 3256, 705, 8968, 62, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24455, 62, 1084, 62, 19503, 80, 3256, 705, 11201, 392, 62, 6978, 3256, 705, 11802, 62, 30619, 20520, 198 ]
2.764706
272
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # random code that helps with debugging/testing the python interfaces and examples # this is not meant to be run by normal users from __future__ import with_statement # for python 2.5 __copyright__ = 'Copyright (C) 2009-2010' __license__ = 'Apache License, Version 2.0' # random code that helps with debugging/testing the python interfaces and examples # this is not meant to be run by normal users from openravepy import * import openravepy.examples from openravepy.interfaces import * from numpy import * import numpy,time
[ 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 220, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 4738, 2438, 326, 5419, 351, 28769, 14, 33407, 262, 21015, 20314, 290, 6096, 198, 2, 428, 318, 407, 4001, 284, 307, 1057, 416, 3487, 2985, 198, 6738, 11593, 37443, 834, 1330, 351, 62, 26090, 1303, 329, 21015, 362, 13, 20, 198, 834, 22163, 4766, 834, 796, 705, 15269, 357, 34, 8, 3717, 12, 10333, 6, 198, 834, 43085, 834, 796, 705, 25189, 4891, 13789, 11, 10628, 362, 13, 15, 6, 198, 198, 2, 4738, 2438, 326, 5419, 351, 28769, 14, 33407, 262, 21015, 20314, 290, 6096, 198, 2, 428, 318, 407, 4001, 284, 307, 1057, 416, 3487, 2985, 198, 6738, 1280, 5758, 9078, 1330, 1635, 198, 11748, 1280, 5758, 9078, 13, 1069, 12629, 198, 6738, 1280, 5758, 9078, 13, 3849, 32186, 1330, 1635, 198, 6738, 299, 32152, 1330, 1635, 198, 11748, 299, 32152, 11, 2435, 628, 220, 220, 220, 220, 198 ]
3.825623
281
import package.tuplist as tl import package.superdict as sd import pulp as pl import package.config as conf import package.params as pm import numpy as np import pprint as pp
[ 11748, 5301, 13, 28047, 489, 396, 355, 256, 75, 198, 11748, 5301, 13, 16668, 11600, 355, 45647, 198, 11748, 38341, 355, 458, 198, 11748, 5301, 13, 11250, 355, 1013, 198, 11748, 5301, 13, 37266, 355, 9114, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 279, 4798, 355, 9788, 198 ]
3.571429
49
from django.contrib import admin from guardian.admin import GuardedModelAdmin from ephios.core.models import ( Consequence, Event, EventType, LocalParticipation, Qualification, QualificationCategory, QualificationGrant, Shift, WorkingHours, ) admin.site.register(Qualification) admin.site.register(QualificationGrant) admin.site.register(QualificationCategory) admin.site.register(WorkingHours) admin.site.register(Consequence) admin.site.register(Shift) admin.site.register(Event, GuardedModelAdmin) admin.site.register(EventType) admin.site.register(LocalParticipation)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 21688, 13, 28482, 1330, 4932, 276, 17633, 46787, 198, 198, 6738, 304, 746, 4267, 13, 7295, 13, 27530, 1330, 357, 198, 220, 220, 220, 1482, 43167, 11, 198, 220, 220, 220, 8558, 11, 198, 220, 220, 220, 8558, 6030, 11, 198, 220, 220, 220, 10714, 34363, 341, 11, 198, 220, 220, 220, 9537, 2649, 11, 198, 220, 220, 220, 9537, 2649, 27313, 11, 198, 220, 220, 220, 9537, 2649, 45431, 11, 198, 220, 220, 220, 15576, 11, 198, 220, 220, 220, 14594, 39792, 11, 198, 8, 198, 198, 28482, 13, 15654, 13, 30238, 7, 46181, 2649, 8, 198, 28482, 13, 15654, 13, 30238, 7, 46181, 2649, 45431, 8, 198, 28482, 13, 15654, 13, 30238, 7, 46181, 2649, 27313, 8, 198, 28482, 13, 15654, 13, 30238, 7, 28516, 39792, 8, 198, 28482, 13, 15654, 13, 30238, 7, 34, 40819, 594, 8, 198, 198, 28482, 13, 15654, 13, 30238, 7, 33377, 8, 198, 28482, 13, 15654, 13, 30238, 7, 9237, 11, 4932, 276, 17633, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 9237, 6030, 8, 198, 28482, 13, 15654, 13, 30238, 7, 14565, 34363, 341, 8, 198 ]
3.117347
196
"""Strptime-related classes and functions. CLASSES: LocaleTime -- Discovers and/or stores locale-specific time information TimeRE -- Creates regexes for pattern matching a string of text containing time information as is returned by time.strftime() FUNCTIONS: _getlang -- Figure out what language is being used for the locale strptime -- Calculates the time struct represented by the passed-in string Requires Python 2.2.1 or higher (mainly because of the use of property()). Can be used in Python 2.2 if the following line is added: True = 1; False = 0 """ import time import locale import calendar from re import compile as re_compile from re import IGNORECASE from datetime import date as datetime_date __author__ = "Brett Cannon" __email__ = "[email protected]" __all__ = ['strptime'] class LocaleTime(object): """Stores and handles locale-specific information related to time. This is not thread-safe! Attributes are lazily calculated and no precaution is taken to check to see if the locale information has changed since the creation of the instance in use. ATTRIBUTES (all read-only after instance creation! Instance variables that store the values have mangled names): f_weekday -- full weekday names (7-item list) a_weekday -- abbreviated weekday names (7-item list) f_month -- full weekday names (14-item list; dummy value in [0], which is added by code) a_month -- abbreviated weekday names (13-item list, dummy value in [0], which is added by code) am_pm -- AM/PM representation (2-item list) LC_date_time -- format string for date/time representation (string) LC_date -- format string for date representation (string) LC_time -- format string for time representation (string) timezone -- daylight- and non-daylight-savings timezone representation (3-item list; code tacks on blank item at end for possible lack of timezone such as UTC) lang -- Language used by instance (string) """ def __init__(self, f_weekday=None, a_weekday=None, f_month=None, a_month=None, am_pm=None, LC_date_time=None, LC_time=None, LC_date=None, timezone=None, lang=None): """Optionally set attributes with passed-in values.""" if f_weekday is None: self.__f_weekday = None elif len(f_weekday) == 7: self.__f_weekday = list(f_weekday) else: raise TypeError("full weekday names must be a 7-item sequence") if a_weekday is None: self.__a_weekday = None elif len(a_weekday) == 7: self.__a_weekday = list(a_weekday) else: raise TypeError( "abbreviated weekday names must be a 7-item sequence") if f_month is None: self.__f_month = None elif len(f_month) == 12: self.__f_month = self.__pad(f_month, True) else: raise TypeError("full month names must be a 12-item sequence") if a_month is None: self.__a_month = None elif len(a_month) == 12: self.__a_month = self.__pad(a_month, True) else: raise TypeError( "abbreviated month names must be a 12-item sequence") if am_pm is None: self.__am_pm = None elif len(am_pm) == 2: self.__am_pm = am_pm else: raise TypeError("AM/PM representation must be a 2-item sequence") self.__LC_date_time = LC_date_time self.__LC_time = LC_time self.__LC_date = LC_date self.__timezone = timezone if timezone: if len(timezone) != 2: raise TypeError("timezone names must contain 2 items") else: self.__timezone = self.__pad(timezone, False) if lang: self.__lang = lang else: self.__lang = _getlang() f_weekday = property(__get_f_weekday, __set_nothing, doc="Full weekday names") a_weekday = property(__get_a_weekday, __set_nothing, doc="Abbreviated weekday names") f_month = property(__get_f_month, __set_nothing, doc="Full month names (dummy value at index 0)") a_month = property(__get_a_month, __set_nothing, doc="Abbreviated month names (dummy value at index 0)") am_pm = property(__get_am_pm, __set_nothing, doc="AM/PM representation") timezone = property(__get_timezone, __set_nothing, doc="Timezone representation (dummy value at index 2)") LC_date_time = property( __get_LC_date_time, __set_nothing, doc= "Format string for locale's date/time representation ('%c' format)") LC_date = property(__get_LC_date, __set_nothing, doc="Format string for locale's date representation ('%x' format)") LC_time = property(__get_LC_time, __set_nothing, doc="Format string for locale's time representation ('%X' format)") lang = property(lambda self: self.__lang, __set_nothing, doc="Language used for instance") class TimeRE(dict): """Handle conversion from format directives to regexes.""" def __init__(self, locale_time=None): """Init inst with non-locale regexes and store LocaleTime object.""" #XXX: Does 'Y' need to worry about having less or more than 4 digits? base = super(TimeRE, self) base.__init__({ # The " \d" option is to make %c from ANSI C work 'd': r"(?P<d>3[0-1]|[1-2]\d|0[1-9]|[1-9]| [1-9])", 'H': r"(?P<H>2[0-3]|[0-1]\d|\d)", 'I': r"(?P<I>1[0-2]|0[1-9]|[1-9])", 'j': r"(?P<j>36[0-6]|3[0-5]\d|[1-2]\d\d|0[1-9]\d|00[1-9]|[1-9]\d|0[1-9]|[1-9])", 'm': r"(?P<m>1[0-2]|0[1-9]|[1-9])", 'M': r"(?P<M>[0-5]\d|\d)", 'S': r"(?P<S>6[0-1]|[0-5]\d|\d)", 'U': r"(?P<U>5[0-3]|[0-4]\d|\d)", 'w': r"(?P<w>[0-6])", # W is set below by using 'U' 'y': r"(?P<y>\d\d)", 'Y': r"(?P<Y>\d\d\d\d)"}) base.__setitem__('W', base.__getitem__('U')) if locale_time: self.locale_time = locale_time else: self.locale_time = LocaleTime() def __getitem__(self, fetch): """Try to fetch regex; if it does not exist, construct it.""" try: return super(TimeRE, self).__getitem__(fetch) except KeyError: constructors = { 'A': lambda: self.__seqToRE(self.locale_time.f_weekday, fetch), 'a': lambda: self.__seqToRE(self.locale_time.a_weekday, fetch), 'B': lambda: self.__seqToRE(self.locale_time.f_month[1:], fetch), 'b': lambda: self.__seqToRE(self.locale_time.a_month[1:], fetch), 'c': lambda: self.pattern(self.locale_time.LC_date_time), 'p': lambda: self.__seqToRE(self.locale_time.am_pm, fetch), 'x': lambda: self.pattern(self.locale_time.LC_date), 'X': lambda: self.pattern(self.locale_time.LC_time), 'Z': lambda: self.__seqToRE(self.locale_time.timezone, fetch), '%': lambda: '%', } if fetch in constructors: self[fetch] = constructors[fetch]() return self[fetch] else: raise def __seqToRE(self, to_convert, directive): """Convert a list to a regex string for matching a directive.""" def sorter(a, b): """Sort based on length. Done in case for some strange reason that names in the locale only differ by a suffix and thus want the name with the suffix to match first. """ try: a_length = len(a) except TypeError: a_length = 0 try: b_length = len(b) except TypeError: b_length = 0 return cmp(b_length, a_length) to_convert = to_convert[:] # Don't want to change value in-place. for value in to_convert: if value != '': break else: return '' to_convert.sort(sorter) regex = '|'.join(to_convert) regex = '(?P<%s>%s' % (directive, regex) return '%s)' % regex def pattern(self, format): """Return re pattern for the format string. Need to make sure that any characters that might be interpreted as regex syntax is escaped. """ processed_format = '' # The sub() call escapes all characters that might be misconstrued # as regex syntax. regex_chars = re_compile(r"([\\.^$*+?{}\[\]|])") format = regex_chars.sub(r"\\\1", format) whitespace_replacement = re_compile('\s+') format = whitespace_replacement.sub('\s*', format) while format.find('%') != -1: directive_index = format.index('%')+1 processed_format = "%s%s%s" % (processed_format, format[:directive_index-1], self[format[directive_index]]) format = format[directive_index+1:] return "%s%s" % (processed_format, format) def compile(self, format): """Return a compiled re object for the format string.""" return re_compile(self.pattern(format), IGNORECASE) def strptime(data_string, format="%a %b %d %H:%M:%S %Y"): """Return a time struct based on the input data and the format string.""" time_re = TimeRE() locale_time = time_re.locale_time format_regex = time_re.compile(format) found = format_regex.match(data_string) if not found: raise ValueError("time data did not match format: data=%s fmt=%s" % (data_string, format)) if len(data_string) != found.end(): raise ValueError("unconverted data remains: %s" % data_string[found.end():]) year = 1900 month = day = 1 hour = minute = second = 0 tz = -1 # weekday and julian defaulted to -1 so as to signal need to calculate values weekday = julian = -1 found_dict = found.groupdict() for group_key in found_dict.iterkeys(): if group_key == 'y': year = int(found_dict['y']) # Open Group specification for strptime() states that a %y #value in the range of [00, 68] is in the century 2000, while #[69,99] is in the century 1900 if year <= 68: year += 2000 else: year += 1900 elif group_key == 'Y': year = int(found_dict['Y']) elif group_key == 'm': month = int(found_dict['m']) elif group_key == 'B': month = _insensitiveindex(locale_time.f_month, found_dict['B']) elif group_key == 'b': month = _insensitiveindex(locale_time.a_month, found_dict['b']) elif group_key == 'd': day = int(found_dict['d']) elif group_key == 'H': hour = int(found_dict['H']) elif group_key == 'I': hour = int(found_dict['I']) ampm = found_dict.get('p', '').lower() # If there was no AM/PM indicator, we'll treat this like AM if ampm in ('', locale_time.am_pm[0].lower()): # We're in AM so the hour is correct unless we're # looking at 12 midnight. # 12 midnight == 12 AM == hour 0 if hour == 12: hour = 0 elif ampm == locale_time.am_pm[1].lower(): # We're in PM so we need to add 12 to the hour unless # we're looking at 12 noon. # 12 noon == 12 PM == hour 12 if hour != 12: hour += 12 elif group_key == 'M': minute = int(found_dict['M']) elif group_key == 'S': second = int(found_dict['S']) elif group_key == 'A': weekday = _insensitiveindex(locale_time.f_weekday, found_dict['A']) elif group_key == 'a': weekday = _insensitiveindex(locale_time.a_weekday, found_dict['a']) elif group_key == 'w': weekday = int(found_dict['w']) if weekday == 0: weekday = 6 else: weekday -= 1 elif group_key == 'j': julian = int(found_dict['j']) elif group_key == 'Z': # Since -1 is default value only need to worry about setting tz if # it can be something other than -1. found_zone = found_dict['Z'].lower() if locale_time.timezone[0] == locale_time.timezone[1] and \ time.daylight: pass #Deals with bad locale setup where timezone info is # the same; first found on FreeBSD 4.4. elif found_zone in ("utc", "gmt"): tz = 0 elif locale_time.timezone[2].lower() == found_zone: tz = 0 elif time.daylight and \ locale_time.timezone[3].lower() == found_zone: tz = 1 # Cannot pre-calculate datetime_date() since can change in Julian #calculation and thus could have different value for the day of the week #calculation if julian == -1: # Need to add 1 to result since first day of the year is 1, not 0. julian = datetime_date(year, month, day).toordinal() - \ datetime_date(year, 1, 1).toordinal() + 1 else: # Assume that if they bothered to include Julian day it will #be accurate datetime_result = datetime_date.fromordinal((julian - 1) + datetime_date(year, 1, 1).toordinal()) year = datetime_result.year month = datetime_result.month day = datetime_result.day if weekday == -1: weekday = datetime_date(year, month, day).weekday() return time.struct_time((year, month, day, hour, minute, second, weekday, julian, tz))
[ 37811, 13290, 457, 524, 12, 5363, 6097, 290, 5499, 13, 198, 198, 31631, 1546, 25, 198, 220, 220, 220, 15181, 1000, 7575, 1377, 19718, 690, 290, 14, 273, 7000, 36693, 12, 11423, 640, 1321, 198, 220, 220, 220, 3862, 2200, 1377, 7921, 274, 40364, 274, 329, 3912, 12336, 257, 4731, 286, 2420, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 1321, 355, 318, 4504, 416, 640, 13, 2536, 31387, 3419, 198, 198, 42296, 4177, 11053, 25, 198, 220, 220, 220, 4808, 1136, 17204, 1377, 11291, 503, 644, 3303, 318, 852, 973, 329, 262, 36693, 198, 220, 220, 220, 965, 457, 524, 1377, 27131, 689, 262, 640, 2878, 7997, 416, 262, 3804, 12, 259, 4731, 198, 198, 39618, 11361, 362, 13, 17, 13, 16, 393, 2440, 357, 12417, 306, 780, 286, 262, 779, 286, 3119, 3419, 737, 198, 6090, 307, 973, 287, 11361, 362, 13, 17, 611, 262, 1708, 1627, 318, 2087, 25, 198, 220, 220, 220, 6407, 796, 352, 26, 10352, 796, 657, 198, 37811, 198, 11748, 640, 198, 11748, 36693, 198, 11748, 11845, 198, 6738, 302, 1330, 17632, 355, 302, 62, 5589, 576, 198, 6738, 302, 1330, 28730, 1581, 2943, 11159, 198, 6738, 4818, 8079, 1330, 3128, 355, 4818, 8079, 62, 4475, 198, 198, 834, 9800, 834, 796, 366, 33, 11489, 20585, 1, 198, 834, 12888, 834, 796, 366, 4679, 926, 31, 29412, 13, 2398, 1, 198, 198, 834, 439, 834, 796, 37250, 2536, 457, 524, 20520, 198, 198, 4871, 15181, 1000, 7575, 7, 15252, 2599, 198, 220, 220, 220, 37227, 1273, 2850, 290, 17105, 36693, 12, 11423, 1321, 3519, 284, 640, 13, 628, 220, 220, 220, 770, 318, 407, 4704, 12, 21230, 0, 220, 49213, 389, 37296, 813, 10488, 290, 645, 198, 220, 220, 220, 32992, 318, 2077, 284, 2198, 284, 766, 611, 262, 36693, 1321, 468, 3421, 198, 220, 220, 220, 1201, 262, 6282, 286, 262, 4554, 287, 779, 13, 628, 220, 220, 220, 5161, 5446, 9865, 3843, 1546, 357, 439, 1100, 12, 8807, 706, 4554, 6282, 0, 2262, 590, 9633, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3650, 262, 3815, 423, 45663, 992, 3891, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 10464, 820, 1377, 1336, 28269, 3891, 357, 22, 12, 9186, 1351, 8, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 10464, 820, 1377, 37640, 515, 28269, 3891, 357, 22, 12, 9186, 1351, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 8424, 1377, 1336, 28269, 3891, 357, 1415, 12, 9186, 1351, 26, 31548, 1988, 287, 685, 15, 4357, 543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 2087, 416, 2438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 8424, 1377, 37640, 515, 28269, 3891, 357, 1485, 12, 9186, 1351, 11, 31548, 1988, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 4357, 543, 318, 2087, 416, 2438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 716, 62, 4426, 1377, 3001, 14, 5868, 10552, 357, 17, 12, 9186, 1351, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22228, 62, 4475, 62, 2435, 1377, 5794, 4731, 329, 3128, 14, 2435, 10552, 357, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22228, 62, 4475, 1377, 5794, 4731, 329, 3128, 10552, 357, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22228, 62, 2435, 1377, 5794, 4731, 329, 640, 10552, 357, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 1377, 26010, 12, 290, 1729, 12, 820, 2971, 12, 39308, 654, 640, 11340, 10552, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 18, 12, 9186, 1351, 26, 2438, 256, 4595, 319, 9178, 2378, 379, 886, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1744, 3092, 286, 640, 11340, 884, 355, 18119, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42392, 1377, 15417, 973, 416, 4554, 357, 8841, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 277, 62, 10464, 820, 28, 14202, 11, 257, 62, 10464, 820, 28, 14202, 11, 277, 62, 8424, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 8424, 28, 14202, 11, 716, 62, 4426, 28, 14202, 11, 22228, 62, 4475, 62, 2435, 28, 14202, 11, 22228, 62, 2435, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22228, 62, 4475, 28, 14202, 11, 640, 11340, 28, 14202, 11, 42392, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19722, 453, 900, 12608, 351, 3804, 12, 259, 3815, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 62, 10464, 820, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 69, 62, 10464, 820, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 69, 62, 10464, 820, 8, 6624, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 69, 62, 10464, 820, 796, 1351, 7, 69, 62, 10464, 820, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 12853, 28269, 3891, 1276, 307, 257, 767, 12, 9186, 8379, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 257, 62, 10464, 820, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 64, 62, 10464, 820, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 64, 62, 10464, 820, 8, 6624, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 64, 62, 10464, 820, 796, 1351, 7, 64, 62, 10464, 820, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 397, 4679, 8903, 515, 28269, 3891, 1276, 307, 257, 767, 12, 9186, 220, 8379, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 62, 8424, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 69, 62, 8424, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 69, 62, 8424, 8, 6624, 1105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 69, 62, 8424, 796, 2116, 13, 834, 15636, 7, 69, 62, 8424, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 12853, 1227, 3891, 1276, 307, 257, 1105, 12, 9186, 8379, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 257, 62, 8424, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 64, 62, 8424, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 64, 62, 8424, 8, 6624, 1105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 64, 62, 8424, 796, 2116, 13, 834, 15636, 7, 64, 62, 8424, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 397, 4679, 8903, 515, 1227, 3891, 1276, 307, 257, 1105, 12, 9186, 8379, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 716, 62, 4426, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 321, 62, 4426, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 321, 62, 4426, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 321, 62, 4426, 796, 716, 62, 4426, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 2390, 14, 5868, 10552, 1276, 307, 257, 362, 12, 9186, 8379, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 5639, 62, 4475, 62, 2435, 796, 22228, 62, 4475, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 5639, 62, 2435, 796, 22228, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 5639, 62, 4475, 796, 22228, 62, 4475, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 2435, 11340, 796, 640, 11340, 198, 220, 220, 220, 220, 220, 220, 220, 611, 640, 11340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2435, 11340, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 2435, 11340, 3891, 1276, 3994, 362, 3709, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 2435, 11340, 796, 2116, 13, 834, 15636, 7, 2435, 11340, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 42392, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 17204, 796, 42392, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 17204, 796, 4808, 1136, 17204, 3419, 628, 220, 220, 220, 277, 62, 10464, 820, 796, 3119, 7, 834, 1136, 62, 69, 62, 10464, 820, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 2625, 13295, 28269, 3891, 4943, 198, 220, 220, 220, 257, 62, 10464, 820, 796, 3119, 7, 834, 1136, 62, 64, 62, 10464, 820, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 2625, 4826, 4679, 8903, 515, 28269, 3891, 4943, 628, 220, 220, 220, 277, 62, 8424, 796, 3119, 7, 834, 1136, 62, 69, 62, 8424, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 2625, 13295, 1227, 3891, 357, 67, 13513, 1988, 379, 6376, 657, 8, 4943, 198, 220, 220, 220, 257, 62, 8424, 796, 3119, 7, 834, 1136, 62, 64, 62, 8424, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 2625, 4826, 4679, 8903, 515, 1227, 3891, 357, 67, 13513, 1988, 379, 6376, 657, 8, 4943, 628, 220, 220, 220, 716, 62, 4426, 796, 3119, 7, 834, 1136, 62, 321, 62, 4426, 11, 11593, 2617, 62, 22366, 11, 2205, 2625, 2390, 14, 5868, 10552, 4943, 628, 220, 220, 220, 640, 11340, 796, 3119, 7, 834, 1136, 62, 2435, 11340, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 2625, 7575, 11340, 10552, 357, 67, 13513, 1988, 379, 6376, 362, 8, 4943, 628, 220, 220, 220, 22228, 62, 4475, 62, 2435, 796, 3119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 1136, 62, 5639, 62, 4475, 62, 2435, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 28, 198, 220, 220, 220, 220, 220, 220, 220, 366, 26227, 4731, 329, 36693, 338, 3128, 14, 2435, 10552, 19203, 4, 66, 6, 5794, 8, 4943, 198, 220, 220, 220, 22228, 62, 4475, 796, 3119, 7, 834, 1136, 62, 5639, 62, 4475, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 2625, 26227, 4731, 329, 36693, 338, 3128, 10552, 19203, 4, 87, 6, 5794, 8, 4943, 198, 220, 220, 220, 22228, 62, 2435, 796, 3119, 7, 834, 1136, 62, 5639, 62, 2435, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 2625, 26227, 4731, 329, 36693, 338, 640, 10552, 19203, 4, 55, 6, 5794, 8, 4943, 628, 220, 220, 220, 42392, 796, 3119, 7, 50033, 2116, 25, 2116, 13, 834, 17204, 11, 11593, 2617, 62, 22366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 2625, 32065, 973, 329, 4554, 4943, 628, 198, 4871, 3862, 2200, 7, 11600, 2599, 198, 220, 220, 220, 37227, 37508, 11315, 422, 5794, 34819, 284, 40364, 274, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 36693, 62, 2435, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31768, 916, 351, 1729, 12, 17946, 1000, 40364, 274, 290, 3650, 15181, 1000, 7575, 2134, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 43145, 25, 8314, 705, 56, 6, 761, 284, 5490, 546, 1719, 1342, 393, 517, 621, 604, 19561, 30, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 2208, 7, 7575, 2200, 11, 2116, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 13, 834, 15003, 834, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 366, 3467, 67, 1, 3038, 318, 284, 787, 4064, 66, 422, 3537, 11584, 327, 670, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 67, 10354, 374, 18109, 30, 47, 27, 67, 29, 18, 58, 15, 12, 16, 60, 91, 58, 16, 12, 17, 60, 59, 67, 91, 15, 58, 16, 12, 24, 60, 91, 58, 16, 12, 24, 60, 91, 685, 16, 12, 24, 12962, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39, 10354, 374, 18109, 30, 47, 27, 39, 29, 17, 58, 15, 12, 18, 60, 91, 58, 15, 12, 16, 60, 59, 67, 91, 59, 67, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40, 10354, 374, 18109, 30, 47, 27, 40, 29, 16, 58, 15, 12, 17, 60, 91, 15, 58, 16, 12, 24, 60, 91, 58, 16, 12, 24, 12962, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 73, 10354, 374, 18109, 30, 47, 27, 73, 29, 2623, 58, 15, 12, 21, 60, 91, 18, 58, 15, 12, 20, 60, 59, 67, 91, 58, 16, 12, 17, 60, 59, 67, 59, 67, 91, 15, 58, 16, 12, 24, 60, 59, 67, 91, 405, 58, 16, 12, 24, 60, 91, 58, 16, 12, 24, 60, 59, 67, 91, 15, 58, 16, 12, 24, 60, 91, 58, 16, 12, 24, 12962, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 76, 10354, 374, 18109, 30, 47, 27, 76, 29, 16, 58, 15, 12, 17, 60, 91, 15, 58, 16, 12, 24, 60, 91, 58, 16, 12, 24, 12962, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 44, 10354, 374, 18109, 30, 47, 27, 44, 36937, 15, 12, 20, 60, 59, 67, 91, 59, 67, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 10354, 374, 18109, 30, 47, 27, 50, 29, 21, 58, 15, 12, 16, 60, 91, 58, 15, 12, 20, 60, 59, 67, 91, 59, 67, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 52, 10354, 374, 18109, 30, 47, 27, 52, 29, 20, 58, 15, 12, 18, 60, 91, 58, 15, 12, 19, 60, 59, 67, 91, 59, 67, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 86, 10354, 374, 18109, 30, 47, 27, 86, 36937, 15, 12, 21, 12962, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 370, 318, 900, 2174, 416, 1262, 705, 52, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 88, 10354, 374, 18109, 30, 47, 27, 88, 29, 59, 67, 59, 67, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 56, 10354, 374, 18109, 30, 47, 27, 56, 29, 59, 67, 59, 67, 59, 67, 59, 67, 16725, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 13, 834, 2617, 9186, 834, 10786, 54, 3256, 2779, 13, 834, 1136, 9186, 834, 10786, 52, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 36693, 62, 2435, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17946, 1000, 62, 2435, 796, 36693, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17946, 1000, 62, 2435, 796, 15181, 1000, 7575, 3419, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 21207, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23433, 284, 21207, 40364, 26, 611, 340, 857, 407, 2152, 11, 5678, 340, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2208, 7, 7575, 2200, 11, 2116, 737, 834, 1136, 9186, 834, 7, 69, 7569, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5678, 669, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32, 10354, 37456, 25, 2116, 13, 834, 41068, 2514, 2200, 7, 944, 13, 17946, 1000, 62, 2435, 13, 69, 62, 10464, 820, 11, 21207, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 37456, 25, 2116, 13, 834, 41068, 2514, 2200, 7, 944, 13, 17946, 1000, 62, 2435, 13, 64, 62, 10464, 820, 11, 21207, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33, 10354, 37456, 25, 2116, 13, 834, 41068, 2514, 2200, 7, 944, 13, 17946, 1000, 62, 2435, 13, 69, 62, 8424, 58, 16, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21207, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 37456, 25, 2116, 13, 834, 41068, 2514, 2200, 7, 944, 13, 17946, 1000, 62, 2435, 13, 64, 62, 8424, 58, 16, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21207, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 37456, 25, 2116, 13, 33279, 7, 944, 13, 17946, 1000, 62, 2435, 13, 5639, 62, 4475, 62, 2435, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 10354, 37456, 25, 2116, 13, 834, 41068, 2514, 2200, 7, 944, 13, 17946, 1000, 62, 2435, 13, 321, 62, 4426, 11, 21207, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 87, 10354, 37456, 25, 2116, 13, 33279, 7, 944, 13, 17946, 1000, 62, 2435, 13, 5639, 62, 4475, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 55, 10354, 37456, 25, 2116, 13, 33279, 7, 944, 13, 17946, 1000, 62, 2435, 13, 5639, 62, 2435, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 57, 10354, 37456, 25, 2116, 13, 834, 41068, 2514, 2200, 7, 944, 13, 17946, 1000, 62, 2435, 13, 2435, 11340, 11, 21207, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 10354, 37456, 25, 705, 4, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21207, 287, 5678, 669, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 58, 69, 7569, 60, 796, 5678, 669, 58, 69, 7569, 60, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 58, 69, 7569, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 220, 220, 220, 825, 11593, 41068, 2514, 2200, 7, 944, 11, 284, 62, 1102, 1851, 11, 22644, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 257, 1351, 284, 257, 40364, 4731, 329, 12336, 257, 22644, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 825, 264, 4337, 7, 64, 11, 275, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 42758, 1912, 319, 4129, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24429, 287, 1339, 329, 617, 6283, 1738, 326, 3891, 287, 262, 36693, 691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13238, 416, 257, 35488, 290, 4145, 765, 262, 1438, 351, 262, 35488, 284, 2872, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 13664, 796, 18896, 7, 64, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 13664, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 13664, 796, 18896, 7, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 13664, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 3149, 7, 65, 62, 13664, 11, 257, 62, 13664, 8, 628, 220, 220, 220, 220, 220, 220, 220, 284, 62, 1102, 1851, 796, 284, 62, 1102, 1851, 58, 47715, 220, 1303, 2094, 470, 765, 284, 1487, 1988, 287, 12, 5372, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1988, 287, 284, 62, 1102, 1851, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 14512, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 1102, 1851, 13, 30619, 7, 82, 4337, 8, 198, 220, 220, 220, 220, 220, 220, 220, 40364, 796, 705, 91, 4458, 22179, 7, 1462, 62, 1102, 1851, 8, 198, 220, 220, 220, 220, 220, 220, 220, 40364, 796, 29513, 30, 47, 27, 4, 82, 29, 4, 82, 6, 4064, 357, 12942, 425, 11, 40364, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 4, 82, 33047, 4064, 40364, 628, 220, 220, 220, 825, 3912, 7, 944, 11, 5794, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 302, 3912, 329, 262, 5794, 4731, 13, 628, 220, 220, 220, 220, 220, 220, 220, 10664, 284, 787, 1654, 326, 597, 3435, 326, 1244, 307, 16173, 355, 198, 220, 220, 220, 220, 220, 220, 220, 40364, 15582, 318, 13537, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13686, 62, 18982, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 850, 3419, 869, 32695, 477, 3435, 326, 1244, 307, 2984, 9979, 21556, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 355, 40364, 15582, 13, 198, 220, 220, 220, 220, 220, 220, 220, 40364, 62, 354, 945, 796, 302, 62, 5589, 576, 7, 81, 18109, 58, 6852, 13, 61, 3, 9, 10, 30, 90, 32239, 58, 59, 60, 91, 12962, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5794, 796, 40364, 62, 354, 945, 13, 7266, 7, 81, 1, 6852, 59, 16, 1600, 5794, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13216, 10223, 62, 35666, 5592, 796, 302, 62, 5589, 576, 10786, 59, 82, 10, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5794, 796, 13216, 10223, 62, 35666, 5592, 13, 7266, 10786, 59, 82, 9, 3256, 5794, 8, 198, 220, 220, 220, 220, 220, 220, 220, 981, 5794, 13, 19796, 10786, 4, 11537, 14512, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22644, 62, 9630, 796, 5794, 13, 9630, 10786, 4, 11537, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13686, 62, 18982, 796, 36521, 82, 4, 82, 4, 82, 1, 4064, 357, 14681, 276, 62, 18982, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 58, 25, 12942, 425, 62, 9630, 12, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 58, 18982, 58, 12942, 425, 62, 9630, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 796, 5794, 58, 12942, 425, 62, 9630, 10, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 36521, 82, 4, 82, 1, 4064, 357, 14681, 276, 62, 18982, 11, 5794, 8, 628, 220, 220, 220, 825, 17632, 7, 944, 11, 5794, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 14102, 302, 2134, 329, 262, 5794, 4731, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 302, 62, 5589, 576, 7, 944, 13, 33279, 7, 18982, 828, 28730, 1581, 2943, 11159, 8, 628, 198, 4299, 965, 457, 524, 7, 7890, 62, 8841, 11, 5794, 2625, 4, 64, 4064, 65, 4064, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4064, 56, 1, 2599, 198, 220, 220, 220, 37227, 13615, 257, 640, 2878, 1912, 319, 262, 5128, 1366, 290, 262, 5794, 4731, 526, 15931, 198, 220, 220, 220, 640, 62, 260, 796, 3862, 2200, 3419, 198, 220, 220, 220, 36693, 62, 2435, 796, 640, 62, 260, 13, 17946, 1000, 62, 2435, 198, 220, 220, 220, 5794, 62, 260, 25636, 796, 640, 62, 260, 13, 5589, 576, 7, 18982, 8, 198, 220, 220, 220, 1043, 796, 5794, 62, 260, 25636, 13, 15699, 7, 7890, 62, 8841, 8, 198, 220, 220, 220, 611, 407, 1043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 2435, 1366, 750, 407, 2872, 5794, 25, 220, 1366, 28, 4, 82, 220, 46996, 28, 4, 82, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 62, 8841, 11, 5794, 4008, 198, 220, 220, 220, 611, 18896, 7, 7890, 62, 8841, 8, 14512, 1043, 13, 437, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 403, 1102, 13658, 1366, 3793, 25, 4064, 82, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 8841, 58, 9275, 13, 437, 33529, 12962, 198, 220, 220, 220, 614, 796, 21489, 198, 220, 220, 220, 1227, 796, 1110, 796, 352, 198, 220, 220, 220, 1711, 796, 5664, 796, 1218, 796, 657, 198, 220, 220, 220, 256, 89, 796, 532, 16, 198, 220, 220, 220, 1303, 28269, 290, 474, 377, 666, 4277, 276, 284, 532, 16, 523, 355, 284, 6737, 761, 284, 15284, 3815, 198, 220, 220, 220, 28269, 796, 474, 377, 666, 796, 532, 16, 198, 220, 220, 220, 1043, 62, 11600, 796, 1043, 13, 8094, 11600, 3419, 198, 220, 220, 220, 329, 1448, 62, 2539, 287, 1043, 62, 11600, 13, 2676, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1448, 62, 2539, 6624, 705, 88, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 796, 493, 7, 9275, 62, 11600, 17816, 88, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4946, 4912, 20855, 329, 965, 457, 524, 3419, 2585, 326, 257, 4064, 88, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8367, 287, 262, 2837, 286, 685, 405, 11, 8257, 60, 318, 287, 262, 4289, 4751, 11, 981, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 58, 3388, 11, 2079, 60, 318, 287, 262, 4289, 21489, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 614, 19841, 8257, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 15853, 4751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 15853, 21489, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 56, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 796, 493, 7, 9275, 62, 11600, 17816, 56, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 76, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1227, 796, 493, 7, 9275, 62, 11600, 17816, 76, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 33, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1227, 796, 4808, 1040, 18464, 9630, 7, 17946, 1000, 62, 2435, 13, 69, 62, 8424, 11, 1043, 62, 11600, 17816, 33, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 65, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1227, 796, 4808, 1040, 18464, 9630, 7, 17946, 1000, 62, 2435, 13, 64, 62, 8424, 11, 1043, 62, 11600, 17816, 65, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 67, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1110, 796, 493, 7, 9275, 62, 11600, 17816, 67, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 39, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 796, 493, 7, 9275, 62, 11600, 17816, 39, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 40, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 796, 493, 7, 9275, 62, 11600, 17816, 40, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 716, 4426, 796, 1043, 62, 11600, 13, 1136, 10786, 79, 3256, 10148, 737, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 612, 373, 645, 3001, 14, 5868, 16916, 11, 356, 1183, 2190, 428, 588, 3001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 716, 4426, 287, 19203, 3256, 36693, 62, 2435, 13, 321, 62, 4426, 58, 15, 4083, 21037, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 821, 287, 3001, 523, 262, 1711, 318, 3376, 4556, 356, 821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2045, 379, 1105, 15896, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1105, 15896, 6624, 1105, 3001, 6624, 1711, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1711, 6624, 1105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 716, 4426, 6624, 36693, 62, 2435, 13, 321, 62, 4426, 58, 16, 4083, 21037, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 821, 287, 3122, 523, 356, 761, 284, 751, 1105, 284, 262, 1711, 4556, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 821, 2045, 379, 1105, 19613, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1105, 19613, 6624, 1105, 3122, 6624, 1711, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1711, 14512, 1105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 15853, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 44, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5664, 796, 493, 7, 9275, 62, 11600, 17816, 44, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 50, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1218, 796, 493, 7, 9275, 62, 11600, 17816, 50, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 32, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28269, 796, 4808, 1040, 18464, 9630, 7, 17946, 1000, 62, 2435, 13, 69, 62, 10464, 820, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 62, 11600, 17816, 32, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 64, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28269, 796, 4808, 1040, 18464, 9630, 7, 17946, 1000, 62, 2435, 13, 64, 62, 10464, 820, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 62, 11600, 17816, 64, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 86, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28269, 796, 493, 7, 9275, 62, 11600, 17816, 86, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28269, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28269, 796, 718, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28269, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 73, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 377, 666, 796, 493, 7, 9275, 62, 11600, 17816, 73, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1448, 62, 2539, 6624, 705, 57, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4619, 532, 16, 318, 4277, 1988, 691, 761, 284, 5490, 546, 4634, 256, 89, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 460, 307, 1223, 584, 621, 532, 16, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 62, 11340, 796, 1043, 62, 11600, 17816, 57, 6, 4083, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36693, 62, 2435, 13, 2435, 11340, 58, 15, 60, 6624, 36693, 62, 2435, 13, 2435, 11340, 58, 16, 60, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 820, 2971, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 1303, 5005, 874, 351, 2089, 36693, 9058, 810, 640, 11340, 7508, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 976, 26, 717, 1043, 319, 35841, 604, 13, 19, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1043, 62, 11340, 287, 5855, 315, 66, 1600, 366, 70, 16762, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 89, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 36693, 62, 2435, 13, 2435, 11340, 58, 17, 4083, 21037, 3419, 6624, 1043, 62, 11340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 89, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 640, 13, 820, 2971, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36693, 62, 2435, 13, 2435, 11340, 58, 18, 4083, 21037, 3419, 6624, 1043, 62, 11340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 89, 796, 352, 628, 220, 220, 220, 1303, 26003, 662, 12, 9948, 3129, 378, 4818, 8079, 62, 4475, 3419, 1201, 460, 1487, 287, 18322, 198, 220, 220, 220, 1303, 9948, 14902, 290, 4145, 714, 423, 1180, 1988, 329, 262, 1110, 286, 262, 1285, 198, 220, 220, 220, 1303, 9948, 14902, 198, 220, 220, 220, 611, 474, 377, 666, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10664, 284, 751, 352, 284, 1255, 1201, 717, 1110, 286, 262, 614, 318, 352, 11, 407, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 474, 377, 666, 796, 4818, 8079, 62, 4475, 7, 1941, 11, 1227, 11, 1110, 737, 1462, 585, 1292, 3419, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 62, 4475, 7, 1941, 11, 352, 11, 352, 737, 1462, 585, 1292, 3419, 1343, 352, 198, 220, 220, 220, 2073, 25, 220, 1303, 2195, 2454, 326, 611, 484, 20466, 284, 2291, 18322, 1110, 340, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1350, 7187, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 62, 20274, 796, 4818, 8079, 62, 4475, 13, 6738, 585, 1292, 19510, 73, 377, 666, 532, 352, 8, 1343, 4818, 8079, 62, 4475, 7, 1941, 11, 352, 11, 352, 737, 1462, 585, 1292, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 614, 796, 4818, 8079, 62, 20274, 13, 1941, 198, 220, 220, 220, 220, 220, 220, 220, 1227, 796, 4818, 8079, 62, 20274, 13, 8424, 198, 220, 220, 220, 220, 220, 220, 220, 1110, 796, 4818, 8079, 62, 20274, 13, 820, 198, 220, 220, 220, 611, 28269, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28269, 796, 4818, 8079, 62, 4475, 7, 1941, 11, 1227, 11, 1110, 737, 10464, 820, 3419, 198, 220, 220, 220, 1441, 640, 13, 7249, 62, 2435, 19510, 1941, 11, 1227, 11, 1110, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 11, 5664, 11, 1218, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28269, 11, 474, 377, 666, 11, 256, 89, 4008, 198 ]
2.052365
7,104
from kivy.adapters.dictadapter import DictAdapter from kivy.uix.selectableview import SelectableView from kivy.uix.listview import ListView, ListItemButton from kivy.uix.gridlayout import GridLayout from kivy.lang import Builder from kivy.factory import Factory from fixtures import integers_dict # [TODO] Will SelectableView be in the kivy/factory_registers.py, # as a result of setup.py? ListItemButton? others? Factory.register('SelectableView', cls=SelectableView) Factory.register('ListItemButton', cls=ListItemButton) # [TODO] SelectableView is subclassed here, yet, it is necessary to add the # index property in the template. Same TODO in list_cascade_images.py. Builder.load_string(''' [CustomListItem@SelectableView+BoxLayout]: size_hint_y: ctx.size_hint_y height: ctx.height ListItemButton: text: ctx.text is_selected: ctx.is_selected ''') class MainView(GridLayout): '''Implementation of a list view with a kv template used for the list item class. ''' if __name__ == '__main__': from kivy.base import runTouchApp runTouchApp(MainView(width=800))
[ 6738, 479, 452, 88, 13, 324, 12126, 13, 11600, 324, 3429, 1330, 360, 713, 47307, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 19738, 540, 1177, 1330, 9683, 540, 7680, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 4868, 1177, 1330, 7343, 7680, 11, 7343, 7449, 21864, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 25928, 39786, 1330, 24846, 32517, 198, 6738, 479, 452, 88, 13, 17204, 1330, 35869, 198, 6738, 479, 452, 88, 13, 69, 9548, 1330, 19239, 198, 198, 6738, 34609, 1330, 37014, 62, 11600, 198, 198, 2, 685, 51, 3727, 46, 60, 2561, 9683, 540, 7680, 307, 287, 262, 479, 452, 88, 14, 69, 9548, 62, 2301, 6223, 13, 9078, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 355, 257, 1255, 286, 9058, 13, 9078, 30, 7343, 7449, 21864, 30, 1854, 30, 198, 22810, 13, 30238, 10786, 17563, 540, 7680, 3256, 537, 82, 28, 17563, 540, 7680, 8, 198, 22810, 13, 30238, 10786, 8053, 7449, 21864, 3256, 537, 82, 28, 8053, 7449, 21864, 8, 198, 198, 2, 685, 51, 3727, 46, 60, 9683, 540, 7680, 318, 47611, 276, 994, 11, 1865, 11, 340, 318, 3306, 284, 751, 262, 198, 2, 220, 220, 220, 220, 220, 220, 220, 6376, 3119, 287, 262, 11055, 13, 16766, 16926, 46, 287, 1351, 62, 66, 28966, 62, 17566, 13, 9078, 13, 198, 198, 32875, 13, 2220, 62, 8841, 7, 7061, 6, 198, 58, 15022, 8053, 7449, 31, 17563, 540, 7680, 10, 14253, 32517, 5974, 198, 220, 220, 220, 2546, 62, 71, 600, 62, 88, 25, 269, 17602, 13, 7857, 62, 71, 600, 62, 88, 198, 220, 220, 220, 6001, 25, 269, 17602, 13, 17015, 198, 220, 220, 220, 7343, 7449, 21864, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 25, 269, 17602, 13, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 34213, 25, 269, 17602, 13, 271, 62, 34213, 198, 7061, 11537, 628, 198, 4871, 8774, 7680, 7, 41339, 32517, 2599, 198, 220, 220, 220, 705, 7061, 3546, 32851, 286, 257, 1351, 1570, 351, 257, 479, 85, 11055, 973, 329, 262, 1351, 198, 220, 220, 220, 2378, 1398, 13, 198, 220, 220, 220, 705, 7061, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 422, 479, 452, 88, 13, 8692, 1330, 1057, 35211, 4677, 198, 220, 220, 220, 1057, 35211, 4677, 7, 13383, 7680, 7, 10394, 28, 7410, 4008, 198 ]
2.787654
405
import math import os import sys import numpy as np from util import load_result from itertools import combinations from itertools import product from ontology import Ontology def get_max_tree_distance(ontology, tags, debug=False): """ Description: Return max tree distance which can be derived with given tag list. Parameters: tags: list of tags used in training. (type: list) [Example] ['Acoustic guitar', 'Electric Guitar', ..., 'Piano'] """ # create combination between tags comb = combinations(tags, 2) # initiate maximum distance between two tags max_dist = 0 # loop for every combination for item in comb: # calculate distance between two tags distance = ontology.get_min_distance(item[0], item[1]) if debug: print("'%s'-'%s': %d" % (item[0], item[1], distance)) # update max_dist if distance > max_dist max_dist = distance if distance > max_dist else max_dist return max_dist def get_min_tag_distance(ontology, tags_x, tags_y): """ Description: Return minimum available tree distance between two videos Parameters: tags_x: tags of one video tags_y: tags of the other video [Example] [Example] tags_x = ['Electric Guitar', 'Human Voice'] tags_y = ['Human Voice'] This function with the example above should return 0, because 'Human Voice' tag exists in both of tag lists. tags_x = ['Piano', 'Guitar', 'Bass Guitar'] tags_y = ['Accordion'] This function with the example above should return the distance between 'Accordion' and 'Piano', because its distance will be the smallest among the followings: 'Piano' - 'Accordion', 'Guitar' - 'Accordion', 'Bass Guitar' - 'Accordion' """ products = product(tags_x, tags_y) min_dist = sys.maxsize for x, y in products: distance = ontology.get_min_distance(x, y) min_dist = min_dist if min_dist < distance else distance return min_dist def dist_to_score(ontology, distances, tags=[], max_dist=-1, debug=False): """ Description: Convert distances of K retrieved items into scores Parameters: distances: tree distance between query and K retrieved items [Example] [0, 0, 1, 2, 1, 0, 5, 4, ..., 9] (type: ndarray, len: K) [Note] score = max_tree_distance - distance """ # get maximum tree distance max_tree_distance = 0 if max_dist >= 0: max_tree_distance = max_dist elif len(tags) >= 0: max_tree_distance = get_max_tree_distance(ontology, tags) scores = max_tree_distance - distances return scores def DCG(scores, k=30, alternate=False): """ Description: Return DCG(Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] k: length of retrieved items to calculate nDCG """ # return zero if scores is None if scores is None or len(scores) < 1: return 0.0 # set the number of items in scores scores = scores[:k] n_scores = len(scores) # use alternative formula of DCG if alternate: log2i = np.log2(np.asarray(range(1, n_scores + 1)) + 1) return ((np.power(2, scores) - 1) / log2i).sum() # use traditional formula of DCG else: log2i = np.log2(np.asarray(range(1, n_scores + 1)) + 1) return (scores / log2i).sum() def IDCG(scores, k=30, alternate=False): """ Description: Return IDCG(Ideal Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] k: length of retrieved items to calculate nDCG """ if scores is None or len(scores) < 1: return 0.0 # copy and sort scores in incresing order s = sorted(scores) s = s[::-1][:k] # convert s in decresing order return DCG(s, k, alternate) def NDCG(scores, k=30, alternate=False): """ Description: Return nDCG(normalized Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] """ # return 0 if scores is empty if scores is None or len(scores) < 1: return 0.0 # calculate idcg idcg = IDCG(scores, k, alternate) if idcg == 0: return 0.0 return DCG(scores, k, alternate) / idcg def do_NDCG(ontology, k, queries, ret_items, tags): """ Description: Return Average nDCG for queries and ret_item Parameters: queries: list of N queries (type: list, dimension: 2D, shape: (N, ?)) [Example] [[tag1, tag2, ..., tagK], ..., [tagA, tagB, ..., tagG]] ret_items: list of N retrieved items (type: list, dimension: 3D, shape: (N, K, ?)) [Example] [[[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]], ... , [ ... ]] """ N = len(queries) ndcgs = 0 # get max_tree_distance max_tree_distance = get_max_tree_distance(ontology, tags, debug=False) # for every query, calculate nDCG for i in range(N): distances = np.asarray( [get_min_tag_distance(ontology, queries[i], ret_items[i][j]) for j in range(len(ret_items[i]))] ) scores = dist_to_score(ontology, distances, max_dist=max_tree_distance) ndcgs += NDCG(scores, k) return ndcgs / N def AP(target, results): """ Description: Return AP(Average Precision) with target and results Parameters: target: list of K retrieved items (type: list, len: K) [Example] [tag1, tag2, ..., tagK] results: list of N retrieved items (type: list, shape: (N, ?)) [Example] [[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]] """ # initiate variables for average precision n = 1 # the number of result hit = 0 # the number of hit ap = 0 # average precision = 1/hit * sum(precision) len_target = len(target) for res in results: (small_set, big_set) = (target, res) if len_target < len(res) else (res, target) for item in small_set: if item in big_set: # hit hit += 1 ap += hit / n break n += 1 return ap / hit def recallAtK(target, results): """ Description: Return 'recall at k' with target and results Parameters: target: list of K retrieved items (type: list, len: K) [Example] [tag1, tag2, ..., tagK] results: list of N retrieved items (type: list, shape: (N, ?)) [Example] [[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]] """ # initiate variables for average precision recall = 0 K = len(results) len_target = len(target) for res in results: (small_set, big_set) = (target, res) if len_target < len(res) else (res, target) for item in small_set: if item in big_set: # hit recall += 1 break return recall / K if __name__ == "__main__": data_dir = "json" tags = [ "Acoustic guitar", "Bass guitar", "Strum", "Piano", "Independent music", "Wedding music", "Scary music", "Firecracker", "Drip", ] ontology = Ontology(data_dir) """ # Calculate maximum tree distance between tags print("Calculate maximum tree distance between tags") max_dist = get_max_tree_distance(ontology, tags, debug=False) print("Maximum tree distance: ", max_dist, end="\n\n") # Convert distances to scores with max_dist print("Convert distances to scores with max_dist") distances = np.array([0, 0, 1, 2, 1, 0, 5, 4, 8, 9]) print("Distances: ", distances) scores = dist_to_score(ontology, distances, max_dist=max_dist, debug=True) print("Scores: ", scores, end="\n\n") # Convert distances to scores with tags print("Convert distances to scores with tags") distances = np.array([0, 0, 1, 2, 1, 0, 5, 4, 8, 9]) print("Distances: ", distances) scores = dist_to_score(ontology, distances, tags=tags, debug=True) print("Scores: ", scores, end="\n\n") # Do DCG, IDCG, NDCG scores = [3, 2, 3, 0, 1, 2] print("### Do DCG ###: ", DCG(scores, alternate=False)) print("### Do IDCG ###: ", IDCG(scores)) print("### Do NDCG ###: ", NDCG(scores), end="\n\n") # Do AP and recall at K target = ["a", "b", "c"] results = [["a", "g"], ["d", "e", "f", "b"], ["g", "h", "c"], ["y", "k", "p"]] print("### AP ###: ", AP(target, results)) print("### Recall at K ###: ", recallAtK(target, results), end="\n\n") # Do get_min_tag_distance: example1 tags_x = ["Independent music", "Drip"] tags_y = ["Drip"] print("@@@ get_min_tag_distance1 @@@: ", get_min_tag_distance(ontology, tags_x, tags_y)) # Do get_min_tag_distance: example2 tags_x = ["Piano", "Guitar", "Bass guitar"] tags_y = ["Accordion"] print("@@@ get_min_tag_distance2 @@@: ", get_min_tag_distance(ontology, tags_x, tags_y), end="\n\n") """ # Do average nDCG with open("metadata/all_tags.cls") as fi: tags = map(lambda x: x[:-1], fi.readlines()) tags = dict((x, i) for i, x in enumerate(tags)) file_names = [ "./results/AVE_aug_ave_i2a.pickle", "./results/AVE_aug_ave_a2i.pickle", "./results/AVE_aug_ave_i2i.pickle", "./results/AVE_aug_ave_a2a.pickle", ] for f in file_names: queries, ret_items = load_result(f) ndcgs = do_NDCG(ontology, 5, queries, ret_items, tags) print("nDCG: %s" % (f), ndcgs, end="\n\n")
[ 11748, 10688, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 7736, 1330, 3440, 62, 20274, 198, 6738, 340, 861, 10141, 1330, 17790, 198, 6738, 340, 861, 10141, 1330, 1720, 198, 6738, 39585, 1435, 1330, 9463, 1435, 628, 198, 4299, 651, 62, 9806, 62, 21048, 62, 30246, 7, 756, 1435, 11, 15940, 11, 14257, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 3509, 5509, 5253, 543, 460, 307, 10944, 351, 1813, 7621, 1351, 13, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15940, 25, 1351, 286, 15940, 973, 287, 3047, 13, 357, 4906, 25, 1351, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 37250, 12832, 21618, 10047, 3256, 705, 44132, 31550, 3256, 2644, 11, 705, 47, 10115, 20520, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 2251, 6087, 1022, 15940, 198, 220, 220, 220, 1974, 796, 17790, 7, 31499, 11, 362, 8, 628, 220, 220, 220, 1303, 22118, 5415, 5253, 1022, 734, 15940, 198, 220, 220, 220, 3509, 62, 17080, 796, 657, 628, 220, 220, 220, 1303, 9052, 329, 790, 6087, 198, 220, 220, 220, 329, 2378, 287, 1974, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 5253, 1022, 734, 15940, 198, 220, 220, 220, 220, 220, 220, 220, 5253, 796, 39585, 1435, 13, 1136, 62, 1084, 62, 30246, 7, 9186, 58, 15, 4357, 2378, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14257, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6, 4, 82, 6, 19355, 4, 82, 10354, 4064, 67, 1, 4064, 357, 9186, 58, 15, 4357, 2378, 58, 16, 4357, 5253, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 3509, 62, 17080, 611, 5253, 1875, 3509, 62, 17080, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 17080, 796, 5253, 611, 5253, 1875, 3509, 62, 17080, 2073, 3509, 62, 17080, 628, 220, 220, 220, 1441, 3509, 62, 17080, 628, 198, 4299, 651, 62, 1084, 62, 12985, 62, 30246, 7, 756, 1435, 11, 15940, 62, 87, 11, 15940, 62, 88, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 5288, 1695, 5509, 5253, 1022, 734, 5861, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15940, 62, 87, 25, 15940, 286, 530, 2008, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 15940, 62, 88, 25, 15940, 286, 262, 584, 2008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 220, 198, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 15940, 62, 87, 796, 37250, 44132, 31550, 3256, 705, 20490, 15282, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15940, 62, 88, 796, 37250, 20490, 15282, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 351, 262, 1672, 2029, 815, 1441, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 780, 705, 20490, 15282, 6, 7621, 7160, 287, 1111, 286, 7621, 8341, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15940, 62, 87, 796, 37250, 47, 10115, 3256, 705, 38, 5013, 283, 3256, 705, 33, 562, 31550, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15940, 62, 88, 796, 37250, 17320, 585, 295, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 351, 262, 1672, 2029, 815, 1441, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5253, 1022, 705, 17320, 585, 295, 6, 290, 705, 47, 10115, 3256, 780, 663, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 307, 262, 18197, 1871, 262, 1061, 654, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47, 10115, 6, 532, 705, 17320, 585, 295, 3256, 705, 38, 5013, 283, 6, 532, 705, 17320, 585, 295, 3256, 705, 33, 562, 31550, 6, 532, 705, 17320, 585, 295, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3186, 796, 1720, 7, 31499, 62, 87, 11, 15940, 62, 88, 8, 198, 220, 220, 220, 949, 62, 17080, 796, 25064, 13, 9806, 7857, 198, 220, 220, 220, 329, 2124, 11, 331, 287, 3186, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5253, 796, 39585, 1435, 13, 1136, 62, 1084, 62, 30246, 7, 87, 11, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 17080, 796, 949, 62, 17080, 611, 949, 62, 17080, 1279, 5253, 2073, 5253, 628, 220, 220, 220, 1441, 949, 62, 17080, 628, 198, 4299, 1233, 62, 1462, 62, 26675, 7, 756, 1435, 11, 18868, 11, 15940, 41888, 4357, 3509, 62, 17080, 10779, 16, 11, 14257, 28, 25101, 2599, 198, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 18868, 286, 509, 29517, 3709, 656, 8198, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18868, 25, 5509, 5253, 1022, 12405, 290, 509, 29517, 3709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 685, 15, 11, 657, 11, 352, 11, 362, 11, 352, 11, 657, 11, 642, 11, 604, 11, 2644, 11, 860, 60, 357, 4906, 25, 299, 67, 18747, 11, 18896, 25, 509, 8, 198, 220, 220, 220, 685, 6425, 60, 4776, 796, 3509, 62, 21048, 62, 30246, 532, 5253, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 651, 5415, 5509, 5253, 198, 220, 220, 220, 3509, 62, 21048, 62, 30246, 796, 657, 198, 220, 220, 220, 611, 3509, 62, 17080, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 21048, 62, 30246, 796, 3509, 62, 17080, 198, 220, 220, 220, 1288, 361, 18896, 7, 31499, 8, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 21048, 62, 30246, 796, 651, 62, 9806, 62, 21048, 62, 30246, 7, 756, 1435, 11, 15940, 8, 628, 220, 220, 220, 8198, 796, 3509, 62, 21048, 62, 30246, 532, 18868, 628, 220, 220, 220, 1441, 8198, 628, 198, 4299, 6257, 38, 7, 1416, 2850, 11, 479, 28, 1270, 11, 13527, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 6257, 38, 7, 15642, 608, 276, 27843, 13628, 21686, 8, 351, 1813, 4776, 357, 260, 2768, 590, 8, 1351, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 25, 4776, 1351, 357, 4906, 25, 299, 67, 18747, 11, 18896, 25, 399, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 685, 23, 11, 718, 11, 718, 11, 807, 11, 604, 11, 767, 11, 2644, 11, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 479, 25, 4129, 286, 29517, 3709, 284, 15284, 299, 9697, 38, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1441, 6632, 611, 8198, 318, 6045, 198, 220, 220, 220, 611, 8198, 318, 6045, 393, 18896, 7, 1416, 2850, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 15, 628, 220, 220, 220, 1303, 900, 262, 1271, 286, 3709, 287, 8198, 198, 220, 220, 220, 8198, 796, 8198, 58, 25, 74, 60, 198, 220, 220, 220, 299, 62, 1416, 2850, 796, 18896, 7, 1416, 2850, 8, 628, 220, 220, 220, 1303, 779, 5559, 10451, 286, 6257, 38, 198, 220, 220, 220, 611, 13527, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 17, 72, 796, 45941, 13, 6404, 17, 7, 37659, 13, 292, 18747, 7, 9521, 7, 16, 11, 299, 62, 1416, 2850, 1343, 352, 4008, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 14808, 37659, 13, 6477, 7, 17, 11, 8198, 8, 532, 352, 8, 1220, 2604, 17, 72, 737, 16345, 3419, 198, 220, 220, 220, 1303, 779, 4569, 10451, 286, 6257, 38, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 17, 72, 796, 45941, 13, 6404, 17, 7, 37659, 13, 292, 18747, 7, 9521, 7, 16, 11, 299, 62, 1416, 2850, 1343, 352, 4008, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 1416, 2850, 1220, 2604, 17, 72, 737, 16345, 3419, 628, 198, 4299, 4522, 39816, 7, 1416, 2850, 11, 479, 28, 1270, 11, 13527, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 4522, 39816, 7, 7390, 2287, 43474, 276, 27843, 13628, 21686, 8, 351, 1813, 4776, 357, 260, 2768, 590, 8, 1351, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 25, 4776, 1351, 357, 4906, 25, 299, 67, 18747, 11, 18896, 25, 399, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 685, 23, 11, 718, 11, 718, 11, 807, 11, 604, 11, 767, 11, 2644, 11, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 479, 25, 4129, 286, 29517, 3709, 284, 15284, 299, 9697, 38, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 8198, 318, 6045, 393, 18896, 7, 1416, 2850, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 15, 628, 220, 220, 220, 1303, 4866, 290, 3297, 8198, 287, 753, 411, 278, 1502, 198, 220, 220, 220, 264, 796, 23243, 7, 1416, 2850, 8, 198, 220, 220, 220, 264, 796, 264, 58, 3712, 12, 16, 7131, 25, 74, 60, 628, 220, 220, 220, 1303, 10385, 264, 287, 875, 411, 278, 1502, 198, 220, 220, 220, 1441, 6257, 38, 7, 82, 11, 479, 11, 13527, 8, 628, 198, 4299, 399, 9697, 38, 7, 1416, 2850, 11, 479, 28, 1270, 11, 13527, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 299, 9697, 38, 7, 11265, 1143, 43474, 276, 27843, 13628, 21686, 8, 351, 1813, 4776, 357, 260, 2768, 590, 8, 1351, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 25, 4776, 1351, 357, 4906, 25, 299, 67, 18747, 11, 18896, 25, 399, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 685, 23, 11, 718, 11, 718, 11, 807, 11, 604, 11, 767, 11, 2644, 11, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1441, 657, 611, 8198, 318, 6565, 198, 220, 220, 220, 611, 8198, 318, 6045, 393, 18896, 7, 1416, 2850, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 15, 628, 220, 220, 220, 1303, 15284, 4686, 66, 70, 198, 220, 220, 220, 4686, 66, 70, 796, 4522, 39816, 7, 1416, 2850, 11, 479, 11, 13527, 8, 198, 220, 220, 220, 611, 4686, 66, 70, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 15, 628, 220, 220, 220, 1441, 6257, 38, 7, 1416, 2850, 11, 479, 11, 13527, 8, 1220, 4686, 66, 70, 628, 198, 4299, 466, 62, 8575, 39816, 7, 756, 1435, 11, 479, 11, 20743, 11, 1005, 62, 23814, 11, 15940, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 13475, 299, 9697, 38, 329, 20743, 290, 1005, 62, 9186, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20743, 25, 1351, 286, 399, 20743, 357, 4906, 25, 1351, 11, 15793, 25, 362, 35, 11, 5485, 25, 357, 45, 11, 5633, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 16410, 12985, 16, 11, 7621, 17, 11, 2644, 11, 7621, 42, 4357, 2644, 11, 685, 12985, 32, 11, 7621, 33, 11, 2644, 11, 7621, 38, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 23814, 25, 1351, 286, 399, 29517, 3709, 357, 4906, 25, 1351, 11, 15793, 25, 513, 35, 11, 5485, 25, 357, 45, 11, 509, 11, 5633, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 16410, 58, 12985, 32, 11, 7621, 33, 11, 2644, 11, 7621, 38, 4357, 2644, 11, 685, 12985, 55, 11, 7621, 56, 11, 2644, 11, 7621, 57, 60, 4357, 2644, 837, 685, 2644, 2361, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 399, 796, 18896, 7, 421, 10640, 8, 198, 220, 220, 220, 299, 17896, 14542, 796, 657, 628, 220, 220, 220, 1303, 651, 3509, 62, 21048, 62, 30246, 198, 220, 220, 220, 3509, 62, 21048, 62, 30246, 796, 651, 62, 9806, 62, 21048, 62, 30246, 7, 756, 1435, 11, 15940, 11, 14257, 28, 25101, 8, 628, 220, 220, 220, 1303, 329, 790, 12405, 11, 15284, 299, 9697, 38, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18868, 796, 45941, 13, 292, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1136, 62, 1084, 62, 12985, 62, 30246, 7, 756, 1435, 11, 20743, 58, 72, 4357, 1005, 62, 23814, 58, 72, 7131, 73, 12962, 329, 474, 287, 2837, 7, 11925, 7, 1186, 62, 23814, 58, 72, 60, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 1233, 62, 1462, 62, 26675, 7, 756, 1435, 11, 18868, 11, 3509, 62, 17080, 28, 9806, 62, 21048, 62, 30246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 17896, 14542, 15853, 399, 9697, 38, 7, 1416, 2850, 11, 479, 8, 628, 220, 220, 220, 1441, 299, 17896, 14542, 1220, 399, 628, 198, 4299, 3486, 7, 16793, 11, 2482, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 3486, 7, 26287, 39281, 8, 351, 2496, 290, 2482, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 25, 1351, 286, 509, 29517, 3709, 357, 4906, 25, 1351, 11, 18896, 25, 509, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 685, 12985, 16, 11, 7621, 17, 11, 2644, 11, 7621, 42, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 25, 1351, 286, 399, 29517, 3709, 357, 4906, 25, 1351, 11, 5485, 25, 357, 45, 11, 5633, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 16410, 12985, 32, 11, 7621, 33, 11, 2644, 11, 7621, 38, 4357, 2644, 11, 685, 12985, 55, 11, 7621, 56, 11, 2644, 11, 7621, 57, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 22118, 9633, 329, 2811, 15440, 198, 220, 220, 220, 299, 796, 352, 220, 1303, 262, 1271, 286, 1255, 198, 220, 220, 220, 2277, 796, 657, 220, 1303, 262, 1271, 286, 2277, 198, 220, 220, 220, 2471, 796, 657, 220, 1303, 2811, 15440, 796, 352, 14, 17945, 1635, 2160, 7, 3866, 16005, 8, 628, 220, 220, 220, 18896, 62, 16793, 796, 18896, 7, 16793, 8, 198, 220, 220, 220, 329, 581, 287, 2482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 17470, 62, 2617, 11, 1263, 62, 2617, 8, 796, 357, 16793, 11, 581, 8, 611, 18896, 62, 16793, 1279, 18896, 7, 411, 8, 2073, 357, 411, 11, 2496, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 1402, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 287, 1263, 62, 2617, 25, 220, 1303, 2277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2277, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2471, 15853, 2277, 1220, 299, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 299, 15853, 352, 628, 220, 220, 220, 1441, 2471, 1220, 2277, 628, 198, 4299, 10014, 2953, 42, 7, 16793, 11, 2482, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 705, 8344, 439, 379, 479, 6, 351, 2496, 290, 2482, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 25, 1351, 286, 509, 29517, 3709, 357, 4906, 25, 1351, 11, 18896, 25, 509, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 685, 12985, 16, 11, 7621, 17, 11, 2644, 11, 7621, 42, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 25, 1351, 286, 399, 29517, 3709, 357, 4906, 25, 1351, 11, 5485, 25, 357, 45, 11, 5633, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16281, 60, 16410, 12985, 32, 11, 7621, 33, 11, 2644, 11, 7621, 38, 4357, 2644, 11, 685, 12985, 55, 11, 7621, 56, 11, 2644, 11, 7621, 57, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 22118, 9633, 329, 2811, 15440, 198, 220, 220, 220, 10014, 796, 657, 198, 220, 220, 220, 509, 796, 18896, 7, 43420, 8, 628, 220, 220, 220, 18896, 62, 16793, 796, 18896, 7, 16793, 8, 198, 220, 220, 220, 329, 581, 287, 2482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 17470, 62, 2617, 11, 1263, 62, 2617, 8, 796, 357, 16793, 11, 581, 8, 611, 18896, 62, 16793, 1279, 18896, 7, 411, 8, 2073, 357, 411, 11, 2496, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 1402, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 287, 1263, 62, 2617, 25, 220, 1303, 2277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10014, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1441, 10014, 1220, 509, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1366, 62, 15908, 796, 366, 17752, 1, 198, 220, 220, 220, 15940, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12832, 21618, 10047, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33, 562, 10047, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1273, 6582, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 47, 10115, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 40566, 2647, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 54, 6048, 278, 2647, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3351, 560, 2647, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13543, 6098, 10735, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 35, 5528, 1600, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 39585, 1435, 796, 9463, 1435, 7, 7890, 62, 15908, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 27131, 378, 5415, 5509, 5253, 1022, 15940, 198, 220, 220, 220, 3601, 7203, 9771, 3129, 378, 5415, 5509, 5253, 1022, 15940, 4943, 198, 220, 220, 220, 3509, 62, 17080, 796, 651, 62, 9806, 62, 21048, 62, 30246, 7, 756, 1435, 11, 15940, 11, 14257, 28, 25101, 8, 198, 220, 220, 220, 3601, 7203, 40541, 5509, 5253, 25, 33172, 3509, 62, 17080, 11, 886, 2625, 59, 77, 59, 77, 4943, 628, 220, 220, 220, 1303, 38240, 18868, 284, 8198, 351, 3509, 62, 17080, 198, 220, 220, 220, 3601, 7203, 3103, 1851, 18868, 284, 8198, 351, 3509, 62, 17080, 4943, 198, 220, 220, 220, 18868, 796, 45941, 13, 18747, 26933, 15, 11, 657, 11, 352, 11, 362, 11, 352, 11, 657, 11, 642, 11, 604, 11, 807, 11, 860, 12962, 198, 220, 220, 220, 3601, 7203, 20344, 1817, 25, 33172, 18868, 8, 198, 220, 220, 220, 8198, 796, 1233, 62, 1462, 62, 26675, 7, 756, 1435, 11, 18868, 11, 3509, 62, 17080, 28, 9806, 62, 17080, 11, 14257, 28, 17821, 8, 198, 220, 220, 220, 3601, 7203, 3351, 2850, 25, 33172, 8198, 11, 886, 2625, 59, 77, 59, 77, 4943, 628, 220, 220, 220, 1303, 38240, 18868, 284, 8198, 351, 15940, 198, 220, 220, 220, 3601, 7203, 3103, 1851, 18868, 284, 8198, 351, 15940, 4943, 198, 220, 220, 220, 18868, 796, 45941, 13, 18747, 26933, 15, 11, 657, 11, 352, 11, 362, 11, 352, 11, 657, 11, 642, 11, 604, 11, 807, 11, 860, 12962, 198, 220, 220, 220, 3601, 7203, 20344, 1817, 25, 33172, 18868, 8, 198, 220, 220, 220, 8198, 796, 1233, 62, 1462, 62, 26675, 7, 756, 1435, 11, 18868, 11, 15940, 28, 31499, 11, 14257, 28, 17821, 8, 198, 220, 220, 220, 3601, 7203, 3351, 2850, 25, 33172, 8198, 11, 886, 2625, 59, 77, 59, 77, 4943, 628, 220, 220, 220, 1303, 2141, 6257, 38, 11, 4522, 39816, 11, 399, 9697, 38, 198, 220, 220, 220, 8198, 796, 685, 18, 11, 362, 11, 513, 11, 657, 11, 352, 11, 362, 60, 198, 220, 220, 220, 3601, 7203, 21017, 2141, 6257, 38, 44386, 25, 33172, 6257, 38, 7, 1416, 2850, 11, 13527, 28, 25101, 4008, 198, 220, 220, 220, 3601, 7203, 21017, 2141, 4522, 39816, 44386, 25, 33172, 4522, 39816, 7, 1416, 2850, 4008, 198, 220, 220, 220, 3601, 7203, 21017, 2141, 399, 9697, 38, 44386, 25, 33172, 399, 9697, 38, 7, 1416, 2850, 828, 886, 2625, 59, 77, 59, 77, 4943, 628, 220, 220, 220, 1303, 2141, 3486, 290, 10014, 379, 509, 198, 220, 220, 220, 2496, 796, 14631, 64, 1600, 366, 65, 1600, 366, 66, 8973, 198, 220, 220, 220, 2482, 796, 685, 14692, 64, 1600, 366, 70, 33116, 14631, 67, 1600, 366, 68, 1600, 366, 69, 1600, 366, 65, 33116, 14631, 70, 1600, 366, 71, 1600, 366, 66, 33116, 14631, 88, 1600, 366, 74, 1600, 366, 79, 8973, 60, 198, 220, 220, 220, 3601, 7203, 21017, 3486, 44386, 25, 33172, 3486, 7, 16793, 11, 2482, 4008, 198, 220, 220, 220, 3601, 7203, 21017, 44536, 379, 509, 44386, 25, 33172, 10014, 2953, 42, 7, 16793, 11, 2482, 828, 886, 2625, 59, 77, 59, 77, 4943, 628, 220, 220, 220, 1303, 2141, 651, 62, 1084, 62, 12985, 62, 30246, 25, 1672, 16, 198, 220, 220, 220, 15940, 62, 87, 796, 14631, 40566, 2647, 1600, 366, 35, 5528, 8973, 198, 220, 220, 220, 15940, 62, 88, 796, 14631, 35, 5528, 8973, 198, 220, 220, 220, 3601, 7203, 12404, 31, 651, 62, 1084, 62, 12985, 62, 30246, 16, 2488, 12404, 25, 33172, 651, 62, 1084, 62, 12985, 62, 30246, 7, 756, 1435, 11, 15940, 62, 87, 11, 15940, 62, 88, 4008, 628, 220, 220, 220, 1303, 2141, 651, 62, 1084, 62, 12985, 62, 30246, 25, 1672, 17, 198, 220, 220, 220, 15940, 62, 87, 796, 14631, 47, 10115, 1600, 366, 38, 5013, 283, 1600, 366, 33, 562, 10047, 8973, 198, 220, 220, 220, 15940, 62, 88, 796, 14631, 17320, 585, 295, 8973, 198, 220, 220, 220, 3601, 7203, 12404, 31, 651, 62, 1084, 62, 12985, 62, 30246, 17, 2488, 12404, 25, 33172, 651, 62, 1084, 62, 12985, 62, 30246, 7, 756, 1435, 11, 15940, 62, 87, 11, 15940, 62, 88, 828, 886, 2625, 59, 77, 59, 77, 4943, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2141, 2811, 299, 9697, 38, 198, 220, 220, 220, 351, 1280, 7203, 38993, 14, 439, 62, 31499, 13, 565, 82, 4943, 355, 25912, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15940, 796, 3975, 7, 50033, 2124, 25, 2124, 58, 21912, 16, 4357, 25912, 13, 961, 6615, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 15940, 796, 8633, 19510, 87, 11, 1312, 8, 329, 1312, 11, 2124, 287, 27056, 378, 7, 31499, 4008, 628, 220, 220, 220, 2393, 62, 14933, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19571, 43420, 14, 32, 6089, 62, 7493, 62, 1015, 62, 72, 17, 64, 13, 27729, 293, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19571, 43420, 14, 32, 6089, 62, 7493, 62, 1015, 62, 64, 17, 72, 13, 27729, 293, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19571, 43420, 14, 32, 6089, 62, 7493, 62, 1015, 62, 72, 17, 72, 13, 27729, 293, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19571, 43420, 14, 32, 6089, 62, 7493, 62, 1015, 62, 64, 17, 64, 13, 27729, 293, 1600, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 329, 277, 287, 2393, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20743, 11, 1005, 62, 23814, 796, 3440, 62, 20274, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 17896, 14542, 796, 466, 62, 8575, 39816, 7, 756, 1435, 11, 642, 11, 20743, 11, 1005, 62, 23814, 11, 15940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 77, 9697, 38, 25, 4064, 82, 1, 4064, 357, 69, 828, 299, 17896, 14542, 11, 886, 2625, 59, 77, 59, 77, 4943, 198 ]
2.294637
4,419
#coding:utf-8 import requests import pprint import csv main()
[ 2, 66, 7656, 25, 40477, 12, 23, 198, 11748, 7007, 198, 11748, 279, 4798, 198, 11748, 269, 21370, 198, 220, 220, 220, 220, 198, 198, 12417, 3419 ]
2.481481
27
#!/usr/bin/env python # # pddl_planner.py # ma-goal-recognition # # Created by Felipe Meneguzzi on 2020-03-12. # Copyright 2020 Felipe Meneguzzi. All rights reserved. # from recognizer.pddl.pddl_parser import PDDL_Parser from recognizer.pddl.state import applicable, apply import time
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 220, 279, 1860, 75, 62, 11578, 1008, 13, 9078, 198, 2, 220, 17266, 12, 35231, 12, 26243, 653, 198, 2, 198, 2, 220, 15622, 416, 13937, 3757, 6065, 1533, 4715, 72, 319, 12131, 12, 3070, 12, 1065, 13, 198, 2, 220, 15069, 12131, 13937, 3757, 6065, 1533, 4715, 72, 13, 1439, 2489, 10395, 13, 198, 2, 628, 198, 6738, 3018, 7509, 13, 79, 1860, 75, 13, 79, 1860, 75, 62, 48610, 1330, 14340, 19260, 62, 46677, 198, 6738, 3018, 7509, 13, 79, 1860, 75, 13, 5219, 1330, 9723, 11, 4174, 198, 11748, 640, 198 ]
2.745283
106
from qualang_tools.config.integration_weights_tools import ( convert_integration_weights, compress_integration_weights, plot_integration_weights, ) from qualang_tools.config.waveform_tools import ( drag_gaussian_pulse_waveforms, drag_cosine_pulse_waveforms, ) from qualang_tools.config.builder import ConfigBuilder from qualang_tools.config.components import * from qualang_tools.config.primitive_components import * __all__ = [ "drag_gaussian_pulse_waveforms", "drag_cosine_pulse_waveforms", "convert_integration_weights", "compress_integration_weights", "plot_integration_weights", "Controller", "ArbitraryWaveform", "ConstantWaveform", "DigitalWaveform", "MeasurePulse", "ControlPulse", "Mixer", "Element", "MeasureElement", "ConstantIntegrationWeights", "ArbitraryIntegrationWeights", "ElementCollection", "ReadoutResonator", "Transmon", "FluxTunableTransmon", "Coupler", "Oscillator", "Port", "AnalogInputPort", "AnalogOutputPort", "DigitalInputPort", "DigitalOutputPort", "Waveform", "Pulse", "Operation", "IntegrationWeights", "Weights", "DigitalSample", "Matrix2x2", "AnalogOutputFilter", "ConfigBuilder", ]
[ 6738, 4140, 648, 62, 31391, 13, 11250, 13, 18908, 1358, 62, 43775, 62, 31391, 1330, 357, 201, 198, 220, 220, 220, 10385, 62, 18908, 1358, 62, 43775, 11, 201, 198, 220, 220, 220, 27413, 62, 18908, 1358, 62, 43775, 11, 201, 198, 220, 220, 220, 7110, 62, 18908, 1358, 62, 43775, 11, 201, 198, 8, 201, 198, 6738, 4140, 648, 62, 31391, 13, 11250, 13, 19204, 687, 62, 31391, 1330, 357, 201, 198, 220, 220, 220, 6715, 62, 4908, 31562, 62, 79, 9615, 62, 19204, 23914, 11, 201, 198, 220, 220, 220, 6715, 62, 6966, 500, 62, 79, 9615, 62, 19204, 23914, 11, 201, 198, 8, 201, 198, 6738, 4140, 648, 62, 31391, 13, 11250, 13, 38272, 1330, 17056, 32875, 201, 198, 6738, 4140, 648, 62, 31391, 13, 11250, 13, 5589, 3906, 1330, 1635, 201, 198, 6738, 4140, 648, 62, 31391, 13, 11250, 13, 19795, 1800, 62, 5589, 3906, 1330, 1635, 201, 198, 201, 198, 834, 439, 834, 796, 685, 201, 198, 220, 220, 220, 366, 7109, 363, 62, 4908, 31562, 62, 79, 9615, 62, 19204, 23914, 1600, 201, 198, 220, 220, 220, 366, 7109, 363, 62, 6966, 500, 62, 79, 9615, 62, 19204, 23914, 1600, 201, 198, 220, 220, 220, 366, 1102, 1851, 62, 18908, 1358, 62, 43775, 1600, 201, 198, 220, 220, 220, 366, 5589, 601, 62, 18908, 1358, 62, 43775, 1600, 201, 198, 220, 220, 220, 366, 29487, 62, 18908, 1358, 62, 43775, 1600, 201, 198, 220, 220, 220, 366, 22130, 1600, 201, 198, 220, 220, 220, 366, 3163, 2545, 11619, 39709, 687, 1600, 201, 198, 220, 220, 220, 366, 3103, 18797, 39709, 687, 1600, 201, 198, 220, 220, 220, 366, 27640, 39709, 687, 1600, 201, 198, 220, 220, 220, 366, 47384, 47, 9615, 1600, 201, 198, 220, 220, 220, 366, 15988, 47, 9615, 1600, 201, 198, 220, 220, 220, 366, 35608, 263, 1600, 201, 198, 220, 220, 220, 366, 20180, 1600, 201, 198, 220, 220, 220, 366, 47384, 20180, 1600, 201, 198, 220, 220, 220, 366, 3103, 18797, 34500, 1358, 1135, 2337, 1600, 201, 198, 220, 220, 220, 366, 3163, 2545, 11619, 34500, 1358, 1135, 2337, 1600, 201, 198, 220, 220, 220, 366, 20180, 36307, 1600, 201, 198, 220, 220, 220, 366, 5569, 448, 4965, 261, 1352, 1600, 201, 198, 220, 220, 220, 366, 8291, 2144, 1600, 201, 198, 220, 220, 220, 366, 37, 22564, 51, 403, 540, 8291, 2144, 1600, 201, 198, 220, 220, 220, 366, 34, 280, 20053, 1600, 201, 198, 220, 220, 220, 366, 46, 22360, 1352, 1600, 201, 198, 220, 220, 220, 366, 13924, 1600, 201, 198, 220, 220, 220, 366, 2025, 11794, 20560, 13924, 1600, 201, 198, 220, 220, 220, 366, 2025, 11794, 26410, 13924, 1600, 201, 198, 220, 220, 220, 366, 27640, 20560, 13924, 1600, 201, 198, 220, 220, 220, 366, 27640, 26410, 13924, 1600, 201, 198, 220, 220, 220, 366, 39709, 687, 1600, 201, 198, 220, 220, 220, 366, 47, 9615, 1600, 201, 198, 220, 220, 220, 366, 32180, 1600, 201, 198, 220, 220, 220, 366, 34500, 1358, 1135, 2337, 1600, 201, 198, 220, 220, 220, 366, 1135, 2337, 1600, 201, 198, 220, 220, 220, 366, 27640, 36674, 1600, 201, 198, 220, 220, 220, 366, 46912, 17, 87, 17, 1600, 201, 198, 220, 220, 220, 366, 2025, 11794, 26410, 22417, 1600, 201, 198, 220, 220, 220, 366, 16934, 32875, 1600, 201, 198, 60, 201, 198 ]
2.395683
556
import base64 import json import os import re import zlib from retrying import retry from xmlrpc.client import ServerProxy from api.fixture import load_fixture from api.subtitle.model import to_model LANGUAGE = 'en' NEWLINE_PATTERN = re.compile(r'(\r\n|\r|\n)') OPENSUBTITLES_URL = 'http://api.opensubtitles.org/xml-rpc' OPENSUBTITLES_UA = 'subvoc v1.0' UNICODE_BOM = u'\N{ZERO WIDTH NO-BREAK SPACE}' class OpenSubtitles: """API client to download subtitles from opensubtitles.org""" def __init__(self, credentials, client=None): """Constructor to prepare API connection. :param credentials: username/password tupel :param client: optional, custom XMLRPC client """ self.token = None self.credentials = credentials self.xmlrpc = client or ServerProxy(OPENSUBTITLES_URL, allow_none=True) def login(self): """Request and save authentication token. :raises RuntimeError: if login fails """ username = self.credentials[0] password = self.credentials[1] resp = self.xmlrpc.LogIn(username, password, LANGUAGE, OPENSUBTITLES_UA) self._ensure_success(resp) self.token = resp.get('token') def find_by_query(self, query): """Find subtitles by query. Note that it first tries to find and return a local fixture, and only does an HTTP call if none was found. :param query: query string describing movie :returns: list of subtitles that match query """ qry = query.lower().strip() resp = self._fixture('query', qry) \ or self._find({'query': qry, 'sublanguageid': 'eng'}) return self._resp_to_model(resp) def find_subtitles_for_movie(self, imdb_id): """Find subtitle by IMDb ID. Note that it first tries to find and return a local fixture, and only does an HTTP call if none was found. :param imdb_id: IMDb ID of movie (starts with 'tt') :returns: list of subtitles for movie """ search_id = imdb_id.replace('tt', '').lstrip('0') resp = self._fixture('id', imdb_id) \ or self._find({'imdbid': search_id, 'sublanguageid': 'eng'}) return self._resp_to_model(resp) def load_text(self, subtitle_id, subtitle_encoding): """Load subtitle text for movie. :param subtitle_id: ID of subtitle :param subtitle_encoding: encoding of subtitle text :returns: string with movie subtitle text """ resp = self._fixture('subtitle', subtitle_id) \ or self._download(subtitle_id) text = resp.get('data')[0].get('data') text = base64.standard_b64decode(text) text = zlib.decompress(text, 47) text = str(text, subtitle_encoding) text = text.lstrip(UNICODE_BOM) text = re.sub(NEWLINE_PATTERN, '\n', text) return text @retry(stop_max_delay=5000, stop_max_attempt_number=3) @retry(stop_max_delay=5000, stop_max_attempt_number=3)
[ 11748, 2779, 2414, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 1976, 8019, 198, 198, 6738, 1005, 14992, 1330, 1005, 563, 198, 6738, 35555, 81, 14751, 13, 16366, 1330, 9652, 44148, 198, 198, 6738, 40391, 13, 69, 9602, 1330, 3440, 62, 69, 9602, 198, 6738, 40391, 13, 7266, 7839, 13, 19849, 1330, 284, 62, 19849, 628, 198, 43, 15567, 52, 11879, 796, 705, 268, 6, 198, 13965, 24027, 62, 47, 1404, 31800, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 81, 59, 77, 91, 59, 81, 91, 59, 77, 8, 11537, 198, 3185, 16938, 10526, 49560, 28378, 62, 21886, 796, 705, 4023, 1378, 15042, 13, 44813, 549, 83, 30540, 13, 2398, 14, 19875, 12, 81, 14751, 6, 198, 3185, 16938, 10526, 49560, 28378, 62, 34970, 796, 705, 7266, 18893, 410, 16, 13, 15, 6, 198, 4944, 2149, 16820, 62, 33, 2662, 796, 334, 6, 59, 45, 90, 57, 34812, 370, 2389, 4221, 8005, 12, 40438, 10206, 37253, 92, 6, 628, 198, 4871, 4946, 7004, 83, 30540, 25, 198, 220, 220, 220, 37227, 17614, 5456, 284, 4321, 44344, 422, 9808, 549, 83, 30540, 13, 2398, 37811, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 18031, 11, 5456, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 273, 284, 8335, 7824, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18031, 25, 20579, 14, 28712, 256, 929, 417, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5456, 25, 11902, 11, 2183, 23735, 49, 5662, 5456, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 445, 14817, 796, 18031, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19875, 81, 14751, 796, 5456, 393, 9652, 44148, 7, 3185, 16938, 10526, 49560, 28378, 62, 21886, 11, 1249, 62, 23108, 28, 17821, 8, 628, 220, 220, 220, 825, 17594, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18453, 290, 3613, 18239, 11241, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 43160, 12331, 25, 611, 17594, 10143, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20579, 796, 2116, 13, 66, 445, 14817, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 2116, 13, 66, 445, 14817, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13, 19875, 81, 14751, 13, 11187, 818, 7, 29460, 11, 9206, 11, 406, 15567, 52, 11879, 11, 13349, 16938, 10526, 49560, 28378, 62, 34970, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 641, 495, 62, 13138, 7, 4363, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 796, 1217, 13, 1136, 10786, 30001, 11537, 628, 220, 220, 220, 825, 1064, 62, 1525, 62, 22766, 7, 944, 11, 12405, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16742, 44344, 416, 12405, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 340, 717, 8404, 284, 1064, 290, 1441, 257, 1957, 29220, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 691, 857, 281, 14626, 869, 611, 4844, 373, 1043, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 12405, 25, 12405, 4731, 12059, 3807, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 1351, 286, 44344, 326, 2872, 12405, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 563, 796, 12405, 13, 21037, 22446, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13557, 69, 9602, 10786, 22766, 3256, 10662, 563, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 2116, 13557, 19796, 15090, 6, 22766, 10354, 10662, 563, 11, 705, 7266, 16129, 312, 10354, 705, 1516, 6, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 4363, 62, 1462, 62, 19849, 7, 4363, 8, 628, 220, 220, 220, 825, 1064, 62, 7266, 83, 30540, 62, 1640, 62, 41364, 7, 944, 11, 545, 9945, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16742, 37960, 416, 8959, 43832, 4522, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 340, 717, 8404, 284, 1064, 290, 1441, 257, 1957, 29220, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 691, 857, 281, 14626, 869, 611, 4844, 373, 1043, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 545, 9945, 62, 312, 25, 8959, 43832, 4522, 286, 3807, 357, 301, 5889, 351, 705, 926, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 1351, 286, 44344, 329, 3807, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2989, 62, 312, 796, 545, 9945, 62, 312, 13, 33491, 10786, 926, 3256, 10148, 737, 75, 36311, 10786, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13557, 69, 9602, 10786, 312, 3256, 545, 9945, 62, 312, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 2116, 13557, 19796, 15090, 6, 320, 9945, 312, 10354, 2989, 62, 312, 11, 705, 7266, 16129, 312, 10354, 705, 1516, 6, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 4363, 62, 1462, 62, 19849, 7, 4363, 8, 628, 220, 220, 220, 825, 3440, 62, 5239, 7, 944, 11, 37960, 62, 312, 11, 37960, 62, 12685, 7656, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 37960, 2420, 329, 3807, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 37960, 62, 312, 25, 4522, 286, 37960, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 37960, 62, 12685, 7656, 25, 21004, 286, 37960, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 4731, 351, 3807, 37960, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2116, 13557, 69, 9602, 10786, 7266, 7839, 3256, 37960, 62, 312, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 2116, 13557, 15002, 7, 7266, 7839, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 1217, 13, 1136, 10786, 7890, 11537, 58, 15, 4083, 1136, 10786, 7890, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 2779, 2414, 13, 20307, 62, 65, 2414, 12501, 1098, 7, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 1976, 8019, 13, 12501, 3361, 601, 7, 5239, 11, 6298, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 965, 7, 5239, 11, 37960, 62, 12685, 7656, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 2420, 13, 75, 36311, 7, 4944, 2149, 16820, 62, 33, 2662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 302, 13, 7266, 7, 13965, 24027, 62, 47, 1404, 31800, 11, 705, 59, 77, 3256, 2420, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2420, 628, 220, 220, 220, 2488, 1186, 563, 7, 11338, 62, 9806, 62, 40850, 28, 27641, 11, 2245, 62, 9806, 62, 1078, 1791, 62, 17618, 28, 18, 8, 628, 220, 220, 220, 2488, 1186, 563, 7, 11338, 62, 9806, 62, 40850, 28, 27641, 11, 2245, 62, 9806, 62, 1078, 1791, 62, 17618, 28, 18, 8, 198 ]
2.412184
1,264
# /usr/bin/env python3.5 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2019, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= """ Prunes layers using Channel Pruning scheme """ from typing import List, Dict, Tuple, Set import copy import tensorflow as tf import numpy as np # Import aimet specific modules from aimet_common.defs import CostMetric, LayerCompRatioPair from aimet_common.utils import AimetLogger from aimet_common.pruner import Pruner from aimet_common.channel_pruner import select_channels_to_prune from aimet_common.cost_calculator import CostCalculator, Cost from aimet_common.winnow.winnow_utils import update_winnowed_channels from aimet_tensorflow.utils.graph_saver import save_and_load_graph from aimet_tensorflow.utils.common import is_op_compressible, get_ordered_ops from aimet_tensorflow.layer_database import Layer, LayerDatabase from aimet_tensorflow.utils.op.conv import WeightTensorUtils from aimet_tensorflow.winnow import winnow from aimet_tensorflow.channel_pruning.data_subsampler import DataSubSampler from aimet_tensorflow.channel_pruning.weight_reconstruction import WeightReconstructor from aimet_tensorflow.common.graph_eval import initialize_uninitialized_vars logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.ChannelPruning) class InputChannelPruner(Pruner): """ Pruner for Channel Pruning method """ def __init__(self, input_op_names: List[str], output_op_names: List[str], data_set: tf.data.Dataset, batch_size: int, num_reconstruction_samples: int, allow_custom_downsample_ops: bool): """ Input Channel Pruner with given dataset, input shape, number of batches and samples per image. :param input_op_names: list of input op names :param output_op_names: List of output op names of the model, used to help ConnectedGraph determine valid ops (to ignore training ops for example). :param data_set: data set to be used with the model :param batch_size: batch size :param num_reconstruction_samples: number of reconstruction samples :param allow_custom_downsample_ops: allow downsample/upsample ops to be inserted """ self._input_op_names = input_op_names self._output_op_names = output_op_names self._data_set = data_set self._batch_size = batch_size self._num_reconstruction_samples = num_reconstruction_samples self._allow_custom_downsample_ops = allow_custom_downsample_ops @staticmethod def _select_inp_channels(layer: Layer, comp_ratio: float) -> list: """ :param layer: layer for which input channels to prune are selected. :param comp_ratio: the ratio of costs after pruning has taken place 0 < comp_ratio <= 1. :return: prune_indices: list of input channels indices to prune. """ assert layer.module.type == 'Conv2D' weight_index = WeightTensorUtils.get_tensor_index_in_given_op(layer.module) weight_tensor = layer.model.run(layer.module.inputs[weight_index]) # Conv2d weight shape in TensorFlow [kh, kw, Nic, Noc] # re order in the common shape [Noc, Nic, kh, kw] weight_tensor = np.transpose(weight_tensor, (3, 2, 0, 1)) num_in_channels = weight_tensor.shape[1] prune_indices = select_channels_to_prune(weight_tensor, comp_ratio, num_in_channels) return prune_indices def _data_subsample_and_reconstruction(self, orig_layer: Layer, pruned_layer: Layer, output_mask: List[int], orig_layer_db: LayerDatabase, comp_layer_db: LayerDatabase): """ Collect and sub sampled output data from original layer and input data from pruned layer and set reconstructed weight and bias to pruned layer in compressed model database :param orig_layer: layer from original model :param pruned_layer: layer from potentially compressed model :param output_mask : output mask that specifies certain output channels to remove :param orig_layer_db: original Layer database without any compression :param comp_layer_db: compressed Layer database :return: """ sub_sampled_inp, sub_sampled_out = DataSubSampler.get_sub_sampled_data(orig_layer, pruned_layer, self._input_op_names, orig_layer_db, comp_layer_db, self._data_set, self._batch_size, self._num_reconstruction_samples) logger.debug("Input Data size: %s, Output data size: %s", len(sub_sampled_inp), len(sub_sampled_out)) # update the weight and bias (if any) using sub sampled input and output data WeightReconstructor.reconstruct_params_for_conv2d(pruned_layer, sub_sampled_inp, sub_sampled_out, output_mask) def _sort_on_occurrence(self, sess: tf.Session, layer_comp_ratio_list: List[LayerCompRatioPair]) -> \ List[LayerCompRatioPair]: """ Function takes session and list of conv layer-comp ratio to sort, and sorts them based on occurrence in the model. :param sess: tf.Session :param layer_comp_ratio_list: layer compression ratio list :return: sorted_layer_comp_ratio_List """ sorted_layer_comp_ratio_list = [] ordered_ops = get_ordered_ops(graph=sess.graph, starting_op_names=self._input_op_names) for op in ordered_ops: if is_op_compressible(op): for pair in layer_comp_ratio_list: if op.name == pair.layer.name: sorted_layer_comp_ratio_list.append(LayerCompRatioPair(pair.layer, pair.comp_ratio)) return sorted_layer_comp_ratio_list def calculate_compressed_cost(self, layer_db: LayerDatabase, layer_comp_ratio_list: List[LayerCompRatioPair]) -> Cost: """ Calculate cost of a compressed model given a set of layers and corresponding comp-ratios :param layer_db: Layer database for original model :param layer_comp_ratio_list: List of (layer + comp-ratio) pairs :return: Estimated cost of the compressed model """ # sort all the layers in layer_comp_ratio_list based on occurrence layer_comp_ratio_list = self._sort_on_occurrence(layer_db.model, layer_comp_ratio_list) detached_op_names = set() # Copy the db comp_layer_db = copy.deepcopy(layer_db) current_sess = comp_layer_db.model for layer_comp_ratio in layer_comp_ratio_list: orig_layer = layer_db.find_layer_by_name(layer_comp_ratio.layer.name) comp_ratio = layer_comp_ratio.comp_ratio if comp_ratio is not None and comp_ratio < 1.0: # select input channels of conv2d op to winnow prune_indices = self._select_inp_channels(orig_layer, comp_ratio) if not prune_indices: continue # Winnow the selected op and modify it's upstream affected ops current_sess, ordered_modules_list = winnow.winnow_tf_model(current_sess, self._input_op_names, self._output_op_names, [(orig_layer.module, prune_indices)], reshape=self._allow_custom_downsample_ops, in_place=True, verbose=False) if not ordered_modules_list: continue # Get all the detached op names from updated session graph for orig_op_name, _, _, _ in ordered_modules_list: detached_op_names.add(orig_op_name) # update layer database by excluding the detached ops comp_layer_db.update_database(current_sess, detached_op_names, update_model=False) # calculate the cost of this model compressed_model_cost = CostCalculator.compute_model_cost(comp_layer_db) # close the session associated with compressed layer database comp_layer_db.model.close() return compressed_model_cost @staticmethod def _update_pruned_ops_and_masks_info( ordered_modules_list: List[Tuple[str, tf.Operation, List[List[int]], List[List[int]]]], orig_layer_name_to_pruned_name_and_mask_dict: Dict[str, Tuple[str, List[int]]], pruned_name_to_orig_name_dict: Dict[str, str], detached_op_names: Set[str]): """ Update dictionaries with information about newly winnowed ops and masks :param ordered_modules_list: Output of winnow_tf_model holding information on winnowed ops and masks :param orig_layer_name_to_pruned_name_and_mask_dict: Dictionary mapping original layer names to most recent pruned op name and most recent output masks. :param pruned_name_to_orig_name_dict: Dictionary mapping pruned layer names to original layer names (if a layer was winnowed in multiple rounds of winnow_tf_model, there may be multiple prined layer names mapping to the same original layer name) :param detached_op_names: Set holding names of operations which are detached due to winnowing and should not be used. """ for prepruned_op_name, pruned_op, _, output_masks in ordered_modules_list: detached_op_names.add(prepruned_op_name) if pruned_op.type == 'Conv2D': # Currently, we only care about tracking information about conv ops if prepruned_op_name in pruned_name_to_orig_name_dict: # the op was already pruned once prior to this most recent round of winnowing original_op_name = pruned_name_to_orig_name_dict[prepruned_op_name] # Get and update previous pruned op name and output mask _, running_output_mask = \ orig_layer_name_to_pruned_name_and_mask_dict.get(original_op_name, (None, None)) assert running_output_mask is not None # Replace previous pruned op name with most recent pruned op name # Update output mask update_winnowed_channels(running_output_mask, output_masks[0]) orig_layer_name_to_pruned_name_and_mask_dict[original_op_name] = (pruned_op.name, running_output_mask) else: # This is the first time this op is being pruned # The name should not show up in either dict assert prepruned_op_name not in orig_layer_name_to_pruned_name_and_mask_dict assert prepruned_op_name not in pruned_name_to_orig_name_dict original_op_name = prepruned_op_name # Add output channel mask info to layer_to_masks_dict orig_layer_name_to_pruned_name_and_mask_dict[prepruned_op_name] = (pruned_op.name, output_masks[0]) # Map pruned op's name to original op name in pruned_to_orig_name_dict pruned_name_to_orig_name_dict[pruned_op.name] = original_op_name def _reconstruct_layers(self, layers_to_reconstruct: List[Layer], orig_layer_name_to_pruned_name_and_mask_dict: Dict[str, Tuple[str, List[int]]], layer_db: LayerDatabase, comp_layer_db: LayerDatabase): """ Reconstruct weights and biases of layers in the layers_to_reconstruct list. :param layers_to_reconstruct: List of layers to reconstruct weights and biases of :param orig_layer_name_to_pruned_name_and_mask_dict: Dictionary mapping original layer names to most recent pruned op name and most recent output masks. :param layer_db: Original layer database :param comp_layer_db: Compressed layer database """ for layer in layers_to_reconstruct: # Get output mask of layer, that contains information about all channels winnowed since the start pruned_layer_name, output_mask = \ orig_layer_name_to_pruned_name_and_mask_dict.get(layer.name, (None, None)) assert pruned_layer_name is not None pruned_layer = comp_layer_db.find_layer_by_name(pruned_layer_name) self._data_subsample_and_reconstruction(layer, pruned_layer, output_mask, layer_db, comp_layer_db) class ChannelPruningCostCalculator(CostCalculator): """ Cost calculation utilities for Channel Pruning """ def calculate_compressed_cost(self, layer_db: LayerDatabase, layer_ratio_list: List[LayerCompRatioPair], cost_metric: CostMetric) -> Cost: """ Calculate compressed cost of a model given a list of layer-compression-ratio pairs :param layer_db: Layer database for the original model :param layer_ratio_list: List of layer, compression-ratio :param cost_metric: Cost metric to use for compression (mac or memory) :return: Compressed cost """ # Special logic for channel pruning - we first actually prune the model and then determine its cost # Because it is not easy to estimate it otherwise compressed_cost = self._pruner.calculate_compressed_cost(layer_db, layer_ratio_list) return compressed_cost
[ 2, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 13, 20, 198, 2, 532, 9, 12, 4235, 25, 21015, 532, 9, 12, 198, 2, 38093, 25609, 198, 2, 220, 25248, 12, 34, 3185, 38162, 9947, 12, 2257, 7227, 12, 12404, 198, 2, 198, 2, 220, 15069, 357, 66, 8, 13130, 11, 32903, 27724, 3337, 11, 3457, 13, 1439, 2489, 10395, 13, 198, 2, 198, 2, 220, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 220, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 220, 352, 13, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 198, 2, 220, 362, 13, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 220, 513, 13, 16126, 262, 1438, 286, 262, 6634, 15762, 4249, 262, 3891, 286, 663, 20420, 198, 2, 220, 220, 220, 220, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 428, 3788, 198, 2, 220, 220, 220, 220, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 220, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 198, 2, 220, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 198, 2, 220, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 198, 2, 220, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 198, 2, 220, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 198, 2, 220, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 198, 2, 220, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 198, 2, 220, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 198, 2, 220, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 198, 2, 220, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 198, 2, 220, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 2, 220, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 18, 12, 2601, 682, 198, 2, 198, 2, 220, 25248, 12, 34, 3185, 38162, 9947, 12, 10619, 12, 12404, 198, 2, 38093, 25609, 198, 198, 37811, 1736, 4015, 11685, 1262, 11102, 1736, 46493, 7791, 37227, 198, 198, 6738, 19720, 1330, 7343, 11, 360, 713, 11, 309, 29291, 11, 5345, 198, 198, 11748, 4866, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 17267, 4031, 316, 2176, 13103, 198, 6738, 4031, 316, 62, 11321, 13, 4299, 82, 1330, 6446, 9171, 1173, 11, 34398, 7293, 29665, 952, 47, 958, 198, 6738, 4031, 316, 62, 11321, 13, 26791, 1330, 36223, 316, 11187, 1362, 198, 6738, 4031, 316, 62, 11321, 13, 1050, 38886, 1330, 1736, 38886, 198, 6738, 4031, 316, 62, 11321, 13, 17620, 62, 1050, 38886, 1330, 2922, 62, 354, 8961, 62, 1462, 62, 1050, 1726, 198, 6738, 4031, 316, 62, 11321, 13, 15805, 62, 9948, 3129, 1352, 1330, 6446, 9771, 3129, 1352, 11, 6446, 198, 6738, 4031, 316, 62, 11321, 13, 5404, 2197, 13, 5404, 2197, 62, 26791, 1330, 4296, 62, 5404, 2197, 276, 62, 354, 8961, 198, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 26791, 13, 34960, 62, 82, 8770, 1330, 3613, 62, 392, 62, 2220, 62, 34960, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 26791, 13, 11321, 1330, 318, 62, 404, 62, 5589, 601, 856, 11, 651, 62, 24071, 62, 2840, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 29289, 62, 48806, 1330, 34398, 11, 34398, 38105, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 26791, 13, 404, 13, 42946, 1330, 14331, 51, 22854, 18274, 4487, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 5404, 2197, 1330, 1592, 2197, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 17620, 62, 1050, 46493, 13, 7890, 62, 7266, 37687, 20053, 1330, 6060, 7004, 16305, 20053, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 17620, 62, 1050, 46493, 13, 6551, 62, 260, 9979, 2762, 1330, 14331, 6690, 261, 7249, 273, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 11321, 13, 34960, 62, 18206, 1330, 41216, 62, 403, 17532, 62, 85, 945, 198, 198, 6404, 1362, 796, 36223, 316, 11187, 1362, 13, 1136, 62, 20337, 62, 6404, 1362, 7, 32, 38813, 11187, 1362, 13, 11187, 8491, 292, 13, 29239, 47, 5143, 278, 8, 628, 198, 4871, 23412, 29239, 47, 5143, 263, 7, 47, 5143, 263, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1736, 38886, 329, 11102, 1736, 46493, 2446, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5128, 62, 404, 62, 14933, 25, 7343, 58, 2536, 4357, 5072, 62, 404, 62, 14933, 25, 7343, 58, 2536, 4357, 1366, 62, 2617, 25, 48700, 13, 7890, 13, 27354, 292, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 25, 493, 11, 997, 62, 260, 9979, 2762, 62, 82, 12629, 25, 493, 11, 1249, 62, 23144, 62, 30371, 1403, 62, 2840, 25, 20512, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 11102, 1736, 38886, 351, 1813, 27039, 11, 5128, 5485, 11, 1271, 286, 37830, 290, 8405, 583, 2939, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5128, 62, 404, 62, 14933, 25, 1351, 286, 5128, 1034, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5072, 62, 404, 62, 14933, 25, 7343, 286, 5072, 1034, 3891, 286, 262, 2746, 11, 973, 284, 1037, 8113, 276, 37065, 5004, 4938, 39628, 198, 220, 220, 220, 220, 220, 220, 220, 357, 1462, 8856, 3047, 39628, 329, 1672, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1366, 62, 2617, 25, 1366, 900, 284, 307, 973, 351, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 15458, 62, 7857, 25, 15458, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 997, 62, 260, 9979, 2762, 62, 82, 12629, 25, 1271, 286, 25056, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1249, 62, 23144, 62, 30371, 1403, 62, 2840, 25, 1249, 21838, 1403, 14, 4739, 1403, 39628, 284, 307, 18846, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15414, 62, 404, 62, 14933, 796, 5128, 62, 404, 62, 14933, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22915, 62, 404, 62, 14933, 796, 5072, 62, 404, 62, 14933, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 62, 2617, 796, 1366, 62, 2617, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 43501, 62, 7857, 796, 15458, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22510, 62, 260, 9979, 2762, 62, 82, 12629, 796, 997, 62, 260, 9979, 2762, 62, 82, 12629, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12154, 62, 23144, 62, 30371, 1403, 62, 2840, 796, 1249, 62, 23144, 62, 30371, 1403, 62, 2840, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 19738, 62, 259, 79, 62, 354, 8961, 7, 29289, 25, 34398, 11, 552, 62, 10366, 952, 25, 12178, 8, 4613, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 25, 7679, 329, 543, 5128, 9619, 284, 778, 1726, 389, 6163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 552, 62, 10366, 952, 25, 262, 8064, 286, 3484, 706, 778, 46493, 468, 2077, 1295, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 1279, 552, 62, 10366, 952, 19841, 352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 778, 1726, 62, 521, 1063, 25, 1351, 286, 5128, 9619, 36525, 284, 778, 1726, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 7679, 13, 21412, 13, 4906, 6624, 705, 3103, 85, 17, 35, 6, 628, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 9630, 796, 14331, 51, 22854, 18274, 4487, 13, 1136, 62, 83, 22854, 62, 9630, 62, 259, 62, 35569, 62, 404, 7, 29289, 13, 21412, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 83, 22854, 796, 7679, 13, 19849, 13, 5143, 7, 29289, 13, 21412, 13, 15414, 82, 58, 6551, 62, 9630, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 34872, 17, 67, 3463, 5485, 287, 309, 22854, 37535, 220, 685, 14636, 11, 479, 86, 11, 8377, 11, 399, 420, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 302, 1502, 287, 262, 2219, 5485, 220, 685, 45, 420, 11, 8377, 11, 44081, 11, 479, 86, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 83, 22854, 796, 45941, 13, 7645, 3455, 7, 6551, 62, 83, 22854, 11, 357, 18, 11, 362, 11, 657, 11, 352, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 997, 62, 259, 62, 354, 8961, 796, 3463, 62, 83, 22854, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 778, 1726, 62, 521, 1063, 796, 2922, 62, 354, 8961, 62, 1462, 62, 1050, 1726, 7, 6551, 62, 83, 22854, 11, 552, 62, 10366, 952, 11, 997, 62, 259, 62, 354, 8961, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 778, 1726, 62, 521, 1063, 628, 220, 220, 220, 825, 4808, 7890, 62, 7266, 39873, 62, 392, 62, 260, 9979, 2762, 7, 944, 11, 1796, 62, 29289, 25, 34398, 11, 778, 40881, 62, 29289, 25, 34398, 11, 5072, 62, 27932, 25, 7343, 58, 600, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 29289, 62, 9945, 25, 34398, 38105, 11, 552, 62, 29289, 62, 9945, 25, 34398, 38105, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9745, 290, 850, 35846, 5072, 1366, 422, 2656, 7679, 290, 5128, 1366, 422, 778, 40881, 7679, 290, 900, 198, 220, 220, 220, 220, 220, 220, 220, 49594, 3463, 290, 10690, 284, 778, 40881, 7679, 287, 25388, 2746, 6831, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1796, 62, 29289, 25, 7679, 422, 2656, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 778, 40881, 62, 29289, 25, 7679, 422, 6196, 25388, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5072, 62, 27932, 220, 1058, 5072, 9335, 326, 26052, 1728, 5072, 9619, 284, 4781, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1796, 62, 29289, 62, 9945, 25, 2656, 34398, 6831, 1231, 597, 19794, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 552, 62, 29289, 62, 9945, 25, 25388, 34398, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 850, 62, 37687, 10137, 62, 259, 79, 11, 850, 62, 37687, 10137, 62, 448, 796, 6060, 7004, 16305, 20053, 13, 1136, 62, 7266, 62, 37687, 10137, 62, 7890, 7, 11612, 62, 29289, 11, 778, 40881, 62, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15414, 62, 404, 62, 14933, 11, 1796, 62, 29289, 62, 9945, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 552, 62, 29289, 62, 9945, 11, 2116, 13557, 7890, 62, 2617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22510, 62, 260, 9979, 2762, 62, 82, 12629, 8, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 20560, 6060, 2546, 25, 4064, 82, 11, 25235, 1366, 2546, 25, 4064, 82, 1600, 18896, 7, 7266, 62, 37687, 10137, 62, 259, 79, 828, 18896, 7, 7266, 62, 37687, 10137, 62, 448, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 262, 3463, 290, 10690, 357, 361, 597, 8, 1262, 850, 35846, 5128, 290, 5072, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 6690, 261, 7249, 273, 13, 260, 41571, 62, 37266, 62, 1640, 62, 42946, 17, 67, 7, 1050, 40881, 62, 29289, 11, 850, 62, 37687, 10137, 62, 259, 79, 11, 850, 62, 37687, 10137, 62, 448, 11, 5072, 62, 27932, 8, 628, 220, 220, 220, 825, 4808, 30619, 62, 261, 62, 13966, 33928, 7, 944, 11, 264, 408, 25, 48700, 13, 36044, 11, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 25, 7343, 58, 49925, 7293, 29665, 952, 47, 958, 12962, 4613, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 58, 49925, 7293, 29665, 952, 47, 958, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 2753, 6246, 290, 1351, 286, 3063, 7679, 12, 5589, 8064, 284, 3297, 11, 290, 10524, 606, 1912, 319, 198, 220, 220, 220, 220, 220, 220, 220, 19810, 287, 262, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 264, 408, 25, 48700, 13, 36044, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 25, 7679, 19794, 8064, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 23243, 62, 29289, 62, 5589, 62, 10366, 952, 62, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 29289, 62, 5589, 62, 10366, 952, 62, 4868, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 6149, 62, 2840, 796, 651, 62, 24071, 62, 2840, 7, 34960, 28, 82, 408, 13, 34960, 11, 3599, 62, 404, 62, 14933, 28, 944, 13557, 15414, 62, 404, 62, 14933, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1034, 287, 6149, 62, 2840, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 404, 62, 5589, 601, 856, 7, 404, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5166, 287, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1034, 13, 3672, 6624, 5166, 13, 29289, 13, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 29289, 62, 5589, 62, 10366, 952, 62, 4868, 13, 33295, 7, 49925, 7293, 29665, 952, 47, 958, 7, 24874, 13, 29289, 11, 5166, 13, 5589, 62, 10366, 952, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 23243, 62, 29289, 62, 5589, 62, 10366, 952, 62, 4868, 628, 220, 220, 220, 825, 15284, 62, 5589, 2790, 62, 15805, 7, 944, 11, 7679, 62, 9945, 25, 34398, 38105, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 25, 7343, 58, 49925, 7293, 29665, 952, 47, 958, 12962, 4613, 6446, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27131, 378, 1575, 286, 257, 25388, 2746, 1813, 257, 900, 286, 11685, 290, 11188, 552, 12, 10366, 4267, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 62, 9945, 25, 34398, 6831, 329, 2656, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 25, 7343, 286, 357, 29289, 1343, 552, 12, 10366, 952, 8, 14729, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 47737, 1575, 286, 262, 25388, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3297, 477, 262, 11685, 287, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 1912, 319, 19810, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 796, 2116, 13557, 30619, 62, 261, 62, 13966, 33928, 7, 29289, 62, 9945, 13, 19849, 11, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 30795, 62, 404, 62, 14933, 796, 900, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17393, 262, 20613, 198, 220, 220, 220, 220, 220, 220, 220, 552, 62, 29289, 62, 9945, 796, 4866, 13, 22089, 30073, 7, 29289, 62, 9945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 82, 408, 796, 552, 62, 29289, 62, 9945, 13, 19849, 628, 220, 220, 220, 220, 220, 220, 220, 329, 7679, 62, 5589, 62, 10366, 952, 287, 7679, 62, 5589, 62, 10366, 952, 62, 4868, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 29289, 796, 7679, 62, 9945, 13, 19796, 62, 29289, 62, 1525, 62, 3672, 7, 29289, 62, 5589, 62, 10366, 952, 13, 29289, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 552, 62, 10366, 952, 796, 7679, 62, 5589, 62, 10366, 952, 13, 5589, 62, 10366, 952, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 552, 62, 10366, 952, 318, 407, 6045, 290, 552, 62, 10366, 952, 1279, 352, 13, 15, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2922, 5128, 9619, 286, 3063, 17, 67, 1034, 284, 1592, 2197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 778, 1726, 62, 521, 1063, 796, 2116, 13557, 19738, 62, 259, 79, 62, 354, 8961, 7, 11612, 62, 29289, 11, 552, 62, 10366, 952, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 778, 1726, 62, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7178, 2197, 262, 6163, 1034, 290, 13096, 340, 338, 28717, 5676, 39628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 82, 408, 11, 6149, 62, 18170, 62, 4868, 796, 1592, 2197, 13, 5404, 2197, 62, 27110, 62, 19849, 7, 14421, 62, 82, 408, 11, 2116, 13557, 15414, 62, 404, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22915, 62, 404, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 11612, 62, 29289, 13, 21412, 11, 778, 1726, 62, 521, 1063, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27179, 1758, 28, 944, 13557, 12154, 62, 23144, 62, 30371, 1403, 62, 2840, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 5372, 28, 17821, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6149, 62, 18170, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 477, 262, 30795, 1034, 3891, 422, 6153, 6246, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1796, 62, 404, 62, 3672, 11, 4808, 11, 4808, 11, 4808, 287, 6149, 62, 18170, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30795, 62, 404, 62, 14933, 13, 2860, 7, 11612, 62, 404, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 7679, 6831, 416, 23494, 262, 30795, 39628, 198, 220, 220, 220, 220, 220, 220, 220, 552, 62, 29289, 62, 9945, 13, 19119, 62, 48806, 7, 14421, 62, 82, 408, 11, 30795, 62, 404, 62, 14933, 11, 4296, 62, 19849, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 262, 1575, 286, 428, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 25388, 62, 19849, 62, 15805, 796, 6446, 9771, 3129, 1352, 13, 5589, 1133, 62, 19849, 62, 15805, 7, 5589, 62, 29289, 62, 9945, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1969, 262, 6246, 3917, 351, 25388, 7679, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 552, 62, 29289, 62, 9945, 13, 19849, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 25388, 62, 19849, 62, 15805, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 19119, 62, 1050, 40881, 62, 2840, 62, 392, 62, 5356, 591, 62, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6149, 62, 18170, 62, 4868, 25, 7343, 58, 51, 29291, 58, 2536, 11, 48700, 13, 32180, 11, 7343, 58, 8053, 58, 600, 60, 4357, 7343, 58, 8053, 58, 600, 11907, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 25, 360, 713, 58, 2536, 11, 309, 29291, 58, 2536, 11, 7343, 58, 600, 11907, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 778, 40881, 62, 3672, 62, 1462, 62, 11612, 62, 3672, 62, 11600, 25, 360, 713, 58, 2536, 11, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30795, 62, 404, 62, 14933, 25, 5345, 58, 2536, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10133, 48589, 3166, 351, 1321, 546, 8308, 1592, 2197, 276, 39628, 290, 20680, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6149, 62, 18170, 62, 4868, 25, 25235, 286, 1592, 2197, 62, 27110, 62, 19849, 4769, 1321, 319, 1592, 2197, 276, 39628, 290, 20680, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 25, 28261, 16855, 2656, 7679, 3891, 284, 749, 2274, 198, 220, 220, 220, 220, 220, 220, 220, 778, 40881, 1034, 1438, 290, 749, 2274, 5072, 20680, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 778, 40881, 62, 3672, 62, 1462, 62, 11612, 62, 3672, 62, 11600, 25, 28261, 16855, 778, 40881, 7679, 3891, 284, 2656, 7679, 3891, 357, 361, 257, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 373, 1592, 2197, 276, 287, 3294, 9196, 286, 1592, 2197, 62, 27110, 62, 19849, 11, 612, 743, 307, 3294, 778, 1389, 7679, 3891, 16855, 284, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 7679, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30795, 62, 404, 62, 14933, 25, 5345, 4769, 3891, 286, 4560, 543, 389, 30795, 2233, 284, 1592, 2197, 278, 290, 815, 407, 307, 198, 220, 220, 220, 220, 220, 220, 220, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 329, 662, 1050, 40881, 62, 404, 62, 3672, 11, 778, 40881, 62, 404, 11, 4808, 11, 5072, 62, 5356, 591, 287, 6149, 62, 18170, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30795, 62, 404, 62, 14933, 13, 2860, 7, 3866, 1050, 40881, 62, 404, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 778, 40881, 62, 404, 13, 4906, 6624, 705, 3103, 85, 17, 35, 10354, 220, 220, 220, 220, 220, 1303, 16888, 11, 356, 691, 1337, 546, 9646, 1321, 546, 3063, 39628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 662, 1050, 40881, 62, 404, 62, 3672, 287, 778, 40881, 62, 3672, 62, 1462, 62, 11612, 62, 3672, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1034, 373, 1541, 778, 40881, 1752, 3161, 284, 428, 749, 2274, 2835, 286, 1592, 2197, 278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 404, 62, 3672, 796, 778, 40881, 62, 3672, 62, 1462, 62, 11612, 62, 3672, 62, 11600, 58, 3866, 1050, 40881, 62, 404, 62, 3672, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 290, 4296, 2180, 778, 40881, 1034, 1438, 290, 5072, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 2491, 62, 22915, 62, 27932, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 13, 1136, 7, 14986, 62, 404, 62, 3672, 11, 357, 14202, 11, 6045, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2491, 62, 22915, 62, 27932, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 40177, 2180, 778, 40881, 1034, 1438, 351, 749, 2274, 778, 40881, 1034, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 5072, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 5404, 2197, 276, 62, 354, 8961, 7, 20270, 62, 22915, 62, 27932, 11, 5072, 62, 5356, 591, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 58, 14986, 62, 404, 62, 3672, 60, 796, 357, 1050, 40881, 62, 404, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 62, 22915, 62, 27932, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 262, 717, 640, 428, 1034, 318, 852, 778, 40881, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 1438, 815, 407, 905, 510, 287, 2035, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 662, 1050, 40881, 62, 404, 62, 3672, 407, 287, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 662, 1050, 40881, 62, 404, 62, 3672, 407, 287, 778, 40881, 62, 3672, 62, 1462, 62, 11612, 62, 3672, 62, 11600, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 404, 62, 3672, 796, 662, 1050, 40881, 62, 404, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 5072, 6518, 9335, 7508, 284, 7679, 62, 1462, 62, 5356, 591, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 58, 3866, 1050, 40881, 62, 404, 62, 3672, 60, 796, 357, 1050, 40881, 62, 404, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5356, 591, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9347, 778, 40881, 1034, 338, 1438, 284, 2656, 1034, 1438, 287, 778, 40881, 62, 1462, 62, 11612, 62, 3672, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 778, 40881, 62, 3672, 62, 1462, 62, 11612, 62, 3672, 62, 11600, 58, 1050, 40881, 62, 404, 13, 3672, 60, 796, 2656, 62, 404, 62, 3672, 628, 220, 220, 220, 825, 4808, 260, 41571, 62, 75, 6962, 7, 944, 11, 11685, 62, 1462, 62, 260, 41571, 25, 7343, 58, 49925, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 25, 360, 713, 58, 2536, 11, 309, 29291, 58, 2536, 11, 7343, 58, 600, 11907, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 9945, 25, 34398, 38105, 11, 552, 62, 29289, 62, 9945, 25, 34398, 38105, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23419, 7249, 19590, 290, 29275, 286, 11685, 287, 262, 11685, 62, 1462, 62, 260, 41571, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 11685, 62, 1462, 62, 260, 41571, 25, 7343, 286, 11685, 284, 31081, 19590, 290, 29275, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 25, 28261, 16855, 2656, 7679, 3891, 284, 749, 2274, 198, 220, 220, 220, 220, 220, 220, 220, 778, 40881, 1034, 1438, 290, 749, 2274, 5072, 20680, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 62, 9945, 25, 13745, 7679, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 552, 62, 29289, 62, 9945, 25, 3082, 2790, 7679, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7679, 287, 11685, 62, 1462, 62, 260, 41571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 5072, 9335, 286, 7679, 11, 326, 4909, 1321, 546, 477, 9619, 1592, 2197, 276, 1201, 262, 923, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 778, 40881, 62, 29289, 62, 3672, 11, 5072, 62, 27932, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 29289, 62, 3672, 62, 1462, 62, 1050, 40881, 62, 3672, 62, 392, 62, 27932, 62, 11600, 13, 1136, 7, 29289, 13, 3672, 11, 357, 14202, 11, 6045, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 778, 40881, 62, 29289, 62, 3672, 318, 407, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 778, 40881, 62, 29289, 796, 552, 62, 29289, 62, 9945, 13, 19796, 62, 29289, 62, 1525, 62, 3672, 7, 1050, 40881, 62, 29289, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 62, 7266, 39873, 62, 392, 62, 260, 9979, 2762, 7, 29289, 11, 778, 40881, 62, 29289, 11, 5072, 62, 27932, 11, 7679, 62, 9945, 11, 552, 62, 29289, 62, 9945, 8, 628, 198, 4871, 11102, 47, 5143, 278, 13729, 9771, 3129, 1352, 7, 13729, 9771, 3129, 1352, 2599, 198, 220, 220, 220, 37227, 6446, 17952, 20081, 329, 11102, 1736, 46493, 37227, 628, 220, 220, 220, 825, 15284, 62, 5589, 2790, 62, 15805, 7, 944, 11, 7679, 62, 9945, 25, 34398, 38105, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 10366, 952, 62, 4868, 25, 7343, 58, 49925, 7293, 29665, 952, 47, 958, 4357, 1575, 62, 4164, 1173, 25, 6446, 9171, 1173, 8, 4613, 6446, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27131, 378, 25388, 1575, 286, 257, 2746, 1813, 257, 1351, 286, 7679, 12, 5589, 2234, 12, 10366, 952, 14729, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 62, 9945, 25, 34398, 6831, 329, 262, 2656, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 62, 10366, 952, 62, 4868, 25, 7343, 286, 7679, 11, 19794, 12, 10366, 952, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1575, 62, 4164, 1173, 25, 6446, 18663, 284, 779, 329, 19794, 357, 20285, 393, 4088, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3082, 2790, 1575, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6093, 9156, 329, 6518, 778, 46493, 532, 356, 717, 1682, 778, 1726, 262, 2746, 290, 788, 5004, 663, 1575, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4362, 340, 318, 407, 2562, 284, 8636, 340, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 25388, 62, 15805, 796, 2116, 13557, 1050, 38886, 13, 9948, 3129, 378, 62, 5589, 2790, 62, 15805, 7, 29289, 62, 9945, 11, 7679, 62, 10366, 952, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 25388, 62, 15805, 198 ]
2.376921
6,638
import json from datetime import datetime from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QHBoxLayout, QLabel, QLineEdit, QPushButton, QMessageBox from PyQt5.QtGui import QIntValidator from PyQt5.QtCore import Qt, pyqtSignal from fitness_tracker.database_wrapper import DatabaseWrapper
[ 11748, 33918, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 38300, 11, 1195, 53, 14253, 32517, 11, 1195, 41339, 32517, 11, 1195, 39, 14253, 32517, 11, 1195, 33986, 11, 1195, 13949, 18378, 11, 1195, 49222, 21864, 11, 1195, 12837, 14253, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1195, 5317, 47139, 1352, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 33734, 11, 12972, 39568, 11712, 282, 198, 6738, 13547, 62, 2213, 10735, 13, 48806, 62, 48553, 1330, 24047, 36918, 2848, 198 ]
2.980198
101
from ._plot_metadata_table import plot_data_summary, plot_edit_profiler, get_exported_metadata from ._demodata import get_lifeexpectancy_data
[ 6738, 47540, 29487, 62, 38993, 62, 11487, 1330, 7110, 62, 7890, 62, 49736, 11, 7110, 62, 19312, 62, 5577, 5329, 11, 651, 62, 1069, 9213, 62, 38993, 198, 6738, 47540, 9536, 375, 1045, 1330, 651, 62, 6042, 1069, 806, 3883, 62, 7890, 198 ]
3.302326
43
# -*- coding: UTF-8 -*- import re import json import multiprocessing import math from collections import OrderedDict import pdb from django.db.models import Q from django.db import transaction from django.conf import settings from django.views.decorators.csrf import csrf_exempt from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect from django.contrib.auth.decorators import login_required from django.contrib.auth.hashers import check_password from django.core.paginator import Paginator,InvalidPage,EmptyPage,PageNotAnInteger from .daoora import DaoOra from .const import Const from .sendmail import MailSender from .aes_decryptor import Prpcrypt from .models import * from .getnow import getNow from .tasks import oraAutoReview,mailDba,wechatDba,dingDba daoora = DaoOra() prpCryptor = Prpcrypt() cryColList = ['cert_no','qq','cell','card_no','database_password'] configMap = { 'oracle':ora_primary_config, 'mysql':'my_primary_config'} daoMap = { 'oracle':daoora, 'mysql':'my_master_config'} #首页,也是查看所有SQL工单页面,具备翻页功能 #提交oracle sql界面 #将中文名映射为英文名 #判断工单类型,做相应处理 #展示SQL工单详细内容,以及可以人工审核,审核通过即可执行 #人工审核也通过,执行SQL #终止流程 #工程师确认 #检查登录用户是否为admin #数据同步 @check_admin #查询功能 @csrf_exempt #SQL审核必读 #图表展示 #获取当前请求url #展示数据库schema列表 #个人中心 #配置用户权限 @check_admin
[ 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 220, 198, 198, 11748, 302, 198, 11748, 33918, 198, 11748, 18540, 305, 919, 278, 198, 11748, 10688, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 279, 9945, 198, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 1195, 198, 6738, 42625, 14208, 13, 9945, 1330, 8611, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 33571, 13, 12501, 273, 2024, 13, 6359, 41871, 1330, 269, 27891, 69, 62, 42679, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 651, 62, 15252, 62, 273, 62, 26429, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 11, 367, 29281, 31077, 7738, 1060, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 10134, 7084, 1330, 2198, 62, 28712, 198, 6738, 42625, 14208, 13, 7295, 13, 79, 363, 20900, 1330, 31525, 20900, 11, 44651, 9876, 11, 40613, 9876, 11, 9876, 3673, 2025, 46541, 198, 198, 6738, 764, 6814, 2675, 64, 1330, 360, 5488, 46, 430, 198, 6738, 764, 9979, 1330, 4757, 198, 6738, 764, 21280, 4529, 1330, 11099, 50, 2194, 198, 6738, 764, 64, 274, 62, 12501, 6012, 273, 1330, 1736, 14751, 6012, 198, 6738, 764, 27530, 1330, 1635, 198, 6738, 764, 1136, 2197, 1330, 651, 3844, 198, 6738, 764, 83, 6791, 1330, 393, 64, 27722, 14832, 11, 4529, 35, 7012, 11, 732, 17006, 35, 7012, 11, 12083, 35, 7012, 198, 198, 6814, 2675, 64, 796, 360, 5488, 46, 430, 3419, 198, 1050, 79, 23919, 273, 796, 1736, 14751, 6012, 3419, 198, 20470, 5216, 8053, 796, 37250, 22583, 62, 3919, 41707, 38227, 41707, 3846, 41707, 9517, 62, 3919, 41707, 48806, 62, 28712, 20520, 198, 198, 11250, 13912, 796, 1391, 198, 220, 220, 220, 705, 273, 6008, 10354, 5799, 62, 39754, 62, 11250, 11, 198, 220, 220, 220, 705, 28744, 13976, 10354, 6, 1820, 62, 39754, 62, 11250, 6, 92, 198, 67, 5488, 13912, 796, 1391, 198, 220, 220, 220, 705, 273, 6008, 10354, 6814, 2675, 64, 11, 198, 220, 220, 220, 705, 28744, 13976, 10354, 6, 1820, 62, 9866, 62, 11250, 6, 92, 198, 198, 2, 165, 99, 244, 165, 94, 113, 171, 120, 234, 20046, 253, 42468, 162, 253, 98, 40367, 233, 33699, 222, 17312, 231, 17861, 32432, 98, 39355, 243, 165, 94, 113, 165, 251, 95, 171, 120, 234, 17739, 115, 13783, 229, 163, 123, 119, 165, 94, 113, 27950, 253, 47797, 121, 628, 198, 2, 162, 237, 238, 12859, 97, 273, 6008, 44161, 45911, 234, 165, 251, 95, 628, 198, 2, 49546, 40792, 23877, 229, 28938, 235, 23626, 254, 22887, 226, 10310, 118, 164, 233, 109, 23877, 229, 28938, 235, 198, 198, 2, 26344, 97, 23877, 255, 32432, 98, 39355, 243, 163, 109, 119, 161, 252, 233, 171, 120, 234, 161, 223, 248, 33566, 116, 41753, 242, 13783, 226, 49426, 228, 628, 198, 198, 2, 161, 109, 243, 163, 97, 118, 17861, 32432, 98, 39355, 243, 46237, 99, 163, 119, 228, 37863, 227, 22522, 117, 171, 120, 234, 20015, 98, 20998, 232, 20998, 107, 20015, 98, 21689, 32432, 98, 22522, 94, 43718, 116, 171, 120, 234, 22522, 94, 43718, 116, 34460, 248, 32573, 229, 39355, 111, 20998, 107, 33699, 100, 26193, 234, 198, 2, 21689, 32432, 98, 22522, 94, 43718, 116, 20046, 253, 34460, 248, 32573, 229, 171, 120, 234, 33699, 100, 26193, 234, 17861, 198, 198, 2, 163, 119, 230, 29826, 95, 38184, 223, 163, 101, 233, 198, 198, 2, 32432, 98, 163, 101, 233, 30585, 230, 163, 94, 106, 164, 106, 97, 198, 198, 2, 162, 96, 222, 162, 253, 98, 163, 247, 119, 37605, 243, 18796, 101, 22755, 115, 42468, 28938, 99, 10310, 118, 28482, 198, 198, 2, 46763, 108, 162, 235, 106, 28938, 234, 29826, 98, 198, 31, 9122, 62, 28482, 198, 198, 2, 162, 253, 98, 46237, 95, 27950, 253, 47797, 121, 198, 31, 6359, 41871, 62, 42679, 628, 198, 2, 17861, 22522, 94, 43718, 116, 33232, 227, 46237, 119, 198, 198, 2, 32368, 122, 26193, 101, 161, 109, 243, 163, 97, 118, 628, 198, 198, 2, 164, 236, 115, 20998, 244, 37605, 241, 30298, 235, 46237, 115, 162, 109, 224, 6371, 628, 198, 2, 161, 109, 243, 163, 97, 118, 46763, 108, 162, 235, 106, 41753, 241, 15952, 2611, 26344, 245, 26193, 101, 198, 198, 2, 10310, 103, 21689, 40792, 33232, 225, 198, 198, 2, 165, 227, 235, 163, 121, 106, 18796, 101, 22755, 115, 30266, 225, 165, 247, 238, 198, 31, 9122, 62, 28482, 198 ]
1.777339
759
from NeuralNet.Oli.libs.ProcessingPipeline import ProcessingPipeline from NeuralNet.Oli.libs.Preprocessor import SimplePreprocessor, IPreprocessor #__________Configuration__________# # Path to folder which contains subfolders with the images IMG_PATH = '../../images/Dataset_2' # Name for model when saved MODEL_LOAD_PATH = "SavedModels/LT2" # Pipeline managing working with keras model pipeline: ProcessingPipeline = ProcessingPipeline() # Loads all images and extract features and labels preprocessor: IPreprocessor = SimplePreprocessor() x, y = pipeline.load_features_and_preprocess(IMG_PATH, img_preprocessor=preprocessor) # Load the model from disk pipeline.load_model(MODEL_LOAD_PATH) # Make predictions with loaded model y_pred = pipeline.predict(x) # Evaluate model on test images and show summary pipeline.evaluate(y, y_pred)
[ 6738, 47986, 7934, 13, 46, 4528, 13, 8019, 82, 13, 18709, 278, 47, 541, 4470, 1330, 28403, 47, 541, 4470, 198, 6738, 47986, 7934, 13, 46, 4528, 13, 8019, 82, 13, 6719, 41341, 1330, 17427, 6719, 41341, 11, 6101, 260, 41341, 198, 198, 2, 2602, 834, 38149, 2602, 834, 2, 198, 2, 10644, 284, 9483, 543, 4909, 850, 11379, 364, 351, 262, 4263, 198, 3955, 38, 62, 34219, 796, 705, 40720, 40720, 17566, 14, 27354, 292, 316, 62, 17, 6, 198, 2, 6530, 329, 2746, 618, 7448, 198, 33365, 3698, 62, 35613, 62, 34219, 796, 366, 50, 9586, 5841, 1424, 14, 27734, 17, 1, 198, 198, 2, 37709, 11149, 1762, 351, 41927, 292, 2746, 198, 79, 541, 4470, 25, 28403, 47, 541, 4470, 796, 28403, 47, 541, 4470, 3419, 198, 198, 2, 8778, 82, 477, 4263, 290, 7925, 3033, 290, 14722, 198, 3866, 41341, 25, 6101, 260, 41341, 796, 17427, 6719, 41341, 3419, 198, 87, 11, 331, 796, 11523, 13, 2220, 62, 40890, 62, 392, 62, 3866, 14681, 7, 3955, 38, 62, 34219, 11, 33705, 62, 3866, 41341, 28, 3866, 41341, 8, 198, 198, 2, 8778, 262, 2746, 422, 11898, 198, 79, 541, 4470, 13, 2220, 62, 19849, 7, 33365, 3698, 62, 35613, 62, 34219, 8, 198, 198, 2, 6889, 16277, 351, 9639, 2746, 198, 88, 62, 28764, 796, 11523, 13, 79, 17407, 7, 87, 8, 198, 198, 2, 26439, 4985, 2746, 319, 1332, 4263, 290, 905, 10638, 198, 79, 541, 4470, 13, 49786, 7, 88, 11, 331, 62, 28764, 8, 628, 628 ]
3.335968
253
from pyrevolve import Checkpoint, Operator from devito import TimeFunction class CheckpointOperator(Operator): """Devito's concrete implementation of the ABC pyrevolve.Operator. This class wraps devito.Operator so it conforms to the pyRevolve API. pyRevolve will call apply with arguments t_start and t_end. Devito calls these arguments t_s and t_e so the following dict is used to perform the translations between different names. :param op: The devito.Operator object that this object will wrap :param args: If devito.Operator.apply() expects any arguments, they can be provided here to be cached. Any calls to CheckpointOperator.apply() will automatically include these cached arguments in the call to the underlying devito.Operator.apply(). """ t_arg_names = {'t_start': 'time_m', 't_end': 'time_M'} def apply(self, t_start, t_end): """ If the devito operator requires some extra arguments in the call to apply they can be stored in the args property of this object so pyRevolve calls pyRevolve.Operator.apply() without caring about these extra arguments while this method passes them on correctly to devito.Operator """ # Build the arguments list to invoke the kernel function args = self.op.arguments(**self._prepare_args(t_start, t_end)) # Invoke kernel function with args arg_values = [args[p.name] for p in self.op.parameters] self.op.cfunction(*arg_values) class DevitoCheckpoint(Checkpoint): """Devito's concrete implementation of the Checkpoint abstract base class provided by pyRevolve. Holds a list of symbol objects that hold data. """ def __init__(self, objects): """Intialise a checkpoint object. Upon initialisation, a checkpoint stores only a reference to the objects that are passed into it.""" assert(all(isinstance(o, TimeFunction) for o in objects)) dtypes = set([o.dtype for o in objects]) assert(len(dtypes) == 1) self._dtype = dtypes.pop() self.objects = objects @property def save(self, ptr): """Overwrite live-data in this Checkpoint object with data found at the ptr location.""" i_ptr_lo = 0 i_ptr_hi = 0 for o in self.objects: i_ptr_hi = i_ptr_hi + o.size ptr[i_ptr_lo:i_ptr_hi] = o.data.flatten()[:] i_ptr_lo = i_ptr_hi def load(self, ptr): """Copy live-data from this Checkpoint object into the memory given by the ptr.""" i_ptr_lo = 0 i_ptr_hi = 0 for o in self.objects: i_ptr_hi = i_ptr_hi + o.size o.data[:] = ptr[i_ptr_lo:i_ptr_hi].reshape(o.shape) i_ptr_lo = i_ptr_hi @property def size(self): """The memory consumption of the data contained in a checkpoint.""" return sum([o.size for o in self.objects])
[ 6738, 12972, 18218, 6442, 1330, 6822, 4122, 11, 35946, 198, 6738, 1614, 10094, 1330, 3862, 22203, 628, 198, 4871, 6822, 4122, 18843, 1352, 7, 18843, 1352, 2599, 198, 220, 220, 220, 37227, 13603, 10094, 338, 10017, 7822, 286, 262, 9738, 12972, 18218, 6442, 13, 18843, 1352, 13, 770, 1398, 27521, 198, 220, 220, 220, 220, 220, 220, 1614, 10094, 13, 18843, 1352, 523, 340, 17216, 82, 284, 262, 12972, 18009, 6442, 7824, 13, 12972, 18009, 6442, 481, 869, 4174, 198, 220, 220, 220, 220, 220, 220, 351, 7159, 256, 62, 9688, 290, 256, 62, 437, 13, 6245, 10094, 3848, 777, 7159, 256, 62, 82, 290, 256, 62, 68, 523, 198, 220, 220, 220, 220, 220, 220, 262, 1708, 8633, 318, 973, 284, 1620, 262, 25231, 1022, 1180, 3891, 13, 198, 220, 220, 220, 220, 220, 220, 1058, 17143, 1034, 25, 383, 1614, 10094, 13, 18843, 1352, 2134, 326, 428, 2134, 481, 14441, 198, 220, 220, 220, 220, 220, 220, 1058, 17143, 26498, 25, 1002, 1614, 10094, 13, 18843, 1352, 13, 39014, 3419, 13423, 597, 7159, 11, 484, 460, 307, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 994, 284, 307, 39986, 13, 4377, 3848, 284, 6822, 4122, 18843, 1352, 13, 39014, 3419, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6338, 2291, 777, 39986, 7159, 287, 262, 869, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10238, 1614, 10094, 13, 18843, 1352, 13, 39014, 22446, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 256, 62, 853, 62, 14933, 796, 1391, 6, 83, 62, 9688, 10354, 705, 2435, 62, 76, 3256, 705, 83, 62, 437, 10354, 705, 2435, 62, 44, 6, 92, 628, 220, 220, 220, 825, 4174, 7, 944, 11, 256, 62, 9688, 11, 256, 62, 437, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1002, 262, 1614, 10094, 10088, 4433, 617, 3131, 7159, 287, 262, 869, 284, 4174, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 484, 460, 307, 8574, 287, 262, 26498, 3119, 286, 428, 2134, 523, 12972, 18009, 6442, 3848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 18009, 6442, 13, 18843, 1352, 13, 39014, 3419, 1231, 18088, 546, 777, 3131, 7159, 981, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 2446, 8318, 606, 319, 9380, 284, 1614, 10094, 13, 18843, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 262, 7159, 1351, 284, 26342, 262, 9720, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 2116, 13, 404, 13, 853, 2886, 7, 1174, 944, 13557, 46012, 533, 62, 22046, 7, 83, 62, 9688, 11, 256, 62, 437, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10001, 2088, 9720, 2163, 351, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 27160, 796, 685, 22046, 58, 79, 13, 3672, 60, 329, 279, 287, 2116, 13, 404, 13, 17143, 7307, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 404, 13, 66, 8818, 46491, 853, 62, 27160, 8, 628, 198, 4871, 6245, 10094, 9787, 4122, 7, 9787, 4122, 2599, 198, 220, 220, 220, 37227, 13603, 10094, 338, 10017, 7822, 286, 262, 6822, 4122, 12531, 2779, 1398, 2810, 416, 198, 220, 220, 220, 220, 220, 220, 12972, 18009, 6442, 13, 9340, 82, 257, 1351, 286, 6194, 5563, 326, 1745, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5563, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5317, 498, 786, 257, 26954, 2134, 13, 14438, 4238, 5612, 11, 257, 26954, 198, 220, 220, 220, 220, 220, 220, 220, 7000, 691, 257, 4941, 284, 262, 5563, 326, 389, 3804, 656, 340, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 439, 7, 271, 39098, 7, 78, 11, 3862, 22203, 8, 329, 267, 287, 5563, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 288, 19199, 796, 900, 26933, 78, 13, 67, 4906, 329, 267, 287, 5563, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 11925, 7, 67, 19199, 8, 6624, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 67, 4906, 796, 288, 19199, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48205, 796, 5563, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 825, 3613, 7, 944, 11, 50116, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5886, 13564, 2107, 12, 7890, 287, 428, 6822, 4122, 2134, 351, 1366, 1043, 379, 198, 220, 220, 220, 220, 220, 220, 220, 262, 50116, 4067, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 20692, 62, 5439, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 20692, 62, 5303, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 267, 287, 2116, 13, 48205, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 20692, 62, 5303, 796, 1312, 62, 20692, 62, 5303, 1343, 267, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50116, 58, 72, 62, 20692, 62, 5439, 25, 72, 62, 20692, 62, 5303, 60, 796, 267, 13, 7890, 13, 2704, 41769, 3419, 58, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 20692, 62, 5439, 796, 1312, 62, 20692, 62, 5303, 628, 220, 220, 220, 825, 3440, 7, 944, 11, 50116, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29881, 2107, 12, 7890, 422, 428, 6822, 4122, 2134, 656, 262, 4088, 1813, 416, 198, 220, 220, 220, 220, 220, 220, 220, 262, 50116, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 20692, 62, 5439, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 20692, 62, 5303, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 267, 287, 2116, 13, 48205, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 20692, 62, 5303, 796, 1312, 62, 20692, 62, 5303, 1343, 267, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 13, 7890, 58, 47715, 796, 50116, 58, 72, 62, 20692, 62, 5439, 25, 72, 62, 20692, 62, 5303, 4083, 3447, 1758, 7, 78, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 20692, 62, 5439, 796, 1312, 62, 20692, 62, 5303, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2546, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 4088, 7327, 286, 262, 1366, 7763, 287, 257, 26954, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2160, 26933, 78, 13, 7857, 329, 267, 287, 2116, 13, 48205, 12962, 198 ]
2.542544
1,187
#!/usr/bin/python3 # DRAFT import os import sys import json import numpy as np import matplotlib.pyplot as plt if __name__ == "__main__": if len(sys.argv) == 2: compare_descriptors(sys.argv[1])
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 2, 360, 44700, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 362, 25, 198, 220, 220, 220, 8996, 62, 20147, 1968, 669, 7, 17597, 13, 853, 85, 58, 16, 12962, 198 ]
2.428571
84
from account.models.instructor_model import InstructorProfile import json from school.models.class_model import Class from school.models.school_model import School from django.urls.base import reverse from rest_framework.test import APITestCase from country.models import Country, City from django.contrib.auth import get_user_model User = get_user_model()
[ 6738, 1848, 13, 27530, 13, 259, 7249, 273, 62, 19849, 1330, 47839, 37046, 198, 11748, 33918, 198, 6738, 1524, 13, 27530, 13, 4871, 62, 19849, 1330, 5016, 198, 6738, 1524, 13, 27530, 13, 14347, 62, 19849, 1330, 3961, 198, 6738, 42625, 14208, 13, 6371, 82, 13, 8692, 1330, 9575, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2043, 395, 20448, 198, 6738, 1499, 13, 27530, 1330, 12946, 11, 2254, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 198, 12982, 796, 651, 62, 7220, 62, 19849, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
3.495238
105
import abc from typing import Any import torch AGGREGATION_MODES = ["mean", "max", "min"] class Metric(metaclass=abc.ABCMeta): """abstract class for Metric objects. Example: Simple usage of the Metric class:: class MyMetric(Metric): def _update(self, predictions, truth): # compute some metric return metric_value model = MyModel() mymetric = MyMetric() for batch, labels in dataset: predictions = model(batch) mymetric.update(predictions, labels) print(mymetric.get_metric(mode="mean")) """ def reset(self) -> None: """Clear metrics from class.""" self.metrics = [] def update(self, predictions: torch.Tensor, truth: torch.Tensor) -> None: """Compute metric value and append to the metrics array. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ self.metrics.append(self._update(predictions, truth)) @abc.abstractmethod def _update(self, predictions: torch.Tensor, truth: torch.Tensor) -> Any: """Compute the metric value. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ def get_metric(self, mode="mean") -> float: """Aggregate all values stored in the metric class. Args: mode (str, optional): aggregation type. mean, max or min. Defaults to "mean". Raises: ValueError: aggregation mode not supported Returns: float: aggregated metric. """ if len(self) == 0: return 0.0 if mode not in AGGREGATION_MODES: raise ValueError( f"Mode {mode} not supported. Supported modes: {AGGREGATION_MODES}" ) if mode == "mean": return sum(self.metrics) / len(self) elif mode == "max": return max(self.metrics) elif mode == "min": return min(self.metrics)
[ 11748, 450, 66, 198, 6738, 19720, 1330, 4377, 198, 198, 11748, 28034, 198, 198, 4760, 28934, 38, 6234, 62, 33365, 1546, 796, 14631, 32604, 1600, 366, 9806, 1600, 366, 1084, 8973, 628, 198, 4871, 3395, 1173, 7, 4164, 330, 31172, 28, 39305, 13, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 397, 8709, 1398, 329, 3395, 1173, 5563, 13, 628, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17427, 8748, 286, 262, 3395, 1173, 1398, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 2011, 9171, 1173, 7, 9171, 1173, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 4808, 19119, 7, 944, 11, 16277, 11, 3872, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24061, 617, 18663, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18663, 62, 8367, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 2011, 17633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 616, 4164, 1173, 796, 2011, 9171, 1173, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 15458, 11, 14722, 287, 27039, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16277, 796, 2746, 7, 43501, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 616, 4164, 1173, 13, 19119, 7, 28764, 9278, 11, 14722, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1820, 4164, 1173, 13, 1136, 62, 4164, 1173, 7, 14171, 2625, 32604, 48774, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 13259, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19856, 20731, 422, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 10466, 796, 17635, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 16277, 25, 28034, 13, 51, 22854, 11, 3872, 25, 28034, 13, 51, 22854, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7293, 1133, 18663, 1988, 290, 24443, 284, 262, 20731, 7177, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16277, 357, 13165, 354, 13, 51, 22854, 2599, 5072, 11192, 669, 422, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3872, 357, 13165, 354, 13, 51, 22854, 2599, 2323, 3872, 11192, 273, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 10466, 13, 33295, 7, 944, 13557, 19119, 7, 28764, 9278, 11, 3872, 4008, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 19119, 7, 944, 11, 16277, 25, 28034, 13, 51, 22854, 11, 3872, 25, 28034, 13, 51, 22854, 8, 4613, 4377, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7293, 1133, 262, 18663, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16277, 357, 13165, 354, 13, 51, 22854, 2599, 5072, 11192, 669, 422, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3872, 357, 13165, 354, 13, 51, 22854, 2599, 2323, 3872, 11192, 273, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 62, 4164, 1173, 7, 944, 11, 4235, 2625, 32604, 4943, 4613, 12178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46384, 49373, 477, 3815, 8574, 287, 262, 18663, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 357, 2536, 11, 11902, 2599, 46500, 2099, 13, 1612, 11, 3509, 393, 949, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 366, 32604, 1911, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 46500, 4235, 407, 4855, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12178, 25, 13262, 515, 18663, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 944, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 407, 287, 317, 11190, 31553, 6234, 62, 33365, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 19076, 1391, 14171, 92, 407, 4855, 13, 36848, 12881, 25, 1391, 4760, 28934, 38, 6234, 62, 33365, 1546, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 366, 32604, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2160, 7, 944, 13, 4164, 10466, 8, 1220, 18896, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 366, 9806, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3509, 7, 944, 13, 4164, 10466, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 366, 1084, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 949, 7, 944, 13, 4164, 10466, 8, 198 ]
2.181188
1,010
"""Use this template for creating simple Python3 server""" from http.server import SimpleHTTPRequestHandler from socketserver import TCPServer
[ 37811, 11041, 428, 11055, 329, 4441, 2829, 11361, 18, 4382, 37811, 198, 198, 6738, 2638, 13, 15388, 1330, 17427, 40717, 18453, 25060, 198, 6738, 37037, 18497, 1330, 17283, 3705, 18497, 198 ]
4.645161
31
import numpy as np import matplotlib.pyplot as plt # This import registers the 3D projection, but is otherwise unused. from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import def lorenz(x, y, z, s=10, r=28, b=2.667): ''' Given: x, y, z: a point of interest in three dimensional space s, r, b: parameters defining the lorenz attractor Returns: x_dot, y_dot, z_dot: values of the lorenz attractor's partial derivatives at the point x, y, z ''' x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return x_dot, y_dot, z_dot dt = 0.01 num_steps = 1000 # Need one more for the initial values xs = np.empty(num_steps + 1) ys = np.empty(num_steps + 1) zs = np.empty(num_steps + 1) # Set initial values xs[0], ys[0], zs[0] = (0., 1., 1.05) # Step through "time", calculating the partial derivatives at the current point # and using them to estimate the next point for i in range(num_steps): x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) # Plot fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(xs, ys, zs, lw=0.5) ax.set_xlabel("X1 Axis") ax.set_ylabel("X2 Axis") ax.set_zlabel("X3 Axis") ax.set_title("Lorenz 63 noiseless trajectory") plt.savefig('lorenz-2.pdf')
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 2, 770, 1330, 28441, 262, 513, 35, 20128, 11, 475, 318, 4306, 21958, 13, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 76, 29487, 18, 67, 1330, 12176, 274, 18, 35, 220, 1303, 645, 20402, 25, 376, 21844, 21958, 1330, 628, 198, 4299, 24044, 27305, 7, 87, 11, 331, 11, 1976, 11, 264, 28, 940, 11, 374, 28, 2078, 11, 275, 28, 17, 13, 28933, 2599, 198, 197, 7061, 6, 198, 197, 15056, 25, 198, 197, 220, 220, 2124, 11, 331, 11, 1976, 25, 257, 966, 286, 1393, 287, 1115, 38517, 2272, 198, 197, 220, 220, 264, 11, 374, 11, 275, 25, 10007, 16215, 262, 24044, 27305, 4729, 273, 198, 197, 35561, 25, 198, 197, 220, 220, 2124, 62, 26518, 11, 331, 62, 26518, 11, 1976, 62, 26518, 25, 3815, 286, 262, 24044, 27305, 4729, 273, 338, 13027, 198, 197, 197, 220, 220, 28486, 379, 262, 966, 2124, 11, 331, 11, 1976, 198, 197, 7061, 6, 198, 197, 87, 62, 26518, 796, 264, 9, 7, 88, 532, 2124, 8, 198, 197, 88, 62, 26518, 796, 374, 9, 87, 532, 331, 532, 2124, 9, 89, 198, 197, 89, 62, 26518, 796, 2124, 9, 88, 532, 275, 9, 89, 198, 197, 7783, 2124, 62, 26518, 11, 331, 62, 26518, 11, 1976, 62, 26518, 628, 198, 28664, 796, 657, 13, 486, 198, 22510, 62, 20214, 796, 8576, 198, 198, 2, 10664, 530, 517, 329, 262, 4238, 3815, 198, 34223, 796, 45941, 13, 28920, 7, 22510, 62, 20214, 1343, 352, 8, 198, 893, 796, 45941, 13, 28920, 7, 22510, 62, 20214, 1343, 352, 8, 198, 89, 82, 796, 45941, 13, 28920, 7, 22510, 62, 20214, 1343, 352, 8, 198, 198, 2, 5345, 4238, 3815, 198, 34223, 58, 15, 4357, 331, 82, 58, 15, 4357, 1976, 82, 58, 15, 60, 796, 357, 15, 1539, 352, 1539, 352, 13, 2713, 8, 198, 198, 2, 5012, 832, 366, 2435, 1600, 26019, 262, 13027, 28486, 379, 262, 1459, 966, 198, 2, 290, 1262, 606, 284, 8636, 262, 1306, 966, 198, 1640, 1312, 287, 2837, 7, 22510, 62, 20214, 2599, 198, 197, 87, 62, 26518, 11, 331, 62, 26518, 11, 1976, 62, 26518, 796, 24044, 27305, 7, 34223, 58, 72, 4357, 331, 82, 58, 72, 4357, 1976, 82, 58, 72, 12962, 198, 197, 34223, 58, 72, 1343, 352, 60, 796, 2124, 82, 58, 72, 60, 1343, 357, 87, 62, 26518, 1635, 288, 83, 8, 198, 197, 893, 58, 72, 1343, 352, 60, 796, 331, 82, 58, 72, 60, 1343, 357, 88, 62, 26518, 1635, 288, 83, 8, 198, 197, 89, 82, 58, 72, 1343, 352, 60, 796, 1976, 82, 58, 72, 60, 1343, 357, 89, 62, 26518, 1635, 288, 83, 8, 628, 198, 2, 28114, 198, 5647, 796, 458, 83, 13, 26875, 3419, 198, 897, 796, 2336, 13, 70, 6888, 7, 16302, 295, 11639, 18, 67, 11537, 198, 198, 897, 13, 29487, 7, 34223, 11, 331, 82, 11, 1976, 82, 11, 300, 86, 28, 15, 13, 20, 8, 198, 897, 13, 2617, 62, 87, 18242, 7203, 55, 16, 38349, 4943, 198, 897, 13, 2617, 62, 2645, 9608, 7203, 55, 17, 38349, 4943, 198, 897, 13, 2617, 62, 89, 18242, 7203, 55, 18, 38349, 4943, 198, 897, 13, 2617, 62, 7839, 7203, 43, 382, 27305, 8093, 645, 271, 5321, 22942, 4943, 198, 198, 489, 83, 13, 21928, 5647, 10786, 31131, 27305, 12, 17, 13, 12315, 11537 ]
2.304878
574
import torch import torch.nn as nn import torchvision import numpy as np from tqdm import tqdm from dataset import ImageDataset if __name__ == '__main__': device = "cuda:0" network_size = (4, 512, 256) learning_rate = 1e-4 iters = 250 mapping_size = 256 B_gauss = torch.randn((mapping_size, 2)).to(device) * 10 ds = ImageDataset("data/fox.jpg", 512) grid, image = ds[0] grid = grid.unsqueeze(0).to(device) image = image.unsqueeze(0).to(device) test_data = (grid, image) train_data = (grid[:, ::2, ::2], image[:, ::2, :: 2]) output = train_model(network_size, learning_rate, iters, B_gauss, train_data=train_data, test_data=(grid, image), device=device)
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 10178, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 6738, 27039, 1330, 7412, 27354, 292, 316, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3335, 796, 366, 66, 15339, 25, 15, 1, 628, 220, 220, 220, 3127, 62, 7857, 796, 357, 19, 11, 22243, 11, 17759, 8, 198, 220, 220, 220, 4673, 62, 4873, 796, 352, 68, 12, 19, 198, 220, 220, 220, 340, 364, 796, 8646, 198, 220, 220, 220, 16855, 62, 7857, 796, 17759, 628, 220, 220, 220, 347, 62, 4908, 1046, 796, 28034, 13, 25192, 77, 19510, 76, 5912, 62, 7857, 11, 362, 29720, 1462, 7, 25202, 8, 1635, 838, 628, 220, 220, 220, 288, 82, 796, 7412, 27354, 292, 316, 7203, 7890, 14, 12792, 13, 9479, 1600, 22243, 8, 628, 220, 220, 220, 10706, 11, 2939, 796, 288, 82, 58, 15, 60, 198, 220, 220, 220, 10706, 796, 10706, 13, 13271, 421, 1453, 2736, 7, 15, 737, 1462, 7, 25202, 8, 198, 220, 220, 220, 2939, 796, 2939, 13, 13271, 421, 1453, 2736, 7, 15, 737, 1462, 7, 25202, 8, 628, 220, 220, 220, 1332, 62, 7890, 796, 357, 25928, 11, 2939, 8, 198, 220, 220, 220, 4512, 62, 7890, 796, 357, 25928, 58, 45299, 7904, 17, 11, 7904, 17, 4357, 2939, 58, 45299, 7904, 17, 11, 7904, 362, 12962, 628, 220, 220, 220, 5072, 796, 4512, 62, 19849, 7, 27349, 62, 7857, 11, 4673, 62, 4873, 11, 340, 364, 11, 347, 62, 4908, 1046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 28, 27432, 62, 7890, 11, 1332, 62, 7890, 16193, 25928, 11, 2939, 828, 3335, 28, 25202, 8, 198 ]
2.335423
319
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================= # IMPORTS # ============================================================================= from __future__ import unicode_literals from unittest import TestCase from mock import patch from pandagg.tree.aggs import Aggs from pandagg.exceptions import InvalidOperationMappingFieldError from pandagg.aggs import DateHistogram, Terms, Avg, Min, Filter import tests.testing_samples.data_sample as sample from tests.testing_samples.mapping_example import MAPPINGS
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 38093, 25609, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30023, 33002, 198, 2, 38093, 25609, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 15290, 1330, 8529, 198, 198, 6738, 19798, 9460, 13, 21048, 13, 9460, 82, 1330, 19015, 82, 198, 6738, 19798, 9460, 13, 1069, 11755, 1330, 17665, 32180, 44, 5912, 15878, 12331, 198, 6738, 19798, 9460, 13, 9460, 82, 1330, 7536, 13749, 21857, 11, 17637, 11, 33455, 11, 1855, 11, 25853, 198, 198, 11748, 5254, 13, 33407, 62, 82, 12629, 13, 7890, 62, 39873, 355, 6291, 198, 198, 6738, 5254, 13, 33407, 62, 82, 12629, 13, 76, 5912, 62, 20688, 1330, 337, 24805, 20754, 628 ]
3.58046
174
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module contains Google Cloud Tasks links.""" from typing import TYPE_CHECKING, Optional from airflow.models import BaseOperator from airflow.providers.google.cloud.links.base import BaseGoogleLink if TYPE_CHECKING: from airflow.utils.context import Context CLOUD_TASKS_BASE_LINK = "https://pantheon.corp.google.com/cloudtasks" CLOUD_TASKS_QUEUE_LINK = CLOUD_TASKS_BASE_LINK + "/queue/{location}/{queue_id}/tasks?project={project_id}" CLOUD_TASKS_LINK = CLOUD_TASKS_BASE_LINK + "?project={project_id}" class CloudTasksQueueLink(BaseGoogleLink): """Helper class for constructing Cloud Task Queue Link""" name = "Cloud Tasks Queue" key = "cloud_task_queue" format_str = CLOUD_TASKS_QUEUE_LINK @staticmethod def extract_parts(queue_name: Optional[str]): """ Extract project_id, location and queue id from queue name: projects/PROJECT_ID/locations/LOCATION_ID/queues/QUEUE_ID """ if not queue_name: return "", "", "" parts = queue_name.split("/") return parts[1], parts[3], parts[5] @staticmethod class CloudTasksLink(BaseGoogleLink): """Helper class for constructing Cloud Task Link""" name = "Cloud Tasks" key = "cloud_task" format_str = CLOUD_TASKS_LINK @staticmethod
[ 2, 198, 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 198, 2, 393, 517, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 198, 2, 9387, 351, 428, 670, 329, 3224, 1321, 198, 2, 5115, 6634, 9238, 13, 220, 383, 7054, 37, 16625, 428, 2393, 198, 2, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 37811, 1212, 8265, 4909, 3012, 10130, 309, 6791, 6117, 526, 15931, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 11, 32233, 198, 198, 6738, 45771, 13, 27530, 1330, 7308, 18843, 1352, 198, 6738, 45771, 13, 15234, 4157, 13, 13297, 13, 17721, 13, 28751, 13, 8692, 1330, 7308, 11708, 11280, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 45771, 13, 26791, 13, 22866, 1330, 30532, 198, 198, 5097, 2606, 35, 62, 51, 1921, 27015, 62, 33, 11159, 62, 43, 17248, 796, 366, 5450, 1378, 79, 415, 37060, 13, 10215, 79, 13, 13297, 13, 785, 14, 17721, 83, 6791, 1, 198, 5097, 2606, 35, 62, 51, 1921, 27015, 62, 48, 8924, 8924, 62, 43, 17248, 796, 7852, 2606, 35, 62, 51, 1921, 27015, 62, 33, 11159, 62, 43, 17248, 1343, 12813, 36560, 14, 90, 24886, 92, 14, 90, 36560, 62, 312, 92, 14, 83, 6791, 30, 16302, 34758, 16302, 62, 312, 36786, 198, 5097, 2606, 35, 62, 51, 1921, 27015, 62, 43, 17248, 796, 7852, 2606, 35, 62, 51, 1921, 27015, 62, 33, 11159, 62, 43, 17248, 1343, 366, 30, 16302, 34758, 16302, 62, 312, 36786, 628, 198, 4871, 10130, 51, 6791, 34991, 11280, 7, 14881, 11708, 11280, 2599, 198, 220, 220, 220, 37227, 47429, 1398, 329, 30580, 10130, 15941, 4670, 518, 7502, 37811, 628, 220, 220, 220, 1438, 796, 366, 18839, 309, 6791, 4670, 518, 1, 198, 220, 220, 220, 1994, 796, 366, 17721, 62, 35943, 62, 36560, 1, 198, 220, 220, 220, 5794, 62, 2536, 796, 7852, 2606, 35, 62, 51, 1921, 27015, 62, 48, 8924, 8924, 62, 43, 17248, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 7925, 62, 42632, 7, 36560, 62, 3672, 25, 32233, 58, 2536, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29677, 1628, 62, 312, 11, 4067, 290, 16834, 4686, 422, 16834, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4493, 14, 31190, 23680, 62, 2389, 14, 17946, 602, 14, 29701, 6234, 62, 2389, 14, 4188, 947, 14, 48, 8924, 8924, 62, 2389, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 16834, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 1600, 366, 1600, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 16834, 62, 3672, 13, 35312, 7203, 14, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3354, 58, 16, 4357, 3354, 58, 18, 4357, 3354, 58, 20, 60, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 10130, 51, 6791, 11280, 7, 14881, 11708, 11280, 2599, 198, 220, 220, 220, 37227, 47429, 1398, 329, 30580, 10130, 15941, 7502, 37811, 628, 220, 220, 220, 1438, 796, 366, 18839, 309, 6791, 1, 198, 220, 220, 220, 1994, 796, 366, 17721, 62, 35943, 1, 198, 220, 220, 220, 5794, 62, 2536, 796, 7852, 2606, 35, 62, 51, 1921, 27015, 62, 43, 17248, 628, 220, 220, 220, 2488, 12708, 24396, 198 ]
2.968794
705
from app.assets import compile_static_assets from flask import Flask from flask_assets import Environment from flask_compress import Compress from flask_talisman import Talisman from flask_wtf.csrf import CSRFProtect from jinja2 import ChoiceLoader from jinja2 import PackageLoader from jinja2 import PrefixLoader app = create_app()
[ 6738, 598, 13, 19668, 1330, 17632, 62, 12708, 62, 19668, 198, 6738, 42903, 1330, 46947, 198, 6738, 42903, 62, 19668, 1330, 9344, 198, 6738, 42903, 62, 5589, 601, 1330, 3082, 601, 198, 6738, 42903, 62, 39240, 23845, 1330, 7193, 23845, 198, 6738, 42903, 62, 86, 27110, 13, 6359, 41871, 1330, 9429, 32754, 41426, 198, 6738, 474, 259, 6592, 17, 1330, 18502, 17401, 198, 6738, 474, 259, 6592, 17, 1330, 15717, 17401, 198, 6738, 474, 259, 6592, 17, 1330, 3771, 13049, 17401, 628, 198, 198, 1324, 796, 2251, 62, 1324, 3419, 198 ]
3.692308
91
# based on https://github.com/pypa/sampleproject # MIT License from io import open from os import path # Always prefer setuptools over distutils from setuptools import find_namespace_packages from setuptools import setup import versioneer here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='asreview-insights', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description='Insight tools for the ASReview project', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/asreview/asreview-insights', author='ASReview LAB developers', author_email='[email protected]', classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], keywords='asreview plot insights', packages=find_namespace_packages(include=['asreviewcontrib.*']), install_requires=[ "numpy", "matplotlib", "asreview>=1,<2", ], extras_require={}, entry_points={ "asreview.entry_points": [ "plot = asreviewcontrib.insights.entrypoint:PlotEntryPoint", "metrics = asreviewcontrib.insights.entrypoint:MetricsEntryPoint", ] }, project_urls={ 'Bug Reports': "https://github.com/asreview/asreview-insights/issues", 'Source': "https://github.com/asreview/asreview-insights", }, )
[ 2, 1912, 319, 3740, 1378, 12567, 13, 785, 14, 79, 4464, 64, 14, 39873, 16302, 198, 2, 17168, 13789, 198, 198, 6738, 33245, 1330, 1280, 198, 6738, 28686, 1330, 3108, 198, 198, 2, 16622, 4702, 900, 37623, 10141, 625, 1233, 26791, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 14933, 10223, 62, 43789, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 11748, 2196, 28153, 198, 198, 1456, 796, 3108, 13, 397, 2777, 776, 7, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 198, 2, 3497, 262, 890, 6764, 422, 262, 20832, 11682, 2393, 198, 4480, 1280, 7, 6978, 13, 22179, 7, 1456, 11, 705, 15675, 11682, 13, 9132, 33809, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 13, 961, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 292, 19023, 12, 1040, 2337, 3256, 198, 220, 220, 220, 2196, 28, 690, 7935, 263, 13, 1136, 62, 9641, 22784, 198, 220, 220, 220, 23991, 4871, 28, 690, 7935, 263, 13, 1136, 62, 28758, 4871, 22784, 198, 220, 220, 220, 6764, 11639, 818, 18627, 4899, 329, 262, 7054, 14832, 1628, 3256, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 11639, 5239, 14, 4102, 2902, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 292, 19023, 14, 292, 19023, 12, 1040, 2337, 3256, 198, 220, 220, 220, 1772, 11639, 1921, 14832, 406, 6242, 6505, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 292, 19023, 31, 12303, 13, 21283, 3256, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 642, 532, 19174, 14, 1273, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 24843, 10442, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 24, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 26286, 11639, 292, 19023, 7110, 17218, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 14933, 10223, 62, 43789, 7, 17256, 28, 17816, 292, 19023, 3642, 822, 15885, 20520, 828, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 77, 32152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6759, 29487, 8019, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 292, 19023, 29, 28, 16, 11, 27, 17, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 33849, 62, 46115, 34758, 5512, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 292, 19023, 13, 13000, 62, 13033, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29487, 796, 355, 19023, 3642, 822, 13, 1040, 2337, 13, 13000, 4122, 25, 43328, 30150, 12727, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4164, 10466, 796, 355, 19023, 3642, 822, 13, 1040, 2337, 13, 13000, 4122, 25, 9171, 10466, 30150, 12727, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1628, 62, 6371, 82, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25624, 17905, 10354, 366, 5450, 1378, 12567, 13, 785, 14, 292, 19023, 14, 292, 19023, 12, 1040, 2337, 14, 37165, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7416, 10354, 366, 5450, 1378, 12567, 13, 785, 14, 292, 19023, 14, 292, 19023, 12, 1040, 2337, 1600, 198, 220, 220, 220, 8964, 198, 8, 198 ]
2.661562
653
#!/usr/bin/env python import sys, random vertices = [] faces = [] with open(sys.argv[1], "r") as file: lines = file.read().split("\n") outputobj = "" for line in lines: if line.startswith("v"): parts = line.split(" ") vertices.append([float(x) for x in parts[1:]]) if line.startswith("f"): parts = line.split(" ") faces.append([int(x) for x in parts[1:]]) for face in faces: for idx in face: vertex = [x+random.random()/50.0 for x in vertices[idx-1]] outputobj += "v " + " ".join([str(x) for x in vertex]) + "\n" for i in xrange(len(faces)): outputobj += "f {0:d} {1:d} {2:d}".format(3*i+1, 3*i+1+1, 3*i+2+1) + "\n" with open(sys.argv[2], "w") as outfile: outfile.write(outputobj)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 25064, 11, 4738, 198, 198, 1851, 1063, 796, 17635, 198, 32186, 796, 17635, 198, 198, 4480, 1280, 7, 17597, 13, 853, 85, 58, 16, 4357, 366, 81, 4943, 355, 2393, 25, 198, 220, 220, 220, 3951, 796, 2393, 13, 961, 22446, 35312, 7203, 59, 77, 4943, 198, 220, 220, 220, 5072, 26801, 796, 13538, 198, 220, 220, 220, 329, 1627, 287, 3951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7203, 85, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 1627, 13, 35312, 7203, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9421, 1063, 13, 33295, 26933, 22468, 7, 87, 8, 329, 2124, 287, 3354, 58, 16, 25, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7203, 69, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 1627, 13, 35312, 7203, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6698, 13, 33295, 26933, 600, 7, 87, 8, 329, 2124, 287, 3354, 58, 16, 25, 11907, 8, 198, 220, 220, 220, 329, 1986, 287, 6698, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 287, 1986, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37423, 796, 685, 87, 10, 25120, 13, 25120, 3419, 14, 1120, 13, 15, 329, 2124, 287, 9421, 1063, 58, 312, 87, 12, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 26801, 15853, 366, 85, 366, 1343, 366, 27071, 22179, 26933, 2536, 7, 87, 8, 329, 2124, 287, 37423, 12962, 1343, 37082, 77, 1, 198, 220, 220, 220, 329, 1312, 287, 2124, 9521, 7, 11925, 7, 32186, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 26801, 15853, 366, 69, 1391, 15, 25, 67, 92, 1391, 16, 25, 67, 92, 1391, 17, 25, 67, 92, 1911, 18982, 7, 18, 9, 72, 10, 16, 11, 513, 9, 72, 10, 16, 10, 16, 11, 513, 9, 72, 10, 17, 10, 16, 8, 1343, 37082, 77, 1, 198, 220, 220, 220, 351, 1280, 7, 17597, 13, 853, 85, 58, 17, 4357, 366, 86, 4943, 355, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 13, 13564, 7, 22915, 26801, 8, 198 ]
1.983051
413
""" Scrape ODS data from the HSCIC """ import json import sys import ffs sys.path.append(ffs.Path.here().parent) import scrape DATA_DIR = ffs.Path.here()/'../../data' DOWNLOADS = 'http://systems.hscic.gov.uk/data/ods/datadownloads/index' def check_sanity_of(metadata): """ We've just finished scraping, let's make sure we haven't scraped bullshit. """ for dataset in metadata: for resource in dataset['resources']: if not resource['url']: print dataset['title'] print dataset['url'] print resource raise Error('You scraped a resource without noting the URL Larry') return def fetch_dataset_metadata(url): """ Given a URL, fetch the metadata and resources from that page, and return it as a dict. """ print url dom = scrape._astree(url) title = dom.cssselect('h1.documentFirstHeading')[0].text_content().strip() description_elements = [e.text_content() for e in dom.cssselect('#parent-fieldname-text')[0] if e.tag != 'table'] description = "\n".join(description_elements).strip() metadata = dict( url=url, title=title, description=description, ) resources = [] try: data_tbody = dom.cssselect('table.listing tbody')[1] except IndexError: # Sometimes the table isn't built that way data_tbody = dom.cssselect('table.listing tbody')[0] resource_rows = data_tbody.cssselect('tr') try: for row in resource_rows: if 'haandsa' in url: try: description, name, created, _ = row except ValueError: description, name, created = row else: name, description, created = row # if 'safehaven' in url: # import pdb;pdb.set_trace() resource = { 'url': name.cssselect('a')[0].get('href'), 'name': name.text_content().strip(), 'description': description.text_content().strip() } resources.append(resource) except ValueError: # Sometimes there are more columns for row in resource_rows: name, full, excel, created = row resource = { 'url': full.cssselect('a')[0].get('href'), 'name': 'Full ' + name.text_content().strip(), 'description': name.text_content().strip() } resources.append(resource) if excel.text_content().strip() == 'N/A': continue try: resource = { 'url': excel.cssselect('a')[0].get('href'), 'name': 'Excel ' + name.text_content().strip(), 'description': name.text_content().strip() } except IndexError: import pdb;pdb.set_trace() print row resources.append(resource) metadata['resources'] = resources return metadata def fetch_ods_metadata(): """ * Fetch the list of downloads from the download index * Iterate through them gathering metadata on each * Write to a file as one dataset per "Download" """ dom = scrape._astree(DOWNLOADS) downloads = dom.cssselect('table.listing a.internal-link') categories = list(set(a.get('href') for a in downloads)) metadata = [fetch_dataset_metadata(url) for url in categories] check_sanity_of(metadata) metafile = DATA_DIR/'ods.json' metafile.truncate() metafile << json.dumps(metadata, indent=2) return if __name__ == '__main__': sys.exit(main())
[ 37811, 198, 3351, 13484, 440, 5258, 1366, 422, 262, 367, 6173, 2149, 198, 37811, 198, 11748, 33918, 198, 11748, 25064, 198, 198, 11748, 277, 9501, 198, 198, 17597, 13, 6978, 13, 33295, 7, 487, 82, 13, 15235, 13, 1456, 22446, 8000, 8, 198, 11748, 42778, 198, 198, 26947, 62, 34720, 796, 277, 9501, 13, 15235, 13, 1456, 3419, 14, 6, 40720, 40720, 7890, 6, 198, 198, 41925, 35613, 50, 796, 705, 4023, 1378, 10057, 82, 13, 71, 1416, 291, 13, 9567, 13, 2724, 14, 7890, 14, 12978, 14, 19608, 324, 593, 46030, 14, 9630, 6, 198, 198, 4299, 2198, 62, 12807, 414, 62, 1659, 7, 38993, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 775, 1053, 655, 5201, 46743, 11, 1309, 338, 787, 1654, 356, 4398, 470, 15881, 276, 20041, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 27039, 287, 20150, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 8271, 287, 27039, 17816, 37540, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8271, 17816, 6371, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 27039, 17816, 7839, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 27039, 17816, 6371, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 8271, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 13047, 10786, 1639, 15881, 276, 257, 8271, 1231, 10820, 262, 10289, 13633, 11537, 198, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 21207, 62, 19608, 292, 316, 62, 38993, 7, 6371, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 257, 10289, 11, 21207, 262, 20150, 290, 4133, 198, 220, 220, 220, 422, 326, 2443, 11, 290, 1441, 340, 355, 257, 8633, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 19016, 198, 220, 220, 220, 2401, 796, 42778, 13557, 459, 631, 7, 6371, 8, 198, 220, 220, 220, 3670, 796, 2401, 13, 25471, 19738, 10786, 71, 16, 13, 22897, 5962, 13847, 278, 11537, 58, 15, 4083, 5239, 62, 11299, 22446, 36311, 3419, 198, 220, 220, 220, 6764, 62, 68, 3639, 796, 685, 68, 13, 5239, 62, 11299, 3419, 329, 304, 287, 2401, 13, 25471, 19738, 10786, 2, 8000, 12, 3245, 3672, 12, 5239, 11537, 58, 15, 60, 611, 304, 13, 12985, 14512, 705, 11487, 20520, 198, 220, 220, 220, 6764, 796, 37082, 77, 1911, 22179, 7, 11213, 62, 68, 3639, 737, 36311, 3419, 628, 220, 220, 220, 20150, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 28, 11213, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4133, 796, 17635, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 83, 2618, 796, 2401, 13, 25471, 19738, 10786, 11487, 13, 4868, 278, 256, 2618, 11537, 58, 16, 60, 198, 220, 220, 220, 2845, 12901, 12331, 25, 1303, 8975, 262, 3084, 2125, 470, 3170, 326, 835, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 83, 2618, 796, 2401, 13, 25471, 19738, 10786, 11487, 13, 4868, 278, 256, 2618, 11537, 58, 15, 60, 198, 220, 220, 220, 8271, 62, 8516, 796, 1366, 62, 83, 2618, 13, 25471, 19738, 10786, 2213, 11537, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 8271, 62, 8516, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 3099, 1746, 64, 6, 287, 19016, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11, 1438, 11, 2727, 11, 4808, 796, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11, 1438, 11, 2727, 796, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 6764, 11, 2727, 796, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 705, 21230, 39487, 6, 287, 19016, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1330, 279, 9945, 26, 79, 9945, 13, 2617, 62, 40546, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8271, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 1438, 13, 25471, 19738, 10786, 64, 11537, 58, 15, 4083, 1136, 10786, 33257, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1438, 13, 5239, 62, 11299, 22446, 36311, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 6764, 13, 5239, 62, 11299, 22446, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4133, 13, 33295, 7, 31092, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 1303, 8975, 612, 389, 517, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 8271, 62, 8516, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 1336, 11, 27336, 11, 2727, 796, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8271, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 1336, 13, 25471, 19738, 10786, 64, 11537, 58, 15, 4083, 1136, 10786, 33257, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 13295, 705, 1343, 1438, 13, 5239, 62, 11299, 22446, 36311, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 1438, 13, 5239, 62, 11299, 22446, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4133, 13, 33295, 7, 31092, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27336, 13, 5239, 62, 11299, 22446, 36311, 3419, 6624, 705, 45, 14, 32, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8271, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 27336, 13, 25471, 19738, 10786, 64, 11537, 58, 15, 4083, 1136, 10786, 33257, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 3109, 5276, 705, 1343, 1438, 13, 5239, 62, 11299, 22446, 36311, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 1438, 13, 5239, 62, 11299, 22446, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 279, 9945, 26, 79, 9945, 13, 2617, 62, 40546, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4133, 13, 33295, 7, 31092, 8, 628, 220, 220, 220, 20150, 17816, 37540, 20520, 796, 4133, 198, 220, 220, 220, 1441, 20150, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 21207, 62, 12978, 62, 38993, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 376, 7569, 262, 1351, 286, 21333, 422, 262, 4321, 6376, 198, 220, 220, 220, 1635, 40806, 378, 832, 606, 11228, 20150, 319, 1123, 198, 220, 220, 220, 1635, 19430, 284, 257, 2393, 355, 530, 27039, 583, 366, 10002, 1, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2401, 796, 42778, 13557, 459, 631, 7, 41925, 35613, 50, 8, 628, 220, 220, 220, 21333, 796, 2401, 13, 25471, 19738, 10786, 11487, 13, 4868, 278, 257, 13, 32538, 12, 8726, 11537, 198, 220, 220, 220, 9376, 796, 1351, 7, 2617, 7, 64, 13, 1136, 10786, 33257, 11537, 329, 257, 287, 21333, 4008, 198, 220, 220, 220, 20150, 796, 685, 69, 7569, 62, 19608, 292, 316, 62, 38993, 7, 6371, 8, 329, 19016, 287, 9376, 60, 628, 220, 220, 220, 2198, 62, 12807, 414, 62, 1659, 7, 38993, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1138, 1878, 576, 796, 42865, 62, 34720, 14, 6, 12978, 13, 17752, 6, 198, 220, 220, 220, 1138, 1878, 576, 13, 2213, 19524, 378, 3419, 198, 220, 220, 220, 1138, 1878, 576, 9959, 33918, 13, 67, 8142, 7, 38993, 11, 33793, 28, 17, 8, 198, 220, 220, 220, 1441, 220, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 28955, 198 ]
2.193341
1,712
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-07-22 19:45 from __future__ import unicode_literals from django.db import migrations
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 13, 20, 319, 2177, 12, 2998, 12, 1828, 678, 25, 2231, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.690909
55
import tkinter as tk from tkinter import filedialog, Entry, messagebox from PIL import ImageTk, Image filenames = [] all_labels = [] base_labels = [] Layer_0 = Image.new(mode = "RGB", size = (1, 1)) left_img_out = Image.new(mode = "RGB", size = (1, 1)) right_img_out = Image.new(mode = "RGB", size = (1, 1)) window = tk.Tk() window.geometry("1000x600") window.title("V1.0") heading = tk.Label(text = "Sprite Layer Compiler", bg="grey", fg="white", width="500",height="3") heading2 = tk.Label(text = "", bg="grey", fg="white", width="500",height="1") heading.pack() heading2.place(x=0,y=350) Description_Label = tk.Label(window, text = "Sprite Frame Dimensions").place(x=320,y=260) X_label = tk.Label(window, text = "Pixel X:").place(x=320,y=280) xval = Entry(window, width="8") xval.place(x=370,y=280) xval.focus_set() Y_label = tk.Label(window, text = "Pixel Y:").place(x=320,y=300) yval = Entry(window, width="8") yval.place(x=370,y=300) yval.focus_set() tk.Button(window, text='Layer 0', command= lambda: openfile0(60,60),).place(x=10,y=60) tk.Button(window, text='Layer 1', command= lambda: openfile1(60,90)).place(x=10,y=90) tk.Button(window, text='Layer 2', command= lambda: openfile1(60,120)).place(x=10,y=120) tk.Button(window, text='Layer 3', command= lambda: openfile1(60,150)).place(x=10,y=150) tk.Button(window, text='Layer 4', command= lambda: openfile1(60,180)).place(x=10,y=180) tk.Button(window, text='Layer 5', command= lambda: openfile1(60,210)).place(x=10,y=210) tk.Button(window, text='Layer 6', command= lambda: openfile1(60,240)).place(x=10,y=240) tk.Button(window, text='Preview', command=Preview, bg="grey", fg="white", width="8",height="1").place(x=10,y=280) tk.Button(window, text='Flip Left', command=FlipLeft, bg="grey", fg="white", width="8",height="1").place(x=80,y=280) tk.Button(window, text='Clear', command=Clear, bg="#e12120", fg="white", width="8",height="1").place(x=170,y=280) tk.Button(window, text='Clear All', command=ClearAll, bg="#971414", fg="white", width="8",height="1").place(x=240,y=280) tk.Button(window, text='Save Right', command=SaveFileRight, bg="green", fg="white", width="8",height="1").place(x=10,y=310) tk.Button(window, text='Save Left', command=SaveFileLeft, bg="green", fg="white", width="8",height="1").place(x=80,y=310) window.mainloop()
[ 11748, 256, 74, 3849, 355, 256, 74, 198, 6738, 256, 74, 3849, 1330, 5717, 498, 519, 11, 21617, 11, 3275, 3524, 198, 6738, 350, 4146, 1330, 7412, 51, 74, 11, 7412, 198, 198, 10379, 268, 1047, 796, 17635, 198, 439, 62, 23912, 1424, 796, 17635, 198, 8692, 62, 23912, 1424, 796, 17635, 198, 49925, 62, 15, 796, 7412, 13, 3605, 7, 14171, 796, 366, 36982, 1600, 2546, 796, 357, 16, 11, 352, 4008, 198, 9464, 62, 9600, 62, 448, 796, 7412, 13, 3605, 7, 14171, 796, 366, 36982, 1600, 2546, 796, 357, 16, 11, 352, 4008, 198, 3506, 62, 9600, 62, 448, 796, 7412, 13, 3605, 7, 14171, 796, 366, 36982, 1600, 2546, 796, 357, 16, 11, 352, 4008, 628, 198, 17497, 796, 256, 74, 13, 51, 74, 3419, 198, 17497, 13, 469, 15748, 7203, 12825, 87, 8054, 4943, 198, 17497, 13, 7839, 7203, 53, 16, 13, 15, 4943, 198, 33878, 796, 256, 74, 13, 33986, 7, 5239, 796, 366, 38454, 578, 34398, 3082, 5329, 1600, 275, 70, 2625, 49502, 1600, 277, 70, 2625, 11186, 1600, 9647, 2625, 4059, 1600, 17015, 2625, 18, 4943, 198, 33878, 17, 796, 256, 74, 13, 33986, 7, 5239, 796, 366, 1600, 275, 70, 2625, 49502, 1600, 277, 70, 2625, 11186, 1600, 9647, 2625, 4059, 1600, 17015, 2625, 16, 4943, 198, 33878, 13, 8002, 3419, 198, 33878, 17, 13, 5372, 7, 87, 28, 15, 11, 88, 28, 14877, 8, 198, 198, 11828, 62, 33986, 220, 796, 256, 74, 13, 33986, 7, 17497, 11, 2420, 796, 366, 38454, 578, 25184, 41265, 11074, 5372, 7, 87, 28, 19504, 11, 88, 28, 21719, 8, 198, 55, 62, 18242, 796, 256, 74, 13, 33986, 7, 17497, 11, 2420, 796, 366, 40809, 1395, 25, 11074, 5372, 7, 87, 28, 19504, 11, 88, 28, 21033, 8, 198, 87, 2100, 796, 21617, 7, 17497, 11, 9647, 2625, 23, 4943, 198, 87, 2100, 13, 5372, 7, 87, 28, 20167, 11, 88, 28, 21033, 8, 198, 87, 2100, 13, 37635, 62, 2617, 3419, 198, 56, 62, 18242, 796, 256, 74, 13, 33986, 7, 17497, 11, 2420, 796, 366, 40809, 575, 25, 11074, 5372, 7, 87, 28, 19504, 11, 88, 28, 6200, 8, 198, 88, 2100, 796, 21617, 7, 17497, 11, 9647, 2625, 23, 4943, 198, 88, 2100, 13, 5372, 7, 87, 28, 20167, 11, 88, 28, 6200, 8, 198, 88, 2100, 13, 37635, 62, 2617, 3419, 198, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 49925, 657, 3256, 3141, 28, 37456, 25, 1280, 7753, 15, 7, 1899, 11, 1899, 828, 737, 5372, 7, 87, 28, 940, 11, 88, 28, 1899, 8, 198, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 49925, 352, 3256, 3141, 28, 37456, 25, 1280, 7753, 16, 7, 1899, 11, 3829, 29720, 5372, 7, 87, 28, 940, 11, 88, 28, 3829, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 49925, 362, 3256, 3141, 28, 37456, 25, 1280, 7753, 16, 7, 1899, 11, 10232, 29720, 5372, 7, 87, 28, 940, 11, 88, 28, 10232, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 49925, 513, 3256, 3141, 28, 37456, 25, 1280, 7753, 16, 7, 1899, 11, 8628, 29720, 5372, 7, 87, 28, 940, 11, 88, 28, 8628, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 49925, 604, 3256, 3141, 28, 37456, 25, 1280, 7753, 16, 7, 1899, 11, 15259, 29720, 5372, 7, 87, 28, 940, 11, 88, 28, 15259, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 49925, 642, 3256, 3141, 28, 37456, 25, 1280, 7753, 16, 7, 1899, 11, 21536, 29720, 5372, 7, 87, 28, 940, 11, 88, 28, 21536, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 49925, 718, 3256, 3141, 28, 37456, 25, 1280, 7753, 16, 7, 1899, 11, 16102, 29720, 5372, 7, 87, 28, 940, 11, 88, 28, 16102, 8, 198, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 48835, 3256, 3141, 28, 48835, 11, 275, 70, 2625, 49502, 1600, 277, 70, 2625, 11186, 1600, 9647, 2625, 23, 1600, 17015, 2625, 16, 11074, 5372, 7, 87, 28, 940, 11, 88, 28, 21033, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 7414, 541, 9578, 3256, 3141, 28, 7414, 541, 18819, 11, 275, 70, 2625, 49502, 1600, 277, 70, 2625, 11186, 1600, 9647, 2625, 23, 1600, 17015, 2625, 16, 11074, 5372, 7, 87, 28, 1795, 11, 88, 28, 21033, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 19856, 3256, 3141, 28, 19856, 11, 275, 70, 25698, 68, 1065, 10232, 1600, 277, 70, 2625, 11186, 1600, 9647, 2625, 23, 1600, 17015, 2625, 16, 11074, 5372, 7, 87, 28, 17279, 11, 88, 28, 21033, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 19856, 1439, 3256, 3141, 28, 19856, 3237, 11, 275, 70, 25698, 5607, 1415, 1415, 1600, 277, 70, 2625, 11186, 1600, 9647, 2625, 23, 1600, 17015, 2625, 16, 11074, 5372, 7, 87, 28, 16102, 11, 88, 28, 21033, 8, 628, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 16928, 6498, 3256, 3141, 28, 16928, 8979, 11028, 11, 275, 70, 2625, 14809, 1600, 277, 70, 2625, 11186, 1600, 9647, 2625, 23, 1600, 17015, 2625, 16, 11074, 5372, 7, 87, 28, 940, 11, 88, 28, 26717, 8, 198, 30488, 13, 21864, 7, 17497, 11, 2420, 11639, 16928, 9578, 3256, 3141, 28, 16928, 8979, 18819, 11, 275, 70, 2625, 14809, 1600, 277, 70, 2625, 11186, 1600, 9647, 2625, 23, 1600, 17015, 2625, 16, 11074, 5372, 7, 87, 28, 1795, 11, 88, 28, 26717, 8, 628, 198, 17497, 13, 12417, 26268, 3419, 198 ]
2.521265
917
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px # This dataframe has 244 lines, but 4 distinct values for `day` df = px.data.tips() app = dash.Dash(__name__) app.layout = html.Div([ html.P("Selector:"), dcc.Dropdown( id='names', value='day', options=[{'value': x, 'label': x} for x in ['smoker', 'day', 'time', 'sex']], clearable=False ), html.P("Values:"), dcc.Dropdown( id='values', value='total_bill', options=[{'value': x, 'label': x} for x in ['total_bill', 'tip', 'size']], clearable=False ), dcc.Graph(id="pie-chart"), ]) @app.callback( Output("pie-chart", "figure"), [Input("names", "value"), Input("values", "value")]) #app.run_server(debug=True) if __name__ == "__main__": import os debug = False if os.environ["DASH_DEBUG_MODE"] == "False" else True app.run_server(host="0.0.0.0", port=8050, debug=debug)
[ 11748, 14470, 198, 11748, 14470, 62, 7295, 62, 5589, 3906, 355, 288, 535, 198, 11748, 14470, 62, 6494, 62, 5589, 3906, 355, 27711, 198, 6738, 14470, 13, 45841, 3976, 1330, 23412, 11, 25235, 198, 11748, 7110, 306, 13, 42712, 355, 279, 87, 198, 198, 2, 770, 1366, 14535, 468, 35264, 3951, 11, 475, 604, 7310, 3815, 329, 4600, 820, 63, 198, 7568, 796, 279, 87, 13, 7890, 13, 41315, 3419, 198, 198, 1324, 796, 14470, 13, 43041, 7, 834, 3672, 834, 8, 198, 198, 1324, 13, 39786, 796, 27711, 13, 24095, 26933, 198, 220, 220, 220, 27711, 13, 47, 7203, 17563, 273, 11097, 828, 198, 220, 220, 220, 288, 535, 13, 26932, 2902, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 14933, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 11639, 820, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 90, 6, 8367, 10354, 2124, 11, 705, 18242, 10354, 2124, 92, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 37250, 5796, 11020, 3256, 705, 820, 3256, 705, 2435, 3256, 705, 8044, 20520, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1598, 540, 28, 25101, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 27711, 13, 47, 7203, 40161, 11097, 828, 198, 220, 220, 220, 288, 535, 13, 26932, 2902, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 27160, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 11639, 23350, 62, 35546, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 90, 6, 8367, 10354, 2124, 11, 705, 18242, 10354, 2124, 92, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 37250, 23350, 62, 35546, 3256, 705, 22504, 3256, 705, 7857, 20520, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1598, 540, 28, 25101, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 288, 535, 13, 37065, 7, 312, 2625, 21749, 12, 40926, 12340, 198, 12962, 198, 198, 31, 1324, 13, 47423, 7, 198, 220, 220, 220, 25235, 7203, 21749, 12, 40926, 1600, 366, 26875, 12340, 220, 198, 220, 220, 220, 685, 20560, 7203, 14933, 1600, 366, 8367, 12340, 220, 198, 220, 220, 220, 220, 23412, 7203, 27160, 1600, 366, 8367, 4943, 12962, 198, 198, 2, 1324, 13, 5143, 62, 15388, 7, 24442, 28, 17821, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 28686, 628, 220, 220, 220, 14257, 796, 10352, 611, 28686, 13, 268, 2268, 14692, 35, 11211, 62, 30531, 62, 49058, 8973, 6624, 366, 25101, 1, 2073, 6407, 198, 220, 220, 220, 598, 13, 5143, 62, 15388, 7, 4774, 2625, 15, 13, 15, 13, 15, 13, 15, 1600, 2493, 28, 1795, 1120, 11, 14257, 28, 24442, 8, 198 ]
2.25
484
# Cron Job - # Problem Assign -- Contest with isProblem False -- Assign Problem # Result Assign -- Contest with isResult False # contest end -- (startTime + duration) <= time.now #Email from django.core.mail import send_mail from codedigger.settings import EMAIL_HOST_USER ## Short Code Contest # from .utils import login, clean, penalty # from .models import CodeforcesContest, CodeforcesContestSubmission, CodeforcesContestParticipation # import requests, random, re # from codeforces.cron import save_user # from codeforces.models import user as CodeforcesUser # from bs4 import BeautifulSoup as bs # def update_penalty(contest, cookie) : # contestId = contest.contestId # groupId = contest.groupId # page = 0 # prevHandle = None # while(page < 100): # page+=1 # url = "https://codeforces.com/group/"+groupId+"/contest/"+str(contestId)+"/standings/page/"+str(page) # res = requests.get(url , headers = {'Cookie' : cookie}) # soup = bs(res.content,features="html5lib") # participants = soup.find('table' , {'class' :'standings'}).findAll('tr') # NProblems = len(participants[0].findAll('th'))-4 # isBreak = False # isFirst = True # for participant in participants[1:-1] : # column = participant.findAll('td') # user_handle = clean(column[1].find('a').text) # if isFirst: # if user_handle == prevHandle: # isBreak = True # break # else : # prevHandle = user_handle # isFirst = False # contest_user,created = CodeforcesUser.objects.get_or_create(handle = user_handle) # if created : # url = "https://codeforces.com/api/user.info?handles="+user_handle # res = requests.get(url) # if res.status_code == 200: # data = res.json() # if data['status'] == 'OK': # save_user(contest_user , data['result'][0]) # contest_participant,created = CodeforcesContestParticipation.objects.get_or_create( # contest=contest, # user=contest_user, # participantId=participant['participantid'], # defaults={ # 'isOfficial' : clean(column[0].text) != '', # 'isVirtual' : column[1].find('sup') != None # }) # for i in range(NProblems): # sub = CodeforcesContestSubmission.objects.filter(participant=contest_participant, problemIndex = i) # newSub = CodeforcesContestSubmission(participant=contest_participant, problemIndex = i) # if column[4+i].find('span' , {'class' : 'cell-accepted'})!=None and column[4+i]['title'][:3]=='GNU': # subId = participant.findAll('td')[4+i]['acceptedsubmissionid'] # if sub.exists() and str(sub[0].submissionId) == subId : # continue # if sub.exists() : # sub[0].isSolved = True # sub[0].submissionId = subId # sub[0].lang = column[4+i]['title'] # sub[0].penalty = penalty(cookie, contestId, subId, groupId) # sub[0].save() # else : # newSub.isSolved = True # newSub.submissionId = subId # newSub.lang = column[4+i]['title'] # newSub.penalty = penalty(cookie, contestId, subId, groupId) # newSub.save() # else : # newSub.isSolved = False # if not sub.exists() : # newSub.save() # if isBreak: # break # def update_codeforces_short_code_contests() : # cookie = login() # codeforcescontest = CodeforcesContest.objects.filter(Type = "Short Code") # for contest in codeforcescontest : # update_penalty(contest, cookie)
[ 2, 31683, 15768, 532, 198, 2, 20647, 2195, 570, 1377, 27297, 351, 318, 40781, 10352, 1377, 2195, 570, 20647, 198, 2, 25414, 2195, 570, 1377, 27297, 351, 318, 23004, 10352, 198, 2, 8414, 886, 1377, 357, 9688, 7575, 1343, 9478, 8, 19841, 640, 13, 2197, 198, 198, 2, 15333, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 3758, 62, 4529, 198, 6738, 30817, 15249, 13, 33692, 1330, 412, 5673, 4146, 62, 39, 10892, 62, 29904, 198, 198, 2235, 10073, 6127, 27297, 198, 2, 422, 764, 26791, 1330, 17594, 11, 3424, 11, 7389, 198, 2, 422, 764, 27530, 1330, 18720, 891, 273, 728, 4264, 395, 11, 18720, 891, 273, 728, 4264, 395, 7004, 3411, 11, 18720, 891, 273, 728, 4264, 395, 34363, 341, 198, 2, 1330, 7007, 11, 4738, 11, 302, 198, 2, 422, 14873, 891, 273, 728, 13, 66, 1313, 1330, 3613, 62, 7220, 198, 2, 422, 14873, 891, 273, 728, 13, 27530, 1330, 2836, 355, 18720, 891, 273, 728, 12982, 198, 2, 422, 275, 82, 19, 1330, 23762, 50, 10486, 355, 275, 82, 198, 198, 2, 825, 4296, 62, 3617, 6017, 7, 3642, 395, 11, 19751, 8, 1058, 198, 2, 220, 197, 3642, 395, 7390, 796, 8414, 13, 3642, 395, 7390, 198, 2, 220, 197, 8094, 7390, 796, 8414, 13, 8094, 7390, 198, 2, 220, 197, 7700, 796, 657, 198, 2, 220, 197, 47050, 37508, 796, 6045, 198, 2, 220, 197, 4514, 7, 7700, 1279, 1802, 2599, 198, 2, 220, 197, 197, 7700, 47932, 16, 198, 2, 220, 197, 197, 6371, 796, 366, 5450, 1378, 19815, 891, 273, 728, 13, 785, 14, 8094, 30487, 10, 8094, 7390, 10, 1, 14, 3642, 395, 30487, 10, 2536, 7, 3642, 395, 7390, 47762, 1, 14, 1481, 654, 14, 7700, 30487, 10, 2536, 7, 7700, 8, 198, 2, 220, 197, 197, 411, 796, 7007, 13, 1136, 7, 6371, 837, 24697, 796, 1391, 6, 34, 18055, 6, 1058, 19751, 30072, 198, 2, 220, 197, 197, 82, 10486, 796, 275, 82, 7, 411, 13, 11299, 11, 40890, 2625, 6494, 20, 8019, 4943, 198, 2, 220, 197, 197, 48013, 1187, 796, 17141, 13, 19796, 10786, 11487, 6, 837, 1391, 6, 4871, 6, 1058, 6, 1481, 654, 6, 92, 737, 19796, 3237, 10786, 2213, 11537, 198, 2, 220, 197, 197, 45, 2964, 22143, 796, 18896, 7, 48013, 1187, 58, 15, 4083, 19796, 3237, 10786, 400, 6, 4008, 12, 19, 198, 2, 220, 197, 197, 271, 31737, 796, 10352, 198, 2, 220, 197, 197, 271, 5962, 796, 6407, 198, 198, 2, 220, 197, 197, 1640, 18399, 287, 6809, 58, 16, 21912, 16, 60, 1058, 198, 2, 220, 197, 197, 197, 28665, 796, 18399, 13, 19796, 3237, 10786, 8671, 11537, 198, 2, 220, 197, 197, 197, 7220, 62, 28144, 796, 3424, 7, 28665, 58, 16, 4083, 19796, 10786, 64, 27691, 5239, 8, 198, 2, 220, 197, 197, 197, 361, 318, 5962, 25, 198, 2, 220, 197, 197, 197, 197, 361, 2836, 62, 28144, 6624, 8654, 37508, 25, 198, 2, 220, 197, 197, 197, 197, 197, 271, 31737, 796, 6407, 198, 2, 220, 197, 197, 197, 197, 197, 9032, 198, 2, 220, 197, 197, 197, 197, 17772, 1058, 198, 2, 220, 197, 197, 197, 197, 197, 47050, 37508, 796, 2836, 62, 28144, 198, 2, 220, 197, 197, 197, 197, 197, 271, 5962, 796, 10352, 198, 2, 220, 197, 197, 197, 3642, 395, 62, 7220, 11, 25598, 796, 18720, 891, 273, 728, 12982, 13, 48205, 13, 1136, 62, 273, 62, 17953, 7, 28144, 796, 2836, 62, 28144, 8, 198, 2, 220, 197, 197, 197, 361, 2727, 1058, 198, 2, 220, 197, 197, 197, 197, 6371, 796, 366, 5450, 1378, 19815, 891, 273, 728, 13, 785, 14, 15042, 14, 7220, 13, 10951, 30, 4993, 829, 2625, 10, 7220, 62, 28144, 198, 2, 220, 197, 197, 197, 197, 411, 796, 7007, 13, 1136, 7, 6371, 8, 198, 2, 220, 197, 197, 197, 197, 361, 581, 13, 13376, 62, 8189, 6624, 939, 25, 198, 2, 220, 197, 197, 197, 197, 197, 7890, 796, 581, 13, 17752, 3419, 198, 2, 220, 197, 197, 197, 197, 197, 361, 1366, 17816, 13376, 20520, 6624, 705, 11380, 10354, 198, 2, 220, 197, 197, 197, 197, 197, 197, 21928, 62, 7220, 7, 3642, 395, 62, 7220, 837, 1366, 17816, 20274, 6, 7131, 15, 12962, 198, 198, 2, 220, 197, 197, 197, 3642, 395, 62, 48013, 415, 11, 25598, 796, 18720, 891, 273, 728, 4264, 395, 34363, 341, 13, 48205, 13, 1136, 62, 273, 62, 17953, 7, 198, 2, 220, 197, 197, 197, 197, 3642, 395, 28, 3642, 395, 11, 198, 2, 220, 197, 197, 197, 197, 7220, 28, 3642, 395, 62, 7220, 11, 198, 2, 220, 197, 197, 197, 197, 48013, 415, 7390, 28, 48013, 415, 17816, 48013, 415, 312, 6, 4357, 198, 2, 220, 197, 197, 197, 197, 12286, 82, 34758, 198, 2, 220, 197, 197, 197, 197, 197, 6, 271, 28529, 6, 1058, 3424, 7, 28665, 58, 15, 4083, 5239, 8, 14512, 705, 3256, 198, 2, 220, 197, 197, 197, 197, 197, 6, 271, 37725, 6, 1058, 5721, 58, 16, 4083, 19796, 10786, 37330, 11537, 14512, 6045, 198, 2, 220, 197, 197, 197, 197, 30072, 198, 198, 2, 220, 197, 197, 197, 1640, 1312, 287, 2837, 7, 45, 2964, 22143, 2599, 198, 198, 2, 220, 197, 197, 197, 197, 7266, 796, 18720, 891, 273, 728, 4264, 395, 7004, 3411, 13, 48205, 13, 24455, 7, 48013, 415, 28, 3642, 395, 62, 48013, 415, 11, 1917, 15732, 796, 1312, 8, 198, 198, 2, 220, 197, 197, 197, 197, 3605, 7004, 796, 18720, 891, 273, 728, 4264, 395, 7004, 3411, 7, 48013, 415, 28, 3642, 395, 62, 48013, 415, 11, 1917, 15732, 796, 1312, 8, 198, 198, 2, 220, 197, 197, 197, 197, 361, 5721, 58, 19, 10, 72, 4083, 19796, 10786, 12626, 6, 837, 1391, 6, 4871, 6, 1058, 705, 3846, 12, 13635, 276, 6, 30072, 0, 28, 14202, 290, 5721, 58, 19, 10, 72, 7131, 6, 7839, 6, 7131, 25, 18, 60, 855, 6, 16630, 52, 10354, 198, 2, 220, 197, 197, 197, 197, 197, 7266, 7390, 796, 18399, 13, 19796, 3237, 10786, 8671, 11537, 58, 19, 10, 72, 7131, 6, 13635, 5379, 549, 3411, 312, 20520, 198, 198, 2, 220, 197, 197, 197, 197, 197, 361, 850, 13, 1069, 1023, 3419, 290, 965, 7, 7266, 58, 15, 4083, 7266, 3411, 7390, 8, 6624, 850, 7390, 1058, 198, 2, 220, 197, 197, 197, 197, 197, 197, 43043, 198, 198, 2, 220, 197, 197, 197, 197, 197, 361, 850, 13, 1069, 1023, 3419, 1058, 198, 2, 220, 197, 197, 197, 197, 197, 197, 7266, 58, 15, 4083, 271, 50, 5634, 796, 6407, 198, 2, 220, 197, 197, 197, 197, 197, 197, 7266, 58, 15, 4083, 7266, 3411, 7390, 796, 850, 7390, 198, 2, 220, 197, 197, 197, 197, 197, 197, 7266, 58, 15, 4083, 17204, 796, 5721, 58, 19, 10, 72, 7131, 6, 7839, 20520, 198, 2, 220, 197, 197, 197, 197, 197, 197, 7266, 58, 15, 4083, 3617, 6017, 796, 7389, 7, 44453, 11, 8414, 7390, 11, 850, 7390, 11, 1448, 7390, 8, 198, 2, 220, 197, 197, 197, 197, 197, 197, 7266, 58, 15, 4083, 21928, 3419, 198, 2, 220, 197, 197, 197, 197, 197, 17772, 1058, 198, 2, 220, 197, 197, 197, 197, 197, 197, 3605, 7004, 13, 271, 50, 5634, 796, 6407, 198, 2, 220, 197, 197, 197, 197, 197, 197, 3605, 7004, 13, 7266, 3411, 7390, 796, 850, 7390, 198, 2, 220, 197, 197, 197, 197, 197, 197, 3605, 7004, 13, 17204, 796, 5721, 58, 19, 10, 72, 7131, 6, 7839, 20520, 198, 2, 220, 197, 197, 197, 197, 197, 197, 3605, 7004, 13, 3617, 6017, 796, 7389, 7, 44453, 11, 8414, 7390, 11, 850, 7390, 11, 1448, 7390, 8, 198, 2, 220, 197, 197, 197, 197, 197, 197, 3605, 7004, 13, 21928, 3419, 198, 2, 220, 197, 197, 197, 197, 17772, 1058, 198, 2, 220, 197, 197, 197, 197, 197, 3605, 7004, 13, 271, 50, 5634, 796, 10352, 198, 2, 220, 197, 197, 197, 197, 197, 361, 407, 850, 13, 1069, 1023, 3419, 1058, 198, 2, 220, 197, 197, 197, 197, 197, 197, 3605, 7004, 13, 21928, 3419, 198, 198, 2, 220, 197, 197, 361, 318, 31737, 25, 198, 2, 220, 197, 197, 197, 9032, 198, 198, 2, 825, 4296, 62, 19815, 891, 273, 728, 62, 19509, 62, 8189, 62, 3642, 3558, 3419, 1058, 198, 2, 220, 197, 44453, 796, 17594, 3419, 198, 2, 220, 197, 19815, 891, 273, 728, 3642, 395, 796, 18720, 891, 273, 728, 4264, 395, 13, 48205, 13, 24455, 7, 6030, 796, 366, 16438, 6127, 4943, 198, 2, 220, 197, 1640, 8414, 287, 14873, 891, 273, 728, 3642, 395, 1058, 198, 2, 220, 197, 197, 19119, 62, 3617, 6017, 7, 3642, 395, 11, 19751, 8, 198 ]
2.342541
1,448
"""Recognize and extract forms.""" import os from statistics import fmean from azure.ai.formrecognizer.aio import FormRecognizerClient, FormTrainingClient from azure.core.credentials import AzureKeyCredential class RecognizeCustomFormsSampleAsync: """Class to recognize forms in async mode.""" async def recognize_custom_forms(self, custom_model_id, filename): """Extract text from custom form. Args: custom_model_id: The trained custom model id. filename: The filename of the document that will be scanned. Returns: The header for the table and the extracted text. """ endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id = os.getenv("CUSTOM_TRAINED_MODEL_ID", custom_model_id) async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: # Make sure your form's type is included in the # list of form types the custom model can recognize form_url = ( f"https://storage.googleapis.com/" f"{os.getenv('GS_MEDIA_BUCKET_NAME')}/" f"{filename}" ) poller = await form_recognizer_client.begin_recognize_custom_forms_from_url( model_id=model_id, form_url=form_url, include_field_elements=True ) forms = await poller.result() table = [] header = {} for _, form in enumerate(forms): row = {} for idx, (name, field) in enumerate(form.fields.items()): if idx >= 3: for value in field.value: for i, val in value.to_dict()["value"].items(): data = val["value_data"] # Condition for "No Data" if data: words = data["field_elements"] # Condition for multiple word result if len(words) > 1: word_list = [word["text"] for word in words] confidence_list = [word["confidence"] for word in words] slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": " ".join(word_list), "confidence": round(fmean(confidence_list), 3), } else: slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": words[0]["text"], "confidence": words[0]["confidence"], } else: slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": data, "confidence": data, } if i == "REMARKS": table.append(row) row = {} else: slug_name = ( name.lower().replace(" ", "_").replace("(", "").replace(")", "") ) header[slug_name] = { "text": field.value, "confidence": field.confidence, } return header, table async def form_recognizer_runner(filename): """Runner for the form recognizer. Args: filename: The filename of the document to be scanned Returns: The form header and the table scanned. """ sample = RecognizeCustomFormsSampleAsync() model_id = None if os.getenv("CONTAINER_SAS_URL"): endpoint = os.getenv("AZURE_FORM_RECOGNIZER_ENDPOINT") key = os.getenv("AZURE_FORM_RECOGNIZER_KEY") if not endpoint or not key: raise ValueError("Please provide endpoint and API key to run the samples.") form_training_client = FormTrainingClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) async with form_training_client: model = await ( await form_training_client.begin_training( os.getenv("CONTAINER_SAS_URL"), use_training_labels=True ) ).result() model_id = model.model_id return await sample.recognize_custom_forms(model_id, filename)
[ 37811, 6690, 2360, 1096, 290, 7925, 5107, 526, 15931, 198, 11748, 28686, 198, 6738, 7869, 1330, 277, 32604, 198, 198, 6738, 35560, 495, 13, 1872, 13, 687, 26243, 7509, 13, 64, 952, 1330, 5178, 6690, 2360, 7509, 11792, 11, 5178, 44357, 11792, 198, 6738, 35560, 495, 13, 7295, 13, 66, 445, 14817, 1330, 22134, 9218, 34, 445, 1843, 628, 198, 4871, 31517, 1096, 15022, 8479, 82, 36674, 42367, 25, 198, 220, 220, 220, 37227, 9487, 284, 7564, 5107, 287, 30351, 4235, 526, 15931, 628, 220, 220, 220, 30351, 825, 7564, 62, 23144, 62, 23914, 7, 944, 11, 2183, 62, 19849, 62, 312, 11, 29472, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11627, 974, 2420, 422, 2183, 1296, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2183, 62, 19849, 62, 312, 25, 383, 8776, 2183, 2746, 4686, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 25, 383, 29472, 286, 262, 3188, 326, 481, 307, 28660, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 13639, 329, 262, 3084, 290, 262, 21242, 2420, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36123, 796, 28686, 13, 268, 2268, 14692, 22778, 11335, 62, 21389, 62, 38827, 7730, 45, 14887, 1137, 62, 1677, 6322, 46, 12394, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 28686, 13, 268, 2268, 14692, 22778, 11335, 62, 21389, 62, 38827, 7730, 45, 14887, 1137, 62, 20373, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 312, 796, 28686, 13, 1136, 24330, 7203, 34, 7759, 2662, 62, 51, 3861, 1268, 1961, 62, 33365, 3698, 62, 2389, 1600, 2183, 62, 19849, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 5178, 6690, 2360, 7509, 11792, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 28, 437, 4122, 11, 49920, 28, 26903, 495, 9218, 34, 445, 1843, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 355, 1296, 62, 26243, 7509, 62, 16366, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 1654, 534, 1296, 338, 2099, 318, 3017, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1351, 286, 1296, 3858, 262, 2183, 2746, 460, 7564, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 6371, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 5450, 1378, 35350, 13, 13297, 499, 271, 13, 785, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 418, 13, 1136, 24330, 10786, 14313, 62, 30733, 3539, 62, 33, 16696, 2767, 62, 20608, 11537, 92, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 34345, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3278, 263, 796, 25507, 1296, 62, 26243, 7509, 62, 16366, 13, 27471, 62, 26243, 1096, 62, 23144, 62, 23914, 62, 6738, 62, 6371, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 312, 28, 19849, 62, 312, 11, 1296, 62, 6371, 28, 687, 62, 6371, 11, 2291, 62, 3245, 62, 68, 3639, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5107, 796, 25507, 3278, 263, 13, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 1296, 287, 27056, 378, 7, 23914, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 357, 3672, 11, 2214, 8, 287, 27056, 378, 7, 687, 13, 25747, 13, 23814, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4686, 87, 18189, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1988, 287, 2214, 13, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1188, 287, 1988, 13, 1462, 62, 11600, 3419, 14692, 8367, 1, 4083, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1188, 14692, 8367, 62, 7890, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24295, 329, 366, 2949, 6060, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 1366, 14692, 3245, 62, 68, 3639, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24295, 329, 3294, 1573, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 10879, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 62, 4868, 796, 685, 4775, 14692, 5239, 8973, 329, 1573, 287, 2456, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6628, 62, 4868, 796, 685, 4775, 14692, 39745, 8973, 329, 1573, 287, 2456, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31065, 62, 3672, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 14692, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7203, 33172, 45434, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7203, 7, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7, 4943, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 58, 6649, 1018, 62, 3672, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 366, 27071, 22179, 7, 4775, 62, 4868, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39745, 1298, 2835, 7, 69, 32604, 7, 39745, 62, 4868, 828, 513, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31065, 62, 3672, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 14692, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7203, 33172, 45434, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7203, 7, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7, 4943, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 58, 6649, 1018, 62, 3672, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 2456, 58, 15, 7131, 1, 5239, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39745, 1298, 2456, 58, 15, 7131, 1, 39745, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31065, 62, 3672, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 14692, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7203, 33172, 45434, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7203, 7, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 7, 4943, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 58, 6649, 1018, 62, 3672, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 1366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39745, 1298, 1366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 366, 40726, 14175, 50, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 13, 33295, 7, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31065, 62, 3672, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 13, 21037, 22446, 33491, 7203, 33172, 45434, 11074, 33491, 7203, 7, 1600, 366, 11074, 33491, 7, 4943, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 58, 6649, 1018, 62, 3672, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 2214, 13, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39745, 1298, 2214, 13, 39745, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13639, 11, 3084, 628, 198, 292, 13361, 825, 1296, 62, 26243, 7509, 62, 16737, 7, 34345, 2599, 198, 220, 220, 220, 37227, 49493, 329, 262, 1296, 3018, 7509, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 29472, 25, 383, 29472, 286, 262, 3188, 284, 307, 28660, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 383, 1296, 13639, 290, 262, 3084, 28660, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6291, 796, 31517, 1096, 15022, 8479, 82, 36674, 42367, 3419, 198, 220, 220, 220, 2746, 62, 312, 796, 6045, 198, 220, 220, 220, 611, 28686, 13, 1136, 24330, 7203, 10943, 30339, 1137, 62, 50, 1921, 62, 21886, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 36123, 796, 28686, 13, 1136, 24330, 7203, 22778, 11335, 62, 21389, 62, 38827, 7730, 45, 14887, 1137, 62, 1677, 6322, 46, 12394, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 28686, 13, 1136, 24330, 7203, 22778, 11335, 62, 21389, 62, 38827, 7730, 45, 14887, 1137, 62, 20373, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 36123, 393, 407, 1994, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 5492, 2148, 36123, 290, 7824, 1994, 284, 1057, 262, 8405, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 34409, 62, 16366, 796, 5178, 44357, 11792, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 28, 437, 4122, 11, 49920, 28, 26903, 495, 9218, 34, 445, 1843, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 1296, 62, 34409, 62, 16366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 25507, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 1296, 62, 34409, 62, 16366, 13, 27471, 62, 34409, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 1136, 24330, 7203, 10943, 30339, 1137, 62, 50, 1921, 62, 21886, 12340, 779, 62, 34409, 62, 23912, 1424, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 312, 796, 2746, 13, 19849, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 25507, 6291, 13, 26243, 1096, 62, 23144, 62, 23914, 7, 19849, 62, 312, 11, 29472, 8, 198 ]
1.623806
3,663
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 24 15:39:33 2021 Calculate and plot details of inner Solar System transits as seen from outer Solar System objects. Requires package solarsystem (https://pypi.org/project/solarsystem/) Animation requires imagemagick (imagemagick.org) @author: keatonb """ import solarsystem import numpy as np import matplotlib.pyplot as plt import warnings from astropy import units as u from astropy import constants as const from astropy.time import Time from scipy.interpolate import interp1d from datetime import timedelta from matplotlib import animation #from NASA Planetary Fact Sheet #km #https://nssdc.gsfc.nasa.gov/planetary/factsheet/ planetdiameter = {"Mercury":4879, "Venus":12104, "Earth":12756, "Mars":6792, "Jupiter":142984, "Saturn":120536, "Uranus":51118, "Neptune":49528} class Geometry: """ innerplanet relative to Sun as seen from outerplanet at time Derived in Bell & Rustamkulov (2021, in prep.) """ def __init__(self, innerplanet, outerplanet, time): """ Parameters: innerplanet (str): name of inner planet outerplanet (str): name of outer planet time (datetime): timestamp (UTC) """ self.innerplanet = innerplanet.capitalize() self.outerplanet = outerplanet.capitalize() self.time = time #Get heliocentric ecliptic planet positions at time: #(Longitude (l, deg), Latitude (b, deg), Distance (r, AU)) H = solarsystem.Heliocentric(year=time.year, month=time.month, day=time.day, hour=time.hour, minute=time.minute + time.second/60 + time.microsecond/1e6) planets = H.planets() #Get heliocentric ecliptic planet positions: #(Longitude (l, deg), Latitude (b, deg), Distance (r, AU)) O = planets[outerplanet] I = planets[innerplanet] E = planets["Earth"] #Convert to spherical position vector: #[r (AU, b (radians), l (radians)] rvec = lambda P: np.array([P[2],P[1]*np.pi/180,P[0]*np.pi/180]) rO = rvec(O) rI = rvec(I) rE = rvec(E) #Convert to Cartesian coordinates (x,y,z in AU) xvec = lambda rP: np.array([rP[0]*np.cos(rP[1])*np.cos(rP[2]), rP[0]*np.cos(rP[1])*np.sin(rP[2]), rP[0]*np.sin(rP[1])]) xO = xvec(rO) xI = xvec(rI) xE = xvec(rE) #Get positions relative to outer planet xO_Sun = - xO xO_I = xI - xO xO_E = xE - xO #Align x-axis with Sun for relative planet positions #With two rotation matrices: x' = BAx A = np.array([[-np.cos(rO[2]),-np.sin(rO[2]),0], [np.sin(rO[2]),-np.cos(rO[2]),0], [0,0,1]]) B = np.array([[np.cos(rO[1]),0,-np.sin(rO[1])], [0,1,0], [np.sin(rO[1]),0,np.cos(rO[1])]]) BA = np.matmul(B, A) xvecprime = lambda xO_P: np.matmul(BA,xO_P) xO_Sun_prime = xvecprime(xO_Sun) #Passes a sanity check xO_I_prime = xvecprime(xO_I) xO_E_prime = xvecprime(xO_E) self.xSun = xO_Sun_prime self.xI = xO_I_prime self.xE = xO_I_prime #Convert back to spherical coordinates #for on-sky positions as seen from O [r (AU,b (radians),l (radians)] rvecprime = lambda xvecp: np.array([np.sqrt(np.sum(xvecp**2.)), np.arctan(xvecp[2]/np.sqrt(np.sum(xvecp[:2]**2))), -np.arctan(xvecp[1]/xvecp[0])]) rO_Sun_prime = rvecprime(xO_Sun_prime) #Passes a sanity check rO_I_prime = rvecprime(xO_I_prime) #Passes a sanity check rO_E_prime = rvecprime(xO_E_prime) #Praise Boas! self.rSun = rO_Sun_prime self.rI = rO_I_prime self.rE = rO_I_prime #Angular separation between inner planet and Sun (radians) self.theta = np.arccos(np.dot(xO_Sun_prime,xO_I_prime)/(rO_Sun_prime[0]*rO_I_prime[0])) #Angular diameters of inner planet and Sun (radians) self.angdiam_Sun = 2*const.R_sun.to(u.AU)/(rO_Sun_prime[0]*u.AU) self.angdiam_I = planetdiameter[innerplanet]*u.km.to(u.AU)/rO_I_prime[0] #Are we in transit? self.intransit = ((self.theta < (self.angdiam_Sun + self.angdiam_I)/2.) & (rO_I_prime[0] < rO_Sun_prime[0])) #Fraction of distance toward Solar limb (0 at center) r = self.theta / (self.angdiam_Sun/2.0) self.mu = np.sqrt(1-r**2.) #Light travel time delay to Earth (seconds) self.timedelay = ((rO_I_prime[0] + rO_E_prime[0])*u.AU/const.c).to(u.s).value def plot(self, ax=None, fov=(4,4), unit=u.arcsec, show=True, filename=None, timedelay=True, fontsize=13, **kwargs): """ Plot snapshot of Sun, innerplanet from outerplanet Parameters: ax (mpl axis): axis to plot to (default: create new fig,ax) fov (tuple): (width,height) in solar radii unit (astropy angle unit): unit for axes show (bool): whether to show plot (default: True) filename (str): filename to save to (default: None) timedelay (bool): add light-travel time to text? fontsize (float): fontsize **kwargs: args for figure if no axis provided """ #Create fig and ax if no ax provided if ax is None: fig,ax = plt.subplots(**kwargs) #Circles must be round ax.set_aspect(1) #Angular unit conversion (from radians) scale = u.radian.to(unit) #Display sun, planet sunangrad = scale*self.angdiam_Sun/2. sun = plt.Circle((0, 0), sunangrad, color='y', zorder = 1) #Is planet in front of Sun? infront = self.rI[0] < self.rSun[0] #The line on this circle makes it look larger than reality, #but it's almost too small to see without planet = plt.Circle((scale*self.rI[2], scale*self.rI[1]), scale*self.angdiam_I/2., color='blue', zorder=2*infront) ax.add_patch(sun) ax.add_patch(planet) #Add text time = self.time if timedelay: time += timedelta(seconds=self.timedelay) ax.text(0.03,0.02,(f"{self.innerplanet} from {self.outerplanet} \n" + time.strftime('%Y-%m-%d %H:%M:%S')), transform=ax.transAxes, ha='left', va='bottom', fontsize=fontsize) ax.set_xlabel(fr"$l'$ ({unit.short_names[0]})", fontsize=fontsize) ax.set_ylabel(fr"$b'$ ({unit.short_names[0]})", fontsize=fontsize) #Scale axes ax.set_xlim(-fov[0]*sunangrad/2, fov[0]*sunangrad/2) ax.set_ylim(-fov[1]*sunangrad/2, fov[1]*sunangrad/2) #Save plot or show if filename is not None: plt.savefig(filename) if show: plt.show() def _limbdarkening(phi, u2=0.88, v2=-0.23): """limb darkening law parameterization from Section 14.7 of Allen's Astrophysical Quantities (4th ed, Cox, 2000, AIP Press) default u2,v2 values are for ~V filter @ 600 nm phi is angle between solar radius vector and line of sight (radians) normalized so disk integrates to 1 """ mu = np.cos(phi) return (1 - u2 - v2 + u2*mu + v2*(mu**2))/(1-u2/3 - v2/2) class Transit: """ Properties and plots of transits in time window. Calculates: - MJD (instantaneous and observed) of ingress,egress,midtranist - Impact parameter (b) Plots: - animate (gif) - traceplot (path) TODO: lightcurve (simulated) """ def __init__(self, innerplanet, outerplanet, starttime, endtime, timestep): """ Parameters: innerplanet (str): name of inner planet outerplanet (str): name of outer planet starttime (datetime): timestamp (UTC) before transit endtime (datetime): timestamp (UTC) before transit timestep (float): sampling interval (minutes; > 0) Notes: Impact parameter, b, is minimum within timestamp """ #Check that timestep is positive if timestep <= 0: raise Exception("Timestep must be positive.") if timestep > 10: warnings.warn("Timesteps longer than 10 minutes may produce poor results") deltatime = timedelta(minutes=timestep) self.innerplanet = innerplanet self.outerplanet = outerplanet #Compute timestamps self.times = [starttime] while self.times[-1] < endtime: self.times.append(self.times[-1] + deltatime) self.mjd = np.array([Time(time).mjd for time in self.times]) #Calculate geometry at each timestamp self.geometry = [Geometry(self.innerplanet, self.outerplanet, time) for time in self.times] #Get observed times (corrected for light travel time) self.mjdobs = self.mjd + np.array([g.timedelay for g in self.geometry])/(24*3600.) #compute transit start, end, and mid-eclipse times #in transit when transitsep <= 1 transitsep = [g.theta / ((g.angdiam_Sun+g.angdiam_I)/2.0) for g in self.geometry] #separate below and after transit deepest = np.argmin([g.theta / ((g.angdiam_Sun+g.angdiam_I)/2.) for g in self.geometry]) #we'll interpolate precise start and end times if deepest != 0: self.startingress_mjd = float(interp1d(transitsep[:deepest],self.mjd[:deepest], bounds_error=False)(1)) self.startingress_mjdobs = float(interp1d(transitsep[:deepest],self.mjdobs[:deepest], bounds_error=False)(1)) else: self.startingress_mjd = np.nan self.startingress_mjdobs = np.nan if deepest != len(self.geometry)-1: self.endegress_mjd = float(interp1d(transitsep[deepest:],self.mjd[deepest:], bounds_error=False)(1)) self.endegress_mjdobs = float(interp1d(transitsep[deepest:],self.mjdobs[deepest:], bounds_error=False)(1)) else: self.endegress_mjd = np.nan self.endegress_mjdobs = np.nan self.midtransit_mjd = (self.startingress_mjd + self.endegress_mjd)/2. self.midtransit_mjdobs = (self.startingress_mjdobs + self.endegress_mjdobs)/2. self.transitdurationobs = (self.endegress_mjdobs - self.startingress_mjdobs)*24*u.h #Compute geometry at mid-transit self.midtransit_geometry = Geometry(self.innerplanet, self.outerplanet, Time(self.midtransit_mjd,format='mjd').to_datetime()) #Simulate mid-transit (default limb darkening) phi = np.arcsin(2*self.midtransit_geometry.theta/self.midtransit_geometry.angdiam_Sun) self.midtransit_depth = ((self.midtransit_geometry.angdiam_I**2/ self.midtransit_geometry.angdiam_Sun**2)* _limbdarkening(phi))*1e6 # ppm #Compute impact parameter (good to timestep precision) self.b = self.midtransit_geometry.theta / ((self.midtransit_geometry.angdiam_Sun)/2.) def animate(self, filename="Transit.gif", duration=3, figsize=(4,4), dpi=150, **kwargs): """Animate the transit Parameters: filename (str): file to save animation to duration (float): loop duration (seconds) figsize (float,float): width, height in inches dpi (float): dots per inch **kwargs: for Geometry plot function """ fig,ax = plt.subplots(figsize=figsize) #No initialization needed #Animation function to call #Time between frames interval = duration/len(self.times) #Animate it and save! anim = animation.FuncAnimation(fig, animateframe, init_func=init, frames=len(self.times), interval=interval, blit=False) anim.save(filename, dpi=dpi, fps = 1/interval, writer='imagemagick') def traceplot(self, ax=None, fov=(4,4), unit=u.arcsec, show=True, filename=None, plotsun=True, fontsize=13, **kwargs): """Plot path of transit across Sun Parameters: ax (mpl axis): axis to plot to (default: create new fig,ax) fov (tuple): (width,height) in solar radii unit (astropy angle unit or "solarradii"): unit for axes show (bool): whether to show plot (default: True) filename (str): filename to save to (default: None) sun (bool): plot Sun circle? (default: True) fontsize (float): fontsize **kwargs: args for figure if no axis provided """ #collect relevant details angdiam_I = np.array([g.angdiam_I for g in self.geometry]) angdiam_Sun = np.array([g.angdiam_Sun for g in self.geometry]) b = np.array([g.rI[1] for g in self.geometry]) l = np.array([g.rI[2] for g in self.geometry]) rI = np.array([g.rI[0] for g in self.geometry]) rSun = np.array([g.rSun[0] for g in self.geometry]) #Are we plotting in solar radii? (useful for overlaying traces) solarradii = unit == "solarradii" if solarradii: unit = u.radian #Angular unit conversion (from radians) scale = u.radian.to(unit) #Get trajectory angle, phi, to plot shadow wide enough phi = np.arctan(np.diff(b)/np.diff(l)) phi = np.concatenate((phi,[phi[-1]])) # match length #Create fig and ax if no ax provided if ax is None: fig,ax = plt.subplots(**kwargs) #Circles must be round ax.set_aspect(1) #Display sun, using angular size at mid-transit (unless solarradii display units) midtransit = np.argmin([g.theta / ((g.angdiam_Sun)/2.) for g in self.geometry]) angdiam_Sun = angdiam_Sun[midtransit] sunangrad = scale*angdiam_Sun/2. if solarradii: #Handle case for solar radii units sunangrad = 1 scale = 2./angdiam_Sun if plotsun: #Only plot sun if requested sun = plt.Circle((0, 0), sunangrad, color='y', zorder = 1) ax.add_patch(sun) #Is planet in front of Sun? infront = rI[midtransit] < rSun[midtransit] #Display transit path linewidth = scale*angdiam_I / np.cos(phi) #Width of shadow path ax.fill_between(scale*l,scale*b+linewidth/2.,scale*b-linewidth/2,lw=0, fc='0.2',zorder=2*infront) ax.set_xlabel(fr"$l'$ ({unit.short_names[0]})", fontsize=fontsize) ax.set_ylabel(fr"$b'$ ({unit.short_names[0]})", fontsize=fontsize) if solarradii: ax.set_xlabel("Solar radii", fontsize=fontsize) ax.set_ylabel("Solar radii", fontsize=fontsize) #Scale axes ax.set_xlim(-fov[0]*sunangrad/2, fov[0]*sunangrad/2) ax.set_ylim(-fov[1]*sunangrad/2, fov[1]*sunangrad/2) #Save plot or show if filename is not None: plt.tight_layout() plt.savefig(filename) if show: plt.tight_layout() plt.show() def simlightcurve(self,limbdarkeningfunc = _limbdarkening, limbdarkening_args = {"u2":0.88, "v2":-0.23}): """ Simulate transit light curve with limb darkening Assumes negligible limb darkening gradient across transiting planet disk Returns relative model flux at self.mjd_obs """ theta = np.array([g.theta for g in self.geometry]) angdiam_Sun = np.array([g.angdiam_Sun for g in self.geometry]) angdiam_I = np.array([g.angdiam_I for g in self.geometry]) #Angle between radial vector and line of sight phi = np.arcsin(2*theta/angdiam_Sun) #compute relative flux lc = 1 - (angdiam_I**2/angdiam_Sun**2)*_limbdarkening(phi,**limbdarkening_args) lc[np.isnan(lc)] = 1 return lc
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3825, 2365, 1987, 1315, 25, 2670, 25, 2091, 33448, 198, 198, 9771, 3129, 378, 290, 7110, 3307, 286, 8434, 12347, 4482, 1007, 896, 355, 1775, 422, 12076, 198, 38825, 4482, 5563, 13, 198, 198, 39618, 5301, 1540, 945, 6781, 357, 5450, 1378, 79, 4464, 72, 13, 2398, 14, 16302, 14, 82, 7828, 6781, 34729, 198, 39520, 4433, 3590, 368, 363, 624, 357, 48466, 368, 363, 624, 13, 2398, 8, 198, 198, 31, 9800, 25, 885, 13951, 65, 198, 37811, 198, 11748, 1540, 945, 6781, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 14601, 198, 6738, 6468, 28338, 1330, 4991, 355, 334, 198, 6738, 6468, 28338, 1330, 38491, 355, 1500, 198, 6738, 6468, 28338, 13, 2435, 1330, 3862, 198, 6738, 629, 541, 88, 13, 3849, 16104, 378, 1330, 987, 79, 16, 67, 198, 6738, 4818, 8079, 1330, 28805, 12514, 198, 6738, 2603, 29487, 8019, 1330, 11034, 198, 198, 2, 6738, 8884, 43800, 19020, 21616, 1303, 13276, 198, 2, 5450, 1378, 77, 824, 17896, 13, 14542, 16072, 13, 77, 15462, 13, 9567, 14, 11578, 8527, 14, 22584, 21760, 14, 198, 47427, 67, 13173, 796, 19779, 42981, 1601, 1298, 2780, 3720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37522, 385, 1298, 1065, 13464, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22840, 1298, 1065, 38219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43725, 1298, 3134, 5892, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41, 21251, 1298, 1415, 1959, 5705, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20245, 700, 1298, 1065, 2713, 2623, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 52, 2596, 385, 1298, 41647, 1507, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8199, 457, 1726, 1298, 33781, 2078, 92, 198, 198, 4871, 2269, 15748, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8434, 47427, 3585, 284, 3825, 355, 1775, 422, 12076, 47427, 379, 640, 198, 220, 220, 220, 220, 198, 220, 220, 220, 9626, 1572, 287, 7459, 1222, 17103, 321, 74, 377, 709, 357, 1238, 2481, 11, 287, 3143, 2014, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 8434, 47427, 11, 12076, 47427, 11, 640, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8434, 47427, 357, 2536, 2599, 1438, 286, 8434, 5440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12076, 47427, 357, 2536, 2599, 1438, 286, 12076, 5440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 357, 19608, 8079, 2599, 41033, 357, 17429, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5083, 47427, 796, 8434, 47427, 13, 27544, 1096, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39605, 47427, 796, 12076, 47427, 13, 27544, 1096, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2435, 796, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 932, 72, 420, 22317, 304, 565, 10257, 291, 5440, 6116, 379, 640, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7, 14617, 3984, 357, 75, 11, 3396, 828, 5476, 3984, 357, 65, 11, 3396, 828, 34600, 357, 81, 11, 27548, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 367, 796, 1540, 945, 6781, 13, 12621, 72, 420, 22317, 7, 1941, 28, 2435, 13, 1941, 11, 1227, 28, 2435, 13, 8424, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1110, 28, 2435, 13, 820, 11, 1711, 28, 2435, 13, 9769, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5664, 28, 2435, 13, 11374, 1343, 640, 13, 12227, 14, 1899, 1343, 640, 13, 24055, 12227, 14, 16, 68, 21, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14705, 796, 367, 13, 11578, 1039, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 932, 72, 420, 22317, 304, 565, 10257, 291, 5440, 6116, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7, 14617, 3984, 357, 75, 11, 3396, 828, 5476, 3984, 357, 65, 11, 3396, 828, 34600, 357, 81, 11, 27548, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 440, 796, 14705, 58, 39605, 47427, 60, 198, 220, 220, 220, 220, 220, 220, 220, 314, 796, 14705, 58, 5083, 47427, 60, 198, 220, 220, 220, 220, 220, 220, 220, 412, 796, 14705, 14692, 22840, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3103, 1851, 284, 43180, 2292, 15879, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 58, 81, 357, 26830, 11, 275, 357, 6335, 1547, 828, 300, 357, 6335, 1547, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 374, 35138, 796, 37456, 350, 25, 45941, 13, 18747, 26933, 47, 58, 17, 4357, 47, 58, 16, 60, 9, 37659, 13, 14415, 14, 15259, 11, 47, 58, 15, 60, 9, 37659, 13, 14415, 14, 15259, 12962, 220, 198, 220, 220, 220, 220, 220, 220, 220, 374, 46, 796, 374, 35138, 7, 46, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 40, 796, 374, 35138, 7, 40, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 36, 796, 374, 35138, 7, 36, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3103, 1851, 284, 13690, 35610, 22715, 357, 87, 11, 88, 11, 89, 287, 27548, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 35138, 796, 37456, 374, 47, 25, 45941, 13, 18747, 26933, 81, 47, 58, 15, 60, 9, 37659, 13, 6966, 7, 81, 47, 58, 16, 12962, 9, 37659, 13, 6966, 7, 81, 47, 58, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 47, 58, 15, 60, 9, 37659, 13, 6966, 7, 81, 47, 58, 16, 12962, 9, 37659, 13, 31369, 7, 81, 47, 58, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 47, 58, 15, 60, 9, 37659, 13, 31369, 7, 81, 47, 58, 16, 12962, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 46, 796, 2124, 35138, 7, 81, 46, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 40, 796, 2124, 35138, 7, 81, 40, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 36, 796, 2124, 35138, 7, 81, 36, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 6116, 3585, 284, 12076, 5440, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 46, 62, 16012, 796, 532, 2124, 46, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 46, 62, 40, 796, 2124, 40, 532, 2124, 46, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 46, 62, 36, 796, 2124, 36, 532, 2124, 46, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2348, 570, 2124, 12, 22704, 351, 3825, 329, 3585, 5440, 6116, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3152, 734, 13179, 2603, 45977, 25, 2124, 6, 796, 23715, 87, 198, 220, 220, 220, 220, 220, 220, 220, 317, 796, 45941, 13, 18747, 26933, 58, 12, 37659, 13, 6966, 7, 81, 46, 58, 17, 46570, 12, 37659, 13, 31369, 7, 81, 46, 58, 17, 46570, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 37659, 13, 31369, 7, 81, 46, 58, 17, 46570, 12, 37659, 13, 6966, 7, 81, 46, 58, 17, 46570, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 15, 11, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 347, 796, 45941, 13, 18747, 26933, 58, 37659, 13, 6966, 7, 81, 46, 58, 16, 46570, 15, 12095, 37659, 13, 31369, 7, 81, 46, 58, 16, 12962, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 16, 11, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 37659, 13, 31369, 7, 81, 46, 58, 16, 46570, 15, 11, 37659, 13, 6966, 7, 81, 46, 58, 16, 12962, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 23715, 796, 45941, 13, 6759, 76, 377, 7, 33, 11, 317, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 35138, 35505, 796, 37456, 2124, 46, 62, 47, 25, 45941, 13, 6759, 76, 377, 7, 4339, 11, 87, 46, 62, 47, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 46, 62, 16012, 62, 35505, 796, 2124, 35138, 35505, 7, 87, 46, 62, 16012, 8, 1303, 47, 13978, 257, 34182, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 46, 62, 40, 62, 35505, 796, 2124, 35138, 35505, 7, 87, 46, 62, 40, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 46, 62, 36, 62, 35505, 796, 2124, 35138, 35505, 7, 87, 46, 62, 36, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 16012, 796, 2124, 46, 62, 16012, 62, 35505, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 40, 796, 2124, 46, 62, 40, 62, 35505, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 36, 796, 2124, 46, 62, 40, 62, 35505, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3103, 1851, 736, 284, 43180, 22715, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1640, 319, 12, 15688, 6116, 355, 1775, 422, 440, 685, 81, 357, 26830, 11, 65, 357, 6335, 1547, 828, 75, 357, 6335, 1547, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 374, 35138, 35505, 796, 37456, 2124, 303, 13155, 25, 45941, 13, 18747, 26933, 37659, 13, 31166, 17034, 7, 37659, 13, 16345, 7, 87, 303, 13155, 1174, 17, 2014, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 283, 310, 272, 7, 87, 303, 13155, 58, 17, 60, 14, 37659, 13, 31166, 17034, 7, 37659, 13, 16345, 7, 87, 303, 13155, 58, 25, 17, 60, 1174, 17, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 37659, 13, 283, 310, 272, 7, 87, 303, 13155, 58, 16, 60, 14, 87, 303, 13155, 58, 15, 12962, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 374, 46, 62, 16012, 62, 35505, 796, 374, 35138, 35505, 7, 87, 46, 62, 16012, 62, 35505, 8, 1303, 47, 13978, 257, 34182, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 374, 46, 62, 40, 62, 35505, 796, 374, 35138, 35505, 7, 87, 46, 62, 40, 62, 35505, 8, 1303, 47, 13978, 257, 34182, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 374, 46, 62, 36, 62, 35505, 796, 374, 35138, 35505, 7, 87, 46, 62, 36, 62, 35505, 8, 1303, 47, 40225, 3248, 292, 0, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 16012, 796, 374, 46, 62, 16012, 62, 35505, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 40, 796, 374, 46, 62, 40, 62, 35505, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 36, 796, 374, 46, 62, 40, 62, 35505, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13450, 934, 14139, 1022, 8434, 5440, 290, 3825, 357, 6335, 1547, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1169, 8326, 796, 45941, 13, 283, 535, 418, 7, 37659, 13, 26518, 7, 87, 46, 62, 16012, 62, 35505, 11, 87, 46, 62, 40, 62, 35505, 20679, 7, 81, 46, 62, 16012, 62, 35505, 58, 15, 60, 9, 81, 46, 62, 40, 62, 35505, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13450, 934, 48428, 7307, 286, 8434, 5440, 290, 3825, 357, 6335, 1547, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 648, 67, 1789, 62, 16012, 796, 362, 9, 9979, 13, 49, 62, 19155, 13, 1462, 7, 84, 13, 26830, 20679, 7, 81, 46, 62, 16012, 62, 35505, 58, 15, 60, 9, 84, 13, 26830, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 648, 67, 1789, 62, 40, 796, 5440, 67, 13173, 58, 5083, 47427, 60, 9, 84, 13, 13276, 13, 1462, 7, 84, 13, 26830, 20679, 81, 46, 62, 40, 62, 35505, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8491, 356, 287, 11168, 30, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 600, 26084, 270, 796, 14808, 944, 13, 1169, 8326, 1279, 357, 944, 13, 648, 67, 1789, 62, 16012, 1343, 2116, 13, 648, 67, 1789, 62, 40, 20679, 17, 2014, 1222, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 81, 46, 62, 40, 62, 35505, 58, 15, 60, 1279, 374, 46, 62, 16012, 62, 35505, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 37, 7861, 286, 5253, 3812, 12347, 25035, 357, 15, 379, 3641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 2116, 13, 1169, 8326, 1220, 357, 944, 13, 648, 67, 1789, 62, 16012, 14, 17, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30300, 796, 45941, 13, 31166, 17034, 7, 16, 12, 81, 1174, 17, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15047, 3067, 640, 5711, 284, 3668, 357, 43012, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16514, 276, 417, 323, 796, 14808, 81, 46, 62, 40, 62, 35505, 58, 15, 60, 1343, 374, 46, 62, 36, 62, 35505, 58, 15, 12962, 9, 84, 13, 26830, 14, 9979, 13, 66, 737, 1462, 7, 84, 13, 82, 737, 8367, 628, 220, 220, 220, 825, 7110, 7, 944, 11, 7877, 28, 14202, 11, 277, 709, 16193, 19, 11, 19, 828, 4326, 28, 84, 13, 5605, 2363, 11, 905, 28, 17821, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 28, 14202, 11, 28805, 417, 323, 28, 17821, 11, 10369, 7857, 28, 1485, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28114, 27479, 286, 3825, 11, 8434, 47427, 422, 12076, 47427, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 357, 76, 489, 16488, 2599, 16488, 284, 7110, 284, 357, 12286, 25, 2251, 649, 2336, 11, 897, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 709, 357, 83, 29291, 2599, 357, 10394, 11, 17015, 8, 287, 6591, 2511, 4178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 357, 459, 28338, 9848, 4326, 2599, 4326, 329, 34197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 357, 30388, 2599, 1771, 284, 905, 7110, 357, 12286, 25, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 357, 2536, 2599, 29472, 284, 3613, 284, 357, 12286, 25, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28805, 417, 323, 357, 30388, 2599, 751, 1657, 12, 35927, 640, 284, 2420, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 357, 22468, 2599, 10369, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 25, 26498, 329, 3785, 611, 645, 16488, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16447, 2336, 290, 7877, 611, 645, 7877, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7877, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 897, 796, 458, 83, 13, 7266, 489, 1747, 7, 1174, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34, 343, 5427, 1276, 307, 2835, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 292, 806, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13450, 934, 4326, 11315, 357, 6738, 2511, 1547, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 796, 334, 13, 6335, 666, 13, 1462, 7, 20850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23114, 4252, 11, 5440, 198, 220, 220, 220, 220, 220, 220, 220, 4252, 648, 6335, 796, 5046, 9, 944, 13, 648, 67, 1789, 62, 16012, 14, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4252, 796, 458, 83, 13, 31560, 293, 19510, 15, 11, 657, 828, 4252, 648, 6335, 11, 3124, 11639, 88, 3256, 1976, 2875, 796, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3792, 5440, 287, 2166, 286, 3825, 30, 198, 220, 220, 220, 220, 220, 220, 220, 1167, 4298, 796, 2116, 13, 81, 40, 58, 15, 60, 1279, 2116, 13, 81, 16012, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 464, 1627, 319, 428, 9197, 1838, 340, 804, 4025, 621, 3950, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4360, 340, 338, 2048, 1165, 1402, 284, 766, 1231, 198, 220, 220, 220, 220, 220, 220, 220, 5440, 796, 458, 83, 13, 31560, 293, 19510, 9888, 9, 944, 13, 81, 40, 58, 17, 4357, 5046, 9, 944, 13, 81, 40, 58, 16, 46570, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 9, 944, 13, 648, 67, 1789, 62, 40, 14, 17, 1539, 3124, 11639, 17585, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 17, 9, 259, 8534, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2860, 62, 17147, 7, 19155, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2860, 62, 17147, 7, 47427, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4550, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 640, 796, 2116, 13, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28805, 417, 323, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 15853, 28805, 12514, 7, 43012, 28, 944, 13, 16514, 276, 417, 323, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 15, 13, 3070, 11, 15, 13, 2999, 11, 7, 69, 1, 90, 944, 13, 5083, 47427, 92, 422, 1391, 944, 13, 39605, 47427, 92, 3467, 77, 1, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 897, 13, 7645, 31554, 274, 11, 387, 11639, 9464, 3256, 46935, 11639, 22487, 3256, 10369, 7857, 28, 10331, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 8310, 1, 3, 75, 6, 3, 37913, 20850, 13, 19509, 62, 14933, 58, 15, 60, 30072, 1600, 10369, 7857, 28, 10331, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7, 8310, 1, 3, 65, 6, 3, 37913, 20850, 13, 19509, 62, 14933, 58, 15, 60, 30072, 1600, 10369, 7857, 28, 10331, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29990, 34197, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 32590, 69, 709, 58, 15, 60, 9, 19155, 648, 6335, 14, 17, 11, 277, 709, 58, 15, 60, 9, 19155, 648, 6335, 14, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 32590, 69, 709, 58, 16, 60, 9, 19155, 648, 6335, 14, 17, 11, 277, 709, 58, 16, 60, 9, 19155, 648, 6335, 14, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16928, 7110, 393, 905, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29472, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 905, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 4808, 2475, 17457, 668, 3101, 7, 34846, 11, 334, 17, 28, 15, 13, 3459, 11, 410, 17, 10779, 15, 13, 1954, 2599, 198, 220, 220, 220, 37227, 2475, 65, 3223, 3101, 1099, 628, 220, 220, 220, 11507, 1634, 422, 7275, 1478, 13, 22, 286, 9659, 338, 8304, 10051, 15380, 16972, 871, 220, 198, 220, 220, 220, 357, 19, 400, 1225, 11, 18014, 11, 4751, 11, 317, 4061, 4332, 8, 198, 220, 220, 220, 4277, 334, 17, 11, 85, 17, 3815, 389, 329, 5299, 53, 8106, 2488, 10053, 28642, 198, 220, 220, 220, 872, 72, 318, 9848, 1022, 6591, 16874, 15879, 290, 1627, 286, 6504, 357, 6335, 1547, 8, 198, 220, 220, 220, 39279, 523, 11898, 48105, 284, 352, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38779, 796, 45941, 13, 6966, 7, 34846, 8, 198, 220, 220, 220, 1441, 357, 16, 532, 334, 17, 532, 410, 17, 1343, 334, 17, 9, 30300, 1343, 410, 17, 9, 7, 30300, 1174, 17, 4008, 29006, 16, 12, 84, 17, 14, 18, 532, 410, 17, 14, 17, 8, 198, 198, 4871, 22325, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24946, 290, 21528, 286, 1007, 896, 287, 640, 4324, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 27131, 689, 25, 198, 220, 220, 220, 220, 532, 33974, 35, 357, 8625, 415, 11655, 290, 6515, 8, 286, 5347, 601, 11, 1533, 601, 11, 13602, 2213, 272, 396, 198, 220, 220, 220, 220, 532, 17677, 11507, 357, 65, 8, 198, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1345, 1747, 25, 198, 220, 220, 220, 220, 532, 43828, 357, 27908, 8, 198, 220, 220, 220, 220, 532, 12854, 29487, 357, 6978, 8, 198, 220, 220, 220, 220, 16926, 46, 25, 1657, 22019, 303, 357, 14323, 4817, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 8434, 47427, 11, 12076, 47427, 11, 923, 2435, 11, 886, 2435, 11, 4628, 395, 538, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8434, 47427, 357, 2536, 2599, 1438, 286, 8434, 5440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12076, 47427, 357, 2536, 2599, 1438, 286, 12076, 5440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 2435, 357, 19608, 8079, 2599, 41033, 357, 17429, 8, 878, 11168, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 2435, 357, 19608, 8079, 2599, 41033, 357, 17429, 8, 878, 11168, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4628, 395, 538, 357, 22468, 2599, 19232, 16654, 357, 1084, 1769, 26, 1875, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17677, 11507, 11, 275, 11, 318, 5288, 1626, 41033, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9787, 326, 4628, 395, 538, 318, 3967, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4628, 395, 538, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 14967, 395, 538, 1276, 307, 3967, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4628, 395, 538, 1875, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 14967, 395, 25386, 2392, 621, 838, 2431, 743, 4439, 3595, 2482, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 83, 265, 524, 796, 28805, 12514, 7, 1084, 1769, 28, 16514, 395, 538, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5083, 47427, 796, 8434, 47427, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39605, 47427, 796, 12076, 47427, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7293, 1133, 4628, 395, 9430, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22355, 796, 685, 9688, 2435, 60, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 22355, 58, 12, 16, 60, 1279, 886, 2435, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22355, 13, 33295, 7, 944, 13, 22355, 58, 12, 16, 60, 1343, 1619, 83, 265, 524, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 73, 67, 796, 45941, 13, 18747, 26933, 7575, 7, 2435, 737, 76, 73, 67, 329, 640, 287, 2116, 13, 22355, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9771, 3129, 378, 22939, 379, 1123, 41033, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 469, 15748, 796, 685, 10082, 15748, 7, 944, 13, 5083, 47427, 11, 2116, 13, 39605, 47427, 11, 640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 640, 287, 2116, 13, 22355, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 6515, 1661, 357, 30283, 276, 329, 1657, 3067, 640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 73, 67, 8158, 796, 2116, 13, 76, 73, 67, 1343, 45941, 13, 18747, 26933, 70, 13, 16514, 276, 417, 323, 329, 308, 287, 2116, 13, 469, 15748, 12962, 29006, 1731, 9, 2623, 405, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5589, 1133, 11168, 923, 11, 886, 11, 290, 3095, 12, 68, 17043, 1661, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 259, 11168, 618, 11168, 325, 79, 19841, 352, 198, 220, 220, 220, 220, 220, 220, 220, 11168, 325, 79, 796, 685, 70, 13, 1169, 8326, 1220, 14808, 70, 13, 648, 67, 1789, 62, 16012, 10, 70, 13, 648, 67, 1789, 62, 40, 20679, 17, 13, 15, 8, 329, 308, 287, 2116, 13, 469, 15748, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25512, 378, 2174, 290, 706, 11168, 198, 220, 220, 220, 220, 220, 220, 220, 25420, 796, 45941, 13, 853, 1084, 26933, 70, 13, 1169, 8326, 1220, 14808, 70, 13, 648, 67, 1789, 62, 16012, 10, 70, 13, 648, 67, 1789, 62, 40, 20679, 17, 2014, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 732, 1183, 39555, 378, 7141, 923, 290, 886, 1661, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25420, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 38690, 601, 62, 76, 73, 67, 796, 12178, 7, 3849, 79, 16, 67, 7, 7645, 270, 325, 79, 58, 25, 22089, 395, 4357, 944, 13, 76, 73, 67, 58, 25, 22089, 395, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 62, 18224, 28, 25101, 5769, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 38690, 601, 62, 76, 73, 67, 8158, 796, 12178, 7, 3849, 79, 16, 67, 7, 7645, 270, 325, 79, 58, 25, 22089, 395, 4357, 944, 13, 76, 73, 67, 8158, 58, 25, 22089, 395, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 62, 18224, 28, 25101, 5769, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 38690, 601, 62, 76, 73, 67, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 38690, 601, 62, 76, 73, 67, 8158, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25420, 14512, 18896, 7, 944, 13, 469, 15748, 13219, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 1533, 601, 62, 76, 73, 67, 796, 12178, 7, 3849, 79, 16, 67, 7, 7645, 270, 325, 79, 58, 22089, 395, 25, 4357, 944, 13, 76, 73, 67, 58, 22089, 395, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 62, 18224, 28, 25101, 5769, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 1533, 601, 62, 76, 73, 67, 8158, 796, 12178, 7, 3849, 79, 16, 67, 7, 7645, 270, 325, 79, 58, 22089, 395, 25, 4357, 944, 13, 76, 73, 67, 8158, 58, 22089, 395, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 62, 18224, 28, 25101, 5769, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 1533, 601, 62, 76, 73, 67, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 1533, 601, 62, 76, 73, 67, 8158, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13602, 7645, 270, 62, 76, 73, 67, 796, 357, 944, 13, 38690, 601, 62, 76, 73, 67, 1343, 2116, 13, 437, 1533, 601, 62, 76, 73, 67, 20679, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13602, 7645, 270, 62, 76, 73, 67, 8158, 796, 357, 944, 13, 38690, 601, 62, 76, 73, 67, 8158, 1343, 2116, 13, 437, 1533, 601, 62, 76, 73, 67, 8158, 20679, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 270, 32257, 8158, 796, 357, 944, 13, 437, 1533, 601, 62, 76, 73, 67, 8158, 532, 2116, 13, 38690, 601, 62, 76, 73, 67, 8158, 27493, 1731, 9, 84, 13, 71, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7293, 1133, 22939, 379, 3095, 12, 7645, 270, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13602, 7645, 270, 62, 469, 15748, 796, 2269, 15748, 7, 944, 13, 5083, 47427, 11, 2116, 13, 39605, 47427, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3862, 7, 944, 13, 13602, 7645, 270, 62, 76, 73, 67, 11, 18982, 11639, 76, 73, 67, 27691, 1462, 62, 19608, 8079, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8890, 5039, 3095, 12, 7645, 270, 357, 12286, 25035, 3223, 3101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 872, 72, 796, 45941, 13, 5605, 31369, 7, 17, 9, 944, 13, 13602, 7645, 270, 62, 469, 15748, 13, 1169, 8326, 14, 944, 13, 13602, 7645, 270, 62, 469, 15748, 13, 648, 67, 1789, 62, 16012, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13602, 7645, 270, 62, 18053, 796, 14808, 944, 13, 13602, 7645, 270, 62, 469, 15748, 13, 648, 67, 1789, 62, 40, 1174, 17, 14, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13602, 7645, 270, 62, 469, 15748, 13, 648, 67, 1789, 62, 16012, 1174, 17, 27493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2475, 17457, 668, 3101, 7, 34846, 4008, 9, 16, 68, 21, 1303, 39719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7293, 1133, 2928, 11507, 357, 11274, 284, 4628, 395, 538, 15440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 796, 2116, 13, 13602, 7645, 270, 62, 469, 15748, 13, 1169, 8326, 1220, 14808, 944, 13, 13602, 7645, 270, 62, 469, 15748, 13, 648, 67, 1789, 62, 16012, 20679, 17, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 43828, 7, 944, 11, 29472, 2625, 8291, 270, 13, 27908, 1600, 9478, 28, 18, 11, 2336, 7857, 16193, 19, 11, 19, 828, 288, 14415, 28, 8628, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2025, 1920, 262, 11168, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 357, 2536, 2599, 2393, 284, 3613, 11034, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9478, 357, 22468, 2599, 9052, 9478, 357, 43012, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 357, 22468, 11, 22468, 2599, 9647, 11, 6001, 287, 8331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14415, 357, 22468, 2599, 22969, 583, 11111, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 25, 329, 2269, 15748, 7110, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 897, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 28, 5647, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2949, 37588, 2622, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 39520, 2163, 284, 869, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7575, 1022, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 16654, 796, 9478, 14, 11925, 7, 944, 13, 22355, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2025, 1920, 340, 290, 3613, 0, 198, 220, 220, 220, 220, 220, 220, 220, 2355, 796, 11034, 13, 37, 19524, 39520, 7, 5647, 11, 43828, 14535, 11, 2315, 62, 20786, 28, 15003, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13431, 28, 11925, 7, 944, 13, 22355, 828, 16654, 28, 3849, 2100, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 698, 270, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2355, 13, 21928, 7, 34345, 11, 288, 14415, 28, 67, 14415, 11, 32977, 796, 352, 14, 3849, 2100, 11, 6260, 11639, 48466, 368, 363, 624, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 12854, 29487, 7, 944, 11, 7877, 28, 14202, 11, 277, 709, 16193, 19, 11, 19, 828, 4326, 28, 84, 13, 5605, 2363, 11, 905, 28, 17821, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 28, 14202, 11, 21528, 403, 28, 17821, 11, 10369, 7857, 28, 1485, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43328, 3108, 286, 11168, 1973, 3825, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 357, 76, 489, 16488, 2599, 16488, 284, 7110, 284, 357, 12286, 25, 2251, 649, 2336, 11, 897, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 709, 357, 83, 29291, 2599, 357, 10394, 11, 17015, 8, 287, 6591, 2511, 4178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 357, 459, 28338, 9848, 4326, 393, 366, 34453, 3258, 324, 4178, 1, 2599, 4326, 329, 34197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 357, 30388, 2599, 1771, 284, 905, 7110, 357, 12286, 25, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 357, 2536, 2599, 29472, 284, 3613, 284, 357, 12286, 25, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4252, 357, 30388, 2599, 7110, 3825, 9197, 30, 357, 12286, 25, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 357, 22468, 2599, 10369, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 25, 26498, 329, 3785, 611, 645, 16488, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33327, 5981, 3307, 198, 220, 220, 220, 220, 220, 220, 220, 3550, 67, 1789, 62, 40, 796, 45941, 13, 18747, 26933, 70, 13, 648, 67, 1789, 62, 40, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3550, 67, 1789, 62, 16012, 796, 45941, 13, 18747, 26933, 70, 13, 648, 67, 1789, 62, 16012, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 45941, 13, 18747, 26933, 70, 13, 81, 40, 58, 16, 60, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 300, 796, 45941, 13, 18747, 26933, 70, 13, 81, 40, 58, 17, 60, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 374, 40, 796, 45941, 13, 18747, 26933, 70, 13, 81, 40, 58, 15, 60, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 374, 16012, 796, 45941, 13, 18747, 26933, 70, 13, 81, 16012, 58, 15, 60, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8491, 356, 29353, 287, 6591, 2511, 4178, 30, 357, 1904, 913, 329, 12893, 8369, 20675, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1540, 3258, 324, 4178, 796, 4326, 6624, 366, 34453, 3258, 324, 4178, 1, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1540, 3258, 324, 4178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 796, 334, 13, 6335, 666, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13450, 934, 4326, 11315, 357, 6738, 2511, 1547, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 796, 334, 13, 6335, 666, 13, 1462, 7, 20850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 22942, 9848, 11, 872, 72, 11, 284, 7110, 9082, 3094, 1576, 198, 220, 220, 220, 220, 220, 220, 220, 872, 72, 796, 45941, 13, 283, 310, 272, 7, 37659, 13, 26069, 7, 65, 20679, 37659, 13, 26069, 7, 75, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 872, 72, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 34846, 17414, 34846, 58, 12, 16, 11907, 4008, 1303, 2872, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16447, 2336, 290, 7877, 611, 645, 7877, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7877, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 897, 796, 458, 83, 13, 7266, 489, 1747, 7, 1174, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34, 343, 5427, 1276, 307, 2835, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 292, 806, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23114, 4252, 11, 1262, 32558, 2546, 379, 3095, 12, 7645, 270, 357, 25252, 1540, 3258, 324, 4178, 3359, 4991, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3095, 7645, 270, 796, 45941, 13, 853, 1084, 26933, 70, 13, 1169, 8326, 1220, 14808, 70, 13, 648, 67, 1789, 62, 16012, 20679, 17, 2014, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3550, 67, 1789, 62, 16012, 796, 3550, 67, 1789, 62, 16012, 58, 13602, 7645, 270, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4252, 648, 6335, 796, 5046, 9, 648, 67, 1789, 62, 16012, 14, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1540, 3258, 324, 4178, 25, 1303, 37508, 1339, 329, 6591, 2511, 4178, 4991, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4252, 648, 6335, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 796, 362, 19571, 648, 67, 1789, 62, 16012, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21528, 403, 25, 1303, 10049, 7110, 4252, 611, 9167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4252, 796, 458, 83, 13, 31560, 293, 19510, 15, 11, 657, 828, 4252, 648, 6335, 11, 3124, 11639, 88, 3256, 1976, 2875, 796, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2860, 62, 17147, 7, 19155, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3792, 5440, 287, 2166, 286, 3825, 30, 198, 220, 220, 220, 220, 220, 220, 220, 1167, 4298, 796, 374, 40, 58, 13602, 7645, 270, 60, 1279, 374, 16012, 58, 13602, 7645, 270, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23114, 11168, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 796, 5046, 9, 648, 67, 1789, 62, 40, 1220, 45941, 13, 6966, 7, 34846, 8, 1303, 30916, 286, 9082, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 20797, 62, 23395, 7, 9888, 9, 75, 11, 9888, 9, 65, 10, 2815, 413, 5649, 14, 17, 1539, 9888, 9, 65, 12, 2815, 413, 5649, 14, 17, 11, 75, 86, 28, 15, 11, 277, 66, 11639, 15, 13, 17, 3256, 89, 2875, 28, 17, 9, 259, 8534, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 8310, 1, 3, 75, 6, 3, 37913, 20850, 13, 19509, 62, 14933, 58, 15, 60, 30072, 1600, 10369, 7857, 28, 10331, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7, 8310, 1, 3, 65, 6, 3, 37913, 20850, 13, 19509, 62, 14933, 58, 15, 60, 30072, 1600, 10369, 7857, 28, 10331, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1540, 3258, 324, 4178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7203, 38825, 2511, 4178, 1600, 10369, 7857, 28, 10331, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7203, 38825, 2511, 4178, 1600, 10369, 7857, 28, 10331, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29990, 34197, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 32590, 69, 709, 58, 15, 60, 9, 19155, 648, 6335, 14, 17, 11, 277, 709, 58, 15, 60, 9, 19155, 648, 6335, 14, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 32590, 69, 709, 58, 16, 60, 9, 19155, 648, 6335, 14, 17, 11, 277, 709, 58, 16, 60, 9, 19155, 648, 6335, 14, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16928, 7110, 393, 905, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29472, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 905, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 985, 2971, 22019, 303, 7, 944, 11, 2475, 17457, 668, 3101, 20786, 796, 4808, 2475, 17457, 668, 3101, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1761, 17457, 668, 3101, 62, 22046, 796, 19779, 84, 17, 1298, 15, 13, 3459, 11, 366, 85, 17, 48219, 15, 13, 1954, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3184, 5039, 11168, 1657, 12133, 351, 25035, 3223, 3101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2195, 8139, 36480, 25035, 3223, 3101, 31312, 1973, 1007, 1780, 5440, 11898, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3585, 2746, 28462, 379, 2116, 13, 76, 73, 67, 62, 8158, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 45941, 13, 18747, 26933, 70, 13, 1169, 8326, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3550, 67, 1789, 62, 16012, 796, 45941, 13, 18747, 26933, 70, 13, 648, 67, 1789, 62, 16012, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3550, 67, 1789, 62, 40, 796, 45941, 13, 18747, 26933, 70, 13, 648, 67, 1789, 62, 40, 329, 308, 287, 2116, 13, 469, 15748, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13450, 293, 1022, 44503, 15879, 290, 1627, 286, 6504, 198, 220, 220, 220, 220, 220, 220, 220, 872, 72, 796, 45941, 13, 5605, 31369, 7, 17, 9, 1169, 8326, 14, 648, 67, 1789, 62, 16012, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5589, 1133, 3585, 28462, 198, 220, 220, 220, 220, 220, 220, 220, 300, 66, 796, 352, 532, 357, 648, 67, 1789, 62, 40, 1174, 17, 14, 648, 67, 1789, 62, 16012, 1174, 17, 27493, 62, 2475, 17457, 668, 3101, 7, 34846, 11, 1174, 2475, 17457, 668, 3101, 62, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 66, 58, 37659, 13, 271, 12647, 7, 44601, 15437, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 300, 66 ]
1.969306
8,601
import os.path as osp import sys import argparse import time import torch from torchvision import transforms this_dir = osp.dirname(__file__) paths = [] paths.append(osp.join(this_dir, '..', 'lib')) paths.append(osp.join(this_dir, '..', 'lib', 'dataset')) for path in paths: if path not in sys.path: sys.path.insert(0, path) import models from core.loss import JointsMSELoss from utils.utils import get_optimizer from core.config import config from core.config import update_config from core.config import update_dir from core.config import get_model_name from core.evaluate import accuracy from CarJointsDataset import CarJointsDataset class AverageMeter(object): """Computes and stores the average and current value""" args = parse_args() model = eval('models.' + 'pose_resnet' + '.get_pose_net')( config, is_train=False ) print(model) # define loss function (criterion) and optimizer criterion = JointsMSELoss( use_target_weight=config.LOSS.USE_TARGET_WEIGHT ) optimizer = get_optimizer(config, model) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR ) # Data loading code normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = CarJointsDataset( config, transforms.Compose([ transforms.ToTensor(), normalize, ]) ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=config.TRAIN.BATCH_SIZE, shuffle=config.TRAIN.SHUFFLE, num_workers=config.WORKERS ) # switch to train mode model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() acc = AverageMeter() end = time.time() for epoch in range(config.TRAIN.BEGIN_EPOCH, config.TRAIN.END_EPOCH): lr_scheduler.step() for i, (input, target) in enumerate(train_loader): # compute output output = model(input) loss = criterion(output, target, 0) # compute gradient and do update step optimizer.zero_grad() loss.backward() optimizer.step() # measure accuracy and record loss losses.update(loss.item(), input.size(0)) _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(), target.detach().cpu().numpy()) acc.update(avg_acc, cnt) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % config.PRINT_FREQ == 0: msg = 'Epoch: [{0}][{1}/{2}]\t' \ 'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ 'Speed {speed:.1f} samples/s\t' \ 'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \ 'Loss {loss.val:.5f} ({loss.avg:.5f})\t' \ 'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, speed=input.size(0)/batch_time.val, data_time=data_time, loss=losses, acc=acc) print(msg) print("End of current epoch") print("End of training!")
[ 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 11748, 640, 198, 198, 11748, 28034, 198, 6738, 28034, 10178, 1330, 31408, 198, 198, 5661, 62, 15908, 796, 267, 2777, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 6978, 82, 796, 17635, 198, 6978, 82, 13, 33295, 7, 2117, 13, 22179, 7, 5661, 62, 15908, 11, 705, 492, 3256, 705, 8019, 6, 4008, 198, 6978, 82, 13, 33295, 7, 2117, 13, 22179, 7, 5661, 62, 15908, 11, 705, 492, 3256, 705, 8019, 3256, 705, 19608, 292, 316, 6, 4008, 198, 1640, 3108, 287, 13532, 25, 198, 220, 220, 220, 611, 3108, 407, 287, 25064, 13, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 6978, 13, 28463, 7, 15, 11, 3108, 8, 198, 198, 11748, 4981, 198, 6738, 4755, 13, 22462, 1330, 16798, 82, 5653, 3698, 793, 198, 6738, 3384, 4487, 13, 26791, 1330, 651, 62, 40085, 7509, 198, 6738, 4755, 13, 11250, 1330, 4566, 198, 6738, 4755, 13, 11250, 1330, 4296, 62, 11250, 198, 6738, 4755, 13, 11250, 1330, 4296, 62, 15908, 198, 6738, 4755, 13, 11250, 1330, 651, 62, 19849, 62, 3672, 198, 6738, 4755, 13, 49786, 1330, 9922, 198, 6738, 1879, 41, 1563, 82, 27354, 292, 316, 1330, 1879, 41, 1563, 82, 27354, 292, 316, 198, 198, 4871, 13475, 44, 2357, 7, 15252, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 290, 7000, 262, 2811, 290, 1459, 1988, 37811, 198, 198, 22046, 796, 21136, 62, 22046, 3419, 198, 198, 19849, 796, 5418, 10786, 27530, 2637, 1343, 705, 3455, 62, 411, 3262, 6, 1343, 45302, 1136, 62, 3455, 62, 3262, 6, 5769, 198, 220, 220, 220, 4566, 11, 318, 62, 27432, 28, 25101, 198, 8, 198, 198, 4798, 7, 19849, 8, 198, 198, 2, 8160, 2994, 2163, 357, 22213, 28019, 8, 290, 6436, 7509, 198, 22213, 28019, 796, 16798, 82, 5653, 3698, 793, 7, 198, 220, 220, 220, 779, 62, 16793, 62, 6551, 28, 11250, 13, 43, 18420, 13, 19108, 62, 51, 46095, 62, 8845, 9947, 198, 8, 198, 198, 40085, 7509, 796, 651, 62, 40085, 7509, 7, 11250, 11, 2746, 8, 198, 198, 14050, 62, 1416, 704, 18173, 796, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 13, 29800, 8600, 35972, 7, 198, 220, 220, 220, 6436, 7509, 11, 4566, 13, 51, 3861, 1268, 13, 35972, 62, 42135, 11, 4566, 13, 51, 3861, 1268, 13, 35972, 62, 37, 10659, 1581, 198, 8, 198, 198, 2, 6060, 11046, 2438, 198, 11265, 1096, 796, 31408, 13, 26447, 1096, 7, 32604, 41888, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 41888, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 12962, 198, 198, 27432, 62, 19608, 292, 316, 796, 1879, 41, 1563, 82, 27354, 292, 316, 7, 198, 220, 220, 220, 4566, 11, 198, 220, 220, 220, 31408, 13, 7293, 577, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 11, 198, 220, 220, 220, 33761, 198, 8, 198, 198, 27432, 62, 29356, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 4512, 62, 19608, 292, 316, 11, 198, 220, 220, 220, 15458, 62, 7857, 28, 11250, 13, 51, 3861, 1268, 13, 33, 11417, 62, 33489, 11, 198, 220, 220, 220, 36273, 28, 11250, 13, 51, 3861, 1268, 13, 9693, 47588, 2538, 11, 198, 220, 220, 220, 997, 62, 22896, 28, 11250, 13, 33249, 4877, 198, 8, 628, 198, 2, 5078, 284, 4512, 4235, 198, 19849, 13, 27432, 3419, 198, 198, 43501, 62, 2435, 796, 13475, 44, 2357, 3419, 198, 7890, 62, 2435, 796, 13475, 44, 2357, 3419, 198, 22462, 274, 796, 13475, 44, 2357, 3419, 198, 4134, 796, 13475, 44, 2357, 3419, 198, 437, 796, 640, 13, 2435, 3419, 198, 198, 1640, 36835, 287, 2837, 7, 11250, 13, 51, 3861, 1268, 13, 33, 43312, 62, 8905, 46, 3398, 11, 4566, 13, 51, 3861, 1268, 13, 10619, 62, 8905, 46, 3398, 2599, 198, 220, 220, 220, 300, 81, 62, 1416, 704, 18173, 13, 9662, 3419, 628, 220, 220, 220, 329, 1312, 11, 357, 15414, 11, 2496, 8, 287, 27056, 378, 7, 27432, 62, 29356, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24061, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2746, 7, 15414, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 34054, 7, 22915, 11, 2496, 11, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 24061, 31312, 290, 466, 4296, 2239, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 9662, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3953, 9922, 290, 1700, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 9089, 13, 19119, 7, 22462, 13, 9186, 22784, 5128, 13, 7857, 7, 15, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 42781, 62, 4134, 11, 269, 429, 11, 2747, 796, 9922, 7, 22915, 13, 15255, 620, 22446, 36166, 22446, 77, 32152, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 15255, 620, 22446, 36166, 22446, 77, 32152, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 697, 13, 19119, 7, 615, 70, 62, 4134, 11, 269, 429, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3953, 42118, 640, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 2435, 13, 19119, 7, 2435, 13, 2435, 3419, 532, 886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 4064, 4566, 13, 4805, 12394, 62, 37, 2200, 48, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 705, 13807, 5374, 25, 685, 90, 15, 92, 7131, 90, 16, 92, 14, 90, 17, 92, 60, 59, 83, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7575, 1391, 43501, 62, 2435, 13, 2100, 25, 13, 18, 69, 92, 82, 37913, 43501, 62, 2435, 13, 615, 70, 25, 13, 18, 69, 92, 82, 19415, 83, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22785, 1391, 12287, 25, 13, 16, 69, 92, 8405, 14, 82, 59, 83, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6601, 1391, 7890, 62, 2435, 13, 2100, 25, 13, 18, 69, 92, 82, 37913, 7890, 62, 2435, 13, 615, 70, 25, 13, 18, 69, 92, 82, 19415, 83, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43, 793, 1391, 22462, 13, 2100, 25, 13, 20, 69, 92, 37913, 22462, 13, 615, 70, 25, 13, 20, 69, 92, 19415, 83, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17320, 23843, 1391, 4134, 13, 2100, 25, 13, 18, 69, 92, 37913, 4134, 13, 615, 70, 25, 13, 18, 69, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 11, 1312, 11, 18896, 7, 27432, 62, 29356, 828, 15458, 62, 2435, 28, 43501, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2866, 28, 15414, 13, 7857, 7, 15, 20679, 43501, 62, 2435, 13, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 2435, 28, 7890, 62, 2435, 11, 2994, 28, 22462, 274, 11, 697, 28, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 19662, 8, 628, 220, 220, 220, 3601, 7203, 12915, 286, 1459, 36835, 4943, 198, 4798, 7203, 12915, 286, 3047, 2474, 8, 198 ]
2.213545
1,447
# -*- coding: utf-8 -*- # DO NOT EDIT THIS FILE! # This file has been autogenerated by dephell <3 # https://github.com/dephell/dephell try: from setuptools import setup except ImportError: from distutils.core import setup import os.path readme = '' here = os.path.abspath(os.path.dirname(__file__)) readme_path = os.path.join(here, 'README.rst') if os.path.exists(readme_path): with open(readme_path, 'rb') as stream: readme = stream.read().decode('utf8') setup( long_description=readme, name='qctrl-cirq', version='0.0.4', description='Q-CTRL Python Cirq', python_requires='<3.9,>=3.6.4', project_urls={"documentation": "", "homepage": "https://q-ctrl.com", "repository": "https://github.com/qctrl/python-cirq"}, author='Q-CTRL', author_email='[email protected]', license='Apache-2.0', keywords='q-ctrl qctrl quantum control', classifiers=['Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Scientific/Engineering :: Physics', 'Topic :: Scientific/Engineering :: Visualization', 'Topic :: Software Development :: Embedded Systems', 'Topic :: System :: Distributed Computing'], packages=['qctrlcirq'], package_dir={"": "."}, package_data={}, install_requires=['cirq==0.*,>=0.6.0', 'numpy==1.*,>=1.16.0', 'qctrl-open-controls==4.*,>=4.3.0', 'scipy==1.*,>=1.3.0', 'toml==0.*,>=0.10.0'], extras_require={"dev": ["nbval==0.*,>=0.9.5", "pylama", "pylint", "pylint-runner", "pytest", "qctrl-visualizer==2.*,>=2.1.0", "sphinx==2.*,>=2.2.0"]}, )
[ 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 8410, 5626, 48483, 12680, 45811, 0, 198, 2, 770, 2393, 468, 587, 1960, 519, 877, 515, 416, 1207, 12758, 1279, 18, 198, 2, 3740, 1378, 12567, 13, 785, 14, 10378, 12758, 14, 10378, 12758, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 900, 37623, 10141, 1330, 9058, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 1233, 26791, 13, 7295, 1330, 9058, 628, 198, 11748, 28686, 13, 6978, 198, 198, 961, 1326, 796, 10148, 198, 1456, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 961, 1326, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 1456, 11, 705, 15675, 11682, 13, 81, 301, 11537, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 7, 961, 1326, 62, 6978, 2599, 198, 220, 220, 220, 351, 1280, 7, 961, 1326, 62, 6978, 11, 705, 26145, 11537, 355, 4269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 1326, 796, 4269, 13, 961, 22446, 12501, 1098, 10786, 40477, 23, 11537, 628, 198, 40406, 7, 198, 220, 220, 220, 890, 62, 11213, 28, 961, 1326, 11, 198, 220, 220, 220, 1438, 11639, 80, 44755, 12, 66, 343, 80, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 13, 19, 3256, 198, 220, 220, 220, 6764, 11639, 48, 12, 4177, 7836, 11361, 21239, 80, 3256, 198, 220, 220, 220, 21015, 62, 47911, 11639, 27, 18, 13, 24, 11, 29, 28, 18, 13, 21, 13, 19, 3256, 198, 220, 220, 220, 1628, 62, 6371, 82, 28, 4895, 22897, 341, 1298, 366, 1600, 366, 11195, 7700, 1298, 366, 5450, 1378, 80, 12, 44755, 13, 785, 1600, 366, 260, 1930, 37765, 1298, 366, 5450, 1378, 12567, 13, 785, 14, 80, 44755, 14, 29412, 12, 66, 343, 80, 25719, 198, 220, 220, 220, 1772, 11639, 48, 12, 4177, 7836, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 11284, 31, 80, 12, 44755, 13, 785, 3256, 198, 220, 220, 220, 5964, 11639, 25189, 4891, 12, 17, 13, 15, 3256, 198, 220, 220, 220, 26286, 11639, 80, 12, 44755, 10662, 44755, 14821, 1630, 3256, 198, 220, 220, 220, 1398, 13350, 28, 17816, 41206, 12678, 7904, 642, 532, 19174, 14, 1273, 540, 3256, 705, 31441, 7904, 24371, 3256, 705, 5317, 1631, 7591, 1240, 7904, 34152, 3256, 705, 5317, 1631, 7591, 1240, 7904, 7868, 3256, 705, 5317, 1631, 7591, 1240, 7904, 5800, 14, 25104, 3256, 705, 35364, 15417, 7904, 3594, 3256, 705, 18843, 803, 4482, 7904, 7294, 13362, 3256, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 3256, 705, 33221, 7904, 4455, 7904, 13505, 54, 14, 40717, 3256, 705, 33221, 7904, 22060, 14, 13798, 1586, 7904, 23123, 3256, 705, 33221, 7904, 22060, 14, 13798, 1586, 7904, 15612, 1634, 3256, 705, 33221, 7904, 10442, 7712, 7904, 13302, 47238, 11998, 3256, 705, 33221, 7904, 4482, 7904, 4307, 6169, 38589, 6, 4357, 198, 220, 220, 220, 10392, 28, 17816, 80, 24087, 44601, 343, 80, 6, 4357, 198, 220, 220, 220, 5301, 62, 15908, 28, 4895, 1298, 366, 526, 5512, 198, 220, 220, 220, 5301, 62, 7890, 34758, 5512, 198, 220, 220, 220, 2721, 62, 47911, 28, 17816, 66, 343, 80, 855, 15, 15885, 11, 29, 28, 15, 13, 21, 13, 15, 3256, 705, 77, 32152, 855, 16, 15885, 11, 29, 28, 16, 13, 1433, 13, 15, 3256, 705, 80, 44755, 12, 9654, 12, 13716, 82, 855, 19, 15885, 11, 29, 28, 19, 13, 18, 13, 15, 3256, 705, 1416, 541, 88, 855, 16, 15885, 11, 29, 28, 16, 13, 18, 13, 15, 3256, 705, 39532, 75, 855, 15, 15885, 11, 29, 28, 15, 13, 940, 13, 15, 6, 4357, 198, 220, 220, 220, 33849, 62, 46115, 28, 4895, 7959, 1298, 14631, 46803, 2100, 855, 15, 15885, 11, 29, 28, 15, 13, 24, 13, 20, 1600, 366, 79, 2645, 1689, 1600, 366, 79, 2645, 600, 1600, 366, 79, 2645, 600, 12, 16737, 1600, 366, 9078, 9288, 1600, 366, 80, 44755, 12, 41464, 7509, 855, 17, 15885, 11, 29, 28, 17, 13, 16, 13, 15, 1600, 366, 82, 746, 28413, 855, 17, 15885, 11, 29, 28, 17, 13, 17, 13, 15, 8973, 5512, 198, 8, 198 ]
2.614325
726
import pytest import urllib.request import os import hashlib from elasticsearch import Elasticsearch, ConnectionError, RequestError, NotFoundError from time import sleep from image_match.elasticsearch_driver import SignatureES from PIL import Image test_img_url1 = 'https://camo.githubusercontent.com/810bdde0a88bc3f8ce70c5d85d8537c37f707abe/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f652f65632f4d6f6e615f4c6973612c5f62795f4c656f6e6172646f5f64615f56696e63692c5f66726f6d5f4332524d465f7265746f75636865642e6a70672f36383770782d4d6f6e615f4c6973612c5f62795f4c656f6e6172646f5f64615f56696e63692c5f66726f6d5f4332524d465f7265746f75636865642e6a7067' test_img_url2 = 'https://camo.githubusercontent.com/826e23bc3eca041110a5af467671b012606aa406/68747470733a2f2f63322e737461746963666c69636b722e636f6d2f382f373135382f363831343434343939315f303864383264653537655f7a2e6a7067' urllib.request.urlretrieve(test_img_url1, 'test1.jpg') urllib.request.urlretrieve(test_img_url2, 'test2.jpg') INDEX_NAME = 'test_environment_{}'.format(hashlib.md5(os.urandom(128)).hexdigest()[:12]) DOC_TYPE = 'image' MAPPINGS = { "mappings": { DOC_TYPE: { "dynamic": True, "properties": { "metadata": { "type": "nested", "dynamic": True, "properties": { "tenant_id": { "type": "keyword" }, "project_id": { "type": "keyword" } } } } } } } @pytest.fixture(scope='module', autouse=True) @pytest.fixture(scope='function', autouse=True) @pytest.fixture(scope='function', autouse=True) @pytest.fixture @pytest.fixture
[ 11748, 12972, 9288, 198, 11748, 2956, 297, 571, 13, 25927, 198, 11748, 28686, 198, 11748, 12234, 8019, 198, 6738, 27468, 12947, 1330, 48567, 12947, 11, 26923, 12331, 11, 19390, 12331, 11, 1892, 21077, 12331, 198, 6738, 640, 1330, 3993, 198, 198, 6738, 2939, 62, 15699, 13, 417, 3477, 12947, 62, 26230, 1330, 34894, 1546, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 9288, 62, 9600, 62, 6371, 16, 796, 705, 5450, 1378, 66, 18811, 13, 12567, 43667, 13, 785, 14, 40215, 65, 1860, 68, 15, 64, 3459, 15630, 18, 69, 23, 344, 2154, 66, 20, 67, 5332, 67, 5332, 2718, 66, 2718, 69, 24038, 11231, 14, 39925, 38652, 24038, 2091, 64, 17, 69, 17, 69, 2425, 35402, 66, 21, 69, 44214, 3682, 68, 3324, 38205, 65, 38205, 67, 2996, 2414, 38205, 1065, 68, 21, 69, 22, 2075, 4761, 69, 3324, 38205, 65, 3388, 2154, 2996, 2414, 38205, 1065, 69, 21, 2623, 69, 21, 67, 21, 67, 21, 69, 21, 68, 22, 2624, 69, 4524, 3104, 38219, 67, 21, 1828, 69, 43193, 69, 37466, 2624, 69, 19, 67, 21, 69, 21, 68, 47007, 69, 19, 66, 40035, 2623, 1065, 66, 20, 69, 49856, 3865, 69, 19, 66, 37466, 69, 21, 68, 47941, 2075, 3510, 69, 20, 69, 27720, 1314, 69, 20, 2791, 4846, 68, 21, 2623, 5892, 66, 20, 69, 28933, 2075, 69, 21, 67, 20, 69, 42117, 1495, 1731, 67, 42018, 69, 22, 2075, 3553, 3510, 69, 38219, 27412, 2996, 41290, 68, 21, 64, 2154, 43864, 69, 2623, 2548, 2718, 2154, 46519, 67, 19, 67, 21, 69, 21, 68, 47007, 69, 19, 66, 40035, 2623, 1065, 66, 20, 69, 49856, 3865, 69, 19, 66, 37466, 69, 21, 68, 47941, 2075, 3510, 69, 20, 69, 27720, 1314, 69, 20, 2791, 4846, 68, 21, 2623, 5892, 66, 20, 69, 28933, 2075, 69, 21, 67, 20, 69, 42117, 1495, 1731, 67, 42018, 69, 22, 2075, 3553, 3510, 69, 38219, 27412, 2996, 41290, 68, 21, 64, 2154, 3134, 6, 198, 9288, 62, 9600, 62, 6371, 17, 796, 705, 5450, 1378, 66, 18811, 13, 12567, 43667, 13, 785, 14, 23, 2075, 68, 1954, 15630, 18, 31047, 3023, 1157, 940, 64, 20, 1878, 24669, 46250, 65, 486, 21719, 21, 7252, 29703, 14, 39925, 38652, 24038, 2091, 64, 17, 69, 17, 69, 21, 2091, 1828, 68, 22, 2718, 3510, 22985, 38205, 2623, 2791, 66, 38205, 2623, 65, 22, 1828, 68, 21, 2623, 69, 21, 67, 17, 69, 36243, 69, 34770, 17059, 36243, 69, 2623, 34741, 19880, 2682, 2682, 2682, 2670, 26007, 1314, 69, 1270, 2548, 2414, 34741, 18897, 2996, 2327, 32128, 2816, 69, 22, 64, 17, 68, 21, 64, 2154, 3134, 6, 198, 333, 297, 571, 13, 25927, 13, 6371, 1186, 30227, 7, 9288, 62, 9600, 62, 6371, 16, 11, 705, 9288, 16, 13, 9479, 11537, 198, 333, 297, 571, 13, 25927, 13, 6371, 1186, 30227, 7, 9288, 62, 9600, 62, 6371, 17, 11, 705, 9288, 17, 13, 9479, 11537, 198, 198, 12115, 6369, 62, 20608, 796, 705, 9288, 62, 38986, 23330, 92, 4458, 18982, 7, 17831, 8019, 13, 9132, 20, 7, 418, 13, 333, 3749, 7, 12762, 29720, 33095, 12894, 395, 3419, 58, 25, 1065, 12962, 198, 38715, 62, 25216, 796, 705, 9060, 6, 198, 44, 24805, 20754, 796, 1391, 198, 220, 366, 76, 39242, 1298, 1391, 198, 220, 220, 220, 37760, 62, 25216, 25, 1391, 220, 198, 220, 220, 220, 220, 220, 366, 67, 28995, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 220, 198, 220, 220, 220, 220, 220, 220, 220, 366, 38993, 1298, 1391, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 77, 7287, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 67, 28995, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1452, 415, 62, 312, 1298, 1391, 366, 4906, 1298, 366, 2539, 4775, 1, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16302, 62, 312, 1298, 1391, 366, 4906, 1298, 366, 2539, 4775, 1, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 92, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 11639, 21412, 3256, 1960, 1076, 28, 17821, 8, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 11639, 8818, 3256, 1960, 1076, 28, 17821, 8, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 11639, 8818, 3256, 1960, 1076, 28, 17821, 8, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
2.059041
813
BASE_DIRECTORY = None CACHE = "/tmp/tru"
[ 33, 11159, 62, 17931, 23988, 15513, 796, 6045, 198, 34, 2246, 13909, 796, 12813, 22065, 14, 83, 622, 1, 198 ]
2.05
20
from src.BandC import * from src.Exceptions import FileFormatNotFound __parsers__ = {'.csv': CSV, '.arff': Arff} __url_parsers__ = {'.csv': URLCSV, '.arff': URLARFF} def assign_parser(file_path: str, contents: str = None, verbose: bool = False) -> callable: """ Allocate a specific parser to a file_path :param file_path: The file path of the dataset to parse :param contents: The dataset as a string :param verbose: True for output :return: A parser object which is able to parse the dataset """ # Check file path to see if we need a local or an url parser parsers = __parsers__ if file_path.startswith('https:'): print('THIS IS IT') parsers = __url_parsers__ # Find the correct parser for the file for parser in parsers: # Check if we have implemented a parser for this file if file_path.endswith(parser): # Check if the dataset has been given as a string if contents is None: return parsers[parser](file_path=file_path, verbose=verbose) else: return parsers[parser](file_path=file_path, contents=contents, verbose=verbose) # When the file format is not in our list of parable formats raise FileFormatNotFound("File format of file: " + file_path + " is unknown") if __name__ == "__main__": p = assign_parser("C:/AAA_School/Assignments/BEP/Datasets/Test.csv", verbose=True) print() print(p) print(p.get_dialect) print() print(p.parse_file().head(5)) print('Done')
[ 6738, 12351, 13, 31407, 34, 1330, 1635, 198, 6738, 12351, 13, 3109, 11755, 1330, 9220, 26227, 3673, 21077, 198, 198, 834, 79, 945, 364, 834, 796, 1391, 4458, 40664, 10354, 44189, 11, 45302, 283, 487, 10354, 943, 487, 92, 198, 834, 6371, 62, 79, 945, 364, 834, 796, 1391, 4458, 40664, 10354, 37902, 29814, 53, 11, 45302, 283, 487, 10354, 10289, 1503, 5777, 92, 628, 198, 4299, 8333, 62, 48610, 7, 7753, 62, 6978, 25, 965, 11, 10154, 25, 965, 796, 6045, 11, 15942, 577, 25, 20512, 796, 10352, 8, 4613, 869, 540, 25, 198, 220, 220, 220, 37227, 1439, 13369, 257, 2176, 30751, 284, 257, 2393, 62, 6978, 628, 220, 220, 220, 1058, 17143, 2393, 62, 6978, 25, 383, 2393, 3108, 286, 262, 27039, 284, 21136, 198, 220, 220, 220, 1058, 17143, 10154, 25, 383, 27039, 355, 257, 4731, 198, 220, 220, 220, 1058, 17143, 15942, 577, 25, 6407, 329, 5072, 198, 220, 220, 220, 1058, 7783, 25, 317, 30751, 2134, 543, 318, 1498, 284, 21136, 262, 27039, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6822, 2393, 3108, 284, 766, 611, 356, 761, 257, 1957, 393, 281, 19016, 30751, 198, 220, 220, 220, 13544, 364, 796, 11593, 79, 945, 364, 834, 198, 220, 220, 220, 611, 2393, 62, 6978, 13, 9688, 2032, 342, 10786, 5450, 32105, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 43559, 3180, 7283, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 13544, 364, 796, 11593, 6371, 62, 79, 945, 364, 834, 628, 220, 220, 220, 1303, 9938, 262, 3376, 30751, 329, 262, 2393, 198, 220, 220, 220, 329, 30751, 287, 13544, 364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 356, 423, 9177, 257, 30751, 329, 428, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 62, 6978, 13, 437, 2032, 342, 7, 48610, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 262, 27039, 468, 587, 1813, 355, 257, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10154, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13544, 364, 58, 48610, 16151, 7753, 62, 6978, 28, 7753, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 19011, 577, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13544, 364, 58, 48610, 16151, 7753, 62, 6978, 28, 7753, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 28, 3642, 658, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 19011, 577, 8, 628, 220, 220, 220, 1303, 1649, 262, 2393, 5794, 318, 407, 287, 674, 1351, 286, 1582, 540, 17519, 198, 220, 220, 220, 5298, 9220, 26227, 3673, 21077, 7203, 8979, 5794, 286, 2393, 25, 366, 1343, 2393, 62, 6978, 1343, 366, 318, 6439, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 279, 796, 8333, 62, 48610, 7203, 34, 14079, 29697, 62, 26130, 14, 8021, 570, 902, 14, 33, 8905, 14, 27354, 292, 1039, 14, 14402, 13, 40664, 1600, 15942, 577, 28, 17821, 8, 198, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 3601, 7, 79, 8, 198, 220, 220, 220, 3601, 7, 79, 13, 1136, 62, 38969, 478, 8, 198, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 3601, 7, 79, 13, 29572, 62, 7753, 22446, 2256, 7, 20, 4008, 198, 220, 220, 220, 3601, 10786, 45677, 11537, 198 ]
2.352113
710
from tests.utils import assert_nodes_equal, load_xml, render_node from zibalzeep import xsd
[ 6738, 5254, 13, 26791, 1330, 6818, 62, 77, 4147, 62, 40496, 11, 3440, 62, 19875, 11, 8543, 62, 17440, 198, 6738, 1976, 21342, 2736, 538, 1330, 2124, 21282, 628, 198 ]
3.133333
30
# -*- coding: utf-8 -*- # # Copyright ©2018-2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ docs_mail_merge_test.py -- unit test for docs_mail_merge.py: 1. test credentials file availability 2. test whether project can connect to all 3 APIs 3. test creation (and deletion) of Google Docs file 4. test copying (and deletion) of Google Docs file 5. test getting plain text data 6. test getting data from Google Sheets spreadsheet """ import os import unittest from googleapiclient import discovery from docs_mail_merge import (CLIENT_ID_FILE, get_data, get_http_client, _copy_template) class TestDocsMailMerge(unittest.TestCase): 'Unit tests for Mail Merge sample' def project_test(): 'Tests whether project credentials file was downloaded from project.' if os.path.exists(CLIENT_ID_FILE): return True raise IOError('''\ ERROR: Must create a Google APIs project, enable both the Drive and Docs REST APIs, create and download OAuth2 client credentials as %r before unit test can run.''' % CLIENT_ID_FILE) def gapis_test(): 'Tests whether project can connect to all 3 APIs used in the sample.' HTTP = get_http_client() discovery.build('drive', 'v3', http=HTTP) discovery.build('docs', 'v1', http=HTTP) discovery.build('sheets', 'v4', http=HTTP) return True def create_doc_test(): 'Tests whether project can create and delete a Google Docs file.' DRIVE = discovery.build('drive', 'v3', http=get_http_client()) DATA = { 'name': 'Test Doc', 'mimeType': 'application/vnd.google-apps.document', } doc_id = DRIVE.files().create(body=DATA, fields='id').execute().get('id') DRIVE.files().delete(fileId=doc_id, fields='').execute() return True def copy_doc_test(): 'Tests whether project can copy and delete a Google Docs file.' DRIVE = discovery.build('drive', 'v3', http=get_http_client()) DOCS_FILE_ID = '1Xycxuuv7OhEQUuzbt_Mw0TPMq02MseSD1vZdBJ3nLjk' doc_id = _copy_template(DOCS_FILE_ID, 'text', DRIVE) DRIVE.files().delete(fileId=doc_id, fields='').execute() return True def get_text_data_test(): 'Tests reading plain text data.' return get_data('text') def get_sheets_data_test(): 'Tests reading Google Sheets data.' return get_data('sheets') if __name__ == '__main__': unittest.main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 10673, 7908, 12, 23344, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 2471, 4891, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 31628, 62, 4529, 62, 647, 469, 62, 9288, 13, 9078, 1377, 4326, 1332, 329, 34165, 62, 4529, 62, 647, 469, 13, 9078, 25, 198, 220, 220, 220, 352, 13, 1332, 18031, 2393, 11500, 198, 220, 220, 220, 362, 13, 1332, 1771, 1628, 460, 2018, 284, 477, 513, 23113, 198, 220, 220, 220, 513, 13, 1332, 6282, 357, 392, 39948, 8, 286, 3012, 14432, 82, 2393, 198, 220, 220, 220, 604, 13, 1332, 23345, 357, 392, 39948, 8, 286, 3012, 14432, 82, 2393, 198, 220, 220, 220, 642, 13, 1332, 1972, 8631, 2420, 1366, 198, 220, 220, 220, 718, 13, 1332, 1972, 1366, 422, 3012, 1375, 1039, 30117, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 23645, 499, 291, 75, 1153, 1330, 9412, 198, 6738, 34165, 62, 4529, 62, 647, 469, 1330, 357, 5097, 28495, 62, 2389, 62, 25664, 11, 651, 62, 7890, 11, 651, 62, 4023, 62, 16366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 30073, 62, 28243, 8, 198, 198, 4871, 6208, 23579, 82, 25804, 13102, 469, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 705, 26453, 5254, 329, 11099, 39407, 6291, 6, 198, 198, 4299, 1628, 62, 9288, 33529, 198, 220, 220, 220, 705, 51, 3558, 1771, 1628, 18031, 2393, 373, 15680, 422, 1628, 2637, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 5097, 28495, 62, 2389, 62, 25664, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 5298, 24418, 12331, 7, 7061, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 33854, 25, 12039, 2251, 257, 3012, 23113, 1628, 11, 7139, 1111, 198, 220, 220, 220, 220, 220, 220, 220, 262, 9974, 290, 14432, 82, 30617, 23113, 11, 2251, 290, 4321, 440, 30515, 17, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 18031, 355, 4064, 81, 878, 4326, 1332, 460, 1057, 2637, 7061, 4064, 45148, 62, 2389, 62, 25664, 8, 198, 198, 4299, 7625, 271, 62, 9288, 33529, 198, 220, 220, 220, 705, 51, 3558, 1771, 1628, 460, 2018, 284, 477, 513, 23113, 973, 287, 262, 6291, 2637, 198, 220, 220, 220, 14626, 796, 651, 62, 4023, 62, 16366, 3419, 198, 220, 220, 220, 9412, 13, 11249, 10786, 19472, 3256, 705, 85, 18, 3256, 2638, 28, 40717, 8, 198, 220, 220, 220, 9412, 13, 11249, 10786, 31628, 3256, 705, 85, 16, 3256, 2638, 28, 40717, 8, 198, 220, 220, 220, 9412, 13, 11249, 10786, 42011, 3256, 705, 85, 19, 3256, 2638, 28, 40717, 8, 198, 220, 220, 220, 1441, 6407, 198, 198, 4299, 2251, 62, 15390, 62, 9288, 33529, 198, 220, 220, 220, 705, 51, 3558, 1771, 1628, 460, 2251, 290, 12233, 257, 3012, 14432, 82, 2393, 2637, 198, 220, 220, 220, 10560, 9306, 796, 9412, 13, 11249, 10786, 19472, 3256, 705, 85, 18, 3256, 2638, 28, 1136, 62, 4023, 62, 16366, 28955, 198, 220, 220, 220, 42865, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 14402, 14432, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 76, 524, 6030, 10354, 705, 31438, 14, 85, 358, 13, 13297, 12, 18211, 13, 22897, 3256, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 2205, 62, 312, 796, 10560, 9306, 13, 16624, 22446, 17953, 7, 2618, 28, 26947, 11, 7032, 11639, 312, 27691, 41049, 22446, 1136, 10786, 312, 11537, 198, 220, 220, 220, 10560, 9306, 13, 16624, 22446, 33678, 7, 7753, 7390, 28, 15390, 62, 312, 11, 7032, 28, 7061, 737, 41049, 3419, 198, 220, 220, 220, 1441, 6407, 198, 198, 4299, 4866, 62, 15390, 62, 9288, 33529, 198, 220, 220, 220, 705, 51, 3558, 1771, 1628, 460, 4866, 290, 12233, 257, 3012, 14432, 82, 2393, 2637, 198, 220, 220, 220, 10560, 9306, 796, 9412, 13, 11249, 10786, 19472, 3256, 705, 85, 18, 3256, 2638, 28, 1136, 62, 4023, 62, 16366, 28955, 198, 220, 220, 220, 37760, 50, 62, 25664, 62, 2389, 796, 705, 16, 55, 88, 66, 87, 12303, 85, 22, 5812, 36, 10917, 10277, 18347, 62, 44, 86, 15, 51, 5868, 80, 2999, 44, 325, 10305, 16, 85, 57, 36077, 41, 18, 77, 43, 73, 74, 6, 198, 220, 220, 220, 2205, 62, 312, 796, 4808, 30073, 62, 28243, 7, 38715, 50, 62, 25664, 62, 2389, 11, 705, 5239, 3256, 10560, 9306, 8, 198, 220, 220, 220, 10560, 9306, 13, 16624, 22446, 33678, 7, 7753, 7390, 28, 15390, 62, 312, 11, 7032, 28, 7061, 737, 41049, 3419, 198, 220, 220, 220, 1441, 6407, 198, 198, 4299, 651, 62, 5239, 62, 7890, 62, 9288, 33529, 198, 220, 220, 220, 705, 51, 3558, 3555, 8631, 2420, 1366, 2637, 198, 220, 220, 220, 1441, 651, 62, 7890, 10786, 5239, 11537, 198, 198, 4299, 651, 62, 42011, 62, 7890, 62, 9288, 33529, 198, 220, 220, 220, 705, 51, 3558, 3555, 3012, 1375, 1039, 1366, 2637, 198, 220, 220, 220, 1441, 651, 62, 7890, 10786, 42011, 11537, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.882
1,000
from os import path import pytest import datashader as ds import rasterio as rio from pytest import set_trace BASE_PATH = path.split(__file__)[0] DATA_PATH = path.abspath(path.join(BASE_PATH, 'data')) TEST_RASTER_PATH = path.join(DATA_PATH, 'world.rgb.tif') with rio.open(TEST_RASTER_PATH) as src: x_range = (src.bounds.left, src.bounds.right) y_range = (src.bounds.bottom, src.bounds.top) cvs = ds.Canvas(plot_width=2, plot_height=2, x_range=x_range, y_range=y_range)
[ 6738, 28686, 1330, 3108, 198, 198, 11748, 12972, 9288, 198, 11748, 4818, 1077, 5067, 355, 288, 82, 198, 11748, 374, 1603, 952, 355, 374, 952, 198, 198, 6738, 12972, 9288, 1330, 900, 62, 40546, 198, 198, 33, 11159, 62, 34219, 796, 3108, 13, 35312, 7, 834, 7753, 834, 38381, 15, 60, 198, 26947, 62, 34219, 796, 3108, 13, 397, 2777, 776, 7, 6978, 13, 22179, 7, 33, 11159, 62, 34219, 11, 705, 7890, 6, 4008, 198, 51, 6465, 62, 49, 1921, 5781, 62, 34219, 796, 3108, 13, 22179, 7, 26947, 62, 34219, 11, 705, 6894, 13, 81, 22296, 13, 49929, 11537, 198, 198, 4480, 374, 952, 13, 9654, 7, 51, 6465, 62, 49, 1921, 5781, 62, 34219, 8, 355, 12351, 25, 198, 220, 220, 220, 2124, 62, 9521, 796, 357, 10677, 13, 65, 3733, 13, 9464, 11, 12351, 13, 65, 3733, 13, 3506, 8, 198, 220, 220, 220, 331, 62, 9521, 796, 357, 10677, 13, 65, 3733, 13, 22487, 11, 12351, 13, 65, 3733, 13, 4852, 8, 198, 220, 220, 220, 269, 14259, 796, 288, 82, 13, 6090, 11017, 7, 29487, 62, 10394, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 17015, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9521, 28, 87, 62, 9521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 9521, 28, 88, 62, 9521, 8, 628, 198 ]
2.025926
270
#!/usr/bin/python3 # -*- coding: utf-8 -*- import os SETTINGS_PRIORITY = 80 # THESE SETTINGS ARE NEEDED FOR PYSETTINGS SESSIONLOG_PLUGIN_ICON = os.path.join(os.path.dirname(__file__), 'resources', 'history.png') SESSIONLOG_PLUGIN_WINDOW_SIZE = 700, 600 SESSIONLOG_PLUGIN_REFRESH_RATE = 1000
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 198, 28480, 51, 20754, 62, 4805, 41254, 9050, 796, 4019, 198, 198, 2, 48947, 25823, 51, 20754, 15986, 36465, 1961, 7473, 350, 16309, 2767, 51, 20754, 198, 198, 50, 47621, 25294, 62, 6489, 7340, 1268, 62, 2149, 1340, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 37540, 3256, 705, 23569, 13, 11134, 11537, 198, 198, 50, 47621, 25294, 62, 6489, 7340, 1268, 62, 28929, 3913, 62, 33489, 220, 197, 28, 13037, 11, 10053, 198, 50, 47621, 25294, 62, 6489, 7340, 1268, 62, 2200, 10913, 44011, 62, 49, 6158, 220, 197, 28, 8576, 198 ]
2.274809
131
"""Various utility functions.""" import sys import time import signal import numpy as np def getstop(): """Returns stop so that stop[0] is True if ctrl+c was hit.""" stop = [False] _orig = [None] _orig[0] = signal.signal(signal.SIGINT, handler) return stop def saveopt(fname, opt): """Save optimizer state to file""" weights = opt.get_weights() npz = {('%d' % i): weights[i] for i in range(len(weights))} np.savez(fname, **npz) def savemodel(fname, model): """Save model weights to file""" weights = model.get_weights() npz = {('%d' % i): weights[i] for i in range(len(weights))} np.savez(fname, **npz) def loadmodel(fname, model): """Restore model weights from file.""" npz = np.load(fname) weights = [npz['%d' % i] for i in range(len(npz.files))] model.set_weights(weights) def loadopt(fname, opt, model): """Restore optimizer state from file.""" npz = np.load(fname) weights = [npz['%d' % i] for i in range(len(npz.files))] opt._create_all_weights(model.trainable_variables) opt.set_weights(weights)
[ 37811, 40009, 10361, 5499, 526, 15931, 198, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 6737, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4299, 651, 11338, 33529, 198, 220, 220, 220, 37227, 35561, 2245, 523, 326, 2245, 58, 15, 60, 318, 6407, 611, 269, 14859, 10, 66, 373, 2277, 526, 15931, 198, 220, 220, 220, 2245, 796, 685, 25101, 60, 198, 220, 220, 220, 4808, 11612, 796, 685, 14202, 60, 198, 220, 220, 220, 4808, 11612, 58, 15, 60, 796, 6737, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 12394, 11, 21360, 8, 628, 220, 220, 220, 1441, 2245, 628, 198, 4299, 3613, 8738, 7, 69, 3672, 11, 2172, 2599, 198, 220, 220, 220, 37227, 16928, 6436, 7509, 1181, 284, 2393, 37811, 198, 220, 220, 220, 19590, 796, 2172, 13, 1136, 62, 43775, 3419, 198, 220, 220, 220, 45941, 89, 796, 1391, 10786, 4, 67, 6, 4064, 1312, 2599, 19590, 58, 72, 60, 329, 1312, 287, 2837, 7, 11925, 7, 43775, 4008, 92, 198, 220, 220, 220, 45941, 13, 21928, 89, 7, 69, 3672, 11, 12429, 37659, 89, 8, 628, 198, 4299, 3613, 19849, 7, 69, 3672, 11, 2746, 2599, 198, 220, 220, 220, 37227, 16928, 2746, 19590, 284, 2393, 37811, 198, 220, 220, 220, 19590, 796, 2746, 13, 1136, 62, 43775, 3419, 198, 220, 220, 220, 45941, 89, 796, 1391, 10786, 4, 67, 6, 4064, 1312, 2599, 19590, 58, 72, 60, 329, 1312, 287, 2837, 7, 11925, 7, 43775, 4008, 92, 198, 220, 220, 220, 45941, 13, 21928, 89, 7, 69, 3672, 11, 12429, 37659, 89, 8, 628, 198, 4299, 3440, 19849, 7, 69, 3672, 11, 2746, 2599, 198, 220, 220, 220, 37227, 19452, 382, 2746, 19590, 422, 2393, 526, 15931, 198, 220, 220, 220, 45941, 89, 796, 45941, 13, 2220, 7, 69, 3672, 8, 198, 220, 220, 220, 19590, 796, 685, 37659, 89, 17816, 4, 67, 6, 4064, 1312, 60, 329, 1312, 287, 2837, 7, 11925, 7, 37659, 89, 13, 16624, 4008, 60, 198, 220, 220, 220, 2746, 13, 2617, 62, 43775, 7, 43775, 8, 628, 198, 4299, 3440, 8738, 7, 69, 3672, 11, 2172, 11, 2746, 2599, 198, 220, 220, 220, 37227, 19452, 382, 6436, 7509, 1181, 422, 2393, 526, 15931, 198, 220, 220, 220, 45941, 89, 796, 45941, 13, 2220, 7, 69, 3672, 8, 198, 220, 220, 220, 19590, 796, 685, 37659, 89, 17816, 4, 67, 6, 4064, 1312, 60, 329, 1312, 287, 2837, 7, 11925, 7, 37659, 89, 13, 16624, 4008, 60, 198, 220, 220, 220, 2172, 13557, 17953, 62, 439, 62, 43775, 7, 19849, 13, 27432, 540, 62, 25641, 2977, 8, 198, 220, 220, 220, 2172, 13, 2617, 62, 43775, 7, 43775, 8 ]
2.498866
441
import geopandas as gpd import pandas as pd from shapely.geometry import Point from geopandas.tools import sjoin import sqlite3 #from datetime import datetime, timezone import datetime co_county_sf = '/Users/rl/scratch/covid-19/facebook/co_counties/co_counties.shp' boulder_county_zone_sf = '/Users/rl/scratch/covid-19/facebook/boulder_county_zoning/Zoning__Zoning_Districts.shp'
[ 11748, 30324, 392, 292, 355, 27809, 67, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 5485, 306, 13, 469, 15748, 1330, 6252, 198, 6738, 30324, 392, 292, 13, 31391, 1330, 264, 22179, 198, 11748, 44161, 578, 18, 198, 2, 6738, 4818, 8079, 1330, 4818, 8079, 11, 640, 11340, 198, 11748, 4818, 8079, 628, 628, 198, 1073, 62, 9127, 88, 62, 28202, 796, 31051, 14490, 14, 45895, 14, 1416, 36722, 14, 66, 709, 312, 12, 1129, 14, 19024, 14, 1073, 62, 9127, 444, 14, 1073, 62, 9127, 444, 13, 1477, 79, 6, 628, 198, 65, 17601, 62, 9127, 88, 62, 11340, 62, 28202, 796, 31051, 14490, 14, 45895, 14, 1416, 36722, 14, 66, 709, 312, 12, 1129, 14, 19024, 14, 65, 17601, 62, 9127, 88, 62, 89, 12484, 14, 57, 12484, 834, 57, 12484, 62, 44857, 82, 13, 1477, 79, 6, 198 ]
2.71831
142
from saiqa.Model.UserModel import User from saiqa.Service.UserService import UserService from saiqa.Service.QuestionService import QuestionService from saiqa.Exception.CustomException import FormatError, PasswordMismatchError, EmptyFormError import re service = UserService('test') qser = QuestionService('test') # List of tests: # Good Register # Password Mismatch # Incorrect Username Format # Incorrect Password Format 1 # Incorrect Password Format 2 # Bad Register # Duplicate User
[ 6738, 473, 72, 20402, 13, 17633, 13, 12982, 17633, 1330, 11787, 198, 6738, 473, 72, 20402, 13, 16177, 13, 12982, 16177, 1330, 11787, 16177, 198, 6738, 473, 72, 20402, 13, 16177, 13, 24361, 16177, 1330, 18233, 16177, 198, 6738, 473, 72, 20402, 13, 16922, 13, 15022, 16922, 1330, 18980, 12331, 11, 30275, 44, 1042, 963, 12331, 11, 33523, 8479, 12331, 198, 11748, 302, 198, 198, 15271, 796, 11787, 16177, 10786, 9288, 11537, 198, 80, 2655, 796, 18233, 16177, 10786, 9288, 11537, 198, 198, 2, 7343, 286, 5254, 25, 198, 2, 220, 220, 4599, 17296, 198, 2, 220, 220, 30275, 337, 1042, 963, 198, 2, 220, 220, 3457, 47315, 50069, 18980, 198, 2, 220, 220, 3457, 47315, 30275, 18980, 352, 198, 2, 220, 220, 3457, 47315, 30275, 18980, 362, 198, 2, 220, 220, 7772, 17296, 198, 2, 220, 220, 49821, 5344, 11787 ]
3.553191
141
# Coding Practice #0617 #---------------------------------------------------------------------------------- import numpy as np import cv2 # Go to the directory where the data file is located. # os.chdir(r'~~') # Please, replace the path with your own. # 1. Morphological filtering. # Open an image in B/W. img = cv2.imread('picture_Texture.jpg',0) cv2.imshow("Texture", img) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. # 1.1. Erosion and dilation: # Erosion: Turns white pixels into black ones. # Dilation: Turns black pixels into white ones. kernel = np.ones((5,5),'uint8') img_eroded = cv2.erode(img, kernel, iterations=5) # 'iterations' is adjustable. img_dilated = cv2.dilate(img,kernel,iterations=5) # 'iterations' is adjustable. cv2.imshow("Eroded", img_eroded) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. cv2.imshow("Dilated", img_dilated) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window.
[ 171, 119, 123, 2, 327, 7656, 19939, 1303, 3312, 1558, 198, 2, 10097, 1783, 438, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 198, 2, 1514, 284, 262, 8619, 810, 262, 1366, 2393, 318, 5140, 13, 220, 198, 2, 28686, 13, 354, 15908, 7, 81, 6, 4907, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 197, 197, 197, 197, 220, 1303, 4222, 11, 6330, 262, 3108, 351, 534, 898, 13, 220, 220, 220, 198, 198, 2, 352, 13, 41170, 2770, 25431, 13, 198, 2, 4946, 281, 2939, 287, 347, 14, 54, 13, 220, 198, 9600, 796, 269, 85, 17, 13, 320, 961, 10786, 34053, 62, 32742, 13, 9479, 3256, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 33967, 17, 13, 320, 12860, 7203, 32742, 1600, 33705, 8, 198, 33967, 17, 13, 17077, 9218, 7, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16314, 1566, 257, 1994, 318, 12070, 13, 198, 33967, 17, 13, 41659, 3237, 11209, 3419, 220, 220, 197, 197, 197, 197, 197, 220, 1303, 13872, 262, 1280, 4324, 13, 220, 220, 220, 198, 198, 2, 352, 13, 16, 13, 412, 4951, 295, 290, 288, 10520, 25, 198, 2, 412, 4951, 295, 25, 30875, 2330, 17848, 656, 2042, 3392, 13, 198, 2, 360, 10520, 25, 30875, 2042, 17848, 656, 2330, 3392, 13, 198, 33885, 796, 45941, 13, 1952, 19510, 20, 11, 20, 828, 6, 28611, 23, 11537, 198, 9600, 62, 263, 9043, 796, 269, 85, 17, 13, 263, 1098, 7, 9600, 11, 9720, 11, 34820, 28, 20, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 2676, 602, 6, 318, 28138, 13, 198, 9600, 62, 67, 40080, 796, 269, 85, 17, 13, 67, 346, 378, 7, 9600, 11, 33885, 11, 2676, 602, 28, 20, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 2676, 602, 6, 318, 28138, 13, 198, 198, 33967, 17, 13, 320, 12860, 7203, 36, 305, 9395, 1600, 33705, 62, 263, 9043, 8, 198, 33967, 17, 13, 17077, 9218, 7, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16314, 1566, 257, 1994, 318, 12070, 13, 198, 33967, 17, 13, 41659, 3237, 11209, 3419, 220, 220, 197, 197, 197, 197, 197, 220, 220, 1303, 13872, 262, 1280, 4324, 13, 220, 220, 220, 198, 198, 33967, 17, 13, 320, 12860, 7203, 35, 40080, 1600, 33705, 62, 67, 40080, 8, 198, 33967, 17, 13, 17077, 9218, 7, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16314, 1566, 257, 1994, 318, 12070, 13, 198, 33967, 17, 13, 41659, 3237, 11209, 3419, 220, 220, 197, 197, 197, 197, 197, 220, 1303, 13872, 262, 1280, 4324, 13, 220, 220, 220, 628 ]
2.002861
699